
A Program Calculus for Dynamical Systems

MSC THESIS (Afstudeerscriptie)
written by

PATRICK WEIGERT
(born May 19, 1998 in Bad Muskau, Germany)

under the supervision of BENNO VAN DEN BERG and LEVIN HORNISCHER,
and submitted to the Examinations Board in partial fulfillment of the

requirements for the degree of

MSC IN LOGIC

at the Universiteit van Amsterdam.

DATE OF THE PUBLIC DEFENSE: MEMBERS OF THE THESIS COMMITTEE:
June 12, 2023 Benno van den Berg (supervisor)

Nick Bezhanishvili
Malvin Gattinger (chair)
Levin Hornischer (supervisor)
Tobias Kappé

We develop a type theory for dynamical systems seen as computa-
tional processes. Denotational semantics for dynamical systems are
constructed from ‘‘finitary approximations’’ to them, via domain
theory. We study the resulting categories of domains, characterise
them via certain free constructions, and derive two type theories
from them, using techniques from categorical logic. The first the-
ory, obtained from a free construction, is designed to be sound
and complete with respect to a finitary fragment of the category;
the second is a sound infinitary extension that can express all
computable functions. We finish by sketching two applications: a
programming language for manipulating dynamical systems, and
a logical framework for reasoning about properties of those sys-
tems. The work exemplifies a general approach for deriving formal
reasoning tools about a computational situation from a suitable
category of domains.

A NOTE ON STYLE

A few remarks on the proof style I employ in this thesis seem
appropriate. I take inspiration from [20]. Here is an example. First,
a lemma.

PROPOSITION 0.0.0. If 𝑎 divides 𝑏 and 𝑐, then 𝑎 divides 𝑏−𝑐. ⟨div-diff⟩

THEOREM 0. There are infinitely many prime numbers. ⟨inf-many-primes⟩
Proof. We show that for any finite list of prime numbers, there
exists a prime number unequal to every prime number in that
list. It then follows immediately that the set of prime numbers is
infinite. Thus let 𝑝1,…,𝑝𝑛 be a finite list of prime numbers. Let 𝑞≔
𝑝1 ⋅… ⋅ 𝑝𝑛+1. By the definitions of prime and composite numbers,
we can distinguish three cases: 𝑞 is prime, or 𝑞 is composite, or
𝑞= 1. In each case, we show that there exists a prime number not
among 𝑝1,…,𝑝𝑛.
[𝑞= 1]

Then 𝑛= 0 and 2 is a prime number not on the list.
[𝑞 is prime]

For all 𝑝𝑖 in the list, we have 𝑞 > 𝑝𝑖 by construction, so in
particular 𝑞≠ 𝑝𝑖. Since 𝑞 is prime by assumption, this proves
the claim.

3

[𝑞 is composite]
Then, the set of divisors of 𝑞 greater than 1 must have a least
divisor 𝑝. This is a prime number since any divisor 𝑝′ of 𝑝 with
1 < 𝑝′ ≤ 𝑝 also divides 𝑞 and then 𝑝′ = 𝑝.
Let 𝑝𝑖 be an arbitrary prime from the list. We prove that 𝑝≠ 𝑝𝑖
by assuming the opposite and showing that 𝑝 then divides
𝑞−1 and 𝑞. From these claims, it follows by ⟨div-diff⟩ that
𝑝 divides 𝑞−(𝑞−1) = 1, contradicting the fact that 𝑝 is prime.
Thus suppose 𝑝= 𝑝𝑖.
⟨𝑝 divides 𝑞−1⟩

By definition, 𝑞−1= 𝑝1 ⋅…⋅𝑝𝑛, in which 𝑝= 𝑝𝑖 is a factor.
⟨𝑝 divides 𝑞⟩

By construction of 𝑝.

Different kinds of statements, such as propositions, or properties
in a definition, may have a label associated to them (like in the
margins above), which I can then use to refer to them in a proof. For
readers on a screen, the corresponding references are hyperlinked
to the place of definition; and readers on paper may find the list
of labels in the Index useful.

The layout of a proof visually roughly follows its natural deduction
tree using indentation. Substatements are stated inside ⟨angular
brackets⟩ and followed by an indented proof, while assumptions
are stated inside [square brackets], with a vertical line indicating
the scope of the assumption.

Structuring the proof in this way makes it—in my opinion—easier
to follow, and in addition it allows me to be explicit without boring
readers who would prefer a lower level of detail, as they can simply
skip more indented passages. An unintended side-effect of the
generous use of whitespace associated with this structuring is that
the thesis covers more pages than it would under a conventional
layout.

4

Another reason for that lies in my attempt to adhere to established
typographic principles. The lines are rather short, to make the
dense material easier to digest [6]. To reduce the margins, I then
chose a relatively large font size. Since the proportions of the type
area should match the proportions of the page [36], the choice of
line length also necessitates a shorter height of the text on the
page. The hope is that the document is both easy to work with on
a screen as well as aesthetically pleasing when printed. The large
font size should help maintain readability when printing multiple
pages onto one page of paper.

The typeface, Concrete Roman,° with its slab serifs evokes the °designed by Donald Knuth using
METAFONT, featuring in Concrete
Mathematics [10]

typewriter feel of early foundational works in domain theory such
as [33] while still being suitable for body text. The thesis was
typeset using LuaTEX in the luatex-plain format.

5

LIST OF SYMBOLS

We work with several different kinds of structures, which never-
theless have similar operations defined on them. We keep those
corresponding operations apart notationally to aid understanding.
Here is an overview.

subsets of 𝑋 general poset category logic
subset ⊆ less-than-or-equal ⊑ order on morphisms ⊴ entailment ≤
intersection ∩ meet ⊓ product × conjunction ∧
union ∪ join ⊔ coproduct + disjunction ∨
full set 𝑋 top element ⊤ terminal object 𝟏 truth 1
empty set ∅ bottom element ⊥ initial object 𝟎 falsity 0

Throughout the thesis, we frequently commit the following abuses
of notation. When there is no danger of confusing an element of
a set 𝑋 with a subset thereof, we drop the curly braces around
singleton subsets in the powerset 𝒫(𝑋), pretending that instead of
𝒫(𝑋) we are working with the set 𝑋∪{𝐴⊆𝑋 ∣ |𝐴| ≠ 1}. A relation
(or function) 𝑅 from a set 𝑋 into a set 𝑌 is identified with its
image function 𝒫(𝑋)→𝒫(𝑌) on the powersets which sends each
𝐴⊆𝑋 to the set {𝑦 ∈𝑌 ∣ ∃𝑥 ∈𝐴.𝑥 𝑅 𝑦} of 𝑅-successors of some
𝑥 ∈𝐴. In accordance with the previous remark, 𝑅(𝑥) is then used
to denote 𝑅({𝑥}) for 𝑥 ∈𝑋. For the set {𝑅(𝑥) ∣ 𝑥 ∈𝐴}, we use the
notation 𝑅[𝐴], so that 𝑅(𝐴)=⋃𝑅[𝐴].

6

Furthermore, we often write pairs (𝑥,𝑦) as 𝑥×𝑦, 𝑥⊗𝑦, 𝑥 → 𝑦,
etc., depending on the context in which they are used.

The following is a list of other notational devices used in this thesis
in the order that they appear in.

𝑓 ;𝑔 composition of morphisms: (𝑓 ; 𝑔)(𝑥) = 𝑔(𝑓(𝑥)) (‘‘𝑓, then 𝑔’’) 18
〚𝐴〛 categorical interpretation of a type (or judgment) 𝐴 18
𝒫(𝑋) powerset of a set 𝑋 23
max𝑝 set of maximal elements 𝑚⊒𝑝 in a poset 23
↑𝑎 up-set {𝑏 ∈𝑃 ∣ 𝑏 ⊒ 𝑎} in a poset 𝑃 24
ℐ(𝜎) ideal completion {𝑆⊆⋃𝜎 ∣ ∀𝐹⊆fin 𝑆.𝐹 ∈ 𝜎} 26
𝒩(𝑥) neighbourhood filter {𝑈∈ 𝜏 ∣ 𝑥 ∈𝑈} of 𝑥 29
𝒞(𝜏) set of consistent subsets of 𝜏, i. e. {𝑆⊆ 𝜏 ∣ ⋂𝑆≠∅} 34
𝑐 ≅ 𝑑 𝑐 is isomorphic to 𝑑 35
At𝑝 {𝑎⊑ 𝑝 ∣ 𝑎 atom} 47
𝐴⊆fin 𝑋 𝐴 is a finite subset of 𝑋 48
𝖢op opposite category of 𝖢 60
[𝑐,𝑑] internal hom object of morphisms from 𝑐 to 𝑑 60
𝖢(−,𝑐) representable presheaf represented by 𝑐 61
よ𝖢 Yoneda embedding of 𝖢 into [𝖢op,𝖲𝖾𝗍] with 𝑐↦ 𝖢(−,𝑐) 61
Conc𝖢[+]

(fin) category of (finite) [non-empty] concrete presheaves on 𝖢 63
⨉𝑓𝑖,⨉𝑓𝑖,⨂𝑓𝑖 mediators for (co)cones 𝑓𝑖 69
el𝐹 category of elements of presheaf 𝐹 69
𝜋𝐹 diagram of presheaf 𝐹 69
𝑐↭𝐹 𝑑 𝑐 and 𝑑 are connected via functor 𝐹 70
𝒫𝒞(𝐷) {𝑆⊆ 𝒞(At𝐷) ∣ ⋃𝑆∈ 𝒞(At𝐷)} 74
𝟏𝑐 terminal morphism from 𝑐 76
𝟎𝑐 initial morphism to 𝑐 76
𝟎𝑐,𝑑 zero morphism from 𝑐 to 𝑑 76
𝐷⊗𝐸 tensor product of domains 𝐷 and 𝐸, i. e. the product in 𝖮𝖻𝗌∗ 79
𝟏∗ terminal object in 𝖮𝖻𝗌∗ 81
𝖢⁄𝑐 slice category of category 𝖢 over object 𝑐 88

7

Ω(∗) (strong-)subobject classifier 91
ℕ coinductive natural numbers object 93
(𝑖 𝑅 𝑗)? id if 𝑖 𝑅 𝑗, else 𝟎𝑖,𝑗 96
𝑐∗𝑑 biproduct of 𝑐 and 𝑑 96
𝛬𝐾 language of kind 𝐾 in theory 𝛩 132
𝖨(𝛬𝐾) category of interpretations of 𝛬𝐾 133
𝖬(𝛩𝐾) category of models of theory 𝛩𝐾 135
Syn(𝛩𝐾) syntactic category of 𝛩𝐾 135

8

CONTENTS

LIST OF SYMBOLS 6

1 INTRODUCTION 11
1.1 Dynamical systems and computation 13
1.2 Domain theory and semantics 15
1.3 Categories and type theories 18

2 A THEORY OF FINITARY OBSERVATION 21
2.1 Combinatorial view: observation systems 22
2.2 Spatial view: observation spaces 28
2.3 Ordered view: observation domains 43

3 THE CATEGORY OF OBSERVATION DOMAINS 57
3.1 Domains as presheaves 59
3.2 Universal constructions 74
3.3 Characterisation as a free category 94

4 TYPE THEORIES FOR DYNAMICAL SYSTEMS 129
4.1 Categorical semantics of type theories 132
4.2 A complete type theory for finite domains 140

9

4.3 An infinitary extension 151

5 APPLICATIONS 161
5.1 Programming with dynamical systems 161
5.2 Reasoning about dynamical systems 163

6 CONCLUSION 167

REFERENCES 170

INDEX 173

10

1 INTRODUCTION

Programming languages are languages for specifying computa-
tional processes. These processes can often be described in terms
of a machine that modifies its state according to the instructions of
the program at hand, e.g. a CPU or more abstractly a Turing ma-
chine. Such a machine can be regarded as an instance of a dynam-
ical system: a state space with a transformation function acting
on it. To what extent can general dynamical systems conversely
be regarded as containing computational content? Important dif-
ferences to more conventional models of computation include that
dynamical systems do not necessarily have a well-defined notion
of input and output (instead, their evolution follows trajectories
that extend infinitely in time), and that the state space is often
continuous. What, then, could a program specifying a dynamical
system look like?

The objective of this thesis is to develop a ‘‘programming lan-
guage’’, or, to be more precise, a type theory, for describing and
manipulating dynamical systems as if they were computer pro-
grams. As an application, we also derive a logical calculus for
reasoning about these programs.

Here is an outline of the strategy. First, we need a model of what
the meaning of a dynamical system should be when considered

11

as a computational process. For this, we use ideas from Levin
Hornischer’s PhD thesis [12], where an interpretation of dynamical
systems using domain theory is developed in which the meaning
of a dynamical system is constructed out of finitary symbolic
‘‘approximations’’ to it. From this interpretation, we obtain a
category of mathematical objects called domains. Domain theory
is usually concerned with assigning meaning to programs of a given
programming language. We do the reverse, similar in spirit to [1],
and derive a type theory from this category, using the approach
of categorical logic.

The ambition to derive a type theory from a category of domains
representing dynamical systems grew out of Levin Hornischer’s the-
sis. The present work is an attempt to carry out such a programme,
but for a simpler domain-theoretic interpretation of dynamical
systems than the one given in [12]. This should be seen as a proof-
of-concept of a general strategy we pursue for developing a type
theory and logic for a given model of computation.

The thesis is structured as follows. The remainder of the introduc-
tion serves to detail our approach in order to properly motivate the
developments in the subsequent chapters. This includes a (rather
informal) introduction to basic concepts from domain theory and
categorical logic. Chapter 2 then expounds my view of ‘‘approx-
imation through finitary observation’’, from which we derive a
type of domains suitable for modelling the semantics of dynami-
cal systems as intended. This culminates in the description of a
category of observation domains, whose properties are studied in
Chapter 3, including a characterisation using a free construction.
The insights gained from this allow us to derive internal type the-
ories from this category, which we do in Chapter 4. There, we also
study soundness, completeness, and expressivity of the resulting
theories. In Chapter 5, we roughly outline some applications of this
framework. In particular, we show how the type theory may be
used to actually ‘‘program’’ with dynamical systems, and how it
could allow reasoning logically about such programs. To conclude,

12

Chapter 6 discusses the developments in this work in light of its
aspirations as well as directions for future research.

1.1 DYNAMICAL SYSTEMS AND COMPUTATION

We shall not be concerned with giving a rigorous definition of
what we consider to be a dynamical system here; this is done in
Chapter 2. For now, it is enough to think of them as state spaces
together with a transformation function assigning to each state its
successor at the next time step. That is, our notion of dynamical
system is deterministic, time-discrete (and time-invariant), but
(possibly) space-continuous.

Straightforward examples of systems satisfying these criteria are
given by artificial neural networks. Consider a Hopfield net-
work [11], which is a model of associative memory. It may be
represented as a set of neurons and weights for the connection
between each unordered pair of neurons. Each neuron has a bi-
nary activation value (on/off), and activations are propagated
to a neuron depending on the activations of the other neurons
and the weights of their connections to the neuron in question.
This is as a dynamical system, with the state space given by the
activation vectors, and the transformation rule determined by an
activation function. Starting at any point in the state space, it can
be shown that for any Hopfield network, the trajectory obtained
by repeatedly applying this transformation eventually converges
to a stable state. This makes it easy to accept this as a form of
computation: we can choose an initial state as input, then we let
the network compute the subsequent states until a stable state is
reached, which can then be taken to be its output.

The stable states of such a network depend on the weights of the
connections between neurons. It is also possible to train the net-
work, changing its weights so that some given activation patterns

13

are stable. This process can equally be seen as a dynamical system,
as described in [12] for learning in neural networks in general:
now the state space is given by the set of pairs of weight matrices
and sequences of activation vectors (representing the patterns to
learn), and the transformation rule changes the weights according
to the first pattern in the sequence (e.g. via Hebbian learning like
in [11]) and shifts the sequence to the succeeding element. Once
the end of the sequence is reached, the resulting weight matrix can
of course again be interpreted as the output of a computational
process, but this interpretation becomes impossible if we allow the
sequences to be infinite. In this case, the network continuously
learns, but never reaches a ‘‘finished’’ state. It seems plausible
to still think of this as a form of computation, since we happily
accept any finite initial segment of this process as computation.

Many processes in nature form dynamical systems as well, such
as biological neural networks (from individual neurons to the
human brain) or the weather. Other systems are more abstract
and model interactions between agents, such as ecosystems (e.g.
Lotka–Volterra equations for predator–prey relations [22]), social
networks, or the financial market. We would usually model such
processes in a space-continuous fashion, which is in line with our
conception of dynamical systems. However, the assumption of
time-discreteness we imposed does not apply to such scenarios.
We retain time-discreteness because it allows representing the
dynamical system in terms of a function from the current state to
a successor state, which is closer to the way conventional models of
computation work. Time-continuous systems may be approximated
by discretising them using a suitable time interval in order to apply
the theory we develop.

While some might reject the notion that such processes perform
computation since they do not manipulate explicit discrete symbols
and do not have canonical notions of input and output, we would
like to posit that they do perform computation, and underpin this
claim by showing that we can program with them.

14

In [12], a step towards this is taken by showing that dynamical
systems can be given semantics in which their non-symbolic form
of computation is constructed as a limit of increasingly elaborate
symbolic models. Roughly, the state space of the system is par-
titioned into finitely many cells, assuming that we can measure
which of these cells the system is in at a given moment in time.
Starting in some initial state, we then observe which cells the
system visits as time progresses. This way, we obtain symbolic
trajectories (in the sense that they are sequences of discrete to-
kens) forming a ‘‘finitary’’ approximation of the system, and as we
increase the fineness of the partition and the observation time, we
can, under certain circumstances, get arbitrarily close to approxi-
mating the actual, non-symbolic dynamics of the system. This is
conceptually related to the practice of symbolic dynamics [4], in
which dynamical systems are modelled using infinite trajectories
of symbols representing regions of the state space.

We use a similar approach, where we also equip dynamical systems
with families of subsets of the state space representing ‘‘observ-
able’’ properties, akin to topological dynamical systems, except
that these families need not form topologies. However, instead
of trajectories, we only consider the transitions between these
subsets after a single time step since this simplifies the matter
while capturing the same amount of information in the limit of
the approximation process.

Because there is no way to sensibly assign input and output values
to a given trajectory of an arbitrary dynamical system, we simply
take the full behaviour of a dynamical system to be the program
it computes. Symbolic semantics of this program can be obtained
on any desired level of approximation in the fashion just described.
Section 1.2 elaborates on this.

15

1.2 DOMAIN THEORY AND SEMANTICS

Domain theory is often used to tackle the problem of denotational
semantics: programs should be assigned mathematical objects
(e.g. functions) that capture their observable (e.g. input–output)
behaviour. That is, two programs should be assigned the same
object if and only if they yield the same output when given the
same input. This is in contrast to operational semantics, which
assign a mathematical object to the computation process described
by a program using a desired model of computation (e.g. a Turing Two programs that define the same

function ℕ→ℕ but may have dif-
ferent machine implementations:
f(n) = n
f(n) = n + 1 - 1

machine). Two programs with different operational semantics may
still share a denotation, by computing the same function in two
different ways; see the example in the margin.

A naïve approach to denotational semantics might try to inter-
pret a program taking a natural number and returning a natural
number as a certain function 𝑓 :ℕ→ℕ, given by some inductive
interpretation of the programming language constructs as func-
tions. However, for most languages, such an approach quickly runs
into problems. For example, programs may be partial and not
actually return a value, due to being stuck in an infinite loop or
yielding an error. This may happen in particular when a program
is recursively defined, in which case it is not generally guaranteed
that the function assigned to a program is well-defined.

Domain theory can solve such problems by interpreting programs
as functions between domains instead, which support a richer
structure than the set-based approach just described. Domains are
certain kinds of ordered sets, where the order provides a formali-
sation of certain values being more ‘‘defined’’ or more ‘‘elaborate’’
than others. For example, to represent partiality, one may use
the domain consisting of the unordered natural numbers together
with a bottom element ⊥. A function on this domain can now be
defined to return ⊥ for the cases where the represented program
does not halt.

16

Usually, the functions one considers between domains have a nat-
ural order defined on them, with which they again form a domain,
representing the type of functions between these domains. In the
example just given, a function would be considered to elaborate
another one if its return value on each input elaborates the return
value of the other function on the same input.

The typical domain-theoretic endeavour starts with a program-
ming language and designs domains to capture their denotational
semantics. In our case, however, we need to do the opposite: we
want to obtain a programming language from denotational se-
mantics of dynamical systems. Dynamical systems are already
mathematical objects, but we envisioned them to be analogous to
stateful machines modelling standard computational processes, so
they should be considered to represent the operational semantics
of a program. As concluded in Section 1.1, we do want to take
the whole behaviour of the system into account when determining
what it is that the system computes. Therefore, the system may
serve as its own denotational semantics.

But there was more to the semantics of a system, namely the
aspect of finitary approximations to it. This is what makes domain
theory useful in our scenario. A frequent requirement of domains
is that all of its elements can be described by ‘‘combining’’ (taking
the supremum of) certain ‘‘simple’’, in a sense easily describable
elements. Making use of this idea for our interpretation of the
semantics of dynamical systems, we can create a domain where
each value represents an approximation of a dynamical system,
with greater elements corresponding to better approximations.
The ‘‘simple’’ elements should be those corresponding to finitary
observations.

This way, different dynamical systems will always have different
denotational semantics. However, we obtain a useful notion of
graded similarity between the behaviours of dynamical systems:

17

informally, the finer the approximations that simultaneously ap-
proximate both systems, the more similar these systems can be
considered to be.

Thus, we start with our idea of the semantics of dynamical systems
in terms of finitary approximations and turn this into a specific
kind of domain. We then accept the resulting notion of domains
as the starting point for a category of types of dynamical systems,
with each domain interpreted to represent a type, as is standard
in domain theory.

1.3 CATEGORIES AND TYPE THEORIES

We make extensive use of basic concepts from category theory.
Some of these are briefly reviewed in the margins when they appear
like in the example on the right; but for reference consult [21, 24]. A category 𝖢 consists of: a col-

lection of objects; for all pairs of
objects 𝑐,𝑑 ∈ 𝖢 a collection of mor-
phisms or arrows 𝖢(𝑐,𝑑); for all
pairs of arrows 𝑓 ∈ 𝖢(𝑐,𝑑) and 𝑔 ∈
𝖢(𝑑,𝑒), a composite arrow 𝑓 ;𝑔 ∈
𝖢(𝑐,𝑒); and for all objects 𝑐 ∈ 𝖢,
an identity arrow id𝑐 ∈ 𝖢(𝑐,𝑐);
such that id𝑎 ; 𝑓 = 𝑓 = 𝑓 ; id𝑏 and
(𝑓;𝑔);ℎ = 𝑓;(𝑔;ℎ)≕ 𝑓;𝑔;ℎ for all
arrows for which the composites
are defined.

