
Natural Axiomatic Theories and Consistency Strength:

A Lakatosian Approach to the Linearity Conjecture

MSc Thesis (Afstudeerscriptie)

written by

Lide Grotenhuis
(born October 11th, 1994 in ’s Gravenhage, The Netherlands)

under the supervision of Dr. Luca Incurvati and Dr. Giorgio Sbardolini, and submitted
to the Board of Examiners in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
August 29, 2022 Dr. Maria Aloni (chair)

Dr. Luca Incurvati (supervisor)
Dr. Giorgio Sbardolini (supervisor)
Prof. dr. Arianna Betti
Prof. dr. Benedikt Löwe
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Abstract

In the literature on relative consistency results, one often encounters the claim that all natural
axiomatic theories are linearly ordered in terms of consistency strength. Without a precise
definition of a natural theory, it is not clear how to assess the truth of this claim or how to judge
whether the known instances of nonlinearity constitute genuine counterexamples to it. The
general aim of this thesis is to take a first step towards such a precise definition. To this end, the
thesis consists of two parts. First, after arguing that a pursuit of such a definition is worthwhile,
I develop a method for working towards such a definition. This method is primarily inspired by
Lakatos’ approach to mathematical concept-formation, whose main tenet is that mathematical
concepts develop in response to the emergence of counterexamples. Second, I apply the method
and analyze the known instances of nonlinearity, including those recently suggested by Hamkins.
Building on this analysis, I develop the following tentative definition: an axiomatic theory is
natural if its axioms do not carry meta-information and if the theory is presented in a surveyable
manner.
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Introduction

By identifying significant restrictions on what axiomatic theories can prove, Gödel’s famous
incompleteness theorems induced a broad investigation into the logical strength of axiomatic
theories. One part of this investigation consists of comparing the consistency strength of such
theories, leading to the so-called relative consistency results. Over the past few decades, re-
searches in this field have noted an interesting pattern, namely that the consistency strength of
our common mathematical theories tends to be comparable, that is, given two such theories, the
consistency of one of them tends to imply the consistency of the other. There also exist well-
known constructions of theories whose consistency strength is not comparable; however, those
constructions are generally viewed as ‘unnatural’ by the mathematical community. In the litera-
ture, one therefore often meets the claim that all natural axiomatic theories are linearly ordered
in terms of consistency strength.1 However, as we lack a precise definition of what constitutes a
‘natural theory’, this claim is an informal one.

The labeling of particular objects or constructions in mathematics as natural is an interesting
phenomenon. While the common-sense understanding of the word ‘natural’ appears to be some-
thing along the lines of ‘arising in nature’ and ‘not artificial or man-made’2, this common-sense
understanding hardly seems fit to justify the labeling of mathematical constructions such as
proofs, axioms or operations as natural. Nevertheless, the use of the label ‘natural’ is abundant
in mathematics, both as an informal adjective or as part of a formal definition. In the context of
mathematics, ‘natural’ seems to mean something like ‘of the correct form’ or ‘appropriate for the
task at hand’. Accounts of the informal use of the notion of naturalness in mathematics, such as
that given in [60] and [50], suggest that by labeling a construction as natural, the mathematician
is making a claim about the correctness and expected fruitfulness of this construction.

One is therefore led to the question: what is meant by the claim that the consistency strengths
of ‘natural’ axiomatic theories form a linear order? In particular, does this claim reflect a mere
observation that our common or fruitful theories tend to show this behaviour, or does it entail
something stronger? Interestingly, the treatment of this claim in the literature seems to indicate
the latter. For example, work by James Walsh and Antonio Montalbán in [45] and [65] seems
aimed at proving this claim, whereas Joel Hamkins [22] appears to be trying to refute the claim
by providing instances of nonlinearity that, he argues, are natural. These treatments indicate
that the claim that the consistency strength of natural axiomatic theories forms a linear order
is a conjecture rather than a mere observation. In this thesis, I will therefore refer to this claim
as the linearity conjecture.3

If this claim is indeed to be taken as a conjecture, as I argue is the case, then one would like

1In Chapter 1, I will refer the reader to a number of places where this claim is made; these will include [14],
[32], [54], [44], [45], [58] and [65].

2See for example the Oxford English Dictionary, which defines the adjective ‘natural’ as: ‘existing in or derived
from nature; not made or cause by humankind’.

3To my knowledge, the only one who as explicitly referred to this claim as a conjecture is John Steel in [58].
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to assess its truth or falsity. In particular, one would like to asses whether the known instances
of nonlinearity, such as those introduced by Hamkins, form counterexamples to the conjecture.
However, without a precise definition of a natural theory, it is not clear how one could go about
this.

The general aim of this thesis will be to make some first steps towards such a precise definition.
It must be recognized that there is no clear protocol in place for such an endeavor; a secondary
aim of this thesis will therefore be to develop a well-motivated method for obtaining a more
robust definition of naturalness in the context of the linearity conjecture. This thesis therefore
naturally falls into two parts. In the first part, I will introduce the object of study, namely the
linearity conjecture, and formulate a method for making the notion of a natural theory in the
context of this conjecture more precise; this method will then be applied in the second part.

Outline

This thesis is structured as follows. In Chapter 1, I will explain the content of the linearity
conjecture and describe the context in which it emerged. Subsequently, through quotations I
will try to shed some light on the attitude of the mathematical community towards the conjec-
ture and the known instances of nonlinearity. It will be concluded that there appears to be a
strong conviction that the conjecture carries some truth and that the well-known instances of
nonlinearity are unnatural.

In Chapter 2, we work towards finding a method for our aim of making the intuitive con-
cept of natural theory more precise. Using the philosophy of mathematical practise as general
framework, we start by reviewing Carnap’s account of explication, which is to be understood as
the general process of transforming an informal concept (the explicandum) into a precise con-
cept (the explicatum). Subsequently, we discuss two different cases of mathematical explication,
namely that of the concept of effective computability as referred to in Church’s thesis and that of
the concept of polyhedron as described by Lakatos’ in his Proofs and Refutations. According to
Lakatos, mathematical concepts tend to develop in response to counterexamples to preliminary
conjectures. In particular, Lakatos argues that the most fruitful concepts are those that arise
from careful analysis of an (informal) proof; Lakatos refers to such concepts as proof-generated
concepts. It will be argued that the Lakatosian approach seems particularly suitable for the task
at hand, and I will formulate a method based on this approach that consists of two main steps:
(1) formulate a proof-generated concept of natural theory based on an analysis of the known
instances of nonlinearity, and (2) assess whether the proof-generated concept is similar to the
intuitive notion.

We will then move on the second part of this thesis, in which we apply the outlined method.
Chapter 3 will consist of a detailed exposition of the known instances of nonlinearity. These in-
clude the instance involving the Rosser construction, which seems to be well-known in the math-
ematical community, but also the two new instances that were recently introduced by Hamkins
[22]. By analyzing the proofs of nonlinearity, we will attempt to identify the key characteristics
of the theories involved that are exploited in these proofs.

Following the proof analyses of Chapter 3, in Chapter 4 I will formulate proof-generated
concepts of natural theory. Based on the first two instances of nonlinearity, I will propose
Proof-generated concept 1, which defines a natural theory as one whose axioms do not carry
meta-information. Subsequently, based on the third instance of nonlinearity, I propose Proof-
generated concept 2, which defines a natural theory as one that is presented in a surveyable
manner. It will argued that these proof-generated concepts (1) dismiss the presented instances
of nonlinearity as counterexamples to the linearity conjecture, (2) are of a static rather than a
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dynamic nature, and (3) are similar (in the Carnapian sense) to the intuitive notion of a natural
theory as one that ‘arises in practice’ and ‘has a genuinely mathematical idea to it’.
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Part I

Problem and methodology
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Chapter 1

The linearity conjecture

In this chapter, I will introduce our main object of study: the linearity conjecture for the consis-
tency hierarchy of natural axiomatic theories. The notion of consistency strength will be defined
and the context in which the conjecture has arisen will be discussed. Through quotations, I
will try to shed some light on the attitude of the mathematical community towards the conjec-
ture. Subsequently, we will discuss what an investigation of the conjecture could consist of and
formulate the particular aim of this thesis.

1.1 Consistency strength

Before we can state the conjecture, we will discuss the notion of consistency strength. This notion
became of interest in response to Gödel’s famous incompleteness theorems. These theorems state
the following:

Theorem 1.1. (First incompleteness theorem) Any nice axiomatic theory T is incomplete, that
is, there exists a sentence ϕ in the language of T such that T ̸⊢ ϕ and T ̸⊢ ¬ϕ.

Theorem 1.2. (Second incompleteness theorem) Any nice axiomatic theory T cannot prove its
own consistency, that is, T ̸⊢ Con(T ).

Here a nice theory is one that is consistent, has a recursive axiomatization1 and in which we can
carry out basic arithmetical reasoning, that is, at the level of Peano arithmetic, denoted by PA.2

The third criterion enables one to arithmetize the syntax of the language of T . In particular,
it enables one to encode each formula ϕ by a some natural number ⌜ϕ⌝ and to construct a
provability predicate for T , which is a formula ProvT (x) such that ProvT (⌜ϕ⌝) is true precisely
when ϕ is provable in T . Using the provability predicate, the sentence Con(T ) can be defined as
¬ProvT (⌜⊥⌝). It then follows that Con(T ) is true if and only if T cannot prove a contradiction,
which in turn is equivalent to the consistency of T . In order for the second incompleteness
theorem to hold, the formula ProvT (x) should satisfy some particular conditions known as the
Hilbert-Bernays-Löb conditions.3 For any nice theory, it is possible to construct such a provability
predicate.

1See chapter 3 for the definition of a recursively axiomatized theory.
2In fact, it suffices to be able to carry out the arithmetic reasoning contained in the weaker arithmetical system

known as Robinson arithmetic.
3We will revisit the construction of the provability predicate and the HBL-conditions in detail in chapter 3.
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Assuming that we want our mathematical theories to be nice, which seems to be a quite
modest request, the incompleteness theorems tell us that the ultimate mathematical theory does
not exist: no matter how strong our axioms, there will always be statements that we cannot prove
or refute. Moreover, if our theory is consistent, then we will not be able to show this within
the theory itself. Therefore, in order to establish the consistency of a mathematical theory, we
will need to consult an even stronger one. We thus arrive at a plethora of theories that can be
compared in terms of their consistency strength.

Definition 1.3. Let T and S be nice theories. We say that the consistency strength of T
is lower than or equal to the consistency strength of S, denoted by T ≤ S, if the sentence
Con(S) → Con(T ) is provable over some suitable base theory.

A proof of Con(T ) → Con(S) from some suitable base theory is called a relative consistency
result. By ‘suitable’, we generally mean a theory that is weak in comparison to the theories S
and T . After all, the weaker the base theory, the more convincing the relative consistency result.
For many relative consistency results, it suffices to take the theory PRA of primitive recursive
arithmetic as base. The reasoning within PRA is generally considered to be finitist, and thus
consistency results from this base theory ought to convince even the finitist mathematician.4

As usual, we will write S < T if and only if S ≤ T and T ̸≤ S. In case we have both
S ≤ T and T ≤ S, we say that T and S are equiconsistent and write S ≡Con T . By the second
incompleteness theorem, note that if T is a nice theory that extends the base theory, then a
sufficient condition for T ̸≤ S would be T ⊢ Con(S). Indeed, if we were to have T ⊢ Con(S)
and T ≤ S, then the base theory and thereby T would prove Con(S) → Con(T ), giving us the
impossibility T ⊢ Con(T ). In particular, this means that for any nice theory T we have that the
theory T + Con(T ), which one obtains by adding Con(T ) as an axiom to T , has strictly higher
consistency strength than T .

1.2 The linearity phenomenon

The relation ≤ defines an order on the collection of nice axiomatic theories, also referred to as the
hierarchy of consistency strength. Interest in this hierarchy stems mostly from set theory. In the
beginning of the 20th century, it became clear that all present-day mathematics could be carried
out within the set theory ZFC, meaning that all mathematical statements can be formalized
in its language and all mathematical theorems can be proven from its axioms. This was a
remarkable result that gave hope that ZFC might be the ultimate mathematical theory in which
all mathematical questions could be settled. As we know, in the 1930s Gödel’s incompleteness
theorems showed this hope to be false. Subsequently, one of the main tasks within set theory
became to determine which questions cannot be settled within ZFC.

Assuming ZFC to be consistent, one way to show that a sentence ϕ cannot be proven in ZFC
is to show that its negation is consistent with the theory. In other words, one needs to show
the relative consistency result Con(ZFC) → Con(ZFC + ¬ϕ), i.e. ZFC + ¬ϕ ≤ ZFC. A famous
example of a sentence ϕ for which this has been done is the Continuum Hypothesis, denoted by
CH. In 1937, Gödel [16] showed ZFC + CH ≤ ZFC via his constructible universe L and in 1963
Cohen [9] managed to prove ZFC+ ¬CH ≤ ZFC via the method of forcing. These results imply
that both ZFC + CH and ZFC + ¬CH are equiconsistent with ZFC, showing that CH is in fact
independent of ZFC.

4For a defense of the claim that finitist reasoning is captured by PRA, see Tait [59].
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Another way of showing that a statement ϕ is independent of ZFC is by showing that ZFC+ϕ
has strictly higher consistency strength than ZFC. As explained above, a sufficient condition for
this would be ZFC+ϕ ⊢ Con(ZFC). A prime example of statements whose independence of ZFC
is shown in this manner are the large cardinal hypotheses, which are strengthenings of the Axiom
of Infinity such as ‘There exists an inaccessible cardinal’, ‘There exists a measurable cardinal’ or
‘There exists a Woodin cardinal’. Relative consistency results for large cardinals have been (and
still are) a major research topic in set theory.5

In the research on large cardinals, a remarkable pattern has emerged concerning the consis-
tency strength of extensions of ZFC. Using the method of forcing, many interesting extensions
of ZFC have been shown to be consistent relative to some large cardinal hypothesis. In many
of these cases, the extension can even be proven to be equiconsistent to some large cardinal
hypothesis. As stressed by John Steel in [58], it appears that we currently know of no exceptions
to this pattern, which he describes as follows:

Phenomenon 1.4. The natural extensions of ZFC are all equiconsistent with ZFC or with some
large cardinal extension of ZFC.

By ‘natural’, Steel refers to those extensions that are “considered by set theorists, because they
had some set-theoretic idea to them” (p. 157). Examples of such natural extensions would be
ZFC+CH, ZFC+ ‘there are no Kurepa trees’ or ZFC+‘there is a total extension of the Lebesgue
measure’. This phenomenon then suggests that the large cardinal extensions form the backbone
of the consistency hierarchy for natural set theories.

A second pattern that has emerged is that the large cardinal hypotheses are all comparable
in terms of consistency strength. That is, among the large cardinal hypotheses that we currently
know of there seems to be no exception to the following phenomenon:

Phenomenon 1.5. For any two large cardinal extensions T and S of ZFC, we either have T ≤ S
or S ≤ T .

This comparability of large cardinal hypotheses has come as a surprise to the set theoretic
community, as these hypotheses have arisen from very different branches of set theory with
diverse motivations.

The two phenomena stated above together imply that the natural extensions of ZFC are in
fact linearly ordered by ≤. Interestingly, it seems that the linearity phenomenon is not limited to
set theory; it also persists in theories of arithmetic, such as PA and its common subsystems and
extensions such as PRA, IΣn, ACA0, and Z2. This has led to the following informal conjecture,
which I will call the linearity conjecture:

Conjecture 1.6. All natural axiomatic theories are linearly ordered in terms of consistency
strength.

1.3 Instances of nonlinearity

It is important to note that in the linearity conjecture, the condition of naturality is a necessary
one. Namely, it is well-known that the hierarchy of consistency strength for all nice axiomatic
theories is not linearly ordered. It is possible to construct incomparable theories using self-
referential sentences such as the Rosser sentence. Essentially, the Rosser sentence of a nice

5For a comprehensive account of large cardinals and relative consistency results, see Kanamori [30].

10



theory T is a sentence γ that is true if and only if for any proof of γ in T there is a smaller6

proof of ¬γ in T . The theorem given below is a generalization of theorem 3 in [22].

Theorem 1.7. Let T be a nice theory and let γ be the Rosser sentence for the theory T+Con(T ).
Then the theories T + γ and T + ¬γ have incomparable consistency strength, i.e. we have
T + γ ̸≤ T + ¬γ and T + ¬γ ̸≤ T + γ.

Note that this theorem implies that neither T + γ nor T + ¬γ is equiconsistent with T and so
both must have a strictly higher consistency strength than T ; γ is therefore called a double jump
sentence for T .

We will provide a proof of this theorem in chapter 3 for the specific case that T = PA; it
should be easy to see that the proof also works for the general case. For now, the point is that
we can find instances of incomparability at any level of the consistency hierarchy, be it at the
level of basic arithmetic or at the level of very strong cardinal hypotheses.

In order for the linearity conjecture to carry any force, the theories described in Theorem
1.7 must be examples of unnatural theories. Indeed, there seems to be a consensus in the
mathematical community that this is the case, as indicated by the following quotations:

“One can construct unnatural extensions (using self-referential sentences, for example) that are
of incomparable consistency strengths.” (Steel [58], p. 157)

“All known instances of non-linearity and ill-foundedness have been discovered by defining
theories in an ad-hoc manner using self-reference and other logical tricks. [. . . ] When one
restricts one’s attention to the natural axiomatic theories, [. . . ] the resulting structure is a

pre-well-ordering.” (Walsh [65], p. 2)

“These [instances of a double jump] are all metamathematical examples, the kind of example
that only a logician would construct.” (Koellner [32])

“One can produce counterexamples by variants of Gödel sentences or of Rosser sentences. [. . . ]
Everybody agrees that these examples are not natural.” (Caicedo [6])

“Of course it is possible to construct pairs of artificial theories which are incomparable under
≤. However, this is not the case for the ‘natural’ or non-artificial theories . . . ”

(Simpson [54], p. 111)

“One can cook up ad hoc theories that are incomparable under consistency strength, but the
natural ones are always comparable.” (Montalbàn [44], p. 1211)

Note that the quotation by James Walsh indicates an even stronger version of the linearity
conjecture, namely that the consistency hierarchy of natural theories forms a pre-well-order.

It is interesting that the judgement of the unnaturality of theories like T + γ and T + ¬γ is
so pertinent in the literature, while ‘being natural’ is far from a precise property. As mentioned
above, Steel describes the natural set theories as those “considered by set theorists, because
they had some set-theoretic idea to them”, and similarly Friedman, Rathjen and Weiermann [14]
refer to the natural theories as those “which have something like an ‘idea’ to them” (p. 382).
In [65], Walsh takes the natural theories to be the ones that “arise in practice” (p. 2), and
something similar is stated by Peter Koellner in [32] who describes them as those “that arise
in nature”. These quotations suggest two key aspects of natural theories: they capture some
genuine mathematical idea and they are studied by working mathematicians.

6Here ‘smaller’ means smaller in terms of the natural numbers that encode these proofs.
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Do theories such as T + γ fail to meet these criteria? Let us consider the case where T = PA.
On the one hand, the theory PA + γ does not seem to capture a structure that is of genuine
mathematical interest, as the sentence γ does not seem to capture a genuine mathematical
property of natural numbers. It is hard to think of a motivation for adding this sentence as
an axiom to PA, except for wanting to construct a counterexample to the linearity conjecture.
Moreover, the theory PA+ γ has not received any consideration in mathematical practice, apart
from popping up in theorems like the one above. On the other hand, the simple fact that PA+γ
has popped up in this context does mean that it has been considered by mathematicians. Perhaps
one would want to distinguish here between mathematicians and logicians, and argue that PA+γ
is merely considered by the logician whose subject matter consists of all possible theories, but
not by the mathematician whose subject matter consists only of those theories that have some
genuine mathematical idea to them. Of course, such an approach only shifts the question: what
constitutes a genuinely mathematical idea?

