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Abstract. We put forward a formal model of participatory budgeting
where projects can incur costs with respect to several different resources,
such as money, energy, or emission allowances. We generalise several well-
known mechanisms from the usual single-resource setting to this multi-
resource setting and analyse their algorithmic efficiency, the extent to
which they are immune to strategic manipulation, and the degree of
proportional representation they can guarantee. We also prove a general
impossibility theorem establishing the incompatibility of proportionality
and strategyproofness for this model.
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1 Introduction

Participatory budgeting (PB) is an important development in deliberative grass-
roots democracy now used in hundreds of cities across the globe [27]. PB allows
citizens to vote directly on the funding of projects proposed by their peers. Each
project is associated with a cost and the projects selected must not exceed a
given budget limit. Both in the theoretical literature and in current practice,
such costs are expressed in monetary terms only. In this paper, we argue for
and define a richer model of PB that can account for costs with respect to re-
sources other than money—such as energy, spatial demands, or allowances for
the emission of certain pollutants.

Such a richer model has several advantages. As noted by Goldfrank [10] and
Rose and Omolo [24], governmental officials often need to interfere in the PB
process to determine the technical feasibility of projects and to ensure their
alignment with public policy, thereby reducing transparency. For example, a
proposed water fountain may require significant energy resources or a proposed
cultural event might breach noise regulations in a residential neighbourhood. A
multi-resource model would allow us to make such costs (in terms of energy or
noise) explicit and to take them into account when tallying the votes. As we
shall see, allowing for multiple resources also permits us to encode additional
constraints of practical interest. For instance, to specify that at most $100k (out
of a total budget of, say, $500k) may be spent on cultural projects, we could
introduce a new resource (“culture-dollars”) with the appropriate budget limit
and assign a nonzero cost in terms of this resource to culture-related projects.
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Our model is a natural generalisation of the standard single-resource model
of PB in which you vote by approving any subset of the projects on the ballot
sheet [2]. But now, we require the selected projects not to exceed the budget limit
relative to every single one of the resources (rather than just in terms of money).
Adopting the methodology of computational social choice [4], we analyse several
mechanisms for selecting projects from both an axiomatic and an algorithmic
perspective. Regarding the former, we focus on the axioms of proportionality and
strategyproofness, and show that no PB mechanism can satisfy both of them,
although there are simple mechanisms that perform reasonably well with respect
to either one of these desiderata. Regarding algorithmic concerns, we analyse the
extent to which the computational complexity of standard mechanisms increases
when we move from the single-resource to the multi-resource setting.

Related work. As is well known, PB generalises multiwinner voting [5], a
connection we will be using on multiple occasions.

Prior work on PB itself that is of a formal nature has been concerned with
the analysis of strategic incentives [9], axioms encoding various fairness require-
ments [1,21,28], and the computational complexity of PB [6]. Other authors
have proposed different extensions of the basic model, e.g., by considering other
types of ballots [3,17], allowing for additional constraints [12,13,22], integrating
the so-called shortlisting phase—where citizens propose projects—into the basic
model [23], modelling several PB exercises running concurrently in districts of
the same city [11], and modelling several PB exercises running in consecutive
years [16]. Note that Rey et al. [22] also considered multiple resources, although
this aspect is not central to their work. We shall discuss specific contributions
that are directly relevant to our work in the body of this paper.

We note that the design of PB mechanisms that can account for multi-
dimensional constraints, i.e., budget constraints relative to multiple resources
has previously been mentioned as an important challenge by Aziz and Shah [2]
in their survey on formal approaches to PB.

Paper outline. The remainder of this paper is organised as follows. We intro-
duce our model of multi-resource PB in Section 2, where we also define three
mechanisms for this model, formulate suitable axioms of proportionality and
strategyproofness, and illustrate the richness of the model by showing how it
can accommodate additional constraints on feasible outcomes. We then present
our axiomatic results in Section 3 and our algorithmic results in Section 4.

2 The Model

In this section we define our model of multi-resource PB. We also define three
simple mechanisms for selecting projects that are directly inspired by familiar
mechanisms for single-resource PB, as well as a number of axioms encoding
important normative requirements for such mechanisms. Finally, we briefly dis-
cuss how the availability of multiple resources allows us to easily encode various
additional constraints directly within our model.
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2.1 Scenarios and Profiles

A PB scenario with m projects and d resources is a tuple 〈P, c, b〉, where P =
{p1, . . . , pm} is a set of projects, c = (c1, . . . , cd) is a vector of cost functions
ck : P → N ∪ {0}, and b = (b1, . . . , bd) is a vector of budget limits bk ∈ N. Here,
ck maps each project to its cost in terms of the k-th resource, while bk is the
total number of units of that resource we can spend.3 We extend the definition
of each ck to sets S ⊆ P and write ck(S) for

∑
p∈S ck(p). Such a set S ⊆ P is

feasible if c(S) 6 b, i.e., if ck(S) 6 bk for all k ∈ {1, . . . , d}, meaning that S does
not exceed our budget for any resource. Let Feas(P, c, b) = {S ⊆ P | c(S) 6 b}
be the set of all feasible sets in this scenario.

W.l.o.g., we shall make two assumptions: (i) every project has a nonzero cost
in terms of at least one resource (for all p ∈ P there exists a k with ck(p) > 0);
and (ii) there exists at least one feasible set of projects (i.e., Feas(P, c, b) 6= ∅).

