
Some results on the Generalized Weihrauch Hierarchy

MSc Thesis (Afstudeerscriptie)

written by

Gian Marco Osso
(born August 7th, 1998 in Cetraro (CS), Italy)

under the supervision of Dr. Lorenzo Galeotti and Prof. Dr. Benedikt Löwe,
and submitted to the Examinations Board in partial fulfillment of the requirements for

the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
August 29th, 2022 Dr. Ekaterina Shutova (Chair)

Dr. Merlin Carl
Dr. Lorenzo Galeotti
Dr. Levin Hornischer
Prof. Dr. Benedikt Löwe
Prof. Dr. Yde Venema

Acknowledgements

First of all, I would like to thank my supervisors Lorenzo and Benedikt, who enabled me to write this
thesis, which would not exist without their guidance. In particular, I thank Lorenzo for introducing me
to the topics of Weihrauch degrees and generalized analysis, and for helping me throughout the writing
process. Our often exhausting meetings would always remind me of why I love doing mathematics
and they would motivate me during the harder times of my last semester. I thank Benedikt for his
invaluable advice on writing style and mathematical storytelling, and for making me understand how
crucial these things are in the practice of research. I can safely say that both of you had a huge impact
on the quality of my thesis, as well as on me as a potential future researcher.

Thanks to the other defense committee members, who put in the time to read my not-so-short
thesis and understood it to the point of being able to ask such thoughtful questions.

I thank my family who, despite having no idea of what I have been studying the past five years,
continues to support me in all I do. The trust you have shown me and the support you have always
provided are remarkable, and the fact that I know I can always count on you has helped me immensely
in these past two years of living abroad.

I thank my friends in Italy for being willing to keep our relationships alive despite the distance:
with some of you our relationship is long-distance since two years, for some of you it is already five
years of being apart, but - I can say this about all of you - the bond between us has not faded a little
bit. I know that this requires effort on both sides, and I am grateful for your availability. I hope we
will continue to feel as connected as we have always felt in the once-a-year meetings to follow.

Lastly I thank my friends in Amsterdam for these past two years we spent together. You are the
reason why I have felt at home (literally, for some of you) during my masters and you are a large
part of what drove my growth in the past two years. Our passionate conversations, adventurous days
and nights, the sports, long walks, music and food we shared are a big part of what I enjoyed in
Amsterdam, and they have been and continue to be an inspiration for me. Thanks for the great
fun measuring trees and tables, for climbing things inside and outside of the appropriate gyms, for
balancing on wobbly lines, for the amazing questioning, personal and mathematical, for helping me
appreciate doing nothing in a park as well as pushing hard in the library and for opening my mind to
new things. As important as my professional goals for the future, my hope going forward is - similarly
to what happened with my Italian friends - to be able to keep relationships with you as vivid as they
are now, wherever I end up being.

1

Abstract

Weihrauch degree theory is a field of study which attempts to classify mathematical theorems based
on their computational content. Brattka and Gherardi obtained a picture of the Weihrauch degrees
of theorems of mathematical analysis which is stratified by the so-called choice and boundedness
principles. We generalise their work to the realm of higher descriptive set theory, where the role of
Baire space ωω is taken by generalized Baire space κκ (for uncountable cardinals κ satisfying κ<κ = κ)
and the role of the real line is taken by Galeotti’s generalized real line Rκ. To achieve this, we adapt
a framework of Brattka to obtain a general theory of κ-computable metric spaces. Subsequenty, we
check which of the techniques for proving non-reductions in the classical setting can be transported
to the generalized setting. Lastly, we draw from the classical literature to prove several Weihrauch
reducibility results in the generalized context. The result is a fairly complete picture (page 97) of the
Weihrauch degrees of many of the currently known generalized analysis theorems and of the generalized
choice and boundedness principles.

Contents

Introduction 3

1 Preliminaries 7
1.1 Topology . 7

1.1.1 λ-metric spaces . 7
1.1.2 Generalized Baire and Cantor spaces and trees 12

1.2 Transfinite computability . 14
1.2.1 Infinitary Turing Machines . 14
1.2.2 Pairing functions . 17
1.2.3 Enumeration of short sequences . 19
1.2.4 Type 2 computations . 22
1.2.5 Limit machines . 25

1.3 Computable analysis . 25
1.4 Surreal numbers and Rκ . 31

1.4.1 Definition and basic properties of surreal numbers 31
1.4.2 Conway Normal Form . 32
1.4.3 The generalized reals Rκ . 36

2 Computability on Rκ-metric spaces 40
2.1 Representations for Rκ-metric spaces . 40

2.1.1 Technical results on Cauchy representations . 42
2.1.2 Representation for the κ-Borel sets in computable metric spaces 44

2.2 Σ0
n-effective computability . 46

2.3 A family of functions complete for Σ0
n-measurable maps 49

2.3.1 Reductions for computable κ-metric spaces . 49
2.3.2 Effective logical normal form for subsets of generalized Baire space 52
2.3.3 The Completeness Theorem . 55

3 Choice and boundedness principles 59
3.1 More represented spaces . 59
3.2 Choice principles, boundedness principles, omniscience principles and results in gener-

alized analysis . 62

4 Separation techniques 65
4.1 Turing degree invariance principle . 65
4.2 Mind change invariance principle . 65
4.3 Parallelization principle . 67

4.3.1 Introduction . 67
4.3.2 Computable compactness of generalized Cantor space and computable moduli

of uniform continuity . 68
4.3.3 Computable ternary extensions . 71
4.3.4 Proof of the Parallelization principle . 74

1

5 Classification Results 77
5.1 What we have shown so far . 77
5.2 The principle L̂POκ and translating functions . 78

5.2.1 Introduction . 78
5.2.2 The equivalence ECκ ≡W L̂POκ and the reduction B ≤W ECκ 78
5.2.3 Computable Conway Normal Form and the reduction ECκ ≤W B 80

5.3 The principles ̂LLPOκ, Sepκ, and trees . 87
5.4 Interval choice principles and boundedness principles 91

6 Conclusions 96
6.1 Comparison with the classical picture . 96
6.2 Future work . 98

2

Introduction

Background

The study of Weihrauch degrees is an approach to the classification of mathematical theorems in
terms of their computational content. The area was born with the introduction of the so-called Type
2 Theory of Effectivity (TTE) (see [41], [40] and [39]) which is a framework introduced by Weihrauch
to transfer the notion of Type 2 computability on Baire space to sets of cardinality up to 2ℵ0 via
representations. These are naming systems associating to each element of the represented set one or
more codes in Baire space. This allows us to study relations on represented spaces in terms of their
realizers. Formally, if X and Y are represented spaces and R ⊆ X ×Y is a relation, a partial function
f :⊆ ωω → ωω is a realizer of R if the following diagram commutes

ωω ωω

X Y

repX

f

repY

R

in the sense that for all x ∈ dom(R) and all p coding x, f(p) codes some y such that (x, y) ∈ R.
Since most spaces of interest for mathematical analysis have cardinality ≤2ℵ0 , they can in principle
be represented. Consequently, it is possible to study relations on them in terms of their realizers.

The notion of realizer then is employed to define Weihrauch reducibility, which intuitively captures
the concept of a relation being computationally simpler than another. Formally, if R ⊆ X × Y
and S ⊆ U × V , we say that R Weihrauch reduces to S if there are computable preprocessing and
postprocessing functions on Baire space such that for every f :⊆ ωω → ωω realizing S, composing f
with these pre/postprocessing functions yields a realizer of R.

ωω ωω ωω ωω

U V

X Y

repX

pre f

repU

post

repV

repY
S

R

Schematically, it must be the case that whenever f makes the inner diagram commute, the outer
diagram commutes as well.

Now, given any theorem T of analysis which can be written as a Π2 statement, i.e., in the form
∀x ∈ X∃y ∈ Y ϕ(x, y), we can consider its associated relation R consisting of those paris (x, y) ∈ X×Y
such that ϕ(x, y). In these terms, a realizer of the relation R is a function that sends names of elements
x ∈ X (i.e., instances of the theorem T) to names of elements y ∈ Y which witness the truth of the
theorem T . Moreover, if R is the relation associated to theorem T and S is the relation associated to
theorem T ′, saying that R Weihrauch reduces to S means that, if we assume the existence of a black
box producing names for witnesses to the truth of theorem T ′, we can computably obtain a similar
black box for T . This is a possible formalization of the concept of a theorem being computationally
stronger than another which logicians have found appealing.

3

Researchers then took an interest in the study of Weihrauch reducibility between various mathe-
matical theorems. An example of this pursuit is given by the paper [7], where Brattka and Gherardi
classify the Weihrauch degrees (i.e., the equivalence classes given by Weihrauch reducibility) of many
cornerstone theorems in analysis. The following diagram, (which we will henceforth refer to as the
Brattka-Gherardi diagram) is a slightly modified version of the table appearing on page 5 of [7], and
it is a representation of most of the classification work contained in the above mentioned paper.1

...

C2

C1 ≡W BR ≡W L̂PO ≡W EC

CA

CK ≡W L̂LPO ≡W WKL ≡W Sep

CI ≡W BI ≡W IVT B+
I

C−I ≡W B−I Cω ≡W BF ≡W BCT

LLPO LPO

idωω

In the table above, a black arrow from T to T ′ indicates that T ′ Weihrauch reduces to T , and it is
complete, i.e., no arrows can be added except those that follow from transitivity of Weihrauch re-
ducibility. We remark that the original diagram contained the degrees of many other theorems which
are usually consided to be cornerstones of real analysis. The backbone of this classification is given
by the so-called choice and boundedness principles, which are noncomputable principles concerining
subsets and sequences of real numbers, and they are denoted with the letters B and C in the table.

In line with the interest in generalized descriptive set theory (see [24]), i.e., the study of spaces of
the form κκ and 2κ where κ is an uncountable cardinal satisfying κ<κ = κ, the work on Weihrauch
degrees has recently been expanded to higher cardinalities. In [16], Galeotti defined the real closed field
Rκ for every uncountable cardinal κ satisfying κ<κ = κ. These are field extensions of R particularly
well suited to the needs of computable analysis. Also in [16], he proved that some versions of the
Intermediate Value Theorem, the Extreme Value Theorem and the Baire Category Theorem hold for
Rκ, effectively initiating the study of generalized analysis (for generalised analysis see also [11], on
generalizations of the Bolzano-Weierstrass Theorem to non-Archimedean fields). Moreover, in his [16]
and [17], as well as with Nobrega in [19], Galeotti started the study of generalized computable analysis,
i.e., the study of Weihrauch degrees for relations (in particular theorems) on Rκ, κκ and related spaces.

1The table presented contains two principles which are not mentioned in [7], namely Sep and EC. These are included
as we will use their generalized versions in our classification efforts later in the thesis. Note that the original paper uses
the notation B for what we call BR. All equivalences and reductions shown are either proven or referenced in [7], with
the exception of those involving the newly added principles. For a proof of the equivalence EC ≡W BR see [39, Theorem
4] and for a proof of the equivalence Sep ≡W WKL see [20, Theorem 6.7].

4

Project overview

This thesis generalizes the choice and boundedness principles of [7]2 and it studies the Weihrauch
reductions between these new principles, in the hope that they will form the backbone of the generalized
Weihrauch hierarchy, i.e., that they will aid in classifying future generalized analysis results, similarly
to how their classical counterpart capture many well-known results in analysis. The final result of
the thesis is our own classification diagram containing a fairly complete picture of the Weihrauch
degrees corresponding to our generalized principles and some generalized analysis results (see page
97). This project was tackled in the following way: first we investigated whether the separation
techniques of Section 4 in [7] would carry over to the κ-context. This provided us with some tools
to prove non-reducibility between principles. Subsequently, we went about the actual classification of
our generalized principles. We collected all previously existing classification results from [16], [17] and
[19] and we proved new classification results, sometimes drawing from the classical proofs found in the
literature (see [6], [7], [39], [40], [20] and [5]). Along the way, we generalized the theory of computable
metric spaces to higher versions of metric spaces, and obtained new analytical and computational
results on Galeotti’s generalized real line Rκ.

Overview of the chapters

This thesis is organized as follows: Chapter 1 is an exposition of all the material necessary for the
development of the following chapters, introducing the basic notions of generalized metric spaces,
transfinite computability, (generalized) computable analysis and the surreal number fields that play
a central role throughout the thesis. Chapter 2 introduces computable κ-metric spaces, which are
generalizations of the classical computable metric spaces found in, e.g., [41] or [5]. One of the main
results of the chapter is Theorem 2.2.2, which states that computable functions on computable κ-
metric spaces are exactly those for which we can compute preimages of open sets. This result is used
extensively in the rest of the thesis, and in particular it is a stepping stone for Theorem 2.3.12, which
is the other most important result in the chapter. This result establishes the existence of a countable
family of choice functions on generalized Baire space κκ which is linearly ordered with respect to
Weihrauch reducibility. Moreover, it shows that each member of the family is Weihrauch complete
for a particular set of functions. Chapter 3 contains formal definitions for the generalized versions of
all principles in [7], as well as conventions on notation. The main result of this chapter is Lemma
3.1.8 which highlights a computational difference between closed sets of R and closed sets in Rκ
based on topological differences between the two fields. Chapter 4 contains proofs for the generalized
versions of the Separation Techniques of [7]. Chapter 5 contains all the Weihrauch reductions between
generalized principles that we currently know of, as well as some new results on Rκ that were obtained
along the way. Chapter 6 summarises our classification results and presents them in a table (page 97)
analogous to the Brattka-Gherardi diagram. In it, we compare the two diagrams and explicitly state
the questions which remain open.

Background knowledge and notation

Throughout the thesis, we assume familiarity with the basic notions of set theory. We refer the reader
to [23] for general set theory and to [15] for more about Gödel’s constructible universe L. Moreover,
we assume familiarity with classical computability theory, and we refer the reader to [31] for more on
the topic. All the material we will need about transfinite computability is explicitly introduced, and
it is taken from [10]. We introduce computable analysis in the generalized setting directly, for more
on classical computable analysis the standard reference is [41]. For operations on Weihrauch degrees,

2We give reference to the definitions of the generalised principles corresponding to those in the Brattka-Gherardi
diagram: the analogues of the functions Cn at the top of the diagram are defined on page 55, the generalized versions of
the choice principles, indicated by the letter C, the boundedness principles, indicated by the letter B and the omniscience
principles LPO and LLPO are defined in Section 3.2. Section 3.2 also contains definitions of the generalized counterparts
to WKL and Sep, as well as the generalized analysis results analogous to those indicated by IVT and BCT and other
auxiliary principles which are necessary for the classification in the generalized context.

5

we refer to [6].

We use greek letters α, β, γ . . . to denote ordinals, whereas we reserve the letter κ for cardinals.
We sometimes use the notation |X| to denote the cardinality of the set X (also if X is an ordinal).
Given a set X and a subset A ⊆ X, we use the notation Ac to denote the complement of A in X, i.e.,
X \A. We will only use this notations in settings where the ambient set X is clear from the context.
For any well-ordered set (X,<), we use the notation otX to refer to the unique ordinal isomorphic to
it. If X, Y denote sets, we write XY to refer to the set of functions from Y to X. We use the same
exponential notation also for ordinal exponentiation and cardinal exponentiation: this will not be an
issue as the intended meaning of our symbols is always disambiguated either by the context or by
explicit mention. For any set X and any ordinal β, we write X<β as a shorthand for the set

⋃
α∈β X

α.

Accordingly, X≤β denotes the set X<β+1. If α and β are ordinals, we sometimes call an element s of
αβ a word. We call the domain of a word s its length and we denote it as l(s) or |s|. We denote the
concatenation of two words s and w, defined in the obvious way, as saw or sw. Given a sequence of
words (wα)α∈γ , we denote their concatenation as JwαKα∈γ . Given a subset A of a set X, we denote
by χA its characteristic function, i.e., the function χA : X → 2 such that χA(x) = 1 if and only if x ∈ A.

Given a totally ordered set (I,<), we say that A ⊆ I is an interval if it is convex, i.e., for every
a, b ∈ A if a < c < b, then c ∈ I. Moreover, if a < b we denote as (a, b) the open interval determined
by endpoints a and b, i.e., (a, b) = {c ∈ I | a < c < b}. Accordingly we denote the closed interval
as [a, b] = (a, b) ∪ {a, b}, and the half-closed intervals as [a, b) = (a, b) ∪ {a} and (a, b] = (a, b) ∪ {b}.
Lastly, if I does not have a maximum, we denote as (a,+∞) the interval given by {c ∈ I | a < c}.
The symbols [a,+∞), (−∞, a) and (−∞, a] are defined analogously. If A and B are subsets of the
totally ordered set (I,<), we write A < B as a shorthand for ∀a ∈ A∀b ∈ B (a < b). If A = {x} is a
singleton, we write x < B instead of {x} < B.

6

Chapter 1

Preliminaries

1.1 Topology

Topology is a fundamental tool in the development of computable analysis. We give an account of the
notions which will be used in the thesis. We assume familiarity with basic topological notions which
can be found, for example, in [42] or [29].

1.1.1 λ-metric spaces

For any uncountable regular cardinal λ, it is possible to define the notion of λ-metric spaces, which
are sets equipped with a distance function which has values in an ordered group admitting strictly
decreasing sequences of positive elements of length λ. These spaces were first introduced by Sikorski
(see for example [37]) and their theory was recently expanded by Galeotti in [16] and [17], Motto Ros,
Agostini and Schlicht in [1] and Schlicht and Coskey in [14], in the contexts of generalized descriptive
set theory and generalized analysis.

Definition 1.1.1 (Base number). Given a totally ordered abelian group (G,+, 0 ≤), let G+ = {x ∈
G | x > 0} be the positive part of G. We will call coi(G+) the base number of G, i.e.,the least possible
cardinality of a set Y which is coinitial in G+. We denote the base number of G as bn(G).

Lemma 1.1.2. Let (A,≤) be a linearly ordered set with no least element, and let λ be its coinitiality,
then λ is regular.

Proof. Follows from a proof analogous to [23, Lemma 3.8].

Definition 1.1.3 (G-metric). Let (G,+, 0,≤) be a totally ordered abelian group, and let X be a set.
A function d : X ×X → G is called a G-metric if

� for every x, y ∈ X, d(x, y) ≥ 0 and d(x, y) = 0 ⇐⇒ x = y,

� for every x, y ∈ X, d(x, y) = d(y, x),

� for every x, y, z ∈ X, d(x, y) + d(y, z) ≥ d(x, z).

Given any totally ordered abelian groupG, we refer to a pair (X, d), withX a set and d : X×X → G
a G-metric as a G-metric space.

Definition 1.1.4 (Open and closed balls). Let G be a totally ordered group and let X = (X, d) be a
G-metric space. We define the open balls of d as the sets of the form

BX(x, g) = {x′ ∈ X | d(x, x′) < g}

and the closed balls of d as the sets of the form

BX(x, g) = {x′ ∈ X | d(x, x′) ≤ g}.

7

Given any totally ordered abelian group G and any set X, a G-metric d : X ×X → G induces a
topology τd on X consisting of the smallest collection containing the base Bd = {BX(x, g) | x ∈ X, g ∈
G} which is closed under arbitrary unions. We call τd the topology induced by d.

A related concept which features prominently in generalized analysis is that of a λ-topology : given
a cardinal λ and a set X, a λ-topology on X is a subset of P(X) which contain the empty set, the whole
space X and it is closed under finite intersections and unions indexed by ordinals below λ. Similarly
to the situation for ordinary topologies, given a set B ⊆ P(X) closed under finite intersections and
such that

⋃
B = X,1 we define the λ-topology generated by B as the smallest subset of P(X) which

contains the empty set and the whole space X, includes B and is closed under unions indexed by
ordinals below λ. Given a cardinal λ, a totally ordered abelian group G and a G-metric space (X, d),
it is clear from the definitions that, if we denote with τd the topology induced by d and with τλd the
λ-topology induced by d, then we have τλd ⊆ τd.

Definition 1.1.5 (λ-metrizability). A topological space (X, τ) is called λ-metrizable if there exists a
totally ordered abelian group G with bn(G) = λ and a G-metric d on X such that τ is the topology
induced by the metric d.

Similarly, given a pair (X, d) where d is a G-metric for some group G with bn(G) = λ, call (X, d)
a λ-metric space. In the rest of this section, whenever unspecified, assume that the symbols G and H
stand for totally ordered additive abelian groups.

In light of Lemma 1.1.2, whenever we speak of λ-metrizable (λ-metric) spaces in the rest of this
thesis, we will assume that λ is an uncountable regular cardinal.

Definition 1.1.6 (λ-additivity). Given an uncountable cardinal λ, a topological space (X, τ) is called
λ-additive if, for all δ < λ and all δ-sequences of open sets (Aα)α∈δ, we have that

⋂
α∈δ Aα is open.

It is known that for any regular cardinal λ, the notion of λ-metrizability can be characterized by
the topological property of λ-additivity.

Proposition 1.1.7 ([36], Theorem viii). Let λ be a regular uncountable cardinal, let (X, τ) be a
topological space which admits a base of cardinality ≤λ and let G be a totally ordered abelian group
with bn(G) = λ. The space (X, τ) is λ-additive if and only if it is G-metrizable.

In particular, this means that if (X, τ) is a topological space with a base of size λ and G and G′

are two totally ordered abelian groups with base number λ, then (X, τ) is G-metrizable if and only if
it is G′-metrizable. This equivalence allows us to prove results on general λ-metrizable spaces while
assuming that we are working with specific any specific group G.

We mention here that this is in stark contrast with the situation for ℵ0-metric spaces. The latter
category obviously includes ordinary metric spaces, but a result analogous to Proposition 1.1.7 does
not hold. In fact, it is easy to see that no connected metric space with more than two points is Q
metrizable.2

It is immediate to see that for a function f : (X, dX) → (Y, dY) where dX is a G-metric and dY
is an H-metric, topological continuity (the requirement that preimages of open sets in (Y, dY) via f
are open in (X, dX)) coincides with the usual ε-δ definition of continuity in metric spaces, i.e., f is
continuous if and only if

∀x ∈ X∀ε ∈ G+∃δ ∈ H+∀y ∈ X (dX(x, y) ≤ δ =⇒ dY (f(x), f(y)) ≤ ε) .

Similarly we can modify the definition of uniform continuity for functions between metric spaces:

1In line with standard terminology, we refer to sets satisfying these two requirements as topological bases on X.
2We give a sketch of how one could prove this: let (X, d) be a connected metric space and let x and y be distinct

points in X. We show that ran(d) 6⊆ Q by contradiction. So, assume ran(d) ⊆ Q and let r > 0 be an irrational number
such that r < d(x, y). Consider the closed ball B = BX(x, r): this is a closed set as all closed balls in metric spaces
are closed. On the other hand, the assumption ran(d) ⊆ Q implies that B =

⋃
q∈Q,q<r B(x, q). So, B is also open, and

in particular it is a nonempty clopen set different from X. This contradicts the connectedness of X. This immediately
implies that d is not equivalent to any Q-metric and proves the claim.

8

Definition 1.1.8 (Uniform continuity). Let (X, τX) and (Y, τY) be two topological spaces and let
dX : G→ X and dY : H → Y be metrics which induce the respective topologies. A function f : X → Y
is called uniformly continuous if

∀ε ∈ G+∃δ ∈ H+∀x, y ∈ X (dX(x, y) ≤ δ =⇒ dY (f(x), f(y)) ≤ ε) .

We contrast these notions with an alternative concept of continuity, which is more relevant for
generalized analysis (see, e.g., [16] and [2]).

Definition 1.1.9. Let λ be a cardinal, let X and Y be sets, let τ and τ ′ be λ-topologies on X and
Y , respectively. Let f : X → Y be a function. We say that f is λ-continuous if for every U ∈ τ ′,
f−1[U] ∈ τ .

We mention that, having fixed topological bases BX and BY , λ-continuity is a stronger property
than continuity (see, e.g., [16, Lemma 3.2.4] for a proof).

Lemma 1.1.10. Let X and Y be sets, BX and BY be topological bases on X and Y respectively. Let
τX be the topology on X induced by BX and let τY be the topology on Y induced by BY . Similarly,
call τλX and τλY the λ-topologies induced by BX and BY . Let f : X → Y be λ-continuous with respect
to τλX and τλY , then f is continuous with respect to τX and τY .

We fix some more terminology which will be useful in the rest of the thesis.

Definition 1.1.11 (Sequences). Let α be an ordinal and let X be any set, we call a function s : α→ X
an α-sequence (or just a sequence if its domain is clear from the context). For any β ∈ α, we often
write sβ instead of s(β). Accordingly, we write (sβ)β∈α ⊆ X instead of s : α→ X.

Definition 1.1.12 (Convergent and Cauchy sequences). Let (X, d) be a G-metric space where G is
a totally ordered abelian group with bn(G) = λ and let s : λ → X be a sequence. We say that s is
Cauchy if

∀ε ∈ G+∃α ∈ λ∀β, γ > α (d(sβ, sγ) < ε) .

We say that s converges to x ∈ X if

∀ε ∈ G+∃α ∈ λ∀β > α (d(sβ, x) < ε) .

We denote this as limα→λ sα = x.

As in the classical context, every convergent sequence is easily seen to be Cauchy (for example see
the proof sketch under [42, Definition 24.1]), but the converse does not hold.

Definition 1.1.13 (Cauchy completeness). Let (X, d) be a G-metric space where G is a totally ordered
abelian group with bn(G) = λ, we say that X is Cauchy complete (or just complete) if every Cauchy
sequence in X converges to some element of X.

Definition 1.1.14 (λ-separability). Given an uncountable cardinal λ, a topological space (X, τ) is
called λ-separable if it has a dense subset of cardinality λ.

Next we want to settle some terminology and state some facts about the interplay between se-
quences, topological spaces and continuous functions.

Definition 1.1.15 (Sequential continuity). Let X and Y be topological spaces, a function f : X → Y
is λ-sequentially continuous if for every λ-sequence (xα)α∈λ of elements of X which converges, we
have limα→λ(f(xα)) = f(limα→λ xα).

Definition 1.1.16 (λ-compactness). A topological space (X, τ) is called λ-compact if every open cover
U = {Ui | i ∈ I} admits a refinement given by <λ sets, i.e.,some set J ⊆ I such that |J | < λ and
{Uj | j ∈ J} is a cover.

The following result is analogous to the corresponding result for the classical context, and it is
proved in the same way.

9

Proposition 1.1.17. Let (X, τ) be a λ-compact topological space and let C ⊆ X be a closed set. Then
C is λ-compact. Conversely, if (Y, ξ) is any Hausdorff and λ-additive topological space, and D ⊆ Y is
any λ-compact set, then D is closed.

Proof. See Theorem 26.2 and Theorem 26.3 in [29] for proofs of the corresponding statements for
ordinary compact spaces. The proof of Theorem 26.2 can be carried over to our context with no mod-
ifications, whereas repeating the proof of Theorem 26.3 in our context requires the extra assumption
of λ-additivity. Note that any λ-metric space is both Hausdorff and λ-additive.

Definition 1.1.18 (λ-sequential spaces and λ-sequentially compact spaces). A topological space (X, τ)
is called λ-sequential if for every A ⊆ X, it holds that

cl(A) = {y ∈ X | ∃(aα)α∈λ ⊆ A(lim
α→λ

aα = y)},

and it is called λ-sequentially compact if and only if every λ-sequence in X has a convergent subse-
quence.

The following results correspond to well known theorem for metric spaces, we give references to
the proofs of the classical theorems, noting that they all transfer without modifications.

Theorem 1.1.19. Let λ be any uncountable regular cardinal and let (X, d) be a λ-metric space with
d a G-metric. Then (X, d) is λ-sequential. Moreover, if X is λ-compact, then X is λ-sequentially
compact.

Proof. See [42, Theorem 10.4] and [29, Theorem 28.2].

Theorem 1.1.20. Let (X, τ) and (Y, ξ) be topological spaces with X a λ-sequential space and let
f : X → Y be a function. Then f is continuous if and only if f is λ-sequentially continuous.

Proof. See [42, Corollary 10.5].

This immediately yields a λ-version of Heine’s theorem.

Theorem 1.1.21 (λ-Heine’s Theorem). Let (X, dX) and (Y, dY) be λ-metric spaces with dX a G-
metric and dY an H-metric, let X be λ-sequentially compact and let f : X → Y be a continuous
function. Then f is uniformly continuous.

Proof. See [35, Theorem 4.19].

We mention that a version of the Baire Category Theorem holds for generalized metric spaces:

Definition 1.1.22 (λ-spherical completeness). A topological space (X, τ) is called λ-spherically com-
plete3 if for every ordinal β < λ, every sequence of open balls (Aα)α∈β such that, for all δ < γ,
Aγ ⊆ Aδ, has nonempty intersection.

Theorem 1.1.23 (λ-Baire Category Theorem). Let (X, d) be a λ-metric, λ-spherically complete and
Cauchy complete space and let (Aα)α∈λ be a sequence of closed sets with empty interior, then

⋃
α∈λAα

has empty interior.

Proof. See [16], Theorem 3.5.24.

Given a cardinal λ we introduce λ-Borel sets (this definition can be found in [16]):

Definition 1.1.24 (λ-Borel sets). Let X = (X, d) be a λ-metric space. Define B(X), the λ-Borel
subsets of X, as the smallest subset of P (X) which contains the open sets and is closed under unions
of size λ and complementation.

As in the classical case, the λ-Borel sets are stratified in a hierarchy given by:

3Note that in the literature the notion of λ-spherical completeness is also sometimes called <λ-spherical completeness.

10

� Σ0
1(X) = open sets,

� Π0
1(X) = closed sets,

� for every α > 1, Σ0
α(X) = {

⋃
β<λAβ | ∀β ∃γ < α (Aβ ∈ Π0

γ(X))},

� for every α > 1, Π0
α(X) = {X \A | A ∈ Σ0

α(X)},

� for every α ≥ 1, ∆0
α(X) = Σ0

α(X) ∩Π0
α(X).

It can be shown that this is a proper hierarchy of length λ+ when λ<λ = λ and X = λλ or X = 2λ

([16, Theorem 3.5.21]).
We prove a couple of results related to Borel sets on λ-metric spaces which will be useful for our

treatment of computable κ-metric spaces.

Proposition 1.1.25. Let X = (X, d) be a λ-metric space for some cardinal λ satisfying λ<λ = λ. For
all n ∈ ω, Σ0

n(X) is closed under intersections of size <λ. Similarly, Π0
n(X) is closed under unions of

size <λ.

Proof. We prove the claim by induction on n: by Proposition 1.1.7, the claim holds for Σ0
1. Note

that by a simple application of the De Morgan Laws, the claim for Π0
n follows from the one for Σ0

n.
Therefore we only need to prove that, assuming closure of the Σ0

n sets under small intersections (and
therefore closure of the Π0

n sets under small unions) we obtain that Σ0
n+1 sets are closed under small

intersections. To this end, let (Aα)α∈δ be a sequence of Σ0
n+1 sets, then for every α there are sets

(Cαβ)β∈λ in Π0
n such that

⋃
β∈λC

α
β = Aα. Now, for every f ∈ λδ and every α ∈ δ, let Cαf = Cαf(α),

then ⋂
α∈δ

Aα =
⋂
α∈δ

⋃
β∈λ

Cαβ =
⋃
f∈λδ

⋂
α∈δ

Cαf ,

Since Π0
n is closed intersections of size λ, each

⋂
α∈δ C

α
f is a Π0

n-set, and since |λδ| = λ, this shows

that
⋂
α∈δ Aα can be written as a union of λ-many Π0

n sets, i.e.,it belongs to Σ0
n+1. This concludes

the induction and thus proves the claim.

Definition 1.1.26 (Σ0
α-measurability). Let X = (X, d) be a λ-metric space and let (Y, ξ) be any

topological space. Let f :⊆ X → Y be a partial function and let α be an ordinal, then f is called Σ0
α-

measurable if for all open sets O ∈ ξ, there exists some VO ∈ Σ0
α(X) such that f−1[O] = VO∩dom(f).4

We denote the set of Σ0
α-measurable functions from X to Y as Measα(X, Y). If (Y, ξ) = (X,Σ0

1(X)),
we just write Measα(X).

Proposition 1.1.27. Let X = (X, d) be a λ-metric space and let α be an ordinal such that Σ0
α(X) 6=

Σ0
α+1(X) and let (Y, ξ) be any T0 topological space with at least two points, then Measα+1(X, Y) 6=

Measα(X, Y).

Proof. Let A ∈ Σ0
α+1(X) \ Σ0

α(X) and let y1 and y2 be distinct points in Y and define the function
f : X → Y as

f(x) =

{
y1 if x ∈ A
y2 if x /∈ A

Now if O ∈ ξ is any open set, f−1[O] can either be X, ∅ or A, and all three options are Σ0
α+1(X), hence

f is Σ0
α+1-measurable. On the other hand, since Y it T0 and y1 6= y2, there exists an open set O′ with

y1 ∈ O′ and y2 /∈ O′, hence f−1[O′] = A. Since A /∈ Σ0
α(X), it follows that f is not Σ0

α-measurable,
proving the claim.

Corollary 1.1.28. Let λ = λ<λ and let X ∈ {2λ, λλ}, then for every α < λ+, Measα(X) 6=
Measα+1(X).

4Clearly if f is total, then VO = f−1[O].

11

1.1.2 Generalized Baire and Cantor spaces and trees

We introduce generalizations of Baire space and Cantor space to uncountable cardinals. These will
play the roles of Baire and Cantor space in our generalized computability framework, and they are
important in generalized computable analysis. We mention that these spaces are of great interest
in the area of generalized descriptive set theory. Definitions and results in this section are either
folklore, from [17] or from [1]. We refer the interested reader to the mentioned papers for more details.
Throughout this subsection, we work with the standard assumption that κ is an uncountable cardinal
satisfying κ<κ = κ.

Definition 1.1.29 (Initial segments and basic opens). Let θ ∈ {2, κ} and let s ∈ θ<κ and t ∈ θ<κ∪θκ
be two sequences: s is an initial segment of t if dom(s) ⊆ dom(t) and for all α ∈ dom(s), s(α) = t(α).
We will denote this as s ⊆ t. For every s ∈ θ<κ, define:

[s] = {x ∈ θκ | s ⊆ x}.

Definition 1.1.30 (Generalized Baire and Cantor spaces.). Let κ be an uncountable cardinal such
that κ<κ = κ. Define generalized Baire space as κκ equipped with the topology generated by the basis

B = {[s] : s ∈ κ<κ}.

Similarly define generalized Cantor space as 2κ equipped with the topology generated by the basis

C = {[s] : s ∈ 2<κ}.

We list some basic results on generalized Baire and Cantor space from the literature which we will
need in the rest of the thesis.

Theorem 1.1.31. The following holds:

(a) the topologies on generalized Baire space κκ and generalized Cantor space 2κ are κ-metrizable,
therefore these spaces are κ-additive,

(b) generalized Baire space κκ and generalized Cantor space 2κ are κ-spherically complete,

(c) the κ-Baire Category Theorem holds for κκ and 2κ.

Proof. For the κ-metrizability of the topologies on generalized Baire and Cantor space, see page 29 of
[17]. Their κ-additivity then follows from Proposition 1.1.7. For item (b) see, e.g., [1, Theorem 2.3.1].
Item (c) follows from item (b) and Theorem 1.1.23.

We introduce the notion of trees, these objects are deeply tied to (generalized) Baire and Cantor
spaces and we will use their properties in many inductive proofs throughout the thesis.

Definition 1.1.32 (Trees). Let θ ∈ {2, κ}, a tree over θ is a set T ⊆ θ<κ which is closed under initial
segments, i.e.,if s ⊆ t and t ∈ T , then s ∈ T .

Note that trees are partial orders, where the relation is ⊆. Given a tree T and an ordinal α ∈ κ,
we denote by Tα the α-th level of T , i.e.

Tα = {t ∈ T | |t| = α}.

Given a tree T , we say that T has height γ, we will denote this as h(T) = γ, if γ = sup{α ∈ κ | Tα 6= ∅}.
Notice that generalized Cantor spaces can be seen as a subspaces of generalized Baire spaces. Moreover,
the classical characterization of the topology applies (see [1], pg 9):

Proposition 1.1.33. Let θ ∈ {2, κ}, then a set C ⊆ θκ is closed if and only if there exists a tree
T ⊆ θ<κ such that C = [T] where

[T] = {x ∈ θκ | ∀α ∈ κ x�α ∈ T}.

[T] is called the set of branches of T .

12

Following [1], we say that a tree T ⊆ θκ is <κ-closed if for all limit ordinals γ ∈ κ and all x ∈ θκ,
if x�β ∈ T for all β ∈ γ, then x ∈ T .

We define the notion of the extendible part of a tree:

Definition 1.1.34 (Extendible part). Let T ⊆ θ<κ be a tree, define the extendible part of T as

ext(T) = {t ∈ T | ∃x ∈ [T] (t ⊆ x)}.

Intuitively, ext(T) is the set of those nodes that lie on branches of T . We will call elements of
ext(T) the extendible nodes of T .

Lemma 1.1.35. Let T be a tree such that [T] 6= ∅, then ext(T) is closed under initial segments, hence
it is itself a tree.

Proof. Follows from the definition of ext(T).

Note that for uncountable cardinals κ, finding a branch in a tree of height κ is considerably harder
than finding a branch in a tree of height ω. We illustrate this with some examples: first we show that
a simple recursive construction is enough to build branches on trees T of height ω.

Example 1.1.36. Let T ⊆ ω<ω be a tree such that [T] 6= ∅, equivalently ext(T) 6= ∅. Clearly the
root of T , namely the empty sequence, is an element of ext(T). We can then build an element of [T]
recursively as follows: fix any choice function f on P(T) \ ∅. Let r0 = ∅ and for every n, let

rn+1 = f(An) where An = ext(T) ∩ {t ∈ Tn+1 | rn ⊆ t}

Note that by a straightforward induction we can prove that for every n ∈ ω, rn ∈ ext(T) and con-
sequently that some of its immediate successors must be in ext(T) as well, therefore the sets An are
always nonempty. The idea of this recursive definition is that we build a sequence of nodes with strictly
increasing length (rn)n∈ω such that rn ⊆ rn+1 for all n, therefore

⋃
n∈ω rn ∈ [T].

Now we show that the technique above fails for trees of uncountable height:

Example 1.1.37. Let T = {t ∈ 2<κ | 0ω 6⊆ t}. Clearly [T] 6= ∅. Now notice that if r ∈ ext(T), the
set Ar = ext(T) ∩ {t ∈ T|r|+1 | r ⊆ t} has at most two elements, more precisely Ar ⊆ {ra0, ra1}. Fix

a choice function f on the set {Ar | r ∈ ext(T)} which behaves as follows: if ra0 ∈ Ar, f(Ar) = ra0,
otherwise f(Ar) = ra1. Define a sequence rα recursively as in Example 1.1.36: r0 = ∅ and for every
α, rα+1 = f(Arα). If γ is a limit ordinal rγ =

⋃
α∈γ rα. It is immediate to see that the sequence can be

defined up to level ω, in particular for all α ≤ ω, rα = 0α, but rω+1 cannot be defined as 0ω /∈ ext(T).
This shows that the recursive procedure described above is not enough to build branches on trees of
uncountable height.

The missing ingredient in the construction of Example 1.1.37 is that, unlike in the case of trees of
height ω, we cannot make sure that the nodes on our recursively built sequence are always extendible,
in particular this requirement does not hold in general for limit ordinal heights. This suggests the
following:

Lemma 1.1.38. Let T ⊆ θ<κ be a tree with [T] 6= ∅ such that ext(T) is <κ-closed. Let f : P(T)\∅ → T
be any choice function and let (rα)α∈κ be the sequence built by recursion as

r0 = ∅, rα+1 = f(Arα), rγ =
⋃
α∈γ

rα for all limit ordinals γ

where Arα = ext(T) ∩ {t ∈ Tα+1 | rα ⊆ t}.
Then the sequence (rα)α∈κ is well-defined and such that

⋃
α∈κ rα ∈ [T], in particular, (rα)α∈κ ⊆ ext(T).

13

Proof. First, it is clear by construction that for all ordinals β ∈ κ, if rβ can be defined, then |rβ| = β,
moreover if α < β, then rα ⊆ rβ. This implies that in order to prove the claim we only need
to show that for every β < κ, rβ can actually be defined by the recursion above, i.e.,that all sets
Arα are nonempty. It is immediate to see that Arα 6= ∅ if and only if rα ∈ ext(T). So, our claim
reduces to rα ∈ ext(T) for all α ∈ κ. We show this by induction on α: first note that ext(T) 6= ∅,
hence r0 = ∅ ∈ ext(T). If α is a successor ordinal, then α = β + 1 for some ordinal β and by
inductive assumption rβ ∈ ext(T). So, rα can be defined by the recursion given and by definition
rα ∈ Arβ ⊆ ext(T). Lastly if α is a limit ordinal and by inductive assumption we have defined the
sequence (rβ)β∈α with rβ ∈ ext(T) for all β ∈ α, then since rα =

⋃
β∈α rβ, it holds that for all initial

segments t of rα, t ∈ ext(T). Since ext(T) is <κ-closed, it follows that rα ∈ ext(T). This concludes
the induction and proves the claim.

We will use this lemma as follows: whenever we have a tree T such that [T] 6= ∅ and ext(T) is <κ-
closed, and a function f :⊆ T → T such that ran(f) ⊆ dom(f), ∅ ∈ dom(f) and for all t ∈ T , t ⊆ f(t)
and |f(t)| = |t|+1, then as soon as we can prove that for all t ∈ dom(f), t ∈ ext(T) =⇒ f(t) ∈ ext(T),
we obtain that f determines a branch (tα)α∈κ given by

t0 = ∅, tα+1 = f(tα), tγ =
⋃
α∈γ

tα for all limit ordinals γ.

In Section 4.3 we will prove some results which rely on the property of κ-compactness of generalized
Cantor space 2κ. We state here a well known equivalent condition for the κ-compactness of 2κ, namely
the weak compactness of the cardinal κ. Recall that a cardinal κ has the tree property if for every
tree T of height κ, cardinality κ and such that for all α < κ, |Tα| < κ, it is the case that [T] 6= ∅, and
κ is strongly inaccessible if 2λ < κ for every cardinal λ < κ. A cardinal κ is weakly compact if it is
strongly inaccessible and it has the tree property.

Theorem 1.1.39. Generalized Cantor space 2κ is κ-compact if and only if κ is weakly compact.

Proof. See, e.g., [28], Theorem 5.6.

Corollary 1.1.40. Let κ be a weakly compact cardinal, let C ⊆ 2κ a closed set and let f : C → (Y, dY)
be a continuous function. Then f is uniformly continuous.

Proof. Follows from Theorem 1.1.39, Proposition 1.1.17 and Theorem 1.1.21.

1.2 Transfinite computability

The notion of computability is central in this thesis. Since our objective is to generalize some re-
sults from the theory of computable analysis to uncountable cardinals, it is reasonable to work with
machines which model transfinite computations, i.e., computation processes that are allowed to run
for transfinite time. This generalization of computable analysis to higher cardinalities was started by
Galeotti and Nobrega in [19]. Their approach is based on Type 2 κ-Turing machines, the transfinite
version of the Type 2 Turing machines originally introduced in [41]. In this section we introduce
basic results of the theory of these generalized machines. We assume familiarity with basic notions of
classical computability theory, and we refer the reader to [31] for more details.

