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Chapter 1
Introduction

“Hallo, are you stuck?” he asked.
“N-no,” said Pooh carelessly. “Just resting and thinking and humming to myself.”

—Winnie-the-Pooh, A. A. Milne

We begin in medias res and motivate our study of the logical structure of

constructive set theories with a few examples in Section 1.1. We then lay out the

road ahead and discuss the results of this dissertation in Section 1.2. We also

give a brief idea of the proof techniques used for obtaining our results. This

chapter thus provides an informal introduction to this dissertation’s questions,

motivations, results and proof techniques. Chapter 2 contains a comprehensive

and fully formal treatment of all the definitions and results mentioned in this

chapter.

1.1 Logical structure of formal systems
Formal systems in mathematical logic consist of two parts: we choose a logical

consequence relation—classical, intuitionistic, paraconsistent, or other—and

then consider the consequences of a particular set of mathematical axioms about

numbers, sets, geometrical objects, or similar.1 A well-known example of such a

formal system is, of course, Zermelo Fraenkel set theory ZF. The formal system

ZF = (ZF, `Cl) is obtained by formulating the Zermelo–Fraenkel axioms of set

theory ZF and considering their consequences on the basis of classical first-order

logic `Cl. Similarly, Heyting Arithmetic HA = (PA, `Int) consists of the axioms of

Peano Arithmetic PA but on the basis of intuitionistic instead of classical logic.

At first sight, one may think that everything about the logical structure

of formal systems is determined by their underlying consequence relation—a

formal system on the basis of intuitionistic logic must be intuitionistic, just like

1We do not consider type theories in this dissertation. Otten [68] recently formulated and

proved de Jongh theorems for type theories.

3
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a formal system based on classical logic is classical. It turns out, however, that

this is not true. Mathematical axioms may influence the logic of a given formal

system: a formal system on the basis of intuitionistic logic may actually be

classical, as the following well-known result shows.

1.1.1 Theorem (Diaconescu–Goodman–Myhill [17, 31]). Let (), `Int) be a formal
system based on intuitionistic logic. If ) is formulated in the language of set theory
and contains the axioms of extensionality, empty set, pairing, and choice, as well as the
separation scheme, then (), `Int) proves the law of excluded middle, i.e., ) `Int ! ∨ ¬!
for all formulas !.

Proof. We argue informally in intuitionistic logic and show that ! ∨¬! holds

for any formula !. Using the axioms of empty set and pairing, we can build the

sets 0 = ∅, 1 = {0} and 2 = {0, 1}. We then apply separation to obtain the sets:

- := {G ∈ 2 | G = 0 ∨ !}, and,
. := {G ∈ 2 | G = 1 ∨ !}

Pairing yields the set {-,.}, to which we can apply the axiom of choice: there

exists a choice function 5 ⊆ {-,.} × 2 such that 5 (-) ∈ - ∧ 5 (.) ∈ .. By the

definitions of- and., this is equivalent to ( 5 (-) = 0∨!)∧( 5 (.) = 1∨!),which,

in turn, entails that

(
5 (-) ≠ 5 (.)

)
∨!. So, in order to show that¬!∨!, it suffices

to establish that 5 (-) ≠ 5 (.) → ¬!. Observe that the axiom of extensionality

entails that ! → - = .. Hence, ! → 5 (-) = 5 (.). By contraposition,

5 (-) ≠ 5 (.) → ¬!. Altogether, this shows that ¬! ∨ !. �

So, even if we work on the basis of intuitionistic logic, the resulting formal

system may satisfy the law of excluded middle. This, however, is undesirable in

the context of constructivemathematics.2

To understand what is going on, let us examine the above proof of the

Diaconescu–Goodman–Myhill-theoremmore closely. It shows that every instance
of the law of excluded middle, ? ∨ ¬?, is provable in a sufficiently strong set

theory: the instance !∨¬! is obtained by uniformly replacing the propositional

letter ? with the set-theoretic formula !. Of course, we can easily consider such

substitutions for arbitrary propositional formulas and then call a propositional

formula � a tautology of the formal system (), `) just in case all substitution

instances of � are provable in (), `), i.e., ) ` ��
for all appropriate substitution

maps �. In a similar way, we can define the first-order tautologies of a given formal

system.3

2There are, of course, domains in which it is intuitionistically or constructively acceptable

to apply the law of excluded middle, for example when considering finite sets or numbers.

However, constructive systems that (aim to) provide a foundation for all of mathematics should

not satisfy excluded middle.

3We will introduce these and the other notions of this introduction formally in Chapter 2; for

the definition of tautology see Definition 2.2.2 on page 19.
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The Diaconescu–Goodman–Myhill-theorem illustrates that there are formal

systems on the basis of intuitionistic logic that satisfy the law of excluded

middle. But even if a formal system does not prove the law of excluded middle,

it may prove all instances of another intuitionistic contingency.4 In other words,

the tautologies of such a formal system form an intermediate logic, properly

between intuitionistic and classical logic. This, then, leads to our first main

question.

1.1.2 Question. Given a formal system based on intuitionistic logic, what are

its propositional and first-order tautologies? a
Before we discuss our progress on this question in Section 1.2, let us briefly

remind the reader of admissible rules. When we prove a theorem in a formal

system, we use the formal system’s axioms as well as the tautologies and rules

of the underlying logic. In many cases, we can add new rules to facilitate our

reasoning without changing the set of provable theorems. Such rules are called

admissible.5 For example, consider the following Visser rule.6

(? → @) → (A ∨ B)
[(? → @) → ?] ∨ [(? → @) → A] ∨ [(? → @) → B)] (1.1)

It turns out that this rule is admissible in any classical theory as the following

proposition shows.7

1.1.3 Proposition. The Visser rule (1.1) is admissible in any theory based on classical
logic.

Proof. Let) be a classical theory. To show that theVisser rule (1.1) is admissible,

we have to show that adding it to ) does not allow us to prove any new theorems.

So, suppose that ) does not prove an instance of the conclusion of (1.1):

) 0 [(!→ #) → !] ∨ [(!→ #) → �] ∨ [(!→ #) → �)], (1.2)

where !, #, � and � are sentences in the language of ). It follows that there is a

model " of ) such that

" 2 [(!→ #) → !] ∨ [(!→ #) → �] ∨ [(!→ #) → �)]. (1.3)

As " is classical, it easily follows that

" � ¬[(!→ #) → !] ∧ ¬[(!→ #) → �] ∧ ¬[(!→ #) → �)]. (1.4)

4For example, this is the case for HA +MP + ECT0 or IZF, see Theorem 2.2.15.

5For the formal definition of admissible rules see Definition 2.3.1 on page 25 in Chapter 2.

6See Chapter 2 for details on Visser rules; in particular, consider Theorem 2.3.7 on page 27.

7In fact, the rule is derivable in this case, as is the case for all propositional admissible rules in

classical theories.
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Now assume, for contradiction, that

" � (!→ #) → (� ∨ �). (1.5)

There are two cases. First, assume that " � ! → #. Then " � � ∨ �, and it

is easy to see that either the second or the third conjunct of (1.3) must hold,

a contradiction. So, we must be in the second case, " 2 ! → #. But then

" 2 !, and hence " � (! → #) → !. But that is the first conjunct of (1.3), a
contradiction. It follows that (1.5) must be false. This finishes the proof of the

proposition. �

While this proof concerns formal systems based on classical logic, it turns out

that a similar proof strategy can be conducted for constructive formal systems

using realisability semantics (see Chapters 7 and 8). Furthermore, this rule

(and any other admissible rule) is also derivable in any classical theory, i.e., the

implication[
(!→ #) → (� ∨ �)

]
→

[
[(!→ #) → !] ∨ [(!→ #) → �] ∨ [(!→ #) → �)]

]
is provable in any classical theory. It turns out that classical propositional logic

is structurally complete, i.e., all its admissible rules are also derivable. However,

the structural completeness of classical first-order logic depends on the chosen

formalisation (see Pogorzelski and Prucnal [73]). Intuitionistic logic is not

structurally complete in its standard formalisation: the Visser rule above is

admissible but not derivable in intuitionistic logic.

Moreover, note that—just as in the case of tautologies—admissible rules

crucially rely on substitution. A rule �/� is admissible in (), `) if and only if ) `
��

implies ) ` �� for any substitution � that uniformly replaces propositional

letters in a propositional formula � with sentences in the language of) to obtain

a sentence ��
. In a similar way, one can define admissibility for rules formulated

in first-order logic. This motivates our second main question.

1.1.4 Question. Given a formal system based on intuitionistic logic, what are

its propositional and first-order admissible rules? a
The admissible rules of a formal system reveal a great deal about its logical

structure. For example, it is well-known that many intuitionistic or constructive

theories for arithmetic and set theory satisfy the so-called disjunction property,

which is often considered a desirable feature of such formal systems. A formal

system (), `) has the disjunction property whenever ) ` ! ∨ # entails that ) ` !
or ) ` #. This property can be expressed as the following multi-conclusion

rule:8
? ∨ @
?, @

. (1.6)

8See the discussion before Definition 2.3.1 on page 25 for a general definition of rules.
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It is clear that this rule is not admissible in most classical theories of interest by

virtue of Gödel’s incompleteness theorem.9 Let ) be a theory to which Gödel’s

theorem applies, and let ! be the Gödel sentence. It follows that ) 0 ! and

) 0 ¬! but ) ` ! ∨ ¬! as ) is classical. Just as in the proof of Proposition 1.1.3

we used uniform substitution and replaced the propositional letter ? with the

sentence !, and the propositional letter @ with the sentence ¬!. We then

observed that, under this substitution, the rule (1.6) does not hold in the theory

). In other words, this rule is not admissible in ).
We have seen some examples for how the logical structure of a theory can be

captured in its tautologies and admissible rules, both on the level of propositional

and first-order logic. In Chapter 2, we will develop a framework for analysing

the logical structure of formal systems in detail and survey previous results on

the logical structure of theories based on intuitionistic logic. In the next section,

we will give a brief overview of the results proved in this dissertation.

1.2 What we prove and how we prove it
This dissertation is a systematic investigation of the logical structure of con-

structive set theories. We are, in particular, interested in two properties of

set-theoretic systems with respect to their underlying logic: tautology loyalty and
rule loyalty. We call a formal system (), `)

(i) propositional tautology loyal if and only if the propositional tautologies of

(), `) are exactly those of `,

(ii) first-order tautology loyal if and only if the first-order tautologies of (), `)
are exactly those of `,

(iii) propositional rule loyal if and only if the propositional admissible rules of

(), `) are exactly those of `, and

(iv) first-order rule loyal if and only if the first-order admissible rules of (), `)
are exactly those of `.

The terminology of ‘loyalty’ derives from an analogous model-theoretic notion

earlier defined by the author [55, 70]. A tautology loyal formal system is also

said to satisfy de Jongh’s theorem. Our main starting points on these properties for

set-theoretic systems are three negative results: first, the Diaconescu–Goodman–

Myhill-theorem (Theorem 1.1.1) above shows that set theories combining a

few basic axioms with the axiom of choice and the separation schema are

not (propositional) tautology loyal. Second, the Friedman–Ščedrov-theorem

9However, if " is a classical model, then the theory of ", Th("), satisfies the disjunction
property.
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(Theorem 2.2.15) shows that set theories combining a few basic axioms with

the separation schema are not (first-order) tautology loyal. And, third, a result
of Visser (Theorem 2.3.3) shows that the first-order admissible rules of most

interesting set theories (and other formal systems) are not effectively describable.

Departing from these results, we employ a variety of semantic techniques—

Kripke models, Beth models, realisability, sometimes in combination with

classical set-theoretic forcing—to prove the following results:

(1) If ) ⊆ IKP
+ +MP +AC is a set theory, then the formal system (), `Int) is

propositional tautology loyal (Theorem 4.2.7).

(2) If ) ⊆ IKP
+ +MP +AC is a set theory, then the formal system (), `Int) is

first-order tautology loyal (Theorem 4.4.10).

(3) If ) ⊆ IZF is a set theory, then the formal system (), `Int) is propositional
tautology loyal (Theorem 5.2.5).

(4) Any subclassical recursively enumerable extensible set theory is proposi-

tional rule loyal (Theorem 6.1.8).

(5) Intuitionistic Kripke–Platek set theory IKP is propositional rule loyal

(Theorem 7.5.7).

(6) Constructive Zermelo–Fraenkel set theory CZF is propositional rule loyal

(Theorem 8.2.8).

(7) If ) ⊆ CZF + Pow +AC is a set theory, then the formal system (), `Int) is
first-order tautology loyal (Corollary 8.3.15).

Most of these results generalise to corresponding formal systems where `Int is
replaced with various intermediate logics; we refer the reader to the theorems

mentioned above for the specific results. Moreover, while these are the main

structural results, this dissertation also contributes by introducing a variety of

new semantic tools for the study of constructive and intuitionistic set theories:

the blendedmodels (Chapters 5 and 6) as well as realisabilitywith ordinal Turing

machines (Chapter 7) and realisability with set register machines (Chapter 8).

The set register machines are also a contribution of this dissertation.

How does one prove results such as (1) to (7)? While the full proofs constitute

the remainder of this dissertation, we will now illustrate schematically one way

to determine the tautologies of a formal system theory (), `). We usually start

with a candidate logic `� of which we suspect that its tautologies are exactly

those of (), `), i.e., our hypothesis is that

Taut(), `) = Taut(`�).

Often, our candidate `� will just be the logic ` on which our formal system is

based. The methods employed in this dissertation are always model-theoretic.
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This means that we pick a class of models that characterises the tautologies of `�
(in other words, that class of models isweakly complete for `�), and then transform

these into models of ) in such a way that enough of the logical structure is

preserved to refute tautologies exceeding the strength of `� from the logic of

(), `). Figure 1.2.1 illustrates what this looks like in the case of Kripke models:

for every propositional letter ? we find a formula !? such that the truth sets of

? in the logical model and !? in the set-theoretic model coincide. This base case

is then extended to all propositional formulas by induction. Hence, a counter

Kripke model of propositional logic  ,+ 1 � is transformed into a Kripke

model " of set theory such that " 1 ��
, where � is the substitution obtained

frommapping ? ↦→ !? as depicted in Figure 1.2.1. Similar but more complicated

techniques can be used when considering first-order tautologies. The increased

difficulty stems from the fact that we have to imitate not only the behaviour of

propositions but also of the domains and predications of a first-order Kripke

model.

Propositional Kripke Model

?

@

?

Kripke Model for Set Theory

!?

!@

!?

substitution

1.2.1 Figure. We build a Kripke model for set theory and construct sentences

!? and !@ in the language of set theory with exactly the same truth sets as the

propositional letters ? and @ in the propositional model. a
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Sources of the material
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generalising this technique and both authors then contributed equally to the generalisa-
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Chapter 2
Logical Structure

In this chapter, we set up a framework for studying the logical structure of

formal systems. If this chapter has any original contribution, then it is how the

material is presented.

Meta-theory Wenote that this dissertationworks in classicalZermelo–Fraenkel

set theory with the axiom of choice, ZFC, as its metatheory (sometimes with

modest large cardinal assumptions). It would, of course, be desirable to prove

results about constructive formal systems with only constructive means but we

leave this as a task for future work. Our foremost reasons to insist on a classical

meta-theory, for now, are (i) that we rely on techniques from classical set theory

to construct models of constructive set theories (such as set-theoretic forcing

and ordinal Turing machines) and (ii) that we rely on completeness results for

the logics involved that, by results of McCarty [62], entail excluded middle on

the basis of IZF and second-order Heyting arithmetic.

2.1 Languages, logics, and formal systems
Languages The full language of first-order logic consists of the logical symbols ⊥,
>, ¬ ∧, ∨,→, ∀, and ∃ as well as the equality symbol = and countably infinite

sets of variables {G8 | 8 < $}, relation symbols {%=
8
| 8 < $, = < $}, where %=

8
is the

8th relation symbol of arity =, function symbols { 5 =
8
| 8 < $, = < $}, where 5 =

8
is

the 8th =-ary function, and constant symbols {28 | 8 < $}. Relation symbols are

sometimes also called predicate symbols.

This chapter has largely been written for this dissertation but parts of Section 2.3 have

been adapted from joint work with Rosalie Iemhoff [42]: Rosalie Iemhoff and Robert Passmann.

‘Logics and Admissible Rules of Constructive Set Theories’. In: Philosophical Transactions of the
Royal Society A (2022). Forthcoming. doi: 10.1098/rsta.2022.0018.
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2.1.1 Convention. Unless explicitly mentioned otherwise, all languages in

this dissertation are fragments of the full language of first-order logic. a
As we will discuss various fragments of the full language of first-order

logic, we will make the following notational conventions. We denote the set of

function symbols by 5 and the set of constant symbols by 2. We then denote the

full language of first-order logic by ℒpred,=, 5 ,2 , and we consider the following

important fragments: ℒpred, 5 ,2 denotes the language of first-order logic without
equality. Moreover, ℒpred is the first-order language without equality, function

symbols and constant symbols (i.e., ℒpred is the first-order language with only

relation symbols). The language ℒpred,= is the first-order language with relation

symbols and equality (i.e., function and constant symbols are dropped). Finally,

the language ℒprop of propositional logic is the fragment of ℒpred obtained by

removing the quantifiers, variables and =-ary relation symbols for = > 1. In the

propositional case, the 0-ary relation symbols are also referred to as propositional
letters or propositional variables.

For this dissertation, there are two more important fragments of the full

language of first-order logic. The language of set theory ℒ∈ is the fragment of

ℒpred,= with just a single binary relation ‘∈’ denoting set-membership. The

language of arithmeticℒarith is the fragment ofℒpred,= 5 ,2, that consists of a constant

symbol ‘0’, a unary function ‘B’, and two binary functions symbols ‘+’ and ‘·’.
For every language ℒ among those mentioned above, we obtain the cor-

responding sets of terms ℒterm
and formulas ℒform

with the usual recursive

definitions, giving rise to the usual notion of subformula. A variable G is bounded
in a formula � if every occurrence of G is within a subformula of the form

Q

G�0,

where

Q

is either ∀ or ∃. Given a language ℒ, we obtain the set of ℒ-sentences
ℒsent consisting of exactly those formulas all of whose variables are bounded.

The propositional case is special in several ways. First, note that our defin-

itions entail that ℒterm

prop
= ∅ and ℒsent

prop
= ℒform

prop
. Second, we will usually use

lowercase roman letters ?, @, A, . . . to denote the propositional letters '0

8
. The

set of propositional letters will be denoted by Prop.

Logics & logical consequence Intuitionistic logic Int is the set of formulas of

the full language of first-order logic ℒpred,=, 5 ,2 containing the axioms of intu-

itionistic first-order logic and the axioms of equality closed undermodus ponens,

generalisation and uniform substitution.10 A superintuitionistic or intermediate
logic � is a set of formulas with Int ⊆ � such that � is closed under modus ponens,

generalisation and uniform substitution.11 Classical logic Cl is the intermediate

logic which contains the law of excludedmiddle, ?∨¬?. We obtain logics in any

of the fragments of the full language of first-order logic, such as equality-free

logics or propositional logics, by restricting the above definitions in the obvious

10We will not spell out details here but refer to the literature. See, for example, [29, 87, 89].

11In this dissertation, we use the terms ‘superintuitionistic’ and ‘intermediate’ interchangeably.
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way. Note that generalisation is also often called ∀-introduction. The language
of a logic � is denoted by ℒ� . In this dissertation, we only consider intermediate

logics and may therefore also refer to them as logics.
Given a logic � and a formula �, we will often write `� � instead of � ∈ �.

We can extend this notation to obtain derivability relations as in the following

definition.

2.1.2 Definition. Let � be a logic, and Γ ∪ {�} be a set of formulas in the

language ℒ� . We say that � is �-derivable from Γ, Γ `� �, if and only if there is a

sequence �0, . . . , �= of formulas such that �= = � and for each 8 ≤ = we have

(i) `� �8 , or,

(ii) �8 ∈ Γ, or,

(iii) �8 is obtained from a formula � 9 with 9 < 8 by generalisation over a

variable that is not free in Γ, or,

(iv) �8 is obtained from formulas � 9 and �: with 9 < : < 8 by modus ponens.

Clause (iii) is dropped in the case of propositional logics. a
A relation ` derived from a logic according to this definition is also called a

derivability relation or a logical consequence relation; without creating confusion,

we may also simply refer to such relations as logics.
We follow the convention (e.g., of Gabbay, Shehtman and Skvortsov [29]) in

referring with Q� to the first-order logic obtained from a propositional logic �,

i.e., we prefix � with Q for quantified. We finish with a few examples of logics

that will be considered again later in this dissertation. Intermediate logics are

often obtained by considering the least intermediate logic containing a set � of

propositional or first-order axioms.

2.1.3 Example. The following logics are examples of propositional intermediate

logics and their corresponding first-order variants.

(i) The propositional logic LC, known as the Gödel-Dummett logic, is obtained
by adding the axiom (? → @) ∨ (@ → ?) to intuitionistic propositional

logic. Its first-order variant is denoted by QLC.

(ii) Jankov’s logic KC is the intermediate logic obtained by adding the weak

law of excluded middle ¬? ∨ ¬¬? to intuitionistic propositional logic. Its

first-order variant is denoted by QKC. a

If � is a logical formula, we also sometimes write Int + � for the least

intermediate logic containing � as an axiom. The notion of consequence relation

introduced here suffices for our case. Iemhoff [38] discusses consequence

relations in higher generality.



14 Chapter 2. Logical Structure

Finally, if � is a set of propositional formulas we may sometimes use the

notation `� to also denote the corresponding first-order consequence relation

`Q� . This is the case, in particular, when we consider `� as part of formal systems

(to be defined very soon in Definition 2.1.4).

Theories, axiomatisations & formal systems A theory is a set of sentences in

a given language. Given a theory ), we write ℒ) for the language in which it is

formulated. An axiomatisation is a recursively enumerable theory. A theory ) is

called a set theory if ℒ) = ℒ∈.
2.1.4 Definition. A formal system is a pair (), `), where ) is a theory and ` a
logical consequence relation such that ℒ) is a fragment of ℒ`. a

The requirement that ℒ) must be a fragment of ℒ` is necessary for using the

consequence relation ` to derive theorems from ). In particular, whenever � is a

propositional logic, and we consider a formal system (), `�), then we always

implicitly take `� to be the least first-order logic containing � (in order to derive

theorems from )). Given a formal system (), `), we also call ` its underlying logic
or the logic it is based on. We will often use the name of the axiomatisation to

refer to the whole formal system. To distinguish this in symbols, we use roman

letters T to denote the axiomatisation and sans serif typestyle T for the formal

system. For example, ZFC denotes the axiomatisation of set theory while ZFC
denotes the formal system (ZFC, `Cl) consisting of that axiomatisation on the

basis of classical logic.

Note that we can consider any logic ` in a language ℒ` as a formal system

(∅, `) by taking ∅ to be the empty ℒ`-theory.
2.1.5 Definition. Two formal systems ()1, `1) and ()2, `2) in the same language

are equivalent if, for all formulas ! in the common language, )1 `1 ! if and

only if )2 `2 !. A formal system (), `) is axiomatisable if and only if there is an

axiomatisation � such that (), `) and (�, `) are equivalent. a
Crucially, in this dissertation, theories are in general not assumed to be closed under

any consequence relation but are just arbitrary sets of sentences. In other words, a

theory itself is not enough to derive a theorem but must be combined with a

logical consequence relation to do so. An important fact about axiomatisable

theories was proved by Craig [15]. We reformulate it in our current terminology.

2.1.6 Lemma (Craig [15]). Let ()0, `) be an axiomatisable formal system, i.e., )0 is
recursively enumerable. Then there is a recursive set )1 such that ()1, `) and ()0, `) are
equivalent.

Examples of formal systems The following formal systems are relevant for

this dissertation. The axioms and schemas used in the axiomatisations of the

set-theoretic systems are fully spelt out in Appendix A.
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(i) Peano Arithmetic PA = (PA, `Cl) consists of the well-known axiomatisation

PA of Peano Arithmetic in the language ℒarith of arithmetic on the basis of

classical logic `Cl.

(ii) Heyting Arithmetic HA = (PA, `Int) uses the axiomatisation PA of Peano

Arithmetic but is based on intuitionistic logic instead.

(iii) Zermelo–Fraenkel Set Theory ZF = (ZF, `Cl) is based on classical logic. The

axiomatisation of ZF is usually taken to consist of the axioms and schemas

of extensionality, empty set, pairing, union, power set, separation, infinity,

replacement, and foundation.

(iv) Zermelo–Fraenkel Set Theory with the axiom of choice is the formal system

ZFC = (ZFC, `Cl), where ZFC extends ZF with the axiom of choice AC.

(v) Kripke–Platek set theory is the formal system KP = (KP, `Cl)whose axiomat-

isation KP consists of the axioms and schemas of extensionality, empty set,

pairing, union, infinity, set induction, Δ0-separation, and Δ0-collection.

(vi) Intuitionistic Zermelo–Fraenkel Set Theory is the system IZF = (IZF, `Int),
where IZF is just like ZF except that the axiom of foundation and the

replacement schema are replaced with the ∈-induction schema and the

collection schema, respectively.

Friedman [25] introduced IZF to prove the consistency of ZFC relative to a set

theory based on intuitionistic logic: if IZF is consistent, then so is ZF. Note

that (IZF, `Cl) and ZF are equivalent formal systems. The axiom schema of

collection is not only interesting in constructive foundations: Gitman, Hamkins,

and Johnstone [30] suggest that the theory ZFC
−
without power set should use

the axiom of collection for various technical reasons.

(vii) Constructive Zermelo–Fraenkel Set Theory is the formal system (CZF, `Cl),
where CZF consists of the axioms and schemas of extensionality, empty

set, pairing, union, subset collection, Δ0-separation, strong infinity, strong

collection, and ∈-induction. We denote this formal system by CZF.

The system CZF was first defined (and named) by Aczel [2]. Just as in the case

of IZF, it turns out that (CZF, `Cl) and ZF are equivalent formal systems.

(viii) Intuitionistic Kripke–Platek Set Theory IKP = (KP, `Int) uses the axiomat-

isation of Kripke–Platek set theory KP but on the basis of intuitionistic

logic. We sometimes also consider the extension IKP+ which is obtained by

adding the schemes of bounded strong collection and set-bounded subset

collection to IKP.
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Intuitionistic Kripke–Platek Set Theory IKP was introduced and first studied by

Lubarsky [57].

Sometimes we will consider extensions of formal systems: If (), `) is a formal

system and � an axiom or schema, we write () +�, `) or (), `)+� to denote the

formal system () ∪ {�}, `). For example, CZF +AC denotes the formal system

(CZF ∪ {AC}, `Int), where AC is the axiom of choice. Moreover, given a theory

) and an axiom ! ∈ ), we sometimes write ) − ! for ) \ {!} and (), `) − ! for

() − !, `).

Substitutions Wedefine substitutions between formal systemsandnotbetween

languages because function and constant symbols are not replacedwith function

or constant symbols but rather arbitrary formulas that must be functional or

describe a unique object. Whether a map is a substitution thus depends on the

target formal systems and not only on the languages involved.

2.1.7 Definition. Let ℒ be a language and (), `) be a formal system. A

map � : ℒ → ℒform

)
is called an ℒ-(), `)-assignment if it satisfies the following

condition:

(i) for every constant symbol 2 of ℒ, �(2) is an ℒ)-formula !2(G)with exactly

one free variable such that

) ` ∃G[!2(G) ∧ ∀H(!2(H) → G = H)],

(ii) for every =-ary function symbol 5 of ℒ, �( 5 ) is an ℒ)-formula

! 5 (G1, . . . , G= , H)

with exactly = + 1 free variables such that

) ` ∀G1 . . .∀G=∃H[! 5 (G1, . . . , G= , H)
∧ ∀I(! 5 (G1, . . . , G= , I) → I = H)],

and,

(iii) for every =-ary predicate symbol % of ℒ, �(%) is an ℒ)-formula

!%(G1, . . . , G=)

with exactly = free variables. a

In virtue of this definition, it depends on the target formal system (), `)
whether or not � is an assignment. We write �2 , � 5 and �% for �(2), �( 5 ) and
�(%), respectively.

We now extend assignments � to arbitrary substitutions �̂ for ℒ-formulas.

Intuitively, we proceed as follows: Given a formula !, we first reduce the
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complexity of its terms by introducing new variables and then substitute

according to the assignment �. We will do this formally by introducing two

maps (·)∗ and �◦ whose concatenation then gives rise to a substitution.

The first step is to define a map (·)∗ that reduces the complexity of terms.

Given a formula ! with terms C1, . . . , C= appearing in the scope of predicate

symbols, take fresh variables G1, . . . , G= , and let !0 be obtained from ! by

uniformly replacing the term C8 with variable G8 , then take

!∗ := ∃G1, . . . , ∃G=(G1 = C1 ∧ . . . ∧ G= = C= ∧ !0).

Given a formula !, it is easy to see that all atomic subformulas of !∗ are either
of the form (i) %(G1, . . . , G=) for a predicate % and variables G8 , or (ii) G = C for a

variable G and a term C.12 A reduced formula is a formula all of whose subformulas

are of the form (i) or (ii).

The second step is now to define a map �◦ on reduced formulas ! as follows:

(i) if ! is of the form G = C for variable G and a term C, then

(a) if C = H is a variable, then

�◦(G = H) := G = H,

(b) if C = 2 is a constant, then

�◦(G = 2) := ∃G2(�2(G2) ∧ G = G2),

(c) if C = 5 C1 . . . C= , where C is an =-ary function symbol, and C1, . . . , C=
are terms, then

�◦(G = 5 C1 . . . C=) := ∃G1 . . .∃G=

(
=∧
8=1

�◦(G8 = C8) ∧ � 5 (G1, . . . , G= , G)
)
.

(ii) if % is a predicate, and G1, . . . , G= are variables, then

�◦(%(G1, . . . , G=)) := �%(G1, . . . , G=),

(iii) if ! is a formula, then

�◦(¬!) := ¬�◦(!),

(iv) if ! and # are formulas, then

�◦(! ★#) := �◦(!)★ �◦(#),

for★ ∈ {∧,∨,→},
12We treat ‘>’ and ‘⊥’ as 0-ary predicates for the purpose of this definition.
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(v) if

Q∈ {∀, ∃}, then
�◦( Q

G!(G)) :=

Q

G�◦(!(G)).

Finally, we define the substitution �̂ obtained from the assignment � by stipulat-

ing that

�̂(!) := �◦(!∗).
Given that the map �̂ is uniquely determined by �, we will usually just write �
for both without creating confusion. Moreover, we will often write !�

instead

of �(!).
We are sometimes interested in restricting the complexity of the formulas

in the range of an assignment �. Given a class of formulas Δ ⊆ ℒform

)
, we say

that � is a Δ-assignment if ran(�) ⊆ Δ. For example, if � is a Σ2-assignment, then

every formula that � assigns to a constant, function or predicate symbol is a

Σ2-formula.

2.1.8 Definition. Let ℒ be a language, (), `) be a formal system and C be a

set of formulas. An ℒ-(), `)-C-substitution is a map of the form �̂, where � is

an ℒ-(), `)-assignment such that ran(�) ⊆ C. We denote the set of ℒ-(), `)-C-
substitutions by Subst(ℒ , (), `),C). a

Note that this definition applies to all fragments of the full language of first-

order logic. In particular, note that the map (·)∗ acts trivially on propositional

formulas and on those formulas that contain no terms other than variables.

There is yet another important class of substitutions: relative substitutions.13
These are obtained by (potentially) restricting the domain of the substitution by

introducing a new predicate symbol. Let ' be a fresh unary predicate symbol.

We define a map (·)' by recursion on subformulas as follows:

(i) if ! is an atomic formula, then !' := !,

(ii) if ! = ¬#, then !' := ¬#',

(iii) if ! = # ★ ", then !' := #' ★ "' for★ ∈ {∧,∨,→},

(iv) if ! is of the form ∃G#(G), then

!' := ∃G('(G) ∧ #'(G)),

and,

(v) if ! is of the form ∀G#(G), then

!' := ∀G('(G) → #'(G)).
13One could also introduce relative substitutions first and obtain substitutions as a special case.

For reasons of expositions and given that substitutions are more important for our purposes, we

introduced substitutions first.
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We can then obtain relative substitutions as follows.

2.1.9 Definition. Let ℒ be a language, (), `) be a formal system and C be a set

of formulas. A relative ℒ-(), `)-C-substitution is a map of the form (�̂)', where

� is an ℒ-(), `)-assignment such that ran(�) ⊆ C. We denote the set of relative
ℒ-(), `)-C-substitutions by Subst

rel(ℒ , (), `),C). a
The notion of substitution definedhere for the full language offirst-order logic

naturally gives rise to notions of substitutions for any fragment by discarding

the clauses of the definition that do not apply to the selected fragment.

Having defined substitutions, we are now ready to consider the logical

structure of a given formal system. We do not understand ‘logical structure’ as a
formally defined concept but rather an umbrella term for the notions that will

be defined in the coming sections.

2.2 Tautologies
The first component of what we consider the logical structure of a formal system

are its tautologies, i.e., those logical formulas that are valid in the formal system

under any substitution.

At this point, we would like to emphasise that this dissertation deviates

slightly from the literature in its terminology: the object that we will call ‘the set
of propositional tautologies of a theory )’ is often called ‘the propositional logic of )’
in the literature, and similarly for the first-order tautologies, etc. We agree with

Visser who

feel[s] that this usage of logic is slightly perverse. The correct notion of

logic should obviously explicitly contain the machinery for obtaining

theorems. The current usage should be viewed as a convenient way

of speaking in the present context. ([92, Footnote 1], Visser’s italics).

We believe that our terminology of ‘tautology’ and ‘set of tautologies’ better fit
the objects we are dealing with. Finally, we stick to the established names of

‘de Jongh’s theorem’ and ‘de Jongh property’ for the properties of theories (see

Definitions 2.2.7 and 2.2.9) but suggest the new terminology of ‘tautology loyalty’
and ‘rule loyalty’ for corresponding properties of formal systems. Note that the

literature sometimes deviates from our usage of de Jongh’s theorem, for example,

different authors have proved de Jongh’s theorem for theories in basic orminimal

logic (e.g., Ardeshir and Mojtahedi [4]).

2.2.1 Notation. Weuse Roman letters�, �, �, . . . for formulas in an (arbitrary)

logical language and Greek letters !,#, ", . . . for formulas in the languages of

set theory and arithmetic. a
2.2.2 Definition. Let (), `) be a formal system and � be a ℒpred,=, 5 ,2-formula.
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(i) The formula � is a C-tautology of (), `) if and only if ) ` ��
for all

ℒpred,=, 5 ,2-(), `)-C-substitutions �.

(ii) The formula � is a relative C-tautology of (), `) if and only if ) ` ��
for all

relative ℒpred,=, 5 ,2-(), `)-C-substitutions �. a

Whenever the formal system (), `) is clear from the context, we drop ‘of

(), `)’. Moreover, if C is the set of all )-formulas, i.e., C = ℒform

)
, then we also

say tautology instead of ℒform

)
-tautology. If � is a propositional formula and a

(relative) tautology of (), `), we also say that it is a (relative) propositional tautology.
For clarity and when contrasting to the propositional and/or equational case,

we will also sometimes say first-order tautology instead of just tautology. In

other words, when we speak of a first-order tautologywe mean a formula of the

first-order language without equality that is a tautology of the relevant formal

system (see also Remark 2.2.8).

It will often be useful to consider the set of all tautologies of a certain kind:

Taut
C
B (), `) := {� ∈ ℒform

B | ) ` ��
for all (ℒB , (), `),C)-substitutions �}.

For convenience, we will drop the superscript C whenever C is the set of all

)-formulas. Moreover, we usually leave out pred, 5 , and 2, and just write

Taut(), `) for Tautpred, 5 ,2(), `) and Taut=(), `) for Tautpred, 5 ,2,=(), `). According
to this notation, the set of propositional tautologies is denoted by Taut

C
prop
(), `).

Finally, we write Taut
C,rel

B (), `), adding the expression ‘rel’ to the exponent of

‘Taut’, if we are considering the respective sets of relative tautologies.

The following proposition verifies that tautologies of (∅, `) are the tautologies
of ` as they are usually construed. In virtue of the following proposition, we

will also write Taut
C
B (`) for Taut

C
B (∅, `).

2.2.3 Proposition. Let ` be a logical consequence relation and let ∅ be the empty
theory in the full language of first-order logic. A formula � is a C-tautology of (∅, `) if
and only if ` �.
Proof. The second equivalence is just unfolding the definition of `. Hence,

we only need to prove the first equivalence. The backwards direction is im-

mediate from the fact that logical consequence relations are closed under

substitution. For the forward direction, let � be a C-tautology of (∅, `), i.e.,
for every (ℒpred,=, 5 ,2 , (∅, `),C)-substitution �, we have ) ` ��

. Now note that

the identity id : ℒform

pred,=, 5 ,2
→ ℒform

pred,=, 5 ,2
is a (ℒpred,=, 5 ,2 , (∅, `),C)-substitution.

Hence, ) ` �. �

If the logical consequence relation ` is of the form `� for some logic �, then

the proposition entails that � is a C-tautology of (∅, `�) if and only if � ∈ �. It
follows that:

Taut
C
B (`�) = � ∩ ℒform

B .
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2.2.4 Proposition. Let (), `) be a formal system and � be an ℒpred, 5 ,2-formula. If
� is a relative C-tautology of (), `), then � is a C-tautology of (), `).
Proof. This follows immediately from the observation that applying any

relative substitution �with'(G) = > is equivalent to applying a substitution. �

2.2.5 Proposition. Let ()0, `0) and ()1, `1) be formal systems such that ℒ)1
⊆ ℒ)0

,
)0 ⊆ )1 and `0 ⊆ `1. If B0 and B1 are such that ℒform

B1
⊆ ℒform

B0
, and C1 ⊆ C0 ⊆ ℒform

)0

,
then

Taut
C0

B0 ()0, `0) ⊆ Taut
C1

B1 ()1, `1).

Proof. Let � ∈ Taut
C0

B0 ()0, `0), then for every ℒB0-()0, `0)-C0-substitution �, we

have that )0 `0 ��
. As )0 ⊆ )1 and `0 ⊆ `1, we have for all such substitutions

that )1 `1 ��
. Now observe that every ℒB1-()1, `1)-C1-substitution is also a

ℒB0-()0, `0)-C0-substitution by our assumptions. Hence, the result follows. �

We will often rely on the following special case of the proposition.

2.2.6 Corollary. If )0 ⊆ )1 are theories in the same language and ` a logical
consequence relation, then Taut()0, `) ⊆ Taut()1, `).

We can now define ourmain properties of interest concerning the tautologies

of formal systems.

2.2.7 Definition. A formal system (), `) is called

(i) propositional tautology loyal if every ℒprop-formula � is a tautology of (), `)
if and only if it is a tautology of `,

(ii) tautology loyal if every ℒpred, 5 ,2-formula � is a tautology of (), `) if and
only if it is a tautology of `, and,

(iii) relative tautology loyal if every ℒpred, 5 ,2-formula � is a relative tautology of

(), `) if and only if it is a tautology of `. a

We emphasise again that cases (ii) and (iii) concern the first-order language

without equality (see also the following Remark 2.2.8). We can reformulate

the definition as follows. A formal system (), `) is propositional tautology

loyal if and only if Tautprop(), `) = Tautprop(`); it is tautology loyal if and only

if Taut(), `) = Taut(`); and, finally, it is relative tautology loyal if and only if

Taut
rel(), `) = Taut(`).

