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Abstract

Against the backdrop of current research into 'logical dynamics' of information, we discuss two-

way connections between conversation and computation, leading to a broader perspective on both.

1 Information flow for children, and logical dynamics

The Amsterdam Science Museum NEMO organizes regular Kids' Lectures on

Science. 1 Imagine 60 children aged aged around 8 sitting in a small amphitheatre –

with parents present in the wings, but not allowed to speak. Last February, it was my

pleasure to give one on Logic. While preparing for the event, I got more and more

worried. How does one talk logic to such an audience, without boring or upsetting

them? Was there anything in common between children that age and the abstractions

that drive one's university career? How to even start? My first question was this:

The Restaurant  In a restaurant, your Father has ordered Fish, your Mother

ordered Vegetarian, and you have Meat. Out of the kitchen comes some new

person with the three plates. What will happen? The children got excited,

many little hands were raised, and one said: "He asks who has the Meat". "Sure

enough", I said: "He asks, hears the answer, and puts the plate. What happens

next?" Children said "He asks who has the Fish!" Then I asked once more what

happens next? And now one could see the Light of Reason start shining in

those little eyes. One girl shouted: "He does not ask!" Now, that is logic...

After that, we played a long string of scenarios, including card games, Master Mind,

and Sudoku, and we discussed what best questions to ask and conclusions to draw.
2 In my view, the Restaurant is about the simplest realistic logical scenario. Several

basic informational actions take place intertwined: questions, answers, and

inferences, and the setting crucially involves more than one agent. Moreover,

successive speech acts can be analyzed for their informational content once they

have taken place, but they can also be planned beforehand: what best to ask, how

best to answer? The program of 'Logical Dynamics' (van Benthem 1996) is about

identifying and analyzing such scenarios, moving, in particular, the information-

carrying events into the logical systems themselves. And once we take that view, we

needed a congenial account of computation. What happens during a conversation is

                                                
1 See    http://www.nemo-amsterdam.nl/   .
2 The program included a Magic session with a card trick that failed to defy Logic in the end – plus

a non-scheduled case of crying, a less common speech act in Academia. But that is another story.
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that information states of children – singly, and in groups – change over time, in a

systematic way triggered by various communicative events. In this universe of states

and possible transitions between them, the long experience of computer scientists in

modeling computation becomes relevant, from Turing's first 'single-minded'

computers to dealing with the multi-agent Internet. Please note that this is not a

matter of computational 'implementation', the subservient stance some computer

scientists assume vis-a-vis other academic disciplines. We care rather about

fundamental ideas, and the general cultural contribution of Informatics.

This paper is largely a discussion of known results and what they mean or suggest

in a broader setting.  Proofs and further details are found in the cited literature.

2 Multi-agent information models and epistemic logic

The first step in modeling conversation is a good notion of state, and hence the

'static component' of the total enterprise. For simple scenarios like the above, a

logical apparatus exists, viz. epistemic logic (Hintikka 1962, Fagin et al. 1995). In

the Restaurant scenario, the initial information state for the waiter from the kitchen

had 6 possible arrangements for the three dishes over the three of us. As far as the

new waiter is concerned, all are options, and he only 'knows' what is true in all of

them. The new information that I have the Meat reduces this uncertainty to only 2:

'fish-vegetarian 'or 'vegetarian-fish' for my father and mother. Either way, the waiter

now knows that I have the Meat. Then hearing that father has the Fish reduces this

to one single option: the waiter has complete information about the correct

placement of the dishes, and does not need to ask any further question – even

though he may still have to perform an inference to make this vivid to himself:

      6       Child has Meat      2    Father has Fish 1

   State 1  State 2         State 3

Epistemic logic: language and models   Here is some basic epistemic logic, as far

as needed here. The syntax has a classical propositional base with added modal

operators Ki

�
 ('i knows that 

�
') and CG

�
 ('
�

is common knowledge in group G'):

   p | ¬
�
 | 
� � �

| Ki

�
 | CG

�

The states of our informational processes are models for this language, i.e., triples

M = (W, {~i | i � G}, V), where W is a set of worlds, the ~i are binary accessibility

relations between worlds which agent i cannot distinguish as viable candidates for
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the real situation 3, and V is a propositional valuation. The fundamental epistemic

truth condition for knowledge of an agent is then as follows:

M, s |= Ki � iff for all t with s ~i t: M, t |= �
This language can define an existential dual of knowledge ¬Kj¬ ��� or  <j> � � � agent

j considers it possible that � 	 plus other useful expressions such as Kj �  
 Kj¬ � :
agent j knows whether � � In particular, multi-agent interaction is a crucial feature.

E.g., in asking a 'normal' question, a questioner Q conveys he does not know if � :
¬KQ �   & ¬KQ¬ � . Moreover, usually he also thinks that the addressee A might

know, which can be stated as an iterated two-agent assertion <Q> (KA � 
 KA¬ � � .
State transitions: information flow and model update  Levels of knowledge about

others occurred in the second scenario that was played with the children in NEMO:

The Cards   Three cards were given to three volunteers who stepped up: 1 got

Red, 2 White, and 3 Blue. Each child could see its own card, but not those of

the others (I was circling my little volunteers to make sure). Child 2 was

allowed one question, and she asked 1: “Do you have the blue card?”. 1 then

answered truthfully: “No". Which child has figured out what in this process?

I asked beforehand, and all said they knew nothing. I asked again right after the

question, and now Child 1 said he knew the cards. His reasoning, as whispered to

me: "She would not have asked if she had the blue card herself. So, 3 must have it."

After the answer had been given, child 1 and 2 said they knew the cards, and 3 still

did not. But (with a little help) 3 did understand why the others knew the cards.