A common approach in categorical logic, treated in detail in [31],
is to interpret types 𝐴 as objects 〚𝐴〛 in a category 𝖢, and a
type-theoretic judgment of the form 𝑥 :𝐴 ⊢𝑁:𝐵, meaning ‘‘if 𝑥
is of type 𝐴, then the term 𝑁 (which may include 𝑥) is of type
𝐵’’, as a morphism from 〚𝐴〛 to 〚𝐵〛. We can understand this as
meaning that the term 𝑁 shows how to transform ‘‘𝐴-things’’ 𝑥
into ‘‘𝐵-things’’ 𝑁(𝑥), or a bit more precisely, if 𝑥 is a ‘‘gener-
alised element’’ of the object interpreting 𝐴, i. e. a morphism with
codomain 〚𝐴〛, then 𝑁 specifies a way to turn 𝑥 into a generalised
element of the object interpreting 𝐵 (via composition of 𝑥 with
the morphism represented by 𝑥 :𝐴 ⊢𝑁:𝐵).

An internal type theory of a category is then given by the construc-
tions that we can carry out on its objects. To derive the rules, we
usually start with a universal property we want to capture, which
in general consist of five parts, each giving rise to a different kind
of rule, as we illustrate for the example of the categorical product:

18

universal property type of rule product rule for product
existence of
an object type formation 𝐴×𝐵 ⊢𝐴:𝖢 ⊢𝐵:𝖢

⊢𝐴×𝐵:𝖢

with morphisms term elimination/
introduction 𝐴 𝐴×𝐵 𝐵

𝜋1 𝜋2 𝑥 :𝐶 ⊢𝑁:𝐴×𝐵
𝑥:𝐶⊢ 𝜋1𝑁:𝐴 𝑥 :𝐶 ⊢ 𝜋2𝑁:𝐵

such that all other
candidates have
a mediator

term introduction/
elimination

𝐶

𝐴 𝐴×𝐵 𝐵

𝑓 𝑔
𝑓×𝑔

𝜋1 𝜋2

𝑥 :𝐶 ⊢𝑁:𝐴 𝑥 :𝐶 ⊢𝑀:𝐵
𝑥 :𝐶 ⊢𝑁×𝑀:𝐴×𝐵

making the diagram
commute 𝛽-reduction

𝐶

𝐴 𝐴×𝐵 𝐵

𝑓 𝑔
𝑓×𝑔

𝜋1 𝜋2

𝜋1(𝑁×𝑀)=𝑁
𝜋2(𝑁×𝑀)=𝑀

which is unique
with that property 𝜂-conversion

𝐶

𝐴 𝐴×𝐵 𝐵

𝑓 𝑔
!

𝜋1 𝜋2

(𝜋1𝑁)×(𝜋2𝑁)=𝑁

Thus the expressivity of the type theory depends on what con-
structions the category allows. If there are (co)products, then the
type theory admits product(/sum) types; if there are exponential
objects, then it admits function types.

We think of a type theory as being ‘‘sound and complete’’ for a
certain category if the type theory can, in a sense made precise in
Section 4.1, construct all objects and morphisms of the category
and prove all equalities between morphisms, and conversely every-
thing the type theory constructs or shows to be equal should also
hold in the category. The key technique for finding a type theory
that is both sound and complete for a given category is to exhibit
the category via a free construction, as we do in Section 3.3.

In addition to the internal type theory, one can think about the
internal logic of a category. This usually refers to the constructions

19

that can be performed on subobjects in the category. Subobjects
are a category-theoretic generalisation of the notion of subsets of
a set, so we can think of a subobject as containing a ‘‘part’’ of the
object to which a certain proposition applies. Each proposition
about elements of a type is then interpreted as a subobject of the
object representing that type. The subobjects of an object form
a poset, and if that poset has all meets, then the resulting logic
allows the interpretation of conjunction; if it has all joins, we have
disjunction, and so on.

Since our focus lies on extracting the internal type theory, we shall
not spend too much time on the study of subobjects. However, in
Section 5.2, we discuss as an application how we can talk about
subobjects and other kinds of propositions from within the type
theory.

20

2 A THEORY OF FINITARY
OBSERVATION

We aim to capture mathematically the idea that dynamical systems
can be approximated via finitary models arising from ‘‘practically
feasible observations’’ or ‘‘partial descriptions’’ of these systems.
Domain theory is a suitable theory for formalising these notions
of approximation and convergence. The purpose of this chapter
is to motivate the kind of domains we want to study as semantic
models of dynamical systems.

The domains are later going to represent the types of our type
theory. The type of a dynamical system is simply going to be
the type of endomorphisms on its underlying state space. Thus
we would like to have domains corresponding to spaces, and in
addition, the endomorphisms on a space should form a ‘‘function
space’’ that also constitutes a domain. Observations of both spaces
as well as dynamical systems on these spaces should then fit under
the same framework of finitary description.

Ultimately, we want to observe a dynamical system by measuring
its current state at each point in time. We might not be able to
determine its state precisely in a finite amount of time, but we
hope that the more observations we make, the more precisely we
will know the state. We describe a particular general paradigm

21

of observation of points in a space, and give three different but
equivalent views on it: the spatial view, in which what we are
observing is an element of a state space and measurements cor-
respond to certain subsets of this space, provides a link between
observation and the idea of some physical reality that is being
observed. The combinatorial view, where we forget about the
individual states and deal only with sets of properties that may be
observed together, enables us to think about observation without
the necessity of knowing the underlying reality. Finally, the or-
dered view describes observation very abstractly in terms of how
information increases during the observation process.

Each view comes with an associated mathematical structure, and
we will show equivalences between these structures. We first de-
velop our theory within the combinatorial view, which provides
conceptual justification for the restrictions we impose on the struc-
tures we deal with. Showing equivalences is then useful because
the spatial view provides a ‘‘physical’’ interpretation of the whole
theory, connecting to topology and standard notions of dynamical
systems, while the abstract ordered view connects to domain the-
ory, enabling the application of the existing body of knowledge on
denotational semantics to our situation.

In addition to formalising how to observe points in a space, we will
discuss how to integrate the observation of dynamical systems into
this framework in Section 2.2, namely by taking dynamical systems
to be certain relations on observation spaces. In fact, this treatment
will not only apply to dynamical systems but also to suitable
functions between potentially different observation spaces. This
way, we obtain a (monoidal) closed category of domains admitting
a spatial interpretation, which allows types of transformations
between dynamical systems in the type theory. Few canonical
categories of domains or topological spaces are closed in this way,
and much of the developments in this chapter is motivated by the
ambition to reconcile closedness with both domains and spaces.

22

2.1 COMBINATORIAL VIEW: OBSERVATION SYSTEMS

The fundamental setup of our theory is as follows. We observe a
state by making some measurements out of a set of basic observable
properties (or ‘‘atomic description tokens’’) 𝑃. Multiple properties
may apply to a single state, and we consider the set 𝜎 of sets
of properties that can simultaneously apply, i.e. that are partial
descriptions of at least one state. We call such sets consistent, so
𝜎 is the set of consistent subsets of 𝑃.

From this, it is already clear that the set 𝜎 should be closed under
taking subsets: if 𝑆 ∈ 𝜎 is a set of properties that apply to an
existing state and 𝑆′ ⊆𝑆, then also the properties in 𝑆′ all apply
to that state. This leads to the following definition.

DEFINITION: SUBSET SYSTEM. A subset system is a pair
(𝑃,𝜎) with 𝑃 a set and 𝜎⊆𝒫(𝑃) such that ⟨⊆-cl⟩ if 𝑆′ ⊆𝑆∈𝜎,
then 𝑆′ ∈𝜎.

For a subset system (𝑃,𝜎), we assume that any 𝑆 ∈ 𝜎 partially
describes a point in some state space. Picking one such point to
which all properties in 𝑆 apply, we can consider the set 𝑆′ ∈𝜎 of
all properties in 𝑃 applying to that point. Then 𝑆′ ⊇𝑆, and we
will in fact assume that 𝑆′ is a ⊆-maximal element of 𝜎. In theory,
we might imagine that there might be another 𝑆″ ⊋ 𝑆′ with 𝑆″

maximal in 𝜎, describing a point different to the one singled out by
𝑆′, in that 𝑆″ somehow contains additional information that does
not apply to the point described by 𝑆′. In our interpretation, we
will consider this to never be the case, though: instead, 𝑆′ should
then additionally contain the information that some properties
applying to the point described by 𝑆″ do not apply to the point
described by 𝑆′, and then 𝑆′ ⊈𝑆″.

This assumption serves to simplify the situation so that we can
think of the maximal elements max𝜎 of 𝜎 (seen as a poset) as
representing the points of the state space we are observing, and

23

since we are unable to distinguish between points that behave the
same under all possible measurements, we furthermore assume
that each such maximal element describes a unique such point.

In general, the elements of max𝜎 may be infinite sets, since in-
finitely many properties may apply to a point. In line with our
objective of ‘‘description through finitary observations’’,° we can °Realistic observable measurements

are often considered to be merely
semi-observable: the result of a
measurement may be available af-
ter a finite (but unknown) time
only if the outcome is positive. In
an earlier approach, I tried to take
this idea more seriously, impos-
ing certain logical relationships be-
tween the observable properties
and recording outcomes of semi-
observable measurement processes
after a finite but unbounded amo-
unt of time, and outcomes being
‘‘closed’’ under the logical relation-
ships. This led to a type of domain
that was hard to characterise and
difficult to work with.

I then made the setup a little less
dogmatic, speaking interchangably
of ‘‘observation’’ and ‘‘description’’,
which is justifiable since in order
to construct non-symbolic compu-
tation as the ‘‘limit’’ of symbolic
computation, it is enough if there
is some way of describing objects
in a finitary fashion, not necessarily
via semi-observable measurements.

however get arbitrarily close to singling out any given point by
considering increasingly larger finite sets of properties describing
that point. This corresponds to making more and more precise
observations which ‘‘in the limit’’ uniquely describe the point (ar-
guably at least if 𝑃 is countable), while only requiring a finite
number of observations at each point in time. Indeed, if an infi-
nite set 𝐼 ∈ 𝜎 is a (possibly still partial) description of a point,
then also all finite subsets of 𝐼 are in 𝜎 by ⟨⊆-cl⟩. Because it is
practically infeasible to conversely determine whether an infinite
set of properties applies to a single point (there might be infinite
𝐼 ⊆𝑃 such that all finite subsets of it describe distinct valid points,
but there is no point to which all of 𝐼 applies), we introduce a
simple assumption on the consistency of infinite sets of properties
in terms of their finite subsets.

DEFINITION: OBSERVATION SYSTEM. A pair (𝑃,𝜎) is an
observation system if it is a subset system (hence satisfying
⟨⊆-cl⟩) such that ⟨fin-compat⟩ for all 𝐼 ⊆𝑃, if 𝐹∈𝜎 for all finite
𝐹⊆ 𝐼, then 𝐼 ∈ 𝜎.

Thus for observation systems, 𝐼 ∈ 𝜎 iff all finite subsets of 𝐼 are
in 𝜎 (with ⇒ by ⟨⊆-cl⟩ and ⇐ by ⟨fin-compat⟩), so the infinite
elements of 𝜎 are completely determined by the finite ones. We
furthermore have that any partial description of a point can now
be extended to a full description of a point.

PROPOSITION 2.1.1. Let (𝑃,𝜎) be an observation system and ⟨obs-max-elem⟩
𝑆 ∈ 𝜎. Then there exists an 𝑆′ ∈max𝜎 such that 𝑆′ ⊇𝑆.

24

Proof. By Zorn’s lemma, it is enough to show that every chain
{𝑆𝑖 ⊇𝑆 ∣ 𝑖 ∈ 𝐼}, totally ordered by ⊆, in the poset ↑𝑆≔ {𝑇∈𝜎 ∣
𝑇⊇𝑆} has an upper bound in ↑𝑆, since it then follows that ↑𝑆
has a maximal element 𝑆′, with 𝑆′ ⊇ 𝑆 by definition of ↑𝑆 and
𝑆′ ∈max𝜎 since each 𝑆″ ⊇𝑆′ in 𝜎 is necessarily a superset of 𝑆,
hence in ↑𝑆, so 𝑆″ ⊆𝑆′ by maximality of 𝑆′.
[Let {𝑆𝑖 ∣ 𝑖 ∈ 𝐼} be a chain in ↑𝑆.]

We show that the set ⋃𝑆𝑖, which is clearly an upper bound, is
in 𝜎. Then, necessarily ⋃𝑆𝑖 ∈ ↑𝑆. By ⟨fin-compat⟩, it suffices
to show that each finite 𝐹⊆⋃𝑆𝑖 is in 𝜎.
[Let 𝐹⊆⋃𝑆𝑖 be finite.]

We show that 𝐹∈𝜎. Since 𝐹 is finite, there exists a finite
set 𝐽 ⊆ 𝐼 such that 𝐹 ⊆ ⋃{𝑆𝑗 ∣ 𝑗 ∈ 𝐽}. Then, 𝐽 has an
element 𝑗∗ such that 𝑆𝑗 ⊆ 𝑆𝑗∗ because the 𝑆𝑗 are totally
ordered and 𝐽 is finite. Thus 𝐹⊆𝑆𝑗∗. It follows that 𝐹∈𝜎
by ⟨⊆-cl⟩ since 𝑆𝑗∗ ∈ ↑𝑆⊆𝜎.

We can connect observation systems to several existing concepts.
In the presence of ⟨fin-compat⟩, we can simplify ⟨⊆-cl⟩ to only
require 𝜎 to be closed under taking finite subsets.° The resulting °For, if 𝑆′ ⊆ 𝑆 ∈ 𝜎, then all finite

subsets of 𝑆′ are finite subsets of
𝑆, which are in 𝜎, and then 𝑆′ ∈𝜎
by ⟨fin-compat⟩.

definition is identical to the concept of a family of sets of finite
character [13]. I could not find much in the way of results about
these structures, with the exception of Tukey’s lemma, which is
similar to ⟨obs-max-elem⟩ just shown.° °In fact, [13, Theorem 2.1] shows

that Tukey’s lemma is equivalent
to the axiom of choice.A simplicial complex is a subset system (𝑃,𝜎) which additionally

satisfies that ⟨all-props-cons⟩ for all 𝑝 ∈ 𝑃, also {𝑝} ∈ 𝜎 (i.e.
that all properties in 𝑃 are consistent, applying to at least one
point), and where all sets in 𝜎 are finite and non-empty (of course,
𝑆′ ≠∅ then needs to be demanded in the antecedent of ⟨⊆-cl⟩).
Because the elements of an observation system are fully determined
by its set of finite non-empty elements, and the finite elements
satisfy ⟨fin-compat⟩ trivially, any simplicial complex (𝑃,𝜎) gives
rise to a unique observation system satisfying ⟨all-props-cons⟩

25

by adding the empty set as well as all subsets of 𝑃 of which
all finite subsets are in 𝜎. Conversely, any observation system
(𝑃,𝜎) satisfying ⟨all-props-cons⟩ can be turned into a simplicial
complex by removing the empty set as well as all infinite sets from
𝜎.

More precisely, given a simplicial complex (𝑃,𝜎) we turn it into
an observation system via a process of ideal completion,° which °For a general poset, this means to

take the set of downward-closed
directed subsets, called ideals.in the case of simplicial complexes reduces to the following.

DEFINITION: IDEAL COMPLETION. Let 𝜎 be a family of sub-
sets of a set 𝑃 satisfying ⟨⊆-cl⟩ and ⟨all-props-cons⟩. The ideal
completion of 𝜎 is defined as the set ℐ(𝜎)≔ {𝑆⊆⋃𝜎=𝑃 ∣ 𝐹 ∈
𝜎 for all finite 𝐹⊆𝑆}.

Note that the resulting set satisfies ⟨fin-compat⟩ by construction,
and 𝜎 ⊆ ℐ(𝜎) by ⟨⊆-cl⟩. Furthermore, observe that the ideal
completion may only add infinite sets to 𝜎. This construction
will play an important role in some proofs where we construct
observation systems. For this reason, we formulated it in terms of
⟨all-props-cons⟩-subset systems rather than simplicial complexes,
which would have required taking into account the exclusion of
the empty set.

It is furthermore easily seen that an ⟨all-props-cons⟩-observation
system yields a Scott information system° (𝑃,𝜎,⊢) with 𝑆 ⊢ 𝑝 °A Scott information system is a

triple (𝑃,𝜎,⊢) with 𝜎⊆𝒫(𝑃) and
⊢⊆𝜎\{∅}×𝑃 such that
• if 𝑆∈𝜎 and 𝑆′ ⊆𝑆, then 𝑆′ ∈𝜎
(⟨⊆-cl⟩);

• {𝑝} ∈ 𝜎 for all 𝑝∈𝑃;
• if 𝑝∈ 𝑆∈𝜎, then 𝑆⊢ 𝑝;
• if 𝑆⊢ 𝑞 for all 𝑞 ∈ 𝑆′ and 𝑆′ ⊢ 𝑝,
then 𝑆⊢ 𝑝;

• if 𝑆⊢ 𝑝, then 𝑆∪{𝑝} ∈ 𝜎.

iff 𝑝 ∈ 𝑆. Observation systems are also similar to the concept
of coherence spaces in the semantics of linear logic [9]. This
notion is recovered if in ⟨fin-compat⟩ we replace ‘‘all finite 𝐹⊆ 𝐼’’
with ‘‘all sets 𝐹⊆ 𝐼 of cardinality 2’’. A coherence space is often
represented as the reflexive undirected graph of its atoms, with
edges indicating coherence. Our concept is instead equivalent to a
hypergraph where each edge may connect any finite set of vertices
(and edges must be closed under subsets).

26

While ⟨all-props-cons⟩ demands that every property in 𝑃 actu-
ally applies to some point, we may also want to require that no
two properties represent the same concept in the sense that they
apply to the same set of points.

DEFINITION: SEPARATION. An observation system (𝑃,𝜎) is
called separated if ⟨sep⟩ the function 𝑝↦max𝑝:𝑃→𝒫(max𝜎)
on 𝑃 sending each 𝑝 ∈ 𝑃 to the set of 𝑆 ∈ max𝜎 with 𝑝 ∈ 𝑆 is
injective.

Note that even in the absense of ⟨all-props-cons⟩, a separated
observation system can have at most one 𝑝∈𝑃 with {𝑝} ∉ 𝜎 (then,
max𝑝=∅). Both ⟨all-props-cons⟩ and ⟨sep⟩ are properties that
may or may not be applicable to a measurement process. As we
will see, they play a role in establishing the equivalences between
the different views on observation we describe. In the end, we will
only assume ⟨all-props-cons⟩, not ⟨sep⟩, because this yields the
desired equivalence to a notion of domains.

Let us conclude this section by giving some examples of observation
systems.

EXAMPLES: OBSERVATION SYSTEMS.

• Any set of properties 𝑃 gives rise to a ‘‘flat’’ observation system
by putting 𝜎≔{∅}∪{{𝑝} ∣ 𝑝 ∈𝑃}. All consistent subsets are
trivial (singletons or non-empty), and the maximal elements
are given by the singletons from 𝑃.

• The powerset of any set: any subset of a subset is a subset,
and any union of subsets is a subset, so the definition is clearly
satisfied. Here all sets of properties are consistent, and there
only exists a single maximal element, to which every property
applies. Note that this generally does not satisfy ⟨sep⟩.

• The family of sets of linearly independent vectors in any vector
space: satisfaction of ⟨fin-compat⟩ is a consequence of the
definition of linear independence depending on finite linear

27

combinations only. Proposition ⟨obs-max-elem⟩ shows in this
case that every set of linearly independent vectors can be
extended to a maximal such set; in particular, every vector
space (which by definition is non-empty, thus has at least a
linearly independent singleton set) has a basis.

• The family of consistent sets of first-order sentences: here
⟨fin-compat⟩ is just the compactness theorem. Maximal el-
ements can be seen as equivalence classes of models of first-
order theories up to elementary equivalence, and the properties
applying to them are just the first-order sentences they satisfy.

2.2 SPATIAL VIEW: OBSERVATION SPACES

We now make precise the way in which observation systems capture
the outcomes of a ‘‘physical’’ observation process by giving them a
spatial interpretation. The idea is that we are observing points of
a state space using the properties from an observation system, and
each such property corresponds to a subset of the space containing
precisely the points having the property.

A space is just a pair (𝑋,𝜏) with 𝜏 ⊆ 𝒫(𝑋). Now if (𝑃,𝜎) is an
observation system, and we think of each 𝑝∈𝑃 as corresponding
to some subset of a space where 𝑝 applies to each point in it, then
what is the analogue of a consistent set 𝑆 ∈ 𝜎? Since this is just
a set of properties that can all hold together of a single point, it
seems appropriate to say that this means that their intersection
as sets is non-empty. This leads to the following notion of a space,
which we will show to be equivalent to (separated) observation
systems.

DEFINITION: OBSERVATION SPACE. A pair (𝑋,𝜏) is an ob-
servation space if

⟨T1⟩ for all 𝑥≠ 𝑦 ∈𝑋, there exists a 𝑈∈ 𝜏 with 𝑥 ∈𝑈∌ 𝑦;

28

⟨fip-ne⟩ for each family 𝐼 ⊆ 𝜏 such that ⋂𝐹 ≠ ∅ for all finite
𝐹⊆ 𝐼, also ⋂𝐼≠∅.

We say that a family 𝐼 ⊆ 𝜏 with ⋂𝐹≠∅ for each finite 𝐹⊆ 𝐼 has
the finite intersection property (FIP). Thus ⟨fip-ne⟩ says that
each family with the FIP has a non-empty intersection.

First, we discuss how observation spaces relate to the more familiar
topological spaces. Then, we establish the desired equivalence with
observation systems. Finally, we describe how the observation of
dynamical systems fits into the framework.

CONNECTING TO TOPOLOGICAL SPACES

The assumption of ⟨fip-ne⟩ may seem problematic from a topo-
logical point of view since topologies do not in general satisfy it.° °For example, consider the topolog-

ical space (ℝ,𝜏) of real numbers
together with the standard topol-
ogy of unions of open intervals
(𝑟,𝑠) for 𝑟,𝑠 ∈ ℝ. For the family
𝐼 ≔ {(0,1 ⁄𝑛) ∣ 𝑛 ∈ ℕ} ⊆ 𝜏, every
finite 𝐹⊆ 𝐼 has ⋂𝐹= (0,1⁄𝑛) for
𝑛 minimal with (0,1⁄𝑛) ∈𝐹, but
⋂𝐼=∅.

Let us therefore spend some time to understand what it means
for a topological space to be an observation space. In addition to
⟨fip-ne⟩, a feature of observation spaces is that points correspond
to maximal sets of observable properties with non-empty intersec-
tion. What does a family of subsets of a set have to satisfy for this
to be the case? We can do something similar to locale theory [15],
where the points of a sober topological space are equivalently the
completely prime filters of its opens.

DEFINITION: OBSERVATION FILTERS. Let 𝑋 be a set and
𝜏 ⊆ 𝒫(𝑋). An observation filter on 𝑋 is a subset 𝐹 ⊆ 𝜏 such
that ⋂𝐹≠∅. An observation filter 𝐹 is called maximal if each
observation filter 𝐹′ ⊇ 𝐹 has 𝐹′ = 𝐹. An observation filter 𝐹
is completely prime if whenever ⋃𝑈𝑖 ⊇⋂𝐹 for some family of
𝑈𝑖 ∈ 𝜏, then there exists an 𝑖 such that 𝑈𝑖 ∈ 𝐹. For each 𝑥 ∈ 𝑋,
denote by 𝒩(𝑥) the neighbourhood filter {𝑈∈ 𝜏 ∣ 𝑥 ∈𝑈} of 𝑥.

