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1 Introduction

In the year 2006, 100 years after Gödel’s birth, it is time to think about the lasting val-
ues of his achievements. In this paper I will be concerned with his most famous results,
his two incompleteness theorems1 [9]. In Section 2, a rough version of the theorems
and the in my opinion main achievements of Gödel by these theorems are given. In Sec-
tions 3 and 4, the historical content of the theorems is sketched, in Section 5, I define
what a formal system is. In Sections 6 and 7, I describe the content of the first incom-
pleteness theorem somewhat more precisely and give the main ideas contained in the
proof. The second incompleteness theorem is treated in section 8. Two developments
after Gödel, Provability logic and Feferman’s arithmetization of metamathematics are
considered in Section 9. I conclude with some remarks on Lucas’ and others’ attempts
to derive philosophical conclusions concerning human beings vs machines from the
first incompleteness theorem.

2 Rough statement of the theorems, Gödel’s lasting achieve-
ments

Let us start with stating the theorems roughly.

1. In formal systems in which statements about natural numbers can be proved and
which prove only true statements of that kind there are always true statements
that have no proof in the system.

2. One of the true statements that cannot be proved in such a formal system can be
interpreted as the consistency of the system itself, the assertion that no contra-
dictory statements can be proven in the system.

1The content of this paper is a rewritten version of two different G ödel centennial lectures, the first one
on April 26, 2006, at the ILC, Sun Yat Sen University, Guangzhou, the second one on May 26, 2006, for the
Nederlandse Verening voor Logica en Wijsbegeerte der Exacte Wetenschappen in Utrecht. I am grateful to
Albert Visser for sharing his insights with me for many years. The opinions in this paper are all my own.
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And let us continue by stating what in my opinion are Gödel’s main lasting achieve-
ments by his proof of these incompleteness theorems.

1. The distinction between truth and formal provability.

2. The insight that proving consistency of a formal system cannot in general in-
crease our confidence in the system.

3. The methods of arithmetization, formalization and diagonalization in arithmetic.

4. The insight that by diagonalization paradoxical statements can be integrated in
formal systems and can then lead to important insights.

To be able to appreciate the importance of the incompleteness theorems it is essential to
first reconstruct the context in which these theorems were discovered and stated. That
will be the object of the next section.

3 The state of Philosophy and Mathematics around 1900

In the history of philosophy, from its origins in Greece onwards, the remarkable cer-
tainty of mathematical statements has played an important part. Why is

���������
so

much more sure than a statement of fact even such a simple one as that that apple is
lying in front of me on the table?

Of course, many explanations have been given, but up to modern times it was usu-
ally thought that mathematics derived its certainty from its method rather than from its
subject matter. Its certainty seemd to originate in the axiomatic method as it was devel-
oped by Euclid in his postulates for the foundation of geometry. Spinoza still founded
his philosophical system on an axiomatic basis with Euclid as his glowing example.
Nevertheless, in the last centuries slowly both the certainty and the absolute value of
mathematics were prey to erosion. The enormously influential philosopher Immanuel
Kant did defend the certainty of mathematics, especially even of euclidean geometry,
but he founded his certainty on the way we see and have to see the world, the so-called
synthetic a priori.

As so often happens his important contributions opened people’s eyes to other pos-
sibilities, also ones opposite to his own point of view. In mathematics doubts had
been slowly accumulating for centuries, Euclid’s parallel postulate had long been con-
sidered unfortunate in that it was much more complicated than the other postulates;
many (unsuccessful) attempts had been made to derive it from the others. In the nine-
teenth century, the century that shook up many certainties, finally geometries were
developed that simply started postulating axioms contradicting the parallel postulate:
non-euclidean geometries. Whether the originators were convinced of the truth of the
parallel postulate or not, their work in which rather natural other posibilities were en-
visioned inevitably led to uncertainty about the truth of the parallel postulate. And if
one mathematical proposition is not so sure then . . . .

At the same time mathematics was starting to grow at an ever increasing pace.
Moreover, this growth was not centered in geometry but in number theory (in a wide
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sense), in particular in analysis. Already Descartes had shown how geometry can be in-
terpreted in real number theory, and now more and more the attention of the mathemati-
cians themselves was directed towards the calculus: the dominant place of geometry
was taken over by number theory.

