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Abstract

This thesis researches the effect of the pragmatic “neglect-zero” tendency on in-
dicative conditionals. Aloni (2022a) formalised this pragmatic tendency in bilat-
eral state-based modal logic (BSML) to account for several free choice phenomena.
However, this framework lacks an implication, and extending it with a suitable
implication is a non-trivial task. To find the most suitable extension, we com-
pare several possibilities on linguistic desiderata by Stalnaker (1976) and Ciardelli
(2020), whereby we find that an existential variant of the maximal implication
is our best option. Unfortunately, this implication still has some unsatisfactory
linguistic and mathematical properties. This gives us the motivation to extend a
dynamic variant of BSML, as introduced by Aloni (2022b) and calledBiUS, with
an implication. We find that this dynamic framework solves most problems of the
static framework by giving us linguistically and mathematically satisfying results.
Throughout these considerations we see that the “neglect-zero” tendency can
give a simple pragmatic explanation for several linguistic phenomena. Thereby
we conclude that this tendency, as formalised by BSML and BiUS, is likely to be
one of the pragmatic tendencies active in natural language concerning indicative
conditionals.

Keywords— Neglect-Zero, Indicative Conditionals, Implication, BSML, BiUS
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Chapter 1

Introduction

In natural language, we sometimes infer a sentence containing “and” from a sen-
tence containing “or”. For example, consider the famous example (1) by Kamp
(1973). Then we see that (1-a) implies (1-b), a phenomenon that is called a free
choice (fc) inference.1

(1) a. You may go to the beach or to the cinema. (Kamp (1973))
b. ; You may go to the beach and you may go the cinema.

Formally, we can represent this inference as 3(α ∨ β) ; 3α ∧ 3β. However, as
Von Wright (1968) pointed out, the following is not a validity in deontic logic.

3(α ∨ β) → 3α

In order to account for fc inferences such as (1), we might consider adding this
formula, which we will call the fc-principle, as a validity to deontic logic. But
then one would be able to infer 3β from 3α, for any α and β. For consider the
following reasoning, as first presented by Kamp (1973).

1. 3α [assumption]

2. 3(α ∨ β) [from 1, by classical reasoning]

3. 3β [from 2, by fc-principle]

But surely, we do not want “You may go to the cinema” to follow from “You may
go the beach”. In other words, we cannot simply account for the inference in (1)
by adding the fc-principle to deontic logic. In the literature this is called the
paradox of free choice.2

One of the possible routes to solving this problem, is to adopt a non-classical
logic that can account for (1) without leading to deontic explosion. For this, Aloni

1We will follow Aloni (2022a), who in turn follows Kamp (1973), in her presentation of fc
inferences and the paradox of free choice.

2See Aloni (2022a) Section 2 for references and an overview of the literature on this paradox.
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(2022a) proposes a bilateral state-based modal logic (BSML) that can account for
this fc inference and similar inferences.

This framework will formally be presented in Chapter 2, but let us shortly
look at some of the main features of this logic. First of all, because the logic has
separately defined acceptance and rejection clauses, allowing for specific behaviour
under negation, we say that BSML is bilateral.3 Furthermore, BSML-formulas
are not evaluated in possible worlds, but rather in sets of possible worlds, called
information states. And finally, BSML is a modal logic, i.e., its language has the
modality 3 that can represent modal words.

The underlying hypothesis that BSML formalises is the “neglect-zero” ten-
dency of speakers. This hypothesis relies on the idea that speakers, when inter-
preting a sentence, create a model that represents a picture of the world. The
empirically supported, pragmatic “neglect-zero” tendency claims that speakers
avoid models that validate sentences by an empty configuration. As a result,
speakers avoid sentences that would be validated by virtue of such an empty
configuration.4 For example, consider the odd, but classically true, sentence (2).

(2) All cows on the moon eat chocolate.

The “neglect-zero” tendency explains the oddity of (2) by the fact that this sen-
tence is validated by an empty configuration. In other words, because there are
no cows on the moon we would classically validate this universal quantification,
but a natural language speaker would avoid the sentence because of the “empti-
ness” of the set of cows on the moon. We then say that (2) holds semantically, at
least if we adopt classical reasoning, but the oddity of this sentence is explained
pragmatically.

With a pragmatic enrichment function [ ]+, formally modelling the “neglect-
zero” tendency using the non-emptiness atom (ne), BSML can account for the
inference in (1) and other fc-inferences.5 However, as we will see later, on the
ne-free fragment BSML simply models classical reasoning. To exemplify this,
for ne-free α and β we see that 3(α ∨ β) ⊭ 3α ∧ 3β. But when we model the
“neglect-zero” tendency using the pragmatic enrichment function [ ]+ we find that
[3(α ∨ β)]+ ⊨ 3α ∧3β.6 In other words, BSML can pragmatically account for
fc-inferences such as (1).

The observant reader might notice that we formulated the fc-principle as
3(α ∨ β) → 3α, but in the context of BSML discussed the entailment [3(α ∨
β)]+ ⊨ 3α ∧ β. The reason for this is that BSML has notions of negation,
disjunction, conjunction and modality, but no notion of implication. And now

3Specifically, the bilateralism allows BSML to account for the inference from ¬3(α ∨ β) to
¬3α ∧ ¬3β. An inference that is called Dual Prohibition and is motivated by the cancellation
of free choice effects under negation.

4Exceptions are sentences such as “Nobody can teleport”, of which the logical form demands
an empty configuration for its validation. The difference between such cases and (2), is that the
latter could also be validated by non-empty configurations.

5The ne-atom is only supported by non-empty states, and was first introduced in team
semantics by Väänänen (2007), and also appears in more recent work by Yang and Väänänen
(2017).

6See Fact 5 by Aloni (2022a) for a proof of this.
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that we know that BSML can account for the fc-inference on an entailment-
level, we might also wonder if the fc-principle is a validity in BSML extended
with an implication.7

Furthermore, the “neglect-zero” tendency of speakers is something that might
also influence the way we think about conditionals. Specifically, it is interest-
ing to see whether we can explain several phenomena of conditionals using the
“neglect-zero” tendency. This does not mean that we are proposing a new and
complete theory of conditionals. Rather, we think that there are several prag-
matic tendencies at work in natural language, and we will research what role the
“neglect-zero” tendency has. And finally, most logics have a notion of implica-
tion, either derivable or defined. So from a logico-mathematical perspective it is
desirable for BSML to also have a well-behaved notion of this operator.

In this thesis we will extend BSML with an implication to research the topics
mentioned above. A first, and traditional, attempt would be to syntactically
define the implication in terms of the negation and disjunction that are available
in BSML. We will name this implication “the definable →¬,∨”, and adding this
to BSML would result in the logic of BSML itself.

Definition 1.0.1 (Definable →¬,∨).

φ→¬,∨ ψ := ¬φ ∨ ψ

However, we will see in Section 2.2.2 (Fact 2.2.3) that, when pragmatically en-
riched, this implication is incompatible with its own antecedent. But there is no
reason for us to suspect that the “neglect-zero” tendency causes an incompati-
bility between a conditional and its antecedent. In fact, as we will see later, we
would expect it to ensure that the antecedent is a live possibility. Therefore we
conclude that the definable →¬,∨ is not suitable to extend BSML. A straightfor-
ward, and equally traditional, second attempt would be to extend BSML with a
notion of the material implication. This extension has a very strong, and favor-
able, connection between the implication and entailment, which can be expressed
by the Deduction Theorem. However, we will see that there are many linguistic
phenomena that cannot be accounted for by BSML extended with a material
implication. Therefore, we find that extending BSML with an implication is
a non-trivial task. There are many different other possible candidate implica-
tions, which, together with a first review of their suitability, will be introduced in
Chapter 2.

Now let us shortly discuss what kind of properties an implication ought to
have to be suitable for BSML. First of all, we will see later (Fact 2.1.7) that the
ne-free fragment of BSML determines the same logical notion of consequence
as classical modal logic.8 Only when we introduce pragmatics using the ne-

7Similarly, the formulas in (31), (48) and (49) by Aloni (2022a) all contain implications, and
thus give a motivation for extending BSML with an implication. Note that the latter two also
contain quantifiers, so to look at these examples we first need a first-order extension of BSML,
such as QBSML, developed by Aloni and Ormondt (2021). The extension of QBSML with
an implication will be left for future research.

8This means that in BSML all classical validities are also valid. Some examples of such
classical validities are given in Fact 2.1.3.
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atom we get non-classical behaviour. This way we see that BSML can make
a clear distinction between classical logico-mathematical reasoning and everyday
(pragmatic) reasoning of natural language speakers.9 It would be favorable if this
distinction can still be made after we have added an implication to BSML. In
other words, we would prefer a notion of implication that does not introduce non-
classicality, i.e., that preserves the classicality of its antecedent and consequent.
In Chapter 5 we will look at this property, and other mathematical properties
that we would like our implication to have.

But before we will look at the mathematical properties, we dive into the world
of indicative conditionals in Chapters 3 and 4.10 First we will consider several
desiderata that Stalnaker (1976) put forward, whereafter we will consider ad-
ditional desiderata by Ciardelli (2020). One of the implications, an existential
variant of the maximal implication, will be quite satisfactory on many of these
linguistic desiderata and mathematical properties. However, some linguistic phe-
nomena cannot be captured by this implication.

For this reason we will consider a dynamic variant of BSML, as introduced
by Aloni (2022b), in Chapter 6. The extension of this dynamic framework with
a dynamic notion of implication will be able to explain all linguistic phenomena
that the static framework could not explain. Furthermore, we will see that it is
mathematically equally well-behaved, and thus overall gives us a very interesting
theory of conditionals that relies on the “neglect-zero” tendency.

Let us now first look at the framework BSML, the implications that we can
add to it, some of their properties, and the relations between them.

9See Section 4 of Aloni (2022b) for a discussion of this with respect to a dynamic variant of
BSML.

10We will leave the subjunctive, or counterfactual, conditional for future research.
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Chapter 2

Preliminaries

As we have seen in the previous chapter, BSML models the “neglect-zero” ten-
dency of speakers to explain free choice inferences. We will formally introduce
BSML, and discuss several useful results on this framework, in Section 2.1. As
the goal of this thesis is to extend BSML with a proper notion of implication,
we will introduce and consider several options in Section 2.2.1. We will define
the material implication, intuitionistic implication, the maximal implication, an
existential variant of the maximal implication and the linear implication, and sev-
eral “definable” implications using different notions of negation and disjunction.
Thereafter we will discuss the suitability of the extension of BSML with several
of these implications in Section 2.2.2. These discussions leave us with the ma-
terial implication, intuitionistic implication, maximal implication, the existential
variant of the maximal implication and what we will call the BSML-implication.
Some relations between these implications will be highlighted in Section 2.2.3,
whereafter they will be compared on several linguistic desiderata in Chapters 3
and 4, and on mathematical properties in Chapter 5.

2.1 BSML

2.1.1 Framework

Bilateral state-based modal logic (BSML) was first introduced by Aloni (2018)
and further researched by Aloni (2022a) and Anttila (2021). The following intro-
duction of BSML will follow Aloni (2022a) in notation and presentation.

The language of BSML extends propositional modal logic with the non-
emptiness atom ne.

Definition 2.1.1 (Language). Let P = {p, q, r . . . } be a set of propositional
atoms.

φ := p | ¬φ | φ ∧ φ | φ ∨ φ | 3φ | ne

where p ∈ P .
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To interpret this language we use a Kripke model M = ⟨W,R, V ⟩, where W is
a non-empty set of world, R is an accessibility relation on W and V is a valuation
function on W × P .

The logic BSML is state-based, so the formulas are not interpreted with
respect to a single world w ∈ W . Rather, they are interpreted with respect to a
state s ⊆W . Both the support condition (⊨) and anti-support conditions ( ⊨) are
specified below.1112 The notions of negation and disjunction that are available in
BSML are called the bilateral negation and split disjunction, respectively.

Definition 2.1.2 (Semantic clauses).

M, s ⊨ p iff ∀w ∈ s : V (w, p) = 1

M, s ⊨p iff ∀w ∈ s : V (w, p) = 0

M, s ⊨ ¬φ iff M, s ⊨φ

M, s ⊨¬φ iff M, s ⊨ φ

M, s ⊨ φ ∨ ψ iff ∃t, t′ : t ∪ t′ = s &M, t ⊨ φ &M, t′ ⊨ ψ

M, s ⊨φ ∨ ψ iff M, s ⊨φ &M, s ⊨ψ

M, s ⊨ φ ∧ ψ iff M, s ⊨ φ &M, s ⊨ ψ

M, s ⊨φ ∧ ψ iff ∃t, t′ : t ∪ t′ = s &M, t ⊨φ &M, t′ ⊨ψ

M, s ⊨ 3φ iff ∀w ∈ s : ∃t ⊆ R[w] : t ̸= ∅ &M, t ⊨ φ

M, s ⊨3φ iff ∀w ∈ s :M,R[w] ⊨φ

M, s ⊨ ne iff s ̸= ∅
M, s ⊨ne iff s = ∅

where R[w] = {v ∈W | wRv}.

We use the abbreviation 2φ := ¬3¬φ, giving rise to the following support
and anti-support conditions.

M, s ⊨ 2φ iff for all w ∈ s :M,R[w] ⊨ φ

M, s ⊨2φ iff for all w ∈ s : ∃t ⊆ R[w] : t ̸= ∅ &M, t ⊨φ

We say that a formula ψ is a logical consequence of a formula φ, if any model
and state supporting φ also support ψ.

Definition 2.1.3 (Logical Consequence). Let φ,ψ ∈ BSML. Then,

φ ⊨ ψ iff for all M, s :M, s ⊨ φ implies M, s ⊨ ψ
11There are strong similarities between BSML and dependence logic (and variants thereof)

as researched by Väänänen (2007), Yang (2014) and Yang and Väänänen (2017). The key
difference is the bilateral nature of BSML, allowing for specific behaviour of negated operators.

12See Section 3.1 and 4 of Aloni (2022a) for the intended interpretation of these state-based
semantics.
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We use BSML∅ to denote the ne-free fragment of BSML, and BSML0 to
denote the ne-free and 3-free fragment.13 In other words, BSML∅ is the classical
modal fragment, and BSML0 is the propositional fragment of BSML. We will
use φ,ψ, ξ as meta-variables ranging over BSML, and α, β, γ, δ as meta-variables
ranging over BSML∅ (or BSML0, in which case it will be made explicit).

Finally, the pragmatic enrichment function [ ]+ is recursively defined on
BSML∅, i.e., the ne-free fragment.

Definition 2.1.4. Let α, β ∈ BSML∅.

[p]+ = p ∧ ne

[¬α]+ = ¬[α]+ ∧ ne

[α ∨ β]+ = ([α]+ ∨ [β]+) ∧ ne

[α ∧ β]+ = ([α]+ ∧ [β]+) ∧ ne

[3α]+ = 3[α]+ ∧ ne

2.1.2 Useful Results on BSML

Throughout this thesis we will be using several known facts about BSML on
numerous occasions. The first three facts are from Aloni (2022a).14

The first fact says that an ne-free formula is a logical consequence of its
pragmatically enriched version. Similarly, if its pragmatically enriched version is
anti-supported, then so is the formula itself.

Fact 2.1.1. Let α ∈ BSML∅.

M, s ⊨ [α]+ implies M, s ⊨ α

M, s ⊨[α]+ implies M, s ⊨α

The second fact says that if a formula does not contain a disjunction in a
positive environment or a conjunction in a negative environment, then conjoined
with the non-emptiness atom it entails its pragmatically enriched version.1516

Fact 2.1.2. Let α ∈ BSML∅ be “split-free”.

α ∧ ne ⊨N [α]+

13See Table 9 of Aloni (2022a) for these and other fragments of BSML.
14The mapping from these facts to the facts in Aloni (2022a) is as follows: Fact 2.1.1 7→ Fact

1 and Fact 2.1.3 7→ Fact 6. Fact 2.1.2 occurred in an older version of Aloni (2022a) as Fact
3, but now only occurs in this thesis. It can easily be proven by an double induction on the
complexity of α.

15The term “split-free” in this context means that any conjunction can only appear in the
scope of an even amount of negations, and any disjunction can only appear in an odd amount
of negations.

16Furthermore, note that we have used the entailment ⊨N , meaning that we restrict ourselves
to model-state pairs where ∀w ∈ s : R[w]¬∅. As this restriction is only relevant for formulas
containing the modality 3, we will only mention this restriction when needed.
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Together with Fact 2.1.1 this means that for classical “split-free” formulas
we have [α]+ ≡N α ∧ ne. In other words, pragmatically enriching a “split-free”
formula only amounts to requiring a supporting state to be non-empty. However,
if α does contain a disjunction, say α = p ∨ q, then the effect of the pragmatic
enrichment is less trivial.

To see this, consider Figure 2.1, where in both models the state s is non-
empty.17 However, as [p∨q]+ = ((p∧ne)∨(q∧ne))∧ne we see that it needs a non-
empty substate supporting p and a non-empty substate supporting q. Therefore,
[p ∨ q]+ is supported in the first model but not in the second. It is exactly this
feature of BSML that accounts for free choice effects.18

wpq wp

wq w∅

(a) M, s ⊨ p ∨ q; and
M, s ⊨ [p ∨ q]+

wpq wp

wq w∅

(b) M, s ⊨ p ∨ q;
but

M, s ⊭ [p ∨ q]+

Figure 2.1: Non-triviality of [p ∨ q]+

The third fact by Aloni (2022a) says that the semantics of BSML satisfy
several classical validities, namely the De Morgan Laws, Double Negation Elim-
initation and Duality of 2/3.

Fact 2.1.3 (Classical validities).
φ ≡ ¬¬φ (Double Negation Elimination)

¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ (De Morgan Laws)
¬(φ ∧ ψ) ≡ ¬φ ∨ ¬ψ

¬2φ ≡ 3¬φ (Duality 2/3)
¬3φ ≡ 2¬φ

We also have some useful technical facts from Anttila (2021), first of which is
an incompatibility result. It says that if one state supports a formula and another
supports its negation, then these states are disjoint.19

Fact 2.1.4. Let φ ∈ BSML. If M, s ⊨ φ and M, t ⊨ ¬φ, then s ∩ t = ∅.
Specifically, if t ⊆ s, then t = ∅.

Another useful technical fact is a characterization for the bilateral negation on
classical formulas. It states that if all singleton subsets of a state do not support

17In our figures we will use wp to denote a world where p is true, wq one where q is true etc.
And we will use the convention that the shaded area in a model is the state s.

18See Section 3.2 and Section 5.1 of Aloni (2022a) for a discussion on the consequences of this
non-trivial effect.

19This fact is proved in Proposition 3.3.9 of Anttila (2021) and restated as Fact 8 by Aloni
(2022a).
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α, then the state anti-supports α. This fact is proved in Proposition 2.2.15 by
Anttila (2021).

Fact 2.1.5. Let α ∈ BSML∅, then M, s ⊨ ¬α if and only if ∀w ∈ s :M, {w} ⊭ α.

Finally, Anttila (2021) presents several state-semantic properties that certain
formulas can have, and two useful results concerning these properties.20

Definition 2.1.5 (State-Semantic Properties). Let φ,ψ ∈ BSML.

• φ is downward closed if for any model M , if M, s ⊨ φ and t ⊆ s, then
M, t ⊨ φ;

• φ is union closed if for any model M and non-empty set of states S on M ,
if M, s ⊨ φ for all s ∈ S, then M,

⋃
S ⊨ φ;

• φ has the empty state property if for any model we have M, ∅ ⊨ φ;

• φ is flat if for any model M we have M, s ⊨ φ if and only if ∀w ∈ s :
M, {w} ⊨ φ.

The last of these properties can be characterized by the conjunction of the
others, which is proved in Proposition 2.2.2 by Anttila (2021).

Fact 2.1.6. Let φ ∈ BSML. Then φ is flat if and only if it is downward closed,
union closed and has the empty state property.

Using this result Anttila (2021) proved in Proposition 2.2.9 that all classical
formulas in BSML, i.e., the ne-free formulas, are flat.

Fact 2.1.7. For any α ∈ BSML∅, α is flat.

So by the characterization of flatness we see that all classical formulas are
downward closed, union closed and have the empty state property. Now we can
also see that we have rightfully been calling these formulas the “classical” formu-
las, for Anttila (2021) used this to prove in Proposition 2.2.16 that the ne-free
fragment of BSML determines the same logical notion of consequence as classical
modal logic.

Lastly, in Appendix A we prove that a pragmatically enriched formula α ∈
BSML0 is upward closed among states supporting its non-enriched variant.

Fact 2.1.8. Let α ∈ BSML0. Then M, t ⊨ [α]+, t ⊆ s and M, s ⊨ α imply
M, s ⊨ [α]+.

This result is to be expected, as the pragmatic enrichment focuses on non-
emptiness, which ought to travel upwards.21

20These properties also appear in Yang and Väänänen (2017), for example. But Anttila (2021)
rephrased them in the context of BSML.

21To see that this not generalise to BSML∅, consider the state s = {wq , wp} with R[wq ] =
{wq , wp} and R[wp] = {wp} in Figure 5.3(b) (Chapter 5). Then we see that M, {wq} ⊨ [3(p ∨
q)]+, {wq} ⊆ s and M, s ⊨ 3(p ∨ q). However, we also find that M, s ⊭ [3(p ∨ q)]+, showing
that Fact 2.1.8 does not hold in general.
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2.2 Possible Implications in BSML

Now that we have introduced the framework of BSML, we can start with the
consideration of possible notions of implication for BSML.

We will define several implications in Section 2.2.1, whereafter we will dis-
cuss the suitability of these implications for further investigation in Section 2.2.2.
Lastly, in Section 2.2.3 we will look at some equivalences that hold between them
when we consider certain fragments of BSML. But before we continue there are
a few minor things that need to be said.

First, when we define an implication, say ⇒, then we will call the extension of
BSML with that implication BSML(⇒). Similarly, extensions of BSML0 and
BSML∅ will be BSML0(⇒) and BSML∅(⇒), respectively.22

Secondly, in Definition 2.1.4 we recursively defined the pragmatic enrichment
function for ne-free formulas. We will extend this recursive definition for any
implication ⇒ in the following manner.

[α⇒ β]+ = ([α]+ ⇒ [β]+) ∧ ne

Note that this definition is in line with the clauses for the other operators.
Lastly, in the following section we will only define the support clauses for our

implications. There are several options for the anti-support clauses, and we will
discuss these options in Chapter 3, Definition 3.3.1, when they become relevant.

2.2.1 Possible Implications

Remember that in Chapter 1 we introduced the first possible implication, namely
the syntactically definable implication →¬,∨ (Definition 1.0.1).

The second implication that we will define is the most discussed implication
in the literature, the material implication (→).

Definition 2.2.1 (Material Implication).

M, s ⊨ φ→ψ iff M, s ⊨ φ implies M, s ⊨ ψ

It is easy to see that φ→ψ is not equivalent to ¬φ ∨ ψ in BSML, but it is
equivalent to a formula using alternative notions of negation and disjunction. For
this, we need the Boolean negation (∼), and the Boolean disjunction (∨∨). The
latter is used in inquisitive semantics and therefore we will call it the inquisitive
disjunction henceforth.2324 We follow Anttila (2021) on notation for both notions.

Definition 2.2.2 (Boolean Negation).

M, s ⊨ ∼φ iff M, s ⊭ φ
22We will also see implications that have strong connections to notions of negation and disjunc-

tion that do not occur in BSML. Note that the extension of BSML with such an implication
need not have this negation and disjunction as well. Rather, these notions of negation and
disjunction can be seen as inspirations for this particular definition of an implication.

23See, for example, Ciardelli, Groenendijk, and Roelofsen (2018).
24This disjunction is sometimes also called the intuitionistic disjunction or the global disjunc-

tion. However, we will follow Aloni (2018) in nomenclature.
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Definition 2.2.3 (Inquisitive Disjunction).

M, s ⊨ φ∨∨ψ iff M, s ⊨ φ or M, s ⊨ ψ

It then follows directly from the definitions that the material implication is
equivalent to an existing formula in BSML(∼,∨∨), i.e., the extension of BSML
with these operators.25

Fact 2.2.1. M, s ⊨ φ→ψ if and only if M, s ⊨ ∼φ∨∨ψ

As mentioned in Chapter 1, the material implication is a traditional option.
Unfortunately, in Chapter 5 we will see that the material implication does not
satisfy Modus Tollens on the ne-free fragment. In other words, the material
implication introduces non-classicality, which also follows from the fact shown in
Chapter 5 that it does not preserve flatness. However, we discussed in Chapter 1
that we would prefer an implication that does not introduce non-classicality. On
the other hand, in Chapter 5 we will also show that the material implication is the
only implication for which the Deduction Theorem holds in general. Therefore
we will consider the material implication throughout this thesis, although it faces
some serious objections.

In Chapter 1 we discussed that syntactically defining an implication in terms
of the bilateral negation (¬) and split disjunction (∨), which we already have
in BSML, did not work. Specifically, in Section 2.2.2 we will see that under
pragmatic enrichment →¬,∨ is incompatible with its antecedent. However, we
could also semantically define an implication inspired by the bilateral negation
and split disjunction. We will call this the BSML-implication.

Definition 2.2.4 (BSML-implication).

M, s ⊨ φ⇒¬,∨ ψ iff ∃t, t′ : t ∪ t′ = s &M, t ⊨φ &M, t′ ⊨ ψ

From this definition we can directly see that the BSML-implication is equiva-
lent to the disjunction of the negated antecedent and the consequent, although the
effect of the pragmatic enrichment function on the two formulas will be different.26

Fact 2.2.2. M, s ⊨ φ⇒¬,∨ ψ if and only if M, s ⊨ ¬φ ∨ ψ

We will consider the BSML-implication throughout this thesis, as it would
be a very natural implication for BSML. As we just saw that this implication is
equivalent to a formula in BSML, we conclude that BSML(⇒¬,∨) has the same
logical strength as BSML itself. And as →¬,∨ is an abbreviation of a BSML-
formula, we see that BSML(→¬,∨) = BSML. However, we saw in Footnote 26

25A small note on notation is needed. Formally, we should make explicit what logic our
notion of entailment supposes. If we let ⊨∼,∨∨ be the notion of entailment corresponding to
BSML(∼,∨∨), then we would need to say φ ⊨∼,∨∨ ψ, for example. However, the notion of
entailment will always be clear from context, and therefore we will always use ⊨ for entailment.

26The difference between this implication and the syntactically defined implication becomes
apparent if we pragmatically enrich them. For example, [p⇒¬,∨ q]+ = ([p]+ ⇒¬,∨ [q]+)∧ne ≡
¬[p]+ ∨ [q]+ ̸≡ [¬p]+ ∨ [q]+ ≡ [¬p ∨ q]+ = [p →¬,∨ q]+ as witnessed by {wpq} (for example in
Figure 2.1(a)) that supports the former but not the latter.
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that the effect of the pragmatic enrichment function was different on the BSML-
implication and the definable →¬,∨. So although extending BSML with the
BSML-implication or the definable →¬,∨ leads to logics with the same strength,
we see that the pragmatic enrichment function can differentiate between them.
The logical strength of BSML extended with other implications will be left for
future research.

Now, the BSML-implication has a strong connection to the intuitionistic im-
plication as discussed by Yang (2014).272829

Definition 2.2.5 (Intuitionistic Implication).

M, s ⊨ φ↠ψ iff ∀t ⊆ s :M, t ⊨ φ implies M, t ⊨ ψ

In Section 2.2.3 we will see that for the ne-free fragment ⇒¬,∨ and ↠ are
equivalent. However, we will also see that this does not generalise to all of BSML,
and thus we will consider both implications throughout this thesis.

A slight alteration of the intuitionistic implication focuses only on maximal
subsets of s. We say that t ⊆ s is maximal with M, t ⊨ φ if there is no t′ with
t ⊂ t′ ⊆ s such that M, t′ ⊨ φ. We are inspired by Yang (2014) in notation and
definition, and call this the maximal implication (↪→∀).

30

Definition 2.2.6 (Maximal Implication).

M, s ⊨ φ ↪→∀ ψ iff for all maximal t ⊆ s with M, t ⊨ φ we have M, t ⊨ ψ

In Section 2.2.3 we will see that the maximal implication is not equivalent to
the intuitionistic implication, although they are equivalent on the ne-free frag-
ment.

In the previous definition we saw that the maximal implication has a universal
quantification over maximal subsets of s. We could replace this by an existential
quantification, giving us the maximal∃ implication (↪→∃).

31

Definition 2.2.7 (Maximal∃ Implication).

M, s ⊨ φ ↪→∃ ψ iff for some maximal t ⊆ s with M, t ⊨ φ we have M, t ⊨ ψ
27As we can see in Figure 2.1, BSML is not downward-closed. In other words, we can have

two teams s and t such that s ⊇ t and M, s ⊨ φ, but M, t ⊭ φ. This shows that the intuitionistic
implication is not equivalent to the material implication.

28Note that Yang (2014) uses the symbol → for the intuitionistic implication. We will use
that symbol for the material implication as it is the most common implication.

29The intuitionistic implication is sometimes also called the inquisitive implication, as it is
also used in inquisitive semantics. (See Footnote 23.)

30The maximal implication has been introduced in the context of team semantics by Kontinen
and Nurmi (2011), but has been thoroughly researched by Yang (2014). See Kolodny and
MacFarlane (2010) for a philosophical argument in favor of the maximal implication.

31This existential variant is proposed by Aloni and Degano (2022) as an enrichment of their
language that possibly can account for negative polarity readings of epistemic indefinites. Their
account uses a two-sorted team semantics, so some of the insights from this thesis might be
carried over to their framework.
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In Chapter 5 we will see that both maximal implications are not transitive, a
property that we would expect an implication to have. However, in Chapters 3
and 4 we will see that they behave relatively good from a linguistic point of view.
Therefore we will keep both of these implications in consideration throughout this
thesis.

Another implication that we will consider is the linear implication (⊸). We
again follow Yang (2014) for the definition and notation of this implication.

Definition 2.2.8 (Linear Implication).

M, s ⊨ φ⊸ψ iff for any state t with M, t ⊨ φ we have M, s ∪ t ⊨ ψ

Up until now we have considered two implications that are semantically “de-
finable” in terms of negation and disjunction, the material implication and the
BSML-implication. For this we looked at the bilateral negation(¬), the Boolean
negation(∼), the split disjunction(∨) and the inquisitive disjunction(∨∨). As there
are four ways to combine these, we have two more possible “definable” implica-
tions to consider.32

Definition 2.2.9 (Bilateral Negation and Inquisitive Disjunction).

M, s ⊨ φ⇒¬,∨∨ ψ iff M, s ⊨φ or M, s ⊨ ψ

Definition 2.2.10 (Boolean Negation and Split Disjunction).

M, s ⊨ φ⇒∼,∨ ψ iff ∃t, t′ : t ∪ t′ = s &M, t ⊭ φ &M, t′ ⊨ ψ

Again, it follows directly from these definitions that φ ⇒¬,∨∨ ψ ≡ ¬φ∨∨ψ
and φ ⇒∼,∨ ψ ≡ ∼φ ∨ ψ. The linguistic and mathematical suitability of these
implications, and the implications above, will be further discussed in the following
section.