All this can be analyzed in words, but here is how things would look in an epistemic

state transition framework. The initial situation again has 6 options, and the

uncertainty lines indicate what players hold possible from where they are:

   rwb           1         rbw
      2           2

                         3    
          bwr    3     wbr
         3    

      1           1
   brw        2        wrb

2's question, if seen as informative 4, eliminates all worlds with second position  ‘b’:

                                                
3 One often takes these relations to be equivalence relations – but this is optional.
4 Taking questions in this innocent way need not be sensible in the setting of real games!
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   rwb                    
      2          

          bwr      
      3    

      1          
   brw        2        wrb

We see at once that, in the real world rwb, 1 has no uncertainty line going out, and

hence he knows the cards there. (We also see that 3 knows this, as it happens at

both rwb and wrb.) Next, 1’s answer eliminates all worlds with first position ‘b’:

 rwb                 
    

    3       
wrb

This reflects the final situation of the children.

Group knowledge Once again, multi-agent interaction is crucial. Indeed, the

children even achieve a new level of knowledge that is sui generis, viz. common

knowledge: in addition to what they know about the facts of the situation, they also

know that the others know, and so on, up to any iteration. Common knowledge

occurs in philosophy, linguistics, and economics as a prerequisite for coordinated

action.  Technically, this new notion is defined as follows over our models:

M, s |= CG  iff for all t that are reachable from s by some

finite sequence of ~i steps (i � G): M, t |= 
This multi-agent view may seem far from standard logic and computation where

single agents draw inferences or make calculation steps. But real argumentation is

an interactive process, and even in the heartland of computation, very early on,

Turing emphasized the crucial social character of using computers and learning. 5

Belief and other attitudes of agents  Knowledge is just one informational attitude

of agents. One can also model beliefs, probabilities, and so on, using a broader

variety of accessibility relations. A simple epistemic structure suffices for our aims,

but we will mention less simplistic versions with agents' beliefs occasionally.

Summarizing then, our initial NEMO example is not 'child's play'. Conversational

scenarios are a basic human ability involving sophisticated interactive knowledge

that needs to be understood in depth. And thus, they provide a rich subject of study

for Informatics, where logical and computational notions make good sense.

                                                
5 Cf. Turing 1950. Wilfried Sieg explained to me how Turing emphasized learning in social settings.
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3 Conversation as computation: update actions

Communicative events range from simple public statements to complex private ones:

recall my whispered conversation with child 1. And much more subtle scenarios

exist in our lives. To move this inside our logic, we need an explicit account of

relevant actions and their effects. Here a powerful metaphor comes into play:

Conversation is Computation!

Conversation is really an interactive form of computation, much as present-day

computational systems have many agents engaged in a wide variety of tasks.

Technically, then, conversational processes, and communication in general, may be

modeled using existing systems from the computational tradition. In this paper, we

will focus mainly on dynamic logic, originally developed as a logical account of

programs and their effects (Pratt 1976), which has gradually evolved into a general

theory of action. We start with the simplest mechanism of information flow.

Public announcement as world elimination Public announcements of true

propositions P change the current situation as follows. For any model M, world s,

and formula P true at s,  (M|P, s) (M relativized to P at s) is the submodel of M

whose domain is the set {t � M | M, t |=P}. In a picture, one goes

              from M   to M|P

             s s

P       ¬P

Crucially, truth values of formulas may change in such an update step: most notably,

because agents who did not know that P now do after the announcement.  This truth

value change can be quite subtle over time, including even cases where statements

make themselves false. 6 One needs logics to keep this all straight .

Product update with event models   Whispering is public announcement in a

subgroup of a larger group, but it is only partially observable to the others. Hiding,

secrets, and limited observation are ubiquitous in everyday communication.

Consider your email. The epistemic-dynamic role of cc is public announcement.

But the more sophisticated button bcc achieves partial announcement which can

even mislead other participants.  More complex scenarios arise in computer security,

and in the arena of games, which are often designed to manipulate information flow.

Partial observation of events may be analyzed as the following construction for

                                                
6 Just truly announce P = "You do not know that p, but it is really true" – and see P become false.
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changing models (Baltag, Moss & Solecki 1998). Scenarios where information

flows in different ways for different agents  can be represented in

Event models A = (E, {~i | i � G}, {PREe | e � E})

Here E collects all relevant events. The uncertainty relations ~i encode which events

agents cannot distinguish. E.g., when the children checked their cards, the girl with

the white card could not tell '1's seeing red' from '1's seeing blue'. Now, information

flow occurs because events e have preconditions PREe for their occurrence (say, my

having a red card, not knowing the answer to my question, etc.). When you observe

an event, you learn that something must have been the case for this to happen.

The following Update Rule encodes the resulting mechanism of information flow:

For any epistemic model (M, s) and event model (A, e), the product

model (MxA, (s, e)) has a distinguished new world (s, e), and then

(a) a domain {(s, e) | s a world in M, e an event in A, (M, s)|= PREe},  

(b) accessibility  relations (s, e)  ~i (t, f)  iff  both  s ~i  t  and  e ~i f,

(c) the valuation for atomic formulas  p at (s, e) is that for s in M. 7   

Product update models a wide variety of information scenarios. And the universe of

models with product update MxA has a rich logical and computational structure. 8

Belief and other dynamic phenomena  Knowledge was just one feature in

information flow. If we also model agents' beliefs and expectations, product update

can describe events affecting belief, including misleading actions, leading to false

beliefs. Moreover, we need not just record information update. We can also model

belief revision, a more agent-dependent phenomenon, which can depend on very

different 'policies' for different types of agent, more conservative or more radical. 9

4 Dynamic-epistemic logics of informative events

Given all these interesting actions that transform epistemic models, we want to study

them explicitly. Now, keeping track of truth value changes for epistemic assertions

can be as tricky as finding out what a particular program achieves over time. Thus, it

                                                
7 This stipulation of 'inertia' basically says that physical facts do not change under communication.

This constraint can easily be lifted to let the system deal with genuine non-epistemic world change.
8 Unlike with world elimination, epistemic product models can now get larger under update. But

there is a counteracting force to this growth in complexity, as later models may be bisimilar

with earlier ones, making the iterated epistemic long-term process cycle (van Benthem 2006C).
9 Different policies even multiply when we define updates for further relevant phenomena in
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is useful to keep track of both the statics and the dynamics in one logical calculus.