1.2.1 Infinitary Turing Machines

We introduce the computational model of κ-Turing machines, which are the ordinal Turing machines
introduced by Koepke in [25] with tapes of length κ and computations limited in time to κ (histori-
cally, Koepke’s machines came after the invention of infinite time Turing machines by Hamkins and
Lewis [22]). The idea of limiting the tape length of ordinal Turing machines to a fixed ordinal first ap-
peared in Koepke’s paper [26]. For a study on how the tape length influences computational power, we
refer the reader to [32]. For more details about the theory of transfinite computability, we refer to [10].

14

Fix an infinite ordinal κ which is closed under ordinal multiplication. We define κ-Turing ma-
chines: the model comprises one input tape, an oracle tape, a parameter tape, an output tape and
several scratch tapes, each divided in cells which can accommodate one single symbol s ∈ {0, 1}.5 The
cells on these tapes are indexed by ordinals in κ, and computations are allowed to run for <κ steps.
On each tape there is an independently movable head which can scan one cell at a time. The machine
can modify the content of a given cell only when one of its heads is hovering over it. Its behaviour is
determined by its configuration and its internal state.

Formally, the configuration of a κ-Turing machine with n tapes after α steps of computation can
be expressed as a tuple ((Ti(α))i≤n, (Hi(α))i≤n, S(α)), where Ti(α) : κ → 2 indicates the content of
the i-th tape, Hi(α) ∈ κ the position of the head on the i-th tape and S(α) indicates the internal
state of the machine. We will sometimes refer to the read/write heads on the input and output tapes
as Hin and Hout, respectively. Similarly we will refer to the input tape as Tin and the output tape as
Tout. A Turing program P which mentions n tapes and internal states Q = {q0, . . . , qn, qlim} is a finite
set of instructions of the form

if ((Ti)(Hi))i≤n = x and S = q, write y, move according to d and go into state q′,

where x, y ∈ {0, 1}n, q, q′ ∈ Q and d ∈ {L,R,S}n.

When a machine running program P finds itself in state q and in a configuration such that
Ti(Hi) = x(i) for all i ≤ n, the machine executes the above instruction, replacing the content of
the cells which are being scanned according to y (so Ti(Hi) = y(i) for all i ≤ n at the next step of
computation) and moves its heads according to d, so for all i ≤ n, if Hi = α and d(i) = R, Hi is moved
to position α+ 1; if d(i) = L, Hi is moved to position β if α is a successor ordinal and β + 1 = α, and
moved to position 0 if α is a limit ordinal; if d(i) = S, Hi is not moved at all. The internal state of
the machine is changed from q to q′.

The starting configuration of a κ-Turing Machine which uses n tapes, running on input x ∈ 2<κ,
with oracle y ∈ 2κ and parameter ξ ∈ κ is the following: S(0) = q0, Hi(0) = 0 for all i ≤ n, the
input tape is initialized as T1(0) = x0κ, the oracle tape is initialized as T2(0) = y, the parameter tape
is initialized as T3(0) = χ{ξ} and lastly Ti(0) = 0κ for all 4 ≤ i ≤ n, so all other tapes are initially
filled with zeros. Note that it is possible to allow the input x to be a bitstring of length κ without
substantially modifying the description above and letting T1(0) = x. Given an ordinal δ < κ, the
(partial) computation up to step δ of the machine M which is running program P , with input, oracle
and parameter as described above is given by the sequence:(

((Ti(α))i≤n, (Hi(α))i≤n, S(α)) | α ∈ δ
)
,

where the configuration at time 0 is the one described above, for every successor ordinal α = β+1, the
configuration ((Ti(α))i≤n, (Hi(α))i≤n, S(α)) is determined by the configuration at time β by follwing
the relevant instruction in P and for every limit ordinal λ, the configuration ((Ti(λ))i≤n, (Hi(λ))i≤n, S(λ))
is determined by the so-called limsup rule, i.e.

Hi(λ) = lim sup
α∈λ

Hi(α) for all i ≤ n,

and
Ti(λ)(β) = lim sup

α∈λ
Ti(α)(β),

while the internal state at time λ is set to qlim, a designated “limit state” which essentially gives us
the freedom to assume that our machines know when they have performed limit-many steps of com-

5Other definitions allow every particular machine M to come with a finite alphabet Σ of possible symbols. It is well
known that this difference is inconsequential for the theory (see, e.g., [10], Exercise 2.5.9). It is also known that any
machine using finitely many tapes can be simulated by one using just one tape (see [10], Corollary 2.5.44). We prefer to
explicitly mention multiple tapes as it makes the exposition clearer.

15

putation.6 Notice that by induction we can prove that for any tape i ≤ n and any ordinal λ, Hi(λ) ≤ λ.

We will generally assume that our machines have a way to know when they have finished read-
ing their input, and similarly that they can “signal” the end of their output. This can be achieved
by considering machines using symbols in {0, 1,E} and assuming that, whenever we speak of some
x ∈ 2<κ being the input/output of a κ-Turing Machine, what we mean is that xE is what actually
appears on the tape. Similarly we can make sure that our machines can recognize the beginning of the
tape. Another useful fact about κ-Turing Machines is that we can safely assume that any machine M
is always “aware” of the position of its heads. This is achieved as follows: given a program P which
mentions n tapes, consider the program P ′ which mentions 2n tapes and, besides simulating P , moves
its heads on tapes Tn+1, . . . , T2n in a way to have Hi(α) = Hn+i(α) for all ordinals α. Now say that
we want to know the value of Hi at a certain step of computation: we simply need to write the symbol
1 on the current position on Tn+i and move Hn+i to the starting cell (note that this can be achieved
in a finite number of steps by simply going left indefinitely until the head “falls” from a limit position
to cell 0). At this point, tape Tn+i contains the representation of a certain ordinal β which is exactly
the position of Hi, so we can, e.g., perform any computable ordinal operation with it (cf. the proof of
Proposition 2.5.3 in [10]). In the rest of this thesis, we will use of these facts several times, without
explicitly mentioning them.

A κ-Turing machine M running the program P halts at step δ < κ if its computation can be
defined up to and including the ordinal δ but M is unable to apply any of the instructions in P to its
configuration at time δ, so the configuration at time δ + 1 cannot be defined. In this case, we call δ
the halting time of the computation, and we say that Tout(δ) is the output of the computation (more
precisely, we will often say that the output of the computation is Tout(δ)�λ, where λ = Hout(δ)). In
this case the sequence of configurations of M up to and including step δ is the entire computation
of M . If this does not happen, then we say that M computes indefinitely (or diverges) on the given
input and we consider the sequence

(
((Ti(α))i≤n, (Hi(α))i≤n, S(α)) | α ∈ κ

)
as the computation of M .

From now on we will, unless explicitly mentioned, always consider Turing programs that use their
output tape in an “append only” way, in other words, the head of the output tape is only ever moved
to the right. This means that if a symbol is written on the cell indexed with α on the output tape,
that symbol is not erased in the following steps of computation (note that this is compatible with
the lim sup rule for configurations at a limit ordinal time λ as the content of any cell on the output
tape is constant cofinally in λ). It is clear that this condition can be achieved by limiting the set of
admissible instructions to those which do not include moving the output head to the left. Moreover,
it is obvious that this difference is inconsequential in the sense that for every Turing program P there
exists a program P ′ which uses its output tape in an “append only” fashion and such that for every
choice of parameter ξ, oracle y and input x, P halts if and only if P ′ halts, and their outputs are the
same.
Note that the Turing programs which can be run on κ-Turing Machines are finite sets of instructions
and they are exactly the same as the ordinary ones, hence there exists an effective enumeration (Pi)i∈ω
of every possible Turing program.

We use terminology from computability theory in the expected way: in particular we say that (par-
tial) function f :⊆ 2<κ → 2<κ is κ-computable if and only if there exists a Turing program P and a
parameter δ such that a machine M running program P with parameter δ halts on input w ∈ 2<κ

iff w ∈ dom(f) and if this is the case, it outputs f(β); a set A ⊆ 2<κ is κ-recursively enumerable (or
κ-semidecidable) if it is the domain of a computable partial function; and lastly that A is κ-recursive
(or κ-decidable, κ-computable) if both A and 2<κ \ A are recursively enumerable. Similarly we can
consider computability on κ as follows: we say that a machine M takes as input an ordinal δ < κ

6We mention that this convention is adopted for ease of notation and it is not actually an extra assumption on the
computational power of κ-Turing Machines: it is easy to see that using so-called flag bits is sufficient for our machines
to be aware of limit times (see [10], Remark 2.2.7).

16

if Tin(0) = χ{δ} and that it yields as output β < κ if M halts on input δ and, if λ is the halting
time, Tout(λ) = χ{β}. In these terms, a (partial) function f :⊆ κ → κ is κ-computable if and only
if the corresponding function on 2<κ is. The notions of recursive enumerability and recursiveness for
subsets of κ are defined as above. Finally, for any given i, j, `, k ∈ ω, we can consider computability
of functions (2<κ)i × κj → (2<κ)` × κk by considering machines with multiple input/output tapes.

In analogy with classical computability theory, we say that a set A ⊆ κ is κ-computable realtive
to B ⊆ κ if χA is κ-computable using χB as an oracle. In this case we also say that A is κ-Turing
reducible to B and we denote this as A ≤κT B. We extend these notions to functions in κκ in the same
way as it is done in the classical setting. It is clear that ≤κT is a preorder, hence the relation ≡κT defined
as A ≡κT B if and only if A ≤κT B and B ≤κT A is an equivalence relation. We will call equivalence
classes of this relation κ-Turing degrees. We use the symbol ⊕ to indicate the Turing join on κ-Turing
degrees, defined in the same way as it is in the classical setting, see, e.g., [31, Proposition V 1.2].
When there is no risk of confusion, we will drop the κ- prefix and simply use the terms computable,
recursive, decidable, Turing degrees and the symbol ≤T to refer to the above notions.

In the following we will always consider computations using parameters: it’s easy to see that, in
contrast with ordinary Turing machines, allowing parameters actually makes a difference. This is
explained by the fact that if κ is an uncountable ordinal, then there exist ordinals δ < κ which are not
computable by a κ-Turing Machine using no parameter running on the empty input (this follows by a
simple cardinality argument and it is in contrast with the classical setting, as every natural number is
obviously computable by some Turing machine running on the empty input). If P is a Turing program
and δ < κ an ordinal, we call the pair (P, δ) a program-parameter pair and we denote by T the set of
all such pairs. In the rest of this thesis we will often use the term “(κ-)Turing machine” to refer to
a program-parameter pair. It is clear that there are ℵ0 Turing programs and κ possible parameters,
for a total of κ possible Turing machines, and that given an injective pairing function ω × κ→ κ, we
can exploit any of the classical effective enumerations of Turing programs to obtain an enumeration
of all possible program-parameter pairs (and consequently of all possible partial computable functions
2<κ → 2<κ/κ→ κ, of all recursively enumerable subsets of 2<κ/κ, etc.).

We close this introductory section with a result listing various basic operations on ordinals which
turn out to be computable.

Lemma 1.2.1. The following relations are computable by κ-Turing machines: every Turing com-
putable relation, comparisons of ordinals , ordinal addition and ordinal multiplication restricted to
ordinals <κ.

Proof. The fact that Turing computable relations are computable by κ-Turing Machines follows from
the fact that the latter can simulate ordinary Turing Machines, for the operations on ordinals see
Section 3 “Ordinal algorithms” in [25].

1.2.2 Pairing functions

In this section we fix some notation for well-known pairing functions and we set some conventions on
symbols which will have a precise meaning for the rest of this thesis. All the pairing functions we
introduce are well known tools to work on sequences of ordinals with Turing machines. Most of these
functions are ultimately based on Gödel’s pairing function on ordinals.

Convention 1.2.2. In the rest of this thesis κ is a fixed uncountable cardinal satisfying κ<κ = κ.

Note that Kőnig’s theorem implies that κcf(κ) > κ, hence the assumption above implies in particular
that κ is regular.
Define the following order on κ× κ:

(α, β) ≺ (γ, δ) ⇐⇒

max{α, β} < max{γ, δ} or
max{α, β} = max{γ, δ} ∧ α < γ or
max{α, β} = max{γ, δ} ∧ α = γ ∧ β < δ

17

It is known that this is a well ordering of κ×κ of type κ. We can use ≺ to define the pairing function
p·, ·q : κ× κ→ κ as

pα, βq = ot{(γ, δ) | (γ, δ) ≺ (α, β)}.
The fact that ≺ is a well-order of type κ of the set κ × κ immediately implies that the function p·q
is a bijection. We will denote its inverse as unpair : κ → κ × κ and we will sometimes refer to it as
the unpairing function. The following is a fundamental, well known result (see e.g., [19]) and will be
useful throughout the thesis:

Lemma 1.2.3. The pairing function p·q and its inverse unpair are κ-computable.

Proof. See [30], Lemma 4.25 or [10], Lemma 2.3.37 and Lemma 2.3.38.

This immediately leads to the possibility of making our enumeration of the set of κ-Turing machines
T effective.

Corollary 1.2.4. There exists an effective enumeration of the set T of all κ-Turing Machines.

From this, a straightforward generalization of the classical proof (see, e.g., pg. 22 in [33]) yields:

Corollary 1.2.5. There exists a universal κ-Turing Machine and κ-Turing Machines are closed under
recursion and composition.

We exploit the pairing function to define the interleaving function 〈·〉 : (κκ)κ → κκ, which makes
a κ-sequence of κ-long words into a single κ-long word as follows

〈(pα)α∈κ〉(γ) = pα(β)

if and only if γ = pα, βq. For a fixed α ∈ κ we define ·α : κκ → κκ as

pα(β) = p(pα, βq).

It is immediate to see that for every p ∈ κκ:

p = 〈(pα)α∈κ〉.

Define 〈·, ·〉 : κκ × κ→ κκ as
〈p, α〉 = αap,

and inductively define 〈·, . . . , ·〉n : κκ × κn → κκ as

〈p, α0, . . . , αn−1〉n = 〈〈p, α0, . . . , αn−2〉n−1, αn−1〉.

Moreover, for any n ∈ ω, define 〈·, . . . , ·〉n : (κκ)n → κκ as

〈p1, . . . , pn〉n(α) = pi(γ)

if and only if α is the γ-th ordinal congruent to i modulo n. In the rest of this thesis we will usually omit
the subscripts from the symbols for these functions. Using the same symbols for different functions
will lead to no ambiguity as the intended function is always understood from the context. Lastly we
introduce tupling functions to handle concatenations of words of length <κ in a way that is suitable
for κ-Turing machines: given λ < κ and a ∈ κλ, define

ι(a) = 11J00a(β)0K11.

Now if (wα)α∈λ is a sequence of words in κ<κ, p ∈ κκ and λ ≤ κ, define

〈w1, p〉 = 〈p, w1〉 = ι(w1)p,

and
〈(wα)α∈λ〉 = Jι(wα)Kα∈λ.

Note that this allows us to define a notion of computability on κ<κ as follows: we say that f :⊆ κ<κ →
κ<κ is computable if and only if ι◦f ◦ ι−1 is. The notions of recursive enumerability and recursiveness
for subsets of κ<κ are then defined as usual.

18

1.2.3 Enumeration of short sequences

Many algorithms in the rest of this thesis will need to enumerate the sets 2<κ and κ<κ. In this section,
we shall show that the existence of a κ-computable enumeration of 2<κ is equivalent to the axiom of
constructibility at κ (i.e., Vκ = Lκ). The fact that Vκ = Lκ implies the existence of a κ-computable
enumeration of 2<κ is due to Koepke and its proof makes use of his bounded truth predicate for L.
These tools can be found in his papers [26] and [25]. The opposite implication is obtained as a direct
consequence of the results in Ethan Lewis’ masters thesis [27]. In this section we assume basic facts
about the constructible universe L. For the proof of these facts and more details on L we refer the
reader to [15].

Lemma 1.2.6. There exists a κ-computable surjective function f : κ→ κ<ω.

Proof. See Section 4 in [25], where the author builds an OTM computable enumeration of all finite
sets of ordinals, and note that the restriction of this function to κ is κ-computable and it is a surjection
on κ<ω.

Now we define so-called bounded formulas and bounded terms as follows:

(a) the variable symbols {vi | i ∈ ω} are bounded terms,

(b) if s, t are bounded terms, then s ∈ t and s = t are bounded formulas,

(c) if ϕ and ψ are bounded formulas, i, j ∈ ω, then ϕ ∧ ψ, ¬ϕ, ∃vi ∈ vjϕ(vi), ∀vi ∈ vjϕ(vi) are
bounded formulas,

(d) if ϕ is a bounded formula, i, j ∈ ω, then {vi ∈ vj | ϕ(vi)} is a bounded term,

We restrict attention to so-called tidy bounded formulas, i.e.,those in which every free variable
occurs exactly once and no bound variable occurs free. Call F the set of all such formulas: by
arithmetization of sintax, it is clear that F can be effectively enumerated by a Turing machine, and
consequently it can be enumerated by a κ-Turing Machines.

Given an assignment function a : n → V, we say that a(i) is the interpretation of vi under a and
if t is a bounded term we write t[a] to denote the interpretation of t under assignment a.

Define the class A = Ord<ω ×F and define W : A→ 2 as:

W ((γ, γ0, . . . , γn), ϕ) = 1 ⇐⇒ Lγ � ϕ(Lγ0 , . . . ,Lγn)

It is the central result in [25] that W is computable by so-called ordinal Turing machines (OTMs),
which are machines analogous to the κ-Turing Machines introduced above, with the only difference
being that they have no limitation on tape size and computation length. We note that any OTM
computation with input length γ < κ and halting time θ < κ can be carried out on a κ-Turing
Machine. We state a refinement of this result, also due to Koepke:

Lemma 1.2.7. There is a Turing program Ptruth that κ-computes the restriction of W to κ<ω × F .

Proof. See [26], Lemma 5.

It can be shown that every set x in L is ordinal definable, meaning that in particular there exists a
tidy bounded term t and ordinals α0, . . . , αn such that t[(α0, . . . , αn)] = x. Combining this fact with
the computability of W one can show:

Lemma 1.2.8. For every constructible x ⊆ Ord, there is a Turing program P and ordinals α0, . . . , αn
such that running P (on an OTM) with input χ{α0,...,αn} leads to a terminating computation with
output χx.

19

Proof. See [25], Theorem 6.2.

Note that the program P mentioned in the statement of Lemma 1.2.8 is nothing more than a
Turing program which checks whether x = t[(α0, . . . , αn)] by means of the truth function W . By
Lemma 1.2.7, as long as the parameters α0, . . . , αn are below κ, the program P can be run on a
κ-Turing Machine with the same results.

Exploiting an absoluteness result on ordinal computation, one can show that

Lemma 1.2.9. The constructible universe (L,∈) proves that every set of ordinals is ordinal computable
from a finite set of ordinals. Conversely, every ordinal computable set of ordinals is constructible.

Proof. See [25], Theorem 7.1 and Theorem 6.2.

The first part of this result relativizes to κ, i.e.,if Vκ = Lκ, then every subset of κ is ordinal
computable from a finite set of ordinals.

Now we can state the main result of this section, which immediately implies the existence of an
effective enumeration of 2<κ:

Theorem 1.2.10. Assume that any bounded subset of κ is ordinal computable from a finite set of
ordinals, let ω ≤ λ < κ and let x ⊆ λ, then there exists a Turing program P and a finite set of
ordinals α0, . . . , αn, with αi < |λ|+ such that running P (on an OTM) with input χ{α0,...,αn} results
in a terminating computation with output χx. Moreover, P halts in <|λ|+ steps.

Proof. See [25], Theorem 7.2(a).

This final result immediately implies that for every x ∈ L, if x ⊆ λ for some λ < κ, then there are
parameters α0, . . . , αn < κ such that χx is computable by a κ-Turing Machine from α0, . . . , αn. Note
that if x ∈ L and x ⊆ λ, then x ∈ L|λ|+ ⊆ Lκ.

Corollary 1.2.11. Assume Vκ = Lκ, then there exists a Turing machine M which κ-computes a total
surjective function ν ′ : κ→ 2<κ.

Proof. On input α ∈ κ, start running through all ordinals δ ∈ κ. For each of these (in parallel), use
the unpairing function to determine whether it codes an element of A ∩ κ<ω × T . If it doesn’t, go to
the next ordinal. If it does, extract the pair (a, P) and simulate P on input χa. Update a counter to
know how many of these simulating computation have halted. Clearly there are κ pairs which lead to
a halting computation, so at some point the machine finds the α-th pair (a′, P ′) ∈ κ<ω × T such that
P ′ halts on input χa′ . At this point, print the output of the simulated computation and terminate.
By Theorem 1.2.10, for every λ < κ and every x ⊆ λ, there is a pair (a′′, P ′′) which outputs χx, hence
there must be some β such that M outputs χx when run on input β. This shows that the function f
computed by M is surjective. The fact that dom(f) = κ is clear from its definition.

Inspection of this proof immediately yields a “padding lemma” for ν ′:

Lemma 1.2.12. For every w ∈ 2<κ and every β ∈ κ there exists some γ > β such that ν ′(γ) = w.

Proof. Let w ∈ 2<κ, β ∈ κ be as above and let δ ∈ κ be such that w = ν(δ), so δ codes a pair
(a, P) ∈ A ∩ κ<ω × T such that running P on χa results in a halting computation with output w.
Consider δ′ ∈ κ such that δ′ codes (a′, P ′) with a′ = βaa and P ′ being the same program-parameter
pair as P , with the only difference being that P ′ has an additional input tape (which is used to store
β), but completely ignores said tape. Clearly δ′ > β and clearly the output of P ′ when run on a′ is
w.

From this, we can refine the statement of Corollary 1.2.11

Corollary 1.2.13. Assume Vκ = Lκ, then there exists a κ-computable total surjective function ν : κ→
2<κ such that for every w ∈ 2<κ if dom(w) = α, then for all β ∈ κ, ν(β) = w implies β > α.

20

Proof. Consider the function ν ′ and modify it in the following way: given β, compute ν ′(β). If
|ν ′(β)| ≥ β, output the empty sequence and terminate. Otherwise, output ν ′(β). This is a computable
procedure, hence the function ν it defines is κ-computable. Surjectivity of ν follows at once from
Lemma 1.2.12.

In the rest of this thesis we will always use the function ν because the property |ν(β)| < β is
arguably a natural one and it will be exploited in some of our results. Note that the analogous
property holds for all reasonable effective enumerations of 2<ω.
Lastly, consider the funciton ι : κ<κ → 2<κ introduced in the previous section: it is clear that this
function is an injection, so we can interpret each p ∈ ran(ι) as a code for a unique sequence in κ<κ.
Moreover, ran(ι) is a decidable subset of 2<κ, hence the machine computing ν can be easily modified
to yield:

Corollary 1.2.14. Assume Vκ = Lκ, then there exists a κ-computable surjection µ : κ→ κ<κ.

Note that by our definition for every w ∈ κ<κ, µ(β) = w iff ν(β) = ι(w), and since |ι(w)| ≤ β we
obtain |w| ≤ β. This means that µ also has the property that for all λ ∈ κ, no word of length λ is in
ran(µ�(λ+ 1)).

Remark 1.2.15. We introduced κ-Turing Machines as pairs given by a Turing program P together
with an ordinal δ < κ which performs the function of a parameter. The fact that the functions µ and
ν allow us to store any p ∈ (2<κ ∪ κ<κ) in a single ordinal makes many operations with such objects
computable from their code, e.g., given any λ ∈ κ and any code for a sequence w ∈ κλ, problems such
as determining whether a given δ belongs to ran(w) or whether a given w′ ∈ κ<κ is an initial segment
of w are decidable.

We conclude the section by showing that the assumption Vκ = Lκ is optimal if we want to
computably enumerate 2<κ. This is a known fact, and it is the relativization to κ of [27, Theorem
5.11].

Proposition 1.2.16. If 2<κ ⊆ L, then Vκ = Lκ.

Proof. We only have to show that Vκ ⊆ Lκ as the reverse inclusion always holds. By the relativization
to κ of [27, Lemma 5.8] we obtain that the restriction of the L well-ordering <L to 2<κ can be used
to define a well-order ≺ of Vκ of type κ such that for any two sets x, y ∈ Vκ, if x ∈ y, then x ≺ y.
For any set x ∈ Vκ, denote as αx the order type of the set {z ∈ Vκ | z ≺ x}. Now, by contradiction
assume x ∈ Vκ \Lκ and by ∈-induction assume that x is of least rank among sets in Vκ \Lκ. We
obtain that the string χx : αx → 2 given by χx(α) = 1 if and only if α = αy for some y ∈ x is a
complete description of x, i.e.,y ∈ x if and only if αy ∈ dom(χx) and χx(αy) = 1. Furthermore, this
implies that |x| ≤ |αx| < κ and, since every element of x is in Lκ and κ is regular, we obtain that
x ⊆ Lη for some η < κ. Since χx ∈ 2<κ, by assumption we have χx ∈ Lκ and therefore there must
be some β < κ such that χx ∈ Lβ and x ⊆ Lβ. We obtain that x = {y ∈ Lβ | χx(αy) = 1}, therefore
x ∈ Lβ+1 ⊆ Lκ. This is the required contradiction, so it must be the case that Vκ = Lκ.

Since every computable string must be constructible, if there is a κ-computable enumeration of
2<κ, then 2<κ ⊆ L. Hence we obtain:

Corollary 1.2.17. If there exists a computable enumeration of 2<κ, then Vκ = Lκ.

This concludes the proof of the equivalence between these two assumptions. Note that for every
ordinal α, we know that |Vω+α | = iα (cf. [23, Exercise 6.2]) whereas for any infinite ordinal β,
|Lβ | = |β| (cf. [23, Exercise 13.19]). So, we obtain that the assumption of κ-enumerability of 2<κ in
particular implies that κ = iκ.

Remark 1.2.18. In the rest of this thesis, whenever we write ν, we mean an arbitrary enumeration
of 2<κ satisfying the length bound dom(ν(α)) < α for all α < κ. Similarly, we use µ to refer to any
enumeration of κ<κ satisfying the length bound dom(µ(α)) < α for all α < κ.

21

We signal the results which require the assumption of the computability of these enumerating
functions. We state this assumption here for future reference.

Hypothesis 1.2.19. The functions ν : κ → 2<κ and µ : κ → κ<κ are computable, or equivalently
Vκ = Lκ.

Note that, in this assumption, both ν and µ have computable right inverses: given w ∈ λ<κ where
λ ∈ {2, κ}, we can run through all ordinals below κ and compute the corresponding word until we find
the first ordinal δ which gives output w and output it.7

1.2.4 Type 2 computations

The field of classical computable analysis makes extensive use of so-called Type 2 computations, which
give a good notion of computability for functions f :⊆ 2ω → 2ω. This notion of computability is of
central importance as it allows us to define a notion of computability for spaces of cardinality up to
2ℵ0 . In [19] the authors introduced Type 2 computations in the context of κ-Turing Machines and
consequently defined a notion of computability for functions on generalized Cantor space 2κ. We give
the relevant definitions and prove some basic facts about Type 2 κ-computability.

Definition 1.2.20 (Type 2 computability). Let f :⊆ 2κ → 2κ be a partial function and M a κ-Turing
machine, we say that M Type 2 computes f if and only if for all x ∈ dom(f), M computes indefinitely
on input x, for every β < κ there exists γ < κ such that Hout(γ) = β and Tout(γ)�β ⊆ f(x).

Accordingly, f :⊆ 2κ → 2κ is said to be Type 2 computable if there exists a Turing machine which
Type 2 computes it. Notice that although Type 2 computability is defined by the same Turing machines
as regular computability, we will at times refer to machines computing functions on generalized Cantor
space as Type 2 κ-Turing machines (T2κTMs for short). In the rest of this thesis we will often refer
to ordinary computability as Type 1 computability.

We can export the notion of computability on 2κ obtained with T2κTMs to a notion of com-
putability on κκ as follows: consider the function i : κκ → 2κ given by

i(p) = J1100p(α)011Kα∈κ.

It is clear that i is an injection, call δ′κκ :⊆ 2κ → κκ its left inverse with minimal domain,8 and for
every p ∈ κκ, call i(p) the code for p.

We stipulate that a function f :⊆ κκ → κκ is Type 2 computable if and only if the unique function
f ′ :⊆ 2κ → 2κ with domain i[dom(f)] such that for every p ∈ dom(f), f ′(i(p)) = i(f(p)) is Type 2
computable. In the rest of this thesis, we will use the notions of Type 2 computability on 2κ and on κκ

interchangeably, in particular, most of the representations introduced in the later chapters and most
of the algorithms used will refer to κκ rather than 2κ. Whenever we will argue for the existence of a
given κ-Turing Machine which Type 2 computes functions on κκ, it will be clear that such a machine
can actually be realized as a machine operating with our standard {0, 1} alphabet.

Proposition 1.2.21. Let F :⊆ 2κ → 2κ be any function, then F is Type 2 computable if and only if
there exists a Type 1 computable f :⊆ 2<κ → 2<κ such that

A = {w ∈ 2<κ | ∃p ∈ dom(F) w ⊆ p} ⊆ dom(f),

for w,w′ ∈ A
w ⊆ w′ =⇒ f(w) ⊆ f(w′),

and lastly for all x ∈ dom(F)

F (x) =
⋃
α∈κ

f(x�α).

The same holds relative to any oracle o ∈ 2κ.
7It is clear from our proof sketch that this is an instance of a more general principle: if f is a computable function

with dom(f) computably enumerable, then f has a computable right inverse.
8The partial function δ′κκ is an example of the representations which we will introduce in section 1.3. Note that δ′κκ

is an injection.

22

Proof. It is clear that if F is Type 2 computable we can modify the corresponding machine M to
obtain a machine M ′ computing an appropriate f . Conversely, if there exists a computable f as
above, we can obtain a machine computing F as follows: given p ∈ 2κ as input, we run the machine
for f in parallel on p�α for all α ∈ κ and we update the outputs with the new bits as they come. It is
obvious that the proof relativizes to any oracle.

Similarly to the classical case, there is a close relation between Type 2-computable functions and
continuous functions on Cantor space. We state this result, originally from [19].

Proposition 1.2.22. Let F :⊆ 2κ → 2κ be a partial function, then F is continuous if and only if F
is Type 2 κ-computable with respect to some oracle o ∈ 2κ.

Proof. See [30] Theorem 4.24.

It is straightforward to see that the same also holds for partial functions on κκ.

Proposition 1.2.23. Let p, o ∈ κκ, then p is a total Type 1 computable function relative to o if and
only if p is Type 2 computable with input o, i.e.,there exists some T2κTM which prints p on input o.

Proof. Assume p is computable in the oracle o, then there exists a κ-Turing Machine M which, on
input α ∈ κ, outputs p(α). Modify M as follows: run through all ordinals α ∈ κ and for each of them
in succession print p(α) on the output tape. This results in a κ-long computation of a machine M ′

which uses o as input and in the long run prints p on the output tape. Conversely assume p is Type 2
computable from input o ∈ κκ with T2κTM M . Modify M as follows: given an ordinal α and oracle
access to o, simulate the computation of M up to the α-th bit of output, then output p(α). This
results in a machine M ′ which computes the function p with oracle access to o.

Note that, as can be seen in the proof above, the relation between inputs and oracles in Type
2 computations is close to the relation between inputs and parameters in Type 1 computations.
Moreover, we derive the following corollary:

Corollary 1.2.24. Let p ∈ κκ be computable relative to oracle o ∈ κκ and let G :⊆ κκ → κκ be a
Type 2 κ-computable function with p ∈ dom(G), then G(p) is computable with respect to the oracle o.
In particular, Type 2 computable functions can only decrease the Turing degree of their inputs.

Proof. The assumption that p is computable with oracle o means that there exists a T2κTM M such
that M(o) = p. Composing such machine with the machine computing G yields a T2κTM which
computes G(p) with input o, i.e.,G(p) is computable relative to o.

In light of Proposition 1.2.23, we know that no confusion can arise when we refer to an element of
κκ as computable (relative to an oracle), and we will use either characterization depending on context.

We state and prove a result which is particular of κ-Turing machines, as it exploits the property
cf(κ) > ω. Given a Type 2 computation with input x, we can define a function `x which intuitively
keeps track of the speed of the computation.

Definition 1.2.25 (Time function). Let f :⊆ 2κ → 2κ be a T2κ-computable function, and let M be
the Turing machine computing it. For any x ∈ dom(f), define the function `x : κ→ κ as

`x(β) = min{δ ∈ κ | Hout(δ) = β}.

We show that such functions are normal :

Lemma 1.2.26. Let `x : κ→ κ be as in Definition 1.2.25, then `x is strictly increasing and continuous,
i.e.,for every limit ordinal λ < κ,

`x(λ) = sup
α∈λ

`x(α).

23

Proof. The fact that `x is strictly increasing is immediate by definition. To show that it is continuous,
let δ < κ be a limit ordinal and define

γ = sup{`x(β) | β ∈ δ}.

It is clear that γ is a limit ordinal, therefore

Hout(γ) = lim sup
α<γ

Hout(α).

Since Hout is a nondecreasing function, we obtain

Hout(γ) = sup
α<γ

Hout(α).

Now the sequence (`x(β))β∈δ is an increasing sequence cofinal in γ andHout is a nondecreasing function,
therefore {Hout(`x(β)) | β ∈ δ} is cofinal in {Hout(α) | α ∈ γ}. By definition we have Hout(`x(β)) = β
for all β ∈ δ, hence we can combine the above results to obtain that δ is cofinal in {Hout(α) | α ∈ γ}.
From this it follows that the two sets have the same supremum, in other words, Hout(γ) = δ. By
definition this implies that `x(δ) ≤ γ. We prove by contradiction that actually `x(δ) = γ. Assume
`x(δ) = α < γ, so α is the first time step at which Hout hovers over the cell indexed by δ. By definition
of γ, there exists some β < δ such that `x(β) = ε > α, i.e.,the first time step at which Hout hovers
over the cell indexed by β is strictly greater than the first time step at which Hout hovers over the cell
indexed by δ. This is a contradiction, hence

`x(δ) = γ = sup{`x(β) | β ∈ δ},

which proves continuity.

This immediately yields:

Lemma 1.2.27 (Fixpoint lemma for the time function). Let `x be as in definition 1.2.25 and let
α < κ. There exists β ≥ α such that `x(β) = β.

Proof. By a folklore result (see [23, Exercise 2.7]), every normal function on the ordinals has arbitrarily
large fixed points. By inspection of the proof, it follows that this holds for normal functions g : λ→ λ
whenever cf(λ) > ω. Applying this to `x yields the desired result.

The significance of this result is in the fact that it implies that for every Type 2 computation there
is δ such that at time step δ, the machine has written δ bits on the output tape. In particular this
means that the initial segment of the output of length δ depends only on (at most) x�δ. This is a
feature which is not found in Type 2 computations of length ω and it can be useful in proving what
T2κTM can and cannot do (see, e.g., Proposition 5.3.6).

We close the section with a result summarising well known results on the Type 2 computability of
familiar functions:

Proposition 1.2.28. The following functions are Type 2 computable:

(a) the functions 〈. . . 〉n : (κκ)n → κκ defined in Section 1.2.2,

(b) the function c : κκ × κ→ κκ defined as c(p, α) = pα,

(c) for any Type 1 computable function
f : κ→ κ, the function f ′ : κκ → κκ defined as f ′(p)(α) = f(p(α)),

(d) for any Type 2 computable function g : κκ → κκ, the function
g′ : κκ → κκ defined as

g′(〈(pα)〉α∈κ) = 〈(g(pα))α∈κ〉.

This proposition follows by a straightforward proof based on the computability of the pairing
function p·q. In light of this result, when specifying algorithms we will often tacitly exploit the
computability of these operations on sequences.

24

1.2.5 Limit machines

We close our section on computability by mentioning another computational model, which we will
need to state the Mind Change Principle in Section 4.2.
Intuitively, a limit κ-Turing machine is a T2κTM which is allowed to revise its output during its
computation for fewer than κ times, with the condition that each cell of the output tape eventually
stabilizes to some value s ∈ {0, 1}. Formally this can be modeled with our usual “append only”
κ-Turing Machines by adding the symbols C to our standard {0, 1} alphabet and tweaking our in-
terpretation of the output of such machines. A function f :⊆ 2<κ ∪ 2κ → 2<κ ∪ 2κ is computed by
the limit κ-Turing Machine M if for all x ∈ 2<κ ∪ 2κ, M computes indefinitely on x if and only if
x ∈ dom(f) and produces an output M(x) ∈ {0, 1, C}κ ∪{0, 1, C}<κ such that there exists β ∈ κ with
M(x)(α) 6= C for all α ≥ β and if γ is the least ordinal such that M(x)(α) 6= C for all α ≥ γ, the
string (M(x)(α))γ≤α<κ corresponds to f(x). In this case, we define the number of mind changes in
the computation for M(x) as δ = ot{α ∈ γ |M(x)(α) = C} and we denote it as mc(M,x).

Definition 1.2.29 (Mind Changes). We say that f :⊆ 2<κ ∪ 2κ → 2<κ ∪ 2κ is computable with
β mind changes if and only if there exists a limit κ-Turing Machine M computing f with β ≥
supx∈dom(f){mc(M,x)}.

By the usual coding, we can transfer these notions of computability to functions of type f :⊆
κ<κ ∪ κκ → κ<κ ∪ κκ.

Lemma 1.2.30. Let β ∈ κ and let f :⊆ κκ → κκ be computable with β mind changes. Let g :⊆ κκ →
κκ be a Type 2 κ-computable function. The compositions g ◦ f and f ◦ g are computable with β mind
changes.

Proof. Let M be the limit κ-Turing Machine computing f and let N be the ordinary κ-Turing Machine
computing g. It is straightforward to see that the limit machine obtianed by composing M and N
computes f ◦ g with β mind changes. For g ◦ f , we consider the machine M ′ obtained from M and N
again by composition, with the additional requirement that whenever M changes its mind, we restard
the computation for N as well. As above, M ′ computes the function g ◦ f with β mind changes.

Any κ-computable function is limit computable. We mention that, as in the classical case, the
computational power of limit machines increases with the number of mind changes:

Example 1.2.31. The function f : κκ → κ defined as

f(0κ) = 0, f(p) = 1 ∀p ∈ κκ \ {0}

is computable with 1 mind change, but it is not computable.

The function f in the example above is sometimes called equality test for 0, and it is equivalent
to the function LPOκ which we will introduce in Chapter 3. In Proposition 4.2.2 we will see that for
every β ∈ κ there are functions which are computable with β mind changes but for every α < β, they
are not computable with α mind changes.

1.3 Computable analysis

We give an overview of the main results in generalized computable analysis underlying the theory of
Weihrauch degrees, and we introduce some operations on degrees which will be useful for the classifi-
cation results in later chapters. Generalized computable analysis was started by Galeotti in [16] and
further developed Galeotti and Nobrega in [19]. The definitions and results presented in this section
are entirely analogous to the classical ones, and they are mainly taken from [16]. For a complete
introduction to computable analysis, see [41]. For the classical analogues of the operations on degrees
which we introduce, see [6].

We define the concepts of notations and representations. Intuitively, these are the codings necessary
to transport notions of computability on arbitrary spaces.

25

Definition 1.3.1 (Represented spaces). Let X be any set. A notation for X is a partial surjective
map ν :⊆ κ → X, a representation for X is a partial surjective map δ :⊆ κκ → X. A pair (X, δ)
where δ is a representation for X is called a represented space.

In the context of represented spaces, the letter ν will always be used for notations, and the letter
δ will always be used for representations.
Given a represented space (X, δX), p ∈ dom(δX) and x ∈ X, if δX(p) = x we say that p is a name
or a code for x. We say that x is a computable element of the represented space (X, δX) if it has a
computable name. Accordingly we say that x has degree ≤T d if it has a name with Turing degree d.

We can form new represented spaces from old ones by employing some familiar techniques:

Definition 1.3.2 (Subspaces, products and sequence spaces). Let (X, δX), (Y, δY) be represented
spaces and let (Z, νZ) be a set equipped with a notation. We define:

� the product space representation of X × Y as δX×Y (p) = (x, y) if and only if p = 〈q, s〉 with
δX(q) = x and δY (s) = y,

� the infinite product space representation of Xβ, for any β ∈ κ, as δXβ (p) = (xα)α∈κ if and only
if δX(pα) = xα for all α ∈ β,

� the sequence space representation of Xκ as δXκ(p) = (xα)α∈κ if and only if δX(pα) = xα for all
α ∈ κ,

� the representation for the set of (δX , δY)-continuous functions [X → Y] as δ[X→Y](p) = f if and
only if p = 0n1p′ where n ∈ ω is the code for a Turing program P which, with oracle p′ ∈ 2κ,
computes a continuous realizer F :⊆ κκ → κκ of f ,9

� the sequence space representation δZκ(p) = (xα)α∈κ if and only if νZ(p(α)) = xα for all α ∈ κ,

� if A ⊆ X, the subspace representation δA as δX corestricted to A, in symbols δX�δ
−1
X [A].

When clear from context, we will drop mention of the representation associated to a given repre-
sented set. Similarly, when not explicitly stated, we always assume that product spaces, subspaces
and sequence spaces are equipped with the representations defined above.

We will frequently need to work with partial multifunctions f :⊆ X ⇒ Y (we will sometimes
also use the name operations). Set-theoretically, a partial multifunction between X and Y is just a
subset of X × Y , so a relation. Nonetheless, seeing these objects as functions is more in line with
the way we will use them. Formally, a partial multifunction f :⊆ X ⇒ Y is determined by its
domain dom(f) ⊆ X and by a function F : dom(f) → P(Y) associating to each x ∈ dom(f) the set
of its images under f . Throughout this thesis, we will write f(x) instead of F (x). Obviously, total
multifunctions, partial functions and total functions are special cases of partial multifunctions. Most
of the theory is developed for partial multifunctions as this is the type of relations which is better
suited to the needs of computable analysis.

Note that it is in principle not straightforward to define the composition of two multi-valued oper-
ations, as multi-valuedness as well as non-totality make the usual definition of functional composition
not appropriate. Moreover, the definition of composition which is used in computable analysis is
tailor-made so that it goes along well with the notions of realizers and Weihrauch reducibility. Let
f :⊆ X ⇒ Y and g :⊆ Y ⇒ Z be partial multifunctions, we define g ◦ f as:

g(f(x)) =
⋃

y∈f(x)

g(y),

where dom(g ◦ f) = {x ∈ dom(f) | f(x) ⊆ g}. Note that this does not coincide with the most
commonly used notion of relational composition.

9This representation is surjective in light of Proposition 1.2.22.

26

For clarity we also define here the meaning of preimage in the context of partial multivalued
functions: if f :⊆ X ⇒ Y and U ⊆ Y , we define f−1[U] as

f−1[U] = {x ∈ dom(f) | f(x) ∩ U 6= ∅}.