2.2.2 Suitability

Summing up, in the previous section we have defined the material implication
(→), intuitionistic implication (↠), BSML-implication (⇒¬,∨), maximal impli-
cation (↪→∀), maximal∃ implication (↪→∃), linear implication (⊸) and two other
“definable” implications (⇒¬,∨∨ and ⇒∼,∨). Furthermore, in Chapter 1 we also
defined the syntactically definable →¬,∨.

A first glance at these implications shows that several have bad properties from
a linguistic point of view. As the motivation for this research is of a linguistic
nature, we will leave out these implications from the rest of this thesis.

Let us first consider the linear implication (⊸) with respect to the models
in Figure 2.2. In the first model, M , we see that only M, {wpq} ⊨ p and also
M, s ∪ {wpq} ⊨ q, hence M, s ⊨ p⊸ q. And in the second model, M ′, we have

32Strictly speaking, only →¬,∨ is definable in BSML. However, we will call ⇒¬,∨∨ and ⇒∼,∨
“definable” implications throughout this chapter. As they will not be discussed any further
in this thesis for reasons that we will see in Section 2.2.2, we will grant ourselves this slight
inaccuracy.
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M ′, {wp} ⊨ p. But M ′, s ∪ {wp} ⊭ q, and thus we find that M ′, s ⊭ p⊸ q. So we
see that an extension of the model, outside of the actual state s, can influence the
support of the linear implication.33

wpq

wq w∅

(a) M, s ⊨ p⊸ q

wpq wp

wq w∅

(b) M ′, s ⊭ p⊸ q

Figure 2.2: Unsuitability of the linear implication

This influence of the extension of the model, outside of the actual information
state, on the support of the linear implication is questionable. But matters are
even worse, for M ′, {wp} ⊨ p and M ′, s ∪ {wp} ⊭ p. Therefore, M ′, s ⊭ p⊸ p
which undoubtedly is problematic from a linguistic point of view. For even if one
has full information that it is not raining, one would consider the sentence “If it
is raining, then it is raining” a tautology.

Now consider the definable →¬,∨, it is easy to see that its pragmatically en-
riched version is not compatible with its own antecedent.

Fact 2.2.3. Let α, β ∈ BSML∅. Then, [α→¬,∨ β]
+, α ⊨ ⊥.34

Proof. Suppose that M, s ⊨ [α →¬,∨ β]+, this means that M, s ⊨ [¬α]+ ∨ [β]+.
So there are non-empty t, t′: t ∪ t′ = s and M, t ⊨ ¬α and M, t′ ⊨ β. Now also
suppose that M, s ⊨ α. Then it follows by Fact 2.1.4 that t = ∅, a contradiction.
So anything follows from [α→¬,∨ β]

+ and α.

Similarly, we find that ⇒∼,∨ is incompatible with its own antecedent even
when it is not pragmatically enriched.

Fact 2.2.4. Let α, β ∈ BSML∅. Then, α⇒∼,∨ β, α ⊨ ⊥.

Proof. Suppose M, s ⊨ α ⇒∼,∨ β, then ∃t, t′ : t ∪ t′ = s and M, t ⊭ α and
M, t′ ⊨ β. Now suppose that M, s ⊨ α, then by downward closure of α it follows
that M, t ⊨ α.35 A contradiction, so anything follows from α⇒∼,∨ β and α.

Finally, the implication defined using the bilateral negation and inquisitive
disjunction (⇒¬,∨∨) has several mathematical properties that make it unsuitable
to extend BSML from a mathematical point of view. Specifically, the Deduction
Theorem does not hold and it still fails if we look at the ne-free fragment. As we

33Note the similarity with the property of Extensionality from Generalized Quantifier Theory.
With some necessary adjustment in the definition of this property, one could say that the linear
implication lacks the property of Extensionality.

34Let ⊥ := ne∧¬ne, i.e., a formula that is supported by no state.
35The downward closure of α follows from Fact 2.1.7. As this property is used very often, we

will not mention its origins in the proofs that follow.
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wpq wp

wq w∅

(a)

wpq wp

wq w∅

(b)

wpq wp

wq w∅

(c)

Figure 2.3: Models for non-equivalences of implications

would like to have a strong connection between the notion of entailment and im-
plication, this failure is not preferable. Furthermore, it does not preserve flatness,
i.e., adding this implication to the ne-free fragment does not preserve classicality.
These results will be proved in Chapter 5, but they are sufficient reason to leave
⇒¬,∨∨ out of the discussions in Chapters 3 and 4.

These considerations leave us with the material implication (→), the intuition-
istic implication (↠), the maximal implication (↪→∀), the maximal∃ implication
(↪→∃) and the BSML-implication (⇒¬,∨). In the following chapter we will com-
pare these on several linguistic desiderata, giving us a better insight in the suit-
ability of these implications for an extension of BSML. But before we continue,
we will first look at some equivalences between these implications.

2.2.3 Relations between Implications

Let us first consider the relation between the BSML-implication and the in-
tuitionistic implication. We can prove that they are equivalent on the ne-free
fragment, the proof of this can be found in Appendix A.

Fact 2.2.5. Let α, β ∈ BSML∅. Then α↠β ≡ α⇒¬,∨ β.

To see that this does not generalise, consider Figure 2.3(a). There we see that
for all t ⊆ s we have M, t ⊭ [p]+, and thus M, s ⊨ [p]+ ↠[q]+. However, there is
no t′ ⊆ s such that M, t′ ⊨ [q]+, and thus M, s ⊭ ¬[p]+ ∨ [q]+. In other words,
M, s ⊭ [p]+ ⇒¬,∨ [q]+.

Let us shortly think about what this means from a linguistic point of view.
The pragmatic enrichment function models the “neglect-zero” tendency, i.e., the
tendency to avoid an empty configuration verifying a sentence. Now, in the state
{w∅} that we just discussed, p is not a live possibility. So the conditional “if
p, then q” would be supported by virtue of an empty configuration. Therefore,
we would expect a pragmatically enriched implication not to be supported here.
And as the intuitionistic implication is supported while the BSML-implication
is not, we can conclude that this example is in favor of the latter.36 However, a
similar problem arises for ⇒¬,∨ if we consider Figure 2.3(b). For then we see that
M, s ⊨ [p ⇒¬,∨ q]+, while p is still not a live possibility. Therefore, we conclude

36As the state s is non-empty it follows from the argument above that M, s ⊨ [p↠ q]+ but
M, s ⊭ [p⇒¬,∨ q]+.
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that pragmatic enrichment causes problems for both the intuitionistic implication
and the BSML-implication.37

Now let us look at the relation between the intuitionistic implication and the
maximal implication. It is quite straightforward to see that they are equivalent
for ne-free formulas.

Fact 2.2.6. Let α, β ∈ BSML∅. Then α↠β ≡ α ↪→∀ β.

Proof. (⇒): Trivial.
(⇐): Suppose M, s ⊨ α ↪→∀ β. Now let t ⊆ s be such that M, t ⊨ α. Then

either t is maximal or t ⊂ t′, where t′ is maximal with M, t′ ⊨ α. By downward
closure of β it follows in both cases from our assumption that M, t ⊨ β. Hence,
M, s ⊨ α↠β.

Similarly, if the antecedent is ne-free and the consequent is ne-free and “split-
free” we see that the intuitionistic implication and the maximal implication are
also equivalent when pragmatically enriched.38

Fact 2.2.7. Let α, β ∈ BSML0 and β be “split-free”. Then [α↠β]+ ≡N

[α ↪→∀ β]
+.

Proof. (⇒): Trivial.
(⇐): Suppose M, s ⊨ [α ↪→∀ β]

+. Now let t ⊆ s be such that M, t ⊨ [α]+, so
t ̸= ∅. If t is maximal, then we are done. So suppose there is a maximal t ⊂ t′

with M, t′ ⊨ [α]+. Then M, t′ ⊨ [β]+ and thus by Fact 2.1.1, M, t′ ⊨ β. Hence, by
downward closure of β also M, t ⊨ β. And as t ̸= ∅ and β is “split-free”, it follows
from Fact 2.1.2 that M, t ⊨ [β]+. Therefore, M, s ⊨ [α↠β]+.

To see that this does not hold in general consider [p ↪→∀(p ∨ q)]+. This is
supported by the state s = {wpq, wp} in Figure 2.3(c), while [p↠(p ∨ q)]+ is
not. This higlights a linguistic problem, for consider [r↠(p ∨ q)]+. This is only
supported by a state that consists of worlds such that if they satisfy r, they must
also satisfy p and q. For otherwise there is a singleton satisfying [r]+ that doesn’t
satisfy [p]+ or doesn’t satisfy [q]+. But surely, uttering “if r, then p or q” does
not mean the same as “if r, then p and q”, not even if we take the “neglect-zero”
tendency into account. So this shows that the maximal implication has a linguistic
advantage over the intuitionistic implication.

Finally, the maximal implication and its existential variant also have a strong
relation. Namely, if the antecedent is ne-free, they are equivalent. The crucial
insight for this equivalence is that there cannot be two distinct maximal states
for the same formula.

Fact 2.2.8 (Unique maximal state). Let φ ∈ BSML and s ⊆W be a state. Then
there is at most one maximal substate t ⊆ s with M, t ⊨ φ.

37In Chapters 3, 4 and 5 we will see that only the maximal∃ implication correctly interacts
with the pragmatic enrichment function by ensuring that the antecedent is a live possibility.

38See Footnotes 15 and 16 for the definition of “split-free” and ≡N .
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Proof. Towards contradiction, suppose that there are two distinct maximal states
t, t′ such that M, t ⊨ φ and M, t′ ⊨ φ. As BSML is union closed, it follows
that M, t ∪ t′ ⊨ φ.39 But as t, t′ ⊊ t ∪ t′, this is in contradiction with their
maximality.

However, it is also possible that there is no maximal substate supporting a
formula, namely when the formula does not have the empty state property. For
example, q ∧ ne is not supported by any substate of s = {w∅} in Figure 2.3(a).
Combining these insights, we can conclude that the maximal implication and its
existential variant are equivalent only when the antecedent is classical.40

Fact 2.2.9. Let α ∈ BSML∅ and ψ ∈ BSML. Then, α ↪→∀ ψ ≡ α ↪→∃ ψ

Proof. By the flatness of α (Fact 2.1.7) there is always at least one t ⊆ s that
supports α, namely ∅. Furthermore, by the uniqueness of a maximal state (Fact
2.2.8) we see that there is exactly one such t. Therefore we can conclude the
following:

M, s ⊨ α ↪→∀ ψ iff for all maximal t ⊆ s with M, t ⊨ α also M, t ⊨ ψ

iff ∃t ⊆ s maximal with M, t ⊨ α such that M, t ⊨ ψ

iff M, s ⊨ α ↪→∃ ψ

To conclude, these facts have given us an overview of the relations between
the implications that we will consider throughout this thesis. Specifically, we
can conclude that the intuitionistic implication, maximal implication, maximal∃
implication and the BSML-implication are all equivalent if their antecedent and
consequent are ne-free. However, we have also seen that this is no longer the case
if we consider all of BSML. These facts will be very helpful for shortening our
proofs on these implications in the following chapters.

39The union closure of BSML can be proved by an easy double induction on the complexity
of formulas. Note that other state-based frameworks need not have union closure, and for such
systems Fact 2.2.8 no longer holds.

40As we saw that s = {w∅} in Figure 2.3(a) has no substate supporting q ∧ ne, it follows that
M, s ⊨ (q ∧ ne) ↪→∀ q but M, s ⊭ (q ∧ ne) ↪→∃ q. So indeed, these implications are not equivalent
in general.
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Chapter 3

Linguistic Desiderata by
Stalnaker

In his seminal work Stalnaker (1976) discusses a non-classical semantic analysis
of indicative conditionals.41 The motivation for this semantic analysis is the fail-
ure of the material implication to correctly capture the indicative conditional.
Specifically, three entailments and non-entailments are discussed that Stalnaker
thinks should be captured by any analysis of implication, but are not all satisfied
by the material implication. We will call these desiderata and they will be dis-
cussed in Section 3.1.42 As Stalnaker acknowledges, there are two possible routes
to overcome the failure of these desiderata for the material implication. The first
of these would be à la Grice (1989), who defends the material implication and
explains the failure of the desiderata using pragmatic conversational principles
discussed by Grice (1975). The second possibility would be to give an alternative
analysis of the indicative conditional that is able to satisfy the desiderata, this is
the approach of Stalnaker.43 These two approaches are discussed in more detail
in Section 3.2. Finally, we will see where BSML extended with an implication
lies with respect to these accounts in Section 3.3. We will see that our best option
agrees with both accounts on some desiderata, but also differs from both on other
desiderata.

41This analysis was first developed to account for counterfactual, or subjunctive, conditionals
by Stalnaker (1968). But as he explains at the start of Section 3 of Stalnaker (1976), it is
intended to capture all different kinds of conditional sentences.

42Stalnaker does not list these desiderata explicitly, but argues for them throughout his paper.
We list them as desiderata to get a clear overview of the things that we look for in an implication.

43As we will see, our approach follows Stalnaker by giving an alternative analysis of condi-
tionals. However, our approach will differ from his account in what is explained by semantics
and what is explained using pragmatics.
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3.1 The desiderata

The first of these desiderata is what Stalnaker calls the “direct argument”. Specif-
ically, it seems to be valid to infer (3-b) from (3-a) in natural language.

(3) a. Either the butler or the gardener did it. (Stalnaker (1976))
b. ; If the butler didn’t do it, the gardener did.

As this inference seems to be valid, we want our logical analysis to account for
the direct argument.44 Now let ⇒ be some analysis of the conditional, then the
direct argument is captured by the following desideratum.

Desideratum A (Direct argument). Let α, β ∈ BSML∅, then α ∨ β ⊨ ¬α⇒ β.

As for Stalnaker’s second desideratum, assume that the antecedent of some
conditional is false. Then Stalnaker argues that it is absurd if this would allow
us to infer the truth of the conditional. For example, suppose that the butler
and the gardener are under investigation, as well as the driver. Then we have no
reason to infer (4-b) from (4-a).

(4) a. The butler did it. (Stalnaker (1976))
b. ̸; If the butler didn’t do it, the gardener did.

In other words, we want the following non-entailment to hold.45

Desideratum B (No Trivialization). ¬p ⊭ p⇒ q

The third desideratum by Stalnaker has to do with the denial of a condi-
tional. Specifically, it states that the denial of a conditional need not entail the
antecedent. Now suppose that I know I did not do it, then it seems very reason-
able for me to state (5-a). However, that surely does not put me in a situation
where I claim the innocence of the butler. Maybe I have good reason to believe
that the butler actually did do it, so the inference from (5-a) to (5-b) is invalid.

(5) (paraphrased from Stalnaker (1976))

a. It is not the case that if the butler didn’t do it, then I did it.
b. ̸; The butler did not do it.

Formally, this means that the negation of an implication should not entail its
antecedent.

Desideratum C (Denial of Conditional). ¬(p⇒ q) ⊭ p

Note that all entailments above hold for the material implication in classical
propositional logic.46 Therefore, an account that defends the material implication

44In the literature potential counterexamples to the direct argument have been proposed
((Adams 1965), (Edgington 1995), (Ciardelli 2020)), which will be discussed in Chapter 4,
Desideratum 6.

45Note that this is the same desideratum as the first part of Desideratum 1 by Ciardelli (2020),
which we will see in Chapter 4. We follow Ciardelli in naming it “No Trivialization”.

46In Section 3.3 we will see that we have the same result for BSML extended with the material
implication.
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as an analysis of the indicative conditional should give an explanation of the failure
of Desideratum B and C. In the following section we will discuss how Grice (1989)
approaches this issue.

3.2 Stalnaker vs. Grice

Historically, Stalnaker’s paper on indicative conditionals came after Grice’s influ-
ential lectures on the same subject that have been published later in (Grice 1989).
Therefore, we will start with Grice’s account and its relation to these desiderata.

Before we can go into Grice’s account of the indicative conditional, it is infor-
mative to first give a short introduction into Gricean pragmatics as put forward
by Grice (1975). The basic idea lies in the assumption that speakers, when in
a conversation, tend to cooperate towards a common goal, whatever that goal
may be. This tendency is what Grice calls the Cooperative Principle, and can be
phrased as follows.

“Make your conversational contribution such as is required [. . . ] by
the accepted purpose or direction of the talk exchange in which you
are engaged.” (Grice (1975), pg. 45)

Grice distinguishes several principles, or maxims, that lead a speaker to act
in line with the cooperative principle. These maxims can be divided into the
four categories Quantity, Quality, Relation and Manner, the first of which we will
shortly discuss. The category, or supermaxim, of Quantity contains the following
two maxims:

1. Make your contribution as informative as required. (Grice (1975), pg. 45)

2. Do not make your contribution more informative than required.

For example, if somebody asks whether it is raining one would break the
maxim of Quantity by saying that “it is cloudy” or by saying that “it is raining
and cats are lovely pets”. Now if one does not adhere to this maxim, while we still
suppose that one does adhere to the cooperative principle, that might give us new
information. For example, if one says “it is cloudy” when asked about the rain, we
would infer (pragmatically) that it is not raining. For otherwise the speaker would
rather not have flouted the first maxim of Quantity, and just said “it is raining”.
But surely one can not semantically infer that it is not raining from the statement
that it is cloudy. So in Gricean pragmatics we see that there are several inferences
that cannot be explained semantically, that can be explained pragmatically using
these maxims. We call these inferences conversational implicatures.

Now onto Grice’s account of the indicative conditional. In his 1975 lectures,
as published in Grice (1989), Grice argues that the indicative conditional is best
analysed using the material implication.47 As the direct argument is a validity of
classical logic with the material implication, we see that Desideratum A is seman-
tically satisfied by Grice’s account. However, ¬p ⊨ p→ q and ¬(p→ q) ⊨ p are

47See Gillies (2013) for a discussion on several theoretical arguments for and against this
analysis.
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also valid for the material implication. Hence, a Gricean account of the indicative
conditional needs a pragmatic explanation that can account for desiderata B and
C.

We will give a pragmatic explanation for Desideratum B.48 For this, consider
Grice’s view on a conditional with respect to the first maxim of Quantity.49

“To say that p ⊃ q is to say something logically weaker than to deny
that p or to assert that q, and is thus less informative; to make a
less informative rather than a more informative statement is to offend
against the first maxim of Quantity, provided that the more infor-
mative statement, if made, would be of interest.” (Grice (1989), pg.
63)

In other words, if ¬p is the case then it would offend against the first maxim of
Quantity to utter p→ q, as it is less informative. Thereby we see that a Gricean
account of the indicative conditional pragmatically explains the non-inference
from sentences like (4-a) to sentences like (4-b).

Now let us look at an analysis that rejects the material implication, the se-
lectional analysis of the indicative conditional as introduced by Stalnaker (1976).
Stalnaker’s framework assumes a possible world semantics, where propositions are
interpreted as a set of worlds.50 Furthermore, it defines a similarity function f
that takes a proposition A and a possible world i, and gives back the world f(A, i)
that is most similar to i and satisfies A. In this framework, a conditional “if A,
then B” is true in a possible world i just in case B is true in f(A, i). In other
words, the conditional holds in a possible world if the most similar “antecedent-
world” makes the consequent true.

This allows us to see how the selectional analysis accounts for Desideratum
A.51 It is straightforward to see that this desideratum is not satisfied semanti-
cally. For this we use an example by Cariani (2022), who worked out Stalnaker’s
formalism very neatly. Suppose that in the actual world (w) Ada alone is guilty
(A), but in the closest world in which she is innocent (v), Bo is guilty (B) and
Carmen is not (C). This can be visualised by the following picture.52

Then we see that w is an A ∨ C-world, but the closest ¬A-world is v. In other
words, we have f(¬A,w) = v, but C is not true in v. Hence, we conclude that
“if ¬A, then C” is not true in w. And thus Desideratum A semantically fails in
Stalnaker’s account.

48For a discussion on Grice’s pragmatic explanation of Desideratum C, or Denial of Condi-
tional, see pg. 81 of Grice (1989).

49Note that ⊃ is the symbol that Grice uses for the material implication, while we use →.
50See Footnote 41 for the origin of this framework.
51Similar arguments to the one below can be thought of to show that desiderata B and C are

semantically accounted for by Stalnaker. For brevity, we will only discuss Desideratum A.
52Both the example and the picture are by Cariani (2022) and have been unchanged.
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However, Stalnaker introduces the pragmatic notion of reasonable inference.
This notion is informally defined as follows.

“An inference from a sequence of assertions or suppositions (the pre-
misses) to an assertion or hypothetical assertion (the conclusion) is
reasonable just in case, in every context in which the premisses could
appropriately be asserted or supposed, it is impossible for anyone to
accept the premisses without committing himself to the conclusion.”
(Stalnaker (1976), pg. 138)

Let us shortly look at the derivation of the direct argument as a reasonable in-
ference. On Stalnaker’s account a disjunction A ∨ B can only be appropriately
asserted if both ¬A∧B and A∧¬B are compatible with the context.53 Similarly,
a conditional can only be appropriately made if the antecedent is compatible with
the context.54 Now suppose A∨B is asserted, then we see that ¬A is compatible
with the context. Now, Stalnaker argues that in this context “if ¬A, then A∨B”
also must be accepted.55 And as this entails the conditional “if ¬A, then B”,
we see that the direct argument has been derived as a reasonable inference.56

Hence, we find that, in contrast to Grice, Stalnaker pragmatically accounts for
Desideratum A and semantically accounts for Desiderata B and C.

It is interesting to note that the selectional analysis invalidates the classically
valid principle of Simplification of Disjunctive Antecedents (SDA).57 This princi-
ple can be formalised as (α ∨ β) ⇒ γ ⊨ (α ⇒ γ) ∧ (β ⇒ γ). To see that this is
not valid in Stalnaker’s framework, consider any world w such that γ is true in
f(α,w) but not in f(β,w), and f(α,w) = f(α∨β,w). Then we see that γ is true
in the most similar α ∨ β-world, but not in the most similar β-world. In other
words, as the most similar β-world need not be the most similar α∨β-world, SDA
is not satisfied.5859

To conclude, we can see in Table 3.1 that Stalnaker’s account differs from
Grice’s account on its explanation of all desiderata. In the following section we will
see how BSML extended with an implication can account for these desiderata.

53Notice that this is different from BSML’s account of the disjunction. For there we see that
a singleton state where both A and B hold supports [A∨B]+, while this should not be the case
on Stalnaker’s account.

54See Footnote 79 for some discussion on this “antecedent-compatibility”.
55For this Stalnaker claims that any context in which P is compatible and that entails Q, is

a context in which “if P , then Q” is entailed.
56For a fully formalised definition and derivation of the direct argument, one can best see

Cariani (2022).
57See Section 5.2.1 for an example motivating this principle and BSML’s account of this

principle.
58See Alonso-Ovalle (2004) for a broader discussion of this principle in the context of Stal-

nakerian frameworks.
59By considering a context c = {wAC , wB} (where wAC is a world where A and C hold, but

B does not), we can see that SDA cannot be accounted for as a reasonable inference. For we see
that ¬A ∧ B and A ∧ ¬B are compatible with this context, and thus A ∨ B can appropriately
be asserted. Hence, the conditional A ∨B ⇒ C can also be appropriately asserted. However, if
one asserts A∨B ⇒ C we need to consider the updated context c′ = {wAC}. But then B is no
longer compatible with the context, and thus “if B, then C” can not be appropriately asserted.
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Desideratum A (Dir. Arg.) B (No Triv.) C (Denial)

Grice Sem. Prag. Prag.
Stalnaker Prag. Sem. Sem.
BSML(⇒) ? ? ?

Table 3.1: Stalnaker vs. Grice on Stalnaker’s desiderata.
Dir. Arg. = Direct Argument, No Triv. = No Trivialization,

Denial = Denial of Conditional

3.3 BSML and Stalnaker

Now that we have seen the approaches by Stalnaker and Grice, it is time to
see where BSML(⇒) falls with respect to Stalnaker’s desiderata. We will look
at each desideratum, and see whether BSML extended with some implication
satisfies the desideratum. The proofs from this section that have been omitted
from the text can be found in Appendix B.

Now if some desideratum holds for BSML extended with some implication ⇒,
then we say that BSML(⇒) semantically accounts for that desideratum. How-
ever, BSML is designed to model a pragmatic tendency, i.e., the “neglect-zero”
tendency. Hence, we will also look if the desideratum is satisfied if we prag-
matically enrich all the formulas.60 If that is the case, then we would say that
BSML(⇒) accounts for that desideratum pragmatically. Of course, an expla-
nation is then needed on why the “neglect-zero” tendency can account for the
satisfaction of this desideratum, and it will be given where needed.

The implications that we will discuss are the material implication (→), the
intuitionistic implication (↠), the maximal implication (↪→∀), the maximal∃ im-
plication (↪→∃) and the BSML-implication (⇒¬,∨).

Desideratum A Let us start with the direct argument, i.e., α∨β ⊨ ¬α⇒ β for
ne-free α and β. Using the facts from Chapter 2 we can see that this desideratum
holds for all five implications.61

Fact 3.3.1. Let ⇒∈ {→,↠, ↪→∀, ↪→∃,⇒¬,∨} and α, β ∈ BSML∅, then α ∨ β ⊨
¬α⇒ β.

When we add pragmatic enrichment, we see that the material implication still
satisfies this desideratum.

Fact 3.3.2. Let α, β ∈ BSML∅, then [α ∨ β]+ ⊨ [¬α→β]+.

60We have chosen to add the pragmatic enrichment function to both the premises and the
conclusion of a(n) (non)-entailment. Another option would be to only enrich the premises as
done by Aloni (2022a), sometimes resulting in slightly different results. For example, Fact 5.2.3
would give an entailment for the maximal∃ implication if we would not enrich the conclusion.
However, having the pragmatics on both sides of the entailment seems to be the most complete
option, and there are only a few situations where the results would differ.

61Additionally, we use the fact that for all formulas φ,ψ we have φ↠ψ ⊨ φ→ψ. This follows
directly from the definitions, and will not be made explicit in other proofs. Note that also
[φ↠ψ]+ = ([φ]+ ↠[ψ]+) ∧ ne ⊨ ([φ]+ →[ψ]+) ∧ ne = [φ→ψ]+.
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Figure 3.1: Several models to be used as counterexamples.

Similarly, we can see that the intuitionistic implication and the maximal impli-
cation still satisfy this desideratum for “split-free” formulas if we add pragmatic
enrichment.6263

Fact 3.3.3. Let ⇒∈ {↠, ↪→∀} and “split-free” α, β ∈ BSML∅, then [α∨β]+ ⊨N

[¬α⇒ β]+.

However, the same does not hold for the maximal∃ implication and theBSML-
implication. For consider the state s = {wpq} in Figure 3.1(a), then we see that
there is no maximal t ⊆ s with M, t ⊨ [¬p]+. Hence, M, s ⊭ [¬p ↪→∃ q]

+ although
we do haveM, s ⊨ [p∨q]+. Similarly, in Figure 3.1(c) we haveM, s ⊭ ¬[p]+∨ [q]+.
Hence, M, s ⊭ [¬p⇒¬,∨ q]

+ although we again do have M, s ⊨ [p ∨ q]+.
Combining these facts we see that BSML extended with any of the implica-

tions can account for Desideratum A on a semantic level, in accordance with Grice.
However, we saw that the maximal∃ implication and ⇒¬,∨ fail this desideratum
if we pragmatically enrich the formulas.64 As the pragmatic enrichment function
models the “neglect-zero” tendency of speakers, we would need an explanation of
the failure of the direct argument on the basis of this tendency if we want to be
able to rival Grice’s and Stalnaker’s account. This will be discussed at the end
of this section, where one can also find a comparison of the different accounts in
Table 3.2.

Desideratum B The second desideratum that we will discuss is No Trivial-
ization, i.e., ¬p ⊭ p ⇒ q. It is straightforward to see that this desideratum fails
semantically for all implications.

Fact 3.3.4. For ⇒∈ {→,↠, ↪→∀, ↪→∃,⇒¬,∨}, we have ¬p ⊨ p⇒ q.

62To see that this does not generalise to all ne-free formulas, consider α := p and β := p ∨ q.
Then it is straightforward to see that state s = {wp, wq} in Figure 3.1(c) supports [p∨ (p∨ q)]+.
However, {wq} is maximal with M, {wq} ⊨ [¬p]+ but M, {wq} ⊭ [p ∨ q]+. Hence, s does not
support [¬p↠(p ∨ q)]+ nor [¬p ↪→∀(p ∨ q)]+.

63See Footnotes 15 and 16 for the definition of “split-free” and ⊨N .
64The intuitionistic implication and the maximal implication also fail for some formulas con-

taining disjunction. But we will see at the end of this section that their allowance of the direct
argument for atomic propositions under the pragmatic enrichment is not preferable. Therefore
we will not go into details about the difference between the material implication and these
implications with respect to Desideratum A.
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And if we pragmatically enrich the formulas we find the same result for the
first three implications.

Fact 3.3.5. For ⇒∈ {→,↠, ↪→∀}, we have [¬p]+ ⊨ [p⇒ q]+.

In other words, these implications can neither account for Desideratum B on a
semantic level nor on a pragmatic level. However, we find that this desideratum is
satisfied for the maximal∃ implication and the BSML-implication when we add
pragmatic enrichment.

Fact 3.3.6. [¬p]+ ⊭ [p ↪→∃ q]
+ and [¬p]+ ⊭ [p⇒¬,∨ q]

+

Proof. Consider Figure 3.1(b), then we see that M, s ⊨ [¬p]+. But there is no
t ⊆ s such thatM, t ⊨ [p]+, henceM, s ⊭ [p ↪→∃ q]

+. And as there is also no t′ ⊆ s
such that M, t′ ⊨ [q]+ we see that M, s ⊭ [p⇒¬,∨ q]

+.

Here we see an interesting effect of the pragmatic enrichment function. As
Desideratum B did not hold for the non-enriched version we see that BSML(↪→∃)
and BSML(⇒¬,∨) cannot account for it semantically. However, when we model
the “neglect-zero” tendency using the pragmatic enrichment function, they do sat-
isfy the desideratum. Hence, BSML(↪→∃) and BSML(⇒¬,∨) explain No Trivi-
alization on a pragmatic level, similar to Grice. At the end of this section we will
explain these results given the pragmatic “neglect-zero” tendency.

Desideratum C The final desideratum that we will consider here is the Denial
of Conditional, i.e., ¬(p ⇒ q) ⊭ p. As we mentioned in Section 2.2, we have left
out the anti-support conditions for the implications until now. For each of these
conditions we have chosen to present a version of the anti-support conditions that
is most in line with the support conditions of the implication.65

Definition 3.3.1 (Anti-support Conditions).