Relevant frameworks from the computational literature include temporal logic,

process algebra, or linear logic. Here, we choose dynamic logic (Harel et al. 2000)

with its two levels of expressions � for programs, and propositions � describing

successive states produced by these. The main operator of the language is

 [� ] � � "after any successful execution of � , � holds in the resulting state".

This language stays close to that of modal logic, the lingua franca of much of

computational logic, and it treats dynamic processes as being equivalent up to

bisimulation, probably the most widely used notion of process equivalence. Still,

this section is not meant as propaganda for any approach, but as a demonstration

how computational logic of conversation and much more is entirely feasible.

Dynamic epistemic logic of public announcement  The language of public

announcement logic PAL is the epistemic language with added action expressions:

Formulas P: p | ¬ �  | � � � | Ki �  | CG �   | [A] �
Action expressions  A: P!

Here, the idea of treating announcements as actions, and having them explicitly

inside modalities of the language comes from dynamic logic. The semantics is this:

M, s |= [P!] � iff if M, s |=P, then M|P, s |= �
There is a complete calculus of information flow under public announcement –  i.e.,

a complete logic of basic communication (Plaza 1989, Gerbrandy 1999):

Theorem PAL without common knowledge is axiomatized completely by  

the usual laws of epistemic logic plus the following reduction axioms:

[P!]q ��� P �   q) for atomic facts  q

[P!]¬ ����� P � ¬[P!] �  )
[P!] � � � �  ) ���  [P!] � �  [P!] �  )
[P!]Ki ���  �  P � Ki[P!] �  )

Methodology   These axioms describe conversation in an elegant style, analyzing

effects of assertions in a compositional way by recursion on the 'postconditions'

behind the dynamic modalities. Thus, they reduce every formula of our dynamic-

epistemic language eventually to a formula in the static epistemic language (cf. the

                                                                                                                                                  

communication and interaction, such as changes in preferences or goals (van Benthem & Liu 2006).
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'regression procedure of Reiter 2001). In terms of the logic, the reduction procedure

shows that PAL is decidable, since the static epistemic base logic is decidable.  10

This method of 'dynamification' applies to a wide range of informational events.

First, choose a static language with models that represent information states for

groups of agents. Next analyze the relevant informational events as update models

changing the static ones. These updates are then described explicitly in a dynamic

extension of the language, which can also state effects of events using propositions

that hold after their occurrence.. The resulting logics have a two-tier set-up:

static base logic            dynamic extension

At the static level, one gets a complete axiom system for one's chosen models. The

computational analysis then adds a set of dynamic reduction axioms for effects of

events. Thus every formula is equivalent to a static one – and hence, if the static base

logic is decidable, so is its dynamic extension. In principle, this modular dynamic

epistemic design is independent from specific properties of the static models. E.g.,

the PAL axioms do not depend on assumptions about epistemic accessibility

relations. Its completeness theorem holds just as well if the static models are

arbitrary, validating the minimal modal logic K as some minimal logic of belief.  

Technical  issues  Sometimes, treating conversation as computation changes our

ideas about an underlying static system. E.g., the completeness theorem for PAL

omits common knowledge after announcements. To get a reduction axiom for

formulas [!P]CG � , one must enrich epistemic logic beyond its standard version (van

Benthem, van Eijck & Kooi 2005). Conditional  common knowledge  CG (P, � �
says that � is true in all worlds reachable via some finite path of accessibilities

running entirely through worlds with P. Then we get the valid reduction law:

[P!]CG ��� CG(P, [P!] � �  Conditional common knowledge is not definable in the

basic epistemic language – but it is bisimulation-invariant, and completeness proofs

are easily generalized. 11  There is an analogy here with conditional assertions  � !"  in belief revision, which state what we would believe were the antecedent to be

                                                
10 This reduction does not settle computational complexity: basic epistemic logic is Pspace-complete,

but translation via the axioms may increase the length of formulas exponentially. Cf. Section 6.
11 Indeed, PAL with conditional common knowledge is axiomatized completely by adding  

just one more valid reduction law  [P!]CG# $ % & ' (  CG (P )  [P!]$ %  [P!]& ' *
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considered (van Benthem 2006). PAL has a modal bisimulation-based model theory,

with many interesting issues of expressive power and computational complexity.  12

General dynamic epistemic logic  More general product update for communicative

and observational scenarios can also be dealt with in this dynamic logic format. The

language of dynamic-epistemic logic (DEL) has the following syntax:

p | ¬ +  | + , - | Ki +  | CG +   | [A, e] +  :
where (A, e) is any event model with actual event e. The semantic key clause is

M, s |= [A, e] +    iff   M x A, (s, e) |= + .
Baltag, Moss & Solecki 1998 then showed completeness in this wider setting:

Theorem DEL is effectively axiomatizable and decidable.

The key reduction axiom is the one extending that for public announcement:

[A, e]Ki +0/    PREe 1 111  2 222  { Ki[A, f] + ))  | f ~i e in A}

Further challenges Again consider common knowledge or belief. Just try to figure

out what common beliefs hold in the following email scenario. Agent 1 sent

message e, but in such a way that the other agent 2 believes that message f was sent:

       1 2            1
 e  f          

                                                           2

Van Benthem, van Eijck & Kooi 2005 extend DEL to a logic LCC using ideas from

dynamic logic and 3 –calculus to get complete sets of axioms for such scenarios. 13

Dynamic logics  for belief revision and preference change The above format also

provides complete logics for events of belief revision, and even more general

preference change. These involve conditional beliefs, and compositional axioms for

changes in them after 'hard facts' such as public announcements !P, or 'soft facts':

weaker triggers for belief revision 4 P which may be overridden later on. 14

                                                
12 Cf. van Benthem 2005 for a survey of many open problems in this area.
13 Another relevant issue is the 'view of agents' in product update. They satisfy Perfect Memory,

and No Miracles: learning only occurs through observation of suitable events. Van Benthem & Liu