Clearly, a neighbourhood filter 𝒩(𝑥) is an observation filter, with
the intersection containing 𝑥. For sober topological spaces, the

29

notion of a non-empty completely prime observation filter coin-
cides with the standard notion of a completely prime filter.° In °It is proper because its intersec-

tion is non-empty, closed under
supersets because 𝑈′ ⊇𝑈⊇⋂𝐹 if
𝑈 ∈ 𝐹, closed under finite inter-
sections because ⋂𝑈𝑖 ⊇⋂𝐹 with
⋂𝑈𝑖 open, and completely prime
because ⋃𝑈𝑖 ⊇⋂𝐹 if ⋃𝑈𝑖 ∈𝐹;

conversely, a completely prime fil-
ter in a sober space is the neigh-
bourhood filter of a unique point,
hence a non-empty observation fil-
ter, and if ⋃𝑈𝑖 ⊇⋂𝐹= {𝑥}, then
𝑥 ∈𝑈𝑖 for some 𝑖, so 𝑈𝑖 ∈𝐹.

the following propositions, a space (𝑋,𝜏) refers to any set 𝑋 with
a set of subsets 𝜏 (not necessarily forming an observation space).
We work towards a one-to-one correspondence between points of
the space and maximal observation filters.

PROPOSITION 2.2.1. Every maximal observation filter on a ⟨max-𝒩⟩
space (𝑋,𝜏) is of the form 𝒩(𝑥) for some 𝑥 ∈𝑋.
Proof. Let 𝐹 be maximal. By definition, ⋂𝐹≠∅, say 𝑥 ∈⋂𝐹.
Now 𝐹⊆𝒩(𝑥): if 𝑈∈𝐹, then 𝑥 ∈𝑈, so 𝑈∈𝒩(𝑥). Thus the claim
follows by maximality of 𝐹.

We also want the converse to hold, though, for which the ⟨T1⟩ con-
dition is sufficient.

PROPOSITION 2.2.2. If (𝑋,𝜏) satisfies ⟨T1⟩, then ⋂𝒩(𝑥) = ⟨T1-⋂𝒩⟩
{𝑥} for all 𝑥 ∈𝑋.
Proof. Clearly 𝑥 ∈⋂𝒩(𝑥), and if 𝑦 ∈⋂𝒩(𝑥), then 𝑥 ∈𝑈 for all
𝑈∋ 𝑦, so 𝑥= 𝑦 by ⟨T1⟩.

PROPOSITION 2.2.3. If (𝑋,𝜏) satisfies ⟨T1⟩, then 𝒩(𝑥) is max- ⟨T1:𝒩-max⟩
imal for every 𝑥 ∈𝑋.
Proof. If 𝐹⊇𝒩(𝑥) has ⋂𝐹≠∅, then ∅≠⋂𝐹⊆⋂𝒩(𝑥) = {𝑥}
by ⟨T1-⋂𝒩⟩, so 𝑥 ∈𝑈 for all 𝑈∈𝐹, hence 𝐹⊆𝒩(𝑥).

The notion of a completely prime observation filter is attractive
as it offers a more ‘‘local’’ idea of a neighbourhood filter. It is
however strictly weaker, but again ⟨T1⟩ is enough for equivalence.

PROPOSITION 2.2.4. For each 𝑥 ∈ 𝑋 for (𝑋,𝜏), the observa- ⟨𝒩-cpf⟩
tion filter 𝒩(𝑥) is completely prime.
Proof. Let 𝑥 ∈𝑋 and 𝑈𝑖 ∈ 𝜏 a family with ⋃𝑈𝑖 ⊇⋂𝒩(𝑥). Since
𝑥 ∈ ⋂𝒩(𝑥), we have 𝑥 ∈ ⋃𝑈𝑖, so 𝑥 ∈ 𝑈𝑖 for some 𝑖. Then 𝑈𝑖 ∈
𝒩(𝑥).

30

PROPOSITION 2.2.5. If (𝑋,𝜏) satisfies ⟨T1⟩, then each com- ⟨T1:cpf-𝒩⟩
pletely prime observation filter is of the form 𝒩(𝑥) for some
𝑥 ∈𝑋.

Proof. Let 𝐹 be completely prime. By ⟨max-𝒩⟩, it suffices to
show that 𝐹 is maximal. Suppose 𝑈 ∉ 𝐹; we show 𝑈∩⋂𝐹 =
∅. For each 𝑥 ∈ 𝑋\𝑈 and 𝑦 ∈ 𝑈, by ⟨T1⟩ there exists a 𝑉¬𝑦

𝑥
such that 𝑥 ∈ 𝑉¬𝑦

𝑥 ∌ 𝑦, since necessarily 𝑥 ≠ 𝑦. Then for each
𝑦 ∈ 𝑈, we have ⋃𝑥∈𝑋\𝑈𝑉¬𝑦

𝑥 ∪𝑈 =𝑋⊇⋂𝐹, so since 𝑈 ∉ 𝐹, by
complete primeness there exists an 𝑥𝑦 ∈𝑋\𝑈 such that 𝑉¬𝑦

𝑥𝑦 ∈𝐹.
Thus ⋂𝐹 ⊆ ⋂𝑦∈𝑈𝑉¬𝑦

𝑥𝑦 . Since 𝑦 ∉ 𝑉¬𝑦
𝑥𝑦 for each 𝑦 ∈ 𝑈, we have

𝑈∩⋂𝑦∈𝑈𝑉¬𝑦
𝑥𝑦 =∅, and so 𝑈∩⋂𝐹=∅.

PROPOSITION 2.2.6. If (𝑋,𝜏) satisfies ⟨T1⟩, then a non-empty ⟨T1:cpf*⟩
observation filter 𝐹 on 𝑋 is completely prime iff for each family of
𝑈𝑖 ∈ 𝜏 such that ⋃𝑈𝑖 ⊇𝑈 for some 𝑈∈𝐹, there exists an 𝑖 such
that 𝑈𝑖 ∈𝐹.

Proof. The ⇒-direction is clear since every 𝑈 ∈ 𝐹 with ⋃𝑈𝑖 ⊇
𝑈 has 𝑈 ⊇ ⋂𝐹, hence ⋃𝑈𝑖 ⊇ ⋂𝐹. Now combining ⟨T1:cpf-𝒩⟩
with ⟨T1:𝒩-max⟩, and ⟨max-𝒩⟩ with ⟨𝒩-cpf⟩, we have that in a
⟨T1⟩-space, being completely prime is equivalent to being maximal,
so it suffices to show that if 𝐹 satisfies the stated condition, then it
is maximal. This is analogous to the proof of ⟨T1:cpf-𝒩⟩, except
that when applying complete primeness, we note that picking any
𝑊∈𝐹 (which is non-empty by assumption), we have 𝑋⊇𝑊, and
then the stated condition gives us the 𝑥𝑦 ∈𝑋\𝑈 with the required
properties.

That is, the necessity of knowing the intersection of all sets in an
observation filter can be dropped (but it must still be non-empty).

PROPOSITION 2.2.7. If (𝑋,𝜏) is an observation space, then a ⟨obs:cpf**⟩
subset 𝐹 of 𝜏 with ∅≠𝐹⊊ 𝜏 is a completely prime observation

31

filter iff for each family of 𝑈𝑖 ∈ 𝜏 and each finite family of 𝑉𝑗 ∈𝐹
with ⋃𝑈𝑖 ⊇⋂𝑉𝑗, there exists an 𝑖 such that 𝑈𝑖 ∈𝐹.
Proof. Again, ⇒ is clear because every finite family of sets in 𝐹 is
in particular a family. Now every 𝐹 satisfying the condition must be
a non-empty observation filter: suppose ⋂𝐹=∅, then by ⟨fip-ne⟩
there exists a finite family of 𝑉𝑗 ∈𝐹 with ⋂𝑉𝑗 =∅, and then every
𝑈∈ 𝜏 has 𝑈⊇⋂𝑉𝑗, hence 𝑈∈𝐹 and 𝐹= 𝜏, contradiction to the
assumption that 𝐹⊊ 𝜏. The result then immediately follows from
⟨T1:cpf*⟩ by our condition on 𝐹 since every observation space
satisfies ⟨T1⟩ and every singleton is a finite family.

The condition given in ⟨obs:cpf**⟩ is now equivalent to the usual
notion of a completely prime filter, in the sense that the subsets
of a topology satisfying this condition are precisely the completely
prime filters, since topologies as well as filters are closed under
finite intersections. In particular, this means that if a topological
space is an observation space, it is automatically sober: every
completely prime filter satisfies the condition in ⟨obs:cpf**⟩, then
it is a completely prime observation filter, so by ⟨T1:cpf-𝒩⟩, it is
the neighbourhood filter of a point, and by ⟨T1-⋂𝒩⟩, that point
is unique.

Often, we want to be able to recognise the neighbourhood filters
by an even more pleasant condition, namely: for each finite family
𝑈𝑖 ∈ 𝜏 with ⋃𝑈𝑖 ⊇𝑈 for some 𝑈∈𝐹, there exists an 𝑖 such that
𝑈𝑖 ∈ 𝐹. We call such filters simply prime filters. Clearly every
completely prime observation filter is a prime observation filter.
For the converse to hold, the following condition is sufficient.

DEFINITION: COMPACTNESS. Let 𝑋 be a set and 𝜏 ⊆ 𝒫(𝑋).
We call (𝑋,𝜏) compact if for every family of 𝑈𝑖 ∈ 𝜏 for 𝑖 ∈ 𝐼 with
⋃𝑖∈𝐼𝑈𝑖 =𝑋, there exists a finite 𝐽⊆ 𝐼 such that ⋃𝑖∈𝐽𝑈𝑖 =𝑋.

PROPOSITION 2.2.8. If (𝑋,𝜏) is ⟨T1⟩ and compact, then each ⟨T1+compact:pf-max⟩
prime observation filter is maximal.

32

Proof. Analogous to ⟨T1:cpf-𝒩⟩, except that we use compactness
before applying primeness to obtain a finite subcover that still
covers 𝑋.

A topological spaces is compact if and only if its family of closed
subsets satisfies ⟨fip-ne⟩ [25, Theorem 26.9]. The proof of that
statement shows more generally that any family of sets satisfies the
compactness condition if and only if the family of the complements
of these sets satisfies ⟨fip-ne⟩. Thus the family of closed sets of
any compact ⟨T1⟩ topology forms an observation space.

Furthermore, this implies that a compact family of sets closed
under complements automatically satisfies ⟨fip-ne⟩, which tells
us that e.g. the clopens of a Stone space° form an observation °A Stone space is a compact space

satisfying that any pair of distinct
points can be separated by a clopen
set, which means precisely that the
clopens satisfy ⟨T1⟩.

space, and the usual Stone duality via prime filters corresponding
to points of the space [35] is reflected in the statement just shown.
Indeed, [12] works with partitions of the state space using clopens
when approximating dynamical systems.

In particular, the clopens of the Cantor space as well as the
Baire space, which are countably infinite products of the discrete
topologies on the set {0,1} and ℕ, respectively, form observation
spaces. The observable properties, i.e. the basic clopens, of the
Cantor space are given by the sets 𝐵𝑓 for 𝑓 :𝐹→ {0,1} with 𝐹 a
finite subset of ℕ of all the binary sequences that coincide with 𝑓
on 𝐹.

In research on dynamical systems, two common assumptions are
that the spaces one works with are Polish (i.e. separable and com-
pletely metrisable) and zero-dimensional (i.e. having a basis of
clopens). These properties also apply to what is called a ‘‘mea-
sured topological system’’ in [12], on which topological dynamical
systems are considered. Zero-dimensionality is justified there by
saying that semi-observable properties as modelled by topological
opens may in practice be considered to be fully observable since
the points lying on the border of an open are ‘‘atypical’’ (would

33

commonly have measure zero if one were to equip them with a
realistic measure).

Now in [17, Theorem 7.8], it is shown that every zero-dimensional
separable and metrisable space can be embedded into both the
Cantor and the Baire space, and a zero-dimensional Polish space is
in fact homeomorphic to a closed subspace of the Baire space. This
should demonstrate that our theory can be applied to common
situations occurring in the more established theory of topological
dynamical systems.

EQUIVALENCE WITH OBSERVATION SYSTEMS

We now establish the equivalence between the concept of sepa-
rated observation systems and observation spaces. By our guiding
intuition, every observation space (𝑋,𝜏) should give rise to an
observation system by taking the set of properties to be 𝜏, and
the consistent sets to be those 𝑆⊆ 𝜏 such that ⋂𝑆≠∅. Denote
the set of these subsets by 𝒞(𝜏). With the previously introduced
terminology, this is also the set of observation filters on 𝜏.

PROPOSITION 2.2.9. For each observation space (𝑋,𝜏), the ⟨spc-sepsys⟩
pair (𝜏,𝒞(𝜏)) is a separated observation system.
Proof.
⟨⊆-cl⟩

Let 𝑆′ ⊆𝑆∈ 𝒞(𝜏). Then ⋂𝑆≠∅ by definition, so also ⋂𝑆′ ≠∅,
hence 𝑆′ ∈ 𝒞(𝜏).

⟨fin-compat⟩
Let 𝐼 ⊆ 𝜏 be such that each finite 𝐹⊆ 𝐼 is in 𝒞(𝜏), i. e. ⋂𝐹≠∅.
Thus 𝐼 has the FIP, and then ⋂𝐼≠∅ by ⟨fip-ne⟩, so 𝐼 ∈ 𝒞(𝜏)
by definition.

⟨sep⟩
Let 𝑈≠𝑉 in 𝜏, so 𝑈⊈𝑉 or 𝑉⊈𝑈; w. l.o.g. assume the former.
We show thatmax𝑈≠max𝑉. By assumption, there is an 𝑥 ∈𝑈

34

with 𝑥 ∉𝑉. Now 𝒩(𝑥) contains 𝑈 but not 𝑉, and it is maximal
in 𝒞(𝜏) by ⟨T1⟩ and ⟨T1:𝒩-max⟩, so max𝑈∋𝒩(𝑥) ∉max𝑉.

In the other direction, we have already discussed that we consider
the points of the space we are observing to be precisely the max-
imal elements of 𝜎, and so we can associate with each (𝑃,𝜎) a
pair (max𝜎,max[𝑃]) with max[𝑃] consisting of the sets max𝑝 of
maximal elements above 𝑝, for all 𝑝∈𝑃.

PROPOSITION 2.2.10. For each observation system (𝑃,𝜎), the ⟨sys-spc⟩
pair (max𝜎,max[𝑃]) is an observation space.
Proof.
⟨T1⟩

If 𝑥 ≠ 𝑦 in max𝜎, then since 𝑥,𝑦 are both maximal in 𝜎, we
have 𝑥⊈ 𝑦, so there exists a 𝑝∈ 𝑥 with 𝑝∉ 𝑦. Then 𝑥 ∈max𝑝∌
𝑦 as required.

⟨fip-ne⟩
If a family max[𝐼] for 𝐼 ⊆𝑃 has the FIP, then max[𝐹] for each
finite 𝐹⊆ 𝐼 has a non-empty intersection, i.e. there exists an
𝑥𝐹 ∈max𝜎 with 𝑥𝐹 ∈⋂max[𝐹], so 𝐹⊆𝑥𝐹 by definition, and
𝐹∈𝜎 by ⟨⊆-cl⟩. Then also 𝐼 ∈ 𝜎 by ⟨fin-compat⟩. Let 𝑥⊇ 𝐼
be maximal in 𝜎 by ⟨obs-max-elem⟩. Then 𝑥 ∈⋂max[𝐼] ≠ ∅
as needed.

To fully formalise what it means for the two notions to be equiva-
lent, we could make use of the categorical concept of equivalence.
This requires a definition of morphisms between observation spaces,
which at this point would unnecessarily complicate the discussion.
We shall merely define the notion of an isomorphism for those
structures and prove the ‘‘object part’’ of a categorical equivalence,
which for now is a sufficiently strong claim to be made.

Two observation systems (𝑃,𝜎),(𝑃′,𝜎′) are isomorphic, notation
(𝑃,𝜎) ≅ (𝑃′,𝜎′), if there exists a bijection 𝑏 :𝑃 → 𝑃′ such that

35

for all 𝑆 ∈ 𝜎, we have 𝑏(𝑆) ∈ 𝜎′, and conversely 𝑏−1(𝑆′) ∈ 𝜎 for
all 𝑆′ ∈ 𝜎′. This is based on the standard notion of a morphism
between simplicial complexes. For observation spaces, we use the
same definition (which is possible since both structures are pairs
of a set and a family of subsets).

PROPOSITION 2.2.11. For all observation spaces (𝑋,𝜏), we ⟨spc-sys-spc⟩
have (𝑋,𝜏) ≅ (max𝒞(𝜏),max[𝜏]).
Proof. The mapping 𝑥↦𝒩(𝑥) is a well-defined map from 𝑋 to
max𝒞(𝜏), as we have shown in ⟨T1:𝒩-max⟩ that 𝒩(𝑥) is maximal
in 𝒞(𝜏). We show that it is a bijection with the required properties.
⟨surjectivity⟩

If 𝑆⊆ 𝜏 is maximal with ⋂𝑆≠∅, then by ⟨max-𝒩⟩, we have
𝑆=𝒩(𝑥) for some 𝑥 ∈𝑋.

⟨ injectivity⟩
If 𝑥≠ 𝑦, then by ⟨T1⟩, there exists a 𝑈∈ 𝜏 with 𝑥 ∈𝑈∌ 𝑦, so
𝒩(𝑥)≠𝒩(𝑦).

⟨preservation and reflection of consistency⟩
If 𝑈 ∈ 𝜏, then 𝒩(𝑈) = ⋃{𝒩(𝑥) ∣ 𝑥 ∈ 𝑈} = ⋃{𝒩(𝑥) ∣ 𝒩(𝑥) ∋
𝑈} = max𝑈 ∈ max[𝜏] using ⟨T1:𝒩-max⟩ and ⟨max-𝒩⟩, with
the converse holding because 𝒩(𝑥) ∈max𝑈 only if 𝑈∈𝒩(𝑥)
only if 𝑥 ∈𝑈.

The problem going in the other direction is that generally in an
observation system two different properties might actually repre-
sent the same subset of a space, namely when they are contained
in the same maximal elements. This is prevented by the separation
property.

PROPOSITION 2.2.12. For all observation systems (𝑃,𝜎) sat- ⟨sep:sys-spc-sys⟩
isfying ⟨sep⟩, we have (𝑃,𝜎) ≅ (max[𝑃],𝒞(max[𝑃])).
Proof. The mapping 𝑝↦ max𝑝 from 𝑃 into max[𝑃] is clearly
well-defined.

36

⟨surjectivity⟩
By construction.

⟨ injectivity⟩
By definition of ⟨sep⟩.

⟨preservation of consistency⟩
For all 𝑆∈𝜎, let 𝑥𝑆 ⊇𝑆 be maximal in 𝜎 by ⟨obs-max-elem⟩, so
𝑥𝑆 ∈max𝑝 for all 𝑝∈ 𝑆. Then 𝑥𝑆 ∈⋂max[𝑆] ≠∅, so max[𝑆] ∈
𝒞(max[𝑃]).

⟨reflection of consistency⟩
If max[𝑆] ⊆ max[𝑃] has a non-empty intersection, say 𝑥 ∈
max𝜎 is in ⋂max[𝑆], then 𝑆⊆𝑥, so 𝑆∈𝜎 by ⟨⊆-cl⟩.

Note that for a similar equivalence, we could also consider general
(not necessarily separated) observation systems and allow the set
of properties in an observation spaces to be a multiset. We can
also separate any observation system by taking the quotient of
𝑃 by the equivalence relation ‘‘{𝑝}∪𝑆 ∈ 𝜎 iff {𝑞}∪𝑆 ∈ 𝜎, for
all 𝑆 ∈ 𝜎’’. The resulting observation system is isomorphic to
(max[𝑃],𝒞(max[𝑃])).

OBSERVING DYNAMICAL SYSTEMS

Now that we have described a type of space incorporating the idea
of finitary observation, how can we describe a dynamical system
on such a space? In general, a dynamical system is a state space
𝑋 with a transformation function 𝑓 :𝑋→𝑋 acting on it. We will
assume that the state space is actually an observation space (𝑋,𝜏)
capturing how we may observe the current state of the system.

Eventually, we want the dynamical systems on a given observation
space to themselves be points in a space of dynamical systems,
imagining that by observing properties of a dynamical system we
can determine which one we are dealing with. Here, we discuss

37

what these properties should look like; that they give rise to an
observation space is shown in Section 3.2.

Since we observe the dynamical system by measuring the state
at some point in time and then measuring its successor state,
the observations we make of dynamical systems should reflect
some transition from a basic property applying at some point
in time to another applying at the next discrete time step. If
𝑈,𝑉∈ 𝜏 are basic properties, we let the observation 𝑈→𝑉 apply
to a dynamical system 𝑓 if it maps 𝑈 inside 𝑉, i. e. 𝑓(𝑈) ⊆ 𝑉.° °Of course, it is not really ‘‘finitar-

ily observable’’ whether a property
𝑈→𝑉 applies to a physical sys-
tem at hand, because it requires
observing the successor state for all
states in 𝑈, which may be infinitely
many. This is another reason why
one might prefer the term ‘‘descrip-
tion’’ to ‘‘observation’’. I initially
pursued a different approach, in
which 𝑈→𝑉 instead meant that
some state in 𝑈 is mapped onto
some state in 𝑉; this is closer to the
implementation in [12]. The the-
ory retained non-finitary aspects
even then, since it still made use
of observations of transitions for
every state of the system.

Furthermore, the category I ob-
tained via this approach did not
permit many constructions. In par-
ticular, I could not figure out how
to define a satisfactory notion of
morphism on it that would make
the category cartesian or monoidal
closed. The main problem appears
to be conceptually that lifting the
idea of ‘‘→ maps a point in 𝑈 onto
some point in 𝑉’’ to a higher order
would translate to ‘‘this transfor-
mation between dynamical systems
maps some system with a given
property onto some system with
another property’’. But a nice no-
tion of transformation would give
us a reliable way to transform any
system that exhibits a certain prop-
erty into one having another, which
is achieved by the approach pre-
sented in the main text.

Note that this is similar to the subbasic opens of a compact-open
topology. Through observation, we thus characterise a dynamical
system by noting which properties are mapped inside which other
properties.

That also means that we cannot distinguish between two dynamical
systems that behave identically with respect to the mapping of
properties. We need to restrict the dynamical systems we consider
accordingly using a condition of continuity.

DEFINITION: CONTINUITY. A function 𝑓 :𝑋 → 𝑋 on an ob-
servation space (𝑋,𝜏) is continuous with respect to 𝜏 if for all
𝑥 ∈𝑋 and all 𝑉∋ 𝑓(𝑥) there exists a 𝑈∋𝑥 such that 𝑓[𝑈] ⊆𝑉.