2.2.8 Remark. It is crucial to note that while tautologies are defined for all

formulas in the full language of first-order logic, tautology loyalty considers

only formulas in the equation-free fragment. The reason for this is that all formal

systems under consideration prove the existence of infinitely many objects.
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Hence, all such systems trivially prove all implications of the form

©«∀G1 . . .∀G=+1

∨
0<8< 9≤=+1

G8 = G 9
ª®¬→ �,

i.e., stating that ‘there are at most = objects implies �’. This follows by ex falso
quodlibet as the antecedentof this formula is false ondomainswith infinitelymany

elements. However, there are many such formulas which are not tautologies of

logical consequence relations (as these usually do not commit to the existence of

more than one object). In conclusion, loyalty for the full language of first-order

logic is usually impossible by virtue of this observation. We will briefly return

to this topic in Section 4.5. a
Our notions of tautology loyalty are newly introduced in this dissertation as

properties of formal systems. We construe de Jongh’s theorem and de Jongh properties
as properties of theories in the following way.

2.2.9 Definition. Let ` be a logical consequence relation. We say that )

satisfies

(i) de Jongh’s theorem if (), `Int) is propositional tautology loyal,

(ii) the de Jongh property for ` if (), `) is propositional tautology loyal,

(iii) de Jongh’s first-order theorem if (), `Int) is first-order tautology loyal,

(iv) the first-order de Jongh property for ` if (), `) is first-order tautology loyal,

(v) de Jongh’s relative first-order theorem if (), `Int) is relative first-order tautology
loyal, and,

(vi) the relative first-order de Jongh property for ` if (), `) is relative first-order

tautology loyal. a

We also say that a theory has the de Jongh property for � when we mean that

it has the de Jongh property for `Int+� . While tautology loyalty is a property of
formal systems, we consider de Jongh’s theorem and de Jongh properties to be properties
of theories with respect to logical consequence relations. The following proposition

follows immediately from Definition 2.2.7, Definition 2.2.9 and Proposition 2.2.5.

2.2.10 Proposition. Let )0 ⊆ )1 be theories, and ` be a logical consequence relation.

(i) If ()1, `) is (propositional/relative) tautology loyal, then so is ()0, `).

(ii) If )1 satisfies de Jongh’s (relative/first-order) theorem, then so does )0.

(iii) If )1 satisfies the (relative/first-order) de Jongh property for `, then )0 satisfies the
(relative/first-order) de Jongh property for ` as well.
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What is known about the tautologies of formal systems of arithmetic and set

theory? We will now briefly survey the state of the art as it was before the start of
the research project that constitutes this dissertation. We begin with arithmetic.

Our goal here is not to give a full historical overview of de Jongh’s theorems for

(extensions of) Heyting Arithmetic (excellent such surveys can be found in the

literature [47, 92]). Rather, we are focussing on results and techniques that are

of importance (or inspiration) for this dissertation.

The terminology of de Jongh’s theorem derives from the following result, which

was proved by de Jongh in his doctoral dissertation [45] (see also the extended

abstract [46]).

2.2.11 Theorem (de Jongh, 1970). The propositional tautologies of HA are exactly
those of intuitionistic logic, i.e., Tautprop(HA) = Tautprop(`Int). In other words, HA is
propositional tautology loyal.

While de Jongh’s proof remains unpublished, various alternative proofs

have appeared in the literature, for example by Friedman [24] and Smoryński

[83]. Smoryński’s proof method is particularly interesting and has at its core

what is now often referred to as Smoryński’s trick: Any set of Kripke models

satisfying HA can be combined into a new Kripke model of HA by adding a new

root, equipped with the standard model of arithmetic,N. Our proofs with simple
and blended Kripke models for set theory (see Chapters 4 to 6) can be seen as

approaches to make Smoryński’s trick work for set theory. As we will see, the

set-theoretic case is a little more intricate than the case for arithmetic as we miss

a standard model of set theory that could substitute N in Smoryński’s original

construction.14 De Jongh proved his theorem by combining Kripke models with

realisability. This technique also allowed proving the following stronger result.

2.2.12 Theorem (de Jongh, 1970). The relative first-order tautologies of HA are
exactly the tautologies of intuitionistic logic, i.e., Taut

rel(HA) = Taut(`Int). In other
words, HA is relatively tautology loyal.

De Jongh’s technique was later successfully extended by van Oosten [65]

to give a semantical proof of the following result that Leivant [53] had earlier

proved with proof-theoretic methods (by considering certain infinitary proof

calculi).15

2.2.13 Theorem (Leivant, 1979). The first-order tautologies of HA are exactly those
of intuitionistic logic, i.e., Taut(HA) = Taut(`Int). In other words, HA is tautology
loyal.

14One may be tempted to take the least ordinal  such that L � ZFC, and consider this a

standard model in analogy to the natural numbers N in the case of arithmetic. However, it turns

out that this can, in general, not work for theories stronger than IKP. See also Section 4.1.2.

15De Jongh theorems seem to be particularly attractive as a topic for doctoral dissertations: de

Jongh [45], Visser [91, Corollary 6.15], Leivant [53], van Oosten [66, Chapter VII] and, of course,

the current author all dedicated at least part of their dissertations to this topic.
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Van Oosten’s [65] proof advances de Jongh’s technique by combining Beth

models with realisability. Our Chapter 8 is inspired by van Oosten’s technique

and combines Beth models with realisability on the basis of a new notion of

transfinite computability to prove that CZF is first-order tautology loyal.

This concludes our discussion of arithmetical techniques that were of inspir-

ation for the proofs of this dissertation. Let us now briefly look at what was

already known about the logical structure of constructive set theories before

the start of our investigations. We can now restate the Diaconescu–Goodman–

Myhill-theorem in our terminology.

2.2.14 Theorem (Diaconescu–Goodman–Myhill). If ) is a theory in the language
of set theory containing the axioms and schemas of extensionality, empty set, pairing,
separation and choice, then the law of excluded middle, ? ∨¬? is a tautology of (), `Int),
i.e., ? ∨ ¬? ∈ Taut(), `Int). In other words, (), `Int) is not propositional tautology
loyal.

Moreover, Friedman and Ščedrov [27] proved the following negative result

concerning the first-order tautologies of set-theoretic systems.

2.2.15 Theorem (Friedman–Ščedrov). Let ) be a set theory based on intuitionistic
first-order logic that contains the axioms of extensionality, pairing and (finite) union, as
well as the separation schema. Then, the formal system (), `Int) has a first-order tautology
that is not a tautology of intuitionistic first-order logic, i.e., Taut(`Int) ( Taut(), `Int).
In other words, (), `Int) is not tautology loyal.

A consequence of this theorem is that Taut(`Int) ( Taut(IZF) ( Taut(`Cl).
It is an open problem to give an explicit description of Taut(IZF). Friedman

and Ščedrov also mention that their earlier conservativity results [26] entail

de Jongh’s Theorem for the formal system ZFI whose axiomatisation is for

arithmetic and set theory in two sorts.16 These are all results (known to us)

concerning the tautologies of set theories preceding our own work.

2.3 Admissible rules
We can generalise our investigation of the tautologies of a given formal system

to an analysis of its admissible rules. Intuitively, a rule is admissible in a formal

system if adding it does not change the set of provable theorems. Recall that a

rule is a tuple (Γ,Δ) consisting of sets of formulas; we usually write Γ/Δ instead

of (Γ,Δ). The intended interpretation is that the conjunction of all formulas in Γ

entails the disjunction of all formulas in Δ.

16Confusingly, Friedman and Ščedrov refer to what we call IZF as ZFI in [27] but the ZFI of
[26] is the two-sorted theory mentioned above. The arithmetical part of the two-sorted theory is

non-trivially used in the results of [26] for a conservativity result over HA. We will not further

consider this (or similar) two-sorted versions of set theory in this dissertation.
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2.3.1 Definition. Let (), `) be a formal system and C be a class of formulas. A

rule Γ/Δ is C-admissible in (), `) if and only if ) ` ��
for every � ∈ Γ entails that

there is some � ∈ Δwith ) ` �� for all ℒpred,=, 5 ,2-(), `)-C-substitutions �. a
Admissible rules generalise the tautologies of a given formal system by

virtue of the following proposition.

2.3.2 Proposition. Let (), `) be a formal system. A formula � is a C-tautology of
(), `) if and only if the rule >/� is C-admissible in (), `).
Proof. For the forward direction, let � be a C-tautology. Then, by definition,

Γ/� is admissible for every Γ, and hence the special case >/� holds as well. For

the converse direction, assume that >/� is admissible. By definition, ) ` >� for

every substitution � as >� = > for every �. Hence, ) ` ��
must also hold for

every substitution �. �

If Γ/Δ is a rule such that Γ and Δ are sets of propositional formulas, and if

Γ/Δ isC-admissible in (), `), thenwe also say that Γ/Δ is a propositional admissible
rule of (), `). It will often be very useful to consider the set of all admissible

rules of a certain kind. We define the set Rules
C
B (), `) as follows:

Γ/Δ ∈ Rules
C
B (), `) if and only if for all ℒB-(), `)-C-substitutions �,

if ) ` ��
for all � ∈ Γ, then ) ` �� for some � ∈ Δ.

As in the case of tautologies, we will drop the C whenever C is the set of

all )-formulas. We usually omit pred, 5 , and 2, and write Rules(), `) and
Rules=(), `) for Rulespred, 5 ,2(), `) and Rulespred, 5 ,2,=(), `), respectively. Accord-
ing to this notation, the set of propositional admissible rules will be denoted by

Rules
C
prop
(), `). We will also use the notation Γ p∼1(),`) Δ for (Γ,Δ) ∈ Rules(), `),

and call p∼1(),`) the first-order admissibility relation. By p∼(),`) we will denote the

admissibility relation in which we consider only propositional formulas.

Unfortunately, the following theorem entails that the first-order admissible

rules of most interesting theories are too complex for an effective description.

Note that the theory IΔ0 + Exp is obtained by extending Robinson’s Arithmetic

with axioms for exponentiation as well as induction on Δ0-formulas (for details

see, e.g., [32, Paragraph 1.28]).

2.3.3 Theorem (Visser [92]). Let (), `) be a formal system such that IΔ0 + Exp can
be relatively interpreted in (), `). If (), `) has the disjunction property, then the set
Rules(), `) is Π0

2
-complete.17

Proof. We have to slightly adapt Visser’s proof [92, Theorem 3.16]: as we

are not working with relative interpretations here, we have to ensure relative

17Recall that a set � of natural numbers is Π0

2
-complete if every Π0

2
-set � in the arithmetical

hierarchy is many-one-reducible to � (i.e., there is a recursive function 5 : � → � such that

= ∈ � if and only if 5 (=) ∈ �).
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interpretations explicitly on the logical side by replacing the quantifiers ∃G�(G)
and ∀G�(G)with ∃G('(G) ∧ �(G)) and ∀G('(G) → �(G)), respectively, where '

is a new relation symbol. �

2.3.4 Corollary. The sets of admissible rules of IZF, CZF and IKP are Π0

2
-complete.

Proof. Note that the disjunction property holds for IZF (Beeson [6]), CZF
(Rathjen [76]) and IKP (Theorem 7.5.6), and it is straightforward to see that

these theories relatively interpret IΔ0 + Exp (note that IKP includes the axiom

of infinity). In conclusion, Theorem 2.3.3 applies. �

In virtue of Visser’s theorem and this corollary, we are mainly interested in

studying loyalty with respect to propositional admissible rules. However, it is

also interesting to study the admissibility of specific first-order rules as opposed

to describing the whole set: for example, van den Berg and Moerdĳk [7] show

that—while not derivable—certain constructive principles are admissible as

rules in constructive Zermelo–Fraenkel set theory CZF.
Recall that a formal system is tautology loyal if and only if its tautologies do

not exceed the tautologies of its underlying logic. We can formulate a similar

property for the admissible rules.

2.3.5 Definition. A formal system (), `) is
(i) rule loyal if Rules(), `) = Rules(∅, `), and,

(ii) propositional rule loyal if Rulesprop(), `) = Rulesprop(∅, `). a
A first crucial observation on the admissible rules of a formal system is that

these are bounded by the admissible rules of the intuitionistic logic generated

from the formal system’s tautologies. If (), `) is a formal system, where

`Int ⊆ `, then the formal system (Taut(), `), `) is the intermediate first-order

logic obtained by adding the first-order tautologies of (), `) as axioms. Similarly,

(Tautprop(), `), `) is the propositional intermediate logic obtained by adding the

propositional tautologies of (), `) as axioms.

2.3.6 Theorem (Visser [92], Theorem 3.4). Let (), `) be a formal system, where
`Int ⊆ `. If � p∼1(),`) �, then � p∼1(Taut(),`),`) �; i.e., p∼1) ⊆ p∼1(Taut(),`),`). Similarly, if
� p∼(),`) �, then � p∼(Tautprop(),`),`) �; i.e., p∼(),`) ⊆ p∼(Tautprop(),`),`).

Not much is known about the converse direction. A counterexample could

be obtained with Theorem 2.3.3 if it turns out that the predicate admissible rules

of intuitionistic logic are of complexity lower than Π0

2
-completeness.

We close these preliminaries with a helpful result for studying the proposi-

tional admissible rules of a given theory. The Visser rule += is the following rule

for propositional formulas �8 , �8 and �:

(∧=
8=1
(�8 → �8) → (�=+1 ∨ �=+2)) ∨ �∨=+2

9=1
(∧=

8=1
(�8 → �8) → � 9) ∨ �

(+=)
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The set V of Visser rules consists of the rules += for every = ∈ N,

V := {+= | = ∈ N}.

The following theorem is a direct consequence of a result by Iemhoff [39, Theorem

3.9].

2.3.7 Theorem. Let (), `Int) be a tautology loyal formal system. IfV ⊆ Rules(), `Int),
then (), `Int) is propositional rule loyal.
Proof. Let � and � be propositional formulas. By Theorem 2.3.6, it suffices to

show that if � p∼(∅,`Int) �, then � p∼) �. So assume that � p∼(∅,`Int) �. By a theorem

of Iemhoff [39, Theorem 3.9], this means that � `VInt �, where `VInt denotes the
derivability relation `Int extendedwith all of Visser’s rules. In other words, there

is a proof tree with conclusion � and potentially using � as a premise such that

all steps in the proof tree are instances of the rules of propositional intuitionistic

logic and V. Given that Visser’s rules are admissible in (), `Int), and using the

fact that (), `Int) is based on intuitionistic logic, it is straightforward to see that

every rule application in the proof tree is admissible in (), `Int). Hence, � is an

admissible consequence of �, � p∼(),`Int) �. �

This theorem thus provides a path towards proving the propositional rule

loyalty of a formal system. We will prove results of this form with this and other

means in Chapters 6 to 8.

A complete survey of the area of admissible rules would lead us far astray.

Admissible rules are not only studied for formal systems based on intuitionistic

logic but are an interesting object of study for any given logic or formal system.

The structure of the admissible rules of intuitionistic propositional logic has

been investigated since the 1970s. Rybakov [81] proved that the set of admissible

rules of intuitionistic logic, p∼IPC, is decidable, answering a question of Friedman

[23, Question 40]. Visser [92] later showed that the propositional admissible

rules of Heyting Arithmetic are exactly the admissible rules of intuitionistic

propositional logic, and Iemhoff [41] provided an explicit description of the set

of admissible rules (a so-called basis). Of course, Visser’s results also include

Theorem 2.3.3 which we have already mentioned above.
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Chapter 3
Kripke models: preliminaries

This chapter provides the technical preliminaries on Kripke models for logics

and for set theories which are required in subsequent chapters.

3.1 Kripke models for logics
3.1.1 Definition. A Kripke frame ( , ≤) is a set  equipped with a reflexive

partial order ≤ ⊆  ×  . A Kripke frame ( , ≤) is called finite whenever  is

finite. a
The following class of Kripke frames will be particularly important.

3.1.2 Definition. We call a Kripke frame ( , ≤) a tree if for every E ∈  , the
set  ≤E := {F ∈  | F ≤ E} is well-ordered by ≤, and, moreover, if there is a

node A ∈  such that A ≤ E for all E ∈  , i.e.,  is rooted, and A is its root. a
All finite trees can be constructed by recursion according to the following

rules: First, the reflexive partial order consisting of exactly one point is a finite

tree. Second, given finitely many finite trees )8 , we obtain a finite tree as

the partial order (), ≤) that extends the disjoint union of the trees )8 with an

additional element A such that A ≤ G for all G ∈ ). This recursive definition

allows us to prove facts about finite trees by induction on their construction

complexity.

3.1.3 Definition. Given a Kripke frame ( , ≤), we say that a node 4 is a leaf if
4 is maximal with respect to ≤. We denote the set of leaves of ( , ≤) by � . A
Kripke frame ( , ≤) with leaves is a Kripke frame such that for every E ∈  there

This chapter fixes some terminology and discusses preliminaries for our work with Kripke

models. While the material is not original, its presentation is based on the preliminaries sections

of joint work with Rosalie Iemhoff [43]: Rosalie Iemhoff and Robert Passmann. ‘Logics of

intuitionistic Kripke-Platek set theory’. In: Annals of Pure and Applied Logic 172.10 (2021), Paper

No. 103014. doi: 10.1016/j.apal.2021.103014.
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is some 4 ∈ � with E ≤ 4. Given a node E ∈  , let �E denote the set of all leaves
4 ∈  such that E ≤ 4. a

The following combinatorial proposition will be useful later and is proved

by induction on the complexity of finite trees. An up-set - in a Kripke frame

( , ≤) is a set - ⊆  such that E ∈ - and E ≤ F implies F ∈ -. Given a finite

tree ( , ≤) and a node E ∈  , let*E be the number of up-sets - ⊆  ≥E .
3.1.4 Proposition. In a finite tree ( , ≤), every node E is uniquely determined by
*E and �E .
3.1.5 Definition. A Kripke model for propositional logic is a triple ( , ≤, +) such
that ( , ≤) is a Kripke frame and + : Prop→ P( ) a persistent valuation, i.e., if
F ∈ +(?) and F ≤ E, then E ∈ +(?). a

We can then define the forcing relation for propositional logic by induction

on propositional formulas:

(1) ", E  ? if and only if E ∈ +(?),

(2) ", E  � ∧ � if and only if  ,+, E  � and  ,+, E  �,

(3) ", E  � ∨ � if and only if  ,+, E  � or  ,+, E  �,

(4) ", E  �→ � if and only if for allF ≥ E, if  ,+, F  �, then  ,+, F  �,

(5) ", E  ⊥ holds never.

We write E  � instead of  ,+, E  � when the Kripke frame and the

valuation are clear from the context. We will write  ,+  � if  ,+, E  � holds

for all E ∈  . A formula � is valid in  if  ,+, E  � holds for all valuations +

on  and E ∈  , and � is valid if it is valid in every Kripke frame  . If � is valid

in a Kripke frame or model, we sometimes also say that � is a validity of that

respective frame or model. We can now define the sets of validities of a Kripke
frame and of a class of Kripke frames.

3.1.6 Definition. If ( , ≤) is a Kripke frame, we define the set of propositional
validities Valprop( , ≤) to be the set of all propositional formulas that are valid in

( , ≤). For a classK of Kripke frames, we define the set of propositional validities
Valprop(K) to be the set of all propositional formulas that are valid in all Kripke

frames ( , ≤) inK . a
3.1.7 Definition. Given an intermediate logic `� , we say thatK characterises
the propositional tautologies of `� if and only if Valprop(K) = Tautprop(`�). a

It is also common to say that a class of Kripke frames is (weakly) complete for a
logic ` if it characterises the tautologies of that logic (see e.g., [8, Definition 4.10]).

We say that a logic ` is propositional Kripke-complete if there is a class of Kripke
frames K such that Tautprop(`�) = Valprop(K), and similarly for the first-order
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case. When it is clear that we are talking about propositional tautologies, we

will sometimes also say that “K characterises `�” instead of “K characterises the

propositional tautologies of `�”. If � is a set of propositional formulas, then we

may also say that “K characterises �” to mean that the propositional validities of

K are exactly those of `Int+� , and similarly so for sets � of first-order sentences.

3.1.8 Definition. A Kripke model for first-order logic is a quintuple

( , ≤, {�E}E∈ , {CEF}E≤F , +),

where ( , ≤) is a Kripke frame, �E a set for each E ∈  such that CEF : �E → �F

is a function for E ≤ F, and + is a  -indexed family of first-order valuations

such that for all E ∈  
(i) if 2 is a constant symbol, then +E(2) ∈ �E such that for all F ≥ E, +F(2) =

CEF(+E(2)),

(ii) if ' is an =-ary relation symbol, then +E(') ⊆ �=
E and CEF[+E(')] ⊆ +F(')

for all F ≥ E, and,

(iii) if 5 is an =-ary function symbol, then +E( 5 ) is a function �=
E → �E such

that CEF[+E( 5 )] ⊆ +F( 5 ) for F ≥ E. a
We will usually write 2E for +E(2), 'E for +E('), and 5E for +E( 5 ). The maps

CEF are called transition functions. Without loss of generality, we can and will

often assume that the transition functions are inclusions so that �E ⊆ �F for all

E ≤ F ∈  . In that case we just write ( , ≤, {�E}E∈ , +).
Note that case (ii) generalises propositional valuations. Using first-order

valuations, we can recursively evaluate terms as usual. This allows us to then

extend the conditions of the forcing relation for propositional to first-order

Kripke models " as follows, where we tacitly enrich the language with a

constant symbol for every element of

⋃
E∈ �E :

(6) ", E  '(G0, . . . , G=−1) if and only if (G0, . . . , G=−1) ∈ 'E ,

(7) ", E  5 (G0, . . . , G=−1) = H if and only if 5E(G0, . . . , G=−1) = H,

(8) ", E  ∃G �(G, H0, . . . , H=) if and only if there is some G ∈ �E such that

 ,+, E  �(G, H0, . . . , H=), and,

(9) ", E  ∀G �(G, H0, . . . , H=) if and only if for all F ≥ E and G ∈ �F it holds

that  ,+, F  �(G, CEF(H0), . . . , CEF(H=)).
Note that the case for implication must also be adapted to account for the

transition functions on parameters in the obvious way. We can further extend

these definitions to Kripke models to the language of first-order logic with
equality by interpreting equality as a congruence relation ∼E at every node E ∈  ,
and stipulate that:
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(10) ", E  G = H if and only if G ∼E H.

Note that the forcing relation can be extended to formulas with (uninterpreted)

free variables by universally quantifying over those free variables.

We define the validity of formulas in frames and classes of frames just as in

the case of propositional logic.

3.1.9 Definition. Let ( , ≤) be a Kripke frame and K be a class of Kripke

frames. The first-order validities Val( , ≤) are the set of all first-order formulas

that are valid in  . Moreover, we define the first-order validities Val(K) to be

the set of all first-order formulas that are valid in all Kripke frames ( , ≤) ∈ K .

Similarly, we define Val=( , ≤) and Val=(K) as the set of all first-order formulas

in the language of equality that are valid in the respective frame or class of

frames. a
3.1.10 Definition. Given an intermediate first-order logic `� , we say thatK
characterises the tautologies of `� if Val(K) = Taut(`�). a

We will sometimes write Valprop( ) for Valprop( , ≤), Val( ) for Val( , ≤),
and Val=( ) for Val=( , ≤).
3.1.11 Remark. Given a logic `� and a Kripke model ", note that it sufficies to

show that "  � for soundness; this is because the validities of Kripke models

are closed under modus ponens (and generalisation, if one extends the forcing

relation to uninterpreted free variables as described above). Hence, in order

to show that Γ 0� �, it suffices to find a Kripke model "  Γ ∪ � such that

" 1 �. a
The next result is proved by induction on the complexity of formulas; it

shows that persistence of the propositional variables transfers to all formulas.

3.1.12 Proposition. Let " be a Kripke model for intuitionistic propositional or
first-order logic with or without equality. If E ∈  and � is a formula such that
", E  � holds, then ",F  � holds for all F ≥ E.

A Kripke model " has a finite frame if its underlying frame ( , ≤) is finite.
3.1.13 Theorem. LetK be the class of all Kripke frames,Kfin be the class of all finite
Kripke frames, andKfinTree be the class of all finite trees.

(i) Valprop(K) = Valprop(KfinTree) = Valprop(Kfin) = Tautprop(`Int),

(ii) Val(K) = Taut(`Int), and,

(iii) Val=(K) = Taut=(`Int).

A detailed proof of Theorem 3.1.13 can be found in the literature (e.g., [87,

Chapter 2, Theorems 6.6, 6.12]). The following Lemma 3.1.15 on first-order

Kripke models without equality will be useful later. For intuition, note that if
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we do not have access to equality, we can distinguish elements of the domains

only in virtue of their properties (i.e., in virtue of the formulas they satisfy). We

can, therefore, duplicate objects without changing the validities of the model

as long as we take care to duplicate their properties as well. In particular, we

will see that identity of indiscernibles does not hold in the models constructed in

Lemma 3.1.15.

3.1.14 Definition. We say that a Kripke model " = ( , ≤, �, +) is countable
if  is countable and �E is countable for every E ∈  . A Kripke model

" = ( , ≤, �, +) has countably increasing domains if for every E, F ∈  such that

E < F, we have that �F \ �E is a countably infinite set. a
3.1.15 Lemma. Let " = ( , ≤, �, +) be a countable Kripke model for intuitionistic
first-order logic where the transition functions are inclusions. Then there is a model
"′ = ( , ≤, �′, +′) with countably increasing domains and a family of maps 5E :

�′E → �E such that "′, E  �(Ḡ) if and only if ", E  �( 5E(Ḡ)) holds for every
E ∈  . Further, if " is countable, then so is "′.

Proof. As " is countable, the Kripke frame ( , ≤) will be countable. So let

〈E8 | 8 < $〉 be a bĳective enumeration of all nodes of  . Let "0 = ". Given

"= = ( , ≤, �= , +=), define "=+1 as follows: Take a countable set -= such that

-= ∩
⋃
E∈ �

=
E = ∅. Now let �=

F = �
=
F if F � E= , and �

=
F = �

=
F ∪ -= if F ≥ E= .

Extend the valuation +=
of "= to the extended domains as follows: Pick an

arbitrary element H= ∈ �=
E=

and copy the valuation of H= for every G ∈ -= at

every F ≥ E= (i.e., such that E  %(G, Ī) if and only if E  %(H= , Ī)).
Finally, take "′ = ( , ≤, �′, +′) where �′E =

⋃
=<$ �

=
E and +′E =

⋃
=<$+

=
E .

Clearly "′ is countable. Further define 5 :

⋃
E∈ �

′
E →

⋃
E∈ �E by stipulating

that 5 (G) = G if G ∈ �E , and 5 (G) = H= if G ∈ -= . An easy induction now shows

that the desired statement holds (note that the language ℒpred of first-order

logic does not contain equality). �

3.2 Kripke models for set theory
As our main focus are set theories, we will now pay some special attention to

Kripke models for set theory, a special case of Kripke models for first-order logic.

3.2.1 Definition. A Kripke model ( , ≤, {�E}E∈ , {CE}E∈ , {4E}E∈ ) for set theory
is a Kripke frame ( , ≤) with a collection of domains {�E}E∈ , a collection

of transition functions {CE}E∈ , and a collection of set-membership relations

{4E}E∈ , such that the following conditions hold:

(i) 4E is a binary relation on �E for every E ∈  , and,

(ii) CEF[4E] ⊆ 4F for all F ≥ E ∈  . a
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Examples of Kripke models for set theory are not only Kripke models with

classical domains that we will introduce in Chapter 4 but also the Kripke models

introduced by Lubarsky [58, 59], by Diener and Lubarsky [60] and by Lubarsky

and Rathjen [61]; in Chapter 5 we will introduced the so-called blended Kripke
models for set theory to prove de Jongh’s theorem for IZF and CZF.

The forcing relation of Kripke models for set theory is obtained as a special

case of the first-order definition to interpret the language of set theory ℒ∈.
For the following definition, we tacitly enrich the language of set theory with

constant symbols for every element of the domains of the Kripke model at hand.

3.2.2 Definition. Let" = ( , ≤, {�E}E∈ , {CE}E∈ , {4E}E∈ ) be aKripkemodel

for set theory. The forcing relation is obtained from previous definitions by

asserting that

(i) ", E  0 ∈ 1 if and only if (0, 1) ∈ 4E , and,

(ii) ", E  0 = 1 if and only if 0 = 1.

The cases for the quantifiers and logical connectives are just as in the previous

section. We will write E  � instead of ", E  ! if the Kripke model is clear

from the context. An ℒ∈-formula ! is valid in " if ", E  ! holds for all E ∈  .
Finally, we will call ( , ≤) the underlying Kripke frame of ". a

Kripke models for set theory inherit persistence from the general case.

3.2.3 Proposition. Let ( , ≤, +) be a Kripke model for set theory, E ∈  and ! be
a formula in the language of set theory such that  , E  ! holds. Then  , F  ! holds
for all F ≥ E.

In this chapter, we introduced four kinds of Kripke models: for intuitionistic

propositional logic, for intuitionistic first-order logic with and without equality,

and for set theory. As mentioned above, Kripke models for set theory are just a

special case of Kripke models for first-order logic with equality where equality

is interpreted as actual equality on the domains. Kripke models for first-order

logic do in general not interpret equality this way and only require a congruence

relation, and Kripke models for first-order logic do not have equality at all. We

consider Kripke models without equality as we are mainly interested in loyalty

with respect to logics without equality because loyalty for intuitionistic logic

with equality is usually impossible (see Remark 2.2.8).

We conclude the chapter with a useful notation.

3.2.4 Definition. Given any kind of Kripke model " based on a frame ( , ≤)
and sentence ! in the appropriate language, we call

~!�" := {E ∈  |", E  !}
the truth set of a sentence !. When the model is clear from the context, we will

also write ~!� or just ~!�. a



Chapter 4
Kripke models with classical domains

In this chapter, we workwith Kripkemodels with classical domains. Using these

models, we analyse the propositional and first-order tautologies of intuitionistic

Kripke–Platek set theory IKP.

4.1 Preliminaries
The idea is to obtain models of set theory by assigning classical models of

Zermelo–Fraenkel set theory ZF to every node of a Kripke frame. We first

introduce Kripke models with classical domains and explain some of their

basic properties. Afterwards, we indicate their limitations in modelling strong

constructive set theories by exhibiting a failure of the exponentiation axiom.

4.1.1 Definitions and basic properties
We closely follow Iemhoff’s [40] presentation but, for the sake of simplicity, give

up on some generality that is not needed here. We start by giving a condition

for when an assignment of models to nodes is suitable for our purposes.

4.1.1 Definition. Let ( , ≤) be a Kripke frame. An assignment " :  → + of

transitive models of ZF set theory to nodes of  is called sound for  if for all

nodes E, F ∈  with E ≤ F we have that "(E) ⊆ "(F). a
For convenience, we write "E for "(E). Of course, the inclusions in the

definition of a sound assignment could be readily generalised to arbitrary

This chapter is based on joint work with Rosalie Iemhoff [43]: Rosalie Iemhoff and Robert

Passmann. ‘Logics of intuitionistic Kripke-Platek set theory’. In: Annals of Pure and Applied
Logic 172.10 (2021), Paper No. 103014. doi: 10.1016/j.apal.2021.103014. The results of

Sections 4.1.2 and 4.2, in particular Proposition 4.1.12 and Theorem 4.2.7, already formed part

of the author’s master’s thesis [70] (up to minor improvements) and are included for reasons of

exposition as later results generalise these techniques.
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homomorphisms of models of set theory. However, we do not need this level of

generality here.

4.1.2 Definition. Given a Kripke frame ( , ≤) and a sound assignment

" :  → + , we define the Kripke model with classical domains  (") to be the

Kripke model for set theory ( , ≤, ", 4) where 4E = ∈ � ("E × "E), and the

transition functions are inclusions. Accordingly, a Kripke model with classical
domains is a Kripke model for set theory # based on a Kripke frame  such that

there is a sound assignment " with # =  ("). a
Note that Kripke models with classical domains satisfy the definition of

Kripke models for set theory from the previous chapter as 4E ⊆ 4F follows from

the fact that the transition functions are inclusions and the assignment consists

of transitive models. Persistence for Kripke models with classical domains is a

special case of persistence for Kripke models for set theory.

4.1.3 Proposition. Let  (") be a Kripke model with classical domains. If E, F ∈  
with E ≤ F, then for all formulas !,  ("), E  ! implies  ("), F  !.

We will now analyse the set theory satisfied by these models.

4.1.4 Definition. A set-theoretic formula !(G0, . . . , G=−1) is evaluated locally if

forallKripkemodelswith classicaldomains ("), and E ∈  , wehave ("), E 
!(00, . . . , 0=−1) if and only if "E � !(00, . . . , 0=−1) for all 00, . . . , 0=−1 ∈ "E . a
4.1.5 Proposition. If ! is a Δ0-formula, then ! is evaluated locally.

Proof. This statement can be shown by actually proving a stronger statement

by induction onΔ0-formulas, simultaneously for all E ∈  . Namely, we can show

that for allF ≥ E it holds thatF  !(00, . . . , 0=) if and only if"E � !(00, . . . , 0=).
To prove the case of the bounded universal quantifier and the case of implication,

we need that the quantifier is outside in the sense that our induction hypothesis

will be:

∀F ≥ E(F  !(00, . . . , 0=) ⇐⇒ "E � !(00, . . . , 0=)).

With this setup, the induction is straightforward. �

Extended intuitionistic Kripke–Platek set theory IKP+ is obtained by adding

the schemes of bounded strong collection and set-bounded subset collection to

IKP (see Appendix A).18

4.1.6 Theorem (Iemhoff, [40, Corollary 4]). Let  (") be a Kripke model with
classical domains. Then  (")  IKP

+.

In the context of set theory, Markov’s principle MP is formulated as follows:

∀ : N→ 2 (¬∀= ∈ N (=) = 0→ ∃= ∈ N (=) = 1). (MP)

18Note that Iemhoff [40] refers to IKP
+
as bounded constructive Zermelo–Fraenkel set theory BCZF.
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4.1.7 Proposition. Let  (") be a Kripke model with classical domains. Then
 (") MP.
Proof. Let E ∈  and  ∈ "E be given such that E  “ is a function N→ 2”.

By Proposition 4.1.5, we know that  is such a function also in the classical

model "E . Further observe that ¬∀= ∈ N (=) = 0 → ∃= ∈ N (=) = 1 is

a Δ0-formula and therefore evaluated locally by Proposition 4.1.5. Now this

statement is clearly true of  because "E is a classical model of ZF. �

Extended Church’s Thesis ECT does not hold in Kripke models with classical

domains.19 Let us conclude this section with the following observation.

4.1.8 Proposition. If  (") is a Kripke model with classical domains such that
every "E is a model of the axiom of choice, then the axiom of choice holds in  (").
Proof. Recall that the axiom of choice is the following statement:

∀0
(
(∀G ∈ 0∀H ∈ 0 (G ≠ H → G ∩ H = ∅)) → ∃1∀G ∈ 0∃!I ∈ 1 I ∈ G

)
. (AC)

Let E ∈  and 0 ∈ "E such that E  ∀G ∈ 0∀H ∈ 0 (G ≠ H → G ∩ H = ∅). This is a
Δ0-formula, so Proposition 4.1.5 yields that"E � ∀G ∈ 0∀H ∈ 0 (G ≠ H → G∩H =
∅). As "E � AC, there is some 1 ∈ "E such that "E � ∀G ∈ 0∃!I ∈ 1 I ∈ G.
Again, this is a Δ0-formula, so it holds that E  ∀G ∈ 0∃!I ∈ 1 I ∈ G. As 1 ∈ "E ,

we have E  ∃1∀G ∈ 0∃!I ∈ 1 I ∈ G. But this shows that E  AC. �

As IKP+ contains the bounded separation axiom, it follows that IKP+ +AC

proves the law of excluded middle for bounded formulas (see [3, Chapter 10.1]).

We summarise the results of this section in the following corollary.

4.1.9 Corollary. If  (") is a Kripke model with classical domains such that every
"E is a model of the axiom of choice, then  (")  IKP+ +MP +AC.

4.1.2 A failure of exponentiation
In this section, we exhibit a failure of the axiom of exponentiation in particular

Kripke models with classical domains.

4.1.10 Proposition. Let  (") be a Kripke model with classical domains such that
there are E, F ∈  with E < F. If 0, 1 ∈ "E and 6 : 0 → 1 is a function such that
6 ∈ "F \"E , then  (") 1 Exp.
Proof. Assume, towards a contradiction, that  (")  Exp. Further, assume

that 0, 1 ∈ "E and 6 : 0 → 1 is a function contained in "F but not in "E . Then,

 ("), E  ∀G ∀H ∃I ∀ 5 ( 5 ∈ I ↔ 5 : G → H),

19Markov’s principle MP together with the extended Church’s thesis ECT entails that all

functions 5 : R→ R are continuous (see [3, Theorem 16.0.23]) but that is in general not the case

here.
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and by the definition of our semantics this just means that there is some 2 ∈ "E

such that  ("), E  ∀ 5 ( 5 ∈ 2 ↔ 5 : 0 → 1). By the semantics of universal

quantification, this means that  ("), F  6 ∈ 2 ↔ 6 : 0 → 1. Since 6 is indeed

a function from 0 → 1, it follows that  ("), F  6 ∈ 2. As 2 is a member of "E

by assumption, we have 6 ∈ 2 ∈ "E . Hence, by transitivity, 6 ∈ "E . But this is a

contradiction to our assumption that 6 is not contained in "E . �

Of course, when adding a generic filter for a non-trivial forcing notion, we

always add such a function, namely the characteristic function of the generic

filter. Therefore, Proposition 4.1.10 directly yields the following corollary.

4.1.11 Corollary. Let  (") be a Kripke model with classical domains. If there
are nodes E < F ∈  such that "F is a non-trivial generic extension of "E (i.e.,
"F = "E[�] for some generic � ∉ "E), then  (") is not a model of CZF.

Recall that, in Kripke semantics for intuitionistic logic,  (")  ¬! is strictly

stronger than  (") 1 !. The above results give an instance of the latter (a

so-called weak counterexample), now we will provide an example of the former

(a strong counterexample).

4.1.12 Proposition. There is a Kripke model with classical domains  (") that
forces the negation of the exponentiation axiom, i.e.,  (")  ¬Exp.

Proof. Consider the Kripke frame  = ($, <)where < is the standard ordering

of the natural numbers. Construct the assignment " as follows: Choose "0

to be any countable and transitive model of ZFC. If "8 is constructed, let

"8+1 = "8[�8] where �8 is generic for Cohen forcing over "8 (actually, every

non-trivial forcing notion does the job). Clearly, " is a sound assignment of

models of set theory. Now, we want to show that for every 8 ∈ $ we have

that 8  ¬Exp, i.e., for all 9 ≥ 8 we need to show that 9  Exp implies 9  ⊥.
This, however, is done exactly as in the proof of Proposition 4.1.10, where the

witnesses are the characteristic functions "�8 of the generic filters �8 . �

4.1.3 Classical domains and the constructible universe
Wedefine the relativisation! ↦→ !L

of a formula of set theory to the constructible

universe L in the usual way. Note, however, that in our setting the evaluation

of universal quantifiers and implications is in general not local (in contrast to

classical models of set theory). Nevertheless, we will now show that statements

about the constructible universe can be evaluated locally. The following is a

well-known fact.