The notion of a natural theory is thus far from a precise, well-defined concept. It is therefore
not clear how we are to assess the truth of the linearity conjecture or how to judge the known
instances of incomparability. Apart from the well-known instance of nonlinearity provided by
the Rosser sentence above, the only other instances of nonlinearity seem to have been provided
by Joel Hamkins in a recent draft [22]. In this paper, Hamkins aims to provide counterexamples
to the linearity conjecture by constructing instances of nonlinearity that, he argues, are natural.
Yet again, without a precise definition of what a natural theory should be, it is unclear how one is
to judge whether Hawkins has succeeded in providing actual counterexamples to the conjecture.

1.4 How to proceed?

Despite the vagueness of the notion of ‘natural’ and despite the known instances of nonlinearity,
many mathematicians seem to believe that the linearity conjecture does carry some truth and is
therefore worthy of further investigation. Friedman, Rathjen and Weiermann [14] even describe
the situation as follows:

“The fact that ‘natural’ theories [. . . ] are almost always linearly ordered with regard to logical
strength has been called one of the great mysteries of the foundation of mathematics.”7 (p. 382)

The question then becomes: what can an investigation of the linearity conjecture consist of?
The most obvious kind of investigation one could request is the search for a proof of the

conjecture. However, as it stands, it is not clear what a proof of the conjecture could look like.
Walsh [65] describes the problem as follows:

“If it is true that natural axiomatic theories are pre-well-ordered by consistency strength, [. . . ]
then one would like to prove that it is true. However, the claim that natural axiomatic theories

are pre-well-ordered by consistency strength is not a strictly mathematical claim. [. . . ]
Without a precise definition of ‘natural’, it is not clear how to prove this claim, or even how to

state it mathematically.” (p. 2)

This comment suggests that, before any mathematical work can be done on the conjecture, we
need a precise definition of a ‘natural theory’.

7The ‘almost always’ in this quotation could be interpreted as suggesting that there are some instances of
incomparable natural theories. However, to our knowledge the authors have not provided or referred to any such
particular instance in the literature.
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Currently, there seem to be no accounts of an attempt at finding such a definition. What
might come close to such an attempt is the work by Walsh and Montalbán found in [45]: their
strategy is to mimic an approach to a similar phenomenon in recursion theory, namely the
linearity phenomenon for natural Turing degrees.

Given two decision problems A,B ⊆ N, A is B-computable, denoted by A ≤T B, if A can be
decided using an algorithm that may employ B as an oracle. The relation ≤T then defines an
equivalence relation ≡T on the subsets of N, whose equivalence classes are called Turing degrees.
Despite the fact that the full Turing hierarchy is quite complex, the ‘natural’ decision problems
that computability theorists tend to come up with are quite well-behaved: they seem to form a
well-order under ≤T . An explanation of this linearity phenomenon is provided by a conjecture
posed by Donald Martin in the 70s, which essentially states that each function f : P(N) → P(N)
that is invariant on Turing degrees, i.e. that satisfies f(A) ≡T f(B) if A ≡T B, is equivalent to a
constant function, the identity function or an iterate of the Turing jump, which maps any decision
problem A to the Halting problem relativised to A. The connection of Martin’s conjecture to the
linearity phenomenon is that natural Turing degrees presumably induce such Turing invariant
functions, and the conjecture then implies that these degrees are indeed well-ordered. The
conjecture is still open, but many partial results are known.8

Inspired by this, Walsh and Montalbán aim to show that, just as the Turing jump is canonical
for Turing invariant functions on subsets of natural numbers, the consistency operator of a theory
T defined by ϕ 7→ Con(T +ϕ) is canonical for monotone functions on sentences in T . The latter
are defined as functions f on sentences in T that satisfy T ⊢ f(ϕ) → f(ψ) if T ⊢ ϕ → ψ. Their
work is still in progress, and future results will have to determine the success of their approach.9

However, if they succeed, one could suggest to simply define the natural theories to be those that
satisfy Walsh’s and Montalbán’s sufficient conditions for linearity.

Would such an approach provide us with a satisfactory demonstration of the linearity con-
jecture? In the case of the linearity phenomenon for Turing degrees, it seems that the extent
to which Martin’s conjecture provides a satisfactory explanation to this phenomenon crucially
depends on the extent to which we are convinced that the natural Turing degrees indeed induce
Turing invariant functions. The way in which these functions are induced is by relativisation: for
a natural decision problem A, the function induced by A maps any decision problem B to the rel-
ativisation of A to B.10 Relativisation is a key concept in computability theory, and there seems
to be a consensus that natural constructions, which include proofs as well as decision problems,
indeed relativise. However, in the context of axiomatic theories, it is not at all clear whether, and
if so how, natural theories necessarily induce some monontone functions on sentences. Thus, in
order to provide a satisfactory demonstration of the linearity conjecture, it seems that Walsh and
Montablán’s results would need to be supplemented by an argument showing that their formal
conditions for linearity indeed somehow capture the intuitive notion of a natural theory.11

The point is here that, when finding a formal substitute for an informal notion, not anything
goes. In the case of the linearity conjecture, it will not do to provide just any sufficient conditions
for linearity; it also needs to be clear that these conditions indeed capture the intuitive notion

8See Montalbán [44] for clear review of Martin’s conjecture and its connection of the linearity phenomenon for
natural Turing degrees.

9In fact, in a very recent arXiv submission by Walsh [66], it is shown that some of their conjectures in [45]
turn out false.

10For example, if A is the decision problem consisting of all (encodings of) programs that halt on a finite number
of inputs, then the function induced by A maps any decision problem B to the set of (encodings of) programs
with oracle B that halt on a finite number of inputs.

11Of course, I do not intend to suggest in any way that Walsh’s and Montalbán’s approach is uninformed or
without merit. My point is merely that any approach to the linearity conjecture will ultimately have to address
the question whether their proposed solution indeed adequately captures the intuitive notion of a natural theory.
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of a natural theory. At the same time, with the intuitive notion being as vague and inchoate as
it is, it is not clear what it means for formal conditions to capture this notion.

In the remainder of this thesis, I will carry out an attempt at moving towards a more precise
definition of a natural theory. Of course, there are many ways in which one could go about this,
and so we are faced with the task of determining a methodology. To this end, in the next chapter
we will discuss different approaches to the general process of forming definitions in mathematics,
which in the literature of philosophy of mathematical practice is often referred to as mathematical
concept-formation.
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Chapter 2

Concept-formation in
mathematics

In this chapter, a philosophical framework will be set out for our attempt to make the concept
of natural theory more precise, and a particular method for carrying out this attempt will be
outlined.

Taking Carnap’s notion of explication as a starting point, we will discuss three different roles
that a precise definition of an intuitive concept can play, namely that of sharpening, analyzing or
replacing the intuitive concept. Subsequently, we will review the case of Church’s thesis, which
can be viewed as a prime example of explication by means of conceptual analysis of an intuitive
concept. We will consider whether this approach is suitable for the task at hand, and discuss
the conceptual analysis of the concept of naturalness by San Mauro and Venturi.

We will then consider a drastically different approach to concept-formation, namely that
found in Lakatos’ Proofs and Refutations. In contrast to the former approach, the Lakatosian
approach highlights the replacing role of the explicatum. I will argue that this approach seems
fit for our purposes, and use it to outline the particular method that will be applied in the
subsequent chapters.

2.1 On explication

In the discussion on concept-formation in mathematics, an often cited work is Rudolf Carnap’s
‘Logical Foundations of Probability’, in which the first chapter is devoted to the general process
of making inexact concepts precise. Carnap calls this process explication.

“By the procedure of explication we mean the transformation of an inexact, prescientific
concept, the explicandum, into a new exact concept, the explicatum.” (Carnap [7] p. 3)

Carnap’s aim is to find an explicatum for the informal concepts of degree of confirmation, em-
pirical induction and probability, but his treatment of explication is meant to apply to any
prescientific concept. The explicandum is an informal concept that is used by scientists at some
developing stage of a scientific language; even though we do not have clear rules for its use,
we can make clear how the explicandum is practically used by means of informal explanations
and listing examples and non-examples. The explicatum, on the other hand, must be an exact
concept in the sense that its use is governed by explicit rules that connect it to a well-established
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system of scientific concepts. Carnap considers mathematics as a part of science: in the con-
text of mathematics, the explicatum must be incorporated into a well-established system of
logico-mathematical concepts.

Carnap stresses that the process of explication is tricky, as we do not have an exact way
of deciding whether a given explicatum is correct. Intuitively, we would want the explicatum
to be coextensive with the explicandum. However, as the explicandum is vague in the sense
that we lack a decision procedure for its application in every case, it is not clear how to make
sense of this request. Carnap therefore proposes to judge an explicatum by its similarity to
the explicandum, its fruitfulness and its simplicity. The latter is taken to play a lesser role;
when faced with two concepts that seem equal in both similarity and fruitfulness, preference
will be given to the simplest one. The explicatum is to be similar to the explicandum in the
sense that in most of the cases where we know the explicandum to apply or not to apply, the
explicatum must do the same; however, in cases where the application of the explicandum is
indeterminate, the explicatum is free to be applicable or not. There is an emphasis here on most
of the cases: an explicatum’s (dis)application may disagree with that of the explicandum if this
loss of similarity is compensated by a gain in fruitfulness. As an example, Carnap considers the
explication of the term ‘fish’: animals such as whales and seals that were initially included in the
prescientific concept of fish, generally understood to apply to ‘animals living in water’, are now
excluded by the scientific concept of fish as known from zoölogy. The reason that this particular
explicatum was favored over concepts more similar to the explicandum was its fruitfulness: the
animals to which the scientific concept applies share more particular properties than those falling
under the prescientific one, and thus the former allows us to formulate more general empirical
statements. According to Carnap, the fruitfulness of an explicatum thus lies in our ability to
formulate universal laws involving this concept. In the context of mathematics, an explicatum
is fruitful if it yields connections with other mathematical theories and enables us to formulate
general theorems.

The process of explication is abundant in mathematics. Consider for example the explication
of continuity by the epsilon-delta definition, the explication of a function as a set of ordered
pairs, or the explication of validity as truth in every model. In each of these cases, there is a
strong conviction that the explicatum is a satisfactory one, as we believe the explicatum to be
similar to the explicandum in the sense just described. Notice that this conviction is not without
merit: any result involving the precise explicata just listed is interesting to the mathematician
just because we believe this explicata to be similar to the original, informal explicandum. After
all, it was the informal notion that we were interested in the first place.

While Carnap provides us with criteria to judge whether a given explicatum is satisfactory
– in particular, whether it is more or less satisfactory than some alternative – no indication is
given as to how scientists are to arrive at a certain explicatum. A little hint might be found in
the first line of the following quote:

“The explicatum (in my sense) is in many cases the result of an analysis of the explicandum
[. . . ] in other cases, however, it deviates deliberately from the explicandum but still takes its

place in some way” (Carnap [7], p. 3)

The first line seems to indicate that an explicatum can be found by careful analysis of the
explicandum; if so, the explicatum must in some sense already be implicit to the intuitive ex-
plicandum. However, the second line suggests that, irrespective of whether an explicatum is
implicit to the explicandum, it can be preferable to replace the explicandum by an explicatum
that differs from it in significant ways.
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It will be clarifying to link our discussion here to a distinction between the sharpening,
analyzing and replacing of inexact concepts as made by Luca Incurvati in [26]. Incurvati’s book
focuses on conceptions of the mathematical notion of set, which are defined as follows:

“A conception of C, where C is a concept, is a (possibly partial) answer to the question ‘What
is it to be something falling under C?’ which someone could agree or disagree with without

being reasonably deemed not to possess C.” (Incurvati [26], p. 13)

The idea is here that some features of a concept C are so central to our understanding of it that
anyone who fails to recognize those features would be deemed not the posses the concept C; in
the case of the concept of set, these features include that of being a single, unified entity that is
completely determined by its members. These features, however, might not provide a full answer
to the question ‘What is it to be something falling under C?’. A particular conception of C then
provides a more elaborate answer to this question, which respects the central features of C.

Incurvati distinguishes three roles that a conception of a concept C can play. First, a con-
ception can be viewed as a sharpening of the concept. The idea is here that the criterion of
(dis)application for the concept C fails to be determinate in every possible case, and a particular
conception of C then settles (some of) these indeterminate cases. Crucially, how these indetermi-
nate cases are settled does not depend on the concept C is any way; one might view the settling
of these cases as arbitrary, at least with regard to the concept C.1

In contrast to a sharpening, a conception might be seen as providing an analysis of the
concept C by spelling out features of C that were already implied by that concept, even though
we might have failed to identify them. Gödel seems to have held such a view on conceptions:

“The precise concept meant by the intuitive idea of velocity clearly is ds/dt, and the precise
concept meant by “size” . . . clearly is equivalent with Peano measure in the cases where either
concept is applicable. In these cases the solutions again are unquestionably unique . . . they
satisfy certain axioms which, on closer inspection, we find to be undeniably implied in the

concept we had.” (Gödel, quoted in [67], p. 233)

The third role that a particular conception can be thought to play is that of replacing the
corresponding concept. In this interpretation, a conception might simply be seen as a new
concept that is favored over the initial one due to some preferable features. As an example,
Incurvati considers the case where the naive concept of set as the extension of a predicate, which
famously leads to a contradiction via Russell’s paradox, is replaced by a consistent one.

Incurvati’s discussion on concepts and their conceptions naturally translates to Carnap’s
discussion on explicanda and their explicata. In particular, note that Incurvati’s three distinct
roles of conceptions can all be found in Carnap’s description of explication. The criterion of
similarity, taken together with the demand that explicata ought to be exact concepts, indicates
the sharpening role of the explicatum. In contrast, the criterion of fruitfulness and its ability to
justify a compromise on similarity, suggests a replacing role.

The analyzing role of the explicatum is hinted at in the quotation of Carnap given above.
One could wonder whether, in cases where the explicatum is obtained from an analysis of the
explicandum, it makes sense to speak of the unique or correct explicatum that was somehow
implied by the explicandum. Carnap certainly did not think this, as he explicitly states that
explication is an inexact science for which “we cannot decide in an exact way whether it is

1Note that the settling of the indeterminate cases need not be arbitrary in general ; the choice of settling these
cases in a certain way can be well motivated. The point is here that these motivations do not appeal to the initial
concept C.
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right or wrong” (p. 4). However, there is an interesting case of an informal mathematical
concept for which it has been claimed that its exact definition is indeed the uniquely correct
one, and even provably so. The concept in question is that of effective computability, and the
statement that links this concept to the formal definition of recursive computability is known as
Church’s thesis. Church’s thesis is often viewed as an example of explication2 and has received
considerable attention from philosophers and mathematicians alike, in particular with regard to
its provability. In particular, it can be viewed as a case of explication in which the explicatum
is found via conceptual analysis of the explicandum.

Since the literature on the status of Church’s thesis is so extensive, and since it shares with
the linearity conjecture the feature of being an informal claim involving precise, mathematical
notions that is nevertheless viewed as true, it serves as a useful case study in our attempt to find
a method for explicating the intuitive notion of a natural theory. In the next section, we will
therefore discuss this case in more detail.

2.2 Explication via conceptual analysis: the case of Church’s

thesis

Church’s thesis states that the class of effectively computable functions is exactly the class of
recursive computable functions. Here an effective computable function should be understood as a
function from natural numbers to natural numbers that can be calculated by an algorithm in the
informal sense of the word, that is, as a step-by-step procedure that halts in a finite number of
steps and could in principle be carried out by a human computer. This informal notion has been
around for centuries3 and the need for a more precise definition of effective computability arose
only in the beginning of the 20th century, when mathematicians became interested in proving
that certain functions were not computable. In the 1930s, Church, Kleene, Gödel and Turing
independently developed explicata for effective computability, resulting in the formal definitions
of λ-computability, recursive computability and Turing computability. Turing’s treatment is
often considered the most convincing, as his notion of a Turing machine derives from a conceptual
analysis of the informal notion of an algorithm as a finite, step-by-step calculation. However, the
three formal notions were readily shown to be equivalent, and so the thesis can equivalently be
stated in terms of Turing computability or λ-computability instead of recursiveness.

There is a strong consensus in the literature that the thesis is accepted as true by the math-
ematical community. In computability theory, it is not unusual to invoke the thesis in proofs,
as to avoid the often tedious task of formally proving that a function is computable. Also note
that it is Church’s thesis that puts the force behind many results on recursive functions. To stay
close to the topic at hand, note that the impact of Gödels incompleteness theorems is driven by
our conviction that Church’s thesis is true; only because we believe that effective computability
is captured by recursiveness, do we feel that Gödel has shown that there is no hope of finding
a complete theory that can be axiomatized in an effective manner. In fact, Gödel himself had
reservations about the impact of his incompleteness results until Turing’s analysis convinced him
that recursiveness formed the “absolute definition” of computability (Gödel [18], p. 8).

2See e.g. Black [5] and Mendelson [43]. For a more critical discussion of whether the thesis can be viewed as
such, see Quinon [48].

3Dating back to Euclid’s algorithm for the greatest common divisor.
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2.2.1 Proving the thesis?

Given the fact that Alonzo Church [8] initially introduced the notion of recursiveness as a def-
inition of effective computability, it is interesting that Church’s thesis is called a thesis. Janet
Folina [13] writes:

“. . . [Church’s thesis] is not considered to be a mere definition, for it has substantial content
which seems capable of being true or false.” (p. 302)

In standard textbooks covering basic computability theory, one usually finds two arguments in
favor of the thesis: (1) of the large number of effective procedures known to humankind, none has
turned out to be non-recursive, and (2) all exact notions4 proposed as explicatum for effective
computability have turned out to be equivalent. These arguments are not meant to demonstrate
the truth of the thesis, but as evidence that makes the thesis plausible.

The standard conception of Church’s thesis seems to be that we cannot do much better than
this. Kleene [31] writes:

“While we cannot prove Church’s thesis, since its role is to delimit precisely an hitherto
vaguely conceived totality, we require evidence that it cannot conflict with the intuitive notion

which it is supposed to complete.” (p. 319)

However, more recent accounts of the thesis such as that of Smith [56], Black [5], Shapiro
[52], Mendelson [43], Gandy [15] and Sieg [53], have argued that we can do better than this:
each argues that the thesis is provable, or stronger still, in the case of Gandy, Sieg and Smith,
that it already has been proven. Most of their arguments are similar, as their main task is to
establish that (1) the alleged ‘vagueness’ of the notion of effective computability does not block
the provability of the thesis and (2) there is a particular proof technique available for the thesis.
Instead of considering each account individually, I will therefore set out the main arguments
offered in favor of these two claims.

The first argument addresses the vagueness of the notion of effective computability. This
argument attacks the claim, which seems to be implied in the quotation of Kleene, that two
concepts cannot be demonstrably coextensive if one is vague while the other is precise. Black’s,
Smith’s and Shapiro’s response is that even though the concept of effective computability might
be vague in sense, it need not be vague in extension. To illustrate, the concept of a tall person is
vague in extension, as there clearly are borderline cases of which it is unclear whether the concept
applies.5 However, there simply do not seem to be any borderline cases of effective computability
in this sense; for any alleged algorithm, the intuitive notion seems to suffice to judge whether it
describes a genuine algorithm, i.e. a genuinely effective procedure.

The second argument attacks the claim that a genuine mathematical proof cannot involve
informal notions. Mendelson writes:

“The assumption that a proof connecting intuitive and precise mathematical notions is
impossible is patently false. In fact, half of CT (the ‘easier half’) . . . is acknowledged to be

obvious to all textbooks in recursion theory.” p. 249

4Apart from the three notions mentioned above, there are many more, such as Kolmogorov-Uspenskii com-
putability or computability in terms of register machines.

