
Taming the Infinity Quantifier: On Well-Behaved Fragments

of First-Order Logic with the Quantifier ‘There are

Infinitely Many’

MSc Thesis (Afstudeerscriptie)

written by

Thibault Rushbrooke
(born 16th August, 1998 in London)

under the supervision of Prof. Dr. Yde Venema, and submitted to the
Examinations Board in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
28th October, 2022 Dr. Benno van den Berg (Chair)

Prof. Dr. Yde Venema (Supervisor)
Dr. Alexandru Baltag
Dr. Balder ten Cate



Abstract

This thesis investigates a range of fragments of FOL∞, that is, first-order logic
extended with a quantifier expressing ‘there are infinitely many...’ We extend
several results of Bellas Acosta [1], concerning the logic ML∞. The logic ML∞

extends the basic modal language with an infinite modality, asserting that there are
infinitely many successors satisfying a certain property. We introduce logics which
extend ML∞ with a backwards modality and a backwards infinite modality, with
a global modality, and with both backwards modalities and the global modality.
We show that each of these logics may be characterised, as fragments of FOL∞, by
invariance under a suitable notion of bisimulation. On the way to obtaining these
results, we prove an FOL∞ analogue of Gaifman’s theorem for first-order logic
[9]. In a second line of research, we establish that the set of validities of the logic
with forwards and backwards infinite modalities is decidable, and admits a finite
axiomatisation. We also introduce a guarded fragment of FOL∞, and conjecture
that, restricted to a certain vocabulary, this logic is also decidable.
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Notational Conventions

The aim of this section is not to explain all the pieces of notation which are
specific to this thesis; these will be explicitly defined whenever they are introduced.
They may also be found in the ‘Index of Notation’, located at the end of the
thesis. Rather, this section explains some of the uses of notation which are fairly
conventional, but may nevertheless differ across different authors or be to some
degree unclear.

I have tried to consistently use calligraphic font for Kripke models, e.g. M,A,
and fraktur font for structures more generally, which may or may not be Kripke
models, e.g. M,A. This will not prevent us from interpreting modal formulas on
first-order structures, or formulas of FOL∞ on Kripke structures, making free use
of the standard translation. The point of the different notation is that where a
calligraphic letter such as M is used, it may explicitly be assumed that the model
in question has a basic modal signature- it has no relations of arity greater than
2, and exactly one relation of arity 2. So definitions of, say, bisimilarity between
structures A,B are guaranteed to make sense. (This rule will be broken in Chapter
6, where I use calligraphic letters for polymodal Kripke structures with multiple
binary relations). Where fraktur letters are used, the models may very well have
relations of arity greater than 2.

When I use a calligraphic or fraktur letter for a structure, I will generally use
the corresponding, regular font capital letter for the universe of that structure, e.g.
using A to denote the universe of A. If M is a Kripke model, I may also use S
(the set of ‘states’) to denote the universe of M.

As an abbreviation, I use overline notation for finite tuples of elements within a
model, a, b etc., but also for tuples of variables, x, y etc. These tuples may generally
be assumed to be ordered. However, I will also use notation for ordered tuples that
strictly speaking only makes sense for sets. For example, where a = (a1, . . . , an),
I may write a ⊆ A to mean that for every i with 1 ≤ i ≤ n, it holds that ai ∈ A.

I generally use round brackets for ordered tuples. However, in the case of
‘paths’ through Kripke structures (see Definition 4.3), I try to use angled brack-
ets: π = ⟨a1, . . . , an⟩, even though these are technically just ordered tuples as
well. I generally use lower-case Greek letters to refer to paths. To denote the
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concatenation of a path or ordered tuple π with a path or ordered tuple ρ, I write:
π⌢ρ.
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Chapter 1

Introduction

1.1 Background and Motivation

Consider the following inference I.

• P1: There are infinitely many dogs, each of which sees a cat.

• P2: There is no cat which is seen by infinitely many dogs.

• C: There are infinitely many cats.

This inference is not trivial, but one may see that it is logically valid using the
fact that a finite union of finite sets is finite. As a logically valid inference, I ought
to be representable within a formal logical system. However, it is very difficult
to see how I could be formalised in classical first-order logic. The most natural
way to capture it is to enrich the first-order language with an infinity quantifier,
a means of expressing that there are infinitely many entities satisfying a certain
property.

The infinity quantifier falls under the broader category of generalised quanti-
fiers. The study of generalised quantifiers was introduced by Mostowski [14]. His
idea was to think of a unary quantifier as a function which associates, with any
given set A, a set QA ⊆ ℘(A) of subsets of A. The formula Qxϕ(x) is then defined
to be true in a structure A iff {a ∈ A : ϕA(a)} ∈ QA. For example, one may
think of the classical existential quantifier ∃ as mapping any set A to the set of
non-empty subsets of A. Similarly, one may define the infinity quantifier as the
function which maps any set A to the set

{X ⊆ A : |X| ≥ ℵ0}

and indeed, for any ordinal α, one may define the quantifier

Qα : A 7→ {X ⊆ A : |X| ≥ ℵα}

8



CHAPTER 1. INTRODUCTION

Thus, the infinity quantifier may be viewed as one of a whole family of cardinality
quantifiers Qα. (Under the above notation, the infinity quantifier would be denoted
by Q0, though we choose to denote it by ∃∞ for the majority of this thesis.)
Further, for each Qα, one may obtain a new logic, L(Qα), by extending classical
first-order logic with the quantifier Qα.

1

Now, it was soon observed that L(Q0) has various model-theoretic properties
which were considered “less than satisfactory” ([4], p.9). In particular, as Fuhrken
[8] observes, L(Q0) is able to completely characterise the order type (ω,<) of the
natural numbers. This is achieved by the L(Q0) sentence

(∀x¬∃∞y(y < x)) ∧ (‘ < is a strict linear order without endpoint’)

From this fact, it quickly follows that L(Q0) is not compact, and the set of its valid
sentences (in any vocabulary of reasonable size) is not recursively enumerable.
(A further negative result, due to Mostowski [13], was that L(Q0) lacks both
the Craig interpolation property and the Beth definability property.) In striking
contrast, Vaught [18] showed that the set of validities of L(Q1) is recursively
enumerable, while Fuhrken [8] showed that L(Q1) is countably compact, meaning
that every countable, finitely satisfiable set of sentences is satisfiable. An explicit
axiomatisation for the validities of L(Q1) was later given by Keisler [11]. The moral
seems to have been drawn that few interesting model-theoretic results concerning
L(Q0) were to be had, and consequently, research attention shifted away from
L(Q0), towards other abstract logics such as L(Q1) and its extensions.

However, a more recent line of research is motivated by the observation that
negative model-theoretic properties of a logic, such as L(Q0), are not necessarily
inherited by its fragments. For example, it was already shown by Mostowski [14]
that the monadic fragment of L(Q0) is decidable. Carreiro et al. [6] obtain further
nice results about the model theory of this monadic fragment, providing syntactic
characterisations of various semantically given fragments of this logic. Another
fragment of L(Q0) shown to enjoy desirable model-theoretic properties is the logic
ML•, introduced by ten Cate, van Benthem and Väänänen [7]. These authors
show that the logic ML• is compact, and has the Löwenheim-Skolem property.

In a similar spirit, Bellas Acosta [1] studies a modal fragment, ML∞, of L(Q0),
which extends the basic modal language with an ‘infinite modality’ asserting the
existence of infinitely many successors with a certain property. This logic is shown
to be semantically characterisable as the bisimulation-invariant fragment of L(Q0)
(for a suitable notion of bisimulation), and is further shown to admit a complete,

1More precisely, this logic would normally be denoted Lωω(Qα), to distinguish it from abstract
logics which allow formulas of infinite length. However, this thesis will not be at all concerned
with extensions of FOL with infinitely long formulas, and therefore we adopt the lighter notation
since there is no danger of confusion.
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1.2. STRUCTURE OF THE THESIS

finite axiomatisation. Bellas Acosta and Venema [2] also study a ‘graded’ exten-
sion, GML∞, of ML∞ which includes counting modalities 3≥n for every natural
number n. This logic is also characterised by invariance under a suitable notion of
bisimulation, and is shown to be decidable (implying decidability for the strictly
weaker logic ML∞ as well).

The present work takes its inspiration from the two papers [1] and [2] just
cited. We introduce an assortment of fragments of L(Q0) of a modal character,
each properly extending ML∞, and we try to obtain analogous results to those
of [1] and [2] for each of these fragments. We now present a chapter-by-chapter
overview of the contents of this thesis.

1.2 Structure of the Thesis

Chapter 2 consists of basic definitions, and a few straightforward results which
are needed at a later stage of the thesis. The syntax and semantics of several logics
to be studied, namely T∞,G∞ and GT∞, are defined, and we introduce a notion
of bisimilarity to correspond to the expressive power of each of these logics. We
also recapitulate the syntax and semantics of L(Q0), which we choose to refer to
in the remainder of this thesis as ‘FOL∞’.

In Chapter 3 we state, and prove, an FOL∞ analogue of Gaifman’s theorem
for first-order logic, demonstrating that, in some sense, FOL∞ is only able to ex-
press ‘local’ notions. The theorem is needed to obtain semantic characterisations
of T∞, G∞, and GT∞, but it also seems to be of independent interest.

Chapter 4 completes the proof that T∞,G∞ and GT∞ may all be characterised,
as fragments of FOL∞, by invariance under a suitable notion of bisimulation. The
proof makes use of an ‘upgrading’ technique, developed in the setting of finite
model theory to cope with the absence of the compactness theorem.

Chapter 5 introduces the logic GF∞, which stands to FOL∞ roughly as the
Guarded Fragment introduced in [3] stands to FOL. An attractive feature of this
logic is that it is strong enough to capture the inference I from the beginning of
this introduction. We define the syntax of GF∞, introduce a bisimilarity relation
≃GF corresponding to its expressivity features, and show that formulas of GF∞

are invariant under ≃GF . Finally, we explain the obstacles that make it difficult
to show that GF∞ is characterised by invariance under ≃GF .

In Chapter 6, we turn away from bisimulation characterisation, and investigate
the complexity of some of the logics introduced. In the first section of the chapter,

10



CHAPTER 1. INTRODUCTION

we prove that T∞ is decidable, and provide a complete finite axiomatisation for
it. In the second half, we conjecture that, when restricted to a certain vocabulary,
GF∞ is also decidable, and we indicate a possible proof strategy.

11



Chapter 2

Preliminaries

In this chapter, we will introduce a series of modal languages. These languages all
extend previously studied modal languages by the inclusion of an infinite modality,
that is, a modality allowing the assertion that there are infinitely many accessible
states satisfying a certain property. We also recapitulate the logic FOL∞, and
show how to view each of the modal languages under consideration as fragments
of this logic. Finally, we introduce suitable notions of bisimulation for each modal
language, and show that formulas of each language are invariant under the corre-
sponding bisimilarity relation.

For the remainder of this section we fix an arbitrary, countable set of proposi-
tion letters, P, as well as an enumeration {p0, p1, . . .} of this set.

2.1 ML∞,T∞,G∞,GT∞

We begin with a recapitulation of the logic ML∞, which is defined and studied in
[1].

Definition 2.1 (Syntax of ML∞). ML∞ is the least set satisfying the following
conditions:

• P ⊆ ML∞

• ⊥ ∈ ML∞

• If ϕ, ψ ∈ ML∞ then ϕ ∧ ψ ∈ ML∞ and ¬ϕ ∈ ML∞

• If ϕ ∈ ML∞ then 3ϕ ∈ ML∞

• If ϕ ∈ ML∞ then 3∞ϕ ∈ ML∞

12



CHAPTER 2. PRELIMINARIES

If ϕ ∈ ML∞, we say that ϕ is a well-formed formula of ML∞. We make use of
the standard abbreviations ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ),2ϕ := ¬3¬ϕ. We additionally
define 2∞ϕ := ¬3∞¬ϕ.

Definition 2.2 (Semantics of ML∞). The satisfaction relation for ML∞ is defined
inductively. Let M = (S,R, V ) be a Kripke model.

• M, s ⊩ p iff s ∈ V (p)

• M, s ⊩ ⊥ never

• M, s ⊩ ϕ ∧ ψ iff M, s ⊩ ϕ and M, s ⊩ ψ

• M, s ⊩ ¬ϕ iff it is not the case that M, s ⊩ ϕ

• M, s ⊩ 3ϕ iff there is a t ∈ S such that sRt and M, t ⊩ ϕ

• M, s ⊩ 3∞ϕ iff there are infinitely many t ∈ S such that sRt and M, t ⊩ ϕ

Taking inspiration from the two-way extension of basic modal logic known as
temporal logic (see e.g. [5]), we now define a two-way analogue of ML∞, which we
call T∞.

Definition 2.3 (Syntax of T∞). T∞ is the least set such that ML∞ ⊆ T∞, and
T∞ is additionally closed under the following:

• If ϕ ∈ T∞ then 3�ϕ ∈ T∞

• If ϕ ∈ T∞ then 3∞
� ϕ ∈ T∞

If ϕ ∈ T∞, we say that ϕ is a well-formed formula of T∞. We use the same
abbreviations as for ML∞, as well as the obvious analogues 2�ϕ := ¬3�¬ϕ,
2∞

� ϕ := ¬3∞
� ¬ϕ.

Definition 2.4 (Semantics of T∞). The satisfaction relation for T∞, for Kripke
models, is also defined inductively. The clauses are identical to those for ML∞,
but with the following two additions:

• M, s ⊩ 3�ϕ iff there is some t ∈ S such that tRs and M, t ⊩ ϕ

• M, s ⊩ 3∞
� ϕ iff there are infinitely many t ∈ S such that tRs and M, t ⊩ ϕ

Another extension to the basic modal language which has received considerable
attention is the so-called global modality E (again, see [5]). In the same spirit, we
may add this modality to ML∞. We call the resulting logic G∞.

13



2.2. FOL∞

Definition 2.5 (Syntax of G∞). G∞ is the least set such that ML∞ ⊆ G∞, and
G∞ is additionally closed under the following:

• If ϕ ∈ G∞ then Eϕ ∈ G∞

If ϕ ∈ G∞, we say that ϕ is a well-formed formula of G∞.

Definition 2.6 (Semantics of G∞). The definition is the same as for ML∞, but
with the following inductive clause added:

• M ⊩ Eϕ iff there is a t ∈ S such that M, t ⊩ ϕ

Notice also that we do not let G∞ include an ‘infinite global modality’, i.e.
a modality which asserts that a property holds at infinitely many states in the
model. The reason for this will be explained at a later stage (see Chapter 5).

Finally, we may combine the features enjoyed by T∞ and G∞, extending ML∞

with both converse modalities and a global modality. The resulting logic, which
we call GT∞, properly extends both G∞ and T∞ (although we omit a proof of
this fact).

Definition 2.7 (Syntax of GT∞). GT∞ is the least set such that T∞ ⊆ GT∞,
and GT∞ is additionally closed under the following:

• If ϕ ∈ GT∞ then Eϕ ∈ GT∞

If ϕ ∈ GT∞, we say that ϕ is a well-formed formula of GT∞.

Definition 2.8 (Semantics of GT∞). The definition of the satisfaction relation
for GT∞ is given simply by combining the clauses for T∞ and G∞.

2.2 FOL∞

The logic FOL∞ is obtained from classical first-order logic, FOL, by adding to the
language a new quantifier which expresses that there are infinitely many objects
having a certain property.

Definition 2.9 (Syntax of FOL∞). Let τ be a signature which may include con-
stants, predicates of any arity, and function symbols. We define Form∞(τ) to be
the least set satisfying the following conditions:

• If P is an n-ary predicate symbol in τ , or is the identity symbol, =, and
t1, . . . , tn are terms of τ , then Pt1 . . . tn is a member of Form∞(τ) and is an
atomic formula

• ⊥ is a member of Form∞(τ) and is an atomic formula

14



CHAPTER 2. PRELIMINARIES

• If ϕ, ψ ∈ Form∞(τ) then ϕ ∧ ψ ∈ Form∞(τ) and ¬ϕ ∈ Form∞(τ)

• If ϕ ∈ Form∞(τ) and v is a variable then ∃vϕ ∈ Form∞(τ) and ∃∞vϕ ∈
Form∞(τ)

If there is some τ for which ϕ ∈ Form∞(τ), we say that ϕ is a well-formed
formula of FOL∞, and write ϕ ∈ FOL∞. If in addition ϕ has no free variables, we
say that ϕ is a sentence of FOL∞. We define ∨ in terms of the other Booleans,
as in the modal case. We also abbreviate ∀vϕ := ¬∃v¬ϕ, and ∀∞vϕ := ¬∃∞v¬ϕ.
The quantifier depth qd(ϕ) of a formula ϕ is defined inductively in the usual way.

Definition 2.10 (Semantics of FOL∞). Let τ be any signature, ϕ ∈ Form∞(τ),
M = ⟨D, I⟩ a τ -structure, and σ a variable assignment. For any d ∈ D, we let
σ[d/v] denote the assignment which is identical to σ, except possibly for mapping
the variable v to the object d. The satisfaction relation is inductively defined, with
the same clauses as for classical FOL, along with the following additional clause:

• M, σ |= ∃∞vϕ iff there are infinitely many d ∈ D such that M, σ[d/v] |= ϕ

Where ψ is a formula containing at most the variables v1, . . . , vn free, we will
sometimes use M, a1, . . . , an |= ψ(x1, . . . , xn) as an abbreviation for:
M, σ[a1/v1, . . . , an/vn] |= ψ.

Definition 2.11 (Equivalence of structures). Let M0,M1 be structures, and let
a0, a1 be ordered n-tuples with a0 ⊆ M0, a1 ⊆ M1. We write M0, a0 ≡ M1, a1 iff
for all ϕ ∈ FOL∞, M0, a0 |= ϕ ⇐⇒ M1, a1 |= ϕ. We write M0, a0 ≡k M1, a1 iff
for all ϕ ∈ FOL∞ such that qd(ϕ) ≤ k, M0, a0 |= ϕ iff M1, a1 |= ϕ

Remark. The relations ≡ and ≡k are not to be confused with first-order equiv-
alence between structures. It would have been natural to include a subscript or
superscript indicating that the notation is for equivalence in FOL infinity, which is
strictly stronger. However, we have not done so, because this thesis is almost ex-
clusively concerned with FOL∞, so there is little danger of confusion; and omitting
the infinity symbol keeps notation lighter.

Definition 2.12 (Entailment). Let Γ be a set of FOL∞-formulas and ϕ an FOL∞-
formula. We say that Γ entails ϕ, notation: Γ |= ϕ, iff every structure-assignment
pair M, σ which satisfies every member of Γ also satisfies ϕ. (Note that this
definition also covers the case of formulas which may have free variables.)

We now state an observation which provides a very handy way of viewing the
semantics of FOL∞. We need a few preliminaries first.

15



2.2. FOL∞

Definition 2.13. Let (q0, . . . , qn) ⊆ {1, ω}. We let F(q0, . . . , qn) denote the for-
est structure which has q0-many roots, and has branching degree q1 at depth 1,
branching degree q2 at depth 2, and so on, up to the nodes of depth n + 1 which
are leaves. For instance, F(ω, 1, ω) is isomorphic to {(p) : p ∈ N+} ∪ {(p, 0) : p ∈
N+} ∪ {(p, 0, q) : p, q ∈ N+}, under the proper initial segment relation.

Given any forest structure F = (F,R) and any t ∈ F, we let ↑F(t) denote the
set of R-descendants of t in F. We usually omit the subscript F if it is obvious
from context. We further define an equivalence relation ∼F by: t ∼F t

′ iff either t
has the same immediate predecessor as t′, or both t, t′ have no predecessor (they
are both ‘roots’).

Let Q0, . . . , Qn be a string of quantifiers, with each Qi ∈ {∃,∃∞}. The index
sequence for Q0, . . . , Qn is the sequence q0, . . . , qn such that, for each 0 ≤ i ≤ n,
qi = 1 iff Qi = ∃, and qi = ω iff Qi = ∃∞.

We let (ω)n be shorthand for the ordered n-tuple all of whose elements are ω.
So F((ω)n) denotes the forest structure of depth n with ω many roots, and with
every node having branching degree ω.

Observation 2.14. Let ϕ be a formula of FOL∞, M = ⟨D, I⟩ a structure, σ an
assignment, n ∈ N. Let Q0, . . . , Qn ∈ {∃,∃∞}, and let (q0, . . . , qn) be the index
sequence for Q0, . . . , Qn. Then M, σ |= Q0x0 . . . Qnxnϕ iff there exists a function
f : F(q0, . . . , qn) → D such that:

1. For any ∼F-equivalence class [t] ⊆ F(q0, . . . , qn), f ↾ [t] is injective.

2. For any path π = (t0R
F . . . RFtn) through F(q0, . . . , qn), we have

M, σ[f(t0)/x0, . . . , f(tn)/xn] |= ϕ.

Proof. We argue by induction on n.

Base case: n = 0. There are two subcases to consider.

Case 1: Q0 = ∃. Suppose M, σ |= ∃x0ϕ. Then there is some a ∈ M such
that M, σ[a/x0] |= ϕ. Now, F(1) is just the ‘forest’ with a single element, t. Define
the map f by: f(t) = a. Then f : F(q0) → M is a map satisfying conditions 1.
and 2.

Conversely, suppose there is a map f : F(1) → M satisfying the given condi-
tions. Let t be the sole element of F(1), and let f(t) = a. Then M, σ[a/x0] |= ϕ,
hence M, σ |= ∃xϕ.

Case 2: Q0 = ∃∞. Suppose M, σ |= ∃∞x0ϕ. Then there is an infinite set A ⊆ M
such that for each a ∈ A,M, σ[a/x0] |= ϕ. F(ω) is the forest which simply consists
of ω-many disconnected elements, so let f be any injection from F(ω) to A. Then
f satisfies conditions 1. and 2.
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Conversely, let f : F(ω) → M be a map satisfying conditions 1. and 2.
By 1., A := ran(f) is infinite. By 2., M, σ[a/x0] |= ϕ for each a ∈ A. Hence
M, σ |= ∃∞x0ϕ by the semantics for FOL∞.

Induction step: we inductively assume that for any Q0, . . . , Qk ∈ {∃,∃∞}, for
any structure M and assignment σ, M, σ |= Q0x0 . . . Qkxkϕ iff there exists a func-
tion f : F(q0, . . . , qk) → M satisfying conditions 1. and 2. We show that this
statement also holds for k + 1. There are two subcases to consider.

Case 1: Q0 = ∃. Suppose M, σ |= ∃x0Q1x1 . . . Qk+1xk+1ϕ. Then there is some
a ∈ M such that M, σ[a/x0] |= Q1x1 . . . Qk+1xk+1ϕ. By IH, there is a function
f : F(q1, . . . , qk+1) → M (with each qi the index for Qi) satisfying conditions 1.
and 2.

Now let t0 denote the root of F(q0 = 1, q1, . . . , qk+1), and identify F(q1, . . . , qk+1)
with the structure induced by F(1, q1, . . . , qk+1) \ {t0}. Then define a function f ′ :
F(1, q1, . . . , qk+1) →M by: f ′(t0) = a, f ′(t) = f(t) for all t ̸= t0 ∈ F(1, q1, . . . , qk+1).
Then f ′ will satisfy conditions 1. and 2., as required.

Conversely, let f be a map from F(1, q1, . . . , qk+1) → M satisfying conditions
1. and 2. Let t0 again denote the root of F(1, q1, . . . , qk+1), and let a denote f(t0).

Consider the map f ′ resulting from restricting f to the structure induced by
F(1, q1, . . . , qk+1)\{t0}. For each path t1, . . . , tk+1 through F(1, q1, . . . , qk+1)\{t0},
we have M, σ[a/x0, f(t1)/x1, . . . , f(tk+1)/xk+1] |= ϕ. Then by IH, M, σ[a/x0] |=
Q1x1 . . . Qk+1xk+1ϕ. It follows that M, σ |= ∃x0Q1x1 . . . Qk+1xk+1ϕ, as required.

Case 2: Q0 = ∃∞. Suppose M, σ |= ∃∞x0Q1x1 . . . Qk+1xk+1ϕ. Then there is an in-
finite set A ⊆ M such that for each a ∈ A,M, σ[a/x0] |= Q1x1 . . . Qk+1xk+1ϕ.
WLOG we can assume A is countable (otherwise, take a countable subset of
A). Enumerate A as {a0, a1, . . .}. By IH, for each ai ∈ A, there is some map,
fi : F(q0, . . . , qk) →M , satisfying condition 1. and such that for any path t0, . . . , tk
through this tree,

M, σ[ai/x0, fi(t0)/x1, . . . , fi(tk)/xk+1] |= ϕ

We now define a map f on F(ω, q1, . . . , qk+1). Let

T0 := {t ∈ F(ω, q1, . . . , qk+1) : t has no predecessor}

|T0| = ω, so enumerate it as {t00, t10, . . .}. For each ti0 ∈ T0, define f(t
i
0) := ai. Then,

for each ti0 ∈ T0, identify F(ω, q1, . . . , qk+1) ↾ ↑(ti0) with F(q0, . . . , qk), and define
f ↾ ↑(ti0) := fi. Then f will satisfy conditions 1. and 2., as required.

Conversely, let f : F(ω, q1, . . . , qk+1) → M be a map satisfying conditions 1. and
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2. Let T0 denote the set of F(ω, q1, . . . , qk+1)-elements with no predecessors, and
enumerate T0 as {t00, t10, . . .}.

For each i ∈ N, let fi denote the map f ↾ ↑(ti0). Now consider an arbitrary
ti0 ∈ T0. Let ai denote f(t

i
0). Observe that for each path t1, . . . , tk+1 through ↑(ti0),

we have
M, σ[ai/x0, f(t1)/x1, . . . , f(tk+1)/xk+1] |= ϕ

By IH, we may conclude that M, σ[ai/x0] |= Q1x1 . . . Qk+1xk+1ϕ.
Since i was arbitrary, we may conclude that the above holds for every ai ∈ f [t0].

Also, f [t0] is infinite, because f is injective on ∼F equivalence classes. Hence
M, σ |= ∃∞x0Q1x1 . . . Qk+1xk+1ϕ as required.

This completes the induction.

We now state another useful fact about the semantics of FOL∞. This fact illus-
trates a certain similarity between the infinity quantifier and the regular existential
quantifier: like ∃, ∃∞ distributes over disjunction.

Proposition 2.15 (Distributivity of ∃∞). Let ϕ, ψ ∈ FOL∞. Then ∃∞x(ϕ∨ψ) is
logically equivalent to ∃∞xϕ ∨ ∃∞xψ.

Proof. The implication from ∃∞xϕ ∨ ∃∞xψ to ∃∞x(ϕ ∨ ψ) is trivial, so we only
consider the other direction. Suppose M, σ |= ∃∞x(ϕ ∨ ψ). Let A ⊆ M be an
infinite subset of M , such that for every a ∈ A, M, σ[a/x] |= ϕ∨ψ. Then for each
a ∈ A, either M, σ[a/x] |= ϕ or M, σ[a/x] |= ψ.