4.1.13 Fact ([44, Lemma 13.14]). There is a Σ1-formula !(G) such that in any model
" � ZFC, we have " � !(G) ↔ G ∈ L.

From now on, we consider ‘G ∈ L’ to be an abbreviation for !(G), where ! is

the Σ1-formula from Fact 4.1.13.
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4.1.14 Proposition. Let  be a Kripke frame and" a sound assignment of nodes to
transitive models of ZFC. Then  ("), E  G ∈ L if and only if "E � G ∈ L, i.e., the
formula G ∈ L is evaluated locally.

Proof. Recall that the existential quantifier is defined locally, i.e., the witness

for the quantification must be found within the domain associated to the current

node in the Kripke model. Then the statement of the proposition follows from

the fact that Δ0-formulas are evaluated locally by Proposition 4.1.5. �

The crucial detail of the following technical Lemma 4.1.16 is the fact that the

constructible universe is absolute between inner models of set theory. We will

therefore need to strengthen the notion of sound assignment. If # and " are

transitive models of set theory, we say that # is an inner model of" if # ⊆ ", #

is a model of ZFC, # is a transitive class of", and # contains all the ordinals of

" (see [44, p. 182]). For more details on the axiom of constructibility, V = L, see

Appendix A.

4.1.15 Definition. Let  be a Kripke frame. A sound assignment " :  → +

agrees on L if there is a transitive model # � ZFC+V = L such that # is an inner

model of "E for every E ∈  . a
In particular, if  is a Kripke frame and" :  → + agrees on L, then we are

justified in referring to the constructible universe L from the point of view of all

models in ", i.e., we write L for L
"E

4.1.16 Lemma. Let  be a Kripke frame and " be a sound assignment that agrees on
L. Then the following are equivalent for any formula !(G) in the language of set theory,
and all parameters 00, . . . , 0=−1 ∈ L:

(i) for all E ∈  , we have  ("), E  !L(00, . . . , 0=−1),

(ii) for all E ∈  , we have "E � !L(00, . . . , 0=−1),

(iii) there is E ∈  such that "E � !L(00, . . . , 0=−1), and,

(iv) L � !(00, . . . , 0=−1).

Proof. By our assumption, 00, . . . , 0=−1 ∈ "E for all E ∈  as L ⊆ "E for all

E ∈  . The equivalence of (ii), (iii) and (iv) follows directly from the fact that L

is absolute between inner models of ZFC.
The equivalence of (i) and (ii) can be proved by an induction on set-theoretic

formulas simultaneously for all nodes in  with the induction hypothesis as in

the proof of Proposition 4.1.5. For the case of the universal quantifier, we make

use of the fact that " agrees on L (hence, that L is absolute between all models

"E for E ∈  ), and apply Proposition 4.1.14. �

The aim of the coming sections is to analyse the propositional and first-order

tautologies of IKP. We first introduce a Kripke model construction to show that
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IKP+ is propositional tautology loyal. Afterwards, we will extend and adapt this

technique to yield results about (relative) first-order tautology loyalty.

4.2 Propositional tautologies of IKP

4.2.1 Some preliminary constructions
We will now introduce a class of Kripke models with classical domains that

arise from certain classical models of set theory. These models will later be used

to prove our results on tautologies of IKP.
Friedman, Fuchino and Sakai [22] presented family of sentences that we are

going to use to imitate the logical behaviour of a given Kripke frame. Consider

the following statements #8 :

There is an injection from ℵL

8+2
to P(ℵL

8 ).

These statements were originally introduced in the context of the modal logic

of forcing. Hamkins, Leibman and Löwe [34, Section 4] discuss the history of

these (kinds of) statements in detail.

There are various classically equivalent ways of formalising these statements,

which differ in the way they are evaluated in a Kripke model. For our purposes,

we choose to define the sentence #8 like this:

∃G∃H∃6
(
(G = ℵ8+2)L ∧ (H = ℵ8)L

∧ 6 “is an injective function”

∧ dom(6) = G
∧ ∀ ∈ G∀I ∈ 6() I ∈ H

)
.

The main reason for this choice of formalisation is that the semantics of the

existential quantifier is local, which will allow us to prove the following crucial

observation. Note that each sentence #8 is a Σ3-formula.20

4.2.1 Proposition. Let  be a Kripke frame and " a sound assignment that agrees
on L. Then  ("), E  #8 if and only if "E � #8 , i.e., the sentences #8 are evaluated
locally.

Proof. This follows from Lemma 4.1.16, Proposition 4.1.5 and the fact that

the semantics of the existential quantifier is local, i.e., the sets G, H and 6 of the

above statement must (or may not) be found within "E .

20It is clear that the final three conjuncts are Δ0-formulas. Using Fact 4.1.13, it is easy to

check that the first two conjuncts are Π2-formulas. In conclusion, the resulting formulas #8 are
Σ3-formulas.
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To finish the proof, it suffices to argue that the following conjunction is

evaluated locally:

(G = ℵ8+2)L ∧ (H = ℵ8)L ∧ 6 “is an injective function”

∧ dom(6) = G
∧ ∀ ∈ G∀I ∈ 6() I ∈ H.

It suffices to argue that every conjunct is evaluated locally. For the first two

conjuncts of the form !L
this holds by Lemma 4.1.16. The final three conjuncts

are Δ0-formulas. So we can apply Proposition 4.1.5 and the desired result

follows. �

Wewill now obtain a collection of models of set theory using forcing notions

from Friedman, Fuchino and Sakai [22]. From this collection, we define models

with classical domains by constructing sound assignments that agree on L.

4.2.2 Construction. We begin by setting up the forcing construction. By our

assumption that there is a countable transitivemodel of set theory, we can choose

aminimal countable ordinal  such that L is a model of ZFC++ = L. We fix this

 for the rest of the chapter. Let Q�,= be the forcing notion21 Fn(ℵL

�+=+2
, 2,ℵL

�+=),
defined within L. Given � ⊆ $, we define the following forcings:

P��,= =

{
Q�,= , if = ∈ �,
1, otherwise.

Then let P�� =
∏

=<$ P
�
�,= be the full support product of the forcing notions P��,= .

Recall that the ordering < on P�� is defined by (08)8∈$ < (18)8∈$ if and only if

08 <8 18 for all 8 ∈ $. Now, let �� be P
$
� -generic over L, and let ��,= = �=[�] be

the =-th projection of ��. Let � be the trivial generic filter on the trivial forcing

1. Now, for � ⊆ $ and = ∈ $ define the collection of filters:

���,= =

{
��,= , if = ∈ �,
�, otherwise,

and let ��� =
∏

=<$ �
�
�,= .

4.2.3 Proposition. The filter ��� is P�� -generic over L.

4.2.4 Proposition. If � ⊆ � ⊆ $ and � ∈ L[��� ], then L[��� ] ⊆ L[��� ]. Indeed,
L[��� ] is an inner model of L[��� ].

21The notation Fn(� , � ,�) is introduced by Kunen [52, Definition 6.1] and denotes the set of all

partial functions ? : � → � of cardinality less than � ordered by reversed inclusion.
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The additional assumption � ∈ L[��] is necessary because there are forcing

extensions that cannot be amalgamated (see [28, Observation 35] for a discussion

of this). The following generalised proposition of Friedman, Fuchino and Sakai

is crucial for our purposes.22

4.2.5 Proposition (Friedman, Fuchino and Sakai, [22, Proposition 5.1]). Let �
be an ordinal, 8 ∈ $ and � ⊆ $. Then L[��� ] � #�+8 if and only if 8 ∈ �.

Proof. Friedman, Fuchino and Sakai prove this proposition for the case � = 0.

The generalised version can be proved in exactly the same way. �

This concludes our preparatory work, and we can state our main technical

tool of this section as the following theorem.

4.2.6 Theorem. Let � <  be an ordinal, ( , ≤) be a Kripke frame and 5 :  → P($)
be a monotone function such that 5 (E) ∈ L for all E ∈  . Then there is a sound
assignment" that agrees on L such that  ("), E  #8 if and only if there is 9 ∈ 5 (E)
such that 8 = � + 9.
Proof. Let ( , ≤) be a Kripke frame and 5 :  → P($) be a function such

that 5 (E) ∈ L for all E ∈  . Let "E = L[� 5 (E)
� ]. This is a well-defined sound

assignment that agrees on L by Proposition 4.2.4. By Proposition 4.2.5, it holds

that 8 ∈ 5 (E) if and only if "E � #8 . Proposition 4.2.1 implies that the latter is

equivalent to  ("), E  #8 . The result follows. �

4.2.2 De Jongh’s theorem for intuitionistic Kripke–Platek set
theory

We are now ready to prove a rather general result on the logics for which IKP

satisfies the de Jongh property. The essential idea is to transform a Kripke model

for propositional logic into a Kripke model for set theory in such a way that the

models exhibit very similar logical properties. In particular, if the logical model

does not force a certain formula �, then we will construct a set-theoretic model

and a translation � such that the set-theoretic model will not force ��
.

Recall that an intermediate logic `� is called propositional Kripke-complete if
there is a class of Kripke frames � such that Tautprop(`�) = Valprop(�).
4.2.7 Theorem ([70, Corollary 3.21]). Let) ⊆ IKP

++MP+AC be a set theory. If `�
is a propositional Kripke-complete intermediate logic, then Taut

Σ3

prop
(), `�) = Taut(`�).

In other words, (), `�) is propositional tautology loyal.
Proof. The inclusion from right to left follows directly from the definition of

(), `�). We show the converse inclusion by contraposition. So assume that there

22In different terminology, the statement of the following proposition is that the sentences #8
constitute a family of so-called independent buttons for set-theoretical forcing. This terminology

was introduced by Hamkins and Löwe [35] for studying the modal logic of forcing.
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is a formula � in the language of propositional logic such that 6`� �. By our

assumption that � is Kripke-complete, there is a Kripke model ( , ≤, +) such
that ( , ≤, +)  � but ( , ≤, +) 1 �. Without loss of generality, we can assume

that the propositional letters appearing in � are ?0, . . . , ?= . We define a function

5 :  → P(N) by stipulating that:

8 ∈ 5 (E) if and only if 8 ≤ = and ( , ≤, +), E  ?8 .

In particular, 5 (E) is finite and thus 5 (E) ∈ L for every E ∈  . ApplyTheorem4.2.6

to get a sound assignment " that agrees on L such that  ("), E  #8 if and
only if 8 ∈ 5 (E).

Let � : Prop→ ℒsent

∈ be the map ?8 ↦→ #8 . It follows via an easy induction

on propositional formulas that  ("), E  �� if and only if ( , ≤, +), E  �. In
particular,  (") 1 ��

but  (")  ) ∪ (� ∩ ℒform

∈ ). Hence, � ∉ Taut(), `�). �
4.2.8 Corollary. Every set theory ) ⊆ IKP

+ + MP + AC has the de Jongh
property with respect to every propositional Kripke-complete intermediate logic `� , i.e.,
Taut(), `�) = Taut(`�).

In Chapter 5, we will prove the de Jongh property for intuitionistic Zermelo-

Fraenkel set theory, i.e., thatTaut(IZF, `�) = Taut(`�)holds for every intermediate

logic `� that is complete with respect to a class of finite trees. Our present Corol-

lary 4.2.8, however, applies to a much broader class of logics: all intermediate

logics that are complete with respect to a class of Kripke frames. Furthermore,

note that it is not impossible for a set theory with the axiom of choice to satisfy

de Jongh’s theorem (pace Diaconescu–Goodman–Myhill-Theorem 1.1.1). In fact,

our results of Chapter 8 will show that CZF +AC satisfies de Jongh’s theorem

as well, see also the discussion in Remark 8.3.16.

4.3 Relative first-order tautologies of IKP
When it comes to first-order logics, several intricacies arise that concern the

interplay of the logics and the surrounding set theory. We were able to ignore

these intricacies in the previous sectionwhenwewere dealingwithpropositional

logics because we effectively reduced the problem to finitely many propositional

letters. In the case of first-order logic, however, we need to deal with infinite

domains and predication.

The basic idea remains the same: We will construct a set-theoretical model

based on a Kripke model for first-order logic. This time, however, we also need

to deal with domains and predication. We will see that working with relative

interpretations allows us to easily adapt the proof of the previous section for

our purposes here: We will use the statements #8 to code domains of Kripke

models for intuitionistic first-order logic as subsets of $ as well as coding which

predications hold true.
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4.3.1 Theorem. Let) ⊆ IKP
++MP+AC be a set theory. If � ∈ L is an intermediate

first-order logic such that L � “`� is a Kripke-complete first-order intermediate logic
in a countable language”, then Taut

Σ3 ,rel(), `�) = Taut(`�). In other words, (), `�) is
relative first-order tautology loyal.
Proof. Again, the inclusion from right to left is trivial and we prove the other

direction by contraposition. As we are dealing with relative substitutions here,

let � be a fresh unary predicate symbol that we will use to restrict the domain

of the substitution.

Let � ∈ L be a first-order logic such that “� is Kripke-complete” holds in

L. Let 6`� � for some first-order sentence �. We have to find a map � such that

) 0� (��)�.23
Work in L. By the fact that 6`� � and that � is Kripke-complete, we know

that there is first-order Kripke model " = ( , ≤, �, �) ∈ ! such that " 1 �

while "  �. As we work in a classical meta-theory, we apply the downward

Löwenheim–Skolem theorem by coding " as first-order structure and assume

without loss of generality that " is countable. Fix enumerations 3 : $→ ⋃
�

of the union of all domains of the model", � : $→ ℒ� of all constant symbols

appearing in ℒ� , ' : $ → ℒ� of all relation symbols appearing in ℒ� , and
� : $→ ℒ� of all function symbols appearing in ℒ� (in each case, if there are

only finitely many symbols, restrict the domain to some = ∈ $).
Still working in L, we will now code all information about " in sets of

natural numbers. Without loss of generality, we can assume that �E ⊆ $ for

all E ∈  , and that the transition functions are inclusions. Fix now a map

〈·〉 : $<$ → $. For E ∈  , we let : ∈ 5 (E) if and only if one of the following

cases holds true:

(i) : = 〈0, 9〉 and 9 ∈ �E ,

(ii) : = 〈1, 8 , 90, . . . , 9=−1〉, '8 is an =-ary relation symbol, 90, . . . , 9=−1 ∈ �E and

E  '8(90, . . . , 9=−1).

Observe that we have defined a function 5 :  → P($). This 5 is monotone due

to the persistence property of Kripke models.

Now work in + , and apply Theorem 4.2.6 to obtain a sounds assignment "

that agrees on L such that  ("), E  #: if and only if : ∈ 5 (E). We define a

translation �:

(i) if " = �C, where � is the predicate of the relative translation, then

(�C)� = #〈0,C�〉, and,

(ii) if '8(C0, . . . , C=−1) is an =-ary relation symbol different from the existential

predicate �, then '8(C0, . . . , C=−1)� = #〈1,8 ,C�
0
,...,C�

=−1
〉.

23See Definition 2.1.9 and before for the definition of the map (·)�.
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Note that the sentences #8 are uniformly defined for 8 ∈ $, and therefore

the translation � is well-defined. With an easy induction on formulas � in

the language of � we show that  ("), E  �� if and only if ", E  �. We

can then conclude that  (") 1 ��
. However,  (")  �� for all �. Hence,

� ∉ Taut
Σ3 ,rel(), `�). �

The following corollary shows that the theorem covers many important

cases. Recall that a logic is axiomatisable if it has a recursively enumberable

axiomatisation.

4.3.2 Corollary. Let ) ⊆ IKP
++MP+AC be a set theory. If `� is an axiomatisable

intermediate first-order logic whose tautologies are ZFC-provably characterised by a
class of Kripke frames, then Taut

Σ3 ,rel(), `�) = Taut(`�).

Proof. Craig’s Lemma 2.1.6 states that any theory with a recursively enumer-

able axiomatisation can be recursively axiomatised. So we can assume without

loss of generality that � is a recursive set. As recursive sets are Δ0

1
-definable

with parameter $ (as a coding of Turing machines in arithmetic), it follows

that � ∈ L$+2 ⊆ L. Hence, we can apply Theorem 4.3.1 and derive the desired

result. �

4.3.3 Corollary. Let ) ⊆ IKP
+ +MP + AC be a set theory. The relative first-

order tautologies of (), `Int) are exactly those of intuitionistic first-order logic, i.e.,
Taut

rel(), `Int) = Taut(`Int). In particular, Taut
rel(IKP, `Int) = Taut(`Int).

We give a few more examples of logics to which Corollary 4.3.2 applies. To

this end, note that KF is the following scheme:

¬¬∀G (%(G) ∨ ¬%(G)) .

Moreover, `QHP: is the first-order logic of frames of depth at most :, and `QLC
is the first-order logic of linear frames. For more on these logics, we refer the

reader to the book of Gabbay, Shehtman and Skvortsov [29].

4.3.4 Corollary. Let ) ⊆ IKP
+ +MP +AC be a set theory. If the logic ` is one of

`IQC+KF, `QHP: , or `QLC, then Taut
rel,Σ3(), `) = Taut(`).

Proof. This follows from Corollary 4.3.2 and the respective completeness

theorems: [29, Theorem 6.3.5] for the completeness of `IQC+KF, [29, Theorem

6.3.8] for completeness of `QHP: , and [29, Theorem 6.7.1] for completeness of

`QLC. �

Having thus studied the relative first-order loyalty of (subsystems of) IKP,
we are now ready to move toward first-order loyalty.
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4.4 First-order tautologies of IKP
In this section we will prove de Jongh’s first-order theorem for IKP. In other

words, we will show that IKP is first-order tautology loyal, i.e., Taut(IKP) =
Taut(`Int). Our approach in this section will be different fromwhat we did in the

previous two sections. As we now have to deal with unrestricted quantification,

we have to give up on the idea of coding directly into the classical models "E

which propositions or predications must be true at a certain node. Rather, the

idea is to encode enough information such that the models know internally

which predication must hold at which node. Intuitively spoken, the model "E

at node E knows that it is that model and acts accordingly. We remind the reader

that we consider intuitionistic first-order logic in the language without equality.
4.4.1 Construction. Recall that we take L to be the least transitive model

of ZFC + V = L. Let ( , ≤, �, +) ∈ L be a well-founded rooted Kripke model

for `Int. Work in L. By Lemma 3.1.15 we can assume that there is a rooted

well-founded countable Kripke model ( , ≤, �, +)with countably increasing

domains. Without loss of generality, we may assume that �E ⊆ $ for all

E ∈  , and �E ⊆ �F for E ≤ F. Let �∗E = �E \
⋃
F<E �F . We can assume by

well-foundedness and shuffling of the domains, if necessary, that for every

G ∈ ⋃
E∈ �E , there is a unique node EG ∈  with G ∈ �∗EG . As  is countable, we

can take an injective function 5 :  → $ \ {0}. Moreover, for every node E ∈  
let 5E : $ → �∗E be the unique order preserving enumeration of �∗E . Define a

function C :  × $ → P(($ × $)<$) such that for every =-ary predicate % and

E ∈  :

C(E, p%q) := {(( 5 −1

EG
0

(G0), EG0
), . . . , ( 5 −1

EG=
(G=), EG= )) | E  %(G0, . . . , G=)}

By V = L, there is an ordinal � such that the tuple ( , ≤, 5 , C) is the �-th
element in the canonical well-ordering of !. Let � :  → P($) be the function
such that �(E) = { 5 (F) |F ≤ E} ∪ {0}.

By Theorem 4.2.6, there is a Kripke model  (")with classical domains such

that  ("), E  #8 if and only if there is 9 ∈ �(E) such that 8 = � + 9.
4.4.2 Definition. We call  (") a mimic model of " = ( , ≤, �, +), � the

essential ordinal of the mimic model  ("), and ( , ≤, 5 , C) the coded model of
 ("). a

In the following series of lemmas, we will spell out the way in which the

mimic models can recover the information about the coded model.

4.4.3 Lemma. There is a Σ3-formula !ess(G) in the language of set theory such that
 ("), E  !ess(G) if and only if G is the essential ordinal � of  (").
Proof. We define the formula !ess(G) as follows:

!ess(G) := G ∈ Ord ∧ #G ∧ ∀� ∈ G¬#�
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By the definition of the mimic model  ("), we know that  (")  #� and

 (") 1 #8 for 8 < �, i.e.,  (")  ¬#8 for all 8 < �. As being an ordinal can be

expressed as a Δ0-formula, it follows that  (")  � ∈ Ord ∧ #� ∧ ∀� ∈ � ¬#�.

Conversely, if  ("), E  !ess(G), then it follows that G ∈ "E is an ordinal

such that "E � #G and for all � < G and F ≥ E we have "E � ¬#�. By the

definition of  (") it must hold that G = �. �

4.4.4 Lemma. Let � be the essential ordinal. There is a Σ1-formula !orig(G, H) in the
language of set theory such that  ("), E  !orig(G, �) if and only if G is the coded
model of  ("), i.e., G = ( , ≤, 5 , C).
Proof. Consider the following formula:

!orig(G, H) := “G is the H-th element in the canonical well-ordering of L”
L

Now, as this formula is relativised to L, we can apply Lemma 4.1.16 to see that

 ("), E  !orig(G, �) is equivalent to
L � “G is the �-th element in the canonical well-ordering of L”.

The definition of the essential ordinal ensures that this is the case if and only if

G = ( , ≤, 5 , C). To observe that !orig(G, H) is a Σ1-formula use the fact that the

canonical well-ordering of L is Σ1-definable (see [44, Lemma 13.19]). �

4.4.5 Lemma. There is a Σ3-formula !exists(G, H) in the language of set theory,
using the coded model ( , ≤, 5 , C) and the essential ordinal � as parameters, such that
 ("), E  !exists(G, H) if and only if H ∈  such that H ≤ E and G ∈ "H .

Proof. Recall from Section 4.2.1 that "E is the model L[��E� ] where �
�E
�

is L-generic for P
�E
� and �E = {0} ∪ { 5 (F) |F ≤ E}. Consider the following

formula:

!exists(G, H) := ∃P ∈ L(“P = P�� where � = {0} ∪ { 5 (F) |F ∈  ∧ F ≤ H}”L

∧ ∃� ∈ L(“� is a P-name” ∧ ∃�(� is generic for P and �� = G))).
Note the use of the parameters ( , ≤, 5 , C) and �, and observe that this formula

is evaluated locally as it is constructed from Δ0-formulas, formulas relativised

to L and existential quantification.

Let F ∈  such that F ≤ E. By general facts about set-theoretical forcing,

G ∈ "F = L[��F� ] if and only if there exists a P�F� -name � ∈ L such that

��
�F
� = G. Equivalently, "E � !exists(G, F), and in turn holds if and only if

 ("), E  !exists(G, F), by our observation on local evaluation. �

For the next lemma, we introduce some handy notation (in analogy to the

notation �∗E from above, see Construction 4.4.1):

"∗E := "E \
⋃
F<E

"F .
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4.4.6 Lemma. There is a Σ3-formula !birth(G, H) in the language of set theory, using
the coded model ( , ≤, 5 , C) and the essential ordinal � as parameters, such that
 ("), E  !birth(G, H) if and only if H ∈  such that H ≤ E and G ∈ "∗H .
Proof. Let !birth(G, H) be defined as follows:

!birth(G, H) := H ∈  ∧ !exists(G, H) ∧ ∀D ∈  (D < H → ¬!exists(G, D)).

If F ≤ E and G ∈ "∗F , then it follows from the previous lemma that for all D < F,

 (") 1 !exists(G, D), i.e.,  (")  ¬!exists(G, D). On the other hand, we clearly

have E  !exists(G, F) and hence E  !birth(G, F).
Conversely, if E  !birth(G, F) for F ≤ E, it follows that G ∈ "F but G ∉ "D

for D < F. Hence, G ∈ "∗F . �

4.4.7 Lemma. There is a Σ3-formula !passed(G) in the language of set theory, using
the coded model ( , ≤, 5 , C) as a parameter, such that  ("), E  !passed(G) if and only
if G ∈  such that G ≤ E.
Proof. Consider the following formula:

!passed(G) := # 5 (G)

The lemma now follows directly from the definition of the mimic model  (").
�

We have now finished our preparations and can prove the following lemma

which will show that the mimic model can imitate the predication of the coded

model. This is a crucial step for connecting validity in the mimic model with

validity in the coded model.

Given G ∈ "E , let EG ∈  be the unique node with G ∈ �∗EG and AG ∈ $ such

that rank(G) = � + AG for some limit ordinal �. Define a map 6E : "E → �E by

6E(G) = 5EG (AG). Further let p·q : ℒpred→ $ be a fixed Gödel coding function.

4.4.8 Lemma. Let % be an =-ary predicate. There is a Σ3-formula !%(Ḡ) with
parameters only G0, . . . , G=−1 in the language of set theory such that  ("), E 
!%(G0, . . . , G=−1) if and only if ( , ≤, �, +), E  %(6E(G0), . . . , 6E(G=−1)).
Proof. Let !%(G0, . . . , G=) be the following formula:

∃ , ≤, 5 , C , Ā , D̄ , F, �(!ess(�) ∧ !orig( , ≤, 5 , C)
∧

∧
8<=

(∃�(“� limit ordinal” ∧ A8 ∈ $ ∧ rank(G8) = � + A8))

∧
∧
8<=

!birth(G8 , D8) ∧ !passed(F)

∧
∧
8<=

F ≥ D8

∧ ((A0, D0), . . . , (A=−1, D=−1)) ∈ C(F, p%q)).
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Unfolding the formula by using the sequence of lemmas proved above, we see

that  ("), E  !%(G0, . . . , G=) is equivalent to the existence of some F ≤ E such

that there are D8 ≤ F with G8 ∈ "∗D8 , A8 ∈ $ such that rank(G8) = �8 + A8 for
some limit ordinals � and ((A0, D0), . . . , (A=−1, D=−1)) ∈ C(F, p%q). By definition

of C, this is equivalent to ( , ≤, �, +), F  %( 5D0
(G0), . . . , 5D=−1

(G=−1)), and hence

( , ≤, �, +), F  %(6E(G0), . . . , 6E(G=−1)) by definition of 6E . Persistency implies

( , ≤, �, +), E  %(6E(G0), . . . , 6E(G=−1)).
Conversely, if ( , ≤, �, +), E  %(6E(G0), . . . , 6E(G=)), then by definition of

6E , ( , ≤, �, +), E  %( 5EG
0

(A0), . . . , 5EG= (A=)), where A8 ∈ $ are as above. By

definition of C, we will have that:

((A0, EG0
), . . . , (A=−1, EG=−1

))
=(( 5 −1

EG
0

( 5EG
0

(A0)), EG0
), . . . , ( 5 −1

EG=
( 5EG=−1

(A=−1), EG=−1
)) ∈ C(E, p%q)

It follows that  ("), E  !%(G0, . . . , G=−1). �

Note that the formula !% is very uniform as it only depends on the Gödel

code of the predicate %. Define a first-order assignment � : ℒpred → ℒ∈ by
stipulating that %(Ḡ)� = !%(Ḡ). Note that the range of � consists of Σ3-formulas.

As discussed in the preliminaries, we can consider � a first-order translation

extending to all formulas.

4.4.9 Lemma. Let  (") be a mimic model of a well-founded rooted Kripke model
( , ≤, �, +) for first-order intuitionistic logic. For every formula � in the language
of first-order logic, we have that  ("), E  �(Ḡ)� if and only if ( , ≤, �, +), E 
�(6E(Ḡ)).
Proof. This is proved by an induction on the complexity of � for all E ∈  .
The atomic cases have already been taken care of in Lemma 4.4.8 and the cases

for the logical connectives ∨, ∧ and→ follow trivially. We will now prove the

cases for the quantifiers. First observe that the maps defined by 6E are surjective.

This is due to the fact that "∗E contains elements of rank � + = for any = < $.24
For the existential quantifier, assume that  ("), E  (∃G�(G, Ī))�. This is

equivalent to the existence of some G ∈ "E such that  ("), E  ��(G, Ī). By
induction hypothesis, this is equivalent to the existence of some G ∈ "E such

that ( , ≤, �, +), E  �(6E(G), 6E(Ī))). By the fact that 6E is surjective, we know

that the latter is equivalent to ( , ≤, �, +), E  ∃G�(G, 6E(Ī)).
For the universal quantifier, observe that  ("), E  (∀G�(G, Ī)))� is equi-

valent to the fact that for all G ∈ "E it holds that  ("), E  ��(G, 6E(Ī)).
By induction hypothesis this holds if and only if for all G ∈ "E we have

( , ≤, �, +), E  �(6E(G), 6E(Ī)). Again, by using the surjectivity of 6E , this is

equivalent to ( , ≤, �, +), E  ∀G�(G, 6E(Ī)). �

24This can be shown via a construction starting with the generic G0 := � ∈ "∗E and iterating

the operation G=1
:= {G=}. Then take H0 =

⋃
=<$ G= and H=+1 := {H=}. It follows that H= has rank

� + = for some limit ordinal �.
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We are now ready to derive our final result concerning the first-order loyalty

of IKP.

4.4.10 Theorem. Let ) ⊆ IKP
+ + MP + AC be a set theory. If � ∈ L is an

intermediate first-order logic that is ZFC-provably Kripke-complete with respect to a
class of well-founded frames, then Taut

Σ3(), `�) = Taut(`�).
Proof. Let � ∈ L be ZFC-provably Kripke-complete first-order logic. It is

clear that Taut(`�) ⊆ Taut(), `�). For the other direction, assume that 0� �.
By our assumptions, there is a Kripke model ( , ≤, �, +) ∈ L such that

( , ≤, �, +) 1 �. Due to Lemma 3.1.15 we can assumewithout loss of generality

that ( , ≤, �, +) has countably increasing domains. Let  (") be a mimic model

obtained from ( , ≤, �, +). By Lemma 4.4.9 it follows that  ("), E 1 ��
. As

 (") is a model of IKP+ and ) ⊆ IKP
+
, it follows that IKP

+ 0� ��
so that

� ∉ Taut(IKP+). This finishes the proof of the theorem. �

We conclude this section by stating some important corollaries on loyalty.

4.4.11 Corollary. Let ) ⊆ IKP
+ +MP + AC be a set theory. If `� ∈ L is an

intermediate first-order logic that is ZFC-provably Kripke-complete with respect to a
class of well-founded frames, then Taut(), `�) = Taut(`�).
Proof. As in the proof of Corollary 4.3.2, we use the fact that every axio-

matisable first-order logic is contained in L. The result then follows with

Theorem 4.4.10. �

4.4.12 Corollary. Let ) ⊆ IKP
+ + MP + AC be a set theory. The first-order

tautologies of (), `) are exactly those of `Int, i.e., Taut(), `Int) = Taut(`Int). In
particular, Taut(IKP) = Taut(`Int).
Proof. This follows from the fact that `Int is ZFC-provably Kripke-complete

with respect to a class of well-founded frames (see the proof of [85, Theorem

8.17]), and applying the previous corollary. �

4.4.13 Corollary. Let ) ⊆ IKP
+ +MP +AC be a set theory. Then, for all : < $,

we have Taut(), `QHP: ) = Taut(`QHP: ).
Proof. This follows from the fact that `QHP: is complete with respect to the

class of frames of depth at most : (see [29, Theorem 6.3.8]). �

4.5 First-order tautologies with equality of IKP
Given our results so far, it is natural to ask whether loyalty extends to tautologies

in the language with equality. We now show that this is not the case.

4.5.1 Theorem. Let ) be a set theory containing the axioms of extensionality, empty
set and pairing. Then the first-order first-order tautologies with equality of (), `Int),
Taut=(), `Int), is strictly stronger than Taut=(`Int), i.e., Taut=(`Int) ( Taut=(), `Int).
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Proof. Let � denote the following formula in the language of first-order logic

with equality:

[∃G∃H∀I(I = G ∨ I = H)] → [∃G∀I(I = G)].

Intuitively, � formalises the statement “if there are at most two objects, then

there is at most one object.” Note that �� = � holds for any first-order equality

translation � into the language of set theory. By the principle of ex falso quodlibet
it therefore suffices to show that the antecedent of � is false in ). Let us call this

antecedent �.

We give an informal argument that can be easily transferred into a formal

proof in the theory ). By pairing and emptyset, we can obtain the sets 0 = ∅,
1 = {∅}, and 2 = {∅, {∅}}. Suppose �. Then, by transitivity of equality, we know

that 0 = 1∨ 0 = 2∨ 1 = 2 must hold. In each case, we can derive falsum,⊥, using
extensionality and the empty set axiom. With∨-elimination and→-introduction,

we conclude that ¬� holds.

This argument shows that � ∈ Taut=(), `Int). To finish the proof of the

theorem, it is enough to show that � ∉ Taut=(`Int). This follows by completeness

as follows. Consider the Kripke model for the full language of first-order logic

that consists of one node with a domain of two distinct points: the antecedent

of � will be true in this model but the consequent fails. �

4.5.2 Corollary. The first-order tautologies with equality of any set theory )
considered in this dissertation, such as IKP, IKP+ +MP+AC, CZF and IZF, exceed the
tautologies with equality of `Int, i.e., Taut(), `Int) ( Taut=(`Int).

Note that the corollary applies to any intermediate and even classical logic

as long as the tautology mentioned in the proof above is not a tautology of

the given logic. See also Yavorsky’s results [93] on first-order tautologies with

equality of classical theories. We close this section with the following question.

4.5.3 Question. What are the first-order tautologies with equality Taut=()) of
any set theory ) considered in this dissertation? a

For those set theories that are first-order tautology loyal, a natural candidate

is the set of tautologies of the intuitionistic first-order logic of infinite domains.

This concludes our investigations of the tautology loyalty of IKP. We have

seen in previous sections that IKP is propositional, relative first-order, and first-

order tautology loyal. However, the tautologies of IKP in the logical language

with equality exceed those of intuitionistic first-order logic.





Chapter 5
Blended models: propositional tautologies

In this chapter, we introduce blended models for set theory to study the

propositional tautologies of intuitionistic Zermelo–Fraenkel set theory IZF. We

construct blended Kripke models in Section 5.1 and also briefly observe some of

their basic properties as well as that they satisfy intuitionistic Zermelo–Fraenkel

set theory IZF. We then prove that IZF is propositional tautology loyal in

Section 5.2.

5.1 Blended Kripke models
We fix a Kripke frame ( , ≤) with leaves and construct a Kripke model of set

theory with ( , ≤) as underlying frame. Transitive models of ZFC have an

ordinal height; in our construction all models assigned will have the same

ordinal height Ω. To each leaf 4 ∈  , we assign a transitive model "4 � ZFC of

height Ω.

Before giving the technical details of the construction, we give some intuition.

To obtain a Kripke model of set theory, we assign a domain �E of E-sets to every

node E ∈  of the Kripkemodel. A E-set G will be a function that assigns to every

node F ≥ E a collection of previously defined F-sets; G(F) is the extension of G

at the node F. These assignments must happen in a coherent way: at every leaf

4, the extension G(4)must be a set of the transitive model "4 associated to the

leaf 4. Moreover, the extensions of G should be monotone along the ≤-relation
of the Kripke frame to account for the persistence required in Kripke models

for intuitionistic theories—once a member of G, always a member of G. More

This chapter is based on [69]: Robert Passmann. ‘De Jongh’s Theorem for Intuitionistic

Zermelo-Fraenkel Set Theory’. In: 28th EACSL Annual Conference on Computer Science Logic
(CSL 2020). Ed. by Maribel Fernández and Anca Muscholl. Vol. 152. Leibniz International

Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum

fuer Informatik, 2020, 33:1–33:16. doi: 10.4230/LIPIcs.CSL.2020.33.
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formally, we shall require for any H ∈ G(E) that H� ≥F ∈ G(F). The truncation of

H to H� ≥F is necessary to obtain the F-set H� ≥F from the E-set H.

The formal construction of blended models proceeds in three steps. We

begin by constructing the collection of domains 〈�E | E ∈  〉: first the domains

for the leaves and, secondly, for all remaining nodes of the Kripke frame. The

third step is to define the semantics.

Step 1. Domains for leaves. Let 4 ∈ � be a leaf, and"4 be the transitivemodel

associated to it. Instead of directly assigning the transitive model "4 as

the domain at the node 4, we will transform this model into a domain �4

of functions that is isomorphic to the original model. We define a function

54 : "4 → ran( 5 ) by ∈-recursion via the equation

54(G) := (4 , 54[G]).

Then define �4 = 54["4]. Hence, each �4 is a set of functions G :  ≥4 →
ran(G) (where  ≥4 = {4}). Moreover, for  ∈ Ord

"
, let �

4 = 54[(+)"4 ].
Then �0

4 = ∅ and it holds that⋃
∈Ord

"

�
4 = �4 .

In Proposition 5.1.2 below, we will see that the domains of the leaves

of a blended model are isomorphic to the classical model of set theory

associated to the node (with respect to the equality and membership

relations).

Step 2. Domains for all nodes. Now we are ready to define the domains at the

remaining nodes. We do this simultaneously for all E ∈  \� by induction

on  ∈ Ω. Let �
E consist of the functions G :  ≥E → ran(G) such that the

following properties hold:

(i) for all leaves 4 ≥ E, we have G�{4} ∈ �
4 ,

(ii) for all non-leaves F ≥ E, we have G(F) ⊆ ⋃
�< �

�
F , and

(iii) for all nodes D ≥ F ≥ E we have that {H� ≥D | H ∈ G(F)} ⊆ G(D).

We define the domain �E at the node E to be the set

�E :=

⋃
∈Ord

"

�
E .

For completing the definition of our model, we still require transition
functions 5EF : �E → �F such that 5FD ◦ 5EF = 5ED . The transition functions
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explain how the elements at a node E should be interpreted at a later node

F ≥ E (see also step 3). For this purpose, we use the restriction maps

5EF with G ↦→ G� ≥F as transition functions. Note that these maps are

well-defined by the definition of the domains.

Moreover, by the definition of the maps 5EF , it is clear that condition (i)

is just a special case of condition (iii). We state it separately as it requires

special attention when working with blended models.

Step 3. Defining the semantics. Blended models are a special case of Kripke

models for set theory. As such, it suffices to define the forcing relation for

set-membership and equality, which we do as follows:

(i) ( , ≤, �), E  G ∈ H if and only if G ∈ H(E), and,
(ii) ( , ≤, �), E  0 = 1 if and only if 0 = 1.