For topological spaces, this notion of a continuous function coin-
cides with the standard notion. In that case, the given definition
is known to be equivalent to the condition that the preimage of
an open set be open. This also means that the category of Stone
spaces and continuous functions forms a subcategory of the cate-
gory of observation spaces and continuous functions. For general
observation spaces, however, the two definitions may diverge, es-
sentially because their equivalence rests on the assumption that
arbitrary unions of opens are again open.

A continuous dynamical system 𝑓 on (𝑋,𝜏) can unambiguously
be identified with the collection {(𝑈,𝑉) ∈ 𝜏×𝜏 ∣ 𝑓[𝑈] ⊆𝑉}. This

38

way, a relation →𝑓 on 𝜏×𝜏 can be associated with 𝑓, via 𝑈→𝑓 𝑉
iff 𝑓[𝑈] ⊆𝑉.

Clearly, not all relations on 𝜏× 𝜏 arise as subsets of a relation
→𝑓 for some continuous 𝑓. For example, a property may never be
related to two properties describing disjoint regions of the space.
More generally, we have the following defining characteristic (see
the remark at the List of Symbols before the table of contents for
the conventions used in denoting applications of relations).

DEFINITION: CONSISTENCY. A relation →⊆ 𝜏×𝜏 on an ob-
servation space (𝑋,𝜏) is consistent if whenever ⋂𝑆≠∅ for some
𝑆 ⊆ 𝜏, then also ⋂→(𝑆) ≠ ∅. A consistent relation → is called
maximal if →′ =→ for all consistent →′ ⊇→.

Consistent relations should correspond to partial descriptions of dy-
namical systems, while maximally consistent ones should then be
complete descriptions. If → is maximally consistent, we associate
a relation 𝑓→ with it via 𝑥 𝑓→ 𝑦 iff 𝑦 ∈⋂→(𝒩(𝑥)). Unfortunately,
there appears to be no straightforward one-to-one correspondence
between maximally consistent relations and continuous dynamical
systems. As it turns out, 𝑓→ as just defined is not necessarily a
function, and even if it is, it may not be continuous. We would still
like to use the maximally consistent relations as correspondents
for dynamical systems due to the simplicity of the definition. We
can do so by expanding the range of what we consider a dynamical
system somewhat.

DEFINITION: DYNAMICAL SYSTEM. Let (𝑋,𝜏) be an obser-
vation space. A dynamical system on 𝑋 is a function 𝑓 :𝑋 →
𝒫(𝑋)\{∅} such that

⟨max-det⟩ for all 𝑈,𝑉 ∈ 𝜏, if 𝑓(𝑥)∩𝑉 ≠ ∅ for all 𝑥 ∈ 𝑈, then
𝑓(𝑈) ⊆𝑉; and

⟨weak-cont⟩ for all 𝑥 ∈𝑋, if 𝑦 ∈𝑉 for all 𝑉⊇𝑓(𝑈) for all 𝑈∋𝑥,
then 𝑦 ∈ 𝑓(𝑥).

39

There are a few modifications to the previous situation here. First,
we have replaced the function representing the dynamics by a
function assigning to each state a (non-empty) set of successor
states. We can think of such a dynamical system as a function that
may assign a ‘‘partially defined’’ successor state to some states.
The state of the system could then sometimes be considered to be
indeterminate with respect to certain properties. Of course, the
previous concept of a dynamical system is still included in this as
a function returning a singleton on each input, and we can identify
them among the maximally consistent relations → via a property
of point-preservation: for all 𝑥 ∈ 𝑋, there exists a 𝑦 ∈ 𝑋 such
that ⋂→(𝒩(𝑥)) = {𝑦}. Note that a point-preserving relation is
automatically consistent: if ∅≠⋂𝑈𝑖 ∋ 𝑥, then ∅≠⋂→(𝒩(𝑥)) ⊆
⋂→(𝑈𝑖).

The amount of non-determinism is limited by ⟨max-det⟩: any ob-
servable property that could consistently be mapped inside another
property is assumed to actually be mapped inside that one. That
is, 𝑓(𝑥) must be as small as can be determined via the observ-
able properties. Obviously this is satisfied if 𝑓 is already fully
deterministic.

Furthermore, the notion of continuity has been weakened. Let
us consider ⟨weak-cont⟩ for the special case where the dynam-
ics behave like a function 𝑓 :𝑋 → 𝑋. If 𝑓 is continuous, then
⋃𝑈∋𝑥 {𝑉 ∣ 𝑓(𝑈) ⊆ 𝑉} = 𝒩(𝑓(𝑥)), so 𝑓 satisfies ⟨weak-cont⟩ via
⟨T1:𝒩-max⟩. In particular, a topological observation space with
a topologically continuous function on it constitutes a dynami-
cal system as just defined. Thus, ⟨weak-cont⟩ is a weakening of
the previous continuity requirement: continuity posits that all
neighbourhoods of 𝑓(𝑥) have some neighbourhood of 𝑥 mapped
into them, but we will only need that enough neighbourhoods
of 𝑓(𝑥) satisfy that property so that the intersection of these
neighbourhoods is {𝑓(𝑥)}.

40

Now we can show that maximally consistent relations correspond
to dynamical systems, as we desired.

THEOREM 1. Let (𝑋,𝜏) be an observation space. For every dy- ⟨dynsys=max-cons⟩
namical system 𝑓 on 𝑋, the relation →𝑓, defined as 𝑈 →𝑓 𝑉
iff 𝑓(𝑈) ⊆ 𝑉, is maximally consistent. Conversely, for any maxi-
mally consistent →, the function 𝑓→ mapping each 𝑥 ∈ 𝑋 onto
⋂→(𝒩(𝑥)) is a dynamical system. Furthermore, 𝑓→𝑓

= 𝑓 and
→𝑓→ =→ for all such functions and relations.

Proof. Let 𝑓 be a dynamical system and→ a maximally consistent
relation.
⟨→𝑓 is maximally consistent⟩

⟨→𝑓 is consistent⟩
Suppose ⋂𝑆 ≠ ∅ for some 𝑆 ⊆ 𝜏. We show that ⋂ →𝑓
(𝑆) ≠∅. By definition, for each 𝑈∈ 𝑆, we have 𝑓(𝑈) ⊆𝑉
for each 𝑈 →𝑓 𝑉, so 𝑓(𝑈) ⊆ ⋂→𝑓(𝑈). Let 𝑥 ∈ ⋂𝑆, then
𝑓(𝑥) ⊆ 𝑓(𝑈) ⊆⋂→𝑓(𝑈) for all 𝑈 ∈ 𝑆, so 𝑓(𝑥) ⊆⋂→𝑓(𝑆),
and since 𝑓(𝑥) ≠∅ by definition, this proves the claim.

⟨→𝑓 is maximal⟩
Suppose →′ ⊇→𝑓 is consistent and 𝑈→′ 𝑉. We show that
𝑈 →𝑓 𝑉, i. e. 𝑓(𝑈) ⊆ 𝑉. By ⟨max-det⟩, it suffices to show
that 𝑓(𝑥)∩𝑉≠∅ for all 𝑥 ∈𝑈.
Thus let 𝑥 ∈ 𝑈. Then ⋂→′(𝒩(𝑥)) ⊆ ⋂→𝑓(𝒩(𝑥))∩𝑉 by
assumption, and ⋂→𝑓(𝒩(𝑥)) =⋂⋃𝑈′∋𝑥 {𝑊∈ 𝜏 ∣ 𝑓(𝑈′) ⊆
𝑊} by definition. We first show that the latter is equal to
𝑓(𝑥), and then that its intersection with 𝑉 is non-empty,
as required.
⟨𝑓(𝑥) =⋂⋃𝑈′∋𝑥 {𝑊∈ 𝜏 ∣ 𝑓(𝑈′) ⊆𝑊}⟩

⟨⊆⟩
If 𝑦 ∈ 𝑓(𝑥), then 𝑦 ∈ 𝑓(𝑈′) for all 𝑈′ ∈ 𝒩(𝑥), so
𝑦 ∈𝑊 for all supersets 𝑊 of such 𝑓(𝑈′).

41

⟨⊇⟩
If 𝑦 ∈ 𝑉 for all 𝑊 ⊇ 𝑓[𝑈] for all 𝑈 ∈ 𝒩(𝑥), then
𝑦 ∈ 𝑓(𝑥) by ⟨weak-cont⟩.

⟨⋂⋃𝑈′∋𝑥 {𝑊∈ 𝜏 ∣ 𝑓(𝑈′) ⊆𝑊}∩𝑉≠∅⟩
The left-hand side is equal to ⋂→𝑓(𝒩(𝑥))∩𝑉, hence
a superset of ⋂→′(𝒩(𝑥)), which is non-empty because
→′ is consistent.

⟨𝑓→ is a dynamical system⟩
⟨𝑓→(𝑥) ≠∅ for all 𝑥 ∈𝑋⟩

Clearly 𝑥 ∈ ⋂𝒩(𝑥) ≠ ∅, so 𝑓→(𝑥) = ⋂→(𝒩(𝑥)) ≠ ∅ by
consistency of →.

⟨max-det⟩
Let 𝑈,𝑉∈ 𝜏. We show that if 𝑓→(𝑥)∩𝑉≠∅, for all 𝑥 ∈𝑈,
then 𝑓→(𝑈) ⊆𝑉.

[𝑓→(𝑥)∩𝑉≠∅, for all 𝑥 ∈𝑈]
Then, ⋂→(𝒩(𝑥))∩𝑉≠∅ for all 𝑥 ∈𝑈. Let →′ =→∪
{(𝑈,𝑉)}. We show that →′ is consistent; by maximality,
then →′ =→, hence 𝑈→𝑉 and 𝑉 ∈→(𝒩(𝑥)) for all
𝑥 ∈𝑈, so 𝑓→(𝑈) =⋃𝑥∈𝑈⋂→(𝒩(𝑥)) ⊆𝑉 as needed.

⟨→′ is consistent⟩
It suffices to check that ⋂→′(𝒩(𝑥)) ≠ ∅ for all
𝑥 ∈𝑈 since every set of consistent sets in 𝜏 can be
extended to the neighbourhood filter of a point, by
⟨obs-max-elem⟩ ‘‘translated’’ to observation spaces.
But ⋂→′(𝒩(𝑥)) =⋂→(𝒩(𝑥))∩𝑉≠∅ by assump-
tion.

⟨weak-cont⟩
Let 𝑥,𝑦 ∈𝑋. We show that if 𝑦 ∈𝑉 for all 𝑉⊇𝑓→(𝑈) and
𝑈∋𝑥, then 𝑦 ∈ 𝑓→(𝑥).

42

[𝑦 ∈𝑉 for all 𝑉⊇𝑓→(𝑈) and 𝑈∋𝑥]
We show that 𝑦 ∈ 𝑉 for all 𝑉 ∈ 𝜏 such that 𝑈 → 𝑉
for some 𝑈∋ 𝑥. It then follows that 𝑦 ∈⋂→(𝒩(𝑥)) =
𝑓→(𝑥).
[𝑈∋𝑥 and 𝑈→𝑉]

If 𝑧 ∈ 𝑈, then 𝑓→(𝑧) = ⋂→(𝒩(𝑧)) ⊆ ⋂→(𝑈) ⊆ 𝑉,
so 𝑉⊇𝑓→(𝑈), hence 𝑦 ∈𝑉 by assumption.

⟨𝑓→𝑓
=𝑓⟩

We have 𝑓→𝑓
(𝑥) =⋂→𝑓(𝒩(𝑥)) = 𝑓(𝑥) as shown above in ⟨→𝑓

is maximal⟩.
⟨→𝑓→=→⟩

We have 𝑈→𝑓→ 𝑉 iff 𝑓→(𝑈) ⊆ 𝑉 iff ⟨⋆⟩ ⋂→(𝒩(𝑥)) ⊆ 𝑉 for
all 𝑥 ∈𝑈. We show that ⟨⋆⟩ iff 𝑈→𝑉.
⟨𝑈→𝑉 implies ⋆⟩

If 𝑈→𝑉, then ⋂→(𝒩(𝑥)) ⊆⋂→(𝑈)⊆𝑉 for all 𝑥 ∈𝑈.
⟨⋆ implies 𝑈→𝑉⟩

If ⟨⋆⟩, let →′ =→∪{(𝑈,𝑉)}. Similarly to ⟨max-det⟩ in ⟨𝑓→
is a dynamical system⟩ above, we show that →′ is consistent,
from which 𝑈 → 𝑉 again follows: by ⟨⋆⟩, ⋂→′(𝒩(𝑥)) =
⋂→(𝒩(𝑥))∩𝑉=⋂→(𝒩(𝑥)) ≠∅.

2.3 ORDERED VIEW: OBSERVATION DOMAINS

We now move to the most abstract level, connecting to domain
theory. We first repeat the basic definitions of the theory (see [2]
for reference), aiming to define observation domains, and then
prove that they are equivalent to the structures we have seen
so far. Lastly, we translate the notion of a consistent relation
from Section 2.2, where they corresponded to approximations

43

of dynamical systems, into the domain-theoretic setting. These
relations will constitute the morphisms in the category of domains
we study in Chapter 3.

TOWARDS A DEFINITION

Domain theory deals with certain types of ordered sets.

DEFINITION: PARTIAL ORDER. A partially ordered set (po-
set) is a pair (𝑃,⊑) with 𝑃 a set and ⊑⊆𝑃×𝑃 a binary relation
such that

⟨refl⟩ 𝑝⊑ 𝑝 for all 𝑝∈𝑃;
⟨trans⟩ if 𝑝⊑ 𝑞 and 𝑞⊑ 𝑟, then 𝑝⊑ 𝑟; and

⟨antisym⟩ if 𝑝⊑ 𝑞 and 𝑞⊑ 𝑝, then 𝑝= 𝑞.

In domain theory, the elements of a poset 𝑃 are typically inter-
preted to be partial descriptions of elements of a type, with 𝑝⊏ 𝑞
signifying that both 𝑝 and 𝑞 are valid partial descriptions of the
same element, but 𝑞 containing strictly more information than 𝑝.
Often, the elements of the type are identified with the maximal
elements of 𝑃. A subset of 𝑃 then represents a set of such descrip-
tions, and if it has a supremum in 𝑃, then it can be said that these
descriptions can be ‘‘unified’’ under a least specific description
extending all of them. That is, there exists an element to which
all the descriptions in the set apply, and there is a canonical way
of obtaining a description containing precisely the information
contained in all the descriptions from the set.

DEFINITION: SUPREMUM. Let (𝑃,⊑) be a poset and 𝐴 ⊆ 𝑃.
An element 𝑝∈𝑃 is a supremum of 𝐴, denoted ⨆𝐴, if
⟨ub⟩ 𝑎 ⊑ 𝑝 for all 𝑎 ∈𝐴 (i.e. 𝑝 is an upper bound of 𝐴), and

⟨lub⟩ 𝑝⊑ 𝑞 for all upper bounds 𝑞 of 𝐴.

A central idea is that ‘‘complex’’ descriptions containing an infinite
amount of information can be obtained as a ‘‘limit’’ of ‘‘finitary’’

44

ones. Here, the idea of a ‘‘limit’’ is realised as the supremum of a
set of increasingly complex descriptions. ‘‘Increasingly complex’’
means that the set of descriptions contains for each finite subset
of itself a description unifying all descriptions in the subset. This
is formalised via the notion of a directed set.

DEFINITION: DIRECTED SET. Let (𝑃,⊑) be a poset. A set
𝐷⊆𝑃 is called directed if for all finite 𝐹⊆𝐷, there exists a 𝑑 ∈𝐷
such that 𝑝⊑ 𝑑 for all 𝑝∈𝐹.

Equivalently, a set is directed if it is non-empty and every pair of
elements has an upper bound in the set. Now how can we make
the difference between finitary and non-finitary elements precise?
In short, a complex element can be obtained as the supremum
of an infinite amount of descriptions not already including the
element itself. The appropriate technical definition is as follows.

DEFINITION: FINITE ELEMENT. Let (𝑃,⊑) be a poset. An
element 𝑝∈𝑃 is called finite if for every directed set 𝐷 that has
a supremum ⨆𝐷 with 𝑝⊑⨆𝐷, there is a 𝑑 ∈𝐷 such that 𝑝⊑ 𝑑.

Note that a finite directed set always has a maximum, so for an
element to be infinite, it has to be approximated by an infinite
directed set not containing it. We want it to be the case that every
infinite element is approximable in this way.

DEFINITION: ALGEBRAICITY. A poset (𝑃,⊑) is algebraic if
for all 𝑝∈𝑃, there is a directed set 𝐷⊆𝑃 of finite elements with
supremum 𝑝.

For convenience, we also demand the converse to be true: any set
of observations of which all finite subsets are consistent (have an
upper bound) are actually parts of a description of an existing
point.

45

DEFINITION: DCPO. A poset (𝑃,⊑) is called a directed-comp-
lete partial order (dcpo) if it satisfies ⟨dir-comp⟩ if 𝐷⊆ 𝑃 is a
directed set, then 𝐷 has a supremum ⨆𝐷.

Directed-completeness will turn out to be the domain-theoretic
analogue of ⟨fip-ne⟩. Including this property may be seen as prag-
matically motivated: what one is interested in is the approximation
of ‘‘real’’ elements using finitary elements. Algebraicity is the rel-
evant property here. Directed-completeness is the converse, and
demanding it simplifies the technical treatment significantly since
the existence of suprema of directed sets can then just be assumed
rather than added as a precondition to each statement.

We can also motivate it from the idea of finitary observations:
each directed-complete algebraic poset, is fully characterised by
its finite elements. The domain can be recovered from the set of
finite elements via ideal completion, i. e. identifying each directed
down-set of finite elements with an element of a domain. Thus if we
want to work with observation spaces not satisfying ⟨fip-ne⟩, we
can add ‘‘imagined’’ points to the space this way before applying
our theory.

A related criterion of ‘‘completeness’’ of a poset rests on the follow-
ing idea: a set of descriptions with an upper bound is consistent,
so if the poset has ‘‘enough’’ descriptions, it should also contain a
least description unifying the bounded set.

DEFINITION: BOUNDED-COMPLETENESS. A poset (𝑃,⊑) is
called bounded-complete if it satisfies ⟨bnd-comp⟩ if 𝐵 ⊆ 𝑃 is a
bounded set (i.e. there is a 𝑝 ∈ 𝑃 such that 𝑝⊒ 𝑏 for all 𝑏 ∈ 𝐵),
then 𝐵 has a supremum ⨆𝐵.

Now for any observation system (𝑃,𝜎), the set 𝜎 forms a poset
under ⊆. We will see that it has all of the aforementioned prop-
erties, but it even has some more: crucially, the singletons in 𝜎
are atoms, and every element of 𝜎 is a union of these atoms in a

46

unique way. We need to translate this into the language of domain
theory in order to establish an equivalence between observation
systems and certain domains.

DEFINITION: ATOMISTIC ORDER. Let (𝑃,⊑) be a partial or-
der. An element 𝑝∈𝑃 is called positive if there exists an 𝑚∈𝑃
such that 𝑚⊑𝑝 but 𝑚≠𝑝. An element 𝑎 ∈𝑃 is called an atom
if 𝑎 is positive and for all positive 𝑏 ∈ 𝑃 with 𝑏 ⊑ 𝑎 also 𝑏 = 𝑎.
For 𝑝∈𝑃, denote the set of atoms 𝑎 ∈𝑃 with 𝑎⊑ 𝑝 by At𝑝. The
poset 𝑃 is called atomistic if 𝑝=⨆At𝑝 for every 𝑝∈𝑃.

In an atomistic order, each description can be ‘‘composed’’ of
basic descriptions which cannot be decomposed, namely the atoms.
Clearly, the role of the atoms in the poset of an observation system
is played by the singleton properties. Atomisticity alone is not
enough to characterise the sorts of posets arising from observation
systems. It should also be the case that different sets of basic
observations are glued together to different unified descriptions.
That is, the function mapping each set of atoms with a supremum
to their supremum should be injective (note that atomisticity
is equivalent to stating that it is surjective with respect to 𝑃).
We denote the set of sets of atoms with a supremum by 𝒞(At𝑃),
analogously to the consistent families in observation spaces.

DEFINITION: NUCLEARITY. A poset (𝑃,⊑) is called nuclear
if the function ⨆:𝒞(At𝑃)→𝑃 with 𝐴↦⨆𝐴 is injective.

Let us clarify the relationship between atoms and finite elements.
First, note that in a nuclear atomistic poset, we have At⨆𝑆 =
At𝑆 for all 𝑆⊆𝑃 with a supremum: using atomisticity and the
associativity of suprema, we have

⨆At⨆𝑆=⨆𝑆= ⨆
𝑝∈𝑆

𝑝= ⨆
𝑝∈𝑆

⨆At𝑝=⨆ ⋃
𝑝∈𝑆

At𝑝=⨆At𝑆,

and then the claim follows by nuclearity.

47

PROPOSITION 2.3.1. In every nuclear atomistic partial order ⟨napo:at-fin⟩
(𝑃,⊑), every atom is a finite element.
Proof. Let 𝑎 ∈ At𝑃 and suppose 𝐷⊆𝑃 is directed with supre-
mum ⨆𝐷⊒𝑎. Then, 𝑎 ∈At⨆𝐷=At𝐷=⋃𝑑∈𝐷At𝑑, so 𝑎 ∈At𝑑
for some 𝑑 ∈𝐷, hence 𝑎⊑ 𝑑.

PROPOSITION 2.3.2. In every nuclear atomistic partial order ⟨napo:finat-fin⟩
(𝑃,⊑), if for 𝑝∈𝑃 the set At𝑝 is finite, then 𝑝 is a finite element.
Proof. Let 𝑝 ∈ 𝑃 such that At𝑝 is finite. We show that 𝑝 is a
finite element. Thus let 𝐷 be a directed set with 𝑝⊑⨆𝐷. For each
𝑎 ∈ At𝑝, there must then exist a 𝑑𝑎 ∈ 𝐷 such that 𝑎 ⊑ 𝑑𝑎 since
atoms are finite by ⟨napo:at-fin⟩. Because At𝑝 is finite, {𝑑𝑎 ∣ 𝑎 ∈
At𝑝} is also finite and thus by directedness has an upper bound
𝑑 ∈ 𝐷. Then At𝑝⊆ At𝑑, so 𝑝=⨆At𝑝⊑⨆At𝑑 = 𝑑 as required,
by atomisticity and monotonicity of the operation sending a set
to its supremum.