M, s ⊨φ→ψ iff M, s ⊨ φ and M, s ⊭ ψ
M, s ⊨φ↠ψ iff ∀t ⊆ s : if t ̸= ∅ and M, t ⊨ φ then M, t ⊭ ψ
M, s ⊨φ ↪→∀ ψ iff ∃t ⊆ s : (maximal with M, t ⊨ φ) and M, t ⊨ψ

M, s ⊨φ ↪→∃ ψ iff M, s ⊨φ ↪→∀ ψ

M, s ⊨φ⇒¬,∨ ψ iff M, s ⊨ φ and M, s ⊨ψ
65The rejection clause for the intuitionistic implication is the same as the negation clause

for the implication in inquisitive semantics. (Remember that the intuitionistic implication is
the same as the inquisitive implication as discussed by Ciardelli, Groenendijk, and Roelofsen
(2018))

The rejection clause for the maximal implications says that the consequent should be anti-
supported (M, s ⊨ψ). An alternative option is to say that it should not be supported, so
M, s ⊭ ψ. For this desideratum both options would give the same result. However, the ⊭-variant
would not have the empty state property when the consequent is classical, because the empty
state supports and anti-supports any classical formula. On the other hand, we see that the ⊨
variant will have the empty state property, allowing for the preservation of classicality.

In Chapter 7 we will look at some properties of these different anti-support conditions and
point towards future research topics surrounding them.
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From this definition it is directly clear that ¬(p→ q) ⊨ p and [¬(p→ q)]+ ⊨
[p]+, i.e., the desideratum fails for the material implication regardless of pragmatic
enrichment. Similarly, we see that it fails for ⇒¬,∨ regardless of pragmatic en-
richment. However, this desideratum is satisfied for the other three implications.
And this still is the case if we pragmatically enrich the relevant formulas.

Fact 3.3.7. Let ⇒∈ {↠, ↪→∀, ↪→∃}, then ¬(p⇒ q) ⊭ p and [¬(p⇒ q)]+ ⊭ [p]+.

Proof. Consider the state s = {wp, wq} in Figure 3.1(c). Then we see that {wp} is
the only non-empty substate of s that supports p (and [p]+). And as M, {wp} ⊭ q
(andM, {wp} ⊭ [q]+), it follows thatM, s ⊨p↠ q (andM, s ⊨[p↠ q]+). As {wp}
was maximal with M, {wp} ⊨ p (and M, {wp} ⊨ [p]+), we have the same result
for ↪→∀ and ↪→∃. However, we see that M, s ⊭ p and M, s ⊭ [p]+ and thus the
non-entailment holds.

We can conclude that the intuitionistic implication and both maximal implica-
tions can semantically account for this desideratum. And, in contrast to Desider-
atum A, this result does not change when we add pragmatics to the desideratum.

Stalnaker, Grice and BSML In Section 3.2 we saw that Grice accounted
for Desideratum A semantically and for the other desiderata pragmatically, while
Stalnaker’s account did this the other way around.

We have seen that BSML extended with the material implication, intuition-
istic implication or maximal implication can not account for No Trivialization.
And although the BSML-implication can pragmatically account for this, it can-
not account for Denial of Conditional. So we can conclude that these extensions
can not rival with Grice’s and Stalnaker’s account. However, when we extend
BSML with the maximal∃ implication we get a more interesting picture.

As we can see in Table 3.2, BSML(↪→∃) semantically accounts for the direct
argument.66 This is in line with Grice’s account, but there seems to be a problem.
When we pragmatically enrich the formulas, BSML(↪→∃) no longer satisfies the
desideratum. As mentioned above, this “failure” is in need of an explanation.
There are two explanations available, the first discarding this counterexample
altogether and the second explaining the failure in this counterexample.

Let us first consider a pragmatic reason for discarding the counterexample, the
state s = {wpq} from Figure 3.1(a), altogether. When it is the case that it rains
and there is a rainbow, it would be odd to say “It rains or there is a rainbow”.
When we look at Grice’s maxims as discussed in Section 3.2, we say that the
speaker would flout the first maxim of Quantity. For p∨q is logically weaker than
p ∧ q, so the speaker could (and should) have said something more informative.
So for this pragmatic reason, one could argue that we need not consider this
counterexample. Now note that the other states that support [p ∨ q]+ all have

66Throughout this thesis we will use colors and fonts in tables to denote what results are good,
bad or somewhere in between. Note that bad means that a framework extended with a certain
implication cannot account for a certain phenomenon. Of course, one could still support this
implication in combination with an appeal to extra-logical means, such as Gricean pragmatics,
to account for certain desiderata.
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Desideratum A (Dir. Arg.) B (No Triv.) C (Denial)

Grice Sem. Prag. Prag.
Stalnaker Prag. Sem. Sem.
BSML(→) Sem. ✗ ✗

BSML(↠) Sem. ✗ Sem.
BSML(↪→∀) Sem. ✗ Sem.
BSML(↪→∃) Sem.∗ Prag. Sem.
BSML(⇒¬,∨) Sem.∗ Prag. ✗

Table 3.2: BSML and Stalnaker.
Dir. Arg. = Direct Argument, No Triv. = No Trivialization,

Denial = Denial of Conditional
∗This desideratum fails when pragmatically enriched.

a subset supporting [¬p]+ and [q]+, i.e., the same problem does not arise if we
only look at pragmatically reasonable models. However, we can also explain the
failure of the direct argument in this model using the “neglect-zero” tendency.

Suppose our information state is as in Figure 3.1(a), i.e., we are sure that both
p and q hold. Then they are both live possibilities, and therefore we satisfy [p∨q]+.
But then “if ¬p, then q” would only be verified by an empty configuration, because
¬p is not a live possibility at all. So it seems to be very reasonable in this case that
[p ∨ q]+ is supported, but the “neglect-zero” tendency rules out that [¬p ↪→∃ q]

+

is supported. In other words, a notion of implication that could account for this
would be preferable. Hence, we conclude that this apparent “failure” is actually
exactly what we want to have.

Let us shortly also consider the counterexample that we saw for the BSML-
implication in Figure 3.1(c). There we had the state s = {wp, wq} that supports
[p ∨ q]+ but does not support [¬p ⇒¬,∨ q]+. However, p, ¬p and q were all live
possibilities, so neither an explanation using Gricean pragmatics nor the expla-
nation using the “neglect-zero” tendency that we just saw goes through in this
case. Even stronger, we would expect the implication to be supported in this
situation, and therefore we see that this “failure” under pragmatic enrichment is
a true failure in the case of the BSML-implication.

The second desideratum, No Trivialization, was not satisfied by BSML(↪→∃).
However, when we add the pragmatic enrichment it does satisfy this desideratum.
In other words, BSML(↪→∃) accounts for this desideratum pragmatically. This
makes sense if we think about the “neglect-zero” tendency. If “The butler did it”,
then we would validate “If the butler didn’t do it, then the gardener did” using an
empty configuration. But this is exactly what the “neglect-zero” tendency rules
out, so we would indeed expect this desideratum to be accounted for pragmatically.

Finally, the third desideratum, Denial of Conditional, is satisfied by the
maximal∃ implication regardless of pragmatic enrichment. So similarly to Desider-
atum A, we would say that BSML(↪→∃) semantically accounts for this desidera-
tum. At this point we differ from Grice, but agree with Stalnaker.

Before we finish this chapter, there are some observations to be made. First
of all, let us shortly compare the Gricean account to BSML(⇒). Note that the
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“neglect-zero” hypothesis is compatible with Gricean pragmatics, as Aloni (2022a)
acknowledges by stating that the former “connects to a version of Grice’s Quality
maxim” (pg. 33). In other words, these pragmatic accounts are not competing,
but are likely to both be operative in language. Aloni (2022a) further supports
this idea by showing that fc-effects cannot be explained as conversational impli-
catures. Specifically, conversational implicatures have higher processing costs and
are acquired later than fc-effects.67 Hence, another pragmatic explanation, the
“neglect-zero” tendency, is given to explain these fc-effects.

Therefore, it might be interesting for future empirical research to look at
phenomena such as No Trivialization, of which we have seen that both Grice and
BSML(↪→∃) give a pragmatic explanation. This might give us insight in the
question whether such phenomena should be explained using Gricean pragmatics
or using the “neglect-zero” tendency.68

Furthermore, in BSML we have made the pragmatic “neglect-zero” tendency
formally explicit in the syntax.69 It would also be interesting to see how Gricean
maxims, such as Quantity, can be formalised in BSML (or BSML(↪→∃)) to
explain phenomena that the “neglect-zero” tendency alone cannot account for.

Lastly, in this section we have seen that BSML(↪→∃) can explain, either se-
mantically or pragmatically, the same desiderata as Stalnaker’s account. However,
in Section 3.2 we saw that the definition of a reasonable inference was rather in-
volved. As the “neglect-zero” tendency is quite simple, this can be seen as an
advantage of BSML(↪→∃) over Stalnaker’s account.

To conclude, we have seen that the BSML(↪→∃)-account is really different
from Grice’s and Stalnaker’s accounts, and is able to explain all desiderata using
either semantics or pragmatics. However, we will see in the next section that the
maximal∃ implication has some problems regarding other linguistic desiderata,
and in Chapter 5 we will see that it has some unfortunate mathematical properties.
Therefore, we will come back to Stalnaker’s desiderata in Chapter 6, where we will
adopt a dynamic variant of BSML to give a more satisfying account on almost
all linguistic desiderata with a mathematically better-behaved implication.

67See Table 1 by Aloni (2022a) for an overview of these properties for several linguistic phe-
nomena.

68Krzyżanowska, Collins, and Hahn (2021) have done empirical research that explicitly goes
against the Gricean account. However, their findings are problematic to any analysis of condi-
tionals that does not take the connection between the antecedent and consequent into account.
Neither Stalnaker’s account nor any of the implications that we are researching for BSML
takes this connection into account, so it is important to realise that this empirical research
causes problems for these accounts as well.

69This pragmatic tendency can also be introduced model-theoretically, as done in Section 6.3.1
by Aloni (2022a).
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Chapter 4

Linguistic Desiderata by
Ciardelli

In the previous chapter we saw that the maximal∃ implication could account for
all of Stalnaker’s desiderata using either semantics or pragmatics. In this chapter
we will see if the maximal∃ implication does equally well if we look at other lin-
guistic desiderata. Specifically, we will discuss several desiderata for an analysis
of the indicative conditional, as listed by Ciardelli (2020). Ciardelli’s account of
the indicative conditional combines features of what he calls information seman-
tics and minimal change semantics.70 This combination can account for several
desiderata that each individual approach traditionally cannot account for. In Sec-
tion 4.1 we will present and discuss these desiderata. Subsequently, in Section 4.2
we will see which of these are satisfied by BSML(⇒) for each of our implications.

4.1 The desiderata

The first desideratum discussed by Ciardelli (2020) is the same as Desideratum B
(No Trivialization) by Stalnaker, but additionally we want an implication to be
compatible with the negation of its antecedent. As we argued for in Section 3.1,
(4-a) (“If the butler didn’t do it, the gardener did.”) need not follow from (4-b)
(“The butler did it”) . But it is not infelicitous to utter both sentences in the
same breath, i.e., they should be compatible.

Desideratum 1 (No Trivialization). (a) ¬p ⊭ p⇒ q; (b) ¬p, p⇒ q ⊭ ⊥

We already have discussed how BSML(⇒) accounts for Desideratum 1a) in
Section 3.3 (as Desideratum B). Specifically, we saw that BSML(↪→∃) gave a
pragmatic account of No Trivialization. Therefore, we will not consider the first
half of Desideratum 1 again in this chapter. However, it does raise the question

70Information semantics are accounts like dynamic semantics and BSML that evaluate for-
mulas in sets of worlds, rather than in the worlds themselves. Minimal change semantics are
accounts such as Stalnaker’s, as discussed in Section 3.2.
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whether Desideratum 1(b) will also be accounted for pragmatically. We will see
that none of the implications will give a fully satisfactory account of this, either
semantically or pragmatically. This will be one of the motivations for the dynamic
approach in Chapter 6.

The second desideratum says that Modus Ponens and Modus Tollens should be
satisfied if we restrict ourselves to implication-free propositional sentences. There
are arguments against Modus Ponens and Modus Tollens, but these use either
modalities or iterated conditionals and will be mentioned for Desiderata 4 & 5.
Ciardelli argues in favor of this desideratum because of its intuitive appeal and
the lack of counterexamples.

Desideratum 2 (Factual Modus Ponens and Modus Tollens).
For all α, β ∈ BSML0: (a) α⇒ β, α ⊨ β; (b) α⇒ β,¬β ⊨ ¬α

We will also be interested in whether Modus Ponens also holds under prag-
matic enrichment, as the “neglect-zero” tendency does not seem to give us a reason
to expect its failure. Hence, the failure of pragmatically enriched propositional
Modus Ponens is something that would be undesirable. On the other hand, for
Modus Tollens we will only be interested in the non-enriched version. The reason
for this is as follows, a pragmatically enriched implication might ensure that its
antecedent is a live possibility.71 However, this need not be compatible with the
negation of the antecedent, as is needed for Modus Tollens. Rather than dive into
specific instances of the effect of the “neglect-zero” tendency on Modus Tollens,
we decide that we will only consider the non-enriched version. The relation be-
tween “neglect-zero” and Modus Tollens might be an interesting topic for further
research.

The third desideratum concerns the import/export principle. It arises from
the idea that sentences like (6-a) express the same thing as sentences like (6-b).72

(6) a. If Bob is in Paris, then if he’s staying in (Ciardelli (2020))
a hotel, he’s at the Ritz.

b. If Bob is in Paris and he’s staying in a hotel, he’s at the Ritz.

Formally, we would say that an iterated implication is equivalent to an implication
with a conjunction in the antecedent.

Desideratum 3 (Import-export).
For all α, β ∈ BSML0 and γ ∈ BSML∅: α⇒ (β ⇒ γ) ≡ (α ∧ β) ⇒ γ

The fourth desideratum is motivated by the famous “counterexample” to
Modus Ponens by McGee (1985).73 For this we consider the context of the 1980
elections in the United States. There are three candidates for presidency: Rea-
gan, a Republican, is leading the polls; Carter, a Democrat, is lagging behind;
and Anderson, a Republican running as independent, has virtually no chance at

71For Desideratum 7′ we will argue that this is even a desideratum.
72See Gibbard (1980), Kremer (1987), Lycan (2001) and Mandelkern (2020) for more discus-

sion on this principle.
73We present this example in the wording of Ciardelli (2020).

33



winning. According to McGee it is very natural to accept (7-a) and (7-b), but to
reject (7-c).

(7) a. If a Republican wins, then (McGee (1985))
if Reagan doesn’t win, Anderson will.

b. A Republican will win.
c. If Reagan doesn’t win, Anderson will.

In other words, this desideratum says that we do not want Modus Ponens to hold
for an iterated conditional.

Desideratum 4 (No Modus Ponens for iterated conditionals).
p⇒ (q ⇒ r), p ⊭ q ⇒ r

However, several accounts have argued that this argument does not hold for
information-based semantics, and thus also does not hold forBSML. For example,
Gillies (2004) argues that in McGee’s intuitive assessment of the argument the
information of (7-b) seems to be lost as soon as we arrive at (7-c). And the
stronger we keep hold of the information from (7-b), the stronger the urge seems
to accept (7-c). This can be made more explicit if we consider the following
re-wording of the example.74

(8) a. If a Republican wins, then if he is not Reagan, he is Anderson.
b. A Republican will win.
c. If he is not Reagan, he is Anderson.

Now, it seems much more reasonable to say that (8-c) follows from (8-a) and (8-b).
And as Gillies (2004) argues, the difference between (7) and (8) is merely stylistic,
and does not lie in its content. So the only thing that example (8) did, is show
that when the information that a Republican will win is more available, it is much
more reasonable to accept this instance of Modus Ponens. For an information-
based account it seems right to demand that information given earlier, in (7-b), is
still available when interpreting (7-c), validating Modus Ponens. And as BSML
is an information-based account, we do not agree with counting this failure of
Modus Ponens as a desideratum.75 So henceforth, we will only be concerned with
the other desiderata by Ciardelli.

The fifth desideratum argues against Modus Tollens when the consequent has
an epistemic modality in it. Consider the following example by Ciardelli (2020),
a variation on examples by Veltman (1985) and Yalcin (2012). Suppose there is
an urn with white and black marbles in it. A marble is randomly extracted from
the urn, and its color is not yet revealed. Then we would accept (9-a) and (9-b),
but we would reject (9-c).

(9) a. If the marble is not white, it must be black. (Ciardelli (2020))
b. It is not the case that the marble must be black.

74Gillies (2004) deals with a similar McGee-like example, and revises it in the same way as
we will do.

75See Bledin (2015) for another argument against McGee’s counterexample to Modus Ponens
in the context of information-based semantics.
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c. The marble is white.

Formally, this means that we do not want Modus Tollens to hold for implications
with an epistemic modal consequent.

Desideratum 5 (No Modus Tollens for modal consequents).
p⇒ 2q,¬2q ⊭ ¬p

The penultimate desideratum by Ciardelli is concerned with the direct argu-
ment, or as Ciardelli calls it “or -to-if ”. We saw in Section 3.1 that Stalnaker
argues that this inference should always be valid. However, Ciardelli (2020) ar-
gues that it need not be valid if the disjunct is accepted solely on the acceptance
of the first disjunct. We will reformulate this desideratum shortly, but let us first
look at Ciardelli’s argument.76 Suppose there were three suspects: the driver, the
gardener and the chauffeur.77 There has been some convincing evidence against
the butler, while nothing has been found against the other two. Then the detec-
tive will accept (10-a) based on her acceptance of the first disjunct. However, she
has no reason at all to accept (10-b), for it might also be the chauffeur who did
it.

(10) a. Either the butler or the gardener did it.
b. If the butler didn’t do it, the gardener did.

On the other hand, in cases where our acceptance of the disjunction is not merely
based on the acceptance of one of the disjuncts, the direct argument should be
valid according to Ciardelli. In other words, if the negation of the first disjunct
is still a possibility, the direct argument should go through. Ciardelli formulates
this as follows.

Desideratum 6 (Cautious or -to-if ).
a) p ∨ q ⊭ ¬p⇒ q; b) p ∨ q,3¬p ⊨ ¬p⇒ q

Now, there is an interesting aspect of this line of reasoning that needs to be
pointed out. Namely, this argument assumes that acceptance of the first disjunct
is sufficient for the acceptance of the disjunction, i.e., p ⊨ p ∨ q. This inference is
typical for classical reasoning, and it is exactly such reasoning that the “neglect-
zero” tendency is concerned with. So we would expect an account based on
this tendency to have something to say about this argument. Specifically, when
we take the “neglect-zero” tendency into account, we would not say that in the
situation described above (10-a) should be accepted at all. This can formally be
seen by the crucial fact that in BSML we have [p ∧ ¬q]+ ⊭ [p ∨ q]+.

We agree with Stalnaker in keeping the direct argument as a desideratum and,
contrary to Stalnaker, we will account for it semantically. However, when we take
the pragmatic “neglect-zero” tendency into account, we agree with Ciardelli by
stating that the acceptance of the first disjunct is not sufficient for the acceptance
of the direct argument. To make this explicit, we will reformulate the first half of

76We will paraphrase Ciardelli’s example, but Ciardelli credits Adams (1965) and Edgington
(1995).

77Note that this example, (10), is the same as example (3), we repeat it here for clarity.
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this desideratum as [p ∧ ¬q]+ ⊭ [¬p⇒ q]+.78 In other words, we want to explain
the situation in example (10) using pragmatics, rather than semantics.

Now for the second half of the sixth desideratum. Remember that in Section
3.3 we saw that under pragmatic enrichment the direct argument no longer holds
for the maximal∃ implication. Specifically, it no longer holds in a situation where
the disjunction is supported by a state where in each world both disjuncts are true,
e.g., a state such as s = {wpq}. We argued that this behaviour is desirable if we
take the “neglect-zero” tendency into account. For in this situation the antecedent
of the implication is not a live possibility, i.e., the implication would be validated
by an empty configuration. However, when the antecedent is a live possibility, we
expect the direct argument to go through under pragmatic enrichment. Therefore
we reformulate the second half of Desideratum 6 so that we are only interested
in its pragmatically enriched version. Together with our earlier argument this
results in the following reformulated desideratum.

Desideratum 6′. (Cautious or-to-if, reformulated)
a) [p ∧ ¬q]+ ⊭ [¬p⇒ q]+; b) [p ∨ q]+, [3¬p]+ ⊨ [¬p⇒ q]+

Finally, the last desideratum deals with the interaction of conditionals and
might. Consider (11-a), this seems to be very uncontroversial to accept. As we
know that Hamlet was written, we might even say “if it was not Shakespeare
who wrote it, it must have been someone else”. However, (11-b) is much more
controversial, as it implies that we have been fooled for many centuries.

(11) a. If Hamlet was not written by Shakespeare, (Ciardelli (2020))
it might have been written by someone else.

b. It might be that Hamlet was not written by Shakespeare, but by
someone else.

This shows that we do not want p⇒ 3q to be equivalent to3(p∧q).79 Specifically,

78Because we have [p∧¬q]+ ⊭ [p∨ q]+ in BSML, we see that this is not one of the situations
that has been discussed in the pragmatically enriched version of Desideratum A.

79Ciardelli mentions that Gillies (2010) takes the opposite view by selecting p⇒ 3q ≡ 3(p∧q)
as a desideratum. Now note that around Definition 4.1 Gillies (2010) argues that any notion
of an indicative conditional should have definedness, i.e., that it should be defined only if the
antecedent is compatible with the context. Similarly, Gillies (2020) implicitly assumes φ →
3ψ ⊨ 3φ when he states in Figure 1 that in update semantics (similar to the dynamic system
we will see in Chapter 6) we have φ→ 3ψ ≡ 3(φ ∧ ψ).

Ciardelli’s account does not assume the same, but Ciardelli discusses this “antecedent com-
patibility” in Section 5.3. By ensuring s[α] ̸= ∅ for s ⊨ α⇒ φ, Ciardelli’s account would have a
notion of implication with definedness. However, he mentions that in that case we would find
that p⇒ 3q ≡ 3(p∧ q), in contradiction to Desideratum 7. Hence, we see that a crucial differ-
ence between Ciardelli’s and Gillies’ accounts is the definedness. It is interesting to note that
Stalnaker agrees with Gillies by saying that “it is appropriate to make an indicative conditional
statement [. . . ] only in a context which is compatible with its antecedent” (Stalnaker (1976),
pg. 146).

As we will see, a pragmatically enriched maximal∃ implication will have definedness, while
this is not the case without pragmatic enrichment. In other words, our pragmatic enrichment
function formalises within the maximal∃ implication what Gillies has (implicitly) assumed. Fur-
thermore, we have a simple pragmatic explanation that can explain why we want to have the
definedness. This is an advantage over both Ciardelli’s and Gillies’ accounts.
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this example shows that the former should not entail 3p while the latter should.
Therefore, Ciardelli formulates this desideratum as follows.

Desideratum 7 (If-might interaction).
a) p⇒ 3q ⊭ 3p; b) 3(p ∧ q) ⊨ 3p

However, when we take the “neglect-zero” tendency into account, we no longer
think that Desideratum 7a) should be the case. For if somebody says “if p, then it
might be that q” without it being an epistemic possibility that p is the case, then
the sentence would be validated by an empty configuration. But this is exactly
what the “neglect-zero” tendency prevents. In other words, we will reformulate
this desideratum to Desideratum 7′, so that the non-entailment will become an
entailment under pragmatic enrichment.

Desideratum 7′. (If-might interaction, reformulated)

a) p⇒ 3q ⊭ 3p and 3(p ∧ q) ⊨ 3p

b) [p⇒ 3q]+ ⊨ [3p]+ and [3(p ∧ q)]+ ⊨ [3p]+

Now that we have discussed all desiderata, we can consider how the different
possible implications for BSML fare.

4.2 BSML on Ciardelli’s Desiderata

In the previous section we have seen Ciardelli’s desiderata for indicative condition-
als. As we already discussed Desideratum 1a) as Desideratum B, and we deem
the counterarguments to Desideratum 4 valid, we will no longer consider these
desiderata. Furthermore, we have reformulated Desideratum 6 and Desideratum
7 to make better use of the pragmatic enrichment function that we have at our
disposal. We will now look atBSML extended with the material implication (→),
intuitionistic implication (↠), maximal implication (↪→∀), maximal∃ implication
(↪→∃) or the BSML-implication (⇒¬,∨), and see if these satisfy the desiderata.
Similarly to the desiderata in Section 3.3, we will also see if they are satisfied if we
introduce pragmatics with our pragmatic enrichment function. The proofs of this
section that are omitted from the text can be found in Appendix C. The proofs
that have been included can be insightful for the behaviour of the implications,
but need not be thoroughly inspected to understand the discussion that can be
found at the end of this section.

Desideratum 1 Let us first look at the second half of Desideratum 1, i.e.,
¬p, p⇒ q ⊭ ⊥. It is quite straightforward to see that all implications satisfy this
desideratum.

Fact 4.2.1. For ⇒∈ {→,↠, ↪→∀, ↪→∃,⇒¬,∨}, we have ¬p, p⇒ q ⊭ ⊥.

Proof. Consider the state s = {wq} in Figure 4.1(a). As we have M, t ⊨ q for all
t ⊆ s, we see that indeed M, s ⊨ p↠ q. So by Footnote 61, Fact 2.2.5, Fact 2.2.6
and Fact 2.2.9, it follows that M, s ⊨ p→ q, M, s ⊨ p ↪→∀ q, M, s ⊨ p ↪→∃ q and
M, s ⊨ p⇒¬,∨ q. Clearly, M, s ⊨ ¬p and as s ̸= ∅ we see that M, s ⊭ ⊥.
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Figure 4.1: Several models to be used as counterexamples.

Similarly, we see that the material implication, intuitionistic implication, max-
imal implication and theBSML-implication still satisfy the desideratum if we add
pragmatic enrichment.

Fact 4.2.2. For ⇒∈ {→,↠, ↪→∀,⇒¬,∨}, we have [¬p]+, [p⇒ q]+ ⊭ ⊥.

Proof. Consider the state s = {wq} in Figure 4.1(a) again. As there is no t ⊆ s
with M, t ⊨ [p]+ and s ̸= ∅, we see that M, s ⊨ [p↠ q]+. So by Footnote 61 and
Fact 2.2.7 we have the same for → and ↪→∀. Now let t = ∅ and t′ = s, then clearly
t ∪ t′ = s. Furthermore, M, t ⊨ ¬[p]+, M, t′ ⊨ [q]+ and s ̸= ∅, therefore it follows
that M, s ⊨ [p ⇒¬,∨ q]+. We can directly see that M, s ⊨ [¬p]+ and as s ̸= ∅ it
follows that M, s ⊭ ⊥.

However, the same does not hold for the maximal∃ implication. There we see
that the negation of the antecedent is incompatible with the conditional, if we
add pragmatic enrichment.

Fact 4.2.3. [¬p]+, [p ↪→∃ q]
+ ⊨ ⊥

Proof. Suppose M, s ⊨ [¬p]+ and M, s ⊨ [p ↪→∃ q]
+. From the former and Fact

2.1.1 we see that M, s ⊨ ¬p. And it follows from the latter that there is a t ⊆ s
with M, t ⊨ [p]+, so t ̸= ∅ and by Fact 2.1.1 also M, t ⊨ p. Now by Fact 2.1.4 we
see that t = ∅, a contradiction. So anything follows.

Combining these results in Table 4.1, we see that all implications semantically
account for Desideratum 1b). But the maximal∃ implication does not satisfy
it when pragmatically enriched. Similar to the situation with Desideratum A
by Stalnaker, this “failure” needs a good explanation if we want to propose the
maximal∃ implication as a suitable implication for BSML. At the end of this
section we will see that there is something in favor of this “failure” and something
against it. Therefore we conclude that none of the implications can give a fully
satisfactory account of Desideratum 1b).

38



Desideratum 1b)
(CNA)

BSML(→) Sem.
BSML(↠) Sem.
BSML(↪→∀) Sem.
BSML(↪→∃) Sem.∗

BSML(⇒¬,∨) Sem.

Table 4.1: Desideratum 1 by Ciardelli
CNA = Compatibility with Negated Antecedent

∗This desideratum fails when pragmatically enriched.

Desideratum 2 The second desideratum by Ciardelli is about Modus Ponens
and Modus Tollens for propositional formulas, i.e., ne-free and 3-free formulas.
Let us first look at Modus Ponens. It is straightforward to see that this holds for
all implications.

Fact 4.2.4. For ⇒∈ {→,↠, ↪→∀, ↪→∃,⇒¬,∨} and α, β ∈ BSML0, we have α ⇒
β, α ⊨ β.

Proof. For → this follows directly from the definition. And as s ⊆ s, it also holds
for ↠. So by Fact 2.2.5, Fact 2.2.6 and Fact 2.2.9 it also holds for ⇒¬,∨, ↪→∀ and
↪→∃.

Similarly, Modus Ponens still holds for all implications if we pragmatically
enrich the formulas.

Fact 4.2.5. For ⇒∈ {→,↠, ↪→∀, ↪→∃,⇒¬,∨} and α, β ∈ BSML0, we have [α⇒
β]+, [α]+ ⊨ [β]+.

The second part of this desideratum is concerned with Modus Tollens for
propositional formulas. This desideratum holds for the intuitionistic implication,
maximal implication, maximal∃ implication and the BSML-implication.80

Fact 4.2.6. For ⇒∈ {↠, ↪→∀, ↪→∃,⇒¬,∨} and α, β ∈ BSML∅, we have α ⇒
β,¬β ⊨ ¬α.

However, Modus Tollens fails for the material implication. For consider the
state s = {wp, w∅} in Figure 4.1(b), then we see that M, s ⊭ p and thus M, s ⊨
p→ q. Also, M, s ⊨ ¬q but we do not have M, s ⊨ ¬p. Note that this failure of
Modus Tollens originates in the fact that failure of support for a formula is not
the same as anti-support in BSML.

80Ciardelli’s desideratum is only concerned with BSML0, i.e., the propositional fragment. In
Appendix C we have presented a proof for the larger ne-free fragment, BSML∅, as it will ease
our discussion surrounding Desideratum 5.
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Desideratum 2a) 2b)
(MP) (MT)

BSML(→) Sem. ✗

BSML(↠) Sem. Sem.
BSML(↪→∀) Sem. Sem.
BSML(↪→∃) Sem. Sem.
BSML(⇒¬,∨) Sem. Sem.

Table 4.2: Desideratum 2 by Ciardelli
MP = Modus Ponens, MT = Modus Tollens

We combine these results in Table 4.2, where we see that all implications can
account for Modus Ponens for propositional formulas. And all implications, except
for the material implication, can account for propositional Modus Tollens.81 We
conclude that this result is in favor of all implications but the material implication.

Desideratum 3 The third desideratum that Ciardelli discusses is the import-
export principle. All implications under discussion can account for this desidera-
tum semantically.

Fact 4.2.7. Let ⇒∈ {→,↠, ↪→∀, ↪→∃,⇒¬,∨}, α, β ∈ BSML0 and γ ∈ BSML∅.
Then we have α⇒ (β ⇒ γ) ≡ (α ∧ β) ⇒ γ.

For the material implication, the maximal∃ implication and the BSML-
implication we see that the desideratum is still satisfied if we pragmatically enrich
the formulas.