5.1.1 Definition. We call ( , ≤, �) the blended model obtained from 〈"4 | 4 ∈
� 〉. a

This finishes the construction of blended models. If the collection of models,

〈"4 | 4 ∈ � 〉, is either clear from the context, or if it does not matter, we will

also say that ( , ≤, �) is a blended model. Moreover, we might refer to an element

G ∈ �E as a E-set, and to G(F) as the extension of G at F.
Before we continue with some basic properties of the blended models, let us

briefly discuss this construction in comparison to the Kripke models developed

by Lubarsky with Diener, Hentlass and Rathjen [36, 56, 58, 59, 60, 61]. The

crucial difference is that ourmodels are constructed from top to bottom allowing

us to choose any (finite) collection of classical models of set theory of the same

ordinal height at the leaves. Moreover, the full model and immediate settling model
constructions of Hendtlass and Lubarsky [36] require the transition functions

between models to be elementary embeddings; hence, all models involved are

elementary equivalent. Hendlass and Lubarsky use elementarity in the proof

that their models satisfy set induction (∈-Ind), and elementarity is also used in

their proofs involving models with non-standard natural numbers.25 In our case,

requiring elementary equivalence would render the proof method of Section 5.2

impossible as we need for Theorem 5.2.3 that the models at the leaves of our

Kripke model are not elementary equivalent.

We finish this section with the observation that the domains at the leaves are

isomorphic to the models they were obtained from.

5.1.2 Proposition. Let ( , ≤, �) be a blended model and 4 ∈ � be a leaf. Then
( , ≤, �), 4  !( 54(00), . . . , 54(0=−1)) if and only if "4 � !(00, . . . , 0=−1) for all
elements 00, . . . , 0=−1 ∈ "4 .

25Note that Lubarsky weakens the requirement of elementary embeddings to elementary

embeddings of ordinals in later work [56].
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Proof. Let us first argue that the function 54 : "4 → �4 as introduced in Step 1

is a bĳection. Define 6 by ∈-recursion with (4 , G) ↦→ 6[G]. It follows by induction

that 6 ◦ 54 = id"4 and 54 ◦ 6 = id�4 . Hence, 54 is a bĳection.

Let us now consider the atomic cases of equality and set-membership. The

case for equality follows from the definition of the semantics and the fact that 5

is bĳective. For set-membership observe that if"4 � G ∈ H, then 54(G) ∈ 54(H)(4)
andhence 4  54(G) ∈ 54(H). Conversely, if 4  54(G) ∈ 54(H), then 54(G) ∈ 54(H)(4)
and hence G = 6( 54(G)) ∈ 6( 54(H)) = H.

The remaining cases follow trivially as the intuitionistic interpretation of the

logical symbols in a leaf coincides with the classical interpretation in the model

"4 . �

In the remainder of this section, we will show that the axioms of IZF hold in

blendedmodels. So let ( , ≤, �) be a blendedmodel obtained from 〈"4 | 4 ∈ � 〉.
Recall that the axiomatisation of intuitionistic set theory IZF is equivalent to ZF

on the basis of classical logic. With Proposition 5.1.2 we note that IZF holds at

every leaf because the models associated with the leaves are models of ZF set

theory and classical logic holds in the leaves.

5.1.3 Claim. The model ( , ≤, �) satisfies the axiom of extensionality.

Proof. Let E ∈  and 0, 1 ∈ �E . We have to show that

E  ∀G(G ∈ 0 ↔ G ∈ 1) → 0 = 1.

So assume that F  ∀G(G ∈ 0 ↔ G ∈ 1) for all F ≥ E, i.e., 0(F) = 1(F) for all
F ≥ E. Hence, 0 and 1 are equal as functions with domain  ≥E , and so they are

equal. �

5.1.4 Claim. The model ( , ≤, �) satisfies the axiom of pairing.

Proof. Let E ∈  and 0, 1 ∈ �E . Let 2 be the function defined via

2(F) := { 5EF(0), 5EF(1)}

for all F ≥ E.
Let us first show that 2 ∈ �E . For condition (i), let 4 ≥ E be a leaf. As 0, 1 ∈ �E

it follows from the definition that 5E4(0), 5E4(1) ∈ �4 . Hence, by pairing in "4 ,

we have that 2 � {4} ∈ �4 , where 2(4) = { 5E4(0), 5E4(1)}. Conditions (ii) and (iii)

of the definition of �E follow directly from the definition of 2.

Now it is straightforward to check that 2 constitutes a witness for the axiom

of pairing for 0 and 1 at the node E. �

5.1.5 Claim. The model ( , ≤, �) satisfies the axiom of union.

Proof. Let E ∈  and 0 ∈ �E . Define a function 1 with domain  ≥E with

1(F) = ⋃
2∈0(F) 2(F) for all F ≥ E.
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Again, weneed to show that 1 ∈ �E . For condition (i), observe that 5E4(0) ∈ �4

for every leaf 4 ≥ E. As the axiom of union holds in "4 , it follows that there is a

witness 1′ ∈ �4 . By transitivity of "4 , it must then hold that 1 � {4} = 1′ ∈ �4 .

As in the previous proposition, conditions (ii) and (iii) follow directly from the

definition of 1. Then 1 witnesses the axiom of union for 0. �

5.1.6 Claim. The model ( , ≤, �) satisfies the axiom of empty set.
Proof. For every E ∈  consider the function 0E with domain  ≥E such that

0E(F) = ∅ for all F ≥ E. This is an element of �E and witnesses the axiom of

empty set. �

5.1.7 Claim. The model ( , ≤, �) satisfies the axiom of infinity.
Proof. By recursion on natural numbers, we will define elements =E ∈ �E

simultaneously for every E ∈  . Let 0E be the empty set as defined in the proof of

Claim 5.1.6. Then, if<E has been defined for all< < =, let =E be the functionwith

=E(F) = {0F , . . . , (= − 1)F} for all F ≥ E. This finishes the recursive definition.
It follows inductively that every =E ∈ �E , again paying special attention at the

leaves: the sets =4 correspond to the finite ordinal = ∈ "4 .

Finally, let $E(F) = {=F | = < $} for all F ≥ E. To see that $E ∈ �E note that,

for every leaf 4 ≥ E, 5E4($E) = $4 ∈ �4 as "4 satisfies the axiom of infinity.

It follows that $E is a witness for the axiom of infinity at the node E. �

5.1.8 Claim. The model ( , ≤, �) satisfies the axiom scheme of separation.
Proof. Let !(G, H0, . . . , H=) be a formula with all free variables shown. Let

E ∈  , 0 ∈ �E and 10, . . . , 1= ∈ �E . Define 2 to be the function with domain  ≥E

such that

2(F) = {3 ∈ 0(F) |F  !(3, 10, . . . , 1=)}
holds for all F ≥ E. We have that 2 ∈ �E by the definition of the domains

�E . Again, property (i) follows from the fact that separation holds in "4 for

every leaf model "4 . Moreover, property (iii) follows by persistence. Finally, 2

witnesses separation from 0 by ! with parameters 18 . �

5.1.9 Claim. If  is finite, then the model ( , ≤, �) satisfies the axiom scheme of
collection.
Proof. Let E ∈  , !(G, H) be a formula (possibly with parameters), and 0 ∈ �E .

We need to show that:

E  ∀G ∈ 0∃H !(G, H) → ∃1∀G ∈ 0∃H ∈ 1 !(G, H).

Without loss of generality, assume that E  ∀G ∈ 0∃H!(G, H). In particular, by

persistence, for every F ≥ E and every G ∈ 0(F) there exists some H ∈ �F such

that F  !(G, H). Let  be the minimal ordinal such that for every F ≥ E and

G ∈ 0(F), there is some H ∈ �
F with F  !(G, H). Note that  < Ω as  is finite.

Define 1 to be the function with domain  ≥E such that 1(F) = �
F . It follows
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that 1 ∈ �E , where the case for leaves 4 follows from the fact that (+)"4
is a set

in "4 . Hence, 1 is a witness for the above instance of the collection scheme. �

5.1.10 Claim. The model ( , ≤, �) satisfies the powerset axiom.

Proof. Let E ∈  and 0 ∈ �E . Define a function 1 with domain  ≥E such that

1(F) = {2 ∈ �F | F  2 ⊆ 5EF(0)}

for all F ≥ E. We have to show that 1 ∈ �E . Observe that for every leaf 4 ≥ E,
5E4(1) corresponds to (P(0))"4

, and hence condition (i) is satisfied. Conditions

(ii) and (iii) follow easily. �

5.1.11 Claim. The model ( , ≤, �) satisfies the axiom scheme of set induction.

Proof. We shall show that the set-induction scheme holds for all E ∈  , i.e.,
that

E  ∀0 (∀G ∈ 0 !(G) → !(0)) → ∀0 !(0),

holds for all formulas !(G) and E ∈  . So assume that E  ∀0 (∀G ∈ 0 !(G) →
!(0)). We have to show that E  ∀0 !(0), i.e., for all 0 ∈ �E we have that

E  !(0). To do so, we will proceed by a simultaneous induction for all E ∈  
on the rank of 0 ∈ �E , i.e., the minimal  < Ω such that 0 ∈ �+1

E \ �
E .

The only E-set of rank 0 is the function G that assigns the empty set to every

node F ≥ E, so the assumption of set-induction applies and we have E  !(G).
For the induction step, observe that the members of a E-set G of rank  are F-sets

(for some F ≥ E) of lower rank. Hence, the induction hypothesis applies and it

follows by using the assumption of set-induction that E  !(G). This finishes
the induction, and the proof of the claim. �

Let us summarise the results of this section in the following theorem.

5.1.12 Theorem. If  is finite, then the model ( , ≤, �) satisfies IZF. For arbitrary
 , the model ( , ≤, �) satisfies IZF − Collection.

We do not know whether there is an example of an infinite Kripke frame  

and a model ( , ≤, �) based on  that does not satisfy the collection scheme.

5.1.13 Example. To illustrate our construction above, we construct a Kripke

model ( , ≤, �) such that ( , ≤, �) 1 CH ∨ ¬CH, where CH is the continuum

hypothesis. Take ( , ≤) to be the three-element Kripke frame ( , ≤) with

 = {E, 40, 41} with ≤ being the reflexive closure of the relation defined by

E ≤ 40 and E ≤ 41.
Now, let" be any countable transitive model of ZFC+CH, and take � to be

generic for Cohen forcing over". Then we associate the model" with node 40,

and "[�] with 41, i.e., "40 = " and "41 = "[�]. By our construction above

and Proposition 5.1.2, we know that ( , ≤, �), 40  CH and ( , ≤, �), 41  ¬CH.
Hence, persistence implies that ( , ≤, �), E 1 CH ∨ ¬CH.
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In particular, observe that ~CH� = {40}, ~¬CH� = {41}, ~CH ∨ ¬CH� =
{40, 41} and ~>� =  . Hence, every up-set and therefore any valuation on  

can be imitated with sentences in the language of set-theory evaluated in the

blended model. a
In particular, this example also shows that IZF 0 CH ∨ ¬CH. Of course,

this result also follows from the fact that IZF is a subtheory of ZFC with the

disjunction property (see [64, Corollary 1]). One can easily generalise the

argument of the example to obtain the following proposition.

5.1.14 Proposition. If ! is a sentence in the language of set theory such that there
are models " and # of ZFC with the same ordinals such that " � ! and # � ¬!,
then IZF 0 ! ∨ ¬!.

5.2 Propositional tautologies of IZF
In this section, we analyse the propositional validities of blended models and

prove the de Jongh property for IZF with respect to intermediate logics whose

propositional tautologies are characterised by a class of finite trees. We first

show that we can find a blended model based on every finite tree Kripke frame

( , ≤) that allows us to imitate every valuation on ( , ≤), then we use this fact

in order to study the propositional tautologies of IZF.
Let us begin with a definition and several useful observations. Given a

natural number =, let Γ= be the following sentence26 in the language of set

theory:

∀G0, . . . , G=−1

©«
∧
8<=

(∀H ∈ G8∀I ∈ H⊥) →
∨
8< 9<=

G8 = G 9
ª®¬ .

Informally, this sentence asserts that given = subsets of 1 = {∅}, at least 2 of them

are equal. The power set of 1 is crucial for distinguishing models of non-classical

set theories: for example, it is consistent with CZF that the power set of 1 is a

proper class (see [58, Section 2]). Note that Γ1 and Γ2 are inconsistent and that

Γ3 is a theorem of ZF set theory. If Γ3 is not a theorem, then classical logic does

not hold.

Recall that we defined*E in Chapter 3 to be the number of up-sets - ⊆  ≥E .
The following proposition holds for all Kripke frames with leaves and not only

for finite trees. We also do not need to assume that*E is finite.

5.2.1 Proposition. Let ( , ≤) be a Kripke frame with leaves, ( , ≤, �) be a blended
model, and E ∈  . For every natural number =, we have that E  Γ=+1 if and only if

26The sentences Γ= were also used in yet unpublished joint work with Galeotti and Löwe on

the logics of algebra-valued models of set theory; see also the discussion of Löwe, Passmann

and Tarafder [55, after Theorem 13]. We adapt them here for the case of Kripke semantics.
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= ≥ *E .

Proof. Given any up-set - ⊆  ≥E , we define the element 1
E
-
to be the function

 ≥E →
⋃
F≥E

�F ,

F ↦→
{
{0F}, if F ∈ -,
∅, otherwise.

Observe that 1
E
-
∈ �E as it is monotone because - is an up-set. Further, we

have 1
E
-
≠ 1

E
.
for up-sets - ≠ . and therefore, E 1 1

E
-
= 1

E
.
. It follows that

E  ∀H ∈ 1
E
-
∀I ∈ H⊥ for all up-sets - because 1

E
-
(F) is either empty or contains

the empty set for F ≥ E. We conclude that E 1 Γ=+1 for = < *E taking the 1
E
-
as

witnesses.

Conversely, assume that = ≥ *E . We will first show that whenever E 
∀H ∈ G∀I ∈ H⊥ for some G ∈ �E , then G is actually of the form 1

E
-
for some

up-set - ⊆  ≥E . For contradiction, assume that G was not of the form 1
E
-
for

some up-set -. Then there is a node F ≥ E such that G(F) contains an element

H different from 0F . But then there must be a node D ≥ F such that H(F) is
non-empty. This is a contradiction to E  ∀H ∈ G∀I ∈ H⊥, and hence, every

element G ∈ �E satisfying the above formula must be of the form 1
E
-
. As there

are only *E-many elements 1
E
-
, we know that the conclusion of Γ=+1 must be

true at the node E. Hence, E  Γ=+1. �

The following proposition is a special case of a more general proposition for

Kripke models of predicate logic.

5.2.2 Proposition. Let ( , ≤) be a Kripke frame with leaves, ( , ≤, �) be a blended
model and E ∈  . If 4 1 ! for all leaves 4 ≥ E, then E  ¬!.
Proof. By the definition of our semantics, we know that E  ¬! if and only if

F 1 ! for all F ≥ E. Assume that there was a node F ≥ E such that F  !. By
persistence we can conclude that 4  ! for every leaf 4 ≥ F. Hence, F 1 ! for

all F ≥ E, so E  ¬!. �

5.2.3 Theorem. Let ( , ≤, �) be a blended model based on a finite tree ( , ≤) with
leaves 40, . . . , 4=−1. If there is a collection of ∈-sentences !8 for 8 < = such that 4 9  !8
if and only if 8 = 9, then for every valuation + on the Kripke frame ( , ≤) and every
propositional letter ? ∈ Prop, there is anℒ∈-formula !? such that ~!?�( ,≤,�) = +(?).
Proof. Let ( , ≤, �) be a blended model based on a finite tree ( , ≤) with

leaves 40, . . . , 4=−1 such that there is a collection of ∈-sentences !8 for 8 < = such

that 4 9  !8 if and only if 8 = 9.

As ( , ≤) is a finite tree, we know by Proposition 3.1.4 that every node E ∈  
is uniquely determined by*E and the set of leaves 4 ≥ E.
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Let + be a valuation on ( , ≤). For every ? ∈ Prop, we need to find a

sentence �? in the language of set theory such that ~�?�( ,≤,�) = +(?). Due to

the finiteness of  , it suffices to consider up-sets of the form  ≥E for some E ∈  
because general up-sets can be constructed by finitely many disjunctions.

We will now prove for every E ∈  that there is a sentence "E in the language

of set theory such that ( , ≤, �), F  "E if and only if F ≥ E (i.e., F ∈  ≥E). Let
"E be the following sentence, where = = *E + 1:

Γ= ∧
∧
E�48

¬!8

By Proposition 5.2.1 and Proposition 5.2.2 it is clear that F  "E for all F ≥ E.
For the converse direction, let F ∈  such that F � E. There are two cases.

First, if F < E, then *F > *E = = and hence F 1 Γ= by Proposition 5.2.1.

Hence, it follows that F 1 "E .
Second, if F ≮ E, then there must be a leaf 48 ≥ F such that 48 � E. By

assumption 48  !8 and hence, F 1 ¬!8 . But this means that F 1 "E .
This concludes the proof of the theorem. �

5.2.4 Theorem. Let ( , ≤) be a finite tree. Then there is a blended model ( , ≤, �)
based on ( , ≤) such that for every valuation + on the Kripke frame ( , ≤) and every
propositional letter ? ∈ Prop, there is anℒ∈-formula !? such that ~!?�( ,≤,�) = +(?).
Proof. Let 40, . . . , 4=−1 be the set of leaves of ( , ≤). Let " be a countable

transitive model of ZFC set theory. By set-theoretic forcing, we can obtain

generic extensions "[�8] of " such that "[�8] � 2
ℵ0 = ℵ8+1 for every 8 < =

(see, e.g., [52, Theorem 6.17] for details). Let "48 = "[�8], and ( , ≤, �) be the
blended model obtained from 〈"8 | 8 < =〉. Clearly, "48 � 2

ℵ0 = ℵ9+1 if and only

if 8 = 9. This implies, by Proposition 5.1.2, that 48  2
ℵ0 = ℵ9+1 if and only if

8 = 9. In this situation, we can apply Theorem 5.2.3 to conclude that ( , ≤, �)
has the desired property. �

We are now ready to draw conclusions regarding the propositional tautology

loyalty of IZF and CZF from the main result of the previous section.

5.2.5 Theorem. Intuitionistic set theory IZF has the de Jongh property with respect to
every intermediate logic `� whose propositional tautologies are characterised by a class
of finite trees, i.e., Tautprop(IZF, `�) = Tautprop(`�).
Proof. Let `� be an intermediate logic with Valprop(K) = Taut(`�), whereK is

a class of finite trees. We have to show that Tautprop(IZF, `�) = Tautprop(`�), i.e.,
for every propositional formula, we have that:

`� ! if and only if IZF `� !�
for all substitutions � : ℒprop→ ℒsent

∈ .

The direction from left to right is immediate from the definition of (IZF, `�). We

will prove the converse direction by contraposition.
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Assume that there is ! such that 0� �. As the propositional tautologies of

`� are characterised by K , there is a frame ( , ≤) ∈ K and a valuation + such

that ( , ≤), + 1 �. By Theorem 5.2.4 and the assumption that K consists of

finite trees, we can find a blended model ( , ≤, �) based on ( , ≤) such that for

every propositional letter ? ∈ Prop, there is a sentence #? in the language of set

theory such that ~#?�( ,≤,�) = +(?). Define an assignment � : Prop→ ℒsent

∈ by

�(?) = #? .
We prove by induction on propositional formulas �, simultaneously for all

E ∈  that:

( , ≤), E  � if and only if ( , ≤, �), E  �� .
The base case for propositional letters follows directly from the definition of �.

Furthermore, the induction cases for the connectives→, ∧ and ∨ follow directly

from the fact that their semantics coincide in Kripke models for intuitionistic

logic and in blended models. This finishes the induction.

Hence, it follows from the induction that ( , ≤, �) 1 ��
, and therefore,

� ∉ Tautprop(IZF, `�). This finishes the proof of the theorem. �

5.2.6 Corollary. Intuitionistic set theory IZF = (IZF, `Int) is propositional tauto-
logy loyal.
Proof. By Theorem 3.1.13, we know that intuitionistic logic `Int is proposition-
ally completewith respect to the class of all finite trees, i.e., this class characterises

the propositional tautologies of `Int. By the previous Theorem 5.2.5, this implies

that IZF is propositional tautology loyal. �

More examples of logics whose propositional tautologies are characterised

by classes of finite trees are Gödel–Dummett logic `LC, the Gabbay-de Jongh

logics `T= , and the logics of bounded depth `BD= .

5.2.7 Corollary. Intuitionistic set theory IZF has the de Jongh property with respect
to the logics LC, T= and BD= . In other words, (IZF, `Int+LC), (IZF, `Int+T= ), and
(IZF, `Int+BD= ) are propositional tautology loyal.

By Proposition 2.2.5, if a theory ) has the de Jongh property with respect to

a logic `� , then any theory ( ⊆ ) has the de Jongh property with respect to `� .
5.2.8 Corollary. Constructive set theoryCZF has the de Jongh property with respect
to every intermediate logic `� whose propositional tautologies are characterised by a class
of finite trees. In particular, CZF has the de Jongh property with respect to the logics
Int, LC, T= and BD= . Hence, CZF = (CZF, `Int) is propositional tautology loyal.

In fact, Proposition 2.2.5 implies that Corollary 5.2.8 holds for any set theory

) ⊆ IZF based on intuitionistic logic. Indeed, any set theory ) that is weaker

than IZF has the de Jongh property with respect to every intermediate logic `�
whose propositional tautologies are characterised by a class of finite trees.



Chapter 6
Extended models: extensibility &

admissible rules

In this chapter, we modify the technique of blended models to prove that certain

constructive set theories have a property called ‘extensibility’, which, in turn,

yields their propositional rule loyalty.

6.1 Extensibility for set theories
Given a Kripke frame  , we write  + for the frame extended with a new root.

6.1.1 Definition. Let Γ be a set of sentences in the language of set theory. A

set of sentences Δ is Γ-extensible if for every Kripke model "  Γ ∪ Δ of set

theory with underlying frame  , there is a model "+ based on  + such that

"+ �  = " and "+  Δ. Finally, Δ is extensible if it is ∅-extensible.27 a
Wewill say that a sentence ! is (Γ-)extensible just in case {!} is (Γ-)extensible.

We will later need the following two brief observations.

6.1.2 Lemma. Let Γ ⊆ Δ be sets of formulas. If Δ is Γ-extensible, then Δ is extensible.

Proof. Let"  Δ. As Γ ⊆ Δ, we have"  Δ∪ Γ. By Γ-extensibility, it follows

that "+  Δ. �

6.1.3 Lemma. Let Γ ⊆ Δ be sets of formulas. If a sentence ! is Γ-extensible, then it is
Δ-extensible.

Proof. Let "  {!} ∪ Δ. As Γ ⊆ Δ, we have "  {!} ∪ Γ. By Γ-extensibility,
"+  !. �

This chapter is based on joint work with Rosalie Iemhoff [42]: Rosalie Iemhoff and Robert

Passmann. ‘Logics and Admissible Rules of Constructive Set Theories’. In: Philosophical
Transactions of the Royal Society A (2022). Forthcoming. doi: 10.1098/rsta.2022.0018.

27Note that the notion of ‘extensible set theory’ has no relation whatsoever to extendible

cardinals.
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A Kripke frame ( , ≤) is a finite splitting tree if  is finite, connected, and

every E ∈  has either no successors or at least two immediate successors. Recall

that a node E ∈  with no successors is also called a leaf. An easy induction

on the height of finite splitting trees allows to show that every node in such a

tree is uniquely determined by the set of leafs above it. A set theory ) is called

subclassical if there is a classical model of ).

The construction of adding a new root to a Kripke model was first used

by Smoryński [83] for models of HA to give an alternative proof of de Jongh’s

theorem for HA—called Smoryński’s trick. In the arithmetical case, it suffices to

equip the new root with the standard model of arithmetic. The case of set theory

requires a more elaborate construction, as we will see shortly.

6.1.4 Theorem. Let � be a propositional intermediate logic characterised by a class of
finite splitting trees. If ) is a subclassical recursively enumerable extensible set theory,
then the propositional tautologies of (), `�) are exactly those of `� , i.e., Tautprop(), `�
) = Tautprop(`Int+�).
Proof. Let 2

<$
be the set of binary sequences of finite length, and 2

=
be the set

of binary sequences of length =. If ) is a recursively enumerable theory, let Γ)
be its Gödel sentence. Let !〈0〉 := Γ) , and !〈1〉 := ¬Γ) . Clearly both ) + !〈0〉 and
) + !〈1〉 are consistent by Gödel’s Incompleteness Theorem. By recursion on

the length of B ∈ 2
<$

, we define

!B
a〈0〉

:= !B ∧ Γ)+!B , and,
!B
a〈1〉

:= !B ∧ ¬Γ)+!B .

By inductively applying Gödel’s Incompleteness Theorem, it follows that ) + !B
is consistent for every B ∈ 2

<$
; so, for every B ∈ 2

<$
, let "B be a classical model

such that "B � ) + !B .
We now observe that, given B, C ∈ 2

<$
of the same length with B ≠ C, it must

be that !B and !C are jointly inconsistent: Let 8 be minimal such that B(8) ≠ C(8).
Then B � 8 = C � 8 and we can assume, without loss of generality, that B(8) = 0

and C(8) = 1. The sentences !B and !C are defined as conjunctions in such a

way that !B contains the conjunct Γ)+!B�8 , and !C contains the conjunct ¬Γ)+!C�8 .
Since B � 8 = C � 8, it follows that !B → ¬!C . We can conclude for = < $ and

B ∈ 2
=
that

"B � !
B ∧

∧
C∈2=\{B}

¬!C .

Let ) be a set theory and `� a logic, as given in the statement of the theorem.

To prove that Tautprop(), `�) = Tautprop(`�), we will proceed as follows: Let

C be a class of finite splitting trees that characterises Tautprop(`�). It is clear

that Tautprop(`�) ⊆ Tautprop(), `�). To show that Tautprop(), `�) ⊆ Tautprop(`�),
we proceed by contraposition. So assume that 0� � for some propositional
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formula �, then there is a finite splitting tree ( , ≤) ∈ C and a valuation + on

 such that ( , ≤, +)  � but ( , ≤, +) 1 �. On the basis of this propositional

Kripke model, we will construct a Kripke model "  ) and a propositional

translation � such that " 1 ��
. As " is based on the frame ( , ≤) with

Tautprop(`�) ⊆ Valprop( , ≤), it follows that Tautprop(`�) ⊆ Valprop("). Hence, it

follows that � ∉ Tautprop(), `�).
As every finite splitting tree can be constructed from its set of leaves by

iterating the operation of adding a new root, we can obtain a model of ) on the

frame ( , ≤) as follows. Find = < $ such that there are at least as many B ∈ 2
=

as there are leaves in  ; let ℓ ↦→ Bℓ be an injective map assigning sequences to

leaves. Assign the models "Bℓ to the leaves of ( , ≤) and use the extensibility

of ) to construct a Kripke model " of ) of set theory with underlying frame

( , ≤). Given E ∈  , let �E be the set of leaves ℓ ≥ E. Then consider the formula:

�E := ¬¬
∨
ℓ∈�E

!Bℓ .

Now recall that every node E in the finite splitting tree ( , ≤) is characterised by

the set �E , and that "Bℓ � !B: if and only if ℓ = :. It follows that ",F  �E if
and only if F ≥ E.

We are now ready to construct the translation �. Given a propositional letter

?, let

�(?) : =

∨
E∈+(?)

�E

=

∨
E∈+(?)

¬¬
∨
ℓ∈�E

!Bℓ .

Moreover, � commutes with the propositional connectives ¬,→, ∨, and ∧.
To finish the proof of the theorem, it now suffices to show that ",F  �(?)

if and only if F ∈ +(?); it then follows by induction that ",F  ��
if and only

if ( , ≤, +), F  �. So assume that ",F  �(?). Equivalently, ",F  �E for
some E ∈ +(?). We have seen that this is equivalent to F ≥ E for some E ∈ +(?),
which, by persistence, holds if and only if F ∈ +(?). �

Recall that the tautologies of intuitionistic logic are characterised by the

class of finite trees (Theorem 3.1.13 and [87, Theorem 6.12]). To show that the

propositional tautologies of intuitionistic logic are also characterise by the class

of finite splitting tress, note that duplicating branches of a tree does not change

the formulas satisfied at the root.

6.1.5 Corollary. Let ) be a subclassical recursively enumerable set theory. If ) is
extensible, then the propositional tautologies of (), `Int) are exactly those of intuitionistic
logic, i.e., Tautprop(), `Int) = Tautprop(`Int).
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Let us first observe the following helpful fact. Recall that a formal system

(), `) has the disjunction property whenever ) ` ! ∨ # implies ) ` ! or ) ` #.
6.1.6 Lemma. If ) is an extensible set theory, then (), `Int) has the disjunction
property.
Proof. By contraposition. Assume that ) 0Int ! and ) 0Int #, then there are

models "0 and "1 of ) such that "0 1 ! and "1 1 #. Let " be the disjoint

union of these models, then "+  ) as ) is extensible. Moreover, persistence

implies that "+ 1 ! ∨ #, hence ) 0Int ! ∨ #. �

6.1.7 Lemma. If ) is an extensible set theory, then Visser’s rules are admissible in
(), `Int).
Proof. By Lemma 6.1.6, it is sufficient to show that the following rules +′= are
admissible: ∧=

8=1
(�8 → �8) → (�=+1 ∨ �=+2)∨=+2

9=1
(∧=

8=1
(�8 → �8) → � 9)

(+′=)

The admissibility of these rules is a standard argument and proceeds as follows

by contraposition.

Let � : Prop→ ℒsent

∈ be any substitution and assume that

) 0
=+2∨
9=1

(
=∧
8=1

(��
8 → ��8 ) → ��

9 ),

i.e., ) 0
∧=
8=1
(��

8
→ ��

8
) → ��

9
for 9 = 1, . . . , = + 2. By Kripke-completeness, let

" 9 be a Kripke model of ) with root A 9 such that

" 9 1
=∧
8=1

(��
8 → ��8 ) → ��

9 .

In this situation, we can assume without loss of generality that " 9 , A9 ∧=
8=1
(��

8
→ ��

8
), but " 9 , A9 1 ��

9
.

Now, let" be the disjoint union 〈" 9 | 9 = 1, . . . , = + 2〉 of the models. As ) is

extensible, consideramodel"+ extending"withanewroot A such that"+  ).
By persistence, A 1 ��

9
for all 9 = 1, . . . , = + 2. Hence, A  ��

8
→ ��

8
for all

8 = 1, . . . , =, but A 1 ��
=+1
∨ ��

=+2
. Hence, ) 0

∧=
8=1
(��

8
→ ��

8
) → (�=+1 ∨ ��

=+2
).

We may conclude that the rule +′= is admissible in ). �

The following theorem is a direct consequence of the previous Corollary 6.1.5,

Lemma 6.1.7 and Theorem 2.3.7.

6.1.8 Theorem. Let ) be a subclassical recursively enumerable extensible set theory.
If ) is extensible, then the propositional admissible rules of ) are exactly those of
intuitionistic logic, i.e., p∼) = p∼Int.
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Finally, the following corollary is immediate from Theorem 6.1.4.

6.1.9 Corollary. Let ) be a subclassical recursively enumerable extensible set
theory, and ! be a sentence in the language of set theory. If ! is )-extensible, then
Tautprop() + !, `Int) = Tautprop(`Int).

Another route to proving this theorem is to apply the following result of

Visser (reformulated in our terminology).

6.1.10 Theorem (Visser [92, Lemma 4.1]). Let (), `Int) be a formal system with
Tautprop(), `Int) = Tautprop(`Int). If ) is extensible, then (), `Int) is propositional
rule loyal.

The Diaconescu–Goodman–Myhill-Theorem 1.1.1 entails in combination

with Corollary 6.1.9 that the axiom of choice, AC, is not IZFR-extensible.

6.1.11 Question. Is the axiom of choice CZF-extensible? a

6.2 Extended models
In this section, we assume the existence of a proper class of inaccessible cardinals.

While this assumption is not strictly necessary,28 we find it the most elegant as it

allows us to ignore any worries about size restrictions.

We will prove the extension property for a variety of constructive set theories

by providing an adaptation of the blended models of the previous Chapter 5:

the extended models. Recall that a Kripke model for set theory is a first-order Kripke

model of the form ( , ≤, {�E}E∈ , { 5EF}E≤F∈ , {�E}E∈ ), where {�E}E∈ is a

collections of domains, { 5EF}E≤F∈ a collection of transition functions between

domains, and {�E}E∈ a collection of interpretations of the ‘∈’-predicate. Note

that the domains �E are assumed to be sets.

6.2.1 Definition. Let " = ( , ≤, {�E}E∈ , { 5EF}E≤F∈ , {�E}E∈ ) be a Kripke
model of set theory. The extended model "+,

"+ := ( +, ≤, {�E}E∈ + , { 5EF}E≤F∈ + , {�E}E∈ +),

is defined as follows:

(i) Let A ∉  , the so-called new root. Then extend  and ≤ as follows:

 + =  ∪ {A} and A ≤ E for all E ∈  +

(ii) The domains �E for E ∈  are already given. The domain �A at the new

root is defined inductively as follows:

28First, we could also work with Kripke models that have (definable) class domains. Second,

we could apply the downwards Löwenheim–Skolem-Theorem (which does hold in our classical

metatheory) to work, without loss of generality, only with models with countable domains.



70 Chapter 6. Extended models: extensibility & admissible rules

(a) �0

A = ∅,
(b) �

A consists of functions G with dom(G) =  + such that:

i. G(A) ⊆ ⋃
�< �

�
A ,

ii. G(E) ∈ �E for all E ∈  ,
iii. if H ∈ G(A), then H(E)�EG(E) for all E ∈  ,
iv. if E, F ∈  with E ≤ F, then G(F) = 5EF(G(E)).

(c) �A =
⋃

∈� �

A , where � is the least inaccessible cardinal � > | | +∑

E∈ |�E |.

(iii) The membership relation �E at E ∈  are already defined; at the new root

A, define by H�AG if and only if H ∈ G(A)

(iv) The transition functions 5EF : �E → �F are already defined for E, F ∈  
with E ≤ F. Given E ∈  , define 5AE : �A → �E by 5AE(G) = G(E). a

To help the reader digest this construction, we will give a simple example

and provide some general intuition for the construction. Let " be any classical

model for set theory. In other words, " is a one point Kripke model; call its

single point E. The extended model "+ has then a new root A. An element

of the root �A—a set at the root—is a function G with domain {A, E} such that

G(A) ∈ �A and G(E) ∈ �E . Moreover, if H ∈ G(A), then H(E)�EG(E). Intuitively, a
set G at node A may thus already contain some elements at the root A butmay also

collect new elements when transitioning to E. Another way of thinking about

this construction is as adding a new root whose elements are approximations of

the sets already existing in the model we are starting from.

The next step is to observe that many set-theoretical axioms are extensible.

Recall that we abbreviate the axioms of extensionality, empty set, pairing and

union with (Ext), (Emp), (Pair), and (Un), respectively.

6.2.2 Theorem. The following axioms and axiom schemes are Ext-extensible: ex-
tensionality, empty set, pairing, union, ∈-induction, separation and Δ0-separation,
power set, replacement, and exponentiation. Moreover, the axiom of strong infinity is
{Ext, Emp, Pair,Un}-extensible.
Proof. We will prove all statements of the theorem by assuming that a model

" satisfies the relevant axiom or scheme and then show that the extended

model "+ satisfies them as well.

For extensionality, let G, H ∈ �A . For the non-trivial direction, assume that

A  ∀I(I ∈ G ↔ I ∈ H). By persistence and extensionality in ", we have

E  G = H for every E ∈ "; hence, G(E) = H(E) for all E ∈ ". To see that also

G(A) = H(A), observe that I ∈ G(A) if and only if I�AG(A). By assumption, the

latter is equivalent to I�AH(A), which holds if and only if I ∈ H(A). In conclusion,

H(A) = G(A).
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For the empty set axiom, let 4E be the unique (by extensionality) witness for

the empty set axiom at E ∈  . Define a function 4 with domain  + such that

4(E) = 4E for 4 ∈  and 4(A) = ∅; by uniqueness 4 is defined and it follows that

4 ∈ �A . To see that 4 witnesses the empty set axiom, let G ∈ �A . We have to show

that A  ¬G ∈ 4. For this, it suffices to show that for all E ≥ A, E 1 G ∈ 4 but this
is trivially true as 4(A) is empty and 4E is the empty set for all E ∈  .

For the pairing axiom, let G, H ∈ �A . By pairing and extensionality in ",

there is a unique ?E ∈ �E such that E  ∀I(I ∈ ?E ↔ I = G(E) ∨ I = H(E)) for all
E ∈  . Define ? to be the function with domain  + such that ?(A) = {G, H} and
?(E) = ?E for all E ∈  . Clearly, ? ∈ �A is defined by uniqueness of the ?E . To

see that ? indeed witnesses the pairing axiom, observe that, clearly, A  G ∈ ?
and A  H ∈ ?. Moreover, if A  I ∈ ?, then it follows by definition of ? that

A  I = G ∨ I = H.
For the union axiom, let G ∈ �A . As before, by extensionality and the union

axiom in ", we can find a unique witness DE such that E  DE =
⋃
G(E) for

every E ∈  . Then define a function D with domain  + such that D(E) = DE for
all E ∈  and D(A) = ⋃{H(A) | H ∈ G(A)}. To verify that indeed D ∈ �A , note that

H ∈ D(A) implies that there is some I ∈ G(A) such that H ∈ I(A). Now by H, I ∈ �A ,

we know that E  H(E) ∈ I(E) ∧ I(E) ∈ G(E), so, clearly, E  H(E) ∈ D(E). It is now
a straightforward computation to see that D witnesses the union axiom at A.

Regarding ∈-induction, suppose for contradiction that

A 1 ∀G(∀H ∈ G !(H) → !(G)) → ∀G!(G).

Then there is some E ≥ A such that E  ∀G(∀H ∈ G !(H) → !(G)) but E 1 ∀G!(G).
As " satisfies ∈-induction, it must be that E = A, and so by persistence "+ 
∀G(∀H ∈ G!(H) → !(G)). By ∈-induction in ", "  ∀G!(G), so all failures of

this instance of ∈-induction must happen at the new root A. Thus, as A 1 ∀G!(G),
it follows that there is some G0 ∈ �A such that A 1 !(G0). Using the antecedent of

∈-induction, this means that there must be some G1 ∈ �A such that A  G1 ∈ G0

and A 1 !(G1). Iterating this construction, we obtain a sequence {G=}=∈$ such

that G=+1 ∈ G=(A). This straightforwardly gives rise to an infinitely decreasing

∈-chain. A contradiction.

Next, we consider the separation schema. Let G ∈ �A and !(H) be a formula,

possibly with parameters. Now, for every E ∈  , let BE be the unique result of
separating from G(E) with ! and parameters ?̄(E) at node E. It follows with

persistence and extensionality that the function B with domain  + such that

B(E) = BE and B(A) = {H ∈ G(A) | A  !(H, ?̄)} is a well-defined element of �A ; if

 is the least such that G ∈ �
A , then it is easy to see that G ∈ �+1

A . Then B is a

witness for separating from G with ! at A: A  I ∈ B is equivalent to I ∈ B(A),
and the latter holds by definition if and only if A  !(I, ?̄).

For the power set axiom, consider G ∈ �A and let � < � such that G ∈ ��
A .

If H ∈ �A such that A  H ⊆ G, then H(A) ⊆ G(A) and hence H ∈ ��
A as well. Let



72 Chapter 6. Extended models: extensibility & admissible rules

?(A) consist of those H ∈ �A such that A  ∀I(I ∈ H → I ∈ G), then ?(A) ⊆ ��
A .