Suppose the set
A′ := {a′ ∈ A : M, σ[a′/x] |= ϕ}

is infinite. Then M, σ |= ∃∞xϕ. On the other hand, suppose the set A′ is finite.
Then A \ A′ is infinite, and for every a ∈ A \ A′, we have M, σ[a/x] |= ψ, hence
M, σ |= ∃∞xψ. In either case, M, σ |= ∃∞xϕ ∨ ∃∞xψ, as required.

We now show that GT∞ may be viewed as a fragment of FOL∞, by providing a
map from the well-formed formulas of GT∞ to the well-formed formulas of FOL∞.
We assume an enumeration of our countable stock of variables: {x0, x1, . . .}. We
also assume an enumeration of our proposition letters P, and introduce a corre-
sponding enumerated set of unary predicate letters, {P0, P1, . . .}

Definition 2.16 (Standard Translation). We extend the usual standard transla-
tion of modal logic into FOL, by adding clauses to handle the infinity modalities.
Let xi be a variable, ϕ ∈ GT∞. We define ST (xi, ϕ) by induction on the construc-
tion of ϕ.

• ST (xi, pj) = Pjxi

18
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• ST (xi,⊥) = ⊥

• ST (xi, ϕ ∧ ψ) = ST (xi, ϕ) ∧ ST (xi, ψ), ST (xi,¬ϕ) = ¬ST (xi, ϕ)

• ST (xi,3ϕ) = ∃xi+1(Rxixi+1 ∧ ST (xi+1, ϕ))

• ST (xi,3∞ϕ) = ∃∞xi+1(Rxixi+1 ∧ ST (xi+1, ϕ))

• ST (xi,3�ϕ) = ∃xi+1(Rxi+1xi ∧ ST (xi+1, ϕ))

• ST (xi,3∞
� ϕ) = ∃∞xi+1(Rxi+1xi ∧ ST (xi+1, ϕ))

• ST (xi, Eϕ) = ∃xi+1(ST (xi+1, ϕ))

The key fact about this translation is that the translated formulas are satisfied
in the same structures as their originals. More precisely, let τ = {P0, P1, . . .}∪{R}.
Given a Kripke model M = (S,R, V ), we define a τ -structure M = ⟨D, I⟩ by:
D = S, I(R) = R ⊆ S × S, and for each i ∈ N, I(Pi) = V (pi).

Proposition 2.17. For any ϕ ∈ GT∞, for any Kripke model M and any s ∈ S,
we have: M, s ⊩ ϕ iff M, σ[s/xi] |= ST (xi, ϕ).

The same mapping, ST (xi, ·), shows that ML∞,T∞ and G∞ may all also be
viewed as fragments of FOL∞, since they are all contained within GT∞.

In view of this proposition, we will sometimes be less precise in the remainder
of the thesis, and view Kripke models as τ -structures, and vice versa. Thus, we
might write things like M, s ⊩ ϕ, with ϕ a GT∞-formula, to mean that M, s ⊩ ϕ;
or M, s |= ST (xi, ϕ), to mean that M, s |= ST (xi, ϕ).

2.3 Bisimulations

One of the most important concepts for any modal system is that of bisimulation.
We provide a game-theoretic definition of a bisimilarity relation for each of the
modal fragments of FOL∞ defined thus far.

Definition 2.18 (Infinity bisimulation game). Following Definition 3.2 of [1], we
define a bisimulation game, Bis, played by two players, Spoiler and Duplicater.
The game is played over two pointed Kripke models, M0, s0 and M1, s1, in a
series of rounds. Each round has a configuration (s0, s1) ∈ S0 × S1 (we also refer
to these s0 and s1 as the focus elements). In each round, Spoiler moves first and
is permitted to make two types of move:
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• Forward move: Spoiler chooses a structure, Mi, and selects an Ri-successor
s′i of si. Duplicater must respond by selecting an R1−i-successor s

′
1−i of s1−i

in the corresponding structure M1−i. The game moves on to the next round,
with the configuration (s′i, s

′
1−i).

• Forward infinity move: Spoiler chooses a structureMi, and selects an infinite
set Xi of Ri-successors of the focus element si. Duplicater must respond by
selecting an infinite set X1−i of R1−i-successors of s1−i. Spoiler then selects
an element s′1−i ∈ X1−i, and in response, Duplicater must select an element
s′i ∈ Xi. The game moves on to the next round, with the configuration
(s′i, s

′
1−i).

Spoiler wins the game if Duplicater is ever unable to make a legal move, or
if a configuration (s0, s1) is reached such that s0 and s1 do not satisfy the same
proposition letters from P. Otherwise, Duplicater wins.

We write Bis(M0, s0,M1, s1) to denote the game played on M0,M1 which
begins with a round with configuration (s0, s1), and continues for indefinitely many
rounds. We write Bisk(M0, s0,M1, s1) to denote the game over the same structures
and with the same opening-round configuration, but played for exactly k rounds.
We write M0, s0 ≃ M1, s1 iff Duplicater has a winning strategy in the game
Bis(M0, s0,M1, s1), and M0, s0 ≃k M1, s1 iff Duplicater has a winning strategy
in the game Bisk(M0, s0,M1, s1).

Remark. We have not included an infinity symbol in our notation for the ≃
relation, because this thesis is exclusively concerned with logics with an infinity
modality, so no confusion is likely to ensue, and it keeps notation lighter. Cf. the
remark after Definition 2.11.

Definition 2.19 (Two-way infinity bisimulation game). The two-way infinity
bisimulation game, BisT , is like Bis, except that Spoiler is allowed to make the
following additional types of move each round:

• Backward move: Spoiler chooses a structure,Mi, and selects anRi-predecessor
s′i of si. Duplicater must respond by selecting an Ri-predecessor s

′
1−i of s1−i

in the corresponding structure M1−i. The game moves on to the next round,
with the configuration (s′i, s

′
1−i).

• Backward infinity move: Spoiler chooses a structure Mi, and selects an in-
finite set Xi of Ri-predecessors of the focus element si. Duplicater must
respond by selecting an infinite set X1−i of R1−i-predecessors of s1−i. Spoiler
then selects an element s′1−i ∈ X1−i, and in response, Duplicater must se-
lect an element s′i ∈ Xi. The game moves on to the next round, with the
configuration (s′i, s

′
1−i).
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We let BisT (M0, s0,M1, s1) denote the BisT game played on M0,M1 with
starting configuration (s0, s1), and we let BiskT (M0, s0,M1, s1) denote the k-round
version of this game. We write M0, s0 ≃T M1, s1 iff Duplicater has a winning
strategy in BisT (M0, s0,M1, s1), and M0, s0 ≃k

T M1, s1 iff Duplicater has a win-
ning strategy in the k-round version of this game.

Definition 2.20 (Global infinity bisimulation game). The global infinity bisim-
ulation game, BisG, is played on two Kripke models, M0,M1. The game begins
with an initial round, with the following rules:

• Global move: Spoiler chooses a model, Mi, and may select any element
si from Si. Duplicater must select an element s1−i from S1−i. The new
configuration is (si, s1−i).

After the initial round, the game continues with the players simply playing the
game Bis(M0, s0,M1, s1). We call (s0, s1) the initial configuration, since it is the
first configuration reached in the game.

The game BiskG is defined similarly, except that after the initial round, the
players play the game Bisk(M0, s0,M1, s1) instead of Bis(M0, s0M1, s1). (Note
that this means the game BiskG actually lasts for k + 1 rounds- one of which is the
initial round.)

We write M0 ≃G M1 iff Duplicater has a winning strategy in BisG(M0,M1),
and M0 ≃k

G M1 iff Duplicater has a winning strategy in BiskG(M0,M1).

Remark. The BisG game would correspond more closely to the syntax of G∞ if
global moves were allowed in every round of the game, not just the initial round.
However, it is straightforward to verify that this way of defining the game would
be equivalent to the definition given above: allowing global moves in later rounds
would not actually make the game any easier for Spoiler. Further, the definition
given above makes proofs about the ≃G relation simpler, so we adopt it here.

A separate question is why we do not allow versions of the game which start
from a particular configuration, (s0, s1), and where Spoiler may play a non-global
move (e.g. a forwards move) in the opening round. There is a technical reason
behind this, but it is not of much interest, and therefore we choose not to explain
it in detail.

Definition 2.21 (Global two-way infinity bisimulation game). The global two-way
infinity bisimulation game, BisGT (M0,M1),, is just like BisG, except that after the
initial round, the players play BisT (M0, s0,M1, s1) instead of Bis(M0, s0,M1, s1).
Analogously, BiskGT is just like BiskG except that after the initial round, BiskT is
played instead of Bisk.

We writeM0 ≃GT M1 iff Duplicater has a winning strategy in BisGT (M0,M1),
and M0 ≃k M1 iff Duplicater has a winning strategy in BiskGT (M0,M1).
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Analogous remarks to those made after Definition 2.20 also apply here.

These bisimilarity relations have each been cooked up to match the different
expressivity features of the modal languages ML∞,T∞,G∞, and GT∞. The fol-
lowing proposition partially illustrates this correspondence.

Proposition 2.22 (Bisimulation invariance). ML∞,T∞,G∞,GT∞ are each in-
variant under their corresponding notion of bisimulation. That is:

1. For any ϕ ∈ ML∞, for any M0, s0 ≃ M1, s1, M0, s0 ⊩ ϕ iff M1, s1 ⊩ ϕ.

2. For any ϕ ∈ T∞, for any M0, s0 ≃T M1, s1, M0, s0 ⊩ ϕ iff M1, s1 ⊩ ϕ.

3. For any ϕ ∈ G∞ such that ST (x, ϕ) has no free variables, for any M0 ≃G

M1, M0 ⊩ ϕ iff M1 ⊩ ϕ.

4. For any ϕ ∈ GT∞ such that ST (x, ϕ) has no free variables, for any M0 ≃GT

M1, M0 ⊩ ϕ iff M1 ⊩ ϕ.

Proof. For a proof of 1, we refer the reader to [1]. We prove item 2 by induction
on the construction of ϕ.

Base case: ϕ = p for some p ∈ P. If s0 and s1 did not agree on all proposition
letters, then Duplicater would immediately lose the game BisT (M0, s0,M1, s1). So
s0, s1 must agree on proposition letters, and in particularM0, s0 ⊩ p iffM1, s1 ⊩ p.

Base case: ϕ = ⊥. Then neither s0 nor s1 satisfies⊥, soM0, s0 ⊩ ⊥ iffM1, s1 ⊩ ⊥.

The induction step for the Boolean connectives is trivial, and is therefore omitted
for brevity.

Induction step: ϕ = 3�ψ. The induction hypothesis is that for any M0, t0 ≃T

M1, t1, M0, t0 ⊩ ψ iff M1, t1 ⊩ ψ.
Suppose M0, s0 ⊩ 3�ψ. Then there is t0 ∈ S0 such that t0Rs0 and M0, t0 ⊩ ψ.

Since t0Rs0, t0 would be a legal ‘backwards move’ for Spoiler in BisT (M0, s0,M1, s1).
Since M0, s0 ≃T M1, s1, there must be some winning response t1 ∈ R−1[s1] for
Duplicater in response to Spoiler selecting t0. We now have M0, t0 ⊩ ψ and
M0, t0 ≃T M1, t1, so by the inductive hypothesis, M1, t1 ⊩ ψ. Since t1Rs1, we
have M1, s1 ⊩ 3�ψ, as required.

The argument for the converse direction is analogous.

Induction step: ϕ = 3∞
� ψ. The induction hypothesis is that for any M0, t0 ≃T

M1, t1, M0, t0 ⊩ ψ iff M1, t1 ⊩ ψ.
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Suppose M0, s0 ⊩ 3∞
� ψ. Then there is an infinite set T0 of R-predecessors

of s0, such that for each t0 ∈ T0,M0, t0 ⊩ ψ. Further, Spoiler would be able to
select T0 as a ‘backwards infinity move’ in the game BisT (M0, s0,M1, s1). Let
T1 ⊆ R−1[s1] be the set prescribed as a response for Duplicater by the winning
strategy for Duplicater in this game.

Now let t1 ∈ T1. Then t1 would be a legal follow-up for Spoiler to his backward
infinity move. Let t0 be the element prescribed by the winning strategy for Du-
plicater in response to this follow-up. Then M0, t0 ≃T M1, t1. By IH, it follows
that M1, t1 ⊩ ψ. But t1 was arbitrary, so we can conclude that every member of
T1 satisfies ψ. Since T1 was infinite, it follows that M1, s1 ⊩ 3∞

� ψ.
The argument for the converse direction is analogous.

The induction steps where ϕ = 3ψ and ϕ = 3∞ψ may be taken care of by
the same reasoning as the 3� and 3∞

� cases, with ‘predecessor’ replaced by ‘suc-
cessor’. This concludes the induction, and completes the proof of item 2.

We now turn to item 3. First of all, it is easy to see that if ϕ ∈ G∞ is such
that ST (x, ϕ) has no free variables, then ϕ is logically equivalent to a Boolean
combination of formulas from the set {Eψ : ψ ∈ ML∞}. We therefore assume
that ϕ is written in this form, and argue by induction on the construction of ϕ, as
follows.

Base case: ϕ = Eψ, with ψ ∈ ML∞. Suppose M0 ⊩ Eψ. Then there is some
s0 ∈ S0 such that M0, s0 ⊩ ψ. Further, s0 would be a legal selection for Spoiler in
the ‘initial round’ of the game BisG(M0,M1). Since M0 ≃G M1, there must be
some winning response s1 for Duplicater in reply to Spoiler choosing s0. We then
have M0, s0 ≃ M1, s1, so by item 1, M1, s1 ⊩ ψ. Hence M1 ⊩ Eψ, which was to
show.

The induction steps are: ϕ = ψ ∧ χ, ϕ = ¬ψ. Both arguments are routine, so
we omit them. This concludes the induction, and completes the proof of item 3.

The proof of item 4 is identical to the proof of item 3, except that we rewrite ϕ
as a Boolean combination of formulas from {Eψ : ψ ∈ T∞} and use item 2 rather
than item 1 in the proof of the base case.

We round off this chapter with some facts about our k-step bisimilarity rela-
tions, and the modal-depth-k- fragments of the corresponding logics. These facts
will be very important later on.

Definition 2.23 (Modal depth). Let ϕ ∈ GT∞. We let md(ϕ) denote the modal
depth of ϕ, which is defined inductively by:
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• md(p) = md(⊥) = 0 for all p ∈ P

• md(¬ψ) = md(ψ)

• md(ψ ∧ χ) = max(md(ψ),md(χ))

• md(♡ψ) = md(ψ) + 1 for each ♡ ∈ {3,3∞,3�,3∞
� , E}

We let GT∞
n denote the fragment {ϕ ∈ GT∞ : md(ϕ) ≤ n}. We adopt analogous

notation for T∞ and G∞.

Definition 2.24 (FOL∞
n ). For each n ∈ N, we let FOL∞

n denote {ϕ ∈ FOL∞ :
qd(ϕ) ≤ n}.

Definition 2.25 (Depth n equivalence). Let M0, s0 and M1, s1 be pointed Kripke
structures. We write: M0, s0 ≡n

T M1, s1 iff for all ϕ ∈ T∞
n ,M0, s0 ⊩ ϕ iffM1, s1 ⊩

ϕ.
We write M0 ≡n

G M1 iff for every ϕ ∈ G∞
n+1 such that ST (x, ϕ) is a sentence,

M0 ⊩ ϕ iff M1 ⊩ ϕ. We write M0 ≡n
GT M1 iff for every ϕ ∈ GT∞

n+1 such that
ST (x, ϕ) is a sentence, M0 ⊩ ϕ iff M1 ⊩ ϕ.

Proposition 2.26. Let τ be an arbitrary finite modal signature (i.e., a finite subset
of the proposition letters P). Then for any n ∈ N, ML∞,T∞

n ,G∞
n and GT∞

n are
all finite up to logical equivalence relative to τ .

Proof. By Lemma 4.19 of [1], FOL∞
n is finite up to logical equivalence relative

to any finite signature. But any ϕ ∈ GT∞
n can be expressed in FOL∞

n , by the
Standard Translation.

Proposition 2.27. Let τ be a fixed finite modal signature. Then

1. For any n ∈ N, for any pointed τ -structures M0, s0,M1, s1, M0, s0 ≃n
T

M1, s1 iff M0, s0 ≡n
T M1, s1

2. For any n ∈ N, for any τ -structures M0,M1, M0 ≃n
G M1 iff M0 ≡n

G M1,
and M0 ≃n

GT M1 iff M0 ≡n
GT M1

Proof. In each case, we only consider the direction from modal equivalence to
bisimulation. The converse direction goes by a routine induction argument analo-
gous to the proof of Proposition 2.22.

We begin with item 1. We argue by induction on n.

Base case: n = 0. Since M0, s0 ≡0
T M1, s1, we have that s0 satisfies all the same

proposition letters as s1. But then Duplicater wins the game Bis0T (M0, s0,M1, s1)
automatically, so M0, s0 ≃0

T M1, s1.
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Induction step: we inductively assume that for any M0, s0,M1, s1, if M0, s0 ≡n
T

M1, s1 then M0, s0 ≃n
T M1, s1. We show that if M0, s0 ≡n+1

T M1, s1 then
M0, s0 ≃n+1

T M1, s1.
LetM0, s0 ≡n+1

T M1, s1. We must show that Duplicater has a winning strategy
in BisnT (M0, s0,M1, s1). We consider the possible moves Spoiler can make from
the starting configuration.

• Forward move: Without loss of generality, suppose Spoiler chooses M0, and
selects a successor t0 of s0. Since T∞

n is finite up to logical equivalence, we
may write a characteristic formula χ which completely characterises t0 (with
respect to T∞

n ). We then have M0, s0 ⊩ 3χ. Since M0, s0 ≡n+1
T M1, s1, we

also have M1, s1 ⊩ 3χ. So there is some t1 ∈ R[s1] such that M1, t1 ⊩ χ.

Since χ fully characterises t0 and t1, we have M0, t0 ≡n+1
T M1, t1. Then by

the inductive hypothesis, M0, t0 ≃n+1
T M1, t1. So t1 is a winning response

for Duplicater in response to Spoiler choosing t0.

• Forward infinity move: Suppose Spoiler selects some infinite set T0 ⊆ R[s0].
The fact that T∞

n is finite up to logical equivalence immediately implies that
≡n

T has finite index. So there must be some infinite set T ′
0 ⊆ T0 such that

for all x, y ∈ T ′
0, M0, x ≡n

T M0, y. Again using the fact that T∞
n is finite

up to logical equivalence, let χ be a characteristic formula which completely
determines the T∞

n -theory of each x ∈ T ′
0.

We now have M0, s0 ⊩ 3∞χ, and therefore M1, s1 ⊩ 3∞χ. So there is some
T1 ⊆ R[s1] such that for all t1 ∈ T1, M1, t1 ⊩ χ. Duplicater should select
the set T1. Whichever t1 ∈ T1 is selected by Spoiler, Duplicater may select
any element t0 of T ′

0. Because t0, t1 both satisfy χ, we then have M0, t0 ≡n
T

M1, t1. So by the inductive hypothesis, we then have M0, t0 ≃n
T M1, t1. So

we have illustrated a winning response for Duplicater.

• The cases where Spoiler plays a backward move or a backwards infinity move
are analogous, using the expressive power of 3� and 3∞

� .

We can conclude that Duplicater has a winning strategy in Bisn+1
T (M0, s0,M1, s1),

which was to show. This completes the induction.

We now turn to item 2. We omit the argument for G∞, since it is analogous
to the argument for GT∞, which we now show.

Suppose M0 ≡n
GT M1. We give a winning strategy for Duplicater in the game

BisnGT (M0,M1) by showing how Duplicater should respond to Spoiler’s initial,
global move. Without loss of generality, suppose Spoiler selects the structure M0,
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and selects an element s0. Since T
∞
n is finite, let χ ∈ T∞

n be a formula which fully
characterises M0, s0 relative to T∞

n . Then M0 ⊩ Eχ, which implies M1 ⊩ Eχ
since M0 ≡n

GT M1. This means there is some s1 ∈ S1 such that M1, s1 ⊩ χ.
Duplicater should respond to Spoiler’s move by selecting s1. Then since s0 and s1
both satisfy χ, we have M0, s0 ≡n

T M1, s1. By item 1 this implies that Duplicater
has a winning strategy in BisnT (M0, s0,M1, s1), as required.

We may conclude that M0 ≃n
GT M1.

Proposition 2.28. Let τ be a fixed finite modal signature, n ∈ N. Then

1. The relation ≃n
T has finite index on the class of pointed τ -structures

2. The relations ≃n
G and ≃n

GT both have finite index on the class of τ -structures

Proof. Each result follows immediately from Propositions 2.26 and 2.27.
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Chapter 3

Gaifman Theorem for FOL∞

In this chapter, we state the first of our two main results in this thesis, namely
that the logics T∞,G∞ and GT∞ may be characterised in terms of invariance
under bisimulation. We give an overview of the proof method used to obtain
analogous characterisation results in the finite model theory setting, and explain
how this method may be adapted to handle our modal fragments of FOL∞. A
crucial component of the finite-model-theory strategy is Gaifman’s Theorem for
first-order logic, and in order to apply the method to fragments of FOL∞, we need
an analogous theorem for FOL∞. The main body of this chapter will be concerned
with proving this theorem.

3.1 Characterisating T∞,G∞ and GT∞ through

Bisimulation Invariance

Proposition 2.22 from the previous chapter shows that there is a connection be-
tween each of our modal systems, and its corresponding notion of bisimulation:
each formula of T∞ is invariant under the relation ≃T , for example. A natural
question to ask is whether this connection holds in the opposite direction. If a
formula of FOL∞ is invariant under a particular bisimilarity relation, must it be
equivalent to a formula in the modal language corresponding to this notion of
bisimulation?

In the context of classical modal logic and classical FOL, the celebrated van
Benthem Characterisation Theorem (see e.g. [5]) gives an affirmative answer to
this question. Van Benthem’s original proof uses the Compactness of first-order
logic. However, as noted in Chapter 1, FOL∞ is not compact. Therefore, in order
to prove analogues of the van Benthem Characterisation Theorem for fragments
of FOL∞, one needs a substantially different method from van Benthem’s original
approach.
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3.1. CHARACTERISATING T∞,G∞ AND GT∞ THROUGH
BISIMULATION INVARIANCE

Fortunately, alternative approaches have been developed in the setting of finite
model theory. The finite-model analogue of van Benthem’s theorem states that
an FOL- formula is invariant over bisimulation (across finite models) if and only
if it is equivalent (with respect to finite models) to a modal formula. Van Ben-
them’s original proof does not go through for this statement, because it appeals to
Compactness, and FOL is not compact with respect to the class of finite models.
However, Rosen shows in [16] that the theorem still holds with respect to finite
models. His approach is constructive: given a formula ϕ, he shows that if two
pointed structures M0, s0,M1, s1 are n-step bisimilar (in the basic modal sense),
then they must have bisimilar companion structures M′

0, s
′
0,M′

1, s
′
1 satisfying a

stronger equivalence relation which must preserve the truth value of ϕ. If ϕ is also
bisimulation invariant then ϕ must in fact be n-step bisimulation invariant, which
implies that ϕ is modally definable. (This ‘Upgrading’ strategy will be explained
in more detail in Chapter 4.)

Furthermore, Bellas Acosta in [1] adapts Rosen’s approach to show that ML∞

is characterised by invariance under the bisimilarity relation ≃. He uses the same
constructive upgrading idea to show that formulas of FOL∞ which are invariant
under ≃, must be invariant under ≃k for some k ∈ N, which implies that they are
definable within ML∞

k . In the present work, we will see that Bellas Acosta’s proof
extends easily to the case of T∞, showing that T∞ is characterised by invariance
under ≃T .

In the cases of G∞ and GT∞, there is a technical issue. Recall that in Propo-
sition 2.22, we showed only that every formula of G∞ with no free variables is
invariant under bisimulation; likewise for GT∞. As a technical convenience, we
confine our attention in this thesis to characterising the formulas of G∞ and GT∞

whose standard translations have no free variables. So, the result we aim to prove
is that for any sentence ϕ of FOL∞, if ϕ is invariant under ≃G then ϕ is expressible
within G∞, and if ϕ is invariant under ≃GT then ϕ is expressible within GT∞.
However, speaking loosely, we may refer to these as ‘characterisation results’ for
G∞ and GT∞, respectively.

We will indeed provide proofs of these characterisation results. However, the
global modality makes matters trickier, and requires techniques going significantly
beyond those used by Bellas Acosta in [1]. In order to prove characterisation
results for these logics, we will adapt the methods of Otto in [15], who proved
analogous results for modal fragments of FOL which include a global modality.

We may isolate two important components of Otto’s approach. Firstly, he
observes that by Gaifman’s theorem for first-order logic, for every first-order for-
mula ϕ, we can find a suitable equivalence relation which is, intuitively, ‘finitely
bounded’, and which preserves the truth value of ϕ. The second component is
another ‘Upgrading’ argument: given two structures which are k-step ≃G- or

28



CHAPTER 3. GAIFMAN THEOREM FOR FOL∞

≃GT -bisimilar, we can find fully bisimilar companion structures which satisfy the
stronger equivalence relation yielded by Gaifman’s theorem. This means that in-
variance under bisimulation implies invariance under sufficiently large finite-step
bisimulation. But classes of structures which are closed under finite-step bisimu-
lation are modally definable, implying the desired result that formulas which are
invariant under bisimulation, are modally definable.

We adopt the same strategy here. But Gaifman’s theorem only covers classical
first-order logic, whereas we are concerned with fragments of FOL∞. Hence, our
first task is to prove an analogue of Gaifman’s theorem for FOL∞. This task is
taken up in the remainder of this chapter.

3.2 Preliminaries

In order to even state Gaifman’s theorem, and its FOL∞ analogue, we require
various definitions. Our definitions closely follow those of Gaifman [9].

Definition 3.1 (Gaifman distance). Let M be a τ - structure, a, b ∈ M . The
Gaifman distance between a and b in M, notation: dM(a, b), is defined inductively
by the following clauses:

• dM(a, b) = 0 iff a = b

• dM(a, b) ≤ 1 iff a = b, or there is some predicate symbol R ∈ τ , and some
tuple c ⊆M with a, b among c, such that M |= R(c)

• dM(a, b) ≤ n+ 1 iff there is some c ∈M with dM(a, c) ≤ n and dM(c, b) ≤ 1

• dM(a, b) = n+1 iff dM(a, b) ≤ n+1, but it is not the case that dM(a, b) ≤ n

• dM(a, b) = ∞ iff there is no n ∈ N such that dM(a, b) = n

Further, for any τ -structure M, any tuple of objects a ⊆ M and any b ∈ M ,
we define dM(a, b) := min({dM(a, b) : a ∈ a}).

Observe that, relative to any fixed finite signature τ and to the class of τ -
structures, we may write a first-order formula dτ (x, y) ≤ n expressing that the
Gaifman distance from some objects a to an object b is less than or equal to n.
For example, if we are concerned with the signature {P,R}, with P a unary and
R a binary predicate, then

x = y ∨Rxy ∨ ∃z((Rxz ∧Rzy) ∨ (Rxz ∧Ryz) ∨ (Rzx ∧Rzy) ∨ (Rzx ∧Ryz))

expresses, relative to this signature, that the Gaifman distance from a to b is
at most 2. Further, we may express that the Gaifman distance from a to b is
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3.2. PRELIMINARIES

strictly less than n, exactly n, at least n, or strictly more than n, using Boolean
combinations of formulas of the form dτ (a, b) ≤ m, for appropriate m.