These developments gave rise to a change in the nature of mathematics as well,
and this led to considerable uneasiness with a number of mathematicians, uneasiness
about the growing abstractness of mathematics, uneasiness about proofs that seemed
to construct objects out of thin air. When Kronecker complained that “God made the
natural numbers, the rest is human work” he asked for a solid basis of mathematics
in the natural numbers and clear ways of construction of other mathematical objects
from those. Hilbert’s extremely abstract, nonconstructive solution of Gordan’s prob-
lem in 1895 (each ideal �������� over a field � has a finite basis) shocked a number
of mathematicians and Cantor’s set theory of the eighteen nineties especially angered
people who considered his work metaphysics rather than mathematics. By this time
there was an emergence of feeling that a solid foundation of mathematics would be
very welcome.

4 The main people on the stage in Gödel’s time
� Frege/Russell

� Hilbert

� Brouwer

Frege, Hilbert and Brouwer are the clearest exponents of the three main points of view
that were expresed in the foundations of mathematics in the twentieth century:

1. Platonism, the view that mathematical objects (as numbers) are objectively ex-
isting objects, be it not in the fleeting world of sense experience. Mathematical
truths are therefore real truths about real objects. They have to be discovered,
obtained by intuition, insight. The fact that mathematical propositions concern
this unchangeable, unshakeable world explains their unique status.

2. Constructivism, the view that mathematical objects (like numbers) are idealized
thought objects created by the mathematician. Mathematical truths are real truths
that have to be constructed, created, proved. The certainty of mathematical truths
is explained by the fact that the originator of the truth can be certain of it.

3. Formalism, the view that mathematics is not about something, it is a manipu-
lation of symbols according to rules, there are no mathematical truths, the for-
mulas of mathematics can sometimes be usefully interpreted. Their certainty is
explained by the fact that it is just a matter of checking that the rules have been
obeyed.

G. Frege was a clear platonist (as Gödel later). His program was to show that math-
ematical statements are nothing but logical truths (and therefore analytic a priori in
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Kant’s terminology), in works extending from 1879 [7] to 1903 [8]. In 1903 Russell
sent Frege a letter containing a proof in Frege’s system of a paradoxical result (using
the set of all sets that are not members of themselves).

Frege rather quickly gave up his basic ideas, but Russell continued to push with
great force Frege’s program to show mathematics to be a part of logic (without having
Frege’s platonist views). To avoid the paradoxes the system he constructed together
with Whitehead in the Principia Mathematica [17] (1910) was very artificial however
and not based on grand philosophical ideas. In Gödel’s time he had lost most of his
supporters.

Actually, similar paradoxes were already known to mathematicians working in
Cantor’s set theory among which Cantor himself. For them these paradoxical results
seemed much less of a problem. Their feeling was that the mathematical results were
basically sound and that it was just a technical mathematical matter to find a way to
these results without getting involved in the paradoxes. In a philosphical foundation of
mathematics this issue lies of course differently. After Russell’s paradox all attempts
at a foundation should have a clear account how to avoid the paradoxes.

L.E.J. Brouwer, unlike Frege, did not attempt to give existing mathematics a solid
foundation. He, like Kronecker and others before him, considered parts of existing
mathematics simply wrong. Unlike these predecessors he devised, from his disserta-
tion [2] in 1907 onwards a systematic new way of doing mathematics, called intuition-
istic mathematics without the suspect methods by considering the objects and proofs
of mathematics as constructions of the mind [5]. Clearly this is quite different from
the platonistic view, one may see the notion of truth seen as replaced by informal prov-
ability. By consistently applying his point of view he was lead to deny the validity of
reasoning by contradiction:

� �
is impossible,

therefore
�

.

or more in general the principle of the excluded middle:
�

or � �
is always true,

because these principles allow one to prove the existence of objects with certain prop-
erties without exhibiting these objects. Denying oneself the use of thses logical laws
entailed cutting out substantial parts of classical mathematics, in particular almost all
of Cantor’s set theory. Most mathematicians didn’t follow his lead but some very good
ones did, notably Herman Weyl. This was enough to anger

D. Hilbert, the most powerful mathematician of the day. He was active in all fields of
mathematics. He had been concerned with consistency (no contradiction is provable) of
mathematics for a long time. In 1890 he published his Grundlagen der Geometrie [12]
in which the so-called relative consistency of geometries was a topic: if system