Definition 1.3.3 (Realizer). Let (X, δX) and (Y, δY) be represented spaces and let f :⊆ X ⇒ Y be a
partial multifunction. A partial function F :⊆ κκ → κκ is a realizer of f if and only if the following
diagram commutes:

κκ κκ

X Y

δX

F

δY

f

in the sense that for every p ∈ dom(f ◦ δX) we have δY (F (p)) ∈ f(δX(p)).

Note that we impose no other requirement on realizers, in particular, F need not be continuous
nor computable. Moreover, F does not need to be uniform in the codes: if p, p′ ∈ κκ are distinct
sequences such that δX(p) = δX(p′) = x and y, y′ ∈ f(x) are two distinct elements of Y , we allow
the case where δY (F (p)) = y, δY (F (p′)) = y′. In particular this means that the realizer F does not
necessarily induce a choice function on the relation f .

Definition 1.3.4 (δX , δY -computability and continuity). A partial multifunction f :⊆ (X, δX) ⇒
(Y, δY) is called (δX , δY)-computable (risp. continuous) if it admits a Type 2 computable (risp. con-
tinuous) realizer.

We can now introduce the notion of Weihrauch reducibility and Weihrauch completeness:

Definition 1.3.5 (Weihrauch reducibility). Let f :⊆ X ⇒ Y and g :⊆ U ⇒ V be operations on
represented spaces, we say that f is Weihrauch reducible to g, in symbols f ≤W g if there exist two
Type 2 computable functions H,K :⊆ κκ → κκ such that if G is any realizer of g, the function

p 7→ H(〈p,G(K(p))〉)

is a realizer of f .

As variations of the same concept, we will say that f topologically Weihrauch reduces to G (f ≤tW

g) if H,K are continuous; f Weihrauch reduces to G relative to oracle o ∈ κκ (f ≤oW g) if H,K are
computable with respect to the oracle o and f strongly Weihrauch reduces to G (f ≤sW g) if H,K
are computable functions such that for every G realizing g, the function H ◦ G ◦ K realizes f . By
definition it is clear that for any f, g and any oracle o:

f ≤sW g =⇒ f ≤W g =⇒ f ≤oW g =⇒ f ≤tW g.

Definition 1.3.6 (Weihrauch completeness). Let M be any set of operations between represented
spaces and let f ∈ M . We say that f is Weihrauch complete for M with respect to ≤W if for every
g ∈ M we have g ≤W f . Similarly we say f is Weihrauch complete for M with respect to ≤tW if for
every g ∈M we have g ≤tW f .

If f ≤W g and g ≤W f , we write f ≡W g and we say that f is Weihrauch equivalent to g. It is
straightforward to see that ≤W is a preorder and hence ≡W is an equivalence relation. Equivalence
classes of the ≡W relations are called Weihrauch degrees, and we will often denote the Weihrauch
degree of an operation f as [f]. One of the objectives of computable analysis is characterising the
Weihrauch degree of functions which correspond, via the coding of theorems we described in the in-
troduction, to results mathematical analysis.

We introduce a notion of reduction between different representations of the same set.

27

Definition 1.3.7 (Reduction between representations). Let X be a set and let δ, δ′ :⊆ κκ → X be
two representations of X, then we say that δ continuously reduces to δ′, in symbols δ ≤t δ

′, if idX
is (δ, δ′)-continuous and δ computably reduces to δ′, in symbols δ ≤c δ

′ if idX is (δ, δ′)-computable.
If δ ≤t δ

′ and δ′ ≤t δ (risp. δ ≤c δ
′ and δ′ ≤c δ), we say that δ is continuously equivalent to (risp.

computably equivalent to) δ′ and we denote this as δ ≡t δ
′ (risp. δ ≡c δ

′).

It is straightforward to see that if δX , δ
′
X are two representations of X such that δ′X ≤t δX (risp.

δ′X ≤c δX) and δY , δ
′
Y are two representations of Y such that δY ≤t δ

′
Y (risp. δY ≤c δ′Y) and

f :⊆ X → Y is (δX , δY) continuous (risp. computable), then f is (δ′X , δ
′
Y) continuous (risp. com-

putable).

Further we define the property of admissibility for a given representation:

Definition 1.3.8 (Admissible representation). Let (X, τ) be a topological space and let δ :⊆ κκ → X
a representation. The representation δ is called admissible if it is continuous with respect to τ and for
every continuous function ϕ :⊆ κκ → X, there exists a continuous function h :⊆ κκ → κκ such that
ϕ(x) = δ(h(x)).

The definition of admissibility in particular implies that if δ is admissible and δ′ is any other
continuous representation of X, δ′ ≤t δ, in other words δ is maximal with respect to ≤t among the
continuous representations of X. We will often call a pair (X, δ) where X is a topological space and
δ is an admissible representation an admissibly represented space.

We can now state the Main Theorem of Generalized Computable Analysis [16, Theorem 4.2.13]. It
is the generalized computable analysis equivalent of the Main Theorem of Computable Analysis due
to Weihrauch.

Theorem 1.3.9. Let (X, τ), (Y, ξ) be topological spaces, let δX , δY be admissible representations of X
and Y respectively, and let f :⊆ X → Y be a function, then

f is (δX , δY)-continuous ⇐⇒ f is continuous.

The Main Theorem of Generalized Computable Analysis in particular implies that the space [X →
Y] of Definition 1.3.2 coincides with the space of (topologically) continuous functions between two
admissibly represented topological spaces X and Y , so the representation given there is an adequate
tool to describe continuous function spaces.
We now turn to stating some basic results which we are going to employ for our Weihrauch classification
results in later chapters.

Proposition 1.3.10. Let f :⊆ X ⇒ Y be an operation on represented spaces and assume g :⊆ Y → Z
is a single-valued operation between represented spaces with a computable realizer, then g ◦ f ≤sW f .

Proof. Let G :⊆ κκ → κκ be a computable function realizing g, then for any realizer F of f , the
function G ◦ F ◦ idκκ is a realizer of g ◦ f , showing the required strong reduction.

Clearly, the same holds when composing on the right, so f ◦ g ≤sW f .

Corollary 1.3.11. In the assumptions of Proposition 1.3.10, if g is additionally an injection with
computable left inverse, then f ≡sW g ◦ f . Moreover, in the same assumptions, if g surjects onto
dom(f) and it has a computable right inverse, then f ◦ g ≡sW f .

This justifies studying the Weihrauch degree of some operation f by considering g ◦ f or f ◦ g
where g is an appropriate computable function.

We introduce some well known operations on degrees and state some of their properties. The
proofs of the properties stated depend only on the computability of various pairing functions and
projection functions. We give reference to the proofs for their classical counterparts, noting that the
same exact proofs can be carried out in the generalized context. For the remainder of this section,
assume that generalized Baire space is equipped with the representation idκκ .

28

Definition 1.3.12 (Product). Let f :⊆ X ⇒ Y and g :⊆ U ⇒ V be multi-valued operations between
represented spaces and define the product f × g as

(f × g)(x, u) = f(x)× g(u),

with dom(f × g) = dom(f)× dom(g).

Proposition 1.3.13 (Monotonicity of products). Let f ≤W f ′, g ≤W g′ be functions between repre-
sented spaces, then f × f ′ ≤W g× g′ and the same holds with respect to strong Weihrauch reducibility

Proof. See [6], Proposition 3.2.

This in particular means that if f ≡W f ′ (risp. f ≡sW f ′) and g ≡W g′ (g ≡sW g′), then
f × g ≡W f ′ × g′ (f × g ≡sW f ′ × g′), hence we can define a product operation on the (strong)
Weihrauch degrees as [f]× [g] = [f ×g]. It can also be shown that the product operation is associative
and commutative up to strong Weihrauch equivalence, while the identity function on generalized Baire
space is a neutral element for the product up to ordinary Weihrauch equivalence (see [6, Proposition
3.7]).

Definition 1.3.14 (Cylindrification). Let f :⊆ X ⇒ Y be a multi-valued operation between repre-
sented spaces, define the cylindrification of f as idκκ ×f . We call f a cylinder if it is equivalent to
its cylindrification, i.e.,f ≡sW idκκ ×f .

Note that for any operation f , trivially f ≡W idκκ ×f and f ≤sW idκκ ×f , whereas idκκ ×f ≤sW f
(and hence f ≡sW idκκ ×f) does not always hold (hence not all operations are cylinders).10

Proposition 1.3.15. Let f and g be two multi-valued operations between represented spaces. Then

f ≤W g ⇐⇒ idκκ ×f ≤sW idκκ ×g.

Proof. See [6, Proposition 3.5].

This (together with g ≤sW idκκ ×g for all g) immediately gives:

Corollary 1.3.16 (Reduction to cylinders). Let f be a cylinder, g any multi-valued operation between
represented spaces, then

g ≤W f ⇐⇒ g ≤sW f.

This last result will prove useful in settings where we know that some operation f is a cylinder and
we want to prove g 6≤W f for some particular g. In such cases it is sufficient to rule out the possibility
of a strong reduction between g and f to obtain the non-existence of any reduction. Similarly, if we
want to show a strong reducibiltity to a cylinder, it suffices to come up with computable functions
witnessing an ordinary Weihrauch reduction.

Lastly, we can define the operation of parallelization of a given operation f , intuitively this corre-
sponds to taking κ-many copies of f .

Definition 1.3.17 (Parallelization). Let f :⊆ X ⇒ Y be a multi-valued operation, define its paral-
lelization

∏
f :⊆ Xκ ⇒ Y κ as∏

f((pα)α∈κ) = {(qα)α∈κ | ∀α ∈ κ(qα ∈ f(pα))},

i.e.,
∏
f((pα)α∈κ) =

∏
α∈κ f(pα).

10Consider for example the function f : κκ → κκ with constant value 0κ, it is trivial to see that idκκ ×f 6≤sW f as that
would require the existence of two computable functions H,K :⊆ κκ → κκ such that H ◦ f ◦K realizes idκκ ×f , but by
definition of f , H ◦ f ◦K would be the function with domain dom(K) and constant value H(0κ).

29

When speaking about parallelized operations, we always assume that the spaces Xκ and Y κ are
endowed with the sequence space representations δκX and δκY .

We remark that the notation introduced is not the standard notation for the parallelization of
f , which would normally be denoted as f̂ . Note that there is a potential risk of confusion of this
notation with the usual notation Cartesian product of sets, which also uses the symbol

∏
. We follow

the convention that the symbol
∏

, in the context of a Cartesian product of sets, will always have
subscripts indicating the index set over which the product is taken. Occurrences of the

∏
symbol

without indices will refer to parallelization.

Proposition 1.3.18 (Properties of parallelization). Let f, g be operations on represented spaces, we
have

(a) f ≤sW
∏
f (parallelization is extensive),

(b) f ≤W g =⇒
∏
f ≤W

∏
g (parallelization is monotone),

(c)
∏
f ≡sW

∏
(
∏
f) (parallelization is idempotent).

Monotonicity holds also for strong reducibility.

Proof. See [6, Proposition 4.2].

Lemma 1.3.19. Let (A, δA), (B, δB) be represented spaces and define the functions hA : Aκ×Aκ → Aκ

given by
h((aα)α∈κ, (a

′
α)α∈κ)(β) = aγ if β is the γ-th even ordinal,

h((aα)α∈κ, (a
′
α)α∈κ)(β) = a′γ if β is the γ-th odd ordinal,

and hA,B : Aκ ×Bκ → (A×B)κ given by

h(((aα)α∈κ), ((bα)α∈κ)) = (aα, bα)α∈κ.

Both hA and hA,B are computable bijections with computable inverses.

The proof is straightforward and essentially only requires the computability of the pairing functions.
The following results are immediate consequences of Lemma 1.3.19.

Proposition 1.3.20. Let f :⊆ X ⇒ y and g :⊆ U ⇒ V be operations on represented spaces, then∏
f × g ≡sW

∏
f ×

∏
g.

Proposition 1.3.21. Let f :⊆ X ⇒ Y be an operation, then∏
f ≡sW

∏
f ×

∏
f.

Finally, we obtain a sufficient condition for being a cylinder:

Corollary 1.3.22. Let f be an operation on represented spaces, and assume id ≤sW
∏
f . Then

∏
f

is a cylinder.

Proof. We have idκκ ≤sW
∏
f by assumption, hence idκκ ×

∏
f ≤sW

∏
f ×

∏
f by monotonicity of

the product, and
∏
f ×

∏
f ≡sW

∏
f by Proposition 1.3.21. This shows that idκκ ×

∏
f ≤sW

∏
f ,

hence
∏
f ≡sW idκκ ×

∏
f , which is what was to show.

We mention here that all results on products, parallelizations and cylindrification mentioned in
this section relativize to any oracle, i.e.,for every o ∈ κκ, we can replace ≤W and ≤sW with ≤oW
and ≤osW (and accordingly the term computable function with o-computable function) in any result
between Proposition 1.3.13 and Corollary 1.3.22. This is seen at once by inspection of the proofs of
these statements.

30

1.4 Surreal numbers and Rκ

We introduce Conway’s surreal numbers No, which are necessary to define the generalized real line Rκ,
introduced by Galeotti in [16]. As mentioned in the introduction, the field Rκ shares many features
with R, and developing analytical results for Rκ is an important part of generalised analysis (see [16],
[17], [11], [18]). The generalized real line will be the setting of generalized computable analysis.

We mention here that, in the past, people have investigated other possible generalizations of the
real line. In particular, Sikorski built a generalized field of rationals called Qκ from the cardinal κ
endowed with the Hessenberg operations in a way that is analogous to the construction of Q from N.
He then defined the field Rκ as the Cauchy completion of Qκ (see [37]).11 The field Rκ so obtained
differs from Rκ as it has cardinality κ whereas Rκ has cardinality 2κ. In [16], Galeotti explains how
the cardinality of Rκ makes it unsuitable for computable analysis, and consequently he argues that
Rκ is a more appropriate generalization of the real line. In line with this view, we will only consider
Rκ in this thesis.

1.4.1 Definition and basic properties of surreal numbers

We define the class field of surreal numbers No introduced by Conway in [13] and state some of its
properties. For more details on surreal numbers, we refer the reader to [21].

Definition 1.4.1 (Surreal numbers). Let No = {α → {−,+} | α ∈ Ord}, No is called the class of
surreal numbers.

We refer to sequences α → {−,+} as sign sequences. The length of a surreal number s, denoted
l(s) or |s|, is simply its domain. The advantage of the definition of surreals in terms of sign sequences
is that we can define functions on the surreal by recursion on their length, in other words, if g is a
function defined on sets of surreal numbers and ϕ is any property, definition of the type

f(x) = g({f(y) | l(y) < l(x) ∧ ϕ(y)})

are justified by the Recursion Theorem on the ordinals. Another way of seeing surreal numbers is
introducing a third sign ↑ which should be read as “undefined” and stipulating that a surreal number
is a sequence s : Ord → {−,+, ↑} which contains at least one ↑ symbol and in fact, if α = min{δ |
s(δ) =↑}, then s(β) =↑ for all β > α. We call such three-valued sequences padded sign sequences.
Given a surreal number, it is straightforward to obtain the corresponding padded sign sequence, and
viceversa. Padded sign sequences are useful for concisely defining the order on surreal numbers. First,
we stipulate that our three signs are ordered as − < ↑ < +.

Definition 1.4.2 (Order on No). Define ≤s⊆ No×No as follows: if x, y ∈ No, let sx, sy be the
corresponding padded sign sequences. We say x ≤s y if and only if x = y or sx(α) < sy(α) where
α = min{β | sx(β) 6= sy(β)}.

When clear from context, we will refer to ≤s as simply ≤.
The following theorem expresses the defining feature of the surreals, which is intuitively an extreme
version of density.

Theorem 1.4.3 (Fundamental existence theorem). Let L,R be subset of No such that L < R, then
there exists x ∈ No such that L < x < R and for all y ∈ No, if L < y < R, then x ⊆ y.

Proof. See [21], Theorem 2.1.

We denote the number x in the statement of the theorem as [L|R]. This is an example of another
way to define surreals as cuts.12 We say that a cut (L,R) is cofinal in a cut (L′, R′) if L is cofinal in
L′ and R is coinitial in R′. It is clear by definition that the relation of “being cofinal” is transitive.
We have the following useful result:

11This construction was re-discovered recently by Asperó and Tsaprounis (see [3]).
12Whenever we refer to a pair of subsets of surreals as a cut, we assume that L < R actually holds, similarly we only

use the notation [L|R] if (L,R) is a cut.

31

Lemma 1.4.4 (Cofinality lemma). Let (L,R), (L′, R′) be mutually cofinal cuts, then [L|R] = [L′|R′].

Proof. See [21], Theorem 2.5

It turns out that every surreal number arises as the number [L|R] for some cut (L,R), in particular
each surreal number admits a canonical representation as a cut.

Definition 1.4.5 (Canonical cuts). Let x ∈ No, the canonical cut of x, denoted (Lx, Rx) is given by

Lx = {y ⊆ x | y < x}, Rx = {y ⊆ x | x > y}

Lemma 1.4.6. For all x ∈ No, x = [Lx | Rx]

Proof. See [21], Theorem 2.8.

Exploiting the cut representation of the surreal numbers, it is possible to define surreal operations
+s and ·s and, if we let 0 = ∅ (the empty sequence) and 1 = (+), we obtain that the structure
(No,+s, ·s, 0, 1,≤s) satisfies the axioms the theory of real closed fields. We use standard notation for
the other common field operations such as additive and multiplicative inverses, and absolute values.
As for the order symbol, we will often drop the subscript from the symbols for the field operations
when the intended meaning is clear from context.

We now turn to define various subsets of the surreal numbers which will be useful in the construction
of Rκ.

Definition 1.4.7 (Notable subsets of No). For any ordinal α we define the sets:

Noα = {s ∈ No | |s| = α}

No<α = {s ∈ No | |s| < α}

No≤α = Noα ∪No<α

We mention here that the real numbers are isomorphic to a subfield of the surreals contained in
No≤ω, more precisely, if we let R be the set of surreals r of length ≤ω such that

|r| = ω =⇒ r is not eventually constant

then R a subfield of No and it is isomorphic to R ([21, Theorem 4.3]). From now on we identify R
and R, so we speak as real numbers as if they were elements of No. We also state the classical result
(see [2], Corollary 1 on pg. 246):

Theorem 1.4.8. Let λ be an uncountable regular cardinal, then No<λ is a real closed field.

We can identify the class of ordinals with a subclass of the surreals as follows: given an ordinal α,
we identify it with the surreal number (+)α. It is known that the surreal operations +s, ·s coincide
with the Hessenberg (or natural) operations on ordinals (see [21], Theorems 4.5 and 4.6) and the
surreal ordering coincides with the standard ordering on ordinals. We state this lemma for future
reference, the proof is by an immediate application of the definition of canonical cuts.

Lemma 1.4.9. Let α ∈ Ord, the canonical cut for α is given by (L, ∅) where L = {(+)β | β ∈ α}.

1.4.2 Conway Normal Form

We now present the derivation of the so-called Conway Normal Form for the surreal numbers. The
material in this section is the basis for the results in Section 5.2.

Definition 1.4.10 (Archimedean classes). Let x and y be non-negative surreal numbers such that
there exist n,m ∈ N with n · x > y and m · y > x, we say that x and y lie in the same Archimedean
class and we denote this as x ∼a y. If u and v are any surreal numbers, we say u ∼a v if and only if
|u|s ∼a |v|s.

32

It is obvious that ∼a is an equivalence relation on No. Moreover, we can define a relation � as
x� y if and only if x 6∼a y and |x|s < |y|s. The intuitive meaning of x� y is then that, in magnitude,
x is so much smaller than y that the set {z · x | z ∈ Z} is contained in the surreal interval (−y, y).

Definition 1.4.11 (ω-map). For any surreal number x we recursively define

ωx = [0, r · ωxL | s · ωxR]

where s, r range over the positive real numbers, xL ranges over Lx and xR ranges over Rx.

Lemma 1.4.12. Let x be any surreal number, then

ωx = [0, r · ωxL | s · ωxR]

where r ranges over the set {n | n ∈ ω}, s ranges over the set {1/n | n ∈ ω}, xL ranges over Lx and
xR ranges over Rx.

Proof. It is straightforward to see that the cut (L′, R′) = (0, r · ωxL | s · ωxR) where r ranges over the
set {n | n ∈ ω} and s ranges over the set {1/n | n ∈ ω} and the cut (L,R) used in the definition of
the ω-map are mututally cofinal, hence by Lemma 1.4.4, they define the same surreal number.

The ω-map behaves similarly to exponentiation, as can be seen in the following:

Lemma 1.4.13 (Properties of the ω-map). Let x and y be surreal numbers, then

� ω0 = 1,

� ωx > 0,

� if x < y, then ωx � ωy

� ωx · ωy = ω(x+y).

Moreover, the ω-map coincides with exponentiation on ordinals, i.e.,the surreal number ωα coincides
with the ordinal number ωα.

Proof. See [21], Theorem 5.2 and Theorem 5.4.

The ω-map also yields canonical representatives for Archimedean classes:

Lemma 1.4.14. Let x be any surreal number, there exists a unique surreal number y of minimal
length such that x ∼a y and y = ωz for some z ∈ No. Moreover, y is an initial segment of any element
equivalent to it.

Proof. See [21], Theorem 5.3.

We introduce transfinite sums of elements of the form ωa · r where r is a nonzero real number.
These sums actually provide another characterization of surreal numbers which we will use in Chapter
5 for generalized computable analysis.

Definition 1.4.15 (Transfinite sums). Let γ be any ordinal, (aα)α∈γ a sequence of strictly decreasing
surreal numbers and (rα)α∈γ a sequence of nonzero real numbers,

� if γ = β + 1 for some β, define∑
α∈γ

ωaα · rα =

(∑
α∈β

ωaα · rα
)

+ ωaγ · rγ ,

33

� if γ is a limit, define ∑
α∈γ

ωaα · rα = [L|R].

where

L =

{ ∑
α∈β+1

ωaα · sα
}
,

where β ranges in γ, sα = rα for all α ∈ β and sβ ranges in R<rβ and

R =

{ ∑
α∈β+1

ωaα · sα
}
,

where β ranges in γ, sα = rα for all α ∈ β and sβ ranges in R>rβ .

Similarly to the proof of Lemma 1.4.12, by a mutual cofinality argument we can assume that in
the limit cases, the coefficients sβ used to define the set L actually range in the set {sβ − 1/n | n ∈ ω}
and the coefficients sβ used to define the set R range in the set {sβ + 1/n | n ∈ ω}.

We define a lexicographical ordering on sequences of pairs of surreals and nonzero reals as follows:
let (aα, rα)α∈γ and (a′α, r

′
α)α∈δ be two such sequences and let β = min{ξ | (aξ, rξ) 6= (a′ξ, r

′
ξ)}. If

β < min{γ, δ}, then (aα, rα)α∈γ > (a′α, r
′
α)α∈δ if and only if aβ ≥ a′β and rβ ≥ r′β; if β = γ, then

(aα, rα)α∈γ > (a′α, r
′
α)α∈δ if and only if r′β < 0 and lastly if β = δ, then then (aα, rα)α∈γ > (a′α, r

′
α)α∈δ

if and only if rβ > 0.

Theorem 1.4.16. The expression
∑

α∈γ ω
aα · rα is defined for all strictly decreasing sequences of

surreals (aα)α∈γ and all sequences of nonzero real numbers (rα)α∈γ. Moreover,∑
α∈γ

ωaα · rα <
∑
α∈δ

ωa
′
α · r′α

if and only if (aα, rα)α∈γ < (a′α, r
′
α)α∈δ and lastly for any (aα, rα)α∈γ, any β ∈ γ and any ξ ∈ β,∣∣∣∣∑
α∈γ

ωaα · rα −
∑
α∈β

ωaα · rα
∣∣∣∣� ωaξ . (1.1)

Proof. See [21], Theorem 5.5

In the following we refer to the property expressed in the inequality (1.1) as the tail property.
Intuitively, it means that a sum is relatively close to every sum determined by an initial segment
of the sequence its exponent-coefficient pairs, where relatively close is to be interpreted in terms of
Archimedean classes.

Lemma 1.4.17. Let (aα)α∈γ be a strictly descending sequence of surreal numbers, (rα)α∈γ a sequence
of nonzero real numbers and let x =

∑
α∈γ ω

aα · rα, then l(x) ≥ γ.

Proof. See [21], Theorem 5.6

Note that, while Gonshor describes such inequality as “crude”, we will show in Corollary 1.4.28
that the bound is actually optimal.

Theorem 1.4.18 (Conway Normal Form). For every surreal number x there exist unique sequences
(aα)α∈γ and (rα)α∈γ such that

x =
∑
α∈γ

ωaα · rα.

Proof. See [21, Theorem 5.6]

34

We remark that the Conway Normal Form of a number x is obtained from an approximation con-
struction: one recursively build a sequence of exponent-coefficient pairs whose corresponding trans-
finite sums approximate the surreal number x with increasing accuracy. Later we will see that for
particular surreal numbers, a similar procedure can be actually carried out on a T2κTM.

We state and prove a continuity property of Conway Normal Form which we will exploit in Section
5.2:

Lemma 1.4.19. Let x, y and a be surreal numbers such that 0 6= |x− y| � ωa and

x =
∑
α∈λ

ωeα · rα, y =
∑
α∈µ

ωfα · sα.

Let ξ = min{β | (eβ, rβ) 6= (fβ, sβ)}, then a > max{eξ, fξ}.

Proof. First, notice that it can’t be the case that λ + 1 = µ + 1 = ξ, because this would entail that
the Conway Normal Forms of x and y coincide and x = y. Therefore we can assume at least one of eξ
and fξ is defined. Assume only one of them is defined, say eξ, then by the tail property

ωeξ �
∣∣∣∣x− ∑

α∈ξ+1

ωeα · rα
∣∣∣∣ =

∣∣∣∣x− (∑
α∈ξ

ωeα · rα + ωeξ · rξ
) ∣∣∣∣ =

∣∣∣∣x− (y + ωeξ · rξ)
∣∣∣∣.

Therefore |x− y| ∼a ωeξ � ωa, which implies that a > eξ = max{eξ, fξ}. Lastly if both eξ and fξ are
defined, consider z defined as

z =
∑
α∈ξ

ωfα · sα,

and define d1 = x − z and d2 = y − z. Using the tail property as above, we obtain |d2| ∼a ωfξ
and |d1| ∼a ωeξ . Now consider d1 − d2, there are two options: if fξ 6= eξ, then assume without
loss of generality that fξ > eξ. It follows that ωfξ � ωeξ , hence |d1 − d2| ∼a ωfξ . By assumption
|d1 − d2| = |x − y| � ωa, so this immediately implies that a > fξ = max{eξ, fξ}. If fξ = eξ,
then it follows that rξ 6= sξ and by an application of [21, Lemma 5.5] we obtain d1 = ωeξ · rξ + t1,
d2 = ωeξ · sξ + t2 with t1 � ωeξ and t2 � ωeξ . Hence x− y = d1 − d2 = ωeξ(rξ − sξ) + t1 − t2 ∼ ωeξ ,
which again implies eξ = max{eξ, fξ} < a.

We mention here that the definition of transfinite sum can be extended to include null real coeffi-
cients.

Definition 1.4.20 (Reduced sequences). Let (eα, rα)α∈λ be a sequence of pairs of surreals with (eα)α∈λ
a strictly decreasing sequence of surreals and (rα)α∈λ ⊆ R.
We define the corresponding reduced sequence (eαβ , rαβ)β∈γ as the subsequence containing all (and
only) the pairs with rα 6= 0.

Lemma 1.4.21. For all (eα, rα)α∈λ with (eα)α∈λ a strictly decreasing sequence of surreals and (rα)α∈λ ⊆
R, we can meaningfully define ∑

α∈λ
ωeα · rα

in the same way as we defined transfinite sums with sequences of nonzero coefficients. Moreover, if
(eαβ , rαβ)β∈γ is the reduced sequence associated to (eα, rα)α∈λ, we obtain that∑

α∈λ
ωeα · rα =

∑
β∈γ

ωeαβ · rαβ

.

Proof. See [21, Lemma 5.4]

35

1.4.3 The generalized reals Rκ

We introduce the field of κ-reals Rκ, where most of the generalized computable analysis of this thesis
will take place. The field Rκ, as well as the field Qκ of κ-rationals were first introduced in [16], where
most of their basic properties are proven. We recall the definitions and properties relevant for the rest
of the thesis, for more details we refer the reader to [16] and [17].

Definition 1.4.22 (The κ-rationals). We define the field of κ-rationals as Qκ = No<κ

By Theorem 1.4.8, Qκ is a real closed field when equipped with the surreal operations and ordering,
and by our assumption of κ<κ = κ we obtain |Qκ| = κ. Moreover, Qκ is an ηκ-set, i.e.,whenever
L,R ⊆ Qκ, L < R and |L ∪ R| < κ, there exists some x ∈ Qκ such that L < {x} < R. Note that, if
we identify the set {−,+} with the set 2 = {0, 1}, we immediately see that Qκ is essentially the same
as 2<κ, therefore in our assumptions there is a κ-computable function enumerating the κ-rationals.

Theorem 1.4.23. The set Qκ coincides with the set of surreals x with Conway Normal Form

x =
∑
α∈λ

ωeα · rα,

such that λ < κ, and for all α ∈ λ, eα ∈ Qκ.

Proof. See [2], pages 242-245.

Given any cut (L,R) with L ∪R ⊆ Qκ, we say that (L,R) is a Cauchy cut if L has no maximum
and for all ε ∈ Q+

κ there exists l ∈ L, r ∈ R such that l + ε > r.

Definition 1.4.24 (The κ-reals). We define the set Rκ = Qκ ∪ {[L|R]|(L,R)is a Cauchy cut}.

Note that if x ∈ Rκ \Qκ, then x = [L|R] for some Cauchy cut in Qκ, so in particular if (sα)α∈κ is
a sequence of κ-rationals which is entirely contained in L and is cofinal in it, then x = supα∈κ sα. It
follows from the usual argument that one can always assume that such a sequence is strictly increasing.

Theorem 1.4.25. The set Rκ endowed with the surreal operations and ordering is a real closed field
extension of R. Moreover, Rκ is Cauchy complete, an ηκ-set, κ-shperically complete, it has cardinality
2κ, coinitiality and cofinality κ, and Qκ is dense in Rκ.

Proof. See [16] Lemma 3.4.6, Lemma 3.4.7, Theorem 3.4.12, Theorem 3.4.14 for and Corollary 3.5.26.

It can be shown that Rκ is the unique such field (see [19, Theorem 4]). It follows from the
uniqueness theorem for R that Rκ is not Dedekind complete.

Theorem 1.4.26. The Dedekind completion of Qκ is included in No≤κ. This implies in particular
that Rκ ⊆ No≤κ.

Proof. See [16, Lemma 3.4.13].

We prove a novel characterization of Rκ in terms of Conway Normal Form:

Theorem 1.4.27. The set Rκ is given by Qκ together with those surreals x of length κ which have
Conway Normal Form

x =
∑
α∈κ

ωeα · rα,

such that (eα)α∈κ is a coinitial sequence of elements of Qκ.

36

Proof. Let x ∈ Rκ \Qκ and let (eα, rα)α∈λ be its Conway Normal Form, i.e.,

x =
∑
α∈λ

ωeα · rα.

By Lemma 1.4.17 we have λ ≤ κ = l(x). Now by density of Qκ in Rκ, there exists a sequence of
κ-rationals (qα)α∈κ ⊆ Qκ such that for all α ∈ κ:

|x− qα| < ω−α−1 � ω−α.

By Lemma 1.4.19, we obtain that the Conway Normal Form of x coincides with that of qα up to
exponents under −α. By Theorem 1.4.23, the exponents in the Conway Normal Form of each qα
are κ-rationals, hence we obtain that (eα)α∈κ ⊆ Qκ. Therefore, since x /∈ Qκ, again Theorem 1.4.23
implies that κ ≤ λ, so we conclude that λ = κ. Now assume that (eα)α∈κ is not coinitial in Qκ, so let
−β be a lower bound for it. By definition of the sequence (qα)α∈κ we know that |x− qβ+1| � ω−β−1,
so by Lemma 1.4.19 we obtain that the Conway Normal Forms of qβ+1 and x coincide up to exponents
under −β. Since we assumed −β to be a lower bound for (eα)α∈κ, this entails that the Conway
Normal Form for x is an initial segment of the Conway Normal Form for qβ, which implies that qβ
has a Conway Normal Form of length ≥ κ. This is in contradiction with Theorem 1.4.23.

Conversely assume that x ∈ No has Conway Normal Form given by

x =
∑
α∈κ

ωeα · rα,

where (eα)α∈κ is a sequence of κ-rationals coinitial in Qκ. For all β ∈ κ, define

sβ =
∑
α∈β

ωeα · rα.

Notice that the fact that (eα)α∈κ is coinitial in Qκ immediately implies that (ωeα)α∈κ is coinitial in
R+
κ . By the tail property we obtain that for all β ∈ κ and all η, ξ > β,

|sξ − sη| < ωeβ ,

which, by the coinitiality of (ωeα)α∈κ in R+
κ , implies that (sβ)β∈κ is a Cauchy sequence of rationals,

hence it converges to some κ-real s. Now an application of Lemma 1.4.19 implies that s must have
the same Conway Normal Form of x, hence x = s ∈ Rκ.

As anticipated, this tangentially shows that the bound on the length of transfinite sums in Lemma
1.4.17 is optimal.

Corollary 1.4.28. For all cardinals λ such that λ<λ = λ, there are surreal numbers with Conway
Normal Form

x =
∑
α∈λ

ωaα · rα

and l(x) = λ.

Proof. For any such λ, any λ-real which is not a λ-rational is an example of such a surreal number.

In the rest of this thesis we will consider Rκ as a topological space, with topology generated by the
open intervals with endpoints in Qκ∪{+∞,−∞}. Note that intervals in Rκ need not have endpoints,
as this property is equivalent to Dedekind completeness (see [34], Lemma 2.23). The same is true for
closed and for open intervals. In the rest of this thesis, we will refer to intervals in Rκ with endpoints
as proper intervals and to those without endpoints as improper intervals.13

We now turn to some preliminary definitions for computable analysis on Rκ, starting with the
introduction of a notation and two representations of Qκ and the statement of some of their properties.

13Note that in the literature the terms proper and improper are sometimes used in a different way, i.e., to distinguish
between intervals consiting of more than one point and intervals consisting of a single point.

37

Definition 1.4.29 (Notation for Qκ). Let νκ : κ→ Qκ be given by νQκ(α) = q if and only if ν(α) = q′,
where ν is the computable enumeration of Corollary 1.2.13 and q is the sign sequence of length |q′|
with q′(β) = 1 ⇐⇒ q(β) = +. When there is no risk of confusion, we will write α for νQκ(α).

Definition 1.4.30 (Representation of Qκ). Let δQκ :⊆ 2κ → Qκ be the representation given by
δQκ(p) = q if and only if p = JwαK where wα = 00 if α ∈ dom(q) and q(α) = −, wα = 11 if
α ∈ dom(q) and q(α) = and wα = 10 if α /∈ dom(q).

Notice that δQκ is injective, therefore every κ-rational has a unique δQκ-name. In light of this, we
will sometimes say that a sequence p ∈ dom(δQκ) is the code (or the name) for the rational r = δQκ(p).

It is clear that, assuming Hypothesis 1.2.19, νQκ is computationally equivalent to δQκ in the follow-
ing sense: there is a T2κTM which, on input α ∈ κ, outputs p′ ∈ dom(δQκ) such that δQκ(p′) = νQκ(α);
conversely there is a κ-Turing Machine which, starting with any p′ ∈ dom(δQκ), terminates and out-
puts α ∈ κ such that δQκ(p′) = νQκ(α).

We also introduce a representation of Qκ based on the cut representation of surreal numbers:

Definition 1.4.31 (Cut representation of Qκ). Recursively define the following functions: δc,0Qκ(p) = 0
if and only if pα = J10Kβ<κ for every α < κ and for evey α < κ, define the function δc,αQκ as δc,αQκ (p) =
[L|R] where

� for every α < κ, pα ∈
⋃
γ<α dom(δc,γQκ) ∪ {J10Kβ∈κ}

� for all even α < κ, if pα = J10Kβ∈κ, then for every even β > α, pβ = J10Kβ∈κ,

� for all odd α < κ, if pα = J10Kβ∈κ, then for every odd β > α, pβ = J10Kβ∈κ,

� L = {δc,γQκ (pβ) | β < κ is odd and pβ ∈ dom(δc,γQκ) for some γ < α},

� R = {δc,γQκ (pβ) | β < κ is odd and pβ ∈ dom(δc,γQκ) for some γ < α}.

Finally define δcQκ =
⋃
γ∈κ δ

c,γ
Qκ .

Notice that δcQκ is a representation because for every q ∈ Qκ, there exists p ∈ 2κ such that p codes
the canonical cut [Lq|Rq].

Proposition 1.4.32. δQκ ≡c δ
c
Qκ.

Proof. See [17], Lemma 4.14.

We remark that the proof cited shows even more, namely that the transformation from δQκ codes
into δcQκ codes always leads us to codes representing κ-rational numbers as canonical cuts. Since we
can always transform any δcQκ-code into a δQκ code, this entails that whenever we work with δcQκ codes,
we can assume that these represent a rational q by its canonical cut.

This result sheds light on the fact that both the representations of Qκ introduced are really Type
1 objects. This is obvious for δQκ , as the entire sign sequence for the rational δQκ(p) is contained in
the initial segment of p up to the first 1010 bitstring, whereas the definition of δcQκ is at first a bit
too obscure to see this. Nonetheless, by Proposition 1.4.32, there is a κ-Turing Machine M which
translates δcQκ-names into δQκ-names, hence running M on code p until M prints the first 1010 bitstring
yields a Type 1 procedure which allows us to identify the κ-rational δcQκ(p) in fewer than κ steps.

Proposition 1.4.33. The field operations on Qκ and the characteristic function of the order <Qκ are
δcQκ-computable.

Proof. See [17], Lemma 4.15.

We are now ready to introduce three representations of Rκ. Two of these were present in [17],
whereas δRκ is a new representation which is more in line with the theory of Rκ-metric spaces intro-
duced in Chapter 2. It is clear from the definition that the latter is essentially the same as the two
previous presentations, and we sketch a proof of their equivalence.

38

Definition 1.4.34 (Cauchy representations of Rκ). Define δ′Rκ :⊆ 2κ → Rκ as δ′Rκ(p) = r if and only

if δQκ(pα) = qα and for every α ∈ κ, x ∈ (qα− 1
α+1 , qα+ 1

α+1) and define δRκ :⊆ κκ → Rκ as δRκ(p) = r

if and only if, letting qα = νQκ(p(α)), (qα)α∈κ converges to r and for all β < γ < κ, |qβ − qγ | < 1
β+1 .

The Cauchy representation δRκ is the representation which we obtain when considering Rκ as a
computable κ-metric space (see Chapter 2).

Definition 1.4.35 (Veronese representation of Rκ). Define δVRκ :⊆ 2κ → Rκ as δVRκ(p) = x if and
only if for each α ∈ κ, pα ∈ dom(δQκ) and x = [L|R] where L = {δQκ(pα) | α < κ even} and
R = {δQκ(pα) | α < κ odd} and for every α < κ we have δQκ(pα+1) < δQκ(pα) + 1

α+1 .

Proposition 1.4.36. Under Hypothesis 1.2.19, the three representations δVRκ, δ′Rκ and δRκ are all
computably equivalent.

Proof. See [17], Theorem 4.19 for a proof (which is not conditional on constructibility assumptions)
that δ′Rκ is equivalent to δVRκ . To prove that δRκ is in turn equivalent to both of them, it is then
sufficient to notice that, modulo the computable transformations between νQκ and δQκ codes, if a
sequence p is a valid δVRκ-code for x, then it is a valid δRκ-code for x and in turn if a sequence q is a
valid δRκ-code for y, then q is a δ′Rκ-code for x.

Proposition 1.4.37. The representations δRκ, δVRκ and δ′Rκ are all admissible with respect to the
interval topology on Rκ.

Proof. Follows from the fact that δRκ is admissible as it is a Cauchy representation of a computable
κ-metric space (cf. Chapter 2) and δRκ ≡c δ

V
Rκ ≡c δ

′
Rκ

Proposition 1.4.38. The field operations are δ′Rκ-computable

Proof. See [17], Theorem 4.17.

39

Chapter 2

Computability on Rκ-metric spaces

In the classical context, the notion of computable metric space dates back at least to Weihrauch (see
[41]). The setup we introduce in this chapter is an adaptation of the classical framework. In particular
we draw from [5], where the author introduces representations for spaces of Borel sets of computable
metric spaces to obtain the notion of Σ0

n-effective measurability for functions between such spaces.
Moreover, in [5], the author introduces a family of functions (Cn)n∈ω and proves that each Cn is
complete with respect to ≤W in the class of Σ0

n-effectively measurable functions on Baire space. The
goal of this chapter is to introduce the notion of computable Rκ-metric spaces and prove results about
them analogous to well known classical facts. After these preliminary matters are settled, we will
closely follow [5] to obtain the notion of Σ0

n-effective measurability and the analogue of Brattka’s
Completeness Theorem for computable Rκ-metric spaces.

2.1 Representations for Rκ-metric spaces

We introduce representations for κ-separable Rκ-metric spaces which we will use in the rest of the
thesis and we prove some of their properties.

Definition 2.1.1 (Computable κ-metric spaces). A computable κ-metric space X is a triple (X, d, s)
where (X, d) is a Rκ-metric space, s : κ → X is a sequence which is dense in X, and the relations
LX, RX ⊆ κ3 given by

(α, β, γ) ∈ LX ⇐⇒ d(s(α), s(β)) < γ,

(α, β, γ) ∈ RX ⇐⇒ d(s(α), s(β)) > γ,

are semidecidable by a Type 1 κ-Turing machine.

In other words, the last condition implies that for every α, β and every γ, the problems of deter-
mining whether s(α) ∈ BX(s(β), γ) or whether s(α) /∈ BX(s(β), γ) are semidecidable by a κ-Turing
Machine.

Proposition 2.1.2. Assuming Hypothesis 1.2.19, the following are computable κ-metric spaces:

(a) (κ, dκ, idκ) where dκ is the discrete metric and idκ is the identity function,

(b) (κκ, dκκ , µ
′) where µ′ : κ→ κκ is given by µ′(α) = µ(α)0κ and dκκ is given by, for all p 6= q ∈ κκ

dκκ(p, q) = 1
α+1 ,

where α = min{β ∈ κ | p(β) 6= q(β)},

(c) (2κ, d2κ , ν
′) where ν ′ : κ→ 2κ is given by ν ′(α) = ν(α)0κ and d2κ is given by, for all p 6= q ∈ 2κ

d2κ(p, q) = 1
α+1 ,

where α = min{β ∈ κ | p(β) 6= q(β)},

40

(d) (Rκ, dRκ , νQκ) where dRκ is given by

dRκ(x, y) = |x− y|,

where | · | and − are the operations defined on Rκ.