5A controversial view on this point is provided by William [68], who argues that terms such as ‘red’ can have
a fixed extension despite the fact that ordinary speakers might feel that there exist borderline cases of which they
cannot be certain whether the concept applies to it or not.
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By the easier half of the thesis, Mendelson refers to the implication that each recursive function
is effectively computable. The recursive functions can be defined as the least class of numeri-
cal functions that contains the so-called initial functions (consisting of the zero, successor and
projection functions) and is closed under the operations of composition, primitive recursion and
µ-recursion. Mendelson argues that we can use a standard induction argument to show that these
functions are in fact effectively computable: we can construct effective algorithms to compute
the initial functions, and for each of the three operations we can, given some effective computable
functions, describe an algorithm that would compute the function that results from applying the
operation to those computable functions. Mendelson claims that this “is as clear a proof as I
have seen in mathematics, and it is a proof in spite of the fact that it involves the intuitive notion
of effective computability” (p. 250). Smith gives a different ‘proof’ of the easy implication: he
employs the equivalence of recursiveness and Turing computability, and subsequently invokes the
argument that each Turing-program is effectively computable, as its instructions simply describe
an effective algorithm. He also provides another instance of a proof in which the informal concept
of effective computability could occur: if someone manages to find an example of an intuitively
computable function that is provably not recursive, then this would serve as a disproof of the
thesis.

What constitutes a mathematical proof is not an undisputed matter. As explained by Avigad
[4], the standard conception of a mathematical proof seems to be that of a mathematical argument
that could, by some “logically adept and sufficiently motivated mathematicians”, be reduced to a
formal derivation in some axiomatic system accepted by the mathematical community (p. 7379).
Clearly, the notion of a proof employed by Mendelson and Smithis not that of a formalizable
proof.

For our purposes, we need not take a position on whether Mendelson’s or Smith’s arguments
deserve the label ‘proof’. What is important for us is the observation that the arguments provided
by Mendelson and Smith of the easy implication are not mere plausibility arguments; they are
genuinely mathematical arguments that are meant to demonstrate the truth of this implication,
not its mere plausibility. Smith makes the following useful distinction:

“We might distinguish, then, three levels of mathematical argument - mere plausibility
considerations, informal demonstrations, and ideally formalized proofs (or truncated versions

thereof).” (Smith [56], p. 353)

We leave open the matter of whether the label ‘proof’ is to apply to the second notion.
The two arguments discussed above are meant to show that the vagueness or informality of

‘effective computability’ does not necessarily deem the thesis unprovable. This, of course, does
not yet indicate how we are to prove the thesis. In particular, we need a proof strategy for the
so-called hard implication, i.e. the statement that each effectively computable function is indeed
recursive.

Shapiro’s suggestion for what a proof of the hard implication could look like, derives from
a comment by Gödel, in which he proposes that it might be possible to “state a set of axioms
which would embody the generally accepted properties of this notion, and to do something on
that basis” ([52], p. 286). Shapiro suggests that this set of axioms could be obtained from a
conceptual analysis of the notion of effective computability, and the ‘something on that basis’
would then consists of a formal proof that these axioms imply the formal concept of recursiveness.
The difficult part, of course, will be to establish whether the axioms derived from the conceptual
analysis will in fact be evidently true properties of any effective algorithm. One such conceptual
analysis is famously provided by Turing [61]. Turing starts from the conception of an algorithm
as a step-by-step procedure that can be carried out in finitely many steps by an idealized, human
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calculator. This idealization involves that we leave out at any constraints on time, space or
resources; the procedure must only be capable of being carried out in principle. Turing then
identifies conditions that any such algorithm should satisfy, such as requiring a finite alphabet
and allowing only limited movement within the workspace at each step. From these conditions,
Turing eventually arrives at his definition of a Turing program.

If one accepts Turing’s analysis, the demonstration of the hard implication would be finished
by the formal proof that Turing computability implies recursiveness. Gandy, Sieg and Smith
argue that Turing’s analysis, or at least some more elaborate version of it, is indeed a satisfactory
conceptual analysis that provides necessary conditions for computability.6

Taking these proof suggestions together, the full demonstration of Church’s thesis would take
the form of a squeezing argument. The idea is due to Kreisel [35], who used it so show that the
intuitive concept of first-order validity, understood as ‘truth in virtue of form’, is coextensive with
the model-theoretic notion of validity. The idea of a squeezing argument is relatively simple. Let
I be some informal concept, and for any concept X let |X| denote its extension. Now suppose
we could find some formal concepts S and N that provide sufficient and necessary conditions for
the concept I, i.e. suppose that we could (informally) demonstrate that

|S| ⊆ |I| ⊆ |N |.

Differently put, the extension of I is ‘squeezed’ inbetween that of S and N . Now suppose in
addition, we could (formally) demonstrate that

|N | ⊆ |S|.

Then we could conclude |S| = |I| = |N |, thereby obtaining our co-extension result. In the demon-
stration of Church’s thesis outlined above, S would be instantiated by recursiveness, whereas N
would be instantiated by the conditions or axioms obtained from a conceptual analysis of the
notion of effective computability.

There is an important remark of caution concerning squeezing arguments that has been raised
by Smith in [55]. Smith stresses that the squeezing arguments for effective computability and
logical validity only ‘kick in’ after the intuitive notion that is to be squeezed has already undergone
some conceptual sharpening. To illustrate, the intuitive notion of an algorithm as an effective
procedure that can be carried out in principle could still be sharpened in many distinct ways, as
the following questions ought to make clear: carried out by who, us or machines? If by us, then
as we actually are or as some idealized version of us? Does feasibility play a role? Many years
of working with the notion of effective computability led mathematicians to sharpen the idea
to that of a finite, step-by-step symbolic computation that could be carried out by an idealized
human computer, ignoring constraints of time and space (but not of working memory). And it
is this notion, still informal yet already sharpened to a considerable degree, that the squeezing
argument applies to. To make the point clear, Smith distinguishes three levels of concept. At
the pretheoretic level, we start with some inchoate ideas of computability, mainly by referring to
examples of “common-or-garden real-world computation” (p. 29). At the prototheoretic level,
we further develop these ideas into one particular direction, resulting in the sharpened idea of
effective computability as described above. Then there is the fully theoretic level, where we
find the precise notions of recursiveness and Turing compatibility and the like. The squeezing
argument only applies to the prototheoretic notion of computability, as the pretheoretic notion

6Sieg and Smith both feel that Turing’s treatment leaves some gaps; Sieg claims to have filled these gaps by
his own conceptual analysis of computability, whereas Smith argues that Kolmogorov’s and Uspenskii’s treatment
of computability as given in [33] does the trick.
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is simply too unrefined to have a precise extension; when moving from the pretheoretic to the
prototheoretic concept of computability, different routes could have been taken. Smith writes:

“. . . it would be plainly over-ambitious to claim that in refining our inchoate ideas and homing
in on the idea of effective computability, we are just explaining what we were talking about all

along.” (Smith [55], p. 29)

The force of the squeezing argument is thus in showing that, even though we have to sharpen our
intuitive notion to some degree, we might not need to sharpen it completely before the extension
of this notion takes on a precise form.

Connecting this to our earlier discussion on the possible roles of explication, it seems that
the concept of computability has undergone two phases of explication. The first is a sharpening
phase, where the number of indeterminate cases for application of the pretheoretic concept was
reduced. Following Smith, the particular sharpening that occurred was arbitrary in the sense
that it was not implied by the initial concept. This is not to say, of course, that this sharpening
was arbitrary in the sense that is was uninformed; considerations of interest and fruitfulness
will certainly have played a role in the process. The second phase is an analyzing phase, where
the fully theoretical concept is obtained from the prototheoretical one by a careful conceptual
analysis of the latter. Church thesis can then be interpreted as stating that the outcome of this
analysis was correct, in the sense that the prototheoretic and the theoretic concept are exactly
coextensive.

2.3 A conceptual analysis of naturalness?

The case of Church’s thesis makes it clear that the process of explication is a fundamental part
of mathematics and not a mere prelude to the actual mathematical work. In particular, it
shows that explication is not equivalent to stating a definition; a definition cannot be true or
false, whereas Church’s thesis suggests that an explication can have a truth value. In the case of
Church’s thesis, the explication is generally thought to be a true one; this conviction is important,
as it puts the force behind many important theorems involving recursive functions. It seems safe
to say that this point generalizes to all instances of mathematical explication: our conviction
that an explicatum is correct is tantamount to our interest in any formal results involving the
explicatum. Moreover, the analysis above shows that, when arguing for the correctness of a
given explication, we have more than mere plausibility arguments at our disposal. Irrespective
of whether one agrees with Gandy, Sieg and Smith that a satisfactory squeezing argument has
been provided by (some version of) Turing’s analysis, it is at least clear that such an argument
is possible in principle and that the reasoning employed in such an argument is of a genuinely
mathematical nature, possibly even deserving of the label ‘proof’. Lastly, the case of Church’s
thesis suggests that a conceptual analysis of an intuitive notion can provide us with precise
conditions that are evidently true for any instance of this notion, provided that this informal
notion has already been sharpened to some degree.

Can the intuitive concept of natural theory be subjected to such a conceptual analysis?
There is one significant way in which the notion of naturalness differs from that of effective
computability: whereas the concept of effective computability has been sharpened to a degree
that there appears to be no case of an algorithm of which it is unclear whether it does or does not
classify as a genuinely effective computation, the application of the concept of natural theory is
far from this precise. Using Smith’s terminology, the concept of natural theory should be placed
at the pretheoretic level: we have some inchoate ideas about what a natural theory ought to be,
namely one that ‘has a genuine mathematical idea to it’ or ‘arises in mathematical practice’, and
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we have some examples of natural theories, e.g. ZFC and PA and their common subsystems and
extensions, and some non-examples, namely those theories involving the Rosser sentence. This
suggests that the notion of a natural theory needs to undergo some sharpening before it can be
subjected to a conceptual analysis such as that provided by Turing.

We should mention, however, that something like a conceptual analysis of the general notion
of naturalness in mathematics has been carried out by Luca San Mauro and Giorgio Venturi [50].
The aim of their study is to provide an account of the informal use of this notion, that is, of the
use of this notion outside of formal definitions.7 In particular, they aim to determine whether
naturalness is a static or a dynamic property of mathematical objects or constructions. Here a
static property is to be understood as one that is stable over time and inherent to the object
that we assign this property to, as opposed to a dynamic property that is contextual in the sense
that it pertains to the relations that the object in question as to other objects.

By considering case studies from set theory and computability theory, San Mauro and Venturi
find the use of naturalness to be governed by both contextual and normative considerations:
a mathematical concept or construction is generally considered to be natural if it has stable
connections to other mathematical contexts and, in addition, if the concept or construction in
question is one that is exemplary of how we want to do mathematics. Their conclusion is the
following:

“In conclusion, we suggest that naturalness should be considered as a device of self-regulation
within mathematical practice, a device that through a dynamic and communitarian process
informs us of the ways in which we want this practice to be performed.” (San Mauro and

Venturi [50], p. 310)

San Mauro and Venturi therefore conclude that ‘being natural’ is not an inherent property of
certain mathematical objects that remains stable over time.

This classification of naturalness as a dynamic rather than a static notion seems problematic
for anyone wanting to demonstrate the truth or falsity of the linearity conjecture. If what classifies
as a natural theory changes over time, then the linearity conjecture becomes nothing more than
a description of the status quo: it would come to mean that the consistency strength of theories
that hold a certain position in the current mathematical climate forms a linear order. If this
is indeed how things are, then any kind of demonstration of the conjecture seems impossible,
as the conjecture would link a dynamic concept, namely that of a natural theory, to the static
concept of linearity. After all, we cannot predict how mathematical practice is to develop, and
thus such a demonstration could not appeal to any intrinsic property of natural theories, since
these might change over time. Instead of calling it a conjecture, we then better refer to it as a
mere observation describing our current mathematical practices.

The worry that the concept of natural theory is merely contextual is also expressed by
Hamkins in his discussion of the linearity conjecture:

“We have no coherent robust concept of what counts as natural, and empty naturality talk is
too often used merely to reject the unfamiliar. For someone to declare a construction or idea
‘unnatural’ is often little different from them saying, ‘I don’t like it’ or ‘it uses unexpected

ideas’. ” (Hamkins [22], p. 33)

Hamkins here seems to imply that, in addition to being a contextual notion that is connected to
familiarity, the use of the notion of naturalness is often uninformed or even empty.

I would like to push back against Hamkins claim that ‘naturality talk’ is empty. As the work
of San Mauro and Venturi shows, the notion of naturalness serves a purpose in mathematical

7An example of such a definition would be that of a natural transformation in category theory.
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practice, and so referring to a mathematical construction as ‘natural’ is not a meaningless under-
taking. Moreover, if naturality talk in mathematics was indeed empty, then a large number of
discussions in mathematics would have to be deemed meaningless. To name a few, apart from the
discussion at hand, consider the discussions on the naturalness of axioms of ZFC, the naturalness
of ordinal notations in ordinal analysis, or the naturalness of decision problems in computability
theory. Even in the case of some formal definitions that involve the notion of naturalness, such
as ‘natural number’ or ‘natural transformation’, the reference to naturalness seems to be more
than a mere syntactic label.

Apart from this, I admit that San Mauro and Venturi as well as Hamkins may be right that
the notion of naturalness in mathematics in general is governed by contextual considerations.
However, this does not necessarily imply that the particular concept of natural theory, as referred
to in the context of the linearity phenomenon, does not cut any ice. To illustrate this, let us
reconsider the linearity phenomenon for Turing degrees described in the former chapter. As
Montalbán exemplifies, there is a conviction that the linear behavior of the natural Turing
degrees is not a mere description of the status quo:

“The contrast between the general behavior in [the Turing hierarchy] and the behavior of the
naturally occurring objects is so stark that there must be a deep reason behind it.”

(Montalbán [44], p. 1211)

And indeed, Martin’s conjecture suggests that there is such a reason. So the fact that the general
notion of naturalness is a dynamic one did not prevent computability theorists from isolating
a static, robust property of the natural Turing degrees. Building on this case, it seems that to
assume that the concept of natural theory is merely contextual would be to prematurely dismiss
the intuition of the mathematical community, as the fact that theories involving the Rosser
sentence are widely considered to be unnatural serves as an indicator that these theories must
satisfy some robust property explaining this.

Taking this intuition of the mathematical community seriously, the task at hand is now to
sharpen the pretheoretic, inchoate concept of natural theory into a prototheoretic one that is of a
static rather than a dynamic nature. The difficulty, of course, is that any such particular sharp-
ening is not induced by the pretheoretic concept itself, and thus a wide range of prototheoretic
concepts are possible. What we need, then, is a method that enables us to obtain a particular
sharpening of the pretheoretic notion. Interestingly, such a method seems to be provided by Imre
Lakatos, whose view on mathematical concept-formation will be discussed in the next section.

2.4 The Lakatosian approach to concept-formation

Thus far, our discussion of mathematical explication has treated the formation mathematical
concepts and definitions as isolated from the formation of mathematical theorems. A drastically
different view on concept-formation in mathematics can be found in Imre Lakatos’ Proofs and
Refutations (PR) [38]. This work is often described as a revolutionary piece in the philosophy of
mathematics, which shifted away from the traditional focus on ontological questions concerning
the nature of mathematical objects and how one might access them. Instead, Lakatos calls for
a historical account of mathematics that focuses on the development and progress of real-life
mathematical practice.
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2.4.1 Lakatos’ Proofs and Refutations

In PR, Lakatos aims to show that concept-formation in mathematical practice occurs through a
dynamic interplay between conjectures, proofs and counterexamples. He does so by means of a
case-study on Euler’s formula for polyhedra, through which he both discovers and explains his
method of proofs and refutations as the general pattern of mathematical discovery. His work takes
the form of a fictitious dialogue between a group of students and their teacher; their discussion
of Euler’s formula reflects the real history of the discovery and the proving of the formula, which
is pointed out to the reader via the footnotes.

Lakatos introduces his work as a challenge for mathematical formalism with

the modest aim to elaborate the point that informal, quasi-empirical mathematics does not
grow through a monotonous increase of the number of indubitably established theorems but

through the incessant improvement of guesses by speculations and criticism”. (p. 5)

Formalism is to be understood as “the school of mathematical philosophy which tends to identify
mathematics with its formal axiomatic abstraction” (p.1). The idea is here that, for the formalist,
mathematical theories are to be identified with an axiomatic system, their theorems with well-
formed formulas and their proofs with sequences of such formulas that are governed by a set of
fixed inference rules. Moreover, definitions are nothing more than abbreviations for interesting
formulas; they enable us to write theorems in a succinct and clear way.8

According to Lakatos, formalism fails to account for the process of mathematical discovery
that is crucial for mathematical growth. While formalization serves as a very powerful tool to
obtain rigour in our mathematical results, a formalised theory leaves very little room for discov-
ery: one can either solve questions that could just as well be solved by a properly programmed
machine, or, in case the theory is undecidable, one can try to guess which sentences are the-
orems. However, Lakatos claims that discovery in informal mathematics is neither mechanical
nor irrational; instead, it is a rational process that generally follows his method of proofs and
refutations.

The method of proofs and refutations describes the dynamic interplay between theorems,
counterexamples and proofs during the process of mathematical discovery. According to the
method, this interplay follows a general pattern.

First, a preliminary, informal conjecture is formulated. In PR, the conjecture considered
reads “All polyhedra satisfy V − E + F = 2”, where V , E and F respectively represent the
number of vertices, edges and faces of the polyhedron. At the time of Euler’s formulation of the
conjecture, 1758, a polyhedron was generally understood to be ‘any solid bounded by planes or
plane faces’.

Subsequently, a proof of the conjecture is suggested. It is important to note here that a
‘proof’ should not be understood in the formal sense; after all, formal proofs can only deal
with formal statements and not with informal conjectures. The proof considered in PR is that
proposed by Cauchy in 1813, which employs informal notions such as ‘removing surfaces’ and
‘stretching the polyhedron without tearing it’. For Lakatos, such a proof should be understood

8The student of mathematics will most likely recognize the dominance of the formalist view in mathematical
literature: textbooks and papers in mathematics follow a deductivist style, in which one is presented a list of formal
definitions, followed by a theorem and its proof. The definitions can be involved and their precise formulation
often seems ad hoc until one reads the proof of the theorem; it is only there that one realises that the definitions
were chosen just so to make the proof work. This order of presentation is unlikely to reflect the order of discovery;
in general, the definitions are inspired by the proof and the proof is inspired by some preliminary conjecture. In
the formalist view, however, there is no room for this dynamic between proofs, definitions and theorems that led
to the final result. In Appendix 2 of PR, Lakatos calls for a revision of this deductivist style in mathematical
literature.
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Figure 2.1: A nested cube, that is, a cube with a cube-shaped hole.

as a “thought-experiment [. . . ] which suggests a decomposition of the original conjecture into
subconjectures or lemmas” (p. 10). The main purpose of such a proof is not to show that the
preliminary conjecture is indubitably true. Instead, its main purpose is to reveal more places for
criticism on the conjecture, that is, for counterexamples.

In reaction to both the conjecture and its proof, counterexamples may emerge. In the case
of Euler’s conjecture, these included the nested cube (see Figure 2.1), the cylinder and the
starpolyhedra. Lakatos identifies three different ways in which mathematicians responded to
these counterexamples. The first response is to simply deny that the counterexample forms
a proper counterexample, that is, to reject the proposed counterexample on the basis of not
classifying as a proper polyhedron. Lakatos refers to this as the method of monster-barring. In
the case of Euler’s conjecture, monster-barring resulted in a sequence of increasingly restrictive
definitions of ‘polyhedron’, each of which meant to keep out yet another monster.

The second response is referred to as exception-barring. The exception-barrer takes coun-
terexamples more seriously than the monster-barrer: she accepts the counterexample as such
and contracts the domain of validity of the conjecture as to ensure that it does not contain the
counterexample. To illustrate, when faced with the counterexample of a nested cube to Euler’s
formula, she will add a condition to the conjecture such as ‘All polyhedra without cavities satisfy
V − E + F = 2’.