200x show that this is complete – Liu 2006 looks at much greater diversity of epistemic agents.
14 Just to show the format, here are two reduction axioms for new beliefs after hard and soft

triggers: [!P] Bi(5 6 7 8  9   P :  Bi ( [!P]5  | P ;  [!P]7 ), [ < P] B(5 |7 ) 9>= ? ??? = P ; [ < P]7 ) ;  B([ < P]5
| P ; [ < P]7 )) @  B([ < P]5  | [ < P]7 ). For details, cf. van Benthem 2006A, Baltag & Smets 2006.
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Model change and other dynamic frameworks  The general idea behind update

mechanisms for knowledge or belief is definable model change. One selects or even

creates new individual objects (the worlds) out of old ones, and then redefines the

relevant relations between them. There are other systems than dynamic logic in the

computational literature with a similar flavour. E.g., process algebra is a family of

calculi for constructing new processes out of given ones. Indeed, our product update

MxA respects bisimulation in the standard process-algebraic sense. In our view,

DEL is a nice calculus of model change intermediate between dynamic logic and

process algebra,  which combines an 'external language' for defining processes with

an 'internal language' describing properties of states within these processes.

Merging major computational process paradigms may be a good idea in general .

5 Program structures in conversation

Genuine computation involves control over long sequences of actions. Likewise,

conversation involves many assertions governed by program constructions. When

talking with our dean, we first praise the current state of the Faculty of Science, and

then ask for funding. And what we say depends on his current state. We

commiserate when he looks troubled, and joke when he looks happy. Finally, there

is an iterative process of 'flattery'. We keep saying nice things until his brow clears,

and the right moment for our funding request has come. Thus, conversation involves

all the basic operations from sequential programming: (a) sequential composition ;,

(b) guarded choice IF ... THEN... ELSE...., (c) guarded iterations  WHILE... DO...

A much-quoted concrete example is the puzzle of the 'Muddy Children':

After playing outside, two of three children have mud on their foreheads.

They all see the others, but not themselves, so they do not know their

own status. Now their Father comes and says: “At least one of you is dirty”.

 He then asks: “Does anyone know if he is dirty?" The children answer

truthfully. As this question–answer episode repeats, what will happen?

Nobody knows in the first round. Next, the muddy children argue as follows. “If I

were clean, the one dirty child I see would have seen only clean kids, and so she

would have known that she was dirty. But she did not. So I must be dirty, too!”

This both know their status in the second round. The third child knows it is clean

one round later. The puzzle easily extends to more clean and dirty children. 15

                                                
15 For a concrete update sequence describing this scenario, cf. Fagin et al. 1995, van Benthem 2006.
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Clearly, all three preceding program constructions occur here: sequential assertion,

guarded action (children must respond differently depending on what they know),

and iteration: the process repeats until common knowledge is achieved.

Adding full dynamic logic  To analyze complex conversations,  PAL or DEL must

be extended with propositional dynamic logic PDL, which has a test operation

? A on propositions, plus the three regular operations of sequential composition ;,

choice B , and iteration *. We display the major valid axioms here:

(a) [ A ?] C   D  ( A E  C F , (b) [G 1;G 2] A  D  [G 1][G 2] A ,
(c) [G 1 B G 2] A  D  ([G 1] A  H  [G I ] A F , (d) [G *] A  D  ( A  H  [G ][G *] A F J
and K e) ( A H  [G *]( A  E  [G ] A )) E   [G *] AML N

These axioms work by recursion on the first argument of our modal statements

[G ] A , rather than the second. It is known that PDL as a system of arbitrary actions is

completely axiomatized by these principles – and indeed, it is decidable.  17

Further constructions But conversation also involves further program operations.

It is crucial to the Muddy Children puzzle that the children answer simultaneously.

This is parallel composition of individual actions, as in distributed computing and

process algebra. PAL treats simultaneous speech as announcing a conjunction, and

thus !( A H C ) is a simple analogue of a parallel composition! A || ! C .  18

Temporal logic  All this eventually embeds dynamic epistemic logics into broader

epistemic temporal logics over branching trees of events (Fagin et al. 1995, Parikh

& Ramanujam 2003). The latter perspective  links up with another process tradition

in computer science, viz. temporal  logics in the style of Pnueli, Clarke, and others.

Cf. van Benthem & Pacuit 2006 for connections with our current setting.

6 Complexity of logical tasks

Computation involves a balance between representation and processing of data, and

so do logical systems. While dynamic epistemic logics provide a rich account of

effects of events that carry information, their expressive power has a price in terms

of computational complexity. Indeed, any logical system can be used for a variety of

core tasks which all involve computational complexity.

                                                
16 Together, the axioms for O * say that a universal modality [O *]P is a greatest fixed-point operator.
17 Combining PDL  with epistemic logic into a richer version of DEL will involve recursions on

both actions and postconditions. The precise nature of this joint approach remains to be understood.
18 No explicit axiomatization is known yet for this defined parallel operator || in PAL or DEL.
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Model checking  We start with model checking, i.e., determining whether M, s |= Q
for a given model M and formula Q . For basic epistemic logic, this task is P-time in

the size of formulas and models (Vardi 1997). In our conversational setting, model

checking DEL-formulas corresponds to computing the effects of informational

events in a given informational situation. Van Benthem, van Eijck & Kooi 2005

show that model-checking complexity  remains P-time for arbitrary formulas Q of

DEL. 19 Thus, verifying the effects of a given conversational plan is an easy task.

Satisfiability  But the more ambitious task is conversation planning: how to set up a

setting in order to achieve certain desired effects? This can still be cast as a model

checking problem when the epistemic 'space' is given beforehand (see below),  but in

general one asks for the existence of some information model satisfying some

specified properties. This is the problem of satisfiability (SAT): when does a given

formula have a model? The SAT problem for basic epistemic logic is Pspace-

complete. The axioms for PAL provide a SAT reduction to this system, but given the

shape of the axioms, this might be exponential. Lutz 2005 provides a better

reduction which shows that SAT complexity for PAL remains Pspace-complete. 20

While this might suggest that dynamifying a base logic does not affect complexity,

further dynamic epistemic logics still have surprises in store. In particular, the above

combination  of PAL with the program operations of dynamic logic PDL, i.e., the

combination of two systems each of which are decidable, leads to a surprise:

Theorem (Miller & Moss 2003) PAL with PDL operations is undecidable. 21

More concretely, designing puzzles like Muddy Children and solving conversation

planning problems in them can be extremely hard!