During a PB exercise, we ask a group N = {1, . . . , n} of voters to express
their preferences by indicating which of the projects in P they approve of. So a
ballot for a voter i is a set Ai ⊆ P . A profile is a vector A = (A1, . . . , An) of such
ballots, one for each voter. On the basis of such a profile of approval ballots, we
want to select a feasible set of projects to implement.

2.2 Mechanisms

A mechanism is a function F that takes as input a scenario 〈P, c, b〉 and a profile
A, and that returns a nonempty set F (〈P, c, b〉,A) ∈ Feas(P, c, b) of projects
that is feasible. The scenario is sometimes omitted when clear from context.
We now define three mechanisms for multi-resource PB, all of which are simple
generalisations of well-known mechanisms for the single-resource case. Together
they cover the main types of approaches to the design of mechanisms considered
in the PB literature to date.

Two of our mechanisms are defined in terms of so-called approval scores.
Given a profile A = (A1, . . . , An), the approval score of a project p is defined as
sA(p) = |{i ∈ N : p ∈ Ai}|. The approval score of a set S ⊆ P is the sum of the
approval scores of the projects in S, i.e. sA(S) =

∑
p∈S sA(p) =

∑
i∈N |S ∩Ai|.

Greedy-approval. The greedy-approval mechanism Fg goes through all pro-
jects in order of their approval scores, with ties being broken by the index of
projects in P . Projects are added to the outcome set S one by one, with any
project that would render S infeasible being skipped.

For d = 1, this is the mechanism most commonly used in practice, though
often with certain restrictions on either the size or the cumulative cost of ballots.
In case ballots are restricted to feasible sets, the greedy-approval mechanism has
been termed knapsack voting by Goel et al. [9].

3 Note that negative costs can be appropriate as well (e.g., planting trees has “negative
environmental cost”). We shall occasionally comment on the effects of doing so.
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Max-approval. The max-approval mechanism Fm returns a feasible set that
maximises the approval score. In case of a tie, we use lexicographic tie-breaking
based on the projects’ indices to select the final outcome. For d = 1, this mecha-
nism and some of its variants have been studied by Talmon and Faliszewski [28].

Sequential load-balancing. The sequential load-balancing mechanism Fl is
parametrised by a set R ⊆ {1, . . . , d} of relevant resources. It builds an outcome
set S by adding projects one at a time (in a greedy fashion), always picking a
project that maintains the feasibility of S and minimises maxk∈R yk, where each
yk is computed by a linear program specific to k and S:

min yk where yk > 1
bk
·
∑

p∈S xi,k,p for all i ∈ N with∑
i∈N1p∈Ai

· xi,k,p = ck(p) for all p ∈ S (and xi,k,p > 0).

Intuitively, for any voter i with p ∈ Ai, the quantity xi,k,p is the part of ck(p)
shouldered by that voter. Only voters approving of p contribute to its realisation,
and the loads across projects are balanced so as to minimise the total load carried
by the worst-off voter. Then yk represents the highest proportion of bk shouldered
by any one voter. Ties between projects again are broken by project index.

Fl is inspired by voting rules for committee elections advocated by Phragmén
in the 1890s [14] and closely related to the so-called maximin support method
recently proposed by Sánchez-Férnandez et al. [25]. For PB, a similar mechanism
was also proposed by Aziz et al. [1].

2.3 Axioms

In social choice theory, an axiom is a formal property of mechanisms that encodes
certain normative desiderata. Axioms might relate to the economic efficiency of
a mechanism, various notions of fairness, or strategic incentives.

Exhaustiveness. Recall that mechanisms, by definition, return sets that are
feasible. But they need not exhaust the budget. This failure to make use of avail-
able funds might be considered undesirable. So our first axiom is exhaustiveness.
A mechanism F is exhaustive if for every scenario 〈P, c, b〉 and profile A there
exists no feasible set S ∈ Feas(P, c, b) with S ) F (〈P, c, b〉,A).

Proportionality. Intuitively speaking, a mechanism provides proportional rep-
resentation (or simply: is proportional) if it ensures that sufficiently large groups
of voters with sufficiently similar preferences receive adequate representation in
the outcome. A range of proportionality axioms has been proposed in the litera-
ture, both for PB itself and for the simpler model of approval-based committee
elections [1,5]. We define both a strong and weak proportionality axiom. Both
are parametrised by a nonempty set R of “relevant” resources (with respect to
which we require proportionality).

We call a mechanism F strongly R-proportional if, for every scenario 〈P, c, b〉,
profile A, and set S ⊆ P , the following two conditions together imply that all
of the projects in S get selected, i.e., that S ⊆ F (〈P, c, b〉,A):
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(i) |{i ∈ N : Ai = S}| > n · ck(S)
bk

for all k ∈ R;
(ii) ck(S ∪ F (〈P, c, b〉,A)) 6 bk for all k /∈ R.

Condition (i) says that there is a coalition of voters approving of precisely S
that is large enough to “deserve” the proportion of the budget bk needed to
realise S for every relevant resource k.4 Condition (ii) expresses that realising S
(in situations where it is not yet fully realised) would not exceed the budget
for any of the other resources.5 A mechanism F is weakly R-proportional if it
satisfies the above conditions for all singleton sets S = {p}. We stress that
the very narrow conditions for the applicability of the axiom make the axiom
logically particularly weak and thus normatively particularly appealing.