Fact 4.2.8. Let ⇒∈ {→, ↪→∃,⇒¬,∨}, α, β ∈ BSML0 and γ ∈ BSML∅. Then
we have [α⇒ (β ⇒ γ)]+ ≡ [(α ∧ β) ⇒ γ]+.

However, this desideratum fails under pragmatic enrichment for the intuition-
istic implication and the maximal implication.

Fact 4.2.9. Let ⇒∈ {↠, ↪→∀}, α, β ∈ BSML0 and γ ∈ BSML∅. Then we have

[α⇒ (β ⇒ γ)]+ ̸≡ [(α ∧ β) ⇒ γ]+.

Proof. Consider the state s = {wp, wq} in Figure 4.2(a), then we see that there is
no t ⊆ s such that M, t ⊨ [(p∨ q)∧p]+, and thus M, s ⊨ [((p∨ q)∧p) ↪→∀(p∨ q)]+.
Now we see that M, s ⊨ [p ∨ q]+ (and s is maximal), and {wp} is maximal with
M, {wp} ⊨ p. However, M, {wp} ⊭ [p ∨ q]+ and thus M, s ⊭ [p ↪→∀(p ∨ q)]+.
Thereby, we conclude that M, s ⊭ [(p ∨ q) ↪→∀(p ↪→∀(p ∨ q))]+. The same proof
works for the intuitionistic implication.

81Remember that we argued in Section 4.1 that we are only interested in the non-enriched
Modus Tollens. For the interested reader, the material implication, intuitionistic implication and
maximal implication fail Modus Tollens under pragmatic enrichment, as witnessed by α := p∨q
and β := r.
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We summarise these results in Table 4.3. Note that the counterexample from
Fact 4.2.9 cannot be explained away using the “neglect-zero” tendency, and thus
we conclude that this failure under pragmatic enrichment is unfavorable.82

Desideratum 3
(I-E)

BSML(→) Sem.
BSML(↠) Sem.∗

BSML(↪→∀) Sem.∗

BSML(↪→∃) Sem.
BSML(⇒¬,∨) Sem.

Table 4.3: Desideratum 3 by Ciardelli
I-E= Import-Export

∗This desideratum fails when pragmatically enriched.

Desideratum 5 The next desideratum that we will consider says that we do
not want Modus Tollens if we have an epistemic modal consequent, i.e., p ⇒
2q,¬2q ⊭ ¬p. This desideratum holds for the material implication, even when we
add pragmatic enrichment. Note that this is not very surprising, as the material
implication already did not have Modus Tollens for the propositional fragment.

Fact 4.2.10. p→2q,¬2q ⊭ ¬p and [p→2q]+, [¬2q]+ ⊭ [¬p]+

Proof. Consider the state s = {wp, w∅} in Figure 4.2(b). As s ̸= ∅, M, s ⊭ p and
M, s ⊭ [p]+, we see that M, s ⊨ p→2q and M, s ⊨ [p→2q]+. And as {w∅} ⊆
R[w] for all w ∈ s and M, {w∅} ⊨q, it follows that M, s ⊨ ¬2q. Furthermore,
¬2q is “split-free”, so by Fact 2.1.2 we see that M, s ⊨ [¬2q]+. However, we see
that M, s ⊭ ¬p and M, s ⊭ [¬p]+.

The same desideratum fails for the intuitionistic implication, maximal impli-
cation, maximal∃ implication and the BSML-implication. To see this, note that
in our discussion of Desideratum 2 in this section we proved that for these notions
of implication Modus Tollens holds for all α, β ∈ BSML∅. And thus it also holds
for implications with modal consequents.

And if we pragmatically enrich all formulas, we still see that Modus Tollens
holds in this case. Hence, we conclude that these implication also cannot account
for this desideratum pragmatically.

Fact 4.2.11. For ⇒∈ {↠, ↪→∀, ↪→∃ ⇒¬,∨}, we have [p⇒ 2q]+, [¬2q]+ ⊨ [¬p]+.

Combining these results in Table 4.4, we see that the material implication is
the only implication that can account for Desideratum 5. It does so semantically,
but this result is not surprising as propositional Modus Tollens also failed for the
material implication. All in all, we can conclude that none of the implications
can give an account of Modus Tollens that takes Desideratum 2b) and 5 both

82There is no reason for (p ∨ q) ↪→∀(p ↪→∀(p ∨ q)) to fail when we take the “neglect-zero”
tendency into account, for all antecedents and consequents are live possibilities in our state.
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Figure 4.2: Several more models to be used as counterexamples.

into account. In Chapter 6 we will see that a dynamic notion of implication fares
much better in this respect.

Desideratum 5
(No MT3)

BSML(→) Sem.
BSML(↠) ✗

BSML(↪→∀) ✗

BSML(↪→∃) ✗

BSML(⇒¬,∨) ✗

Table 4.4: Desideratum 5 by Ciardelli
No MT3 = No Modus Tollens for modal consequent

Desideratum 6′ As we discussed in Section 4.1, we have reformulated this
desideratum so that we want [p∧¬q]+ ⊭ [¬p⇒ q]+ and [p∨ q]+, [3¬p]+ ⊨ [¬p⇒
q]+. The first half of this desideratum is not satisfied by the material implication,
intuitionistic implication and maximal implication. As [p ∧ ¬q]+ ⊨ [p]+, this
follows directly from a proof analogous to that of Fact 3.3.5.

Fact 4.2.12. For ⇒∈ {→,↠, ↪→∀}, we have [p ∧ ¬q]+ ⊨ [¬p⇒ q]+.

However, we find that the maximal∃ implication and the BSML-implication do
satisfy Desideratum 6′a).

Fact 4.2.13. For ⇒∈ {↪→∃,⇒¬,∨}, we have [p ∧ ¬q]+ ⊭ [¬p⇒ q]+.

Proof. Consider Figure 4.2(c), then we see that M, s ⊨ [p∧¬q]+. But there is no
t ⊆ s such that M, t ⊨ [¬p]+, and thus M, s ⊭ [¬p ↪→∃ q]

+. And as there is no
t ⊆ s such that M, t ⊨ [q]+, we see that also M, s ⊭ [¬p⇒¬,∨ q]

+.

Now let us turn to the second half of the desideratum. For the material impli-
cation, intuitionistic implication and maximal implication we saw in Section 3.3
that the direct argument holds under pragmatic enrichment (Fact 3.3.2 and Fact
3.3.3). Therefore it directly follows that 6′b) is also satisfied by these implications.
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On the other hand, it is straightforward to see that the same does not hold
for the maximal∃ implication. For consider the state s = {wpq} in Figure 4.2(d).
Then we see that M, s ⊨ [p ∨ q]+ and M, s ⊨ [3¬p]+, but M, s ⊭ [¬p ↪→∃ q]

+ as
there is no t ⊆ s with M, t ⊨ [¬p]+.

However, Aloni (2022a) introduces some properties that the relation R of a
model M can have with respect to a state s. In particular, she defines that R
is state-based in (M, s) if and only if for all w ∈ s : R[w] = s. As the property
of being state-based leads to the satisfaction of the S5-axioms, Aloni argues that
for epistemic modalities, such as in our motivation for Desideratum 6′, one only
needs to consider models with a state-based R.

But if we restrict ourselves to such models, we see that Desideratum 6′b)
actually does hold for the maximal∃ implication.

Fact 4.2.14. [p ∨ q]+, [3¬p]+ ⊨ [¬p ↪→∃ q]
+ (if R is state-based)

And lastly, for the BSML-implication we see that the state s = {wp, wq}
in Figure 4.2(a) supports [p ∨ q]+ but not [¬p ⇒¬,∨ q]+. And as we also have
M, s ⊨ [3¬p]+, we see that this is a counterexample to Desideratum 6′b). Note
that we have a state-based R in this model, and thus we see that the restriction
to state-based relations will not make a difference for the BSML-implication.
Furthermore, this seems to be a model in which we really want our implication
to hold under pragmatic enrichment. For ¬p and q are both live possibilities, and
thus we cannot give a pragmatic reason for discarding this counterexample.

We combine these results in Table 4.5.83 We see that the material implication,
intuitionistic implication and maximal implication fail to account for Desideratum
6′ by not accounting for Desideratum 6′a). Similarly, the BSML-implication does
not satisfy Desideratum 6′b), and thus also fails to account for Desideratum 6′.
However, if we consider the relevant models, with a state-based R, we see that the
maximal∃ implication satisfies both 6′a) and 6′b), and thus is the only implication
that can account for Desideratum 6′.

Desideratum 6′

(COI)
BSML(→) ✗

BSML(↠) ✗

BSML(↪→∀) ✗

BSML(↪→∃) ✓

BSML(⇒¬,∨) ✗

Table 4.5: Desideratum 6′ by Ciardelli
COI = Cautious Or-to-If

∗The second half of this desideratum fails when pragmatically enriched.

Desideratum 7′ In Section 4.1 we reformulated this desideratum to make bet-
ter use of the pragmatic enrichment function. So in addition to the old desider-
atum that says that we want p ⇒ 3q ⊭ 3p and 3(p ∧ q) ⊨ 3p, we also want

83We will only show the failure or success of accounting for both Desideratum 6′a) and Desider-
atum 6′b) at the same time.
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Figure 4.3: Several more models to be used as counterexamples.

to have [p ⇒ 3q]+ ⊨ [3p]+ and [3(p ∧ q)]+ ⊨ [3p]+. In other words, when we
add pragmatic enrichment we want our implication to entail the possibility of its
antecedent, while the rest should remain unchanged.

Now let us first note that part of this desideratum, 3(p∧ q) ⊨ 3p, is not con-
cerned with implications. Rather, it is a property that BSML satisfies, regardless
of pragmatic enrichment.

Fact 4.2.15. 3(p ∧ q) ⊨ 3p and [3(p ∧ q)]+ ⊨ [3p]+

We can now consider the part of this desideratum that does contain an impli-
cation, i.e., p⇒ 3q ⊨ 3p. It is straightforward to see that all implications satisfy
the non-enriched non-entailment.

Fact 4.2.16. For ⇒∈ {→,↠, ↪→∀, ↪→∃,⇒¬,∨}, we have p⇒ 3q ⊭ 3p.

Proof. Consider the state s = {w∅} in Figure 4.3(a). Then we see thatM, {w∅} ⊭
p and M, ∅ ⊨ 3q, and thus M, s ⊨ p↠3q. And by Footnote 61, Fact 2.2.5, Fact
2.2.6 and Fact 2.2.9, the same holds for →, ↪→∀, ↪→∃ and ⇒¬,∨. However, there is
no non-empty t ⊆ R[w∅] such that M, t ⊨ p, so we see that M, s ⊭ 3p.

And when we add pragmatic enrichment, the material implication, intuition-
istic implication, maximal implication and BSML-implication still have the non-
entailment.

Fact 4.2.17. For ⇒∈ {→,↠, ↪→∀,⇒¬,∨}, we have [p⇒ 3q]+ ⊭ [3p]+.

Proof. Consider the state s = {wq} in Figure 4.3(b). As there is no t ⊆ s with
M, t ⊨ [p]+ we see that M, s ⊨ [p→3q]+, and similarly for ↠ and ↪→∀. Now let
t = ∅ and t′ = s, then M, t ⊨ ¬[p]+ and M, t′ ⊨ [3q]+. Hence, as t ∪ t′ = s ̸= ∅
we see that M, s ⊨ [p ⇒¬,∨ 3q]+. However, there is no t ⊆ R[wq] such that
M, t ⊨ [p]+, and thus M, s ⊭ [3p]+.

In other words, for all of these implications we see that pragmatical enrichment
ensures nothing about the antecedent being a live possibility. However, for the
maximal∃ implication we see that the pragmatic enrichment does ensure that the
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antecedent is a live possibility.84 Similar to the previous desideratum, we will only
focus on models with a state-based R because our 3 is an epistemic modality.

Fact 4.2.18. [p ↪→∃ 3q]
+ ⊨ [3p]+ (if R is state-based)

We conclude that only the maximal∃ implication can account for this desider-
atum, as can be seen in Table 4.6.85

BSML on Ciardelli’s desiderata Now that we have considered all of Cia-
rdelli’s desiderata, we can see the overall situation in Table 4.6.86 We see that
the material implication, intuitionistic implication and the maximal implication
fail to account for many of the desiderata. So for brevity we will only discuss the
behaviour of the maximal∃ implication (↪→∃) and the BSML-implication (⇒¬,∨).

Desideratum 1b) 2a) 2b) 3 5 6′ 7′

(CNA) (MP) (MT) (I-E) (No MT3) (COI) (IM)
BSML(→) Sem. Sem. ✗ Sem. Sem. ✗ ✗

BSML(↠) Sem. Sem. Sem. Sem.∗ ✗ ✗ ✗

BSML(↪→∀) Sem. Sem. Sem. Sem.∗ ✗ ✗ ✗

BSML(↪→∃) Sem.∗ Sem. Sem. Sem. ✗ ✓ ✓

BSML(⇒¬,∨) Sem. Sem. Sem. Sem. ✗ ✗ ✗

Table 4.6: Ciardelli’s desiderata summarised
CNA = Compatibility with Negated Antecedent, MP = Modus Ponens, MT = Modus Tollens,
I-E= Import-Export, No MT3 = No Modus Tollens for modal consequent, COI = Cautious

Or-to-If, IM = If-Might interaction
∗This desideratum fails when pragmatically enriched.

The first desideratum stated that we do not want an implication to follow
from the negation of its antecedent, but it should be compatible with it. The first
half of this has been discussed in Chapter 3 as Desideratum B, where we saw that
both implications could pragmatically account for this.

The second half of the first desideratum, 1b), can semantically be accounted
for by both implications. However, we see that the maximal∃ implication is in-
compatible with its negated antecedent if pragmatically enriched. Let us consider
whether this can be explained with the “neglect-zero” tendency. For this, note

84Notice that [p]+ and [3p]+ are both ways of expressing that p is a live possibility. However,
they are not equivalent, not even if we restrict ourselves to state-based relations. For this,
consider the state s = {wp, w∅} in Figure 4.2(b), where we see thatM, s ⊭ [p]+ butM, s ⊨ [3p]+.
More generally, [p]+ ensures that the state supporting p is non-empty, while [3p]+ ensures that
there is a non-empty substate supporting p. It might be that there are different “levels” of
being a live possibility, corresponding to these (non-equivalent) notions. We will leave this for
future work, and for now we will use [p]+ and [3p]+ interchangeably to represent that p is a
live possibility.

85As the desideratum is concerned with the effect of introducing pragmatics, we cannot
say that it is semantically or pragmatically accounted for. Hence, we will just note whether
BSML(⇒) can account for Desideratum 7′ at all. To prevent redundancy, we only show this
result in the table summarising all results from this section.

86Remember that we use colors and fonts in tables to denote what results are good, bad or
somewhere in between.
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that pragmatically enriching the maximal∃ implication, ensures that both the
antecedent and the consequent are live possibilities. But if the negation of the
antecedent is already supported, then we see that the antecedent can no longer
be a live possibility. So we would indeed expect this to lead to a contradiction.

But now consider the following two sentences. Then (12-a) seems to be okay,
while (12-b) is an odd thing to say.87

(12) a. If it is raining, the pavement is wet. It is not raining.
b. ??It is not raining. If it is raining, the pavement is wet.

This example shows that the order of these sequences is of importance. However,
our static framework either predicts both to be okay or both to be infelicitous.
In Chapter 6 we will see that the dynamic variant of BSML extended with an
implication will be able to account for this difference.

The second desideratum looked at Modus Ponens and Modus Tollens for the
propositional fragment, i.e., BSML0. Both the maximal∃ implication and the
BSML-implication can account for these inferences semantically without any
problems.

The third desideratum is concerned with the import-export principle. We saw
that both the maximal∃ implication and the BSML-implication can account for
this desideratum semantically. As there is no reason to suspect the “neglect-zero”
tendency causing a failure of this principle, we expect this desideratum to also
hold under pragmatic enrichment. We found that this indeed is the case, as the
desideratum is still satisfied if we add pragmatic enrichment.

The next desideratum, Desideratum 5, argues against Modus Tollens for epis-
temic modal consequents. Neither of the two implications that we are discussing
satisfied this desideratum. This relied on the fact that in Desideratum 2b) we
showed that Modus Tollens holds for the whole ne-free fragment when non-
enriched. Furthermore, these implications could not pragmatically account for
this desideratum either. Luckily, we will see in Chapter 6 that the dynamic no-
tion of implication can semantically account for propositional Modus Tollens and
Desideratum 5 simultaneously.

The penultimate desideratum, reformulated as 6′, is concerned with the direct
argument under pragmatic enrichment. Specifically, we do not want the impli-
cation [¬p ⇒ q]+ to follow from [p ∧ ¬q]+, while it should follow from [p ∨ q]+
together with [3¬p]+. The maximal∃ implication was the only implication that
could correctly account for this desideratum.

Similarly, we see that the maximal∃ implication is the only implication that
correctly can account for Desideratum 7′.

To conclude, in the previous chapter we saw that the maximal∃ implication
could account for all linguistic desiderata by Stalnaker. In this chapter we have
seen that the maximal∃ implication and the BSML-implication do a reasonably
good job at accounting for Ciardelli’s desiderata, with a strong advantage of the
former with respect to desiderata 6′ and 7′. So again we see that the maximal∃
implication seems to be the most suitable candidate for BSML. However, neither

87Note that this is an indicative conditional, rather than a subjunctive conditional. For (12-b)
is perfectly fine in a counterfactual situation.
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of the implications could fully account for desideratum 1b) nor could they satisfy
Desideratum 5. In Chapter 6 we will see that a dynamic implication can overcome
these problems while still maintaining good behaviour on the other desiderata.
But first we will look at several mathematical properties of all of our implications
in Chapter 5.

47



Chapter 5

Mathematical Properties

In the previous chapters we have compared several notions of implication on
linguistic desiderata. As BSML is linguistically motivated, we want a notion
of implication that can account for many linguistic phenomena. On the other
hand, we want to adopt a notion of implication that is mathematically well-
behaved. In this chapter we will compare the material implication (→), intuition-
istic implication (↠), maximal implication (↪→∀), maximal∃ implication (↪→∃),
the BSML-implication (⇒¬,∨) and the “definable” ⇒¬,∨∨ on several mathemati-
cal properties.88 Specifically, in Section 5.1 we will see if the implications preserve
classicality, whether the deduction theorem holds for BSML extended with im-
plication and whether the implications are transitive. Thereafter, we will see
whether the principle of Simplification of Disjunctive Antecedent holds for these
implications in Section 5.2. In the same section we will also see whether Fact
2.1.1 and 2.1.2 by Aloni (2022a) still hold if we extend BSML with an implica-
tion. Specifically, we will see whether, for ne-free and “split-free” α, β, we have
[α⇒ β]+ ≡ (α⇒ β) ∧ ne.

5.1 Logico-Mathematical Properties

5.1.1 Preservation of Classicality

In Chapter 1 we argued that we do not want our notion of implication to introduce
non-classicality. At the end of Section 2.1 we saw that BSML∅ determines the
same logical notion of consequence as classical modal logic. This result, proven by
Anttila (2021), followed from the flatness of the ne-free formulas.89 So if one of our
implications, say ⇒, preserves flatness, then we can conclude that BSML∅(⇒)
still behaves classically. In other words, if the antecedent and consequent are flat,

88In Section 2.2.2 we already mentioned that ⇒¬,∨∨ would not be considered in Chapter 3
and 4 for mathematical reasons. In Section 5.1 we will see that this implication has none of
the logico-mathematical properties that we discuss. Hence, we correctly discarded ⇒¬,∨∨ after
Chapter 2.

89See Fact 2.1.7.
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then a preferable notion of implication would also be flat. However, it might also
be the case that this preservation of flatness is not satisfied for some implication
⇒. We shall then give an example of a classical validity that does not hold for
BSML∅(⇒).

Using the characterization of flatness we see that the intuitionistic implication,
maximal implication, maximal∃ implication and the BSML-implication preserve
flatness.

Fact 5.1.1. Let ⇒∈ {↠, ↪→∀, ↪→∃,⇒¬,∨} and let α, β ∈ BSML be flat. Then
α⇒ β is also flat.

Proof. Remember Fact 2.2.5, Fact 2.2.6 and Fact 2.2.9, stating that the
↠, ↪→∀, ↪→∃ and ⇒¬,∨ are equivalent for α, β ∈ BSML∅. As the same proofs
hold for any flat α and β, we see that a proof for the intuitionistic implication
(↠) is sufficient for our current purposes.

• Downward closed : Suppose M, s ⊨ α↠β and let t ⊆ s. Then for any t′ ⊆ t
with M, t′ ⊨ α, we also have t′ ⊆ s and thus M, t′ ⊨ β. In other words,
M, t ⊨ α↠β and thus α↠β is downward closed.

• Union closed : Let S be a non-empty set of states such that for all s ∈ S
we have M, s ⊨ α↠β. Now let t ⊆

⋃
S be such that M, t ⊨ α. Then by

downward closure of α we see that ∀w ∈ t : M, {w} ⊨ α. And as {w} ⊆ s
for some s ∈ S, we see that M, {w} ⊨ β follows for all w ∈ t. As β is union
closed it follows that indeed M, t ⊨ β. So we conclude that M,

⋃
S ⊨ α↠β.

• Empty state property : Finally, note that M, ∅ ⊨ β as β has the empty state
property. So clearly M, ∅ ⊨ α↠β.

We conclude by Fact 2.1.6 that α↠β is flat, and thus by our note the same
follows for ↪→∀, ↪→∃ and ⇒¬,∨.

Now that we have seen that these implication preserve flatness, we can extend
Proposition 2.2.16 by Anttila (2021). For this we note that the state-based clauses
for singletons of these implications all coincide with the classical clause of the
material implication in a world.90

Fact 5.1.2 (Proposition 2.2.16 extended). For ⇒∈ {↠, ↪→∀, ↪→∃,⇒¬,∨}, any
model M and α ∈ BSML∅(⇒), we have:

M, s ⊨ α iff M,w ⊨ α for all w ∈ s

In particular, for any w ∈W :M, {w} ⊨ α iff M,w ⊨ α.

However, we see that the material implication and the definable ⇒¬,∨∨ do not
preserve flatness.

90We have phrased the following fact in the words of Antilla to show that it is an extension
of Proposition 2.2.16. Note that the ⊨ on the left is the support relation of BSML, while the
⊨ on the right is the truth relation of classical modal logic.
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Figure 5.1: Counterexamples to preservation of flatness

Fact 5.1.3. Let ⇒∈ {→,⇒¬,∨∨} and let α, β ∈ BSML be flat. Then α⇒ β need
not be flat.

Proof. Let us first look at →, and consider Figure 5.1(a). Then we see that
M, s ⊭ p and thus M, s ⊨ p→ q. However, M, {wp} ⊨ p but M, {wp} ⊭ q, and
thus M, {wp} ⊭ p→ q. So as {wp} ⊆ s we see that p→ q is not downward closed
and thus not flat, while p and q are flat.91

For ⇒¬,∨∨ we consider Figure 5.1(b). As M, {wpq} ⊨ q we see that M, {wpq} ⊨
p ⇒¬,∨∨ q. And as M, {w∅} ⊨ ¬p we see that M, {w∅} ⊨ p ⇒¬,∨∨ q. However,
M, {wpq, w∅} ⊭ ¬p and M, {wpq, w∅} ⊭ q, so M, {wpq, w∅} ⊭ p ⇒¬,∨∨ q. Hence,
p⇒¬,∨∨ q is not union closed and thus not flat, while p and q are flat.

This result shows that we cannot extend Proposition 2.2.16 by Anttila (2021)
for BSML∅(→) and BSML∅(⇒¬,∨∨) using flatness. Even stronger, we can easily
see that the proposition does not hold for these extensions. For in Section 4.2
we saw that Modus Tollens is not valid on BSML∅(→). And as it might be for
some state s that M, s ⊭ p and M, s ⊭ ¬p, we see that p⇒¬,∨∨ p is not a validity
in BSML∅(⇒¬,∨∨). Both Modus Tollens and p⇒ p are classical validities, so we
see that the material implication and ⇒¬,∨∨ both introduce non-classicality. In
Chapter 1 we argued that this is unfavorable, so this result gives us an argument
against extending BSML with these implications.

5.1.2 Deduction Theorem

Presumably, we want our notion of implication to have a strong connection to the
notion of entailment. This connection is normally established by the Deduction
Theorem, which can be defined for any implication ⇒ of BSML as follows:9293

91Note that the material implication is union closed and preserves the empty state property.

• Union Closure: Let S be a non-empty set such that for all s ∈ S, M, s ⊨ α→β, and
suppose M,

⋃
S ⊨ α. Then by downward closure of α, ∀s ∈ S : M, s ⊨ α, and thus by

assumption M, s ⊨ β. So by union closure of β we see that M,
⋃
S ⊨ β.

• Empty state property: By the empty state property of β we see that M, ∅ ⊨ α→β.

92See Porte (1982) for a historical overview of the Deduction Theorem in logic.
93The notion of logical consequence is only defined for single formulas in Section 2.1, but this

notion extends to sets of formulas in the obvious way.
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Definition (Deduction Theorem). Let φ,ψ ∈ BSML(⇒) and Γ ⊆ BSML(⇒).
Then,

Γ, φ ⊨ ψ iff Γ ⊨ φ⇒ ψ

In other words, we want an implication to be entailed by a set of formulas if
and only if that set of formulas together with the antecedent entails the consequent
of the implication.94 We will see whether this Theorem holds for the implications
under discussion. If it does not hold, we will check whether it holds for the ne-free
fragment of BSML.

Now, it follows directly from the definition that the Deduction Theorem holds
for the material implication.

Fact 5.1.4 (Deduction Theorem →). Let φ,ψ ∈ BSML(→) and let Γ ⊆
BSML(→). Then,

Γ, φ ⊨ ψ iff Γ ⊨ φ→ψ

However, the same does not hold for the intuitionistic implication, maxi-
mal implication, maximal∃ implication, the BSML-implication and the definable
⇒¬,∨∨.

9596

Fact 5.1.5. Let ⇒∈ {↠, ↪→∀, ↪→∃,⇒¬,∨,⇒¬,∨∨}, φ,ψ ∈ BSML(⇒) and let Γ ⊆
BSML(⇒). Then, Γ, φ ⊨ ψ does not imply Γ ⊨ φ⇒ ψ.

Proof. We will consider each of the implications separately.

• ↠: Let Γ := {[p]+ ∨ [q]+}, φ := r and ψ := [p]+ ∨ [r]+. Now suppose
M, s ⊨ [p]+ ∨ [q]+, then there are non-empty t, t′ : t ∪ t′ = s with M, t ⊨ p
and M, t′ ⊨ q. And also suppose M, s ⊨ r, then clearly M, s ⊨ [p]+ ∨ [r]+ as
t ∪ s = s and s ̸= ∅. So [p]+ ∨ [q]+, r ⊨ [p]+ ∨ [r]+.

However, consider the state s = {wp, wqr} in Figure 5.2(a) where M, s ⊨
[p]+ ∨ [q]+. Then we see that {wqr} ⊆ s and M, {wqr} ⊨ r, but M, {wqr} ⊭
[p]+∨ [r]+. Hence, M, s ⊭ r↠([p]+∨ [r]+). So [p]+∨ [q]+ ⊭ r↠([p]+∨ [r]+).

• ↪→∀: As {wqr} is maximal with M, {wqr} ⊨ r, we see that the previous
result also follows for the maximal implication.

• ↪→∃: Analogous to ↪→∀.

• ⇒¬,∨: Let Γ := ∅, φ := 3([p]+ ∨ [q]+) and ψ := 3p ∧ 3q. Now suppose
M, s ⊨ 3([p]+∨[q]+), then for all w ∈ s there are non-empty t, t′ ⊆ R[w] such
thatM, t ⊨ p andM, t′ ⊨ q. But then it directly follows thatM, s ⊨ 3p∧3q.

94Note that the right-to-left direction is essentially the same as Modus Ponens.
95It is straightforward to see that for the intuitionistic implication, maximal implication,

maximal∃ implication and the BSML-implication the right-to-left direction of the deduction
theorem does hold. While for ⇒¬,∨∨ we see that p ⊨ ¬p⇒¬,∨∨ ne but p,¬p ⊭ ne.

96The counterexamples for the intuitionistic implication and the BSML-implication are due
to Aleksi Antilla.
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Figure 5.2: Counterexamples to Deduction Theorem and Transitivity

However, consider the state s = {wp} in Figure 5.2(b). The only t′ ⊆ R[wp]
such that M, t′ ⊨ 3p ∧ 3q is t′ = ∅. But M,R[wp] ⊭ ¬([p]+ ∨ [q]+), so
M, {wp} ⊭ ¬3([p]+ ∨ [q]+). And thus we see that there are no t, t′ ⊆ s such
that t ∪ t′ = s with M, t ⊨ ¬3([p]+ ∨ [q]+) and M, t′ ⊨ 3p ∧ 3q. Hence,
M, s ⊭ 3([p]+ ∨ [q]+) ⇒¬,∨ (3p ∧3q).

• ⇒¬,∨∨: Let Γ := ∅ and φ = ψ := p, then clearly Γ, φ ⊨ ψ. But again consider
Figure 5.2(a), thenM, s ⊭ ¬p andM, s ⊭ p. So we see thatM, s ⊭ p⇒¬,∨∨ p,
i.e., ∅ ⊭ p⇒¬,∨∨ p.

Although the Deduction Theorem does not hold in general for the intuition-
istic implication, maximal implication, maximal∃ implication and the BSML-
implication, it does hold if we restrict ourselves to ne-free formulas.

Fact 5.1.6 (Deduction Theorem (ne-free)). Let ⇒∈ {↠, ↪→∀, ↪→∃,⇒¬,∨}, α, β ∈
BSML∅(⇒) and let Γ ⊆ BSML∅(⇒). Then

Γ, α ⊨ β iff Γ ⊨ α⇒ β

Proof. Let us first note that all implications under consideration preserve flatness
(Fact 5.1.1), and thus Γ, α and β are all flat.

(⇒): Suppose Γ, α ⊨ β and also suppose M, s ⊨ Γ. Now let t ⊆ s be such that
M, t ⊨ α. As all ξ ∈ Γ are ne-free, they are flat. Hence, by downward closure
we see that M, t ⊨ Γ. So it follows from our assumption that M, t ⊨ β, and thus
M, s ⊨ α↠β.

(⇐): Suppose Γ ⊨ α↠β, and also suppose M, s ⊨ Γ and M, s ⊨ α. It follows
that M, s ⊨ α↠β, and as s ⊆ s it directly follows that M, s ⊨ β.

By Fact 2.2.5, Fact 2.2.6 and Fact 2.2.9, the same result also follows for ⇒¬,∨,
↪→∀ and ↪→∃.

But as we saw that ∅, p ⊨ p but ∅ ⊭ p ⇒¬,∨∨ p, we see that the Deduction
Theorem does not hold for ⇒¬,∨∨, even when we restrict ourselves to the ne-free
fragment.
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5.1.3 Transitivity

Another interesting property that implications can have is transitivity. This prin-
ciple states that if we accept (13-a) and (13-b), we should also accept (13-c).97

(13) a. If Sal and Dean join the party, it will become a success.
b. If the party is a success, the police will be called.
c. If Sal and Dean join the party, the police will be called.