In this chapter, we will only be concerned with finite, relational signatures τ .
We will therefore use dτ (x, y) ≤ n to denote an FOL-formula which is satisfied by
a, b in a τ - structure M iff dM(a, b) ≤ n. We will use dτ (x, y) < n, dτ (x, y) = n,
dτ (x, y) ≥ n, and dτ (x, y) > n as abbreviations for appropriate Boolean combi-
nations of formulas of the form d(x, y) ≤ m. In practice, we will often suppress
mention of the signature τ .

Definition 3.2 (Neighbourhood). Let M be a τ - structure, a ∈ M . The k-
neighbourhood of a in M is the set

V k
M(a) := {b ∈M : dM(a, b) ≤ k}

Generalising this notation, for a finite tuple a ⊆ M, we define

V k
M(a) := {b ∈M : dM(a, b) ≤ k}

We will sometimes drop the subscript M if the intended structure is obvious.
We will often want to consider the substructure of M induced by the neigh-

bourhood of some object, or finite set of objects, in M. We therefore introduce
a new piece of notation: where a is a finite tuple of objects from M, k ∈ N, we
let M↾(a, k) denote M↾V k

M(a), the structure whose universe is V k
M(a) and whose

interpretation of n-ary predicates is given by I(R) = RM ∩ (V k
M(a))n.

Definition 3.3 (Local formula). Let ϕ ∈ FOL∞ with FV (ϕ) = (v1, . . . , vn). We
say that ϕ is k-local iff, for any structure M and any n-tuple a ⊆M :

M, a |= ϕ ⇐⇒ M↾(a, k), a |= ϕ

We say that ϕ is local iff there is some k ∈ N such that ϕ is k-local.

Observe that ϕ(v) is k-local iff it is equivalent to a formula ϕ′(v), such that
FV (ϕ′) = v = FV (ϕ), and all quantifiers in ϕ′ are relativised to the k-neighbourhood
of some v ∈ v (using the fact that ‘being in the k-neighbourhood of’ is first-order
definable). We will freely make use of this equivalence in the remainder of this
chapter.

Observe also that locality is closed under Boolean operations: a Boolean com-
bination of k-local formulas is still k-local.

Definition 3.4 (Basic local sentences). Let ϕ be a sentence of FOL∞. We say
that ϕ is a basic local sentence iff there is some signature τ , some k, n ∈ N and
some k-local formula ψ with one free variable such that ϕ is of the syntactic form:
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∃v1 . . . ∃vn(
∧

1≤i<j≤n

dτ (vi, vj) ≥ k ∧
∧

1≤i≤n

ψ(vi))

In this case we say that k is the locality rank of ϕ and n is its scattering rank .

We say that ϕ is a basic local infinity sentence iff there is some signature τ ,
some k, n ∈ N and some k-local formula ψ with one free variable such that ϕ is of
the syntactic form:

∃∞v1 . . . ∃∞vn(
∧

1≤i<j≤n

dτ (vi, vj) ≥ k ∧
∧

1≤i≤n

ψ(vi))

Again, k is then the locality rank of ϕ, and s is its scattering rank.

We also use this section to state and prove some lemmas which will be useful
later on.

Lemma 3.5. For any k ∈ N, the formula d(x, y) ≤ 2k is k-local, and the formula
d(x, y) ≤ 2k + 1 is k + 1-local.

Proof. We first show that d(x, y) ≤ 2k is k- local.

Suppose dM(a, b) ≤ 2k. This means that, for some aj among a, there is a
‘path’ of elements aj = c0, c1, . . . , ck, . . . , c2k−1, c2k = b such that, for each i < 2k,
we have ci, ci+1 and possibly some auxiliary elements di linked by some predicate
R. Further, for each i < k, we have ci ∈ V k(a) and di ⊆ V k(a), and for each
i ≥ k, ci ∈ V k(b) and di ⊆ V k(b). Hence, all of the elements occurring as some ci
or among some di are within V k(a, b). This means that the elements ci and the
auxiliary elements di can also witness that M↾(a, b, k) |= d(a, b) ≤ 2k, which was
to show.

The converse direction is immediate, by the observation that Gaifman distance
does not increase when passing to extensions: if dM(a, b) ≤ m andM is a submodel
of M′, then also dM

′
(a, b) ≤ m, because the ‘witnesses’ showing that dM(a, b) ≤ m

will also exist in M′ and witness dM
′
(a, b) ≤ k.

We now show that d(x, y) ≤ 2k + 1 is k + 1- local.

Suppose dM(a, b) ≤ 2k + 1. As before, this means there is a ‘path’ of elements
aj = c0, c1, . . . , ck, ck+1, . . . , c2k, c2k+1 = b such that, for each i < 2k + 1, ci, ci+1

and possibly some auxiliary elements di are linked by some predicate R. Further,
for each i ≤ k, ci ∈ V k(a) and for each i ≥ k + 1, ci ∈ V k(b). Now, we might not
have dk ⊆ V k(a, b). The elements dk link ck to ck+1, so they may be further from
a than ck and further from b than ck+1. However, there will certainly be a path
aj, c1, . . . , ck, dk linking each dk ∈ dk to a. So we have dk ⊆ V k+1(a, b).
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We may conclude that every element ci and every element occurring within
some di is within M↾(a, b, k+1). So, as before, we have M↾(a, b, k+1) |= d(a, b) ≤
2k + 1, which was to show.

The converse direction is again immediate by the observation that Gaifman
distance does not increase when passing to extensions.

Observe that d(x, y) > m may be defined by ¬d(x, y) ≤ m, and recall that (for
any m) Boolean operations preserve m-locality. So, we obtain as an easy corollary
that d(x, y) > 2k is also k-local, and d(x, y) > 2k + 1 is also k + 1-local.

Lemma 3.6. Let ψ(x, y) be an l-local formula, and let m ≥ k + l. Then

1. The formula ϕ1 := ∃y1 ∈ V k(x) . . . ∃yn ∈ V k(x)ψ is m-local

2. The formula ϕ2 := ∃∞y1 ∈ V k(x) . . . ∃∞yn ∈ V k(x)ψ is m-local

Proof. We first show item 1. Let ϕ1, ψ, k, l,m be as in the statement of the
lemma. We must show that, for any structure M and tuple a ⊆M , M, a |= ϕ1 iff
M↾(a,m), a |= ϕ1.

Suppose M, a |= ϕ1. Then there are b1, . . . , bn, each within V k
M(a), such that

M, a, b |= ψ. Since ψ is l-local, we can infer that M↾(a, b, l), a, b |= ψ. We now
claim that

M↾(a,m)]↾(a, b, l) = M↾(a, b, l) (3.1)

First note that [M↾(a,m)]↾(a, b, l) is well-defined, because b ⊆ V m
M (a). It suffices

to show that V l
M↾(a,m)(a, b) = V l

M(a, b). The left-to-right inclusion is immediate
from the fact that Gaifman distance does not increase when passing to extensions.
For the right-to-left inclusion, if c ∈ V l

M(a, b) then there is some d ∈ a∪b such that
dM(c, d) ≤ l. But by Lemma 3.5, it follows that M↾(c, d, l) |= d(c, d) ≤ l. Since
M↾(a,m) is an extension of M↾(c, d, l), we have M↾(a,m) |= d(c, d) ≤ l and hence
c ∈ V l

M↾(a,m)(a, b), as required. This proves the claim (3.1).

We now have [M↾(a,m)]↾(a, b, l), a, b |= ψ. Since ψ is l-local, it follows that
M↾(a,m), a, b |= ψ. Finally, by Lemma 3.5 and because k ≤ m, we haveM↾(a,m) |=
d(a, bi) ≤ k for each bi. This means that M↾(a,m), a |= ϕ1, which was to show.

Conversely, suppose M↾(a,m), a |= ϕ1. Then there are b1, . . . , bn ∈ V k
M↾(a,m)(a)

such that M↾(a,m), a, b |= ψ. ψ is l-local, so [M↾(a,m)]↾(a, b, l), a, b |= ψ. Now we
may re-use (3.1) to infer that M↾(a, b, l), a, b |= ψ. But again, ψ is l-local, hence
M, a, b |= ψ.
Finally, each bi ∈ V k

M(a), because distance does not increase when passing to ex-
tensions. Hence M, a |= ϕ1, as required.
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We now move to item 2. We must show that, for any structure M and tuple
a ⊆M , M, a |= ϕ2 iff M↾(a,m), a |= ϕ2.

SupposeM, a |= ϕ2. Then by Observation 2.14 there is a function f : F((ω)n) →
V k
M(a) such that f is injective on ∼F-equivalence classes, and for every path
t1, . . . , tn through F((ω)n), M, a, f(t1), . . . , f(tn) |= ψ. Now let (t1, . . . , tn) be
an arbitrary path through F((ω)n), and let b1 denote f(t1), ..., bn denote f(tn).
We then have b ⊆ V k(a) and M, a, b |= ψ. By the exact same argument as used
for item 1 of this lemma, we can conclude that M↾(a,m), a, b |= ψ.

Since t1, . . . , tn was arbitrary, the function f is such that for every path t1, . . . , tn
through F((ω)n), we have

M↾(a,m), a, f(t1), . . . , f(tn) |= ψ

By Observation 2.14 we may conclude that M↾(a,m), a |= ϕ2, which was to show.

The argument for the converse direction is analogous. We reuse the argument
in the proof of the converse direction in item 1 to infer from M↾(a,m), a, b |= ψ to
M, a, b |= ψ.

3.3 Statement of the Theorem

We now state Gaifman’s original theorem, and its analogue for FOL∞ which will
be proved in this chapter.

Theorem 3.7 (Gaifman’s theorem for first-order logic). Every first-order formula
ϕ is equivalent to a Boolean combination of first-order local formulae, and basic
local sentences.

Theorem 3.8 (Gaifman theorem for FOL∞). Every formula ϕ of FOL∞ is equiv-
alent to a Boolean combination of local formulae, basic local sentences, and basic
local infinity sentences.

For a proof of Theorem 3.7, see Gaifman [9]. We will give a proof of Theorem
3.8 which closely follows Gaifman’s original proof in [9]. (As a matter of fact, the
proof we will give illustrates all the reasoning required in the proof of Theorem
3.7.)

3.4 Proof of Gaifman theorem for FOL∞

We prove Theorem 3.8 by induction on the construction of formulas. In order to
handle one of the induction steps, we will need the following crucial lemma:
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Lemma 3.9. Let β ∈ FOL∞ be a k-local formula for some k ∈ N, and let FV (β) =
(v1, . . . , vm, z). Then

(a) ∃zβ is logically equivalent to a Boolean combination of local formulae, and
basic local sentences

(b) ∃∞zβ is logically equivalent to a Boolean combination of local formulae, and
basic local infinity sentences.

Almost all the hard work required to prove Theorem 3.8 consists in proving
this lemma. We will proceed by proving a long series of claims, eventually reducing
the formulas in (a) and (b) to formulas in the desired form.

3.4.1 Proof of Lemma 3.9

We begin with item (a). Assume β, k, v, z are as in the statement of the lemma.
∃zβ(v, z) is equivalent to

∃z(d(v, z) ≤ 2k + 1 ∧ β) ∨ ∃z(d(v, z) > 2k + 1 ∧ β)

Let β1 denote the first disjunct, β2 the second. Recall that β is k-local. Therefore,
by Lemma 3.6, β1 is a 3k + 1-local formula. So we have reduced the problem to
showing that β2 can be written in the desired form.

Let M, a, b satisfy d(a, b) > 2k+1. Then the substructures M↾(a, k), M↾(b, k)
are disjoint. Call these structures M1 and M2, respectively. Then M↾(a, b, k) is
the disjoint sum of M1 and M2.

Claim 1. There exist sets of formulas Γ = {γi(v) : i ∈ I},∆ = {δj(z) : j ∈ J},
and a formula ρ(β) such that:

i. All members of Γ, ∆ are k-local

ii. ρ(β) is a Boolean combination of formulas from Γ ∪∆

iii. M, a, b |= β iff M, a, b |= ρ(β)

Proof. Define the map ρ inductively, as follows:

• ρ(P (u)) := (¬u0 = u0) if the variables u include both z and one of the
variables from v, P (u) otherwise

• ρ(ϕ ∧ χ) := ρ(ϕ) ∧ ρ(χ)

• ρ(¬ϕ) := ¬ρ(ϕ)

34



CHAPTER 3. GAIFMAN THEOREM FOR FOL∞

• For each Q ∈ {∃,∃∞}, ρ(Qxϕ) = Qx(d(v, x) ≤ k ∧ ϕ) ∨Qx(d(z, x) ≤ k ∧ ϕ)

Note that since β(v, z) is k-local, we may assume that for any subformula ψ of
β such that FV (ψ) ⊆ (v, β), the formula ψ is also k-local. Setting

Γ := {ϕ ∈ Subf (ρ(β)) : a variable from v occurs free in ϕ}

and

∆ := {ϕ ∈ Subf (ρ(β)) : z occurs free in ϕ}

we see that ρ(β) satisfies the conditions i. and ii. It remains to show that

M, a, b |= β ⇐⇒ M, a, b |= ρ(β)

By locality of β, M, a, b |= β iff M1 ⊕ M2, a, b |= β. A simple induction on
β shows that M1 ⊕ M2, a, b |= β iff M1 ⊕ M2, a, b |= ρ(β). The atomic case is
ensured by the fact that no formula of the form P (a, b, c) may hold in M1 ⊕M2,
as dM(a, b) > 2k + 1.

Finally, the construction of ρ(β) makes it clearly k-local, so M1 ⊕M2, a, b |=
ρ(β) iff M, a, b |= ρ(β). This completes the proof of iii.

By Claim 1, we may rewrite β2 as ∃z(d(v, z) > 2k+1∧ρ(β)). Putting ρ(β) into
disjunctive normal form, and distributing the disjunctions first over conjunction
and then over the quantifier ∃, we obtain:∨

i∈I′
∃z(d(v, z) > 2k + 1 ∧ γ′i(v) ∧ δ′i(z))

(with each γ′, δ′ a k-local formula).

It suffices to rewrite each disjunct in the desired form, so consider any disjunt
∃z(d(v, z) > 2k + 1 ∧ γ′i(v) ∧ δ′i(z)). Since the variable z does not occur free in
γ′i(v), we may rewrite the disjunct as γ′i(v)∧∃z(d(v, z) > 2k+1∧ δ′i(z)). We know
that γ′i is k-local, so we may focus on

η(v) := ∃z(d(v, z) > 2k + 1 ∧ δ′i(z))

So we have reduced the problem to writing η(v) as a Boolean combination of local
formulae and basic local sentences.

For ease of notation we will start writing δ(z) rather than δ′i(z); all that mat-
ters is that δ(z) is a k-local formula with z its sole free variable.
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We now define a variety of new formulas and sentences. The idea is that we
will be able to rewrite η(v) in terms of these new formulas. For n ∈ N, define
An(z1, . . . , zn) to be the formula:

An :=
∧

1≤i<j≤n

d(zi, zj) > 2(2k + 1) ∧
∧

1≤i≤n

δ(zi)

Then define Bn to be the sentence:

Bn := ∃z1 . . . ∃znAn(z1, . . . , zn)

and Cn(v) the formula:

Cn := ∃z1 ∈ V 2k+1(v) . . . ∃zn ∈ V 2k+1(v)An(z1, . . . , zn),

that is, the analogue of Bn with the leading existential quantifiers relativised to
V 2k+1(v).

By Lemma 3.5 (and its corollary), each An is a 2k + 1-local formula. Each
Bn is clearly a basic local sentence. Intuitively, Bn says that there is a set of n
different things, all satisfying δ, and all separated from each other by a distance of
at least 4k + 2. Cn says that there is such a set within the 2k + 1-neighbourhood
of v. Also, because each An is a 2k + 1- local formula, each Cn is a 4k + 2-local
formula by Lemma 3.6.

Our strategy to rewrite the formula η(v) will be to write a disjunction, D =
(D1 ∨E1)∨ . . .∨ (Dm ∨Em)∨Dm+1, such that each disjunct entails η, but on the
other hand, η entails that one of the disjuncts of D must hold. First, we define

Dm+1 := Bm+1

Claim 2. Dm+1 |= η.

Proof. Let M be a structure and σ an assignment such that M, σ |= Bm+1, with
{b1, . . . , bm+1} ⊆ M a 4k + 2- scattered set witnessing this. Now suppose, for
contradiction, that M, σ ̸|= η(v1, . . . , vm). This means that every element of M
satisfying δ is in the 2k + 1-neighbourhood of the elements {σ(v1), . . . , σ(vm)}.

By the pigeon-hole principle, there is some v such that the 2k+1-neighbourhood
of σ(v) contains two distinct bi, bj. But if d

M(bi, σ(v)) ≤ 2k+1 and dM(σ(v), bj) ≤
2k+1, then dM(bi, bj) ≤ 4k+2, and the set {b1, . . . , bm+1} was not 4k+2- scattered
after all. This is a contradiction.

For i ≤ m, define

Di := Bi ∧ ¬Bi+1 ∧ ¬Ci

Ei := Bi ∧ ¬Bi+1 ∧ Ci ∧ ∃z ∈ V 6k+3(v)(d(v, z) > 2k + 1 ∧ δ(z))
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Intuitively, Di says that the greatest 4k+2-scattered set of objects satisfying δ has
exactly i elements, but there is no such scattered set within V 2k+1(v). Ei says that
the greatest 4k+2-scattered set of objects satisfying δ has exactly i elements, and
there is such a scattered set within V 2k+1(v), and there is an element satisfying δ
within 6k + 3 ‘steps’ from v, but more than 2k + 1 steps from v.

We must verify that the additional formula used in Ei is indeed a local formula.

Claim 3. The formula

∃z ∈ V 6k+3(v)(d(v, z) > 2k + 1 ∧ δ(z))

is 7k + 3-local.

Proof. First, suppose M, σ |= ∃z ∈ V 6k+3(v)(d(v, z) > 2k + 1 ∧ δ(z)). Let
(σ(v1), . . . , σ(vm)) = a. Then there is a b ∈M such that 2k+1 < dM(a, b) ≤ 6k+3,
and M, b |= δ.

Then b ∈ M↾(a, 7k + 3). Further, every member of the path witnessing that
dM(a, b) ≤ 6k + 3 must be within V 7k+3(a), therefore M↾(a, 7k + 3) |= d(a, b) ≤
6k + 3. On the other hand, M↾(a, 7k + 3) |= d(a, b) > 2k + 1 must hold, because
distance does not increase when moving to an extension.

Also, δ is k-local, so M↾(b, k), b |= δ. But [M↾(a, 7k + 3)]↾(b, k) = M↾(b, k)
because V k(b) ⊆ V 7k+3(a). Hence [M↾(a, 7k + 3)]↾(b, k), b |= δ, and by k-locality
of δ, it follows that M↾(a, 7k+3), b |= δ. We may conclude that M↾(a, 7k+3), a |=
∃z ∈ V 6k+3(v)(d(v, z) > 2k + 1 ∧ δ(z)), which was to show.

Conversely, suppose M↾(a, 7k+3), a |= ∃z ∈ V 6k+3(v)(d(v, z) > 2k+1∧ δ(z)).
Then there is b ∈ V 6k+3

M↾(a,7k+3)(a) such that M↾(a, 7k + 3) |= d(a, b) > 2k + 1 ∧ δ(b).
δ is k-local, hence [M↾(a, 7k + 3)]↾(b, k), b |= δ.

Again, [M↾(a, 7k + 3)]↾(b, k) = M↾(b, k), so we can infer that M↾(b, k), b |= δ.
Also, we will have b ∈ V 6k+3

M (a) because distance does not increase when moving
to extensions.

It only remains to show that dM(a, b) > 2k+1. Suppose for contradiction that
this is not the case. Then there is a path ai = c0, c1, . . . , c2k+1 = b linking a to b.
Every member of this path must be in V 2k+1(a) and hence in M↾(a, 7k+3), so we
would also have dM↾(a,7k+3)(a, b) ≤ 2k + 1. But this is a contradiction.

We may conclude that M, a |= ∃z ∈ V 6k+3(v)(d(v, z) > 2k + 1 ∧ δ(z)), as
required.

We now return to showing that each disjunt of D entails the formula η.

Claim 4. For each i ≤ m, Di |= η and Ei |= η.
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Proof. SupposeM, σ satisfies Di, and let {b1, . . . , bi} ⊆M be a 4k+2-scattered set
with each bj satisfying δ. Let a = {σ(v1), . . . , σ(vm)}. Since M, σ ̸|= Ci, it cannot
be that b is contained within V 2k+1(a), so there is some bj with M, σ |= δ(bj), but
dM(a, bj) > 2k + 1. Hence M, σ |= η.

Moving to Ei: Ei entails its conjunct, ∃z ∈ V 6k+3(v)(d(v, z) > 2k + 1 ∧ δ(z)),
which in turn clearly entails η. So: Ei |= η.

This proves Claim 4.

So, we have shown that every disjunct of D entails η. Once we show that η
entails that one of the disjuncts must hold, we are done.

Claim 5. η |= D.

Proof. Suppose M, σ |= η(v), and let (σ(v1), . . . , σ(vm)) = a. Then there is some
b ∈M , at a distance strictly greater than 2k + 1 from a, which satisfies δ.

Suppose Dm+1 does not hold in M. Then the size of the largest 4k+2-scattered
set of elements of M satisfying δ is exactly i, for some natural number i ≤ m. We
claim that in this case, M, σ |= (Di ∨ Ei).

Suppose M, σ ̸|= Di. We know that M, σ |= Bi ∧ ¬Bi+1, so it must be that
M, σ |= Ci. Let b = {b1, . . . , bi} be a 4k + 2-scattered set ⊆ V 2k+1(a), with each
bj satisfying δ. Certainly b /∈ b, as d(a, b) > 2k+1. However, the set b∪{b} is not
4k+2-scattered, as i is the maximum cardinality of such a set. So there is some bj
such that dM(bj, b) ≤ 4k+ 2. Since dM(a, bj) ≤ 2k+ 1, we have dM(a, b) ≤ 6k+ 3.

But then M, σ |= ∃z ∈ V 6k+3(v)(d(v, z) > 2k + 1 ∧ δ(z)), with b the witness.
Hence M, σ |= Ei.

Claim 5 completes the proof of part (a) of the Lemma.

We now tackle part (b). Assume β ∈ FOL∞ is a k-local formula, with FV (β)
= (v, z). Our task is to rewrite ∃∞zβ as a Boolean combination of local formulae
and basic local infinity sentences.

The argument used in part (a), up until the problem was reduced to rewriting
the formula η(v), still goes through for ∃∞. We only need to use Proposition 2.15,
which says that ∃∞ distributes over disjunction, at various stages. In the ∃∞ case,
we reach a formula of the form

η∞(v) := ∃∞z(d(v, z) > 2k + 1 ∧ δ(z))

with δ a k-local formula.
Now define A∞

n := An. However, define B
∞
n as:

B∞
n := ∃∞z1 . . . ∃∞znA

∞
n
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and C∞
n as:

C∞
n := ∃∞z1 ∈ V 2k+1(v) . . . ∃∞zn ∈ V 2k+1(v)A∞

n

i.e., the analogue of B∞
n with the leading string of infinity quantifiers relativised

to V 2k+1(v). Clearly each B∞
n is a basic local infinity sentence, and the same

argument as in the proof of item (a) shows that each C∞
n is 4k + 2-local.

We use the same strategy as for item (a), of rewriting η∞ as a disjunction,
D∞ := (D∞

1 ∨ E∞
1 ) ∨ . . . ∨ (D∞

m ∨ E∞
m ) ∨D∞

m+1. We first show that each disjunct
entails η∞. Define

D∞
m+1 := B∞

m+1

Claim 6. D∞
m+1 |= η∞.

Proof. Suppose M, σ |= B∞
m+1. Applying Observation 2.14, let f : F((ω)m+1) →

M be a map such that for any path (t1, . . . , tm+1) through F((ω)m+1), M, σ |=
A∞

m+1(f(t1), . . . , f(tm+1)). We claim that in fact, there exists an infinite family F
of ordered m+ 1- tuples b ⊆M such that:

• F is pairwise disjoint, i.e. for each b, b
′ ∈ F , for all b ∈ b, b′ ∈ b

′
, b ̸= b′

• For each b ∈ F , M |= Am+1(b)

To see this, build F in stages. Let F0 = ∅. At stage i + 1, choose a path
πi+1 = ⟨pi+1

1 , . . . , pi+1
m+1⟩ through F(q1, . . . , qm+1), taking care that each object in

πi+1 is mapped by f to a ‘fresh’ element ofM that hasn’t been used by any previous
Fj. (Because f is injective on ∼F equivalence classes, we have infinitely many
elements of M to choose from at every step, while only finitely many elements of
M have been used in some previous Fj.) Let Fi+1 := Fi∪{(f(pi+1

1 ), . . . , f(pi+1
m+1))}.

Take F :=
⋃

i∈ω Fi, then F satisfies the desired conditions. Enumerate F as
t0, t1, . . . (t for ‘tuple’).

Let σ be an assignment and let a denote σ[v]. Then for each tuple ti ∈ F ,
by the same pigeon-hole argument as used in part (a), there exists some bi ∈ ti
such that bi /∈ V 2k+1(a). Because F is pairwise disjoint, we know that the set
{bi : i ∈ N} is infinite. Hence, it witnesses ∃∞z(d(v, z) > 2k + 1∧ δ(z)) holding in
M, σ, and therefore M, σ |= η∞. So D∞

m+1 entails η∞.

For i ≤ m, define

D∞
i := B∞

i ∧ ¬B∞
i+1 ∧ ¬C∞

i

E∞
i := B∞

i ∧ ¬B∞
i+1 ∧ C∞

i ∧ ∃∞z ∈ V 6k+3(v)(d(v, z) > 2k + 1 ∧ δ(z))

Claim 7. The formula

∃∞z ∈ V 6k+3(v)(d(v, z) > 2k + 1 ∧ δ(z))

is 7k + 3-local.
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Proof. The proof is similar to that of the analogous Claim 3 within the proof of
part (a). We first suppose M, a |= ∃∞z ∈ V 6k+3(v)(d(v, z) > 2k + 1 ∧ δ(z)). Then
there is an infinite set b such that for each b ∈ b, we have 2k+1 < dM(a, b) ≤ 6k+3
and M |= δ(b). For each b ∈ b, we may apply exactly the same reasoning as in
the earlier proof, to conclude that b ∈ M↾(a, 7k + 3) and that M↾(a, 7k + 3) |=
2k + 1 < d(a, b) ≤ 6k + 3 ∧ δ(b).

For the other direction, we supposeM↾(a, 7k+3), a |= ∃∞z ∈ V 6k+3(v)(d(v, z) >
2k + 1 ∧ δ(z)). Then there is an infinite set b of witnesses. Reasoning as before
for each b ∈ b, we can conclude that M |= 2k + 1 < d(a, b) ≤ 6k + 3 ∧ δ(b), for
each b ∈ b. This suffices to prove the claim.

We now return to showing that each disjunct of D∞ entails the formula η∞.