In the single-resource case (with d = 1 and R = {1}), weak R-proportionality
is the natural generalisation of the basic proportionality axiom formulated by
Peters [19] for multiwinner voting (except that Peters also restricts the axiom
to so-called “party-list profiles”). This proportionality axiom is particularly at-
tractive due to its simplicity and the weak requirements it imposes. We refer
the reader to Peters [19] for a discussion of how it relates to some of the myr-
iad of other proportionality axioms found in the literature. Note that for the
single-resource case condition (ii) becomes vacuous.

Strategyproofness. We would like voters to vote truthfully. To make this
precise, we need to make assumptions about their incentives. We assume that
every voter i has a preference relation <i, which is a reflexive and transitive
binary relation on feasible sets of projects (i.e. a preorder). We use �i to refer
to its strict part. We further assume that <i is induced by some set S?

i ⊆ P
of projects voter i truthfully approves of. We consider two types of voters; the
manner in which <i is induced by S?

i depends on the voter’s type:

– For a given nonempty set R of relevant resources, voter i has R-Paretian
preferences in case S <i S

′ holds for two sets S, S′ ∈ Feas(P, c, b) if and
only if ck(S?

i ∩ S) > ck(S
?
i ∩ S′) for all k ∈ R. That is, such a voter weakly

prefers S to S′ if the cumulative cost of her truthfully approved projects in
S is at least as high as for those in S′ with respect to each relevant resource.
Thus, S �i S

′ holds if and only if ck(S?
i ∩S) > ck(S

?
i ∩S′) for all k ∈ R and

this inequality is strict in at least one case.
– Voter i has subset preferences in case S <i S

′ holds for S, S′ ∈ Feas(P, c, b)
if and only if S?

i ∩ S ⊇ S?
i ∩ S′.

4 Observe that for condition (i) it is important to count the number of voters who
vote for S exactly rather than those who vote for a (not necessarily proper) superset
of S. Indeed, weakening the conditions for the applicability of the axiom in this sense
would immediately render it impossible to satisfy in general. To see this, consider
a single-resource scenario in which we need to divide a budget of b = 2 amongst
three projects of cost 1, and in which there are two voters, with approval ballots
A1 = {p1, p2} and A2 = {p3}. Then each project forms a singleton set S for which
n · c(S)

b
= 1, while |{i ∈ N : Ai ⊇ S}| = 1. But we cannot select all three projects.

5 Note that dropping condition (ii) would render this axiom unsatisfiable in general,
since sets satisfying the first condition can exceed the budget for some k 6∈ R.
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Let (A−i, S
?
i ) denote the profile A in which the ballot of voter i has been re-

placed by S?
i . We can now define strategyproofness in the familiar manner. A

mechanism F is strategyproof against voters with either R-Paretian or subset
preferences if, for every scenario 〈P, c, b〉 and profile A, we get F (〈P, c, b〉,A) �i

F (〈P, c, b〉, (A−i, S?
i )) for all voters i ∈ N with these preferences.

Following Goel et al. [9], we furthermore define F to be approximately strategy-
proof against voters with R-Paretian or subset preferences if, for every 〈P, c, b〉
and A, we get F (〈P, c, b〉,A) �i F (〈P, c, b〉, (A−i, S?

i )) ∪ {p} for all i ∈ N with
these preferences and some p ∈ P . This allows for the possibility that a truthful
vote might result in a worse outcome—provided the difference is, in some sense,
bounded by the value of the most attractive project.

2.4 Modelling Additional Constraints

Recent work on PB has emphasised the importance of enriching the basic model
with the possibility of expressing additional constraints the projects selected for
funding must satisfy [2,12,13,22]. As we are going to see now, an advantage of
working with a multi-resource PB model is that it allows us to encode such
constraints directly within the basic framework.

Distributional constraints. For many real-world PB exercises there are upper
bounds on the funding that may be spent on projects belonging to a given
category (say, culture or the environment). Suppose X ⊆ P represents a specific
category of projects, and that for a certain resource k, we want to limit the part
of bk going to projects in X to bα · bkc for some α ∈ [0, 1]. To achieve this, we
can introduce a new resource k? with bk? = bα · bkc and ck?(p) = 1p∈X · ck(p).

Jain et al. [13] develop a PB model centred around such distributional con-
straints, and Rey et al. [22] show how to encode them in judgment aggregation.
Patel et al. [18] study a different variant of this model, where the distributional
constraints relate to the score rather than the costs of the selected projects.

Incompatibility constraints. Some projects might be incompatible with one
another. Suppose we want to express that we cannot realise all of the projects
in some nonempty set X ⊆ P together. To do so, we can introduce a new
resource k? with budget limit bk? = |X| − 1 and fix ck?(p) = 1p∈X for each
project p. That is, projects in X cost 1 unit and all others do not cost anything.
Then respecting the budget constraint for k? implies never accepting all of the
projects in X.

In the single-resource setting incompatibility constraints are a special case of
distributional constraints. But in general this is not the case, since two incom-
patible projects might not both have a nonzero cost for the same resource.

Dependency constraints. Realising a given project might be possible only if
certain other projects are implemented as well. If we were to allow for negative
costs, we could easily encode such dependency constraints. Suppose we want to
express that project p? should be selected only if all projects in X ⊆ P are
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selected as well. We again create a new resource k?, and set bk? = 1, ck?(p?) =
|X| + 1, ck?(p) = −1 for all p ∈ X, and ck?(p) = 0 for all other projects. Then
selecting p? and thus spending an amount of |X| + 1 is possible only if we also
select all of the projects in X and thus push the total amount spent down to the
budget limit of 1. Rey et al. [22] also discuss modelling such constraints.