Formally, we would formulate this in BSML as follows.

Definition (Transitivity). For φ,ψ, ξ ∈ BSML, we have φ⇒ ψ,ψ ⇒ ξ ⊨ φ⇒ ξ.

Directly from the definition we see that the material implication and the intu-
itionistic implication are transitive. Furthermore, we can prove that the BSML-
implication is also transitive.

Fact 5.1.7. ⇒¬,∨ is transitive.

Proof. Suppose M, s ⊨ φ ⇒¬,∨ ψ, then ∃t, t′ : t ∪ t′ = s and M, t ⊨ ¬φ and
M, t′ ⊨ ψ. Now also suppose that M, s ⊨ ψ ⇒¬,∨ ξ, then ∃u, u′ : u ∪ u′ = s and
M,u ⊨ ¬ψ and M,u′ ⊨ ξ. Suppose for contradiction that t ∪ u′ ̸= s, then it must
be that there is some w ∈ t′ ∩ u. But by Fact 2.1.4 we know that t′ ∩ u = ∅, a
contradiction. So we see that t ∪ u′ = s and thus M, s ⊨ φ⇒¬,∨ ξ.

However, we see that both versions of the maximal implication and the defin-
able ⇒¬,∨∨ are not transitive.

Fact 5.1.8. Let ⇒∈ {↪→∀, ↪→∃,⇒¬,∨∨}, then ⇒ is not transitive.

Proof. Consider the state s = {wpq, wp} in Figure 5.2(c), then we see that {wpq} is
maximal withM, {wpq} ⊨ p∧q. And asM, {wpq} ⊨ p we see thatM, s ⊨ p∧q ↪→∀ p.
Furthermore, s is maximal with M, s ⊨ p and M, s ⊨ [q ∨ ¬q]+, and thus M, s ⊨
p ↪→∀[q∨¬q]+. However, M, {wpq} ⊭ [q∨¬q]+ and thus M, s ⊭ p∧ q ↪→∀[q∨¬q]+.
The same proof goes through for ↪→∃.

For ⇒¬,∨∨ consider any model M and let s = ∅. Then M, s ⊨ p and M, s ⊨ ¬p,
so M, s ⊨ ¬ne ⇒¬,∨∨ p and M, s ⊨ p ⇒¬,∨∨ ne. However, M, s ⊭ ¬ne ⇒¬,∨∨ ne
as M, s ⊭ ¬¬ne and M, s ⊭ ne.

Combining the results of Section 5.1.1, Section 5.1.2 and Section 5.1.3 in Table
5.198, we see that none of the implications are fully satisfactory. Even stronger,
the definable ⇒¬,∨∨ is fully unsatisfactory. It introduces non-classicality and fails
to satisfy the deduction theorem, even when we restrict our attention to ne-free
formulas, and it is not transitive. As we discussed in Section 2.2.2, this has caused

97Adams (1965) gives the following counter-example to transitivity: “If Brown wins the elec-
tion, Smith will retire to private life. If Smith dies before the election, Brown will win it.
Therefore, if Smith dies before the election, then he will retire to private life”. So although
transitivity has a strong intuitive appeal, we see that it is not fully uncontroversial.

98Remember that we use colors and fonts in tables to denote what results are good, bad or
somewhere in between.
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us to leave ⇒¬,∨∨ out of the consideration in the previous chapters. Now we see
that we have rightfully done so.

Class. Ded. Ded. (ne-free) Trans.
BSML(→) ✗ ✓ ✓ ✓

BSML(↠) ✓ ✗ ✓ ✓

BSML(↪→∀) ✓ ✗ ✓ ✗

BSML(↪→∃) ✓ ✗ ✓ ✗

BSML(⇒¬,∨) ✓ ✗ ✓ ✓

BSML(⇒¬,∨∨) ✗ ✗ ✗ ✗

Table 5.1: Logico-Mathematical Properties
Class. = Preservation of Classicality, Ded. = Deduction Theorem., Trans. = Transitivity

For the other implications, the picture is less one-sided. The material im-
plication introduces non-classicality, but it is the only implication for which the
Deduction Theorem holds in general. On the other hand, the intuitionistic impli-
cation, maximal implication, maximal∃ implication and the BSML-implication
all preserve classicality but only satisfy the Deduction Theorem on the ne-free
fragment. These results do not give us a direct reason to discard one of the impli-
cations as a possible extension of BSML. However, they do show us that there
is a trade-off to be made between classicality on the one hand and the connection
between implication and entailment on the other. What we can say is that if
we choose for the preservation of classicality, the intuitionistic implication and
the BSML-implication have the preference from a mathematical point of view as
they are transitive.99

5.2 Linguistic-Mathematical Properties

5.2.1 Simplification of Disjunctive Antecedent

The principle of Simplification of Disjunctive Antecedent (SDA) can formally be
phrased in BSML for some implication ⇒ as follows:

Definition (SDA). Let α, β, γ ∈ BSML∅, then (α∨β) ⇒ γ ⊨ (α⇒ γ)∧(β ⇒ γ).

In other words, if the disjunction of α and β implies γ, then both α and β
imply γ individually.100 This principle is motivated by the intuitive appeal to the

99Note that one can argue that counterexample to the transitivity of ↪→∀ and ↪→∃ makes
sense from a linguistic point of view. For consider the following example: “If Paul and Maria
are at the office, then Paul is at the office. If Paul is at the office, it is a live possibility both
that Maria is at the office or that she is not. If Paul and Maria are at the office, it is a live
possibility both that Maria is at the office or that she is not. In other words, it seems very
natural to accept the first two of these sentences in some situation, while the last one is simply
invalid. However, we look at the transitivity from a mathematical point of view, and thus deem
it undesirable to be intransitive.
100We have restricted the principle to the ne-free fragment, because the literature on this
principle is concerned with classical logic. However, we will also consider what happens when
we pragmatically enrich the formulas.
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inference from (14-a) to both (14-b) and (14-c).101

(14) a. If you eat sea cucumbers or dung beetles, (Lassiter (2018))
you’ll get a stomachache.

b. If you eat sea cucumbers, you’ll get a stomachache.
c. If you eat dung beetles, you’ll get a stomachache.

In Section 3.2 we saw that Stalnaker’s analysis of the indicative conditional does
not validate SDA. This originates in the fact that the most similar β-world need
not also be the most similar α ∨ β-world. But if we extend BSML with any of
the implications that we have discussed so far, we see that SDA is valid.102

Fact 5.2.1. Let ⇒∈ {→,↠, ↪→∀, ↪→∃,⇒¬,∨} and α, β, γ ∈ BSML∅. Then (α ∨
β) ⇒ γ ⊨ (α⇒ γ) ∧ (β ⇒ γ).

Proof. Let us start with the material implication and supposeM, s ⊨ (α∨β)→ γ.
Now also suppose M, s ⊨ α, then by letting t = s and t′ = ∅ we see that M, s ⊨
α ∨ β. So it follows that M, s ⊨ γ, and thus M, s ⊨ α→ γ. Similarly for β→ γ.

We saw that the intuitionistic implication, maximal implication, maximal∃
implication and the BSML-implication all behave classically (Fact 5.1.2) on
BSML∅. And as SDA is classically valid, it follows directly from this fact.

And SDA is still valid for the BSML-implication if we add pragmatic enrich-
ment.

Fact 5.2.2. Let α, β, γ ∈ BSML∅. Then [(α ∨ β) ⇒¬,∨ γ]+ ⊨ [(α ⇒¬,∨ γ) ∧
(β ⇒¬,∨ γ)]

+.

Proof. SupposeM, s ⊨ [(α∨β) ⇒¬,∨ γ]
+, then we see thatM, s ⊨ ¬[α∨β]+∨[γ]+.

So there are t, t′ : t∪t′ = s andM, t ⊨ ¬[α∨β]+ andM, t′ ⊨ [γ]+. Note that ¬[α∨
β]+ = ¬(([α]+∨[β]+)∧ne) ≡ ¬([α]+∨[β]+), and thus we see thatM, t ⊨ ¬[α]+ and
M, t ⊨ ¬[β]+. Thereby we can conclude thatM, s ⊨ (¬[α]+∨[γ]+)∧(¬[β]+∨[γ]+),
and as s ̸= ∅ it follows that M, s ⊨ [(α⇒¬,∨ γ) ∧ (β ⇒¬,∨ γ)]

+.

However, we see that for the other implications SDA is no longer valid when
we add pragmatic enrichment.

Fact 5.2.3. Let ⇒∈ {→,↠, ↪→∀, ↪→∃} and α, β, γ ∈ BSML∅. Then [(α ∨ β) ⇒
γ]+ ⊭ [(α⇒ γ) ∧ (β ⇒ γ)]+.

Proof. Let us start with α := p, β := q and γ := q. Consider the state s = {wp}
in Figure 5.3(a). Then we see that M, s ⊭ [p ∨ q]+ and as s ̸= ∅ it follows that
M, s ⊨ [(p ∨ q)→ q]+. Similarly, we see that there is no t ⊆ s such that M, t ⊨
[p ∨ q]+, so the same holds for ↠ and ↪→∀. However, we see that M, s ⊨ [p]+ but
M, s ⊭ [q]+ and thus M, s ⊭ [p→ q]+. As s ⊆ s and is maximal with M, s ⊨ [p]+,
the same also follows for ↠ and ↪→∀.

101See Lassiter (2018), Khoo (2021) for a broader discussion on SDA for indicative conditionals.
102Note that we do not discuss ⇒¬,∨∨ because of the mathematical problems that we saw at
the end of the previous section.
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Now let α := p, β := q and γ := p ∨ q, and consider the state s = {wp, wqr}
in Figure 5.3(b). Then we see that s is maximal with M, s ⊨ [p ∨ q]+ and thus
M, s ⊨ [(p ∨ q) ↪→∃(p ∨ q)]+. However, {wp} is maximal with M, {wp} ⊨ [p]+, but
M, {wp} ⊭ [p ∨ q]+. Therefore we see that M, s ⊭ [p ↪→∃(p ∨ q)]+.

Let us consider whether this non-validity of SDA makes sense if we take the
“neglect-zero” tendency into account. Adding pragmatic enrichment to the con-
ditional with a disjunctive antecedent can be seen as stating the following: “if α
and β are live possibilities, then it follows that γ”. However, if α is supported it
does not mean that β is also a live possibility. And therefore it makes sense that
it does not follow that α implies γ when we have added the pragmatic enrichment,
and similarly for β. We conclude that the non-validity of SDA under pragmatic
enrichment is in favor of the material implication, intuitionistic implication, max-
imal implication and maximal∃ implication.

5.2.2 Extending Fact 2.1.1 & 2.1.2

In Section 2.1.2 we saw that for all ne-free, “split-free” formulas α, we have
[α]+ ≡N α ∧ ne.103 In other words, for these formulas the pragmatic enrichment
only adds the requirement that the supporting state is non-empty. This insight
was a result of the combination of Fact 2.1.1, stating that α ∈ BSML∅ is entailed
by [α]+, and Fact 2.1.2, stating that “split-free” α ∈ BSML∅ conjoined with
ne entails [α]+ if we restrict model-state pairs (M, s) with ∀w ∈ s : R[w] = s.
However, we also saw that for formulas containing a disjunction, like p ∨ q, the
effect of pragmatic enrichment is non-trivial. Similarly, we might wonder whether
pragmatically enriching an implication has a non-trivial effect. For this purpose
we will look at the connection between [α⇒ β]+ and (α⇒ β)∧ne for each of our
implications. As this thesis researches the effect of the “neglect-zero” tendency
on indicative conditionals, we would prefer to find a non-trivial effect.104

Let us first note that [α ⇒ β]+ = ([α]+ ⇒ [β]+) ∧ ne, and thus the question
boils down to whether [α]+ ⇒ [β]+ ≡ α ⇒ β. We will start by looking at
the counterpart of Fact 2.1.2, i.e., whether a pragmatically enriched implication
follows from its non-enriched variant together with non-emptiness. Similar to Fact
2.1.2 we will focus on “split-free” formulas. Then it is quite straightforward to see
that this entailment holds for the material implication, intuitionistic implication
and the maximal implication.

Fact 5.2.4. For ⇒∈ {→,↠, ↪→∀} and “split-free” α, β ∈ BSML∅, we have (α⇒
β) ∧ ne ⊨N [α⇒ β]+.

Proof. Suppose M, s ⊨ α→β, and suppose M, s ⊨ [α]+. Then by Fact 2.1.1 we
see that M, s ⊨ α and thus M, s ⊨ β. As β is “split-free”, it follows from Fact
2.1.2 that M, s ⊨ [β]+. Hence, M, s ⊨ [α]+ →[β]+.

An analogous argument holds for ↠ and ↪→∀.

103See Footnotes 15 and 16 for the definition of “split-free” and ≡N .
104In the previous chapters we have seen that such a non-trivial effect has allowed the maximal∃
implication and BSML-implication to pragmatically account for several linguistic desiderata.
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Figure 5.3: Counterexamples for linguistic-mathematical properties

In other words, for these implications we might have [α⇒ β]+ ≡ (α⇒ β)∧ne
for α and β ne-free and “split-free”. However, this is not the case for the maximal∃
implication and the BSML-implication. For there we see that, even for “split-
free” classical antecedent and consequent, non-emptiness is not sufficient for the
entailment.

Fact 5.2.5. For ⇒∈ {↪→∃,⇒¬,∨} and “split-free” α, β ∈ BSML∅, we have (α⇒
β) ∧ ne ⊭N [α⇒ β]+.

Proof. Let us first look at ↪→∃, and consider the state s = {wp} in Figure 5.3(a).
Then we see that s ̸= ∅ and that ∅ is maximal with M, ∅ ⊨ q. Hence, M, s ⊨
(q ↪→∃ q) ∧ ne. However, there is no t ⊆ s with M, t ⊨ [q]+ and thus M, s ⊭
[q ↪→∃ q]

+.
For ⇒¬,∨ we consider s = {wp} in Figure 5.3(a) again. Now notice that

M, s ⊨ ¬q andM, ∅ ⊨ q. And as s∪∅ = s and s ̸= ∅ we getM, s ⊨ (q ⇒¬,∨ q)∧ne.
However, there is no t ⊆ s with M, t ⊨ [q]+ and thus M, s ⊭ [q ⇒¬,∨ q]

+.

We can conclude for these two implications that the pragmatic enrichment
function has a non-trivial effect. Specifically, for the maximal∃ implication the
pragmatic enrichment ensures that both antecedent and consequent are live pos-
sibilities. And for the BSML-implication the pragmatic enrichment ensures that
its consequent is a live possibility.105

Now let us turn our attention to the counterpart of Fact 2.1.1, i.e., whether
the non-enriched variant of an implication follows from its pragmatically enriched
version. It is quite straightforward to see that this is the case for the BSML-
implication.

Fact 5.2.6. Let α, β ∈ BSML∅. Then [α⇒¬,∨ β]
+ ⊨ (α⇒¬,∨ β) ∧ ne.

Proof. Suppose M, s ⊨ [α⇒¬,∨ β]
+, then s ̸= ∅ and M, s ⊨ ¬[α]+ ∨ [β]+. Hence,

there are t, t′ : t ∪ t′ = s and M, t ⊨ ¬[α]+ and M, t′ ⊨ [β]+. So by Fact 2.1.1
we see that M, t ⊨ ¬α and M, t′ ⊨ β. So it follows that M, s ⊨ ¬α ∨ β, and thus
M, s ⊨ (α⇒¬,∨ β) ∧ ne.

105Note that the antecedent need not be a live possibility for the BSML-implication as [α ⇒
β]+ ≡ ¬[α]+ ∨ [β]+ ≡ ¬α ∨ [β]+. In other words, under negation the pragmatic enrichment of
the antecedent gets canceled.
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On the other hand, if we look at the material implication, intuitionistic im-
plication and both maximal implications we see that this entailment does not
hold.

Fact 5.2.7. For ⇒∈ {→,↠, ↪→∀, ↪→∃} and α, β ∈ BSML∅, we have [α⇒ β]+ ⊭
(α⇒ β) ∧ ne.

Proof. Consider the state s = {wp} in Figure 5.3(a), then we see that there is
no t ⊆ s such that M, t ⊨ [p ∨ q]+. As s ̸= ∅ we see that this means that
M, s ⊨ [(p ∨ q)→(p ∧ q)]+, and similarly for ↠ and ↪→∀. However, M, s ⊨ p ∨ q
(and is maximally so). But as M, s ⊭ p ∧ q, we see that M, s ⊭ (p ∨ q)→(p ∧ q).
Similarly for ↠ and ↪→∀.

Now consider Figure 5.3(b), then we see thatM, s ⊨ [p∨q]+. And as s ⊆ R[wq]
and s ̸= ∅, it follows that M, {wq} ⊨ [3(p ∨ q)]+. Because there is no non-empty
t ⊆ R[wp] withM, t ⊨ [p∨q]+ we see that {wq} is maximal withM, {wq} ⊨ [3(p∨
q)]+. And as M, {wq} ⊨ [q]+, it follows that M, s ⊨ [3(p∨ q) ↪→∃ q]

+. However, s
itself is maximal with M, s ⊨ 3(p∨ q) but M, s ⊭ q. So M, s ⊭ 3(p∨ q) ↪→∃ q.

At the beginning of this section we saw that for the maximal∃ implication and
the BSML-implication, even for “split-free” antecedent and consequent, we do
not have (α ⇒ β) ∧ ne ⊨ [α ⇒ β]+. So we see that we definitely do not have an
equivalence for these implications.

However, for the material implication, intuitionistic implication and the maxi-
mal implication we actually do have this equivalence when we focus on “split-free”
antecedents and consequents.106

Fact 5.2.8. For ⇒∈ {→,↠, ↪→∀} and “split-free” α, β ∈ BSML∅, we have [α⇒
β]+ ≡N (α⇒ β) ∧ ne.

Proof. We have already seen that the right-to-left direction holds.
Now suppose M, s ⊨ [α→β]+, and also suppose M, s ⊨ α. Then s ̸= ∅ and by

Fact 2.1.2 we see that M, s ⊨ [α]+, and thus it follows that M, s ⊨ [β]+. Hence,
by Fact 2.1.1 M, s ⊨ β and thus indeed M, s ⊨ (α→β) ∧ ne.

The arguments for ↠ and ↪→∀ are completely analogous.

We can conclude that pragmatically enriching the material implication, intu-
itionistic implication or maximal implication has a trivial effect if its antecedent
and consequent are “split-free”. Specifically, the only effect of the pragmatic
enrichment is the non-emptiness requirement for a supporting state.

Combining the results from Section 5.2 in Table 5.2, we see that all implications
satisfy the principle Simplification of Disjunctive Antecedent.107 When we add
pragmatic enrichment, all implications except the BSML-implication invalidate
the principle. However, at the end of Section 5.2.1 we argued that this non-validity

106Note that Fact 5.2.7 shows that this equivalence does not generalize to implications with a
nested disjunction.
107Remember that we use colors and fonts in tables to denote what results are good, bad or
somewhere in between.
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makes sense if take the “neglect-zero” tendency into account and actually speaks
in favor of these implications.

SDA SDA+ Triv. Triv. (“split-free”)
BSML(→) ✓ ✗ ✗ ✓

BSML(↠) ✓ ✗ ✗ ✓

BSML(↪→∀) ✓ ✗ ✗ ✓

BSML(↪→∃) ✓ ✗ ✗ ✗

BSML(⇒¬,∨) ✓ ✓ ✗ ✗

Table 5.2: Linguistic-Mathematical Properties
SDA = Simplification of Disjunctive Antecedents, SDA+ = SDA with pragmatic enrichment,

Triv. = [α⇒ β]+ ≡ (α⇒ β) ∧ ne, Triv. (“split-free”) = Triv. for “split-free” α, β.

In Section 5.2.2 we saw that pragmatic enrichment has a non-trivial effect on
all implications. However, when we focus on “split-free” antecedents and con-
sequents we notice that this non-trivial effect originated in nested disjunctions
for the material implication, intuitionistic implication and maximal implication.
For if we have “split-free” formulas, the effect on these implications is only the
non-emptiness requirement. On the other hand, for the maximal∃ implication and
BSML-implication we even have a non-trivial effect with this restriction. Specif-
ically, pragmatic enrichment of the maximal∃ implication ensures that both the
antecedent and consequent are live possibilities, while for the BSML-implication
it ensures only that the consequent is a live possibility. Notice that it was ex-
actly this non-trivial effect that has given these implications its good behaviour in
Chapters 3 and 4. Notably, this non-trivial effect was crucial for the satisfaction
of Desideratum B for both implications, and Desideratum 6′ and Desideratum 7′

for the maximal∃ implication.
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Chapter 6

Dynamics

In the previous chapters we have considered several possible implications for the
static system BSML. Specifically, we introduced and researched several different
possible notions of implication in Chapter 2. In Chapters 3 and 4 we saw that the
maximal∃ implication can best account for several linguistic desiderata by Stal-
naker, and the BSML-implication also does a reasonably good job on Ciardelli’s
linguistic desiderata. However, we saw that none of the notions of implication for
BSML could account for the failure of Modus Tollens with a modal consequent
in a non-trivial manner. Furthermore, we saw that the order of utterance matters
in Desideratum 1b) when we take the “neglect-zero” tendency into account. In
other words, we expect [p ⇒ q]+ uttered before [¬p]+ to be non-problematic,
while the reversed order should lead to a contradiction. Our static system could
not account for this, so in this chapter we will extend a dynamic variant of BSML
with an implication. We will see that this dynamic implication can not only ac-
count for this “order-problem”, but it exceeds our static implications on almost
all linguistic desiderata and mathematical properties that we have discussed so
far. For example, it can non-trivially account for the failure of Modus Tollens
with a modal consequent.

6.1 Preliminaries (BiUS)

Veltman (1996) and Van Der Does, Groeneveld, and Veltman (1997) presented
Update Semantics (US), which was created to account for the differences between
sequences like (15-a) which seem to be okay, and odd sequences like (15-b).108

(15) a. Maybe this is Frank Veltman’s example. (Aloni (2022b))
It isn’t his example!

b. #This is not Frank Veltman’s example. Maybe it’s his example.

108Notice the similarity between this example and example (12), in both cases the oddity seems
to come from some non-live possibility. Hence, the “neglect-zero” tendency is a very suitable
candidate to explain the difference between (12-a) and (15-a) on the one hand, and on the other
(12-b) and (15-b).
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Veltman (1996) does not address free choice inferences, but when US is extended
with the ne-atom it can account for some free choice inferences. However, it is
unable to correctly capture the behaviour of enriched disjunction under negation.
Therefore, Aloni (2022b) introduced Bilateral Update Semantics (BiUS), which is
inspired by Veltman’s US. Similar to BSML, BiUS formalises the “neglect-zero”
tendency, which allows it to account for examples like (15), while also accounting
for the same free choice inferences asBSML. We will first present this framework,
whereafter we will introduce the notion of implication that is most natural in this
system. This introduction will follow Aloni (2022b) in notation and presentation.

The language of BiUS is similar to that of BSML, but we do not have
the atomic ne anymore. Rather, we have the complex formula φne where ne is
interpreted as a post-supposition. In other words, ne is treated as a constraint
that needs to be satisfied after an update.

Definition 6.1.1 (Language). Let P = {p, q, r . . . } be a countable set of propo-
sitional atoms.

φ := p | ¬φ | φ ∧ φ | φ ∨ φ | 3φ | φne

where p ∈ P .

Similarly to BSML, we will use BiUS∅ and BiUS0 as the ne-free and propo-
sitional fragments of BiUS, respectively. Note that the 3 can occur in front of
every formula, where in US it can only occur as the operator with the highest
scope. Some properties will hold only for the language of US interpreted as in
BiUS but not for BiUS∅. In this case we will make this explicit by saying that
the property holds for USBiUS .

We interpret the language of BiUS on a model M = ⟨W,V ⟩, and a state
s ⊆ W , where W is a non-empty set of worlds and V is a valuation function on
W × P . Rather than defining support conditions directly, we first define how to
update a state s with a formula φ and derive the support conditions from this.
Similarly to BSML, negation is defined in terms of separately specified rejection
updates, allowing the designer of the framework to have more control over the
behaviour of operators under negation.

Definition 6.1.2 (Updates).

1. s[p] = s ∩ {w ∈W | V (p, w) = 1}

2. s[φ ∧ ψ] = s[φ] ∩ s[ψ]

3. s[φ ∨ ψ] = s[φ] ∪ s[ψ]

4. s[3φ] = s, if s[φ] ̸= ∅; ∅, if s[φ] = ∅; undefined (#) otherwise

5. s[φne] = s[φ] if s[φ] ̸= ∅; undefined (#) otherwise

6. s[¬φ] = s[φ]r

where [φ]r is recursively defined as follows:

1′. s[p]r = s ∩ {w ∈W | V (p, w) = 0}
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2′. s[φ ∧ ψ]r = s[φ]r ∪ s[ψ]r

3′. s[φ ∨ ψ]r = s[φ]r ∩ s[ψ]r

4′. s[3φ]r = s, if s[φ]r = s; ∅, if s[φ]r ̸= s; undefined (#) otherwise

5′. s[φne]r = s[φ]r

6′. s[¬φ]r = s[φ]

Notice that s ̸= x means that s is a state other than x, so this excludes that
s is undefined. Furthermore, if either x or y is undefined, then so are x ∪ y and
x ∩ y.

We adopt the abbreviation 2φ := ¬3¬φ. Thereby we can derive the following
update for the necessity modal:

s[2φ] = s if s[φ] = s; ∅ if s[φ] ̸= s; undefined (#) otherwise

s[2φ]r = s if s[φ]r ̸= ∅; ∅ if s[φ]r = ∅; undefined (#) otherwise

Now that we have defined how we update a state s with a formula φ, we can
say when s supports φ. Namely, a state supports a formula if and only if the
update with that formula results in the same state.109

Definition 6.1.3 (Support). s ⊨ φ if and only if s[φ] = s

Using this notion we say that a formula ψ is the logical consequence of formulas
φ1, . . . , φn if and only if a state updated with φ1, . . . , φn, if defined, supports ψ.

Definition 6.1.4 (Logical Consequence).
φ1, . . . , φn ⊨ ψ iff for all s : s[φ1] . . . [φn] defined implies s[φ1] . . . [φn] ⊨ ψ.

Now that we have specified the semantics of BiUS, we can also specify the
recursively defined pragmatic enrichment function | |+.110

Definition 6.1.5 (Dynamic Pragmatic Enrichment). For ne-free α, |α|+ is
defined as follows:

|p|+ = pne

|¬α|+ = (¬|α|+)ne

|α ∨ β|+ = (|α|+ ∨ |β|+)ne

|α ∧ β|+ = (|α|+ ∧ |β|+)ne

|3α|+ = (3|α|+)ne
109Note that this is the same as that of US, and is a very natural definition of support. For if
we get some information and gain no new insights from it, we would indeed say that we already
had support for that information.
110In Appendix D we have given an overview of the update clauses for pragmatically enriched
formulas. These can help with the reading of the proofs in this chapter and in the same appendix.
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Finally, we can extend the update clauses of BiUS from Definition 6.1.2 with
a dynamic implication 99K.111112 We will call the resulting logic BiUS(99K).

Definition 6.1.6 (Dynamic Implication).

7. s[φ 99Kψ] = s if s[φ][ψ] = s[φ]; ∅ otherwise113

7′. s[φ 99Kψ]r = s if s[φ][ψ]r ̸= ∅; ∅ otherwise

The acceptance update of this definition is equivalent to the dynamic condi-
tional as discussed by Gillies (2010) and Gillies (2020).114 As the former mentions,
this definition would pass the Ramsey test and therefore is a natural definition
for an implication.115

Similarly to BSML(⇒), we will extend the dynamic pragmatic enrichment
function as follows.

|α 99Kβ|+ = (|α|+ 99K |β|+)ne

Now that we have introduced BiUS and the dynamic implication 99K, we will
give some useful results in the following section.

6.2 Useful Results on BiUS

There are several properties of BiUS that we will use throughout this chapter.
In this section we will merely state and discuss them, the interested reader can
find the proofs in Appendix D.1.116

Let us start with two important properties that dynamic semantics can have,
eliminativity and distributivity. If a framework has both properties, then it is

111Notice that 99K is a test operator, in the terms of Gillies (2020). In other words, it checks
whether a state has a given property, and results in the state itself or ∅ accordingly. This is
similar to the 3-operator and the ne-post-supposition.
112Similarly to BSML (Section 2.2.1), we also have the option to syntactically or semantically
define an implication in terms of disjunction and negation. Similar to →¬,∨ we could have
φ⇒1 ψ := ¬φ ∨ ψ. But then we would see the following under pragmatic enrichment, s[|φ⇒1

ψ|+] = s[|¬φ∨ψ|+] = s[|¬φ|+]∪s[|ψ|+]. So the pragmatic enrichment ensures that the negation
of the antecedent is a live possibility, but says nothing of the antecedent itself.

And similar to ⇒¬,∨ we could define s[φ ⇒2 ψ] := s[φ]r ∪ s[ψ], so that φ ⇒2 ψ ≡ ¬φ ∨ ψ.
But then we would see that s[|φ ⇒2 ψ|+] = s[|φ|+]r ∪ s[|ψ|+], which does not ensure anything
about the antecedent as ne cancels out under the rejection clauses.

In the previous chapters we have repeatedly seen that we expect the pragmatic enrichment
function to ensure that the antecedent is a live possibility. So both definitions will not be as
suitable as the notion of implication that we will use.
113We assume that if a state x is undefined, it is not equal to any state y. In other words, we
do not have # = #.
114This implication is also discussed by Dekker (1993)(pg. 202).
115Gillies (2010) phrases the Ramsey test as follows: “You accept (if P )(Q) in a state B iff
Q is accepted in the subordinate state got by taking B and adding the information that P
to it.” (pg. 463). Gillies concludes that the dynamic conditional, and thus also our dynamic
implication, is “very Ramseylike”.
116Notice that Fact 6.2.1, Fact, 6.2.7, Fact 6.2.8, Fact 6.2.9 and Fact 6.2.10 are all stated in
the Appendix of Aloni (2022b), but their proofs are left out. We have included their proofs in
Appendix D.1 for completeness.
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Figure 6.1: Models for useful results on BiUS

equivalent to a static framework with a globally defined notion of update.117

Hence, the failure of one of these properties is seen as a sign of a truly dynamic
framework.

First of all, we see that BiUS is eliminative for all defined updates. In other
words, nothing is ever added to a state after succesfully updating with a formula.
In particular, for any ne-free formula α, we always have s[α] ⊆ s.

Fact 6.2.1 (Eliminativity). Let φ ∈ BiUS, and s be any state.

i) If s[φ] is defined, then s[φ] ⊆ s.

ii) If s[φ]r is defined, then s[φ]r ⊆ s.