�
is

consistent, then so is system � . Usually such results are obtained by constructing a
model (interpretation) for the system � in terms of system

�
. He noticed that geometry

is consistent relative to number theory (by the model of analytic geometry discovererd
by Descartes). In his famous lecture in 1900, about mathematical problems for the
20th century, he stated the consistency of number theory as the second one and one of
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the more important. A relative consistency proof seems improbable and anyway one
has to stop somewhere. He considered mathematical theories to be formal systems as
explained the next section, and considered formal systems to be the basis for a new
type of absolute consistency proof.

5 Formal systems

A formal system has three main components.

� An exact description of the language, the symbols you are going to use. Among
these usually there are the connectives � (and), � (or), � (not), � (if ����� then ����� ),
and the quantifiers � (there exists) and � (for all).

� An exact description of how symbols may be strung together to form formulas.

� An exact description how (finitely) many formulas may be strung together to
form proofs.

Note that seen in this manner formulas are sequences of symbols, proofs are sequences
of formulas.

Hilbert’s idea was that all of existing mathematics can be put into this format, and
that is what mathematics really is (formalism). In this manner there is no question of
real truth or falsity. What remains of truth is formal provability, a formula is acceptable
if a proof can be obtained playing according to the rules. Unlike some predecessors
tending to a formalistic point of view he did realize that to understand what a formal
system is and does one already needs some (non-formal) basic mathematical methods
(including some induction over the natural numbers or something equivalent to it). He
called the basic methods he was prepared to use for this: finitistic methods. These
methods ought to be acceptable to any mathematician (they are certainly less encom-
passing even than the methods contained in Brouwer’s intuitionistic mathematics). To
avoid the paradoxes his clinching idea was that a consistency proof of number theory
should be given by these basic finitistic methods. This did not seem implausible since
consistency is from this point of view a very simple combinatorial statement:

� It is not possible in the formal system to obtain proofs of both formulas
�

and
� �

,

or equivalently in systems containing a theory of natural numbers (let us call the formal
system we are considering from now on � )

� It is not possible to obtain a proof in � of 	 ��

.

The program based on these ideas is called Hilbert’s program. It had very strong
support, especially in Hilbert’s own department of mathematics in Göttingen which
was the strongest department in the world containing among other people the young
von Neumann.
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6 The First Incompleteness Theorem

It was in this constellation that Gödel proved his theorems. Let us formulate his first
theorem somewhat more precisely.

Theorem 1 First Incompleteness Theorem. Let � prove only true formulas. Then
there exists a statement about natural numbers 0,1,2,3, . . . of the form ���

�
� (for all

���
�
� ) of the system which is not provable in � , while for each individual number � ,�

� is provable in � .

The way we have stated it here immediately stresses the role of truth versus formal
provability (Gödel’s first amin achievement). If one accepts all the formulas

�
� as

true, then ���
�
� is true as well. Of course the infinite jump from the infinitely many

formulas
�
� to ���

�
� can never be part of a formal system. Only in this special case we

know that
� 


�
�
	��

� �
������� are all provable, it is obvious that there are many formulas

��� for which ��� �	� is not provable but �	� is provable for all � without us knowing it.
Also clear is that adding ���

�
� as a new axiom to � is perfectly legitimite but does not

solve the problem, Gödel’s theorem can be applied to the resulting new formal system
again and then produces a new formula not provable in the new system.

We purposely did not state the theorem in the form: there exists a � such that
neither � nor � � is provable in � . But note that in our formulation it follows that

� ���
�
� or equivalently, �
� � �

� is not provable. This is because this statement cannot
be true if � proves

�
� for each individual number � , and � proves only true statements.

Actually, as we will see, with the proof Rosser later gave the condition on � can be
weakened to just require consistency of � .

Already in the completeness theorem in his dissertation the year before had Gödel
shown his insight in truth versus (formal) provability: if a formula of the predicate cal-
culus is true under any interpretation, it is formally provable in the predicate calculus.
The proof of the completeness theorem was far less difficult than that of the first in-
completeness theorem but could not have been given by a person without deep insight
in the distinction. It is noteworthy that in the interpretation of the first incompleteness
theorem truth may be read in Brouwer’s sense: informal provability. Gödel’s argument
is a mathematically convincing argument for ���

�
� , an informal proof of

�
� , even if

in the formal system only
�
� is formally provable for each � .