The fact that encoding constraints involves introducing some purely technical
resources lends additional support to the idea of parametrising mechanisms and
axioms by a set of relevant resources R. For example, for Fl we may want to put
all “real” resources in R but leave all “technical” resources aside.

3 Axiomatic Analysis

In this section we first analyse the concrete mechanisms defined earlier in view
of the axiomatic requirements of proportionality and strategyproofness, and we
then show that it is impossible to satisfy both requirements at the same time.

3.1 Proportionality

Unfortunately, neither the greedy-approval mechanism nor the max-approval
mechanism can guarantee weak proportionality, and thus certainly not strong
proportionality. To see this, consider the following example.

Example 1. Take a single-resource scenario 〈P, c, b〉 with P = {p1, p2}, b = 3,
c(p1) = 1, and c(p2) = 3. For profile A = ({p1}, {p2}, {p2}) both Fg and Fm
return the outcome {p2}. However, weak proportionality (with R = {1}) would
require p1 to be part of that outcome. M

This kind of counterexample also works for multi-resource scenarios: simply add
any number of dummy resources with budget 1 and cost 0 for both projects
(as long as R ⊇ {1}). On the other hand, the sequential load-balancing mecha-
nism Fl satisfies even our strong proportionality axiom.

Proposition 1. The sequential load-balancing mechanism Fl is strongly R-pro-
portional for any set R of relevant resources.

Proof. The proof is similar to that of Proposition 3.13 in the work of Aziz et
al [1]. Suppose Fl is not strongly R-proportional, for some R. Then there must
be a scenario 〈P, c, b〉, a profile A, and a subset of projects S? ⊆ P satisfying
the requirements of strong R-proportionality but for which there exists a project
p? ∈ S? not selected by Fl. Let N? ⊆ N be the set of voters such that for all
i ∈ N?, we have Ai = S?. Recall that Fl works in iterations. Let ` be the first
iteration for which selecting p? would violate the budget constraint of at least
one relevant resource which we call k? ∈ R. Thanks to condition (ii) of strong
R-proportionality, we know that {p?}∪Fl(〈P, c, b〉,A) cannot exceed the budget
of a non-relevant resource. This implies that such an ` always exists as otherwise
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Fl would not have terminated. In the following we will prove a contradiction,
namely that Fl should have selected p? at an iteration before `.

Let S be the set of projects selected by Fl at iteration `. Use xi,k,p to represent
the part of ck(p) shouldered by voter i at iteration ` (see the definition of Fl).
Define xi,k =

∑
i∈N 1p∈Ai

× xi,k,p to be the total load of voter i for resource k
at iteration `. Given that all voters in N? approve only of S?, we see that the
cost ck(S)−ck(S∩S?) for every relevant resource k ∈ R should be spread across
n− |N?| voters. By averaging, there must then be a voter i ∈ N \N? for which:

∀k ∈ R : xi,k >
ck(S)− ck(S ∩ S?)

n− |N?|
× 1

bk
.

From the definition of `, we know that for k? we have ck?(S ∪ {p?}) > bk? . The
equation above thus implies for resource k? that:

xi,k? >
bk? − ck?(p?)− ck(S ∩ S?)

n− |N?|
× 1

bk?

.

Now from the definition of strong R-proportionality, we know that |N
?|

n × bk? >
ck?(p?) + ck?(S ∩ S?). This implies that:

xi,k? >
bk? − |N

?|
n × bk?

n− |N?|
× 1

bk?

=
1

n
. (1)

Thus at iteration `, the maximum load of a voter is at least 1/n.
We now assume that at iteration `−1, it is project p? that is selected, instead

of the other project that Fl selected. We distinguish between two cases.
First, if all voters have load no more than 1/n for all resources k ∈ R at the

“new” iteration `, then we are done: to minimise the maximum load, Fl should
have selected p? at iteration `− 1 because of Equation (1).

Suppose now that there is a voter i ∈ N and a resource k ∈ R such that
i’s load for k at the “new” iteration ` exceeds 1/n. Note first that we must have
i /∈ N?. Indeed, the costs of projects in S? can always be distributed across voters
in N?, keeping their load for every k ∈ R at most |S

?|×bk?

n×|S?| ×
1

bk?
= 1/n. Then,

since i /∈ N?, i’s load did not increase by selecting p?, and so there must then be
a smallest iteration `′ < ` after which i’s load for k exceeded 1/n. But then, since
the maximum load after `′ exceeded 1/n, we find that Fl should have selected
p? at iteration `′ − 1. Indeed, by selecting p?, all voters in N \N? would have a
load of less than 1/n, while the load of voters in N? still would not exceed 1/n.

Overall, by definition of Fl, project p? should have been selected before iter-
ation `. By contradiction, Fl is thus proven to be strongly R-proportional. ut

We note that this positive result ceases to hold when we allow for negative costs.
Indeed, as the following example demonstrates, in that case satisfying strong
proportionality is impossible for any mechanism.

Example 2. Consider a single-resource scenario 〈P, c, b〉 with P = {p1, p2, p3},
b = 2, c(p1) = c(p2) = 2, and c(p3) = −1. Then under profile A = (A1, A2) with
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A1 = {p1, p3} and A2 = {p2, p3}, both voters approve sets with cumulative cost
c(A1) = c(A2) = 2 − 1 = 1, and so strong proportionality requires us to accept
both sets. But this would exceed the budget: c(A1 ∪A2) = 2 + 2− 1 = 3 > b. M

3.2 Strategyproofness

None of our mechanisms are strategyproof against voters with either Paretian
or subset preferences (not even for d = 1). We again provide an example.