Moreover, let ?(E) be the unique element of �E such that E  ?(E) = P(G(E))
(using extensionality). By persistence, ? is a well-defined element of �A . It is

then straightforward to check that ? is the power set of G at A.

For replacement, let G ∈ �A and ! be a formula (potentially with parameters)

such that A  ∀H ∈ G∃!I!(H, I). Given this, let 0(A) consist of those I ∈ �A for

which there exists some H ∈ �A with A  !(H, I). Moreover, let 0(E) be the

witness for applying replacement with ! on G(E) at E. By inaccessibility of �
and persistence in "+, it follows that 0 ∈ �A . As in the previous cases, it is now

straightforward to check that 0 witnesses replacement.

For exponentiation, let 0, 1 ∈ �A . Let I(A) be the set of functions from 0 to 1

at A, and let I(E) be the set of functions from 0(E) to 1(E) at the node E. It follows

that I ∈ �A , and it is easy to check that I witnesses the exponentiation axiom.

Recall that the axiomof strong infinity asserts the existence of a least inductive

set. So, for every E ∈  , let $E ∈ �E be this least inductive set. At the new root A,

we recursively construct sets =A as follows: Let 0A be the empty set as defined

from the empty set axiom. Then, given =A , use pairing and union, to obtain

(= + 1)A such that A  (= + 1)A = =A ∪ {=A}. As each $E is the least inductive set
at E, it must be the case that E  =A(E) ∈ $E for all E ∈  . Therefore, the set G,
defined by G(A) = {=A | = ∈ $} and G(E) = $E for E ∈  , is a well-defined set at

A, i.e., G ∈ �A . By construction, we must have that if A  “H is inductive”, then

A  G ⊆ H. Hence G witnesses strong infinity. �

A combination of Theorem 6.2.2 and Lemmas 6.1.2 and 6.1.3 yields the next

corollary. An application of Theorem 6.1.8 then yields Corollary 6.2.4.

6.2.3 Corollary. The theories IZFR, CZFER, ECST and BCST are extensible.
6.2.4 Corollary. The propositional admissible rules of IZFR, CZFER, ECST, and
BCST are exactly those of intuitionistic logic, i.e., all of these systems are propositional
rule loyal (and, a fortiori, propositional tautology loyal). In other words, if (), `Int) is
one of these formal systems, then p∼(),`Int) = p∼Int.

It seems difficult to use the method above to prove that the axiom schemes of

collection, strong collection and subset collection are extensible. The reason for

this is that these axiom schemes do not require that their witnesses are unique—
this is in contrast to their weakened versions, replacement and exponentiation.
6.2.5 Question. Are the axiom schemes of collection, strong collection and

subset collection extensible? a
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Chapter 7
OTM-realisability

In the chapters so far, we studied constructive set theories through Kripke

semantics. Now, we move to a completely different approach. Realisability

formalises how a statement can be effectively or explicitly established. For

example, in order to realise a statement of the form ∀G∃H! according to Kleene’s

realisability semantics for arithmetic [48], one needs to come up with a uniform

method of obtaining a suitable H from any given G. Such a method is often taken

to be a Turing program. Koepke’s [50] Ordinal TuringMachines (OTMs) provide

a natural approach for modelling transfinite effectivity. Given such a transfinite

generalisation of Turing computability, it becomes a natural application to obtain

notions of realisability based on models of transfinite computability. Such a

concept was first defined and briefly studied by Carl [11, Section 9.4.1]. In

contrast to Turing machines, for which input and output are finite strings and

can thus be encoded as natural numbers, OTMs can operate on (codes for)

arbitrary sets. The natural domain for the concept of transfinite realisability

obtained from OTMs is thus set theory rather than (transfinite) arithmetic. In

this chapter, we investigate how OTM-realisability corresponds to provability in

various systems of intuitionistic set theory.29

Given the presence of well-established concepts of infinitary logics, proofs,

and their intuitionistic variants, it is more natural to consider how these, rather

than classical provability in finitary logic, relate to OTM-realisability. We show

that proofs in the infinitary intuitionistic proof calculus proposed by Espíndola

[19] correspond to OTM-realisations. In a final step, we show that (finitary)

Kripke–Platek set theory IKP is propositional rule loyal.

Previous notions of realisability for set theory were developed by Myhill,

Friedman, Beeson, McCarty, Rathjen and others for various intuitionistic and

This chapter is based on joint work with Merlin Carl and Lorenzo Galeotti [12]: Merlin Carl,

Lorenzo Galeotti and Robert Passmann. ‘Realisability for infinitary intuitionistic set theory’. In:

Annals of Pure and Applied Logic (2022). Forthcoming.

29This question was first tackled by Carl in the context of finitary logic in a note [9]. The

present chapter in collaboration with Carl and Galeotti considerably expands the note [9].
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constructive set theories [5, 6, 24, 63, 64, 75, 77, 76] making explicit or implicit

use of partial combinatory algebras. This notion differs from our realisability

in the following two senses. First, the treatment of the existential quantifier is

different: while realisability with partial combinatory algebras usually requires

witnesses for existential quantifiers to be computed uniformly, OTM-realisability

allows to take parameters, e.g., witnesses selected by universal quantifiers,

into account. Second, OTM-realisability allows to treat infinitary languages of

arbitrary size while realisability with partial combinatory algebras is—in its

full generality—restricted to the countable infinite (as, for example, the natural

numbers form a partial combinatory algebra if one fixes an appropriate coding

and application of partially recursive functions). Of course, it may be possible to

circumvent these restrictions of realisability with partial combinatory algebras

by requiring additional structure on the partial combinatory algebras involved.

This chapter is organised as follows. After introducing some necessary

preliminaries and codings in Section 7.1, we define a notion of OTM-realisability

for set theory in Section 7.2. Sections 7.3 and 7.4 provide our main results

on soundness on both the level of infinitary intuitionistic first-order logic as

well as the level of set theory. We put our machinery to use in Section 7.5 and

prove a result about the propositional admissible rules of finitary intuitionistic

Kripke–Platek set theory.

7.1 Preliminaries
As this chapter makes use of infinitary logic as well as Ordinal Turing machines

(OTMs), we will now introduce the necessary preliminaries.

7.1.1 Infinitary intuitionistic logic
We will denote the class of ordinals by Ord, the class of binary sequences of

ordinal length by 2
<Ord

, and the class of sets of ordinal numbers by ℘(Ord).
We fix a class of variables G8 for each 8 ∈ Ord. Given an ordinal , a context of
length  is a sequence x = 〈G8 9 | 9 < 〉 of variables. In this chapter, we will use

boldface letters, x, y, z, . . . , to denote contexts and light-face letters, G8 , H8 , I8 , . . . ,

to denote the 8-th variable symbol of x, y, and z, respectively. We will denote the

length of a context x by ℓ (x). The formulas of the infinitary language ℒ∈∞,∞ of set

theory are defined as the smallest class of formulas closed under the following

rules:

(i) ⊥ is a formula;

(ii) G8 ∈ G 9 is a formula for any variables G8 and G 9 ;

(iii) G8 = G 9 is a formula for any variables G8 and G 9 ;
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(iv) if ! and # are formulas, then !→ # is a formula;

(v) if ! is a formula for every  < �, then
∨

<� ! is a formula;

(vi) if ! is a formula for every  < �, then
∧

<� ! is a formula;

(vii) if x is a context of length , then ∃x! is a formula; and,

(viii) if x is a context of length , then ∀x! is a formula.

By this definition, our language allows set-sized disjunctions and conjunc-

tions as well as quantification over set-many variables at once. However, infinite

alternating sequences of existential and universal quantifiers are excluded from

this definition.

7.1.1 Remark. Whilewe only consider the logicℒ∞,∞ in this chapter, our results

can be easily adapted to logicsℒ�,� for regular cardinals �. In particular, notions

of realisability for these logics can be obtained through �-Turing machines

(�-TMs; see [11]). a
Whenever it is clear from the context, we will omit the superscripts from the

quantifiers and write ∃ and ∀ instead of ∃ and ∀, respectively. It will often be

useful to identify a variable G with the context x = 〈G〉 whose unique element is

G. In such situations, we will write “∃G!” for “∃x!” and “∀G!” for “∀x!”. A
variable G8 is called a free variable of a formula ! whenever G8 appears in ! but

is not in the scope of a quantification over a context containing G8 . As usual,

a formula without free variables is called a sentence. We say that x is a context
of the formula ! if all free variables of ! appear in x. As usual, we will write

!(x) if ! is a formula and x a context of !. Similarly, given two contexts x and y
with G 9 ≠ H 9′ for all 9 < ℓ (x) and 9′ < ℓ (y), we will write !(x, y) if the sequence
obtained by concatenating x and y is a context for !.

Let � be an ordinal, x be a context of length �, and H be a variable. Then

“x ∈ H” is an abbreviation of the following infinitary formula:

∃ 5∃3∃�z[“ 5 is a function whose domain is the ordinal 3” ∧©«
∧
9′< 9<�

(I 9′ ∈ I 9 ∧ I 9 ∈ 3 ∧ 5 (I 9) = G 9) ∧ ∀G
©«G ∈ 3→

∨
9<�

I 9 = G
ª®¬ª®¬ ∧ 5 ∈ H].

Intuitively, “x ∈ H” expresses that there is a function 5 such that 5 = x and

5 is contained in the set H. We will later see in Lemma 7.2.10 that “x ∈ H” is

interpreted with the intended set-theoretical meaning, namely that the set H

contains the sequence x.
As in the case of finitary realisability, bounded quantification will play a

crucial role for transfinite realisability. For this reason, we extend the classical
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abbreviations as follows: given a formula ! and an ordinal  ≥ $ we introduce

the bounded quantifiers as abbreviations, namely,

∀x ∈ H ! for ∀x(x ∈ H → !),

and

∃x ∈ H ! for ∃x(x ∈ H ∧ !).
The bounded quantifiers for  < $ are defined as usual. The class of Δ$

0
-

formulas consists of those formulas that have no infinitary quantifiers and

whose quantifiers are bounded.30 Similarly, a formula belongs to the class of

Σ$
1
-formulas if it is of the form ∃G# for some Δ$

0
-formula #. We extend this

definition to formulas with infinitary quantifiers as follows. An infinitary

formula is a Δ∞
0
-formula if all the quantifiers appearing in the formula are

bounded. Furthermore, the class of Σ∞
1
-formulas consists of the formulas of the

form ∃x# for some Δ∞
0
-formula # and an ordinal .

7.1.2 Remark. Note that the previous definition of infinitary Δ∞
0
-formulas

requires the bounding set to contain the sequence 〈G 9 | 9 < 〉 rather than just

each individual element of that sequence. This is necessary to lift the usual

absoluteness results to the infinitary case. Indeed, the following alternative

definition and straightforward generalisation of the standard definition of

bounded formulas does not provide absoluteness. If we define

∀x ∈ H! := ∀x ©«
∧
9<

G 9 ∈ H → !
ª®¬ ,

and

∃x ∈ H! := ∃x ©«
∧
9<

G 9 ∈ H ∧ !
ª®¬ ,

then it is straightforward to see that the formula

!(H) := ∃$x ∈ {0, 1} x ∉ H

is not absolute: it is easy to see that if PV($) ≠ PL($), then L |= ¬!(L$L

1

) but
!(L$L

1

) is true. a

7.1.2 Ordinal Turing machines
OrdinalTuringmachines (OTMs, for short; sometimes also calledKoepkemachines)
were introducedbyKoepke [50] as a transfinite generalisation of Turingmachines

30Note that Δ$
0
= Δ0 and Σ

$
1
= Σ1 where Δ0 and Σ1 are the usual classes of formulas in the

Levy hierarchy.
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and will be the main ingredient for our definition of infinitary realisability. We

will only give a basic intuition for thismodel of transfinite computability and refer

to the relevant literature (e.g., [50] or [11, Section 2.5.6]) for a full introduction to

OTMs.

An Ordinal Turing machine has the following tapes of unrestricted transfinite

length: finitely many tapes for the input, finitely many scratch tapes, and one

tape for the output. Ordinal Turing machines run classical Turing machine

programs and behave exactly like standard Turing machines at successor stages

of a computation. At limit stages, the content of the tapes is computed by taking

the point-wise inferior limit, the position of the head is set to the inferior limit of

the head positions at previous stages, and the state of the machine is computed

using the inferior limit of the states at previous stages (see [11, Section 2.5.6] for

more details).

Ordinal Turingmachines are a verywell-behavedmodel of transfinite comput-

ability and many results from classical computability theory can be generalised

to OTMs (e.g., [50, 16, 51, 78, 13, 14, 82]). For this reason, we will describe

OTM-programs using high-level pseudo algorithms as usually done with Turing

machines. We fix a computable coding of Turing machine programs as natural

numbers. In the rest of the chapter, we will identify a program with its natural

number code.

In this chapter, we consider machines that run programs with parameters.

For this purpose, we fix one of the input tapes as the parameter tape. A parameter

is a binary sequence of ordinal length, i.e., an element of 2
<Ord

, which is written

on the parameter tape before the execution of the program begins. Using

classical techniques (see below), we can code sets of parameters in a single

sequence ? ∈ 2
<Ord

. Therefore, we can say that an OTM executes a program

2 with parameter % ⊂ 2
<Ord

if a code for % is written on the parameter tape

before the program is executed.31 Given a program 2 and a parameter % ⊂ 2
<Ord

,

and two sequences 0 and 1 in 2
<Ord

we will write 2%(0) = 1 if an OTM which

executes 2 with parameter % and input 0, outputs 1. Given a class function

5 : 2
<Ord→ 2

<Ord
we say that a program 2 computes 5 with parameter % ⊂ 2

<Ord
if

for every binary sequence 1 we have 2%(1) = 5 (1). Finally, we will make use of

the following convention. Given a binary sequence G of ordinal length, we write

G0
for the empty sequence, G+1

for the sequence GG if  is an ordinal, and G�

for the sequence

⋃
<� G


in case � is a limit ordinal.

7.1.3 Coding
The objects of our notion of realisability will be arbitrary sets and not just ordinal

numbers. Therefore, we need to be able to perform computations on sets. As

31We assume that the parameters appear in a fixed order to avoid that additional information

is coded into the order.
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OTMs work on binary sequences of ordinal length, we have to code arbitrary

sets as sequences in 2
<Ord

. However, working directly on binary sequences of

ordinal length is cumbersome. We therefore use a concatenation of two codings

given by the following injective class functions:

(i) A low-level coding

2
<Ord→ Ord ∪ ℘(Ord) ∪ (Ord × ℘(Ord)) ∪ (Ord × ℘(Ord))<Ord

allowing us to encode ordinals, sets of ordinals, pairs of sets of ordinals

and ordinals, and sequences of such pairs as binary sequences of ordinal

length.

(ii) A high-level coding
C : (Ord × ℘(Ord)) → V

encoding arbitrary sets as a pair of an ordinal and a set of ordinals.

By concatenating both injective functions, we obtain a coding of arbitrary sets

as binary sequences of ordinal length. The reader familiar with OTMs and

codings may wish to skip forward to Section 7.2 and refer back to this section if

necessary.

Low-level coding

While not difficult, the technical details of the low-level coding are complicated

and cumbersome (just like in the case of codings for ordinary Turing machines).

Wewill now introduce a coding of sets of ordinals as binary sequences of ordinal

length and prove a few basic properties of this coding.

7.1.3 Remark. Note that sets of ordinals can in principle also be coded using

characteristic functions. Unfortunately, since the largest ordinal in the set is not

computable from this coding, bounded searches are not computable with this

simple coding and we would not be able to compute basic operations over sets,

such as computing the image of a set under a computable function. a
Given a binary sequence 1 ∈ 2

<Ord
and a set - ∈ ℘(Ord) of ordinals we say

that 1 codes - if for � = sup{2 + 2 |  ∈ -} we have 1(� + 1) = 1(� + 2) = 1, for

every  ≤ � we have that 1(2) = 0, and for  < � we have  ∈ - if and only if

1(2 + 1) = 1. Intuitively, a binary sequence encodes a set of ordinals - if it is of

the form

0800810 . . . 080 . . . 11 . . .

where 8 = 1 if and only if  ∈ -. The final bits 11 mark the end of the code of

the set, i.e, no further bits of the sequence matter for evaluating the code.32

32For example, 0 is encoded by any sequence starting with 011, 1 = {0} is encoded by any
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In Section 7.1.3, we code sets as pairs 〈, -〉 consisting of an ordinal  and a

set - of ordinals including . For this reason, we will now extend the previous

coding to pairs in Ord×℘(Ord). The idea is to start with a code of- as described

before andencode  in the finalpart of the binary sequence. A sequence 1 ∈ 2
<Ord

encodes 〈, -〉 if it encodes - and for all � + 2 < � < � + 3 +  < � we have

1(�) = 1(�) = 0, and 1(� + 3 + ) = 1. Intuitively, a pair 〈, -〉 ∈ Ord × ℘(Ord)
is encoded by a sequence of the form

0800810 . . . 08�0 . . . 11︸                    ︷︷                    ︸
Code of - of length � + 2

0

1000 . . .

where, as before, 8� = 1 if and only if � ∈ -.

We take " to be the class function that associates to every sequence encoding

a pair 〈, -〉 the corresponding pair. It is easy to see that " is bĳective.

We will say that a program 2 computes a class function � : Ord × ℘(Ord) →
Ord × ℘(Ord) with parameters % if an OTM executing 2 with parameter %, and

a sequence encoding a pair 〈, -〉 ∈ Ord × ℘(Ord) as input, returns a sequence

that encodes �(〈, -〉). Moreover, we will say that 2 computes the class function

� : ℘(Ord) → ℘(Ord) with parameter % if for every set - ∈ ℘(Ord), an OTM

executing 2 with parameter %, and a sequence that encodes 〈0, -〉 as input,

returns a sequence that encodes 〈0, �(-)〉.
The previous coding can be easily extended to (Ord×℘(Ord))<Ord

. We encode

a sequence 〈〈� , -�〉 | � < �〉 using the sequence obtained by concatenating the

encodings "−1(〈� , -�〉) in the order they appear in 〈〈� , -�〉 | � < �〉 followed

by a sequence of four 1s to mark the end of the code of the sequence. Therefore,

a sequence 〈〈� , -�〉 | � < �〉 is coded as follows:

080
0
080

1
0 . . . 080�0

0 . . . 11︸                     ︷︷                     ︸
Code of -0

0
0

1 081
0
081

1
0 . . . 081�1

0 . . . 11︸                     ︷︷                     ︸
Code of -1

0
1

1 . . . 1111

where, as before, 8
�
� = 1 if and only if � ∈ -� for all � < �. As mentioned above,

this coding induces a notion of computability over (Ord × ℘(Ord))<Ord
.

7.1.4 Lemma. Let - be a set of ordinals. Then the following are OTM-computable:

(i) the function that, given codes for an ordinal  and a sequence -, returns 1 if
 ∈ -, and 0 otherwise,

(ii) the function that, given codes for an OTM-computable function 5 : Ord→ Ord

and -, returns a code for the image { 5 () |  ∈ -} of - under 5 ,

sequence starting with 01011, and $ is encoded by any sequence starting with the sequence

(01)$011 = 0101010101 . . .︸            ︷︷            ︸
length $

011.
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(iii) the function that, givens codes for 〈〈� , -�〉 | � < �〉 and an ordinal � < �,
returns a code for 〈� , -�〉,

(iv) the function that, given codes for 〈〈� , -�〉 | � < �〉 andan ordinal� < �, returns
a code for the list obtained by removing the �-th element from 〈〈� , -�〉 | � < �〉,

(v) the function that, given codes for 〈〈� , -�〉 | � < �〉 and 〈, -〉, returns a code
of the list 〈〈� , -�〉 | � < � + 1〉 where 〈� , -�〉 = 〈, -〉,

(vi) bounded searches through sets of ordinals.

Proof. Given a code of a set of ordinals - as a binary sequence, and given

some ordinal  such that  < sup{2� + 2 | � ∈ -}, an OTM can stop at the

position of the tape which contains the 8 bit of the code of -. In what follows,

we will refer to this the cell of the tape as the position of 8 on the tape. This can

be computed by the program that moves the head of the tape left increasing a

counter � each time that the head is moved to a cell with an even index. Once �
reaches , the machine moves to the next position of the tape and stops.

For (i), consider the program that goes through the code of - until it reaches

the cell containing 8, copies the content of that cell to the output tape and then

stops.

For (ii), consider the program that runs through the representation of - and

for each  ∈ -, first computes 5 (), then writes a 1 in the position of 8 5 () on the

output tape, and saves the index of the first cell of the output tape after which

the output tape was not modified in an auxiliary counter �. Once the program

sees the sequence 011 in the representation of -, it moves the head of the output

tape to position �, writes 011 and stops.

For (iii), the program goes trough the code of 〈〈� , -�〉 | � < �〉 while

increasing a counter  as follows: each time that the program sees the sequence

011, it looks for the first 1 after it and then increases  by 1. As soon as  = �, the
program copies the input tape from the current position until the first occurence

of the sequence 011, then it copies all 0s following this and stops as soon as it

reaches a cell with a 1.

For (iv), the program goes trough the code of 〈〈� , -�〉 | � < �〉 while

increasing a counter  as for (iii) and copying the input tape on the output

tape. Once � =  the program continues to go through the representation of -

without copying it to the output tape the until it sees the first occurrence of the

sequence 011 and the next 1 after that. Then the program continues copying the

input tape to the output tape until it sees the sequence 1111.

Note that (v) can be trivially computed by an algorithm that copies the

representation of 〈〈� , -�〉 | � < �〉 on the output tape except for the sequence

1111. Then the program copies the representation of 〈, -〉 on the output tape

and writes the sequence 1111 when done.



7.1. Preliminaries 83

Finally, (vi) can be computed by combining the previous items. Note, in

particular, that our choice of coding allows for an OTM to recognise when it

reaches the end of a code. �

By Lemma 7.1.4 we are now justified in treating tapes as queues. We will

make plenty of use of this convention. Moreover, we will use the expressions

“bounded search”, “bounded search through a set”, and “search through a

set” interchangeably. If 2 is a code for an OTM-program, % a parameter-set,

and - and . are sets of ordinals, we will write 2%(-) = . to mean that an

OTM-computation of the program 2 with parameters % and a code for- as input

halts with a code for . on the output tape. We write 2%(-)↑ if this computation

does not halt.

By using the coding defined in the previous section we can extend the notion

of computability to the set-theoretic universe V. Given two sets - and ., we

write 2%(-) = . when, given a code 0 for -, 2%(0) computes a code of .. Note

that the class relation 2% on V is in general not a function but a multi-valued

function—indeed, the set coded by the output of 2% could depend on the specific

code of -. Figure 7.1.5 shows how the codings interact with each other.

V

��

'
��

oo
0 ↦→ 30(�0)

Ord × ℘(Ord)
F

��

oo
"

2
<Ord

f

��

V
oo
0 ↦→ 30(�0)

Ord × ℘(Ord) oo "
2
<Ord

7.1.5 Figure. This diagram illustrates the stratification of codings used in this

chapter. The double arrow indicates the fact that ' := {〈-,.〉 | 2%(-) = .}
where 2 is the program computing 5 with parameter-set % could be a multi-

valued function. a

Departing from this low-level coding, we need to encode arbitrary sets

as pairs of an ordinal and a set of ordinals to use them as the objects of our

investigation.

7.1.6 Convention. We will follow the usual simplifying convention when

working with OTMs (and, in fact, any other kind of machine), and confuse

objects with their codes. For example, we might say that ‘an OTM takes an

ordinal  as input’ when we mean, of course, that it ‘takes a (low-level) code for

an ordinal  as input,’ and similar for sets of ordinals, sequences, etc. It will

always be clear from the context when we mean low-level codes because OTMs

operate directly only on binary sequences (and not on ordinals or arbitrary

sets). a
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High-level coding

We will now define a high-level coding for arbitrary sets. Recall that the Gödel

class function g extends the usual Cantor pairing function on natural numbers

and maps pairs of ordinals to ordinals, see, e.g., [44, p.31]. Given a set - we will

denote its transitive closure by tc(-) (see, e.g., [44, p.64]).
7.1.7 Definition. Let - be a set. A pre-code for - is a set � of ordinals such

that there is a bĳection 3� :  → tc({-}) with the property that g(�, �) ∈ � if

and only if 3�(�) ∈ 3�(�). We say that � is a pre-code if it is a pre-code for some

set -. a
7.1.8 Definition. The high-level coding C is the partial surjective class function
Ord × ℘(Ord) → V given by C(〈�, �〉) = 3�(�). If C(〈�, �〉) = G, we say that

〈�, �〉 is a code of G or that it encodes G. We will also say that � is the representative
of G in �. a

We say that a tuple 〈�, �〉 is a code if it is a code of some set G. We say that a

code 2 is based on the pre-code � for H if 2 = 〈�, �〉 for some ordinal �. If 2 is a
code for G based on a pre-code � for H, we will write �2 for the representative of
G in �, and 32 for the bĳection 3� .

The pre-code on which a code is based may contain much more information

than actually needed for the coding. For this reason, we introduce the following

notion of essential domain containing only the information that is strictly needed

to recover the set.

7.1.9 Definition. The essential domain of a code 2 is the set

essdom(2) := { ∈ dom(32) | 32() ∈ tc({32(�2)})}. a
Intuitively speaking, the essential domain of a code 2 of a set G contains

the transitive closure of G as coded by 2 but not more than that. There can be

many codes for one set. For this reason, we introduce the following notion of

isomorphism between codes. Crucially, these isomorphisms are only between

the essential domains of a code.

7.1.10 Definition. Let 0 and 1 be codes. A bĳection 5 : essdom(0) →
essdom(1) is called an isomorphism of codes if 5 (�0) = �1 and 30() = 31( 5 ())
for all  ∈ essdom(0). a

As usual, we will say that two codes are isomorphic if there is an isomorphism

of codes between them.

7.1.11 Lemma. Let - and . be sets with codes 0 and 1, respectively. If a map
5 : essdom(0) → essdom(1) is a code-isomorphism, then - = ..
Proof. We see that - = 30(�0) = 31( 5 (�0)) = 31(�1) = .. �

We will now prove some helpful properties of (high-level) codes. In doing

so, we will rely on Lemma 7.1.4 and Convention 7.1.6.
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7.1.12 Lemma. Let 0 and 1 be codes of sets.

(i) The set essdom(0) is computable, i.e., given a code for 0, we can compute a binary
sequence 1 ∈ 2

<Ord such that 1() is 1 if and only if  ∈ essdom(0).

(ii) The function that given  ∈ dom(30) returns the unique � ∈ dom(31) such
that 30() = 31(�) if such an ordinal exists and returns dom(31) otherwise is
OTM-computable.

(iii) The function that given  ∈ dom(30) and � ∈ dom(31) returns 1 if and only if
30() ⊆ 31(�) is OTM-computable.

(iv) There is a program that, given a code of a sequence 〈0� | � < 〉 of codes of sets,
returns a code for the set {30�(�0�) | � < }.

(v) Let ! be a computable property of sets, i.e., there is a program 2, possibly with
parameter %, such that 2%(0) = 1 if and only if ![./G] for every code 0 of a set
.. There is a program, possibly with parameters, that given a code of a set - as
input computes a code for {. ∈ - | ![./G]}.

In particular, note that the relations - ∈ ., - ⊆ ., and - = . are computable.

Proof. For (i), wemake use of an auxiliary tape whichwewill use as a queue in

virtue of Lemma 7.1.4. Given a code 0 = 〈�0 , �〉, the computation of essdom(0)
is implemented via a breadth-first search as follows. Enqueue �0 . Then run

the following loop until there are no elements left in the queue: Dequeue the

first element of the queue, say ordinal �. Mark the �th position of the output

tape with a 1. Then conduct a bounded search through � during which all 
are enqueued whenever g(, �) ∈ �, and jump to the beginning of the loop.

This procedure must eventually stop because sets are well-founded so that only

set-many steps will be required to walk through the transitive closure of the set

represented by �0 .
For (ii) and (iii), we provide two procedures that recursively call each

other: Decode(0, 1, ) and Subset(0, 1, , �), where Decode(·, ·, ·) is the function
required for (ii) and Subset(·, ·, ·, ·) for (iii).

Let’s beginwithDecode(0, 1, ), which takes codes 0 = (�0 , �) and 1 = (�1 , �)
for sets as well as (a code for) an ordinal  ∈ dom(30) as input. First, the

program checks whether 30() = ∅ by conducting a bounded search looking for

a � ∈ dom(30) such that g(�, ) ∈ �. If such a � cannot be found, the program

looks for the unique � such that g(�, �) ∉ � for all � ∈ dom(3�) which must

exist as � is a pre-code. The program then returns this � and stops. If it turns

out that 30() is non-empty, then the program goes through all the ordinals

� ∈ dom(31) and calls Subset(0, 1, , �) and Subset(1, 0, �, ) to check whether

30() = 31(�). If that is the case, then the program returns �. If no such � is

found, it writes dom(31) on the output tape.
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Next, consider Subset(0, 1, , �), which takes as input two codes 0 = (�0 , �)
and 1 = (�1 , �). This procedure should return 1 in case 30() ⊆ 31(�) and 0

otherwise. To do so, conducts a bounded search on � ∈ dom(30) and checks

whether g(�, ) ∈ �. If so, let � = Decode(0, 1, �) and checks whether g(�, �) ∉ �.
If this is the case, write 0 on the output tape and stop. If the bounded search is

finished without interruption, write 1 on the output tape and stop.

To finish the proof of (ii) and (iii), note that the mutual recursive calls finish

after set-many steps of computation because sets are well-founded so that,

eventually, the case for ∅ will be reached.

For (iv), let 〈0� | � < 〉 be given with 0� = 〈�0� , ��〉. Set �0 = �00

and recursively construct �� for � ≤  as follows. If � = � + 1, then let

�� = sup({�� + � | � ∈ ��}) + 1. If � is a limit, then let �� = sup({�� | � < �}).
Note that all this can be straightforwardly computed by an OTM. Then define

the set � as follows:

� :=
©«
⋃
�<

{g(�� + �, �� + �) | �, � ∈ Ord such that g(�, �) ∈ ��}
ª®¬∪

{g(�� + �0� , �) | � < }.

Intuitively, the first half obtains a concatenation of all the sets coded by 0� and the

second half makes sure that all the sets coded by 0� are members of the new set.

Now, we might not yet have a code: if there are �, � <  such that the sets coded

by 0� and 0� are not disjoint, then their common elements will appear twice.

For this reason, we have to remove duplicates from � and obtain a pre-code

�′. This can easily be done with a bounded search, using the Subset(·, ·, ·, ·)
routine, replacing duplicate occurrences with the first occurrence and removing

those that are not needed. Finally, return the code 〈� , �′〉.
Finally, (v) is witnessed by the following algorithm: search through the code

of - and check whether ![./G] holds for each . ∈ -. If so, then the machine

adds a code of . to an auxiliary queue. Once the program has checked all the

elements of -, it uses the algorithm presented in the proof of (iv) to compute

the desired code from the sequence saved in the queue. �

Given that an OTM-program has access to the particular codes of a set, it

can make use of, for example, the well-ordering that is implicit in the coding. To

avoid any unwarranted side-effects of this, we introduce the notion of uniform
OTM-programs. Intuitively, anOTM-program is uniform if running the program

with codes for the same set(s) results in codes for the same set(s).

7.1.13 Definition (Uniform OTM-program). An OTM-program 2, potentially

using parameter %, is called uniform if whenever two codes 〈�0, �0〉 and 〈�1, �1〉
code the same set, then 2%(〈�0, �0〉) and 2%(〈�1, �1〉) are (potentially different)

codes of the same set. a
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7.1.14 Convention. As with the low-level coding, we will follow the usual

convention of (ordinal) computability theory and confuse objects and their codes.

As in Convention 7.1.6, it will always be clear (or does not matter) which coding

is applied when: for example, if we say that an OTM takes a set as input, then we

mean that it takes as input the low-level code of a high-level code for a set. a

7.2 OTM-realisability
In this section, we will define the realisability relation  as a relation between

potential realisers, viz., OTM programs with parameters, and formulas in the

infinitary language of set theory ℒ∈∞,∞.
7.2.1 Definition. A potential realiser is a tuple 〈2, %〉 consisting of an OTM-

program 2 and a set % of ordinals. a
7.2.2 Remark. In Kleene’s classical realisability with Turing Machines for

arithmetic, every element of the universe, i.e., every natural number, is com-

putable. To make sure that our notion has the same power, we use OTMs with

set parameters as potential realisers. OTMs with a single ordinal parameter

can only compute every element of the universe in case that V = L (Koepke [50,

Theorem 6.2]), andOTMswithout parameters can only compute countablymany

elements. The seeming imbalance of finite programs with arbitrary parameters

could be resolved by moving to the equivalent version of OTMs that can run

programs of transfinite length studied by Lewis [54] under the supervision of

Benedikt Löwe and Lorenzo Galeotti. a
As potential realisers are just OTMs with parameters, we can keep our

conventions and write A(G) = H in case that A = 〈2, %〉 is a potential realiser such

that 2%(G) = H. Similarly, we say that a potential realiser A = 〈2, %〉 computes a

function if the OTM running program 2 on parameters % computes that function.

To define the realisability relation, we subtly extend the infinitary language

of set theory with a constant symbol for every set in the universe V. To simplify

notation, and without creating any confusion, we use the same letters to denote

sets and their corresponding constant symbols.

7.2.3 Definition (Substitution of Contexts). Let x be a context of length ,
-̄ = 〈-8 | 8 < 〉 be a sequence of length , and ! be a formula in context x.
Then ![-̄/x] is the formula obtained by replacing the free occurrences of the

variable G8 in ! with the (constant symbol for the) set -8 . a
7.2.4 Definition (OTM-Realisability of ℒ∈∞,∞). The OTM-realisability relation

 is recursively defined as a relation between the class of potential realisers and

the class of formulas in the infinitary language of set theory ℒ∈∞,∞ as follows:

(i) A 1 ⊥,
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(ii) A  - = . if and only if A computes a code-isomorphism for every pair of

codes for - and .,

(iii) A  - ∈ . if and only if for any codes 0 for - and 1 for ., it holds that

A(0, 1) = 〈, B〉 such that 31() ∈ . and B  - = 31(),

(iv) A  !→ # if and only if for every B  ! we have that A(B)  #,

(v) A 
∨

<� ! if and only if A(0) = 〈�, B〉 such that B  !�,

(vi) A 
∧

<� ! if and only if A()  ! for all  < �,

(vii) A  ∃x! if and only if A(0) = (0, B) such that 0 is a code for -̄ and

B  ![-̄/x], and,

(viii) A  ∀x! if and only if A(0)  ![-̄/x] for every code 0 of every sequence -̄

of length ℓ (x).

A formula ! is realised if there is a potential realiser 〈2, %〉  !. In this situation,

we will call 〈2, %〉 a realiser of !. a
OTM-programs do not necessarily give rise to functions from sets to sets

because the result of a computation may depend on specific features of the code

of a set. Consider, for example, a realiser A  ∀G∃H(G ≠ ∅ → H ∈ G). Intuitively,
the realiser A must do the following: given a code for a non-empty G, compute

the code for a set H ∈ G. A simple implementation of this would be to search

through the code of G until the first element of G is found (if there is any) and

return the code for this element. However, there are obviously codes 20 and 21

of {0, 1} such that A(28) returns a code of 8 for 8 < 2. This shows that realisers

may make use of specific features of our codes and give rise to multi-valued

functions. In conclusion, it is natural to consider the following restricted notion

of realisability in which realisers cannot make use of the features of specific

codes.

7.2.5 Definition. We obtain uniform realisability by restricting the class of

potential realisers to uniform OTMs. a
As we will see in Theorem 7.2.8, if V = L, then the notions of uniform

realisability and realisability coincide. On the other hand, if V ≠ L then the two

notions may differ. Indeed, by Theorem 7.4.10 there is a model of set theory

in which the previous example provides a formula which is realised but not

uniformly realised. We are now ready to establish some basic properties of

OTM-realisability. First, we simplify the conditions for set-membership and

equality in our definition of realisability.

7.2.6 Lemma. Let - and . be sets.

(i) There is a uniform realiser of - = . if and only if - = ..
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(ii) There is a uniform realiser of - ∈ . if and only if - ∈ ..

Proof. For (i), the left-to-right direction follows from the definition of the

realisability relation  and Lemma 7.1.11. For the right-to-left direction assume

that - = .. Let 0 and 1 two codes for - based on the pre-codes � and �,

respectively. Let 2 be a code for a program that returns the code of the algorithm

Decode(·, ·, ·) from Lemma 7.1.12 and the ordinal Decode(0, 1, �0). We will

show that 〈2, ∅〉  - = .. To this end, we define 5 () = Decode(0, 1, ) for
every  ∈ essdom(0). It suffices to show that 5 is a bĳection from essdom(0) to
essdom(1) to see that it is a code-isomorphism.

First, to see that 5 is an injection, let  ∈ essdom(0). Then 30() ∈ - = .,

and there is � ∈ dom(31) such that 31(�) = 30() ∈ - = .. But then, by Lemma

7.1.12, 5 () = � and, since 31(�) ∈ tc({31(�1)}) = tc({.}), we have � ∈ essdom(1)
by definition. Now let  ≠ � be in essdom(0), then by injectivity of 30 we have

that 30() ≠ 30(�). Finally by Lemma 7.1.12 31( 5 ()) = 30() ≠ 30(�) = 31( 5 (�)).
So, 5 is injective.

Second, to see that 5 is surjective, let � ∈ essdom(1). Then, since - = .,

there is  ∈ essdom(0) such that 30() = 31(�). But then, by Lemma 7.1.12, 5 ()
is such that 31( 5 ()) = 30() = 31(�), and since 31 is a bĳection, we have that

5 () = � as desired. This concludes the proof of (i).

For (ii), first assume that there is a realiser 〈2, %〉  - ∈ .. Let 0 and 1 be
any two codes of - and ., respectively. By definition of the realisability relation

, the program 2 computes an ordinal  such that 31() = - and a realiser

of - = 31(�) so the claim follows from the previous case. For the right-to-left

direction it is enough to note that, using Decode(·, ·, ·), one can easily compute

the ordinal  such that 31() ∈ 31(�1) and the realiser of - = 31(). This

concludes the proof of (ii). �

7.2.7 Lemma. There is an OTM-program %min such that, for every constructible code
0 of a set - ∈ L, %min(2) computes the <L-minimal code of -, where <L is the canonical
well-ordering of L.
Proof. %min works by successively writing codes for all constructible levels

on the tape (see Koepke [50] for the details on how an OTM can write codes

for levels of the constructible hierarchy). For each such level, it checks whether

it contains a code for the set coded by 0 (i.e., -). As soon as such an L-level

L has been found, it searches through L in the <L-ordering to determine the

<L-minimal such code and write it to the output tape. �

7.2.8 Theorem. If V = L then the following statements are equivalent:

(i) ! is realised;

(ii) ! is uniformly realised.