The first incompleteness theorem is not easy to accomodate for a formalist. Of
course, a present day formalist will not recognize that the distinction between truth
and provability is essential for its interpretation. A possible reaction could be that the
Gödel sentence is always provable in the formal system plus its reflection principles
(see for that notion Section 9).

Before we go into the content of the second Incompleteness Theorem it is necessary
to discuss some of the ideas in the proof of the First Incompleteness Theorem.

7 On the proof of the First Incompleteness Theorem

The three main insights in Gödel’s proof are
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1. The insight that number theory can discuss all kinds of discrete objects (specif-
ically syntactic objects like symbols, formulas, proofs), and simple manipula-
tions of them, by coding (gödel numbering) them by means of natural numbers
(arithmetization), plus the insight that the relevant true properties can then be
expressed and proved in the formal system � (formalization).

2. Combining this with a diagonal procedure to mimick self-reference in � , obtain-
ing statements that in an indirect manner express properties of themselves.

3. Applying this self-reference to seemingly paradoxical cases.

(1) and (2) form what, in Section 2 we called Gödel’s third main achievement, (3) the
fourth. The basic insight of (1) is that sequences of natural numbers can be coded by
one natural number in a systematic manner so that

� For each finite sequence of natural numbers one can calculate the unique number
coding that sequence.

� For each natural number one can calculate the unique finite sequence of natural
numbers that it codes (if any).

Therefore, by coding the basic symbols by natural numbers, formulas and proofs can
be coded by natural numbers. These codes are called gödel numbers. If � is a formula,
we will write

�
for its gödel number, � will be � ’s gödel number, etc. (We will not

distinguish in notation between a natural number and its notation in the formal system,
often called a numeral.) “being a proof” becomes a number-theoretic property of a
number; “being provable” another number-theoretic property of a number. And one
number “can be a proof of another one”. Statements concerning the provability of
number-theoretic formulas become number-theoretic statements. And actually these
number-theoretic statements are simple enough to be formulated in � .

Another insight Gödel used in his proof was the insight (2) that for any property
expressible in � there exists a sentence (of the formal system) for which it can be
proved that it is equivalent to itself having this particular property.

Lemma 2 Diagonalization lemma. For any expressible number-theoretic property Ax,
a formula B exists such that Ab is true if and only if B and this is actually provable in
� .

Gödel applied this lemma to a variant of the Liar paradox (“This statement is
false”), the number-theoretic property “x is not provable”, written here �������
	�� �� .
The lemma then produces a sentence � (the Gödel sentence) such that ��� �������
	���� 
is provable and true; � seems to say: “I am not provable”.

Both assuming � is provable and � � is provable lead to unsurmountable difficul-
ties:

� � is provable quickly leads to an inconsistency, because the provability of �����
	���� 
follows easily from the provability of � , and, of course, �������
	����  does so as
well. So: [If � is provable, then 	 � 
 is provable].
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� � � is provable leads to the fact that ���
�
	����  is provable, and �����
	����  is an
obvious falsity if G is not provable.

This leads to the version of the first theorem now most stated:
If the system of arithmetic one studies proves no simple false statements, then the
statement � � � �����
�
	����   is true but not provable: �����
	����  is a simple statement in
the intended (exactly defined) sense.

Note that �������
	����  says that no number is a proof of � , ��� ��������� � � � � �  (if one
writes ���
��� � � ��� �  for the formal expression of x is a proof of � ). For each particular
number � it is easy to show that it is not a proof of � : ��������� � � � � �  . We have arrived at
the phenomenon discussed just after Theorem 1 by which we can conclude immediately
that � is true.

Actually, already Rosser showed how to improve on Gödel’s conditions by using a
slightly more complicated paradoxical statement: consistency of the formal system is
sufficient to insure that his formula and its negation are not provable. One can formulate
Rosser’s construction as follows: Instead of looking at ���
�
	�� �  we look at �����
	�� � ��
which expresses that the formula coded by � has a proof such that for no number ��� � ,
� is a proof of the negation of the formula coded by � . (Informally, this comes down
to: a proof of

�
is recognized to be a Rosser-proof of

�
only if no smaller proof of � �

exists.) Instead of � one now considers a formula � such that � � �������
	 � ���  is the
case.