Example 3. Take a scenario with budget b = 2 and three projects with c(p1) =
1, c(p2) = 2, and c(p3) = 1. Suppose we receive two ballots, S?

1 = {p3} and
A2 = {p2}. Both Fg and Fm pick p2 (due to lexicographic tie-breaking). If
voter 1 instead (untruthfully) votes A1 = {p1, p3}, both mechanisms return
{p1, p3}. The same applies to Fl if we add a third voter with A3 = {p2}. But
{p1, p3} �1 {p2}, for both Paretian and subset preferences. M

So let us focus on approximate strategyproofness instead. As we shall see, Fg
guarantees approximate strategyproofness for voters with subset preferences,
but not (in general) for voters with Paretian preferences. As we shall also see,
unfortunately, neither Fm nor Fl can guarantee approximate strategyproofness
in either case. For the positive result we first prove a simple lemma.

Lemma 1. If projects cost 1 unit of one resource and 0 units of all others, then
under Fg, voters with R-Paretian preferences weakly prefer the outcome obtained
by voting truthfully over any obtained by voting untruthfully (for any R).

Proof. In this setting, Fg picks, for each k ∈ {1, . . . , d}, the bk most approved
projects costing 1 unit of resource k. Now, since every project in S?

i is approved
at least as often in (A−i, S

?
i ) as in A, we have F (A−i, S?

i ) <i F (A). ut

Proposition 2. Fg is approximately strategyproof against voters with R-Pare-
tian preferences for R = {1, . . . , d} and against voters with subset preferences.

Proof. Let R = {1, . . . , d} and consider a scenario 〈P, c, b〉. Construct a second
scenario 〈P ′, c′, b〉 where all projects in P have been decomposed into smaller
projects that cost 1 unit of one resource and 0 units of all other resources, such
that the costs of any p ∈ P equals the sum of costs of the corresponding projects
p′ ∈ P ′. By Lemma 1, no voter with R-Paretian preferences has an incentive
to manipulate in the second scenario. Fg accepts, in the first scenario, projects
p ∈ P in the same order as it accepts the corresponding projects p′ ∈ P ′ in
the second scenario, until the first of the d budget limits is reached. For that
resource k for which the limit is reached first and that project p that is not
accepted, the difference in cost between the two outcomes is at most ck(p). If we
give project p to an R-Paretian voter on top of the outcome of the first scenario,
then the amount of resource k spent as she desires is at least as much as in the
second scenario, which in turn is at least as much as in any manipulated version
of the second scenario, which is at least as much as in any manipulated version



10 N. Motamed et al.

of the first scenario. Hence, she will not have any incentive to manipulate in the
first scenario either.

Finally, note that strict subset preferences imply strict {1, . . . , d}-Paretian
preferences. Thus, approximate strategyproofness under {1, . . . , d}-Paretian pref-
erences implies the same under subset preferences, completing the proof. ut

In the single-resource setting, Fg has been shown to guarantee approximate
strategyproofness against (what we call) Paretian voters using a similar approach
[9]. However, as our next example illustrates, for multi-resource PB in which
voters might not care about all resources, this is no longer the case.

Example 4. Take a scenario with P = {p1, p2, p3, p4, p5}, three resources, R =
{1}, and the following costs and budget limits:

Cost p1 p2 p3 p4 p5 Budget limit

c1 0 0 0 1 1 b1 = 2
c2 2 1 1 0 0 b2 = 2
c3 1 3 3 4 4 b3 = 9

Let us consider the two-voter profile (S?
1 , A2) = ({p2, p3, p4, p5}, {p1, p2, p3}).

Then the greedy-approval mechanism Fg selects the set {p2, p3}. If voter 1 in-
stead votes A1 = {p1, p4, p5}, Fg returns {p1, p4, p5}, which is better for her—in
terms of resource 1—than {p2, p3} ∪ {p}, for every p ∈ P . M

The next two examples demonstrate that neither Fm nor Fl can guarantee ap-
proximate strategyproofness against voters with subset preferences (and, thus,
certainly not against Paretian voters).

Example 5. Consider the single-resource scenario 〈P, c, b〉 with projects P =
{p1, p2, p3, p4, p5}. Let the first four projects cost 1, while c(p5) = 4 = b. Now
let (S?

1 , A2, A3, A4) = ({p1, p2}, {p5}, {p5}, {p5}). Then Fm returns {p5}. How-
ever, if voter 1 switches to A1 = {p1, p2, p3, p4}, then Fm returns {p1, p2, p3, p4},
increasing the set of accepted projects she truly likes from ∅ to {p1, p2}. M

Example 6. Consider a two-resource scenario with P = {p1, p2, p3, p4, p5} with
these costs and budget limits:

Costs p1 p2 p3 p4 p5 Budget limit

c1 2 2 0 3 0 b1 = 5
c2 2 0 2 0 3 b2 = 5

For the profile (S?
1 , A2, A3) = ({p1, p2, p3}, {p1, p4, p5}, {p1, p4, p5}), the sequen-

tial load-balancing mechanism Fl picks the set {p1, p4, p5}. However, if voter 1
switches to A1 = {p2, p3}, then Fl still selects p1, but also p2 and p3, since
voter 1 can no longer carry any load for p1. Thus, by manipulating she can add
two projects she cares about to the outcome, without losing any others. M
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3.3 An Impossibility Result

We now show it is impossible to guarantee both weak proportionality and strat-
egyproofness together. Our result mirrors (and is inspired by) an impossibility
result for multiwinner voting due to Peters [19], although there are subtle differ-
ences (meaning that our result is not implied by that of Peters). In particular,
Peters requires a (very weak) efficiency axiom (for a discussion of this point, refer
to Peters [20]).6 We are going to prove the following result (for single-resource
PB) and then generalise to full multi-resource PB.