Secondly, we see that BiUS0 is distributive for all defined updates. In other
words, if α is 3-free and ne-free, then updating a state s with α is the union of
all singletons in s that support α.118

Fact 6.2.2 (Distributivity). Let α ∈ BiUS0, and s be any state:

i) s[α] = {w ∈ s | {w}[α] = {w}}
ii) s[α]r = {w ∈ s | {w}[α]r = {w}}

In other words, we see that for α ∈ BiUS0 we have s ⊨ α if and only if
∀w ∈ s : {w} ⊨ α. Notice the strong similarity to the notion of flatness of
BSML-formulas that we introduced in Definition 2.1.5. For BSML we saw that
flatness had a strong connection to classicality, and similarly we can now say that
BiUS0 behaves classically. Notice however that this does not hold for BiUS in
general, and neither for BiUS∅ nor USBiUS . For an example, consider Figure
6.1(a). Then s[3p] = s, while {w ∈ s | {w}[3p] = {w}} = {wp} ≠ s.

From distributivity it follows directly that the order of updates does not matter
for α, β ∈ BiUS0.

Fact 6.2.3. For α, β ∈ BiUS0:

117See van Benthem (1989) and Groenendijk and Stokhof (1990) for a broader discussion on
this.
118In the literature distributivity is often formulated as “s[α] =

⋃
w∈s{w}[α]”. By eliminativity

{w}[α] is either {w} or ∅, if defined. So our definition of distributivity is equivalent and will
make our proofs more readable.

64



i) s[α][β] = s[β][α]

ii) s[α][β]r = s[β]r[α]

iii) s[α]r[β]r = s[β]r[α]r

Now that we have seen that BiUS0 is both eliminative and distributive, we
can conclude that it is not truly dynamic. As updating with an implication results
in either ∅ or s we see that BiUS(99K) is still eliminative, and thus similarly for
BiUS0(99K). However, if we add the dynamic implication to the propositional
fragment we see that we no longer have distributivity.

Fact 6.2.4 (Non-distributivity BiUS0(99K)). Let α, β ∈ BiUS0, then we need
not have s[α 99Kβ] = {w ∈ s | {w}[α 99Kβ] = {w}}

Proof. Consider Figure 6.1(b). Then s[p][q] = {wpq} ̸= {wpq, wp} = s[p]
and thus s[p 99K q] = ∅. However, {wpq}[p][q] = {wpq} = {wpq}[p], and thus
{wpq}[p 99K q] = {wpq}. So we see that {w ∈ s | {w}[p 99K q] = {w}} ≠ ∅.

By the non-distributivity of BiUS0(99K), we can conclude that the dynamic
implication makes the system truly dynamic. In other words, we can not get
an equivalent logic to BiUS0(99K) that is static. This is a positive result, for it
means that our change to a dynamic setting really goes into new territory that
we could not capture in the static BSML.119

Another useful fact about α ∈ BiUS0 is similar to the law of excluded middle.
Namely, it is the case that any singleton either supports α or ¬α. Remember that
{w} ⊨ ¬α if and only {w}[α]r = {w}.

Fact 6.2.5. Let α ∈ BiUS0. Then for any w ∈ W exactly one of the following
holds: i) {w}[α] = {w} or ii) {w}[α]r = {w}.

Although we have the law of excluded middle, we do not have bivalence in
general. In other words, for an arbitrary state s and formula α it does not always
hold that s supports α or ¬α. For example, the state s = {wp, wq} in Figure
6.1(a) neither supports p nor ¬p. Notice that this is similar to BSML where we
also have the law of excluded middle, but no bivalence in general.

Furthermore, we get an analogous result to Fact 2.1.4, stating that updating
with a propositional formula and its negation results in the empty set.

Fact 6.2.6. For α ∈ BiUS0, and any state s, we have s[α][α]r = ∅.

Lastly, there are several facts that are stated, but not fully proven, by Aloni
(2022b).120 The first of these states that for ne-free formulas α, updating a state
with |α|+ results, if defined, in the same state as updating it with α.

119Note that we could also have used a notion of implication that would preserve distributivity.
For example, we could define s[φ ⇒3 ψ] := {w ∈ s | w ∈ s[φ] implies w ∈ s[φ][ψ]} similar to
the notion of implication used in the update semantics of Groenendijk, Stokhof, and Veltman
(1996). However, the distributivity-preserving of this implication means that BiUS0(⇒3) will
be equivalent to a static framework, and thus we will not be making full use of the advantages
of dynamics. For example, we could no longer explain the importance of order such as in Fact
6.3.5. Hence, we see that we prefer to have a truly dynamic implication such as 99K.
120See Footnote 116.
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Fact 6.2.7. For α ∈ BiUS∅, and any state s:

i) If s[|α|+] is defined, then s[|α|+] = s[α].

ii) If s[|α|+]r is defined, then s[|α|+]r = s[α]r.

Furthermore, we find that updating a state with a formula α ∈ BiUS0, i.e.,
α is ne-free and 3-free, results in the intersection of that state with W [α]. Note
that this follows directly from the fact that BiUS0 is distributive.

Fact 6.2.8. For α ∈ BiUS0 and any state s, s[α] = s ∩W [α].

From this fact it directly follows that USBiUS is idempotent. In other words,
updating with an ne-free formula that can only have a3 as the outermost operator
is the same as updating with that formula twice.

Fact 6.2.9 (Idempotency). For α ∈ USBiUS and any state s, s[α] = s[α][α].

Finally, it also follows from Fact 6.2.8 that USBiUS is monotone, i.e., updates
preserve subset relations.

Fact 6.2.10 (Monotonicity). For α ∈ USBiUS, and any state s and t, t ⊆ s
implies t[α] ⊆ s[α].

Now that we have seen several useful facts concerning BiUS, we can look at
the behaviour of BiUS(99K) with respect to the linguistic desiderata and mathe-
matical properties that we have discussed in Chapter 3, Chapter 4 and Chapter
5.

6.3 Linguistic Desiderata

6.3.1 Desiderata by Stalnaker

Let us first look at Stalnaker’s desiderata, as introduced in Section 3.1.

Desideratum A The first desideratum by Stalnaker was concerned with the
“direct argument”, i.e., α ∨ β ⊨ ¬α 99Kβ. This desideratum does not hold in
general, for consider the state s = {wpq, w∅} in Figure 6.2(a). Then we see that
s[p ∨ 3q] = s[p] ∪ s[3q] = {wpq} ∪ s = s, and s[¬p] = {w∅} ̸= {w∅}[3q] = ∅. In
other words, we find that s[p ∨3q] ⊭ ¬p 99K3q.

However, we see that the same desideratum does hold if we restrict ourselves
to α and β from the propositional fragment BiUS0.

Fact 6.3.1. For α, β ∈ BiUS0, we have α ∨ β ⊨ ¬α 99Kβ

Proof. Suppose s[α ∨ β] is defined. As order does not matter (Fact 6.2.3), and
updating with a formula and its negation results in the empty state (Fact 6.2.6),
we see that s[α ∨ β][¬α] = s[α ∨ β][α]r = s[α]r[α ∨ β] = s[α]r[α] ∪ s[α]r[β] =
∅ ∪ s[α]r[β] = s[¬α][β]. And thus by idempotency (Fact 6.2.9) we see that s[α ∨
β][¬α][β] = s[¬α][β][β] = s[¬α][β] = s[α∨β][¬α] and thus s[α∨β] ⊨ ¬α 99Kβ.
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Figure 6.2: Models for BiUS and Stalnaker

Similar to the maximal∃ implication and the BSML-implication we see that
this result no longer holds if we add pragmatic enrichment. For consider Figure
6.2(b), then we see that s[|p ∨ q|+] = s. But s[|¬p|+] = # because s[¬p] = ∅,
and thus we see that s[|p ∨ q|+] ⊭ |¬p 99K q|+. Note that this is the exact same
counterexample that we argued against at the end of Section 3.3. So again this
failure under pragmatic enrichment is to be expected, and therefore poses no real
problem.121

To conclude, we see that the dynamic implication can not account for the
direct argument in general. On the other hand, it can semantically account for it
on the propositional fragment. This is a downside with respect to the behaviour in
the static BSML, for there we could semantically account for the direct argument
over the whole classical fragment.122 Nevertheless, we will see that there are many
other desiderata in favor of the dynamic implication.

Desideratum B The second desideratum by Stalnaker, No Trivialization, says
that ¬p should not entail the implication p 99K q. Without semantic enrichment
this entailment does hold, as order does not matter (Fact 6.2.3), and updating
with a formula and its negation results in the empty state (Fact 6.2.6). For then
s[¬p][p] = ∅ = s[¬p][p][q], of which the last step follows from eliminativity. Hence,
we see that indeed s[¬p] ⊨ p 99K q.

However, if we add pragmatic enrichment we see that the entailment no longer
holds.

Fact 6.3.2. |¬p|+ ⊭ |p 99K q|+
121In Section 4 of Aloni (2022b) the very similar disjunctive syllogism is discussed, i.e.,
α ∨ β,¬α ⊨ β. There it is shown that this holds under pragmatic enrichment, but we saw
that the direct argument does not hold under pragmatic enrichment. Note that the important
difference is that for the disjunctive syllogism we have s[|α∨ β|+][|¬α|+] before the ⊨, and thus
we only consider situations where that is defined. But it was exactly a situation where this was
not defined that we used as a counterexample to the pragmatically enriched direct argument.
Another interesting thing to note, is that the order of the premises matters for the pragmati-
cally enriched disjunctive syllogism. We will see a similar effect occurring in the discussion of
Desideratum 1 by Ciardelli (Fact 6.3.5).
122Notice that a distributive notion of the modality, using relations such as in BSML, would
make Fact 6.3.1 hold for the whole ne-free fragment. So we see that the failure of direct argument
is a side effect of the non-distributive notion of modality, rather than an effect of our dynamic
implication. Nonetheless, the framework that we are working with, BiUS, has a non-distributive
modality, and thus we can see this failure as a downside of BiUS(99K).

67



Proof. Consider the state s = {wq} in Figure 6.2(c), then we see that s[¬p] =
s ̸= ∅ and thus s[|¬p|+] = s. But s[|p|+] is undefined and therefore we see that
s[|¬p|+][|p 99K q|+] is also undefined. Hence, s[|¬p|+] ⊭ |p 99K q|+.

So just like the maximal∃ implication and the BSML-implication, we see that
the dynamic implication can account for this desideratum pragmatically.123 The
crucial element to notice is that the pragmatic enrichment ensures that both the
antecedent and the consequent are live possibilities, for otherwise updating with
them will be undefined. This is very similar to the behaviour of the maximal∃
implication.124

Desideratum C The third desideratum by Stalnaker says that the antecedent
should not follow from the denial of a conditional. In other words, we do not
want p to follow from ¬(p 99K q). The dynamic implication can account for this
semantically, and nothing changes when we add pragmatic enrichment.

Fact 6.3.3. ¬(p 99K q) ⊭ p and |¬(p 99K q)|+ ⊭ |p|+

Proof. Consider Figure 6.2(d). Then we see that s[¬(p 99K q)] = s[p 99K q]r = s
as s[p][q]r ̸= ∅. Similarly, we find that s[|¬(p 99K q)|+] = s[(|p|+ 99K |q|+)ne]r =
s[|p|+ 99K |q|+]r = s as s[|p|+][|q|+]r ̸= ∅. However, s[|p|+] = s[p] = {wpq, wp} ≠ s
and thus we see that s ⊭ p and s ⊭ |p|+.

Again this behaviour agrees with BSML(↪→∃) by semantically accounting
for this desideratum. Remember that BSML(⇒¬,∨) could not account for this
desideratum in any way.

Stalnaker, Grice, BSML and BiUS We combine these results in Table 6.1,
and see that BiUS(99K) behaves similarly to BSML(↪→∃) with regard to Desider-
ata B and C.125 More discussion on this behaviour can be found at the end of
Section 3.3.

On Desideratum A we also have similar behaviour, but the dynamic impli-
cation fails to account for the direct argument in general. Rather, it only holds
when we restrict ourselves to the propositional fragment. Specifically, we saw that
p ∨ 3q ⊭ ¬p 99K3q. But if we consider the sentences from (16), then it seems
very reasonable to say that, although the sentences are a bit odd, (16-b) follows
from (16-a).

(16) a. Either the butler did it or it might be that the gardener did it.
b. If the butler didn’t do it, then it might be that the gardener did it.

123See the end of Section 3.3 for an explanation of this using the pragmatic “neglect-zero”
tendency.
124Remember that pragmatic enrichment of the BSML-implication only ensures that the con-
sequent is a live possibility, for the enrichment of the antecedent is cancelled out under negation.
125Remember that we use colors and fonts in tables to denote what results are good, bad or
somewhere in between.
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Desideratum A (Dir. Arg.) B (No Triv.) C (Denial)

Grice Sem. Prag. Prag.
Stalnaker Prag. Sem. Sem.
BSML(↪→∃) Sem.∗ Prag. Sem.
BSML(⇒¬,∨) Sem.∗ Prag. ✗

BiUS(99K) Sem.0∗ Prag. Sem.

Table 6.1: BiUS and Stalnaker.
Dir. Arg. = Direct Argument, No Triv. = No Trivialization, Denial = Denial of Conditional

∗This desideratum fails when pragmatically enriched.
0This desideratum only holds for BiUS0.

In other words, we would hope that the direct argument holds for BiUS∅, not
only the propositional fragment. Notice that in state s = {wpq, w∅} in Figure
6.2(a), our counterexample, any p-world is also a q-world. In other words, this is
an information state in which either both p and q are the case or neither is the
case. Then one could use Grice’s first maxim of Quantity to say that this is not a
situation in which one would utter p∨3q. Because this is not informative enough,
one should have uttered the more informative (p∧q)∨ (¬p∧¬q) instead. In other
words, we could discard this counterexample on pragmatic reasons. However,
maybe one does not accept this explanation (as we do not have this pragmatic
reasoning build into BiUS, for example). Then we cannot use the “neglect-zero”
tendency to give a similar explanation of the failure as in Section 3.3, for in
this case the failure is without the pragmatic enrichment. Therefore we conclude
that with respect to Stalnaker’s desiderata, the most suitable account is given by
BSML(↪→∃). However, the dynamic account did not fail altogether and thus this
partial failure might be acceptable if it behaves well on other desiderata.

6.3.2 Desiderata by Ciardelli

In Section 4.1 we discussed several desiderata for the indicative conditional as
presented by Ciardelli (2020). Remember that we chose to leave out Desideratum
4 and reformulate desiderata 6 and 7. Let us now see how the dynamic implication
fares with respect to these desiderata. Note that some of the longer proofs have
been left out of the text, these can be found in Appendix D.2.

Desideratum 1 The first half of this desideratum, 1a), is the same as Desider-
atum B by Stalnaker, of which we have just seen that the dynamic implication
can pragmatically account for it. The second half of the desideratum says that
an implication should be compatible with the negation of its antecedent, i.e., to-
gether they should not entail a contradiction. It is straightforward to see that the
dynamic implication satisfies this desideratum.

Fact 6.3.4. ¬p, p 99K q ⊭ ⊥

Proof. Consider Figure 6.3(a), then we have s[¬p] = s. And as s[p] = ∅ = s[p][q],
we see that s[¬p][p 99K q] = s ̸= ∅. We conclude that s[¬p][p 99K q] ⊭ ⊥.
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Figure 6.3: Models for BiUS and Ciardelli

However, when we pragmatically enrich these formulas we get an interesting
result. Namely, the desideratum is only satisfied if we reverse the order of |¬p|+
and |p 99K q|+. This is exactly how we would expect our implication to behave if
we consider examples like (12) with the “neglect-zero” tendency in mind.126

Fact 6.3.5. |¬p|+, |p 99K q|+ ⊨ ⊥, but |p 99K q|+, |¬p|+ ⊭ ⊥

Proof. Let s be some state. Then s[|¬p|+][|p|+] is undefined as clearly
s[|¬p|+][p] = ∅. Hence, s[|¬p|+][|p 99K q|+] is never defined, and the first en-
tailment holds vacuously.

For the reversed order, consider Figure 6.3(b). Then s ̸= ∅ and s[|p|+] =
{wpq} = s[|p|+][|q|+]. Hence, s[|p 99K q|+] = s. And as s[|¬p|+] = {wq} ≠ ∅ we
see that the contradiction does not follow.

In Section 4.2 we saw that the maximal∃ implication satisfied the desidera-
tum when pragmatically enriched, while the BSML-implication did not. But
then example (12) demonstrated that the order of the statements seems to be
of importance if we take the “neglect-zero” tendency into account. Therefore we
concluded neither of the static accounts was fully satisfactory. As only BiUS(99K)
can account for the order, we see this is an advantage of the dynamic account over
the static account.

Desideratum 2 The second desideratum by Ciardelli states that Modus Po-
nens and Modus Tollens should hold for the propositional fragment. We see that
regardless of pragmatic enrichment, Modus Ponens holds for the dynamic impli-
cation.

Fact 6.3.6. Let α, β ∈ BiUS0. Then α 99Kβ, α ⊨ β and |α 99Kβ|+, |α|+ ⊨ |β|+.

This result is the same as that of BSML(↪→∃) and BSML(⇒¬,∨). And for
the non-enriched version of Modus Tollens we also have the same behaviour, i.e.,
the dynamic implication satisfies Modus Tollens for the propositional fragment.

126We repeat example (12) here for clarity:

(12) a. If it is raining, the pavement is wet. It is not raining.
b. ??It is not raining. If it is raining, the pavement is wet.
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Fact 6.3.7. For α, β ∈ BiUS0, we have α 99Kβ,¬β ⊨ ¬α.

We conclude that the dynamic implication satisfies Desideratum 2 semanti-
cally.127

Desideratum 3 The third desideratum, import-export, was semantically ac-
counted for by BSML(↪→∃) and BSML(⇒¬,∨). Similarly, we see that the dy-
namic implication also accounts for this desideratum semantically, and nothing
changes if we add pragmatic enrichment.

Fact 6.3.8. Let α, β ∈ BiUS0 and γ ∈ BiUS∅, then we have α 99K(β 99K γ) ≡
(α ∧ β) 99K γ and |α 99K(β 99K γ)|+ ≡ |(α ∧ β) 99K γ|+.

Desideratum 5 This desideratum states that Modus Tollens should fail for an
implication with a modal consequent. Remember that in Section 4.2 we saw that
only the material implication satisfied this desideratum, but this was unsurprising
as the material implication already did not satisfy Modus Tollens on the proposi-
tional fragment. On the other hand, we saw that the maximal∃ implication and
the BSML-implication did have Modus Tollens on the propositional fragment.
But that result could also be extended to the whole classical fragment, and thus
Desideratum 5 was not satisfied by these implications.

However, we see that the situation is more interesting for the dynamic impli-
cation. For Modus Tollens is satisfied on the propositional fragment, but fails for
modal consequents.

Fact 6.3.9. p 99K2q,¬2q ⊭ ¬p and |p 99K2q|+, |¬2q|+ ⊭ |¬p|+

Proof. Consider state s = {wpq, w∅} in Figure 6.4(a). Then we see that s[p][q] =
s[p] and thus it follows that s[p][2q] = s[p]. Hence, s[p 99K2q] = s and as s[q]r ̸= ∅
we see that s[¬2q] = s[2q]r = s as well. And as s, s[p], s[p][q] and s[q]r are all
non-empty, we also find that s[|p 99K2q|+] = s = s[|¬2q|+].

However, s[¬p] = s[|¬p|+] = {w∅} ̸= s and thus we see that the non-
entailments holds.

We conclude that the dynamic implication can semantically account for this
desideratum, and nothing changes when we add pragmatic enrichment. The si-
multaneous satisfaction of Desideratum 2b) and Desideratum 5 is one of the ad-
vantages of this dynamic setting.

Desideratum 6′ This desideratum, concerned with the direct argument, says
that [p ∧ ¬q]+ should not entail [¬p 99K q]+, but [p ∨ q]+ together with [3¬p]+
should entail it. It is straightforward to see that dynamic implication satisfies this

127Note that the dynamic implication no longer satisfies Modus Tollens when pragmati-
cally enriched. This is witnessed by α := ¬p ∧ ¬q and β := ¬p, for {wpq , wp, w∅}[|(¬p ∧
¬q) 99K¬p|+][|¬¬p|+] = {wp} ⊭ |¬(¬p∧¬q)|+. However, in Section 4.1 we argued that only the
non-enriched Modus Tollens is a desideratum.
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Figure 6.4: More models for BiUS and Ciardelli

part of the desideratum, similar to the maximal∃ implication and the BSML-
implication.128

Fact 6.3.10. |p ∧ ¬q|+ ⊭ |¬p 99K q|+

Proof. Consider state s = {wp} in Figure 6.4(b), then we see that s[|p∧¬q|+] = s.
However, s[|¬p|+] is undefined and thus so is s[|¬p 99K q|+]. Hence, s[|p∧¬q|+] ⊭
|¬p 99K q|+.

The second part of this desideratum states that under pragmatic enrichment,
if ¬p is still a live possibility, then p ∨ q should entail ¬p 99K q. In Section 4.2
we saw that only the maximal∃ implication could account for it, on the condition
that we only consider models with a state-based relation R.129 Now, we see that
also the dynamic implication can correctly do so.

Fact 6.3.11. p ∨ q,3¬p ⊨ ¬p 99K q and |p ∨ q|+, |3¬p|+ ⊨ |¬p 99K q|+

We conclude that the dynamic implication does as good as the maximal∃ impli-
cation, but better than the BSML-implication, with respect to this desideratum.

Desideratum 7′ The last desideratum says that p 99K3q should not entail 3p,
while 3(p∧ q) should entail it. Remember that we reformulated this desideratum
so that under pragmatic enrichment we do want the first entailment. In Section
4.2 we saw that the maximal∃ implication satisfied this desideratum, while the
enriched version of theBSML-implication still does not entail3p. In the dynamic
setting we see that the non-enriched half of the desideratum is satisfied.

Fact 6.3.12. p 99K3q ⊭ 3p and 3(p ∧ q) ⊨ 3p

Proof. Let us first consider the state s = {wq} in Figure 6.4(c). Then we see that
s[p] = ∅ = s[p][3q] and thus s[p 99K3q] = s. However, as s[p] = ∅ it follows that
s[3p] = ∅ and thus s[p 99K3q] ⊭ 3p.

Now suppose s[3(p∧ q)] is defined. Then the resulting state is equal to s or it
is the empty state. In the latter case we see by eliminativity that s[3(p∧q)][3p] =
128See the end of Section 3.3 for an explanation using the “neglect-zero” tendency. There the
non-entailment under discussion is [¬p]+ ⊭ [p ⇒ q]+, but the same explanation goes for the
current situation.
129Remember that Aloni (2022a) argues that these are the only relevant models to consider for
an epistemic modality, such as the one used in the motivation of Desideratum 6′.
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∅ = s[3(p∧q)], and thus the entailment holds. Now suppose s[3(p∧q)] = s, then
it must be that s[p ∧ q] ̸= ∅. Hence, s[p] ̸= ∅ and thus s[3(p ∧ q)] ⊨ 3p.

As we noted in the discussion of Desideratum B, the pragmatic enrichment of
the dynamic implication ensures that the antecedent is a live possibility. Hence,
under pragmatic enrichment we do have the entailment from |p 99K3q|+ to |3p|+.
Furthermore, we still have |3(p ∧ q)|+ ⊨ |3p|+.130

Fact 6.3.13. |p 99K3q|+ ⊨ |3p|+ and |3(p ∧ q)|+ ⊨ |3p|+

Proof. Suppose s[|p 99K3q|+] is defined and thus equal to s, then s ̸= ∅ and
s[|p|+][|3q|+] = s[|p|+]. And as s[|p|+][|3q|+] must be defined it follows that
s[|p|+] ̸= ∅. Hence, s[|3p|+] = s and thus s[|p 99K3q|+] ⊨ |3p|+.

So just like the maximal∃ implication, we see that the dynamic implication
fully satisfies Desideratum 7′.

BiUS on Ciardelli’s desiderata In Section 4.2 we considered Ciardelli’s
desiderata with respect to BSML(⇒) and in this section we did so with respect to
BiUS(99K). In Table 6.2 these results are combined, and we see that the dynamic
approach has enabled us to correctly account for all revised desiderata.131

Desideratum 1b) 2a) 2b) 3 5 6′ 7′

(CNA) (MP) (MT) (I-E) (No MT3) (COI) (IM)
BSML(↪→∃) Sem.∗ Sem. Sem. Sem. ✗ ✓ ✓

BSML(⇒¬,∨) Sem. Sem. Sem. Sem. ✗ ✗ ✗

BiUS(99K) Sem.+ Sem. Sem. Sem. Sem. ✓ ✓

Table 6.2: Ciardelli’s desiderata summarised
CNA = Compatibility with Negated Antecedent, MP = Modus Ponens, MT = Modus Tollens,
I-E= Import-Export, No MT3 = No Modus Tollens for modal consequent, COI = Cautious

Or-to-If, IM = If-Might interaction
∗This desideratum fails when pragmatically enriched.

+This desideratum’s pragmatic enrichment is only satisfied with the premises reversed.

On desiderata 2a) (MP), 2b) (MT) and 3 (I-E) we see that BiUS(99K) be-
haves the same as the maximal∃ implication and the BSML-implication. And for
desiderata 6′ (COI) and 7′ (IM) we see that BiUS(99K) agrees with the maximal∃
implication, but does better than the BSML-implication. However, there are
some crucial advantages of the dynamic setting over the static framework.

130The proof of |3(p ∧ q)|+ ⊨ |3p|+ is essentially the same as the non-enriched version, and
thus has been left out. The only difference is that we no longer have the case where updating
with the modality results in the empty state, for we quantify over states where s[|3(p∧ q)|+] is
defined.
131This might raise the question why Ciardelli (2020) needs an ordering on the possible worlds,
while we seem to be able to satisfy all desiderata without such an ordering. The crucial detail is
that this ordering allowed Ciardelli (2020) to account for Desideratum 4, which is not satisfied
by BiUS(99K). However, we argued against this desideratum in 4.1 and so it is the revised
desiderata that the dynamic approach can fully account for.
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Notably, the dynamic setting allows us to account for the importance of the
order of sentences such as in example (12). Specifically, we saw that under prag-
matic enrichment the negation of the antecedent only leads to contradiction if it
comes before the implication. This is exactly as we would want our implication
to behave with the “neglect-zero” tendency in mind.

Another important difference to note is that the dynamic implication simulta-
neously can account for both Desideratum 2b) (propositional Modus Tollens) and
Desideratum 5 (failure of Modus Tollens for modal consequents). As discussed
before, in the static setting we found that we could only satisfy either one of
them at the same time. Notice that this advantage of BiUS(99K) stems from the
non-classicality of 3, while in BSML(⇒) the 3 is classical.132

We can conclude that the move to a dynamic system was not unwarranted.
Rather, it allowed us to use a notion of implication that satisfied all of the (revised)
desiderata by Ciardelli. And as we discussed in Section 6.1, the dynamic implica-
tion gives rise to non-distributivity and thus its introduction makes a framework
truly dynamic. Therefore we would not be able to capture a framework equivalent
to BiUS(99K) in a static setting.

6.4 Mathematical Properties

6.4.1 Logico-Mathematical Properties

In Section 6.2 we saw that the notion of distributivity had a similar connection
to classicality in the dynamic setting as flatness had in the static setting. As
we showed that BiUS0 is distributive (Fact 6.2.2) , we concluded that BiUS0

behaves classically. However, the same did not hold for BiUS∅ and thus we
see that the ne-free fragment of BiUS already is non-classical. This is what
one expects, as the switch to a truly dynamic framework will always give rise to
some non-classicality, it might even be the motivation of the dynamic framework.
Therefore we will not consider preservation of classicality as one of the favorable
mathematical properties that we want to have, in contrast to the situation of
Section 5.1.1.

Nonetheless, we are still interested in the Deduction Theorem and transitivity.
Similar to all static implications, except the material implication, we see that the
Deduction Theorem does not hold in general for BiUS(99K). Note that the longer
proofs of this section can be found in Appendix D.3.

Fact 6.4.1. Let φ,ψ ∈ BiUS(99K) and let Γ be a sequence of ξ1, . . . , ξn such that
ξ1, . . . , ξn ∈ BiUS(99K). Then Γ, φ ⊨ ψ does not imply Γ ⊨ φ 99Kψ.

Proof. Consider Γ as the empty sequence, φ := pne and φ := p, and suppose s[pne]
is defined. Then we see that s[pne] = s[p] = s[p][p], of which the latter equality
holds by idempotency. Hence, pne ⊨ p.

132Specifically, the flatness of 3-formulas in the static setting meant that the proof of Modus
Tollens for the propositional fragment directly generalized to the whole classical fragment. But
in BiUS(99K) we saw that Modus Tollens depended on the distributivity that only holds for the
propositional fragment.
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But if we consider the state s = {wq} in Figure 6.5(a), we see that s[pne] is
undefined. And thus s[pne 99K p] is also undefined. In other words, s ⊭ pne 99K p.

However, if we restrict ourselves to ne-free formulas we see that the Deduction
Theorem does hold.

Fact 6.4.2. Let α, β ∈ BiUS∅(99K) and let Γ be a sequence of ξ1, . . . , ξn such
that ξ1, . . . , ξn ∈ BiUS∅(99K). Then Γ, α ⊨ β if and only if Γ ⊨ α 99Kβ.

And similarly to the maximal∃ implication, we see that the dynamic implica-
tion is not transitive.133134

Fact 6.4.3. 99K is not transitive

Proof. Consider the state s = {wpq, wp} in Figure 6.5(d). Then we see that
s[p ∧ ¬q][p] = s[p ∧ ¬q] and s[p][3q] = s[p]. In other words, we find that s[(p ∧
¬q) 99K p][p 99K3q] = s. However, s[p ∧ ¬q][3q] = ∅ ≠ s[p∧ ≠ q] and thus
s ⊭ (p ∧ ¬q) 99K3q.

Combining these results in Table 6.3, we see that with regard to the Deduction
Theorem there is no difference between the maximal∃ implication, the BSML-
implication and the dynamic implication. However, we see that just like the
maximal∃ implication, the dynamic implication is also intransitive. Nonetheless,
we conclude that, similar to the results from the linguistic sections, these results
are quite positive for the dynamic implication.

Ded. Ded. (ne-free) Trans.
BSML(↪→∃) ✗ ✓ ✗

BSML(⇒¬,∨) ✗ ✓ ✓

BiUS(99K) ✗ ✓ ✗

Table 6.3: Logico-Mathematical Properties
Ded. = Deduction Theorem., Trans. = Transitivity

6.4.2 Linguistic-Mathematical Properties

In Section 5.2 we looked at principle of Simplification of Disjunctive Antecedent
(SDA) in the context of BSML. Furthermore, we checked whether the pragmatic
enrichment of an implication had a non-trivial effect. In this section we will
reconsider this in the context of BiUS(99K).

133Note that this counterexample is very similar to the one discussed in Footnote 99. So from
a linguistic point of view one might argue that this failure is not so bad.
134Although 99K is not transitive in general, it is transitive on the propositional fragment
BiUS0. A proof of this has been added to Appendix D.3.
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Figure 6.5: Models for mathematical properties

Let us first look at SDA, i.e., whether (α∨β) 99K γ entails α 99K γ and β 99K γ.
We see that this principle is satisfied by the dynamic implication on the proposi-
tional fragment.135

Fact 6.4.4. Let α, β, γ ∈ BiUS0. Then, (α ∨ β) 99K γ ⊨ (α 99K γ) ∧ (β 99K γ).