Proof. The claim is clearly true for (κ, dκ, idκ). For (κκ, dκκ , µ
′), the fact that dκκ is an Rκ-metric is

obvious by definition (note that this metric induces the standard bounded topology). The fact that
ran(µ′) is dense in κκ is also a direct consequence of the definition. To see that the relations Lκκ

and Rκκ are semidecidable note that µ′ is computable by our discussion in Section 1.2.3 and finding
the least ordinal where two short sequences differ is clearly a κ-computable operation. The proof for
(2κ, d2κ , ν

′) is analogous. For (Rκ, dRκ , νQκ): ran(νQκ) = Qκ is dense in Rκ by definition, and the
semidecidability of LRκ and RRκ follows immediately from the computability of νQκ and Proposition
1.4.33.

Given a computable κ-metric space X = (X, d, s), we obtain a representation of X as follows: define
δX :⊆ κκ → X as

δX(p) = lim
α→κ

s(p(α))

if limα∈κ s(p(α)) exists and the sequence (s(p(α)))α∈κ is a fast convergent Cauchy sequence, i.e. for
all α < β, we have

d
(
s(p(α)), s(p(β))

)
< 1

α+1 . (2.1)

This is called the Cauchy representation of (X, d, s). In the rest of this thesis, unless explicitly stated,
whenever we consider functions between κ-metric spaces, we will assume that these are equipped with
their Cauchy representations. We will refer to condition (2.1) as the fast convergence condition for
sequences/codes. The results in Chapter 4 of [16] immediately imply that the Cauchy representation
so obtained is admissible with respect to the metric topology on X (see [41], Theorem 8.1.4 for the re-
sult in the classical context). Moreover, we know from [16] Lemmas 4.3.1 and 4.3.3 that products and
subspace representations obtained from admissible representations are in turn admissible. This allows
us to apply the Main Theorem of Generalized Computable Analysis and identify continuous partial
functions with partial functions admitting a continuous realizer whenever we reason with functions on
computable κ-metric spaces and spaces built from them. We will often do this without mention.

We introduce operations to obtain new computable metric spaces from old ones:

Lemma 2.1.3 (Subspaces and product spaces). Let X = (X, d, s) and Y = (Y, d′, s′) be computable
κ-metric spaces:

(a) for any A ⊆ X, the triple (A, d�(A×A), s�A) is a computable κ-metric space,

(b) the space X×Y = (X × Y, d′′, s′′) where

s′′(pα, βq) = (s(α), s′(β))

and
d′′((x, y), (x′, y′)) = max{d(x, x′), d′(y, y′)}

is a computable κ-metric space.

Proof. Both cases are proved rather straightforwardly from the definition, we give the proof for the
product space X×Y: it is obvious that dX×Y makes (X × Y, dX×Y) into an Rκ-metric space. To see
that ran(s′′) is a dense subset of X×Y , let B be a basic open ball in X×Y, by definition there must be
x ∈ X, y ∈ Y and q ∈ Qκ such that BX(x, q)×BY(y, q) ⊆ B. By density of ran(s) ∈ X and ran(s′) ∈ Y,
let α and β be such that s(α) ∈ BX(x, q) and s′(β) ∈ BY(y, q), then s′′(pα, βq) ∈ B, proving density
of s′′ in X×Y. Deciding whether a triple (α, β, γ) belongs to LX×Y is done by checking whether the
appropriately corresponding ordinals (α′, β′, γ′) and (α′′, β′′, γ′′) belong to LX and LY respectively.
The case for RX×Y is analogous.

41

2.1.1 Technical results on Cauchy representations

We prove some results on Cauchy representations which provide insight on how we can recursively build
names for points in a computable κ-metric space. These results will be needed in later constructions,
primarily in the proof of Theorem 2.2.2.

Lemma 2.1.4. Let X = (X, d, s) be a computable κ-metric space and let p ∈ dom(δX), α ∈ κ and
x ∈ X. If δX(p) = x, then

x ∈ cl(BX(s(p(α)), 1
α+1)),

in particular x ∈ BX(s(p(α)), 1
α+1).

Proof. First, if p ∈ dom(δX), the fast convergence condition imposes that for every β > α,

s(p(β)) ∈ BX(s(p(α)), 1
α+1).

Hence s(p(β))α≤β<κ is a sequence fully contained in BX(s(p(α)), 1
α+1) which converges to x, so clearly

x ∈ cl(BX(s(p(α)), 1
α+1)). The fact that x belongs to the closed ball follows because in any Rκ-metric

space, for all points y and radii r,
cl(B(y, r)) ⊆ B(y, r).

Definition 2.1.5 (Compatible points). Let X = (X, d, s) be a computable κ-metric space and let
w ∈ κ<κ be a word. We define the set of points compatible with w as

compatw =
⋂

α∈dom(w)

BX(s(w(α)), 1
α+1).

Notice that for every w ∈ κ<κ, the set compatw is open as it is the intersection of fewer than κ
open balls and any computable κ-metric space is κ-additive by Proposition 1.1.7. Moreover, the sets
compatw allow us to state a refinement of Lemma 2.1.4.

Lemma 2.1.6. Let X = (X, d, s) be a computable κ-metric space and let p ∈ dom(δX), α ∈ κ and
x ∈ X. If δX(p) = x, and w = p�α, then x ∈ cl(compatw).

Proof. Similarly to the proof of Lemma 2.1.4, the fast convergence condition on s(p(γ))γ∈κ implies
that s(p(β)) ∈ compatw for all β ≥ α, hence x ∈ cl(compatw).

Notice in particular that if w = p�α for some p ∈ dom(δX) and α ∈ κ, then it must be the case
that compatw 6= ∅.

Definition 2.1.7 (Extendible words). Given a computable κ-metric space X = (X, d, s), we define
the tree of extendible words w ∈ κ<κ given by

extwX = {w ∈ κ<κ | ∃p ∈ dom(δX) (w ⊆ p)}.

We obtain a partial converse to Lemma 2.1.6:

Lemma 2.1.8. Let X be a computable κ-metric space and let w ∈ κ<κ be such that compatw 6= ∅,
then w ∈ extwX. More precisely, for every x ∈ compatw there exists px ∈ dom(δX) such that w ⊆ px
and δX(px) = x.

Proof. It is obvious that the first claim follows from the second, therefore we just need to prove that
every x ∈ compatw admits a name px which extends w. To do so, let

λ = min
{
β ∈ κ | BX(x, 1

λ+1) ⊆ compatw

}
.

42

Note that the set of ordinals on the right hand side of the definition is nonempty because compatw is
an open neighbourhood of x and the sequence (1

λ+1)λ∈κ is coinitial in Rκ. Let λ′ = max{λ, |w|} and
consider the sequence of open balls (Bη)λ′≤η<κ given by

Bη = BX(x, 1
(η+1)·3).

Notice that, since η ≥ λ′ ≥ λ, it follows that each Bη is contained in compatw. By density of ran(s) in
X, it follows that there is a sequence of ordinals p ∈ κκ such that s(p(α)) ∈ Bη+α for all α ∈ κ. Now
let α < β ∈ κ, by construction s(p(β)) ∈ Bη+β ⊆ Bη+α, hence s(p(β)), s(p(α)) both belong to Bη+α.
Since the latter is an open ball with radius 1

(η+α+1)·3 , it follows that

d(s(p(β), s(p(α)))) ≤ 2
(η+α+1)·3 <

1
η+α+1 ≤

1
|w|+α+1 .

In particular this implies that the sequence determined by the word px = wap satisfies condition
(2.1). By construction the limit of the sequence s(px(α))α∈κ is x, hence px ∈ dom(δX) and δX(px) = x,
proving the claim.

Given any point x of a computable κ-metric space X, we can introduce a set of nice partial names
for x. These are extendible words in κκ which x is compatible with.

Definition 2.1.9 (Nice partial names). Let X = (X, d, s) be a computable κ-metric space and let x be
an element of X, define the set of its nice partial names as npnx = {w ∈ extwX | x ∈ compatw}.

It is clear that npnx is a subtree of extwX, and that a branch in npnx corresponds to a sequence
p such that δX(p) = x, although it is not immediately obvious from the definition that npnx has
branches at all. We prove that this is always the case, moreover we show that each npnx is <κ-closed
and ext(npnx) = npnx. These properties will be instrumental in the proof of Theorem 2.2.2.

Lemma 2.1.10. Let X = (X, d, s) be a computable κ-metric space and let x ∈ X. The tree npnx is
<κ-closed and satisfies ext(npnx) = npnx, in particular [npnx] 6= ∅.

Proof. We first show <κ-closedness by contraposition, i.e. we show that if a word w of limit length is
not in npnx, there must be a proper initial segment w′ ⊆ w such that w′ /∈ w. To this end, let λ be any
limit ordinal and let w ∈ extwX be a word with |w| = λ. Assume that w /∈ npnx, then x /∈ compatw,
i.e.

x /∈
⋂
α∈λ

BX(s(w(α)), 1
α+1).

Trivially this implies that there is some β ∈ λ such that

x /∈ BX(s(w(β)), 1
β+1),

hence w�(β + 1) /∈ npnx.
Now we show that ext(npnx) = npnx, which implies in particular that [npnx] 6= ∅ as npnx is

obviously nonempty. To this end, let w ∈ npnx, then by definition x ∈ compatw and w ∈ extwX,
therefore we can consider the sequence p ∈ κκ defined in the proof of Lemma 2.1.8 such that wap is
a δX-name of x. Notice that for every α ∈ κ, p(α) ∈ Bη+α where η ≥ |w| and

Bη+α = BX(x, 1
(η+α+1)·3),

hence in particular d(x, s(p(α))) < 1
|w|+α+1 and consequently for every β,

x ∈ BX(s(wap(β)), 1
β+1).

In other words, if we let wβ = (wap)�β, this implies that for all β, x ∈ compatwβ . This implies that

wap is a sequence such that each of its initial segments belongs to npnx, hence a branch in npnx. In
particular this means that w ∈ ext(npnx) and thus proves that ext(npnx) = npnx.

43

2.1.2 Representation for the κ-Borel sets in computable metric spaces

We now turn to the definition of representations for the finite levels of the κ-Borel hierarchy of a
computable metric space (X, d, s) (cf. Definition 1.1.24) and we prove a proposition which is the
generalized analogue of [5, Proposition 3.2]. We will repeatedly use this result when working with
represented spaces of Borel sets.

Definition 2.1.11 (Representation of finite Borel levels). Let X = (X, d, s) be a computable κ-metric
space. Define the following representations:

� δΣ0
1(X)

:⊆ κκ → Σ0
1(X) given by

δΣ0
1(X)

(p) = U ⇐⇒ U =
⋃
{B(s(α, β)) | pα, βq ∈ ran(p)},

� for all n ∈ ω, δΠ0
n(X)

:⊆ κκ → Π0
n(X) given by

δΠ0
n(X)

(p) = C ⇐⇒ δΣ0
n(X)

(p) = X \ C,

� for all n ∈ ω, δΣ0
n+1(X)

:⊆ κκ → Σ0
n+1(X) given by

δΣ0
n+1(X)

(p) = U ⇐⇒ U =
⋃
α∈κ

δΠ0
n(X)

(pα),

� for all n ∈ ω, δ∆0
n(X)

:⊆ κκ →∆0
n(X) given by

δ∆0
n(X)

(p) = D ⇐⇒ p = 〈r, q〉,

with δΣ0
n(X)

(r) = D and δΠ0
n(X)

(q) = D.

Proposition 2.1.12. The following operations are computable, for all n ∈ ω and all computable
κ-metric spaces X = (X, d, s) and Y = (Y, d′, s′):

(a) the complementation maps Σ0
n → Π0

n, Π0
n → Σ0

n, ∆0
n →∆0

n all given by A 7→ X \A,

(b) the κ-union maps (Σ0
n)κ → Σ0

n given by (Aα)α∈κ 7→
⋃
α∈κAα,

(c) the κ-intersection maps (Π0
n)κ → Π0

n given by (Aα)α∈κ 7→
⋂
α∈κAα,

(d) the inclusion maps Σ0
n ↪→ Σ0

n+1, Σ0
n ↪→ Π0

n+1, Π0
n ↪→ Π0

n+1, Π0
n ↪→ Σ0

n+1, ∆0
n ↪→ Σ0

n,
∆0
n ↪→ Π0

n all given by A 7→ A,

(e) assuming Hypothesis 1.2.19, the <κ-intersection maps (Σ0
n)κ×κ→ Σ0

n given by ((Aα)α∈κ, λ) 7→⋂
α∈λAα and the <κ-union maps (Π0

n)κ × κ→ Π0
n given by ((Aα)α∈κ, λ) 7→

⋃
α∈λAα,

(f) the product maps Σ0
n(X)×Σ0

n(Y)→ Σ0
n(X×Y) and Π0

n(X)×Π0
n(Y)→ Π0

n(X×Y) given by

(A,B) 7→ A×B.

We assume that all spaces mentioned are equipped with the representations given in Definition 2.1.11,
accordingly we assume that sequence spaces and product spaces are equipped with the corresponding
sequence and product representations.

Proof. The computability of the complement operations Σ0
n → Π0

n follows directly from the definitions
as the identity on generalized Baire space is a realizer for it. For the complement operations ∆0

n →∆0
n,

observe that if A has ∆0
n-name given by 〈p, q〉, then a ∆0

n-name of Ac is given by 〈q, p〉 and the function
〈p, q〉 7→ 〈q, p〉 is obviously computable.

The computability of the κ-union maps also follows from definitions in the case n = 1: a (Σ0
1)
κ-

name for (Aα)α∈κ is just a sequence p ∈ κκ where each pα is a Σ0
1-name for Aα hence an enumeration

44

of (codes for) open balls exhausting Aα. It is clear that then p is also a Σ0
1-name for

⋃
α∈κAα. For

the general case the reasoning is analogous but a bit more involved, for any n ∈ ω, a (Σ0
n+1)

κ-name
of a sequence (Aα)α∈κ is a sequence p where each pα is a Σ0

n+1-name of Aα, so for every δ ∈ κ, (pα)δ
is a Π0

n-name of a set Cαδ such that Aα =
⋃
δ∈κC

α
δ , hence

⋃
α∈κAα =

⋃
pα,δq∈κC

α
δ . We can use the

pairing function to compute from p a sequence p′ such that p′pα,δq = (pα)δ. This p′ is a Σ0
n+1-name

for
⋃
α∈κAα. Since this procedure is uniform in the code p, this shows that the κ-union maps are

computable.
The computability of the κ-intersection maps follows directly from the definitions and the com-

putability of the union maps: a (Π0
n)κ-name for (Aα)α∈κ is also a (Σ0

n)κ-name for (Ac
α)α∈κ, so it can

be used to compute a Σ0
n-name for

⋃
α∈κA

c
α, which is the same as a Π0

n-name for its complement⋂
α∈κAα.

For the inclusion maps, first note that the inclusions ∆0
n ↪→ Σ0

n and ∆0
n ↪→ Π0

n are obviously
computable by definition, as is the inclusion Π0

n ↪→ Σ0
n+1. The computability of the inclusions

Π0
n ↪→ Π0

n+1 and Σ0
n ↪→ Π0

n+1 follows from the computability of the corresponding inclusions with
the roles of Π and Σ exchanged and the computability of the complementation maps. Therefore all
we have to prove is the computability of Σ0

n ↪→ Σ0
n+1 for all n ∈ ω.

We prove this by induction on n: for n = 1, a Σ0
1-name for a set A is a sequence p such that

A =
⋃
pα,βq∈ran(p)B(s(α), β). Now, for every (α, β), we computably obtain a Π0

1 name of B(s(α), β)
as

(B(s(α), β))c =
⋃
{B(s(η), γ) | d(s(α), s(η)) > β + γ}.

Now note that
B(s(δ), ξ) =

⋃
{B(s(ι), λ) | d(s(δ), s(ι)) < ξ − λ}.

Therefore we can computably obtain a Σ0
2-name of every open ball in the name of A. This, together

with the computability of the union maps establishes the claim for n = 1.
For the inductive step assume that we know that Σ0

n ↪→ Σ0
n+1 and Π0

n ↪→ Π0
n+1 are computable

(note that by computability of the complementation maps, one of these two implies the other) and let
p be a Σ0

n+1-name for a set A: then each pα is a Π0
n-name for some Cα such that

⋃
α∈κCα = A. By

the inductive assumption, we can compute (uniformly in α) a Π0
n+1-name p′α for each Cα and obtain

the Σ0
n+2-name for A given by 〈(p′α)α∈κ〉. Again this procedure is uniform in p, therefore the inclusion

Σ0
n+1 ↪→ Σ0

n+2 is computable.
For the <κ-union and <κ-intersection maps, first note that they are well defined by Proposition

1.1.25. We prove their computability by induction on n: for n = 1, let (Aα)α∈κ ∈ (Σ0
1)
κ, let λ ∈ κ

and let Aα =
⋃
β∈κB

α
β where for every β ∈ κ, Bα

β is a basic open ball. As in the proof of Proposition

1.1.25, for every f ∈ κλ, we define Bα
f = Bα

f(α) and obtain that⋂
α∈λ

Aα =
⋂
α∈λ

⋃
β∈κ

Bα
β =

⋃
f∈κλ

⋂
α∈λ

Bα
f .

Now note that for every f ∈ κλ, a name for
⋂
α∈λB

α
f can be computed as follows: run through the

ordinals <κ and for each δ = pβ, γq, check whether B(s(β), γ) ⊆ Bα
f for all α ∈ λ. If so, enumerate the

ball corresponding to δ in the name for
⋂
α∈λB

α
f (the problem of determining whether B(s(β), γ) ⊆ Bα

f

is semidecidable by definition of κ-metric space). Doing this for every δ ∈ κ yields a Σ0
1-name of⋂

α∈λB
α
f in the long run. Therefore a machine which is given λ and a name for (Aα)α∈κ can output a

name for
⋂
α∈λAα by simply generating functions f ∈ κλ and for each of them computing

⋂
α∈λB

α
f .

Computability of small unions of Π0
1 sets now follows by considering complements, exploiting the

definition of Π0
1-names.

Now assume that the claim holds for the level n, and let p be a (Σ0
n+1)

κ-name for (Aα)α∈κ, so for
every α we have access to a (Π0

n)κ-name of (Cαβ)β∈κ such that Aα =
⋃
β∈κC

α
β .

Let λ ∈ κ, again we have ⋂
α∈λ

Aα =
⋂
α∈λ

⋃
β∈κ

Cαβ =
⋃
f∈κλ

⋂
α∈λ

Cαf ,

45

and by the inductive assumption we can (uniformly in α) compute a name Π0
n-name for

⋂
α∈λC

α
f for

every f ∈ κλ. Interleaving these names gives a name for
⋂
α∈λAα. Computability of small intersection

of Π0
n+1 sets again follows directly. This concludes the induction and proves the claim.

Lastly for the product operation, we again prove the claim by induction on n: let s′′ and d′′

be as in the definition of the product metric space X × Y = (X × Y, d′′, s′′), then a basic open set
BX(s(α), β)×BY(s′(γ), δ) can be written as:⋃

{BX×Y(s′′(pξ1, ξ2q), η) | d(s(ξ1), s(α)) < β − η ∧ d′(s′(ξ2), s′(γ)) < δ − η}.

A Σ0
1(X)-name of some open A ⊆ X is a sequence of codes of basic open balls Bα with

⋃
α∈κBα = A,

similarly a Σ0
1(Y)-name for some C ⊆ Y is a sequence of Dα with the analogous property. Notice that

A× C =
⋃
α∈κ

Bα ×
⋃
α∈κ

Dα =
⋃

pα,βq∈κ
Aα ×Dβ,

and we can compute Σ0
1-names for each element in the union, hence we can compute a Σ0

1-name
for A × C. The result for closed sets follows immediately, given an closed name for A ⊆ X and
a closed name for B ⊆ Y , we have open names for Ac and Bc, which can be used to compute
open names for Ac × Y and X × Bc, which in turn are closed names for A × Y and X × B. Since
(A× Y)∩ (X ×B) = A×B, we obtain the computability for closed names of products of closed sets.
Now the result for the remaining finite levels of the hierarchy follows by an induction similar to the
ones above.

2.2 Σ0
n-effective computability

We now introduce the concept of Σ0
n-effective measurability, which is the computable counterpart of

Σ0
n-measurability for functions on Rκ-metric spaces. Both notions are analogous to the corresponding

notions for ordinary metric spaces. The main result of this section is Theorem 2.2.2, which is the
generalization of a well known result in the theory of computable metric spaces (see [4, Theorem 6.2]).
Moreover, we prove results on effective measurability which are needed to prove Proposition 2.3.7 (the
closure of the classes of Σ0

n-computable functions under Weihrauch reductions), which is in turn a
necessary ingredient for our Completeness Theorem (Theorem 2.3.12) in the next section.

Definition 2.2.1 (Effective measurability). For any n ∈ ω, a Σ0
n-measurable multi-valued operation

between computable κ-metric spaces f :⊆ X⇒ Y is called Σ0
n-effectively measurable (or computable)

if there exists a (δΣ0
1(Y), δΣ0

n(X)
)-computable Φ: Σ0

1(Y)⇒ Σ0
n(X) such that f−1[U] = V ∩ dom(f) for

all V ∈ Φ(U).

A map between metric spaces is continuous if and only if it is Σ0
1-measurable. A similar result

holds for computable maps, giving credit to the idea that Σ0
n-effective measurability is a sensible

relaxation of the notion of computability.

Theorem 2.2.2. Let X = (X, d, s) and Y = (Y, d′, s′) be computable κ-metric spaces and let f :⊆
X → Y be a partial function. If f is Σ0

1-computable, then it is computable. Assuming Hypothesis
1.2.19, the converse holds as well.

Proof. Assume that f is computable and let F be one of its computable realizers, we want to show
that there is an operation Φ: Σ0

1(Y) ⇒ Σ0
1(X) such that for all U ∈ Σ0

1(Y) and all V ∈ Φ(U),
f−1[U] = V ∩ dom(f) and that Φ has a computable realizer G. We describe the behaviour of a
machine computing G on basic open balls: let B = BY(s′(α), β). For every w ∈ κ<κ, consider words
of the form wηκ and for each of them run F in parallel1 until (if ever) the output tape meets the
following conditions:2 if t ∈ κ<κ is the portion of output printed so far, then |t| = λ + 1 for some λ

1This is where the assumption of computable enumerability of 2<κ/κκ comes into play in the proof.
2Notice that by definition of computable κ-metric space, a κ-Turing Machine can compute whether

dY(s′(α), s′(t(λ))) < β − 2
λ+1

. In our algorithm, the machine performs this calculation to check whether the inclu-
sion of balls 2.2 holds.

46

and
BY(s′(t(λ)), 2

(λ+1)) ⊆ B. (2.2)

If this happens for the word wηκ at time step ξ, let

β = min{γ | ∀α ∈ ξ (Hin(α) 6= γ)},

(in words, β is the least index of a cell which the machine for F has not read before time ξ, which
is the moment when the machine determines that condition (2.2) holds, so we can be sure that the
machine for F has only been able to read its input up to cell β). By Lemma 2.1.4 it follows that if
t ⊆ q for some q ∈ dom(δY), then

δY(q) ∈ cl(BY(s′(t(λ)), 1
λ+1)) ⊆ BY(s′(t(λ)), 1

λ+1) ⊆ BY(s′(t(λ)), 2
(λ+1)) ⊆ B,

hence, in particular, δY(q) ∈ B. From this it immediately follows that if p ∈ dom(δX) is such that
wηκ�β ⊆ p and δX(p) ∈ dom(f), it will be the case that f(δX(p)) ∈ B. Therefore we can safely say
that any point x ∈ X named by such p could belong to f−1[B]. Now let compatwηκ be the set defined
as

compatwηκ =
⋂
α∈β

BX(s(wηκ(α)), 1
α+1).

By Lemmas 2.1.6 and 2.1.8 the points x which admit a name p extending wηκ�β are given by a set
A such that compatwηκ ⊆ A ⊆ cl(compatwηκ) although we will see that performing this procedure
for every word of the form wηκ allows us to ignore the points on the border of compatwηκ . For now,
we stipulate that the machine for G computes a Σ0

1-name for all the sets compatwηκ as above and
unionizes these names (these operations are computable by Proposition 2.1.12) to obtain a Σ0

1-name
for a set B′.

By the argument above B′ ∩ dom(f) ⊆ f−1[B]. To show the converse inclusion, let x ∈ f−1[B],
and in the notation of Lemma 2.1.10, let t ∈ κκ be a branch in npnx. By definition of npnx, we have
that for every β ∈ κ,

x ∈
⋂
α∈β

BX(s(t(α)), 1
α+1).

Hence, we can consider the computation of F on t and, if β is the time step at which we learn that
F (t) surely belongs to B (i.e. condition (2.2) holds for t′ where t′ is the portion of output printed by
the machine for F on input t by step β), we know that when running G on the word w = (t � β)at(β)κ,
the set compatw that we will enumerate in the candidate preimage of B will contain x. This shows
that f−1[B] ⊆ B′ ∩ dom(f) and thus f−1[B] = B′ ∩ dom(f). When the machine for G is given an
arbitrary open subset U ⊆ Y as a list of open balls (Bα)α∈κ, it performs the computation described
above in parallel for each of these balls and then computes the union of the open sets (B′α)α∈κ to
obtain a Σ0

1-name of a set V with V ∩ dom(f) = f−1[U]. This shows that G is a computable realizer
for Φ, hence f is Σ0

1-computable.
Conversely assume that there exists an operation Φ: Σ0

1(Y)⇒ Σ0
1(X) such that for all U ∈ Σ0

1(Y)
and all V ∈ Φ(U), f−1[U] = V ∩ dom(f) and that Φ has a computable realizer G. We define a
T2κ-computable function F and then prove that it actually realizes f . The machine M for F works
in the following recursive manner: on input p ∈ κκ, if at time step β, the word t ∈ κ<κ is the current
output, M simulates the machine for G in order to compute in parallel G(Oα) for all α ∈ κ, where

Oα = BY(s′(α), 1
|t|+1),

and it looks for the first ordinal δ such that x ∈ G(Oδ)
3 and such that taδ ∈ extwY. The intuition

behind this construction is that we are building our sequence F (p) by appending bits to the output
tape in a way such that the words w ∈ κ<κ which appear on the output tape are always elements of
npnf(x).

3For every computable κ-metric space, there’s a κ-Turing Machine which terminates in fewer than κ steps on input
〈p, q〉 if and only if the element x with code p belongs to the open set O with code q.

47

We claim that for every p ∈ dom(f ◦ δX), M computes indefinitely and in the long run outputs
q ∈ dom(δY) such that δY(q) = f(δX(p)). Assume p ∈ dom(f ◦ δX) is a name for x ∈ X and at some
point in the computation of M on input p, the word t ∈ κ<κ has been printed on the output tape. We
prove that if t ∈ npnf(x), then M always finds an ordinal η to append to the currrent output t and

that η is such that taη ∈ npnf(x). To see why this is enough, let hp :⊆ κ<κ → κ<κ be the function
given by

t 7→ taη

if and only if the machine for F described above appends the ordinal η to the word t when run on
input p.

Our claim is then that hp has the property that for every t ∈ npnf(x), hp(t) ∈ npnf(x), so we can
appeal to Lemma 1.1.38 (recall that by Lemma 2.1.10, npnf(x) is <κ-closed and it coincides with its
extendible part) to obtain that the sequence built recursively as

r0 = ∅, rα+1 = hp(rα), rγ =
⋃
α∈γ

rα for γ limit ordinal

determines a branch in npnf(x), hence a δY-name of f(x) (notice that such name is precisely the output
of the computation of M on p).

To prove our claim, let t ∈ κ<κ appear on the output tape during the computation of M on p and
assume inductively that t ∈ npnf(x). The machine M looks for an ordinal η such that x ∈ G(Oη) and
s′(η) ∈ compatt (both of these requirements are semidecidable, hence M can compute in parallel on
all ordinals in κ until it finds some ordinal satisfying both of these). Notice that such an η always
exists because t ∈ npnf(x) is extendible by Lemma 2.1.10, and the requirements given correspond to

asking for an ordinal η such that taη ∈ npnf(x). This proves both of our claims at once: first, that
M will always find ordinals to append to its output tape and second, that it does so in such a way
that the words appearing on the output tape always belong to npnf(x). By the argument above this
implies that M computes indefinitely on input p ∈ dom(f ◦ δX), producing in the long run a sequence
q ∈ κκ such that δY(q) = f(δX(p)). In other words M computes a realizer of f , which is what was to
show.

Note that the proof above is uniform in the codes for the computable realizers involved, hence we
can refine the result to the following.

Corollary 2.2.3. Assume Hypothesis 1.2.19 and let X = (X, d, s) and Y = (Y, d′, s′) be computable
κ-metric spaces and let f :⊆ X → Y be a computable function. There is a κ-Turing machine M
which, on input a code α for a computable realizer of f , outputs a code M(α) for a computable realizer
of Φ: Σ0

1(Y) → Σ0
1(X). Similarly there is a κ-Turing machine M ′ which takes codes for computable

realizers of Φ and outputs codes for computable realizers of f .

Another similarity with ordinary Σ0
n-measurable maps is given by the following lemma.

Lemma 2.2.4. Let f :⊆ X ⇒ Y be a Σ0
n-computable operation, then for every k ∈ ω there are

computable realizers for the operations Φk : Σ0
k+1(Y)⇒ Σ0

n+k−1(Y) such that for all A ∈ Σ0
k(Y) and

for all V ∈ Φk(A)
f−1[A] = dom(f) ∩ V.

Proof. We prove this by induction on k: the statement for k = 1 is the definition of Σ0
n-computability.

Now assume that the claim holds for a natural number k and let p be a Σ0
k+2-name for U ∈ Y , then

each pα is a Π0
k+1-name for a set Cα and U =

⋃
α∈κCα. In turn this means that pα is a Σ0

k+1-name
for Aα = Y \ Cα. By the inductive assumption we can compute a sequence qα which is a Σ0

n+k−1-
name of a set Vα such that f−1[Aα] = dom(f) ∩ Vα. As this is possible for every α, we compute
the sequence t given by 〈(qα)α∈κ〉. Exploiting the complementation map we can obtain a sequence
containing Π0

n+k−1-names of V c
α , which is already a Σ0

n+k-name for V ′ =
⋃
α∈κ V

c
α . Note that

f−1[U] =
⋃
α∈κ

f−1[Cα] =
⋃
α∈κ

(f−1[Aα])c,

48

and f−1[Aα] = Vα ∩ dom(f), so f−1[Cα] = V c
α ∩ dom(f) and f−1[U] = V ′ ∩ dom(f). This shows that

Φk+1 is computable, concluding the induction and proving the claim.

The next two results state that Σ0
n-computable functions are closed under composition and prod-

ucts with computable functions. These are stepping stones for the proof that Σ0
n-computable functions

on generalized Baire space are closed under Weihrauch reductions. Note how the corresponding results
where the word “computable” is swapped for “measurable” hold trivially.

Lemma 2.2.5. Let f :⊆ X ⇒ Y and g :⊆ Y ⇒ Z be operations which are respectively Σ0
n and

Σ0
k-computable and composable. The function g ◦ f :⊆ X⇒ Z is Σ0

n+k−1-computable.

Proof. For n = 1 the result is trivial. Assume n > 1 and let Φf be the multivalued function which
witnesses the Σ0

n-computability of f , in particular let H be a computable realizer of it. Similarly let
Φn−2,g : Σ0

n−1(Z)⇒ Σ0
n+k−2(Y) as in Lemma 2.2.4 and let H ′ be one of its computable realizers. Let

p be a code for U ∈ Σ0
1(Z) and let V be the set named by H(p). As V ∈ Σ0

n there are sets (Aα)α∈κ
in Π0

n−1 such that
⋃
α∈κAα = V and h(U) is the sequence of their Π0

n+1 names. We obtain

(g ◦ f)−1[U] = f−1[g−1[U]] =
⋃
α∈κ

f−1[Aα],

and since f−1[Aα] = (f−1[Ac
α])c and Ac

α ∈ Σ0
n−1, (f−1[Ac

α]) is Σ0
n+k−2. Hence each f−1[Aα] is Π0

n+k−2.
This means that we can compute a sequence of Π0

n+k−2-names for f−1[Aα] and the union of these sets
is (g◦f)−1[U], so we can compute a Σ0

n+k−1 name for a set W such that W ∩dom(g◦f) = (g◦f)−1[U].
Since this can be done uniformly in (the code for) U , this shows that g ◦ f is Σ0

n+k−1-computable.

Lemma 2.2.6. Let f :⊆ X⇒ Y and g :⊆ U⇒ V be Σ0
n-computable operations, then f×g :⊆ X×U⇒

Y×V is Σ0
n-computable.

Proof. For A ∈ Σ0
1(Y) and B ∈ Σ0

1(V), we have that (f × g)−1[A × B] = f−1[A] × g−1[B]. By Σ0
n-

computability of each operation, we can compute names for sets C,D such that f−1[A] = dom(f)∩C
and g−1[B] = dom(g) ∩ D, so a name for a set E such that E ∩ dom(f × g) = (f × g)−1[A × B] is
obtained by considering the product C ×D, which is possible by Proposition 2.1.12.

2.3 A family of functions complete for Σ0
n-measurable maps

We introduce a family of maps indexed on the natural numbers Cn : κκ → κκ which are an adaptation
of the maps found in [5] with the same name and we prove that each Cn is complete with respect to
≤W for the set of partial Σ0

n+1-computable single valued maps on κκ. At the same time we show that
each Cn is complete with respect to ≤tW for the set of partial Σ0

n+1-measurable single valued maps
on κκ. We close this section with an explanation of the relation between our maps and the family
(CUα)α∈κ of [16], which is another generalization of the family in [5].

2.3.1 Reductions for computable κ-metric spaces

We introduce a notion of reduction for functions on computable κ-metric spaces which closely resembles
Weihrauch reduction. This type of reductions is introduced for technical convenience, since, as we will
see, it induces a reducibility relation which turns out to coincide with Weihrauch reducibility, both in
the classical and in the generalized context (see see [5, Lemma 7.4] for the proof of equivalence in the
classical context, and Corollary 2.3.6 for the proof in the generalized context).

Definition 2.3.1 (Alternative notion of reductions). Let f :⊆ X → Y and g :⊆ U → V be functions
between computable κ-metric spaces, we say that

� f ≤t g if there exist continuous functions A :⊆ X ×V → Y and B :⊆ X → U such that for all
x ∈ dom(f):

f(x) = A(x, g(B(x)))

49

� f ≤c g if the functions A,B above are additionally computable with respect to the respective
Cauchy representations.

Following [5], we will prove our Completeness Theorem using the reducibilities ≤t and ≤c (cf.
Theorem 5.5 in the paper mentioned). In light of the equivalence mentioned above, our Completeness
Theorem also holds in terms of ≤W and ≤tW. We mention here that in [5], the author actually proves a
second Completeness Theorem [5, Theorem 7.6] which shows that each Cn is Weihrauch complete with
respect to the class of total single valued Σ0

n-measurable functions between any computable metric
spaces. This is based on the first Completeness Theorem and the so-called Representation Theorem
[5, Theorem 6.1], which states that total single valued functions on computable metric spaces are Σ0

n-
(effectively) measurable if and only if they admit a Σ0

n-(effectively) measurable realizer.4 We point
out that a proof of the Representation Theorem in the generalized context would immediately lead to
a strengthening of our Completeness Theorem.

We prove a result on the Cauchy representation of κκ which will be useful in establishing the
relation between these alternative reducibilities and (topological) Weihrauch reducibility.

Lemma 2.3.2. Let δκκ :⊆ κκ → κκ be the Cauchy representation of κκ, considered as a computable
κ-metric space as above. Under the assumption of Hypothesis 1.2.19, the function δκκ is [δκκ , δκκ]-
computable. Moreover, it has a [δκκ , δκκ]-computable right inverse δ−1κκ . The same holds if we replace
κκ with 2κ.

Proof. We only prove the lemma for κκ, the case of 2κ being analogous.
It is clear that δκκ itself is a realizer of δκκ , hence it suffices to prove that δκκ is a computable function
with respect to the ordinary notion of computability available on κκ. To that end, notice that by
definition of fast convergent Cauchy sequences (and by definition of the metric on κκ), δκκ(p) = x if
and only if for all α ∈ κ, we have that µ(p(α))�(α+ 1) ⊆ x. Now consider the machine M which
works as follows: given p as input, when reading the ordinal p(α), M checks whether for all β < α

µ(p(β))�(β + 1) ⊆ µ(p(α))�α.

If this is not the case, it halts. If this is actually the case, it prints bits on the output tape until the
latter contains µ(p(α))�α. This machine computes indefinitely on all sequences p ∈ dom(δκκ) (and
only on those) and outputs δκκ(p), so it computes the Cauchy representation δκκ . To show that δκκ

admits a computable right inverse, consider the κ-Turing machine M that works as follows: given
input p, print the unique qp ∈ κκ such that µ(q(α)) = p�(α + 1). This is a computable procedure
because µ admits a computable right inverse. For every p ∈ κκ, the sequence qp is a δκκ-name of p, so
M computes a realizer for δ−1κκ .

This can be rephrased as:

Corollary 2.3.3. Assuming Hypothesis 1.2.19, the representations for generalized Baire space δκκ

and idκκ are computably equivalent. The same holds for δ2κ and id2κ.

Proof. Again we only prove the claim for κκ as the case of 2κ is similar. We need to provide two Type
2 computable functions f and g such that for every p ∈ dom(δκκ), we have p ∈ dom(f) and f(p) =
idκκ(f(p)) = δκκ(p); and for every q ∈ dom(idκκ), we have q ∈ dom(g) and δκκ(g(q)) = idκκ(q) = q.
Let f = δκκ and g = δ−1κκ : these are computable functions by the proof of Lemma 2.3.2 and they
clearly fulfill the requirements.

This immediately yields:

Corollary 2.3.4. Let f :⊆ κκ → κκ, then, under the assumption of Hypothesis 1.2.19, f is [δκκ , δκκ]-
computable if and only if it is a Type 2 computable function.

4Note that this result encompasses the Main Theorem of Computable Analysis for computable metric spaces as well
as [4, Theorem 6.2] (the classical analogue of our Theorem 2.2.2), and it is a strong piece of evidence for the naturalness
of the concept of Σ0

n-(effective) measurability in the context of computable analysis.

50

Proof. Follows from Corollary 2.3.3 and the fact that the notions of Type 2 computability and
[idκκ , idκκ]-computability obviously coincide.

We can now prove the following result, which appears in the ω-context in [5] as Lemma 7.3.

Lemma 2.3.5. Let f :⊆ X → Y and g :⊆ U → V be functions between computable κ-metric spaces,
then

f ◦ δX ≤t g ◦ δU ⇐⇒ f ≤tW g.

An analogous statement with ≤t replaced by ≤c and ≤tW replaced with ≤W holds, under the assumption
of Hypothesis 1.2.19.

Proof. For the computable case, assume Hypothesis 1.2.19 and assume f ◦ δX ≤c g ◦ δU, then there are
computable functions (with respect to the respective Cauchy representations) A′ :⊆ κκ ×V→ Y and
B :⊆ κκ → κκ such that for all p ∈ dom(f ◦δX), p ∈ dom(g ◦δU ◦B) and f ◦δX(p) = A′(p, g ◦δU ◦B(p)).
Since A′ is computable, it has a computable realizer A :⊆ κκ×κκ → κκ (so A is a Type 2 computable
function), such that for all (p, q) ∈ dom(A′ ◦ (δκκ × δV)) we have that δY(A(p, q)) = A′(δκκ(p), δV(q)).
Now let G be a realizer of g, so δV(G(t)) = g(δU(t)) for all t ∈ dom(g ◦ δU). We obtain, for all
p ∈ dom(f ◦ δX):

f(δX(p)) = A′(p, g ◦ δU ◦B(p)) = A′(p, δV ◦G ◦B(p)) = δY(A(δ−1κκ (p), G(B(p)))).

Hence the partial function F :⊆ κκ → κκ with dom(F) = dom(f ◦ δX) and F (p) = A(δ−1κκ (p), GB(p))
is a realizer of f . Note that by Lemma 2.3.4, B is actually a Type 2 computable function, hence
A ◦ (δ−1κκ × idκκ) and B witness a Weihrauch reduction f ≤W g.

Conversely assume that f ≤W g, so let H :⊆ κκ × κκ → κκ and K :⊆ κκ → κκ be Type 2
computable functions such that for all realizers G of g and all p ∈ dom(f ◦ δX), the function

p 7→ H(p,G ◦K(p))

realizes f , i.e. f(δX(p)) = δY(H(p,G◦K(p))). Notice that again by Lemma 2.3.4, K is also computable
with respect to the Cauchy representation on κκ. Let R : V → κκ be a right inverse of δV and let
H ′ : κκ ×V→ Y be defined as H ′(p, v) = δY(H(p,R(v))) for all (p, v) such that p ∈ dom(f ◦ δX) and
v = g ◦ δU ◦K(p). We obtain

H ′(p, δV(q)) = δY(H(p,R ◦ δV (q)))

for all p ∈ dom(f ◦ δX) and all q ∈ δ−1V [{v}] with v = g ◦ δU ◦ K(p). Notice that R ◦ δV(q) is some
sequence t such that δV(t) = v. If we fix p and let v = g ◦ δU ◦K(p) and we pick a realizer G of g such
that t = G(K(p)), we obtain

f(δX(p)) = δY(H(p, t)) = δY(H(p,R ◦ δV(q))) = H ′(p, δV(q))

for all q ∈ δ−1V [{v}]. Now let G′ be another realizer of g such that q = G(K(p)), then

δY(H(p, t)) = δY(H(p, q))

because both expression must be equal to f(δX(p)). Hence H ′(p, δV(q)) = δY(H(p, q)) for all p ∈
dom(f ◦ δX) and all q ∈ δ−1V [{v}] where v = g ◦ δU ◦K(p) and consequently, if p′ ∈ δ−1κκ [{p}] we obtain

H ′(δκκ(p′), δV(q)) = δY(H(p, q)) = δY(H(δκκ(p′), q)).

In other words H ◦ (δκκ × idκκ) is a computable realizer of H ′. Now fix a realizer G of g and define
G′ = R ◦ δV ◦G, then δV ◦G′ = δV ◦G = g ◦ δU, therefore G′ realizes g, moreover, we have

f ◦ δX(p) = δY(H(p,G′(K(p)))) = δY(H(p,R ◦ δV ◦G ◦K(p))) = H ′(p, δV ◦G ◦K(p))

for all p ∈ dom(f ◦ δX), hence f ◦ δX ≤ δV ◦ G = g ◦ δU, proving the claim. The continuous case is
proved analogously.

51

Corollary 2.3.6. Let f, g :⊆ κκ → κκ be partial functions, then,

f ≤t g ⇐⇒ f ≤tW g.

An analogous statement with ≤t replaced by ≤c and ≤tW replaced with ≤W holds under the assumption
of Hypothesis 1.2.19.

Proof. By Lemma 2.3.5 we just need to show that f ≤c g ⇐⇒ f ◦ δκκ ≤c g ◦ δκκ . Assume that
f ≤c g, so assume there are A,B computable such that f(x) = A(x, g(B(x))) for all x ∈ dom(f). We
obtain that, for all p ∈ dom(f ◦ δκκ),

f(δκκ(p)) = A(δκκ(p), g(B(δκκ(p)))) = A(δκκ(p), g ◦ δκκ ◦ δ−1κκ (B(δκκ(p))).