Proof. Clearly, if a statement ! is uniformly realised, then it is realised.
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For the reverse direction, suppose that ! is realised, and that 〈2, %〉 realises
!. We may assume inductively that the statement holds for all subformulas

of !; we also note that the only point in which the definitions of realiser and

uniform realiser differ is in the case of quantification, so that we can assume

without loss of generality that ! is (i) ∀G# or (ii) ∃G# for some formula #.
In these cases, in order to obtain a uniform realiser from the plain realiser

〈2, %〉, we simply start by applying %min to the given set before passing it over to

(2, %). In this way, all codes for sets will be replaced by the corresponding <L-

minimal codes before further processing, so that the results of the computations

will become independent of the choice of codes. �

7.2.9 Lemma. Let !(x) be an infinitary Σ$
1
-formula, and -̄ be a sequence of the same

length as x. The formula ![-̄/x] is uniformly realised if and only if ![-̄/x] is true.
Proof. The proof is an induction on the complexity of !(x). The cases where

! is “- ∈ .” or “- = .” follow from Lemma 7.2.6. If ! = ⊥, then the claim

is trivial because ⊥ is both never realised and false. The case for implication

follows directly from the induction hypothesis and the definitions.

If!(x) = ∨
�<� !�, assume that 〈2, %〉 uniformly realises

∨
�<� !�[-̄/x]. Then

2 is the code of a program that computes an ordinal � < � and a realiser of

!�[-̄/x]. By the induction hypothesis, !�[-̄/x] is true and, therefore, the

disjunction ! is true as well. If

∨
�∈� !�[-̄/x] is true, then !�[-̄/x] is true for

some � < �. By induction hypothesis, !�[-̄/x] is realised by some potential

realiser 〈2′, %′〉. Let % be a code for the pair 〈�, 〈2′, %′〉〉, and 2 be a code for a

program that given 0 as input just returns %. Then 〈2, %〉 uniformly realises

![-̄/x].
If !(x) = ∧

�<� !�, assume that 〈2, %〉 uniformly realises

∧
�<� !�. Then 2

codes a program that, given an ordinal � < �, computes a realiser of !�[-̄/x].
Hence, each formula !�[-̄/x] is realised and, by induction hypothesis, true. In

conclusion, the conjunction is also true. We prove the converse by contradiction.

Suppose that

∧
�<� !�[-̄/x] is true but not realised. This means that there is a

� < � such that !�[-̄/x] is not realised. By induction hypothesis, !�[-̄/x] is
false. A contradiction.

Assume that !(x) = ∃1H#. If 〈2, %〉 uniformly realises ![-̄/x], then 2 returns
the code of a program with parameter that returns, on input 0, a code for a set .

and a realiser of #[./H][-̄/x]. By the induction hypothesis, #[./H][-̄/x] holds
and, therefore, ! is true. On the other hand, if ![-̄/x] is true, then there is a set

. such that #[./H][-̄/x] is true and, by induction hypothesis, there is a realiser

〈2′, %′〉 of #[./H][-̄/x]. Let % encode the realiser 〈0, 〈2′, %′〉〉, where 0 is a code

for ., and let 2 be the code of a program that copies the parameter to the output

tape. It is not hard to see that 〈2, %〉 uniformly realises ![-̄/x] as desired.
Finally, let !(x) = ∀1H ∈ G 9# for some 9 < ℓ (x). Assume that 〈2, %〉 uniformly

realises ![-̄/x]. Then 2 is a program that, given % and a code for a set . as
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input, returns a code for a realiser of . ∈ -9 → #[./H][-̄/x]. So, by induction

hypothesis for every. ∈ -9 we have#[./y][-̄/x] as desired. For the right-to-left
direction, assume that ![-̄/x] is true. By induction hypothesis, for every . ∈ -9
there is a realiser 〈2. , %.̄〉 of #[./y][-̄/x]. Let 5 : -9 → N×Ord be the function

that maps . to the realiser 〈2. , %.〉. Let % be a code for the function 5 (as a list

of codes for the pairs 〈0, 〈2. , %.〉〉 where 0 is a code of .), and let 2 be the code

of a program that, given the code of . ∈ -9 , searches in % the pair 〈0. , 〈2. , %.〉〉
and copies 〈2. , %.〉 to the output tape. The pair 〈2, %〉 is a uniform realiser of

!. Indeed, given a code for . ∈ -9 the program coded by 2 with parameter %

returns a code for a realiser of#[./H][-̄/x], moreover the output of the machine

is independent from the specific coding of -̄, so the realiser is uniform. �

Our next goal is to extend Lemma 7.2.9 to Σ∞
1
-formulas. To do so, we need

the following lemma. Recall that ‘x ∈ H’ is an abbreviation as introduced in

Section 7.1.1, where x is a context-variable and H a set-variable. The following

lemma justifies this abbreviation semantically.

7.2.10 Lemma. Let x be a context of length � and H a variable. For every set . and for
all -̄ we have that (x ∈ H)[-̄/x][./H] is realised if and only if -̄ ∈ ..
Proof. For the right-to-left direction assume that -̄ ∈ .. Let � = ℓ (X) = ℓ (-̄).
Since -̄ is a function with domain ℓ (-̄), Lemma 7.2.9 implies that the following

sentence is realised by some B:(
“ 5 is a function with domain 3 ∈ Ord”∧

∧
9′< 9<�

(I 9′ ∈ I 9 ∧ I 9 ∈ 3 ∧ 5 (I 9) = G 9)

∧ ∀G ∈ 3
∨
9<�

I 9 = G ∧ 5 ∈ H
)
[-̄/ 5 ][ℓ (-̄)/3][-̄/z]

Given a code of a sequence -̄, an OTM can easily compute a code for ℓ (-̄)
because ℓ (-̄) = dom(-̄). Let A be a program that returns (-̄ , A′) on input 0,

where A′ is a program that returns (ℓ (-̄), A′′) on input 0 with A′′ a program such

that A′′(0) = (-̄ , B). Then A realises (x ∈ H)[-̄/x][./H].
For the left-to-right direction, we assume that (x ∈ H)[-̄/x][./H] is realised

by some program A. It follows that A is such that A(0) = (�, A′), where A′ is a
program such that A′(0) = (�, A′′), and A′′ is a program such that A′′(0) = (/̄, B),
where B is a realiser of the following formula:(

“ 5 is a function with domain 3 ∈ Ord”∧
∧
9′< 9<�

(I 9′ ∈ I 9 ∧ I 9 ∈ 3 ∧ 5 (I 9) = G 9)

∧ ∀G ∈ 3
∨
9<�

I 9 = G ∧ 5 ∈ H
)
[�/ 5 ][�/3][/̄/z].
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By Lemma 7.2.9, it follows that � = -̄ and � ∈ .. Therefore, -̄ ∈ . as

desired. �

7.2.11 Lemma. Let !(x) be an infinitary Σ∞
1
-formula and -̄ a sequence of length ℓ (x).

The formula ![-̄/x] is uniformly realised if and only if ![-̄/x] is true.
Proof. With Lemma 7.2.10 it is easy to adapt the proof of Lemma 7.2.9 for the

present case. �

7.2.12 Theorem. Let !(x) be an infinitary Δ∞
0
-formula in the language of set theory

and -̄ be a sequence of length ℓ (x). There is an OTM that, given codes for ! and -̄,
returns 1 if ![-̄/x] is true and 0 otherwise.

Proof. This result is a variation on a result of Koepke [50, Lemma 4] for

infinitary formulas. The proof is an induction on the complexity of the formula

!(x). We already provided the algorithms for atomic formulas in Lemma 7.1.12.

If !(x) = ¬#(x), then the program computes the truth value of #(-̄) and flip

the result.

If !(x) = ∨
�< #�, then the program recursively computes the truth values

#� for every � < . The program outputs 1 if one of the recursive instances

stops with 1; it outputs 0 if after the search is done none of the instances halted

with 1. A similar argument works for

∧
.

If !(x) = ∃y ∈ G 9# for some 9 < ℓ (x) and a Δ∞
0
-formula #, then the program

goes through the sequences .̄ in -9 and for each of them recursively compute

the truth value of #[.̄/y][-̄/x]. If the program finds a .̄ on which the recursive

call returns 1 then returns 1, otherwise returns 0. A similar proof works for the

universal quantifier. �

7.2.13 Lemma (Universal Realisability Program). There is an OTM-program Φ

that takes codes of a sequence -̄ and an infinitary Δ∞
0
-formula ! as input and returns

the code of a realiser of ![-̄/x] whenever ![-̄/x] is realised. The same holds if we
substitute realisability with uniform realisability. Moreover, if V = L then the statement
is true for infinitary Σ∞

1
-formulas.

Proof. We informally describe the program Φ that computes the realisers. It

first checks the main operator of the input-formula and then proceeds as follows.

If ! is “- ∈ .” or “- = .”, then the program just returns the codes of the

algorithms described in Lemma 7.1.12 to compute a realiser of !. If ! = ⊥ then

the program can just return anything since ⊥ is never realised.

If ! =
∨

�∈� !�, then proceed as follows. By Theorem 7.2.12, the Δ∞
0
-

satisfaction relation is computable by an OTM. For every sentence !�[-̄/x] the
program Φ checks whether the sentence is true or not. If it finds � such that

!�[-̄/x] holds, Φ stops the search and returns 〈2, %〉 where % is a code of -̄,

and 2 is a code of a program that returns � and the output of a recursive call of

Φ on !� and -̄.
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If ! =
∧

�∈� !�, then the program returns the pair 〈2, %〉 where 2 is a code

for Φ and % is a code for -̄.

If !(x) = ∃y ∈ G 9# for some 9 < ℓ (x) and some Δ∞
0
-formula #, then the

program returns 〈2, %〉, where % is a code of -̄ and 2 is a code of a program that

does the following: for every sequence .̄ ∈ - of length y, it checks whether

#[.̄/y][-̄/x] holds. As soon as such a .̄ is found, the program recursively calls

Φ on #[.̄/y][-̄/x] and outputs a code for .̄ and the result of the recursive call

of Φ.

If !(x) = ∀y ∈ G 9#, then the program returns 〈2, %〉 where % is a code of

-̄ and 2 is a code for a program that taken a sequence .̄ as input and % as

parameter runs Φ on #[.̄/y][-̄/x].
The correctness of the algorithm follows by an easy induction on ! using

Lemma 7.2.11.

Finally, if V = L, then we can treat unbounded existential quantification as

follows: Suppose that !(x) = ∃y# for some Δ∞
0
-formula#. By a result of Koepke

(implicit in [50] and explained in detail in [11, Theorem 3.2.13 & Lemma 2.5.45]),

L is computably enumerable by an OTM. So the program starts an unbounded

search in L for a witness .̄ of #[.̄/y][-̄/x]. If it finds one, it recursively calls

itself on #[.̄/y][-̄/x] and outputs a code for .̄ and the result of the recursive

call. �

7.3 Soundness: infinitary logic
In this section, we show that our notion of realisability is sound with respect to

the infinitary sequent calculus that was introduced by Espíndola [19]. In fact,

Espíndola defines a calculus for the language ℒ�+ ,� for every cardinal �. As we

admit formulas of all ordinal lengths, we show that OTM-realisability is sound

with respect to these systems for every �. A sequent Γ `x Δ is an ordered pair

of sets of formulas in the infinitary language of set theory ℒ∈∞,∞, where x is a

common context for all formulas in Γ∪Δ. The rules checked in Propositions 7.3.3

to 7.3.11 are exactly as they were defined by Espíndola [19, Def. 1.1.1].

7.3.1 Definition. Let Γ∪Δ be a set of formulas in the infinitary language of set

theory ℒ∈∞,∞. A sequent Γ `x Δ is realised if the universal closure of

∧
Γ→ ∨

Δ

is realised. If � and � are sets of sequents, then the rule
�
� is realised if whenever

all sequents in � are realised, then there is some sequent in � that is realised. a
Note that a formula ! is realised if and only if the sequent ∅ ` ! is realised.

To simplify notation, we will write
�
� to denote the conjunction of both rules

�
�

and
�
� .

In many of the following soundness proofs, we will need to show that certain

sequents Γ `x Δ are realised, i.e., we have to find a realiser of the corresponding
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formula ∀x(∧Γ→ ∨
Δ). In many cases these realisers will be independent of x.

In such cases, we will, for the sake of simplicity, directly describe a realiser A

of

∧
Γ→ ∨

Δ, when we really mean a realiser that, given any -̄ of length ℓ (x),
outputs the realiser A.

7.3.2 Proposition. The following structural rules are realised:

(i) Identity axiom (Espíndola [19, Def. 1.1.1, 1(a)]):

! `x !

(ii) Substitution rule (Espíndola [19, Def. 1.1.1, 1(b)]):

! `x #
![s/x] `y #[s/x]

where y is a string of variables including all variables occurring in the string of
terms s.

(iii) Cut rule (Espíndola [19, Def. 1.1.1, 1(c)]):

! `x # # `x �
! `x �

Proof. The identity axiom is trivially realised by an OTM that implements the

identity map.

For the substitution rule, recall that by our definition, a realiser of ! `x # is in

fact a realiser A  ∀x(!→ #). Weneed tofinda realiser C  ∀y(![s/x] → #[s/x]),
i.e., C takes as input some code for a sequence y of variables. To achieve this,

find codes for the realiser A and the substitution s/x. Then let C be the OTMwith

parameters A and s/x that performs the following two steps: first, reorder the

input y according to the substitution s/x, and then apply the parameter A to

compute a realiser of ![s/x] → #[s/x].
For the cut rule, let A  ∀x(! → #) and B  ∀x(! → �). For any given

input -̄, we have that A(-̄)  !(-̄) → #(-̄) and B(-̄)  #(-̄) → �(-̄), i.e., A(-̄)
maps realisers of !(-̄) to realisers of #(-̄), and B(-̄)maps realisers of #(-̄) to
realisers of �(-̄). Let C be the OTM that, given input -̄, returns an OTM that

given input D returns B(-̄)(A(-̄)(D)). Then C  ∀x(!(x) → #(x)). �

7.3.3 Proposition. The following rules for equality are realised:

(i) > `G G = G (Espíndola [19, Def. 1.1.1, 2(a)])

(ii) (x = y) ∧ ![x/z] `z ![y/z] where x, y are contexts of the same length and type
and z is any context containing x, y and the free variables of !. (Espíndola [19,
Def. 1.1.1, 2(b)])



7.3. Soundness: infinitary logic 95

Proof. Finding a realiser of the first statement means finding a realiser of

∀G(> → G = G), which is equivalent to finding a realiser of ∀G(G = G). This

follows directly from the fact that the algorithm for equality presented in the

proof of Lemma 7.2.6 is the same for any sets - and ..

The second statement follows in a similar way as the substitution rule of

Proposition 7.3.2 using that, by the definition of realisability, realisers work on

all codes of any given set. �

7.3.4 Proposition. Let � be a cardinal. The following conjunction rules (Espíndola
[19, Def. 1.1.1, 3]) are realised:

(i) ∧
8<�

!8 `x ! 9 ,

(ii)

{! `x #8}8<�
! `x

∧
8<�

#8
.

Proof. The definition of realisability straightforwardly implies that both rules

are realised: For the first rule observe that we can just extract a realiser of ! 9 from
a realiser of

∧
8<� !8 . For the second rule, combine the realisers A8  !→ #8 for

8 < � into a parameter % and obtain a realiser of ! `x
∧
8<� !8 by implementing

an OTM program that returns the realiser of !8 on input 8. �

7.3.5 Proposition. Let � be a cardinal. The following disjunction rules (Espíndola
[19, Def. 1.1.1, 4]) are realised:

(i)
! 9 `x

∨
8<�

!8

(ii)

{!8 `x �}8<�∨
8<�

!8 `x �

Proof. For the first statement, we need to realise the implication ! 9 →
∨
8<� !8 .

This can be done by an OTM that, given a realiser A 9 of ! 9 , returns an OTM that

returns a tuple 〈9 , A9〉 on input 0.

For the second statement, code the realisers A 9 for !8 `x �, 8 < �, into
a parameter %. Then,

∨
8<� !8 `x � is realised by the following algorithm

implemented by an OTM: Given a realiser B 
∨
8<� !8 , compute B(0) = 〈8 , C〉,

such that C  !8 and then return A8(C) by using the parameter. �
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7.3.6 Proposition. The following implication rule (Espíndola [19, Def. 1.1.1, 5]) is
realised:

! ∧ # `x �
! `x #→ �

Proof. We have to show two directions. For the first direction, top-to-bottom, let

A  ! ∧ #→ �. Now, we construct a realiser of !→ (#→ �) as follows: Given

a realiser A! for !, output the OTM that, given a realiser A# for #, combines it

with A! to obtain a realiser A!∧#  ! ∧ #. Then apply A(A!∧#)  �.
For the other direction, bottom-to-top, suppose we have a realiser A  ! →

(# → �). We obtain a realiser of ! ∧ # → � as follows: Given a realiser of

A!∧#  ! ∧ #, compute realisers A!  ! and A#  #. By definition and our

assumptions, (A(A!))(A#)  �. �

7.3.7 Proposition. The following existential rule (Espíndola [19, Def. 1.1.1, 6]) is
realised:

! `xy #

∃y! `x #
where no variable in y is free in #.
Proof. For the first direction, assume that A  ∀xy(! → #). We have to

find a realiser C  ∀x(∃y!→ #). Let C be an implementation of the following

algorithm: Given some sequence -̄ and a realiser A∃  ∃y#. Compute from A∃
a code for some .̄ and a realiser A!  !. Then calculate (A(-̄.̄))(A!). This is a
realiser of #.

For the other direction, assume that A  ∀x(∃y! → #). We construct a

realiser C  ∀xy(!→ #). So let sequences -̄, .̄ be given, and assume that we

have a realiser B  !(-̄.̄). We can compute a realiser A∃ for ∃y!(-̄) as the OTM

that returns -̄ and B. We can then return (A(-̄))(A∃), which is a realiser of #. �

7.3.8 Proposition. The following universal rule (Espíndola [19, Def. 1.1.1, 7]) is
realised:

! `xy #

! `x ∀y#
where no variable in y is free in !.
Proof. For the top-to-bottom-direction, assume that A  ∀xy(!→ #). We have

to find a realiser C  ∀x(! → (∀y#)). If -̄ is a sequence and A! a realiser of !,
then the OTM that takes some .̄ as input and returns A(-̄.̄)(A!) is a realiser of
∀y#. Call this realiser A-̄ . Then, the OTM which takes some -̄ as input and

then returns A-̄ is a realiser of ∀x(!→ ∀y#).
For the bottom-to-top-direction, assume that A  ∀x(! → (∀y#)). Then

∀xy(! → #) can be realised by the OTM that operates as follows: Given

sequences -̄ and .̄ as input, return the OTM that, given a realiser B  !, returns
((A(-̄))(B))(.̄)  #. �
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7.3.9 Proposition. The small distributivity axiom (Espíndola [19, Def. 1.1.1, 8]) is
realised: ∧

8<�

(! ∨ #8) `x ! ∨
(∧
8<�

#8

)
for each cardinal �.

Proof. It is enough to construct an OTM that transforms a realiser of

∧
8<�(!∨

#8) into a realiser of ! ∨
(∧

8<� #8
)
. So let A 

∧
8<�(! ∨ #8). The OTM proceeds

as follows: First, search for a realiser of ! by going through all 8 < �. As soon as

a realiser of ! is found, we are done. If no realiser of ! is found, then we have,

in fact, realisers for every #8 for 8 < � and can therefore construct a realiser of∧
8<� #8 . �

Recall that a bar is an upwards-closed subset of a tree that intersects every

branch of the tree.

7.3.10 Proposition. The dual distributivity rule (Espíndola [19, Def. 1.1.1, 9]) is
realised, i.e.: ∧

6∈��+1 ,6 |�= 5
!6 `x ! 5 � < �, 5 ∈ ��

! 5 a`x
∨
<�

! 5 | � < �, limit �, 5 ∈ ��∧
5 ∈�

∨
�<� 5

! 5 |�+1
`x !∅

holds whenever � is a cardinal strictly below �+, where � denotes the subset of �<� that
contains the minimal elements of some bar of the tree �� and, for 5 ∈ �, � 5 denotes the
level of 5 .

Proof. Our goal is to construct a realiser of∧
5 ∈�

∨
�<� 5

! 5 |�+1
`x !∅ ,

i.e., we have to construct an OTM that computes a realiser of !∅ from a realiser

of

∧
5 ∈�

∨
�<� 5 ! 5 |�+1

. In doing so, we can use realisers of the antecedents of the

rule: We denote by A1 a realiser of the first antecedent and by A`
2
a realiser of the

forward direction of the second antecedent.

We claim that Algorithm 1 describes a realiser: we will now prove that it

terminates with a realiser of !∅ when applied to a realiser of

∧
5 ∈�

∨
�<� 5 ! 5 |�+1

.

In fact, we will prove the contrapositive. So suppose that the OTM described by

Algorithm 1 does not terminate, i.e., it either loops or crashes.



98 Chapter 7. OTM-realisability

First, assume that the machine loops. As our algorithm constructs A(−) in a

monotone way, the partial function A(−)must stabilise before the loop. Hence, the

algorithm must loop through lines 15 and 16: otherwise we would (eventually)

still alter A(−) (lines 11–13) or contradict the well-foundedness of the ordinal

numbers (lines 5–9). However, looping through lines 15 and 16 means that

we built up a sequence 5 that will eventually reach length �. But then the

operation of selecting a direct successor in line 15 will crash, a contradiction to

the machine’s looping.

Secondly, assume that the machine crashes. It is easy to see that this must

happen in line 15 as all other operations are well-defined (using the case

distinctions and assumptions on A, A1 and A
`
2
). A crash in line 15, however, will

only occur if 5 has reached length �. This means that we have constructed a

branch through �<� that does not intersect the bar �, a contradiction. �

Algorithm 1: Walking(A)
Input: A realiser A for

∧
5 ∈�

∨
�<� 5 ! 5 |�+1

Output: A realiser A∅  !∅.
1 From A extract a set � ⊆ �<� and a partial function A(−) : �<� → + such

that A 5  ! 5 for all 5 ∈ �.
2 Let 5 = ∅.
3 while A∅ is undefined do
4 if 5 ∈ dom(A(−)) then
5 if 5 is of successor length  + 1 then
6 Set 5 := 5 |.
7 if 5 is of limit length � then
8 Calculate A`

2
(A 5 ) and extract from this A 5 | for some  < �.

9 Set 5 := 5 |.

10 else
11 if 6 ∈ dom(A(−)) for all direct successors 6 of 5 then
12 Combine the A6 into a realiser A′ 

∧
6∈��+1 ,6 |�= 5 !6 .

13 Set A 5 := A1(A′).
14 else
15 Select a direct successor 6 ∈ �<� of 5 such that A6 is undefined.

16 Set 5 := 6.

17 Return A∅.
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7.3.11 Proposition. The transfinite transitivity rule (Espíndola [19, Def. 1.1.1,
10]) is realised:

! 5 `y 5
∨

6∈��+1 ,6 |�= 5
∃x6!6 � < �, 5 ∈ ��

! 5 a`y 5
∧
<�

! 5 | � < �, limit �, 5 ∈ ��

!∅ `y∅
∨
5 ∈�
∃�<� 5 x 5 |�+1

∧
�<� 5

! 5 |�+1

for each cardinal � < �+, where y 5 is the canonical context of ! 5 , provided that, for
every 5 ∈ ��+1, �+(! 5 ) = �+(! 5 |�) ∪ x 5 and x 5 |�+1

∩ �+(! 5 |�) = ∅ for any � < �,
as well as �+(! 5 ) =

⋃
<� �+(! 5 |) for limit �. Here � ⊆ �<� consists of the minimal

elements of a given bar over the tree ��, and the � 5 are the levels of the corresponding
5 ∈ �.
Proof. The proof of this proposition is a simplification of the proof of Pro-

position 7.3.10: Again, we need to search through the tree until we hit the

bar. This time, however, we are starting from a realiser of !∅. Then use the

first assumption to compute realisers at successor levels and use the second

assumption to compute realisers at limit levels. By the definition of the bar �,

this procedure must at some point reach some node contained in �, and we

have found the desired realiser. Note that this procedure does not require any

backtracking as in the previous proposition and, therefore, the formalisation of

the desired OTM is straightforward. �

Espíndola’s [19] system of �-first-order logic is axiomatised in the sequent

calculus by the rules mentioned in Propositions 7.3.3 to 7.3.11.

7.3.12 Corollary. OTM-realisability is sound with respect to �-first-order logic for
every cardinal �. The same holds if we substitute realisability with uniform realisability.

Proof. This is just the combination of Propositions 7.3.3 to 7.3.11. �

Before moving on to questions of which set theory is OTM-realised in the

next section, we will take a brief moment to note a few logical properties of our

notion of realisability.

7.3.13 Proposition (Semantic Disjunction and Existence Properties). If ! ∨ #
is realised, then ! is realised or # is realised. More generally, if

∨
8<� !8 is realised, then

there is some 8 < � such that !8 is realised.
If ∃x!(x) is realised, then there is a sequence -̄ such that !(-̄) is realised.

Proof. This follows from the definition of realisability for disjunctions and

existential quantifiers. �
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We say that a formula of propositional logic is (uniformly) OTM-realisable if
every substitution instance of the formula is (uniformly) OTM-realisable.

7.3.14 Theorem. There is a formula of propositional logic which is uniformly OTM-
realisable but not a consequence of intuitionistic propositional logic.

Proof. Let ! be the formula ¬? ∨ ¬@. The Rose formula (due to Rose [79]) is

the following sentence:

((¬¬!→ !) → (¬! ∨ ¬¬!)) → (¬! ∨ ¬¬!).

The Rose formula is OTM-realisable but it is not a consequence of intuitionistic

propositional logic. This is shown in just the same way as in the arithmetical

case (see Plisko’s survey [72, Section 6.1]). �

A similar result holds with respect to first-order logic.

7.3.15 Theorem. Each substitution instance of the following Markov’s principle,
formulated in first-order logic, is uniformly OTM-realisable:

(∀G(%(G) ∨ ¬%(G)) ∧ ¬¬∃G%(G)) → ∃G%(G)

However, this formula is not a theorem of intuitionistic first-order logic.

Proof. The realisability of every instance of Markov’s principle follows by

providing an OTM that executes a bounded search for a witness of %(G) within

some big enough parameter V. A standard argument using Kripke semantics

shows that Markov’s principle is not a theorem of intuitionistic first-order

logic. �

These two results show that the propositional and first-order logics of OTM-

realisability are stronger than intuitionistic propositional and intuitionistic

first-order logic, respectively.

7.4 Soundness: set theory
In this section, we will study the realisability of various axioms of set theory.

Some of these statementswere already proved for uniform realisability of finitary

logic by Carl [11]; we include their proofs here for the sake of completeness.

We will begin by proving that our notion of uniform realisability realises the

following axioms of the infinitary version of Kripke–Platek set theory (for the

finite version, see also Carl [11, Proposition 9.4.7]).

7.4.1 Definition. We define infinitary Kripke–Platek set theory, denoted by

ℒ∈∞,∞-KP, on the basis of intuitionistic � first-order logic for every cardinal �
with the following axioms and axiom schemata:
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(i) Axiom of extensionality:

∀G∀H(∀I((I ∈ G → I ∈ H) ∧ (I ∈ H → I ∈ G)) → G = H),

(ii) Axiom of empty set:

∃G∀H(H ∉ G);

(iii) Axiom of pairing:

∀G∀H∃I∀F((F ∈ I → (F = G ∨ F = H)) ∧ ((F = G ∨ F = H) → F ∈ I)),

(iv) Axiom of union:

∀G∃H((H ∈ G → ∃I(H ∈ I ∧ I ∈ G)) ∧ (∃I(H ∈ I ∧ I ∈ G) → H ∈ G)),

(v) Axiom schema of induction:

∀y((∀G(∀I ∈ G![I/G]) → !) → ∀G!),

for every infinitary formula !(G, y),

(vi) Axiom schema of Δ∞
0
-separation:

∀y∀E∃I∀D((D ∈ I → (D ∈ E ∧ ![D/G])) ∧ ((D ∈ E ∧ ![D/G]) → D ∈ I)),

for every infinitary Δ∞
0
-formula !(G, y), and,

(vii) Axiom schema of Δ∞
0
-collection:

∀z(∀G∃H!→ ∀F∃F′∀G ∈ F∃H ∈ F′!),

for every infinitary Δ∞
0
-formula !(G, H, z). a

The axiom schema of full collection is obtained fromΔ∞
0
-collection by allowing

arbitrary infinitary formulas.

7.4.2 Theorem. The axioms of infinitary Kripke–Platek set theory are uniformly
realised. Moreover, the axiom schema of full collection is uniformly realised.

Proof. It is straightforward to construct realisers for the axioms of empty set,

pairing, extensionality and union. For each of the remaining axioms, we will

now give an informal description of an algorithm that realises it.

First, consider the axiom schema of induction. For every infinitary formula

!(G, y)we have to show that the corresponding instance is realisable:

∀y(∀G(∀I ∈ G![I/G] → !) → ∀G!).
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It is sufficient to describe a program 2 that takes a code 0 for a .̄, a code 1 for

- and a realiser A for ∀G(∀I ∈ G![I/G]) → ! as input, and computes a realiser

![-/G]. A realiser of the corresponding instance of the induction axiom is then

obtained through currying: transform 2(·, ·, ·) into �0.�1.�A.2(0, 1, A).
Wewill describe a procedure to obtain a realiserof![-/G, .̄/y] by recursively

building up realisers in the transitive closure of -. To do so, the program 2

uses two auxiliary tapes, Done and Realisers, to keep track of its progress.

The tape Done is used to keep track of the sets / in the transitive closure of -,

for which a realiser of ![//G, .̄/y] has already been computed. Meanwhile,

Realisers is used as a queue on which the realisers for all sets in Done are saved.
Now, until all members of the essential domain of 1 are in Done, the program
keeps running through the elements of the essential domain of 1. For each 
in the essential domain of 1, the program checks whether all its members are

contained in Done. If so, the program uses the realisers contained in Realisers
to compute a realiser of∀I ∈ 31()![I/G, .̄]. Note that this can easily be done by

using the pair 〈2′, {1, 5 }〉, where 5 is a code of the current content of Realisers
and 2′ is the program that searches through 5 for a realiser of the set whose

code is given as input. Then the program computes A(3) to obtain a realiser A′

of ![31()/G, .̄/y] and saves this pair 〈, A′〉 in Realisers. Once realisers for

every element of the essential domain of 1 are computed, the program computes

a realiser of ![-/G, .̄/y] in the same way and returns it.

Second, consider the axiom schema of Δ∞
0
-separation. By Lemma 7.2.11 and

Lemma 7.2.13 it is enough to show that for every - and .̄, the set

{/ ∈ - | ![//G, .̄/y]}

is computable. But this follows from Theorem 7.2.12 and Lemma 7.1.12.

Finally, consider the axiom schemaof collection. Forevery infinitary!(G, H, z)
we have the axiom

∀z(∀G∃H!→ ∀F∃F′∀G ∈ F∃H ∈ F′!).

Let /̄ be a sequence coded by some 0. It suffices to show that there is a program

that given realiser A of ∀G∃H!, and a code 1 for a set, , computes a code for

a set, ′ such that ∀G ∈ ,∃H ∈ , ′!. Our program uses an auxiliary queue

Codes. The program searches through 1 and for every  ∈ dom(31) such that

31() ∈ 31(�1)uses A to compute a code for a set. such that![31()/G, ./H, /̄/z]
is realised and saves the computed code in Codes. The claim follows by Lemma

7.1.12. �

The proof of the following lemma is analogous to a proof by Carl [11, Lemma

8.6.3], which, in turn, followed the “cardinality method” of Hodges [37, Lemma

3.2].
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7.4.3 Lemma. Let Φ be an OTM-program. Then for every binary sequence B of size
� ≥ $, we have the following: if Φ halts on B, then |Φ(B)| < �+. Moreover, there is
� < �+ such that Φ(B) ∈ L�[B].
Proof. Assume � ≥ $ and that Φ(B) halts. Note that Φ(B) cannot be longer

than the halting time � of Φ on input B. Indeed, Φ will need at least one step in

order to compute each bit of the output.

Let !(G, H, I) be the Δ$
0
-formula expressing that G is the computation of the

program H on input I. Consider the Σ∞
1
-sentence ∃G!(G,Φ, B) expressing the

fact that there is a computation of Φ on B. Let � = max{ℵ0, �,�}. Note that

L�+[B] |= ∃G!(G,Φ, B). Indeed, L�+[B] contains the computation � of Φ over B,

and ! is absolute between transitive models.

Now, let � be the Skolem hull of � ∪ {B} in L�+[B]. Then, � has size � and

so does the transitive collapse " of �. But then " is a transitive model of

∃G!(G,Φ, B). Therefore, there is �′ ∈ " such that " |= !(�′,Φ, B), and since !
is a Δ∞

0
-formula it is absolute between transitive models of set theory. Therefore,

�′ is the computation ofΦwith input B of size atmost �. Finally, � ≥ � and by the

Condensation Lemma, " = L�[B] for some � < �+ = �+. So, Φ(B) ∈ L�[B]. �

7.4.4 Lemma ([11, Proposition 9.4.3] ). The axiom of power set is not realised.

Proof. A realiser of the power set axiom is a pair 〈2, %〉 where 2 is the code of

a program with parameter % that takes a code of a set - as input and returns a

code for ℘(-). Now let 0 be any code for the set %. By Lemma 7.4.3, the output

of program 2 with input 0 and parameter % has size <|% |+. Therefore, the result
of the computation cannot be a code of ℘(%). �

In the next chapter, we will devise a notion of realisability that does realise

the power set axiom.

7.4.5 Corollary. There are sentences ! and " in the language of set theory such
that !→ " is uniformly realised but !→ " is false.

Proof. Let ! be the power set axiom and " be the sentence ∃G G ≠ G. It is then
trivial that !→ " is uniformly realised by the previous Lemma 7.4.4. However,

!→ " is false since the power set axiom holds and ∃G G ≠ G is false. �

Lubarsky [57] suggested the following infinity axiom in the context of

intuitionistic Kripke–Platek set theory:

∃G(∅ ∈ G ∧ (∀H ∈ G H ∪ {H} ∈ G) ∧ (∀H (H = ∅ ∨ ∃I ∈ G G = I ∪ {I}))).

7.4.6 Proposition. The infinity axiom is uniformly realised.

Proof. The infinity axiom is a Σ∞
1
-formula and, therefore, uniformly realised

by Lemma 7.2.11. �

The following theorem is a variant of a result due to Carl [10, Proposition 3].
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7.4.7 Theorem (cf. [10, Proposition 3]). Assume V = L. If ! is a true Π2-formula,
then ! is uniformly realised.
Proof. Let ! be the Π2-statement ∀G∃H#(G, H), where # is a Δ0-formula. A

realiser of ! must consist in an OTM that, given a constructible set -, computes

some constructible set . and a realiser A for #(G, H)[-/G, ./H]. Therefore, it
is enough to show that there is a program that for every - computes a set .

such that #(G, H)[-/G, ./H]. Split the tape into $ ×On many disjoint portions.

Let (%8)8 ∈ $ be a computable enumeration of Turing machine programs. On

the (8 , )-th portion of the tape, run %8 on input . In this way, every OTM-

computable set will eventually be computed on one of the portions. As the

OTM-computable sets coincide with the constructible sets (cf. Koepke [50]), all

constructible sets will eventually be on a portion of the tape. While producing

all the constructible sets, our program uses Theorem 7.2.12 to look for a . such

that #(G, H)[-/G, ./H] and stops when it finds one. We note that the realiser is

uniform since the code of . only depends on the OTM enumeration of L. �

7.4.8 Proposition (cf. [11, Proposition 9.4.4]). The axiom schema of separation is
not realisable.
Proof. Let "(H, H′) be the formula stating that H′ is the power set of H. Let

!(G, H) = ∃H′" be the formula that ignores G and expresses the fact that the

power set of H exists. Further assume that A = 〈2, %〉 realises the corresponding
instance of separation:

∀H∀E∃I∀D((D ∈ I → (D ∈ E ∧ ![D/G])) ∧ ((D ∈ E ∧ ![D/G]) → D ∈ I)).

Let . be an arbitrary set, let 0 be a code for ., 1 be a code for ∅ and 2 a code for

{∅}. Then A(0)(2) is a realiser of:

∃I∀D((D ∈ I → (D ∈ E ∧ ![D/G])) ∧ ((D ∈ E ∧ ![D/G]) → D ∈ I))[./H][{∅}/E],

i.e., A(0)(2)(0) = 〈3, B〉, where 3 is a code for a set and B a realiser. Since

the formula ∃H′"[./H] is trivially realised by taking the power set of . as a

parameter, it follows that the set / coded by 3 is non-empty and, in fact, / = {∅}.
Let C  ∅ ∈ {∅}. It follows that B(1)(0)(C)(1)  ![./H], i.e., B(1)(0)(C)(1) computes

a code for the power set of -. This is in contradiction to Lemma 7.4.4. �

Recall that a choice function 5 on - satisfies 5 (.) ∈ . for all . ∈ -. The
axiom of choice is the principle that there is a choice function on every set - if

- does not contain the empty set. The well-ordering principle states that every
set is in bĳection with an ordinal. We call weak axiom of choice the sentence

∀-(∀. ∈ -(∃/(/ ∈ .)) → ∃ 5 ( 5 (.) ∈ .)).
7.4.9 Theorem. The weak axiom of choice is uniformly realised.
Proof. For each non-empty . ∈ -, let A. be a uniform realiser of ∃/(/ ∈ .).
Then A. = 〈0. , B.〉, where 0. is the code of an element /. of .. These realisers
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can be combined into a function 5 with 5 (.) = /. to obtain a realiser of the

weak axiom of choice. �

Despite the fact that the axiom of choice and the weak axiom of choice are

classically equivalent, the first one is considerably stronger from the point of

view of realisability.

7.4.10 Theorem. The axiom of regularity, the axiom of choice, and the well-ordering
principle are realisable. Moreover, it is consistent that these principles are not uniformly
realisable.

Proof. Note that the ∈-minimal elements of a set are computable. For this

reason, the axiom of regularity can be realised by returning a code for the first

∈-minimal element that the machine finds. Similarly, for the axiom of choice, the

machine just searches through the code of the input family and for each set in

the family output the first element it finds. Finally, the well-ordering principle is

realisable because every code of a set induces a well-ordering on the set which

can be computed and returned by an OTM. Note that all these algorithms are

not uniform because their output crucially depends on the specific codes of the

input sets.

To prove the second part, note that a uniform realiser of the axiom of

regularity can easily be used to uniformly realise the axiom of choice by picking

out an (∈-minimal) element of each set in the given collection. Similarly, a

uniform realiser of the well-ordering principle can be used to uniformly realise

the axiom of choice (see [11, Section 8.6.1]).

Finally, note that a uniform realiser of the axiom of choice would provide a

class function � such that �(-) ∈ - for every set -. By Rubin [80, p.201] this

statement is equivalent to the axiom of global choice in Von Neumann–Bernays–

Gödel set theory. Therefore the consistency of the non-uniformly realisability of

the axiom of choice follows by a result of Easton [18, Section 6] that shows that

there are models of set theory in which the axiom of global choice fails while

the axiom of choice does hold (see also Felgner [20, Theorem 3.1]). �

Note that by Theorem 7.2.8 if V = L then the axiom of regularity, the axiom

of choice, and the well-ordering principle are all uniformly realisable.