And similar to the maximal∃ implication, but contrary to the BSML-
implication, we see that this principle is no longer satisfied when we add pragmatic
enrichment.136

Fact 6.4.5. Let α, β, γ ∈ BiUS∅. Then, |(α∨β) 99K γ|+ ⊭ |(α 99K γ)∧(β 99K γ)|+.

Proof. Consider the state s = {wp, wq} in Figure 6.5(b). Now let α := p, β := q
and γ := p ∨ q. Then we see that s ̸= ∅ and s[|p ∨ q|+][|p ∨ q|+] = s[|p ∨ q|+],
i.e., s[|(p ∨ q) 99K(p ∨ q)|+] = s. However, s[|p|+] = {wp} and {wp}[|p ∨ q|+] is
undefined. In other words, s[|p 99K(p∨ q)|+] is undefined and thus we do not have
the entailment.

At the end of Section 5.2.1 we argued that we expect SDA to fail when we
consider the “neglect-zero” tendency. Hence, we conclude that the dynamic im-
plication can correctly account for this principle.

Lastly, we mentioned before that pragmatically enriching the dynamic impli-
cation ensures that both its antecedent and its consequent are live possibilities.
In other words, adding pragmatic enrichment does more than merely ensuring
that the supporting state is non-empty, i.e., its effect is non-trivial in that sense.
Similarly to the facts proven in Section 5.2.2 we can state this as follows.

Fact 6.4.6. For “split-free” α, β ∈ BiUS∅ we have |α 99Kβ|+ ̸≡ (α 99Kβ)ne.

Proof. Consider the state s = {w∅} in Figure 6.5(c) and let α := p and β := q.
Then we see that s ̸= ∅, and s[p][q] = ∅ = s[p] and thus s[(p 99K q)ne] = s.
However, as s[|p|+] is undefined we see that s ⊭ |p 99K q|+.
135Note that this principle is only satisfied for the propositional fragment BiUS0. That this
doesn’t hold in general is witnessed by the state s = {wp, wq} that supports p ∨ q 99K3q, but
doesn’t support p 99K3q.
136Note that this counterexample is the same as we used for the maximal∃ implication in Fact
5.2.3.
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Combining these results in Table 6.4, we see that the dynamic implication
behaves as good as the maximal∃ implication and better than the BSML-
implication on the linguistic-mathematical properties.

SDA SDA+ Triv. Triv. (“split-free”)
BSML(↪→∃) ✓ ✗ ✗ ✗

BSML(⇒¬,∨) ✓ ✓ ✗ ✗

BiUS(99K) ✓ ✗ ✗ ✗

Table 6.4: Linguistic-Mathematical Properties
SDA = Simplification of Disjunctive Antecedents, SDA+ = SDA with pragmatic enrichment,
Triv. = Trivial effect of pragmatic enrichment, Triv. (“split-free”) = Triv. for “split-free” α, β.

To conclude, in Section 6.3.1 we have seen that BiUS(99K) does almost as
good as BSML(↪→∃) and BSML(⇒¬,∨), while we saw in Sections 6.3.2, 6.4.1
and 6.4.2 that the dynamic setting has several advantages over the static variant.
In the final chapter we will make up the final score for both BSML an BiUS,
and discuss several interesting subjects for future research.
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Chapter 7

Conclusion

In this thesis we have extended bilateral stated-based modal logic (BSML) and
bilateral update semantics (BiUS) with different notions of implication.137 For
each of these extensions we have looked at several linguistic desiderata and math-
ematical properties. In this final chapter we will give an overview of our results,
whereafter we will point towards some interesting topics for future research.

Let us first consider the linguistic behaviour of our implication. In Sections
3.3 and 6.3.1 we have looked at three linguistic desiderata as put forward by
Stalnaker (1976). An overview of these results can be found in Table 7.1, where
we see that BSML extended with the maximal∃ implication can best account for
these desiderata.138

Desideratum A (Dir. Arg.) B (No Triv.) C (Denial)

BSML(→) Sem. ✗ ✗

BSML(↠) Sem. ✗ Sem.
BSML(↪→∀) Sem. ✗ Sem.
BSML(↪→∃) Sem.∗ Prag. Sem.
BSML(⇒¬,∨) Sem.∗ Prag. ✗

BiUS(99K) Sem.0∗ Prag. Sem.

Table 7.1: Stalnaker’s desiderata
Dir. Arg. = Direct Argument, No Triv. = No Trivialization, Denial = Denial of Conditional

∗This desideratum fails when pragmatically enriched.
0This desideratum only holds for BiUS0.

The dynamic framework BiUS extended with an implication gives almost equally
good results, although Desideratum A (the direct argument) is only satisfied on
the propositional fragment BiUS0. As we would like to be able to account for

137Remember that throughout this thesis we have discussed the material implication (→),
intuitionistic implication (↠), maximal implication (↪→∀), maximal∃ implication (↪→∃), BSML-
implication (⇒¬,∨) and the dynamic implication (99K).
138Remember that we use colors and fonts in tables to denote what results are good, bad or
somewhere in between.
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the direct argument with modalities as well, we see that this is a downside of
the dynamic setting. One solution would be to switch to a distributive notion of
modality as discussed in Footnote 122. However, as hinted at in Footnote 132, we
would risk losing the good behaviour of the dynamic setting regarding Desiderata
2b) (MT) and Desideratum 5 (No MT for Modal Consequent). Therefore we see
that solving this problem is non-trivial, which highlights the possibility of future
research into different notions of modality for BiUS(99K).

In Sections 4.2 and 6.3.2 we discussed several other desiderata for the indicative
conditional by Ciardelli (2020). An overview of these results can be found in Table
7.2, where we see the advantages of the dynamic setting of BiUS.

Desideratum 1b) 2a) 2b) 3 5 6′ 7′

(CNA) (MP) (MT) (I-E) (No MT3) (COI) (IM)
BSML(→) Sem. Sem. ✗ Sem. Sem. ✗ ✗

BSML(↠) Sem. Sem. Sem. Sem.∗ ✗ ✗ ✗

BSML(↪→∀) Sem. Sem. Sem. Sem.∗ ✗ ✗ ✗

BSML(↪→∃) Sem.∗ Sem. Sem. Sem. ✗ ✓ ✓

BSML(⇒¬,∨) Sem. Sem. Sem. Sem. ✗ ✗ ✗

BiUS(99K) Sem.+ Sem. Sem. Sem. Sem. ✓ ✓

Table 7.2: Ciardelli’s desiderata summarised
CNA = Compatibility with Negated Antecedent, MP = Modus Ponens, MT = Modus Tollens,
I-E= Import-Export, No MT3 = No Modus Tollens for modal consequent, COI = Cautious

Or-to-If, IM = If-Might interaction
∗This desideratum fails when pragmatically enriched.

+This desideratum’s pragmatic enrichment is only satisfied with the premises reversed.

The static BSML extended with the maximal∃ implication can account for quite
a few of these desiderata, but BiUS(99K) solves the remaining problems that
the static framework has. Specifically, the dynamic setting allowed us to take
the order in Desideratum 1b) (CNA) into account, and we were able to satisfy
Desideratum 2b) (MT) and Desideratum 5 (No MT3) simultaneously.

Now let us consider the mathematical side of things. In Chapter 5 and Section
6.4 we looked at several mathematical properties of our logics extended with an
implication. An overview of these results can be found in Table 7.3, where we see
that none of the implications satisfies all mathematical properties that we would
like to have.

We see that the material implication is the only implication that satisfies the
Deduction Theorem in general. However, this came at the cost of non-classicality
and the inability to account for many of the desiderata. The intuitionistic im-
plication and the maximal implication do preserve classicality and satisfy the
Deduction Theorem on the ne-free fragment. But unfortunately we see that they
cannot account for quite a few of the linguistic desiderata. This originates in the
trivial effect the pragmatic enrichment function has on these implications, i.e., it
only ensures that the state of evaluation is non-empty.139

139Actually, this effect is non-trivial if the antecedent and consequent can contain disjunctions,
but if we restrict ourselves to “split-free” antecedent and consequent the non-triviality disap-
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Class. Ded. Ded.∅ Tran. SDA SDA+ Triv. Triv.′

BSML(→) ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓

BSML(↠) ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✓

BSML(↪→∀) ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓

BSML(↪→∃) ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗

BSML(⇒¬,∨) ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗

BiUS(99K) - ✗ ✓ ✗ ✓ ✗ ✗ ✗

Table 7.3: Mathematical Properties
Class. = Preservation of Classicality, Ded. = Deduction Theorem.,

Ded.∅ = Deduction Theorem ne-free, Tran. = Transitivity, SDA = Simplification of
Disjunctive Antecedents, SDA+ = SDA with pragmatic enrichment,
Triv. = [α⇒ β]+ ≡ (α⇒ β) ∧ ne, Triv.′ = Triv. for “split-free” α, β.

The maximal∃ implication and the BSML-implication both also preserve clas-
sicality and satisfy the Deduction Theorem on the ne-free fragment. But on top
of that the pragmatic enrichment function has a non-trivial effect that we will
discuss in a moment. On the other hand, the downside of the maximal∃ impli-
cation is its intransitivity, and the downside of the BSML-implication is that it
validates SDA under pragmatic enrichment. Similar to the maximal∃ implication,
the dynamic implication satisfies the Deduction Theorem on the ne-fragment but
is intransitive.

Now let us shortly review the non-trivial effect that the pragmatic enrich-
ment function has on the maximal∃ implication, the BSML-implication and the
dynamic implication. By pragmatically enriching a maximal∃ implication or a
dynamic implication, we ensure that both the antecedent and the consequent are
live possibilities. When we take the “neglect-zero” tendency into account, we
see that we would expect this. For a conditional with an antecedent that is not
a live possibility would only be validated by an empty configuration. In other
words, the “neglect-zero” tendency gives us a simple pragmatic explanation of
this non-trivial effect.140 It is exactly this effect that allows these implications to
correctly account for Desideratum A, Desideratum B, Desideratum 6′ (COI) and
Desiderataum 7′ (IM). On the other hand, the BSML-implication only ensures
that the consequent is a live-possibility. It is this weaker non-trivial effect that
causes the BSML-implication to be less well-behaved throughout all linguistic
desiderata.

Now if we consider the formula [3(α∨β) ⇒ 3α]+ that we discussed in Chapter
1, we see that we do not expect this to be a valid conditional if we take the
“neglect-zero” tendency into account. For there is no reason to suspect that
3(α∨β) is always a live possibility, and thus its non-validity in BSML(↪→∃) and
BiUS(99K) is a positive result.141

pears. In other words, we see that it was not an effect of the implications but rather of the
nested disjunctions.
140Remember that this non-trivial effect is an explicit formalisation of the “definedness” or
“antecedent compatibility”, as discussed in Footnote 79.
141Notice that the formula is valid for the material implication, intuitionistic implication and
the maximal implication. So if one would prefer [3(α ∨ β) ⇒ 3α]+ to be a validity, one could
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Now let us take up the final score. When we take all linguistic and mathe-
matical considerations into account, we conclude that the static BSML can best
be extended with the maximal∃ implication. However, the dynamic framework
BiUS extended with a dynamic implication gives the best linguistic behaviour
while improving the mathematical behaviour.142 It is important to realise that
this thesis has researched the linguistic behaviour of BSML and BiUS extended
with an implication and the effect of the “neglect-zero” tendency in this. This
does not mean that we put BSML(↪→∃) or BiUS(99K) forward as a theory of
conditionals that can account for all relevant linguistic phenomena.143 Rather, we
think that there are many different pragmatic phenomena operative in language
that explain the behaviour of indicative conditionals. This research has shown
that the “neglect-zero” tendency has earned its place, by giving a simple prag-
matic explanation for several phenomena concerning the indicative conditional.

Now that we have seen the effect of the “neglect-zero” tendency on indicative
conditionals as modeled by BSML(↪→∃) and BiUS(99K), we can look at several
interesting topics for future research. One of the first, and most obvious, topics
would be to extend the first-order variant of BSML, called QBSML and de-
veloped by Aloni and Ormondt (2021), with an implication. This would allow
one to analyse sentences like (48) and (49) from Aloni (2022a) that contain both
implications and quantifiers.

The more mathematically-oriented reader might also be interested in the log-
ical strength and axiomatization of BSML(↪→∃) and BiUS(99K). This will be
left for future research, which might be inspired by the work of Anttila (2021) on
the axiomatization of state-based logics.

Another interesting topic would be the formalisation of some of Grice’s max-
ims, such as the maxims of Quantity, in BSML or BiUS. For example, in our
current frameworks we see that the state {wpq} supports the disjunction p ∨ q.
However, it is odd to say that “it rains or the wind is blowing” when actually it is
both raining and the wind is blowing. This oddity can be explained using Grice’s
first maxim of Quantity, which states that a contribution should be as informa-
tive as required by the current conversation. So we see that a formalisation of
Gricean pragmatics should makes sure that {wpq} no longer supports p ∨ q but
does support p ∧ q.144

extend BSML with one of these implications. However, this comes at the cost of significantly
less interesting linguistic behaviour on the desiderata that we have discussed.
142It is not surprising that the maximal∃ implication gives similar results to the dynamic
implication. Remember that in Footnote 115 we mentioned that the dynamic implication is
very “Ramseylike”. And similarly, for the maximal∃ implication we consider the (greatest)
subordinate state that satisfies the antecedent and look if the consequent holds in that state.
So we see that this implication is also very “Ramseylike”.
143For this it is also important to realise that there is an empirical objection, as has been dis-
cussed in Footnote 68, against a theory of conditionals that does not take the logical connection
between the antecedent and consequent into account. This highlights the possibility of future
research extending BSML or BiUS with an implication that does take this connection into
account.
144The difficulty of this lies in the vagueness of what is “required”, i.e., maybe only the dis-
junction is relevant while the conjunction is not. Similarly, it is odd to say “it is raining and the
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As Grice’s account of the indicative conditional and both BSML(↪→∃) and
BiUS(99K) explain Desideratum B (No Trivialization) pragmatically, it might
be interesting to empirically research what pragmatic account gives the most
plausible explanation.145

We saw that Stalnaker argued in Desideratum C that the denial of a condi-
tional should not entail its antecedent. But what is it that we actually mean when
we deny an indicative conditional? Grice (1989) points out that “it is by no means
always clear what a speaker who says “it is not the case that if p, q” is committing
himself to” (pg. 80). One of the possible interpretations of a denied conditional
that Grice discusses is the counterconditional. So by denying “if p, then q” we
mean to say “if p, then ¬q”. If we look at the anti-support clauses for our con-
ditionals, we see that ¬(p ↪→∃ q) ≡ p ↪→∃ ¬q but ¬(p 99K q) ̸≡ p 99K¬q.146 As it is
certain that we, sometimes, but not always interpret the denial of a conditional
as a counterconditional, this does not speak in favor of either of the accounts.
However, it does highlight the open topic of further research into the anti-support
clauses for the implications in BSML and BiUS.

Lastly, we have looked at several desiderata for indicative conditionals, but
there are many phenomena that have been discussed in the literature that we
did not discuss in this thesis. One of these is the failure of monotonicity, mo-
tivated by the so-called Sobel sequences and argued for by Von Fintel (2001).
This work is concerned with counterfactuals, but there are similar examples that
go against monotonicity for the indicative conditional.147 For example, “if you
strike a match, then a fire will start” should not imply “if you strike a match
and the match is wet, then a fire will start”. In other words, it might be that an
indicative conditional holds in general, but it no longer holds if we strengthen the
antecedent. Neither BSML(↪→∃) nor BiUS(99K) seems to be capable to capture
such behaviour. A selectional analysis, such as Stalnaker’s account, will be able
to explain this, as the most similar “strike-a-match”-world need not be the most
similar “strike-a-wet-match”-world. Therefore, it might be interesting to consider
a variant of BSML(↪→∃) or BiUS(99K) with a similarity ordering of the possible
worlds, wherein we can combine the pragmatic “neglect-zero” tendency with a
selectional analysis of the indicative conditional.148

wind is blowing” when asked only about the rain, i.e., sometimes a statement is required that
is not as informative as possible.
145Remember that we shortly discussed this at the end of Section 3.3.
146The former follows directly from the definition of the maximal∃ implication. The latter is
witnessed by the state s = {wpq , wp}, where we see that s[¬(p 99K q)] = s but s[p 99K¬q] = ∅.
147See Williams (2008), Klecha (2015) andWiller (2017) for more on indicative Sobel sequences.
148Similarly, Von Fintel (2001) argues for a dynamic approach by noting that sequences like
(i-a) seem to be okay, while sequences like (i-b) are odd.

(i) a. If you strike a match, then a fire will start. But if you strike a wet match, then no
fire will start.

b. # If you strike a wet match, then no fire will start. But if you strike a match, a
fire will start.

It might be interesting to see whether a BiUS(99K) with a similarity ordering can account
for this. Again, Von Fintel (2001) is concerned with counterfactuals, but (i-a) and (i-b) are
indicative variants of Von Fintel’s (10) and (11).
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To conclude, in this thesis we have looked at several implications that can
extend BSML and BiUS. We found that the static BSML can best be extended
with the maximal∃ implication, but the best linguistic and mathematical account
is given by the dynamic BiUS extended with a dynamic implication. Further-
more, we have seen that the “neglect-zero” tendency can give a simple explanation
for certain phenomena surrounding the indicative conditional. Several questions
have been left open, of which some hopefully will be answered in the future.
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Appendix

A Proofs of Chapter 2

Fact (2.1.8). Let α ∈ BSML0. Then M, t ⊨ [α]+, t ⊆ s and M, s ⊨ α imply
M, s ⊨ [α]+.

Proof. We prove this by a double induction on the complexity of α. For this we
will simultaneously prove the fact above and the following: M, t ⊨[α]+, t ⊆ s and
M, s ⊨α imply M, s ⊨[α]+.

1. α = p:

• If M, t ⊨ [p]+, then t ̸= ∅ and thus s ̸= ∅. So from M, s ⊨ p it follows
directly that M, s ⊨ [p]+.

• Analogously for ⊨.

2. α = γ ∨ δ:

• IfM, s ⊨ γ∨δ, there are s′, s′′ : s′∪s′′ = s andM, s′ ⊨ γ andM, s′′ ⊨ δ.
Similarly, from M, t ⊨ [γ ∨ δ]+ we know there are t′, t′′ : t′ ∪ t′′ = t
and M, t′ ⊨ [γ]+ and M, t′′ ⊨ [δ]+. Now we know that t′ ⊆ t′ ∪ s′ and
t′′ ⊆ t′′∪s′′ and by Fact 2.1.1 and union closure of BSML,M, t′∪s′ ⊨ γ
and M, t′′ ∪ s′′ ⊨ δ. Then by the induction hypothesis M, t′ ∪ s′ ⊨ [γ]+

and M, t′′ ∪ s′′ ⊨ [δ]+. Hence, as (t′ ∪ s′) ∪ (t′′ ∪ s′′) = s we see that
M, s ⊨ [γ ∨ δ]+.

• IfM, s ⊨γ∨δ, thenM, s ⊨γ andM, s ⊨δ. And ifM, t ⊨[γ∨δ]+, then
t ̸= ∅, M, t ⊨[γ]+ and M, t ⊨[δ]+. So by our induction hypothesis
it follows that M, s ⊨[γ]+ and M, s ⊨[δ]+. We conclude that M, s ⊨
[γ ∨ δ]+ as t ̸= ∅ implies s ̸= ∅.

3. α = γ ∧ δ:

• ⊨ is analogous to the ⊨-case of the disjunction.

• ⊨is analogous to the ⊨-case of the disjunction.

4. α = ¬γ:

• If M, s ⊨ ¬γ, then M, s ⊨γ. And if M, t ⊨ [¬γ]+, then t ̸= ∅ and
M, t ⊨[γ]+. So by the induction hypothesis we see that M, s ⊨[γ]+,
i.e.,M, s ⊨ ¬[γ]+. And as t ̸= ∅ implies s ̸= ∅, we see thatM, s ⊨ [¬γ]+.
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• If M, s ⊨¬γ, then M, s ⊨ γ. And if M, t ⊨[¬γ]+, then M, t ⊨¬[γ]+
and thus M, t ⊨ [γ]+. So by the induction hypothesis we see that
M, s ⊨ [γ]+, i.e., M, s ⊨¬[γ]+ and thus M, s ⊨[¬γ]+.

Fact (2.2.5). Let α, β ∈ BSML∅. Then α↠β ≡ α⇒¬,∨ β.

Proof. (⇒): Suppose M, s ⊨ α↠β. Now let t = {w ∈ s | M, {w} ⊭ β} and
t′ = s\t, then clearly t ∪ t′ = s. And by our assumption it follows that ∀w ∈ t:
M, {w} ⊭ α, so by Fact 2.1.5 we see that M, t ⊨ ¬α. If t′ = ∅ it follows from
the empty state property of β that M, t′ ⊨ β. Otherwise, as β is union closed
and ∀w ∈ t′ : M, {w} ⊨ β, we see that M, t′ ⊨ β. Hence, M, s ⊨ ¬α ∨ β, i.e.,
M, s ⊨ α⇒¬,∨ β.

(⇐): Suppose M, s ⊨ α ⇒¬,∨ β, then ∃t, t′ : t ∪ t′ = s and M, t ⊨ ¬α and
M, t′ ⊨ β. Now let u ⊆ s be such that M,u ⊨ α, then by Fact 2.1.4 we see
that t ∩ u = ∅. Hence, u ⊆ t′ and thus by downward closure of β it follows that
M,u ⊨ β. So indeed M, s ⊨ α↠β.

B Proofs of Chapter 3

Fact (3.3.1). For ⇒∈ {→,↠, ↪→∀, ↪→∃,⇒¬,∨}, we have α ∨ β ⊨ ¬α⇒ β.

Proof. Suppose M, s ⊨ α ∨ β, then there are t, t′ : t ∪ t′ = s and M, t ⊨ α and
M, t′ ⊨ β. Now suppose for some u ⊆ s that M,u ⊨ ¬α, then we see by Fact
2.1.4 that u ∩ t = ∅ and thus u ⊆ t′. So by downward closure of β it follows
that M,u ⊨ β, and thus M, s ⊨ ¬α↠β. Now by Footnote 61 we also have
M, s ⊨ ¬α→β, and by Fact 2.2.5, Fact 2.2.6 and Fact 2.2.9 we find that the same
holds for ⇒¬,∨, ↪→∀ and ↪→∃.

Fact (3.3.2). For α, β ∈ BSML∅, we have [α ∨ β]+ ⊨ [¬α→β]+.

Proof. Suppose M, s ⊨ [α ∨ β]+, then s ̸= ∅ and there are t, t′ : t ∪ t′ = s and
M, t ⊨ [α]+ and M, t′ ⊨ [β]+. Now suppose M, s ⊨ [¬α]+, then by definition we
see that M, s ⊨ ¬[α]+. So by Fact 2.1.4 it follows that t = ∅, i.e., s = t′. We
conclude that M, s ⊨ [β]+ and thus indeed M, s ⊨ [¬α→β]+.

Fact (3.3.3). For ⇒∈ {↠, ↪→∀} and “split-free” α, β ∈ BSML∅, we have [α ∨
β]+ ⊨S [¬α⇒ β]+.

Proof. SupposeM, s ⊨ [α∨β]+, then s ̸= ∅ and there are non-empty t, t′ : t∪t′ = s
and M, t ⊨ α and M, t′ ⊨ β. Let u ⊆ s be such that M,u ⊨ [¬α]+, then u ̸= ∅ and
by Fact 2.1.1 we get M,u ⊨ ¬α. So by Fact 2.1.4 it must be that u ⊆ t′, and thus
by downward closure M,u ⊨ β. As u ̸= ∅ and β is “split-free”, it follows from
Fact 2.1.2 that M,u ⊨ [β]+, and thus M, s ⊨ [¬α↠β]+. As ¬α is “split-free”, we
see by Fact 2.2.7 that M, s ⊨ [¬α ↪→∀ β]

+.

Fact (3.3.4). For ⇒∈ {→,↠, ↪→∀, ↪→∃,⇒¬,∨}, we have ¬p ⊨ p⇒ q.
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Proof. SupposeM, s ⊨ ¬p. Now let t ⊆ s be such thatM, t ⊨ p, then by Fact 2.1.4
we know that t = ∅. Hence, by the empty state property of q we find thatM, t ⊨ q
and thus M, s ⊨ p↠ q. By Footnote 61, Fact 2.2.5, Fact 2.2.6 and Fact 2.2.9, it
follows that M, s ⊨ p→ q, M, s ⊨ p ↪→∀ q, M, s ⊨ p ↪→∃ q and M, s ⊨ p⇒¬,∨ q.

Fact (3.3.5). For ⇒∈ {→,↠, ↪→∀}, we have [¬p]+ ⊨ [p⇒ q]+.

Proof. Suppose M, s ⊨ [¬p]+, then s ̸= ∅ and by Fact 2.1.1 we see that M,⊨ ¬p.
So by Fact 2.1.4 it follows that any t ⊆ s with M, t ⊨ p is empty. So for all t ⊆ s
we find that M, t ⊭ [p]+. Hence, M, s ⊨ [p]+ ↠[q]+ and as s is non-empty also
M, s ⊨ [p↠ q]+. Similarly, we find thatM, s ⊨ [p→ q]+ andM, s ⊨ [p ↪→∀ q]

+.

C Proofs of Chapter 4

Fact (4.2.5). For ⇒∈ {→,↠, ↪→∀, ↪→∃,⇒¬,∨} and α, β ∈ BSML0, we have
[α⇒ β]+, [α]+ ⊨ [β]+.

Proof. For → this follows directly from the definition. For ↠, ↪→∀ and ↪→∃ it
follows because s ⊆ s and s must be maximal with M, s ⊨ [α]+. Now suppose
M, s ⊨ [α ⇒¬,∨ β]+, then we see that M, s ⊨ ¬[α]+ ∨ [β]+. In other words,
∃t, t′ : t∪t′ = s andM, t ⊨ ¬[α]+ andM, t′ ⊨ [β]+. Now also supposeM, s ⊨ [α]+,
then by Fact 2.1.4 we see that t = ∅ and thus t′ = s. Hence, we indeed see that
M, s ⊨ [β]+.

Fact (4.2.6). For ⇒∈ {↠, ↪→∀, ↪→∃,⇒¬,∨} and α, β ∈ BSML∅, we have α ⇒
β,¬β ⊨ ¬α.

Proof. Suppose M, s ⊨ α↠β, then for all t ⊆ s we have that M, t ⊨ α implies
M, t ⊨ β. Now suppose M, s ⊨ ¬β, then by Fact 2.1.4 it must be that for all
w ∈ s :M, {w} ⊭ β. For otherwise, it would follow that {w} = ∅, a contradiction.
Hence, for all w ∈ s, we see that M, {w} ⊭ α and thus by Fact 2.1.5 it follows
that M, s ⊨ ¬α. By Fact 2.2.5, Fact 2.2.6 and Fact 2.2.9 have the same result for
⇒¬,∨, ↪→∀ and ↪→∃.

Fact (4.2.7). Let ⇒∈ {→,↠, ↪→∀, ↪→∃,⇒¬,∨}, α, β ∈ BSML0 and γ ∈ BSML∅.
Then we have α⇒ (β ⇒ γ) ≡ (α ∧ β) ⇒ γ.

Proof. (⇒) : Let us first shortly consider the material implication. SupposeM, s ⊨
α→(β→ γ) and suppose M, s ⊨ α ∧ β. Then by Modus Ponens applied twice we
see that M, s ⊨ γ. So indeed, M, s ⊨ (α ∧ β)→ γ.

Similarly, suppose that M, s ⊨ α↠(β↠ γ). Now suppose for some t ⊆ s that
M, t ⊨ α ∧ β, then by our assumption and Modus Ponens applied twice we see
that M, t ⊨ γ. Hence, M, s ⊨ (α ∧ β)↠ γ.

(⇐) : Again, we first look at the material implication. Suppose, M, s ⊨ (α ∧
β)→ γ. Now suppose M, s ⊨ α and also suppose M, s ⊨ β, then it follows that
M, s ⊨ γ. So M, s ⊨ β→ γ and thus M, s ⊨ α→(β→ γ).

Similarly, suppose M, s ⊨ (α ∧ β)↠ γ, then for all t ⊆ s: M, t ⊨ α ∧ β implies
M, t ⊨ γ. Now suppose for some t ⊆ s that M, t ⊨ α, and suppose for some t′ ⊆ t
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that M, t′ ⊨ β. By downward closure of α we see that M, t′ ⊨ α ∧ β, and thus it
follows from our first assumption that M, t′ ⊨ γ. Hence, M, t ⊨ β↠ γ and thus
M, s ⊨ α↠(β↠ γ).

By Fact 2.2.5, Fact 2.2.6 and Fact 2.2.9 everything also follows for ⇒¬,∨, ↪→∀
and ↪→∃.

Fact (4.2.8). Let ⇒∈ {→, ↪→∃,⇒¬,∨}, α, β ∈ BSML0 and γ ∈ BSML∅. Then
we have [α⇒ (β ⇒ γ)]+ ≡ [(α ∧ β) ⇒ γ]+.

Proof. (⇒):

• →: Suppose M, s ⊨ [α→(β→ γ)]+ and also suppose M, s ⊨ [α ∧ β]+. Then
it follows thatM, s ⊨ [α]+ and thus by our assumptionM, s ⊨ [β→ γ]+. But
from our second assumption we also see that M, s ⊨ [β]+ and thus indeed
M, s ⊨ [γ]+. We conclude that M, s ⊨ [(α ∧ β)→ γ]+.

• ↪→∃: Suppose M, s ⊨ [α ↪→∃(β ↪→∃ γ)]
+, then ∃t ⊆ s that is maximal with

M, t ⊨ [α]+ and M, t ⊨ [β ↪→∃ γ]
+. Hence, ∃t′ ⊆ t that is maximal in t with

M, t′ ⊨ [β]+ and M, t′ ⊨ [γ]+. Now suppose for contradiction that t′ is not
maximal in s with M, t′ ⊨ [α ∧ β]+. Then there is t′′ with t′ ⊂ t′′ ⊆ s such
that M, t′′ ⊨ [α ∧ β]+. In fact, it must be that t′′ ⊆ t, for otherwise we see
by union closure of BSML that M, t ∪ t′′ ⊨ [α]+ which is in contradiction
to the maximality of t with respect to [α]+. But this is in contradiction to
the maximality of t′ with respect to [β]+, and thus we see that t′ is maximal
with M, t′ ⊨ [α ∧ β]+. Hence, M, s ⊨ [(α ∧ β) ↪→∃ γ]

+.