We can then define the computable functions A′(x, y) = A(δκκ(x), y) and B′(x) = δ−1κκ ◦B ◦ δκκ(x) and
obtain that f ◦ δκκ ≤c g ◦ δκκ .

Conversely, if for all p ∈ dom(f ◦ δκκ) we have

f ◦ δκκ(p) = A(p, g ◦ δκκ(B(p))),

for computable functions A,B, then if x ∈ dom(f) and p′ = δ−1κκ (x), we obtain

f(x) = A(p′, g ◦ δκκ(B(p′))) = A(δ−1κκ (x), g ◦ δκκ(B(δ−1κκ (x)))).

We can then define A′(x, y) = A(δ−1κκ (x), y) and B′(x) = B ◦ δ−1κκ (x) and we obtain that f ≤c g.

Putting everything together we obtain that, for single-valued partial functions on generalized Baire
space, ≤c coincides with ≤W and ≤t coincides with ≤tW. This can be in turn used to prove the closure
of the Σ0

n-measurable partial functions on generalized Baire space under Weihrauch reducibility.

Proposition 2.3.7. Let f :⊆ κκ → κκ and g :⊆ κκ → κκ and assume f ≤W g (we assume κκ

is represented as a computable κ-metric space). For all n ∈ ω, we obtain that assuming Hypothesis
1.2.19, if g is Σ0

n-computable, then so is f .

Proof. By Corollary 2.3.6, f ≤W g means that there are computable functions A,B such that f(x) =
A(x, g(B(x))) for all x ∈ dom(f). Lemmas 2.2.6 and 2.2.5, together with Theorem 2.2.2 immediately
yield that f must also be Σ0

n-computable.

This proposition justifies working with the easier ≤c/≤t reductions instead of Weihrauch reductions
when talking about functions on generalized Baire space. Note that the constructions of Lemma 2.3.5,
Corollary 2.3.6 and Proposition 2.3.7 relativize to any oracle, therefore we have results analogous to
these mentioned where our notion of computability is relative to any o ∈ κκ.

2.3.2 Effective logical normal form for subsets of generalized Baire space

One last building block which will be needed in the proof of the main result of the section is the
following: we can computably describe sets in Σ0

n(κκ) in so-called Logical Normal Form. This is a
rather technical result whose proof is largely based on symbolic manipulations. In this section we spell
out the details of the proof, which closely follows the classical proof (see [5, Lemma 5.4]).

We split the proof for readability, so we first give two intermediate results as lemmas.

Lemma 2.3.8. Let n ≥ 1 and for every sequence (Aα)α∈κ ⊆ Σ0
n(κκ), define

A =
⋃
α∈κ

(Aα × {α}) ∈ Σ0
n(κκ × κ).

The corresponding operation

(Σ0
n(κκ))κ → Σ0

n(κκ × κ), (Aα)α∈κ 7→ A

52

is computable relative to the respective representations.

Similarly, if (Bα)α∈κ is a sequence of Π0
n(κκ) sets, define

B =
⋃
α∈κ

(Bα × {α}) ∈ Π0
n(κκ × κ).

The corresponding operation

(Π0
n(κκ))κ → Π0

n(κκ × κ), (Bα)α∈κ 7→ B

is computable relative to the respective representations.

Proof. We prove both claims by a simultaneous induction on n: if n = 1, notice that for every α,
the operation Σ0

1(κ
κ) → Σ0

1(κ
κ × κ) which maps A to A × {α} is trivially computable (uniformly in

α), hence the operation h which maps (Aα)α∈κ to (Aα × {α})α∈κ is a computable. This implies that
the operation (Aα × {α})α∈κ 7→

⋃
α∈κ(Aα × {α}) is computable as it is the composition of h and the

κ-union operation of Proposition 2.1.12.
For the statement with Π0

1(κ
κ) sets, it suffices to notice that(⋃
α∈κ

(Aα × {α})

)c

=
⋃
α∈κ

(Ac
α × {α}).

Since we want a closed name for
⋃
α∈κ(Aα×{α}), we just need an open name for its complement. The

equivalence above tells us that we need an open name for the right hand side. Notice that a (Π0
1(κ

κ))κ-
name of (Aα)α∈κ is precisely a (Σ0

1(κ
κ))κ-name for (Ac

α)α∈κ and from it we can computably find a
Σ0

1(κ
κ × κ) name for

⋃
α∈κ(Ac

α × {α}), which is just what we needed to obtain.
Now let n ≥ 1 and by induction assume that both claims hold for level n. Let (Aα)α∈κ be a

sequence of Σ0
n+1(κ

κ) sets. For each α, there are sets (Cαγ)γ∈κ ∈ Π0
n(κκ) such that

Aα =
⋃
γ∈κ

Cαγ ,

and the given names for the Aαs are made out of Π0
n-names for the Cαγ s. We have⋃

α∈κ
(Aα × {α}) =

⋃
α∈κ

⋃
γ∈κ

(Cαγ × {α}) =
⋃
γ∈κ

⋃
α∈κ

(Cαγ × {α}).

By inductive assumption we can computably and uniformly find Π0
n(κκ × κ)-names for each of⋃

α∈κC
α
γ × {α} and interleaving these we obtain a Σ0

n+1(κ
κ × κ)-name for

⋃
α∈κ(Aα × {α}).

For the Π0
n+1-case let (Aα)α∈κ be a sequence of Π0

n+1(κ
κ) sets, again we have(⋃

α∈κ
Aα × {α}

)c

=
⋃
α∈κ

(Ac
α × {α}),

and we can compute names for the Ac
αs, hence we can compute a Σ0

n+1-name for
(⋃

α∈κAα × {α}
)c

,
which is the Π0

n+1-name of
⋃
α∈κ(Aα × {α}) we wanted.

Lemma 2.3.9. For any n ≥ 1, the operation Π0
n(κκ)→ Σ0

n+1(κ
κ) given by

B 7→ {p ∈ κκ | ∃α〈p, α〉 ∈ B}

is computable.

53

Proof. Let B ∈ Π0
n(κκ) and let C = {(p, α) | 〈p, α〉 ∈ B}, then C ∈ Π0

n(κκ × κ) as it is the preimage
of B under the computable map 〈·, ·〉, and given a Π0

n(κκ)-name for B, by Theorem 2.2.2 we can
compute a Π0

n(κκ × κ)-name for C.
Given α ∈ κ, we let Cα = π1[C ∩ κκ×{α}]. We want to compute a Π0

n(κκ)-name for each Cα. To
do so, first we compute a sequence pα such that δΠ0

n(κ
κ×κ)(pα) = C ∩ κκ × {α}. Now notice that the

family of computable homeomorphisms (ϕα)α∈κ = ((π1�(κκ × {α}))−1)α∈κ is uniformly computably
realized by the function 〈·, ·〉, i.e. for all α ∈ κ, the function 〈·, α〉 : κκ → κκ is a computable realizer
for ϕα. This implies that, exploiting Corollary 2.2.3 there exists a κ-Turing Machine which, on input
α, outputs a code for a computable realizer of the preimage function of ϕα. Hence, for every α, we
can uniformly compute a Π0

n(κκ)-name for Cα and obtain a sequence q which is a (Π0
n(κκ))κ-name

for (Cα)α∈κ. We have that

{p ∈ κκ | ∃α〈p, α〉 ∈ B} =
⋃
α∈κ

Cα,

hence we can apply the κ-union map to (Cα)α∈κ to obtain a Σ0
n+1-name for {p ∈ κκ | 〈p, α〉 ∈ B}.

This is a computable procedure which is uniform in the code for B, hence we obtain that the operation
described is indeed computable.

We can finally prove the computable Logical Normal Form result for κκ:

Proposition 2.3.10 (Logical normal form). For any n ≥ 1, the maps

Ln : ∆0
1(κ

κ)→ Σ0
n(κκ)

given by
A 7→ {p ∈ κκ | ∃αn∀αn−1 . . . 〈p, α1, . . . , αn〉 ∈ A}

and
L′n : ∆0

1(κ
κ)→ Π0

n(κκ)

given by
A 7→ {p ∈ κκ | ∀αn∃αn−1 . . . 〈p, α1, . . . , αn〉 ∈ A}

are surjective, computable and they admit computable multi-valued right inverses.

Proof. We prove that Ln and L′n are computable for all n by a simultaneous induction: for n = 1, we
first show that the map given by

A 7→ L1(A) = {p ∈ κκ | ∃α〈p, α〉 ∈ A},

for all A ∈∆0
1(κ

κ) is computable. Note that L1(A) =
⋃
α∈κAα where

Aα = {p ∈ κκ | 〈p, α〉 ∈ A},

i.e. Aα = 〈·, α〉−1[A]. The maps (〈·, α〉 : κκ → κκ)α∈κ are uniformly computable, bijective and they
have a computable inverse. Hence, they are uniformly Σ0

1-computable, so Aα ∈∆0
1 for all α and we can

compute a name for the sequence (Aα)α∈κ from the ∆0
1-name for A. This implies that L1(A) is open

and, using the κ-union map, we can compute an open name for it, i.e., L1 is computable. The map
L′1 : ∆0

1(κ
κ)→ Π0

1(κ
κ) given by A 7→ {p ∈ κκ | ∀α〈p, α〉 ∈ A} is computable as L′1(A) = (L1(A

c))c for
all A ∈∆0

1(κ
κ).

Now let n > 1 and assume by induction that the maps Ln and L′n are computable, and let
A ∈∆0

1(κ
κ). To see that we can compute a name for

Ln+1(A) = {p ∈ κκ | ∃αn+1∀αn . . . 〈p, α1, . . . , αn+1〉 ∈ A},

it suffices to use observe that Ln = h ◦ L′n where h is the function in Lemma 2.3.9. Again we obtain
that L′n+1 is computable as L′n+1(A) = (Ln+1(A

c))c for all A ∈∆0
1(κ

κ).
What is left to show is that each of the Lns and L′ns is surjective and it has a computable right

inverse. Clearly it suffices to show the existence of the computable right inverse. We show the existence

54

of computable realizers of each right inverse, and again we tackle the problem by induction on n: for
n = 1, let A ∈ Σ0

1(κ
κ). Recall that a name for A is given to us as a sequence p such that

A =
⋃

pα,βq∈ran(p)

B(µ′(α), β).

Note that in generalized Baire space, basic open balls are also closed, moreover, if the radius r /∈
{1/(α + 1) | α ∈ κ}, the open ball B(x, r) coincides with the closed ball B(x, r). If r = 1/(α + 1)
for some α ∈ κ, then the open ball B(x, r) coincides with the closed ball B(x, r′) where r′ ∈ Qκ is a
rational such that r > r′ > 1/(α + 2). Such r′ can be explicitly computed as β where β is the least
ordinal coding a rational strictly between r and 1/(α+ 2). Therefore we can (uniformly) compute an
alternative Σ0

1(κ
κ)-name p′ of A such that p′ codes balls B(µ′(α), β) with β /∈ {1/(α + 1) | α ∈ κ}.

Now let B =
⋃
pα,βq∈ran(p′)B(µ′(α), β)×{pα, βq}. By Lemma 2.3.8 we can compute a name Σ0

1-name

for B. By the proof of point (d) in Proposition 2.1.12 we can then uniformly compute Π0
1-names for

each of the balls B(µ′(α), β
′
) = B(µ′(α), β

′
). Using these names and again applying Lemma 2.3.8 we

obtain a Π0
1(κ

κ× κ)-name for B. Putting everything together, we compute a ∆0
1(κ

κ× κ)-name for B.
We can then define

U = 〈B〉 = {p ∈ κκ | p = 〈p′, α〉 with (p′, α) ∈ B},

and by computability of 〈·, ·〉−1, we can obtain a name ∆0
1-name for U from one for B. We have that

L1(U) = A and a name for U can be uniformly computed from one for A, which is what we wanted
to show.

To show that the same holds for L′1, let B ∈ Π0
1(κ

κ) and let p be a Π0
1-name for it. By definition

p is also a Σ0
1-name for Bc, hence we can use it to compute a ∆0

1-name for a set U such that
L1(U) = Bc. Again we exploit the relation between L1 and L′1: we have that (L1(A))c = L′1(A

c),
hence B = (L1(U))c = L′1(U

c). Since we can compute a ∆0
1-name for U c from a name for U and we

can compute a ∆0
1 name for U from the Π0

1-name for B we obtain that L′1 also has a computable right
inverse.

Now let n > 1 and assume by induction that Ln, L′n are computable, surjective and admit
computable multi-valued right inverses, and let p be a Σ0

n+1-name for A, so A =
⋃
α∈κ Vα for

Vα = δΠ0
n(κ

κ)(pα). By the induction hypothesis, we can computably find sets Aα ∈ ∆0
1 such that

L′n(Aα) = Vα. Again by Lemma 2.3.8 we can computably find a ∆0
1(κ

κ × κ)-name for

B =
⋃
α∈κ

(Aα × {α}),

and obtain that, if we let

U = {〈p, α1, . . . , αn+1〉 | (〈p, α1, . . . , αn〉, αn+1) ∈ B},

then U ∈∆0
1(κ

κ) and Ln+1(U) = A.

2.3.3 The Completeness Theorem

We finally introduce the family (Cn)n∈ω and we prove the Completeness Theorem we anticipated. The
proof of the Completeness Theorem essentially repeats Brattka’s construction in [5, Theorem 5.5].

Definition 2.3.11 (Choice functions on κκ). For all n ∈ ω, define Cn : κκ → κκ as

Cn(p)(α) =

{
0 if ∃αn∀αn−1 . . . p(pα, α1, . . . , αnq) 6= 0
1 otherwise

where quantifiers are alternating and the innermost is an existential if n is odd and a universal if n
is even.

55

Theorem 2.3.12 (Completeness Theorem). Let n ≥ 1 and f :⊆ κκ → κκ, then

(a) f ≤tW Cn if and only if f is Σ0
n+1-measurable,

(b) assuming Hypothesis 1.2.19, f ≤W Cn if and only if f is Σ0
n+1-computable.

Proof. We can show the forward direction of the theorem for both the measurable and the computable
case at once by showing that Cn is Σ0

n+1-computable for all n ∈ ω and then appealing to Proposition
2.3.7.

To see this let k ≥ 1 and consider the clopen set Aα = {p ∈ κκ | p(α) 6= 0} and the computable
function f : κκ → κκ defined by

f(p)(α) = p(pα, p(0), . . . , p(k − 1)q+ k).

The set Bα = f−1[Aα] is clopen because f is computable, and we can compute one of its clopen names
from any clopen name of Aα. By Proposition 2.3.10 we can then compute a Σ0

k+1-name for the set

Rα = {p ∈ κκ | ∃αk,∀αk−1, . . . 〈p, αk, . . . , α1〉 ∈ Bα},

and since we can compute a clopen name for Aα uniformly in α, it follows that (Rα)α∈κ is a computable
sequence. Notice that by definition p ∈ Rα if and only if ∃αk∀αk−1 . . . (〈p, αk, . . . , α1〉 ∈ Bα), if and
only if

∃αk∀αk−1 . . .
(
f(〈p, αk, . . . , α1〉)(α) = 〈p, αk, . . . , α1〉(pα, α1, . . . , αkq+ k) = p(pα, α1, . . . , αkq) 6= 0

)
.

This implies that
Rα = {p ∈ κκ | ∃αk, ∀αk−1, . . . p(pα, α1, . . . , αkq) 6= 0}.

We have that
C−1k ([α0 . . . αβ]) =

⋃
αγ=0

Rαγ ∩
⋃
αγ=1

Rc
αγ

hence the left hand side is computably in Σ0
k+1 by Lemma 2.1.12. Since sets of the form [s] with

s ∈ κ<κ form a basis for the topology on κκ, this proves that Ck is Σk+1-computable and hence also
Σk+1-measurable.

Conversely let F :⊆ κκ → κκ is Σ0
k+1-computable and assume that ran(F) ⊆ 2κ. This is possible

without loss of generality as, if ran(F) 6⊆ 2κ, we can consider the function i ◦F where i is the function
defined in Section 1.2.2 as

i(p) = J1100p(α)011Kα∈κ

since, by Corollary 1.3.11, F ≡sW i ◦ F . Now for every α ∈ κ, consider the open set

Aα,0 = {p ∈ κκ | p(α) = 0},

by Σ0
k+1-computability of F we can compute a Σ0

k+1-name for a set Rα such that

F−1[Aα,0] = Rα ∩ dom(F),

and by Proposition 2.3.10 we can compute a ∆0
1-name for a set Pα such that

Rα = {p ∈ κκ | ∃αk+1∀αk . . . 〈p, α1, . . . , αk+1〉 ∈ Pα}.

Finally, by Lemma 2.3.8, we can compute a ∆0
1(κ

κ×κ)-name of P ′ =
⋃
α∈κ(Pα×{α}) and exploiting

the fact that 〈·, ·〉 is a computable homeomorphism between κκ×κ and κκ, we compute a ∆0
1(κ

κ)-name
for the set P = {〈p, α〉 | p ∈ Pα}. Similarly we can consider sets Aα,1 = {p ∈ κκ | p(α) = 1} and
compute a ∆0

1-name for a set Q defined from those in the same way as P is obtained from the Aα,0s.
Putting everything together we obtain:

F (p)(α) =

{
0 if ∃αk+1,∀αk . . . 〈p, α, α1, . . . , αk+1〉 ∈ P
1 if ∃αk+1,∀αk . . . 〈p, α, α1, . . . , αk+1〉 ∈ Q

56

for all p ∈ dom(F), α ∈ κ.
Now we can define the computable function A :⊆ κκ × κκ as

A(p, q)(α) =

{
0 if ∃βp(pα, βq) = 1
1 if ∃βq(pα, βq) = 1

with dom(A) = {(p, q) ∈ κκ × κκ | ∀α((∃βp(pα, βq) = 1)⊕ (∃βp(pα, βq) = 1))} and define the func-
tions BP , BQ :⊆ κκ → κκ as

BP (p)(ppα, βq, α1, . . . , αkq) =

{
0 if 〈p, α, α1, . . . , αk, β〉 ∈ P
1 otherwise

BQ(p)(ppα, βq, α1, . . . , αkq) =

{
0 if 〈p, α, α1, . . . , αk, β〉 ∈ Q
1 otherwise

and set B = BP × BQ. Notice that BP and BQ are continuous as P and Q are ∆0
1. Further, having

access to ∆0
1-names for P and Q makes these functions computable. We obtain that (Ck×Ck)◦B(p) ∈

dom(A) for all p ∈ dom(F) and moreover

A ◦ (Ck × Ck) ◦B(p)(α) = 0 ⇐⇒ F (p)(α) = 0.

(for detailed computations, see the referenced proof and notice that everything can be carried out in
the generalized context). Therefore, F ≤c Ck × Ck.

Now to show that Ck × Ck ≤c Ck define functions D : κκ → κκ × κκ given by D(〈p, q〉) = (p, q)
and E : κκ × κκ → κκ given by

E(p, q)(pβ, α1, . . . , αkq) =

{
p(pα, α1, . . . , αkq) if β is the α-th even ordinal
q(pα, α1, . . . , αkq) if β is the α-th odd ordinal

for all p, q ∈ κκ and α, β, α1, . . . , αk ∈ κ. The functions D and E are computable, and we obtain

Ck × Ck(p, q) = D ◦ Ck ◦ E(p, q),

hence Ck ×Ck ≤c Ck and consequently F ≤c Ck. Since both F and Ck are single valued functions on
generalized Baire space, this is equivalent (by Corollary 2.3.5) to saying that F ≤W Ck, which proves
the claim in the computable case. Note that in case F is just Σ0

k+1-measurable, then the ∆0
1-sets P,Q

still exist, the only difference is that we may not know how to compute their names. This means that
functions A,B can be defined in the same way as above, and they will be continuous. This establishes
F ≤t Ck × Ck and consequently F ≤t Ck, equivalently, again by Corollary 2.3.5, F is topologically
Weihrauch reducible to Ck.

This theorem implies in particular that, for all n ∈ ω, there are Σ0
n+1-computable functions on κκ

which are not Σ0
n-computable, thus providing the effective analogue of Corollary 1.1.28 for the finite

levels of the (Measα(κκ))α∈κ+ hierarchy.

Corollary 2.3.13. For all n ∈ ω, the function Cn is not Σ0
n-computable, so for every n ∈ ω, there

are Σ0
n+1-computable functions on generalized Baire space κκ which are not Σ0

n-computable.

Proof. By contradiction, assume that there exists n such that Cn is Σ0
n-computable, then a fortiori

Cn is Σ0
n-measurable. By Theorem 2.3.12 we know that f ≤tW Cn for every f ∈ Measn+1(κ

κ), which
by Lemma 2.3.7 implies that f ∈ Measn(κκ) for every f ∈ Measn+1(κ

κ). This is in contradiction with
Corollary 1.1.28.

Corollary 2.3.14. For every n ≥ 1, we have Cn <tW Cn+1 and consequently Cn <W Cn+1.

Proof. Fix any n ≥ 1. In the proof of Corollary 2.3.13 we have shown that Cn+1 is not Σ0
n+1-

measurable, so by Theorem 2.3.12 it follows that Cn+1 6≤tW Cn, which implies in particular that
Cn+1 6≤W Cn.

57

We mention here that the family (Cn)n∈ω of [5] was generalized in a different direction by Galeotti
in [16]. There, the author defined a family of functions (CUα)α∈κ+ and proved ([16, Theorem 4.6.7])
that for every α ∈ κ+, CUα is complete with respect to ≤tW in the set Measα+1(κ

κ) of partial Σ0
α-

measurable functions from generalized Baire space to itself. In the thesis mentioned, Galeotti left the
Open Question 4.6.9 asking whether it is the case that CUα <tW CUβ for all α < β < κ+. We note
that, exploiting Corollary 1.1.28, a proof analogous to Corollary 2.3.13 shows that this is indeed the
case. Moreover, inspection of the definition of CUn for n ∈ ω quickly shows that CUn ≡W Cn for
all n ∈ ω. Our Completeness Theorem 2.3.12 then implies that each CUn is Weihrauch complete for
the set of Σ0

n+1-computable partial function from Baire space to itself. Further, a quick computation
shows that for every α < β < κ, one can prove the reduction CUα ≤W CUβ (note that this computation
is not an effectivization of proof of CUα ≤tW CUβ present in [16], as this proof goes through a Wadge
completeness result).

58

Chapter 3

Choice and boundedness principles

In the [7], Brattka and Gherardi used their choice and boundedness principles on R and ωω (indicated
by the letters C and B, respectively) to precisely classify the Weihrauch degrees of many of the
cornerstones of real analysis. We introduce the generalized choice principles and related boundedness
principles for Rκ, as well as choice principles on κ, κκ and 2κ and generalized omniscience principles.
These include the principles introduced by Galeotti in [16], [17] and Galeotti and Nobrega in [19].
Similarly to their classical analogues, these generalized principles will capture the Weihrauch degrees
of the few existing results in generalized analysis.

3.1 More represented spaces

We introduce some more represented spaces necessary to state the choice and boundedness principles
that we will classify in Chapter 5.

Definition 3.1.1 (Bounded sequence spaces). We call a sequence (qα)α∈κ of κ-rationals strictly
increasing (risp. strictly increasing) if for every α < β < κ, it holds that qα < qβ (risp. qα > qβ).
We call a sequence of κ-rationals (qα)α∈κ bounded if there exists a positive κ-rational r such that
for all α, it holds that −q < qα < q. We denote the set of bounded strictly increasing sequences of
κ-rationals as Sb

↑ and the set of bounded strictly decreasing sequences of κ-rationals as Sb
↓. We define

corresponding representations δSb
↑

and δSb
↓

as, for all p ∈ κκ

δSb
↑
(p) = (qα)α∈κ ⇐⇒ for all α ∈ κ, δQκ(pα) = qα,

and
δSb
↓
(p) = (qα)α∈κ ⇐⇒ for all α ∈ κ, δQκ(pα) = qα.

Note that, in the classical context, the Dedekind completeness of the real line implies that every
bounded strictly increasing sequence of rationals (qi)i∈ω, can be associated with a unique real number,
namely its least upper bound. It is then natural to consider the functions δR< :⊆ ωω → R and
δR< :⊆ ωω → R given by, for every p ∈ ωω:

δR<(p) = r ⇐⇒ νQ(p(i)) = qi ∀i ∈ ω, where (qi)i∈ω is strictly increasing and lim
i∈ω

qi = r,

and

δR>(p) = r ⇐⇒ νQ(p(i)) = qi ∀i ∈ ω, where (qi)i∈ω is strictly decreasing and lim
i∈ω

qi = r,

where νQ is any effective enumeration of the rationals. These functions are then representations
of R itself. The classical boundedness principles are expressed in terms of the represented spaces
R< = (R, δR<) and R> = (R, δR>). In the generalized context, we can no longer assume that strictly
monotone, bounded sequences are convergent, therefore we need to resort to the sequence spaces
Sb
↑ and Sb

↓ in order to state fully general boundedness principles. Nevertheless, we also introduce
convergent sequence spaces in the generalized context.

59

Definition 3.1.2 (Convergent sequence spaces). We denote the set of convergent strictly increasing
sequences of κ-rationals as Sc

↑ and the set of convergent strictly decreasing sequences of κ-rationals
as Sc

↓.

Notice that trivially Sc
↑ ⊆ Sb

↑ and Sc
↓ ⊆ Sb

↓ . Convergent sequence spaces allow us to define two
more representations of Rκ
Definition 3.1.3 (Lower and upper κ-reals). We define δ(Rκ)< and δ(Rκ)> as, for all p ∈ κκ

δ(Rκ)<(p) = r ⇐⇒ δSb
↑
(p) = (qα)α∈κ ∈ Sc

↑ ∧ lim
α∈κ

qα = r,

and similarly
δ(Rκ)>(p) = r ⇐⇒ δSb

↓
(p) = (qα)α∈κ ∈ Sc

↓ ∧ lim
α∈κ

qα = r.

These two representations yield represented spaces (Rκ, δ(Rκ)>) and (Rκ, δ(Rκ)<). In the rest of
this thesis we will refer to these spaces as (Rκ)> and (Rκ)< respectively. As we will see, the fact
that the spaces of strictly monotone bounded sequences of κ-rationals do not coincide with the spaces
of strictly monotone convergent sequences of κ-rationals is the reason why the classical boundedness
principles are split in two in the generalized context.

We now turn to the definitions of the representations of closed sets which we will employ for our
choice principles.

Definition 3.1.4 (Representation of subsets of κ). Define a representation δ′
Π0

1(κ)
:⊆ κ→ Π0

1(κ)\{κ}
as, for p ∈ κκ:

δ′Π0
1(κ)

(p) = A ⇐⇒ ran(p) = κ \A.

Notice that κ is discrete, hence Π0
1(κ) = P(κ). Moreover, we immediately get the following.

Lemma 3.1.5. The representation δ′
Π0

1(κ)
is computably equivalent to the representation δΠ0

1(κ)
that

is obtained by viewing κ as a computable κ-metric space corestricted to Π0
1(κ) \ κ.

Proof. Let κ 6= A ⊆ κ and let p ∈ κκ be a δΠ0
1(κ)

-name for it, i.e.,

κ \A =
⋃

pα,βq∈ran(p)

Bκ(α, β).

Notice that for all pα, βq ∈ ran(p), there are three options for Bκ(α, β): if β > 1, then Bκ(α, β) = κ;
if 0 < β < 1, then Bκ(α, β) = {α} and lastly if β ≤ 0, Bκ(α, β) = ∅. Therefore we can compute a
sequence p′ ∈ κκ as follows: while parsing p, we unpair elements of its range and check whether they
code singletons {α}, the empty set, or the entire κ. In the first case, we enumerate α, in the second
case do not write anything and in the third case we stop parsing p and we start enumerating the entire
κ. The sequence p′ so obtained will be a δ′

Π0
1(κ)

-name for A. Conversely if q is a δ′
Π0

1(κ)
-name for A,

we can compute q′ as follows: whenever we read α on q, we enumerate the code for the open ball
B(α, 1/2). The sequence q′ so computed will be a δ′

Π0
1(κ)

-name for A. This shows that we can build

Type 2 κ-computable functions which transform δ′
Π0

1(κ)
-names into δΠ0

1(κ)
-names and viceversa, i.e.,

that the two representations given are equivalent.

We remark that the representation δ′
Π0

1(κ)
is different from its classical analogue (called ψ− : NN →

A−(N) in [7]), which is defined as ψ−(q) = A ⇐⇒ {n | n + 1 ∈ ran(p)}. This difference makes
handling limit ordinals easier, but it is overall not substantial: we could still say that we represent a
subset of κ by negative information, i.e., via an enumeration of its complement.

Definition 3.1.6 (Full representation of closed sets of κ-reals). Define the full representation of closed
sets of κ-reals δfull

Π0
1(Rκ)

:⊆ κκ → Π0
1(Rκ) as

δfullΠ0
1(Rκ)

(p) = A

if and only if p is an enumeration of the codes of all the basic open balls contained in Rκ \A.

60

By definition it is clear that if δfull
Π0

1(Rκ)
(p) = A, then δΠ0

1(Rκ)
(p) = A. So in particular we have

δΠ0
1(Rκ)

≤c δ
full
Π0

1(Rκ)
.

The reverse direction of this reduction does not hold, and this essentially follows from the fact that
closed bounded intervals in Rκ are not κ-compact. The failure of this generalized version of the Heine-
Borel Theorem was proven in [11, Proposition 5.7], we report the proof as we will need it for our
construction.

Lemma 3.1.7. Closed and bounded intervals in Rκ are not κ-compact.

Proof. Let I ⊆ Rκ be a closed interval, x < I and y > I. By the proof of Lemma 2.7 in [11] we
can pick a strictly increasing sequence s : ω → I such that the set of its upper bounds B = {b ∈ I |
(si)i∈ω < b} has coinitiality κ. We can then pick a sequence t : κ → B coinitial in B and define the
cover U = {(x, s(i)) | i ∈ ω} ∪ {(t(α), y) | α ∈ κ}. It is clear that U has no subcover of size <κ, hence
I is not κ-compact.

We remark that by density of Qκ in Rκ, we can assume without loss of generality that, in the proof
of Lemma 3.1.7, x, y ∈ Qκ and also (si)i∈ω and (tα)α∈κ are sequences of κ-rationals.

Lemma 3.1.8. The representation δfull
Π0

1(Rκ)
is strictly more complex than δΠ0

1(Rκ)
, in other words,

δfull
Π0

1(Rκ)
6≤t δΠ0

1(Rκ)
.

Proof. Let f :⊆ κκ → κκ be any continuous function such that for all p ∈ dom(δΠ0
1(Rκ)

),

f(p) ∈ dom(δfullΠ0
1(Rκ)

).

Let C ⊆ [0, 1] ⊆ Rκ be a closed interval without endpoints and let I ⊆ Rκ be another closed
bounded interval contained in Rκ \ [0,+∞). Consider sequences of κ-rationals s : ω → I and t : κ→ I
as in the proof of Lemma 3.1.7. Let x ∈ Qκ \ [0, 1] be such that x < I and let y ∈ Qκ \ [0, 1] be such
that I < y.

Consider the cover O of Rκ \ C which includes every basic open ball (with rational endpoints)
contained in Rκ \ (C ∪ I) as well as the opens {(x, s(i)) | i ∈ ω} and {(t(α), y) | α ∈ κ}. Let p be
a Σ0

1(Rκ)-name for Rκ \ C corresponding to the cover O, then p is also a Π0
1(Rκ)-name for C. By

construction, no initial segment of p covers the closed interval I completely, in particular for every
β ∈ κ there exists γ ∈ κ such that the opens {(t(δ), y) | δ ≥ γ} are not mentioned in p�β. Now notice
that p ∈ dom(f) by assumption. This implies that f(p) is a well defined object.

Assume that f(p) is δfull
Π0

1(Rκ)
-name for C, then there is some η ∈ κ such that f(p)(η) codes the

rational open ball (x, y) and by continuity of f there is some β such that for every p′ ∈ dom(f), if
p�β ⊆ p, then f(p)�(η + 1) ⊆ f(p′). Consider any ordinal γ such that the opens {(t(δ), y) | δ ≥ γ} are
not mentioned in p�β and let p′ be a sequence extending p�β which codes the cover O′ containing (in
addition to the opens coded by p�β) every basic open ball contained in Rκ \ [t(δ + 2), t(δ + 1)].

By construction it is clear that such a p′ exists and that δΠ0
1(Rκ)

(p′) = [t(δ + 2), t(δ + 1)], but

on the other hand we know that f(p′) enumerates the open (x, y), hence it cannot be the case that
δfull
Π0

1(Rκ)
(f(p′)) = [t(δ + 2), t(δ + 1)]. This shows that f cannot witness a reduction δfull

Π0
1(Rκ)

≤t δΠ0
1(Rκ)

and consequently that such reduction does not exist.

For completeness we formally define the analogue of δfull
Π0

1(Rκ)
for the closed interval [0, 1].

Definition 3.1.9 (Full representation of closed subsets of the unit interval). Define the representation
δfull
Π0

1([0,1])
:⊆ κκ → Π0

1([0, 1]) as δfull
Π0

1([0,1])
(p) = A if and only if δfull

Π0
1(Rκ)

(p) = A.

In the rest of this thesis we will always use the full representations when talking about closed sets
of κ-reals.

We introduce a representation for the set of binary trees:

61

Definition 3.1.10 (Binary tree representation). Recall that a binary tree is a set T ⊆ 2<κ closed
under initial segments. We denote the set of binary trees as Tr. We introduce a representation
δTr :⊆ 2κ → Tr given by δTr(p) = T if and only if for all α ∈ κ, p(α) = 1 ⇐⇒ ν(α) ∈ T . We
sometimes refer to a code for a tree T as its characteristic function.

We conclude the section with an observation on the Cauchy representation for κ:

Lemma 3.1.11. Let δκ be the Cauchy representation for κ, viewed as a computable κ-metric space
as in Proposition 2.1.2. For every p ∈ dom(δκ), δκ(p) = p(0).

Proof. Let p ∈ dom(δκ), by the fast convergence condition we have that dκ(p(0), p(1)) < 1. Since dκ
is the discrete metric, this entails p(1) = p(0). By Lemma 2.1.4 we obtain δκ(p) ∈ cl(Bκ(p(1), 1/2))
and again since the metric is discrete cl(Bκ(p(1), 1/2)) = {p(1)} = {p(0)}, hence δκ(p) = p(0).

3.2 Choice principles, boundedness principles, omniscience princi-
ples and results in generalized analysis

We introduce generalizations to the κ-context of all the principles in [7]. All the sets appearing in the
definitions of this section are to be understood as represented spaces equipped with the representations
previously introduced.

As we mentioned above, we represent closed subsets of Rκ and [0, 1] ⊆ Rκ with their respective full
representations δfull

Π0
1(Rκ)

and δfull
Π0

1([0,1])
, and we represent subsets of κ with the representation δ′

Π0
1(κ)

.

For the spaces κκ and 2κ we use the identity representations. Note that these are not the same as
their metric representations introduced in Chapter 2, but they are equivalent to them by Corollary
2.3.3. With the identity representations on κκ and 2κ, we can identify single-valued operations on
these spaces with their realizers. Moreover, if f is a multi-valued operation on such spaces, then the
realizers for f are precisely its choice functions.

We start with the so-called omniscience principles. The classical versions of these principles dates
back to the beginning of constructive analysis. Their names come from the fact that both of them
can be seen as instances of the law of the exluded middle, and both are incomputable.

Definition 3.2.1 (Omniscience principles). We define the the κ-limited principle of omniscience
LPOκ : κκ → κ as

LPOκ(p) =

{
0 if ∃α(p(α) = 0)
1 otherwise otherwise

Further, we define the κ-lesser limited principle of omniscience LLPOκ : κκ → κ as

LLPOκ(p) 3
{

0 if ∀α even (p(α) = 0)
1 if ∀α odd (p(α) = 0)

where dom(LLPOκ) = {p ∈ κκ | |{α ∈ κ | p(α) 6= 0}| ≤ 1}.

We remain in the realm of recursion theory and introduce the following operations.

Definition 3.2.2 (Recursion theoretic principles). We define the choice operation on κ as
Cκ :⊆ Π0

1(κ)⇒ κ
Cκ(A) = {α ∈ κ | α ∈ A},

with dom(Cκ) = {A ⊆ κ | A 6= ∅ ∧A 6= κ}. Further we define the function ECκ : κκ → 2κ as

ECκ(p) = χran(p),

as well as the separation operation Sepκ :⊆ κκ ⇒ 2κ given by

Sepκ(〈p, q〉) = {χA | ran(p) ⊆ A ∧ ran(q) ∩A = ∅},

62

where dom(Sepκ) = {〈p, q〉 ∈ κκ | ran(p) ∩ ran(q) = ∅}, the extendible part operation
Ext :⊆ Tr→ Tr given by

Ext(T) = ext(T),

where dom(Ext) = {T ∈ Tr | [T] 6= ∅} and lastly κ-Weak Kőnig’s Lemma WKLκ :⊆ Tr⇒ 2κ given by

WKLκ(T) = {x ∈ 2κ | x ∈ [T]},

where dom(WKLκ) = {T ∈ Tr | [T] 6= ∅}.

We now turn to principles referring to Rκ, starting with the various choice principles:

Definition 3.2.3 (Choice principles on Rκ). We define the closed choice operation CA :⊆ Π0
1(Rκ)⇒

Rκ as
CA(C) = {x ∈ Rκ | x ∈ C},

where dom(CA = Π0
1(Rκ) \ ∅. From it we obtain three more operations via restriction of the domain.

We define the proper closed interval choice principles CI,c and C−I,c, and the improper closed interval

choice principle CI,b and C−I,b where

dom(CI,c) = {[a, b] | 0 ≤ a ≤ b ≤ 1},
dom(C−I,c) = {[a, b] | 0 ≤ a < b ≤ 1},
dom(CI,b) = {I ⊆ [0, 1] | I 6= ∅ ∧ I is a closed interval },
dom(C−I,b) = {I ⊆ [0, 1] | I is a closed interval with at least two points }.

Now we define the closely related boundedness principles:

Definition 3.2.4 (Boundedness principles on Rκ). We define the function B: (Rκ)< → Rκ as
B(x) = x and we define the function BF : (Rκ)< ⇒ Rκ as BF(x) = {y ∈ Rκ | y ≥ x}.

Further we define the operations BI,c :⊆ (Rκ)< × (Rκ)> ⇒ Rκ, B−I,c :⊆ (Rκ)< × (Rκ)> ⇒ Rκ,

BI,b :⊆ Sb
↑ × Sb

↓ ⇒ Rκ and B−I,b :⊆ Sb
↑ × Sb

↓ ⇒ Rκ as

BI,c(a, b) = {r ∈ Rκ | a ≤ r ≤ b},
B−I,c(a, b) = {r ∈ Rκ | a ≤ r ≤ b},
BI,b((qα)α∈κ, (q

′
α)α∈κ) = {r ∈ Rκ | (qα)α∈κ ≤ r ≤ (q′α)α∈κ},

B−I,b((qα)α∈κ, (q
′
α)α∈κ) = {r ∈ Rκ | (qα)α∈κ ≤ r ≤ (q′α)α∈κ},

where the domains are given by

dom(BI,c) = {(a, b) ∈ (Rκ)< × (Rκ)> | a ≤ b},
dom(B−I,c) = {(a, b) ∈ (Rκ)< × (Rκ)> | a < b},

dom(BI,b) = {(qα)α∈κ, (q
′
α)α∈κ ∈ Sb

↑ × Sb
↓ | ∃r ∈ Rκ((qα)α∈κ ≤ r ≤ (q′α)α∈κ)},

dom(B−I,b) = {(qα)α∈κ, (q
′
α)α∈κ ∈ Sb

↑ × Sb
↓ | ∃r ∈ Rκ((qα)α∈κ < r < (q′α)α∈κ)}.

Lastly, we define the operations B+
I,b :⊆ (Qκ)κ×((Qκ)∪{+∞})κ ⇒ Rκ and B+

I,c :⊆ (Qκ)κ×((Qκ)∪
{+∞})κ ⇒ Rκ as

B+
I,b((qα)α∈κ, (q

′
α)α∈κ) = {r ∈ Rκ | (qα)α∈κ ≤ r ≤ (q′α)α∈κ},

where dom(B+
I,b) is given by pairs comprised of a strictly increasing bounded sequence of κ-rationals

(qα)α∈κ and a strictly decreasing bounded1 sequence (q′α)α∈κ of elements in Qκ∪{+∞} such that there
are κ-reals r such that (qα)α∈κ ≤ r ≤ (q′α)α∈κ and

B+
I,c((qα)α∈κ, (q

′
α)α∈κ) = {r ∈ Rκ | (qα)α∈κ ≤ r ≤ (q′α)α∈κ},

1In line with the use of the term in the classical context (see, e.g., page 12 in [7]), we stretch the meaning of bounded
strictly decreasing sequence to accommodate for sequences ranging in Qκ ∪ {+∞}: in this context, we use the term to
indicate the constant +∞ sequence, as well as sequences (qα)α∈κ such that there exists some ordinal β with qγ = +∞
for all γ < β and (qγ)β≤γ<κ ∈ S↓b.

63

where dom(B+
I,c) is given by pairs comprised of a strictly increasing convergent sequence of κ-rationals

(qα)α∈κ and a strictly decreasing convergent2 sequence (q′α)α∈κ of elements in Qκ ∪ {+∞} such that
there are κ-reals r such that (qα)α∈κ ≤ r ≤ (q′α)α∈κ.

We remark that despite the fact that we only defined the principles B and BF for lower reals,
there are corresponding principles defined on upper reals. These are obviously the same as their lower
real counterparts, both conceptually and in terms of Weihrauch degree. So, we concentrate on the
lower real versions. We close the section with definitions of the encoding of two generalized analysis
theorems, both due to Galeotti. These are the Intermediate Value Theorem for Rκ and the κ-Baire
Category Theorem.

Definition 3.2.5 (Continuous functions on the unit interval). We define the set of continuous function
on the unit interval C([0, 1]) = {f : [0, 1] ⊆ Rκ → Rκ | f is continuous}.

Note that by admissibility of the representation δRκ (and of its restriction to the unit interval)
we know that the representation δ[[0,1]→Rκ] (cf. Definition 1.3.2) is a total representation of the set
C([0, 1]). In the rest of the thesis, we will consider C([0, 1]) as being represented by δ[[0,1]→Rκ].

Theorem 3.2.6 (Intermediate Value Theorem for Rκ). Let f ∈ C([0, 1]) be a κ-continuous function
and let r ∈ [f(0), f(1)]. There is c ∈ [0, 1] such that f(c) = r.

Proof. See [16, Theorem 3.3.1].

Definition 3.2.7 (IVTκ). We define the operation IVTκ :⊆ C([0, 1])⇒ [0, 1] as

IVTκ(f) = {r ∈ [0, 1] | f(r) = 0},

where dom(IVTκ) = {f ∈ C([0, 1]) | f κ-continuous ∧ f(0) · f(1) < 0}.