Complexity of further tasks?  Besides standard model checking and satisfiability,

there may be other natural complexity issues for dynamic-epistemic logics. For

instance, a set of admissible assertions, or a more general conversational protocol

over some given initial model generates a model M with all possible trajectories for

an informational process. In such a model, we can ask for conversational plans

achieving intended effects; say in the form of PDL programs as above which are

guaranteed to move from the initial state to some state satisfying some goal

proposition Q . The resulting intermediate model-checking problems asks if there

exists an executable PDL program R such that [S ] Q holds at the current state s in

                                                
19 This complexity is EXPTIME for the full language with all PDL operations.
20 The SAT-complexity for DEL probably remains the same.
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the given model M. This is not quite ordinary model-checking, but it is not full-

fledged SAT either. Here is another variant issue. What actions are worth counting

in our update setting? For instance, is there an analogue of the computational notion

of  communication complexity defined in Yao 1979? Finally, on the more empirical

side, once partial observation of events is considered as in DEL, one expects intuitive

complexity jumps from public to private announcement, or from speaking the truth

to lying. But so far, not all relevant intuitions and empirical folk wisdom about such

thresholds have been turned into  precise mathematics yet.

Danger zones Many authors have explained (Halpern & Vardi 1989, Marx 2006,

Blackburn & van Benthem 2006, van Benthem & Pacuit 2006) how modal logics

practice the art of 'living dangerously' at the edge of undecidability. With expressive

power tree-oriented, they are guarded-quantifier formalisms that remain decidable.

But when dangerous patterns become definable, in particular two-dimensional grids

with two confluent relations, they tend to become undecidable. – and may even incur

non-arithmetical complexity. In a dynamic epistemic setting, geometric confluence

reflects commutativity laws for modalities (Halpern & Vardi 1989, van Benthem

2001) which may make logics undecidable  – though the precise recipe for disaster

is delicate. For knowledge and action, an equivalence between K[e] T  (knowing that

an event e produces a certain result T ) and [e]K T  (an event e 's producing knowledge

that T ) amounts to the semantic condition that agents have perfect memory. Thus,

writing logics for well-endowed idealized agents can drive up complexity!

7 Reversing the direction: computation as conversation

We have amply shown by now how conversation can be viewed as computation,

leading to interesting issues that can be studied by combining techniques from

philosophical and computational logic. But this link also suggests an inversion in

perspective. In particular, lower bound results concerning complexity often establish

that some other problem of known complexity can be reduced to the current one.

And though these reductions may be quite technical, usually, they convey a lot more

useful information, often of a semantic nature – and hence they establish stronger

analogous than mere 'equi-difficulty'. To see this more concretely, take our analysis

of conversation as a form of computation. The simple point that we wish to make

now is that complexity analysis, as available in known results, also allows us to view

Computation as Conversation!

                                                                                                                                                  
21 The proof uses infinite epistemic models: it is not known if it holds with just finite models.
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Realizing computation as conversation  High-complexity results are often taken to

be bad news, as they say that some logical task is hard to perform. But the good

news here is that, by the very same token, an interesting transfer happens: the logic

manages to encode significant problems with mathematical content.  For instance,

consider the famous result that SAT in propositional logic is NP-complete.

Reversing the perspective, this result also means that solving just one basic logical

task has universal computational power for a large class of problems encountered

in practice. Moreover, the proof of NP-completeness for propositional SAT even

gives a simple translation from arbitrary computational tasks to logical ones. 22 The

same reversal applies to other complexity classes. E.g., Pspace-complete is the

solution complexity for many natural games (Papadimitriou 1994, van Emde Boas

2002), and hence being able to solve SAT problems in our base logic, i.e., the ability

to create consistent epistemic scenarios suffices for solving lots of games.  

Now, in this same light, consider the above result from Miller & Moss 2003. What

they prove is essentially, that each tiling problem – and hence also, each significant

problem about computability by Turing machines – can be effectively reduced to a

SAT problem in PAL + PDL. I literally take this result to mean the following:

Conversation has Universal Computing Power         Any significant

computational problem can be realized as one of conversation planning.

Even so, in this technical sense, 'computation as conversation' is mainly a metaphor.

In what follows, I take one more step, which does not require us to 'take sides' here.

8 Merging computation and conversation

The real benefit of bringing together computation and conversation is not reduction

of one to the other. It is creating a broader theory with interesting new questions.  

In particular, a theory of computation that absorbs ideas from conversation must

incorporate the dynamics of information flow and social interaction. We will mainly

discuss one way of doing this here. It starts from known algorithms, and then adds

further structure. We proceed by a series of examples, as our aim is merely to show

how many new questions can be asked at once in this setting, without established

answers. At the end, we note a few more general trends.

Epistemizing algorithms Consider the basic computational issue of Graph

Reachability (GR). Given a graph G with distinguished points x, y, is there a chain

of directed arrows in G leading from x to y? This task can be solved in Ptime in the

                                                
22 A course in propositional logic is at the same time one in all computation, if you know the key...
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size of the graph: there are fast quadratic-time algorithms finding a path

(Papadimitriou 1994). The same analysis holds for the task of reachability of some

point in G which satisfies some general goal condition U . GR models search

problems in general, and the solution algorithm actually performs two closely related

tasks: determining whether a route exists at all, and giving us an actual plan to get

from x to y. We consider various ways of introducing knowledge and information.

Knowing you have made it  Suppose you are an agent trying to reach a goal region

U , but with only limited observation of the graph in which you are moving. In

particular, you need not know, at any point x, at which precise location you are.