8 The Second Incompleteness Theorem

The second incompleteness theorem derives from the observation that if � is provable,
then 	 ��


is provable � shorter: ���
�
	����  � �����
	�� 	 � 
   is a true number-theoretic
statement, and that this statement can, in fact, be proved in arithmetic itself by a long,
cumbersome, but basically simple argument2. Rewriting gives �������
	�� 	 � 
  � �����
�
	����  .
The other direction of that implication is much easier to see, so that one in fact gets an
equivalence:

�����
�
	�� 	 � 
  � �������
	����  �
and therefore � is equivalent to the consistency of � ( 	 ��


is not provable)

�������
	�� 	 � 
 �� � �
Since � is not provable, neither is �������
	�� 	 � 
  . We have arrived at the second in-
completeness theorem. In stating it we explicitly mention the preconditions for the
theorem to hold (see also Section 9).

Theorem 3 Second Incompleteness Theorem. Let � prove only true formulas, and let
� and �����
	 satisfy the so-called Hilbert-Bernays-Löb conditions:

2Actually, G ödel himself never did this. He just announced that he was going to do it, but when it turned
out that everybody believed it without him fully executing the proof, he had more interesting things to do.
The first full version of the proof appeared in [13].
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1. For each
�

, if � proves
�

, then � proves � ���
	����  ,
2. For each

�
� � , � proves ���
�
	���� � �  � � ���
�
	����  � �����
	�� �   ,

3. For each
�

, � proves �����
	����  � �����
	�� �����
	����   .
Then � does not prove �������
	�� 	 � 
  .

We have arrived at another of Gödel’s ’main achievements’.

� A proof of consistency in certain respect useless, i.e. it can be valuable but cannot
in normal cases increase our confidence that the system is consistent.

That is, because to prove consistency of � one needs methods not contained in � . This
makes consistency proofs by no means useless in all respects. The beautiful consis-
tency proofs by Gentzen of Peano arithmetic which provide deep insights show the
contrary. But the second incompleteness theorem was a death blow to Hilbert’s pro-
gram whatever e.g. is said to the contrary in the introduction to [13].
By formalizing one step further one can obtain that

� proves �����
	�� �������
	�� 	 � 
   � �����
	�� 	 � 
 ��

T proves: If it is provable that T is consistent, then T is inconsistent �

9 Some developments after Gödel

In this section we consider two more recent developments: provability logic, and Fe-
ferman’s results on the second incompleteness theorem.
In 1955 Löb proved a strengthening of the second incompleteness theorem:

� For each
�

, if � proves �����
	����  � �
, then � proves

�
.

Note that Löb’s theorem generalizes the second incompleteness theorem. If one re-
places

�
by 	 � 
 (and � by 	 � 
 ’s gödel number), then we get the second incom-

pleteness theorem. Löb’s theorem expresses that the truth if
�

is provable, then
�

is
true (called a reflection principle) can only be proved in the trivial case that

�
itself is

provable. The formalized form of the theorem reads:

� For each
�

, � proves �����
	�� �����
	����  � �  � �����
	����  .

Note that this is not only a negative result, it is also a positive expression of what
� can know (prove) about its own provability predicate. It turns out that this is in a
sense all that � can prove about its own provability. Solovay [16] proved in 1976 that
� can prove such a general statement built up from the connectives and �����
	 if and
only if the statement is derivable from the three Hilbert-Bernays-Löb conditions and
Löb’s Theorem (by a translation into modal logic). The resulting field of study is called
provability logic (see e.g. [1]).
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Feferman noted that in the formulation of the second incompleteness theorem it
is necessary to be more precise than one usually is. The definition of the provability
predicate ���
�
	�� �  (based on the definition of the proof predicate) needs to be inten-
sionally correct in the sense that in the formal definition of the proof predicate one has
to follow in the formalization the steps of the arithmetization. Only then the Hilbert-
Bernays-Löb conditions mentioned in Theorem 3 can be shown to apply. It is not
sufficient to require that it is just extensionally correct in the sense that