Definition 3.2.8 (BCTκ). Let X = (X, d, s) be any κ-spherically complete and Cauchy complete
computable κ-metric space, we define BCTκ(X) : (Π0

1(X))κ ⇒ κ as

BCTκ(X)((Aα)α∈κ) = {β | int(Aβ) 6= ∅},

where dom(BCTκ(X)) = {(Aα)α∈κ |
⋃
α∈κAα = X}.

2In this context, consider the constant +∞ sequence to be convergent to +∞.

64

Chapter 4

Separation techniques

In [7], the so-called “Separation Techniques” are employed to prove the non-existence of reductions
between the classical choice and boundedness principles, which, as we mentioned before, form the
backbone of the Brattka-Gherardi diagram. In this chapter we prove the generalization to the κ-
context of those techniques, in order to use them as tools for proving non-reductions between the
principles introduced in Chapter 3. We will make use of these techniques in Chapter 5, where we
will build our generalized diagram. In Chapter 6 we will briefly compare the role of the generalized
techniques in this thesis with the role of their classical counterparts in [7].

4.1 Turing degree invariance principle

We introduce the principle of Turing degree invariance, which subsumes the computable invariance
principle and the low invariance principle in [7] (page 19).

Definition 4.1.1. Let d and e be two Turing degrees and let F :⊆ κκ → κκ be any function such that
for every p ∈ dom(F), if p ≤T d, then F (p) ≤T e. We say that F sends inputs below d into outputs
below e.

Lemma 4.1.2. Let f :⊆ X ⇒ Y and g :⊆ U ⇒ V be operations on represented spaces, and let d,
and e be two Turing degrees with d ≤T e. If g has a realizer G which sends inputs below d to outputs
below e and f ≤W g, then f also has a realizer F which sends inputs below d to outputs below e.

Proof. Assume f ≤W g, so let H :⊆ κκ → κκ, K :⊆ κκ → κκ be Type 2 computable functions
such that, for every realizer G′ of g, the function p 7→ H(〈p,G′ ◦ K(p)〉) realizes f . In particular
this means that p 7→ H(〈p,G ◦ K(p)〉) realizes f . Let q ∈ dom(f ◦ δX) be of Turing degree ≤T d,
then, by Corollary 1.2.24 we obtain that K(q) has Turing degree ≤T d and by assumption on G,
G(K(q)) has Turing degree ≤T e. Therefore, 〈q,G(K(q))〉 has Turing degree ≤T e ⊕ d = e (recall
that we use ∪ to denote the join operator on κ-Turing degrees) and again applying Corollary 1.2.24
we obtain that H(〈q,G(K(q))〉) has Turing degree ≤T e. This shows that the realizer F of f given
by p 7→ H(〈p,G ◦K(p)〉) sends inputs below d into outputs below e, as desired.

This lemma is used contrapositively to prove non-reductions. We explicitly state this as a corollary.

Corollary 4.1.3 (Turing degree invariance principle). Let f :⊆ X ⇒ Y and g :⊆ U ⇒ V be operations
on represented spaces and let d, and e be two Turing degrees with d ≤T e. If g has a realizer G which
sends inputs below d to outputs below e and f does not, then f 6≤W g.

4.2 Mind change invariance principle

We introduce the principle of mind change invariance, which is entirely analogous to the principle of
the same name found in [7] (page 19).

65

Lemma 4.2.1. Let f :⊆ X ⇒ Y and g :⊆ U ⇒ V be operations on represented spaces, β ∈ κ an
ordinal and assume that g has a realizer G which is computable with β mind changes. If f ≤W g, then
f has a realizer F which is computable with β mind changes.

Proof. Let H :⊆ κκ → κκ, K :⊆ κκ → κκ be Type 2 computable functions such that, for every
realizer G′ of g, the function p 7→ H(〈p,G′ ◦ K(p)〉) realizes f . Consider the function F given by
p 7→ H(〈p,G◦K(p)〉). We have that F is a realizer of f , moreover F is obtained from G by composition
with computable functions, hence we can apply Lemma 1.2.30 and obtain that F is computable with
β mind changes.

We generalize [6, Proposition 6.6] to show that the computational power of limit κ-Turing machines
increases with the number of mind changes allowed.

Proposition 4.2.2. For every β ∈ κ, define the function LPOβ
κ : κκ → κκ as

LPOβ
κ(α) =

{
LPOκ(pα) if α < β
1 otherwise

We have that LPOβ
κ is computable with β mind changes but not computable with α mind changes for

any α < β.

Proof. To compute LPOβ
κ with β mind changes, on input p we simply start printing a sequence of 1s

while parsing p. For every α < β, if we find a 0 on the sequence pα (and this has not happened yet), we
copy our current output, taking care to modify the α-th entry to 0, to a scratch tape Ts. Subsequently
we erase the contents of the output tape, we copy the content of Ts up to β on the output tape and we
continue printing 1s. The procedure described computes LPOβ

κ(p), and clearly needs at most β mind
changes. To prove that this is optimal, given any limit machine M computing LPOβ

κ, we recursively
build a sequence (pα)α∈β ⊆ κκ and a sequence of ordinals (ηα)α∈β such that for all α ∈ β,

LPOβ
κ(pα) = 0α1κ,

the machine M does not make any mind change in the computation of pα after time step ηα, it prints
the first β bits of output before time step ηα, and for all α and all γ with α < γ, pα�ηα = pγ�ηα.
Lastly M needs at least α mind changes to compute LPOβ

κ(pα).
For α = 1, consider the sequence p0 = 1κ and assume that M makes γ mind changes to compute

LPOβ
κ(p0). Let η1 be an ordinal such that M does not make any mind changes on input p0 after time

step η1, and define p1 as

p1(ξ) =

{
0 if ξ = p0, η1q,
p0(ξ) otherwise.

Clearly the computation of M on p1 coincides with the computation of M on p0 up to step η1 + 1,
hence M makes γ mind changes before that time step, and produces a partial output t ∈ κ<κ with
t(0) = 1. Since LPOβ

κ(p1)(0) = 0, M must make at least one more mind change in order to produce
the correct ouput, therefore mc(M,p1) ≥ γ + 1 ≥ 1.

Now let 1 < δ ≤ β and inductively assume that the sequences (pα)α∈δ, (ηα)α∈δ have been defined
and they enjoy the properties expressed above. By regularity of κ, let η′δ be an ordinal in κ such that
η′δ > supα∈δ ηα and define p′δ as

p′δ(ξ) = pγ(ξ),

where γ = min{λ ∈ δ | (pσ(ξ) = pσ
′
(ξ))∀σ, σ′ ∈ [λ, δ)}. It is clear that for all α ∈ δ pα�ηα = p′δ�ηα.

This implies at once that M makes at least supα∈δ mc(M,pα) ≥ δ mind changes on p′δ up to step η′δ,
moreover it is clear that LPOβ

κ(p′δ) = 0δ1κ. Now let ηδ > η′δ be an ordinal such that the machine M
has β bits written on the output tape by step ηδ and define

pδ(ξ) =

{
0 if ξ = pδ, ηδq,
p′δ(ξ) otherwise.

Since LPOβ
κ p(δ) = 0δ+11κ, we have that M needs one more mind change on pδ than the mind changes

it needed on p′δ, hence mc(M,pδ) ≥ δ+1. Moreover it is immediate to see that the sequences (pα)α∈δ+1

66

and (ηα)α∈δ+1 are as required. This shows that the sequence (pα)α∈β described above can be defined,
and clearly supα∈β{mc(M,pα)} ≥ mc(M,pβ) ≥ β. It follows that M needs at least β mind changes

to compute LPOβ
κ, which is what we wanted to show.

4.3 Parallelization principle

4.3.1 Introduction

We conclude the chapter with a proof of the parallelization principle [7, Lemma 4.1] in the generalized
context. This is achieved under the extra assumption that κ is weakly compact, as we need the
κ-compactness of generalized Cantor space 2κ to carry out our constructions. In particular, we will
prove that 2κ is computably κ-compact relative to a so-called tree oracle. The proof of this fact
draws from the papers [9] and [8], where the authors introduce the notion of computable compactness
and give several sufficient conditions for it. The parallelization principle is based on the fact that∏

LPOκ 6≤tW
∏

LLPOκ. The proof we present here follows closely the proof of the same fact in the
classical context, which can be found in [6, Sections 6 and 7].

First we settle a notational convention that will make our proofs easier to read.

Convention 4.3.1. In the rest of this thesis, we will use the names L̂POκ and L̂LPOκ to refer to
the operations

∏
LPOκ ◦ 〈·〉 and

∏
LLPOκ ◦ 〈·〉 respectively, where 〈·〉 : (κκ)κ → κκ is the interleaving

function defined in Section 1.2.2.

Notice that, if we represent κκ with the identity representation and (κκ)κ with the associated
sequence space representation (cf. Definition 1.3.2), then the identity on generlized Baire space κκ

is a realizer for 〈·〉 and consequently it is also a realizer for 〈·〉−1. By Lemma 1.3.11 we obtain that∏
LPOκ ◦ 〈·〉 = L̂POκ ≡W

∏
LPOκ and similarly

∏
LLPOκ ◦ 〈·〉 = L̂LPOκ ≡W

∏
LLPOκ, therefore

we can study the degrees of the parallelized principles of omniscience via the functions L̂POκ and
L̂LPOκ.

We now prove the obvious reduction:

Proposition 4.3.2. We have that LLPOκ ≤sW LPOκ

Proof. Let G : κκ → κκ be the Type 2 computable function given by G(p)(α) = 1 .− p(γ), where α is
the γ-th even ordinal. Moreover let H : κ→ κ be the computable function given by H(α) = 1 if α = 0
and H(α) = 0 otherwise. Now let F be a realizer of LPOκ, p ∈ dom(LLPOκ). We have that

F (G(p)) = 0 ⇐⇒ ∃α(G(p)(α) = 0) ⇐⇒ ∃γ(γ even) ∧ (p(γ) 6= 0) ⇐⇒ LLPOκ(p) 3 1

and

F (G(p)) = 1 ⇐⇒ ∀α(G(p)(α) 6= 0) ⇐⇒ ∀β(β even)→ (p(β) = 0) ⇐⇒ LLPOκ(p) 3 0

hence it follows that H ◦ F ◦G is a realizer of LLPOκ.

By monotonicity of the parallelization operator, this implies that L̂LPOκ ≤W L̂POκ. We mention
here that a straightforward generalisation of the proof of [40, Theorem 4.2] yields LLPOκ <tW LPOκ

and consequently LLPOκ <W LPOκ.
To rule out the existence of a reduction witnessing L̂POκ ≤W L̂LPOκ, we will need several steps.

The high level structure of the proof is the following: we will show that the topological Weihrauch
degrees under L̂LPOκ are closed under composition and subsequently we will show that L̂POκ ◦
L̂POκ 6≤tW L̂POκ. This result immediately implies that L̂POκ 6≤tW L̂LPOκ and consequently it
excludes the possibility of a Weihrauch reduction as well. First, we show that both L̂LPOκ and L̂POκ

are cylinders.

Proposition 4.3.3. We have L̂PO ≡sW idκκ ×L̂POκ and L̂LPOκ ≡sW idκκ ×L̂LPO

67

Proof. By Corollary 1.3.22 it suffices to show that idκκ ≤sW L̂LPOκ and idκκ ≤sW L̂POκ. These
reductions are proved in the same way as the corresponding classical reductions, see [6, Proposition
6.5].

Consequently, by Corollary 1.3.16 we have that for every operation f , f ≤W L̂LPOκ if and only if
f ≤sW L̂LPOκ and similarly for L̂POκ.

4.3.2 Computable compactness of generalized Cantor space and computable mod-
uli of uniform continuity

Now we turn to the proof of L̂POκ 6≤W L̂LPOκ, under the extra assumption of weak compactness
of κ. This first subsection is devoted to developing computable compactness results for generalized
Cantor space 2κ for weakly compact κ. These results yield Corollary 4.3.10, which is one of the two
tools necessary for the proof of Theorem 4.3.19, which in turn yields a relatively straightforward proof
L̂POκ 6≤W L̂LPOκ.

We introduce a computational tool which will be useful for the rest of the section.

Definition 4.3.4 (Tree oracle). We define a tree oracle as a function o : κ → κ such that for all
γ ∈ κ, we have 2≤γ ⊆ ran(ν�o(γ)).

The name tree oracle comes from the fact that, if we consider the full binary tree 2<κ, for any
δ ∈ κ and any tree oracle o, o(δ) is an upper bound for the codes of nodes in 2≤δ, in the sense that
(the code for) every node in 2≤δ comes before o(δ). Notice that in the assumption of Vκ = Lκ, we
have κ = iκ, therefore we have |2≤δ| < κ for all δ ∈ κ. By regularity of κ, this implies that for all
δ ∈ κ there exists a bounded set Aδ ⊆ κ such that ν[Aδ] = 2≤δ, hence tree oracles exist. On the other
hand, it is obvious that for all δ ≥ ω, it must be the case that o(δ) ≥ |δ|+, so by [12, Lemma 40]
tree oracles cannot be computable functions.1 The way we will use tree oracles is the following: let
P ⊆ 2<κ be κ-decidable and consider the set P ′ ⊂ κ given by

γ ∈ P ′ ⇐⇒ ∀x ∈ κγ (x ∈ P).

Then it is clear that a machine with oracle access to a tree oracle o can decide P ′. Obviously, the
same holds for the property P ′′ defined by

γ ∈ P ′′ ⇐⇒ ∃x ∈ κγ (x ∈ P).

Without the use of a tree oracle, the set P ′′ would only be semidecidable and the set P ′ would be
co-semidecidable.

We introduce a representation for spaces of κ-compact subsets of κ-metric spaces.

Definition 4.3.5 (Compact sets representation). Let (X, d, s) be a computable κ-metric space and let
K(X) be the collection of κ-compact subsets of X. Define a representation δK(X) :⊆ κκ → K(X) as

δK(X)(p) = C

if and only if δΠ0
1(X)(p0) = C and that for every w ∈ κ<κ, if w is an enumeration of codes for open

balls such that K ⊆
⋃
α∈dom(w)Bw(α) (where Bw(α) is the basic open ball with code w(α)), then there

exists β ∈ κ such that ran(pβ) = ran(w), and conversely for every α ∈ κ, ran(pα) = ran(w′) for some
w′ coding a sequence of balls as above. Moreover we require that each of the sequences pβ features a
marker which signals the cell δβ such that ran(pβ�δβ) = ran(pβ).

1In particular this implies that if o is a tree oracle the class of (Type 2) computable functions is a strict subset of the
class of (Type 2) o-computable functions.

68

Intuitively a κ-compact name for a set C ⊆ X is a closed name for C,2 together with an enumera-
tion of all open covers of C of size <κ. Note that, if κ is weakly compact, by Theorem 1.1.39 we have
that 2κ is κ-compact, and in particular, by Proposition 1.1.17, a set C ⊆ 2κ is κ-compact if and only
if it is closed. Moreover, the κ-compactness of 2κ implies that any continuous function on a closed
subset of 2κ is uniformly continuous (see Corollary 1.1.40).

We now show that, if κ is weakly compact and o is any tree oracle, then 2κ is computably κ-compact
relative to o, i.e., there exists a Type 2 o-computable function H :⊆ κκ → κκ which transforms Π0

1(2
κ)-

names for closed sets C ⊆ 2κ into K(X)-names.

Lemma 4.3.6. Assume Hypothesis 1.2.19 and let o be a tree oracle. The problem of determining
whether a given sequence (Bβ)β<δ of basic open sets in 2κ with δ < κ is a cover of 2κ is Type 1
decidable relative to o.

Proof. Given a (code for a) sequence of words (wβ)β<δ corresponding to the given basic open sets
(Bβ)β<δ, a κ-Turing Machine can find some γ ∈ κ such that γ > supβ∈δ |wβ|. It can then start
enumerating 2<κ and check, for every x ∈ 2γ , whether there exists some β ∈ δ such that wβ ⊆ x. This
is a decidable property of x ∈ 2γ , hence having access to o makes it possible to check whether it holds
for all elements in 2γ in <κ steps. If this is the case, then the given sequence is a cover of 2κ as for all
y ∈ 2κ there exists some x ∈ 2γ with x ⊆ y and by assumption there exists some β ∈ δ with wβ ⊆ x,
hence y ∈

⋃
β∈δ Bβ.

Proposition 4.3.7 (Computable κ-compactness of 2κ). Assume Hypothesis 1.2.19, let o be a tree
oracle and let κ be weakly compact. The function G : Π0

1(2
κ) → K(2κ) given by C 7→ C admits a

realizer which is computable relative to o.

Proof. Given a closed set C ⊆ 2κ and a code p for a sequence of words (wα)α∈κ such that 2κ \ C =⋃
α∈κ[wα] (so essentially a Π0

1-name for C) and given a word w ∈ κ<κ coding a sequence of words
(uβ)β∈δ for some δ < κ, we have that

C ⊆
⋃
β∈δ

[uβ] ⇐⇒ ∃γ

2κ ⊆
⋃
β∈δ

[uβ] ∪
⋃
α∈γ

[wα]

 .

By Lemma 4.3.6, given γ, the test on the right is decidable relative to o, hence a machine which tries
this test with increasingly large γ will be able to semidecide whether the sequence (uβ)β∈δ is a cover of
C. Now a machine which, in the long run, prints every possible cover of C comprised of <κ open balls
is obtained by generating all possible short sequences of words in κ<κ and testing them in parallel as
described above. This yields the required realizer for G.

Following [6] (see [6, Lemma 7.9]), we show that we can compute moduli of uniform continuity for
computable functions on generalized Cantor space 2κ whenever κ is weakly compact.

Lemma 4.3.8. Assume Hypothesis 1.2.19 and let o be a tree oracle. Let κ be a weakly compact
cardinal and let F :⊆ 2κ → 2κ be an o-computable function, then there exists a function

M :⊆ K(2κ)⇒ κκ,

with dom(M) = {C ∈ K(2κ) | C ⊆ dom(F)} which admits an o-computable realizer and such that
every m ∈ M(C) is a modulus of uniform continuity of F on C, i.e., for all p ∈ C and α ∈ κ, we
have F ([p�m(α)]) ⊆ [F (p)�α].

Proof. First, notice that F being o-computable implies that it is continuous, and hence it is uniformly
continuous on all κ-compact subsets (equivalently, in this case, closed) of its domain.

Consider the following procedure: given a K(2κ)-name p of a κ-compact C ⊆ 2κ, start running
through the ordinals under κ and computing (via ν) the corresponding words w ∈ 2<κ. Now perform

2By Proposition 1.1.17 it follows that in any κ-metric space, κ-compact sets are closed.

69

the following operations in parallel on all words ν(α) = w ∈ 2<κ: use o to Type 1 enumerate the set
A = {v ∈ 2<κ | |v| = |w| ∧w 6= v}, and check whether A is a cover of C by comparing it with p (recall
that p contains codes for all open covers of C consisting of fewer than κ sets). If it is, print α (the
ordinal code for w). In the long run, this produces a sequence q ∈ κκ coding the set ran(ν ◦ q) = W
such that w ∈ W ⇐⇒ [w] ⊆ 2κ \ C. Notice that q is (essentially) a Π0

1-name for C which specifies
every basic open contained in 2κ \ C (in the terminology of Definition 3.1.6, it is a full Π0

1-name for
C).

Now by Proposition 1.2.21, let f : 2<κ → 2<κ be the Type 1 o-computable monotone function such
that for every x ∈ dom(F),

F (x) =
⋃
s⊆x

f(s),

and, for every α ∈ κ, consider the set

Mα = {β ∈ κ | ∀w ∈ (2β \W) |f(w)| ≥ α}.

Note that for every α, the uniform continuity of F on C entails that Mα is nonempty and, with oracle
access to o, it can be enumerated using the machine for f and q.

To see how this set is enumerated, first define the sets (Wγ)γ∈κ as

Wγ = {w ∈W | the code for w appears on q�γ}.

Now, given δ ∈ κ, we can use the oracle o to Type 1 enumerate 2δ and we can run through the code
q to compute (increasingly accurate) approximations of the set 2δ \W , given by 2δ \Wη. Notice that
since |2δ| < κ, there must be some ordinal η such that 2δ \W = 2δ \Wη. Lastly, given a set of the
form 2δ \Wη, we can run the machine for f on all words in it and check whether all computations
produce an output of length >α. We can perform the operations mentioned above in parallel for all
pairs (δ, η). So, we run the machine for f in parallel on all words in 2δ \Wη for all pairs (δ, η) until
we eventually find a pair (δ′, η′) such that the machine for f produces an output of length >α on
all words in 2δ

′ \Wη′ . This is an o-computable procedure which, on every input α ∈ κ, produces an
output δ ∈ Mα. This shows that we can Type 2 compute a sequence m ∈ M(C). By construction it
is clear that m has the desired properties. Since we can do this uniformly in the code p, this proves
that the function M has an o-computable realizer.

We now turn to proving results on L̂LPOκ which are based on these computable compactness
properties of 2κ.

Proposition 4.3.9. Assume Hypothesis 1.2.19, let o be a tree oracle and let κ be weakly compact.
The function

F :⊆ κκ → Π0
1(2

κ), p 7→ L̂LPOκ(p),

where dom(F) = dom(L̂LPOκ) admits an o-computable realizer.

Proof. Given any p ∈ dom(L̂LPOκ), we start parsing the input until we find a 1, say, in position

pα, βq. If β is even, then x(α) 6= 0 for every x ∈ L̂LPOκ(p), hence [t] ⊆ 2κ \ L̂LPOκ(p) for all t ∈ 2α+1

such that t(α) = 0. In this case we enumerate all such words t. If β is odd, the algorithm enumerates
all words s in 2α with s(α) = 1. This can be done in <κ steps with oracle access to o. After the
enumeration phase is done, we go on parsing p. In the long run we will print a Σ0

1-name of a set

W ⊆ 2κ such that 2κ \W = L̂LPOκ(p), i.e., a Π0
1-name for L̂LPOκ(p). This shows that F has a

realizer which is computable relative to o.

We immediately obtain:

Corollary 4.3.10. Assume Hypothesis 1.2.19 and let o be a tree oracle. Let κ be a weakly compact
cardinal and let F :⊆ 2κ → 2κ be an o-computable function. The function G :⊆ 2κ ⇒ κκ given by

G(p) = {m ∈ κκ | m is a modulus of uniform continuity for F on L̂LPOκ(p)},

with dom(G) = {p ∈ dom(L̂LPOκ) | L̂LPOκ(p) ⊆ dom(F)} admits an o-computable realizer.

70

Proof. Follows from Proposition 4.3.9, Proposition 4.3.7 and Lemma 4.3.8.

We want to use Corollary 4.3.10 to obtain the closure under composition of the topological
Weihrauch degrees below L̂LPOκ. We state an intermediate result from [6].

Lemma 4.3.11. Assume Hypothesis 1.2.19, let o be a tree oracle and let κ be a weakly compact
cardinal. There exists a computable function F : κκ → κκ such that L̂LPOκ ◦ L̂LPOκ = L̂LPOκ ◦ F ,
hence in particular we have L̂LPOκ ◦ L̂LPOκ ≤sW L̂LPOκ

Proof. See [6, Lemma 7.1] for the proof of the classical counterpart. Note that the proof can be carried
over to the κ-context without modifications.

4.3.3 Computable ternary extensions

We prove that, under Hypothesis 1.2.19 so-called ternary extensions of partial infinitary Boolean
functions f :⊆ 2γ → 2, with γ < κ, are computable relative to any tree oracle o from an ordinal
which appropriately codes f . This is the second ingredient necessary for the proof of Theorem 4.3.19,
which, as we mentioned earlier, is in turn necessary to obtain the Parallelization Principle for weakly
compact κ (Corollary 4.3.22).

Following Brattka and Gherardi (cf. page 23 in [6]), we introduce a representation of the space
T = {0, 1/2, 1} of truth values for Kleene’s ternary logic which is strictly related to LLPOκ:

Definition 4.3.12 (Representation for T and translation L between 2 and T). Let δT :⊆ κκ → T be
given by

δT(p) = 0 ⇐⇒ p ∈ dom(LLPOκ) ∧ ∃α odd (p(α) = 1),

δT(p) = 1 ⇐⇒ p ∈ dom(LLPOκ) ∧ ∃α even (p(α) = 1),

δT(p) = 1/2 ⇐⇒ p = 0κ.

Further define the map L : T⇒ 2 as

L(0) = 0, L(1) = 1, L(1/2) = {0, 1}.

The map L is strongly Weihrauch equivalent to LLPOκ as they share the same realizations.3 We
then define the ternary extension of any infinitary Boolean function, again following Brattka and
Gherardi (cf. page 24 in [6]).

Definition 4.3.13 (Ternary extension). Given any ordinal γ < κ and given f :⊆ 2γ → 2, define the
ternery extension of f as the function f ′ :⊆ Tγ → T given by

f ′((tα)α∈γ) = L′(f [
∏
α∈γ

L(tα)]),

where dom(f ′) = {(tα)α∈γ |
∏
α∈γ L(tα) ⊆ dom(f)} and L′ :⊆ P(2)→ T is defined as

L′({0, 1}) = 1/2, L′({0}) = 0, L′({1}) = 1.

We now want to show that given any “infinitary Boolean function” which takes <κ bits, we can
o-compute a realizer of its ternary extension. To see this more easily, we borrow terminology from
infinitary logic. For any ordinal γ ∈ κ, we show that any function f :⊆ 2γ → 2 corresponds to an
infinitary formula written in disjunctive normal form.

We work in a propositional logic which uses a γ-sequence (vα)α∈γ of distinct propositional letters.
We define propositional formulas by the following recursion

(a) for any α ∈ γ, vα is a formula,

3We consider 2 as being represented by the notation ν̂ :⊆ κ→ 2 given by ν̂(0) = 0, ν̂(1) = 1 and undefined for every
other ordinal.

71

(b) if ϕ is a formula, then ¬ϕ is a formula,

(c) if (ϕα)α<β is a sequence of formulas with β < 2|γ|, then
∨
α<β ϕα and

∧
α<β ϕα are formulas.

We can then identify an element x ∈ 2γ with an assignment, namely stipulating that the propositional
letter vα is assigned truth value i by x if and only if x(α) = i.

Now, given x ∈ 2γ , define ϕx as

ϕx =
∧
α∈γ

p(x(α)).

where p(x(α)) = vα if x(α) = 1 and p(x(α)) = ¬vα if xα = 0. Lastly we define Φf as

Φf =
∨

x∈f−1[1]

ϕx.

Note that for every f :⊆ 2γ → 2, the formula Φf is in disjunctive normal form, and in particular it is a
disjunction of fewer than 2|γ| formulas of the form ϕx. Now it is clear that, if we interpret a sequence
x ∈ dom(f) as an assignment, we have that f(x) is the truth value of Φf under the assignment x. We
prove two lemmas necessary to obtain the computability of ternary extensions.

Lemma 4.3.14. Let δ < κ and let gδ : 2δ → 2 correspond to disjunction of size δ, i.e.,

gδ(x) = 1 ⇐⇒ ∃αx(α) = 1.

The ternary extension of gδ is computable.

Proof. We have to show that the function g′δ : Tδ → T given by g′δ((tα)α∈δ) = L′(gδ[
∏
α∈δ L(tα)]) has

a computable realizer. Consider the κ-Turing machine Mδ which behaves as follows: on input a code
p for some sequence in Tδ, it parses the sequence p, keeping track of all the ordinals α < δ such that
a 1 has been found in sequence pα, and keeps on outputting 0 until one of the following conditions is
met:

(a) M has found a sequence pα such that, for some even ordinal β, pα(β) = 1 (so pα codes 1 ∈ T).
In this case, M outputs 1 in the next free even position, then starts outputting 0 indefinitely (so
the output of M codes 1 ∈ T),

(b) the previous condition has not yet been met, but M has found the symbol 1 on sequence pα for
every ordinal α < δ. In this case, note that it must be that every pα has its only nonzero ordinal
in an odd position, hence all these pα’s code 0 ∈ T. In this case, M outputs 1 in the next free
odd position, then starts outputting 0 indefinitely (so the output of M codes 0 ∈ T),

We claim that M computes g′δ: if we let (tα)α∈δ be the sequence coded by p, there are three
possible options: if there exists some β ∈ δ such that tβ = 1, then L(tβ) = 1 so y(β) = 1 for every
y ∈

∏
α<δ L(tα). In this case gδ(y) = 1 for all y ∈

∏
α<δ L(tα), so L′(gδ(y)) = 1 and consequently

g′δ((tα)α∈δ) = 1. This case corresponds to case (a) in the definition of M , so running M on p outputs
a code for 1 ∈ T. This shows that M is correct on such codes p.

If no such β exists, then we can make a second case distinction: if, for all α ∈ δ, tα = 0, then
obviously g′δ((tα)α∈δ) = 0. Note that in this case each of the sequences pα coding the element tα has
a 1, so by regularity of κ, there must be some index η < κ such that all these 1s appear before η.
Again by definition of the machine, once M has gotten to read cells of its input up to index η, it will
detect the fact that 1s have been found on all sequences (pα)α∈δ and output a code for 0 ∈ T. Hence
the machine behaves correctly on these inputs as well.

Lastly, if the input does not fall in either of the above cases, it must be the case that tα 6= 1 for
every α ∈ δ, and tα = 1/2 for at least one index α. In this case we have that the constant 0 sequence
is in

∏
α∈δ L(tα), as well as at least one sequence containing at least one 1. This clearly implies that

g′δ((tα)α∈δ) = 1/2. Also in this last case, the machine behaves correctly, as by its specification, it will
just continue to output 0s indefinitely, so in the long run it will output 0κ, which is the code for the
correct ouput 1/2 ∈ T. This shows that Mδ computes a realizer for g′δ.

72

Moreover, the construction is uniform in the parameter δ, as this parameter is only used in condition
(b) to determine a halting condition for Mδ. This implies that the functions (g′δ) are actually uniformly
computably realized, i.e., there exists single κ-Turing machine M which, given any parameter δ ∈ κ,
computes a realizer for g′δ.

Lemma 4.3.15. Assume Hypothesis 1.2.19. Let γ < κ, x ∈ 2γ and let fx : 2γ → 2 be the function
corresponding to the truth function of ϕx, i.e., fx(y) = 1 ⇐⇒ x = y. The ternary extension f ′x of fx
is computable using the ordinal code of x as a parameter.

Proof. Let β be an ordinal code for x. i.e., ν(β) = x. Consider the κ-Turing Machine N which uses β
as parameter and works as follows: on input a code p for some sequence (yα)α∈δ ∈ Tγ , N parses the
input while keeping track of all the ordinals α ∈ γ such that a symbol 1 has appeared in the sequence
pα. While doing this, it keeps outputting 0s until one of the following conditions is met:

(a) for some ordinal α, the machine finds a 1 on the sequence pα and learns that yα = 1− x(α).4 In
this case N outputs a 1 on the next even position, then proceeds to print 0s indefinitely (so the
output is a code for 0 ∈ T),

(b) if no ordinal satisfying the above condition has been found, and N learns that, for every α ∈ γ,
the symbol 1 has been found on the sequence pα, then N outputs a 1 on the next odd position
and then proceeds to output 0s indefinitely (so the output is a code for 1 ∈ T).

To see that N computes f ′x we reason similarly to the proof of Lemma 4.3.14: if any yβ has value
1 − x(β), then f ′x((yα)α∈γ) = 0, and this corresponds to the behaviour of N thanks condition (a). If
this condition is never satisfied, then either yβ = x(β) for every β, in which case f ′x(yα)α∈γ) = 1 and
N acts accordingly thanks to the second condition, or we have that yβ = 1/2 or yβ = xβ for every β
(with at least one β with yβ = 1/2). In this case, we have that f ′x(yα)α∈γ) = 1/2 and, since neither of
the two conditions above is ever met, N outputs 0κ, which is the correct code.

This implies in particular that, if δ ∈ κ and (xα)α∈δ is a sequence of elements of 2γ , then the
function F ′ : Tγ → Tδ defined by s 7→ (f ′x0(s), . . . , f ′xα(s), . . .) is computable (cf. Proposition 1.2.28),
from an ordinal parameter which appropriately codes the sequence (xα)α∈δ.

We can now prove that ternary extensions are o-computable for any tree oracle o. To do so, we
will need to define an encoding of partial infinitary Boolean functions f :⊆ 2γ → 2 suitable for Type
1 computations. The use of the oracle o is and sufficient to be able to code functions f :⊆ 2γ → 2 for
any γ ∈ κ. We spell out the coding details to show why this is the case: given an ordinal γ and a
function f :⊆ 2γ → 2, we code f as an ordinal η defined as

η = ν−1(s),

where ν−1 stands for a computable right inverse of ν and s ∈ 2<κ is a word defined as

s(pα, 0, 0q) = 1 ⇐⇒ ν(α) ∈ dom(f) ∧ α < o(γ),

s(pα, 1, 0q) = 1 ⇐⇒ s(pα, 0, 0q) = 1 ∧ f(ν(α)) = 0,

s(pα, 0, 1q) = 0 ⇐⇒ s(pα, 0, 0q) = 1 ∧ f(ν(α)) = 1,

s(β) = 0 for all other β ∈ dom(s),

with dom(s) = min{δ ∈ κ | δ > supα∈o(γ)pα, 1, 1q}. It is straightforward to see that if δ is an ordinal,
deciding whether δ codes a partial infinitary Boolean function f :⊆ 2γ → 2 as described above is an
o-computable procedure. Moreover, whenever this is the case, we can o-computably obtain f(x) for
any x ∈ dom(f) from the ordinal δ. Conversely, if M is a machine computing f and which has access
to a parameter δ coding dom(f) (note that χdom(f) is itself a word y ∈ 2γ , so it can be coded as
ν−1(y)), M can be used to Type 1 compute an ordinal coding f .

4The machine can check the value of x(α) because it has access to the parameter β.

73

Proposition 4.3.16. Assume Hypothesis 1.2.19 and let o be a tree oracle. Let γ be an ordinal below
κ and let f :⊆ 2γ → 2 be a function coded by the ordinal α. There exists a T2κTM M which uses the
parameter α and computes a realization of f ′ the ternary extension of f .

Proof. Given a parameter α coding f :⊆ 2γ → 2, we can computably obtain a (code for) a sequence
(xα)α∈δ such that f−1[1] = {xα ∈ dom(f) | α ∈ δ} where δ < κ. By Lemma 4.3.15, we can
compute, for every xα, a realizer for the function f ′xα (which is actually the truth function for ϕxα)
and hence we can compute a realizer for the function F ′ :⊆ Tγ → Tδ given by F ′(s) = (f ′xα(s))α∈δ
with dom(F ′) = dom(f ′). Now f ′ = g′δ ◦ F ′, and since g′δ is computable by Lemma 4.3.14, f ′ is
computable.

Note that the constructions in Lemma 4.3.14 and 4.3.15 are uniform in the parameters δ, γ, hence
Proposition 4.3.16 can be strengthened to the following (cf. [6, Corollary 7.7]):

Corollary 4.3.17. Assume Hypothesis 1.2.19 and let o be a tree oracle. There exists a κ-Turing
Machine M which uses the oracle o which, on input γ and a code for f :⊆ 2γ → 2, computes a code
for a T2κTM N which realizes the ternary extension f ′ of f .

4.3.4 Proof of the Parallelization principle

We keep on following [6] to prove Theorem 4.3.19, which is a closure property of the Weihrauch

degrees, relativized to a tree oracle o, below the degree of L̂LPOκ (cf. [6, Theorem 7.11]). We use this
result to obtain the Parallelization principle for weakly compact κ.

Proposition 4.3.18. Assume Hypothesis 1.2.19, let o be a tree oracle, let κ be a weakly compact
cardinal and let F :⊆ 2κ → 2κ be computable relative to o, then there exists some o-computable
G :⊆ 2κ → 2κ such that

F ◦ L̂LPOκ = L̂LPOκ ◦G.

Proof. Let p ∈ dom(F ◦ L̂LPOκ), then by definition of composition we have L̂LPOκ(p) ⊆ dom(F),

hence F is uniformly continuous on L̂LPOκ(p). By Propositions 4.3.9 and 4.3.7, we can o-compute a

K(2κ) name of L̂LPOκ(p) and then by Lemma 4.3.8 we can o-compute a function mp : κ → κ which

is a modulus of uniform continuity of F on L̂LPOκ(p). Notice that we can assume without loss of
generality that mp(α) ≥ 1 for all α ∈ κ (this is because we can just impose this extra condition on the
computable realizer which we build in the proof of Lemma 4.3.8).

Using a machine for F , given any γ ∈ κ we can (uniformly in γ and p) o-compute (a code for) the
infinitary Boolean function fp,γ :⊆ 2mp(γ+1)+1 → 2 such that

F (q)(γ) = fp,γ((q(α)α∈mp(γ+1)+1))

for any q ∈ L̂LPOκ(p). To simplify the notation, we will denote mp(γ + 1) + 1 as γ̂ from this point of
the proof. Note that the functions fp,γ have domains given by

dom(fp,γ) = {x ∈ 2γ̂ | ∃q ∈ L̂LPOκ(p) (x ⊆ q)}.

By Corollary 4.3.17, we obtain (codes for) realizers Gp,γ :⊆ 2κ → 2κ of the ternary extensions f ′p,γ̂ .

We spell out what this means for clarity. First, recall that a code p for t ∈ Tγ̂ is a sequence such
that δT(pα) = tα for all α ∈ γ̂. Now the functions f ′p,γ have domains given by

dom(f ′p,γ) = {(tα)α∈γ̂ |
∏
α∈γ̂

L(tα) ⊆ dom(fp,γ)}.

Hence the set dom(f ′p,γ ◦ δTγ̂) is a superset of A = {q ∈ dom(L̂LPOκ) | L̂LPOκ(q) ⊆ dom(fp,γ)} which

in turn is a superset of dom(F)∩ L̂LPOκ(p). Second, a realizer Gp,γ for f ′p,γ is a function such that for
all sequences q ∈ dom(Gp,γ) coding sequences (tα)α∈γ̂ ∈ dom(f ′p,γ), Gp,γ(q) is a code for f ′p,γ((tα)α∈γ̂).
Lastly, by definition of δT we obtain that for all codes q ∈ dom(δT), LLPOκ(q) = L(δT(q)).

74

Now we can use the codes for the realizers Gp,γ to o-compute the function G :⊆ 2κ → 2κ defined
as

G(p) = 〈Gp,0(p), . . . , Gp,α(p), . . . , 〉.

By the argument above, we obtain that for all p ∈ dom(F ◦ L̂LPO), p ∈ dom(L̂LPOκ ◦G) and

L̂LPOκ(G(p)) =
∏
α∈κ

LLPOκ(Gp,α(p)) =
∏
α∈κ

L(δT(Gp,α(p))).

Again by the argument above we have that for every α ∈ κ, Gp,α(p) codes f ′p,γ((tη)η∈α) where (tη)η∈α =
δTα(p), i.e., LLPOκ(pη) = tη for all η ∈ α. Hence∏

α∈κ
L(δT(Gp,α(p))) =

∏
α∈κ

L((f ′p,α(δTα(p)))).

Notice that for any ordinal α ∈ κ and sequence p ∈ dom(L̂LPOκ ◦ G), by definition we have that

L(f ′p,α(δTα(p))) = fp,α[{x ∈ 2α | ∃q ∈ L̂LPOκ(p) (x ⊆ q)}], hence∏
α∈κ

L((f ′p,α(δTα(p)))) =
∏
α∈κ
{fp,α(x) | x ∈ 2α ∧ [x] ∩ LLPOκ(p) 6= ∅}.

By definition the functions fp,γ , for all x ∈ dom(fp,γ) and all p ∈ dom(F ◦ L̂LPOκ) with x ⊆ q for

some q ∈ L̂LPOκ(p) we have F (q)(γ) = fp,γ(x), hence we finally obtain∏
α∈κ
{fp,α(x) | x ∈ 2α ∧ [x] ∩ LLPOκ(p) 6= ∅} = F [L̂LPOκ(p)].

Putting everything together, this shows that L̂LPOκ ◦G = F ◦ L̂LPOκ thus proving the claim.

We remark that this result is the generalized analogue of [6, Theorem 7.10].

Finally we can prove that operations which Weihrauch reduce to L̂LPOκ relative the oracle o are
closed under composition:

Theorem 4.3.19. Assume Hypothesis 1.2.19, let o be a tree oracle, let κ be a weakly compact cardinal,
and let f and g be two composable operations on represented spaces such that f ≤oW L̂LPOκ and

g ≤oW L̂LPOκ, then g ◦ f ≤oW L̂LPOκ.

Proof. Since L̂LPOκ is a cylinder, we can assume both reductions are actually strong reductions (see
Corollary 1.3.16), hence there are o-computable functions H,K,H ′,K ′ such that for every L realizing

L̂LPOκ, H ′ ◦ L ◦K ′ is a realizer of f and H ◦ L ◦K is a realizer of g. Therefore, for any pair L and
L′ of realizers of L̂LPOκ, we have that H ◦ L ◦K ◦ H ′ ◦ L′ ◦K ′ is a realizer of g ◦ f . Since we can
assume that dom(K ◦H ′) ∪ ran(K ◦H ′) ⊆ 2κ, it follows by Proposition 4.3.18 that there exists some

o-computable function G such that K ◦H ′ ◦ L̂LPOκ = L̂LPOκ ◦G. Let F be the computable function
of Lemma 4.3.11 such that L̂LPOκ ◦ L̂LPOκ = L̂LPOκ ◦ F and define K ′′ = F ◦G ◦K ′. We obtain

H ◦ L̂LPOκ ◦K ◦H ′ ◦ L̂LPOκ ◦K ′ = H ◦ L̂LPOκ ◦K ′′

which in particular implies that for any realizer L of L̂LPOκ, H ◦ L ◦K ′′ realizes g ◦ f , i.e.. g ◦ f ≤oW
L̂LPOκ.

Similarly to the classical analogue, this result relativizes to any oracle which can compute o. Now,
by Proposition 1.2.22, for any operation f , if f ≤tW L̂LPOκ, then there exists an oracle q such that
f ≤qW L̂LPOκ. Without loss of generality we can assume that o ≤T q, as if this is not the case we can

consider q′ = 〈o, q〉. Therefore if f ≤tW L̂LPOκ and g ≤tW L̂LPOκ, there exists some oracle p with

o ≤T p such that f ≤pW L̂LPOκ and g ≤pW L̂LPOκ. This implies that we can appeal to Theorem 4.3.19

and obtain that g ◦f ≤pW L̂LPOκ and in particular g ◦f ≤tW L̂LPOκ. This shows that the topological

Weihrauch degrees under L̂LPOκ are also closed under composition. The situation is different for
L̂POκ:

75

Lemma 4.3.20. We have L̂POκ ◦ L̂POκ 6≤tW L̂POκ.

Proof. As in the classical case (see [6, Lemma 7.2]), a simple calculation shows that L̂POκ = C1 and

L̂POκ ◦ L̂POκ = C2. By Corollary 2.3.14 we obtain L̂POκ ◦ L̂POκ 6≤tW L̂POκ.

This immediately implies:

Corollary 4.3.21. Assuming Hypothesis 1.2.19, if κ is weakly compact, then L̂POκ 6≤tW L̂LPOκ.