Claim 8. For each i ≤ m, we have D∞
i |= η∞ and E∞

i |= η∞.

Proof. Suppose M, σ |= D∞
i . Then M, σ |= B∞

i , and so

M, σ |= ∃∞z1 . . . ∃∞zi[Ai ∧ (
∧

1≤j≤i

(d(v, z) ≤ 2k+1)∨¬
∧

1≤j≤i

(d(v, z) ≤ 2k+1))]

since this formula is logically equivalent to B∞
i . Distributing ∧ over ∨ yields

M, σ |= ∃∞z1 . . . ∃∞zi[(Ai ∧
∧

1≤j≤i

(d(v, z) ≤ 2k + 1))

∨ (Ai ∧ ¬
∧

1≤j≤i

(d(v, zj) ≤ 2k + 1))]

By Proposition 2.15, this is equivalent to

M, σ |= ∃∞z1 ∈ V 2k+1(v) . . . ∃∞zi ∈ V 2k+1(v)[Ai]

∨ ∃∞z1 . . . ∃∞zi[Ai ∧ ¬
∧

1≤j≤i

(d(v, zj) ≤ 2k + 1)]

But the first of these disjuncts is precisely the formula C∞
i , and since M, σ |= D∞

i

we have M, σ |= ¬C∞
i . Therefore M, σ must satisfy the second disjunct, which

implies

M, σ |= ∃∞z1 . . . ∃∞zi[
∧

1≤j≤i

(δ(zj)) ∧ ¬
∧

1≤j≤i

(d(v, zj) ≤ 2k + 1)]

by the definition of Ai and conjunction elimination.
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Using Observation 2.14 again, there exists a map f : F((ω)i) → M such that
for any path (t1, . . . , ti) through F((ω)i),

M, σ |= ¬
∧
j≤i

(d(v, f(tj)) ≤ 2k + 1) ∧ δ(f(tj))

As in the proof of Claim 7, we may build an infinite, pairwise disjoint family F of
i- tuples b ⊆M , such that for each b ∈ F

M, σ |= ¬
∧

1≤j≤i

(d(v, bj) ≤ 2k + 1 ∧ δ(bj))

Enumerate F as t0, t1, . . . Then for each ti ∈ F , there must be some bi ∈ ti such
that M, σ |= d(v, bi) > 2k + 1. We may then take the infinite set {bi : i ∈ N} as a
witness for ∃∞z(d(v, z) > 2k + 1 ∧ δ(z)) holding in M, σ. So D∞

i entails η∞.
The implication from E∞

i to η∞ goes by the same trivial reasoning as in the
proof of (a).

It only remains to show:

Claim 9. η∞ entails D∞.

Proof. Suppose M, σ |= η∞(v). Let (σ(v1), . . . , σ(vm+1)) = a. Then there is an
infinite set, b ⊆M , such that for each b ∈ b, M |= d(a, b) > 2k + 1 ∧ δ(b).

The sentence B∞
1 simply asserts the existence of infinitely many b’s satisfying

δ, and so must certainly hold in M, σ. Now suppose D∞
m+1 = B∞

m+1 does not hold
in M, σ. Then there must be some greatest i, with i ≤ m, such that M, σ |= B∞

i .
We have M, σ |= B∞

i and M, σ ̸|= B∞
i+1. Suppose M, σ ̸|= D∞

i . We will show
that M, σ |= E∞

i . If M, σ ̸|= Di, this can only be because M, σ |= C∞
i , i.e.

M, σ |= ∃∞z1 ∈ V 2k+1(v) . . . ∃∞zi ∈ V 2k+1(v)A∞
i . Using Observation 2.14, let

f : F((ω)i) →M be a map witnessing this. We claim that

M, σ |= ∃∞z ∈ V 6k+3(v)(d(v, z) > 2k + 1 ∧ δ(z))

To see this, suppose for contradiction that the set b′ := {b ∈ b : dM(a, b) ≤
6k+ 3} is finite. Then b \ b′ is infinite. We now define a map g : F((ω)i+1) →M .
Identifying F((ω)i) with the restriction of F((ω)i+1) to its nodes of depth ≤ i, we
may define g(t) = f(t) for any t that is not a leaf of F((ω)i+1).

To define g on the leaves of F((ω)i+1), consider any leaf t of F((ω)i). Define
g↾RF[t] to be some arbitrary injection fromRF[t] into b\b′. Doing this for every leaf
of F((ω)i+1) ensures that g is fully defined on F((ω)i+1). Further, if s ∈ F(q1, . . . , qi)
and t is a leaf of F(q1, . . . , qi+1), then d

M(g(s), g(t)) > 4k+2 (otherwise g(t) would
be in V 6k+3(a) and hence in b′). Therefore g satisfies:
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• For any ∼F-equivalence class [t] ⊆ F((ω)i+1), g↾[t] is injective

• For any path t1, . . . , ti+1 through F((ω)i+1), we have
M, σ |= A∞

i+1(g(t1), . . . , g(ti+1))

Then by Observation 2.14, M, σ |= B∞
i+1. But this is a contradiction.

We can conclude that b′ is infinite. Then b′ is a witness for

M, σ |= ∃∞z ∈ V 6k+3(v)(d(v, z) > 2k + 1 ∧ δ(z))

It follows that M, σ |= E∞
i .

We have shown that if M, σ |= η∞, then if M, σ ̸|= D∞
m+1 and M, σ ̸|= D∞

i

(where i is maximal such that M, σ |= B∞
i ), then M, σ |= E∞

i . We may conclude
that η∞ entails D∞, as desired.

This completes the proof of item (b), and thus of Lemma 3.9.

3.4.2 Proof of Main Theorem

Recall the statement to be shown: Every ϕ ∈ FOL∞ is equivalent to a Boolean
combination of local formulae, basic local sentences and basic local infinity sen-
tences. We argue by induction on the construction of ϕ.

Base case: ϕ is atomic. The statement clearly holds for atomic formulas, which
are 0-local.

The induction steps for the Boolean connectives are also trivial.

Induction step: ϕ = ∃zψ. Inductively assume ψ is a Boolean combination of
local formulae, basic local sentences and basic local infinity sentences. We may
rewrite ψ in disjunctive normal form: ψ =

∨
i χi. Then ϕ is equivalent to

∨
i ∃zχi,

and we may focus on ∃zχi.
Each χi is of the form

∧
j∈J θj, since we put ψ in DNF. Further, by IH, each θj is

either a local formula, a basic local sentence or a basic local infinity sentence. Let
J ′ := {j ∈ J : θj is a basic local sentence or basic local infinity sentence}. Then
the variable z does not occur free in

∧
j∈J ′ θj, so we may rewrite ∃z

∧
j∈J θj as∧

j∈J ′ θj ∧ ∃z
∧

j∈J\J ′ θj, and focus on ∃z
∧

j∈J\J ′ θj.

We know that for each j ∈ J \ J ′, θj is a local formula. Local formulas are
closed under Boolean operations, so our target formula is of the form ∃zβ, where
β is a local formula. We can rewrite this formula in the desired form by part (a)
of the lemma.
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Induction step: ϕ = ∃∞zψ. The argument is the same as in the ∃ case, using
the fact that ∃∞ distributes over disjunctions, and where z /∈ FV (θ), ∃∞z(θ∧χ) is
equivalent to θ ∧ ∃∞zχ. We obtain a formula of the form ∃∞zβ, where β is local.
We may then apply part (b) of the lemma.

This completes the induction. So the theorem is proved.

3.5 Reflections

We have proved the Gaifman theorem for FOL∞ in this thesis for the specific
purpose of proving characterisation theorems for bisimulation invariant fragments
of FOL∞. For that reason, we will not make a serious attempt to draw out further
consequences of the theorem for FOL∞. However, the theorem does seem to be of
independent interest, and so we will take a moment here to briefly discuss it and
to make some speculative remarks.

We begin with a comparison of the first-order version of the theorem with its
FOL∞ analogue. In [9], Gaifman provided two distinct proofs of Theorem 3.7:
the proof which we followed, and a much shorter and easier proof. The shorter
proof makes use of the fact that, within the first-order setting, every structure
M has an ω-saturated elementary extension. However, this no longer holds in
the FOL∞ setting, because there are finitely satisfiable FOL∞ types which are
unsatisfiable, such as p(x) := {∃≥1y(Rxy),∃≥2y(Rxy), . . . ,¬∃∞y(Rxy)}. Let M
be any structure which finitely realises p; then an ω-saturated FOL∞-elementary
extension of M would have to realise p, which is impossible. The fact that FOL∞

lacks the property that every structure has an ω-saturated elementary extension
seems to make it all the more striking and interesting that FOL∞ nevertheless
satisfies Theorem 3.8.

A further point is that it was not obvious, a priori, what exactly the analogue
of Gaifman’s theorem should be for FOL∞. More precisely, it is clear that the role
played by ‘basic local sentences’ in Theorem 3.7 must be played by a wider class of
sentences in an FOL∞ analogue of this theorem; but what should this wider class
of sentences be? It might seem like we would need to allow sentences such as

∃x1∃∞x2∃x3∃∞x4(
∧

1≤i<j≤4

(d(xi, xj) > k ∧ ψ(xi)))

where ψ is a k-local formula; i.e., we might need to allow basic local sentences
introduced by arbitrary strings of quantifiers, perhaps with alternating existential
and infinity quantifiers. But we have proven that this is not the case. Theorem 3.8
states that we can express every formula of FOL∞ using local formulas, basic local
sentences (which are introduced by a string of existential quantifiers) and basic
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local infinity sentences (which are introduced by a string of infinity quantifiers).
Of course, we have not shown that we can avoid alternating strings of existential
quantifiers and infinity quantifiers in FOL∞ altogether. Rather, the point is that
every such alternating string can be pushed within one of the ‘local’ components
of the FOL∞ formula. But this still feels like a surprisingly strong result.

We now turn to the implications Theorem 3.8 might have for the expressive
power of FOL∞. Gaifman originally proved Theorem 3.7 in order to establish some
limitations on the expressive power of first-order logic over finite structures. Of
course, the Compactness theorem fails in this setting, and so negative results on the
expressivity of first-order logic which are classically shown by compactness require
a different proof. For example, it is easy to show by compactness that first-order
logic cannot express the undirected-graph-property of being connected; Gaifman
used his theorem to show that this property is also not first-order definable within
the class of finite structures.

As we have already mentioned, FOL∞ is another setting in which the Com-
pactness theorem fails. So, it is natural to try using Theorem 3.8 to show some
limitations on the expressive power of FOL∞. It seems plausible that Theorem
3.8 easily yields a proof that FOL∞ is also unable to define connexity, analogous
to Gaifman’s proof in [9]. This, in turn, would yield a simple proof that FOL∞ is
unable to define the transitive closure of a relation R (otherwise we could define
connexity by: for any two points x and y, x stands in the transitive closure of R
to y). The fact that FOL∞ is so expressively powerful in other ways, as discussed
in Chapter 1, would make negative results of this kind all the more significant.

Finally, we raise the question of whether analogous results could be obtained
for abstract logics other than FOL∞. First, we note that, for any given logic, an
issue will arise of what class of sentences should count as the analogue of ‘basic
local (infinity) sentences’. The case where we replace the infinity quantifier with
another generalised unary quantifier Q is easiest; we can consider sentences of the
form

Qx1 . . . Qxn(
∧

1≤i<j≤n

(d(xi, xj) > k ∧ ψ(xi)))

where ψ is a k-local formula, and ask whether every formula can be expressed
by a Boolean combination of local formulas, basic local sentences, and sentences
of the above form. If Q is another cardinality quantifier, i.e. Q = Qα for some
α > 0, there is no obvious reason why the proof given in this chapter would not go
through in just the same way. If we allow binary or other non-unary generalised
quantifiers, it becomes less obvious which class of sentences we should consider. If
we allow infinitely long strings of quantifiers, such as in the logic Lωω1 , then we
may need to include sentences introduced by infinitely long strings of quantifiers
within our class of analogues of basic local sentences. Despite these complications,
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a general question suggests itself: under what conditions does an abstract logic
have the ‘Gaifman property’?

To the best of my knowledge, Theorem 3.8 is new. Keisler and Lotfallah
[12] establish a local normal form result for the logic L∞ω(Qu)

ω, the logic with
arbitrary conjunctions/disjunctions and arbitrary unary quantifiers, but restricted
to formulas with finite quantifier rank. However, their results are restricted to
finite structures, and so have no direct bearing on the result shown here. (The
authors note that their arguments would also go through for countable, locally
finite models, but this would still not be sufficiently general to imply the theorem
shown in this chapter.)
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Chapter 4

Characterisation Results via
Upgrading

This chapter completes the proof that each of the logics T∞,G∞,GT∞ is charac-
terised by invariance under the appropriate notion of bisimulation. The chapter
will begin by explaining, in very general terms, the idea behind the ‘upgrading’
strategy used to complete the proof. We will then provide a series of upgrading
results, which suffice to prove the desired characterisation theorems.

4.1 The Upgrading Strategy

We begin with a high-level explanation of the proof strategy we will employ in this
chapter. Say we are given an arbitrary formula, ϕ, of FOL∞, that is invariant under
some bisimilarity relation ⇌, and we want to prove that ϕ can be expressed within
a syntactically given fragment of FOL∞ that corresponds to ⇌. The relation ⇌
will have finite approximations ⇌k, for each k ∈ N, which have finite index and
coincide with logical equivalence in the corresponding modal fragment, restricted
to modal depth k. It therefore suffices to show that there is some k such that ϕ is
invariant under ⇌k.

Now, the Gaifman theorem proved in Chapter 3 shows that our formula ϕ is
logically equivalent to some ϕ′, the ‘Gaifman form’ of ϕ, that is a Boolean combi-
nation of local formulas and basic local sentences. Since only finitely many local
formulas may occur as subformulas of ϕ′, there must be some l- the ‘maximum’
locality rank- such that every one of these local formulas is l-local. Also, there
must be some maximum quantifier depth q of any local formula occurring in ϕ′,
and a maximum quantifier depth n of any basic local sentence occurring in ϕ′. (In
the case where ϕ is invariant under ≃T , we can actually say a bit more, but we
leave this aside for now.) The upshot is that the information carried by ϕ must
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be ‘bounded’, in an intuitive sense, by the finitary parameters l, q, n, and we can
therefore define a suitable finitary equivalence relation ≈l,q

n , parametric in l, q, n,
such that ϕ is invariant under ≈l,q

n . (We call ≈l,q
n the ‘target’ equivalence relation.)

The upgrading idea is to show that ϕ is invariant under ⇌k by showing that
for any l, q, n, there is some k such that ⇌k can be ‘upgraded’ to ≈l,q

n mod-
ulo ⇌. This means that for any pair of Kripke structures (M0, s0), (M1, s1),
such that M0, s0 ⇌k M1, s1, there are companion structures M′

0, s
′
0 ⇌ M0, s0

and M′
1, s

′
1 ⇌ M1, s1 which satisfy the stronger, target equivalence relation:

M′
0, s

′
0 ≈l,q

n M′
1, s

′
1. Then the truth value of ϕ must be preserved from M0, s0

through M′
0, s

′
0 and M′

1, s
′
1 to M1, s1. In a diagram:

M0, s0 M1, s1

M′
0, s

′
0 M′

1, s
′
1

⇌ ⇌

⇌k

≈l,q
n

Figure 4.1: Upgrading schema

Since this holds for any M0, s0 ⇌k M1, s1, we may conclude that ϕ is ⇌k-
invariant, which in turn implies that ϕ is expressible in the desired modal fragment
of FOL∞.

See also the discussion in Otto [15], p.186. This chapter is closely based on the
proofs given by Otto of his Theorem 23, Corollary 25, and Proposition 41 in the
paper just cited.

The main work involved in this chapter will be in proving the required upgrad-
ing results. We will employ a variety of model construction methods to turn two
original structures, M0 and M1, into bisimilar companion structures which, in
each case, satisfy the desired ‘target’ equivalence.

4.2 Upgrading from ≃k
T to ≃(k)

T

We treat the ≃T case separately, because our target equivalence relation for this
upgrading argument will be different from in the ≃G and ≃GT cases. In fact, our
target equivalence will be given by the following definition.

Definition 4.1 (≃(k)
T ). Let k ∈ N, and let M0, s0,M1, s1 be pointed Kripke struc-

tures. We write M0, s0 ≃(k)
T M1, s1 iff M0↾(s0, k), s0 ≃T M1↾(s1, k), s1 (recall this
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notation from Definition 3.2).

So, two pointed structures are ≃(k)
T -bisimilar iff their restrictions to the k-

neighbourhoods of the focus points are fully two-way infinity bisimilar. This is
not to be confused with the finite-step bisimilarity relation ≃k

T , which is strictly

weaker than ≃(k)
T . The single reflexive point is two-way k-bisimilar to Z, 0 under

the successor relation, but the k-neighbourhood of the single reflexive point (i.e.,
the single reflexive point) has an infinite path, whereas the restriction of Z to the
k-neighbourhood of 0 is guaranteed not to have an infinite path, so they are not
fully two-way bisimilar.

Proposition 4.2 (Two-way upgrading). Modulo ≃T , ≃k
T can be upgraded to ≃(k)

T .
In other words: let (M0, s0), (M1, s1) be pointed Kripke structures, with M0, s0 ≃k

T

M1, s1. Then there are companion structures M′
0, s

′
0 ≃T M0, s0, M′

1, s
′
1 ≃T

M1, s1 such that M′
0, s

′
0 ≃

(k)
T M′

1, s
′
1.

To build our companion structures we will make use of the classic model con-
struction method of unravelling, with some extra refinement.

Definition 4.3 (Two-way path). Let M be a structure. A path through M is an
ordered tuple ⟨s0, . . . , sn⟩, with each si ∈ S and each siR

Msi+1.
A two-way path through M is an ordered tuple ⟨s0, D0, s1, . . . , Dn−1, sn⟩, with

each si ∈ S and each Di a direction indicator, either ‘R’ or ‘Ř’, such that if
Di = ‘R’ then πiR

Mπi+1, and if Di = ‘Ř’ then πi+1R
Mπi. From here on we will

be sloppy and drop quotation marks for the direction indicators, writing simply R
or Ř.

The length of a path π, regular or two-way, is the number of occurrences of
objects in π, minus 1. So for example, the length of the two-way path

⟨a0, R, a1, R, a1, Ř, a0⟩

is 3.
If π is a path (regular or two-way) through a structure M, we write last(π) to

denote the final object to occur in π.

Definition 4.4 (Two-way unravelling). Let M, s be a pointed structure. The
two-way unravelling of M from s, notation: UT (M, s), is the structure whose
universe UT (M, s) is the set of all two-way paths through M beginning from s,
and which interprets predicate symbols by:

• π ∈ P UT (M,s) iff last(π) ∈ PM, for unary P

• πRUT (M,s)π′ iff π′ = π⌢⟨R, last(π′)⟩ or π = π′⌢⟨Ř, last(π)⟩
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The two-way unravelling of depth n of M, s, written Un
T (M, s), is defined as

above, except that Un
T (M, s) contains only those paths starting from s of length

≤ n.
For any structure M, s, if U is the (full or depth-n) two-way unravelling of

M, s, then for any π ∈ U and any s′ ∈ S, we say that π is a representative of s′

iff s′ = last(π).

Definition 4.5 (Two-way tree). A two-way tree is a binary relational structure
T = (T,R) such that

• The Gaifman graph of T is connected and acyclic

• R ∩ Ř = ∅

Note that there is a unique non-repetitive path between any two points t, t′ ∈ T
in the Gaifman graph of T. Consequently, two-way trees do not have a uniquely
determined root. However, we may still use common tree notions relativised to
thinking of a particular element as the root.

In particular, we say that t ∈ T is a leaf in T relative to root r, iff there is no
t′ ∈ T such that the unique path from t′ to r passes through t; we may also say ‘t
is a leaf in (T, r)’, or simply ‘t is a leaf in T’ if the choice of r is clear from context.
Similarly, we say that the height of t in T relative to root r, or ‘h(t) in (T, r)’,
is simply dT(r, t). We say that the height of T relative to r is the supremum of
{h(t) : t ∈ T} relative to T, r. We say that t′ is a descendant of t in (T, r) iff the
unique path from r to t′ passes through t, and t′ is an ancestor of t in (T, r) iff
t is a descendant of t′ in (T, r). t′ is a k-step descendant of t in (T, r) iff t′ is a
descendant of t and dT(t, t′) = k; similarly for ‘k-step ancestor’. If T and r are
clear from context, then we will write ↓(t) to denote the set of ancestors of t in
(T, r), and ↑(t) for the set of descendants of t in (T, r).

Note that the two-way unravelling or n-depth two-way unravelling of any
pointed structure will always be a two-way tree.

Proof of Proposition 4.2

We are given two pointed structures, M0, s0 and M1, s1, with M0, s0 ≃k
T M1, s1.

We have to define M′
0 and M′

1.
Define M′

0 by first taking Uk+1
T (M0, s0). For each π ∈ Uk+1

T (M0, s0) that is a
leaf in Uk+1

T (M0, s0) relative to ⟨s0⟩, let Mπ
0 be an isomorphic copy of M0, disjoint

from M0 and also from each Mρ
0 for all ρ ̸= π. Construct M′

0 by ‘gluing’ each
Mπ

0 onto the structure Uk+1
T (M0, s0) at the point π, identifying each π with the

object last(π) in Mπ
0 . Finally, define s

′
0 := ⟨s0⟩.
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Define M′
1 by exactly the same process, first taking the k + 1-depth two-way

unravelling from s1 and then gluing isomorphic copies of M1 to the leaves. Define
s′1 := ⟨s1⟩.

Claim 1. M′
0, s

′
0 ≃T M0, s0, and M′

1, s
′
1 ≃T M1, s1.

Proof. Without loss of generality, we focus on the M0,M′
0 case. It suffices to

observe that Duplicater can ensure that for every configuration (t0, t
′
0) reached in

the game BisT (M0, s0,M′
0, s

′
0), either

• t′0 is a path with last element t0, i.e. t
′
0 is a representative of t0; or

• t′0 is a copy of t0 in one of the isomorphic copies Mπ
0 of M0.

Verifying this is straightforward, so we leave it to the reader. Clearly a strategy
which preserves this configuration-property is winning for Duplicater.

Claim 2. M′
0, s

′
0 ≃

(k)
T M′

1, s
′
1.

Proof. We must show that Duplicater has a winning strategy in

BisT ((M′
0↾(s

′
0, k), s

′
0), (M′

1↾(s
′
1, k), s

′
1))

Observe that M′
0↾(s

′
0, k) and M′

1↾(s
′
1, k) are both two-way trees of height at most

k relative to s′0, s
′
1 respectively. Further, observe that Duplicater may ensure that

for every configuration (t′0, t
′
1) reached in the game, there are t0 ∈ S0, t1 ∈ S1 such

that t′0 is a representative of t0, t
′
1 is a representative of t1, and M0, t0 ≃m

T M1, t1
(where m = k−h(t′0) = k−h(t′1)). A strategy which ensures this is clearly winning
for Duplicater.

This completes the proof of Proposition 4.2.

In order to obtain the desired characterisation, we combine the upgrading result
with the following important proposition:

Proposition 4.6. Let ϕ ∈ FOL∞ be ≃T -invariant. Then there is some natural
number k such that ϕ is k-local.

Proof. Bellas Acosta and Venema show in [2] (Proposition 3.7) that if ϕ ∈ FOL∞

is invariant under taking disjoint unions, then ϕ is k-local for some natural number
k. But it is easy to see that for any structures M,N and s ∈ M:

M, s ≃T M⊕N , s

So any ϕ which is ≃T - invariant must be invariant under taking disjoint unions.
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We now have all the ingredients we need to prove the following theorem.

Theorem 4.7. Let ϕ ∈ FOL∞. Then ϕ is invariant over ≃T iff ϕ is logically
equivalent to a formula in T∞.

Proof. We only need to prove the left-to-right direction. Suppoe ϕ is ≃T -invariant.
Then by Proposition 4.6, there is some k such that ϕ is k-local. We claim that ϕ
is invariant over ≃(k)

T . For suppose M0, s0 ≃(k)
T M1, s1. Then

M0, s0 |= ϕ ⇐⇒ M0↾(s0, k), s0 |= ϕ (ϕ is k-local)

⇐⇒ M1↾(s1, k), s1 |= ϕ (ϕ is ≃T -invariant)

⇐⇒ M1, s1 |= ϕ (ϕ is k-local)

(this is why we chose ≃(k)
T as our target equivalence).

But then Proposition 4.2 implies that ϕ is invariant over ≃k
T . For if M0, s0 ≃k

T

M1, s1, then let M′
0, s

′
0 ≃

(k)
T M′

1, s
′ be bisimilar companions as given by Proposi-

tion 4.2. Then we have

M0, s0 |= ϕ ⇐⇒ M′
0, s

′
0 |= ϕ (invariance under ≃T )

⇐⇒ M′
1, s

′
1 |= ϕ (invariance under ≃(k)

T )

⇐⇒ M1, s1 |= ϕ (invariance under ≃T )

So we can conclude that ϕ is ≃k
T -invariant.

Now, let τϕ be the signature consisting of the non-logical symbols occurring in
ϕ; then τϕ is finite. By Proposition 2.28, ≃k

T has finite index relative to τϕ. Let
E1, . . . , Em be an enumeration of the cells of this equivalence relation.

Let i, j ≤ m, with i ̸= j. By Proposition 2.27, there is a formula ψi,j ∈ T∞

such that ψ is satisfied on all pointed structures within Ci and on no pointed

structures within Cj. For each i ≤ m, define χi :=
∧
j ̸=i

ψi,j. Let

T (ϕ) := {i ≤ m : there is some M, s ∈ Ei such that M, s |= ϕ}

Since ϕ is ≃k
T invariant, ϕ is satisfied by all pointed structures in Ei, for any

i ∈ T (ϕ). Hence ϕ is logically equivalent to
∨

i∈T (ϕ)

χi, which is a formula of T∞.

For a pictorial representation of the structure of this proof, we repeat Figure
4.1 overleaf, with the specific relations ≃T ,≃k

T ,≃
(k)
T inserted. Given that ϕ is ≃T -

invariant, the truth value of ϕ must be preserved from M0, s0 to M1, s1 because
it is preserved over both vertical arrows, and over the lower horizontal arrow.
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M0, s0 M1, s1

M′
0, s

′
0 M′

1, s
′
1

≃T ≃T

≃k
T

≃(k)
T

Figure 4.2: Upgrading from ≃k
T to ≃(k)

T

4.3 Upgrading from ≃k
G and ≃k

GT

For the proof that T∞ is characterised by ≃T -invariance, we chose ≃(k)
T as our

target equivalence relation, using the fact that formulas invariant over ≃T must be
invariant over taking disjoint unions, and hence k-local for some k. But this does
not hold in the case of ≃GT , or even ≃G. The sentence ∃xPx is invariant over ≃G,
since it is in G∞ (as the standard translation of Ep). But it is not invariant over
disjoint unions: let M0 be a model consisting of a single point, s0, which does
not satisfy P , and let M1 be a model consisting of a single point, s1, which does
satisfy P . Then M0 ̸|= ∃xPx, but M0 ⊕M1 |= ∃xPx.