7.5 The propositional admissible rules of IKP
Having extensively analysed the tautologies of IKP in Chapter 4, we are now

ready to study the propositional admissible rules of IKP using the realisability

techniques just developed. In the context of this chapter, IKP can be seen as the

restriction of infinitaryKripke–Platek set theory to the standardfinitary language

of set theory with, additionally, the infinity axiom (see Proposition 7.4.6). For

the rest of this section, we thus restrict our attention to the finitary language of
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set theory and we can therefore use all the tools and terminology developed in

Chapter 2.

We will now show that this is indeed the case, and hence, that the proposi-

tional admissible rules of IKP are exactly the propositional admissible rules of

intuitionistic logic. For technical purposes, we first need to consider a certain

conservative extension of IKP (and show, of course, that it is indeed conservative).

To keep all languages set-sized, we will from now on work with realisability

over V� for some inaccessible cardinal �. Hence, all notions of realisability are

restricted to V�, and all realisers must be elements of V� as well. Recall that the

elementary diagram of V� contains the statements 20 ∈ 21 whenever 0 ∈ 1, and
20 = 21 whenever 0 = 1.

7.5.1 Definition. Let ) be an extension of IKP in the language of set theory.

The theory )∗ is obtained from ) by extending the language of IKPwith constant

symbols for every element of V� and adding the elementary diagram of V� to

IKP. a
7.5.2 Lemma. Let the theory ) be an extension of IKP. Then )∗ is conservative (in the
constant-free language of set theory) over ).
Proof. Suppose that )∗ ` !, where ! is a sentence in the language of IKP. By
compactness we can assume that∧

9<<

# 9 ∧
∧
8<=

"8 ` !

for # 9 ∈ IKP and "8 statements of the form 20 ∈ 21 or 20 = 21 . By the implication

rule (see Proposition 7.3.6), we obtain that∧
8<=

"8 `
∧
9<<

# 9 → !.

Now the formula in the consequent of the sequent is in the language without

constants, and the left side contains a finite set of constants 28 . We are therefore

justified in (repeatedly) applying the existential rule (see Proposition 7.3.7) to

get

∃200
∃201

. . .∃20:
∧
8<=

"8 `
∧
9<<

# 9 → !.

Now the whole sequent is in the usual language of set theory, without constants.

Applying the converse implication rule (see Proposition 7.3.6), we get∧
9<<

# 9 ∧ ∃200
∃201

. . .∃20:
∧
8<=

"8 ` !.

In this situation it suffices to show that

- := ∃200
∃201

. . .∃20:
∧
8<=

"8
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is a consequence of IKP, and thus a consequence of ), to conclude that IKP ` !.
To this end, first observe that - describes a finite cycle-free directed graph

because - encodes the ∈-relation between finitely many sets in some V� (which

is, of course, well-founded by the foundation axiom). Hence, to see that - is a

theorem of IKP it suffices to make the trivial observation that every such finite

graph can be modelled by using the axioms of empty set, pairing and union. �

Our next step is to adapt the technique of glued realisability to our situation

(see van Oosten’s survey [67] for the arithmetical version).

7.5.3 Definition. Let ) be an OTM-realised theory. We then define the )-
realisability relation, ) by replacing conditions (iv) and (viii) of Definition 7.2.4

with the following clauses:

(iv’) A ) !→ # if and only if )∗ ` !→ # and for every B ) ! we have that

A(B) ) #, and,

(viii’) A ) ∀G! if and only if )∗ ` ∀G! and A(-) ) ![-/G] for every set -.

a
Note that we do not need to redefine condition (viii) in full generality for

transfinite quantifiers as we are restricting to the finitary language in this section.

7.5.4 Lemma. Let ) be an OTM-realised theory extending IKP, and ! be a formula in
the language of )∗. Then, )∗ ` ! if and only if there is a realiser A ) !.
Proof. The forward direction is essentially proved in the same way as the fact

that realisability is soundwith respect to intuitionistic logic (see Corollary 7.3.12)

and that all axioms of ) are realised, paying attention to the fact that the new

clauses (iv’) and (viii’) do not cause any problems. The backward direction is

proved with a straightforward induction on the complexity of the formula ! (in

the extended language of )∗), using the definition of )∗ and Lemma 7.2.6 for the

atomic cases. �

7.5.5 Proposition. Let ) be an OTM-realised theory extending IKP, and ! be a
formula in the language of ). Then, ) ` ! if and only if there is a realiser A ) !.
Proof. This is a direct consequence of the previous Lemmas 7.5.2 and 7.5.4. �

This concludes our preparations and we are now ready to apply this to some

proof-theoretic properties.

7.5.6 Theorem (Disjunction Property). Intuitionistic Kripke–Platek Set Theory
IKP has the disjunction property, i.e., if IKP ` ! ∨ #, then IKP ` ! or IKP ` #.
Proof. This is now a straightforward consequence of our preparations: If

IKP ` ! ∨ #, then IKP ! ∨ # by Proposition 7.5.5. By definition, it follows

that IKP ! or IKP #. Applying Proposition 7.5.5 again yields IKP ` ! or

IKP ` #. �
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Recall that the restricted Visser’s rules {+=}=<$ are defined as follows:(
=∧
8=1

(?8 → @8)
)
→ (?=+1 ∨ ?=+2)

=+2∨
9=1

(
=∧
8=1

(?8 → @8) → ? 9

)
Denote by + 0

= the antecedent and by + 2
= the consequent of the rule.

7.5.7 Theorem. The propositional admissible rules of IKP are exactly the propositional
admissible rules of intuitionistic logic. In other words, IKP is propositional rule loyal.
Proof. By Theorem 2.3.7 and the fact that IKP has the disjunction property

(see Theorem 7.5.6) it suffices to show that the restricted Visser’s rules are

propositional admissible. To this end, let � be a substitution. We will write !8
for �(?8), and # 9 for �(@ 9). Now, assume that IKP ` (+ 0

= )�, i.e., spelling this out,

IKP `
=∧
8=1

(!8 → #8) → (!=+1 ∨ !=+2).

Denote the antecedent of (+ 0
= )� by �. We will now consider the theory IKP + �.

There are two cases.

In the first case, suppose that there is a realiser A IKP+� �. By assumption,

IKP ` (+ 0
= )�, and hence, with Proposition 7.5.5.(i), it follows that there is a realiser

B IKP (+ 0
= )�, and thus B IKP+� (+ 0

= )�. Hence, B(A) IKP+� !=+1∨!=+2. It follows

that !=+: is IKP + ��
-realised for some : < 2. By Proposition 7.5.5.(ii), we

have IKP + � ` !=+: , and with the deduction theorem and some propositional

reasoning, we conclude that IKP ` (+ 2
= )�.

In the second case, suppose that � is not IKP + �-realisable. By the definition

of IKP + �-realisability, this means that there is some 8, 1 ≤ 8 ≤ =, such that

!8 → #8 is not IKP + �-realised. This means that IKP + � 0 !8 → #8 , or that
for every potential realiser A, there is a realiser B  !8 such that A(B) 1 #8 . As

!8 → #8 is a consequence of �, it follows, in particular, that there is a realiser

A IKP+� !8 . By Proposition 7.5.5.(ii), we have that IKP + � ` !�
8
. An application

of the deduction theorem yields IKP ` �→ !8 . In this situation, it is immediate

that IKP ` (+ 2
= )�.

In conclusion, we have shown that IKP ` (+ 0
= )� implies that IKP ` (+ 2

= )� for
every substitution �. This shows that Visser’s rule += is admissible for IKP for

every = < $. �

The difficulty in generalising this technique to the infinitary case seems to

lie in generalising Lemma 7.5.2.



Chapter 8
SRM-realisability and Beth-realisability

models

In this chapter, we continue our development of realisability semantics for

constructive set theory, moving now from intuitionistic Kripke–Platek set theory

IKP towards realising constructive Zermelo–Fraenkel set theoryCZF. Once again,

we will make use of transfinite computability to study the logical structure of a

constructive set theory. We begin by recalling the classical result of Friedman

and Ščedrov [27] that very few axioms suffice for a set theory to exceed the

first-order tautologies of intuitionistic first-order logic.

Theorem (Friedman & Ščedrov, 1986). Let ) be a set theory based on intuitionistic
first-order logic that contains the axioms of extensionality, pairing and (finite) union,
as well as the separation schema. Then the first-order tautologies of ) exceed those of
intuitionistic first-order logic.

This result applies to intuitionistic Zermelo–Fraenkel Set Theory (IZF) but
not to constructive Zermelo–Fraenkel set theory (CZF) because the separation
schema of CZF is restricted to Δ0-formulas. It has, thus, been an open question

whether the first-order logic of CZF exceeds the strength of intuitionistic logic as

well. We give an answer to this question in this chapter: we will prove that the

first-order tautologies of CZF are exactly those of intuitionistic logic. We prove

this result by developing realisability semantics for CZF based on a new model

of transfinite computation, the so-called Set Register Machines (SRMs). Rathjen

[77] and Tharp [86] had earlier studied related notions of realisability. Our main

result is obtained by adapting a technique that van Oosten [65] had developed

for Heyting arithmetic: we combine the resulting notion of SRM-realisability

with Beth semantics to obtain a model of CZF that matches logical truth in a

universal Beth model.

This chapter is based on [71]: Robert Passmann. ‘The first-order logic of CZF is intuitionistic

first-order logic’. In: The Journal of Symbolic Logic (2022). Forthcoming. doi: 10.1017/jsl.2022.
51.
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https://doi.org/10.1017/jsl.2022.51
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In the previous chapter, we gave the first proof-theoretic application of

transfinite computability and provided a realisability interpretation for (infinit-

ary) IKP set theory using OTMs. In particular, we proved that the propositional

admissible rules of IKP are exactly the admissible rules of intuitionistic propos-

itional logic. On the way to proving our main result, we will prove the same

result for CZF. Our motivation for introducing SRMs instead of working with

OTMs is that the former are easier adapted for realising stronger set theories than

IKP. This work is thus another fruitful application of techniques of transfinite

computability to proof-theoretic questions.

We will begin in Section 8.1 by introducing our new notion of transfinite

machines, the so-called set register machines (SRMs). The main result of this

section will be a generalisation of a classical result by Kleene and Post about

the existence of mutually irreducible degrees of computability. In Section 8.2,

we introduce realisability semantics based on SRMs and show that (a certain

extension of) these machines allows realising CZF set theory. It also serves as a

preparation for Section 8.3, in which we will combine our realisability semantics

with Beth models to prove our main result.

8.1 Set register machines

8.1.1 Definitions & basic properties
Let us begin with some intuition for set register machines (SRMs). A set

register machine has a finite set of registers '0, . . . , '= on which it conducts

computations. However, the registers do not contain natural numbers (as in the

case of register machines) or ordinal numbers (as in the case of ordinal register

or Turing machines) but rather arbitrary sets. Accordingly, SRMs use a different

set of operations: for example, adding a set contained in a register to another

register, or removing a member of a set contained in a certain register.

We assume that ≺ is a global well-ordering such that rank(G) < rank(H)
implies G ≺ H.33 This means that we are working under the assumption of the

global axiom of choice and extend our set-theoretical language with the symbol

≺. Note that this extended theory is conservative over ZFC (see Fraenkel [21,

pp. 72–73]). The reason for using this theory as our meta-theory is that we want

SRM-computations to be deterministic, and assuming a global well-ordering is

a convenient way to achieve this. For a discussion of alternatives see Remark

8.1.3.

We will now first define programs by giving the permissible operations, and

then computations for set register machines. While defining the permissible

33Whenever ≺ is a global well-ordering, we can assume that this is the case by defining

G ≺′ H if and only if rank(G) < rank(H) or rank(G) = rank(H) and G ≺ H. Note that ≺′ is again a

well-order.
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operations, we will directly give an intuitive description of what the operation

does.

8.1.1 Definition. A set register machine program (SRM-program) ? is a finite

sequence ? = (?0, . . . , ?=−1), where each ?8 is one of the following commands (i)

to (vii):

(i) “'8 := ∅”: replace the content of the 8th register with the empty set.

(ii) “ADD(8 , 9)”: replace the content of the 9th register with ' 9 ∪ {'8}.

(iii) “COPY(8 , 9)”: replace the content of the 9th register with '8 .

(iv) “TAKE(8 , 9)”: replace the content of the 9th register with the ≺-least set
contained in '8 , if '8 is non-empty.

(v) “REMOVE(8 , 9)”: replace the content of the 9th register with the set ' 9 \ {'8}.

(vi) “IF '8 = ∅ THEN GO TO :”: check whether the 8th register is empty; if so,

move to program line :, and, if not, move to the next line.

(vii) “IF '8 ∈ ' 9 THEN GO TO :”: check whether '8 ∈ ' 9 ; if so, move to program

line :, and, if not, move to the next line.

A full set register machine program (SRM
+-program) ? is a finite sequence ? =

(?0, . . . , ?=−1), where each ?8 is one of the commands (i) to (vii) and the following

command (viii):

(viii) “POW(8 , 9)”: replace the content of the 9th register with the power set of the

8th register '8 . a

8.1.2 Definition. Let ? be a set register machine program and : < $ be

the highest register index appearing in ?. A configuration of ? is a sequence

(ℓ , A0, . . . , A:) consisting of the active program line ℓ < $ and the current content

A8 of register '8 . If 2 = (ℓ , A0, . . . , A:) is a configuration of ?, then its successor

configuration 2+ = (ℓ+, A+
0
, . . . , A+

:
) is obtained as follows:

(i) If ?ℓ is “'8 := ∅”, then let A+
8
= ∅, A+= = A= for = ≠ 8, and ℓ+ = ℓ + 1.

(ii) If ?ℓ is “ADD(8 , 9)”, then let A+
9
= A 9 ∪ {A8}, A+= = A= for = ≠ 9, and ℓ+ = ℓ + 1.

(iii) If ?ℓ is “COPY(8 , 9)”, then let A+
9
= A8 , A

+
= = A= for = ≠ 9, and ℓ+ = ℓ + 1.

(iv) If ?ℓ is “TAKE(8 , 9)”, then let A+
9
be the ≺-minimal element of A8 (if that exists;

if A8 = ∅, then A+9 = A 9), A+= = A= for = ≠ 9, and ℓ+ = ℓ + 1.

(v) If ?ℓ is “REMOVE(8 , 9)”, then let A+
9
= A 9 \{A8}, A+= = A= for = ≠ 9, and ℓ+ = ℓ +1.
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(vi) If ?ℓ is “IF '8 = ∅ THEN GO TO <”, then A+
8
= A8 for all 8 ≤ :; and, if A8 = ∅,

then ℓ+ = <; if A8 ≠ ∅, then ℓ+ = ℓ + 1.

(vii) If ?ℓ is “IF '8 ∈ ' 9 THEN GO TO <”, then A+
8
= A8 for all 8 ≤ :; and, if A8 ∈ A 9 ,

then ℓ+ = <; if A8 ∉ A 9 , then ℓ
+ = ℓ + 1.

(viii) If ?ℓ is “POW(8 , 9)”, then A+9 = P(A8), A+= = A= for all = ≠ 8, and ℓ+ = ℓ + 1.

A computation of ? with input G0, . . . , G 9 is a sequence 3 of ordinal length  + 1

consisting of configurations of ? such that:

(i) 30 = (1, G0, . . . , G 9 , ∅, . . . , ∅),

(ii) if � < , then 3�+1 = 3
+
� ,

(iii) if � <  is a limit, then ℓ� = lim inf�<� ℓ�, and A� = lim inf�<� A�, where

the limes inferior of a sequence of sets is the set obtained from the limes

inferior of the characteristic functions, and,

(iv) 3+ is undefined (i.e., ℓ > <). a

We refer to a machine with a set register machine program as set register
machine, abbreviated SRM, and to a machine with a full set register machine

program as full set register machine, abbreviated SRM
+
. In other words, SRM

+
is

obtained from SRM by adding the power set operation. Both SRMs and SRM
+
s

can make use of finitely many set parameters which will be treated as additional

input in a fixed register as specified in the program code.

8.1.3 Remark. There are several alternatives for working with a global well-

ordering function ≺: first, it is possible to develop a theory of non-deterministic

SRMs, where the TAKE-command takes an arbitrary set. Second, SRMs could

work on well-ordered sets (i.e., sets equipped with a well-order). This approach

is not useful for SRM
+
as there is no canonical way in extending the well-

ordering of a set to its power set (i.e., a certain degree of non-determinateness is

introduced again). A third approach is to make computations dependent on a

large enough well-ordering of some initial +. Finally, one could work in the

constructible universe L where we have a Σ1-definable well-ordering <L. We

will, in fact, consider this approach in §8.1.3 but for different reasons: for our

main application, we need computations to be definable in the language of set

theory without an additional symbol for the global well-ordering. a

8.1.4 Definition. A function 5 is SRM
(+)-computable if there is an SRM

(+)
-

program ?, possibly with parameters, which computes 5 (G) on input G. A

predicate is called SRM
(+)

-computable if its characteristic function is SRM
(+)

-

computable. a
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Note that every function with set-sized domain is SRM-computable. Clearly,

if a function or predicate is SRM-computable, then it is also SRM
+
-computable.

The converse does not hold: consider, for example, the power set operation.

8.1.5 Proposition. Equality of sets is SRM-computable.
Proof. The following SRM-program computes whether the sets contained in

registers '0 and '1 are equal: the program successively takes elements of the

first set, checks whether they are contained in the second set, and removes the

element from both sets. If both registers '0 and '1 are empty at the same time,

then the original sets must have been equal. Otherwise, the original sets were

not equal.

1: IF '0 = ∅ THEN GO TO 3

2: GO TO 5

3: IF '1 = ∅ THEN GO TO 11

4: GO TO 14

5: TAKE(0, 2)
6: REMOVE(2, 0)
7: IF '2 ∈ '1 THEN GO TO 9

8: GO TO 14

9: REMOVE(2, 1)
10: GO TO 1

11: '0 := ∅
12: ADD(0, 0)
13: GO TO 15

14: '0 := ∅

Note that the operation “GO TO 8” is a shortcut for “IF ' 9 = ∅ THEN GO TO 8” where

9 is chosen in such a way that the register ' 9 is not mentioned in any other

instruction of the program. �

Wecan implement the programof the proof of the proposition as a subroutine

of any given program. For this reason, we can use an operation “IF '8 =
' 9 THEN GO TO :”. The following lemma shows that many basic operations and

predicates are SRM
+
-computable.

8.1.6 Lemma. The following functions and predicates are SRM
+-computable:

(i) the binary union function (G, H) ↦→ G ∪ H,

(ii) the intersection function (G, H) ↦→ G ∩ H,

(iii) the singleton and pairing functions, G ↦→ {G} and (G, H) ↦→ {G, H},

(iv) the ordered pairing function (G, H) ↦→ 〈G, H〉,

(v) the first and second projections 〈G, H〉 ↦→ G, 〈G, H〉 ↦→ H,
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(vi) the predicate “G is an ordered pair”,

(vii) the predicate “G is a function”,

(viii) the union of a set, G ↦→ ⋃
G,

(ix) the intersection of a set, G ↦→ ⋂
G,

(x) the function mapping a function to its domain 5 ↦→ dom( 5 ),

(xi) function application ( 5 , G) ↦→ 5 (G),

(xii) the predicate “G is an ordinal”,

(xiii) the predicate “G is a sequence of ordinal length”,

(xiv) the function computing the≺-least element G ∈ H satisfying an SRM
+-computable

predicate %(G),

(xv) the th projection on a sequence, 〈G8 | 8 < �〉 ↦→ G,

(xvi) the power set function, G ↦→ P(G),

(xvii) the predicate “G is the power set of H”,

(xviii) the limes inferior of a sequence of sets.

Proof. We will give explicit programs for the first few cases and then move to

increasingly abstract descriptions of the desired programs:

(i) Observe that the following program computes the union of the sets in

registers '0 and '1 by adding all elements of '1 to '0:

1: IF '1 = ∅ THEN GO TO 6

2: TAKE(1, 2)
3: REMOVE(2, 1)
4: ADD(2, 0)
5: GO TO 1

(ii) Observe that the intersection of the sets contained in registers '0 and '1

can be computed as follows. Check for each element of '1 whether it is

contained in '0 and, if so, save it into a register for the intersection:

1: IF '1 = ∅ THEN GO TO 8

2: TAKE(1, 2)
3: REMOVE(2, 1)
4: IF '2 ∈ '0 THEN GO TO 6

5: GO TO 1

6: ADD(2, 3)
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7: GO TO 1

8: COPY(3, 0)

(iii) The functions of (iii) can be easily implemented.

(iv) Recall that 〈G, H〉 = {{G}, {G, H}}, and this can easily be computed.

(v) Note that

⋂〈G, H〉 = G and

⋃〈G, H〉 = {G, H}. So we can construct the

desired programs by combining the procedures from (i) and (ii) in a

straightforward way.

(vi) We have to implement a procedure that checks whether G is an ordered

pair: use (v) to compute the first and second projection of G, say, H and I.

Then compute 〈H, I〉 with (iv) and check whether this equals G.

(vii) Check whether G consists of ordered pairs (using (vi)), and then check that

G is functional with (v).

(viii) Use four registers: '0 contains G, '1 for the union of G, and '2 and '3 as

auxiliary registers. Then proceed as follows: as long as '0 is non-empty,

take a set from '0 and save it in '2, then remove it from '0. Then, as long

as '2 is non-empty, take an element of '2 and save it in '3, then remove it

from '2 and add it to '1. Once '0 is empty, we are done: copy our result

from '1 to '0, and stop.

(ix) A similar procedure as in the previous item does the job.

(x) Take and remove elements from '0 as long as it is non-empty. To each

element, apply the first-projection from (v), and add it to '1. Once '0 is

empty, '1 contains the domain of G.

(xi) Search through 5 until a pair with first coordinate G is found. Then return

the second projection of that pair.

(xii) Observe that it is straightforward to compute whether “G is a transitive set

of transitive sets”.

(xiii) Check whether G is a function whose domain is an ordinal.

(xiv) Given a procedure for checking %, take and remove elements from H until

some G is found satisfying %(G). By the definition of the TAKE-operation,
this will be the ≺-minimal element of H satisfying %.

(xv) This is just function application.

(xvi) This is straightforward using the POW-operation.

(xvii) Again, straightforward using the POW-operation.
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(xviii) Note that the limes inferior of a sequence of sets can be presented as

follows:

lim inf

�<
G� =

⋃
�<

⋂
�∈[�+1,)

G� .

This can be straightforwardly implemented by combining the previous

items of this lemma.

�

8.1.7 Lemma. Let!(Ḡ) be aΔ0-formula. Then there is an SRM ? such that ?(p!q, Ḡ) =
1 if V � !(Ḡ) and ?(p!q, Ḡ) = 0 if V � ¬!(Ḡ).
Proof. We construct a machine that recursively calls itself. For the base cases,

let ?(pG8 = G 9q, Ḡ) be the program that returns 1 if G8 = G 9 and 0 if G8 ≠ G 9 .

Similarly, let ?(pG8 ∈ G 9q, Ḡ) be the program that returns 1 if G8 ∈ G 9 and 0

if G8 ∉ G 9 . The cases for conjunction, disjunction and implication are easily

constructed by recursion. For the bounded existential quantifier, ∃G ∈ 0 !(G), the
machine ? conducts a search through 0 by consecutively taking and removing

elements. If ? finds some 1 ∈ 0 such that ?(p!q, 〈1, 0, G〉) = 1, then ? returns 1.

If no such 1 is found, then 0 does not contain a witness for ! and ? returns 0.

The bounded universal quantifier can be implemented similarly with a bounded

search. �

The next theorem shows that moving from Ordinal Turing Machines to Set

Register Machines does not increase the computational strength. We do not give

a detailed proof since the result is not used in the remainder of this dissertation.

8.1.8 Theorem. Ordinal Turing machines with parameters (OTMs) and set register
machines with parameters (SRMs) can simulate each other.
Proof (Sketch). For the first direction, recall that OTMs and ordinal register

machines (ORMs) can simulate each other (e.g., Carl [11, Section 2.5.6]). It will,

therefore, be enough to show that SRMs simulate ORMs but, in fact, more is

true: every ORM-program can be executed by an SRM. The other direction can

be shown by a straightforward but tedious coding argument by using a large

enough fragment of the well-order ≺ as a parameter and the coding developed

in the previous Section 7.1.3. �

8.1.2 Oracles and relative computability
As with other notions of computability, we can enrich SRM

+
s with oracles. Let

$ : V→ V be a partial class function. We obtain oracle SRM
+,$

by extending

Definition 8.1.1 with the following operation:

“ORACLE(8 , 9)”: replace the contents of the 9th register with the result

of querying the oracle $ with '8 .
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We also extend Definition 8.1.2:

If ?ℓ is “ORACLE(8 , 9)”, proceed as follows: if $(A8) is defined, let

A+
9
= $(A8), A+= = A= for all = ≠ 8, and ℓ+ = ℓ + 1. If $(A8) is undefined,

let A+
9
= A 9 for all 9 ≤ : and ℓ+ = ℓ .

The evaluation function is chosen like this to ensure that any SRM
+,$

loops

whenever the oracle is queried on undefined input. This entails that the oracle

is only queried on its domain within a successful computation. Given oracles,

we can define a relative notion of computability.

8.1.9 Definition. We say that a function 5 is SRM
+-computable in 6 if and only

if there is an SRM
+,6

program ? that computes 5 . a
A function is SRM

+-computable if and only if it is SRM
+
-computable in the

empty function. In fact, a function is SRM
+-computable if and only if it is

SRM
+
-computable in any set-sized function.

We will now work towards generalising a result of Kleene and Post [49],

which will be useful later but is also interesting in its own regard.

8.1.10 Proposition. The class function +(·) : Ord → +,  ↦→ +, mapping the
ordinals to the corresponding levels of the von Neumann hierarchy, is SRM

+-computable.

Proof. An SRM
+
-program does this by starting with the empty set and

consecutively computing power sets while keeping the current rank in an

auxiliary register. The program keeps computing until it reaches the desired .
This procedure is implemented in the following program, where the input 

is written into '0; note that the initial configuration of all other registers is ∅.
We use '1 to count our current stage � and '2 to save the current +�.

1: IF '0 = '1 THEN GO TO 5

2: POW(2, 2)
3: ADD(1, 1)
4: GO TO 1

Note that the register '0 remains unchanged, and the registers '1 and '2 are

monotonically increasing. Therefore, the program does the job also at limit

stages. �

The following proposition can be anticipated from how the evaluation of the

TAKE-operation was defined.

8.1.11 Proposition. The global well-ordering ≺ is SRM
+-decidable.

Proof. This is implemented by an SRM
+
that does the following: given 0 and

1, check whether 0 = 1. If so, we are done. If not, compute {0, 1} and use the

TAKE-operation to take a set 2 ∈ {0, 1}. By the definition of the TAKE-operation,
either 2 = 0 and then 0 ≺ 1, or 2 = 1 and then 1 ≺ 0. �
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By the th element of + according to ≺, we denote the unique G such that the

order type of ({H | H ≺ G}, ≺) is .
8.1.12 Proposition. The bĳective class function �� : Ord→ + mapping  to the
th element of + according to ≺ is SRM

+-computable and so is its inverse.

Proof. Recall our assumption that rank(G) < rank(H) implies G ≺ H. Therefore,
computing ≺ on some + means to compute an initial segment of ≺. We can

therefore proceed as follows.

For the forward direction, use the POW-operation to compute ++1. Then take

and remove elements from ++1 while running a counter until it reaches . The
last element taken is the set we were looking for.

For the other direction, given 0 ∈ + , compute a +� such that 0 ∈ +�. Then
start a counter and successively take and remove elements from +� until 0 is

reached. The value of the counter is the ordinal  we are looking for. �

8.1.13 Proposition. Let $ be a (partial) class function. The SRM
+,$ halting

problem is SRM
+,$ undecidable.

Proof. This is proved by contradiction with the usual diagonal argument.

Assume that there is a machine ? such that ?(G) = 1 if and only if G is an SRM
+

that halts, and ?(G) = 0 otherwise. Then define a machine @ such that @(G) does
not halt if and only if ?(G) = 1. Then, ?(@) = 1 if and only if @(@) does not halt if
and only if ?(@) = 0. A contradiction. �

8.1.14 Proposition. Let $ be a (partial) class function. Then there is an oracle $̃
such that there is an SRM

+,$̃-program D which is universal for SRM
+,$ , i.e., D(?, G)

and ?(G) are both defined and equal whenever at least one of them is defined. Moreover,
there is an SRM

+,$̃-program 2 such that 2(?, G) = 1 if G is a successful computation of
? and 2(?, G) = 0 otherwise. In particular, if $ is the empty function, then $̃ can be
taken empty as well.

Proof. Let $̃ be the function such that $̃(G) = 〈1, $(G)〉 whenever $(G) is
defined and $̃(G) = 〈0, 0〉 whenever $(G) is undefined. Using Lemma 8.1.6

and $̃, it is straightforward (but tedious) to construct a program 2 such that

2(?, G) = 1 if G is a successful computation of ? and 2(?, G) = 0 otherwise. Then

note that ?(G) is defined if and only if there is a successful computation of ?

on input G. For this reason, the universal machine can be implemented as an

unbounded search through V that stops if a successful computation for ? on

input G is found, and returns ?(G). In the case where $ is the empty function,

we can take $̃ to be the empty function as well because all SRM
+
-operations are

SRM
+
-decidable. �

It is possible to construct an SRM
+,$

-universal machine for SRM
+,$

, if one

changes the definition of oracle evaluation in such a way that the universal

machine can query the oracle without the risk of not halting.
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Let �(G, H) be a binary predicate in the language of set theory. Adapting

from Kleene and Post [49], we write �I(G) := �(G, I) and define �I
to be the

join of all �H with H ≠ I, as follows:

�I(G, H) :=

{
�(G, H), if H ≠ I,

0, if H = I.

The proof of the following theorem is a generalisation of a result by Kleene

and Post [49, Theorem 2]; our proof will be a generalisation of their diagonal

argument to the case of SRM
+
.

8.1.15 Theorem. There is a set-theoretic predicate �(G, H) such that �I is not
SRM

+-computable in �I .

Proof. We informally describe a total SRM
+,�

-program that makes use of an

oracle � for the SRM
+
-halting problem. This will then be the definition of the

predicate �(G, H).
Let 'init be an auxiliary register which is used to save an initial segment of

the predicate we are defining. Let 'stage be an auxiliary register that contains an

ordinal representing the current stage of the construction.

To ensure the non-computability desired in the theorem, we have to satisfy

class-many conditions, for each SRM
+
-program 4 (possibly with parameters)

and set I:

The program 4 does not witness that �I is SRM
+
-computable in �I . (%4 ,I)

Apply the inverse Gödel pairing function to 'stage obtain ordinals  and �. By
Proposition 8.1.12, calculate 4 := �−1

� () and I := �−1

� (�). We want to extend

'init in such a way that %4 ,I will hold. To this end, let G be the ≺-least set for
which 'init(G, I) is undefined. For convenience, let us say that � is a I-extension
of 'init if 'init ⊆ � and if 'init(F, I) is undefined for some F then so is �(F, I).
There are two cases to consider.

Case 1: There is a I-extension �init of 'init such that there is a successful

computation of 4 on input (G, I) using �I
init

as an oracle, i.e., the oracle is the

predicate obtained from �init by taking �I
init
(F, H) = �init(F, H) if H ≠ I, and

�I
init
(F, I) = 0 for all F. Note that our machine can decide whether such an

extension exists by using the oracle for the SRM
+
-halting problem. Let H ∈ {0, 1}

be the result of this computation. As �init is a I-extension of 'init, it must be

that �init(G, I) is undefined. We can therefore set 'init := �init ∪ {((G, I), 1 − H)}.
This choice ensures that 4 does not witness that �I is computable in �I

.

Case 2: For all I-extensions�init of 'init there is no successful computation of

4 on input (G, I)with�I
init

as oracle. In this case, we let 'init := 'init∪{((G, H), 0)}.
This (arbitrary) choice works because the final predicate � will be such that

there is no successful computation of 4 on input (G, I) with oracle �I
: for
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contradiction, suppose there was such a successful computation 2 and consider

the I-extension �init of 'init given by �init(G, H) = �(G, H) for all (G, H), H ≠ I,

for which the oracle is called during the computation 2. As �I
init
(F, I) is defined

for all F, all oracle calls during the computation 2 are still the same when using

�I
init

instead of �I
. Hence, there is a successful computation 2 of 4 on input

(G, I)with oracle �I
init

. But that is in contradiction to the assumption of this case.

The program defined this way will eventually give rise to a completely

defined predicate� on+ ×+ . The value of�(G, H) can be computed by running

the procedure above until the value for (G, H) is known. �

Note that the program described in the proof above does not use any

parameters and can thus be coded as a natural number.

8.1.16 Remark. In fact, Kleene and Post prove a stronger result which allows

to locate � between any two Turing degrees. A similar result seems possible

here. a

8.1.3 Constructible SRMs

For our applications to the first-order tautologies of CZF, it will be important

that we can express the predicate “�(G, H) holds” in a way that only uses the

language of set theory without introducing an extra relation symbol into our

language to refer to the global well-order. This means that we have to circumvent

referring to ≺ as this is an extra symbol that cannot be defined in terms of a

set-theoretic formula. Due to the following well-known fact, we will restrict our

attention to constructible sets (for reference see, e.g., Jech [44, Theorem 13.18 &

Lemma 13.19]):

8.1.17 Fact. There is a Σ1-definable well-ordering <L of the constructible universe L.

So if we restrict our attention to SRM
+
s that are run within the constructible

universe L, we can replace ≺ with <L in Definition 8.1.2. The resulting machine

will be called constructible full set register machine and denoted, in short, by SRM
+
L
.

Note that all of the results obtained so far about SRM
+
s can be relativised to L

and thus transferred to SRM
+
L
. In particular, we get the following versions of

Lemma 8.1.7 and Theorem 8.1.15:

8.1.18 Lemma. Let !(Ḡ) be a Δ0-formula. There is an SRML-program ? such that
?(p!q, Ḡ) = 1 if ! � ! and ?(p!q, Ḡ) = 0 if ! � ¬!.

8.1.19 Corollary. There is a non-SRM
+
L
-computable set-theoretic predicate�(G, H),

expressible in the language of set theory, such that �I is not SRM
+
L
-computable in �I .
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8.2 SRM-realisability
We will now define a notion of realisability based on SRM

+
s, and observe a few

proof-theoretic consequences for CZF.

8.2.1 Definition. We define the realisability relation  between SRM
(+),($)
(L)

and formulas in the language of set theory recursively as follows:

(i) A  0 ∈ 1 if and only if 0 ∈ 1;

(ii) A  0 = 1 if and only if 0 = 1;

(iii) A  !0 ∧ !1 if and only if A(0)  !0 and A(1)  !1;

(iv) A  !0 ∨ !1 if and only if A(1)  !A(0);

(v) A  !0→ !1 if and only if whenever B  !0, then A(B)  !1;

(vi) A  ∃G!(G) if and only if A(1)  !(A(0));

(vii) A  ∀G!(G) if and only if A(0)  !(0) for every set 0.

We say that ! is SRM-realisable if and only if there is an SRM realising !.
Similarly, we say that ! is SRM

+
-realisable if and only if there is an SRM

+

realising !; and so for SRM
+,$

, SRM
+
L
, and SRM

+,$
L

. a
This could be extended to infinitary languages as in the previous chapter.

Analogously to (i) and (ii), one could give realisability semantics to the global

well-order ≺. Also, as in the previous chapter, one could obtain a notion of

uniform realisability by requiring that the specific well-order ≺ does not matter

for the result of the computation.

8.2.2 Theorem. SRM
(+),($)
(L) -realisability is sound for intuitionistic logic.

Proof. This is a standard argument and can be established, for example, by

providing a realiser for every axiom in a Hilbert-style formalisation of Int and
showing that modus ponens is valid. The latter follows immediately from the

definition of the relisability relation. �

8.2.3 Lemma. Let !(Ḡ) be a Σ1-formula. Then there is some realiser A  !(Ḡ) if and
only if V � !(Ḡ).
Proof. This is a straightforward induction on Σ1-formulas. We will prove a

more intricate version of this lemma below, see Lemma 8.3.8. �

8.2.4 Theorem. The axioms (and schemes) of extensionality, pairing, union, infinity,
collection, ∈-induction, and Δ0-separation are SRM-realisable. The axiom of choice, AC,
is SRM-realisable. The axioms of power set and strong collection are SRM

+-realisable.
In conclusion, IKP+AC is SRM-realisable, and CZF+ Pow+AC is SRM

+-realisable.
Moreover, IKP +AC is SRML-realisable, and CZF + Pow +AC is SRM

+
L
-realisable.
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Proof. It is straightforward to construct a realiser for the extensionality axiom.

For the empty set axiom, let A be an SRM that returns the empty set on input

0 and the identity function on input 1. Then A(1)  ∀H(H ∈ A(0) → ⊥) because
1F H ∈ ∅ for all F ∈ % and H ∈ V. Hence, A  ∃G∀H(H ∉ G). A realiser for the

union axiom is an SRM A such that, for every 0 ∈ V, A(0)(0) = ⋃
0, using Lemma

8.1.6, A(0)(1)(G)(0) = id, and A(0)(1)(G)(1) = id for every G. The infinity axiom

is realised by an SRM A with A(0) = $, A(1)(G)(0) = id, and A(1)(G)(1) = id for

every G ∈ V. Using the power set operation provided by SRM
+
-programs, it is

straightforward to construct a realiser of the power set axiom. Note that the

subset collection schema is a consequence of the power set axiom.

Let us consider Δ0-separation next, i.e., the schema consisting of

∀G∃H∀I(I ∈ H ↔ I ∈ G ∧ !(G)),

where !(G) is a Δ0-formula. By combining Lemmas 8.1.18 and 8.2.3, we know

that !(G) if and only if ?(p!q, G) = 1, and ?(p!q, G) = 0 in case1 !(G). Hence,

we can compute the witnessing set H by conducting a bounded search through

G and collecting all I ∈ G such that ?(p!q, I) = 1. It is then trivial to realise

∀I(I ∈ H ↔ I ∈ G ∧ !(G)) because ! is a Δ0-formula.

Consider the schema of ∈-induction next:

∀G(∀H ∈ G!(I) → !(G)) → ∀G!(G).

An SRM A is a realiser for this if and only if, if B  ∀G(∀H ∈ G!(I) → !(G)),
then A(B)  ∀G!(G). Now, in this situation, B allows us to iteratively construct

realisers for every G ∈ V by successively building realisers for every V. Hence,

given G ∈ V, we just compute realisers until we reach G and then output the

realiser for !(G).
Next, we consider the strong collection schema:

∀G[(∀H ∈ G∃I!(H, I)) → ∃F(∀H ∈ G∃I ∈ F!(H, I) ∧ ∀I ∈ F∃H ∈ G!(H, I))],

for all formulas !(G, H) for which F is not free. Given G ∈ V, let A(G)(B), for B 
∀H ∈ G∃I!(I, H), be an SRM that computes a set consisting of all B(H)(0) for every
H ∈ G, and returns this set on input 0. Using B, it is straightforward to construct

a realiser A(G)(B)(1)  ∀H ∈ G∃I ∈ A(G)(B)(0) !(H, I) ∧ ∀I ∈ A(G)(B)(0) ∃H ∈
G!(H, I)).