Similarly to the other separation techniques, this result is used contrapositively to obtain the so-
called parallelization principle. We state it here, with explicit mention of the assumption of weak
compactness of κ.

Corollary 4.3.22 (Parallelization Principle). Assume Hypothesis 1.2.19, let κ be a weakly compact

cardinal and let f and g be operations on representd spaces such that LPOκ ≤W f and g ≤W L̂LPOκ.
We have f 6≤W g.

Proof. We prove the claim by contradiction: assume f ≤W g, then by transitivity we obtain LPOκ ≤W

L̂LPOκ and by the monotonicity of parallelization (cf. Proposition 1.3.18) we obtain L̂POκ ≤W

̂
(L̂LPOκ), By idempotency of parallelization we have

̂
(L̂LPOκ) ≡W L̂LPOκ, so in the end we obtain

L̂POκ ≤W L̂LPOκ. This is in contradiction with Corollary 4.3.21.

76

Chapter 5

Classification Results

The following chapter contains results concerning the Weihrauch degrees of the principles introduced
in Chapter 3. As we said before, the original aim of this thesis was to obtain a classification analogous
to the one in [7] for our generalized principles. A study of these generalized principles was started by
Galeotti in [16], where the author focused on topological Weihrauch degrees, and was expanded by
Galeotti in [17] and Galeotti and Nobrega in [19]. We interleave the exposition of our results with
discussion of how the latter compare with their classical analogues. Whenever unspecified, assume
that the classical spaces are equipped with representations analogous to the representations introduced
in Chapters 2 and 3 for their generalized counterparts.

5.1 What we have shown so far

We start the chapter with a proposition summarising the classification results already proven earlier
in this thesis.

Proposition 5.1.1. The following relations hold:

(a) assuming Hypothesis 1.2.19, for every n ≥ 1, Cn <W Cn+1 and Cn is complete with respect to
≤W for the set of single-valued, partial, Σ0

n+1-effectively measurable functions on κκ,

(b) L̂POκ ≡W C1,

(c) LLPOκ <W LPOκ, hence also L̂LPOκ ≤W L̂POκ,

(d) assuming Hypothesis 1.2.19 and weak compactness of κ, L̂LPOκ <W L̂POκ,

(e) if f is a computable operation between represented spaces, LLPOκ 6≤W f .

Proof. Item (a) is Theorem 2.3.12 and Corollary 2.3.14. Item (b) is trivial as L̂POκ and C1 are
actually the same function. The positive part of item (c) is in Proposition 4.3.2, the negative part is,
as we mentioned in Section 4.3, a consequence of the straightforward generalization of [40, Theorem
4.2]. Item (d) is Corollary 4.3.21. Item (d) is an immediate consequence of the fact that LLPOκ is
discontinuous, hence noncomputable.

We now turn to the remaining reducibility and non-reducibility results which we can prove about
the principles of Chapter 3. Some of these are due to Galeotti, others are due to the author. Results
not due to the author are specifically advertised as such, and their proofs are omitted.

77

5.2 The principle L̂POκ and translating functions

5.2.1 Introduction

An interesting property of L̂PO in the classical context is that it has the same Weihrauch degree of
the functions ECω : ωω → 2ω and BR : R< → R,1 both of which are defined in a way that is analogous
to the functions ECκ and B defined in Chapter 3.

Proposition 5.2.1. We have BR ≡W ECω ≡W L̂PO.

Proof. See [39, Theorem 4] for a proof of BR ≡W ECω. The fact that L̂PO ≡W ECω is well known
and it is proven as in Proposition 5.2.2.

We point out that both ECω and BR (and their generalized counterparts) are functions serving as
translations between representations of the same object. For instance, let A ⊆ ω be any set. A way
of completely specifying A is by giving a sequence p ∈ ωω such that ran(p) = A. It is well known that
this representation is “computationally poor”. We give an intuition of what we mean by this. For any
n ≥ 1, let An = ran(p�n) be the approximation of A corresponding to the information that we can
obtain from the initial segment of length n of p. The only thing we can really say about the relation
between the approximations An and A is that An ⊆ A. On the other hand, having access to an initial
segment of length n of χA gives us an approximating set A′n = A ∩ n. In particular it allows us to
be sure that A′n and A differ at most on numbers greater than or equal to n.2 Similarly, a δR<-name
p ∈ ωω for x ∈ R is a computationally poor description of x as knowledge of p�(n+ 1) only tells us that
x is greater than the rational coded by p(n). This is not the case for δR-names q of x, as knowledge
of q�(n+ 1) tells us that, letting qn denote the rational coded by q(n), x ∈ [qn − 2−n, qn + 2−n].3 In
light of this analogy, it is rather plausible that ECω ≡W BR: a way to prove it relies on the close
computational connection between subsets of the natural numbers and real numbers given by the
function

A 7→ s(A) =
∑
n∈A

2−(n+1) (5.1)

for any A ⊆ ω. It is well known that this function is a bijection between the set of infinite subsets of
ω and the unit interval, moreover, given any set A ⊆ ω, the difference between having access to An
and A′n is analogous to the difference between knowing p�n for some δR<-name p of s(A) and knowing
q�n for some δR-name q of the same real number.

In this section we present a proof of the equivalences L̂POκ ≡W ECκ ≡W B. The reduction
B ≤W ECκ is obtained similarly to the corresponding reduction between their classical counterparts.
The reduction ECκ ≤W B is based on a connection discovered by the author between unbounded
subsets of κ and generalized reals analogous to (although not as strong as) the one established by
Equation (5.1). This connection is based on Conway Normal Form (Theorem 1.4.18). The equiva-

lence L̂POκ ≡W ECκ follows by a straightforward computational proof analogous to the classical one.

5.2.2 The equivalence ECκ ≡W L̂POκ and the reduction B ≤W ECκ

We begin with the proof of the equivalence between ECκ and L̂POκ. Note that both the latter
operations are single valued, total functions on the generalized Baire/Cantor spaces κκ and 2κ, which
we assume are represented with the identity representations. This implies that the each function is
its own (only) realizer.

1See [7] for the formal definition of BR (there denoted as B) and [39] for a formal definition of ECω (there denoted as
EC). Note that the principle BR appears in multiple equivalent forms (with different names) in [39] as well.

2Another way to see this is that a Turing machine with oracle access to χran(p) can decide ran(p), whereas a Turing
machine with access to p can in general only semidecide ran(p).

3Note that qn is an approximation of x accurate to a precision of 2−n because the fast convergence Cauchy condition
for classical computable metric spaces traditionally requires a rate of convergence given by n 7→ 2−n. Of course, the
initial segment q�(n+ 1) tells us even more, namely (in the terminology of Chapter 2), that x ∈ cl(compatq�n).

78

Proposition 5.2.2. We have ECκ ≡sW L̂POκ.

Proof. We prove ECκ ≤sW L̂POκ: define the Type 2 computable function F : κκ → κκ given by:

F (pα, βq) =

{
0 if α ∈ ran(p�β),
1 otherwise.

It is immediate to see that, for every α ∈ κ:

L̂POκ(F (p))(α) = 0 ⇐⇒ ∃β((F (p))α(β) = 0) ⇐⇒ α ∈ ran(p) ⇐⇒ χran(p)(α) = ECκ(p)(α) = 1.

Therefore, if we let G be a simple negating function, we obtain that G ◦ L̂POκ ◦ F = ECκ, hence
ECκ ≤sW L̂POκ.
To see that L̂POκ ≤sW ECκ, we define the Type 2 computable function K : κκ → κκ given by:

K(pα, βq) =

{
α+ 1 if pα(β) = 0,
0 otherwise.

Again it is immediate to see that, for every α ∈ κ,

ECκ(K(p))(α+ 1) = 1 ⇐⇒ α+ 1 ∈ ran(K(p)) ⇐⇒ ∃β((p)α(β) = 0) ⇐⇒ L̂POκ(p)(α) = 0.

Therefore, if we define the Type 2 computable function H : 2κ → κκ as

H(q)(α) = 1 .− q(α+ 1),

we obtain that H ◦ ECκ ◦K = L̂POκ. This proves that L̂POκ ≤sW ECκ.

We now prove the easier direction of the equivalence ECκ ≡W B.

Proposition 5.2.3. We have B ≤W ECκ.

Proof. We define a function F : κκ → κκ as

F (p)(pα, β, γq) =

{
pβ, γq+ 1 if α > γ ∧ |δQκ(pα)− δQκ(pγ)| ≥ 1

β+1 ,

0 otherwise.

The fact that F is Type 2 computable follows from the fact that the Rκ operations and ordering
restricted to Qκ are Type 1 computable with respect to the representation δQκ and from the fact that,
given any ordinal β, we can compute a δQκ-code for 1

β+1 . We obtain that for every p ∈ κκ,

ran(F (p)) =
{
pβ, γq+ 1 | ∃α > γ

(
|δQκ(pα)− δQκ(pγ)| ≥ 1

β+1

)}
.

Therefore we know that

χran(F (p))(pβ, γq+ 1) = 0 ⇐⇒ ∀α > γ
(
|δQκ(pα)− δQκ(pγ)| < 1

β+1

)
, (5.2)

for all α > γ. We also define the Type 2 computable function H :⊆ κκ → κκ as

H(〈p, q〉)(β) =

{
↑ if Hβ,q = {γ ≥ (sup(ran(H(〈p, q〉))�β) + 1) | q(pβ, γq+ 1) = 0} = ∅,
p(δ) if Hβ,q 6= ∅ ∧ δ = minHβ,q.

Now let p ∈ dom(δ(Rκ)<), so p codes a strictly increasing sequence of κ-rationals converging to
some κ-real x. Consider the sets of the form Hβ,χran(F (p))

given by

Hβ,q = {γ ∈ κ | χran(F (p))(pβ, γq+ 1) = 0}.

By the equivalence in (5.2) we know that each Hβ is nonempty if and only if there exists η ∈ κ such
that |δQκ(pα) − δQκ(pη)| < 1

β+1 for all α > η. Requiring this for every β is equivalent to requiring
that the sequence coded by p is Cauchy, and this is always the case because the sequence coded by

79

p converges. This implies that {〈p, χran(F (p))〉 | p ∈ dom(δ(Rκ)<)} ⊆ dom(H). We show that for all
p ∈ dom(δ(Rκ)<), if δ(Rκ)< = x, then δRκ(H(〈p, χran(F (p))〉)) = x. For ease of notation, we will denote
H(〈p, χran(F (p))〉) as p′ from now on.

First, notice that it is clear from the definition of H that the sequence p′ is a subsequence of p,
hence the sequence of κ-rationals coded by p′ converges to x. This means that we only need to prove
that p′ codes a fast convergent sequence, i.e., that for all β ∈ κ and all γ > β,

|δQκ(p′β)− δQκ(p′γ)| < 1
β+1 .

By definition of H, we have that if p′β = pδ, then

|δQκ(p′β)− δQκ(pγ)| < 1
β+1

holds for every γ ≥ δ, which implies that

|δQκ(p′β)− δQκ(p′γ)| < 1
β+1

holds for all γ > β because, again by definition of H, p′γ = pξ for some ξ > δ. This shows that p′ is a
δRκ-name for δ(Rκ)<(p), theefore we have that the function,

p 7→ H〈p, χran(F (p))〉 = H〈p,ECκ(F (p))〉

with domain given by ∈ dom(δ(Rκ)<) is a realizer of B. This shows the required reduction.

5.2.3 Computable Conway Normal Form and the reduction ECκ ≤W B

We now set out to proving the reduction in the other direction. As mentioned before, we first need to
develop some results on transfinite sums and the Conway Normal Form for selected elements of Rκ.
The intuition behind our constructions is that we want to obtain a way to encode arbitrary subsets of
κ as elements in Rκ in a way that is “computably invertible”. We will develop the necessary analytic
and computational results simultaneously.
Similarly to the classical situation, our encoding will actually only work with unbounded subsets of
κ, but this is an unproblematic detail.

Definition 5.2.4 (Unbounded counterpart). Let A be any subset of κ, define its unbounded counter-
part as

U(A) = {β | ∃α ∈ A (β is the α-th even ordinal)} ∪ {β ∈ κ | β odd }.

We immediately obtain:

Lemma 5.2.5. The function U : P(κ) → P(κ) is an injection. Moreover, for all A ⊆ κ, U(A) is
unbounded in κ.

Lemma 5.2.6. The function Uχ : 2κ → 2κ defined as Uχ(x) = y iff y = χU(A) where χA = x is Type
2 computable and has a (partial) Type 2 computable left inverse U−1χ , where dom(U−1χ) = ran(Uχ).

Proof. A machine computing Uχ can just print 1 on odd indexed cells and print i on the cell indexed
by the α-th even ordinal, if the α-th bit of input is i. Note that this machine computes Uχ by means
of an approximating function u : 2<κ → 2<κ such that for every w ∈ 2<κ and every α ∈ dom(w), the
α-th even ordinal belongs to dom(u(w)). Computing U−1χ is simply achieved by copying the portion
of input tape indexed by even ordinals on the output tape.

We now show that computing transfinite sums of surreal numbers of the form∑
α∈κ

ωaα · rα,

where (aα)α∈κ is a strictly decreasing cofinal sequence of κ-rationals, is a computable operation. The
proof of this fact consists of several steps. We mention here that, by the results in Section 1.4.3, we
know that the representations δQκ and δcQκ are computably equivalent, as well as being equivalent
to the notation νQκ under Hypothesis 1.2.19. Moreover, translations between different names for a
κ-rational are Type 1 computable procedures. We will use these facts extensively in the rest of this
section.

80

Lemma 5.2.7. The function exp: Qκ → Qκ given by the restriction of the surreal ω-map

exp(x) = ωx

to the κ-rationals is δcQκ-computable.

Proof. First, notice that the function exp is well defined: in view of Theorem 1.4.23, we know that
the ω-map, restricted to Qκ, has range contained in Qκ.
We now describe a recursive procedure which determines a computable realizer for the function exp.
On input q ∈ dom(exp ◦δcQκ) coding the κ-rational x, we call our machine recursively on all left and
right elements of the cut for x coded by q to compute a δcQκ-name for each of the elements of

L = {0, n · ωxL | xL ∈ Lx, n ∈ ω},

R = {1/n · ωxR | xL ∈ Rx, n ∈ ω}.

By Lemma 1.4.12 we know that [L|R] = ωx. To see why these sets can be computed, recall that, as
we mentioned in Section 1.4, we can always assume that δcQκ codes represent κ-rationals as canonical
cuts. Therefore, for any κ-rational, the recursively called function is completely computed in fewer
than κ steps.

We remark that the computations of the realizer of exp, as is the case for any other computable
realizer of functions on the κ-rationals, can be considered as Type 1 computations by the nature of
the representation δQκ . In a way, the previous lemma serves as the inductive step for the construction
in the following:

Proposition 5.2.8. Assume Hypothesis 1.2.19. The operation S :⊆ (Qκ)κ× (Qκ)κ → (Qκ)κ given by

S(e, r)(β) =
∑
α∈β

ωe(α) · r(α),

with
dom(S) = {(e, r) | e ∈ (Qκ)κ ↓ ∧ r ∈ Rκ},

where we use the notation (Qκ)κ ↓ to denote the set of strictly decreasing sequences of κ-rationals,
is [δ(Qκ)κ × δ(Qκ)κ , δ(Qκ)κ]-computable. Here, the representation δ(Qκ)κ of (Qκ)κ is the sequence space
representation associated to the space (Qκ, νQκ) (see Definition 1.3.2).

Proof. Again we first prove that the function S is well defined, i.e., that S(e, r)(β) ∈ Qκ for all β ∈ κ
and (e, r) ∈ dom(S). To do so, fix a pair of sequences (e, r) in dom(S): we prove by induction on
the ordinals that the surreal numbers S(e, r)(β) are actually κ-rationals for every β ∈ κ. The claim
for β = 0 is obvious. If β = γ + 1 and S(e, r)(γ) ∈ Qκ, notice that ωe(γ) ∈ Qκ by Lemma 5.2.7 and
R ⊆ No≤ω ⊆ Qκ, so

S(e, r)(β) = S(e, r)(γ) + ωe(β) · r(β) ∈ Qκ,

because Qκ is a field. Lastly if β is a limit ordinal with S(e, r)(γ) ∈ Qκ for all γ < β, then the cut
(Lβ, Rβ) is given by a pair of sets of κ-rationals containing fewer than κ elements each. Since Qκ is
an ηκ-set, the surreal [Lβ|Rβ] identified by it is a κ-rational.

Now we turn to the description of a computable realizer of S. Let p code a pair (e, r) in dom(S),
we build a code q for S(e, r) recursively. We have S(e, r)(0) = 0, therefore we can set q(0) to be
any νQκ code for 0. Assume we have computed q�β and we want to compute q(β). We make a case
distinction, if β = γ + 1 is a successor ordinal, then

S(e, r)(β) = S(e, r)(γ) + ωe(β) · r(β).

By Lemma 5.2.7 (keeping in mind that we can translate back and forth between νQκ and δQκ codes for
rationals) we can compute a code η for ωe(β) from the code of e(β). Subsequently, we use computable
realizers of the field operations with the code η together with the code q(γ) and the code for r(β) to
compute a code q(β) for S(e, r)(β).

81

If β is a limit ordinal, we convert the ordinal codes in q�β to δcQκ names for the rationals

(S(e, r)(γ))γ∈β

and we use the computability of the field operations to compute a δcQκ-name for the cut [Lβ|Rβ] where

Lβ =

{∑
α∈γ

ωe(α) · s(α)

}
where γ ranges over β, s(α) = r(α) for all α ∈ γ and sγ ranges over {r(γ)− 1/n | n ∈ ω} and

Rβ =

{∑
α∈γ

ωe(α) · s′(α)

}
where γ ranges over β, s′(α) = r(α) for all α ∈ γ and s′(γ) ranges over {r(γ) + 1/n | n ∈ ω}. It is
obvious that for every real coefficient r(β), we can actually compute the sets {r(γ) − 1/n | n ∈ ω}
and{r(γ) + 1/n | n ∈ ω}. In light of this, we see that computing a δcQκ code for [Lβ | Rβ] is feasible as
we can Type 1 compute δcQκ codes for each element of either side in (Lβ, Rβ), and each side contains
fewer than κ elements. As we mentioned in Section 1.4, the cut [Lβ | Rβ] corresponds to the sum

S(e, r)(β) =
∑
α∈β

ωe(α) · r(α).

Once we have a δcQκ-name for S(e, r)(β), we convert it to an ordinal η such that
νQκ(η) = S(e, r)(β) and we set q(β) = η. This shows that the operation S admits a computable
realizer.

We remark that the assumption of Hypothesis 1.2.19 in the proof above is completely inessential
and it is a byproduct of our choice of representations for the set (Qκ)κ. The algorithm presented in
the proof would work just as well if we were working with the sequence space representation of (Qκ)κ

obtained from δQκ , and in those terms it would not need the assumption of Vκ = Lκ. The reason
the proposition is stated in terms of νQκ is to be uniform with its end-goal, Proposition 5.2.15, which
crucially needs the assumption of Hypothesis 1.2.19.

We turn to some analytical properties of the function S. First we show that for every (e, r)
such that e is coinitial in Qκ, the sequence (sβ)β∈κ = S(e, r)(β) is Cauchy, hence convergent in Rκ.
Further, for every (e, r) ∈ dom(S), the limit of the sequence (S(e, r)(β))β∈κ coincides with the full
sum

∑
α∈κ ω

e(α) · r(α).

Lemma 5.2.9. Let (e, r) ∈ dom(S) be such that e is coinitial in Qκ and let (sβ)β∈κ = (S(e, r)(β))β∈κ.
The sequence (sβ)β∈κ is Cauchy, hence convergent, in Rκ.

Proof. To prove that (sβ)β∈κ is Cauchy, we need to show that for every r ∈ R+
κ , there is an ordinal γ

such that if η, ξ > γ, then
|sη − sξ| < r.

Since the set {1/α | 0 < α < κ} is coinitial in R+
κ , it is enough to show that for every 0 < β ∈ κ, there

is an ordinal γ such that if η, ξ > γ, then

|sη − sξ| < 1
β .

To this end, fix a nonzero ordinal β < κ. Since e is coinitial in Qκ, there is an index γ such that
e(γ) < −β. Now for any η, ξ > γ, the tail property (equation 1.1 in Theorem 1.4.16) entails that

|sη − sξ| � ωe(γ).

Therefore, since e(γ) < −β and β ≤ ωβ,

|sη − sξ| < 1
β .

This shows that (sβ)β∈κ is Cauchy, and since Rκ is Cauchy complete, (sβ)β∈κ converges to some
s ∈ Rκ.

82

Lemma 5.2.10. Let (e, r) ∈ dom(S) be such that e is coinitial in Qκ, let (sβ)β∈κ = (S(e, r)(β))β∈κ
and let s = limβ∈κ sβ. We have that

s = sκ =
∑
α∈κ

ωe(α) · r(α).

Proof. Let (e′, r′) be the reduced sequence associated to (e, r). There are two possible options: if
dom(r′) = λ < κ, then by the regularity of κ there must be some λ′ such that r(η) = 0 for every
η > λ′. In this case, (sα)α∈κ is eventually constant with value sλ′ , therefore it is trivially convergent.
In case λ = κ, define the sets of κ-rationals Lκ and Rκ as

Lκ = {sβ + ωe(β) · r′(β) | r′(β) ∈ R<r(β), β ∈ κ},

and
Rκ = {sβ + ωe(β) · r′(β) | r′(β) ∈ R>r(β), β ∈ κ}.

By definition we have sκ = [Lκ|Rκ]. We claim that L < s < R: suppose by contradiction that
L does not lie below s, then there must be an ordinal β and a real number ` < r(β) such that
s ≤ sβ + ωe(β) · `, which implies in particular that

|s− sβ+1| ≥ |sβ+1 − (sβ + ωe(β) · `)| = ωe(β) · (r(β)− `) ∼a ωe(β). (5.3)

The sequence (sα)α∈κ converges to s. So, in particular there is an index η such that for all γ ≥ η, we
have

|s− sγ | < ωe(β)−1 � ωe(β).

Further, by the tail property we obtain that for all γ > β + 1,

|sγ − sβ+1| � ωe(β).

Therefore, if we pick γ′ > max{η, β + 1} we obtain that

|s− sβ+1| ≤ |s− sγ′ |+ |sγ′ − sβ+1| � ωe(β),

since, if x, y and a are any non-negative surreal numbers such that x� a and y � a, then it follows
that x + y � a. This is in contradiction with (5.3). An analogous argument shows that s < R,
therefore we obtain L < s < R. By the Fundamental Exitence Theorem (Theorem 1.4.3), we get
sκ ⊆ s. Now by Lemma 1.4.17, we know that l(sκ) ≥ κ and by Theorem 1.4.26 we know that l(s) ≤ κ
as s ∈ Rκ. This means that the only possibility is that l(s) = l(sκ) = κ and s = sκ.

Definition 5.2.11 (Limit map). We define the limit map l :⊆ (Qκ)κ → Rκ as

l((qα)α∈κ) = lim
α∈κ

((qα)α∈κ),

with dom(l) = {(qα)α∈κ ∈ (Qκ)κ | (qα)α∈κ converges}.

By Lemma 5.2.10, we can form the composition l ◦ S′ where S′ is the restriction of the function S
to pairs (e, r) where e is coinitial in Qκ.

Lemma 5.2.12 (Computable transfinite sums). Assume Hypothesis 1.2.19. The function T :⊆
(Qκ)κ × (Qκ)κ → Rκ defined as T = l ◦ S′ is (δ(Qκ)κ × δ(Qκ)κ , δRκ)-computable.

Proof. By Proposition 5.2.8 there is a T2κTM M which computes a realizer of S′. Given a sequence
p coding a pair (e, r) ∈ dom(T), we simulate the machine M on p. The simulated output is a δ(Qκ)κ
code for the sequence (sβ)β∈κ defined as

sβ =
∑
α∈β

ωe(α) · r(α).

83

By Lemma 5.2.10, this sequence converges to y = T (e, r). This in particular means that (sβ)β∈κ is
Cauchy. More precisely, we know that e is coinitial in Qκ, hence if we let δ′ be any ordinal such that
e(δ′) < −γ, the tail property immediately implies that

|sη − sξ| � ω−γ ∼a 1
γ+1 ,

for every η, ξ > δ′. This shows that any such δ′ is a witness for the fact that (sβ)β∈κ satisfies the
instance of the Cauchy condition for the bound 1

γ+1 . It is clear that for any given γ, it is possible to

compute the least such δ′. This implies that we can compute (uniformly in the code p) the sequence
qp ∈ κκ defined as:

qp(α) = min{δ | e(δ) < −γ}.

A computable realizer N for the function T then behaves as follows: on input p, it computes the
sequence of rationals coded by M(p) as well as the sequence of ordinals qp. While doing this, it prints
the subsequence N(p) of M(p) given by

N(p)(α) = M(p)(qp(α)).

By construction N(p) codes a fast convergent Cauchy sequence with limit T (e, r), i.e., T is computable.

In the same way as for Proposition 5.2.8, the assumption of Hypothesis 1.2.19 is inessential. Notice
that by Theorem 1.4.27 we know that ran(T) = Rκ.

Lemma 5.2.13. Assume Hypothesis 1.2.19. The function T admits a [δRκ , δ(Qκ)κ×δ(Qκ)κ]-computable
inverse CNF: Rκ → (Qκ)κ × (Qκ)κ.

Proof. Again we exploit the computability of the function S. Let M be a T2κTM which computes the
realizer described in the proof of Proposition 5.2.8. Let m :⊆ κ<κ → κ<κ be the Type 1 computable
function associated to M as in Lemma 1.2.21. By inspection of the proof of Proposition 5.2.8 it is
immediate to see that if w ⊆ q for some q ∈ dom(S ◦ δ(Qκ)κ×(Qκ)κ), then |w| = |m(w)| and the word
m(w) consists of a sequence of ordinals coding (via the notation νQκ) the sequence of rationals (sα)α∈|w|
corresponding to the partial sums. Notice that for any given short sequence of ordinals w, we have
that the machine M can Type 1 decide whether w can be extended to a code q ∈ dom(S◦δ(Qκ)κ×(Qκ)κ).
Call this set of “extendible words” A.

Consider the machine N which has a scratch tape Ti reserved as an ordinal register and, on input
p ∈ dom(δRκ), in parallel, generates all words w ∈ A with |w| a successor ordinal, computes sequences
m(w) and parses the code p until it finds a word w′ ∈ κ<κ and an ordinal β such that:

(a) the word w′ codes a pair of sequences ((eα)α∈λ+2, (rα)α∈λ+2) for some λ and, if (sα)α∈λ+2 is the
sequence of partial sums coded by m(w′), we have that |sλ+1 − νQκ(p(β))| < ωe(λ+1)−1,

(b) it is the case that 1
β+1 < ωe(λ+1)−1 � ωe(λ+1),

We claim that whenever this is the case, the reduced sequence ((e′α)α∈γ , (r
′
α)α∈γ) corresponding to

((eα)α∈λ+1, (rα)α∈λ+1) is an initial segment of the sequence of exponent-coefficient pairs in the Conway
Normal Form of T (δRκ(p)). To see this, notice that

|νQκ(p(β))− δRκ(p)| ≤ 1
β+1 � ωe(λ+1) and |νQκ(p(β))− sλ+1| < ωe(λ+1)−1 � ωe(λ+1),

where the first inequality is due to the fast convergence condition on p together with our assumption on
β and the second is by assumption on νQκ(p(β)). By the triangle inequality, we get |sλ+1− δRκ(p)| �
ωe(λ+1), so by Lemma 1.4.19, their Conway Normal Forms coincide up to exponents below e(λ + 1),
i.e., ((e′α)α∈γ , (r

′
α)α∈γ) is the beginning of the Conway Normal Form for δRκ(p).

Now, whenever N finds a word w′ coding the sequence ((eα)α∈λ+2, (rα)α∈λ+2) and an ordinal β
satisfying the conditions above, it performs the following actions: if r(λ) 6= 0, it computes a word
w′′ coding the reduced sequence ((e′α)α∈λ′ , (r

′
α)α∈λ′) corresponding to ((eα)α∈λ+1, (rα)α∈λ+1) (doing so

just requires erasing those pairs which feature a null real coefficient), then it updates the output tape

84

to match the word w′′ in the following sense: if the output tape contains a word t coding a (potentially
non-reduced) sequence ((fα)α∈γ , (sα)α∈γ), then we know that the reduced sequence ((f ′α)α∈γ′ , (s

′
α)α∈γ′)

must be compatible with ((e′α)α∈λ′ , (r
′
α)α∈λ′). In case the former is shorter than the latter, N appends

bits to the end of the output tape to make them coincide. The machine N then updates the tape Ti
to contain the least ordinal η such that −η < e(λ).

On the other hand, assume w′ codes a pair of sequences ((eα)α∈λ+2, (rα)α∈λ+2) with r(λ) = 0, then
again we know that the reduced sequence ((e′α)α∈λ′ , (r

′
α)α∈λ′) corresponding to ((eα)α∈λ+1, (rα)α∈λ+1)

is an initial segment of the Conway Normal Form of δRκ(p). In this situation, the machine checks
whether e(λ + 1) ≤ −η where η is the current content of the tape Ti. If so, it computes a word w′′

coding ((e′α)α∈λ′ , (r
′
α)α∈λ′) and concatenates it with a code for (e(λ), r(λ)), then updates the output

tape to match this word as above. If, on the other hand e(λ+ 1) > −η, then the machine ignores the
word w, β and goes on in its computation. Notice that we can exploit the lim sup rule to make sure
that the content of Ti is set to the supremum of its values at any limit ordinal step of computation.

This behaviour is constructed so that the machine N appends a code for a “useless” pair (e(λ), r(λ))
where r(λ) = 0 only when the exponent e(λ) is “sufficiently far” from the previous exponents. As we
will show, this is sufficient to ensure that N behaves correctly.

It is clear that for any p ∈ dom(δRκ) and any ξ, the content of the output tape at time step ξ
codes a sequence which, when reduced, is an initial segment of the Conway Normal Form of δRκ(p). It
is also straightforward to see that the machine N runs indefinitely on all inputs p ∈ dom(δRκ). So, all
we have to show is that on any input p ∈ dom(δRκ), N produces a code for the full Conway Normal
Form of p.

Since the reduced counterpart of the sequence coded by the output tape at any time is an initial
segment of the Conway Normal Form of δRκ(p), this boils down to showing that, if N(p) codes the
sequence ((eα)α∈κ, (rα)α∈κ), and for some λ ∈ κ, it is the case that r(η) = 0 for all η ≥ λ, then it must
be that the reduced sequence corresponding to ((eα)α∈λ, (rα)α∈λ) is already the Conway Normal Form
of δRκ(p). Notice that at any step of computation, the ordinal η contained in the tape Ti is such that
−η is a lower bound for the exponents coded by the current output. Moreover, the ordinal counter Ti
increases by at least 1 each time the machine N prints a code for a pair (e, 0). An easy induction then
shows that, at any step of computation and for any ordinal β, if the output tape codes a sequence
containing β-many null real coefficients, then for every α < β, the Conway Normal Form of δRκ(p) up
to exponents ≤ − α is coded by the current output tape. This immediately implies what we wanted
to show, therefore concluding the proof that N computes a realizer of CNF.

The last technical tool that we need to introduce is the following function, which is in practice a
cleanup routine for the Conway Normal Form of κ-reals which have a κ-long Conway Normal Form.

Definition 5.2.14 (Cleanup function). We define the cleanup function c :⊆ Qκ
κ×Qκ

κ → Qκ
κ×Qκ

κ, as

c(e, r) = (e′, r′),

where dom(c) = {(e, r) ∈ dom(T) | r is not eventually 0} and (e′, r′) is the reduced sequence corre-
sponding to (e, r).

It is clear that the function c has a computable realizer.

We can finally prove the reverse direction of Proposition 5.2.3.

Proposition 5.2.15. Assuming Hypothesis 1.2.19, we have ECκ ≤sW B.

Proof. We want to show that there are Type 2 computable functions H,K :⊆ κκ → κκ such that for
all p ∈ κκ and for all realizers A of B, we have that H(A(K(p))) = χran(p). We build a function K
such that for every p ∈ κκ, and every A realizing B the real δRκ(K(p)) fully encodes ran(p) in its
Conway Normal Form.

We define the function F : 2κ → (Qκ)κ × (Qκ)κ given by

F (x) = ((−α)α∈κ, (x(α) + 1)α∈κ),

85

in other words, function F associates to any x ∈ 2κ the sequence of exponent-coefficient pairs where
the exponents are the additive inverses of all the ordinals in κ and the α-th coefficient is 2 if x(α) = 1
and 1 if x(α) = 0. It is clear that F is computable and that it admits a computable inverse F ′.
Moreover, we define the function G : κ<κ → 2κ given by G(w) = Uχ(w′), where w′ = χran(w). We
immediately see that G is also Type 2 computable. Lastly let R be the computable realizer of the
function S defined in Proposition 5.2.8. Define the Type 2 computable function K : κκ → κκ as

K(p)(β) = R(F (G(p�β)))(β).

An explanation is in order: what this means is that K(p)(β) corresponds to a νQκ-code for the
κ-rational

sβ =
∑
α∈β

ω−α · vα,

where vα = 1 if α /∈ ran(Uχ(p�β)) and where vα = 2 if α ∈ ran(Uχ(p�β)). In other words, the
κ-rational sβ has Conway Normal Form given by F (G(p�β))�β.

We claim that, for all p ∈ κκ, the sequence K(p) codes a strictly increasing sequence of κ-rationals:
if α < γ, then ran(p�α) ⊆ ran(p�γ), hence Uχ((p�α))(η) ≥ Uχ((p�γ))(η) for all η. Therefore we get
F (G(p�α)) ≤ F (G(p�γ)) in the lexicographical order the sequences of exponent-coefficient pairs (cf.
Section 1.4), and in particular, since all the coefficients are positive F (G(p�α))�α < F (G(p�γ))�γ in
the same ordering. The fact that the surreal ordering coincides with the ordering of sequences on their
Conway Normal Forms (cf. Theorem 1.4.16) then establishes that δ(Qκ)κ(K(p)) is strictly increasing.

Now notice that G is not monotone, but it has the property that for all p ∈ κκ, the sequence
(G(p�α))α∈κ is pointwise convergent and its pointwise limit is the function Uχ(χran(p)) = Uχ(ECκ(p)).

By construction it is clear that, for all p ∈ κκ, the sequences δ(Qκ)κ(K(p)) and S(F (Uχ(ECκ(p))))
are mutually cofinal, and by Proposition 5.2.8 S(F (Uχ(ECκ(p)))) converges to some real sp, hence
δ(Qκ)κ(K(p)) converges to sp too. Notice that by Lemma 5.2.10, the sequence F (Uχ(ECκ(p))) is the
(reduced) Conway Normal form of sp. Now, by definition of δ(Rκ)< we see that K(p) is a δ(Rκ)<-name
for sp. Hence, for any realizer A of B, K(p) ∈ dom(A) and A(K(p)) is a δRκ-name for sp.

Now let D :⊆ κκ → κκ be a computable realizer of the function c◦CNF and let E be a computable
realizer of F−1 and define H = U−1χ ◦ E ◦D: we get that, for all p ∈ κκ

H(A(K(p))) = U−1χ ◦ E ◦D(A(K(p))) = U−1χ ◦ E ◦D(sp) = U−1χ (Uχ(ECκ(p))) = ECκ(p),

where the second to last equality is due to the fact that D(sp) is a code for the (reduced) Conway
Normal Form of sp, hence E(D(sp)) is the unique x ∈ 2κ such that F (x) = c ◦ CNF(sp) i.e., x =
Uχ(ECκ(p)).

Corollary 5.2.16. Assuming Hypothesis 1.2.19, we have B ≡W ECκ ≡W L̂POκ.

While we were developing Proposition 5.2.15, we produced some results on a way of seeing Rκ in
terms of transfinite sums as side effects. We summarize them here.

First we can define yet another representation of Rκ.

Definition 5.2.17 (Sum representation of Rκ). Define the representation δsRκ :⊆ κκ → Rκ as

δsRκ(p) = r,

if and only if T (δ(Qκ)κ×(Qκ)κ)(p) = r.

Lemma 5.2.18. Assuming Hypothesis 1.2.19, we have δsRκ ≡c δRκ.

Proof. We neeed to show that there are Type 2 computable functions H and K such that for all r ∈ Rκ
and all δsRκ-codes p for r, H(p) is a δRκ-code for r and viceversa, for any δRκ-code q for r, K(q) is a
δsRκ-code for r. By Lemma 5.2.12, any computable realizer of T works as H, while by Lemma 5.2.13,
a computable realizer of CNF works as K.

86

We mention here that in the literature one can find algorithms to compute the surreal field oper-
ations in terms of sum representations, see e.g., [21], Theorem 5.7 and Theorem 5.8. We conjecture
that adaptations of these can be used to provide alternative proofs of the computability of the Rκ
operations.

The sum representation also affords us a relatively natural, computable correspondence between
special subsets of Qκ and elements of Rκ. As −κ ⊆ Qκ, this in turn yields a computable correspondence
between unbounded subsets of κ and κ-reals reminiscent of the correspondence in the classical setting.

5.3 The principles L̂LPOκ, Sepκ, and trees

The parallelized lesser principle of omniscience L̂LPO is central in the classification of classical choice
and boundedness principle of [7]. In this section we present what we currently know about the status

of L̂LPOκ and the generalizations of the principles which are classically related to it.

We start by proving that, as in the classical setting, L̂LPOκ = Sepκ. The proof is a rather
straightforward computation, which can be carried out in the same exact way both in the generalized
setting and in the classical setting.

Proposition 5.3.1. We have L̂LPOκ ≡sW Sepκ.

Proof. We first show that Sepκ ≤sW L̂LPOκ: define the Type 2 computable function K :⊆ κκ → κκ

as

K(〈p, q〉)(pα, βq) =

1 if β is the γ-th odd ordinal for γ = min{η | p(η) = α},
1 if β is the γ-th even ordinal for γ = min{η | q(η) = α},
0 otherwise.

with dom(K) = dom(Sepκ). We obtain that (K(〈p, q〉))α has a non-zero entry on an in odd indexed
position if and only if α ∈ ran(p), similarly it has a non-zero entry in an even indexed position
if and only if α ∈ ran(q). For 〈p, q〉 ∈ dom(Sepκ) we know that ran(p) ∩ ran(q) 6= ∅, therefore

K(〈p, q〉) ∈ dom(L̂LPO)κ. Now, let L be any realizer of L̂LPOκ, 〈p, q〉 ∈ dom(Sepκ) and α ∈ κ: we
obtain

L(K(〈p, q〉))(α) = 0 =⇒ ∀α even K(〈p, q〉)(α) = 0 ⇐⇒ α /∈ ran(q),

and similarly

L(K(〈p, q〉))(α) = 1 =⇒ ∀α odd K(〈p, q〉)(α) = 0 ⇐⇒ α /∈ ran(p).

Now let H : 2κ → 2κ be the negating function

H(p)(α) = 1− p(α),

then, for every 〈p, q〉 ∈ dom(Sepκ) and every realizer L of L̂LPOκ:

H(L(K(〈p, q〉))) = 1 ⇐⇒ α /∈ ran(q).

Therefore H(L(K(〈p, q〉))) is the characteristic function of the set κ \ ran(q), i.e., H(L(K(〈p, q〉))) ∈
Sepκ(〈p, q〉). This shows that H ◦ L ◦K is a realizer of Sepκ, hence Sepκ ≤sW L̂LPOκ.

Conversely, we define the Type 2 computable functionG :⊆ κκ → κκ as, for every p ∈ dom(L̂LPOκ),

G(p) = 〈`p, rp〉,

where

`p(γ) =

{
α+ 1 if η is the γ-th even ordinal and pα(η) = 1,
0 otherwise.

and rp is defined similarly for odd ordinals. We obtain, for all α ∈ κ and p ∈ dom(L̂LPOκ),

α+ 1 ∈ ran(rp) ⇐⇒ 1 /∈ LLPOκ(pα) =⇒ 0 ∈ LLPOκ(pα).

87

and similarly
α+ 1 ∈ ran(`p) ⇐⇒ 0 /∈ LLPOκ(pα) =⇒ 1 ∈ LLPOκ(pα).

Now let S be any realizer for Sepκ, we know that S(G(p)) = χA where A is some subset of κ such
that ran(`p) ⊆ A, ran(q) ∩A = ∅. We obtain, for all α ∈ κ:

S(G(p))(α+ 1) = 1 =⇒ α+ 1 /∈ ran(rp) =⇒ 1 ∈ LLPOκ(pα),

S(G(p))(α+ 1) = 0 =⇒ α+ 1 /∈ ran(`p) =⇒ 0 ∈ LLPOκ(pα).

So we can define the Type 2 computable function F : 2κ → 2κ as

F (x)(α) = 1− x(α+ 1),

and obtain that F ◦S ◦G(p) ∈ L̂LPOκ(p) for all p ∈ dom(L̂LPOκ), i.e F ◦S ◦G is a realizer of L̂LPOκ.

This shows that L̂LPOκ ≤sW Sepκ and thus Sepκ ≡sW L̂LPOκ.

We introduce a weakening of the principle WKLκ:

Definition 5.3.2 (Restriction of weak Kőnig’s Lemma). Define the function RWKLκ as the restriction
of WKLκ to the set of trees with <κ-closed extendible parts, i.e.

dom(RWKLκ) = {T ∈ Tr | ext(T) is <κ-closed}.

We will show that this function has the same topological Weihrauch degree of the principles Sepκ
and L̂LPOκ. This is in analogy with the classical equivalences WKL ≡W Sep ≡W L̂LPO. Moreover,
it is in line with the analogy between trees of height ω and trees of height κ with <κ-closed extendible
parts we obtain by comparing Example 1.1.36 and Lemma 1.1.38. We remark that the following results
employ Hypothesis 1.2.19. This seems to be necessary when working with trees as working with our
representation of the set of trees, which is arguably the only reasonable representation, requires being
able to computably go back and forth between ordinals in κ and the sequences in 2<κ that they code.

Lemma 5.3.3. Assuming Hypothesis 1.2.19, we have Sepκ ≤sW RWKLκ.

Proof. We define the Type 2 computable function f : κκ × κ→ κκ as

f(p, α) = (p�(α+ 1))ap(0).

The function f is needed as a technical tool to simplify the definition of the function K below, which
translates pairs of sequences into trees. We define the function K : κκ → Tr as

K(〈p, q〉) = {σ ∈ 2<κ | ∃x ∈ Sepκ(〈f(p, |σ|), f(q, |σ|)〉) (σ ⊆ x)}.

In words, a short sequence σ ∈ 2<κ is enumerated in K(〈p, q〉) if and only if it is the characteristic
function of a set Aσ ⊆ |σ| separating ran(p�|σ|) and ran(q�|σ|). It is clear that K admits a Type 2
computable realizer.

We claim that for every 〈p, q〉 ∈ dom(Sepκ), K(〈p, q〉) is a tree with at least a branch and a
<κ-closed extendible part.