So, FOL∞ sentences invariant over ≃G are not necessarily invariant over ≃(k)
G .

We need to use a different target equivalence, and this is where we will use the
Gaifman Theorem for FOL∞ shown in Chapter 3.

Definition 4.8 (Gaifmanisation). Let k,m be natural numbers, and ψ(x) a for-
mula of FOL∞ with only the variable x free. We define the k,m-Gaifmanisation
of ψ, notation: Gaif k,m(ψ), to be the FOL∞-sentence:

∃x1 . . . ∃xm(
∧

1≤i<j≤m

d(xi, xj) > k ∧
∧

1≤i≤m

ψ(xi))

We define the k,m- infinity Gaifmanisation of ψ, notation: Gaif ∞k,m(ψ), to be
the FOL∞-sentence:

∃∞x1 . . . ∃∞xm(
∧

1≤i<j≤m

d(xi, xj) > k ∧
∧

1≤i≤m

ψ(xi))

Definition 4.9 (FOL∞ equivalences). Let M0,M1 be structures. We write:

M0 ≡k,q
n,∃ M1
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iff for every k-local formula ψ(x) with qd(ψ) ≤ q, for every m ≤ n, it holds that
M0 |= Gaif k,m(ψ) iff M1 |= Gaif k,m(ψ).

We write:
M0 ≡k,q

n,∃∞ M1

iff for every k-local formula ψ(x) with qd(ψ) ≤ q, for every m ≤ n, it holds that
M0 |= Gaif ∞k,m(ψ) iff M1 |= Gaif ∞k,m(ψ).

We write:
M0 ≡k,q

n M1

iff both M0 ≡k,q
n,∃ M1 and M0 ≡k,q

n,∃∞ M1.

Now, consider any sentence ϕ of FOL∞. By Theorem 3.8, ϕ is equivalent to
some ϕ′, which is a Boolean combination of basic local sentences and basic local
infinity sentences. Let k be the maximum of the locality ranks of the Boolean
constituents of ϕ′, and let n be the maximum of the scattering ranks of the basic
local sentences and basic local infinity sentences involved in ϕ′. Let q be the
greatest quantifier depth of a local formula occurring as a subformula of ϕ′. Then
ϕ′ (and hence ϕ) must be invariant over ≡k,q

n .
We can conclude that for every formula ϕ of FOL∞, there are some k, q, n ∈ N

such that ϕ is invariant over ≡k,q
n . This makes ≡k,q

n a suitable target equivalence
for an upgrading argument, as discussed in Section 4.1. Therefore, this section
will be devoted to proving the following two main upgrading results.

Proposition 4.10 (Global upgrading). Modulo ≃G, ≃2k
G can be upgraded to ≡k,q

n ,
for any q, n ∈ N.

Proposition 4.11 (Global two-way upgrading). Modulo ≃GT , ≃k
GT can be up-

graded to ≡k,q
n , for any q, n ∈ N.

Our strategy will be to prove a series of upgrading results, starting from the
relation ≃2k

G , then upgrading modulo ≃G to ≃k
GT , and then showing that this

relation may be upgraded to progressively stronger equivalence relations modulo
≃GT , eventually reaching the target equivalence, ≡k,q

n .

4.3.1 Upgrading from ≃2k
G

In this subsection, we will show the following result:

Lemma 4.12. Modulo ≃G, ≃2k
G can be upgraded to ≃k

GT .

The reader might wonder why we need to start from ≃2k
G , instead of simply

≃k
G. To see why, consider the structures M0 and M1 shown overleaf.
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c0

b0

a0

(a) M0

b1

a1

(b) M1

The reader may easily verify that M0 ≃1
G M1. But any fully ≃G-bisimilar

companion structure M′
0 to M0 must have a path of length 2, while any fully ≃G-

bisimilar companion structure M′
1 to M1 cannot have a path of length 2. This

means that Spoiler may win the game Bis1GT (M′
0,M′

1) by opening with a global
move, and selecting the middle element of the length-2 path in M′

0. This element
has both a successor and a predecessor, but in response, Duplicater will have to
select an element with either no successors or no predecessors. Spoiler can win
on the next turn by selecting a successor or predecessor, as appropriate, of the
element they chose in round 1.

We will find the required companion structures for Proposition 4.10 using an-
other unravelling construction.

Definition 4.13 (Global unravelling). Let M be a structure. The global unrav-
elling of M, notation: UG(M), is defined as follows:

• The universe UG(M) of UG(M) is the set of all paths through M (from any
starting point), where a path is as defined in Definition 4.3

• Unary predicate symbols P are interpreted in UG(M) by: π ∈ P UG(M) iff
last(π) ∈ PM

• The interpretation of the binary predicate symbol R is: π, π′ ∈ RUG(M) iff
π′ = π⌢⟨last(π′)⟩

Lemma 4.14 (Bisimilarity across global unravelling). Let M be a structure. Then
UG(M) ≃G M.

Proof. We give a strategy for Duplicater in the game BisG(UG(M),M) which
preserves the property that, for every configuration (π, t) reached in the game, π
is a representative of t.

In the initial round, if Spoiler selects an element π ∈ UG(M), then Duplicater
should select last(π) ∈M , whereas if Spoiler selects some a ∈M , then Duplicater
should select the length 0 path ⟨a⟩ ∈ UG(M).
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We now show that Duplicater can maintain the desired configuration-property
in non-initial rounds. For brevity, we only discuss a couple of illustrative cases.
Assume the game has reached a configuration (π, t) such that t = last(π).

• Forward move in M: Spoiler selects some successor t′ of t. Then Duplicater
should select π⌢⟨t′⟩ ∈ UG(M).

• Forward infinity move in UG(M): Spoiler selects some infinite set Θ ⊆ R[π].
Then every θ ∈ Θ can be written as π⌢⟨t′⟩ for some t′ ∈M . In other words,
the paths in Θ will only differ on their last element. This means that the
set {u ∈ M : some θ ∈ Θ is a representative of u} is also infinite (indeed,
has the same cardinality as Θ). Duplicater should select this set in response
to Spoiler’s move. Then whichever u from Duplicater’s set is selected by
Spoiler, Duplicater can select a representative θ of u from Θ.

A strategy which preserves the given configuration-property is clearly winning for
Duplicater.

We have already characterised infinity bisimulation between structures in a
game-theoretic manner, but it is useful to also characterise it in terms of a relation
between the objects of the structures.

Definition 4.15 (Bisimulation relation). Let M0,M1 be structures, Z ⊆ M0 ×
M1. We say that Z is a bisimulation iff it satisfies the following clauses. For any
s0, s1 such that s0Zs1:

• (atomic) For all unary predicate letters P , s0 satisfies P iff s1 satisfies P

• (back) For any s′1 ∈ R[s1], there is an s′0 ∈ R[s0] such that s′0Zs
′
1

• (forth) For any s′0 ∈ R[s0], there is an s′1 ∈ R[s1] such that s′0Zs
′
1

• (∞-back) For any infinite set Y ⊆ R[s0], there is an infinite set X ⊆ R[s1]
such that for any s′1 ∈ X, there is an s′0 ∈ Y such that s′0Zs

′
1

• (∞-forth) For any infinite set Y ⊆ R[s1], there is an infinite set X ⊆ R[s0]
such that for any s′0 ∈ X, there is an s′0 ∈ Y such that s′0Zs

′
1.

A bisimulation Z between two structures M0,M1 will be called global iff for
every s0 ∈ M0 there is an s1 ∈ M1 with s0Zs1, and for every s1 ∈ M1 there is
an s0 ∈ M0 with s0Zs1. In fact, we will use the term global for any relation Z,
bisimulation or not, which satisfies this condition.
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It is easy to verify that M0, s0 ≃ M1, s1, in the sense of Definition 2.18, iff
there is a bisimulation relation Z between M0 and M1, such that s0Zs1. Further,
M0 ≃G M1 iff there exists a global bisimulation relation Z between M0 and M1.

We can also give an equivalent formulation of k-step (global) bisimulation, in
terms of sequences of relations.

Definition 4.16 (k-bisimulations). Let M0,M1 be structures. A k-bisimulation
is an indexed sequence (Zi)0≤i≤k of relations, with each Zi satisfying the ‘atomic’
clause from Definition 4.15, and additionally satisfying one-step analogues of the
simple and infinitary ‘back’ and ‘forth’ clauses. To demonstrate the idea, we give
just the infinitary ‘back’ clause:

• (∞-back) Let ⟨s0, s1⟩ ∈ Zi+1. For any infinite Y ⊆ R[s1], there is an infinite
X ⊆ R[s0] such that for any x ∈ X, there is a y ∈ Y with ⟨x, y⟩ ∈ Zi

We call a k-bisimulation (Zi)0≤i≤k global iff Zk is global.

Again, it is easy to verify thatM0, s0 ≃k M1, s1 iff there exists a k-bisimulation
with ⟨s0, s1⟩ ∈ Zk, and M0 ≃k

G M1 iff there exists a global k-bisimulation between
M0 and M1.

We now borrow another notion from Otto [15].

Definition 4.17 (Respecting zero in-degree). Let A be a Kripke structure, a ∈ A.
We say that a has zero in-degree iff there is no a′ ∈ A such that a′RAa.

Let A,B be Kripke structures and Z ⊆ A × B a relation. We say that Z
respects zero in-degree iff:

• For every a ∈ A such that a has zero in-degree, there is a b ∈ B also with
zero in-degree such that aZb

• For every b ∈ B such that b has zero in-degree, there is an a ∈ A also with
zero in-degree such that aZb

Lemma 4.18. Let A,B be forest structures. If there exists a global 2k-bisimulation
(Zi)i≤2k between A and B such that Z2k respects zero in-degree, then A ≃k

GT B.

Proof. We show that there is a winning strategy in BiskGT (A,B). We begin by
explaining how Duplicater should respond to Spoiler’s global move in the initial
round.

Without loss of generality, suppose Spoiler chooses an element a from A. Con-
sider the unique path leading backwards from a in A. Within a finite number of
steps, this backwards path must reach an element with zero in-degree, as A is a
forest structure. So we may write this path as a = a0, a−1, . . . , a−l for some natural
number l, with a−l having zero in-degree. We distinguish two cases.
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Case A: l < k. In this case, consider the element a−l. Because Z2k, the first
relation in the bisimulation-sequence, is global and respects zero in-degree, there
must be some b−l in B which also has zero in-degree, such that a−lZ2kb−l. Further,
starting from a−l, b−l and repeatedly exercising the back-and-forth properties of
the Zi’s, there must be a sequence b−lRb1−lR . . . Rb0 such that for each i ≤ l,
(a−i, b−i) ∈ Z2k−(l−i). In particular, then, a = a0 Z2k−l b0. Duplicater should
choose b = b0 in response to Spoiler’s choice of a. Observe that since l < k, a ≃k b.

Case B: l ≥ k. In this case, consider the element a−k. Again because Z2k is
global, there is some b−k in B such that a−kZ2kb−k. In fact, there is a sequence
b−kRb1−kR . . . Rb0, such that a−iZk+ib−i for each i ≤ k, and in particular, a = a0
Zk b0. Duplicater should choose b = b0 in response to Spoiler’s choice of a.

We additionally define a rank function on the sets A,B. Define a∗ := a−l iff
l < k, a∗ = a−k otherwise. Similarly, define b∗ := b−l iff l < k, b∗ = b−k otherwise.
Next, define rank(a∗) := rank(b∗) := 0, and for any x ∈ A ∪ B, rank(x) := n + 1
iff there exists an x′ with x′Rx and rank(x′) = n. Set rank(x ) := ∞ iff there is no
n ∈ N such that rank(x) = n. Then every element which could be involved in a
play in the game BiskT (A, a,B, b) has a unique natural number as its rank (unique
because of the forest structure of A and B). Also, rank(a) = rank(b), and for any
configuration (a′, b′) that could be reached in the game BisT (A, a,B, b), we have
rank(a′) = rank(b′).

We now give a strategy for Duplicater in the remaining rounds of the game.
These remaining rounds simply consist of the game BiskT (A, a,B, b). Our strategy
will preserve the property that, if (an, bn) is the configuration reached after n
non-initial rounds, then for all m ≤ n, am ≃k−m bm (where (am, bm) denotes the
configuration reached afterm non-initial rounds). Clearly this condition is satisfied
by the initial configuration (a, b).

Suppose the game reaches a configuration (an, bn) such that for all m ≤ n,
am ≃k−m bm. There are various cases to consider, according to what type of move
Spoiler makes.

Case 1: Spoiler plays a forward move or forward infinity move, selecting a sin-
gle successor or infinite set of successors of an or bn. Because an ≃k−n bn, there is
a winning strategy for Duplicater in the k − n-round version of Bis(A, an,B, bn).
Further, Spoiler’s move would be a legal move in this game, so the winning strat-
egy for Duplicater must prescribe a response to it. Duplicater should follow this
response. It is obvious that this preserves the desired configuration-property.

Case 2: Spoiler plays a backward move, and selects a single predecessor of an or bn.
Without loss of generality, suppose it’s a predecessor of an. Firstly, we argue that bn
also has a predecessor. As observed above, it must hold that rank(an) = rank(bn).
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But an has a predecessor, and it cannot be that an = a−k since then round k would
already have been reached, and the game would be over. Therefore, rank(an) > 0.
It follows that rank(bn) > 0, and so bn has a predecessor. This predecessor must
be unique, because B is a forest structure. Duplicater should select this unique
predecessor.

Let an+1 denote the element selected by Spoiler, and bn+1 the element selected
by Duplicater. To see that an+1 ≃k−(n+1) bn+1, we can make a further case distinc-
tion.

Case (i): The configuration (an+1, bn+1) has not been reached before in the
game. This implies that an+1 and bn+1 are ancestors of a and b respectively.
Because rank(an+1) = rank(bn+1), it follows that an+1 = a−j, bn+1 = b−j for some
j ≤ k. But then an+1Z2k−(l−j)bn+1 for some l ≤ k, which implies an+1 ≃k−(n+1)

bn+1.
Case (ii): The configuration (an+1, bn+1) has been reached before. Then an+1 =
am, bn+1 = bm for some m < n+1. But we assume that am ≃k−m bm for all m ≤ n,
therefore an+1 ≃k−m bn+1, which trivially implies an+1 ≃k−(n+1) bn+1.

In both cases we have an+1 ≃k−(n+1) bn+1, so this wraps up the proof for Case 2.

Case 3: Spoiler selects an infinite set of predecessors of an or bn. But this case
is impossible, because A and B are forests and so every element has at most one
predecessor.

We have given a strategy for Duplicater which preserves the desired property,
and it is obvious that a strategy which preserves this property must be winning.
Thus A ≃k

GT B.

Lemma 4.19. Let A,B be structures such that A ≃2k
G B. Then UG(A) ≃k

GT UG(B).

Proof. Clearly, UG(A) and UG(B) are forest structures. So it suffices to show that
there is a 2k-bisimulation (Zi)0≤i≤2k between UG(A) and UG(B), such that Z2k is
global and respects zero in-degree.

We know that A ∼2k
G B, so let (Z ′

i) be a global 2k-bisimulation between A and
B. Define Zi ⊆ UG(A) × UG(B) by: πZiρ iff there are a ∈ A, b ∈ B such that π
is a representative of a, ρ is a representative of b and aZ ′

ib. Then the sequence
(Zi)0≤i≤2k is a 2k-bisimulation between UG(A) and UG(B).

Further, any π ∈ UG(A) is a representative of some a, and because (Z ′
i) is

global, a must be linked by Z2k to some b. This b has a representative with zero
in-degree, namely the 0-step path ⟨b⟩. The same holds, mutatis mutandis, for
any ρ ∈ UG(B). This shows both that Z2k is global, and that it respects zero
in-degree.

Proof of Lemma 4.12. Lemmas 4.14 and 4.19 immediately imply the desired
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result. If M0 ≃2k
G M1, then we will have UG(M0) ≃G M0, UG(M1) ≃G M1, and

UG(M0) ≃k
GT UG(M1). So UG(M0) and UG(M1) can serve as the desired com-

panion structures.

Remark. The above argument is very similar to the argument given for Lemma
38 in Otto [15] (compare especially our Lemma 4.18 with Otto’s Lemma 40).
However, the argument is in fact slightly easier in our case, because we are not
restricting ourselves to finite structures. This means that we can take the full global
unravelling of our structures A and B to be ‘upgraded’, giving us forest structures
as bisimilar companions. This cannot be done in the finite model theory setting,
because the unravelling of even a finite structure may well be infinite.

4.3.2 Upgrading from ≃k
GT

Having shown that ≃2k
G can be upgraded to ≃k

GT modulo ≃G, we now turn to
showing that ≃k

GT can be upgraded to ≡k,q
n modulo ≃GT , as this will imply that

≃2k
G can be upgraded to this stronger equivalence as well. We will use some further

definitions.

Definition 4.20 (Global two-way unravelling). Let A be a structure. The global
two-way unravelling of A, notation: UGT (A), is the structure whose universe is the
set of all two-way paths through A (starting from any point), and which interprets
predicate symbols as in the non-global two-way unravelling (see Definition 4.4).

Lemma 4.21 (Bisimilarity across global two-way unravelling). Let A be a struc-
ture. Then UGT (A) ≃GT A.

Proof. The argument is almost identical to the proof of Lemma 4.14, with the
obvious changes made to handle backward moves and backward steps in paths.
Again, the winning strategy for Duplicater is to ensure that for every configuration
(π, a) reached in the game, π is a representative of a. For the sake of illustration
we discuss one possible case. Assume the game has reached a configuration π, a
such that a = last(π).

• Forward infinity move in UGT (A): Spoiler selects an infinite set Θ ⊆ R[π].
Then there may be one θ ∈ Θ such that π = θ⌢last(π). But for every θ′ ∈
Θ′ := Θ\{θ}, we will have θ′ = π⌢last(θ′). Further, Θ′ must also be infinite,
and for any ρ, σ ∈ Θ′, last(ρ) ̸= last(σ). So the set {last(θ′) : θ′ ∈ Θ′} is
infinite. Duplicater should select this set. Then whichever object a′ Spoiler
selects from this set, Duplicater should select π⌢⟨a′⟩.
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Definition 4.22 (Disjoint copies). Let A be a structure. For each cardinal κ ∈
N∪{ℵ0}, we let A·κ be the structure with universe A×κ, and relations interpreted
by: A·κ |= R(a1, i1) . . . (an, in) iff i1 = . . . = in and A |= Ra1 . . . an. So A·κ consists
of κ-many disjoint isomorphic copies of A.

Lemma 4.23 (Bisimilarity across disjoint copies). Let A be a Kripke structure,
and κ ∈ N ∪ {ℵ0}. Then A ≃GT A · κ.

Proof. It suffices to note that Duplicater may preserve the property that, for every
configuration ((a′, j), a) reached in BisGT (A·κ,A), a′ = a. The only case that needs
care is if Spoiler selects an infinite set X from A · κ.

Suppose the game has reached configuration ((a, j), a), and Duplicater selects
an infinite set X ⊆ A×κ of successors of (a, j) (the predecessor case is analogous).
Then by definition of A · κ, every x ∈ X is of the form (a′, j) for some a′ ∈ A.
Hence the set {a′ ∈ A : (a′, j) ∈ X} is also infinite, and is thus a legal response for
Duplicater. Whichever a′ is selected by Spoiler, Duplicater may select (a′, j).

Definition 4.24 (Blowing up multiplicities). Let A be a structure, q ∈ N. We
define A⊗q to be the structure whose universe is A×{0, 1, . . . , q−1}, and whose in-
terpretation of predicates is given by: RA⊗q(⟨a1, i1⟩, . . . , ⟨an, in⟩) iff RA(a1, . . . , an).

Note the difference between the operations · and ⊗; whereas · results in a
certain number of disjoint copies of the original structure, ⊗ allows for relation
symbols to hold ‘across different indices’ and so creates copies which are connected
to each other.

Lemma 4.25 (Bisimilarity across ⊗). Let A be a Kripke structure, q ∈ N. Then
A⊗ q ≃GT A.

Proof. It suffices to note that in the game BisGT (A⊗q,A), Duplicater can preserve
the property that, for each configuration ((a′, i), a) reached in the game, a′ = a.
There is one case which requires some argument. Suppose the game has reached
a configuration ((a, i), a).

• Infinity move in A ⊗ q: Spoiler selects an infinite set X of R-successors or
R-predecessors of (a, i). Observe that the image of X under the left-hand
projection map must be an infinite set of objects in A, by the finiteness of
q. Duplicater should select this infinite set. Then whichever element a is
selected by Spoiler, there will be some k such that (a, k) ∈ X. Duplicater
should select the element (a, k).
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Definition 4.26 (q-graded two-way bisimulation). Let (A, a), (B, b) be pointed
Kripke structures. The q-graded two-way infinity bisimulation game on A, a,B, b,
notation: BisTq(A, a,B, b), is like BisT (A, a,B, b), except that Spoiler is allowed to
make the following additional types of move:

• Forward graded move: Assume the game has reached a configuration (a′, b′).
Spoiler may select a set X of successors of a′ (or b′, mutatis mutandis),
with |X| ≤ q. Duplicater must select a set Y of successors of b′ (a′), with
|Y | = |X|. Spoiler chooses an element y from Y , and Duplicater must choose
an element x from X. The new configuration is (x, y).

• Backward graded move: As above, but with ‘successor’ everywhere replaced
by ‘predecessor’.

We write A, a ≃Tq B, b iff Duplicater has a winning strategy in BisTq(A, a,B, b),
and A, a ≃k

Tq B, b iff Duplicater has a winning strategy in the k-round version of
this game.

Definition 4.27 (Ehrenfeucht-Fraissé game of ∃∞). Let A,B be structures and
let a, b be ordered n-tuples with a ⊆ A, b ⊆ B. The Ehrenfeucht-Fraissé Game of
∃∞ of k rounds on A, a,B, b, notation: EF∞

k (A, a,B, b), is just like the regular EF-
game of k rounds on A,B beginning from the configuration (a1, . . . , an), (b1, . . . , bn),
except that Spoiler is allowed to make an additional type of move:

• Infinity move: assume a position has been reached with configuration
(a1, . . . , am), (b1, . . . , bm). Spoiler may select an infinite set X from the struc-
ture A (or B, mutatis mutandis). Duplicater must select an infinite set Y
from B (A). Spoiler then selects an element y ∈ Y , and Duplicater must se-
lect an element x ∈ X. The new configuration is (a1, . . . , am, x), (b1, . . . , bm, y).

For any structures A,B and ordered n-tuples a ⊆ A, b ⊆ B, We write A, a ≃k
EF

B, b iff Duplicater has a winning strategy in EF∞
k (A, a,B, b).

This is a particular instance of the Ehrenfeucht-Fraissé Game of Q defined in
[17] (Definition 10.26), for the monotone generalised quantifier Q = ∃∞. Therefore,
we can appeal to Theorem 10.46 of [17] (which covers the general case, for arbitrary
monotone Q) to infer:

Lemma 4.28. Let A,B be structures and a, b ordered n-tuples within A,B respec-
tively. Then the following are equivalent:

• A, a ≃k
EF B, b

• A, a ≡k B, b
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We now turn to the most important and difficult of the upgrading propositions
to be proved in this section.

Proposition 4.29 (Upgrading from ≃k
GT to ≡k,q

1,∃). Let k, q ∈ N. Modulo ≃GT ,

≃k
GT can be upgraded to ≡k,q

1,∃.

To provide the required companion structures, we use the constructions defined
above. Let M0,M1 be Kripke structures such that M0 ≃k

GT M1. We claim:

1. UGT (M0 ⊗ q) ≃
GT

M0

2. UGT (M1 ⊗ q) ≃
GT

M1

3. UGT (M0 ⊗ q) ≡k,q
1,∃ UGT (M1 ⊗ q)

and hence we may take UGT (M0 ⊗ q) and UGT (M1 ⊗ q) as our desired companion
structures. Further, 1. and 2. are immediate by Lemmas 4.21 and 4.25, so we
only need to prove item 3.

To prove item 3 we must show that for every k-local formula ψ with qd(ψ) ≤ q,
UGT (M0 ⊗ q) |= ∃xψ(x) iff UGT (M1 ⊗ q) |= ∃xψ(x). Since we only need to take
care of k-local formulas ψ, it suffices to verify that for any π0 ∈ UGT (M0 ⊗ q),
there is a π1 ∈ UGT (M1 ⊗ q) such that

UGT (M0 ⊗ q)↾(π0, k), π0 ≡q UGT (M1 ⊗ q)↾(π1, k), π1

(By symmetry, we then obtain that the same holds vice versa: for any π1 there is
a π0...)

Let us introduce the notation pl for the left-hand projection map on ordered
pairs, and pr for the right-hand projection map. Then observe that for every
π0 ∈ UGT (M0 ⊗ q), there is a π1 ∈ UGT (M1 ⊗ q) such that M0, pl(last(π0)) ≃k

T

M1, pl(last(π1)). (We can just take π1 = ⟨(a′1, 0)⟩, for some a′1 ≃k
T pl(last(π0));

such an a′1 must exist because M0 is globally two-way k-bisimilar to M1.) Finally,
observe that for any π0 ∈ UGT (M0 ⊗ q),

(UGT (M0 ⊗ q)↾(π0, k), π0)

is a two-way tree of height k. Likewise for any π1 ∈ UGT (M1 ⊗ q).
In view of these observations, the following two lemmas suffice to prove Propo-

sition 4.29:

Lemma 4.30. Let π0 ∈ UGT (M0 ⊗ q), π1 ∈ UGT (M1 ⊗ q) be such that
M0, pl(last(π0)) ≃k

T M1, pl(last(π1)). Then UGT (M0⊗q), π0 ≃k
Tq UGT (M1⊗q), π1.

Lemma 4.31. Let T,T′ be two-way trees of height at most k relative to roots r, r′.
Then T, r ≃k

Tq T′, r′ implies T, r ≡q T′, r′.
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Proof of Lemma 4.30
We give a strategy for Duplicater in the game BiskTq(UGT (M0 ⊗ q), π0,UGT (M1 ⊗
q), π1) which preserves the property that, for each configuration ρ0, ρ1 reached
after m rounds of the game, M0, pl(last(ρ0)) ≃k−m

T M1, pl(last(ρ1)). The initial
configuration has this property by assumption. We only consider moves from
Spoiler in the forwards direction, as the backward cases are analogous. We also
neglect the forward simple move case, as it is a special case of the forward graded
move. Assume the game has reached configuration ρ0, ρ1 after m rounds.

• Forward graded move: Spoiler selects a set X with |X| ≤ q, and either
X ⊆ R[ρ0] or X ⊆ R[ρ1]. WLOG assume X ⊆ R[ρ0]. Take an arbitrary
x ∈ X. Then pl(last(x)) is a successor of pl(last(ρ0)), so would be a legal
move for Spoiler in Bisk−m

T (M0, pl(last(ρ0)),M1, pl(last(ρ1))). Let a′1 ∈ M1

be the response prescribed by the winning strategy for Duplicater in this
Bisk−m

T game. Define Y := {ρ⌢1 (a′1, i) : i < |X|}. Duplicater should select
Y as her response to Spoiler, and whichever y ∈ Y is chosen by Spoiler,
Duplicater should respond by choosing x.