Thus, the graph G is now a model (G, R, ~) with accessibility arrows, but also

epistemic uncertainty links between nodes. A first epistemization of GR merely asks

for the existence of some plan that will lead you to a point which you know to be in

the goal region U . Brafman, Latombe & Shoham 1993 analyze a practical setting for

this, with a robot whose sensors do not tell him exactly where she is standing. In

this case, it seems reasonable to add a test to the task, inspecting current nodes to see

if we are definitely in the goal region: K U . Given the P-time complexity of model

checking for modal-epistemic  languages, the new search task remains P-time.

Having a reliable plan In this setting, further issues arise. What about the plan

itself? If we are to trust it, should not we require that we know it to be successful?

Consider the following graph, with an agent at the root trying to reach a U -point:

         U

The dotted line indicates the agent cannot tell the two intermediate positions apart.   

A plan which achieves the goal is Up; Across. But after following one part of this,

the agent no longer knows where he is, and in particular, whether moving Across

will reach the U -point, or rather moving Up. Let us first formulate the requirement.

Suppose for simplicity that a plan is just a finite sequence of a of arrows. We may

then require initial knowledge that this will work: K[a]K U . But this is just at the

start: we may also want to be sure at all intermediate stages that the remainder of the

plan will work. This would require truth of all formulas

 [a1]K[a2]K U , where a = a1;a2. 
23

                                                
23 If an agent has Perfect Recall, K[a]V  implies [a]KV , and the initial formula implies all the others.
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The existence of such a 'transparent' plan can still be checked in Ptime, since the

number and size of the relevant assertions only increases polynomially. But this

quickly gets more complex with plans defined by more complex PDL programs.   

It is not obvious to how to even define the right notion of epistemic reliability,  and

we suspect that it may lead to new languages beyond DEL and PDL. 24

Different  types of agent  But there is more to the epistemic setting in the preceding

example. Note that the agent in the graph has forgotten her first action: otherwise,

she could not be uncertain between the two nodes in the middle. Our earlier DEL-

style agents with Perfect Recall would not be in this mess, as they can only have

uncertainties about what other agents did. And the earlier-mentioned commutation

law K[a] W X  [a]K W  which holds for them will automatically derive intermediate

knowledge from initial knowledge K[a]K W  . But there are many kinds of epistemic

agent: with perfect recall, with finite memory bounds, etc. 25 Thus, epistemized

algorithms naturally go together with questions about what sorts of agents are to be

running them – and the complexity of these tasks-for-agents can vary accordingly.

Epistemic plans  But also, in an epistemic setting, the notion of a plan itself requires

further thought. A plan is a sort of program which can react to circumstances, via

conditional  instructions such as IF Y THEN do a ELSE b. The usual understanding

of the test condition Y  is that one finds out if it holds, and then choose an action

accordingly.  But for this to work, the agent has to be able to perform that test! Say,

we ask a computer to check the current value of some variable, or a burglar to check

whether the safe has a Yale lock or some inferior brand. But in the above graph, the

plan "IF you went Up, THEN move Across ELSE move Up", though correct as an

instruction for reaching the goal, is no use, as the agent has no way of deciding

which alternative holds. There are two ways of dealing with this. One is to include

knowledge into programs (Fagin et al. 1995). We make actions dependent on

conditions like "the agent knows Y " which can always be decided, provided agents

have epistemic introspection. 26 Suitable epistemic programs are automatically

transparent in the above sense (van Benthem 2001). The other option is to define a

notion of 'executable plan' in an epistemic model M, making sure that agents can

find out whether a test condition holds at any stage where this is needed. But so far,

I have not found a definition for epistemic executability which satisfies me.

                                                
24 As in van Benthem 2002, some version of the epistemic Z –calculus may be needed, at least for

reliable strategies of players in a game. These are related to the 'uniform strategies' of game theory.
25 No standard taxonomy exists yet of this diversity: cf. Liu 2006 for a first overview.
26 Interestingly, some of the heuristic algorithms in Gigerenzer & Todd 1999 have this flavour.
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Dynamifying static logics: update actions  Finding out if a proposition holds

involves actions of communication or observation, and hence we move beyond

epistemized static logics to dynamic ones. Then we could model the above test

conditions [ as explicit actions of asking whether [ holds. This requires richer

multi-agent models, though, where one can query other agents, or perhaps Nature,

about certain things. We will not pursue this topic here, but the logic DEL in this

paper is a show case of 'dynamification'. Thus, it should be well-suited for analyzing

dynamified algorithms – and so are epistemic variants of PDL or the \ –calculus.  27

Multi agent scenarios and interactive games  Several epistemic scenarios in the

preceding suggest adding more than one agent, moving from traditional lonely

algorithmic tasks to more social ones. E.g., reaching a goal and knowing that you

are there naturally comes with variants where others should not know where you

are. Examples in the literature include the 'Moscow Puzzle' (van Ditmarsch 2002),

where people have to tell each other the cards which they have without letting a third

party present  know the solution. Card games, or the earlier-mentioned use of email,

provide many further examples. This social interactive perspective comes out even

more in the setting of games, and interaction between different players. Indeed,

games have been proposed as a very general model of computation (Abramsky

2006) and new logical questions about them abound (van Benthem 2005B).

Reachability and sabotage  Turning algorithms into games involves the 'prying

apart' of existing algorithms into games with different roles for different agents.

Early examples of this are logic games in the style of Lorenzen, Ehrenfeucht, or

Hintikka (cf. the survey in van Benthem 1999). A more algorithmic example is in

van Benthem 2005A. Consider again Graph Reachability. The following picture

gives a travel network between two European capitals of logic and computation:

 Amsterdam          train
plane

Brussel taxi

          
          Luxemburg Koblenz  

Saarbruecken

                                                
27 An extreme case of this setting are pure information games, where all moves are actions of

asking questions and giving answers, and players go for goals like 'being the first to know'.
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It is easy to plan trips either way. But what if the transportation system breaks down,

and a malevolent Demon starts canceling connections, anywhere in the network?   

At every stage of our trip, let the demon first take out one connection. Now we have

a two-player sabotage game, and the question is who can win it where. Some simple

reasoning will show that, from Saarbruecken, a German colleague still has a winning

strategy. But the Dutch situation is less rosy: Demon has the winning strategy.