• ⇒¬,∨: Suppose, M, s ⊨ [α ⇒¬,∨ (β ⇒¬,∨ γ)]+. Then we see that M, s ⊨
¬[α]+ ∨ [β ⇒¬,∨ γ]+, i.e., ∃t, t′ : t ∪ t′ = s and M, t ⊨ ¬[α]+ and M, t′ ⊨
[β ⇒¬,∨ γ]

+. So M, t′ ⊨ ¬[β]+∨ [γ]+, and thus there are t′′, t′′′ : t′′∪ t′′′ = t′

such that M, t′′ ⊨ ¬[β]+ and M, t′′′ ⊨ [γ]+. Now M, t ∪ t′′ ⊨ ¬[α ∧ β]+ as
M, t ⊨ ¬[α]+, M, t′′ ⊨ ¬[β]+ and t ̸= ∅ ≠ t′′.149 And as (t∪ t′′)∪ t′′′ = s, we
see that it follows that M, s ⊨ [(α ∧ β) ⇒¬,∨ γ]

+.

(⇐):

• →: Suppose M, s ⊨ [(α ∧ β)→ γ]+, then s ̸= ∅. Now suppose M, s ⊨ [α]+

and also suppose M, s ⊨ [β]+. Then we see that M, s ⊨ [α ∧ β]+ by the
non-emptiness of s, and thus by our assumption M, s ⊨ [γ]+. Hence, M, s ⊨
[β→ γ]+ and thus M, s ⊨ [α→(β→ γ)]+.

• ↪→∃: Suppose M, s ⊨ [(α ∧ β) ↪→∃ γ]
+. Then ∃t ⊆ s with M, t ⊨ [α ∧ β]+

and M, t ⊨ [γ]+. Without loss of generality, let t′′ ⊇ t be maximal with
M, t′′ ⊨ [α]+. Now suppose for contradiction that t is not maximal in
t′′ with M, t ⊨ [β]+. Then there is some t′ with t ⊂ t′ ⊆ t′′ such that
M, t′ ⊨ [β]+. As M, t′′ ⊨ [α]+ we see by Fact 2.1.1 that M, t′ ⊨ α, and
thus by downward closure M, t′ ⊨ α. But then by Fact 2.1.8 it follows that
M, t′ ⊨ [α]+ ∧ [β]+, i.e., M, t′ ⊨ [α ∧ β]+. But this is in contradiction to the

149Here we use the fact that ¬[α∧β]+ = ¬(([α]+∧[β]+)∧ne) ≡ ¬([α]+∧[β]+) ≡ ¬[α]+∨¬[β]+.
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maximality of t, and thus it must be that t is maximal with M, t ⊨ [β]+.
Hence, M, t′′ ⊨ [β ↪→∃ γ]

+ and thus M, s ⊨ [α ↪→∃(β ↪→∃ γ)]
+.

• ⇒¬,∨: Suppose M, s ⊨ [(α ∧ β) ⇒¬,∨ γ]
+, then M, s ⊨ ¬[α ∧ β]+ ∨ [γ]+. In

other words, there are t, t′ : t∪ t′ = s and M, t ⊨ ¬[α∧β]+ and M, t′ ⊨ [γ]+.
Then there are t′′, t′′′ : t′′ ∪ t′′′ = t such that M, t′′ ⊨ ¬[α]+ and M, t′′′ ⊨
¬[β]+. So we see thatM, t′′′∪ t′ ⊨ [β ⇒¬,∨ γ]

+ and thus as t′′∪ (t′′′∪ t′) = s
it follows that M, s ⊨ [α⇒¬,∨ (β ⇒¬,∨ γ]

+.

Fact (4.2.11). For ⇒∈ {↠, ↪→∀, ↪→∃,⇒¬,∨}, we have [p ⇒ 2q]+, [¬2q]+ ⊨
[¬p]+.

Proof. Suppose M, s ⊨ [p↠2q]+ and M, s ⊨ [¬2q]+, then s ̸= ∅ and M, s ⊨
¬[2q]+. Now suppose towards contradiction that M, s ⊭ [¬p]+. As s ̸= ∅, it
must be that M, s ⊭ ¬p. So then there must be a non-empty t ⊆ s such that
M, t ⊨ p, and thus M, t ⊨ [p]+. But then it follows from our assumption that
M, t ⊨ [2q]+, so by Fact 2.1.4 we see that t = ∅. A contradiction, so it must be
that M, s ⊨ [¬p]+. By Fact 2.2.7 the same holds for ↪→∀.

Suppose M, s ⊨ [p ↪→∃ 2q]
+, then ∃t ⊆ s with M, t ⊨ [p]+ and M, t ⊨ [2q]+.

Hence, t ̸= ∅ and by Fact 2.1.1 we see that M, t ⊨ 2q. Now also suppose that
M, s ⊨ [¬2q]+, then again from Fact 2.1.1 it follows that M, s ⊨ ¬2q. But then
by Fact 2.1.4 we see that t = ∅, a contradiction. So this cannot happen, and
anything follows.

SupposeM, s ⊨ [p⇒¬,∨ 2q]+, then we see that s ̸= ∅ andM, s ⊨ ¬[p]+∨[2q]+.
In other words, ∃t, t′ : t ∪ t′ = s and M, t ⊨ ¬[p]+ and M, t′ ⊨ [2q]+. Now also
suppose that M, s ⊨ [¬2q]+, then by Fact 2.1.1 we see that M, s ⊨ ¬2q and
M, t′ ⊨ 2q. So by Fact 2.1.4 it follows that t′ = ∅ and thus t = s. Therefore,
M, s ⊨ ¬[p]+ and as s ̸= ∅ it follows that M, s ⊨ [¬p]+.150

Fact (4.2.14). [p ∨ q]+, [3¬p]+ ⊨ [¬p ↪→∃ q]
+ (if R is state-based)

Proof. SupposeM, s ⊨ [p∨q]+, then s ̸= ∅ and there are non-empty t, t′ : t∪t′ = s
and M, t ⊨ p and M, t′ ⊨ q. Now suppose M, s ⊨ [3¬p]+. As R is state-based,
we see that there is a u ⊆ s with M,u ⊨ [¬p]+ and without loss of generality we
can say that u is maximally so. So then clearly u ̸= ∅ and u ⊆ t′ and thus by
downward closure of q we find that M,u ⊨ [q]+. Subsequently, we conclude that
M, s ⊨ [¬p ↪→∃ q]

+.

Fact (4.2.15). 3(p ∧ q) ⊨ 3p and [3(p ∧ q)]+ ⊨ [3p]+

Proof. Let us start with the non-enriched version, and suppose M, s ⊨ 3(p ∧ q).
Then we know that for all w ∈ s, there is a non-empty t ⊆ R[w] with M, t ⊨ p∧ q.
So then it directly follows that M, s ⊨ 3p.

Similarly, suppose M, s ⊨ [3(p ∧ q)]+, then s ̸= ∅ and by Fact 2.1.1 we see
that M, s ⊨ 3(p ∧ q). And thus for all w ∈ s, there is a non-empty t ⊆ R[w]
with M, t ⊨ p by the previous argument. But then we see that M, t ⊨ [p]+ as it is
non-empty. Hence, M, s ⊨ (3[p]+) ∧ ne and thus M, s ⊨ [3p]+.

150Note that we use ¬[α]+ ∧ ne = [¬α]+, for ne-free α.
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Fact (4.2.18). [p ↪→∃ 3q]
+ ⊨ [3p]+ (if R is state-based)

Proof. Suppose M, s ⊨ [p ↪→∃ 3q]
+, then s ̸= ∅ and there is a non-empty t ⊆ s

with M, t ⊨ [p]+. As R is state-based, it follows that for each w ∈ s, there is
a non-empty t ⊆ R[w] with M, t ⊨ [p]+. Hence, M, s ⊨ (3[p]+) ∧ ne and thus
M, s ⊨ [3p]+.

D Proofs of Chapter 6

Fact (Update Clauses for Pragmatically Enriched formulas). Let α, β ∈ BiUS.

s[|p|+] = s[p] if s[p] ̸= ∅; # otherwise

s[|p|+]r = s[p]r

s[|¬α|+] = s[|α|+]r if s[|α|+]r ̸= ∅; # otherwise

s[|¬α|+]r = s[|α|+]

s[|α ∧ β|+] = s[|α|+] ∩ s[|β|+] if s[|α|+] ̸= ∅ ≠ s[|β|+]; # otherwise

s[|α ∧ β|+]r = s[|α|+]r ∪ s[|β|+]r

s[|α ∨ β|+] = s[|α|+] ∪ s[|β|+] if s[|α|+] ̸= ∅ ≠ s[|β|+]; # otherwise

s[|α ∨ β|+]r = s[|α|+]r ∩ s[|β|+]r

s[|3α|+] = s if s[|α|+] ̸= ∅; # otherwise

s[|3α|+]r = s if s[|α|+]r = s; ∅ if s[|α|+]r ̸= s; # otherwise

s[|2α|+] = s if s ̸= ∅ and s[|α|+] = s; # otherwise

s[|2α|+]r = s if s[|α|+]r ̸= ∅; # otherwise

s[|α 99Kβ|+] = s if s ̸= ∅ and s[|α|+][|β|+] = s[|α|+]; # otherwise

s[|α 99Kβ|+]r = s if s[|α|+][|β|+] ̸= ∅; # otherwise

D.1 Proofs of Section 6.2

Fact (6.2.1 (Eliminativity)). Let φ ∈ BiUS, and s be any state.

i) If s[φ] is defined, then s[φ] ⊆ s.

ii) If s[φ]r is defined, then s[φ]r ⊆ s.

Proof. By double induction on the complexity of φ.

1. φ = p:

• s[p] = s ∩ {w ∈W | V (p, w) = 1} ⊆ s.

• s[p]r = s ∩ {w ∈W | V (p, w) = 0} ⊆ s.

2. φ = ψ ∧ ξ:
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• If defined, s[ψ ∧ ξ] = s[ψ]∩ s[ξ], and s[ψ] and s[ξ] must be defined. So
by the induction hypothesis both are subsets of s, hence s[ψ]∩s[ξ] ⊆ s.

• If defined, s[ψ∧ξ]r = s[ψ]r∪s[ξ]r, and s[ψ]r and s[ξ]r must be defined.
So by the induction hypothesis both are subsets of s, hence s[ψ]r ∪
s[ξ]r ⊆ s.

3. φ = ψ ∨ ξ: This case is dual to the ∧-case.
4. φ = 3ψ: If defined, s[3ψ] = s or s[3ψ] = ∅. In both cases it is a subset of
s. Analogously for s[3ψ]r.

5. φ = ¬ψ:

• If defined, s[¬ψ] = s[ψ]r
IH
⊆ s.

• If defined, s[¬ψ]r = s[ψ]
IH
⊆ s.

6. φ = ψne: If defined, s[ψne] = s[ψ]
IH
⊆ s. Similarly for s[ψne]r.

Fact (6.2.2 (Distributivity)). Let α ∈ BiUS be ne-free and 3-free, and s be any
state:

i) s[α] = {w ∈ s | {w}[α] = {w}}
ii) s[α]r = {w ∈ s | {w}[α]r = {w}}
Proof. By double induction on the complexity of α.

1. α = p:

• Note that {w}[p] = {w} if and only if V (p, w) = 1. So s[p] = s ∩ {w ∈
W | V (p, w) = 1} = {w ∈ s | {w}[p] = {w}}.

• Analogous for s[p]r.

2. α = γ ∧ δ:

s[γ ∧ δ] =s[γ] ∩ s[δ]
IH
=
{
w ∈ s | {w}[γ] = {w}

}
∩
{
w ∈ s | {w}[δ] = {w}

}
=
{
w ∈ s | {w}[γ] = {w} and {w}[δ] = {w}

}
=
{
w ∈ s | {w}[γ] ∩ {w}[δ] = {w}

}
=
{
w ∈ s | {w}[γ ∧ δ] = {w}

}

s[γ ∧ δ]r =s[γ]r ∪ s[δ]r

IH
=
{
w ∈ s | {w}[γ]r = {w}

}
∪
{
w ∈ s | {w}[δ]r = {w}

}
=
{
w ∈ s | {w}[γ]r = {w} or {w}[δ]r = {w}

}
=
{
w ∈ s | {w}[γ]r ∪ {w}[δ]r = {w}

}
=
{
w ∈ s | {w}[γ ∧ δ]r = {w}

}
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3. α = γ ∨ δ: This case is dual to the ∧-case.
4. α = ¬γ:

• s[¬γ] = s[γ]r
IH
=

{
w ∈ s | {w}[γ]r = {w}

}
=

{
w ∈ s | {w}[¬γ] = {w}

}
• s[¬γ]r = s[γ]

IH
=

{
w ∈ s | {w}[γ] = {w}

}
=

{
w ∈ s | {w}[¬γ]r = {w}

}

Fact (6.2.3). For α, β ∈ BiUS0:

i) s[α][β] = s[β][α]

ii) s[α][β]r = s[β]r[α]

iii) s[α]r[β]r = s[β]r[α]r

Proof. We will only prove i), for ii) and iii) are completely analogous. From
distributivity (Fact 6.2.2) it follows that,

s[α][β] =
{
w ∈ s[α] | {w}[β] = {w}

}
=

{
w ∈ s | {w}[α] = {w} and {w}[β] = {w}

}
=

{
w ∈ s[β] | {w}[α] = {w}

}
= s[β][α]

Fact (6.2.5). Let α ∈ BiUS0. Then for any w ∈W exactly one of the following
holds: i) {w}[α] = {w} or ii) {w}[α]r = {w}.

Proof. By induction on the complexity of α.

1. α = p: Either V (p, w) = 1 or V (p, w) = 0. In the former case we have
{w}[p] = {w} and in the latter {w}[p]r = {w}.

2. α = γ ∧ δ: Then there are four possibilities arising from the induction
hypothesis.

• {w}[γ] = {w} = {w}[δ]: Then {w}[γ ∧ δ] = {w}[γ] ∩ {w}[δ] IH= {w} ∩
{w} = {w}. And by the induction hypothesis {w}[γ]r = ∅ = {w}[δ]r
and thus {w}[γ ∧ δ]r ̸= {w}.

• {w}[γ]r = {w} = {w}[δ]: Then {w}[γ ∧ δ]r = {w}[γ]r ∪ {w}[δ]r IH
=

{w}∪∅ = {w}. And by the induction hypothesis we see that {w}[γ] = ∅
and thus {w}[γ ∧ δ} ≠ {w}.

• {w}[γ] = {w} = {w}[δ]r: Analogous to the previous case.

• {w}[γ]r = {w} = {w}[δ]r: Analogous to the first case.

3. α = γ ∨ δ: Analogous to the ∧-case.
4. α = ¬γ: Then there are two possibilities arising from the induction hypoth-

esis.

• {w}[γ] = {w}: Then {w}[¬γ]r = {w}[γ] IH
= {w}. And as {w}[γ]r = ∅

by the induction hypothesis, we see that {w}[¬γ] = {w}[γ]r ̸= {w}.
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• {w}[γ]r = {w}: Then {w}[¬γ] = {w}[γ]r IH
= {w}. And as {w}[γ] = ∅

by the induction hypothesis, we see that {w}[¬γ]r = {w}[γ] ̸= {w}.

Fact (6.2.6). For α ∈ BiUS0, and any state s, we have s[α][α]r = ∅.

Proof. By induction on the complexity of α.

1. α = p: We see that s[p][p]r = s ∩ {w ∈ W | V (p, w) = 1} ∩ {w ∈ W |
V (p, w) = 0} = ∅, as we never have V (p, w) = 1 and V (p, w) = 0 at the
same time.

2. α = γ ∧ β: Using the fact that order does not matter (Fact 6.2.3) multiple
times, we see the following:

s[γ ∧ δ][γ ∧ δ]r = s[γ ∧ δ][γ]r ∪ s[γ ∧ δ][δ]r

Fact
= s[γ]r[γ ∧ δ] ∪ s[δ]r[γ ∧ δ]
= (s[γ]r[γ] ∩ s[γ]r[δ]) ∪ (s[δ]r[γ] ∩ s[δ]r[δ])

Fact
= (s[γ][γ]r ∩ s[γ]r[δ]) ∪ (s[δ]r[γ] ∩ s[δ][δ]r)
IH
= (∅ ∩ s[γ]r[δ]) ∪ (s[δ]r[γ] ∩ ∅)
= ∅

3. α = γ ∨ δ: Again, we use Fact 6.2.3 to see the following:

s[γ ∨ δ][γ ∨ δ]r = s[γ ∨ δ][γ]r ∩ s[γ ∨ δ][δ]r

Fact
= s[γ]r[γ ∨ δ] ∩ s[δ]r[γ ∨ δ]
= (s[γ]r[γ] ∪ s[γ]r[δ]) ∩ (s[δ]r[γ] ∪ s[δ]r[δ])

Fact
= (s[γ][γ]r ∪ s[γ]r[δ]) ∩ (s[δ]r[γ] ∪ s[δ][δ]r)
IH
= (∅ ∪ s[γ]r[δ]) ∩ (s[δ]r[γ] ∪ ∅)
= s[γ]r[δ] ∩ s[δ]r[γ]

And by distributivity (Fact 6.2.2) we see that this is equal to the set
{
w ∈

s | {w}[γ]r = {w} and . . . and {w}[γ] = {w}
}
, but by the law of excluded

middle (Fact 6.2.5) we see that this is the empty set.

4. α = ¬γ: As order does not matter (Fact 6.2.3), we see the following:

s[¬γ][¬γ]r = s[γ]r[γ]

Fact
= s[γ][γ]r

IH
= ∅

92



Fact (6.2.7). For α ∈ BiUS∅, and any state s:

i) If s[|α|+] is defined, then s[|α|+] = s[α].

ii) If s[|α|+]r is defined, then s[|α|+]r = s[α]r.

Proof. By double induction on the complexity of α. The overview of update
clauses for pragmatically enriched formulas at the beginning of this appendix can
be helpful for this proof.

1. α = p

• If defined, s[|p|+] = s[p].

• If defined, then s[|p|+]r = s[p]r.

2. α = γ ∧ δ:

• If defined, s[|γ ∧ δ|+] = s[|γ|+] ∩ s[|δ|+] IH= s[γ] ∩ s[δ] = s[γ ∧ δ].
• If defined, s[|γ ∧ δ|+]r = s[|γ|+]r ∪ s[|δ|+]r IH

= s[γ]r ∪ s[δ]r = s[γ ∧ δ]r.

3. α = γ ∨ δ: Analogous to the ∧-case.
4. α = 3γ:

• If defined, s[|3γ|+] = s and s[|γ|+] ̸= ∅. So then by the induction
hypothesis, s[γ] ̸= ∅ and thus s[3γ] = s as well.

• If defined, there are two cases for the rejection clause.

– s[|γ|+]r = s: Then we see that s[|3γ|+]r = s and by the induction
hypothesis s[γ]r = s. Hence, we also have s[3γ]r = s.

– s[|γ|+]r ̸= s: Then s[|3γ|+]r = ∅. By the induction hypothesis we
see that s[γ]r ̸= s and thus also s[3γ]r = ∅.

5. α = ¬γ:

• If defined, s[|¬γ|+] = s[|γ|+]r IH
= s[γ]r = s[¬γ].

• If defined, s[|¬γ|+]r = s[|γ|+] IH= s[γ] = s[¬γ]r.

Fact (6.2.8). For α ∈ BiUS0 and any state s, s[α] = s ∩W [α].

Proof. By distributivity (Fact 6.2.2) we see the following.

s[α] =
{
w ∈ s | {w}[α] = {w}

}
= s ∩

{
w ∈W | {w}[α] = {w}

}
= s ∩W [α]

Fact (6.2.9 (Idempotency)). For α ∈ USBiUS and any state s, s[α] = s[α][α].
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Proof. Note that if α ∈ USBiUS , then either α is also in BiUS0 or α = 3β for
β ∈ BiUS0. In the former case we see by Fact 6.2.8 that s[α] = s ∩ W [α] =
s ∩W [α] ∩W [α] = s[α] ∩W [α] = s[α][α].

If α = 3β for β ∈ BiUS0, then s[3β] = s or s[3β] = ∅. In the former case we
directly see that s[3β][3β] = s[3β] and in the latter it follows from eliminativity
that s[3β][3β] = ∅[3β] = ∅ = s[3β].

Fact (6.2.10 (Monotonicity)). For α ∈ USBiUS, and any state s and t, t ⊆ s
implies t[α] ⊆ s[α].

Proof. Again we see that α ∈ BiUS0 or is the form α = 3β for β ∈ BiUS0. In
the former case we see by Fact 6.2.8 that t[α] = t ∩W [α] ⊆ s ∩W [α] = s[α].

Now suppose α = 3β for β ∈ BiUS0, then we know that t[3β] and s[3β] are
defined. Either t[β] ̸= ∅ or t[β] = ∅, in the latter of which it directly follows that
t[3β] = ∅ ⊆ s[3β]. And if t[β] ̸= ∅ then it follows from the argument above that
s[β] ̸= ∅. Hence, t[3β] = t ⊆ s = s[3β].

D.2 Proofs of Section 6.3

Fact (6.3.6). Let α, β ∈ BiUS0. Then α 99Kβ, α ⊨ β and |α 99Kβ|+, |α|+ ⊨ |β|+.

Proof. We start with the non-enriched version, so suppose s[α 99Kβ][α] is defined.
There are two cases.

• s[α][β] = s[α]: Then we see that s[α 99Kβ][α] = s[α] = s[α][β] =
s[α 99Kβ][α][β] by our assumption and the definition of 99K. Hence,
s[α 99Kβ][α] ⊨ β.

• s[α][β] ̸= s[α]: Then s[α 99Kβ] = ∅ and by eliminativity we see that
s[α 99Kβ][α][β] = ∅ = s[α 99Kβ][α]. So again s[α 99Kβ][α] ⊨ β.

Now let us consider the pragmatically enriched version, and suppose
s[|α 99Kβ|+][|α|+] is defined. Then it must be that s ̸= ∅ and s[|α|+][|β|+] =
s[|α|+], and thus s[|α 99Kβ|+] = s. Hence, s[|α 99Kβ|+][|α|+][|β|+] =
s[|α|+][|β|+] = s[|α|+] = s[|α 99Kβ|+][|α|+]. So we see that indeed
s[|α 99Kβ|+][|α]|+ ⊨ |β|+.

Fact (6.3.7). For α, β ∈ BiUS0, we have α 99Kβ,¬β ⊨ ¬α.

Proof. Suppose s[α 99Kβ][¬β] is defined. There are two cases.

• s[α][β] = s[α]: Then by distributivity (Fact 6.2.2) we know that ∀w ∈
s : {w}[α] = {w} implies {w}[β] = {w}. Furthermore, s[α 99Kβ] = s
and thus s[α 99Kβ][¬β][¬α] = s[¬β][¬α]. Now by eliminativity we see that
s[¬β][¬α] ⊆ s[¬β]. For the other direction, let w ∈ s[¬β] and thus by
distributivity {w}[β]r = {w}. Then by the law of excluded middle (Fact
6.2.5) it follows that {w}[β] ̸= {w} and thus from our assumption we see
that {w}[α] ̸= {w}. So by the same fact it follows that {w}[α]r = {w} and
thus by distributivity w ∈ s[β]r[α]r = s[¬β][¬α]. Hence, s[¬β] ⊆ s[¬β][¬α]
and thus s[¬β][¬α] = s[¬β]. We conclude that s[α 99Kβ][¬β] ⊨ ¬α.
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• s[α][β] ̸= s[α]: Then we see that s[α 99Kβ] = ∅ and by eliminativ-
ity s[α 99Kβ][¬β][¬α] = ∅ = s[α 99Kβ][¬β]. Hence, we again see that
s[α 99Kβ][¬β] ⊨ ¬α.

Fact (6.3.8). Let α, β ∈ BiUS0 and γ ∈ BiUS∅, then we have α 99K(β 99K γ) ≡
(α ∧ β) 99K γ and |α 99K(β 99K γ)|+ ≡ |(α ∧ β) 99K γ|+.

Proof. Let us first look at the non-enriched version.
(⇒): Suppose s[α 99K(β 99K γ)] is defined. Then there are two cases.

• s[α][β][γ] = s[α][β]: Then we see that s[α][(β 99K γ)] = s[α] and thus
s[α 99K(β 99K γ)] = s. By distributivity (Fact 6.2.2) we know that s[α][β] =
s[α ∧ β] and thus in this case we see that s[α ∧ β][γ] = s[α ∧ β], i.e.,
s[α 99K(β 99K γ)] ⊨ (α ∧ β) 99K γ.

• s[α][β][γ] ̸= s[α][β]: Then we see that s[α][β 99K γ] = ∅. Again there are
two cases:

– s[α] = ∅: It must be that s[α][β][γ] is defined, so by eliminativity we
see that actually s[α][β][γ] = ∅ = s[α][β]. A contradiction, so this
cannot happen.

– s[α] ̸= ∅: By our assumption s[α 99K(β 99K γ)] = ∅. And by elimi-
nativity, ∅[α ∧ β] = ∅ = ∅[α ∧ β][γ]. So then we also conclude that
s[α 99K(β 99K γ)] ⊨ (α ∧ β) 99K γ.

(⇐): Suppose s[(α ∧ β) 99K γ] is defined. Then there are two cases.

• s[α ∧ β][γ] = s[α ∧ β]: Then we see that s[(α ∧ β) 99K γ] = s. And by
distributivity we see that s[α][β][γ] = s[α][β], and thus s[α][β 99K γ] = s[α].
Hence, s[α 99K(β 99K γ)] = s and we can conclude that s[(α ∧ β) 99K γ] ⊨
α 99K(β 99K γ).

• s[α∧ β][γ] ̸= s[α∧ β]: Then s[(α∧ β) 99K γ] = ∅. And thus by eliminativity
it follows that ∅[α][β][γ] = ∅[α][β] = ∅[α] = ∅ and thus s[(α ∧ β) 99K γ] ⊨
α 99K(β 99K γ).

The enriched version is simpler.
(⇒): Suppose s[|α 99K(β 99K γ)|+] is defined and thus is equal to s. Then

we see that s[|α|+][|β|+][|γ|+] = s[|α|+][|β|+]. Because a defined update with
pragmatic enrichment is the same as without pragmatic enrichment (Fact 6.2.7)
and by distributivity (Fact 6.2.2) we see that s[|α|+][|β|+] = s[|α|+] ∩ s[|β|+] =
s[|α ∧ β|+] as s[|α|+] ̸= ∅ ≠ s[|β|+]. So by our assumption, s[|α ∧ β|+][|γ|+] =
s[|α ∧ β|+]. Hence, s[|α 99K(β 99K γ)|+] ⊨ |(α ∧ β) 99K γ|+.

(⇐): This is analogous to the previous case.

Fact (6.3.11). p ∨ q,3¬p ⊨ ¬p 99K q and |p ∨ q|+, |3¬p|+ ⊨ |¬p 99K q|+

Proof. Let us start with the non-enriched version. Suppose s[p∨q][3¬p] is defined,
then there are two cases.
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• s[p ∨ q][p]r ̸= ∅: Then s[p ∨ q][3¬p] = s[p ∨ q], and by the direct argument
(Fact 6.3.1) we see that s[p ∨ q] ⊨ ¬p 99K q.

• s[p∨q][p]r = ∅: Then we see that s[p∨q][3¬p] = ∅, and thus by eliminativity
also s[p ∨ q][3¬p][¬p 99K q] = ∅.

So in both cases we see that s[p ∨ q][3¬p] ⊨ ¬p 99K q.
Now consider the pragmatically enriched version and suppose s[|p ∨

q|+][|3¬p|+] is defined, then it must be that s[|p ∨ q|+] ̸= ∅ ̸= s[|p ∨ q|+][|¬p|+].
And as a defined update with pragmatic enrichment is the same as without prag-
matic enrichment (Fact 6.2.7), we see that s[|p ∨ q|+][|¬p|+] = s[p ∨ q][¬p]. Now
by distributivity and the law of excluded middle (Fact 6.2.5) it follows that
s[p ∨ q][¬p] =

{
w ∈ s | {w}[p]r = {w} and {w}[q] = {w}

}
= s[p ∨ q][¬p][q].

And as this is non-empty we can finally conclude that s[|p ∨ q|+][|¬p|+] =
s[|p ∨ q|+][|¬p|+][|q|+], i.e., s[|p ∨ q|+][|3¬p|+] ⊨ |¬p 99K q|+.

D.3 Proofs of Section 6.4

Fact (6.4.2). Let α, β ∈ BiUS∅(99K) and let Γ be a sequence of ξ1, . . . , ξn such
that ξ1, . . . , ξn ∈ BiUS∅(99K). Then Γ, α ⊨ β if and only if Γ ⊨ α 99Kβ.

Proof. (⇒): Suppose Γ, α ⊨ β, and also suppose s[Γ] is defined.151 As α is ne-
free, we see s[Γ][α] is always defined. And thus by our first assumption it follows
that s[Γ][α][β] = s[Γ][α]. But this directly shows that s[Γ] ⊨ α 99Kβ.

(⇐): Suppose Γ ⊨ α 99Kβ. Now also suppose that s[Γ][α] is defined, then it
must be that s[Γ] is defined. So by our assumption we see that s[Γ][α 99Kβ] = s[Γ],
i.e., s[Γ][α][β] = s[Γ][α]. In other words, s[Γ][α] ⊨ β.

Fact (Transitivity BiUS0(99K)). Let α, β, γ ∈ BiUS0, then α 99Kβ, β 99K γ ⊨
α 99K γ.

Proof. Suppose s[α 99Kβ][β 99K γ] is defined. Then there are two cases:

• s[α][β] = s[α]: Then s[α 99Kβ] = s and again there are two cases.

– s[β][γ] = s[β]: Then it follows from the fact that order doesn’t matter
(Fact 6.2.3) and these two assumptions that s[α][γ] = s[α][β][γ] =
s[β][γ][α] = s[β][α] = s[α][β] = s[α]. And thus s ⊨ α 99K γ.

– s[β][γ] ̸= s[β]: Then we know that s[α 99Kβ][β 99K γ] = ∅ and by
eliminativity we find that s ⊨ α 99K γ.

• s[α][β] ̸= s[α]: Analogous to the previous case.

Fact (6.4.4). Let α, β, γ ∈ BiUS0. Then, (α ∨ β) 99K γ ⊨ (α 99K γ) ∧ (β 99K γ).

Proof. Suppose s[(α ∨ β) 99K γ] is defined, then there are two cases.

151By this we mean that s[ξi] . . . [ξn] is defined.
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• s[α∨β][γ] = s[α∨β]: Then we see that s[(α∨β) 99K γ] = s. By distributivity
(Fact 6.2.2) we see that this means that ∀w ∈ s:

(
{w}[α] = {w} or {w}[β] =

{w}
)
implies {w}[γ] = {w}. Hence,

{
w ∈ s | {w}[α] = {w} and {w}[γ] =

{w}
}

=
{
w ∈ s | {w}[α] = {w}

}
, i.e., s[α][γ] = s[α]. Hence, s[(α ∨

β) 99K γ] ⊨ α 99K γ. Similarly for β 99K γ.

• s[α ∨ β][γ] ̸= s[α ∨ β]: Then we see that s[(α ∨ β) 99K γ] = ∅. And by
eliminativity we see that it ∅[α][γ] = ∅ = ∅[α], i.e., s[(α∨β) 99K γ] ⊨ α 99K γ.
Similarly for β 99K γ.
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