A worry for the exception-barrer is that, when contracting the domain of the conjecture,
she might unintentionally be excluding some Eulerian polyhedra9 as well; perhaps it is not the
cavity per se, but some other property of the nested cube that makes it fail to be Eulerian. To
avoid this problem, the third method does not only take the counterexample seriously, but in
addition takes the proof suggestion into account. It consists of a careful analysis of the proof,
with the aim to find the ‘guilty lemma’ that is refuted by the counterexample. This might be
a difficult task, as the guilty lemma need not have been stated explicitly in the proof; in that
case, one first needs to give an elaboration of the proof. Once the lemma is found, it can be built
into the conjecture as a condition. Lakatos refers to this as the method of lemma-incorporation.
To illustrate, it turns out that the nested cube does not satisfy an implicit assumption made
in Cauchy’s proof, namely that each polyhedron can be stretched onto a plane when one face
is removed. Thus, as a response to this counterexample, the lemma-incorporator will make this
assumption explicit in the conjecture.

Note that the method of lemma-incorporation leads to an improvement of both the conjecture
and the proof. As argued by Lakatos, this method forms the most fruitful response to a coun-
terexample, that is, the response that facilitates the largest increase in mathematical knowledge,
as it makes hidden assumptions explicit and leads to the most general version of the conjecture.

9That is, polydra satisfing Euler’s formula.
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After the conjecture has been improved, new counterexamples may emerge, and so the method
of proofs and refutations continues. In the eyes of Lakatos, this is precisely what improved
conjectures and proofs are meant to do: by making hidden assumption explicit, they open up
new places for criticism. Eventually, the emergence of counterexamples may come to a halt, and
the conjecture and its proof might be translated into a formal theory. Such a formalization may
convince us that our proof was valid, and that no subsequent formalizable counterexamples will
be found. However, Lakatos stresses, the formal translation is no substitute for the informal
theory; this point is made explicitly in [37], where Lakatos writes that

“. . . we have no guarantee at all that our formal system contains the full empirical or
quasi-empirical stuff in which we are really interested and with which we dealt in the informal

theory.” (p. 67)

2.4.2 Concept-formation in PR

In PR, Lakatos explicitly connects his method of proofs and refutations to concept-formation.
Note that the methods of monster-barring, exception-barring and lemma-incorporation can all be
viewed as doing some conceptual contracting. The monster-barrer can be viewed as contracting
the domain of application of the concept ‘polyhedron’, whereas the exception-barrer and the
lemma-incorporator can be seen as contracting the domain of application of the conjecture.
However, Lakatos suggests that this view fails to take into account that, as our knowledge grows,
the semantics of our language changes.

Instead of looking at the monster-barrer as contracting the concept of polyhedron, one could
view the refutionist as stretching the original concept, by suggesting an example of a polyhedron
to which the original concept was never meant to apply. Through the voice of student Pi,
Lakatos10 remarks:

“The conjecture was true in its intended interpretation, it was only false in an unintended
interpretation smuggled in by the refutationists. Their ‘refutation’ revealed no error in the
original conjecture, no mistake in the original proof: it revealed the falsehood of a new

conjecture which nobody had stated or thought of before.” (p. 90).

In this light, the monster-barrer does not contract the concept of polyhedron, but simply keeps
it fixed.11

For Lakatos, then, the role of refutations is heuristic: they do not show that the conjecture
is false, but they show that more is going on than we initially imagined. By simply dismissing
a counterexample, as the monster-barrer does, one refuses to change their interpretation of the
problem at hand and by doing so, fails to facilitate any epistemic growth. In contrast, by
accepting the counterexample as such, one agrees to change their language by means of concept-
stretching. Subsequently, one has to improve the conjecture by means of a new concept. When
using the method lemma-incorporation, this new concept will be induced by the guilty lemma
of the proof; Lakatos refers to this as the proof-generated concept. To come back to our example

10As PR is presented in the form of a dialectic between students with opposing views, it is sometimes difficult
to make out which claims are to be interpreted as Lakatos’ own. I am assuming that in chapter 8 of PR, the
student Pi represents Lakatos’ own view on concept-formation.

11This view of monster-barring might help to understand how many respected mathematicians seem to have
adhered to this method, which on the face of it might seem like nothing more than a cheap, linguistic trick. In
the light of the counterexamples, it seems to believe that Cauchy could have made the ‘mistake’ of thinking that
he had proven the conjecture for all polyhedra. However, from Lakatos’s perspective, Cauchy did not make a
mistake at all.
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of the nested cube, the proof-generated concept is that of a solid bounded by planes that, after
one face has been removed, can be stretched onto a plane.

Connecting Lakatos’ view on concept-formation to our discussion on explication, one can
view Lakatos’ proof-generated concept as an explicatum whose main role is that of replacing the
initial concept. This is made particularly clear in the following quote of the student Pi:

“Proof-generated concepts are neither ‘specifications’, nor ‘generalisations’ of the naive
concepts. The impact of proofs and refutations on naive concepts is much more revolutionary

than that: they erase the crucial naive concepts completely and replace them by
proof-generated concepts.” (p. 95)

The motivation for replacing the naive concept by the proof-theoretic one can again be cast in
terms of fruitfulness: the proof-theoretic concept enables us to formulate an improved conjecture,
which eventually might lead us to the formulation of a theorem.

2.5 Outline of our method

The Lakatosian approach to concept-formation provides a very different view on concept-formation
than that suggested by our case study of Church’s thesis: rather than arising out of conceptual
analysis, the Lakatosian view entails that mathematical concepts develop in response to emerg-
ing counterexamples and the analysis of proofs. Lakatos’ approach can therefore be viewed as a
‘mathematics first’ approach, as it takes the driving force behind mathematical concept-formation
to be the construction of proofs and counterexamples rather than philosophical considerations.

The fact that Lakatos’ method of proofs and refutations does not seem to apply to the
explication of the notion of effective computability shows that the method might not be suitable
to model every instance of mathematical concept-formation. However, the method does seem
applicable to the task at hand. As in Lakatos’ case study, we have a preliminary conjecture that
contains an informal notion lacking a precise definition. Moreover, this conjecture has received
criticism in the form of counterexamples, namely the instances of nonlinearity involving the
Rosser sentence and the instances of nonlinearity provided by Hamkins in [22].

Following the Lakatosian approach, I therefore propose the following method for obtaining a
more precise definition of the notion of a natural theory:

1. For each counterexample, study the proof of incomparability.

2. Identify the key characteristic(s) of the theories involved that are exploited by the proof.

3. Formulate a proof-generated concept of natural theory based on these characteristics.

4. Assess whether the proof-generated concept is similar the intuitive notion of a natural
theory.

Let us make some remarks on the method just outlined.
First, it must be noted that our method diverts from the method of proofs and refutations in

one significant way. Whereas the latter teaches us to study a proof of the preliminary conjecture,
the former suggests an analysis of the proofs demonstrating that the suggested counterexamples
are indeed instances of nonlinearity. The simple reason for this is that we lack a proof suggestion
for the linearity conjecture, even in Lakatos’ informal sense. As a consequence, our method
instructs one to identify properties of unnatural theories rather than properties of natural theo-
ries. There is a subtle difference here, since identifying a condition that is necessary for proving
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nonlinearity is not equivalent to providing a condition that is necessary for proving linearity.
Nevertheless, by making the notion of an unnatural theory more precise, we will necessarily also
obtain a more precise notion of a natural theory.

Second, recall that the task we set out at the end of section 2.3 was to sharpen the intuitive,
pretheoretic notion of a natural theory into a prototheoretic one that is of a static nature. As
our method entails that the proof-generated concept is based on inherent characteristics of the
theories involved, the proof-generated concept is bound to be static.

Third, step 4 needs to be justified, as this step does not follow from the Lakatosian approach.
For Lakatos, the proof-generated concept may fully replace the intuitive notion and need not
share any particular features with the initial concept. This is because, for Lakatos, the main
purpose of the proof-generated concept is to facilitate an increase in knowledge by providing
us with a better understanding of the proof by which it was induced. Our aim, however, is to
provide a sharpening of the intuitive notion, and so we need to assess whether the proof-generated
concept indeed provides such a sharpening. Moreover, step 4 creates an important balance in
our method: whereas step 1 to 3 will necessarily provide us with a concept of natural theory that
dismisses the proposed counterexamples as genuine counterexamples to the linearity conjecture,
step 4 ensures that this dismissal of the counterexamples may not be trivial.

In the second part of this thesis, we will apply the method just outlined. In Chapter 3, we will
carry out step 1 and step 2 using the known instances of nonlinearity, namely those provided by
the construction involving the Rosser sentence as presented in Theorem 1.7 and those provided
by Hamkins in a recent draft [22]. Building on the proof analyses of Chapter 3, we will carry
out step 3 and step 4 in Chapter 4.
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Part II

Application of the Lakatosian
approach
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Chapter 3

Analyzing the counterexamples

In this chapter, I will present three types of potential counterexamples to the linearity conjecture,
that is, instances of incomparability in terms of consistency strength. For each of these three
types, I will attempt to identify the key characteristics of the theories involved that are exploited
in the proof of their incomparability.

The proofs in this chapter are due to Hamkins [22]. I have presented his results in a more
elaborate and self-contained manner, highlighting details of his constructions that I deem im-
portant as to grasp the key ideas that these proofs employ. In particular, I have made the proof
and axiom predicates involved, which Hamkins left implicit, explicit.

3.1 Mathematical preliminaries

In order to present and analyze the (alleged) counterexamples to the conjecture, we need some
mathematical preliminaries.

We will be working with classical first-order theories, either in the language of arithmetic LA

or in the language of set theory LS . Given such a first-order language L, we define an L-theory
to be a set T of L-sentences, whose elements will be referred to as the axioms of T . For any
L-formula ϕ, we will write T ⊢ ϕ if ϕ is derivable from T in some complete derivation system
for first-order logic; a proof with axioms in T will be called a T -proof. Let us emphasize here
that we will not assume our theories to be closed under consequences, that is, if T ⊢ ϕ then
we need not have ϕ ∈ T . In general, the theories under consideration will only consist of non-
logical axioms; in particular, when writing PA and ZFC, we refer to the set of non-logical axioms
of Peano arithmetic and the set of non-logical axioms of Zermelo-Fraenkel set theory with the
axiom of choice, respectively. Given a theory T and a sentence ϕ, we will write T + ϕ to refer to
the theory obtained when adding ϕ as an axiom to T , i.e. to refer to the theory T ∪ {ϕ}.

We will generally need our theories to allow for an recursive axiomatization.

Definition 3.1. Let T be an L-theory. Then T is recursively axiomatizable if the following
are recursively decidable: (1) which words in L are well-formed formulas/sentences, (2) which
formulas are axioms of T , and (3) which finite sequences of formulas constitute a first-order
derivation.

Note that for any recursively axiomatisable theory T , it will be decidable whether a finite sequence
of formulas constitutes a T -proof. The languages we will consider always satisfy (1) and (3), so
the only interesting requirement is (2). As we view theories as sets of axioms, for our purposes a
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recursively axiomatizable theory is simply a recursive set of sentences. Note that, for such a set,
different decision procedures are possible; given a recursively axiomatizable theory T , we will
refer to a particular decision procedure for T as a recursive axiomatization of T .

Let us now restrict ourselves to the language of arithmetic LA, which we take to consist of
the non-logical signature (0, S,+, ·). We will say that an arithmetical sentence is true if and only
if it is true in the standard model N of the natural numbers.

Recall that the Gödel numbering enables us to encode arithmetical formulas by natural
numbers in a primitive recursive manner. That is, there exists a primitive recursive algorithm
that given a finite arithmetical expression outputs its unique Gödel code, and there exists a
primitive recursive algorithm that given a Gödel code outputs the finite arithmetical expression
corresponding to that code. For any formula ϕ, we let ⌜ϕ⌝ denote its Gödel code. Moreover,
in a similar manner we can encode finite sequences of formulas by natural numbers, and so in
particular we can encode proofs.

Now fix some recursively axiomatizable theory T . Gödel’s crucial observation for proving
his incompleteness theorems was that we can construct an arithmetical formula PrfT (x, y) that
captures the relation ‘x is a T -proof of y’ in the following sense:

1. if n ∈ N is the Gödel code of a T -proof of ϕ then PA ⊢ PrfT
(
n, ⌜ϕ⌝

)
;

2. if n ∈ N is not the Gödel code of a T -proof of ϕ then PA ⊢ ¬PrfT
(
n, ⌜ϕ⌝

)
.

Here we use the standard notation for numerals, i.e. for any natural number n we let n be an
abbreviation for applying the successor function n-times to the constant 0. For example, 2 is an
abbreviation for S(S(0)). Moreover, in the sequel, we will always let n and m denote natural
numbers.

The fact that the binary relation ‘is a T -proof of’ can be captured in PA follows from the
more general fact that all recursive functions can be captured in PA.1 Moreover, they can be
captured by a formula of low complexity in terms of the arithmetical hierarchy, namely by a
so-called Σ1 formula.

Definition 3.2. A partial numerical function f : Nk → N is captured by a formula ϕ(x1, . . . , xk, y)
in T if for any m1, . . . ,mk, n ∈ N the following hold:

1. if f(m1, . . . ,mk) = n, then T ⊢ ϕ(m1, . . . ,mk, n);

2. T ⊢ ∀x∀y(ϕ(m1, . . . ,mk, x) ∧ ϕ(m1, . . . ,mk, y) → x = y).

Here the statement f(m1, . . . ,mk) = n implies that f(m1, . . . ,mk) is defined.2

Definition 3.3. The sets of arithmetical formulas Σn, Πn and ∆n for n ∈ N are inductively
defined as follows:

(i) both Σ0 and Π0 consist of precisely the arithmetical formulas that only contain bounded
quantifiers;

(ii) Σn+1 is the smallest set that contains Πn and is closed under conjunction, disjunction,
bounded quantification and (unbounded) existential quantification;

1In fact, they can already be captured in the weaker arithmetical system known as Robinson arithmetic.
2We are following the terminology used by Smith [56]. Our notion of capturing is also referred to as binu-

merating (e.g. by Feferman [11]), strongly representing (e.g. by Picollo [47]) or numeralwise expressing (e.g. by
Auerbach [2]) in the literature.
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(iii) Πn+1 is the smallest set that contains Σn and is closed under conjunction, disjunction,
bounded quantification and (unbounded) universal quantification,

Theorem 3.4. PA can capture all (partial) recursive functions by a Σ1 formula.

For a proof of this result, see e.g. the third chapter of Hájek & Pudlák [19]. Let us just make
a remark about how one can construct a formula that captures a recursive function f . The
language LA is expressive enough to fully describe the recursive definition of f . Recall that any
recursive function can be defined in terms of the initial functions (the constant zero function,
the successor function and the projection functions) subjected to the operations of composition,
primitive recursion and minimization. Without going into the details, we can then give an
inductive definition of a formula ϕ capturing f as follows.

(1) We can capture the zero function by the formula ϕZ(x, y) := (y = 0) and the successor
function by ϕS(x, y) := (S(x) = y). The binary projection function projecting onto the first
coordinate, for example, can be captured by ϕP 2

1
(x, y, z) := (x = z); the other projection

functions can be captured in a similar way.

(2) If h is the composition g2 ◦ g1 of unary functions g1 and g2, which are captured by ϕ1(x, y)
and ϕ2(x, y) respectively, then h is captured by the function ∃z(ϕ1(x, z) ∧ ϕ2(z, y)).

(3) Suppose h is defined via primitive recursion on a unary g1 and a tertiary g2, i.e. we have
h(x, 0) = g1(x) and h(x, n + 1) = g2(x, n, h(n)), and that these functions are captured
by ϕ1(x, y) and ϕ2(x, y, z, u) respectively. We can use a clever way of encoding sequences
of natural numbers (by using the so-called β-function) to obtain a formula ϕ(x, y, z) that
captures the statement “There is a sequence of numbers n0, . . . , ny such that ϕ1(x, n0), and
for all w < y we have ϕ2(x,w, nw, nw+1) and ny = z”. Then ϕ(x, y, z) captures h.

(4) Suppose h is defined via minimization on a binary g, i.e. h(x) = µy(g(x, y) = 0), and that g
is captured by ϕg(x, y, z). Then h is captured by the function

ϕ(x, y) := ϕg(x, y, 0) ∧ (∀z ≤ y)(z = y ∨ ∃u(u ̸= 0 ∧ ϕg(x, z, u))).

In steps (2) to (4), the construction generalizes to functions of different arities in a straightforward
manner. One can check that formula ϕ obtained in this manner from any recursive function f is
indeed a Σ1 formula.

The point of reviewing this construction is to stress the fact that the formula ϕ capturing
f actually fully describes, through some clever encoding, how the function f is built up from
the initial functions. In other words, we can view ϕ as describing an effective procedure that
calculates f . Smith refers to such formulas as canonical in the following sense:

“A wff that captures a [recursive] function f by being constructed so as to systematically
reflect a full [recursive] definition of f . . . will be said to canonically capture the function.”

(Smith [56], p. 129)

Note that this definition is an informal one. Intuitively, it is capturing in this canonical sense
that we would like our formal definition of ‘capturing’ to, well, capture. However, as Smith makes
clear, it is not straightforward how to make this notion precise. Note for example that, for any
recursive function f , there will be many different formulas capturing f in our formal sense: if
ϕ captures f in T and ψ is any theorem of T , the formula ϕ ∧ ψ will also capture f in T . A
formal definition of ‘canonically capturing’ would have to exclude formulas carrying redundant
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information like this. Moreover, note there will also be many different formulas that do capture
a recursive f in a canonical way; for example, the encoding in step (3) could be done in many
different ways and there will be many different recursive definitions of f . Nevertheless, it should
be clear that for every recursive function f there is at least one formula that canonically captures
f , namely the one obtained from the construction above applied to some recursive definition of
f . We will therefore assume in what follows that whenever we introduce a formula as capturing
some recursive function, it was constructed is this canonical way.

Since any recursive relation has a recursive characteristic function, it follows from Theorem
3.4 that every recursive relation can be captured by a Σ1 formula in PA in the following sense.

Definition 3.5. A numerical relation R of arity k is captured by a formula ϕ(x1, . . . , xk) in T
if for any m1, . . . ,mk ∈ N the following hold:

1. if R(m1, . . . ,mk) is true then T ⊢ ϕ(m1, . . . ,mk);

2. if R(m1, . . . ,mk) is false then T ⊢ ¬ϕ(m1, . . . ,mk).

It is not hard to see that the relation R(m,n) defined by ‘m encodes a T -proof of the formula
encoded by n’ is indeed recursive: one can decode m and n using a recursive algorithm, and since
T is a recursively axiomatized theory there also exists a recursive procedure to check whether the
sequence encoded bym forms a first-order derivation whose axioms are in T and whose conclusion
is the formula encoded by n. Thus we obtain that PA indeed captures R(m,n) by some formula
PrfT (x, y). Due to our recursive description of R(m,n), we may assume that PrfT (x, y) is built
using a Σ1 formula AxT (z) that (canonically) captures the property ‘encodes a sentence in T’.
Given any another recursively axiomatized theory S, we will assume that PrfS(x, y) is obtained
by simply replacing AxT (z) by AxS(z) in PrfT (x, y). Moreover, given some sentence ϕ, we will
assume AxT+ϕ(z) is given by AxT (z) ∨ z = ⌜ϕ⌝.

We will refer to PrfT (x, y) as the proof predicate of T . In general, we will be working with
theories T that extend PA; in this case, the formula PrfT (x, y) will also capture R(m,n) in T .
We will also be working with ZFC and extensions of ZFC; these theories are not an extension of
PA in the strict sense, as ZFC is not formulated in the language of arithmetic. However, in the
language of set theory we can still define the natural numbers and the arithmetical operations on
them in such a way that they satisfy the Peano axioms; the standard way to define the constant
0 and the successor function S is 0 := ∅ and S(x) := x ∪ {x}, and the set of natural numbers is
then defined as the least set that contains 0 and is closed under S. Formally, we say that PA is
interpretable in ZFC, meaning that there exists a translation τ that maps arithmetical formulas
to set theoretic formulas such that PA ⊢ ϕ implies ZFC ⊢ τ(ϕ) for any arithmetical formula ϕ. It
follows that ZFC, and any other theory that interprets PA, can also capture its own provability
relation.3 In the sequel, we will sometimes be sloppy and leave the translation τ implicit; for
example, if T interprets PA we will sometimes write T ⊢ ϕ instead of T ⊢ τ(ϕ) for an arithmetical
formula ϕ.