PROPOSITION 2.3.3. Every nuclear atomistic bounded-comp- ⟨nabcpo-alg⟩
lete partial order (𝑃,⊑) is algebraic.
Proof. If 𝑝∈𝑃, then At𝑝 is bounded, and then so is every sub-
set 𝐴⊆At𝑝. By bounded-completeness, each finite such 𝐴 has a
supremum ⨆𝐴. If 𝐴,𝐴′ ⊆ At𝑝 are finite, then so is 𝐴∪𝐴′, and
⨆𝐴,⨆𝐴′ ⊑⨆(𝐴∪𝐴′). Thus the set 𝑃𝑝 ≔{⨆𝐴 ∣ 𝐴⊆fin At𝑝} is di-
rected. It contains exclusively finite elements by ⟨napo:finat-fin⟩
since At⨆𝐴=𝐴 by nuclearity, which is finite for all 𝐴⊆fin At𝑝. Fi-
nally, its supremum is 𝑝: it is an upper bound since each 𝐴⊆fin At𝑝
has 𝑝⊒ 𝑎 for all 𝑎 ∈ 𝐴, so ⨆𝐴⊑ 𝑝 by ⟨lub⟩ of ⨆𝐴, and any up-
per bound 𝑝′ of 𝑃𝑝 needs to have 𝑝′ ⊒⨆𝐴 for all 𝐴⊆fin At𝑝 by
definition, in particular 𝑝′ ⊒𝑎 for all 𝑎 ∈At𝑝, so 𝑝′ ⊒⨆At𝑝= 𝑝
by atomisticity.

Note that in a nuclear atomistic bounded-complete poset, the
finite elements are then precisely those 𝑝∈𝑃 with At𝑝 finite: if
At𝑝 is infinite, we can construct a directed set with supremum
𝑝 as in the statement ⟨nabcpo-alg⟩ just shown, but none of its

48

elements can be equal to 𝑝 since the set of atoms below each of
them is finite, and ⨆ is injective.

We are now ready to define the kind of domains we are interested
in.

DEFINITION: OBSERVATION DOMAIN. An observation do-
main (𝑃,⊑) is a nuclear atomistic bounded-complete directed-
complete partial order.

EQUIVALENCE WITH OBSERVATION SYSTEMS

We show how to turn observation systems into observation domains
and vice versa.

PROPOSITION 2.3.4. If (𝑃,𝜎) is a subset system, then (𝜎,⊆) ⟨subs-nabcpo⟩
is a nuclear atomistic bounded-complete poset.
Proof. First, note that any family of subsets ordered by inclusion
is a poset.
⟨bounded-completeness⟩

Let 𝐵⊆𝜎 be bounded with bound 𝑈∈𝜎. By definition, ⋃𝐵⊆
𝑈, hence ⋃𝐵∈𝜎 by ⟨⊆-cl⟩. This is the supremum of 𝐵, since
it is contained in any set containing all sets in 𝐵.

For each 𝑆 ∈ 𝜎, also {𝑝} ∈ 𝜎 for each 𝑝 ∈ 𝑆, by ⟨⊆-cl⟩. Thus,
the singletons {𝑝} ∈ 𝜎 are precisely the atoms of (𝜎,⊆), and
At𝑆= {{𝑝} ∣ 𝑝 ∈ 𝑆} for each 𝑆∈𝜎.
⟨nuclearity⟩

If 𝐴,𝐵⊆At𝜎 are distinct sets of atoms with suprema ⋃𝐴,⋃𝐵,
say 𝐴 ∋ {𝑎} ∉ 𝐵, then ⋃𝐴 ∋ 𝑎 ∉ ⋃𝐵, so their suprema are
different.

⟨atomisticity⟩
Every 𝑆 ∈ 𝜎 is the union of its singletons, hence 𝑆 = ⋃At𝑆.

49

Thus (𝜎,⊆) is also algebraic by ⟨nabcpo-alg⟩, and then using
⟨napo:finat-fin⟩, it follows that finite elements are precisely those
that contain finitely many singletons, i.e. that are finite as sets.

PROPOSITION 2.3.5. For every observation system (𝑃,𝜎), the ⟨sys-dom⟩
poset (𝜎,⊆) is an observation domain.
Proof. By ⟨subs-nabcpo⟩, (𝜎,⊆) is a nuclear atomistic bounded-
complete partial order. It remains to show directed-completeness.
Thus let 𝐷 ⊆ 𝜎 be directed. It suffices to show that ⋃𝐷 ∈ 𝜎.
Let 𝐹 ⊆ ⋃𝐷 be finite. Each 𝑝 ∈ 𝐹 is contained in some 𝑆𝑝 ∈ 𝐷
(by definition of ⋃𝐷). As {𝑆𝑝 ∣ 𝑝 ∈ 𝐹} is finite since 𝐹 is, by
directedness, one obtains an 𝑆 ∈ 𝐷 with 𝑆𝑝 ⊆ 𝑆 for all 𝑝 ∈ 𝐹,
hence 𝐹⊆⋃𝑆𝑝 ⊆𝑆. By ⟨⊆-cl⟩, 𝐹∈𝜎. Thus each finite subset of
⋃𝐷 is in 𝜎, hence ⋃𝐷∈𝜎 by ⟨fin-compat⟩.

Now let (𝐷,⊑) be an observation domain. Naturally, we would like
to consider it as an observation system with the set of properties
given by At𝐷. The consistent elements are then those 𝐴⊆At𝐷
that have a supremum in 𝐷.

PROPOSITION 2.3.6. Let (𝐷,⊑) be a bounded-complete dcpo. ⟨bcdcpo-sys⟩
Then, (At𝐷,𝒞(At𝐷)) is an observation system.
Proof.
⟨⊆-cl⟩

If 𝑆′ ⊆𝑆∈ 𝒞(At𝐷), then by definition ⨆𝑆=𝑑 for some 𝑑 ∈𝐷.
Then 𝑆′ ⊆𝑆 is a set of atoms bounded by 𝑑, so by ⟨bnd-comp⟩
it has a supremum 𝑑′. Thus 𝑆′ ∈ 𝒞(At𝐷).

⟨fin-compat⟩
If for some 𝐼 ⊆At𝐷, each finite subset of𝐹⊆ 𝐼 is in 𝒞(At𝐷), i. e.
⨆𝐹=𝑑𝐹 for some 𝑑𝐹 ∈𝐷, then the set {𝑑𝐹 ∣ 𝐹 ⊆ 𝐼} is directed:
for finite 𝐹,𝐹′ ⊆ 𝐼, also 𝐹∪𝐹′ ⊆ 𝐼 is finite, so there exists a 𝑑∪
such that 𝑑∪ =⨆(𝐹∪𝐹′) ⊒ ⨆𝐹,⨆𝐹′ = 𝑑𝐹,𝑑𝐹′. Thus the set
has a supremum 𝑑 by ⟨dir-comp⟩, and At𝑑⊇⋃𝐹⊆𝐼At𝑑𝐹 = 𝐼,
so 𝐼 ∈ 𝒞(At𝐷) by ⟨⊆-cl⟩ as just shown.

50

Say that two domains 𝐷,𝐷′ are isomorphic if there exists an order-
preserving and -reflecting bijection between them, i.e. a bijection
𝑏 :𝐷→𝐷′ such that 𝑝⊑ 𝑞 iff 𝑏(𝑝) ⊑ 𝑏(𝑞).

PROPOSITION 2.3.7. For all observation domains (𝐷,⊑), we ⟨dom-sys-dom⟩
have (𝐷,⊑) ≅ (𝒞(At𝐷),⊆).
Proof. Consider the map 𝑑 ↦ At𝑑 for all 𝑑 ∈ 𝐷. This is well-
defined because ⨆At𝑑= 𝑑 by atomisticity, so At𝑑 ∈ 𝒞(At𝐷).
⟨ injectivity⟩

If At𝑑=At𝑑′, then by atomisticity 𝑑=⨆At𝑑=⨆At𝑑′ =𝑑′.
⟨surjectivity⟩

If 𝐴⊆At𝐷 has a supremum ⨆𝐴≕𝑑∈𝐷, then by atomisticity
⨆At𝑑= 𝑑=⨆𝐴, and thus by nuclearity At𝑑=𝐴.

⟨preservation of order⟩
If 𝑑⊑ 𝑑′ in 𝐷, then At𝑑⊆At𝑑′ by transitivity of ⊑.

⟨reflection of order⟩
If 𝐴⊆𝐴′ in 𝒞(At𝐷), then ⨆𝐴⊑⨆𝐴′ for their preimages since
the latter is also an upper bound of 𝐴.

There is again a small obstacle in showing the analogous state-
ment for observation systems: we did not require that all 𝑝 ∈ 𝑃
actually occur in a set in 𝜎, and these disappear in passing to the
corresponding observation domain. We can fix this by restricting
the equivalence to those (𝑃,𝜎) with ⟨all-props-cons⟩.

PROPOSITION 2.3.8. For all observation systems (𝑃,𝜎) satis- ⟨apc:dom-sys-dom⟩
fying ⟨all-props-cons⟩, we have (𝑃,𝜎) ≅ (At𝜎,𝒞(At𝜎)).
Proof. Consider the map 𝑝↦{𝑝} for all 𝑝∈𝑃. This well-defined
by ⟨all-props-cons⟩.
⟨bijectivity⟩

By ⟨⊆-cl⟩, the atoms of 𝜎 are precisely the singletons, and by
⟨all-props-cons⟩, these are precisely the sets {𝑝} for 𝑝∈𝑃.

51

⟨preservation of consistency⟩
For each 𝑆 ∈ 𝜎, the image of 𝑆 under the map is the set
{{𝑠} ∣ 𝑠 ∈ 𝑆}, which has 𝑆 itself as a supremum in (𝜎,⊆), thus
is in 𝒞(At𝜎).

⟨reflection of consistency⟩
Every 𝑆′ ∈ 𝒞(At𝜎) is a set of singletons from a set 𝑆⊆𝑃, with
a supremum in (𝜎,⊆), which must then be ⋃𝑆′ =𝑆 by ⟨⊆-cl⟩,
so 𝑆∈𝜎.

Notice how the correspondence to observation systems offers an-
other characterisation of observation domains. Namely, for any
𝑑 ∈ 𝐷 in an observation domain, the set ↓𝑑 ≔ {𝑑′ ∈ 𝐷 ∣ 𝑑′ ⊑ 𝑑}
is isomorphic to the powerset 𝒫(At𝑑) ordered by inclusion, since
it includes a unique join for every subset of atoms. Since pow-
erset lattices are equivalently complete atomic Boolean algebras
(CABAs) [37, Theorem 2.4], observation domains are just dcpos
where the down-set of each element is a CABA.° In analogy to °Instead of requiring a dcpo, we

could also just require a poset in
which each element has a maximal
element above it.

how L-domains are dcpos where each down-set of an element is a
complete lattice [16], we could thus refer to observation domains
as CABA-domains.

TRANSLATING CONSISTENT RELATIONS

In Chapter 3, we want to study the structures presented in this
chapter from a categorical perspective. The objects will be obser-
vation domains as described here, and as morphisms we generalise
the notion of a consistent relation on an observation space to a re-
lation between potentially different observation domains. This way,
we obtain a category where the objects correspond to observation
spaces/systems/domains, and the approximations to dynamical
systems on these spaces are precisely the endomorphisms in this
category.

A consistent set of properties on an observation space corresponds
to a set of atoms with a supremum in the equivalent domain, so

52

the notion of a maximally consistent relation on an observation
space is translated into the domain-theoretic setting as a relation
on the atoms of the domain such that the image of any subset of
atoms with a supremum in the domain also has a supremum in
the codomain.

DEFINITION: DOMAIN MAPPING. Let (𝐷1,⊑1) and (𝐷2,⊑2)
be observation domains and →⊆At𝐷1×At𝐷2 a relation. Then
→ is called a domain mapping from 𝐷1 to 𝐷2 if 𝑆 ∈ 𝒞(At𝐷1)
implies →(𝑆) ∈ 𝒞(At𝐷2), for all 𝑆⊆At𝐷1.

We need to take some care when converting between observa-
tion spaces and domains: an observation domain is equivalent
to an ⟨all-props-cons⟩-observation system, while an observa-
tion space is equivalent to a separated observation system, so
⟨all-props-cons⟩-observation spaces (satisfying 𝑈 ≠ ∅ for all
𝑈∈ 𝜏) are equivalent to separated observation domains (satisfying
the condition that max:At𝐷→𝒫(max𝐷) is injective).

Let us briefly convince ourselves that we can indeed translate the
concept of a maximally consistent relation without problems. A
consistent relation on an observation space may not relate any
inhabited sets to the empty set, and the empty set may itself
be related to any property, so a maximally consistent relation
relates the empty set to everything. We can therefore safely pass
from a maximally consistent relation on an observation space to
an equivalent one on an ⟨all-props-cons⟩-observation space by
ignoring the behaviour with respect to the empty set. On the other
side, a maximal domain mapping as just described needs to relate
‘‘equivalent’’ atoms (in the sense that they have identical sets of
maximal elements above them) to exactly the same sets of atoms,
so we can separate the domain (quotienting by equivalent atoms)
without losing information on the behaviour of the original relation.
Thus maximal domain mappings correspond to dynamical systems
as defined in Section 2.2.

53

In the remainder of this section, let us look in a bit more detail at
some properties of domain mappings. First, some simple examples.

EXAMPLES: DOMAIN MAPPINGS. Let 𝐷1 and 𝐷2 be observa-
tion domains.
• The empty relation ∅⊆At𝐷1×At𝐷2 is a domain mapping if° °and almost only if: the exception

to the exception is if 𝐷1 is also
empty; then the empty relation is
again a domain mapping

𝐷2 ≠∅: the image of any set is empty, which has a supremum
by ⟨bnd-comp⟩ if 𝐷2 is non-empty.

• Any relation 𝐴×{𝑏} ⊆At𝐷1×At𝐷2 is a domain mapping: a
consistent set may or may not have an intersection with 𝐴.
If it does, then the image is just {𝑏}, which is consistent like
any atom, if it does not, then the image is empty, which is
consistent because 𝑏 ∈𝐷2, so 𝐷2 ≠∅.

• Let 𝐷1,𝐷2 be domains and suppose 𝐷2 is a CABA. Then, every
relation →⊆At𝐷1×At𝐷2 is a domain mapping, because every
set of atoms in 𝐷2 is consistent by completeness.

• Let 𝐷1,𝐷2 be domains and suppose 𝐷1 is a ‘‘flat’’ domain, i. e.
of the form 𝐷∪{⊥} for some set 𝐷, with the order ⊥⊑𝑑 for
all 𝑑 ∈ 𝐷 and all 𝑑,𝑑′ ∈ 𝐷 unordered. Then, a relation → ⊆
At𝐷1×At𝐷2 is a domain mapping iff for all atoms 𝑎 ∈At𝐷1,
the set →(𝑎) is consistent. This is because the only non-empty
consistent sets of atoms of 𝐷1 are the singleton atoms.

Every relation → ⊆ At𝐷1 ×At𝐷2 induces an image function
𝒫(At𝐷1)→𝒫(At𝐷2) sending each subset of 𝐷1 to its set of suc-
cessors under →. It is well-known that the functions 𝑓:𝒫(At𝐷1)→
𝒫(At𝐷2) arising this way from a relation are precisely those that
preserves unions, i.e. 𝑓(⋃𝑆𝑖) =⋃𝑓(𝑆𝑖).° Because a domain map- °It is clear that the image function

preserves unions, and conversely, if
a function between powersets pre-
serves unions, then we can define
a relation relating each element
to the value of the function at its
singleton, and then the function
will be the image function of the
relation by preservation of unions.

ping is a relation that sends consistent sets to consistent sets, its
image function is a function 𝒞(At𝐷1) → 𝒞(At𝐷2) that preserves
unions, and conversely every such function comes from a relation
sending consistent sets to consistent sets, i. e. a domain mapping.

54

Note that since every set is a union of its singletons, we can equiv-
alently demand that the function send sets to the union of the
images of its singletons, i.e. 𝑓(𝑆) =⋃𝑠∈𝑆𝑓(𝑠).

Now due to atomisticity and nuclearity, the consistent sets of atoms
of an observation domain correspond bijectively to its elements, so
a domain mapping →⊆At𝐷1×At𝐷2 also gives rise to a function
𝐷1 →𝐷2 via 𝑥↦⨆→(At𝑥). In working with observation domains,
we will in fact identify elements with the consistent sets of atoms
below them, and thus write →(𝑥) instead of ⨆→(At𝑥). With the
above, a function 𝑓:𝐷1 →𝐷2 then comes from a domain mapping
iff 𝑓 preserves existing joins of atoms (and arbitrary existing joins
by extension), i. e. 𝑓(𝑥) =⨆𝑓(At𝑥). This motivates the following.

DEFINITION: DOMAIN MAPPING (ALTERNATIVE). Let
(𝐷1,⊑1) and (𝐷2,⊑2) be observation domains. A function 𝑓:𝐷1 →
𝐷2 is a domain mapping if for all 𝑥 ∈𝐷1, the set 𝑓(At𝑥) has a
supremum in 𝐷2, and 𝑓(𝑥) =⨆𝑓(At𝑥).

As we have argued, domain mappings in this sense ‘‘are’’ precisely
domain mappings in the original sense, and we will thus variously
treat domain mappings as relations → on atoms or functions 𝑓
on elements, depending on the desired emphasis. There is another
simple condition to recognise functions 𝐷1 →𝐷2 that are domain
mappings. First, note that every such function is monotone: if
𝑑⊑ 𝑑′, then At𝑑⊆At𝑑′, so →(𝑑)⊑→(𝑑′).

PROPOSITION 2.3.9. A monotone function 𝑓 : 𝐷1 → 𝐷2 be- ⟨dm-at-reflect⟩
tween observation domains is a domain mapping if and only if for
each 𝑥 ∈ 𝐷1 and 𝑏 ∈ At𝑓(𝑥), there exists an 𝑎 ∈ At𝑥 such that
𝑏 ∈At𝑓(𝑎).
Proof.
⟨⇒⟩

If 𝑓 is a domain mapping and 𝑏 ∈At𝑓(𝑥), then since At𝑓(𝑥) =
At⨆𝑓(At𝑥) =At𝑓(At𝑥) =⋃𝑎∈At𝑥At𝑓(𝑎) by nuclearity and

55

atomisticity, there exists an 𝑎 ∈At𝑥 with 𝑏 ∈At𝑓(𝑎).
⟨⇐⟩

If each 𝑏 ∈ At𝑓(𝑥) has an 𝑎 ∈ At𝑥 with 𝑏 ∈ At𝑓(𝑎), then
At𝑓(𝑥) ⊆ ⋃𝑎∈At𝑥At𝑓(𝑎), with the reverse inclusion holding
by monotonicity, so

𝑓(𝑥) =⨆At𝑓(𝑥) = ⨆
𝑎∈At𝑥

At𝑓(𝑎) =⨆𝑓(At𝑥)

by atomisticity and nuclearity.

Let us conclude this chapter by connecting domain mappings to
the standard notion of morphisms between domains, given by
Scott-continuous functions.

DEFINITION: SCOTT-CONTINUITY. For two dcpos (𝐷1,⊑1)
and (𝐷2,⊑2), a function 𝑓 :𝐷1 →𝐷2 is called Scott-continuous if
for each directed 𝐷⊆𝐷1, the image 𝑓(𝐷) is directed (thus has a
supremum), and 𝑓(⨆𝐷)=⨆𝑓(𝐷).

Every domain mapping is Scott-continuous as a function on el-
ements, since it preserves arbitrary existing joins, in particular
directed ones.° The converse does not hold in general, since a °That the image 𝑓[𝐷] is directed fol-

lows since for all 𝑓(𝑑1),𝑓(𝑑2) with
𝑑1,𝑑2 ∈ 𝐷, we have 𝑑1,𝑑2 ⊑ 𝑑 for
some 𝑑 ∈ 𝐷 by directedness, so
𝑑1,𝑑2 ⊔𝑑 = 𝑑, and then 𝑓(𝑑1,2) ⊔
𝑓(𝑑) = 𝑓(𝑑) follows by preserva-
tion of joins, hence 𝑓(𝑑1,2) ⊑ 𝑓(𝑑).

Scott-continuous function need not preserve all joins. However,
since Scott-continuous functions are monotone, ⟨dm-at-reflect⟩
gives a necessary and sufficient condition for a Scott-continuous
functions to be a domain mapping. This characterisation is similar
to a characterisation of linear functions between coherent spaces
in linear logic, except that the latter require the existence of a
unique 𝑎 ∈At𝑥 with 𝑏 ∈At𝑓(𝑎) for all 𝑏 ∈At𝑓(𝑥) [8].

56

3 THE CATEGORY OF OBSERVATION
DOMAINS

We ultimately want to turn a category of types of dynamical sys-
tems into a type theory. In Chapter 2, we have demonstrated how
observation domains can be interpreted as structures containing
descriptions of points of certain spaces, where each ‘‘real’’ point
(a maximal element in the domain) can be seen as the ‘‘limit’’
of increasingly precise finitary descriptions, and how dynamical
systems can be seen as relations on these domains. In this chap-
ter, we study the category of observation domains, determining
properties that will allow us to straightforwardly derive a type
theory from it. First, we fix the definitions of the notions required
for forming a category.

DEFINITION: DOMAIN. A domain is a non-empty bounded-
complete, directed-complete partial order (𝐷,⊑) satisfying atom-
isticity and nuclearity: the function from 𝒞(At𝐷) to 𝐷 sending
each 𝐴⊆At𝐷 with a supremum in 𝐷 to its supremum is bijective.

This is what we previously called an ‘‘observation domain’’, except
for the additional requirement that it be non-empty. This amounts
to excluding the observation system (∅,∅) (while still allowing
(∅,{∅})), which does not seem to make a big difference for our
conceptual setup, but it makes the theory we develop here go

57

more smoothly. It also means that every domain 𝐷 has a bottom
element (by bounded-completeness, with the empty set being
bounded since 𝐷 is non-empty), which we will denote by ⊥𝐷 or
just ⊥. The notion of a domain mapping is unaffected by this
restriction.

DEFINITION: DOMAIN MAPPING. Let (𝐷1,⊑1) and (𝐷2,⊑2)
be domains and →⊆At𝐷1×At𝐷2 a relation. Then → is called a
domain mapping from 𝐷1 to 𝐷2 if 𝑆∈ 𝒞(At𝐷1) implies →(𝑆) ∈
𝒞(At𝐷2).

Two domain mappings 𝐷1 →𝑓 𝐷2 and 𝐷2 →𝑔 𝐷3 can be composed
by the usual composition of relations, i.e. 𝑎 (→𝑓 ;→𝑔) 𝑏 iff there
exists a 𝑧 ∈ 𝐷2 such that 𝑎 →𝑓 𝑧 →𝑔 𝑏. It is easy to see that
→𝑓 ; →𝑔 is a domain mapping from 𝐷1 to 𝐷3. Furthermore, for
each domain 𝐷 the relation →id𝐷 ≔{𝑎→𝑎 ∣ 𝑎 ∈At𝐷} is a domain
mapping.° Clearly composition is associative and id𝐷 acts as a °Note that we wrote 𝑎→𝑎 for the

pair (𝑎,𝑎); this kind of notation
will be helpful later in this docu-
ment since we have to deal with
many different structures involving
pairs of elements.

neutral element for it. Thus domains and domain mappings form
a category.

DEFINITION: CATEGORY OF OBSERVATION DOMAINS.
The category 𝖮𝖻𝗌 is the category of domains with domain mappings
between them.