This example suggests a general transformation for any algorithmic task. It becomes

a sabotaged one when cast as a game with obstructing players. This raises several

new questions, e.g., about logical languages describing these games, and players'

plans (strategies) in them. In particular: how does the computational complexity of

the original task change when we need to solve the new game? For sabotaged Graph

Reachability, it has been shown in Rohde 2005 that this complexity moves up from

low P-time to Pspace-completeness. That is, the problem now takes a polynomial

amount of memory space, which makes it of the complexity of Go or Chess. 28

Catch Me If You Can But there is no general rule predicting when a newly created

game becomes more complex than its algorithmic ancestor. Again consider graphs,

the setting par excellence for algorithmic tasks, but now with another game variant of

GR. 'Obstruction' could also mean that some other player tries to catch me en route,

making it impossible for me to continue.  It is easy to cast this as a game, too:

Starting from an initial position (G, x, y) with me located at x and you at y,

I move first, then you, and so on. I win if I reach my goal region in some

finite number of moves without meeting you. You win in all other cases. 29

This game, too, is very natural, and it models a wide variety of realistic situations,

such as warfare, or avoiding certain people at receptions. 30 But this time, the

computational complexity stays lower. 31 Solving Catch Me If You Can still only

takes Ptime in the size of the graph! This can be seen by the analysis  of the

analogous 'Cat & Mouse' game in Greenlaw, Hoover & Ruzzo 1991. 32 33             

                                                
28 Link cutting games also have other interesting interpretations. Van Benthem 2006 has a variant

dual to the above where a Teacher tries to trap a Student into reaching a certain state of knowledge.
29 Thus, you win : if you catch me before I am in the goal region,  if I get stuck, or if the game

continues indefinitely. Other natural ways of casting these winning conditions would allow draws.
30 But Fabius Maximus Cunctator tried to win a war by avoiding his enemy Hannibal throughout.
31 The difference with the Sabotage game is that the graph remains fixed during the game.
32 I owe this reference to Merlijn Sevenster, who also points out the finer complexity

difference that Reachability is NL-complete, while Cat & Mouse is Ptime-complete.
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Adding knowledge and observation again  In actual warfare, catching games

naturally involve  limited observation and partial knowledge. In such games of

imperfect information, players need not be able to see where the others are, and

solution complexity may go up to Pspace and beyond. Sevenster 2006 is an

extensive study of various epistemized algorithms in this setting, using connections

with the 'IF logic' of Hintikka-Sandu 1997 to clarify their properties. In particular,

he shows that the situation is delicate. E.g., consider that mild form of warfare called

the game of 'Scotland Yard'. Here the invisible player who tries to avoid getting

caught has to reveal her position after every k moves for some fixed k. But then , the

game can be turned into one of perfect information by re-encoding players' moves

making k-sequences of old moves into single steps. Van Benthem 2001, 2005B

study many further aspects of merging DEL with game theory. 34

Rephrasing the issues in game theory? From a genuine game-theoretic viewpoint,

many further questions may become relevant, however. E.g., Sevenster's major

complexity results are in the IF tradition of asking whether some player has a

winning strategy even when hampered by lack of knowledge. But the most crucial

feature of finite games of imperfect information, both mathematically and in practice,

is the existence of something more delicate: Nash equilibria in mixed strategies,

letting players choose moves with certain probabilities. Maybe it is the resulting

game values that we should be after for gamified algorithms. Thus, gamification as

generalized computation should also make us pause and think about most natural

counterparts to the properties of algorithms when they were still pure.

This is just one of many issues when we take game structure seriously. Imperfect

information games also invite explicit events of observation and communication

(Osborne & Rubinstein 1994, van Benthem 1999, 2001). Moreover, they fit

naturally with the parallel action mentioned earlier, as much of game theory is about

simultaneous choice of moves by players. And then: why two players, and not

more? E.g., even inside the heartland of logic games, it has been proposed that

argumentation, often cast as a tennis match, really needs a 'Proponent', an

                                                                                                                                                  
33 A direct argument is as follows. The game can be recast as a graph game over an extended graph

with positions (G, x, y) counting players' moves as described while allowing you 'free moves'

when  I am caught or get stuck .Now we let you win if you can keep moving forever. It is

known that graph games like this can be solved in Ptime. One can see this as a modal

model checking problem for formulas <>nT with n the graph size.
34 Van Otterloo 2005, van Benthem 2006 study extensive games with explicit actions of announcing
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'Opponent', and: a Judge. Thus, our view of algorithms in a social setting naturally

merges computer science, logic, and game theory, with links running all across.

9 Toward a general theory: transformations and merges  

Our discussion in the preceding section has been just a bunch of examples, trying to

convey the pleasure of exploring an interactive epistemic viewpoint on computation.

But it also suggests several more systematic topics.  

Epistemizing logics One broad concern is the design of appropriate logical

languages for these new structures. This might seem a simple matter of combining

components like dynamic and epistemic logic, but it can be much more interesting.
35 Next, relevant tasks for these languages can fall into the cracks of the standard

notions of complexity. E.g., natural planning problems seem intermediate between

model checking and satisfiability. They ask, in a given model M with state s,

whether some epistemic plan exists which takes us from s to the set of goal states.

Thus, epistemizing logics seems a non-trivial exercise,  once it is done with a heart.

Epistemizing and gamifying algorithms Next, there is the issue of finding general

transformations on algorithms behind the above examples. Instead of large-scale

botany, one would want general results on what these do to the solution complexity

of the original task. The dissertations Rohde 2005, Sevenster 2006 were first steps.