• Forward infinity move: WLOG suppose Spoiler selects an infinite set X ⊆
R[ρ0]. For every distinct x, x′ ∈ X, x, x′ only differ in their last element. So
since q is finite, by the pigeonhole principle, the set {pl(last(x)) : x ∈ X}
is infinite. Therefore, it would be a legitimate forward infinity move for
Spoiler in Bisk−m

T (M0, pl(last(ρ0)),M1, pl(last(ρ1))). Let S ⊆ M1 be the
response prescribed by the winning strategy for Duplicater in this game.
Define Y := {ρ⌢1 (s, 0) : s ∈ S}. Duplicater should choose Y in response to
Spoiler’s moveX. Whichever ρ⌢1 (s, 0) is chosen by Spoiler, Duplicater should
choose an element x ∈ X such that pl(last(x)) is the response prescribed for
Duplicater in Bisk−m

T (M0, pl(last(ρ0)),M1, pl(last(ρ1))) if Spoiler chooses s.

It is easy to see that a strategy which preserves the property stated above is win-
ning for Duplicater.

Proof of Lemma 4.31
We define a notion of q-companionship, which will allow us to link points in different
tree models. This notion is inspired by the q-companionship relation defined in [2]
(Definition 3.10), although note that the definition used here is subtly different.

Definition 4.32 (q-companions). Let (T, r), (T′, r′) be two-way tree structures.
Let h(T, r) = h(T′, r′) = k. Let t ∈ T, t′ ∈ T ′. Then t, t′ are q-companions,
notation: t ∼q t

′, iff the shortest path ⟨r = t0, t1, . . . , tm = t⟩ from r to t and the
shortest path ⟨r′ = t′0, t

′
1, . . . , t

′
n = t′⟩ from r′ to t′ are such that:

• m = n
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• For all i with 0 ≤ i < m, either tiRti+1 and t′iRt
′
i+1 or ti+1Rti and t

′
i+1R

′t′i

• For all i with 0 ≤ i ≤ m, ti ≃k−h(ti)
Tq t′i

Lemma 4.33. Let (T, r), (T′, r′) be two-way trees of height k. Then ∼q is an
equivalence relation of finite index over T ∪ T ′.

Proof. It is immediate that ∼q is an equivalence relation. To see that it has finite
index, first observe that every t in (T, r) has height at most k, and likewise for
every t′ in T′, r′. So it suffices to prove that, for any fixed m, ∼q has finite index on
the set of all members of T∪T ′ with height exactlym. We argue by induction onm.

Base case: m = 0. Trivial, as only r, r′ have height 0.

Induction step: inductively assume that ∼q has finite index on the set of all ele-
ments of T ∪ T ′ with height exactly m − 1. We prove the statement for m. To
see that the statement holds, note that the q-companionship type of any element
t ∈ T ∪ T ′ is fully determined by:

1. The q-companionship type of the unique 1-step ancestor of t

2. Whether the unique 1-step ancestor of t is an R-successor or R-predecessor
of t

3. The ≃k−h(t)
Tq -type of t

Now suppose t has height exactly m. Then by the inductive hypothesis there are
only finitely many possibilities for item 1; there are exactly 2 possibilities for item
2; and there are only finitely many possibilities for item 3, because ≃k−m

Tq has fi-
nite index (by a straightforward adaptation of the argument for Proposition 2.28).
Therefore ∼q has finite index on the set of all elements of height exactly m, which
was to show for the induction step.

This concludes the induction, so the proof is complete.

We now prove a key lemma about the q-companionship relation.

Lemma 4.34. Let (T, r), (T′, r′) be tree structures of height k. Let t ∈ T, t′ ∈ T ′

be such that t ∼q t
′. Then the following hold:

1. For every set U of descendants of t, with |U | ≤ q, such that for all u0, u1 ∈ U ,
u0 ∼q u1, there is a set U ′ of descendants of t′, with |U ′| = |U |, such that for
all u′ ∈ U ′, for all u ∈ U , u′ ∼q u.
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2. For every infinite set X of descendants of t such that for all x0, x1 ∈ X,
x0 ∼q x1, there exists an infinite set Y of descendants of t′ such that for all
y ∈ Y , for all x ∈ X, y ∼q x.

Proof. Let T,T′, t, t′ be as in the statement of the lemma.
1. Let U be as in the statement of the lemma. Then all u ∈ U have the

same height, and are the same distance from t, so it makes sense to talk about the
distance d(t, U) of U from t. We argue by induction on d(t, U).

Base case: d(t, U) = 1. Then either U ⊆ R[t] or U ⊆ Ř[t].

Case 1: U ⊆ R[t]. We have t ≃k−h(t)
Tq t′, which means there is a winning strategy

for Duplicater in the k−h(t)-round version of BisTq(T, t,T′, t′). This strategy must
prescribe a move for Duplicater in response to Spoiler selecting the set U . Let U ′

be the move prescribed. Then for every u′ ∈ U ′, there is some u ∈ U such that
Duplicater has a winning strategy in the k−(h(t)+1)-round version of BisTq(u, u

′).

Since h(u) = h(t)+ 1, the latter statement means that u ≃k−h(u)
Tq u′, which implies

u ∼q u
′. But ∼q is an equivalence relation, hence u′ ∼q u for every u ∈ U . Since

u′ was arbitrary, this proves the claim.

Case 2: U ⊆ Ř[t]. Identical argument.

Induction step: d(t, U) = k + 1. The inductive hypothesis is that for any v ∈
T, v′ ∈ T ′ with v ∼q v

′, for any set V of descendants of v with |V | ≤ q such that
v0 ∼q v1 for all v0, v1 ∈ V , there is a set V ′ of descendants of v′ with |V ′| = |V |,
such that for all v′ ∈ V ′, for all v ∈ V , v′ ∼q v.

Because all members of U are q-companions, the unique shortest path leading
from t to each u ∈ U must involve the same type of step- forwards, or backwards-
at each stage. In particular, the paths must all include either a forward step from
t, or a backward step from t. WLOG assume it is a forward step- the backward
case is analogous. Define SU to be the set

SU := {v ∈ R[t] : v has a descendant in U}

Then |SU | ≤ |U | ≤ q, because all members of SU have the same height. Further,
all members of SU are q-companions, because they are ancestors of q-companions.
We may now apply the claim of the Base Case to the set SU , to find a set S ′ ⊆ T ′

such that |SU | = |S ′| and for all s′ ∈ S ′, for all s ∈ SU , s
′ ∼q s.

Let g : s 7→ s′ be some bijective mapping from SU to S ′. For each s ∈ SU , let
Us ⊆ U be the set of descendants of s which are in U . For each pair s, s′ along
with the set Us, we may now apply the inductive hypothesis to obtain a set Us′
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with |Us′ | = |Us|, such that for all u′ ∈ Us′ , for all u ∈ Us, u
′ ∼q u. Further, note

that the sets {Us′ : s
′ ∈ S ′} are pairwise disjoint. Set

U ′ :=
⋃
s′∈S′

Us′

Then U ′ is a set of descendants of t′, such that |U ′| = |U | and for all u′ ∈ U ′, for
all u ∈ U , u′ ∼q u. This proves the induction step, so the induction is complete.

2. Let X be an infinite set of descendants of t such that u ∼q v for all u, v ∈ X.
Then all members of X are of the same height, and are the same distance from t.
Let d(t,X) denote this common distance. We argue by induction on d(t,X).

Base case: d(t,X) = 1. Then either tRx for all x ∈ X or xRt for all x ∈ X.
WLOG assume X ⊆ R[t]; the other case is analogous.

We have t ≃k−h(t)
Tq t′, meaning Duplicater has a winning strategy in Bis

k−h(t)
Tq (T, t,T′, t′).

Since X ⊆ R[t], the set X is a legal move for Spoiler in this game. Let Y be a
winning response for Duplicater. Then for every y ∈ Y there is x ∈ X with
y ≃k−(h(t)+1)

Tq x, which implies y ∼q x. But ∼q is an equivalence relation, hence
y ∼q x for every x ∈ X. Since y ∈ Y was arbitrary, this proves the claim in the
base case.

Induction step: d(t,X) = k + 1. The inductive hypothesis states that item 2
of the lemma holds for any t ∈ T, t′ ∈ T′ when d(t,X) = k. We now make a case
distinction.

Case 1: There is a 1-step descendant u of t such that there is an infinite set
Y of descendants of u such that Y ⊆ X. WLOG assume tRu; the case where
uRt is analogous. By item 1 of the lemma, there is a descendant u′ of t′ such
that u ∼q u

′. (Indeed, this u′ must be an R-successor of t′.) Further, we have
d(u,X) = k. So by the inductive hypothesis, there exists an infinite set Y ′ of
descendants of u′ such that for every y′ ∈ Y ′, for every y ∈ Y , y′ ∼q y. Since
∼q is an equivalence relation this implies that for every y′ ∈ Y ′, for every x ∈ X,
y′ ∼q x. All descendants of u

′ are descendants of t′, so this shows the claim.

Case 2: There are infinitely many 1-step descendants of t, all of which have some
descendant x ∈ X. Let U be the set of these 1-step descendants. Either U ⊆ R[t]
or U ⊆ Ř[t]. WLOG assume U ⊆ R[t]- the other case is analogous. Also WLOG,
we may assume that for all u, v ∈ U, u ∼q v (if not, we could find some infinite
U0 ⊆ U whose members are all in the same q-companionship class, because ∼q has
finite index).
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We have t ≃k−h(t)
Tq t′, so there is a winning strategy for Duplicater in

Bis
k−h(t)
Tq (T, t,T′, t′). Since U ⊆ R[t], the set U is a legal move for Spoiler in this

game. Let V be a winning response to this move for Duplicater. Then for each
v ∈ V there is some u ∈ U such that v ≃k−(h(t)+1)

Tq u. We then have v ∼q u, and
since ∼q is an equivalence relation, v ∼q u for every u ∈ U . But v was arbitrary,
so for all v ∈ V , for all u ∈ U , v ∼q u.

Choose some particular u ∈ U , and let xu be some descendant of u that is in X.
For each v ∈ V , we may now invoke item 1 of the lemma for the pair u, v, giving
a descendant yv of v such that yv ∼q xu (implying yv ∼q x for every x ∈ X). For
any distinct v, v′ ∈ V , v is neither an ancestor nor a descendant of v′, hence v, v′

have no common descendants, and yv ̸= yv′ . It follows that the set {yv : v ∈ V } is
infinite. This shows the claim.

Finally, a simple pigeonhole argument shows that either case 1 or case 2 must
obtain. This concludes the induction, and the proof of item 2.

Definition 4.35. Let T, r be a two-way tree, and let u1, . . . , um be an m-tuple
within T . We let Tu denote the restriction of T to the set⋃

1≤i≤m

↓(ui)

Definition 4.36. Let T, r and T′, r′ be two-way trees, and let u, u′ be m-tuples
within the respective structures. We say that u, u′ are q-similar, notation: T, u ≈↓

q

T′, u′, iff there is an isomorphism f : Tu → T′
u′ such that

• f(ui) = u′i for each 1 ≤ i ≤ m

• x ∼q f(x) for all x in Tu

The following lemma gives the central step in the proof of Lemma 4.31.

Lemma 4.37. Let T, r and T′, r′ be two-way trees of height k. Let m be a natural
number with m < q. Let u, u′ be m-tuples within T, T ′ respectively, such that
u ≈↓

q u
′. Then the following hold.

1. For every u ∈ T there is a u′ ∈ T′ such that (u, u) ≈↓
q (u

′, u′) (and vice versa
for T′,T)

2. For every infinite X ⊆ T there exists an infinite Y ⊆ T′ such that for every
y ∈ Y , there exists an x ∈ X with u, x ≈↓

q u
′, y (and vice versa).

67



4.3. UPGRADING FROM ≃K
G AND ≃K

GT

Proof. We begin with item 1. We only show the direction from T to T′; the other
direction is analogous. Let u ∈ T. If u ∈ Tu then f(u) gives the desired element
in T′, so assume u /∈ Tu. Define

U := {v ∈ u : v ∼q u}

Because T is a tree, there is a unique last common ancestor t of the set {u} ∪ U .
Clearly t ∈ Tu; let t

′ denote f(t). Further, the set {u}∪U has cardinality at most
m+1 ≤ q. So by item 1 of Lemma 4.34, there is a set U ′ of descendants of t′, with
|U ′| = |{u} ∪ U |, whose members are all q-companions of u. However, there can
only be m many q-companions of u in the range of f , since there are at most m
many q-companions of u in the domain of f . Hence there is some u′ ∈ U ′ which is
not in the range of f .

Thus, the map f can be extended to an isomorphism f+ : Tu,u → T′
u′,u′ linking

u with u′, and with x ∼q f
+(x) for all x in Tu,u. (Here we use the fact that if

t ∼q t
′, then the paths from r, r′ to t, t′, respectively, must have the same type of

step- forwards/backwards- at each stage). So (u, u) and (u′, u′) are q-similar, as
required.

We now turn to item 2. Again, we only prove the direction from T to T′;
the direction from T′ to T is analogous. Let X ⊆ T be infinite. WLOG assume
X ∩ u = ∅ (otherwise, Spoiler could have chosen a smaller infinite set). Because
∼q has finite index, there must be some infinite subset Y of X such that for all
y0, y1 ∈ Y, y0 ∼q y1. So WLOG we may assume that for all x0, x1 ∈ X, x0 ∼q x1.
Define

U := {v ∈ u : v ∼q x for all x ∈ X}

Since T is a tree, there must be some last common ancestor of X ∪ U - call it t.
Clearly t ∈ Tu; let t

′ := f(t). By item 2 of Lemma 4.34, there is an infinite set X ′

of descendants of t′ whose members are all in the same q-companionship class as
those of X. Since u′ is finite, there must even be such an infinite set X ′ which is
disjoint from u′.

For any x′ ∈ X ′, we may in fact take any x ∈ X. We will then have x ∼q x
′. It

is easy to see that f may be extended to an isomorphism f+ : Tu,x → T′
u′,x′ such

that f(x) = x′, and y ∼q f
+(y) for all y ∈ Tu,x. (Again, we use the restriction

on the paths leading from the respective roots to q-companions.) So (u, x) and
(u′, x′) are q-similar, as required.

Proof of Lemma 4.31
Let (T, r), (T′, r′) be two-way trees of height k, and suppose T, r ≃k

Tq T′, r′. It
follows that r ∼q r

′. It suffices to show that Duplicater has a winning strategy in
EF∞

q (T, r,T′, r′). We show that there is a strategy which preserves the property
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that, for each configuration u, u′, u is q-similar to u′. This condition is certainly
satisfied in the initial configuration of r, r′, because r ∼q r

′.
After m rounds (for any m < q), at configuration u ≈↓

q u
′, suppose Spoiler

launches a first-order challenge and selects a single element from T or from T ′.
Then item 1 of Lemma 4.37 shows that Duplicater can select an element from the
other structure, which preserves the desired configuration-property. Alternatively,
suppose Spoiler launches a second-order challenge, and selects an infinite set X
from T or T ′. Then item 2 of Lemma 4.37 shows that Duplicater can respond to
this challenge in a way that also preserves the desired configuration-property.

It is easy to see that a strategy which preserves this configuration-property
must be winning for Duplicater.

As discussed, Lemma 4.30 and Lemma 4.31 suffice to prove Proposition 4.29.
So we may conclude that Proposition 4.29 holds.

Proposition 4.38. Let n be any natural number. Modulo ≃GT ,≡k,q
1,∃ can be up-

graded to ≡k,q
n .

Proof. Let A,B be structures such that A ≡k,q
1,∃ B. We claim that A · ω,B · ω are

the desired companion structures. We already have A ·ω ≃GT A and B ·ω ≃GT B
by Proposition 4.23. So we only need to show that A · ω ≡k,q

n B · ω. This requires
us to verify:

1. For all k-local formulas ψ such that qd(ψ) ≤ q, for all m ≤ n, A · ω |=
Gaif k,m(ψ) iff B · ω |= Gaif k,m(ψ)

2. For all k-local formulas ψ such that qd(ψ) ≤ q, for all m ≤ n, A · ω |=
Gaif ∞k,m(ψ) iff B · ω |= Gaif ∞k,m(ψ)

To see that item 1 holds, let ψ be k-local with qd(ψ) ≤ q, let m ≤ n, and

suppose A ·ω |= ∃x1 . . . ∃xm(
∧

1≤i<j≤m

d(xi, xj) > k∧ψ(xi)). Then we certainly have

A · ω |= ∃xψ. Let (c, i) be a witness; then by locality of ψ, we also have A, c |= ψ,
and hence A |= ∃xψ. Since A ≡k,q

1,∃ B, we have B |= ∃xψ. Let b ∈ B satisfy the
formula ψ. Consider the m elements (b, 0), (b, 1), . . . , (b,m − 1) of B · ω. These
elements are suitably scattered, and they all satisfy the formula ψ by locality of
ψ. So B · ω satisfies the desired basic local sentence.

The direction from B · ω to A · ω proceeds analogously.

To see that item 2 holds, let ψ be k-local with qd(ψ) ≤ q, let m ≤ n, and

suppose A·ω |= ∃∞x1 . . . ∃∞xm(
∧

1≤i<j≤m

d(xi, xj) > k∧ψ(xi)). Then clearly A·ω |=
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∃xψ(x). Let (a, i) be a witness for this. Then by locality of ψ, we also have
A, a |= ψ. Since A ≡k,q

1∃ B, we then have B |= ∃xψ(x). Let b ∈ B be an element
satisfying ψ. For 1 ≤ i ≤ m, we now let Si be the following infinite set:

Si := {(b, pm+ i) : p ∈ N}

Then for each 1 ≤ i ≤ m we have Si ⊆ B×ω, and further, if i ̸= j then i′ ̸= j′ for
any (b, i′) ∈ Si, (b, j

′) ∈ Sj. In other words, all members of Si are suitably scattered
from all members of Sj. Because ψ is local, every member of Si will satisfy ψ (for
any i). We may therefore take the sets Si as witness sets for the quantifications

∃∞xi, respectively, showing that B · ω |= ∃∞x1 . . . ∃∞xm(
∧

1≤i<j≤m

d(xi, xj) > k ∧

ψ(xi)).
The direction from B · ω to A · ω proceeds analogously.

Proof of Proposition 4.10 and Proposition 4.11. We have shown that
for any q, ≃k

GT can be upgraded modulo ≃GT to ≡k,q
1∃ , and for any n, ≡k,q

1∃ can be
upgraded modulo ≃GT to ≡k,q

n . Putting these two results together we obtain that
for any q, n, ≃k

GT can be upgraded modulo ≃GT to ≡k,q
n , i.e. Proposition 4.11.

We also showed that ≃2k
G can be upgraded modulo ≃G to ≃k

GT (Proposition 4.12).
Since ≃GT is stronger than ≃G, being able to upgrade modulo ≃GT implies being
able to upgrade modulo ≃G. So Proposition 4.12 and Proposition 4.11 together
yield Proposition 4.10. (See also Figure 4.4 on the following page.)

4.3.3 Characterisation Theorems

Using these Upgrading results, we can provide a semantic characterisation of G∞

and GT∞.

Theorem 4.39. Let ϕ be a sentence of FOL∞. Then ϕ is invariant under ≃G iff
ϕ is logically equivalent to a formula in G∞.

Proof. We only need to prove the left-to-right direction. Let ϕ ∈ FOL∞ be a ≃G-
invariant sentence. By the Gaifman theorem for FOL∞, there are some k, q, n ∈ N
such that ϕ is invariant over ≡k,q

n . Now let A,B be arbitrary structures such that
A ≃2k

G B. Then by Proposition 4.10, there are companion structures A′ ≃G A,
B′ ≃G B such that A′ ≡k,q

n B′. Now the chain of equivalences

A |= ϕ ⇐⇒ A′ |= ϕ (invariance under ≃G )

⇐⇒ B′ |= ϕ (invariance under ≡k,q
n )

⇐⇒ B |= ϕ (invariance under ≃G )
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shows that in fact, ϕ is invariant under ≃2k
G . But then a straightforward argument,

analogous to the proof of Theorem 4.7, shows that ϕ is definable in G∞.

Theorem 4.40. Let ϕ ∈ FOL∞. Then ϕ is invariant under ≃GT iff ϕ is logically
equivalent to a formula in GT∞.

Proof. We only need to prove the left-to-right direction. Let ϕ ∈ FOL∞ be a ≃GT -
invariant sentence. By the Gaifman theorem for FOL∞, there are some k, q, n ∈ N
such that ϕ is invariant over ≡k,q

n . Now let A,B be arbitrary structures such that
A ≃k

GT B. Then by Proposition 4.11, there are companion structures A′ ≃GT A,
B′ ≃GT B such that A′ ≡k,q

n B′. Now the chain of equivalences

A |= ϕ ⇐⇒ A′ |= ϕ (invariance under ≃GT )

⇐⇒ B′ |= ϕ (invariance under ≡k,q
n )

⇐⇒ B |= ϕ (invariance under ≃GT )

shows that in fact, ϕ is invariant under ≃k
GT . But then a straightforward argument,

analogous to the proof of Theorem 4.7, shows that ϕ is definable in GT∞.

The figure below shows a diagrammatic representation of the ‘upgrading’ com-
ponent of this proof:

M0 M1

M′
0 M′

1

M′′
0 M′′

1

M′′′
0 M′′′

1

≃2k
G

≃k
GT

≡k,q
1,∃

≡k,q
n

≃G ≃G

≃GT ≃GT

≃GT ≃GT

Figure 4.4: Upgrading from ≃2k
G to ≡k,q

n via ≃k
GT
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The key argument is that a formula ϕ which is invariant across the vertical
arrows, and also across the lowest horizontal arrow, must be invariant over all the
horizontal arrows.
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Chapter 5

A Guarded Fragment of FOL∞

In this chapter, we introduce a fragment of FOL∞ inspired by the guarded fragment
of first-order logic. The guarded fragment of first-order logic (which I’ll refer to as
GF ) was introduced by Andréka, van Benthem and Németi in [3]. It is defined by
means of a syntactic restriction on the use of quantifiers: only quantified formulas
that fit the schema ∃y(P (x, y) ∧ ψ(x, y)), where P is a predicate symbol, are
allowed. In their paper, Andréka, van Benthem and Németi demonstrate that
the guarded fragment shares several important properties with basic modal logic.
Firstly, it is characterised as a fragment of FOL by invariance under a suitable
notion of bisimulation. Secondly, and even more significantly, it is decidable. In
the remainder of this thesis, we ask if we can establish these nice properties for a
similarly strong fragment of FOL∞.

The first section of this chapter will define a fragment of FOL∞, which employs
a syntactic restriction similar to that of the guarded fragment of FOL. We will then
define a suitable notion of bisimulation for this fragment, show that the fragment is
invariant under this bisimilarity relation, and consider whether it is characterised
by this invariance. We consider the decidability of the newly defined fragment in
the following chapter.

5.1 Syntax of GF∞

Definition 5.1. Let τ be a signature which contains no constant or function
symbols, but may contain arbitrarily many predicate symbols of any arity. We
define Form∞

GF (τ) to be the least set satisfying the following recursive clauses:

• If P is an n-ary predicate symbol of τ , or the identity symbol =, and
v1, . . . , vn are variables, then Pv1 . . . vn ∈ Form∞

GF (τ) and is an atomic for-
mula
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• ⊥ ∈ Form∞
GF (τ) and is an atomic formula

• If ϕ, ψ ∈ Form∞
GF (τ) then ϕ ∧ ψ ∈ Form∞

GF and ¬ϕ ∈ Form∞
GF

• Let each of Q1, . . . , Qn ∈ {∃,∃∞}. Let ϕ be a formula of Form∞
GF (τ), and

α an atomic formula of Form∞
GF (τ), such that FV (ϕ) ⊆ FV (α). Then

Q1v1 . . . Qnvn(α ∧ ϕ) ∈ Form∞
GF (τ). We call α the ‘guard’ of such a formula

We write ϕ ∈ GF∞ iff there is some (purely relational) signature τ such that
ϕ ∈ Form∞

GF (τ).

The guarded fragment of FOL allows arbitrary strings of existential quantifiers
before a guard, and we follow this idea in allowing arbitrary strings of existential
or infinity quantifiers before a guard in GF∞. But note that this adds to the
expressive power of GF∞ in a way that is disanalogous to GF . For instance, a
GF -formula ∃x1 . . . ∃xn(α∧ ϕ) would often be abbreviated to ∃x(α∧ ϕ), since the
order of the quantifiers does not matter; the original formula is equivalent to, e.g.,
∃xn . . . ∃x1(α ∧ ϕ). This makes it tempting to think of the string of existential
quantifiers as a single existential quantifier, binding a finite tuple of variables.

We cannot do this for GF∞, because if a string of quantifiers includes infinity
quantifiers, the order of the quantifiers emphatically does matter. For example,
∃x1∃∞x2∃∞x3(Px1x2x3∧⊤) is not equivalent to ∃x1∃∞x3∃∞x2(Px1x2x3∧⊤). To
see this, consider the structure below.

c0,0 c0,1 . . . c1,0 c1,1 . . . . . . . . .

b0 b1 ...

a

Figure 5.1: M

Let P be interpreted in M by: (x, y, z) ∈ PM iff there is an arrow from x to y,
and an arrow from y to z. Then M |= ∃x1∃∞x2∃∞x3(Px1x2x3 ∧ ⊤), because a is
such that there are infinitely many b’s, for each of which there are infinitely many
c’s, such that PM(a, b, c). But ∃x1∃∞x3∃∞x2(Px1x2x3 ∧ ⊤) does not hold in M,
intuitively because, for each c, there is only one b such that PMabc.

So, it is important to note that allowing strings of quantifiers is significantly
less innocent in the GF∞ case than in the GF case.
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Note that nothing needs to be said about the semantics of GF∞, because it is
a fragment of FOL∞. So, the satisfaction conditions for any formula of GF∞ are
exactly as described by the definition of satisfaction for FOL∞.

5.2 Bisimulation

Definition 5.2 (Guarded set). Let M be a τ -structure, for some relational signa-
ture τ . We say that a subset X ⊆M is guarded (in M) iff there is some predicate
symbol P ∈ τ , and some ordered tuple (d1, . . . , dn) ∈ PM, such that every member
of X occurs somewhere in (d1, . . . , dn).

Notation. Where π is an ordered n-tuple, and i ≤ n, I’ll use (π)i to denote the
ith element of π.

We now define a bisimilarity relation that matches the expressive power of
GF∞. Again, we take a game-theoretic approach.

Definition 5.3 (Guarded infinity bisimulation game). BisGF is a game played by
two players, Spoiler and Duplicater, on two structures, M0 and M1. The game
is played in a series of rounds. Each round has a configuration, which consists of
finite sets C0 ⊆M0, C1 ⊆M1, together with a map g : C0 → C1.

In each round, Spoiler moves first and selects one of the structures, Mi. He
then selects a subset Bi ⊆ Ci, selects an n ∈ N, selects an ordered n + 1-tuple
(a0, . . . , an) with each ai ∈ {1,∞}, and specifies a map fi : F(a0, . . . , an) → Mi

such that

1. For any ∼F equivalence class [t] ⊆ F(a0, . . . , an), the map fi is injective on
[t]

2. For each path π through F(a0, . . . , an), the set Bi ∪ fi[π] is guarded

In response, Duplicater must specify a map f1−i : F(a0, . . . , an) → M1−i, which
also satisfies condition 1.