We will frequently consider subcategories of 𝖮𝖻𝗌 consisting of
special types of domain mappings. Call a domain mapping →⊆
At𝐷1×At𝐷2 total if for all 𝑎 ∈ At𝐷1 there exists a 𝑏 ∈ At𝐷2
such that 𝑎→ 𝑏, and univalent if whenever 𝑎→ 𝑏 and 𝑎→ 𝑏′ for
some 𝑎 ∈At𝐷1 and 𝑏,𝑏′ ∈At𝐷2, then 𝑏 = 𝑏′. An important class
of morphisms is given by those that are both total and univalent.

DEFINITION: ATOM-PRESERVATION. A domain mapping is
called atom-preserving if it is total and univalent.

Notice that totality is equivalent to ‘‘→(𝑥) ≠ ⊥ for all 𝑥 ≠ ⊥’’,
and univalence is equivalent to ‘‘→(𝑎) ∈ At𝐷2 or →(𝑎) = ⊥ for

58

all 𝑎 ∈ At𝐷1’’. Thus an atom-preserving domain mapping maps
each atom onto an atom, i.e. it is simply a function on the sets of
atoms that preserves consistent sets of atoms.

Denote by 𝖮𝖻𝗌∗ the wide° subcategory of 𝖮𝖻𝗌 with domains and °containing all the objects but pos-
sibly only some of the arrowsatom-preserving domain mappings. This is a category since identi-

ties are atom-preserving and so is the composite of atom-preserving
maps.

Other categories we work with include the category 𝖲𝖾𝗍 of sets
and functions, 𝖱𝖾𝗅 of sets and binary relations between them, as
well as their full° subcategories 𝖥𝗂𝗇𝖲𝖾𝗍 and 𝖥𝗂𝗇𝖱𝖾𝗅 of finite sets, and °containing possibly only some of

the same objects but all arrows
between those objects

the full subcategories 𝖥𝗂𝗇𝖮𝖻𝗌 and 𝖥𝗂𝗇𝖮𝖻𝗌∗ of 𝖥𝗂𝗇𝖮𝖻𝗌 and 𝖥𝗂𝗇𝖮𝖻𝗌∗,
respectively, of domains with finitely many elements.

Our categorical investigations will proceed as follows. Section 3.1
performs some preliminary work, representing the categories of
domains as categories of certain presheaves, which will help to
simplify the further treatment. Then, in Section 3.2, we study the
different universal constructions the category admits, including
limits and colimits as well as the closed monoidal structure of 𝖮𝖻𝗌.
Finally, in Section 3.3, we characterise the category 𝖥𝗂𝗇𝖮𝖻𝗌, among
others, fully in category-theoretic language by giving a universal
property it satisfies, in terms of a free construction. This will be
central to establishing completeness of a type theory derived from
this category in Chapter 4.

3.1 DOMAINS AS PRESHEAVES

As we have discussed in Section 2.3, a domain is just a (now non- • • •

• • •

•

empty) poset where each element has a maximal element above it
and the down-set of each element is a complete atomic Boolean
algebra. This means that every domain is fully characterised by the
CABAs it ‘‘contains’’. Consider the example on the right. It shows

59

a simple domain with three atoms and three maximal elements,
each of which is a two-atom CABA containing a different pair • • •

• • • • •

•

of atoms. But there are other domains that have three two-atom
CABAs, like the one in the margin now. There is more relevant
information here, namely about which atoms are contained in
which CABA.

In the categorical perspective on sets, we cannot ‘‘look inside’’
them to see what the names of their elements are, so sets with
the same cardinality are indistinguishable to us. However, we can
still specify how different sets relate to each other, via functions.
This way, we can talk about the relative containment between
the sets of atoms of different CABAs that ‘‘fit’’ into our example
domain Consider the diagram on the right. This represents all the

two-atom {•,•} {•,•} {•,•}

one-atom {•} {•} {•}

zero-atom ∅

information contained in the domain, even though the elements
of the sets are ‘‘anonymous’’, because we still know that there
are three atoms, three two-atom consistent sets, and the inclusion
functions tell us which atom is part of which two-atom set. Note
that the diagram looks just like the domain with elements rewritten
as sets of atoms like in the equivalent observation system.

Now instead of thinking of the singleton sets in this diagram as a
singleton containing an atom of the domain, we can think of each
such set as a ‘‘way’’ in which a one-atom CABA is contained in the
domain, or more precisely as an atom-preserving map from a one-
atom CABA into the domain. Similarly, the sets with two atoms
can be seen as atom-preserving maps from a two-atom CABA into
the domain. This way, a domain is fully characterised by the sets
of atom-preserving maps from all 𝑛-atom CABAs into it, together
with functions like in the previous diagram that specify how these
different ways of mapping CABAs relate to each other. We are
now very close to the following concept from category theory.

DEFINITION: PRESHEAF. A presheaf on a category 𝖢 is a func- A functor 𝐹:𝖢 → 𝖣 is an assign-
ment of objects in 𝖢 to objects in
𝖣 and of morphisms 𝑓 ∈ 𝖢(𝑐,𝑑) to
morphisms 𝐹(𝑓) ∈ 𝖣(𝐹(𝑐),𝐹(𝑑))
that preserves identities and com-
posites, i.e. 𝐹(id𝑐) = id𝐹(𝑐) and
𝐹(𝑓 ;𝑔) =𝐹(𝑓) ;𝐹(𝑔).

tor 𝐹:𝖢op → 𝖲𝖾𝗍 from the opposite category of 𝖢 into 𝖲𝖾𝗍. The
category of presheaves on 𝖢 is the functor category [𝖢op,𝖲𝖾𝗍],

60

with the presheaves on 𝖢 as objects and natural transformations
between them as morphisms.

Any object 𝑐 of 𝖢 gives rise to a presheaf 𝖢(−,𝑐) sending 𝑑 ∈ A natural transformation 𝛼 :𝐹→
𝐺 between functors is a function
assigning to each 𝑐 ∈ 𝖢 a morphism
𝛼(𝑐) ∈ 𝖣(𝐹(𝑐),𝐺(𝑐)) such that for
all 𝑓 ∈ 𝖢(𝑐,𝑑), the diagram

𝐹(𝑐) 𝐺(𝑐)

𝐹(𝑑) 𝐺(𝑑)

𝛼(𝑐)

𝐹(𝑓) 𝐺(𝑓)

𝛼(𝑑)

commutes, i. e. 𝐹(𝑓) ;𝛼(𝑑) = 𝛼(𝑐) ;
𝐺(𝑓).

𝖢 to the set 𝖢(𝑑,𝑐) of morphisms from 𝑑 to 𝑐 and 𝑓 : 𝑑 → 𝑑′
to its precomposition function 𝑓 ; − (which is a function from
𝖢(𝑑′,𝑐) to 𝖢(𝑑,𝑐), with 𝑔↦𝑓;𝑔). Such a presheaf captures all the
information for how objects in 𝖢 can be mapped into 𝑐, which in
fact characterises 𝑐 up to isomorphism, by the Yoneda lemma [23].

DEFINITION: REPRESENTABLE PRESHEAF. A presheaf is
called representable if it is naturally isomorphic to 𝖢(−,𝑐) for
some 𝑐 ∈ 𝖢. The functor よ𝖢 :𝖢 → [𝖢op,𝖲𝖾𝗍] sending a 𝑐 ∈ 𝖢 to
𝖢(−,𝑐) and 𝑓 : 𝑐→ 𝑑 to the natural transformation with compo-
nents −;𝑓 is called the Yoneda embedding of 𝖢 into its category
of presheaves.

The Yoneda lemma implies that the Yoneda embedding is indeed
an embedding, i.e. full and faithful, and so 𝖢 is equivalent to its
image under よ. Now a general presheaf on 𝖢 can be seen as an
‘‘idealised’’ element of 𝖢, because it contains information on how
elements of 𝖢 can be mapped into it, even though there might not
be an actual object in 𝖢 with these specified relationships. More
precisely, the Yoneda lemma states that there is a bijection between
elements of the set 𝐹(𝑐) for 𝐹 a presheaf on 𝖢 and 𝑐 ∈ 𝖢, and the
set of natural transformations よ(𝑐)→𝐹 from the representable
presheaf corresponding to 𝑐 into 𝐹 (and moreover, this bijection
is natural in both 𝐹 and 𝑐).

Let us use presheaves to represent domains by having them keep
track of how CABAs can be mapped into them. First, we do this
for 𝖮𝖻𝗌∗. From what we have discussed, we know that CABAs
should correspond to representable presheaves. A morphism be-
tween CABAs is just any function between their sets of atoms. This
suggests that the subcategory formed by the representables is just
the category of sets and functions. In fact, finite sets are enough

61

since every domain is determined by its finite elements, and every
atom-preserving domain mapping sends atoms to atoms, so from
the point of view of 𝖮𝖻𝗌∗ it is as though the infinite elements did
not exist.

Thus we represent domains in 𝖮𝖻𝗌∗ as presheaves on the category
𝖥𝗂𝗇𝖲𝖾𝗍 of finite sets and functions, withよ(𝑁) for 𝑁∈ 𝖥𝗂𝗇𝖲𝖾𝗍 repre-
senting a CABA with set of atoms given by 𝑁. Now a morphism
from such a CABA よ(𝑁) into a domain is just a function from
𝑁 into the set of atoms of the domain such that the image of all
of 𝑁 is consistent. With this, we have that a domain 𝐷 ∈ 𝖮𝖻𝗌∗
can be represented as a presheaf �̂� on 𝖥𝗂𝗇𝖲𝖾𝗍 as follows. Send each
𝑁∈ 𝖥𝗂𝗇𝖲𝖾𝗍 to the set {𝜑 :𝑁→At𝐷 ∣ 𝜑(𝑁) ∈ 𝒞(At𝐷)}, containing
all consistent |𝑁|-tuples of atoms of 𝐷, or equivalently all the pos-
sible ways in which an |𝑁|-element CABA can be mapped into 𝐷.
Note that in constrast to our example, this includes ‘‘degenerate’’
ways of mapping CABAs into the domains, in the sense that we
do not require the functions to be injective; furthermore, the same
CABA may hit the same atoms of the domain in different orders,
and each of these different orders is a different way of mapping
the CABA into the domain. On functions 𝑓:𝑁→𝑀, the presheaf
needs to turn each 𝜑 :𝑀→At𝐷 into a function 𝑁→At𝐷 with
a consistent image so as to specify the relationship between the
ways |𝑀|-element CABAs can be mapped into 𝐷 and the ways
|𝑁|-element CABAs can be mapped into 𝐷, so �̂� should send 𝑓
to the precomposition 𝑓 ;−.

However, not every presheaf on 𝖥𝗂𝗇𝖲𝖾𝗍 is of this form. Notice that
for a presheaf �̂� obtained as just described, the set �̂�(𝟏) where 𝟏
denotes the one-element set {•} in 𝖥𝗂𝗇𝖲𝖾𝗍 contains all functions
from the one-element set into At𝐷, or equivalently just the set of
atoms of 𝐷. Given some 𝜑 ∈ �̂�(𝑁), corresponding to a consistent
𝑁-indexed set of atoms of 𝐷, we can then evaluate which atom is
the 𝑛-th atom of 𝜑 by computing �̂�(𝑛)(𝜑), where we identified 𝑛
with the function 𝟏→𝑁 given by •↦𝑛. This yields an element
of �̂�(𝟏), namely the one given by the composite (•↦𝑛);𝜑, which

62

can be identified with the atom 𝜑(𝑛). Now consider the example
𝐹(𝟐) 𝜑 𝜓

𝐹(𝟏) 𝑎 𝑏

𝐹(♠)

𝐹(♡)

𝐹(♡)

𝐹(♠)

on the right. It shows part of a presheaf with two ‘‘atoms’’ (the
set 𝐹(𝟏) has two elements) and two ‘‘consistent 𝟐-tuples’’ (where
𝟐 denotes the two-element set {♠,♡}), but both of them evaluate
to the same sequence of atoms. There is nothing preventing a
presheaf from doing this, and in this case we cannot interpret
it as a presheaf �̂� for some domain 𝐷. Loosely speaking, if we • •

• •

•

were to interpret this as a poset, we would get the result on the
right, which is evidently not atomistic. We would like to say that
the elements 𝜑 ∈𝐹(𝑁) are completely determined by the atoms
𝐹(𝑛)(𝜑) they evaluate to, for 𝑛∈𝑁. Let us make this formal.

DEFINITION: CONCRETE CATEGORY. A category 𝖢 to-
gether with an object 𝟏 ∈ 𝖢 is called concrete if the functor
𝖢(𝟏,−):𝖢 → 𝖲𝖾𝗍 is faithful. That is, for each pair 𝑐,𝑑 of objects in
𝖢 and arrows 𝑓,𝑔 ∈ 𝖢(𝑐,𝑑), if 𝑥 ;𝑓 = 𝑥 ;𝑔 for all 𝑥 ∈ 𝖢(𝟏,𝑐), then
𝑓= 𝑔.

Clearly 𝖥𝗂𝗇𝖲𝖾𝗍 is concrete: any two functions 𝑓,𝑔 :𝑁 → 𝑀 with
𝑓(𝑛) = 𝑛;𝑓 =𝑛;𝑔 = 𝑔(𝑛) for all 𝑛∈ 𝖥𝗂𝗇𝖲𝖾𝗍(𝟏,𝑁) ≅𝑁 are identical.
In the literature, 𝟏 is often required to be a terminal object, but
we will not do so since we would then not be able to apply the
theory to 𝖮𝖻𝗌.

DEFINITION: CONCRETE PRESHEAF. A presheaf on a con-
crete category is called concrete if for each 𝑐 ∈ 𝖢, the function send-
ing each 𝜑∈𝐹(𝑐) to the map 𝖢(𝟏,𝑐)→𝐹(𝟏) with 𝑥↦𝐹(𝑥)(𝜑), de-
noted 𝐹(−)(𝜑), is injective. The category of concrete presheaves
Conc𝖢 on 𝖢 has as objects all concrete presheaves on 𝖢 and as
morphisms all natural transformations between these functors.

A concrete presheaf 𝐹 thus has a set of ‘‘atoms’’ 𝐹(𝟏), and for each
𝑐 ∈ 𝖢, then 𝐹(𝑐) can be seen as a collection of functions mapping
global elements of 𝑐 in 𝖢 onto elements of 𝐹(𝟏), just as we desired.

PROPOSITION 3.1.1. Let 𝖢 be a concrete category and 𝐹 ∈ ⟨conc-rewrite⟩
Conc𝖢 a concrete presheaf on 𝖢. Then 𝐹 is naturally isomorphic

63

to a functor 𝐹′ with 𝐹′(𝑐) ⊆ 𝖲𝖾𝗍(𝖢(𝟏,𝑐),𝐴) for all 𝑐 ∈ 𝖢 with 𝐴 a
set and 𝐹′(𝑓)(𝜑)(𝑥) = 𝜑(𝑥 ;𝑓) for all morphisms 𝑓 in 𝖢.
Proof. We can set 𝐴=𝐹(𝟏) and

𝐹′(𝑐) = {𝐹(−)(𝜑) ∈ 𝖲𝖾𝗍(𝖢(𝟏,𝑐),𝐴) ∣ 𝜑 ∈𝐹(𝑐)}.

Since 𝐹(𝑥)(𝜑) ∈ 𝐹(𝟏) for all 𝑥 ∈ 𝖢(𝟏,𝑐) and 𝜑 ∈ 𝐹(𝑐), this is
well-defined. To construct the isomorphism, let 𝛼 :𝐹 → 𝐹′ with
𝛼(𝑐)(𝜑) =𝐹(−)(𝜑). Each component is surjective by construction
of 𝐹′(𝑐), and injective by concreteness of 𝐹. For 𝑓 : 𝑐 → 𝑑 and
all 𝜑 ∈ 𝐹(𝑑), we have 𝛼(𝑐)(𝐹(𝑓)(𝜑)) = 𝐹(−)(𝐹(𝑓)(𝜑)) = 𝐹(− ;
𝑓)(𝜑) =𝐹′(𝑓)(𝛼(𝑑)(𝜑)), so 𝛼 is natural.

Because every CABA is a domain, we need to make sure that the
representables are concrete, which is indeed always the case.

PROPOSITION 3.1.2. Every representable presheaf 𝖢(−,𝑐) on
a concrete category 𝖢 is concrete.
Proof. Let 𝑑 ∈ 𝖢 and 𝜑,𝜑′ ∈ 𝖢(𝑑,𝑐) and suppose 𝖢(𝑥,𝑐)(𝜑) =
𝖢(𝑥,𝑐)(𝜑′) for all 𝑥 : 𝟏 → 𝑑. That is, 𝑥 ; 𝜑 = 𝑥 ; 𝜑′ for all such 𝑥.
Then 𝜑=𝜑′ by concreteness of 𝖢.

Crucially, a morphism between concrete presheaves is determined
by its behaviour on 𝟏. In our setup, this translates to the fact that
a domain mapping in 𝖮𝖻𝗌∗ is a certain function between the sets
of atoms of the involved domains.

PROPOSITION 3.1.3. Let 𝐹,𝐺 be concrete presheaves and 𝛼,𝛽: ⟨conc-nat-𝟏⟩
𝐹→𝐺 natural transformations. If 𝛼(𝟏) = 𝛽(𝟏), then 𝛼=𝛽.
Proof. Let 𝑐 ∈ 𝖢. Then, for all 𝜑∈𝐹(𝑐) and 𝑥 ∈ 𝖢(𝟏,𝑐), we have

𝐺(𝑥)(𝛼(𝑐)(𝜑)) = 𝛼(𝟏)(𝐹(𝑥)(𝜑)) = 𝛽(𝟏)(𝐹(𝑥)(𝜑)) =𝐺(𝑥)(𝛽(𝑐)(𝜑))
by naturality, thus 𝛼(𝑐)(𝜑) = 𝛽(𝑐)(𝜑) for all 𝑐 ∈ 𝖢 and 𝜑 ∈ 𝐹(𝑐)
by concreteness of 𝐺, hence 𝛼=𝛽.

64

Now we can represent 𝖮𝖻𝗌∗ as a category of concrete presheaves.
Call a presheaf 𝐹∈ [𝖢op,𝖲𝖾𝗍] non-empty if there is a 𝑐 ∈ 𝖢 with
𝐹(𝑐) ≠∅.

PROPOSITION 3.1.4. The category 𝖮𝖻𝗌∗ is equivalent to the ⟨obs*=conc+finset⟩
category Conc+𝖥𝗂𝗇𝖲𝖾𝗍 of non-empty concrete presheaves on 𝖥𝗂𝗇𝖲𝖾𝗍. An equivalence of categories is

a functor 𝐹 : 𝖢 → 𝖣 that is full
(for each 𝑔 ∈ 𝖣(𝐹(𝑐),𝐹(𝑐′)) there
is an 𝑓 ∈ 𝖢(𝑐,𝑐′) with 𝐹(𝑓) = 𝑔),
faithful(whenever 𝐹(𝑓) =𝐹(𝑔) for
𝑓,𝑔 ∈ 𝖢(𝑐,𝑑), then 𝑓= 𝑔), and es-
sentially surjective (for each 𝑑 ∈ 𝖣
there is a 𝑐 ∈ 𝖢 with 𝐹(𝑐) ≅ 𝑑).

Proof. We show that the following assignment constitutes an
equivalence of categories from 𝖮𝖻𝗌∗ to Conc+𝖥𝗂𝗇𝖲𝖾𝗍. Send 𝐷 ∈
𝖮𝖻𝗌∗ to �̂� with 𝑁↦{𝜑:𝑁→At𝐷 ∣ 𝜑[𝑁] ∈ 𝒞(At𝐷)} and 𝑓↦𝑓;−,
and →:𝐷→𝐸 to →̂ : �̂�→ �̂� with →̂(𝑁)=−;→.
⟨well-defined⟩

Note that if 𝜑 :𝑀 → At𝐷 with 𝜑(𝑀) ∈ 𝒞(At𝐷) and 𝑓 :𝑁 →
𝑀, then 𝑓 ;𝜑 :𝑁 → At𝐷 has 𝜑(𝑓(𝑁)) ⊆ 𝜑(𝑀), so 𝜑(𝑓(𝑁)) ∈
𝒞(At𝐷) by ⟨⊆-cl⟩ of (At𝐷,𝒞(At𝐷)) (see ⟨bcdcpo-sys⟩), thus
𝑓 ↦ 𝑓 ;− is well-defined. Functoriality of �̂� follows directly
from the identity and associativity laws for categories. If 𝜑∈
�̂�(𝑁) and →:𝐷→𝐸, then →̂(𝑁)(𝜑) = 𝜑 ;→:𝑁→At𝐸 with
→(𝜑(𝑁)) ∈ 𝒞(At𝐸) because → is consistent, so the assignment
→̂ is well-defined. Functoriality of −̂ follows like for �̂�.
⟨�̂� is a concrete presheaf⟩

Let 𝑁 ∈ 𝖥𝗂𝗇𝖲𝖾𝗍 and 𝜑,𝜑′ ∈ �̂�(𝑁) and suppose �̂�(𝑛)(𝜑) =
�̂�(𝑛)(𝜑′) for all 𝑛 ∈ 𝑁. That is, 𝜑(𝑛) = 𝜑′(𝑛) for all 𝑛,
hence 𝜑=𝜑′.

⟨→̂ is a natural transformation⟩
We have �̂�(𝑓);→̂(𝑁)= 𝑓;−;→= →̂(𝑀);�̂�(𝑓) for all 𝑓:𝑁→
𝑀.

⟨essentially surjective⟩
For 𝑃 ∈ Conc+𝖥𝗂𝗇𝖲𝖾𝗍, we can w.l.o.g. assume that 𝑃 is of
the form given in ⟨conc-rewrite⟩. Let 𝐴 ≔ 𝑃(𝟏) and 𝜎 ≔
⋃𝑁∈𝖥𝗂𝗇𝖲𝖾𝗍 {𝑃(𝑁)(𝜑) ∣ 𝜑 ∈𝑃(𝑁)}. We show that (𝐴,𝜎) is a non-
empty (𝜎≠∅) ⟨all-props-cons⟩-subset system. It follows that

65

its ideal completion (ℐ(𝜎),⊆) is a domain with 𝜎⊆ ℐ(𝜎) and
all sets in ℐ(𝜎)\𝜎 are infinite. We then show that ℐ̂(𝜎) ≅𝑃.
⟨(𝐴,𝜎) is a non-empty ⟨all-props-cons⟩-observation system⟩

⟨non-empty⟩
Since 𝑃 is non-empty, there is an 𝑁 ∈ 𝖥𝗂𝗇𝖲𝖾𝗍 and a
𝜑∈𝑃(𝑁), so 𝑃(𝑁)(𝜑) ∈ 𝜎≠∅.

⟨all-props-cons⟩
For all 𝑎 ∈𝐴=𝑃(𝟏), we have 𝜎∋𝑃(𝟏)(𝑎) =𝑃(•)(𝑎) =
{𝑎}.