The fact that K(〈p, q〉) is a tree is trivial from the definition, moreover, it is immediate to see that
if A is any set separating ran(p) and ran(q), then χA is a branch in K(〈p, q〉). The converse is also
true: any branch in K(〈p, q〉) determines the characteristic function of a set separating ran(p) and
ran(q), so in words [K(〈p, q〉)] = Sepκ(〈p, q〉). This implies in particular that σ ∈ ext(K(〈p, q〉)) if and
only if σ is an initial segment of the characteristic function of a set A separating ran(p) and ran(q).

We show that ext(K(〈p, q〉)) is <κ-closed: let λ < κ be a limit ordinal and σ ∈ 2λ such that, for
all α ∈ λ, σα = σ�α ∈ ext(K(〈p, q〉)). Let A be any set separating ran(p) and ran(q), and consider the
set given by S = (A∩ {α ∈ κ | α ≥ λ})∪ {α ∈ λ | σ(α) = 1}. It is clear that σ is an initial segment of
χS , so we just need to show that S separates ran(p) and ran(q). Assume by contradiction that this
is not the case, then either ran(p) \ S 6= ∅ or ran(q) ∩ S 6= ∅. Assume β ∈ ran(p) \ S: if β ≥ λ, then

88

β /∈ A and therefore A /∈ Sepκ(〈p, q〉). On the other hand, if β < λ, then σβ+1(β) = 0 and β ∈ ran(p),
hence σβ /∈ ext(K(〈p, q〉)). The assumption that ran(q)∩S 6= ∅ leads to a similar contradiction. Hence
σ ∈ ext(K(〈p, q〉)) and therefore ext(K(〈p, q〉)) is <κ-closed.

This implies that the composition RWKLκ ◦K is well defined, and by our previous discussion we
have that RWKLκ ◦K(〈p, q〉) = Sepκ(〈p, q〉). Now let K ′ be a computable realizer of K, we obtian
that for any realizer W of RWKLκ, W ◦K ′ is a realizer of Sepκ, therefore Sepκ ≤sW RWKLκ.

We now show that L̂LPOκ is enough to compute branches in trees T with <κ-closed extendible
parts, if we have access to a tree oracle (cf. Definition 4.3.4). This proof is a direct translation of the
proof of Theorem 8.2 in [6].

Proposition 5.3.4. Assume Hypothesis 1.2.19 and let o be a tree oracle. We have RWKLκ ≤oW
L̂LPOκ.

Proof. Given a tree T and an ordinal α, define the sets

Pα,0 = {w ∈ 2<κ | ∀v ∈ Tα¬(wa0 ⊆ v∨v ⊆ wa0)}, Pα,1 = {w ∈ 2<κ | ∀v ∈ Tα¬(wa1 ⊆ v∨v ⊆ wa1)},

and define the function m :⊆ 2<κ → κ as

m(w) = min{α ∈ κ | w ∈ Pα,0 ∪ Pα,1}.

where m(w) ↑ if {α ∈ κ | w ∈ Pα,0 ∪ Pα,1} = ∅. Notice that m is o-computable. Further, define a
function q : 2<κ → 2κ as

q(w) =

0γ10κ if m(w) is defined, w ∈ Pm(w),0 \ Pm(w),1, and γ is the m(w)-th even ordinal,

0γ10κ if m(w) is defined, w ∈ Pm(w),1 \ Pm(w),0, and γ is the m(w)-th odd ordinal,

0κ otherwise.

Since m is o-computable, we get that q is Type 2 computable with oracle access to o, therefore we
can also Type 2 compute the sequence 〈q(ν(α))〉α∈κ. Exactly as in the proof of [6, Theorem 8.2], we
obtain that for all w ∈ T ,

i ∈ LLPOκ(q(w)) =⇒ ∀α even q(w)(α+ i) = 0 =⇒ ∃x ∈ [T](wai ⊆ x).

In particular this implies that the choice function f given by w 7→ wai if and only if i ∈
LLPOκ(q(w)) has the property that if w ∈ T , then f(w) ∈ ext(T). Since ext(T) is <κ-closed, we can
appeal to Lemma 1.1.38 and obtain that the sequence inductively defined as r0 = ∅, rα+1 = f(rα) and
rλ =

⋃
α∈λ rα for all limit ordinals λ determines a branch in T . It is clear that such sequence can be

computed if we have access to LLPOκ. This shows that for any T ∈ dom(RWKLκ), we can o-compute

the sequence 〈q(ν(α))〉α∈κ and use any realizer of L̂LPOκ on the latter sequence to obtain an oracle

which allows us to compute a branch on T . This shows that L̂LPO ≤oW RWKLκ.

We remark that the use of the tree oracle seems to be necessary in a lot of constructions related to
trees. Naturally this necessity does not arise in the ω-context. Arguably, tree oracles are used there
too, as many constructions (e.g., again Theorem [6, Theorem 8.2], but also any proof of computable
compactness of Cantor space, i.e., the classical analogue of our Lemma 4.3.6) rely on deciding state-
ments of the form P (n) ⇐⇒ ∀x ∈ 2nQ(x). These are never mentioned because tree oracles are
computable for ω, so we never have to use them as actual oracles.

Now from our discussion in Section 1.1.2, it is very plausible that the function RWKLκ is stricty
below the function WKLκ. We do not have a proof of this fact, although we have partial results which
point in that direction. We present what we currently have.

Proposition 5.3.5. Assuming Hypothesis 1.2.19, we have RWKLκ ≤sW Ext.

89

Proof. Given a tree T ∈ dom(RWKLκ), we have that T ∈ dom(Ext), hence we can directly apply any
realizer H of Ext to a code p for T and obtain a code q for ext(T). We can then define the computable
choice function f : ext(T)→ ext(T) as

f(σ) =

{
σa0 if σa0 ∈ ext(T),
σa1 otherwise.

Clearly f is computable with oracle access to ext(T) and again by Lemma 1.1.38 we can define a
branch on T by a recursive construction based on f . This shows that, having access to any realizer
for Ext, we can compute a realizer for RWKLκ. Moreover, this realizer only needs access to ext(T),
hence RWKLκ ≤sW Ext.

Proposition 5.3.6. Let F be the realizer of Ext. There is no Type 2 computable function
H :⊆ κκ → κκ such that the function p 7→ H(〈p, F (p)〉) realizes WKLκ.

Proof. Let H :⊆ κκ → κκ be any Type 2 computable function and let p be a code for the tree T = 2<κ.
Assume that H(〈p, F (p)〉) is the characteristic function of a branch x ∈ [T]. Let M be the T2κTM
computing H and consider the T2κTM M ′ which, on input y ∈ 2κ, counts the number of distinct
short sequences enumerated by y. In other words, at time step β, the machine M ′ has read β bits of
input and printed 1δ on the output tape, where δ = ot{α ∈ β | y(α) = 1 ∧ ∀γ < α (ν(α) 6= ν(γ))}.

By Lemma 1.2.27 let λ be a limit ordinal which is a fixpoint of the time function for the computation
of M ′ ◦M on 〈p, F (p)〉. By definition of λ and M ′ ◦M , we know that, by step λ, the machine for
H has determined the branch x up to at least level λ (because it has found λ-many 1s on the tape
for the characteristic function of x, each of them corresponding to a distinct sequence). Therefore, if
q ∈ dom(H) is such that 〈p, F (p)〉�λ ⊆ q, then x�λ ⊆ y where y is the branch coded by H(q). Now
consider the code p′ for the tree T ′ = 2<κ \ {σ ∈ 2<κ | x�λ ⊆ σ}.

It is straightforward to see that both T ′ = ext(T ′) and that these coincide with T = ext(T) up to
level λ. By the bound on the enumeration function expressed in Corollary 1.2.13, we obtain that their
characteristic functions also coincide at least up to λ, hence x�λ ⊆ H(〈p′, F (p′)〉). Since no branch of
T ′ has x�λ as an initial segment, it follows that H(〈p′, F (p′)〉) is not a branch on T ′.

It seems like the proof technique employed in Proposition 5.3.6 cannot be applied to rule out the
existence of a pair of functions H,K which witnesses a Weihrauch reduction, therefore a proof of this
non-reduction would probably need to follow another route. Nonetheless the result above seems to be
a clue that we really do have WKLκ 6≤W Ext. Such result would establish WKLκ 6≤W RWKLκ. Note
moreover that the analogous Type 2 computable function H :⊆ ωω → ωω for the classical context
exists and it is essentially the classical analogue of the function described in Proposition 5.3.5 (cf. also
Lemma 1.1.36).

We close the section with a few words on the role of L̂LPOκ in generalized computable analysis,
compared to the role of L̂LPO in classical computable analysis. First, the equivalence L̂LPO ≡W WKL
gives L̂LPO a rather important status in the classical context, as Weak Kőnig’s Lemma is well-known
to be a centerpiece in computable analysis as well as in reverse mathematics (see [20], [7] and [6]
for WKL in computable analysis; for reverse mathematics notice that WKL0 is one of the so-called
“big five” subsystems of second order arithmetic [38], which are frameworks that exactly capture
the proof theoretic strength of many mathematical statements). Moreover, the classical equivalence

WKL ≡W CK, where CK stands for compact choice on the real line, implies that L̂LPO is in particular
at least as strong as choice on closed and bounded intervals of R.

The matter is not as clear in the generalized context, for multiple reasons: first, we do not know
whether L̂LPOκ ≡W WKLκ (but we suspect this is not the case). Second, we do not know whether
WKLκ is equivalent to choice on κ-compact subsets of Rκ (we did not investigate this at all due to
time constraints). Third, even if the latter equivalence did hold, the set of κ-compact subsets of Rκ
does not contain many naturally occurring sets, in particular closed bounded intervals in Rκ are not
κ-compact. This suggests that κ-compact choice on Rκ might not be very relevant anyway.

90

This leaves us with a principle L̂LPOκ which is far less important than its classical counterpart in
the classification of Weihrauch degrees in generalized computable analysis. This fact is also the reason
why the Parallelization Principle is not as useful in the generalized context, as we will see in the next
chapter.

5.4 Interval choice principles and boundedness principles

In this section we present the results pertaining to the Weihrauch classification of the interval choice
principles CI,c /C−I,c /CI,b /C−I,b and the boundedness principles BI,c /B−I,c /BI,b /B−I,b /B+

I,c /B+
I,b /BF.

Most of these were studied by Galeotti either in [16] or in [17].

First we summarize what is already known:

Theorem 5.4.1. Assume Hypothesis 1.2.19, then we have:

(a) IVTκ ≡W BI,b,

(b) CI,c ≡W BI,c,

(c) C−I,c ≡W B−I,c,

(d) CI,b ≡W BI,b,

(e) C−I,b ≡W B−I,b,

(f) BF ≡W Cκ,

(g) CI,c 6≤W Cκ,

(h) CI,c ≤sW CA, C−I,c ≤sW CA and CI,b ≤sW CA.

Proof. Item (a) is [17, Theorem 4.2.4]. Item (b) is stated as a topological Weihrauch equivalence in
Proposition 4.5.7 in [16]. We remark that the original proof makes use of the fact that the function
f : (0, 1)→ Rκ defined as:

x 7→ 2x−1
x−x2

is a strictly increasing homeomorphism between (0, 1) and Rκ to transfer the boundedness principle
BI,c from fully general sequences in Rκ to sequences in (0, 1). In particular the original proof argues
that f−1, being continuous, must have a continuous realizer F (by the Main Theorem of Generalized
Computable Analysis) and uses F as one of the two continuous functions witnessing the topological
Weihrauch reduction. The effectivization of this step of the proof requires showing that f−1 is com-
putable to pick a computable relizer F for it. Luckily, as the referenced proof mentions, we have that
for every open (r, r′) ⊆ (0, 1), f [(r, r′)] = (2r−1

r−r2 ,
2r′−1
r′−r2). Since f is a bijection, it follows that the latter

equation is also a way to compute preimages for the function f−1. Applying Theorem 2.2.2 we obtain
that f−1 is computable, hence we can actually pick the realizer F to be computable. The fact that the
rest of the functions involved in the topological Weihrauch reduction are effective is straightforward,
therefore we can promote the equivalence to a (computable) Weihrauch equivalence. Items (c), (d) and
(e) are witnessed by the same functions witnessing item (b). Item (f) is essentially [16, Proposition
4.5.6]: the result is stated as a topological Weihrauch equivalence in the cited thesis, but the proof
is easily seen to be effective, assuming our computable enumeration of Qκ. Item (g) is proven (for
topological Weihrauch reducibility) in Proposition 4.5.9 in [16].4 Item (h) is immediate because all
interval choice principles are restrictions of CA.

We remark that the proof of items (g) and (h) does not need Hypothesis 1.2.19.

Proposition 5.4.2. We have BI,c ≤sW BI,b.

4Notice that f 6≤tW g trivially implies f 6≤W g.

91

The proof is immediate as the former is a restriction of the latter, hence the identity function
witnesses the reduction. We conjecture that BI,b ≤W BI,c does not hold, but we unfortunately could
not prove this. We have a weaker result, analogous to Proposition 5.3.6.

Proposition 5.4.3. There is no continuous function K :⊆ κκ → κκ such that for any realizer F of
BI,c, the function F ◦K is a realizer of BI,b.

Proof. Let p be a code for ((qα)α∈κ, (q
′
α)α∈κ) ∈ S↑b × S↓b and call I = BI,b((qα)α∈κ, (q

′
α)α∈κ) the closed

interval of simultaneous bounds that these sequences identify. Suppose that both (qα)α∈κ and (q′α)α∈κ
are not convergent. This implies that I does not have either endpoint, and if K(p) belongs to dom(F),

then it must be the case that K(p) codes two different sequences (sα)α∈κ, (s
′
α)α∈κ ∈ S↑c×S↓c identifying

a closed interval of simultaneous bounds I ′.
The interval I ′ will have endpoints (namely the limits of the two sequences) therefore it cannot be

the case that I = I ′. Now if I ′ 6⊆ I, then let x ∈ I ′ \I and pick a realizer F ′ of BI,c which, on input the
code K(p) outputs a code q for x. As x /∈ I, we have that F ′◦K is not a realizer of BI,b. If on the other
hand I ′ ⊆ I we build another pair of sequences ((tα)α∈κ, (t

′
α)α∈κ) as follows. First, notice that I ′ ⊆ I

implies that there exists γ ∈ κ such that sγ ∈ I and s′γ ∈ I. Since K is continuous, there exists δ ∈ κ
such that for any code q ∈ dom(BI,b ◦δS↑b×δS↓b) extending p�δ, K(q) codes sequences ((rα)α∈κ, (r

′
α)α∈κ)

extending ((sα)α∈γ+1, (s
′
α)α∈γ+1). In particular this means that the interval of simultaneous bounds

identified by ((rα)α∈κ, (r
′
α)α∈κ) is contained in [sγ , s

′
γ] ⊆ I. Now let η be an ordinal such that the

code p�δ determines an initial segment of length ≤η of the sequences ((qα)α∈κ, (q
′
α)α∈κ). We extend

the code p�δ to a code p′ of two strictly monotone sequences ((tα)α∈κ, (t
′
α)α∈κ) such that

tβ = qβ, t
′
β = q′β ∀β ≤ η,

(tα)α∈κ converges to qη+1 and (t′α)α∈κ converges to qη+2. This implies that BI,b((tα)α∈κ, (t
′
α)α∈κ) =

I ′′ = [qη+1, qη+2] and I ′′ ∩ I = ∅. By the argument above, we have that for any realizer F of BI,c,
F (K(p′)) codes a κ-real in I ′′, hence not in I.

This shows that in any case, for any continuous function K, it is impossible that the functions
F ◦K realize BI,b for all realizers F of BI,c.

An analogous proof shows that the same can be said about the relation between CI,b and CI,c.

We summarize here the other straightforward reductions based on domain restrictions:

Proposition 5.4.4. We have:

(a) B+
I,c ≤sW B+

I,b,

(b) B−I,c ≤sW B−I,b,

(c) BI,b ≤sW B+
I,b,

(d) BI,c ≤sW B+
I,c,

(e) B−I,c ≤sW BI,c,

(f) B−I,b ≤sW BI,b.

We omit the proofs as, similarly to Proposition 5.4.2, these reducibilities are witnessed by identity
functions. We continue with results analogous to the classical ones:

Proposition 5.4.5. We have BF ≤sW B+
I,c.

Proof. We define a Type 2 computable function H which, for any code p for a strictly increasing se-
quence of κ-rationals (qα)α∈κ converging to r, returns a code for the pair of sequences ((qα)α∈κ, (+∞)κ).
By definition, for any realizer F for B+

I,c and any such code p, F (H(p)) codes some κ-real greater than
or equal to r, therefore the function F ◦H realizes BF. This shows the required strong reduction.

92

Proposition 5.4.6. We have B−I,c ≤W BF.

Proof. We follow the classical proof (see [7, Proposition 3.8]). Suppose we are given a name p ∈ κκ
coding two sequences (qα)α∈κ ∈ S↑c and (q′α)α∈κ ∈ S↑c such that

lim
α∈κ

= q < q′ = lim
α∈κ

q′α.

We build a machine M that works as follows: the machine reserves a tape Ti to use as an ordinal
register, initialized to 0. The machine will in the long run produce a sequence of guesses given by
midpoints of the form (qα + q′α)/2, as well as a sequence of ordinals which is meant to keep track of
the changes to the sequence of midpoints. At first, M computes the midpoint

c0 =
q0+q′0

2 .

It then starts parsing the sequences (qα)α∈κ and (q′α)α∈κ and for all α it checks whether the current
guess c satisfies qα < c < q′α. If this is the case, the machine prints a δQκ-code for the ordinal currently
contained in Ti and it goes on to performing the same check for the ordinal α + 1. If this is not the
case, then the machine prints a δQκ-code for α, and it computes the new guess (qα + q′α)/2, before
moving to the next ordinal.

We remark that the content of the register Ti behaves correctly at limit times as it may only
increase with applications of the lim sup rule. We show that M(p) codes a bounded sequence of
ordinals. Let ε = q′ − q and, since both sequences (qα)α∈κ and (q′α)α∈κ are convergent, let γ be such
that, for all η ≥ γ, q − qη ≤ ε/4 and q′η − q′ ≤ ε/4. We obtain that for all η ≥ γ:

1
2ε ≤

q′η−qη
2 ≤ 3

4ε,

therefore
q ≤ cη,η = qη +

q′η−qη
2 ≤ q′.

This shows that no ordinal greater than or equal to η + 1 is ever reached by the sequence coded by
M(p). Call K :⊆ κκ → κκ the Type 2 computable function computed by M . The argument above
shows that, for every p ∈ dom(B−I,c ◦δS↑c × δS↓c), K(p) codes an eventually constant, hence convergent

sequence of ordinals (seen as κ-rationals) such that, if β ∈ κ is an upper bound for it, then we can be
sure that the center which is guessed at stage β in the computation of M on p actually lies between
q and q′. We then use a realizer F of Cκ to determine a κ-real x upper bound for K(p) and we
compute some ordinal β > x (notice that this is trivially computable from a δRκ-name of x). Finally
we simulate the computation of M on p up to stage β and we output a δRκ-name for the center guessed
by M at stage β. Call the function associated to this procedure H. This shows that, given a realizer
F for BF, the function p 7→ H(〈p, F (K(p))〉) is a realizer of B−I,c, as desired.

We now state a new result, which, in the classical context, is a consequence of some reductions
which are not currently proven in the generalized context. Nonetheless, it admits a straightforward,
direct proof, and it is at the moment the best we can obtain.

Proposition 5.4.7. We have B+
I,c <W B.

Proof. Notice that for every pair of sequences ((qα)α∈κ, (q
′
α)α∈κ) ∈ dom(B+

I,c), the left sequence (qα)α∈κ
is guaranteed to be a stricty increasing sequence converging to the real r ∈ Rκ. Therefore, given a
code p for the pair of sequences ((qα)α∈κ, (q

′
α)α∈κ) we can computably extract a code p′ for (qα)α∈κ

and, given any realizer F for B, we can compute a δRκ-name for its limit r. By definition, r ∈
B+
I,c((qα)α∈κ, (q

′
α)α∈κ), so this means that we can compute a realizer for B+

I,c from any realizer of B.
This shows the required reduction.

To show that B 6≤W B+
I,c, we prove that ECκ 6≤W B+

I,c. Since there are κ-computably enumerable
sets A ⊆ κ which are not computable, it follows that ECκ does not map computable inputs to
computable outputs. On the other hand, we claim that B+

I,c admits a realizer which maps computable

inputs to computable outputs. Notice that if ((qα)α∈κ, (q
′
α)α∈κ) ∈ dom(B+

I,c), q = limα∈κ qα and

93

q′ = limα∈κ q
′
α, there are two possibilities: if q 6= q′, then the interval (q, q′) contains a κ-rational,

hence a computable point. If on the other hand q = q′ and (the codes for) the sequences ((qα)α∈κ and
(q′α)α∈κ) are computable, it immediately follows that q has a computable δRκ-name. This implies that
there exists a realizer of B+

I,c which maps computable inputs to computable outputs. By Corollary

4.1.3 it follows that ECκ 6≤W B+
I,c.

As in the classical setting (cf. [7, Theorem 5.2]), the Weihrauch degree of BCTκ is captured by
Cκ and BF.

Proposition 5.4.8. For any κ-spherically complete computable κ-metric space X = (X, d, s), we have
BCTκ(X) ≡W Cκ ≡W BF.

Proof. We follow the proof referenced. We start by showing BCTκ(X) ≤W Cκ. Let p be a (Π0
1(X))κ-

name for a sequence of closed sets (Aα)α∈κ such that X =
⋃
α∈κAα. Recall that this means that each

pα is an enumeration for codes of basic open balls of X exhausting the set X \Aα. Now for all α ∈ κ,
define Bα = BX(s(β), γ) where α = pβ, γq. The sequence (Bα)α∈κ is an enumeration of all basic open
balls of X. Consider the set P given by

P = {pα, βq | (X \Aα) ∩Bβ 6= ∅ ∨Bβ = ∅}.

It is clear that, having access to p, we can compute a sequence q ∈ κκ such that ran(q) = P ,5 in
other words, q is a δ′

Π0
1(κ)

-name for κ \ P . Notice that if pβ, γq ∈ κ \ P , it follows that Bγ 6= ∅ and

Bγ ⊆ Aβ. This implies that we can use a realizer of Cκ to compute an index β for a closed set Aβ
in the original list with nonempty interior. This proves that BCTκ(X) ≤W Cκ. We now prove that

BF ≤W BCTκ(X), again by following the proof in [7]. Given a code p for a sequence (qα)α∈κ ∈ S↑c ,
define the sequence of closed sets (Aα)α∈κ as

Aα =

{
∅ if ∃β(α < qβ),
X otherwise.

We explain how this is done computably: for every α, we parse the sequence (qα)α∈κ and we
compare it to the κ-rational α. While doing so, we print codes for the empty open ball. If ever we find
an ordinal β such that α < qβ, we start enumerating every basic open ball of X. This leads us to print
a Σ0

1-name for ∅ if the condition α < qβ is never satisfied, and a Σ0
1-name for X otherwise. Hence, we

print the correct Π0
1-names in both cases. Notice that the closed set Aα has nonempty interior if and

only if the κ-rational α is an upper bound to the sequence (qα)α∈κ. This implies that, using a realizer
of BCTκ(X), we can compute a realizer for BF and thus it shows that BF ≤W BCTκ(X).

Corollary 5.4.9. We have BF <W B+
I,c.

Proof. By Proposition 5.4.5 we just need to prove that B+
I,c 6≤W BF. We do this by contradiction, if

this were the case, then we would have BF ≡W B+
I,c and by item (d) in Proposition 5.4.4 we would

obtain BI,c ≤W BF, or equivalently, by Proposition 5.4.8 and item (b) in Theorem 5.4.1, CI,c ≤W Cκ

which contradicts item (g) in Theorem 5.4.1.

We close the section by stating two more reductions, which are again proved in a way that is
analogous to their classical counterpart (cf. [7, Proposition 3.]). These concern the relation between
the omniscience principles LLPOκ and LPOκ and the generalized choice and boundedness principles.

Proposition 5.4.10. We have LLPOκ <W B−I,c and LPOκ <W BF.

Proof. We first show LPOκ ≤W BF: given a sequence p ∈ κκ, we compute (a code for) the sequence of
κ-rationals (qα)α∈κ given by qα = 0 if p(β) 6= 0 for all ordinals β < α and, if we find that p(δ) = 0 and
δ is the least such ordinal, then qα = δ for all α ≥ δ. It is clear that the sequence (qα)α∈κ is eventually
constant, hence it is in dom(BF). Moreover, if q ∈ BF((qα)α∈κ), we can compute the least ordinal β

5Given γ = pα, βq, we print γ on the tape as soon as (if ever) we find out that X \ Aα 6= ∅ or Bβ = ∅. Notice that
each of these checks is semidecidable.

94

such that β ≥ q and use β to compute LPO(p): by the construction of (qα)α∈κ we know that, if there
is a 0 on the sequence p, then it must appear before position β. This shows LPOκ ≤W BF.

The fact that BF 6≤W LPOκ follows from the Mind Change Principle: no limit κ-Turing machine
can compute BF with just one mind change, while computing LPOκ with one mind change is possible
(notice that the latter statement was essentially proven in Proposition 4.2.2).

We now prove LLPOκ ≤W B−I,c, again following the referenced proof. Given p ∈ LLPOκ we start

producing codes for sequences (qα)α∈κ ∈ S↑c and (qα)α∈κ ∈ S↓c given by qα = − 1
α+1 and q′α = 1 + 1

α+1 .

If we ever find a 1 on p on cell δ and δ is even, we keep on computing codes for qα = − 1
α+1 but we

switch the right sequence to q′α = 1
4 + 1

α+1 for all α ≥ δ. Similarly, if δ is odd, we keep on computing

codes for q′α = 1+ 1
α+1 but we switch the left sequence to qα = 3

4−
1

α+1 . Call H the Type 2 computable
function defined by the procedure described above. We have that for any realizer F of BI,c, if F (H(p))
codes a κ-real in [0, 14] then 1 ∈ LLPOκ(p) and if it codes a κ-real in [34 , 1], then 0 ∈ LLPOκ. If it codes
some other κ-real (notice that by construction this real must always be in [0, 1]), then both 0 and 1
are in LLPOκ(p). This shows that we can compute a realizer of LLPOκ with access to one for BI,c,
in other words, that LLPOκ ≤W BI,c. As above, the existence of a reduction in the other direction is
ruled out by the Mind Change Principle.

We conclude the section by proving that, again in analogy with the classical case, closed choice is
at least as strong as the strongest interval boundedness principle B+

I,b.

Proposition 5.4.11. We have B+
I,b ≤W CA.

Proof. Let M be the T2κTM which, on input a code p for the pairs of sequences (qα)α∈κ and (q′α)α∈κ,
enumerates codes for all open balls in⋃

α∈κ
(−∞, qα) ∪

⋃
α∈κ

(q′α,+∞).

Let H be the Type 2 computable function defined by M . It is straightforward to see that, if F is any
realizer of CA, then F ◦H realizes B+

I,b. This proves the required reduction.

95

Chapter 6

Conclusions

We present a summary of the classification results achieved, together with a comparison between the
portion of the Weihrauch hierarchy studied in [7] and the corresponding portion of the Weihrauch
hierarchy obtained in the thesis. We also collect open questions and potential directions for future
work.

6.1 Comparison with the classical picture

We again propose the table summarising the classification results in [7].

...

C2

C1 ≡W BR ≡W L̂PO ≡W EC

CA

CK ≡W L̂LPO ≡W WKL ≡W Sep

CI ≡W BI ≡W IVT B+
I

C−I ≡W B−I Cω ≡W BF ≡W BCT

LLPO LPO

idωω

All symbols stand for principles on the real line and on Baire/Cantor space analogous to those of the
same name defined for Rκ, κκ and 2κ in Chapter 3. Here, an arrow from principle P to P ′ indicates that
P ′ <W P . As we mentioned in the introduction, all these reductions are either proved or referenced
in [7], with the exception of EC ≡W BR, which is proved in [39, Theorem 4] and Sep ≡W WKL,
which is proved in [20, Theorem 6.7]. Moreover, Brattka and Gherardi prove in [7] that the diagram
is complete, i.e., no arrow can be added except those which follow from transitivity. Lastly, by [5,
Theorem 7.6], each of the Cns is Weihrauch complete for the class of Σ0

n+1-effectively measurable
single valued total functions between computable metric spaces.

96

On the other hand, the following is the table containing all classification results in this thesis.
We focus on results pertaining to ordinary Weihrauch reducibility ≤W, and we assume Hypothesis
1.2.19 as many results are obtained under the assumption of computable enumerability of 2κ. Since
the table is meant to capture all the currently known results, we do not distinguish results which need
Hypothesis 1.2.19 from those who hold unconditionally in the picture. For more details we refer to
the proofs of these results in the thesis.

...

CUα

...

CUω

...

C2 ≡W CU2 CA

WKLκ Ext CU1 ≡W C1 ≡W B ≡W L̂POκ ≡W ECκ B+
I,b

RWKLκ L̂LPOκ ≡W Sepκ B+
I,c

CI,b ≡W BI,b ≡W IVTκ CI,c ≡W BI,c Cκ ≡W BF ≡W BCTκ

C−I,b ≡W B−I,b C−I,c ≡W B−I,c LPOκ

LLPOκ

idκκ

κ-many

×
κ weakly compact ×

×

×
×

Where a black arrow from P to P ′ indicates that P ′ ≤W P , a blue arrow indicates that P ′ <W P , a
crossed out black arrow indicates that P ′ 6≤W P , and lastly a dashed and crossed out arrow indicates
that we conjecture P ′ 6≤W P but we don’t have a proof. Again we omitted arrows and non-arrows
which follow from transitivity considerations. Notice that, besides arrow explicitly forbidden (the
reverse directions of blue arrows and crossed out black arrows) and those forbidden by transitivity
considerations, we do not know whether it is possible to add arrows to the table above.

We give references to the results summarized in the picture.
The equivalence B ≡W ECκ ≡W L̂POκ is Corollary 5.2.16, the equivalence BCTκ(X) ≡W Cκ ≡W BF

is Proposition 5.4.8 (notice that the equivalence Cκ ≡W BF is proved in [16] as mentioned in item

(f) of Theorem 5.4.1). The equivalence L̂LPOκ ≡W Sepκ is Proposition 5.3.1. The equivalences
CI,c ≡W BI,c, C−I,c ≡W B−I,c, CI,b ≡W BI,b ≡W IVTκ and C−I,b ≡W B−I,b are items (a)-(e) in Theorem
5.4.1.

The strictly descending chain of (Cn)n∈ω is established in Theorem 2.3.12 and Corollary 2.3.14.
Moreover, Theorem 2.3.12 yields that each Cn is Weihrauch complete for the set of Σ0

n+1-computable
partial functions on κκ. The chain (CUα)α∈κ is given by Galeotti’s functions, which we mentioned

below Corollary 2.3.14. The Weihrauch reduction L̂LPOκ ≤W L̂POκ follows from Proposition 4.3.2

97

together with the monotonicity of parallelization (Proposition 1.3.18, item (b)). In case κ is weakly
compact, this reduction is strict, as stated in Corollary 4.3.21. The strict reduction B+

I,c <W B is

proven in Proposition 5.4.7. The reductions B+
I,c ≤W B+

I,b, BI,c ≤W BI,b, B−I,c ≤W B−I,b, BI,b ≤W B+
I,b,

BI,c ≤W B+
I,c, B−I,c ≤W BI,c and B−I,b ≤W BI,b, which all boil down to domain restrictions, are stated in

Proposition 5.4.2 and Proposition 5.4.4. The non-reduction CI,c 6≤W Cκ is item (g) in Theorem 5.4.1.
The strict reduction BF <W B+

I,c is Corollary 5.4.9. The reduction B−I,c ≤W Cκ is proved in Proposition

5.4.6. The strict reductions LPOκ <W BF and LLPOκ <W B−I,c are Proposition 5.4.10. The reduc-
tion LLPOκ ≤W LPOκ is Proposition 4.3.2 and, as we remarked below the proof of the proposition
mentioned, its strictness follows from an adaptation of the proof of [40, Theorem 4.2]. The reduction
idκκ <W LLPOκ follows from the fact that idκκ reduces to any other function with a computable point
in its domain, and its strictness is item (e) in Proposition 5.1.1. The reduction RWKLκ ≤W WKLκ
follows by domain restriction, whereas the reductions RWKLκ ≤W Ext and Sepκ ≡W RWKLκ are
Proposition 5.3.5 and Lemma 5.3.3 respectively. The conjectured WKLκ 6≤W Ext is discussed in
Proposition 5.3.6 and lastly the conjectured non-reductions BI,b 6≤ BI,c, B−I,b 6≤ B−I,c and B+

I,b 6≤ B+
I,c

are discussed in Proposition 5.4.3.

Comparing the two tables, we immediately see that all the reductions which hold in the generalized
context also hold in the classical context. The main differences between the two are: first, we do not
know whether the interval choice principles are reducible to L̂LPOκ (but we have reasons to think
this is not the case, cf. the discussion at the end of Section 5.3). This makes us unable to exploit
the Parallelization Principle, which is the tool that Brattka employed to rule out arrows going from
principles below L̂LPO to any other principle not below it in the classical table. As we explained at
the end of Section 5.3, the way the reduction CI ≤W L̂LPO is proven in the classical setting is through
compact choice CK and WKL. As mentioned there, this route is unavailable in the generalized context.
Nonetheless, it would still be interesting to settle the status of WKLκ in relation to L̂LPOκ. Notice
that a proof of WKLκ 6≤W Ext would suffice to obtain that L̂LPOκ and WKLκ have distinct Weihrauch
degrees. Second, we observe that each boundedness principle (and the corresponding interval choice
principle) is split in two a priori different principles, following the fact that not all strictly monotone
bounded sequences in Rκ are convergent. The equivalence IVTκ ≡W BI,b ≡W CI,b is an inkling to
the fact that the bounded versions of these principles might turn out to be more useful than their
convergent counterparts in the classification of generalized analysis theorems. For this reason we think
that it would be interesting to settle the matter of whether the Weihrauch degrees of the bounded
principles are actually distinct from the degrees of the corresponding convergent principles.

6.2 Future work

We collect here the questions which have come up during the writing of this thesis and are currently
still open, as well as some ideas on how to further develop the results in this thesis.

Open Question 6.2.1. Does the analogue of the Representation Theorem [5, Theorem 6.1] hold for
computable κ-metric spaces? In other words, is it the case that a total function between computable
κ-metric spaces is Σ0

n-effectively measurable if and only if it has a Σ0
n-effectively measurable realizer?

As mentioned in Section 2.3 a positive answer to this question would immediately yield a strength-
ening of our Completeness Theorem (Theorem 2.3.12). Moreover, the Representation Theorem for
computable κ-metric spaces would be evidence that, also in the generalized context, the notion of
Σ0
n-effective measurability is a natural one for computable analysis.

Open Question 6.2.2. Does L̂POκ 6≤tW L̂LPOκ hold without the assumption of weak compactness
of the cardinal κ?

Open Question 6.2.3. Is it the case that WKLκ 6≤ Ext?

We mention that the proof of Kreisel’s Basis Lemma (see [31, Proposition V.5.31]), which states
that any computable tree has a ∆0

2-branch, essentially relies on the consideration that for any com-
putable tree T , the subtree ext(T) is ∆0

2 and there exists a computable function H :⊆ ωω → ωω such

98

that H〈χT , χext(T)〉 = χb where b ∈ [T] for all trees T ⊆ 2<ω (cf. Example 1.1.36). Since we know that
by Proposition 5.3.6, such function H does not exist in the κ-context, this raises the further question
of determining a Basis result for binary trees (with branches) of height κ.

Open Question 6.2.4. Is it the case that the boundedness principles actually split, i.e., do the non-
reductions BI,b 6≤ BI,c, B−I,b 6≤ B−I,c and B+

I,b 6≤ B+
I,c hold?

Lastly we remark that some non-reductions in the classical table, such as C1 6≤ CA, CA 6≤ B+
I,b and

CK 6≤ CI (see [7, Proposition 4.6] and [7, Proposition 4.8]) rely on recursion theoretic knowledge about
the real line R. In particular, the former relies on the fact that any non-empty closed subset of R
with a computable Π0

1-name has at least a point x with a low name i.e., such that there exists p ∈ ωω
with p ≤T ∅′ and δR(p) = x, whereas the latter two rely on the fact that there exists a nonempty
compact set A ⊆ R which admits a computable Π0

1-name and has no computable points. At the
moment, no result of this type is known for Rκ, but we think that this could be a good direction of
investigation, both for independent interest, and to be able to exploit the Turing degree invariance
principle to obtain more non-reductions between our generalized principles.

99

Bibliography

[1] C. Agostini, L. Motto Ros, and P. Schlicht. Generalized polish spaces at regular uncountable
cardinals, 2021. Preprint arXiv:2107.02587.

[2] N.L. Alling. Foundations of Analysis over Surreal Number Fields, volume 141 of North-Holland
Mathematics Studies. Elsevier Science, 1987.

[3] D. Asperó and K. Tsaprounis. Long reals. Journal of Logic and Analysis, 10(1):1–36, 2018.

[4] V. Brattka. Computability of Banach space principles. Number 286 in Informatik-Berichte.
FernUniversität in Hagen, 2001.

[5] V. Brattka. Effective Borel measurability and reducibility of functions. Mathematical Logic
Quarterly, 51(1):19–44, 2005.

[6] V. Brattka and G. Gherardi. Weihrauch degrees, omniscience principles and weak computability.
Journal of Symbolic Logic, 76(1):143–176, 2009.

[7] V. Brattka and G. Gherardi. Effective choice and boundedness principles in computable analysis.
Bulletin of Symbolic Logic, 17(1):73–117, 2011.

[8] V. Brattka and G. Presser. Computability on subsets of metric spaces. Theoretical Computer
Science, 305(1):43–76, 2003.

[9] V. Brattka and K. Weihrauch. Computability on subsets of Euclidean space I: closed and compact
subsets. Theoretical Computer Science, 219(1):65–93, 1999.

[10] M. Carl. Ordinal Computability. An Introduction to Infinitary Machines. De Gruyter Series in
Logic and Its Applications. De Gruyter, 2019.

[11] M. Carl, L. Galeotti, and B. Löwe. The Bolzano-Weierstrass theorem in generalised analysis.
44(4):1081–1109, 2018.

[12] M. Carl, L. Galeotti, and R. Passmann. Realisability for infinitary intuitionistic set theory, 2020.
Preprint arXiv:2009.12172v2.

[13] J. H. Conway. On Numbers and Games. A K Peters & CRC Press, 2000.

[14] S. Coskey and P. Schlicht. Fundamenta Mathematicae, 232(3):227–248.

[15] K.J. Devlin. Constructibility. Perspectives in Logic. Cambridge University Press, 1st edition,
2017.

[16] L. Galeotti. Computable analysis over the generalized Baire space. Master’s thesis, ILLC Master
of Logic Thesis Series MoL-2015-13, Universiteit van Amsterdam, 2015.

[17] L. Galeotti. The theory of generalised real numbers and other topics in logic. PhD thesis, Uni-
versität Hamburg, 2019.

[18] L. Galeotti, A. Hanafi, and B. Löwe. Relations between notions of gaplessness in non-Archimedean
fields. Houston Journal of Mathematics, 46(4):1017–1031, 2020.

100

[19] L. Galeotti and H. Nobrega. Towards computable analysis on the generalised real line. In
Jarkko Kari, Florin Manea, and Ion Petre, editors, Unveiling Dynamics and Complexity : 13th
Conference on Computability in Europe, CiE 2017, Turku, Finland, June 12–16, volume 10307
of Lecture Notes in Computer Science, pages 246–257. Springer, 2017.

[20] G. Gherardi and A. Marcone. How incomputable is the separable hahn-banach theorem? Notre
Dame Journal of Formal Logic, 221(4):393–425, 2008.

[21] H. Gonshor. An Introduction to the Theory of Surreal Numbers, volume 110 of London Mathe-
matical Society Lecture Note Series. Cambridge University Press, 1986.

[22] J. D. Hamkins and A. Lewis. Infinite time Turing machines. Journal of Symbolic Logic, 65(2):567–
604, 2000.

[23] T. Jech. Set Theory: The Third Millennium Edition, revised and expanded. Springer Monographs
in Mathematics. Springer, 2006.

[24] Y. Khomskii, G. Laguzzi, B. Löwe, and I. Sharankou. Questions on generalised Baire spaces.
Mathematical Logic Quarterly, 62(4-5):439–456, 2016.

[25] P. Koepke. Turing computations on ordinals. Bulletin of Symbolic Logic, 11(3):377–397, 2005.

[26] P. Koepke and B. Seyfferth. Ordinal machines and admissible recursion theory. Annals of Pure
and Applied Logic, 160(3):310–318, 2009.

[27] E. Lewis. Computation with infinite programs. Master’s thesis, ILLC Master of Logic Thesis
Series MoL-2018-14, Universiteit van Amsterdam, 2018.

[28] L. Motto Ros. The descriptive set-theoretical complexity of the embeddability relation on models
of large size. Annals of Pure and Applied Logic, 164(12):1454–1492, 2013.

[29] J.R. Munkres. Topology. Featured Titles for Topology Series. Prentice Hall, 2000.

[30] H. Nobrega. Games for Functions: Baire Classes, Weihrauch Degrees, Transfinite Computations,
and Ranks. PhD thesis, Universiteit van Amsterdam, 2018.

[31] P. Odifreddi. Classical Recursion Theory: The Theory of Functions and Sets of Natural Numbers.
Studies in Logic and the Foundations of Mathematics. Elsevier Science, 1992.

[32] B. Rin. The computational strengths of α-tape infinite time Turing machines. Annals of Pure
and Applied Logic, 165(9):1501–1511, 2014.

[33] H. Rogers Jr. Theory of recursive functions and effective computability. MIT press, 1987.

[34] J. G. Rosenstein. Linear Orderings, volume 98 of Pure and Applied Mathematics. Academic
Press, 1982.

[35] W. Rudin. Principles of Mathematical Analysis. International series in pure and applied mathe-
matics. McGraw-Hill, 1976.

[36] R. Sikorski. On an ordered algebraic field. Comptes Rendus des Séances de la Classe III, Sciences
Mathématiques et Physiques. La Société des Sciences et des Lettres de Varsovie, 41:69–96, 1948.

[37] R. Sikorski. Remarks on some topological spaces of high power. Fundamenta Mathematicae,
37(1):125–136, 1950.

[38] S. G. Simpson. Subsystems of Second Order Arithmetic. Perspectives in Logic. Cambridge Uni-
versity Press, 2nd edition, 2009.

[39] K. Weihrauch. The Degrees of Discontinuity of some Translators Between Representations of the
Real Numbers. Number 129 in Informatik-Berichte. FernUniversität in Hagen, 1992.

101

[40] K. Weihrauch. The TTE-Interpretation of Three Hierarchies of Omniscience Principles. Number
130 in Informatik-Berichte. FernUniversität in Hagen, 1992.

[41] K. Weihrauch. Computable Analysis: An Introduction. Texts in Theoretical Computer Science.
An EATCS Series. Springer, 2012.

[42] S. Willard. General topology. Courier Corporation, 2012.

102