Next, Spoiler selects any path π1−i through F(a0, . . . , an). In response, Dupli-
cater must select a path πi (which may but need not be distinct from π1−i) through
F(a0, . . . , an). Let B1−i denote the elements of C1−i linked with an element of Bi

by g. Then the new configuration (C ′
0, C

′
1, g

′) is given by:

C ′
0 = B0 ∪ f0[π0]

C ′
1 = B1 ∪ f1[π1]

g′(b) = g(b) for any b ∈ B0, and g
′(f0((π0)m)) = f1((π1)m)
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(If g′ is not well-defined, then Duplicater loses the game).
Spoiler wins the game if the players ever reach a configuration (C0, C1, g) such

that g is not a bijective local isomorphism. (So if the starting configuration is such
that g fails to be a local isomorphism, then Spoiler wins instantly.) Otherwise,
Duplicater wins.

We write BisGF (M0,M1, C0, C1, g) to denote the game played on M0,M1 with
starting configuration (C0, C1, g). Where m0,m1 are ordered tuples and g is the
map which sends each (m0)i to (m1)i, we write M0,m0 ≃GF M1,m1 iff Dupli-
cater has a winning strategy in BisGF (M0,M1,m0,m1, g). We write M0,m0 ≃k

GF

M1,m1 iff Duplicater has a winning strategy in the corresponding k-round version
of this game.

Naturally, we want our fragment GF∞ to be invariant over this relation.

Proposition 5.4 (Bisimulation Invariance for GF∞). Let M,N be τ - structures
for some relational structure τ , let m1, . . . ,mk be a k-tuple of elements from M,
and n1, . . . , nk a k-tuple of elements from N. Suppose M,m ≃GF N, n. Then for
any ϕ ∈ Form∞

GF (τ), M,m |= ϕ iff N, n |= ϕ.

Proof. We proceed by induction on the construction of ϕ.

Base case: ϕ is atomic. This is trivial if ϕ = ⊥. If ϕ = Px for some predi-
cate P , then if e.g. m1, . . . ,mk satisfied ϕ but n1, . . . , nk did not satisfy ϕ, then
m,n would not be locally isomorphic, and Duplicater would lose the bisimulation
game instantly.

The induction step for each of the Boolean connectives is routine, so we omit
it.

Induction step: ϕ = Q0x0 . . . Qnxn(α ∧ ψ). The induction hypothesis is that for
any ordered tuples m′ ⊆ M and n′ ⊆ N , if M,m′ ≃GF N, n′ then M,m′ |= ψ iff
N, n′ |= ψ.

Suppose M,m |= Q0x0 . . . Qnxn(α∧ψ). Let (a0, . . . , an) be the index sequence
for Q0, . . . , Qn. Then by Observation 2.14, there is a function f : F(a0, . . . , an)
which is injective on ∼F equivalence classes, and is such that for every path π
through F(a0, . . . , an), we have

M,m, f((π)0), . . . , f((π)n) |= α ∧ ψ

Define

m := {mi ∈ m : some variable occurring in α corresponds to mi}
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Also, let n := {ni : mi ∈ m}. WLOG we may assume that each variable xi appears
in α. Because α is atomic, it follows that the set m ∪ {f((π)0), . . . , f((π)n)} is
guarded. This means that the set m, together with the function f , would be a
legal move for Spoiler in BisGF (M,m,N, n). Duplicater has a winning strategy in
this game, so let fN : F(a0, . . . , an) → N be the response for Duplicater prescribed
by this strategy. Because the strategy is winning, we have that for any path π
through the forest F(a0, . . . , an), there is a path π′ through F(a0, . . . , an) such that

M,m, f((π′)0), . . . , f((π
′)n) ≃GF N, n, fN((π)0), . . . , fN((π)n)

But for each such path π′, we know that M,m, f((π′)0), . . . , f((π
′)n) |= α ∧ ψ.

Therefore by the Induction Hypothesis, for each path π,

N, n, fN((π)0), . . . , fN((π)n) |= α ∧ ψ

But this means that the map fN satisfies the conditions given in Observation 2.14.
So we can conclude that N, n |= Q0x0 . . . Qnxn(α ∧ ψ), as required.

Precisely the same reasoning, in reverse, shows that ifN, n |= ϕ thenM,m |= ϕ.

This concludes the induction step for quantified formulae. So the induction is
complete, and the proposition has been shown.

5.3 Characterisation of GF∞

We can now ask of GF∞ the same question as we asked of the other fragments
of FOL∞ considered in this thesis: is GF∞ characterised by invariance under its
associated notion of bisimulation? That is, is there any formula ϕ ∈ FOL∞ that
is invariant under ≃GF , but is not equivalent to any formula in GF∞?

Just as in the case of the other fragments, we cannot use a compactness argu-
ment to answer this question, because FOL∞ is not compact. So, the only other
strategy which seems available is to use the ‘upgrading’ method, which we suc-
cessfully applied to the other fragments. For this, we would need an upgrading
result, stating that if M,m ≃k

GF N, n, then there are fully bisimilar companion
structures M′,m′ ≃GF M,m and N′, n′ ≃GF N, n such that M′,m′ ≡k

q,n N′, n′.

Unfortunately, proving this upgrading result seems to be much more difficult
than in any of the cases of T∞,G∞ or GT∞. In proving the previous upgrading
results, the crucial step was to use unravelling to obtain structures whose Gaifman
graphs were acyclic, and which were bisimilar (in the relevant sense) to the original
structures. We made vital use of the fact that every structure was bisimilar (in
the relevant sense) to some acyclic structure. (In the remainder of this chapter,
we call a structure ‘acyclic’ iff its Gaifman graph is acyclic.)
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In the GF∞ setting, this is simply not the case: there are some structures for
which we cannot find acyclic bisimilar companions. This happens for at least two
reasons.

Reason 1. Consider the structure N1 shown in Figure 5.2 below. Let P be
interpreted as the set {a, b, c} in N1, and R as the set of pairs {(a, b), (b, c), (c, a)}
in N1.

P

c

P a b P

Figure 5.2: N1

A natural candidate for an acyclic ≃GF -bisimilar companion structure to N1

is shown in Figure 5.3 below.

P P P P P

. . . a′ b′ c′ . . .

Figure 5.3: N′
1

But in fact, N′
1 ≃GF N1 does not hold. To see this, simply observe that the

structures are not even GF∞-equivalent: N1 does not satisfy ∃∞x(Px∧⊤), while
N′

1 does. Further, this is not merely a problem with the particular choice of N′
1.

The structure N1 has an infinite path, in which every point satisfies P . So, any
bisimilar companion structure must also have an infinite path, in which every point
satisfies P . However, N1 only has a finite number of points satisfying P , hence any
bisimilar companion must also have only finitely many P -elements. This implies
that the infinite path must involve a cycle. So N1 cannot have a ≃GF -bisimilar
acyclic companion.

A similar problem to this occurs in finite model theory. In this setting, (N1, a)
would not even have a classically bisimilar acyclic companion structure, because
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infinite structures are banned. The best one can achieve is a bisimilar companion
structure that is locally acyclic, in that it avoids ‘short’ cycles (all cycles are longer
than some fixed k). In many cases, this type of companion structure is enough to
prove the desired upgrading result; see [15] for an example of this method. So, it
might be hoped that locally acyclic companions can be found in the ≃GF case as
well, and that we can use them to prove the desired upgrading result.

Indeed, for any finite k, we can find bisimilar companions to N1 which avoid
cycles of length ≤ k: just take the R-cycle of length k+1, with all points satisfying
P . However, the next example shows that we cannot do this in general, and this
brings us onto:

Reason 2. Consider the structure N2 shown below, in which P is interpreted
as the set {c}, and R as the set of pairs {(a, bj) : j ∈ Z} ∪ {(bj, c) : j ∈ Z}.

c

. . . b−1 b0 b1 . . .

a

Figure 5.4: N2

N2 is evidently not acyclic: its Gaifman graph contains the cycle, e.g., (a, b0, c, b1).
Now let N′

2 be any structure ≃GF -bisimilar to N2. Then by Proposition 5.4, N′
2

and N2 agree on all GF∞ formulas. Observe that N2 satisfies the formula

ϕ := ∃x∃∞y(Rxy ∧ ∃z(Ryz ∧ Pz)) ∧ ¬∃∞z(Pz ∧ ⊤)

So N′
2 must also satisfy this formula.

This means that N′
2 has to contain an element, a′, which has infinitely many

successors b′, all of which see a P -element- but N′
2 can only contain finitely many

P -elements. If every b′ saw a distinct P - element c′, then there would be infinitely
many P -elements, which is an immediate contradiction! Therefore, there must
be at least two R-successors of a′, call them b′1 and b′2, which see the same P -
element c′. This means that N′

2 cannot be acyclic. Indeed, this argument shows
more: it shows that the Gaifman graph of N′

2 has a cycle of length 4 (namely
a′, b′0, b

′
1, c

′). So, unlike in the finite model theory case, we cannot even find a
bisimilar companion to N2 which is locally acyclic.

Harking back to Definition 2.5, we may now finally explain why we did not
define G∞ to include a global infinity modality as well as a global modality. In
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a nutshell, adding this modality would have made G∞ strong enough for the
problem discussed above to arise. Letting E∞ denote the global infinity modality,
any model of the formula:

E3∞3p ∧ ¬E∞p

would fail to have an acyclic bisimilar companion.
Another point to make about the above example is that it is closely connected

to the natural language inference, I, discussed at the beginning of Chapter 1.
Observe that GF∞ is strong enough to express this inference- indeed, it can express
this inference within a vocabulary containing only unary predicate symbols, and a
single binary relation symbol. Using the unary predicates ‘D’ for the property of
being a dog and ‘C’ for the property of being a cat, and the binary predicate ‘R’
for the relation ‘x sees y’, we can formalise the inference as:

• P1: ∃∞x∃y(Rxy ∧Dx ∧ Cy)

• P2: ¬∃y∃∞x(Rxy ∧Dx ∧ Cy)

• C: ∃∞yCy

This inference turns on the combinatorial principle that if there are infinitely many
dogs which each see a cat, but only finitely many cats, then some cat would have
to be seen by infinitely many different dogs. This is closely analogous to the above
argument that, in any bisimilar companion N′

2 to N2, there would have to be two
distinct b′1, b

′
2 seeing the same element c′. So, although it is a nice feature of GF∞

that it is able to express inferences such as I, this expressivity may also be viewed
as the main obstacle to characterising GF∞ by invariance under ≃GF .

Of course, none of this shows that GF∞ is not characterised by being the ≃GF -
invariant fragment of FOL∞. It does not even show that the Upgrading statement
corresponding to ≃GF does not hold. It might be that the Upgrading statement
can be proved using some more complicated construction for obtaining bisimilar
companions, or that the Upgrading statement fails, but the characterisation still
holds. However, the unavailability of locally ayclic ≃GF -bisimilar companion struc-
tures seems like a serious obstacle to proving the ≃GF -invariance characterisation
claim. We therefore leave this question for future work.
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Chapter 6

Decidability

The final chapter of this thesis will discuss the decidability of some of the logics
considered so far. We begin by giving a complete axiomatisation of T∞, and
showing that this logic is decidable. Our strategy will be to translate formulas
of T∞ into formulas of a polymodal logic, and then to argue that the latter is
decidable and the translation preserves satisfiability. We then turn to the fragment
GF∞ introduced in Chapter 5. We define a similar translation, from formulas of
GF∞ into formulas of GF , and we conjecture that this translation also preserves
satisfiability.

6.1 Decidability of T∞

6.1.1 Preliminaries

For the remainder of this chapter we fix a countable set of proposition letters, P.

Definition 6.1 (Syntax of T 2). We extend the basic temporal language {3�,3�}
with two new diamonds: 32

� and 32
�. We let T 2 denote the set of all modal

formulas that can be formed out of the modalities {3�,3�,32
�,3

2
�}, according

to the standard inductive definitions. We regard 22
� and 22

� as duals of 32
� and

32
�, respectively, definable in the usual way.

Definition 6.2 (Semantics of T 2). A T 2 frame F is an ordered tuple (S,R,R2
�, R

2
�),

with S a set and each R,R2
�, R

2
� a binary relation on S. We say that F is a T2

frame iff it satisfies the additional conditions: R2
� ⊆ R, R2

� ⊆ Ř.
A T 2 model M is a T 2 frame F , together with a valuation V : P → ℘(S).
We can give a natural semantics for T 2 on the class of T 2 models. The recursive

clauses for the new modalities are given by:

• M, s ⊩ 32
�ϕ iff there is some t ∈ S with sR2

�t and M, t ⊩ ϕ
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• M, s ⊩ 32
�ϕ iff there is some t ∈ S with sR2

�t and M, t ⊩ ϕ

One important thing to note about the above definition is that on T 2 models,
we do not require that R2

� be the converse of R2
�. So, we do not necessarily have

M, s ⊩ 32
�ϕ iff there is some t ∈ S such that tR2

�s and M, t ⊩ ϕ.

Definition 6.3 (Translation of T∞ into T 2). We now give a very simple transla-
tion, ψ 7→ tr(ψ), from T∞ into T 2.

• tr(p) = p for all proposition letters p

• tr(⊥) = ⊥

• tr(ψ ∧ χ) = tr(ψ) ∧ tr(χ), tr(¬ψ) = ¬tr(ψ)

• tr(3�ψ) = 3�tr(ψ), tr(3�ψ) = 3�tr(ψ)

• tr(3∞
� ψ) = 32

�tr(ψ), tr(3
∞
� ) = 32

�tr(ψ)

It is easy to see that, syntactically speaking, tr is an isomorphism from T∞ to
T 2. However, T∞ and T 2 have very different semantics, so it is far from obvious
that tr also respects semantic properties such as satisfiability. Our goal will be to
show that, indeed, ϕ ∈ T∞ is satisfiable iff tr(ϕ) is satisfiable on a T2 frame.

6.1.2 Satisfiability: From ϕ to tr(ϕ)

We begin by showing that if ϕ is satisfiable, then tr(ϕ) is satisfiable on a T2 frame.

Definition 6.4 (T∞). We let Ax(T∞) denote the following set of T∞ formulas:

• All propositional tautologies

• 2�(p→ q) → (2�p→ 2�q)

• 2�(p→ q) → (2�p→ 2�q)

• 2∞
� (p→ q) → (2∞

� p→ 2∞
� q)

• 2∞
� (p→ q) → (2∞

� p→ 2∞
� q)

• 3∞
� p→ 3�p

• 3∞
� p→ 3�p

• p→ 2�3�p

• p→ 2�3�p
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We let T∞ denote the least subset of T∞ which extends Ax(T∞), and is closed
under the following rules of inference:

• Modus ponens

• Necessitation: if ψ ∈ T∞ then 2�ψ,2�ψ,2∞
� ψ,2

∞
� ψ ∈ T∞

• Uniform substitution: If ϕ ∈ T∞, p is a proposition letter and ψ is a well-
formed formula of T∞, then ϕ[ψ/p] ∈ T∞

Proposition 6.5 (Soundness). For any formula ψ ∈ T∞, if ψ ∈ T∞ then ψ is
valid on all Kripke structures.

Proof. Clearly the inference rules are sound, and it is straightforward to verify
that each axiom is sound.

Definition 6.6 (T2). We let Ax(T 2) denote the following set of T 2 formulas:

• All propositional tautologies

• 2�(p→ q) → (2�p→ 2�q)

• 2�(p→ q) → (2�p→ 2�q)

• 22
�(p→ q) → (22

�p→ 22
�q)

• 22
�(p→ q) → (22

�p→ 22
�q)

• 32
�p→ 3�p

• 32
�p→ 3�p

• p→ 2�3�p

• p→ 2�3�p

We let T2 denote the least subset of T∞ which extends Ax(T∞), and is closed
under the inference rules of Modus ponens, Necessitation and Uniform substitu-
tion.

Proposition 6.7. For any formula ϕ ∈ T∞, it holds that ϕ ∈ T∞ iff tr(ϕ) ∈ T2.

Proof. It is easy to see that any derivation of ϕ in T∞ may be turned into a
derivation of tr(ϕ) in T2 by translating every formula ψ occurring in the derivation
to tr(ψ). Similarly, a derivation of tr(ϕ) inT2 may be transformed into a derivation
of ϕ in T∞ by replacing every formula ψ, occurring in the derivation, with tr−1(ψ).
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Proposition 6.8. The axiomatisation T2 is sound and complete for the class of
T2-frames.

Proof. First of all, we claim that the class of T2-frames is precisely the class of
frames which validate all formulas in T2. It is easy to see that if a frame F is a
T2 frame, then every formula ϕ ∈ T2 is valid on F .

Conversely, suppose F is not a T2 frame. Then one of R2
� ⊆ R,R2

� ⊆ Ř must
fail. Suppose, for example, that there are s, t ∈ S with sR2

�t but not sRt. Then if
V is a valuation with V (p) = {t}, then M, s refutes the axiom 32

�p → 3p. The
other case is analogous.

We may conclude that T2 is valid on precisely the class of T2-frames. Now,
observe that every axiom in Ax(T 2) is a Sahlqvist formula. So by the Sahlqvist
Completeness Theorem (see e.g. [5]), T2 is complete with respect to the class of
T2-frames.

Proposition 6.9. Let ϕ be a satisfiable formula of T∞. If ϕ is satisfiable on a
Kripke frame, then tr(ϕ) is satisfiable on a T2 frame.

Proof. Suppose ϕ ∈ T∞ is satisfiable on a Kripke frame. Then since the axioma-
tisation T∞ is sound, we can infer ¬ϕ /∈ T∞. By Proposition 6.7, it follows that
tr(¬ϕ) /∈ T2. Now, tr(¬ϕ) is just ¬tr(ϕ), and since T2 is complete with respect
to T2 frames, it follows that tr(ϕ) is satisfiable on a T2 frame.

6.1.3 Satisfiability: From tr(ϕ) to ϕ

We now want to go in the opposite direction- given a formula ϕ which is satisfiable
on some T2 model, we need to show that tr−1(ϕ) is satisfiable. The first step is to
show that T 2 has the finite model property.

Proposition 6.10. Let ϕ be a satisfiable formula of T 2. Then ϕ is satisfiable on
a finite model.

Proof. If ϕ is satisfiable on a T2 model, then observe that ϕ′ := ST (x, ϕ) ∧
∀xy(R2

�xy → Rxy) ∧ ∀xy(R2
�yx → Rxy) is also satisfied on this model. But

ϕ′ is in the guarded fragment of FOL, and the guarded fragment has the finite
model property (see [10]). Therefore, ϕ′ is satisfiable on some finite model M′.
Clearly M′ is a T2 model.

Our strategy will be to define a model construction which turns any finite T2

model M into a Kripke model B(M) (the ‘blooming’ of M), such that B(M) ⊩ ψ
iff M ⊩ tr(ψ), for any formula ψ. Before we can define this construction, we need
the following lemma.

Lemma 6.11. There exists a function g : N → N such that:
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• g is a surjection

• For every n ∈ ω, the preimage g−1[n] of n is infinite

Proof. We build g in stages. At stage 0, let S0 be some arbitrary infinite subset
of N, such that N \ S0 := S ′

0 is also infinite. Let g0 := {(n, 0) : n ∈ S0} ∪ {(0, 0)},
Finally, set T0 := S ′

0 \ {0}.
At stage k + 1, let Sk+1 be some arbitrary infinite subset of Tk such that

S ′
k+1 := Tk \ Sk+1 is also infinite. If k + 1 /∈ dom(gk), then set

gk+1 := gk ∪ {(n, k + 1) : n ∈ Sk+1} ∪ {(k + 1, k + 1)}

Otherwise, set gk+1 := gk ∪ {(n, k + 1) : n ∈ Sk+1}. In addition, set Tk+1 :=
S ′
k+1 \ {k + 1}.
Finally, define g :=

⋃
k∈N gk. Then g satisfies the desired conditions.

For the remainder of this section, let g be some fixed function satisfying the
conditions of Lemma 6.11. We now define the blooming construction mentioned
above.

Definition 6.12 (B(M)). Let M = (S,R,R2
�, R

2
�, V ) be a T2 model. The uni-

verse SB of B(M) is given by: SB := S × N. The valuation V B of B(M) is given
by: (s, i) ∈ V B(p) iff s ∈ V (p), for any proposition letter p.

To define whether the relation RB holds between any two points (s, i), (t, j) ∈
SB, we need to distinguish some cases.

• sRt does not hold. Then set (s, i) ̸ RB(t, j).

• sRt holds, but neither sR2
�t nor tR

2
�s holds. Then set (s, i)RB(t, j) iff i = j.

• sRt and sR2
�t hold, but tR2

�s does not hold. Then set (s, i)RB(t, j) iff
i = g(j).

• sRt and tR2
�s hold, but sR2

�t does not hold. Then set (s, i)RB(t, j) iff
j = g(i).

• sRt, sR2
�t and tR

2
�s all hold. Then set (s, i)RB(t, j), whatever the values of

i, j.

Observe that these are the only cases that can occur, because M is a T2 model.
For any s ∈ S and any (t, i) ∈ SB, we say that (t, i) is a representative of s iff

t = s.

We include some diagrams to give a feel for this construction.

85



6.1. DECIDABILITY OF T∞

. . . . . .

(s, 4) (t, 4)

(s, 2) (t, 2)

(s, 0) (t, 0)

(s, 1) (t, 1)

(s, 3) (t, 3)

. . . . . .

Figure 6.1: The case where Rst, but neither R2
�st nor R

2
�ts
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. . .

. . . (t, 6)

(s, 4) (t, 4)

(s, 2) (t, 2)

(s, 0) (t, 0)

(s, 1) (t, 1)

(s, 3) (t, 3)

. . . . . .

Figure 6.2: The case where sRt and sR2
�t, but not tR

2
�s
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Lemma 6.13. Let M be a T2 model, s, t ∈ S. Then the following hold:

1. If sRt, then for every representative (s, i) of s, there is a representative (t, j)
of t such that (s, i)RB(t, j)

2. If sRt, then for every representative (t, j) of t, there is a representative (s, i)
of s such that (s, i)RB(t, j)

3. If sR2
�t, then for every representative (s, i) of s, there are infinitely many

representatives (t, j) of t such that (s, i)RB(t, j)

4. If tR2
�s, then for every representative (t, j) of t, there are infinitely many

representatives (s, i) of s such that (s, i)RB(t, j)

Proof. 1. Suppose sRt. Let (s, i) be a representative of s. In the case that sRt
and tR2

�s but not sR2
�t, we have (s, i)RB(t, g(i)). If sR2

�t but not tR2
�s,

then take any j ∈ g−1[i]; then (s, i)RB(t, j). In both other cases, we are
guaranteed to have (s, i)RB(t, i).

2. Suppose sRt. Let (t, j) be a representative of t. In the case that sRt and sR2
�t

but not tR2
�s, we have (s, g(j))RB(t, j). If tR2

�s but not sR2
�t, then take

any i ∈ g−1[j]; then (s, i)RB(t, j). In both other cases, we are guaranteed to
have (s, j)RB(t, j).

3. Suppose sR2
�t. Let (s, i) be a representative of s. If tR2

�s does not hold,
then we have (s, i)RB(t, j) for every j ∈ g−1[i], which is an infinite set. If
tR2

�s does hold, then we have (s, i)RB(t, j) for every j ∈ N.

4. Suppose tR2
�s. Let (t, j) be a representative of t. If sR2

�t does not hold,
then we have (s, i)RB(t, j) for every i ∈ g−1[j], which is an infinite set. If
sR2

�t does hold, then we have (s, i)RB(t, j) for every i ∈ N.

Lemma 6.14. Let M be a T2 model, s, t ∈ S. Then the following hold:

1. If there are representatives (s, i) of s and (t, j) of t such that (s, i)RB(t, j),
then sRt

2. If there is a representative (s, i) of s such that there are infinitely many
representatives (t, j) of t such that (s, i)RB(t, j), then sR2

�t

3. If there is a representative (t, j) of t such that there are infinitely many
representatives (s, i) of s such that (s, i)RB(t, j), then tR2

�s

Proof. For each item, we proceed by contraposition.
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1. Suppose s ̸ Rt. Then by definition of RB, we do not have (s, i)R(t, j) for any
i, j ∈ N.

2. Suppose sR2
�t does not hold. Consider any representative (s, i) of s. If s ̸ Rt

then there is no j whatsoever such that (s, i)RB(t, j). If sRt but not tR2
�s,

then (s, i)R(t, j) only if j = i. If sRt and tR2
�s, then (s, i)R(t, j) iff j = g(i).

In each case, we only have finitely many representatives (t, j) of t such that
(s, i)RB(t, j).

3. Suppose tR2
�s does not hold. Consider any representative (t, j) of t. If s ̸ Rt

then there is no i whatsoever such that (s, i)RB(t, j). If sRt but not sR2
�t,

then (s, i)R(t, j) only if i = j. If sRt and sR2
�t, then (s, i)R(t, j) iff i = g(j).

In each case, we only have finitely many representatives (s, i) of s such that
(s, i)RB(t, j).

Proposition 6.15. Let M be a finite T2 model, ϕ ∈ T∞, s ∈ S, i ∈ N. Then
M, s ⊩ tr(ϕ) iff B(M), (s, i) ⊩ ϕ.

Proof. We argue by induction on the construction of ϕ.

Base case: ϕ = p. Then by definition of B(M), (s, i) ∈ V B(p) iff s ∈ V (p).

Base case: ϕ = ⊥. Neither M, s ⊩ ⊥ nor B(M), (s, i) ⊩ ⊥.

Induction step: ϕ = χ∧ψ. Suppose M, s ⊩ tr(χ∧ψ). Then M, s ⊩ tr(ψ)∧ tr(χ)
by definition of tr. Hence, by IH, B(M), (s, i) ⊩ ψ and B(M), (s, i) ⊩ χ. Con-
versely, suppose B(M), (s, i) ⊩ ψ∧χ. Then B(M), (s, i) ⊩ ψ and B(M), (s, i) ⊩ χ,
so by IH, M, s ⊩ tr(χ) and M, s ⊩ tr(ψ). It follows that M, s ⊩ tr(ψ)∧ tr(χ) i.e.
M, s ⊩ tr(ψ ∧ χ).

Induction step: ϕ = ¬ψ. If M, s ⊩ tr(¬ψ) then M, s ̸⊩ tr(ψ), so by IH,
B(M), (s, i) ̸⊩ ψ. Conversely, if B(M), (s, i) ⊩ ¬ψ, then B(M), (s, i) ̸⊩ ψ, so
by IH, M, s ̸⊩ tr(ψ). It follows that M, s ⊩ tr(¬ψ).

Induction step: ϕ = 3ψ. The induction hypothesis is that for any t ∈ S, for
any j ∈ N, M, t ⊩ tr(ψ) iff B(M), (t, j) ⊩ ψ.

Suppose M, s ⊩ 3tr(ψ). Then there is some t ∈ S such that sRt and M, t ⊩
tr(ψ). By item 1 of Lemma 6.13, there is some j ∈ N such that (s, i)RB(t, j). By
IH, B(M), (t, j) ⊩ ψ, and therefore B(M), (s, i) ⊩ 3ψ.