With the proof predicate PrfT (x, y) at hand, we can define the provability predicate and the
consistency sentence of T as follows.

Definition 3.6. For a recursively axiomatized theory T , the provability predicate is defined as
ProvT (x) := ∃yPrfT (y, x). For any sentence ϕ, we will abbreviate ProvT

(
⌜ϕ⌝

)
by □Tϕ.

Definition 3.7. For a recursively axiomatized theory T , the consistency sentence is defined as
Con(T ) := ¬□T⊥.4

3See Chapter 6 in Lindstörm [39] for a detailed treatment of interpretability.
4This notation is bit misleading, since T is not a arithmetical term; a more natural choice would perhaps be

ConT . However, this will be unpleasant to read as T becomes more complex, so we will stick with Con(T ).
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Note that the provability predicate is a Σ1 formula. Also note that the provability predicate, and
thereby the consistency sentence, depends on a particular choice of for formula PrfT (x, y); the
results in this chapter will be independent of our choice of PrfT (x, y), as long as we construct it
in a canonical manner as described above using an axiom predicate AxT (x) that is Σ1.

We will list some useful properties of provability predicates and consistency sentences, which
be found in chapter 1 of [39].

Lemma 3.8. Let T and S be recursively axiomatized theories. For any sentences ϕ and ψ, the
following hold:

(i) if T ⊢ ϕ, then PA ⊢ □Tϕ;

(ii) PA ⊢ (□Tϕ ∧□T (ϕ→ ψ)) → □Tψ;

(iii) PA ⊢ □Tϕ→ □T (□Tϕ);

(iv) if T ⊢ ϕ→ ψ, then PA ⊢ □Tϕ→ □Tψ;

(v) PA ⊢ (□Tϕ ∧□T¬ϕ) → ¬Con(T );

(vi) PA ⊢ ∀x(AxS(x) → AxT (x)) → (Con(T ) → Con(S));

(vii) PA ⊢ □T+ϕψ ↔ □T (ϕ→ ψ);

(viii) PA ⊢ □T¬ϕ↔ ¬Con(T + ϕ) and PA ⊢ □Tϕ↔ ¬Con(T + ¬ϕ).

Properties (i)-(iii) are known as the Hilbert-Bernays-Löb provability conditions; these need to
be satisfied in order for the second incompleteness theorem to hold for T . Let us remark here
that these conditions need not be satisfied if ProvT (x) is not canonical; we will see an example
of this in the next chapter.

Properties (i), (v) and (viii) have the following corollary, which will be useful to prove the
instances of nonlinearity.

Corollary 3.9. Let T be a recursively axiomatized theory and ϕ a sentence.

(i) PA ⊢ □Tϕ ∧ Con(T ) → Con(T + ϕ).

(ii) If T ⊢ ϕ, then PA ⊢ Con(T ) → Con(T + ϕ) and PA ⊢ Con(T ) → ¬Con(T + ¬ϕ).

Proof. (i) By 3.8(viii) we have PA ⊢ ¬Con(T+ϕ) → □T¬ϕ and by 3.8(v) we have PA ⊢ □T¬ϕ→
¬□Tϕ ∨ ¬Con(T ). This implies that PA ⊢ ¬Con(T + ϕ) → ¬(□Tϕ ∧ Con(T )); contraposing
gives the desired result.

(ii) If T ⊢ ϕ, then PA ⊢ □Tϕ by 3.8(i). By (i), we then obtain PA ⊢ Con(T ) → Con(T + ϕ).
Moreover, from 3.8(viii) it follows that PA ⊢ ¬Con(T + ¬ϕ) and so a fortiori we have PA ⊢
Con(T ) → ¬Con(T + ¬ϕ).

The property of proving every true Σ1 sentence is known as Σ1-completeness.5 The following
lemma states that PA is PA-provably Σ1-complete and can be found in chapter 1 of [39].

Lemma 3.10. For any Σ1 sentence ϕ, if ϕ is true then PA ⊢ ϕ. Moreover, this result is provable
in PA, i.e. we have PA ⊢ ϕ→ □PAϕ.

The second key ingredient for Gödel’s incompleteness proof, which we will also need in our
proofs below, is known as the diagonalization lemma or Gödel’s fixed point lemma.

5Recall that by ‘true’ we mean true in the standard model of arithmetic.
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Lemma 3.11. (Diagonalization Lemma). Let ϕ(x) be an arithmetical formula with one free
variable x. Then there exists an arithmetical sentence γ in such that PA ⊢ γ ↔ ϕ

(
⌜γ⌝

)
.

As the particular construction of the fixed point γ will be of interest to us later, a proof of the
lemma will be here.

Proof. Let D(x, y) be a formula that in PA captures the recursive function d that is defined
by d(⌜ψ(x)⌝) = ⌜ψ(⌜ψ(x)⌝)⌝; on natural numbers that do not encode a formula with one free
variable, d acts as the identity.6 Let n be the Gödel code of the formula ∀y(D(x, y) → ϕ(y)) and
let γ be the formula ∀y(D(n, y) → ϕ(y)). Then ⌜γ⌝ = d(n), and so since D(x, y) captures d in
PA we have PA ⊢ ∀y(D(n, y) ↔ y = ⌜γ⌝). So we obtain

PA ⊢ γ ↔ ∀y(y = ⌜γ⌝ → ϕ(y))

and thus indeed PA ⊢ γ ↔ ϕ
(
⌜γ⌝

)
.

Lastly, we will need the formalized version of the second incompleteness theorem for nice
theories T , which can be found in Smith [56].

Definition 3.12. A theory T is nice if it is consistent, recursively axiomatizable and interprets
PA.

Theorem 3.13. Let T be a nice theory. Then T ⊢ Con(T ) → ¬□T Con(T ).

3.2 Counterexample 1: the Rosser sentence

Before considering Hamkins’ new instances of nonlinearity, let us revisit the instance given in
Theorem 1.7 in the case that T = PA. In order to analyze this counterexample properly, we first
need to provide a proof of the following theorem.

Theorem 3.14. Let γ be the Rosser sentence for the theory PA + Con(PA). Then the theories
PA+ γ and PA+ ¬γ have incomparable consistency strength over the base theory PA.

Note that by showing that two theories have incomparable consistency strength over some base
theory B, we also show that these theories are incomparable over any weaker base theory. So
the fact that PA might be stronger than the preferred base theory does not make this instance
of nonlinearity less convincing; if anything, it makes it more convincing.

Proof. 7 We will construct a sentence γ that is true if and only if for any proof of γ from
PA+Con(PA) there is a smaller proof of ¬γ from PA+Con(PA); by ‘smaller’, we mean smaller
in terms of Gödel codes. This sentence γ is known as the Rosser sentence for PA + Con(PA).
For brevity, let us write T := PA+Con(PA).

Note that the relation R(m,n) defined by ‘m encodes a T -proof of the negation of the formula
encoded by n’ is recursive; we will let PrfT (x, y) denote a formula capturing this relation in PA.
We can then define the Rosser provability predicate RProvT as follows:

RProvT (x) := ∃y
(
PrfT (y, x) ∧ (∀z ≤ y)¬PrfT (z, x)

)
. (3.1)

6This formula is often referred to as the diagonal function.
7This proof is a worked-out version of Hamkins’ proof of Theorem 3 in [22]. Part of the proof is based on the

proof of Rosser’s theorem in [56].

36



Note that for any sentence ϕ, RProvT
(
⌜ϕ⌝

)
is true if and only if there is a T -proof of ϕ such

that there is no smaller T -proof of ¬ϕ. By the Diagonalization Lemma 3.11, there now exists a
sentence γ that is a fixed point of ¬RProvT (x), so we have

PA ⊢ γ ↔ ¬RProvT
(
⌜γ⌝

)
. (3.2)

As desired, we obtain that γ is indeed true if and only if for any T -proof of γ there is a smaller
T -proof of ¬γ.

Assuming T to be consistent, one can show that T ̸⊢ γ and T ̸⊢ ¬γ.8 Suppose, for con-
tradiction, that T ⊢ γ. Then there is a T -proof of γ, so since our proof predicate captures
the proof relation, it follows that there is some Gödel code (i.e. some natural number) n such
that T ⊢ PrfT (n, ⌜γ⌝). Moreover, consistency of T implies that ¬γ is not provable from T , so
using that PrfT captures its corresponding relation gives us T ⊢ ¬PrfT (m, ⌜γ⌝) for all m ≤ n.
Since T extends PA, one can show that T then proves (∀z ≤ n)¬PrfT (z, ⌜γ⌝). Thus T proves
RProvT (⌜γ⌝), which contradicts (3.2).

The argument that T cannot prove ¬γ is similar. If T ⊢ ¬γ, then we have T ⊢ PrfT (n, ⌜γ⌝)
for some n. Moreover, since consistency of T implies T ̸⊢ γ, a similar argument as above
gives us T ⊢ (∀y ≤ n)¬PrfT (y, ⌜γ⌝), which implies T ⊢ ∀y(PrfT (y, ⌜γ⌝) → n ≤ y). But then
T ⊢ ∀y(PrfT (y, ⌜γ⌝) → n ≤ y ∧ PrfT (n, ⌜γ⌝)) and thus

T ⊢ ∀y(PrfT (y, ⌜γ⌝) → (∃z ≤ y)PrfT (z, ⌜γ⌝)).

This shows that T ⊢ ¬RProvT (⌜γ⌝), which again contradicts (3.2).
Having established that γ is independent of T , we can now show that PA+γ and PA+¬γ are

incomparable. We will first show that PA+γ ̸≤ PA+¬γ and subsequently that PA+¬γ ̸≤ PA+γ.
Since T cannot prove γ, it follows that the theory T +¬γ is consistent and thus has a model;

let’s call it M . Then M |= ¬γ, so M believes there is a T -proof of γ such that there is no smaller
T -proof of ¬γ. The key observation is now that this situation is described by a Σ1 sentence and
thus provable in PA, that is, M thinks that PA proves that such a T -proof of γ exists. Formally,
from M |= PA and M |= ¬γ together with (3.2) we obtain

M |= RProvT
(
⌜γ⌝

)
.

Since the Rosser provability predicate is a Σ1 formula and M is a model of PA, it follows from
Lemma 3.10 that

M |= □PA RProvT
(
⌜γ⌝

)
. (3.3)

From (3.2) and Lemma 3.8(iv), we then find

M |= □PA¬γ, (3.4)

so M thinks that PA proves ¬γ. Since M is a model of Con(PA), it follows from Corollary 3.9(ii)
that M is a model of both Con(PA+ ¬γ) and ¬Con(PA+ γ). As M is also a model of PA, this
implies that PA ̸⊢ Con(PA+ ¬γ) → Con(PA+ γ) and thus we obtain PA+ γ ̸≤ PA+ ¬γ.

Conversely, since T cannot prove ¬γ, it follows that the theory T + γ is consistent. By the
second incompleteness theorem, this theory cannot prove its own consistency and so there exists
a model M ′ of T + γ + ¬Con(T + γ). By Lemma 3.8(viii), M ′ then believes that there is a

8In fact, this is how one proves Gödel’s First Incompleteness Theorem.
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T -proof of ¬γ. In particular, as M ′ is a model of PA, M ′ believes there must be a smallest
such proof, let’s call it P . Since M ′ |= γ, M ′ thinks that there can be no T -proof of γ that
is smaller than P . In other words, M ′ believes that there exists a T -proof P of ¬γ such that
everything smaller than P is not a T -proof of γ. Note that this situation can be described by
a Σ1 sentence, so M ′ believes that PA proves that such a proof P exists. Since the existence of
such a P implies ¬RProvT (⌜γ⌝) and thereby γ, it follows that M ′ believes that PA proves γ.
Since M ′ |= Con(PA), it follows from Corollary 3.9(ii) that M ′ is a model of Con(PA + γ) and
¬Con(PA+ ¬γ). Thus we obtain PA+ ¬γ ̸≤ PA+ γ.

Note that the proof can easily be adapted to show that there are incomparable theories T + γ
and T +¬γ over the base theory PA, where T is any nice theory and γ is the Rosser sentence for
T +Con(T ).

3.2.1 Proof analysis

Despite the fact that we lack a clear definition of naturalness, there seems to be consensus in the
literature that theories like PA + γ and PA + ¬γ are in fact unnatural. After introducing these
counterexamples, Hamkins writes

“Nobody likes [these] examples of nonlinearity [. . . ] Those sentences are viewed as
unnatural—weird self-referential logic-game trickery.”9 (Hamkins [22], p. 8).

He then describes the main goal of his paper as providing examples of nonlinearity that are
natural. Before considering those, let us pause and reflect at the counterexample at hand. In
particular, let us try to answer the question: where does the trickery occur?

First note that, as a syntactic object, there is nothing fishy about the sentence γ. It is a well-
defined sentence in the language of arithmetic that we could write down explicitly, without using
any abbreviations, if we were willing to do the work. After all, γ is obtained via the Diagonal
Lemma, the proof of which is constructive in the sense that it gives us an effective procedure to
construct γ from the proof predicates Prf and Prf, and these proof predicates can in turn also
be written down explicitly in the language of arithmetic. Thus, albeit long and rather complex,
the sentence γ is syntactically unproblematic.

The potential problem, then, must lie in the semantics of γ. We have constructed γ so that
it is PA-provably equivalent to RProvT

(
⌜γ⌝

)
. This means that in any model of PA, the sentence

γ is true precisely when for any T -proof of γ, there is smaller T -proof of ¬γ. We thus see that
the truth of γ corresponds to the truth of a statement about what the theory T can prove about
γ. Studying the proof of Theorem 3.14, it is exactly this property of γ that is exploited in order
to obtain that PA+ γ and PA+ ¬γ have incomparable consistency strength.

In the proof of Theorem 3.14, we prove two incomparability statements. The first one,
PA + γ ̸≤ PA + ¬γ, is the easier one: we take a model M of T + ¬γ and use the fact that ¬γ
is a Σ1 sentence to conclude that M thinks that PA can already prove ¬γ and thereby that M
thinks that PA+ ¬γ is consistent while PA+ γ is not. For the other incomparability statement,
PA+¬γ ̸≤ PA+ γ, we need to do a bit more work as γ is not Σ1.

10 To prove this statement, we
take a model M ′ of T + γ + ¬Con(T + γ) and aim to show that M believes that PA proves γ.

9Let us stress here that Hamkins just describes the math community here. He himself does not seem to think
this, as he believes naturality talk to be thoroughly unsatisfactory.

10Note that, in order to obtain incomparable theories PA + γ and PA + ¬γ, it is necessary that γ and ¬γ are
not both Σ1 sentences. If they were, then Σ1-completeness would imply that PA proves one of them (namely the
one that is true in the standard model) and so the other would be inconsistent with PA. However, inconsistent
theories are trivially comparable to any theory in terms of consistency strength.
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The reason we succeed is that M ′ believes that PA proves that there is a T -proof of ¬γ with no
smaller proof of γ, and due to the self-referencing semantics of γ this suffices to show that M ′

believes that PA proves γ.
Let us abstract away from the details and consider the general structure of the proof just

described. In order to show that two theories T and S are incomparable in terms of consistency
strength, we need to construct a model M in which Con(T ) is true and Con(S) is false and a
second model M ′ in which Con(S) is true and is Con(T ) false. In order to show that Con(S) or
Con(T ) is false in a model, we need to show that this model believes that there exists a proof of
a contradiction from S or T , respectively. Note that, in general, we assume the theories S and
T to be consistent, and thus we expect that such a proof does not exist in the standard model
of arithmetic. Actually finding such a proof should therefore be a hopeless task. Nevertheless,
we want to show that such a proof does exist inside some nonstandard model.

In the proof of Theorem 3.14, this is exactly where the self-referencing semantics of γ helps
us out. First, in order to obtain the models M and M ′, we need the sentences γ and ¬γ to be
independent from PA + Con(PA). Of course, the Rosser sentence was originally constructed for
just this purpose: being able to prove the Rosser sentence implies being able to prove that there
is a smaller proof of its negation, and thus no consistent theory can prove its Rosser sentence;
similarly, no consistent theory can prove the negation of its Rosser sentence, as being able to
prove this negation implies being able to prove that there is a proof of the Rosser sentence.
Second, we need to show that M is a model of Con(PA+ ¬γ) + ¬Con(PA+ γ) and that M ′ is
model of Con(PA+ γ) + ¬Con(PA+ ¬γ); as explained above, the first statement follows from
Σ1-completeness, while for the second statement the proof relies again on the fact that γ is
equivalent to a statement about its own provability.

3.3 Counterexample 2: Representing numbers by compu-

tations

Hamkins’ first construction of an instance of nonlinearity that he considers to be natural involves
a representation of natural numbers in terms of what Hamkins calls a universal computable
function. This is an algorithm that can compute any function, as long as it is run in the right
model.

Theorem 3.15. Let T be a nice theory. We can construct a computable function UT such that
for any partial function f : N → N there is a model M of T such that inside M , UT computes
f . Formally, for any arithmetical formula ϕUT

(x, y) that canonically captures UT , the following
holds: for each n ∈ N, if f(n) is defined then

M |= ϕUT
(n, f(n)),

and otherwise

M |= ¬∃yϕUT
(n, y).

Proof. We assume the reader to be familiar with the indexation of recursive functions and with
Kleene’s Recursion Theorem.11 We will define a recursive function UT that, informally, can be
described as follows: on any input, UT searches for a T -proof that UT itself does not compute
some finite function h, and if such a proof is found then it does behave exactly like this function.

11For details, see e.g. [57].
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We will first define a recursive function g. Given a natural number p, we let g(p) be an index
of the recursive function that is computed by the following program:

On input n, the program generates an arithmetical formula ϕp(x, y) that canonically cap-
tures the function indexed by p and then searches systematically for a finite list of pairs of
natural numbers ((n1,m1), . . . , (nk,mk)) and for a T -proof of the statement

“ϕp(x, y) does not compute the partial function h given by the input-output pairs
(n1,m1), . . . , (nk,mk)”.

12

More precisely, the program employs some encoding of pairs (P, h) of T -proofs P and finite
functions h, and checks these pairs in the order of increasing code. If a pair (P, h) is found
such that P is T -proof of “ϕp(x, y) does not compute h”, then the program outputs h(n)
whenever it exists, and otherwise it loops endlessly.

Note that g is then a total computable function, and thus Kleene’s recursion theorem implies
that there exists an index e such that the functions indexed by e and g(e) are identical. We
let UT be the recursive function indexed by e. Let ϕUT

(x, y) be an arithmetical formula that
canonically captures UT in PA.

Since T is consistent, it cannot prove the statement “ϕUT
(x, y) does not compute h” for any

finite function h. If it could, then there would be a finite function h∗ and a T -proof P of “ϕUT
(x, y)

does not compute h∗” such that the pair (P, h∗) is least in terms of the encoding mentioned above.
However, by construction of UT , that would mean that UT actually does compute the function
h∗. Moreover, by Σ1-completeness, the existence of such a pair (P, h∗) would be provable in
PA. Since ϕUT

(x, y) canonically captures UT , the particular syntactic construction of ϕUT
(x, y)

must reflect that the existence of such a pair (P, h∗) implies that ϕUT
(x, y) computes h∗. Thus

it follows that it would be provable in PA that ϕUT
(x, y) computes h∗. In particular, T would

prove that ϕUT
(x, y) computes h∗, but then T would prove a contradiction as we also have a

T -proof P showing that ϕUT
does not compute h∗.

We obtain that for each finite function h, the statement “ϕUT
(x, y) computes h” is consistent

with T . In particular, for any partial function f : N → N it follows that any finite subset of the
set of sentences

{ϕUT
(n, f(n)) : f(n) is defined} ∪ {¬∃yϕUT

(n, y) : f(n) is not defined}

is consistent with T . By the compactness theorem, we obtain that the set of all these sentences
is consistent with T . Thus there is a model M of T in which they all hold.