�
has a proof

iff �����
	����  is true.
That may already be plausible to the reader on the basis of the Rosser proof predi-

cate that we introduced at the end of Section 7. Since � is consistent, a situation that
a proof of

�
exists and a smaller proof of � �

as well simply cannot occur. Therefore,
the Rosser provability predicate and the usual provability predicate are equivalent: the
Rosser provability predicate is an extensionally correct formalization of provability.
Nevertheless, at least under the interpretation of consistency that 	 � 
 is not provable,
� can prove its own consistency with regard to the Rosser proof predicate. A proof of
� 	 � 
 such that no smaller proof of 	 � 
 exists can easily be constructed. This then
readily implies that a Rosser proof of 	 � 
 cannot exist. Such a simple proof as this
one can easily be formalized in � . Hence � proves its own (Rosser) consistency.3 In
any case, the conclusion has to be that � cannot prove the equivalence of ordinary and
Rosser provability.

Feferman himself considered a similar, somewhat more complicated provability
predicate. Informally: Standard proofs are enumerated one after the other. Each time
an inconsistency arises (a formula

�
such that � �

has been proved before, or a formula
� �

such that
�

has been proved before), from the axiom system of � the largest
axiom used in the offending proof is removed as well as all larger axioms. All previous
’theorems’ using these axioms are removed as well (’large’ in the sense of larger gödel
numbers). A formula

�
is considered Feferman provable if

�
gets a proof which is

never removed afterwards. As in the case of Rosser provability, since no contradiction
ever occurs, Feferman provability is extensionally equivalent to ordinary provability,
the same formulas remain provable in � . But again, � can prove its own Feferman
consistency.

10 Lucas’ Argument

Lucas [14] has argued, and his argument has been taken up later by a number of
philosophers (see e.g. [15]) that Gödel’s first incompleteness theorem can be used to
show that humans are superior to machines. His argument ran as follows:

� Each machine is an instantiation of a formal system.

� Hence, given a machine that is consistent and able to do arithmetic, there is a
true arithmetic formula, the Gödel sentence of that system, which the machine is
not able to reproduce.

3One might object that for a Rosser provability predicate it is more reasonable to define consistency to
mean that for no � , � and ��� are both provable. It may be necessary to consider a variant of the Rosser
proof predicate if one wants to show that � proves its own Rosser consistency in this sense.
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� Humans can recognize the truth of that Gödel sentence.

� Therefore, humans are superior to machines.

Generally, the gut feeling of logicians is that Gödel’s theorems are too abstract to
have such applications in the real world (see e.g. [6]). I share this feeling. Let me give
some quick arguments.

That each machine is the embodiment of a formal system is at least doubtful. If
one looks e.g. at the description of the Feferman provability predicate in Section 9 one
will see that its definition is completely mechanical but the predicate is certainly too
complicated to be definable as a formal system. In general machines that in reality or
in the imagination use time in the way described cannot in general be expressed as a
formal system.

For the human to conclude that the Gödel sentence of a system is true the hu-
man will need to know that the system is consistent. This is of course not decidable.
Reasonably, the human can only conclude that, if the system is consistent its Gödel
sentence is true, which does not seem really satisfactory. Moreover, there is another
serious objection to this part of the argument. Reproducing the Gödel sentence of any
formal system can equally well be executed by a machine in Lucas’ sense, it can be
stated as an ordinary mechanical procedure. Is only the (already shaky) recognition
of the truth of the Gödel sentence the difference between that machine and a human?
Then it seems as if Gödel’s theorem hardly plays a role in the argument: the essential
difference would be that the human can recognize the truth of some propositions and
the machine never can (maybe not such an unreasonable argument). It is worth wile
to note in passing that this particular machine applied to itself can reproduce its own
Gödel sentence, but, by Gödel’s second incompleteness theorem, it will not be able to
prove its own consistency.
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[9] Gödel, K., Über formal unenscheidbare Sätze der Principia Mathematica und
verwandter Systeme i, Monatshefte für Mathematik and Physik, 38 pp. 173–198.
Reprinted and translated in [10], pp. 144–195.

[10] Gödel, K., Collected Works, Vol. 1, Oxford University Press.

[11] van Heijenoort, Jean (ed.), From Frege to Gödel, a Source Book in Mathematical
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