⟨⊆-cl⟩
If 𝑆′ ⊆𝑆∈𝜎, then there exists an 𝑁∈ 𝖥𝗂𝗇𝖲𝖾𝗍 such that
𝜑(𝑁) = 𝑃(𝑁)(𝜑) = 𝑆 for some 𝜑 ∈ 𝑃(𝑁). Note that 𝑆
and then 𝑆′ are finite. Let 𝑓 ∈ 𝖥𝗂𝗇𝖲𝖾𝗍(𝑆′,𝑁) map each 𝑠 ∈
𝑆′ ⊆𝑆 to an 𝑛∈𝑁 such that 𝜑(𝑛) = 𝑠. Then necessarily
𝑃(𝑠)(𝑃(𝑓)(𝜑)) = 𝜑(𝑓(𝑠)) = 𝑠 for all 𝑠 ∈ 𝑆′, hence 𝜎 ∋
𝑃(𝑆′)(𝑃(𝑓)(𝜑)) = 𝑆′.

⟨ ℐ̂(𝜎) ≅𝑃⟩

Define 𝛼:ℐ̂(𝜎)→𝑃 as 𝛼(𝑁)(𝜑)(𝑛) = 𝑛 for all 𝑛∈𝑁∈ 𝖥𝗂𝗇𝖲𝖾𝗍
and 𝜑∈ ℐ̂(𝜎)(𝑁). Injectivity and naturality are trivial.
⟨well-defined⟩

If 𝜑 ∈ ℐ̂(𝜎)(𝑁), then 𝜑 :𝑁→Atℐ(𝜎) = 𝐴=𝑃(𝟏) with
𝜑(𝑁) ∈ ℐ(𝜎). Since 𝑁 is finite, 𝜑(𝑁) is finite as well, so
𝜑(𝑁) ∈ 𝜎. By definition of 𝜎, there exists a 𝜑′ ∈𝑃(𝑁)
with 𝑃(𝑁)(𝜑′) = 𝜑′(𝑁) = 𝜑(𝑁). That is, there exists a
bijection 𝑓 :𝑁 → 𝑁 such that 𝜑(𝑛) = 𝜑′(𝑓(𝑛)) for all
𝑛∈𝑁. Then, 𝑃(𝑁) ∋𝑃(𝑓)(𝜑′) = 𝑓 ;𝜑′ =𝜑.

⟨surjective⟩
If 𝜑 ∈ 𝑃(𝑁), then 𝑃(𝑁)(𝜑) ∈ 𝜎 ⊆ ℐ(𝜎), so 𝜑(𝑁) ∈
𝒞(At𝜎) and 𝜑∈ ℐ̂(𝜎)(𝑁).

66

⟨ faithful⟩
If →̂𝑓 = →̂𝑔 : �̂� → �̂�, then in particular →̂𝑓(𝟏) = →̂𝑔(𝟏), so
→𝑓(𝑎) =→𝑔(𝑎) for all 𝑎 ∈ �̂�(𝟏) =At𝐷, hence →𝑓 =→𝑔.

⟨ full⟩
If 𝛼 : �̂�→ �̂� is a natural transformation, let →⊆At𝐷×At𝐸
with 𝑓≔𝛼(𝟏). This is a function �̂�(𝟏) =At𝐷→At𝐸= �̂�(𝟏),
hence atom-preserving, and a domain mapping since if 𝑆 ∈
𝒞(At𝐷), then 𝜑 :𝑁→At𝐷 with �̂�(𝑁)(𝜑) = 𝑆 is in �̂�(𝟏), and
→(𝑆) = 𝛼(𝟏)(�̂�(𝑁)(𝜑)) = �̂�(𝑁)(𝛼(𝑁)(𝜑)) by naturality of 𝛼,
so →(𝑆) ∈ 𝒞(At𝐸). Clearly →̂(𝟏)(𝑎) =→(𝑎) = 𝛼(𝟏)(𝑎) for all
𝑎 ∈ �̂�(𝟏), so 𝛼(𝟏) = →̂(𝟏), hence 𝛼= →̂ by ⟨conc-nat-𝟏⟩.

A slight adaptation to this proof shows that 𝖮𝖻𝗌∗ is also the
category Conc𝖥𝗂𝗇𝖲𝖾𝗍+ of concrete (possibly empty) presheaves on
the category of finite non-empty sets. This is also shown in [3,
Proposition 27], for the equivalent category of simplicial complexes.

Now following the same approach for 𝖮𝖻𝗌, we find that there are
now as many morphisms between CABAs as there are relations
between them. Thus, we shall consider concrete presheaves on
𝖥𝗂𝗇𝖱𝖾𝗅, the category of finite sets with binary relations, and sim-
ilarly turn domains 𝐷 into such presheaves �̂� where now �̂�(𝑁)
contains all the possible consistent relations from the CABA with
atoms 𝑁 into 𝐷. In particular, �̂�(𝟏) is now the set of all consistent
subsets of atoms of 𝐷. There is an immediate problem with this
approach: consider the domain 𝐷≔ (𝒫(ℕ),⊆). From the one-atom
CABA, there are evidently 𝖱𝖾𝗅(𝟏,At𝒫(ℕ)) = 𝖱𝖾𝗅(𝟏,ℕ) ≅ 𝒫(ℕ)
many domain mappings into 𝐷, so �̂�(𝟏) ≅ 𝒫(ℕ) has uncount-
ably many elements. There is however a presheaf 𝐹 on 𝖥𝗂𝗇𝖱𝖾𝗅 that
has 𝐹(𝟏) = {𝐴 ∣ 𝐴 ⊆fin ℕ}, the set of finite subsets of ℕ, as its
set of ‘‘consistent sets of atoms’’, and each 𝐹(𝑁) contains all the
relations that are subsets of 𝑁×𝐹(𝟏). This is easily seen to be
concrete, but what kind of domain should this correspond to? Intu-
itively, as a poset, this would be the set (𝒫fin(ℕ),⊆), which is not

67

directed-complete. I leave the task of finding a way to enforce this
directed-completeness in form of a condition on the corresponding
concrete presheaves for the future; for our purposes here, this is
not necessary.

The reason we might be interested in such a characterisation is
that we could use it in Section 3.3 to turn it into a free construc-
tion, from which we could then derive a complete type theory in
Chapter 4, but as we will see, this ambition is only sensible when
restricted to finitary objects anyway, i.e. finite domains in the
case of 𝖮𝖻𝗌. Since finite posets are trivially directed-complete, we
may still try to apply our method to 𝖥𝗂𝗇𝖮𝖻𝗌, the category of finite
domains and domain mappings.

Is 𝖥𝗂𝗇𝖮𝖻𝗌 the category of non-empty concrete presheaves on 𝖥𝗂𝗇𝖱𝖾𝗅?
This is not the case: intuitively, such a presheaf 𝐹 may have
𝐹(𝟏) = {∅,{𝑎},{𝑎,𝑏}}, where we interpret the elements as rela-
tions 𝖥𝗂𝗇𝖱𝖾𝗅(𝟏,{𝑎,𝑏}) and have 𝐹 send morphisms in 𝖥𝗂𝗇𝖱𝖾𝗅 to
their precomposition function as usual. Then some 𝜑∈𝐹({♠,♡})
might have (• ↦ ♠) ;𝜑 = {𝑎} and (• ↦ ♡) ;𝜑 = {𝑎,𝑏}, and then
automatically (• ↦ {♠,♡}) ; 𝜑 = {𝑎,𝑏}, so {𝑎,𝑏} does act like a
join of {𝑎} and {𝑎,𝑏}. But the only domain with three elements • •

•

is the one shown in the margin, where no element is a join of two
distinct non-bottom elements. We have to somehow enforce that
𝐹(𝟏) has a structure that may arise as the set of consistent sets
of atoms of a domain.

Because 𝖥𝗂𝗇𝖮𝖻𝗌∗ and 𝖥𝗂𝗇𝖮𝖻𝗌 have the ‘‘same’’ objects, we are in-
stead going take the objects from 𝖥𝗂𝗇𝖮𝖻𝗌∗ and ‘‘transfer’’ them
into the category of presheaves on 𝖥𝗂𝗇𝖱𝖾𝗅. Note that going through
the proof of ⟨obs*=conc+finset⟩, we find that 𝖥𝗂𝗇𝖮𝖻𝗌∗ is the cat-
egory Conc+fin𝖥𝗂𝗇𝖲𝖾𝗍 of finite° non-empty concrete presheaves on °A presheaf 𝐹∈ [𝖢op,𝖲𝖾𝗍] is called

finite if for each 𝑐 ∈ 𝖢, the set 𝐹(𝑐)
is finite.

𝖥𝗂𝗇𝖲𝖾𝗍. The key point that comes to our help is the fact that every
presheaf on a category 𝖢 is a colimit (computed in the category
of presheaves on 𝖢) of representable presheaves, in a ‘‘canonical’’

68

way. We are going to ‘‘disassemble’’ presheaves 𝐹∈Conc+fin𝖥𝗂𝗇𝖲𝖾𝗍
into a diagram of representable presheaves that it is a colimit of.
Then, we embed this diagram into 𝖥𝗂𝗇𝖱𝖾𝗅, and take its colimit in
the presheaf category of 𝖥𝗂𝗇𝖱𝖾𝗅. The category of presheaves we
obtain this way is equivalent to 𝖥𝗂𝗇𝖮𝖻𝗌.

In the margins, we review the definitions of diagrams and colimits A diagram of shape 𝖨 in a category
𝖢 is a functor 𝐼 : 𝖨 → 𝖢. A cocone
from 𝐼 is given by a collection of
morphisms 𝑓𝑖 :𝐼𝑖 →𝑒 for each 𝑖 ∈ 𝖨
for a fixed object 𝑒 ∈ 𝖢 such that

𝑒

𝐼𝑖 𝐼𝑗

𝑓𝑖 𝑓𝑗

𝐼𝑓

commutes for all 𝑓 : 𝑖→ 𝑗 in 𝖨. A
colimit of 𝐼 is a cocone given by
morphisms 𝜄𝑖 : 𝐼𝑖 →colim𝐼, called
insertions, such that for each co-
cone 𝑓𝑖 :𝐼𝑖 →𝑒 from 𝐼 there exists a
unique morphism ⨉𝑓𝑖 : colim𝐼→
𝑒, called the mediator of the co-
cone 𝑓𝑖 such that

𝑒

𝐼𝑖 colim𝐼𝜄𝑖

𝑓𝑖
⨉𝑓𝑗

commutes for all 𝑖 ∈ 𝖨.

and fix notation and terminology. Note that for diagrams 𝐼, in
order to reduce clutter we write 𝐼𝑖 instead of 𝐼(𝑖) to denote functor
application. Let us describe how a presheaf can be decomposed
into the diagram it is the colimit of.

DEFINITION: DIAGRAM OF A PRESHEAF. Let 𝐹:𝖢op → 𝖲𝖾𝗍
be a presheaf. Define the category of elements el𝐹 of 𝐹 as the cat-
egory with objects (𝑐,𝜑) for all 𝑐 ∈ 𝖢 and 𝜑∈𝐹(𝑐) and morphisms
(𝑐,𝜑)→ (𝑑,𝜓) being morphisms 𝑓 : 𝑐→ 𝑑 in 𝖢 with 𝐹(𝑓)(𝜓) = 𝜑.
The diagram of 𝐹 is defined as the forgetful functor 𝜋𝐹 : el𝐹→ 𝖢
with (𝑐,𝜑)↦ 𝑐 and 𝑓↦𝑓.

It is well-known that 𝐹≅ colim(𝜋𝐹 ;よ) (‘‘co-Yoneda lemma’’, see
[18, Section 3.4]). In fact, this construction is very similar to what
we did at the beginning of the section for an example domain:
we looked at maps of CABAs into the domain, and added arrows
between them essentially if that arrow commuted with those maps.
Now to compute the colimit of such diagrams, note that colimits
in categories of presheaves are computed ‘‘pointwise’’. That means
that if 𝐼 : 𝖨 → 𝖢 is a diagram, then colim(𝐼 ;よ) is given by the
presheaf that sends each 𝑐 ∈ 𝖢 to the set colim(よ(𝐼(−))(𝑐)) ≅
colim𝖢(𝑐,𝐼(−)), which is a colimit computed in 𝖲𝖾𝗍, and each 𝑓 ∈
𝖢(𝑐,𝑑) to the colimit mediator ⨉𝑖∈𝖨よ(𝐼𝑖)(𝑓) ; 𝜄𝑖 = ⨉𝑖∈𝖨𝜄𝑖(𝑓 ;−),
which exists because every 𝑔 ∈ 𝖨(𝑖, 𝑗) has よ(𝐼𝑔)(𝑑);よ(𝐼𝑗)(𝑓);𝜄𝑗 =
よ(𝐼𝑖)(𝑓) ;よ(𝐼𝑔)(𝑐) ; 𝜄𝑗 =よ(𝐼𝑖)(𝑓) ; 𝜄𝑖 by naturality of よ(𝐼𝑔) and
since the 𝜄𝑖 form a cocone.

We will take presheaves 𝐹 ∈ Conc+fin𝖥𝗂𝗇𝖲𝖾𝗍 and send them to

69

colim(𝜋𝐹; ↪ ;よ𝖥𝗂𝗇𝖱𝖾𝗅), computed pointwise in [𝖥𝗂𝗇𝖱𝖾𝗅op,𝖲𝖾𝗍], where
↪ denotes the inclusion 𝖥𝗂𝗇𝖲𝖾𝗍 ↪ 𝖥𝗂𝗇𝖱𝖾𝗅. Before we show that the
category of presheaves so obtained is indeed equivalent to 𝖥𝗂𝗇𝖮𝖻𝗌,
we need a bit more preparation to simplify the calculation of
colimits in presheaf categories.

DEFINITION: CONNECTEDNESS. Let 𝖢 be a category. Two
objects 𝑐,𝑑 ∈ 𝖢 are called connected, written 𝑐↭𝑑, if there is a
finite sequence of morphisms

𝑐 • ⋯ • 𝑑

in 𝖢 starting with 𝑐 and ending with 𝑑. For a functor 𝐹: 𝖨 → 𝖢,
two morphisms 𝑓,𝑔 : 𝑐→𝐹(𝑖),𝐹(𝑗) are connected via 𝐹, written
𝑓↭𝐹 𝑔, if they are connected as objects of the comma category
𝑐⁄𝐹, meaning that there is a zig-zag of morphisms in 𝖨 such that

𝑐

𝐹(𝑖) 𝐹(•) ⋯ 𝐹(•) 𝐹(𝑗)

𝑔𝑓

𝐹(→) 𝐹(←) 𝐹(→) 𝐹(←)

commutes.

DEFINITION: FINAL FUNCTOR. A functor 𝐹: 𝖨 → 𝖩 is called
final if for each 𝑗 ∈ 𝖩 there exists an 𝑖 ∈ 𝖨 with an arrow 𝑗→𝐹(𝑖),
and any two arrows 𝑗→𝐹(𝑖),𝐹(𝑖′) are connected via 𝐹.

For final functors, if 𝐺: 𝖩 → 𝖢 is any functor, then 𝐺 has a colimit
iff 𝐹 ;𝐺 has a colimit, and they are canonically isomorphic as
follows [5, Section 2.11]: if colim𝐺 exists, then it is also a colimit
of 𝐹;𝐺 together with the insertions 𝜄𝐺𝐹(𝑖), and if colim(𝐹;𝐺) exists,

then it is also a colimit of 𝐺, with the insertions 𝑓;𝜄𝐹;𝐺
𝐹(𝑖) where 𝑓 is

any arrow 𝑗→𝐹(𝑖) (which exists and the resulting insertion does
not depend on the choice of 𝑓, by definition of final functors).

70

In the example at the beginning of the section, we essentially
constructed a domain as a colimit of representables, but only
using subset inclusions. The tool of final functors allows us to
generalise this to arbitrary domains.

PROPOSITION 3.1.5. For a domain 𝐷, let el⊑𝐷 denote the ⟨el⊑->el⟩
category with objects the finite elements 𝑑 ∈𝐷 and unique mor-
phisms 𝑑→𝑑′ whenever 𝑑⊑ 𝑑′. Then, there exists a final functor
𝐹:el⊑𝐷→el�̂� (from ⟨obs*=conc+finset⟩) sending each 𝑑 ∈ el⊑𝐷
to (At𝑑,⊆), where ⊆ is the inclusion of At𝑑 into At𝐷, and 𝑑→𝑑′
onto the inclusion At𝑑⊆At𝑑′.
Proof. Note that el⊑𝐷 is a category by reflexivity and transitivity
of ⊑. Furthermore, 𝐹 is well-defined because for each finite 𝑑 ∈𝐷,
the set At𝑑 is finite and At𝑑 ⊆ At𝐷= �̂�(𝟏), with the inclusion
being an element of �̂�(At𝑑) because At𝑑 is consistent, so the map
𝑎↦𝑎 for all 𝑎 ∈At𝑑 has ⊆(At𝑑) ∈ 𝒞(At𝐷). Furthermore, if 𝑑→
𝑑′ in el⊑, then 𝑑⊑ 𝑑′ by definition, so At𝑑⊆At𝑑′, which clearly
commutes with the inclusions At𝑑,At𝑑′ ⊆At𝐷. Functoriality of
𝐹 is easy to see.

Now let (𝑁,𝜑) ∈ el�̂�, so 𝜑 :𝑁→At𝐷 with 𝜑(𝑁) ∈ 𝒞(At𝐷). Let
𝑑≔⨆𝜑(𝑁). Then each 𝑛 ∈𝑁 can be mapped onto 𝜑(𝑛) ∈ At𝑑,
which composed with the inclusion At𝑑 ⊆ At𝐷 obviously com-
mutes with 𝜑, thus is an arrow 𝑓 : (𝑁,𝜑) → (At𝑑,⊆). Addition-
ally, every pair of arrows 𝑔,𝑔′ : (𝑁,𝜑) → (At𝑒,⊆),(At𝑒′,⊆) must
have 𝑔(𝑛) = 𝜑(𝑛) = 𝑔′(𝑛) for all 𝑛∈𝑁, so At𝑑⊆At𝑒,At𝑒′, hence
𝑑⊑ 𝑒,𝑒′, so there are arrows 𝑑→𝑒,𝑒′, with 𝑓;𝐹(𝑑→ 𝑒) = 𝜑;(At𝑑⊆
At𝑒) = 𝑔 and 𝑓 ; 𝐹(𝑑 → 𝑒′) = 𝜑 ; (At𝑑 ⊆ At𝑒′) = 𝑔′, and then
𝑔↭𝐹 𝑔′ as needed.

As a final note before the proof, 𝖥𝗂𝗇𝖱𝖾𝗅 with the one-element set 𝟏 is
concrete, just like 𝖥𝗂𝗇𝖲𝖾𝗍: if 𝑅,𝑅′ ∈ 𝖥𝗂𝗇𝖱𝖾𝗅(𝑁,𝑀) have 𝑋;𝑅=𝑋;𝑅′

for all 𝑋∈ 𝖥𝗂𝗇𝖱𝖾𝗅(𝟏,𝑁) ≅ 𝒫(𝑁), then in particular • 𝑋 𝑛 𝑅𝑚 iff
• 𝑋 𝑛𝑅′ 𝑚 for all 𝑛 ∈𝑁 and 𝑚∈𝑀, hence 𝑛𝑅𝑚 iff 𝑛𝑅′ 𝑚, so
𝑅=𝑅′.

71

PROPOSITION 3.1.6. The category 𝖥𝗂𝗇𝖮𝖻𝗌 of finite domains ⟨finobs-prshf-finrel⟩
with domain mappings is equivalent to the full subcategory of the
category of presheaves 𝐹∈ [𝖥𝗂𝗇𝖱𝖾𝗅op,𝖲𝖾𝗍] such that 𝐹≅ colim(𝜋𝐷 ;
↪ ;よ𝖥𝗂𝗇𝖱𝖾𝗅) for some 𝐷∈Conc+fin𝖥𝗂𝗇𝖲𝖾𝗍.

Proof. We prove that the following assignment is an equivalence
of categories. For each finite domain 𝐷, let �̂�(𝑁) ≔ {𝜑 ⊆ 𝑁×
At𝐷 ∣ 𝜑(𝑁) ∈ 𝒞(At𝐷)}, and for 𝑅⊆𝑁×𝑀 let �̂�(𝑅)≔𝑅;−. For
→⊆At𝐷×At𝐸 let →̂ : �̂�→ �̂� with →̂(𝑁)≔−;→.
⟨well-defined⟩

The fact that −̂ is a well-defined functor follows completely
analogously to ⟨obs*=conc+finset⟩, except that we need to
prove that for each 𝐷∈ 𝖥𝗂𝗇𝖮𝖻𝗌, we have �̂� ≅ colim(𝜋𝐷

′
;↪;よ)

for some 𝐷′ ∈Conc+fin𝖥𝗂𝗇𝖲𝖾𝗍. Since 𝐷∈ 𝖥𝗂𝗇𝖮𝖻𝗌∗, we shall in fact
show that �̂� ≅ colim(𝜋𝐷 ;↪ ;よ) with 𝜋𝐷 the diagram of 𝐷
seen as a presheaf in Conc+fin𝖥𝗂𝗇𝖲𝖾𝗍.

To this end, let 𝐹 : el⊑𝐷 → el𝐷 denote the final functor from
⟨el⊑->el⟩ and let 𝜋⊑ ≔𝐹;𝜋𝐷. Then, it suffices to show that
�̂� ≅ colim(𝜋⊑ ;↪ ;よ) since the latter is then isomorphic to
colim(𝜋𝐷 ;↪ ;よ) by finality of 𝐹.
By the pointwise computation of colimits, it is enough to show
that each �̂�(𝑁) satisfies the universal property of colim(𝜋⊑ ;
↪ ;よ)(𝑁) in 𝖲𝖾𝗍, and that it maps relations 𝑅⊆𝑁×𝑀 onto
colimit mediators ⨉𝑑∈el⊑𝐷𝜄𝑑(𝑅 ;−).

Thus let 𝑁 ∈ 𝖥𝗂𝗇𝖱𝖾𝗅. For all 𝑑 ∈ el⊑𝐷, let 𝜄𝑑 :よ(↪(𝜋⊑𝑑)) =
𝖥𝗂𝗇𝖱𝖾𝗅(𝑁,At𝑑) → �̂� sending 𝜑 ∈ 𝖥𝗂𝗇𝖱𝖾𝗅(𝑁,At𝑑) to 𝜑 ∈ �̂�(𝑁).
This is well-defined since At𝑑 is consistent, and it determines
a cocone: for 𝑑 → 𝑑′, we have At𝑑 ⊆ At𝑑′, and for all 𝜑 ∈
𝖥𝗂𝗇𝖱𝖾𝗅(𝑁,At𝑑) then 𝜄𝑑(𝜑) ;⊆=𝜑= 𝜄𝑑′(𝜑) ∈ 𝖥𝗂𝗇𝖱𝖾𝗅(𝑁,At𝑑′).
Now suppose 𝑋 has a cocone 𝑔𝑑 : 𝖥𝗂𝗇𝖱𝖾𝗅(𝑁,At𝑑) → 𝑋. That
is, 𝑔𝑑(𝜑) ;⊆ = 𝑔𝑑′(𝜑) if 𝑑 ⊑ 𝑑′. Define 𝑚: �̂�(𝑁) → 𝑋 as 𝜑 ↦

72

𝑔⨆𝜑(𝑁)(𝜑). This is well-defined because 𝜑(𝑁) is consistent,
hence has a supremum which is an element of 𝐷, and 𝜑 ∈
𝖥𝗂𝗇𝖱𝖾𝗅(𝑁,At⨆𝜑(𝑁)). It commutes with the cocone because for
all 𝜑∈ 𝖥𝗂𝗇𝖱𝖾𝗅(𝑁,At𝑑), we have

𝑚(𝜄𝑑(𝜑)) =𝑚(𝜑) = 𝑔⨆𝜑(𝑁)(𝜑) = 𝑔𝑑(𝜑)

as 𝜑(𝑁)⊆At𝑑, so ⨆𝜑(𝑁)⊑⨆At𝑑= 𝑑. It is unique with that
property since any 𝑚′:�̂�(𝑁)→𝑋 with 𝑚′(𝜄𝑑(𝜑)) = 𝑔𝑑(𝜑) must
have 𝑚′(𝜑) = 𝑔⨆𝜑(𝑁)(𝜑) since ⨆𝜑(𝑁)⊑ 𝑑.
Finally, for a relation 𝑅⊆𝑁×𝑀, the colimit mediator sends
𝜑∈ �̂�(𝑀) to 𝜄⨆𝜑(𝑀)(𝑅 ;𝜑) =𝑅;𝜑= �̂�(𝑅)(𝜑), as required.