Conversely, suppose B(M), (s, i) ⊩ 3ψ. Then there is some (t, j) such that
(s, i)RB(t, j) and B(M), (t, j) ⊩ ψ. By item 1 of Lemma 6.14, sRt, and by IH,
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M, t ⊩ tr(ψ). Hence M, s ⊩ 3tr(ψ), which was to show.

Induction step: ϕ = 3�ψ. The inductive hypothesis is that for any t ∈ S, for
any j ∈ N, M, t ⊩ tr(ψ) iff B(M), (t, j) ⊩ ψ.

Suppose M, s ⊩ 3�tr(ψ). Then there is some t ∈ S such that tRs and M, t ⊩
tr(ψ). By item 2 of Lemma 6.13, there is some j ∈ N such that (t, j)RB(s, i). By
IH, B(M), (t, j) ⊩ ψ, hence B(M), (s, i) ⊩ 3�ψ.

Conversely, suppose B(M), (s, i) ⊩ 3�ψ. Then there is some (t, j) with
(t, j)RB(s, i) and B(M), (t, j) ⊩ ψ. By item 1 of Lemma 6.14, tRs, and by IH,
M, t ⊩ tr(ψ). Hence M, s ⊩ 3�tr(ψ).

Induction step: ϕ = 3∞
� ψ. The inductive hypothesis is that for any t ∈ S,

for any j ∈ N, M, t ⊩ tr(ψ) iff B(M), (t, j) ⊩ ψ. Recall that tr(3∞
� ψ) = 32

�tr(ψ).
Suppose M, s ⊩ 32

�tr(ψ). Then there is some t ∈ S such that sR2
�t and

M, t ⊩ tr(ψ). By item 3 of Lemma 6.13, there are infinitely many j ∈ N such
that (s, i)RB(t, j), and by IH, for every such j we have B(M), (t, j) ⊩ ψ. Hence
B(M), (s, i) ⊩ 3∞

� ψ.
Conversely, suppose B(M), (s, i) ⊩ 3∞

� ψ. Then there are infinitely many ob-
jects x ∈ SB such that (s, i)RBx and B(M), x ⊩ ψ. Further, by assumption, M
is finite. It follows by the pigeonhole principle that there is some b ∈ S such that
there are infinitely many j ∈ N such that (s, i)RB(t, j) and B(M), (t, j) ⊩ ψ. By
item 2 of Lemma 6.14, sR2

�t, and by IH, M, t ⊩ tr(ψ). Hence M, s ⊩ 32
�tr(ψ),

which means M, s ⊩ tr(3∞
� ψ).

Induction step: ϕ = 3∞
� ψ. The inductive hypothesis is that for any t ∈ S,

for any j ∈ N, M, t ⊩ tr(ψ) iff B(M), (t, j) ⊩ ψ. Recall that tr(3∞
� ψ) = 32

�tr(ψ).
Suppose M, s ⊩ 3�tr(ψ). Then there is some t ∈ S such that sR2

�t and
M, t ⊩ tr(ψ). By item 4 of Lemma 6.13, there are infinitely many j ∈ N such
that (t, j)RB(s, i), and by IH, for every such j, we have B(M), (t, j) ⊩ ψ. Hence
B(M), (s, i) ⊩ 3∞

� ψ.
Conversely, suppose B(M), (s, i) ⊩ 3∞

� ψ. Then there are infinitely many
x ∈ SB such that xRB(s, i) and B(M), x ⊩ ψ. Again, we use the finiteness of
M and the pigeonhole principle to infer that there is some b ∈ S such that there
are infinitely many j ∈ N such that (b, j)RB(s, i) and B(M), (b, j) ⊩ ψ. By item
3 of Lemma 6.14, sR2

�t, and by IH, M, b ⊩ tr(ψ). Hence M, s ⊩ 32
�tr(ψ), which

means M, s ⊩ tr(3∞
� ψ).

This concludes the induction.

Corollary 6.16. Let ϕ ∈ T 2 be satisfiable on a T2 model. Then tr−1(ϕ) is satis-
fiable on a Kripke model.
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Proof. Let ϕ be satisfied on the T2 model M. Then by Proposition 6.10, ϕ is
satisfied on some finite T2 model M′. Hence, by Proposition 6.15, tr−1(ϕ) is
satisfied on B(M′).

6.1.4 Conclusions

We can now put the previous two sections together to obtain the following results:

Theorem 6.17 (Decidability of T∞). The satisfiability problem for T∞ is decid-
able.

Proof. By Proposition 6.9 and Corollary 6.16, for any ϕ ∈ T∞, ϕ is satisfiable iff
tr(ϕ) is satisfiable. Clearly the translation tr(·) is computable. Therefore, tr is an
effective reduction of the satisfiability problem for T∞ to the satisfiability problem
for T 2. But the satisfiability problem for T 2 is decidable, because T2 is finitely
axiomatisable by Sahlqvist formulas.1

Theorem 6.18 (Weak completeness of T∞). T∞ is a complete axiomatisation of
T∞.

Proof. Suppose ϕ /∈ T∞. Then tr(ϕ) /∈ T2, which implies ¬tr(ϕ) is satisfiable on
a T2 model. But then by Corollary 6.16, ¬ϕ is satisfiable on a Kripke model. By
contraposition, we may conclude that if ϕ ∈ T 2 is valid (i.e. ¬ϕ is unsatisfiable),
then ϕ ∈ T∞.

We conclude this section with some remarks on the above proof. The strategy
is closely connected to the strategy employed by Bellas Acosta in [1], to show that
the class of ML∞ formulas valid on all Kripke frames is axiomatisable. Bellas
Acosta’s approach is to give an alternative semantics directly for the logic ML∞,
in terms of bimodal frames with an extra accessibility relation R∞ on which the
infinity diamond 3∞ is interpreted. We point out two differences between the
approaches, one technical and one conceptual.

The technical difference is that the blooming construction given by Definition
6.12 is an improvement on Bellas Acosta’s blooming construction (Definition 2.25
of [1]). As Bellas Acosta notes, his construction does not always preserve the truth
value of ML∞ formulas from bimodal {R,R∞} models to Kripke models, although
it does preserve truth values on tree models, which is sufficient for many purposes.
Nevertheless, Proposition 6.15 shows that the construction given by Definition
6.12 above always preserves truth value from tr(ϕ) to ϕ. In this regard, it is more
general and a clear improvement on the method introduced in [1].

1This reasoning is mistaken, because finite axiomatisation by Sahlqvist formulas is not suf-
ficient to ensure decidability. Nevertheless, it is true that T 2 is decidable. This follows from
Proposition 6.8 (finite axiomatisability) and Proposition 6.10 (finite model property).
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The conceptual difference is that in the above proof, we first translated all
formulas of T∞ into T 2 formulas, before interpreting them on T 2 frames. As
noted earlier, the translation is syntactically an isomorphism, which means that
the translation wasn’t really necessary at all- we could have viewed T 2 as the very
same logic as T∞, and simply regarded T 2 frames as an alternative semantics for
T∞. Indeed, this is the approach taken by Bellas Acosta. However, an advantage
of the translation approach is that it makes it clearer that T∞ can simply be
viewed, syntactically, as a polymodal logic. There is less risk of being distracted
by the seemingly special nature of the infinity diamond, making it easier to see
that standard methods of modal logic may be applied to show that T∞-consistent
formulas are satisfiable on T2 frames. A further advantage is that it is very difficult
to see how the alternative semantics approach might be generalised to the larger
and more syntactically complex fragment, GF∞, introduced in Chapter 5. By
contrast, in the following section we will indicate a promising way in which the
translation approach might be generalised to GF∞ (although we will not provide
a conclusive proof that the approach works).

Finally, we briefly mention the question of the decidability of the fragments
G∞ and GT∞. It seems very likely that these fragments may also be axiomatised,
and shown to be decidable, using similar methods to the above. However, we
will not attempt to give a proof of this here. Instead, we prefer to discuss the
decidability of GF∞, since this would be a more interesting result and would
imply the decidability of G∞ and GT∞ (since both are fragments of GF∞). We
turn to this question now.

6.2 Translation Scheme for GF∞

In this section, we fix τ to be the signature containing countably many unary
predicates P0, P1, . . ., and a single binary predicate, R. We let GF∞

τ denote the
restriction of GF∞ to formulas in the signature τ . The following observation about
GF∞

τ is simple, but important:

Proposition 6.19. Let ϕ be a sentence of GF∞
τ . Then every subformula ψ of ϕ

has at most two variables free.

Proof. Suppose, for contradiction, that there is some subformula ψ of ϕ with three
distinct free variables x, y, z. Since ϕ is a sentence, each of these variables must be
bound by some quantifier; without loss of generality, suppose the quantifier which
binds z is within the scope of the quantifiers binding the other two variables. Then
the quantifier which binds z needs to be ‘guarded’ by an atomic formula containing
all three variables x, y, z, which is impossible, because the signature τ contains no
relation symbols of arity greater than 2.
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Clearly, for every formula ϕ ∈ GT∞, we have ST (xi, ϕ) ∈ GF∞
τ . So we may

view GT∞ (and each of its sub-fragments) as fragments of GF∞
τ . Further, our

discussion in Chapter 5 showed that the natural language inference I, with which
we began this thesis, may be formalised in τ . Reworking this idea, we may note
that GF∞

τ has validities such as:

β := ∃∞x∃y(Rxy ∧ P0x ∧ P1y) → (∃y∃∞x(Rxy ∧ P0x ∧ P1y) ∨ ∃∞yP1y)

which also turns on the principle that a finite union of finite sets is finite. It
is instructive to compare the validity β with the fourth axiom schema of the
axiomatisation for L(Q1) given by Keisler [11]. Keisler’s axiom schema is:

Q1x∃yϕ(x, y) → (∃yQ1xϕ(x, y) ∨Q1y∃xϕ(x, y))

the validity of which turns on the principle that a countable union of countable
sets is countable (as opposed to: a finite union of finite sets is finite). Further,
the presence of such non-obvious validities as β in GF∞

τ indicates that the validity
problem for GF∞

τ is significantly more difficult than that for T∞, which doesn’t
seem to have any validities of comparable interest.

Nevertheless, we conjecture that the logic GF∞
τ is decidable. We do not yet

have a full proof of this claim. However, we will indicate a promising strategy
for showing decidability of this logic. The strategy involves a translation of the
sentences of GF∞, analogous to the translation used to show decidability for T∞

in the previous section. (Cf. also Keisler’s [11] completeness proof for L(Q1),
which also employs the idea of reducing formulas of the logic L(Q1) to formulas of
FOL.)

Definition 6.20 (τ+). We let τ+ denote the signature τ , extended by a fresh
unary predicate P∞ for every unary predicate P ∈ τ , and also extended by the
following binary relation symbols:

• R1,∞
1,2

• R1,∞
2,1

• R∞,1
1,2

• R∞,1
2,1

• R∞,∞
1,2

• R∞,∞
2,1

• =1,∞
1,2

93



6.2. TRANSLATION SCHEME FOR GF∞

• =1,∞
2,1

• =∞,1
1,2

• =∞,1
2,1

• =∞,∞
1,2

• =∞,∞
2,1

We also introduce the convention that P 1 is syntactically identical to P for each
unary P , that R1,1

1,2 and R
1,1
2,1 are both syntactically identical to the relation symbol

R, and that =1,1
1,2,=

1,1
2,1 are both syntactically identical to the relation symbol =.

The point of introducing all these new predicate symbols is in order to give
a translation from GF∞

τ formulas, into τ+ formulas of GF . Our translation will
replace all infinity quantifiers with regular existential quantifiers. But we also want
to keep track of which variables were originally bound by an infinity quantifier,
and which occurred within the scope of which. The point of the superscripts and
subscripts of the new predicates is to store this information. For example, we will
translate the formula θ := ∃x∃∞y(Rxy) to:

∃x∃y(R1,∞
1,2 xy)

To see the importance of the scope markers, observe that the formula θ′ :=
∃∞y∃x(Rxy) is not equivalent to θ (it is strictly weaker). Therefore, we do not
want to translate θ′ to ∃y∃x(R1,∞

1,2 xy), as this would be equivalent to the translation
of θ. Instead, we translate θ′ to:

∃y∃x(R1,∞
2,1 xy)

The subscript 2, 1 indicates that in the original formula θ′, the quantifier which
binds x occurs within the scope of the quantifier which binds y (unlike in the
formula θ).

This is the high-level intuition behind the translation; we must now give a
precise definition of it. For simplicity, we restrict attention to the satisfiability
problem for sentences of GF∞

τ . We still need to provide a translation for formulas
of GF∞

τ , in order that the translation of quantified sentences may be inductively
built up from the translations of their subformulas. However, in view of Proposition
6.19, we may confine our attention to formulas with at most two free variables, and
we may further assume that a formula of the form Quψ, where Q is a quantifier,
has at most one variable free. (Otherwise, ψ would have more than two variables
free.) We in fact define a family of different translations; these different translations
may disagree on formulas with free variables, but they are guaranteed to agree on
sentences, as the reader may verify.
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Definition 6.21. We define a series of operations, {ψ(u, v) 7→ ψq,r
s,3−s(u, v) :

q, r ∈ {1,∞}, s ∈ {1, 2}}. Each operation is defined inductively on the set
{ψ ∈ GF∞(τ) : ψ has at most two free variables }. Note that in the following,
u, v and w are used schematically to range over variables, and they need not de-
note distinct variables.

We give one particular example, to give the reader a feeling for the definition.
ψ(u, v) 7→ ψ1,∞

1,2 (u, v) is defined by:

• (Pu)1,∞1,2 (u, v) = Pu

• (Ruv)1,∞1,2 (u, v) = R1,∞
1,2 uv

• (ψ ∧ χ)1,∞1,2 (u, v) = ψ1,∞
1,2 (u, v) ∧ χ1,∞

1,2 (u, v)

• (¬ψ)1,∞1,2 (u, v) = ¬ψ1,∞
1,2 (u, v)

• (∃uψ)1,∞1,2 (v) = ∃u(ψ1,∞
2,1 (u, v))

• (∃∞uψ)1,∞1,2 (v) = ∃u(ψ∞,∞
2,1 (u, v))

We now give the general definition. ψ(u, v) 7→ ψq,r
s,3−s(u, v) is given by:

• (Pu)q,rs,3−s(u, v) = P qu

• (Ruv)q,rs,3−s(u, v) = Rq,r
s,3−suv

• (⊥)q,rs,3−s(u, v) = ⊥

• (ψ ∧ χ)q,rs,3−s(u, v) = ψq,r
s,3−s(u, v) ∧ χ

q,r
s,3−s(u, v)

• (¬ψ)q,rs,3−s(u, v) = ¬ψq,r
s,3−s(u, v)

• (∃uψ)q,rs,3−s(v) = ∃u(ψ1,r
2,1(u, v))

• (∃∞uψ)q,rs,3−s(v) = ∃u(ψ∞,r
2,1 (u, v))

Since these different translations all agree on sentences, we are justified in using
a functional notation, ϕ 7→ ϕ∗, to denote ‘the’ translation of ϕ. For example, we
may simply define ϕ∗ := ϕ1,1

1,2(x, y).
Now, as it stands, the translation we have given will not preserve satisfiability.

To see this, observe that the FOL∞ formula ∃∞xPx ∧ ¬∃xPx is unsatisfiable.
However, the translation does not respect this: ∃xP∞x ∧ ¬∃xPx is satisfiable.
Intuitively, we want the P∞ predicate to be stronger than the P predicate. In
order to guarantee this, and other nice behaviour from our new predicate symbols,
we introduce a series of axioms.
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Definition 6.22 (Axioms for new predicates). Let τ ′ be any signature such that
τ ′ ⊆ τ . We define Ax(τ ′) to be the set containing all instances of the following
axiom schemata, where ‘P ’ may be replaced by any unary predicate letter from τ ′.

• ∀x(P∞x→ (Px ∧ Inf x))

• ∀xy(R∞,1
1,2 xy → (Rxy ∧ Inf x))

• ∀xy(=∞,1
1,2 xy → (= xy ∧ Inf x))

• ∀xy(R1,∞
2,1 xy → (Rxy ∧ Inf y))

• ∀xy(=1,∞
2,1 xy → (= xy ∧ Inf y))

• ∀x(Inf x→ (Px→ P∞x))

• ∀xy(Rxy → (Inf x→ R∞,1
1,2 xy))

• ∀xy(x = y → (Inf x→=∞,1
1,2 xy))

• ∀xy(Rxy → (Inf y → R1,∞
2,1 xy))

• ∀xy(x = y → (Inf y →=1,∞
2,1 xy))

• ∀xy(R1,∞
1,2 xy → R1,∞

2,1 xy) (Scope)

• ∀xy(R∞,1
2,1 xy → R∞,1

1,2 xy) (Scope)

• ∀xy(R∞,1
1,2 xy → (¬R∞,1

2,1 xy → Inf y)) (Pigeonhole)

• ∀xy(R1,∞
2,1 xy → (¬R1,∞

1,2 xy → Inf x)) (Pigeonhole)

• ∀x(R1,∞
1,2 xx→ ⊥) (Non-refl)

• ∀x(R∞,1
2,1 xx→ ⊥) (Non-refl)

• ∀xy(x =1,∞
1,2 y → ⊥) (Identity)

• ∀xy(x =∞,1
2,1 y → ⊥) (Identity)

Observe the crucial fact that every one of these axioms is within the guarded
fragment of FOL. Observe also that, given any formula ϕ ∈ GF∞

τ , the signature
τϕ ⊆ τ , containing all predicate symbols occurring in ϕ, is finite, and therefore
Ax(τϕ) is a finite set. Combining these facts, we can see that

∧
Ax(τϕ) is a well-

formed sentence of GF . We may now give the final definition of our translation
from GF∞

τ to GF .
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Definition 6.23. Let ϕ be a sentence of GF∞
τ . We define

f(ϕ) := ϕ∗ ∧
∧

(Ax(τϕ))

Now, we would like to show that if f(ϕ) is satisfiable, then so is ϕ. One way
to achieve this would be to give a model construction, transforming any model of
f(ϕ) into a model of ϕ. A natural approach to this, along the same lines as the
strategy employed in Section 6.1, is to turn any pair of points (a, b) satisfying,
e.g., the predicate R1,∞

1,2 , into witnesses for the FOL∞ formula ∃x∃∞yRxy. So, we
could create infinitely many representatives of b, and have each representative of a
stand in R to infinitely many of these representatives of b. We could do something
analogous for each fresh predicate symbol, and associated quantifier combination.
Keeping this in mind, we can explain the motivation for the axioms of Ax(τϕ) a
little more clearly.

Suppose we have two points (a, b) satisfying R1,∞
1,2 in a model of f(ϕ). Then

in the model we would construct, each representative of a will see infinitely many
representatives of b. That means there will certainly be infinitely many represen-
tatives of b which are each seen by some a. Hence, we want the pair (a, b) to also
satisfy the predicate R1,∞

2,1 . This is why the ‘scope’ axioms are included among
Ax(τ ′).

Now suppose there are two points a, b satisfying R1,∞
2,1 in a model of f(ϕ). Sup-

pose further that these points do not satisfy R1,∞
1,2 . Then in the model we construct,

there will be infinitely many representatives of b which are each seen by some a.
Now suppose the constructed model only contains finitely many representatives of
a. Then a simple pigeonhole argument implies that some representative of a sees
infinitely many representatives of b. Contraposing this reasoning, if no represen-
tative of a sees infinitely many representatives of b, then there must be infinitely
many representatives of a; so we want a, b to satisfy ¬R1,∞

1,2 xy → Inf x. This is
why the ‘pigeonhole’ axioms are included among Ax(τ ′).

Finally, observe that if two points a, b satisfy =1,∞
1,2 in a model of f(ϕ), then

in the constructed model, each representative of a should be identical to infinitely
many distinct representatives of b. But this is clearly impossible. (Observe also
that any FOL∞- formula of the form ∃x∃∞y(. . .∧ x = y) is unsatisfiable, so its f -
image should also be unsatisfiable.) This is why the ‘identity’ axioms are included
among Ax(τ ′).

We conclude this chapter with the following conjecture:

Conjecture 6.24. Let ϕ be a sentence of GF∞
τ . Then ϕ is satisfiable if and only

if f(ϕ) is satisfiable.

An immediate corollary of Conjecture 6.24 would be that the satisfiability
problem for GF∞

τ is decidable. To decide whether any formula ϕ ∈ GF∞
τ is
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satisfiable, one could compute the translation f(ϕ) of ϕ (the translation f is clearly
computable), then check whether f(ϕ) is satisfiable- using the fact that GF is
decidable, and f(ϕ) ∈ GF . A further corollary would be that GT∞ and G∞ are
both decidable.
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Chapter 7

Conclusion and Future Work

In this thesis, we have made some progress towards providing a nice model theory
for fragments of FOL∞. In Chapter 3, we established our first substantive result,
the Gaifman theorem for FOL∞, which shows that FOL∞ is ‘essentially local’, in
the same sense in which FOL may be said to be essentially local ([15], p. 188). We
then used this result, and other model construction methods, to give a semantic
characterisation of various syntactically given fragments of FOL∞. Specifically, we
showed that to each of T∞,G∞ and GT∞, there corresponds a suitable notion
of bisimulation for which each fragment is the bisimulation invariant fragment of
FOL∞. (In the cases of G∞ and GT∞ this requires some qualification, since our
result was restricted to sentences with no free variables.)

On the other hand, we have had less success with the stronger guarded fragment,
GF∞, of FOL∞. This logic has a much richer inferential structure, including
inferences that fundamentally rely on facts about cardinality such as ‘a finite union
of finite sets is finite’. This increase in expressive power comes hand in hand with
a loss of model-theoretic tractability: structures do not in general have acyclic
bisimilar companions. Nevertheless, we have at least been able to define a natural
notion of bisimulation, ≃GF , under which all formulas of GF∞ are invariant. We
have also left open the question of whether GF∞ is decidable, although we briefly
sketched a strategy for attempting to show that it is decidable.

The thesis leaves plenty of questions open for future investigation. We conclude
by discussing a few of these.

Gaifman Theorems for Abstract Logics

As we observed at the end of Chapter 3, it seems plausible that an analogue of
the Gaifman theorem for FOL∞ (Theorem 3.8) would hold for other logics of the
form Lω,ω(Qα). Indeed, it seems plausible that the very same proof as was given
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for Theorem 3.8 could be adapted to the case of other logics. A natural next step
is to investigate whether this is in fact the case. However, a more fundamental
question also suggests itself. In Chapter 3, we observed that for any given abstract
logic, a problem arises as to what should count as a ‘basic local sentence’ for that
logic. We also observed that, if we presuppose an answer to this question, in the
form of some map which assigns to each logic the set of sentences which are to
count as its basic local sentences, then it makes sense to define a logic to have
the Gaifman property iff every one of its formulas can be expressed in terms of
local formulas, and its basic local sentences. This raises the question: which logics
have the Gaifman property? Are there any more fundamental properties of logics
which determine whether they have the Gaifman property, and does the Gaifman
property in turn imply other important properties for abstract logics?

Bisimulation Characterisation for GF∞

A major question which has been left open is whether GF∞ is characterised by
invariance under ≃GF . Specifically, is it the case that every formula of FOL∞

which is invariant under ≃GF is logically equivalent to a formula of GF∞? The
proof method used to characterise G∞ and GT∞ breaks down at the Upgrading
stage, where we would like to show that for any structures A,B, if A ≃k

GF B,
then there are ≃GF -bisimilar companions A′,B′ with A′ ≡k,q

1,∃ B′. In the ≃GF set-
ting, the uniform strategy of finding acyclic bismilar companions is not available,
since acyclic bisimilar companions need not exist. For any two particular struc-
tures A ≃k

GF B, it is generally not difficult to find suitable companion structures
A′,B′, but the process may differ significantly from case to case: sometimes we
can, and should, choose acyclic companions A′,B′, whereas sometimes, we can’t
choose acyclic companions. Therefore, the challenge seems to be to find a uni-
form model construction, which is guaranteed to yield suitably indistinguishable
bisimilar companions for any two A ≃k

GF B.

Decidability of GF∞

The other major question left open in this thesis is whether the satisfiability prob-
lem for GF∞ is decidable. In chapter 6, we stated a conjecture (Conjecture 6.24)
which would immediately imply that this problem is indeed decidable. If this con-
jecture could be established, this would be a result of some significance. Not only
would it show GF∞ to be decidable, it would also vindicate the proof idea of re-
ducing FOL∞ formulas to first-order formulas by replacing infinity quantifiers with
regular existential quantifiers, and adding fresh predicate symbols to store the in-
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formation originally carried by the quantifiers. This would open up the possibility
that the same method could be applied to other abstract logics, which make use
of generalised quantifiers other than ∃∞. For this reason, the status of Conjecture
6.24 is an exciting question for future work.

101



Index of Notation

(ω)n, 16
Ax(T∞), 82
Ax(T 2), 83
Ax(τ ′), 96
B(M), 85
Bis, 19
BisGT , 21
BisG, 21
BisT , 20
BisGF , 76
BisTq(A, a,B, b, 61
T∞, 83
T2, 83
T2 frame, 81
EF∞

k (A, a,B, b), 61
F(q0, . . . , qn), 16
FOL∞, 14
FOL∞

n , 24
GF∞, 74
GT∞, 14
GT∞

n , 24
G∞, 13
G∞

n , 24
ML∞, 12
ST (xi, ϕ), 19
T, u ≈↓

q T′, u′, 67
Tu, 67
T∞, 13
T∞

n , 24
T 2, 81

T 2 frame, 81
UG(M), 54
UT (M, s), 48
UGT (A), 59
≡k, 15
≡k,q

n , 53
≡k,q

n,∃∞, 53

≡k,q
n,∃, 53

≡n
T , 24

last(π), 48
Gaif k,m(ψ), 52
md(ϕ), 23
ψ(u, v) 7→ ψq,r

s,3−s(u, v), 95
qd(ϕ), 15
∼F, 16
∼q, 63
≃, 20
≃GT , 21
≃G, 21
≃T , 21
≃(k)

T , 47
≃GF , 76
≃Tq, 61
≃k

EF , 61
A · κ, 60
A⊗ q, 60
M↾(a, k), 30
τ+, 93
dM(a, b), 29
f(ϕ), 97

102



INDEX OF NOTATION

k-local formula, 30
tr(·), 82
↓(t), 49
↑(t), 49

basic local infinity sentence, 31
basic local sentence, 30

Gaifman theorem for FOL∞, 33
global bisimulation, 55
guarded set, 75

index sequence, 16

locality rank, 31

representative, 49

scattering rank, 31

two-way path, 48
two-way tree, 49

103



Bibliography

[1] Ignacio Bellas Acosta. Studies in the Extension of Standard Modal Logic with
an Infinite Modality. 2020. url: https://5dok.net/document/oz1e1r8y-
studies-extension-standard-modal-logic-infinite-modality.html.

[2] Ignacio Bellas Acosta and Yde Venema. “Counting to Infinity: Graded Modal
Logic with an Infinity Diamond”. In: Review of Symbolic Logic (2022), pp. 1–
36. doi: 10.1017/S1755020322000247.

[3] Hajnal Andréka, Johan van Benthem, and Istvan Németi. “Modal Languages
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