Theorem 1. Let b > 3, m > b and n = q · b for some integer q > 1. Then no
mechanism can guarantee both weak proportionality and strategyproofness against
voters with Paretian preferences for PB scenarios with a single resource, budget b,
m projects, and n voters.

For ease of reading, let us call a single-resource mechanism F good if it satisfies
both weak proportionality and strategyproofness against voters with Paretian
preferences. We first prove Theorem 1 for the special case of (b,m, n) = (3, 4, 3),
and then generalise using induction.

Lemma 2. No mechanism for (b,m, n)=(3, 4, 3) is good.

Proof. For the sake of contradiction, suppose F is such a mechanism. Let 〈P, c, b〉
be a single-resource scenario with P = {a, b, c, d}, c(p) = 1 for all p ∈ P , and
b = 3. Consider profile A1 = (ab, c, d), where we omitted set brackets to improve
readability. By weak proportionality, we must have cd ⊆ F (A1). Furthermore,
by strategyproofness, either a or b must be in the selected project set as well,
since otherwise voter 1 can manipulate by removing a single project from her
ballot. Thus F (A1) is either acd or bcd. W.l.o.g., let us assume the former is the
case. Table 1 shows how to derive a contradiction from F (A1) = acd by means
of a sequence of steps involving 14 different profiles.7 ut

Next, we prove three inductive lemmas.

Lemma 3. If there exists a good mechanism for (b,m, n) with n = q ·b for some
integer q > 1, then a good mechanism also exists for (b,m, b).
6 We are able to circumvent the need for this additional efficiency requirement because
we do not impose exhaustiveness (which in multiwinner voting is an implicit part of
the basic model). This gives us more freedom for the inductive lemmas we need to
prove. At the same time, our result is weaker than that of Peters in other respects: his
proportionality axiom is subtly weaker (as it needs to be imposed only for so-called
party-list profiles) and his result applies even under subset preferences.

7 We found these 14 profiles and the derivation of Table 1 by first encoding the require-
ments of F as a set of clauses in propositional logic, and then applying a SAT-solver
to that set to compute a minimally unsatisfiable set exhibiting the impossibility of
finding a mechanism of the required kind. For an introduction to this approach, the
reader may wish to consult the expository article of Geist and Peters [8].
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Profile Strategyproofness Proportionality Outcome

A2 = (ab, ac, d) ac ( F (A2)⇒M(2,A2,A1) d ⊆ F (A2) F (A2) = acd

A3 = (b, ac, d)
ab ⊆ F (A3)⇒M(1,A2,A3)

ac 6∩F (A3)⇒M(2,A3, (b, a, d))
bd ⊆ F (A3) F (A3) = bcd

A4 = (b, ac, cd) cd ( F (A4)⇒M(3,A4,A3) b ⊆ F (A4) F (A4) = bcd

A5 = (b, a, cd)
ac ⊆ F (A5)⇒M(2,A4,A5)

cd 6∩F (A5)⇒M(3,A5, (b, a, c))
ab ⊆ F (A5) F (A5) = abd

A6 = (b, ad, cd) ad ( F (A6)⇒M(2,A6,A5) b ⊆ F (A6) F (A6) = abd

A7 = (b, ad, c)
cd ⊆ F (A7)⇒M(3,A6,A7)

ad 6∩F (A7)⇒M(2,A7, (b, a, c))
bc ⊆ F (A7) F (A7) = abc

A8 = (b, ad, ac) ac ( F (A8)⇒M(3,A8,A7) b ⊆ F (A8) F (A8) = abc

A9 = (b, d, ac)
ad ⊆ F (A9)⇒M(2,A8,A9)

ac 6∩F (A9)⇒M(3,A9, (b, d, c))
bd ⊆ F (A9) F (A9) = bcd

A10 = (b, cd, ac) cd ( F (A10)⇒M(2,A10,A9) b ⊆ F (A10) F (A10) = bcd

A11 = (b, cd, a)
ac ⊆ F (A11)⇒M(3,A10,A11)

cd 6∩F (A11)⇒M(2,A11, (b, c, a))
ab ⊆ F (A11) F (A11) = abd

A12 = (b, cd, ad) ad ( F (A12)⇒M(3,A12,A11) b ⊆ F (A12) F (A12) = abd

A13 = (b, c, ad)
cd ⊆ F (A13)⇒M(2,A12,A13)

ad 6∩F (A13)⇒M(3,A13, (b, c, a))
bc ⊆ F (A13) F (A13) = abc

A14 = (ab, c, ad)
ab ( F (A14)⇒M(1,A14,A13)
abc = F (A14)⇒M(3,A14,A1)

c ⊆ F (A14) Contradiction

Table 1. Derivation for Lemma 2. M(i,A,A′) means that voter i can successfully
manipulate by moving from profileA to profileA′, while S 6∩S′ signifies that S∩S′ = ∅.