Note that the partial function f can even be a non-computable function. There is nothing
paradoxical about this, as the model in which f will be computed by UT will necessarily be a
nonstandard model of arithmetic. In the standard model, the function UT is not defined on any
input, as consistency of T implies that there can be no T -proof of “ϕUT

(x, y) does not compute
h” for any finite function h.

Thinking of UT as an algorithm rather than a partial recursive function, in the sequel we will
often identify UT with its arithmetical description ϕUT

(x, y) and write the informal statement
“UT halts on n” to abbreviate the sentence ∃yϕUT

(n, y).

12This statement can be spelled out as follows:

¬∀x∀y
(
ϕp(x, y) ↔

∨
1≤i≤k

x = ni ∧ y = mi

)
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Theorem 3.15 shows that a description of a computable process need not be enough to pin
down a particular natural number. Hamkins uses this to formulate statements that seem to be
large cardinal hypotheses while having incomparable consistency strength over ZFC. For a proof
of the following theorem, we refer to reader to Theorem 8 in [22].

Theorem 3.16. Consider the theory

T := ZFC+ “There exist infinitely many inaccessible cardinals”.

Then the theories

ZFC+ “There are UT (n) many inaccessible cardinals′′

for n ∈ N are pairwise incomparable in terms of consistency strength over ZFC.

Note that UT (n) is not a numeral here, but the result of ‘running’ the algorithm UT on input
n. In the statement “There are UT (n) many inaccessible cardinals′′ we are implicitly assuming
that UT halts on n. Thus, in the standard model, this statement is trivially satisfied as UT does
not halt on any input in this model.

As pointed out by Hamkins, the proof of Theorem 3.16 is not really dependent on inaccessible
cardinals; it also works for other large cardinal notions. In fact, the key ideas already come to
light when restricting ourselves to the simpler case of arithmetic, which is what we will do.

Theorem 3.17. Let T be the theory PA+Con(PA). Then the theories

PA+ “UT halts on input n′′

for n ∈ N are pairwise incomparable in terms of consistency strength over PA.

Proof. Let n,m ∈ N such that n ̸= m. By Theorem 3.15, there exists a modelM of PA+Con(PA)
in which UT halts on n and not on m. By the construction of UT , the fact that UT halts on n
in M implies that M thinks that there is a least pair (P, h) of a finite function h and a T -proof
P that UT does not compute h, and that this function h is defined on n but not on m. Due to
Σ1-completeness, the existence of this pair (P, h) can be proven in PA, and so M thinks that PA
can prove that UT halts on a specific finite set of natural numbers that includes n but not m. In
particular, M thinks that PA proves that UT halts on n and not on m. Since M is a model of
Con(PA), we find by Corollary 3.9(ii) thatM is a model of both Con(PA+“UT halts on input n′′)
and ¬Con(PA+ “UT halts on input m′′). This shows that

PA ̸⊢ Con(PA+ “UT halts on input n′′) → Con(PA+ “UT halts on input m′′).

Using the theorem above, one can show that for any decision problem A such that there is
a many-one reduction from the halting to A, there are instances of incomparability among the
statements of the form “This is an element of A” and “This is not an element of A”. Hamkins
concludes from this that there are instances of incomparability among the seemingly natural
statements of the form

“This specific set of tiles admits a tiling”,

or

“This specific finite group presentation is the trivial group”.
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It is important to note, however, that for the incomparable statements one obtains in this way
the particular arithmetical description of the ‘specific’ set of tile or group presentation will be
given in terms of the universal computable function.

3.3.1 Proof analysis

Let us analyze the proof of the instances of nonlinearity given in Theorem 3.17. Let us abbreviate
“UT halts on input n” by ϕn for each n ∈ N. In order to show that PA + ϕn and PA + ϕm are
incomparable for n ̸= m, we need to argue that there exists a model M in which Con(PA+ ϕn)
is true while Con(PA + ϕm) is false. Notice that the general structure of the argument is quite
similar to that given in the proof of Theorem 3.14, as it consists of the following two steps:

1. It is shown that the statements ϕn and ϕm are strongly independent13 over PA+Con(PA);
this is taken care of in the proof of Theorem 3.15 with T instantiated by PA + Con(PA).
Thus there exists a model M of PA+Con(PA) + ϕn + ¬ϕm.

2. It is shown that M thinks that PA proves both ϕn and ¬ϕm, which implies that M thinks
that PA+ ϕn is consistent while PA+ ϕm is not.

How are the claims in these two steps established? For the first claim, the proof exploits that
the program UT is constructed as to ensure that being able to prove that UT does not compute
some finite function h is tantamount to being able to prove that there is a T -proof that UT does
compute h. Therefore, no consistent theory T can prove that UT computes some finite function
h; in particular, T cannot prove that UT does not compute a finite function h that halts on n
but not on m. So it is consistent with T that UT halts on n and not on m.

For the second claim, in order to show that M believes that PA proves both ϕn and ¬ϕm, we
again use that UT halting on n and not on m already implies that there exists a T -proof that UT

does not compute some least function h that halts on n and not on m. Due to Σ1-completeness,
the existence of this proof is provable in PA, and due to the construction of UT the existence of
this proof is equivalent to UT computing h. Thus PA can prove that UT halts on n and not on
m. We thus find that Theorem 3.17 is a special instance of the following, more general result:

Theorem 3.18. For T a nice theory, let ϕ1 and ϕ2 be strongly independent Σ1 sentences over
T + Con(T ). If both ϕ1 ∧ ¬ϕ2 and ¬ϕ1 ∧ ϕ2 are equivalent to a Σ1 sentence, then T + ϕ1 and
T + ϕ2 have incomparable consistency strength over PA.

Let us emphasize that, in addition to the general proof structure, the construction of the
particular sentences involved in Theorems 3.17 and 3.14 is based on a very similar idea. In both
proofs, we construct a sentence η that is equivalent to one that canonically captures a statement
about the provability of η. This equivalence takes the form of a sophisticated version of the liar
paradox, namely it is of the form

η is true if and only if there is a T -proof of ¬η of some particular form.

In the proof of Theorem 3.14 and Theorem 3.17, the role of η is played by the sentences ¬γ and
“UT computes h”, respectively. This ‘liar paradox’ then ensures that η is both independent of T
and equivalent to a Σ1 sentence.

13Two sentences ϕ and ψ are strongly independent over a theory T if every Boolean combination of these
sentences is independent over T .
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3.4 Counterexample 3: Cautious enumerations

Hamkins’ second construction of an instance of nonlinearity is quite different from the two in-
stances considered so far. Instead of adding a particular kind of axiom to a nice theory T , this
construction leaves the set of axioms of T unchanged; what is altered is the way in which the
axioms of T are represented. Recall that, when constructing the provability predicate of a nice
theory T , we have some particular recursive algorithm in mind that checks whether a sentence is
an element of T ; this algorithm is then canonically captured by the formula AxT (x). For theories
such has PA and ZFC, there is a standard way in which this recursive algorithm can proceed.
In the case of PA, given a sentence ϕ the algorithm can check, one by one, if ϕ is equal to one
of the finitely many axioms of Robinson arithmetic, and lastly whether ϕ is an instance of the
Induction Schema. Similarly, for ZFC, the algorithm can simply check whether ϕ is an instance of
the Comprehension Schema, an instance of the Replacement Schema or equal to one the (finitely
many) other axioms of ZFC. However, there are different ways of representing the theories PA
and ZFC and thereby different ways of building their axiom predicate. Hamkins’ idea is to build
an axiom predicate AxT (x) that captures a so-called cautious enumaration of the theory T .

A cautious enumeration of a theory T is a recursive enumeration of T that, while listing
the axioms of T , searches for some indication that the theory T might be unsound; if such an
indication is found, then the enumeration is halted. Hamkins considers cautious enumerations
of ZFC to be

“. . . both sensible and realistic – in this sense it is a natural theory – for if we were actually
enumerating ZFC and a proof was pointed out to us along the way that the theory we have

already committed to proves the full ZFC theory to be inconsistent, then we would have ample
reason to pause and reflect on whether we should continue with the enumeration. . . . The

cautious enumeration is what we would actually do – so it is a natural theory.”
(Hamkins [22], p.16)

The first cautious enumeration of ZFC that Hamkins considers is the following.

Definition 3.19. Let ZFC◦ denote the theory we obtain if we cautiously enumerate ZFC as
follows. While enumerating the axioms of ZFC, search for a ZFC-proof of ¬Con(ZFC); if such a
proof is found, the enumeration is halted.

Note that, if ZFC is indeed consistent, then ZFC◦ will have exactly the same axioms as ZFC.
We thus take these theories to determine the same set of axioms; the difference lies in the way
we enumerate them, that is, in the representation of these axioms. Crucially, the provability
predicates of ZFC and ZFC◦ will be different.

Following Hamkins’ description, the the axiom predicate of ZFC◦ could be defined as follows:

AxZFC◦(x) := AxZFC(x) ∧ (∀y ≤ x)NPrfZFC
(
y, ⌜¬Con(ZFC)⌝

)
, (3.5)

where NPrfZFC(y, z) canonically captures the recursive relation ‘y does not encode a ZFC-proof
of the formula encoded by z’.14 The idea is here that a natural number n encodes an axiom of
ZFC◦ if and only if it encodes an axiom of ZFC and if the first n proofs from ZFC do not prove
the sentence ¬Con(ZFC). This suggestion fits well with Definition 3.19. However, one might feel
that it does not fit well with Hamkins description of cautious enumerations quoted above, which
suggests that the enumeration must only search for a proof of ¬Con(ZFC) from “the theory we

14We need to bother with NPrfZFC(y, z) instead of simply writing ¬PrfZFC(y, z) to ensure that our axiom
predicate remains Σ1.
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have already committed to”. In order to account for this, one could define a new proof predicate
NPrf ′ZFC(y, z) that is obtained by replacing AxZFC(x) by AxZFC(x) ∧ x ≤ y in NPrfZFC(y, z).

15

The intuition is here that NPrf ′ZFC(y, z) then captures the relation ‘y does not encode a proof of
the formula encoded by z employing at most the first y axioms of ZFC’. We can then define the
axiom predicate for ZFC◦ as follows:

Ax′ZFC◦(x) := AxZFC(x) ∧ (∀y ≤ x)NPrf ′ZFC
(
y, ⌜¬Con(ZFC)⌝

)
. (3.6)

The following result will be independent of our choice between (3.5) and (3.6).

Theorem 3.20. The theory ZFC◦ has strictly lower consistency strength than ZFC over the base
theory ZFC.

Proof. Since every axiom of ZFC◦ is an axiom of ZFC, and the axiom predicates reflect this, it
follows from Lemma 3.8(vi) that ZFC ⊢ Con(ZFC) → Con(ZFC◦).

Now suppose, for contradiction, that ZFC ⊢ Con(ZFC◦) → Con(ZFC). Then

PA ⊢ □ZFC(Con(ZFC
◦) → Con(ZFC)),

and so it follows from (vii) and (viii) of Lemma 3.8 that

PA ⊢ ¬Con(ZFC+Con(ZFC◦) + ¬Con(ZFC)). (3.7)

Assuming that ZFC is consistent, there is a model M of ZFC+Con(ZFC) in which ¬Con(ZFC+
Con(ZFC)) holds. By Lemma 3.8(viii), it follows that M believes that there exists a ZFC-
proof of ¬Con(ZFC). By construction of AxZFC◦(x), M then thinks that ZFC◦ consists of only
finitely many axioms. It is a well-known result that ZFC proves the consistency of each of
its finite fragments.16 As this result is capable of being formalized in ZFC, and since M is a
model of ZFC, it follows that M believes that ZFC proves Con(ZFC◦). By the formalized second
incompleteness theorem, that is Theorem 3.13, and the fact that M |= Con(ZFC), it follows that
M |= ¬□ZFC Con(ZFC). By Lemma 3.8(viii),M then thinks that ZFC+¬Con(ZFC) is consistent.
However, as M thinks that ZFC proves Con(ZFC◦), it follows from Corollary 3.9(i) that M then
believes that ZFC+Con(ZFC◦) + ¬Con(ZFC) is consistent. This contradicts (3.7).

As the proof of Theorem 3.20 shows, any cautious enumeration of ZFC will still have a
consistency strength that is comparable to the standard representation of ZFC, as its set of
axioms will necessarily be a subset of the axioms of ZFC.17 However, Hamkins has showed
that among the cautious enumerations of ZFC, we can find instances of incomparability. These
instances are given by cautious enumerations based on the universal computable function.

Definition 3.21. Let UT denote the universal computable function for T := ZFC + Con(ZFC).
For each n ∈ N, let ZFC(n) denote the cautious enumeration of ZFC that, while enumerating the
axioms of ZFC, runs UT on n; if UT halts on n, then the enumeration halts.

Note that UT only halts on an input if there is a proof from T that UT does not behave the way
it does, which would imply that T has false consequences. The halting of UT therefore indeed
serves as an indication that T is unsound.

15As with PrfZFC(x), we are assuming that NPrfZFC(x) as been constructed in a canonical manner from AxZFC(x).
16This follows from the reflection theorem; see e.g. Corollary II.5.4 in Kunen [36].
17In fact, one can iterate the construction of ZFC◦ to obtain an infinitely descending chain in the hierarchy

of consistency strength of the form ZFC > ZFC◦ > ZFC◦◦ > . . . . This provides an (alleged) counterexample
to the stronger version of the linearity conjecture stating that the consistency hierarchy of natural theories is a
well-order.
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For any n ∈ N, the axiom predicate of ZFC(n) can be defined as follows. Let ψn(x) be a
formula that canonically captures the recursive predicate Pn(m), which is true if and only if at
least one of the following holds:

1. m does not encode a pair (P, h) of a finite function h that halts on n and a T -proof P of
“UT computes h”;

2. there exists a k < m such that k encodes a pair (P, h) of a finite function h that does not
halt on n and a T -proof P of “UT computes h”.

Then we can define

AxZFC(n)(x) := AxZFC(x) ∧ (∀y ≤ x)ψn(y) (3.8)

Intuitively, this definition states that a natural number m encodes an axiom of ZFC(n) if and only
if m encodes an axiom of ZFC and for the first m pairs (P, h) of T -proofs P and finite functions
h, if P proves “UT computes h” and h halts on n then there is a smaller pair (P ′, h′) such that
P ′ proves “UT computes h′” and h′ does not halt on n.

Theorem 3.22. The theories ZFC(n) for n ∈ N have pairwise incomparable consistency strength
over ZFC.

Proof. Let n,m ∈ N such that n ̸= m. Suppose, for contradiction, that ZFC ⊢ Con
(
ZFC(n)

)
→

Con
(
ZFC(m)

)
. Following the same reasoning as in the proof of Theorem 3.20, we then obtain

PA ⊢ ¬Con
(
ZFC+Con

(
ZFC(n)

)
+ ¬Con

(
ZFC(m)

))
. (3.9)

As above, let T denote ZFC + Con(ZFC). By Theorem 3.15, there exists a model M of ZFC +
Con(ZFC) in which UT halts on n but not on m. This means that M thinks that there is a least
pair (P, h) such that P proves “UT computes h”, and that this h halts on n but not on m. By
construction of the axiom predicates for ZFC(n) and ZFC(m), it then follows thatM believes that
ZFC(n) consists of finitely many axioms while the axioms of ZFC(m) are exactly the axioms of
ZFC. By the same reasoning as in the proof of Theorem 3.20, it follows that M believes that
ZFC proves Con

(
ZFC(n)

)
. Moreover, since M is a model of Con(ZFC), by the formalized second

incompleteness theorem we obtain that M thinks that ZFC cannot prove Con(ZFC) and thereby
that it cannot prove Con

(
ZFC(m)

)
. So M believes ZFC + ¬Con

(
ZFC(m)

)
to be consistent. As

ZFC proves Con
(
ZFC(n)

)
inM , it follows thatM believes ZFC+Con

(
ZFC(n)

)
+¬Con

(
ZFC(m)

)
to be consistent. This contradicts (3.9).

3.4.1 Proof analysis

As before, let ϕn be the sentence “UT halts on input n” for n ∈ N. The proof of Theorem 3.22
consists of two main steps:

1. It is shown that the conditions for halting of the cautious enumerations ZFC(n) and ZFC(m)

are strongly independent over ZFC + Con(ZFC). That is, the sentences ϕn and ϕm are
shown to be strongly independent over ZFC+Con(ZFC); this is taken care of in the proof
of Theorem 3.15. Thus there exists a model M of ZFC+Con(ZFC) + ϕn + ¬ϕm.
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2. It is shown that M believes that ZFC(n) is a finite fragment of ZFC and that ZFC(m)

has exactly the same axioms as ZFC. It then follows, by arguments that do not rely
on the particular definition of ZFC(n) and ZFC(m) anymore, that M believes that ZFC +
Con(ZFC(n)) + ¬Con(ZFC(m)) is consistent, which suffices to show that ZFC(m) ̸≤ ZFC(n).

We have already discussed the first step in the former proof analysis. The second step is quite
straightforward: to show thatM believes that ZFC(n) has finitely many axioms, the proof exploits
the fact that the axiom predicate of ZFC(n) captures that there will be no axioms larger than the
pair (P, h) witnessing that UT halts on n. Similarly, to show that M believes that ZFC(m) has
the same axioms as ZFC, the proof exploits the fact that the axiom predicate of ZFC(m) captures
that all axioms of ZFC will be included if there is a pair (P, h) witnessing that UT does not halt
on m.

The key characteristics of the cautious enumerations ZFC(n) that enables us to prove the
incomparability of their consistency strength thus appears to be the following: how many axioms
of ZFC they employ depends on a particular condition, and these conditions have been constructed
as to be strongly independent over ZFC+Con(ZFC).
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Chapter 4

Proof-generated concepts of
natural theory

In this chapter, I will formulate two proof-generated concepts of natural theory based on the
proof analyses provided in Chapter 3. There we saw that the key ideas behind the proofs of
the counterexamples of the first and second type are very similar: I will therefore treat these
counterexamples as of one type, and propose one proof-generated concept of natural theory that
characterises the theories occurring in both counterexamples as unnatural. Subsequently, I will
turn to the third type of counterexample, the cautious enumerations, and propose a second proof-
generated concept of natural theory that will deem Hamkins’ cautiously enumerated theories
unnatural.

It will be argued that the proposed proof-generated concepts have the following properties:
(1) they dismiss the presented instances of nonlinearity as counterexamples to the linearity
conjecture, (2) they are of a static rather than a dynamic nature, and (3) they are similar (in
the Carnapian sense) to the intuitive notion of a natural theory as one that ‘arises in practice’
and ‘has a genuinely mathematical idea to it’.

4.1 Self-reference

In the first chapter, we saw that objections raised to the naturalness of incomparable theories
involving the Rosser sentence often refer to the self-referential nature of this sentence. A first
suggestion for a sharpening of naturalness that disqualifies the first counterexample could there-
fore be this: a natural theory is one that, inter alia, does not contain self-referencing axioms.
Before attempting to make this idea more precise, let us note that our proof analyses in Chapter
3 suggest that self-reference is also a crucial ingredient of the second and third counterexample:
both Hamkins’ instances of nonlinearity rely on the universal computable function, the definition
of which involves an obvious element of self-reference. Lack of self-reference therefore seems to
be a promising candidate for a proof-generated concept of natural theory.

Anticipating that his counterexamples might be dismissed with the charge of self-reference,
Hamkins provides two arguments against the claim that self-reference is disqualifying for nat-
uralness. The first argument starts from the premise that self-reference is the central feature
in Cantor’s diagonal argument for uncountability of the reals and in Russell’s refutation of the
naive comprehension scheme in set theory. He writes:
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“These arguments are surely amongst the founding central ideas of [set theory], and the
diagonalization idea is woven deeply throughout it. Furthermore, these diagonalizations are
fundamentally the same as used to prove the fixed-point lemmas that lead to the Gödel and

Rosser sentences. What can be the coherent philosophy of ‘natural’ that counts the
constructions of Cantor and Russell as natural, but not the fundamentally similar construction

of the Gödel and Rosser sentences?” (p. 28)

The implied assumptions here appear to be that (1) Cantor’s and Russell’s arguments form
natural mathematical constructions, and (2) the classification of theories as unnatural on the
basis of self-referencing axioms such as the Rosser sentence would imply the classification of
Cantor’s and Russell’s argument as unnatural. The first claim depends on one’s conception of
a natural mathematical argument; Hamkins seems to take it as a given that any argument that
plays a fundamental role in mathematical practice, is a natural one. As we are not concerned
with a particular conception of a natural argument, we might simply grant Hamkins the first
claim. I argue that the second claim, however, is too strong. We are looking for a sharpening
of the notion of a natural theory, not of the notion of naturalness in general. Therefore, while
agreeing that self-reference features in natural mathematical arguments and constructions, one
can still hold that self-reference is not an acceptable property of any natural axiomatic theory.
In particular, while agreeing that the construction of the Rosser sentence γ for PA+Con(PA) is
natural, one might still argue that adding γ as an axiom to PA yields an unnatural theory.