Finally, consider the axiom of choice,

∀G((∀H ∈ G∃I I ∈ H) → ∃ 5∀H ∈ G 5 (H) ∈ H).

This axiom states that whenever G consists of non-empty sets, then there is a

choice function 5 on G. Using Lemma 8.1.6, it is straightforward to construct an

SRM that computes such a choice function: for every element of H ∈ G, use the
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TAKE-operation to obtain some I ∈ H. Then add (G, H) to the register in which

we build the choice function.

The corresponding results for SRML and SRM
+
L
are obtained through re-

lativisation and absoluteness properties (or by observing that the exact same

realisers still do the job). �

It turns out that IZF is not SRM
+
-realisable.

8.2.5 Theorem. There is an instance of the separation axiom that is not SRM
+-

realisable. In conclusion, IZF is not SRM
+-realisable.

Proof. Consider the predicate �(G, H) expressing that “G is an SRM
+
that

halts on input H”. One can easily construct a formula !(G, H) such that !(G, H)
is realised if and only if �(G, H) is true (see also the proof of Lemma 8.3.11 for

a similar argument). Then let B be a realiser of the following instance of the

separation axiom:

∀G∀H∀I∃F∀D(D ∈ F ↔ (D ∈ I ∧ !(G, H))).

We can then construct an SRM A that does the following. Given G and H, compute

F := B(G)(H)(1)(0) and return the result. By construction, A(G, H) = 1 just in case

�(G, H) holds, and A(G, H) = 0 otherwise. So A is an SRM
+
solving the SRM

+

halting problem but this is impossible, see Proposition 8.1.13. �

In fact, we have just seen that CZF + Pow is SRM
+
-realisable. The following

proposition shows that we cannot be more fine-grained: if there is an SRM

realising the exponentiation axiom (possibly using an oracle), then we can

already compute power sets. Recall that the axiom of exponentiation is a

consequence of subset collection (consult, e.g., [3]).

8.2.6 Proposition. Let A be an SRM, possibly using an oracle, such that A realises
the axiom of exponentiation, then there is an SRM, using A as an oracle, that computes
power sets.
Proof. Let A be a realiser of the axiom of exponentiation:

∀G∀H∃I∀ 5 ( 5 ∈ I ↔ “ 5 is a function from G to H”),

where “ 5 is a function from G to H” is expressed as a Δ0-formula. Then, given a

set 0, the set 1 := A(0)({0, 1})(0) contains all 5 for which there is a realiser of “ 5

is a function from G to H”. As this is a Δ0-formula, Lemma 8.2.3 implies that 1

consists of all functions from 0 to 2. It is now easy to compute the power set of 0

as follows: for each element 5 of 1, compute the set consisting of exactly those

G ∈ 0 for which 5 (0) = 1. This results in the power set of 0 because each subset

of 0 gives rise to its characteristic function contained in 1. �

Our realisability semantics also allow to give an upper bound forΠ2-formulas

provable in CZF in terms of the computable strength of SRM
+
.
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8.2.7 Theorem. Let ! be a Σ1-formula. If CZF ` ∀G∃H!(G, H), then there is an
SRM

+ ? such that V � !(G, ?(G)).
Proof. If CZF ` ∀G∃H!(G, H), then, by Theorem 8.2.4, there exists an SRM

+

A  ∀G∃H!(G, H). Take ?(G) to be the SRM
+
to compute A(G)(0). Then, for all G,

!(G, ?(G)) is realisable. As ! is a Σ1-formula, it follows with Lemma 8.2.3 that

V � !(G, ?(G)). �

Finally, we can use SRM
+
-realisability to easily determine the admissible

rules of CZF. The proof and technique of Section 7.5 can be adapted to derive

the following theorem.

8.2.8 Theorem. The propositional admissible rules of CZF are exactly those of
intuitionistic logic. In other words, CZF is propositional rule loyal.

Proof. Using the fact thatCZF is SRM
+
-realisable, we can prove thiswith glued

realisability using Theorem 2.3.7; almost exactly as we did in Section 7.5. �

8.3 Beth realisability models

8.3.1 Fallible Beth models
In this section, we will make use of so-called fallible Beth models because they

satisfy a particular handy universal model theorem (see Troelstra and van Dalen

[88, Chapter 13]). The notions of fallible Beth and Kripke model go back to

Veldman [90] and de Swart [84].

8.3.1 Definition. A fallible Beth frame (%,*) consists of a tree % and an upwards

closed set* ⊆ % such that if every path through ? ∈ % meets* , then ? ∈ * . a
8.3.2 Definition. A fallible Beth model (%,*, �, �) for first-order logic consists
of a fallible Beth frame (%,*), domains �? for ? ∈ %, and an interpretation �? of

the language of first-order logic for each ? ∈ % such that:

(i) �E(') ⊆ �F(') for all F ≥ E,

(ii) �E(') = �E for all E ∈ * , and,

(iii) if ' is an =-ary relation symbol, Ḡ ∈ �=
E and on every path through E there

is some F such that Ḡ ∈ �F('), then Ḡ ∈ �E(').

A Beth model is a fallible Beth model where* = ∅. If ? ∈ %, then a bar for ? is a

set � ⊆ % such that every path through ? meets �. A*-bar for ? is a set � ⊆ %
such that � ∪* is a bar for ?. a
8.3.3 Definition. Let (%,*, �, �) be a fallible Bethmodel and E ∈ %. We define

by recursion on sentences in the language of first-order logic:
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(i) E  ⊥ if and only if E ∈ * ;

(ii) E  '(31, . . . , 3=) if and only if (31, . . . , 3=) ∈ �E(');

(iii) E  �0 ∧ �1 if and only if E  �0 and E  �1;

(iv) E  �0 ∨ �1 if and only if there is a bar � for E such that for every F ∈ �,
F  �0 or F  �1;

(v) E  �0→ �1 if and only if for every F ≥ E, if F  �0, then F  �1;

(vi) E  ∃G�(G) if and only if there is a bar � for E such that for all F ∈ �, there
is some 0 ∈ �F with F  �(0);

(vii) E  ∀G�(G) if and only if for every F ≥ E and 0 ∈ �F , F  �(0). a

Note that, by this definition, if E ∈ * , then E forces every formula trivially,

i.e., the relation  trivialises in* . By definition of* , it follows that if E ∉ * and

� is a *-bar for E, then � \* is non-empty. The following result of Troelstra

and van Dalen [88, Chapter 13, Remark 2.6 and Theorem 2.8] will be a crucial

ingredient of our proof.

8.3.4 Theorem. Let � be a recursively enumerable theory in intuitionistic first-order
logic. Then there is a fallible Beth model ℬ� with constant domain $, based on the full
binary tree of height $, such that ℬ  � if and only if `� � for every sentence � of
first-order logic.

In what follows, we will refer to ℬ� as the universal Beth model for �.

8.3.2 Beth realisability models

Inspired by vanOosten [65], we now combine ourSRM
+,$
L

-realisabilitywith Beth

semantics. To make coherent use of oracles, we need the following definition.

8.3.5 Definition. Let % be a partial order. A system of oracles ($E)E∈% consists

of partial class functions $E : V → V such that, for all F ≥ E, we have that

dom($E) ⊆ dom($F) and $E(G) = $F(G) for all G ∈ dom($E). a
We need some notation to work with oracles. Given an SRM

+,$
L

-program

A, we write A(G1, . . . , G= ;$) for the result of the successful computation (if it

exists) of A on input G1, . . . , G= and oracle $. If we work with a system of oracles

($E)E∈% , we also write A(G1, . . . , G= ; E) for A(G1, . . . , G= ;$E). Finally, we write

A(G1, . . . , G=) for A(G1, . . . , G= ; ∅), i.e., the output (if it exists) of A run with the

empty oracle.

8.3.6 Definition. Let (%,*) be a fallible Beth frame, ($E)E∈% be a system of

oracles. We define recursively for sentences ! and # in the language of set

theory, for 0, 1 ∈ L, E ∈ % and an SRM
+,$
L

-program A:
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(i) A E ⊥ if and only if E ∈ * ;

(ii) A E 0 = 1 if and only if 0 = 1 or E ∈ * ;

(iii) A E 0 ∈ 1 if and only if 0 ∈ 1 or E ∈ * ;

(iv) A E ! ∧ # if and only if A(0; E) E ! and A(1; E) E #;

(v) A E ! ∨# if and only if there is a*-bar � for E such that, for every F ∈ �,
either A(0;F) = 0 and A(1;F) F !, or A(0;F) = 1 and A(1;F)  #;

(vi) A E !→ # if and only if for every F ≥ E, if B F !, then A(B;F) F #;

(vii) A E ∃G!(G) if and only if there is a*-bar � for E such that for all F ∈ �,
A(1;F) F !(A(0;F));

(viii) A E ∀G!(G) if and only if for every 0, A(0; E) E !(0). a

If E ∈ * , then A E ! for every realiser A and set-theoretic sentence !. The
following is established by a standard argument.

8.3.7 Theorem. Beth-realisability is sound for the axioms and rules of intuitionistic
first-order logic.

8.3.8 Lemma. Let !(Ḡ) be a Σ1-formula and E ∉ * . Then there is some realiser
A E !(Ḡ) if and only if ! � !(Ḡ).
Proof. As E ∉ * , we know that any*-bar � for E satisfies � \* ≠ ∅. We prove

this by induction. The cases for equality and set-membership are trivial.

Suppose that E !(0̄) ∧#(0̄). By definition, this is equivalent to E !(0̄) and
E #(0̄). Applying the induction hypothesis, this holds if and only if L � !(0̄)
and L � #(0̄). This is, of course, equivalent to L � !(0̄) ∧ #(0̄).

For disjunction, first suppose that A E !(0̄)∨#(0̄). By definition, this means

that there is a *-bar � for E such that for all F ∈ � we have either A(0;F) = 0

and A(1;F) F !(0̄), or A(0;F) = 1 and A(1;F) F #(0̄). Recall that � \ * is

non-empty. So take any F ∈ � \ * , then F !(0̄) or F #(0̄). By induction

hypothesis, L � !(0̄) or L � #(0̄). Hence L � !(0̄) ∨ #(0̄). Conversely, assume

that L � !(0̄) ∨ #(0̄). Then L � !(0̄) or L � #(0̄). It follows, by induction

hypothesis, that E !(0̄) or E #(0̄), but then E !(0̄) ∨ #(0̄).
For implication, assume that A E !→ #. If L 2 !, then trivially L � !→ #.

So assume that L � !. By induction hypothesis, we know that there is a realiser

B E !. Hence, A(B) E #. Applying the induction hypothesis once more, we

get L � #. Conversely, assume that L � ! → #. If L 2 !, then, by induction

hypothesis, 1F ! for all F ≥ E. So E ! → # holds trivially. If L � !, then
L � #. So, by induction hypothesis, there is a realiser B E #. Hence, a realiser

for !→ # is the SRM ? that returns B on any input.
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For bounded universal quantification, assume that L � ∀G ∈ H!(G). Then,
by induction hypothesis, we can find a function 5 : H → L such that 5 (I) E
!(I). Let ? be the SRM with parameter 5 that returns 5 (I) on input I. Then

? E ∀G ∈ H!(G). Conversely, note that E ∀G ∈ H!(G) entails that E !(G) for
every G ∈ H. An application of the induction hypothesis yields L � ∀G ∈ H!(G).

For unbounded existential quantification, assume that L � ∃G!(G). Then
there is some 0 ∈ L such that L � !(0). By induction hypothesis, there is a

realiser B E !(0). Let ? be an SRM such that ?(1) = B and ?(0) = 0 (by using, if

necessary, parameter 0). Then ? E ∃G!(G). Conversely, if ? E ∃G!(G), then
there is a*-bar � for E such that for all F ∈ �, ?(1;F) F !(?(0;F)). Take any
F ∈ � and the induction hypothesis implies that L � !(?(0;F)), and, hence,
L � ∃G!(G). �

8.3.9 Theorem. The Beth realisability model satisfies CZF + Pow +AC.

Proof. Realisers for the axioms and schemas can be constructed (almost exactly)

as in the proof of Theorem 8.2.4. For the case of Δ0-separation, observe that the

use of Lemma 8.2.3 has to be replaced with Lemma 8.3.8. (Note that we only

need to consider the cases for E ∉ * , as the other case is trivial.) �

8.3.3 Constructing a model for a given logic

The goal of this section is to construct a Beth-realisability model that matches the

truth in the universal Beth model ℬ� = (%,*, �, �) for a given logical theory �.

To begin with, we define the two systems of oracles (�E)E∈% and (�E)E∈% . If 0 is a
set, let rank$(0) be the unique natural number such that rank(0) =  + rank$(0)
for a maximal (possibly 0) limit ordinal .

(i) We define a partial class function �E : V×V→ V by recursion on E ∈ % (%

being the binary tree of height $) such that:

�E(<, 〈10, . . . , 1=〉) =



0, if < = p∃G�(G, H0, . . . , H=)q
and F ≤ E is least such that

0 ∈ $ is least with

ℬ� , F  �(0, rank$(10), . . . , rank$(1=)),
8 , if < = p(�0 ∨ �1)(H0, . . . , H=)q

and F ≤ E is least such that

8 ∈ $ is least with

ℬ� , F  �8(rank$(10), . . . , rank$(1=)).

Note that the function �E is undefined if none of the cases apply.
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(ii) We define a partial class function �E : V × V→ V such that:

�E(0, 1) =



1, if 1 = 〈8 , 10, . . . , 1=〉,
ℬ� , E  %8(rank$(10), . . . , rank$(1=)),
and �(0, 1) = 1,

0, if 1 = 〈8 , 10, . . . , 1=〉,
ℬ� , E  %8(rank$(10), . . . , rank$(1=)),
and �(0, 1) = 0.

Note that the function �E is undefined if none of the cases apply.

8.3.10 Lemma. The sequences (�E)E∈% and (�E)E∈% form systems of oracles.
From now on, we consider the Beth-realisability based on these systems of

oracles. Note that, without loss of generality, we can combine two systems of

oracles into one by, e.g., taking $E(〈0, G〉) = �E(G) and $E(〈1, G〉) = �E(G) for all
E ∈ %.
8.3.11 Lemma. Let E ∉ * . There is a negative formula #(G, H) such that there is a
realiser A E #(G, H) is realised if and only if �(G, H) = 1.
Proof. Except for the power set case, every clause of the definition of successful

computation (Definition 8.1.2), adapted forSRM
+
L
, can bewritten as aΣ1-formula.

For the TAKE-operation, recall that<L isΣ1-definable. Nowconsider the predicate

“G = P(H)” which is needed for the POW-operation and can be formalised as

“∀I(I ∈ G ↔ ∀F ∈ I F ∈ H)”. As the part in brackets is a Δ0-formula, it follows

with Lemma 8.3.8 that this predicate is realised if and only if it is true. Note,

in particular, that also the successor case for the halting problem oracle is

realised if and only if it is true in L. This is because the existence of a successful

computation is absolute, as we have just seen.

Applying Lemma 8.3.8 once more, these observations show that we can

construct a formula " expressing “2 is a successful computation of �(G, H) with

result 0” such that "(2, G, H) is realised if and only if it is true in L. Take #(G, H)
to be ¬∃2"(2, G, H). It follows that #(G, H) is realised if and only if �(G, H) = 1

because � halts on every input with either 0 or 1 as output. �

8.3.12 Lemma. Let %8(H0, . . . , H=) be a predicate in the language of first-order lo-
gic. There is a set-theoretic formula !8(H0, . . . , H=) and a realiser A such that for
all 10, . . . , 1= ∈ L, we have that A(10, . . . , 1=) E !8(10, . . . , 1=) if and only if
ℬ� , E  %8(rank$(10), . . . , rank$(1=)).
Proof. Let #(G, H) be the negative formula from Lemma 8.3.11 expressing that

�(G, H) = 1. As # is negative, we know that, for every E and 0, 1 ∈ L, either

E #(0, 1) or E ¬#(0, 1). Then take:

!8(H0, . . . , H=) := ∀G(#(G, 〈8 , H0, . . . , H=〉) ∨ ¬#(G, 〈8 , H0, . . . , H=〉)).
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Suppose there was a realiser A E !8(10, . . . , 1=) but we also have that ℬ� , E 1
%8(rank$(10), . . . , rank$(1=)). In this situation, we can decide �〈8 ,10 ,...,1=〉 from
A for every 0: if A(0, 10, . . . , 1=) returns a realiser for #(0, 〈8 , 10, . . . , 1=〉), then
�〈8 ,10 ,...,1=〉(0) = 1; if A(0, 10, . . . , 1=) returns a realiser for ¬#(0, 〈8 , 10, . . . , 1=〉),
then �〈8 ,10 ,...,1=〉(0) = 0. However, by our assumption, �E(2, 〈8 , 10, . . . , 1=〉) is
undefined for all 2 ∈ L. This means that A cannot query the oracle �E on

elements of the form (2, 〈8 , 10, . . . , 1=〉) because then the computation would not

be successful. Hence, using A, we can construct a witnesses that �〈8 ,10 ,...,1=〉 is
computable in �〈8 ,10 ,...,1=〉

but that is a contradiction to Theorem 8.1.19. (Note

that � does not matter here because the information contained in � could be

saved in a set-sized parameter.)

Conversely, assume that ℬ� , E  %8(rank$(10), . . . , rank$(1=)). By definition

of �, it follows that �E(0, 〈8 , 10, . . . , 1=〉) is defined for all 0 ∈ L. Hence, a realiser

for !8 can be easily obtained by querying the oracle �(0, 〈8 , 10, . . . , 1=〉): if the
result is 1, then return a realiser of #(0, 〈8 , 10, . . . , 1=〉). If the result is 0, then

return a realiser of ¬#(0, 〈8 , 10, . . . , 1=〉). In both cases, the computation of the

corresponding realiser is trivial because the formulas are negative. �

Let �(%8) = !8 and extend � to a translation of all formulas in the language of

first-order logic in the obvious way. Note that the formulas !8 are Π3-formulas.

8.3.13 Lemma. Let �(H0, . . . , H=) be a formula in the language of first-order logic.
Then:

(i) If there is a realiser A E ��(10, . . . , 1=), then

ℬ� , E  �(rank$(10), . . . , rank$(1=)).

(ii) There is a realiser A� such that for all 10, . . . , 1= ∈ L, if

ℬ� , E  �(rank$(10), . . . , rank$(1=)),

then
A�(10, . . . , 1=) E ��(10, . . . , 1=).

Proof. Weprove (i) and (ii) simultaneously by induction so that both directions

are available in the induction hypothesis. We begin with proving the cases for

(i). The base case follows from Lemma 8.3.12. For conjunction, � ∧ �, note
that E �� ∧ �� entails E ��

and E ��. Hence, by induction hypothesis,

ℬ� , E  � and ℬ� , E  �. So, ℬ� , E  � ∧ �. For disjunction, � ∨ �, we have

that A E �� ∨ �� entails that there is a*-bar � for E such that for every F ∈ �,
either AF(0) = 0 and AF(1) F ��

or AF(0) = 1 and AF(1) F ��. By induction

hypothesis, this means that there is a *-bar � for E such that for every F ∈ �,
F  � or F  �. Hence E  � ∨ �. The case for implication is similar (making

use of (ii) as well), and the cases for universal and existential quantification

follow with the induction hypothesis.
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Regarding the cases for (ii), we recursively construct the required realisers

A�(10, . . . , 1=), uniform in 10, . . . , 1= ∈ L, for each formula �. Once more, the

base case, A%8 (H0, . . . , H=), was established in Lemma 8.3.12. To keep notation

light, we will write H̄ for H0, . . . , H= (or, potentially, a subsequence of this), and

similarly for 1̄.

For conjunction (� ∧ �)(H̄), take A(�∧�)(H̄)(1̄)(0) = A�(1̄) and A(�∧�)(H̄)(1̄)(1) =
A�(1̄). An application of the induction hypothesis shows that A(�∧�)(H̄) does the
job.

For implication (�→ �)(H̄), we know by our induction hypothesis—for both

(i) and (ii)—that A�(H̄)(1̄) F �(1̄) if and only if F  �(1̄) for all F ≥ E. Hence, let

A�→�(H̄)(1̄ , B) = A�(1̄). It is straightforward to check that this does the job.

For disjunction, define A�∨�(H̄) to be the SRM
+,$

that, on input 1̄, returns

a code B for an SRM
+,$

with parameters 1̄ that does the following. On in-

put 0, B calls the oracle � on (p(� ∨ �)(H̄)q, 〈1̄〉) and returns this value. On

input 1, B returns A�(1̄) if �(p(� ∨ �)(H̄)q, 〈1̄〉) = 0 and it returns A�(1̄) oth-
erwise. To see that A(�∨�)(H̄) does the job, assume that there is a *-bar �

such that for every F ∈ �, F  �(1̄) or F  �(1̄). Equivalently, by induc-

tion hypothesis, for every F ∈ �, A�(1̄;F) F �(rank$(10), . . . , rank$(1=))
or A�(1̄;F) F �(rank$(10), . . . , rank$(1=)). By definition of A(�∨�)(H̄), it fol-

lows that A(�∨�)(H̄)(1̄;F)(1) = A� or A(�∨�)(H̄)(1̄;F)(1) = A�. In conclusion,

A(�∨�)(H̄)(1̄;F) F (� ∨ �)(1̄).
For existential quantification, define A∃G�(G,H̄) to be the function that, on

input 1̄, calls the oracle � on input (p∃G�(G, H)q, 〈1̄〉). Let the result of this

query be = ∈ $. Then let A∃G�(G,H̄)(0) = = and A∃G�(G,H̄)(1) = A�(=,H̄). Note here

that we do not require the use of parameters because the realiser A�(=,H̄) is

uniform in =, H̄. To check that A∃G�(G,H̄) does the job, let 1̄ ∈ L and assume

that there is a *-bar � for E such that, for every F ∈ �, there is some =F ∈
$ such that F  �(=F , rank$(1̄)). By induction hypothesis, it follows that

A�(=F ,H̄)(1̄;F) F ��(=F , 1̄) (as ℬ� has constant domain $ and rank$(=F) =
=F), i.e., A∃G�(G,H̄)(1̄ , 0;F) F ��(A∃G�(G,H̄)(1̄ , 1;F), 1̄). Hence, A∃G�(G,H̄)(1̄; E) E
∃G��(G, 1̄).

For universal quantification, define A∀G�(G,H̄)(H̄) to be the function that returns

A�(G,H̄)(G, H̄). �

If � is a set of formulas in first-order logic, we write �� for the image of �

under � (i.e., �� = �[�]).
8.3.14 Theorem. Let � be a recursively enumerable theory in intuitionistic first-order
logic, and ) ⊆ CZF + Pow +AC. Then ) + �� ` �� if and only if � `Int �.

Proof. The backwards direction is straightforward with the soundness of the

Beth realisability model. For the forward direction, assume that � 0 �. Then, by
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Theorem 8.3.4, we know that ℬ� 0 �. In this situation, Lemma 8.3.13 implies

that there is no realiser of ��
. But the same lemma implies that �� is realised for

every � ∈ �. Hence, ) + �� 0 ��
. �

The following corollary follows immediately by taking � = ∅.
8.3.15 Corollary. Let ) ⊆ CZF + Pow +AC be a set theory. Then the first-order
tautologies of ) are exactly those of intuitionistic first-order logic, Taut(), `Int) =
Taut(`Int). In particular, Taut(CZF, `Int) = Taut(`Int).
8.3.16 Remark. Rathjen [74, p. 309] points out that “the combination of CZF
and the general axiom of choice has no constructive justification in Martin-Löf

type theory”. In contrast, our results show that the combination of CZF and the

axiom of choice is innocent on a logical level in that adding the axiom of choice

does not increase logical strength:

Taut(CZF + AC, `Int) = Taut(CZF, `Int) = Taut(`Int).

Note, of course, that CZF + AC satisfies the law of excluded middle for Δ0-

formulas. This follows from the proof of the Diaconescu–Goodman–Myhill-

Theorem 1.1.1 which only requires Δ0-separation to prove the law of excluded

middle for Δ0-formulas. Such theories satisfying the law of excluded middle for

Δ0-formulas but not, in general, are sometimes called semi-intuitionistic. a
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Appendix A
Set Theories

In this appendix, we introduce all axioms and theories investigated in this

dissertation. We now introduce the axioms of set theory one-by-one; an

overview of the theories can be found in Table A.1. We work in the language of

set theory ℒ∈, which is the fragment of the full language of first-order logic with

equality making use only of a binary relation symbol ‘∈’ for set-membership.

We assume that the reader has seen most of these axioms and their models

before. We refer to the literature for details, e.g., [3, 44]. This appendix is

only intended as a brief reference to fix our terminology as well as the precise

formulation of the axioms. Note that the precise formulation of the axioms

matters as classically equivalent formulations are notnecessarily intuitionistically

the same.

Extensionality The axiom of extensionality is the following statement:

∀G∀H
(
G = H ↔

(
∀I(I ∈ G ↔ I ∈ H)

) )
, (Ext)

stating that two sets are equal if and only if the have exactly the same members.

Empty set The axiom of empty set is the following statement:

∃G∀I¬I ∈ G, (Emp)

stating that there is a set with no members. We also write ∅ for this set.

Union The axiom of union is the following statement:

∀G∃H∀I
(
I ∈ H ↔ (∃F(F ∈ G ∧ I ∈ F))

)
, (Un)

stating that unions of sets,

⋃
G, exist.

135
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Pairing The axiom of pairing is the following statement:

∀G∀H∃I∀F
(
F ∈ I ↔

(
F = G ∨ F = H

) )
, (Pair)

stating that pairs {G, H} exist.

(Strong) Infinity We call a set G inductive if it satisfies the following formula:

Ind(G) := ∅ ∈ G ∧ ∀H
(
H ∈ G → (H ∪ {H} ∈ G)

)
.

The axiom of infinity states that there is an inductive set:

∃G Ind(G), (Inf)

and the axiom of strong infinity states that there is a least inductive set:

∃G
(
Ind(G) ∧ ∀H(Ind(H) → G ⊆ H)

)
. (StrInf)

It is clear that the axiom of strong infinity entails the axiom of infinity on the

basis of intuitionistic logic. The converse is also true on the basis of CZF− Inf [1,

Section 2.1]. For this reason, it does not matter which axiom we include in our

axiomatisation of CZF.

Separation Given a formula !(?0, . . . , ?= , F) with all free variables shown,

the separation instance for ! is the following formula:

∀?0, . . . , ?=∀G∃H∀F
(
F ∈ H ↔

(
F ∈ G ∧ !(?0, . . . , ?= , F)

) )
(Sep!)

and the separation schema Sep consists of all instances Sep! for allℒ∈-formulas !.
If Γ is a set of formulas in the language of set theory, we also refer to Γ-separation
as the schema obtained by taking Sep! for all ! ∈ Γ. An important restriciton

of separation is the axiom schema of Δ0-separation, which is also referred to as

bounded separation.

Foundation & ∈-induction The axiom of foundation is the following statement:

∀G
(
G ≠ ∅ →

(
∃H(H ∈ G ∧ H ∩ G ≠ ∅)

) )
, (Found)

which entails the law of excluded middle on the basis of constructive Zermelo–

Fraenkel set theory CZF [3, Proposition 10.4.1]. For this reason, we consider

the classically equivalent set-induction schema obtained from taking all instances

∈-Ind! for all ℒ∈-formulas !(?0, . . . , ?= , G):

∀?0, . . . , ?=

((
∀G(∀H ∈ G!(?0, . . . , ?= , H) → !(?0, . . . , ?= , G))

)
→

(
∀G!(?0, . . . , ?= , G)

) )
. (∈-Ind!)
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Replacement & (Strong) Collection The axiom schema of replacement (Rep) is
obtained from the following instances for each formula !(?0, . . . , ?= , G, H) with

all free variables shown:

∀?0, . . . , ?=

( (
∀G∃!H!(?0, . . . , ?= , G, H)

)
→(

∀I∃F∀H
(
H ∈ F ↔ ∃G

(
G ∈ I ∧ !(?0, . . . , ?= , G, H)

) ) ) )
. (Rep!)

For set theories based on intuitionistic logic, replacement is often substituted

with the stronger axiom schema of collection consisting of all instances of the

following statement for all !(?0, . . . , ?= , G, H)with all free variables shown:

∀?0, . . . , ?=∀I
(
∀G ∈ I∃H!(?0, . . . , ?= , G, H) →

∃D∀G ∈ I∃H ∈ D!(?0, . . . , ?= , G, H)
)

(Coll!)

Sometimes we require the stronger axiom schema of strong collection. It consists
of all of the following formulas for all formulas !(?0, . . . , ?= , G, H)with all free

variables shown:

∀?0, . . . , ?=∀I
(
∀G

(
G ∈ I → ∃H!(?0, . . . , ?= , G, H)

)
→

∃D
[
∀G ∈ I∃H ∈ D!(?0, . . . , ?= , G, H)

∧ ∀H ∈ D∃G ∈ I!(?0, . . . , ?= , G, H)
] )
. (StrColl!)

Just as in the case of separation, we will sometimes restrict the replacement and

(strong) collection schemes to a certain class of instances derived from a class Γ

of formulas. In this case, we refer to the schema as Γ-(strong) collection (Γ-Coll)

or Γ-replacement; Δ0-(strong) collection is sometimes also referred to as bounded
(strong) collection.

Power Set & Subset Collection The axiom of power set is the following state-

ment:

∀G∃H∀I
(
I ∈ H ↔ I ⊆ G

)
,

where ‘I ⊆ G’ is an abbreviation for ‘∀F(F ∈ I → F ∈ G)’. The axiom of power

set is often considered impredicative , and, therefore, replaced with the axiom
schema of subset colletion in the context of constructive set theories. This schema
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consists of the following statements for every formula !(G, H, D) in the language

of set theory with all free variables shown:

∀E∀F∃I∀D
[
∀G ∈ E∀H ∈ F!(G, H, D) →

∃C ∈ I
(
∀G ∈ E∃H ∈ C!(G, H, D) ∧ ∀H ∈ C∃G ∈ E!(G, H, D)

) ]
. (SubColl!)

Iemhoff [40] introduced a restriction of subset collection: the axiom schema of
set-bounded subset collection (SBSubColl) consists of all instances (SubColl!) for

those !(G, H, D) from which it is derivable, in intuitionistic logic, that D ∈ F for

some F appearing in !.
We now briefly introduce the axiom of fullness, which is equivalent to subset

collection on the basis of CZF − SubColl:

∀G∀H∃I(I is full in G × H) (Full)

Here, ‘I is full in G × H’ means that (i) I consists of total relations between G and

H, and (ii) any total relation F ⊆ G × H is a superset of some relation E ∈ I.
Moreover, note that subset collection entails the following axiom of expo-

nentiation:

∀G∀H∃I∀ 5 ( 5 ∈ I ↔ 5 : G → H), (Exp)

stating that function sets exist.

Choice The axiom of choice is the following statement:

∀G[(∀H ∈ G H ≠ ∅) →
∃ 5 (“ 5 is a function with domain G” ∧ ∀F ∈ G( 5 (F) ∈ F))]. (AC)

Constructibility The axiom of constructibility, V = L states that every set is

constructible. For an introduction to constructible sets consult Jech’s book [44,

Chapter 13]

Markov’s Principle Besides the set-theoretic axioms considered above, we

also consider the following set-theoretic reformulation of Markov’s principle:

∀ : N→ 2 (¬∀= ∈ N (=) = 0→ ∃= ∈ N (=) = 1). (MP)

Another axiom that is referred to as MP is Hamkins’sMaximality Principle [33].
We do not make use of Hamkins’s Maximality Principle in this dissertation

(even though there is a close connection between the techniques in Chapter 4

and the literature on Hamkins’s Maximality Principle and the modal logic of

forcing).
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ZFC IZF IZFR CZF CZFER IKP IKP+ BCST ECST

`Cl `Int `Int `Int `Int `Int `Int `Int `Int

Ext Ext Ext Ext Ext Ext Ext Ext Ext

Emp Emp Emp Emp Emp Emp Emp Emp Emp

Un Un Un Un Un Un Un Un

Pair Pair Pair Pair Pair Pair Pair Pair

Inf Inf Inf StrInf StrInf Inf Inf StrInf

Sep Sep Sep Δ0-Sep Δ0-Sep Δ0-Sep Δ0-Sep Δ0-Sep

Found ∈-Ind ∈-Ind ∈-Ind ∈-Ind ∈-Ind ∈-Ind

Rep Coll Rep StrColl Rep Δ0-Coll Δ0-Coll Rep Rep

Δ0-StrColl Δ0-Coll

Pow Pow Pow SubColl Exp SBSubColl

AC

A.1 Table. An overview of various set-theoretic formal systems.

Set Theories Various set-theoretic formal systems built from the axioms and

schemas above can be found in Table A.1. A set theory is a set of sentences in

the language of set theory. If ) is a set theory, we will sometimes also refer

to formal systems (), `) as set theories. If ) is any of the theories in the table

containing either (Δ0-)collection or (Δ0-)strong collection, we denote obtained

by removing this schema and adding the replacement schema by )R. Similarly,

if ) contains the subset collection axiom, we denote the theory obtained by

removing that axiom and adding the exponentiation axiom by )E. Finally, )ER is

obtained by conducting both replacements. For convenience, we added IZFR
and CZFER directly to the table.
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This index of definitions lists important objects and where their definitions can be

found. We do not list every instance of a term.

CZF, 15
Γ-extensible, 65

HA, 15
IKP, 15
IKP+, 15, 38
IZF, 15
KP, 15
PA, 15
Subst(ℒ , (), `),C), 18
Subst
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C
B (), `), 20

Val( , ≤), 34
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ZFC, 15
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~·�" , 36
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admissibility relation

first-order, 25

propositional, 25

admissible rule, 25

propositional, 25
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admissible rules, 5
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Heyting, 15

Peano, 15

assignment

Δ-assignment, 18

ℒ-(), `)-assignment, 16

axiomatisation, 14

blended models

extended models, 69

coding, 80, 84

de Jongh’s theorem, 7

derivability relation, 13
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disjunction property, 6, 68

elementary diagram, 106

encode, 84
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excluded middle, 136

extended models, 69

extensible, 65

finite frame, 34
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formal system, 14

axiomatisable, 14

equivalent, 14

formula

reduced, 17

impredicative, 137

Kripke frame, 31

leaf, 31

tree, 31

with leaves, 31

Kripke model
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for first-order logic, 33

for propositional logic, 32

root, 31
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truth set, 36

leaf, 31

logic, 13

based on, 14

underlying, 14

logical consequence relation, 13

logical structure, 19
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rule loyal, 7
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Markov’s principle, 138

Ordinal Turing Machine, 78
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OTM, 78
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OTM-realisability, 88

uniform OTM-realisability, 100
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Visser, 5, 26

sequent, 93

set theory, 14

constructive Zermelo–Fraenkel,

15
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of a theory, 4
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type theory

Martin-Löf, 131

valid, 32

in a Kripke model, 32
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of a class of Kripke frames, 32

of a frame, 32

of a model, 32

set of propositional validities, 32

weakly complete, 9





Samenvatting

Een formeel systeem kan tautologieën of toelaatbare regels hebben, die zĳn

onderliggende logica niet heeft. Diaconescu, Goodman en Myhill toonden

bĳvoorbeeld aan dat elke verzamelingenleer die de axioma’s (en schema’s) van

extensionaliteit, lege verzameling, paar, afscheiding en keuze bevat, de wet van

de uitgesloten derde bewĳst – zelfs als die verzamelingenleer gebaseerd is op

intuïtionistische logica.

Het doel van dit proefschrift is, grofweg, situaties te bestuderen waar

dit niet het geval is: we laten zien dat veel intuïtionistische en constructieve

verzamelingenleren getrouw zĳn aan hun onderliggende logica. We zeggen

dat een formeel systeem (propositioneel/eerste-orde) tautologiegetrouw is als zĳn

(propositionele/eerste-orde) tautologieën precies die van zĳn onderliggende

logica zĳn. We noemen een formeel systeem (propositioneel/eerste-orde) regelge-
trouw als zĳn (propositionele/eerste-orde) toelaatbare regels precies die van zĳn

onderliggende logica zĳn.

Met behulp van Kripke-modellen met klassieke domeinen tonen wĳ aan dat

de intuïtionistische Kripke–Platek verzamelingenleer (IKP) eerste-orde tauto-

logiegetrouw is (hoofdstuk 4). Bovendien introduceren we realiseerbaarheid

gebaseerd op Ordinal Turing Machines waarmee we kunnen aantonen dat IKP

ook propositioneel regelgetrouw is (hoofdstuk 7). Deze notie van realiseerbaar-

heid is ook toepasbaar voor het realiseren van verzamelingenleren op basis van

oneindige logica.

We introduceren gemengde modellen (“blended models”) voor intuïtio-

nistische Zermelo–Fraenkel verzamelingenleer (IZF) om aan te tonen dat dit

systeem propositioneel tautologiegetrouw is (hoofdstuk 5). Een variant van

deze techniek is nuttig om de toelaatbare regels van verschillende construc-

tieve verzamelingenleren te bestuderen en te bewĳzen dat ze propositioneel

regelgetrouw zĳn (Hoofdstuk 6).

Tenslotte bewĳzen we ook dat constructieve Zermelo–Fraenkel verzame-

lingenleer (CZF) zowel eerste-orde tautologiegetrouw alsook propositioneel
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regelgetrouw is (hoofdstuk 8). Daartoe introduceren we een nieuwe notie van

transfiniete berekenbaarheid, de zogenaamde verzameling-gebaseerde register

machines (Set Register Machines). We combineren de resulterende notie van

realiseerbaarheid met Beth modellen om aan te tonen dat CZF eerste-orde

tautologiegetrouw is.



Abstract

The tautologies and admissible rules of a formal system may exceed those of its

underlying logic. For example, Diaconescu, Goodman and Myhill showed that

any set theory containing the axioms (and schemes) of extensionality, empty set,

pairing, separation and choice proves the law of excluded middle—even if that

set theory is based on intuitionistic logic.

The goal of this dissertation is, roughly speaking, to study situations where

this is not the case: we show thatmany intuitionistic and constructive set theories

are loyal to theirunderlying logic. We say that a formal system is (propositional/first-
order) tautology loyal if its (propositional/first-order) tautologies are exactly those

of its underlying logic. We call a formal system (propositional/first-order) rule
loyal if its (propositional/first-order) admissible rules are exactly those of its

underlying logic.

Using Kripke models with classical domains, we show that intuitionistic

Kripke–Platek set theory (IKP) is first-order loyal (Chapter 4). Moreover, we

introduce a realisability notion based on Ordinal Turing Machines that allows

us to prove that IKP is propositional rule loyal, as well (Chapter 7). This notion

of realisability also lends itself to realising infinitary set theories.

We introduce blended models for intuitionistic Zermelo–Fraenkel set theory

(IZF) to show that this system is propositional tautology loyal (Chapter 5). A

variation of this technique is useful for studying the admissible rules of various

constructive set theories and proving that they are propositional rule loyal

(Chapter 6).

Finally, we also prove that constructive Zermelo–Fraenkel set theory (CZF)

is first-order tautology loyal as well as propositional rule loyal (Chapter 8). To

this end, we introduce a new notion of transfinite computability, the so-called

Set Register Machines. We combine the resulting notion of realisability with

Beth models to show that CZF is first-order tautology loyal.
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