Proof. Let F be a good mechanism for (b,m, n). We construct F ′ for (b,m, b) as
follows. Given a profile A with b voters, copy each ballot q times to construct
profile Aq, and let F ′(A) = F (Aq). We show that F ′ satisfies both axioms,
starting with proportionality. Note that, due to d = 1, the second proportion-
ality condition is vacuously satisfied. Suppose that for some project p with cost
c(p), we have |{i ∈ N : Ai = {p}| > b · c(p)b . Then q times as many (i.e., at least
n · c(p)b ) voters have ballot {p} in Aq. Since p ∈ F (Aq), also p ∈ F ′(A). For strat-
egyproofness, suppose for the sake of contradiction that F ′(A) �i F

′(A−i, S
?
i )

for some voter i with Paretian preferences. Then F (Aq) �i F ((A−i, S
?
i )

q). Now,
in (A−i, S

?
i )

q, let the q voters corresponding to i switch, one by one, to the un-
truthful ballot Ai. This results in a sequence of q profiles, each of which is not
strictly preferred over the former by i, since F is strategyproof. As for d = 1 the
relation 6�i is transitive, we get F (Aq) �i F ((A−i, S

?
i )

q), a contradiction. ut
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Lemma 4. If there exists a good mechanism for (b,m+ 1, n), then a good mech-
anism also exists for (b,m, n).

Proof. Let F be a good mechanism for (b,m+1, n). We construct F ′ for (b,m, n).
Add a dummy project p? so that F ′(A, P ) = F (A, P ∪ {p?}) \ {p?} for every
profile A.8 To show that F ′ satisfies proportionality, note that any project in
P satisfying the two conditions is selected by F if and only if it is selected by
F ′. The strategyproofness of F ′ follows directly from that of F since no voter
approves of p? in A. ut

Lemma 5. If there exists a good mechanism for (b,m, n) = (k+1, k+2, k+1),
then a good mechanism also exists for (k, k + 1, k).

Proof. Let F be a good mechanism for (k + 1, k + 2, k + 1). We construct F ′
for (k, k+ 1, k). Given profile Ak with k voters and k+ 1 projects in P k+1, add
a dummy project p? with cost c(p?) = 1 to form P k+2 and a singleton ballot
{p?} to form Ak+1. Now let F ′(Ak, P k+1) = F (Ak+1, P k+2) \ {p?}. Note that,
since F is proportional and |{i ∈ N : Ai = {p?}}| = 1 > k+1

k+1 · c(p
?), we always

have p? ∈ F (Ak+1, P k+2), and so F ′ does not violate the budget constraint
(i.e., F ′ is well-defined). For the proportionality of F ′, note that if a project
p ∈ P k+1 is approved of k

k · c(p) times in Ak, it is also approved of k+1
k+1 · c(p)

times in Ak+1. Since p is then selected by F , it is also selected by F ′. For
strategyproofness, again note that a strict preference between two outcomes of
F ′ for a voter i ∈ {1, . . . , k} implies the same strict preference for the associated
outcomes of F , since i does not approve of {p?}. Hence, the strategyproofness
of F ′ follows from the strategyproofness of F . ut

We are now ready to prove our theorem.

Proof (of Theorem 1). For the sake of contradiction, suppose there exists a good
mechanism for some (b,m, n) with b > 3,m > b, and n = q·b. Then, by Lemma 3,
there exists such a mechanism for (b,m, b). Further, by repeated applications of
Lemma 4 and Lemma 5, we can get a good mechanism for (b, b+ 1, b) and then
for (3, 4, 3). But this contradicts Lemma 2. ut

Using a straightforward induction over the number of resources, we can generalise
to the multi-resource setting and obtain the following corollary.

Corollary 1. Let d > 1, R ⊆ {1, . . . , d}, m > bk > 3 for some k ∈ R, and
n = q · bk for some q > 1. Then no mechanism can guarantee both weak R-
proportionality and strategyproofness against voters with R-Paretian preferences
for d-resource PB scenarios with relevant resources R, budgets b = (b1, . . . , bd),
m projects, and n voters.

To what extent this impossibility result can be strengthened further as well as
whether relaxing some of our assumptions might allow for the design of attractive
8 Observe that F ′ might not be exhaustive, with the implications discussed above.
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mechanisms are interesting open problems. For example, we do not know whether
the impossibility persists for voters with subset preferences (the counterexample
used for the proof of the base case still works, but some of the arguments used in
the inductive lemmas do not). Similarly, we do not have a full picture regarding
the impact of the constraints on the numerical parameters involved (such as n
being a multiple of one of the budget limits) on the impossibility.9 Finally, we do
not know whether there are mechanisms for multi-resource PB that are weakly
proportional and approximately strategyproof.10

4 Algorithms and Complexity

We now analyse each of the three mechanisms defined in Section 2.2 from a
computational point of view. We also comment on how allowing for negative
costs would affect our results.

4.1 The Greedy-Approval Mechanism

The greedy-approval mechanism Fg clearly can be executed in polynomial time.
This remains true when we allow for negative costs. However, as illustrated by the
following example, it is questionable whether a greedy mechanism is appropriate
in the presence of negative costs.

Example 7. Consider a PB scenario with one resource and three projects,
where b1 = 5, c1(p1) = c1(p2) = 3, and c1(p3) = −1. Suppose p1 has a higher
approval score than p2, which in turn has a higher score than p3. Then Fg would
first accept p1 (reducing the budget to 5− 3 = 2), then skip p2 (as it costs more
than 2), and finally accept p3. At this point, the remaining budget is 2 + 1 = 3,
so accepting p2 would now be feasible. But that would amount to a form of
backtracking (given that we now accept a project we previously rejected), which
is not allowed under greedy algorithms in general and Fg in particular. M

4.2 The Max-Approval Mechanism

For single-resource PB, Talmon and Faliszewski [28] sketch a polynomial-time
algorithm implementing the max-approval mechanism Fm. As we shall see next,
for multi-resource PB there can be no such algorithm, unless P = NP.