Hamkins’ second argument seems to form a more serious obstacle for taking self-reference as a
property of unnatural theories. He claims that among the common extensions of ZFC, one finds
axioms that seem to partake in self-reference. Some large cardinal hypotheses are equivalent
to the existence of a certain elementary embedding; for example, the existence of a measurable
cardinal is equivalent to the existence of a nontrivial elementary embedding j : V → M of the
set-theoretic universe V into some class model M . Hamkins argues that the existence of such an
embedding involves a notion of self-reference, since it essentially states that for every object x
there exists an object j(x) with the same first-order properties in M as x has in V . He writes:

“. . . the axiom at bottom posits a system of duplicates j(x), whose properties are stated by
(self)-reference back to x. In this light, nearly every large cardinal axiom partakes in

self-reference.” (p. 28)

There are two ways to respond to Hamkins’ second argument. First, Hamkins’ charge of self-
reference in this context is not very convincing. It is not obvious how, when stating that j(x) has
the same properties as x, one is describing j(x) by somehow referring to j(x) itself. Second, and
more importantly, the kind of self-reference occurring here (if any) is of a very different kind than
the kind of self-reference occurring in the case of the Rosser sentence and the universal function.
Let us write γT for the Rosser sentence of the theory T . The sentences ¬γT and ∃xϕUT

(n, x) are
constructed so that they are true precisely when the theory T can prove their negation in some
particular way. So, not only do these sentences involve a more obvious element of self-reference,
the property they seem to ascribe to themselves is a metatheoretic property with respect to the
theory T . Thus, rather than describing a property of numbers (or of sets, when PA is interpreted
in ZFC), it seems that ¬γT and ∃xϕUT

(n, x) are somehow stating meta-information about the
theory T .
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4.2 Axioms carrying meta-information: Proof-generated

Concept 1

By meta-information, I refer to any information about the theory as whole, as opposed to object
information that is about the mathematical objects that the theory is meant to describe. These
notions are closely related to the notions of metalanguage and object language, where the latter is
used to refer to the formal language of the theory at hand and the former to the natural language
which we use the talk about this formal theory. A naive classification of object information and
meta-information would be that object information can be formulated in the object language,
whereas meta-information is necessarily posited in the metalanguage. Gödel has showed us,
however, that the situation is not that simple. Through coding, we can express meta-information
inside the object language in an indirect manner: while the statement RProvT (⌜γT ⌝) is directly
talking about a property of natural numbers, in the sense that someone unaware of the underlying
encoding would not be able to see it as anything more, we know that the truth of this particular
statement on natural numbers coincides with the truth of the metastatement “for every proof
of γT from T there is a smaller proof of ¬γ from T”. Therefore, requesting RProvT (⌜γT ⌝) or
¬RProvT (⌜γT ⌝) holds is tantamount to making a request about what T can or cannot prove.

While the notion of carrying meta-information seems intuitively clear, it is difficult to make
it precise. Following our discussion above, one might be inclined to define an object statement
as carrying meta-information if its truth coincides with the truth of a metastatement. However,
this would imply that every object statement trivially carries meta-information, as every object
statement is either true or false, and thus every object statement would be materially equivalent
to either a true or a false metastatement (both of which certainly exist). What needs to be taken
into account is an intensional aspect of the object statement, in the sense that it is constructed
as to fully reflect the content of the metastatement.

Consider, for example, the metastatement:

(S) For every proof of γT from T there is a smaller proof of ¬γT from T .

Assuming that the theory T is consistent, S is trivially true because there does not exist any proof
of γT from T (as shown in the proof of Theorem 3.14). The statement S is therefore materially
equivalent to any true object statement about natural numbers, e.g. the sentence ∀x(x+0 = x).
However, the sentence ∀x(x + 0 = x) does not reflect the content of S in any way. Compare
this to the sentence RProvT (⌜γT ⌝), which is also materially equivalent to S: assuming that one
is aware of the underlying encoding of formulas and proofs involved, one could simply ‘see’ that
this sentence is equivalent to the metastatement S by construction, without even considering
the truth values of these two statements. The reason for this is that the proof predicates used
to construct RProvT (⌜γT ⌝) all canonically capture their corresponding proof relation, and so by
merely studying their syntactic construction one can see that to satisfy these predicates is to
encode a proof from T .

Recall that Smith gave the following definition of ‘canonically capturing’ in the context of
recursive relations:

“A wff that captures a [recursive] function f by being constructed so as to systematically
reflect a full [recursive] definition of f . . . will be said to canonically capture the function.”

(Smith [56], p. 129)

Extending this notion of canonically capturing beyond recursive relations, we could say that the
sentence RProvT (⌜γT ⌝) canonically captures the metastatement S, while the sentence ∀x(x+0 =
x) does not. This leads us to the following informal definition:
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A metastatement S is canonically captured by an object statement ϕ if ϕ has been
constructed as to systematically reflect the content of S.

We can then say that an object statement carries meta-information if it canonically captures a
metastatement.

In this new terminology, it seems clear that the sentences γT and ∃xϕUT
(x) carry meta-

information about the theory T . I therefore propose the following proof-generated concept of
natural axiomatic theory:

Proof-generated concept 1: A natural axiomatic theory is a theory whose axioms do not
carry meta-information.

I will refer to this concept as PC1.
Let us emphasize here that, to save this concept of triviality, it is important that one distin-

guishes between a theory’s axioms and its theorems. In every theory that interprets PA, one can
construct sentences that carry meta-information, and in every such theory, one can also prove
sentences that carry meta-information. For example, we know that for any finite fragment F
of PA, PA proves the sentence Con(F), and this sentence certainly carries meta-information.1

Thus every theory that interprets PA has consequences that carry meta-information in the sense
just described. However, according to our proof-generated concept, what disqualifies PA + γ as
a natural theory, and what qualifies PA as a natural one, is that we add a statement carrying
meta-information as an axiom to the axioms of PA, whereas the axioms PA itself do not seem to
carry such information.

The application of PC1 crucially depends on the application of the concept of ‘systematically
reflecting the content of a metastatement’, which is certainly not straightforward; I will address
this issue in the next section. However, assuming for now that this application is at least
intuitively clear, let us make three observations about PC1:

(1) PC1 disqualifies theories of the form T + γT+Con(T ), T + ¬γT+Con(T ) and T + “UT+Con(T )

halts on n” as natural theories and thereby dismisses counterexamples that are of the first
or second type as genuine counterexamples to the linearity conjecture.2

(2) PC1 is a static rather than a dynamic concept. Whether or not the axioms of a theory
carry meta-information does not depend on contextual properties of the theory, that is, on
its position in the body of mathematical knowledge and practice of a particular time.

(3) PC1 is similar to the intuitive, inchoate notion of a natural theory as one that ‘has a genuinely
mathematical idea to it’ and ‘arises in practice’.

Let us elaborate on the third point. I take it as a relatively uncontroversial view that the
non-logical axioms of theories considered in mathematical practice are stating properties of a
particular mathematical object or structure under consideration. The student of mathematics’
first encounter with axiomatic systems is likely to consist of axiomatic treatments of natural
numbers, reals, sets, groups, vector spaces, and the like. Axioms in such contexts are meant to
state properties of these objects or structures, which can then be used to obtain further results
in a rigorous way. One can distinguish here between a describing or prescribing role: the axioms
can be viewed as merely describing an independently existing mathematical entity, or one can
view these entities as being ‘defined into existence’ by virtue of the axioms. The reader is free

1This result is due to Mostowski [46].
2I will address counterexamples of the third type in section 4.4.
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to adopt either viewpoint; the point is that, according to both conceptions, the axioms are to
be taken as necessarily true properties of the mathematical entities in question and their main
purpose is to derive theorems involving these entities.3

In my opinion, PC1 can be viewed as a natural continuation of this view: if the axioms
of an axiomatic theory ought to state properties of some mathematical entity, and if theorems
involving these entities are meant to be derived from these properties, then these axioms should
not make a direct request about what the theory as a whole should be able to prove or disprove.
In other words, the metatheoretic properties of a theory should follow from and not be stipulated
by its axioms.

4.3 On the intensionality of PC1

The intension of a referring statement is commonly explained as the mode of referring; this
is to be contrasted with the statement’s extension, which is the thing that is being referred
to, i.e. the referent. In the context of arithmetization, intensional aspects of an arithmetical
predicate are usually taken as those relating to the particular form of the sentence, rather than
the set of numbers that satisfy it. Our notion of carrying meta-information clearly has such
an intensional aspect: whether or not an object statement carries meta-information depends
on its particular syntactic construction and is not determined by its mere logical properties.
In particular, it is possible that two object statements are provably equivalent while only one
carries meta-information; for example, the statements ¬(0 = 1) and □PA¬(0 = 1) are provably
equivalent in PA, yet only the latter appears to be carrying meta-information according to our
definition. Such an intensional concept invites some obvious concerns: is such a concept even
coherent, and if so, can its application be made precise in concrete logico-mathematical terms?

Gödel’s proofs of his two incompleteness theorems sparked a lively debate concerning the
intensional aspect of the independent sentences he constructed. The Gödel sentence GT of a
nice theory T , constructed via diagonalisation of the formula ¬ProvT (x), is often described as
a sentence that ‘says of itself that it is unprovable’. Informally, one direction of the proof of
the first incompleteness theorem can then be given as follows: if T is consistent and T could
prove GT , then T would prove □TGT because the provability predicate captures provability, but
T would also prove ¬□TGT because of ‘what GT says’. However, careful inspection of Gödel’s
proof reveals that no intensional properties of GT are necessary to prove the first incompleteness
theorem: his argument can be made in a purely syntactic manner, and whether or not one agrees
that GT indeed says something of itself does not have an effect on GT ’s unprovability in T .4 All

3The view on axioms described here is sometimes referred to as the old or traditional view (see e.g. [63]
and [51]). Modern perspectives on axiomatics stress that, apart from viewing axioms as true properties of some
mathematical entity, axioms can also be adopted for purely external mathematical reasons. An often mentioned
distinction is that between intrinsic and extrinsic reasons for adopting axioms in set theory, as introduced by
Gödel in [17] and further discussed by Maddy [41]: intrinsic reasons appeal to true properties of the concept of
set, whereas extrinsic reasons appeal to the fruitfulness of the axiom in question. Examples of axioms of which
it has been argued that they are adopted due to their success as a set-theoretic axiom are the Axiom of Choice
and the large cardinal hypotheses. I do not deny that extrinsic considerations play a role in the formation and
adoption of axioms. However, I would like to stress that they rarely play an exclusive role: even in the case of
the Axioms of Choice and the large cardinal hypotheses, accounts can be found providing intrinsic motivations
for these axioms. For example, see Ferreirós [12] for an intrinsic justification of the Axiom of Choice based on
a conception of ‘arbitrary sets’ and see Incurvati [26] for a discussion on how the iterative conception of set can
serve as an intrinsic justification of the large cardinal hypotheses.

4For independence of GT , one also needs T to be ω-consistent. However, this condition is not necessary to
show that T is incomplete: as our proof of Theorem 3.14 shows, the Rosser sentence γT can already be shown to
be independent of T if T is consistent.
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that is needed is that ProvT (x) captures provability in the sense of Definition 3.5 and that GT

is a fixed point of ¬ProvT (x); whether ProvT (x) canonically captures the provability relation or
how the fixed point GT is obtained is irrelevant.

The intensional aspect of GT in the context of the first incompleteness theorem is there-
fore often viewed as merely heuristic: whereas it guided Gödel in constructing an independent
sentence, it does not play a further role in his eventual result. The only significance that is
sometimes still bestowed on the intensional aspect of GT is that it enables us to see that GT is
true: because GT is not provable in T , as established by Gödel’s proof, and because GT is true
if and only if GT itself is unprovable, we obtain that GT is indeed true.5

The situation is different for the second incompleteness theorem. This theorem is widely
accepted as a refutation of Hilbert’s program that, in a nutshell, aimed at establishing the
consistency of all classical, infinitary mathematical reasoning by purely finitary means. What
exactly constitute the demands of the program and whether the second theorem really shows them
to be unattainable is not an uncontroversial matter. Nevertheless, there seems to be consensus
that if such infinitary reasoning is to be captured by a formal, effectively axiomatizable theory
T that extends basic arithmetical reasoning, and if these finitary means should be capable of
being formalised in a system no stronger than PA, then Gödel’s second theorem shows that such
a consistency proof is impossible. Thus, the force of the second incompleteness theorem does
not lie in the mere fact that it shows that the particular formula Con(T ), whose construction is
described in the previous chapter, is underivable in PA; rather, its force lies in establishing that
any arithmetical sentence that properly formalizes the statement ‘T is consistent’ is underivable.

In order to show that this is indeed what the second theorem achieves, one must give an
account of what it means for a formula to constitute a proper formalization of the metastatement
‘T is consistent’. This point is made particularly clear by the fact that, if one is not careful when
constructing Con(T ), one can end up with a consistency sentence that is derivable in T . Consider,
for example, the predicate

Prf ′T (x, y) := PrfT (x, y) ∧ ¬PrfT
(
x, ⌜⊥⌝

)
,

where PrfT (x, y) denotes the canonical proof predicate for T . Assuming T to be consistent,
it easy to see that Prf ′T (x, y) captures the proof relation in the sense of Definition 3.5. Thus,
viewed as relations on natural numbers, PrfT (x, y) and Prf ′T (x, y) are perfectly coextensive.
However, if we define Con′(T ) := ¬∃xPrf ′T

(
x, ⌜⊥⌝

)
, then Con′(T ) is derivable in T , simply

because ∀x¬
(
PrfT (x, ⌜⊥⌝) ∧ ¬PrfT

(
x, ⌜⊥⌝

))
is a first-order theorem.

Provable consistency sentences like Con′(T ) do not seem to pose a threat to the claim that
no proof of consistency of T could be formalized in T . Note that any convincing consistency
proof of T should not rest on an assumption that to be a T -proof means, inter alia, not to be
a proof of a contradiction. However, this is precisely what the predicate Prf ′T (x, y) appears to
do: its construction suggests that to be a T -proof according to Prf ′T (x, y) is to be a T -proof (in
the informal sense) that does not prove a contradiction. Therefore, Prf ′T (x, y) fails in genuinely
reflecting what it means to be a T -proof.

Work by Hilbert and Bernays [25] that was further refined by Löb [40] showed that for the
underivability of Con(T ) in T it suffices that the provability predicate on which Con(T ) is based
satisfies the three HBL-conditions, also referred to as the derivability conditions, which were

5Isaacson [27] uses this observation to argue for his thesis that PA is complete when one restricts to genuinely
arithmetical statements. The latter are defined as statements whose truth can be perceived on the basis of a grasp
of the natural numbers alone. To see the truth of GT , Isaacson argues, one needs to recognize that the arithmetic
of natural numbers can be used to encode proof-theoretic notions, and such a recognition requires more than a
grasp of arithmetical properties of the natural numbers alone.
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mentioned in the previous chapter. I repeat them here:6

1. If T ⊢ ϕ then T ⊢ □Tϕ;

2. T ⊢ (□Tϕ ∧□T (ϕ→ ψ)) → □Tψ;

3. T ⊢ □Tϕ→ □T (□Tϕ).

Indeed, Prf ′T (x, y) fails in meeting these conditions. To see this, let ϕ := ¬(0 = 0) and let
the operator □T be defined from the canonical proof predicate for T and let □′

T be defined
using Prf ′T (x, y). Since T proves ϕ → ⊥ and since ⌜ϕ → ⊥⌝ is not equal to ⌜⊥⌝, we have
T ⊢ □′

T (ϕ→ ⊥). Moreover, since T cannot prove of itself that it does not prove a contradiction,
in particular T cannot prove ¬□Tϕ. So there is a model M of T such that M |= □Tϕ, and
again since ⌜ϕ⌝ is not equal to ⌜⊥⌝ we obtain M |= □′

Tϕ. So M |= □′
Tϕ ∧ □′

T (ϕ → ⊥), while
M ̸|= □′

T⊥ since due to the definition of Prf ′T (x, y) we have T ⊢ ¬□′
T⊥.

Checking whether a given provability predicate actually satisfies the HBL-conditions is a
tedious task.7 In [11], Feferman provided a simple criterion by showing that any provability
predicate ProvT (x) that is build in a straightforward way (which is explicitly written out in his
paper) by using any Σ1 formula as an axiom predicate AxT (x) will satisfy the three conditions.
Indeed, it is Feferman’s construction that we have implicitly been using in the previous chapter.

It appears that the HBL-conditions are generally accepted as necessary conditions for any
proof predicate that properly formalizes the proof relation. In [3], Auerbach argues that the
HBL-conditions are implied by the semantics of the language of proof theory and thus, since any
formalization of this language ought to reflect this intended semantics, the formalization must
satisfy the conditions as well. For example, if we can prove, in the informal language of proof
theory, that PA ⊢ ϕ, and if PA itself is to serve as a formalization of our informal reasoning in
which □PA acts as the translation of the provability property, then we must have PA ⊢ □PAϕ. This
establishes the first condition. Similarly, if we can prove the first condition of a given provability
predicate, i.e. if we can prove ‘if T ⊢ ϕ then T ⊢ □Tϕ’ in the informal language of proof theory,
then our formalization should reflect this again, and thus we must have T ⊢ □Tϕ→ □T (□Tϕ).

8

Gödel’s second theorem thus serves as an example of an intensional result that can be formu-
lated in concrete logico-mathematical terms. A second example of such a result is Löb’s theorem,
which provided an answer to Henkin’s question ‘Are formulas expressing their own provability
provable or independent?’ posed in [23].9 A first reply to Henkin was given by Kreisel [34], who
constructed two such formulas, one of which is provable and one refutable. However, Henkin [24]
rejected the provability predicates used by Kreisel, since he felt that neither predicate genuinely
expressed the notion of provability. In the end, a satisfactory answer was provided by Löb [40],
who showed that any fixed point of a provability predicate that satisfies the HBL-conditions is
provable.

6As before, we write □Tϕ for ProvT
(
⌜ϕ⌝

)
.

7See for example the proof that the canonical provability predicate for PA satisfies the HLB-conditions in [56].
8Auerbach does not mention the second condition in [3]. This might be due to Jeroslow’s result in [29], which

shows that the second condition is redundant for proving the second incompleteness theorem if one extends the
language of arithmetic with function symbols for each primitive recursive function. However, it is not hard to see
how Auerbach’s reasoning can be used to justify the second condition as well: in the informal langauge of proof
theory, we can prove ‘if ϕ and ϕ→ ψ are provable in T then ψ is provable T ’, and thus this must be reflected by
the formalization.

9This example is taken from a two-part paper by Halbach & Visser ([20], [21]), who give a detailed account of
Henkin’s question and Löb’s answer that focuses on the intensional aspects. They also introduce other intensional
problems, which still lack a precise solution.
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These cases show that logicians are generally quite capable of recognizing whether an arith-
metical formula reflects a certain metamathematical statement, and that in some cases the nec-
essary intensional aspects can be translated into precise, formal terms. This raises the question
whether such a formal translation can also be found for PC1.