Perhaps a bit quixotically, what we are doing here can be seen as dynamification

once more, but now at a meta-level. We have been using dynamic viewpoints to

transform given problems in their original guise, and now, we are trying to make that

process itself into an object of logical study. This is one way of seeing more unity in

the diverse examples and logics that arise when 'computation and conversation' are

mixed together. But there are other ways. In particular, promising convergences can

be observed between various systems for describing 'computation and conversation',

witness the comparison between dynamic epistemic logic, epistemic temporal logic,

modal product logics, and other paradigms in van Benthem & Pacuit 2006. More

generally, one broad aim of theory construction in this arena might be formulated as:

Epistemized process theory Moving toward fundamental theories of computation,

bringing in explicit considerations of observation and conversation suggests

epistemic versions of existing process theories, such as Process Algebra. As the

                                                                                                                                                  

relevant facts or even players' intentions concerning their future moves.
35 E.g., van Benthem 2005 shows how even the issue of finding 'the epistemic version' of propositional

dynamic logic is not at all simple, as DEL suggests providing both states and arrows with uncertainty

relations, giving us a  range of options for matching logical languages.
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latter includes an explicit account of 'communication channels', making the

connection seems quite appropriate. 36 The same points apply to interaction and

game semantics for computation.  E.g., standard models for linear logic achieve non-

determinacy by moving to infinite games. But non-determinacy reigns in simple

finite games with imperfect information, suggesting epistemic versions of linear

game semantics. Also, strategies in linear logic crucially involve switching across

games, and using information about moves in one to make best moves in the other

(Abramsky 2006): which is again well within our circle of ideas. 37 Of course, as we

noted earlier, there is also the issue of how all this relates to existing game theory.

Perhaps, the current contacts between logic, computer science, and game theory, may

be viewed as preliminaries to a new theory with aspects of all three.

10 Conclusions

This paper fits in a broad current trend. Bringing together computation and broader

information-based activities of conversation and communication is in the air, and it

has been there for at least two decades. It may be seen with the epistemic analyses of

communication protocols in Fagin et al. 1995, with calculi of distributed computing

like Milner's CSP, and of course, with modern theories of agents and intelligent

information systems. We have tried to show here that this trend is more than a

metaphor by pointing at concrete logics which deal with it, and at a sequence of

interesting new  issues which arise when we merge the two agendas systematically.

To some, the resulting theory may look strange at first, as it combines hard-core

computational logic with epistemic logics from the 'softer' philosophical tradition –

something which may look even more outrageous when we add, not just knowledge,

but also agents more ephemeral beliefs, and who knows, even their intentions and

most intimate desires. Still, we think computation plus information update and belief

revision is a perfectly viable marriage. It is rich in theory, and also, it fits very well

with modern computation in societies of interacting agents. Indeed, recent research

programs like 'social  software' (Parikh 2002) even take this into activist mode, and

propose, not just analyzing existing social procedures in this style, but even

designing new better ones. In this, social software is like 'mechanism design' in

game theory, but pursued by sophisticated computational techniques.

As a counter-point to such 'soft' social settings, it needs to be said that the Dynamic

Turn advocated in this paper is also observable in hard-core areas like physics.

                                                
36 Van Eijck 2005 compares renderings of communication scenarios in DEL and Process Algebra.
37 In recursion theory, a precursor of this view is Condon 1988, which looks at Turing machines

run by agents with limited observation – though for specialized complexity-theoretic purposes.
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Recent interfaces between computer science and quantum mechanics emphasize the

dynamic interactions of observing agents with physical systems in operator-based

Hilbert spaces. Accordingly, systems of dynamic logic and game semantics for

linear logics are crossing over from computation to the foundations of physics, as

well as the practices of quantum computation. Abramsky & Coecke 2004, Baltag &

Smets 2004, and some entries in Rahman et al., eds., 2004 are samples of this trend.

For what this might mean in a broader information theory, cf. Abramsky 2006.

Another way of stating the main point of this paper is that computation is a pervasive

and fundamental category across the sciences and humanities, provided we cast it in

its proper generality, linking up with epistemic logics broadly construed. In one

direction, our dynamic epistemic systems show how this introduces significant

computational models into the study of what used to be thought of as preserves for

linguists and philosophers. In the opposite direction, we can 'epistemize' and

'dynamify' existing logics and algorithms, to get interesting broader theories.

Returning to our Introduction, it should be clear that this is much more than

'implementation' in an auxiliary sense, but rather a way of letting fundamental ideas

from computer science play the central academic role which they so clearly deserve.

Despite all these grand perspectives, this paper was written by a logician, as biased –

Heaven knows – as the next person. This may be a good place for a disclaimer.

Despite the amount of space devoted to dynamic epistemic logic in this paper, we

have used it mainly as a 'search-light system' for interesting phenomena, not as the

final word on the structure and flow of information. Indeed, even from the viewpoint

of the NEMO Restaurant, we have still missed crucial aspects of the children's

activities! The waiter or the card players do not just update with new information, but

also infers things already at their disposal. But valid conclusions from existing

information do not change a current DEL information state. To describe this finer

dynamics, further process structure is needed. 38 Likewise, our discussion of testing

conditions for algorithms or games suggests that we have left out the dynamics of

evaluation (van Benthem 1996). The logical core tasks of inference and model

checking have their own dynamics,  which goes beyond our framework here. Thus,

even the logical foundations of information and computation remain wide open. 39

                                                
38 This can be done, but no consensus exists. Van Benthem 1991 dynamifies Herbrand models for

Prolog to model such inferential steps, while Abramsky 2006 presents a more general universe

of abstract information states, where inference or computation steps do increase information.
39 Cf. the Handbook of the Philosophy of Information, P. Adriaans & J. van Benthem, eds., 2007.
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Finally, what about Computing in Europe? I would like to believe that a broad stance

on any subject matter, reflecting a certain erudition beyond one's immediate specialty

is a crucial aspect of European culture.  The view of computation offered in this

paper qualifies. Also, pursuing theoretical interests without immediate practical gain

seems a well-established European value– even though I admit it may be one of the

old leisure class, rather than the hectic yuppies of to-day. But in this summer season,

it is another image that intrigues me, based on just one passage in this paper. The

undecidability of dynamic epistemic logic with iteration shows how the most

difficult computational problems can be solved in successful conversation. Thus,

what is going on at, say, all those Parisian terraces as I write these lines, on the last

day of the Tour de France, is one gigantic parallel computer. 'Computing' usually

evokes an image of boring machines,  or even more boring nerds. Wouldn't it be

great if Computing in Europe were the Art of Conversation in the Old World?
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