First, let us formally define a decision variant of the problem of maximising
the approval score (for a fixed dimension d).11

9 The question of whether these constraints can be relaxed is of some technical interest,
but arguably less relevant to practice. Indeed, we would want our mechanism to work
for arbitrary numbers of voters (including those that are multiples of a budget limit).

10 When all resources are relevant (in the single-resource case for instance ), there is
a trivial mechanism of this kind: simply return the union of all singletons satisfying
condition (i) in the definition of proportionality. To see this, recall that condition (ii)
is vacuous if there are only relevant resources.

11 Recall that the approval score of a set S for a given profile A is defined as sA(S) =∑
i∈N |S ∩Ai|, and that Fm seeks to maximise that score.
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MaxAppScored

Instance: d-resource scenario 〈P, c, b〉, profile A, target K ∈ N
Question: Is there a set S ∈ Feas(P, c, b) with sA(S) > K?

This problem is closely related to the d-dimensional knapsack problem [15]. In
particular, in the setting where d = 2 and there is just a single voter who
approves of all projects, our problem is equivalent to the problem referred to
as Cardinality (2-KP) by Kellerer et al. [15], which is a weakly NP-hard
problem. This insight immediately implies the next result.

Proposition 3. For any number d > 2 of resources, there exists no polynomial-
time algorithm to compute outcomes under the max-approval mechanism Fm,
unless P = NP.

But note that weak NP-hardness still allows for the existence of pseudopoly-
nomial-time algorithms. Indeed, the dynamic programming algorithm of Kellerer
et al. [15] for the multidimensional knapsack problem can be applied directly
(after translating the input profile into a vector of approvals per project). This
yields the following observation.

Proposition 4. For any fixed number d of resources, outcomes under the max-
approval mechanism Fm can be computed in pseudopolynomial time.

Mapping to a d-dimensional knapsack problem works only when d is a constant.
This assumption is often reasonable: we typically have to deal with just a small
number of resources (money, space, pollutants). However, we saw in Section 2.4
that encoding distributional or incompatibility constraints results in additional
“technical” resources, the number of which grows with the number of projects.
So it is important to also understand the complexity of Fm relative to d. To this
end, we now introduce a variant of the decision problem defined earlier. Instances
of this new problem are PB scenarios for arbitrary numbers of resources (rather
than for some fixed dimension d).

MaxAppScore

Instance: scenario 〈P, c, b〉, profile A, target K ∈ N
Question: Is there a set S ∈ Feas(P, c, b) with sA(S) > K?

To analyse the complexity of this problem, we employ a similar construction as
the one we used to encode incompatibility constraints in the basic model (see
Section 2.4). Observe that the following result rules out the possibility of the
existence of a pseudopolynomial-time algorithm.

Proposition 5. MaxAppScore is strongly NP-hard.

Proof. We proceed by reduction from the Independent Set problem, asking
whether a given graphG = 〈V,E〉 has an independent set of sizeK. This problem
is known to be strongly NP-complete [7].
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Given G = 〈V,E〉 and K, construct a d-resource PB scenario 〈V, c, b〉 with
d = |E|: ck(p) = 1 if the kth edge contains vertex p (and ck(p) = 0 otherwise)
and b = (1, . . . , 1). So a project set S is feasible if and only if S is an independent
set in the original graph. Now consider a profile in which a single voter approves
of all projects. Then an approval score of K is attainable if and only if the graph
has an independent set of size K. ut
Jain et al. [13] use the same kind of reduction to prove hardness for their model
of PB with distributional constraints, which they call “project groups”. As their
model is a special case of ours, this thus entails Proposition 5. We nevertheless
included our proof above as it is much easier to follow.

Finally, let us note that, while Propositions 3 and 5 clearly continue to
hold when we allow for negative costs, the dynamic programming algorithm
of Kellerer et al. [15] does not generalise to this setting.

4.3 The Sequential Load-Balancing Mechanism

Even though the definition of the sequential load-balancing mechanism Fl is
rather involved, it is not difficult to show that it is a tractable mechanism.

Proposition 6. Outcomes under the sequential load-balancing mechanism Fl
can be computed in polynomial time.

Proof. The claim follows immediately from the definition of the mechanism,
given that executing Fl boils down to solving a polynomial number of linear
programs, each of which is solvable in polynomial time [26]. ut
Proposition 6 remains valid when we permit negative costs. But given the “gree-
dy” nature of Fl, it is debatable whether it should be considered appropriate to
use Fl in the presence of negative costs (just as it is debatable for Fg). Indeed,
conceptually, a core feature of Fl, which arguably makes it a natural mechanism,
is the fact that the load of each individual voter never decreases as we accept
additional projects. This property is lost once we allow for negative costs.

5 Conclusion

We initiated the systematic study of PB with multiple resources. Our results
indicate that—despite the significant increase in expressive power when mov-
ing from the single-resource to the multi-resource setting—devising attractive
mechanisms does not become insurmountably harder, in either axiomatic or al-
gorithmic terms. We hope that this will encourage others to further develop this
approach and to, eventually, field it in real-world PB exercises.
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