An attempt at finding such a translation lies beyond the scope of this thesis. Whereas the
intensional results just described may stem one hopeful, let me just comment on why finding
such a translation is likely to be quite difficult. Consider the sentence ∃xϕUT

(n, x), which we
have taken to mean “the algorithm UT halts on input n”, where UT is defined as the algorithm
that searches for a T -proof that this algorithm itself does not act in a certain way. Let us refer to
this as the intended interpretation of ∃xϕUT

(n, x). This intended interpretation is corrrect, in the
sense that ∃xϕUT

(n, x) is indeed true if and only if the algorithm UT halts on input n. However,
this is not the only correct interpretation of ∃xϕUT

(n, x); once fully written out in the language of
arithmetic, this Σ1 sentence can be interpreted using the standard interpretation of this language,
i.e. it can be interpreted as being true if and only if there exist natural numbers with certain
properties and relations; let us call this the arithmetical interpretation of ∃xϕUT

(n, x). Of course,
apart from the intended and the arithmetical interpretation of ∃xϕUT

(n, x), there will also be
other correct interpretations.

Now suppose that, rather than working with the intended interpretation of ∃xϕUT
(n, x),

Hamkins had used a different interpretation of ∃xϕUT
(n, x) that did not appeal to meta-information

in any way. Suppose moreover, that he had only referred to this interpretation in his proof of
incomparability of PA + ∃xϕUT

(n, x) and PA + ∃xϕUT
(m,x). If Hamkins had constructed his

instance of nonlinearity in this way, it seems that PC1 would not dismiss PA + ∃xϕUT
(n, x) as

an unnatural theory.
The subtle point is here that whether an arithmetical statement carries meta-information

crucially depends on our interpretation of it. Of course, this is not just a problem for PC1,
but also for the other intensional notions just discussed: the only way to judge whether an
arithmetical formula properly reflects the statement ‘T is consistent’ or ‘This sentence is provable’
is by inspecting some particular interpretation of it given some choice of Gödel encoding. In the
case of the second incompleteness theorem and Löb’s theorem, we have managed to find formal
conditions that capture the necessary intentensional aspects, namely the HBL-conditions. This
does not mean, however, that we found a formal definition of what it means for an arithmetical
formula to properly reflect the statement ‘T is consistent’ or ‘This sentence is provable’. After all,
the HBL-conditions only constitute necessary conditions for properly reflecting the provability
relation. Such a full formalization might not even be possible, simply because the intensional
notion of ‘properly reflecting’ depends on a particular interpretation of the object statement in
question and formally we cannot distinguish between different correct interpretations.

These comments aim to show that a (partial) formal treatment of the notion of carrying
meta-information will be difficult to obtain. However, the cases of the second incompleteness
theorem and Löb’s theorem exemplify that such a treatment is not necessarily out of reach and
that intentional considerations can at least serve as a heuristic in finding new formal results.

4.4 Surveyable presentation: Proof-generated Concept 2

As noted in the previous chapter, the instances of nonlinearity provided by the cautiously enu-
merated theories are of a very different nature than those provided by the counterexamples of the
first or second kind. The axiomatization of the theories ZFC(n) for n ∈ N is defined using the halt-
ing condition ∃xϕUT

(n, x). In our terminology, this halting condition carries meta-information.

54



However, although ∃xϕUT
(n, x) is used to define the axiomatization of ZFC(n), it is not an axiom

of ZFC(n). Thus the theories ZFC(n) are not characterised as unnatural by PC1.
The cautiously enumerated theories make clear that consistency strength, as defined in Defi-

nition 1.3, is actually not a property of a given set of axioms; rather, it is a property of a certain
presentation of a set of axioms. As a result of this, when stating what it means for a theory to
be natural in the context of the linearity conjecture, one also needs to give an account of how
such a theory is to be presented. In particular, this means that PC1 cannot suffice as a full
description of what it means to be a natural theory.

It is notable that, in mathematical literature on relative consistency proofs, the presentation
of the theories in question is standardly left implicit. In standard textbooks in set theory treating
relative consistency proofs, such as those by Jech [28] and Kanamori [30], theories are defined as
sets and no mention is made of the particular presentation one is to have in mind when carrying
out the relative consistency proofs. After defining consistency strength for his discussion on the
consistency hierarchy in [58], Steel writes:

“There is an intensional aspect here, in that the order really is on presentations of theories,
rather than theories, but we shall ignore that detail here.” (p. 155)

The reason for this widespread negligence concerning the presentation of theories is, I presume,
that the intended presentation is generally very clear. When talking about the set of axioms
of ZFC, we think of this set as defined by the following presentation of ZFC: a sentence is an
axiom of ZFC if and only if it is equal to an instance of the Comprehension Schema, or to an
instance of the Replacement Schema, or to one of the other finitely many axioms. Moreover,
when talking about a certain extension ZFC + ϕ, we think of its axioms as being presented as
follows: a sentence is an axiom of this extension if and only if it equal to an axiom of ZFC, where
ZFC is presented in the manner just described, or it is equal to ϕ.

When taking the presentation into account, we see that the theories ZFC and ZFC(n) are
simply different theories. Let us therefore focus on the presentation of the theories ZFC(n),
which comes down to the following: a sentence ϕ is an axiom of ZFC(n) if and only if it is an
axiom of ZFC (presented in the standard way) and the algorithm UZFC+Con(ZFC) does not halt on
n after ⌜ϕ⌝ steps.

The presentation of ZFC(n) reminds of what Detlefsen [10] calls consistency-minded theories.
For Detlefsen, a theory is consistency-minded if it incorporates a consistency constraint into its
notion of proof. Starting from a nice theory T with some intended presentation, a consistency-
minded theory T ′ can generally be obtained in two ways: either by directly changing the notion
of proof, or indirectly by changing the notion of an axiom. An example of the first way would be
to define T ′-provability following the Rosser provability predicate RProvT (x), that is, to define
being a T ′-proof as being a T -proof of some formula ϕ such that no smaller T -proof, according
to some ω-ordering on T -proofs, proves ¬ϕ. An example of a second way, first suggested by
Feferman [11], would be to define the axioms of T ′ following the predicate

AxT ′(x) := AxT (x) ∧ ¬ProvT ↾x(⌜⊥⌝), (4.1)

where ProvT ↾x(y) is defined using the axiom predicate AxT (z) ∧ z ≤ x. The presentation of T ′

can then be given as follows: a sentence ϕ is an axiom of T ′ if and only if ϕ is an axiom of T
and ϕ is consistent with the set of T -axioms smaller than ϕ, according to some ω-ordering on
formulas.

Both strategies outlined above result in a theory T ′ that can prove its own consistency
sentence Con(T ′), as shown in [64]. This means, of course, that the provability predicates
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obtained fail to satisfy the HBL-conditions and thus that AxT ′(x) given in (4.1) cannot be Σ1.
10

Nevertheless, Detlefsen argues that the notion of proof employed in these consistency-minded
theories may be acceptable to the Hilbertian, and thereby aims to establish that the second
incompleteness theorem need not demarcate the end of Hilbert’s program after all.

Detlefsen’s account has found few supporters; a common reply is that the notion of provability
employed in these theories strays too far from the intuitive one.11 In [3], Auerbach provides a
second critique on the consistency-minded theories:

“The recommendation that we reform our mathematical practice and replace the canonical
notion of derivability with a Rosser-style one will indeed assure us, quite easily, of consistency.
But that epistemic gain is offset by the epistemic loss occasioned by not knowing what it is that

is consistent.” (Auerbach [3], p. 87, emphasis added)

Auerbach’s critique highlights an important point: by employing a notion of axiom that is defined
in terms of a consistency constraint, our understanding of the theory T ′ becomes dependent on
our understanding of this constraint; as a result, whenever we do not have a clear understanding
of when this constraint is satisfied, we also do not have a clear understanding of what the axioms
of T ′ are.

Hamkins’ cautious enumerations can be viewed as a generalization of Detlefsen’s consistency-
minded theories. Indeed, Hamkins describes the halting condition of a cautious enumeration as “a
certain kind of contrary indicator, a reason to doubt the truth of the theory” (p. 16); Detlefsen’s
consistency constraints can then be viewed as particular type of such indicators. There is,
however, a significant difference between the cautious enumerations discussed in Chapter 3 and
Feferman’s consistency-minded theory T ′: whereas it is not decidable which sentences are the
axioms of T ′, it is decidable which sentences are the axioms of ZFC◦ and ZFC(n). Indeed, the
axiom predicates given in (3.5) and (3.8) are Σ1, whereas the axiom predicate given in (4.1) is
not. Thus, in contrast to the consistency-minded theories, the provability predicates of Hamkins’
cautious enumerations do satisfy the HBL-conditions.

I would like to argue, however, that Auerbach’s critique still stands against the cautious
enumerations. Even though we can decide, for any particular axiom of ZFC, whether it is an
axiom of ZFC(n), there is no algorithm that can decide whether every axiom of ZFC is also an
axiom ZFC(n). A crucial difference between the presentations of ZFC and ZFC(n) seems to be
that, whereas the presentation of the former enables one to fully grasp what the axioms of the
theory in question are, the latter does not. Even though ZFC has infinitely many axioms, the
fact that they can be stated using finitely many axioms and two axiom schemas provides us with
a clear and concise overview of what its axioms are. However, since we cannot decide whether
the cautious enumeration underlying ZFC(n) will halt or not, the presentation of ZFC(n) does not
seem to provide one with such a clear grasp of what the axioms of ZFC(n) are.

The kind of distinction within recursive axiomatizations I have in mind here is between those
that are surveyable and those that are not. In the philosophy of mathematics, the notion of
surveyability usually pops up the context of proofs. There are two main properties that are
generally ascribed to a surveyable proof : (1) it can be written down and verified in practice,
that is, by a human mathematician, and (2) it is a proof that one can have an intuitive under-
standing of.12 Mawby [42] describes the second property as having the ability to “reach intuitive

10Indeed, it is generally not decidable whether a finite axiomatic theory is consistent, and so AxT ′ (x) does not
define a recursive property on natural numbers.

11See e.g. [49] and [69].
12The notion of a surveyable proof is often credited to Tymoczko [62]. It should be noted that this notion is a

controversial one and that different interpretations of it can be found in the literature.
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understanding of why the proof must come as it does, and thus assert that the proof will always
produce this result if correctly carried out” (p. 48).

Following these characterisations of a surveyable proof, a surveyable presentation of a theory
T can be defined as one that enables us to acertain what the axioms of T are, without appealing
to conditions that are not decidable nor determined by the presentation itself. We can then
formulate the following proof-generated concept of natural theory based on the third type of
counterexamples:

Proof-generated concept 2: A natural axiomatic theory is a theory that is presented in a
surveyable manner.

The proof-generated concept PC2 characterises the cautiously enumerated theories as un-
natural and thus dismisses them as counterexamples to the linearity conjecture. It particular,
it will dismiss any consistency-minded theory as unnatural, assuming that the consistency con-
dition employed is not trivial. Moreover, like PC1, PC2 is of a static rather than a dynamic
nature: whether a theory is presented in a surveyable manner does not depend on its contextual
properties.

Whether PC2 is similar to the intuitive notion of a natural theory is bit of a subtle matter;
as the intuitive notion of a natural theory seems to be based on a purely extensional view of
axiomatic theories, it does not seem to involve an idea of how such a theory is to be presented.
However, I would agrue that the mere fact that theories tend to be treated as extensional entities
can be viewed as justifying a restriction to surveyable presentations. By leaving the presentation
of theories out of consideration when dealing with relative consistency proofs, mathematicians
seem to be assuming that we have such a clear understanding of what the axioms of the theories
in question are, that there is no need to make the intended presentation explicit. They seem to
be assuming that our understanding of the theory simply ‘gives’ us its full extension, just like
a finite list of axioms can give us the full extension of a finite theory, and it is precisely such a
complete grasp of the theory’s extension that a surveyable presentation of a theory is meant to
provide.

4.5 Taking stock

Together, these proof-generated concepts provide us with the following tentative definition of a
natural theory:

An axiomatic theory is natural if its axioms do not carry meta-information and
if the theory is presented in a surveyable manner.

This definition employs the informal notions of ‘carrying meta-information’ and ‘surveyability’,
which I have attempted to make at least intuitively clear in this chapter. How to make these
notions more precise is not staightforward; in particular, the intensional character of the notion of
carrying meta-information seems to complicate a translation of this informal notion into formal
terms. Nevertheless, this definition can be viewed as an improvement of the status quo, as it
provides us with more robust characteristics of natural theories than those found in the literature
so far.
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Concluding remarks

The starting point of this thesis has been the often made claim in the mathematical literature
that the natural axiomatic theories are linearly ordered in terms of consistency strength. Despite
the fact that we lack a precise definition of a natural theory, we have seen that the general
attitude of the mathematical community towards this claim suggests that it is true, or at least
capable of being true or false. In particular, our literature review suggests that there is a strong
conviction that the well-known instances of nonlinearity, namely those obtained using the Rosser
construction, involve theories that are unnatural. Nevertheless, current explanations of what is
meant by a natural theory in this context go no further than ‘a theory that arises in practice’ or
‘a theory that has a genuinely mathematical idea to it’.

In this thesis, I have tried to find a sharpened definition of the notion of a natural theory
as referred to in the linearity conjecture. As the intuitive notion of a natural theory is still
in a very premature stage, also referred to as the pretheoretic stage by Smith [56], this notion
does not seem suitable for a conceptual analysis leading to the formulation of axioms that this
intuitive notion is to satisfy. I therefore chose to formulate a method based on the Lakatosian
view on mathematical concept-formation, which entails that mathematical concepts in practice
develop through a dynamic interplay between conjectures, proofs and counterexamples. The
method consists of two main steps: (1) formulate a proof-generated concept of natural theory
based on an analysis of the known instances of nonlinearity, and (2) assess whether the proof-
generated concept is similar to the intuitive notion. My approach can therefore be viewed as a
‘mathematics first’ approach: rather than sharpening the notion of a natural theory by appealing
to philosophical considerations, I attempted to ‘let the mathematics speak for itself’ and to
take philosophical considerations into account only after the formulation of the proof-generated
concept.

By applying the method, I have obtained the following proof-generated concept of natural
theory: an axiomatic theory is natural if its axioms do not carry meta-information and if it is
presented in a surveyable manner. I have argued that this concept is similar to the intuitive
notion of a natural theory. The traditional or standard view on axiomatic theories seems to be
that axioms of a mathematical theory state properties of some particular object or structure,
which can then be used to derive further results. As such, the metatheoretic properties of a
mathematical theory should follow from, but not be stipulated by, its axioms. With respect to
the surveyable presentation, I have argued that this property harmonizes well with the fact that
we commonly treat our theories as extensional entities.

In the Lakatosian view, the main thrust of this sharpened definition of a natural theory is
to open up new places for criticism on the linearity conjecture. By providing more robust char-
acteristics, this definition makes demands that new counterexamples to the linearity conjecture
should satisfy. When such a new counterexample is found, the method of proofs and refutations
continues and a new proof-generated concept is to be formulated. The emergence of such a new
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counterexample is possible, and perhaps even to be expected. Recall that the generalized result
formulated in Theorem 3.18 shows that Hamkins has discovered a large class of incomparable the-
ories: one finds instances of incomparability whenever one manages to find strongly independent
sentences of a certain low arithmetical complexity. A promising candidate for a new counterex-
ample that would satisfy our definition of naturalness would therefore be a construction of such
sentences that does not use the method of arithmetization to encode meta-information. The
situation reminds of that right after Gödel published his first incompleteness theorem: after the
recognition that any nice theory could not prove or refute its own Gödel sentence, the question
arose whether it was possible to obtain undecidable sentences without using the arithmetization
of syntax, in particular for Peano arithmetic. Eventually, such sentences were found, in the form
of the Paris-Harrington sentence and the Kirby-Paris sentence.13

Apart from opening up new places for counterexamples, my analysis provides an answer
against scepticism towards the notion of a natural theory as expressed by Hamkins [22]. When
calling a theory unnatural, one can appeal to more robust properties of the theory in question
than one’s mere dislike for or unfamiliarity with it. In particular, one can appeal to inherent
properties rather than mere contextual ones. As such, I hope to have shown that the concept of
natural theory in the context of the linearity conjecture need not be empty or futile.

Lastly, my analysis suggests a strong link between naturalness and intensionality. According
to my tentative definition, what deems a theory natural or unnatural depends on the way we
interpret and present its axioms. Such intensional aspects are difficult to reconcile with the
common formal treatment of theories as extensional entities whose axioms are mere syntactic
objects. Nevertheless, as the instances of nonlinearity in Chapter 3 exemplify, intensional aspects
play a crucial role in our construction of theories. Therefore, in order to understand the linearity
phenomenon, and in particular the common dismissal of instances of nonlinearity as unnatural, it
seems that intensional aspects should not be ignored. To use the words of Halbach and Visser:14

As so often, philosophical notions defying a full formal analysis function as an engine driving
progress in logic and, more generally, in mathematics and the sciences. Therefore, they

shouldn’t be dismissed, even if they prove somewhat elusive.

13See [1] for a proof of the independence of these sentences from PA.
14Halbach and Visser [21], p. 705.
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[19] Petr Hájek and Pavel Pudlák. Metamathematics of first-order arithmetic, volume 3. Cam-
bridge University Press, 2017.

[20] Volker Halbach and Albert Visser. Self-reference in arithmetic i. The Review of Symbolic
Logic, 7(4):671–691, 2014.

[21] Volker Halbach and Albert Visser. Self-reference in arithmetic ii. The Review of Symbolic
Logic, 7(4):692–712, 2014.

[22] Joel D. Hamkins. Nonlinearity in the hierarchy of large cardinal consistency strength, 2021.
Retrieved from http://jdh.hamkins.org/wp-content/uploads/linearity-3.pdf.

[23] Leon Henkin. A problem concerning provability. Journal of Symbolic Logic, 17(2):160, 1952.

[24] Leon Henkin. Review: G. kreisel, on a problem of henkin’s. The Journal of symbolic logic,
19(iss. 3):219–220, 1954.

[25] David Hilbert, Paul Bernays, and Hermann Weyl. Grundlagen der mathematik, volume 2.
Springer Berlin, 1939.

[26] Luca Incurvati. Conceptions of Set and the Foundations of Mathematics. Cambridge Uni-
versity Press, 2020.

[27] Daniel Isaacson. Arithmetical truth and hidden higher-order concepts. In Studies in Logic
and the Foundations of Mathematics, volume 122, pages 147–169. Elsevier, 1987.

[28] Thomas J. Jech. Set theory. Springer monographs in mathematics. Springer, the 3rd mil-
lennium ed., rev. and expanded edition, 2002.

[29] Robert G. Jeroslow. Redundancies in the Hilbert-Bernays derivability conditions for Gödel’s
second incompleteness theorem. The Journal of Symbolic Logic, 38(3):359–367, 1973.

[30] Akihiro Kanamori. The higher infinite: large cardinals in set theory from their beginnings.
Springer Science & Business Media, 2008.

[31] Stephen C. Kleene. Introduction to metamathematics. Princeton, NJ, USA: North Holland,
1952.

[32] Peter Koellner. Independence and Large Cardinals. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Summer 2011
edition, 2011.

[33] Andrei N. Kolmogorov and Vladimir A. Uspenskii. On the definition of an algorithm.
Uspekhi Matematicheskikh Nauk, 13(4):3–28, 1958.

61

http://jdh.hamkins.org/wp-content/uploads/linearity-3.pdf


[34] G. Kreisel. On a problem of Henkin’s. Indagationes Mathematicae (Proceedings), 56:405–
406, 1953.

[35] Georg Kreisel. Informal rigour and completeness proofs. In Studies in Logic and the Foun-
dations of Mathematics, volume 47, pages 138–186. Elsevier, 1967.

[36] Kenneth Kunen. Set theory, volume 34 of studies in logic, 2011.

[37] Imre Lakatos. Mathematics, Science and Epistemology: Volume 2, Philosophical Papers,
volume 2. Cambridge University Press, 1980.

[38] Imre Lakatos. Proofs and refutations: The logic of mathematical discovery. Cambridge
university press, 2015.

[39] Per Lindström. Aspects of incompleteness, volume 10. Cambridge University Press, 2017.
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