⟨essentially surjective⟩
If 𝐹 is of the form colim(𝜋𝐷 ;↪;よ) for some 𝐷∈Conc+fin𝖥𝗂𝗇𝖲𝖾𝗍,
then interpreting 𝐷 as a domain, we have �̂� ≅ colim(𝜋𝐷 ;↪ ;
よ) ≅𝐹 as shown in ⟨well-defined⟩.

⟨ faithful⟩
If →̂1 = →̂2, then 𝜑 ;→1 = 𝜑 ;→2 for all 𝜑 ∈ 𝖥𝗂𝗇𝖱𝖾𝗅(𝟏,At𝐷)
with 𝜑(𝟏) ∈ 𝒞(At𝐷), in particular for all 𝜑 selecting an atom,
hence →1 =→2.

⟨ full⟩
Let 𝛼 : �̂� → �̂� and define → ⊆ At𝐷×At𝐸 as a function on
elements corresponding to consistent subsets, via →=𝛼(𝟏). It
suffices to show that this function preserves consistent unions.
Thus let 𝑆⊆ 𝒞(At𝐷) with ⋃𝑆∈ 𝒞(At𝐷). Note that 𝑆∈ 𝖥𝗂𝗇𝖱𝖾𝗅
and ⋃𝑆∈ �̂�(𝟏). Let 𝜑∈ 𝖥𝗂𝗇𝖱𝖾𝗅(𝑆,At𝐷) relate each 𝑠 ∈ 𝑆 to its
elements. Clearly 𝜑(𝑆) =⋃𝑆∈ 𝒞(At𝐷), so 𝜑 ∈ �̂�(𝑆). Because
also 𝑆;𝜑=⋃𝑆, where we wrote 𝑆 for the relation {•}×𝑆∈
𝖥𝗂𝗇𝖱𝖾𝗅(𝟏,𝑆), we then have →(⋃𝑆)=𝛼(𝟏)(⋃𝑆)=𝛼(𝟏)(𝑆;𝜑) =
𝛼(𝟏)(�̂�(𝑆)(𝜑)) = �̂�(𝑆)(𝛼(𝑆)(𝜑)) = 𝑆;𝛼(𝑆)(𝜑) using naturality
of 𝛼, and similarly ⋃𝑠∈𝑆→(𝑠) = ⋃𝛼(𝟏)(𝑠) = ⋃𝛼(𝟏)(𝑠 ; 𝜑) =
⋃𝑠 ;𝛼(𝑆)(𝜑) = 𝑆 ;𝛼(𝑆)(𝜑), with the last step following from
the definition of the composition of relations.

73

Like in ⟨obs*=conc+finset⟩, we have →̂(𝟏) = 𝛼(𝟏), hence →̂ =
𝛼 since �̂� and �̂� are concrete (suppose �̂�(𝑋)(𝜑) = �̂�(𝑋)(𝜑′)
for all 𝑋∈ 𝖥𝗂𝗇𝖱𝖾𝗅(𝟏,𝑁) for some 𝑁∈ 𝖥𝗂𝗇𝖱𝖾𝗅 and 𝜑,𝜑′ ∈ �̂�(𝑁),
then 𝑋;𝜑=𝑋;𝜑′, hence 𝜑=𝜑′ since 𝖥𝗂𝗇𝖱𝖾𝗅 is concrete).

3.2 UNIVERSAL CONSTRUCTIONS

By exploring the constructions our category admits, we can de-
termine what constructions can be soundly interpreted in a type
theory we create for it. We establish an adjunction between 𝖮𝖻𝗌
and 𝖮𝖻𝗌∗, before looking at limits and colimits in the two cate-
gories. Then, we show that 𝖮𝖻𝗌 is monoidal closed, with the tensor
product given by the product in 𝖮𝖻𝗌∗. We will see that 𝖮𝖻𝗌∗ is
a quasitopos and study the associated structure. Finally, we dis-
cuss computationally useful initial and terminal algebras for some
functors.

Similarly to how the inclusion 𝖲𝖾𝗍 ↪ 𝖱𝖾𝗅 has a right adjoint, given
by the powerset functor [14], the inclusion 𝖮𝖻𝗌∗ ↪ 𝖮𝖻𝗌 also has
such an adjoint,° sending each domain to a domain where the °In fact, 𝖮𝖻𝗌 is the Kleisli category

of the induced monad, just like 𝖱𝖾𝗅
is for the powerset monad on 𝖲𝖾𝗍.

atoms are the consistent subsets of the original domain.

PROPOSITION 3.2.1. The inclusion functor 𝖮𝖻𝗌∗ ↪ 𝖮𝖻𝗌 has ⟨obs*-obs-adj⟩
a right adjoint 𝒫𝒞 : 𝖮𝖻𝗌 → 𝖮𝖻𝗌∗ sending each domain 𝐷 ∈ 𝖮𝖻𝗌 A functor 𝐹 :𝖣 → 𝖢 is a left ad-

joint if for each 𝑐 ∈ 𝖢, there is an
object 𝐺(𝑐) ∈ 𝖣 with a morphism
𝜀𝑐:𝐹(𝐺(𝑐))→ 𝑐 such that for every
𝑑 ∈ 𝖣 and 𝑓:𝐹(𝑑)→ 𝑐 there exists
a unique morphism 𝑚𝑓 : 𝑑→𝐺(𝑐)
such that

𝐹(𝑑) 𝐹(𝐺(𝑐))

𝑐
𝑓

𝐹(𝑚𝑓)

𝜀𝑐

commutes. In that case, 𝐹 has a
right adjoint, given by 𝑐 ↦𝐺(𝑐)
and 𝑓 : 𝑐→ 𝑐′ ↦𝑚𝜀𝑐;𝑓.

to the domain (𝒫𝒞(𝐷),⊆) where 𝒫𝒞(𝐷) ≔ {𝑆 ⊆ 𝒞(At𝐷) ∣ ⋃𝑆 ∈
𝒞(At𝐷)}, and each domain mapping → ⊆ At𝐷1×At𝐷2 to the
atom-preserving domain mapping 𝒫𝒞(→)({𝐴}) = {→(𝐴)}.
Proof. We first check that (𝒫𝒞(𝐷),⊆) really is a domain, and
then we prove that the required universal property is satisfied.
This determines the right adjoint as described in the margins.
⟨(𝒫𝒞(𝐷),⊆) is a domain⟩

By ⟨sys-dom⟩, it suffices to show that (𝒞(At𝐷),𝒫𝒞(𝐷)) is a
non-empty observation system.

74

⟨non-empty⟩
We have ∅ ⊆ 𝒞(At𝐷) and ⋃∅ = ∅ ∈ 𝒞(At𝐷) since 𝐷 is
non-empty, so ∅∈ 𝒞(At𝐷).

⟨⊆-cl⟩
If 𝑆′ ⊆ 𝑆 ∈ 𝒫𝒞(𝐷), then ⋃𝑆 ∈ 𝒞(At𝐷), so also ⋃𝑆′ ∈
𝒞(At𝐷) by ⟨⊆-cl⟩ of (At𝐷,𝒞(At𝐷)).

⟨fin-compat⟩
If 𝐹 ∈ 𝒫𝒞(𝐷), i. e. ⋃𝐹 ∈ 𝒞(At𝐷), for all finite 𝐹 ⊆ 𝐼 for
some 𝐼 ⊆ 𝒞(At𝐷), then {⨆⋃𝐹 ∣ 𝐹⊆fin 𝐼} is a directed set
in 𝐷, hence by ⟨dir-comp⟩ has a supremum, with atoms
⋃𝐹⊆fin𝐼⋃𝐹=⋃𝐼, thus ⋃𝐼∈ 𝒞(At𝐷) and 𝐼 ∈𝒫𝒞(𝐷).

Now let →𝜀 ⊆ At𝒫𝒞(𝐷) ×At𝐷 with {𝐴} →𝜀 𝑎 iff 𝑎 ∈ 𝐴, i. e.
→𝜀({𝐴}) =𝐴.
⟨→𝜀 is a domain mapping⟩

If 𝑆∈ 𝒞(𝒫𝒞(𝐷)), i. e. ⋃𝑆∈ 𝒞(At𝐷), then

→𝜀(𝑆) = ⋃
𝐴∈𝑆

→𝜀({𝐴}) = ⋃
𝐴∈𝑆

𝐴=⋃𝑆∈ 𝒞(At𝐷).

Suppose 𝐸 ∈ 𝖮𝖻𝗌∗ and 𝑓 :𝐸 → 𝐷 is a domain mapping. Define
𝑚𝑓 : 𝐸 → 𝒫𝒞(𝐷) as the atom-preserving domain mapping 𝑒 ↦
{𝑓(𝑒)}.
⟨𝑚𝑓 is an atom-preserving domain mapping⟩

This is well-defined and atom-preserving because 𝑓 is a domain
mapping, so each 𝑓(𝑒) is consistent and {𝑓(𝑒)} is an atom
of 𝒫𝒞(𝐷). If 𝐴 ∈ 𝒞(At𝐸), then ⋃𝑚𝑓(𝐴) = ⋃⋃𝑒∈𝐴 {𝑓(𝑒)} =
⋃𝑓[𝐴] = 𝑓(𝐴) ∈ 𝒞(At𝐷), so 𝑚𝑓(𝐴) ∈𝒫𝒞(𝐷).

⟨𝑚𝑓 is a unique mediator⟩
We have →𝜀(𝑚𝑓(𝑒)) =→𝜀({𝑓(𝑒)}) = 𝑓(𝑒) for all 𝑒 ∈At𝐸, and
any atom-preserving 𝑚′ : 𝐸 → 𝒫𝒞(𝐷) with →𝜀(𝑚′(𝑒)) = 𝑓(𝑒)
needs to have 𝑚′(𝑒) = {𝑓(𝑒)} by definition of →𝜀.

75

Thus the inclusion is a left adjoint, with the right adjoint given
on objects by 𝒫𝒞, and sending morphisms → to maps {𝐴} ↦
𝑚→𝜀;→({𝐴}) = {→(→𝜀({𝐴}))} = {→(𝐴)}, as claimed.

Similarly, we can prove that there is a right adjoint to 𝖥𝗂𝗇𝖮𝖻𝗌∗ ↪
𝖥𝗂𝗇𝖮𝖻𝗌 with the same definition and proof. This adjunction can
probably be derived from the analogous adjunction 𝖥𝗂𝗇𝖲𝖾𝗍 ↪ 𝖥𝗂𝗇𝖱𝖾𝗅,
as 𝖥𝗂𝗇𝖮𝖻𝗌∗ is the category of finite non-empty concrete presheaves
on 𝖥𝗂𝗇𝖲𝖾𝗍 and to obtain 𝖥𝗂𝗇𝖮𝖻𝗌, we decompose presheaves into their
elements and apply 𝖥𝗂𝗇𝖲𝖾𝗍 ↪ 𝖥𝗂𝗇𝖱𝖾𝗅 before recomposing them. In
fact, many of the phenomena discussed here may have a simpler
explanation in terms of such adjunctions, for example the monoidal
closed structure of 𝖮𝖻𝗌 arises in parallel to how it arises for (𝖥𝗂𝗇)𝖱𝖾𝗅
from (𝖥𝗂𝗇)𝖲𝖾𝗍.

LIMITS AND COLIMITS

Let us begin with simple structures in 𝖮𝖻𝗌.

PROPOSITION 3.2.2. The set {⊥} with the reflexive relation ⟨obs-zero⟩
is a zero object in 𝖮𝖻𝗌, denoted by 𝟎≅ 𝟏. The unique morphisms A terminal object is an object 𝟏

such that for each 𝑐 there exists a
unique morphism 𝑐→𝟏. An initial
object is an object 𝟎 such that
for each 𝑐 there exists a unique
morphism 𝟎→ 𝑐. A zero object is
an object that is both initial and
terminal, i. e. 𝟎≅ 𝟏.

𝟏𝐷 :𝐷→𝟏 and 𝟎𝐷 : 𝟎→𝐷 are given by the empty relation.

Proof. We first note that 𝟎 ∈ 𝖮𝖻𝗌 since it is just the zero-atom
CABA. Now let 𝐷 ∈ 𝖮𝖻𝗌. We need to show that there exist a
unique morphisms 𝐷→𝟏 and 𝟎→𝐷. Clearly the empty relation
is a domain mapping. Furthermore any domain mapping out of
and into 𝟎≅ 𝟏 must be empty since 𝟎 has no atoms.

As a function on elements, the empty domain mapping sends every
element in its domain to ⊥. The presence of a zero object makes
𝖮𝖻𝗌 a pointed category. In a pointed category, any pair 𝑐,𝑑 of
objects has a morphism 𝟎𝑐,𝑑 :𝑐→ 𝑑 given by the composite 𝟏𝑐 ;𝟎𝑑.
In our case this just means that the empty relation is a domain
mapping between any pair of objects.

76

PROPOSITION 3.2.3. For any collection of domains (𝐷𝑖,⊑𝑖) ∈ ⟨obs-prod⟩
𝖮𝖻𝗌, their product ⨉(𝐷𝑖,⊑𝑖) in 𝖮𝖻𝗌 exists and is given by the carte- A product of a collection 𝑐𝑖 of ob-

jects is an object ⨉𝑐𝑖 with mor-
phisms 𝜋𝑖 :⨉𝑐𝑗 →𝑐𝑖 for all 𝑖, called
projections, such that for each 𝑒
with morphisms 𝑓𝑖 : 𝑒→ 𝑐𝑖 for all
𝑖 there exists a unique mediator
⨉𝑓𝑖 : 𝑒→⨉𝑐𝑖 such that

𝑒

𝑐𝑖 ⨉𝑐𝑗

𝑓𝑖 ⨉𝑓𝑗

𝜋𝑖

commutes for all 𝑖.

sian product 𝐷× ≔⨉𝐷𝑖 together with the relation ⨉𝑥𝑖 ⊑× ⨉𝑦𝑖
iff 𝑥𝑖 ⊑𝑖 𝑦𝑖 for all 𝑖 and projections 𝜋𝑖:𝐷× →𝐷𝑖 with 𝜋𝑖(⨉𝑥𝑗) = 𝑥𝑖.
For any 𝐸∈ 𝖮𝖻𝗌 with morphisms 𝑓𝑖 :𝐸→𝐷𝑖 for each 𝑖, the medi-
ator ⨉𝑓𝑖 :𝐸→𝐷× is given by 𝑥↦⨉(𝑓𝑖(𝑥)).
Proof.
⟨(𝐷×,⊑×) ∈ 𝖮𝖻𝗌⟩

We perform an equivalent construction on the corresponding
observation systems. Recall that each (At𝐷𝑖,𝒞(At𝐷𝑖)) is an ob-
servation system by ⟨bcdcpo-sys⟩. Let 𝑃≔{(𝑎,𝑖) ∣ 𝑎 ∈ At𝐷𝑖}
denote the disjoint union of all At𝐷𝑖 and 𝜎≔{𝑆⊆𝑃 ∣ ∀𝑖.{𝑎 ∣
(𝑎,𝑖) ∈ 𝑆} ∈ 𝒞(At𝐷𝑖)} the set of subsets of 𝑃 such that each
‘‘component’’ of elements coming from the same domain is
consistent in that domain. We show that (𝑃,𝜎) is a non-empty
observation system, and that (𝜎,⊆) ≅ (𝐷×,⊑×).° Clearly 𝜎 is °Recall that we defined two domains

to be isomorphic if there is a bi-
jection on their sets of atoms that
preserves and reflects consistent
sets of atoms. It is easy to see that
this indeed determines an isomor-
phism in 𝖮𝖻𝗌, which justifies using
it here. Later in this section, we
give a more formal argument for
this.

non-empty since the 𝐷𝑖 are.
⟨(𝑃,𝜎) is an observation system⟩

⟨⊆-cl⟩
If 𝑆′ ⊆ 𝑆 ∈ 𝜎, then for all 𝑖, we have {𝑎 ∣ (𝑎,𝑖) ∈ 𝑆′} ⊆
{𝑎 ∣ (𝑎,𝑖) ∈ 𝑆} ∈ 𝒞(At𝐷𝑖), so {𝑎 ∣ (𝑎,𝑖) ∈ 𝑆′} ∈ 𝒞(At𝐷𝑖)
by ⟨⊆-cl⟩ of (At𝐷𝑖,𝒞(At𝐷𝑖)), and 𝑆′ ∈𝜎 by definition
of 𝜎.

⟨fin-compat⟩
If 𝐹 ∈ 𝜎 for all finite 𝐹 ⊆ 𝐼 for some 𝐼 ⊆ 𝑃, then for
each 𝑖, in particular any finite 𝐹 ⊆ {(𝑎,𝑖) ∣ (𝑎,𝑖) ∈ 𝐼}
is in 𝜎, hence {𝑎 ∣ (𝑎,𝑖) ∈ 𝐹} ∈ 𝒞(At𝐷𝑖), so {𝑎 ∣ (𝑎,𝑖) ∈
𝐼} ∈ 𝒞(At𝐷𝑖) by ⟨fin-compat⟩ of (At𝐷𝑖,𝒞(At𝐷𝑖)), and
then 𝐼 ∈ 𝜎 by definition of 𝜎.

⟨(𝜎,⊆) ≅ (𝐷×,⊑×)⟩
Consider 𝑏 :𝜎→𝐷× with 𝑏(𝑆)≔⨉𝑖⨆{𝑎 ∣ (𝑎,𝑖) ∈ 𝑆}. This
is well-defined since each {𝑎 ∣ (𝑎,𝑖) ∈ 𝑆} ∈ 𝒞(At𝐷𝑖) by con-

77

struction. It is injective and surjective because each 𝐷𝑖 is
nuclear and atomistic, respectively. Finally, 𝑆 ⊆ 𝑆′ iff for
all 𝑖, we have {𝑎 ∣ (𝑎,𝑖) ∈ 𝑆} ⊆ {𝑎 ∣ (𝑎,𝑖) ∈ 𝑆′}, which is
the case iff ⨆{𝑎 ∣ (𝑎,𝑖) ∈ 𝑆}⊑⨆{𝑎 ∣ (𝑎,𝑖) ∈ 𝑆′} for all 𝑖, iff
𝑏(𝑆) ⊑× 𝑏(𝑆′).

The bijection just constructed shows that the atoms of 𝐷×, given
by the images of singletons of (𝑎,𝑖) ∈ 𝑃, are precisely the tuples
⨉𝑎𝑖 with 𝑎𝑖 ≠ ⊥𝑖 for a unique 𝑖 and 𝑎𝑖 ∈ At𝐷𝑖 for that 𝑖, and
that a set 𝐴≔ {⨉𝑖𝑎

𝑗
𝑖 ∣ 𝑗 ∈ 𝐽} of such atoms is consistent iff for

each 𝑖, the set {𝑎𝑗𝑖 ∈𝐴 ∣ 𝑎𝑗𝑖 ≠⊥𝑖} is consistent in 𝐷𝑖.

⟨each 𝜋𝑖 is a domain mapping⟩
First, 𝜋𝑖 is monotone since ⨉𝑥𝑗 ⊑× ⨉𝑦𝑗 implies 𝜋𝑖(⨉𝑥𝑗) =
𝑥𝑖 ⊑𝑖 𝑦𝑖 =𝜋𝑖(⨉𝑦𝑗) by definition of ⊑×. Furthermore, for each
⨉𝑥𝑗 ∈ 𝐷×, any 𝑏 ∈ At𝜋𝑖(⨉𝑥𝑗) = At𝑥𝑖 has that ⨉𝑎𝑗 with
𝑎𝑗 =⊥𝑗 for all 𝑗≠ 𝑖 and 𝑎𝑖 = 𝑏 is an atom of 𝐷×, and clearly
At𝜋𝑖(⨉𝑎𝑗) =At𝑏 ∋ 𝑏. The claim follows by ⟨dm-at-reflect⟩.

⟨⨉𝑓𝑖 is a domain mapping⟩
We again use ⟨dm-at-reflect⟩. Clearly ⨉𝑓𝑖 is monotone, by
monotonicity of each 𝑓𝑖 and the definition ⊑×. For each 𝑥 ∈𝐸
and ⨉𝑏𝑖 ∈At⨉(𝑓𝑖(𝑥)), we have that 𝑏𝑖 ≠⊥𝑖 for a unique 𝑖 and
𝑏𝑖 ∈At𝐷𝑖. Then, 𝑏𝑖 ⊑𝑓𝑖(𝑥), so since 𝑓𝑖 is a domain mapping,
by ⟨dm-at-reflect⟩ there exists an 𝑎 ∈At𝐸 with 𝑏𝑖 ∈At𝑓𝑖(𝑎),
as needed.

⟨⨉𝑓𝑖 is a unique mediator⟩
That ⨉𝑓𝑖 makes the diagram commute is obvious: for all 𝑖 and
𝑥 ∈𝐸, we have 𝜋𝑖(⨉(𝑓𝑗(𝑥))) = 𝑓𝑖(𝑥). Now any𝑚:𝐸→𝐷× with
𝜋𝑖(𝑚(𝑥)) = 𝑓𝑖(𝑥) for all 𝑖 and 𝑥 ∈𝐸 needs to have 𝑚(𝑥) =⨉𝑦𝑖
for some collection of 𝑦𝑖 ∈𝐷𝑖, and since 𝑓𝑖(𝑥) = 𝜋𝑖(𝑚(𝑥)) = 𝑦𝑖
for all 𝑖, we have that 𝑚(𝑥) =⨉(𝑓𝑖(𝑥)), so 𝑚=⨉𝑓𝑖.

We could have given a simpler direct proof instead of constructing

78

equivalent observation systems. However, with this proof, we have
gained a new perspective on products in 𝖮𝖻𝗌: the set of atoms of
the product can be seen as the disjoint union of the individual sets
of atoms, and a set of such atoms is consistent iff each subset of
atoms coming from the same domain is consistent in that domain.
Converting this into observation spaces, we have that the points
of a product space are tuples of points of the individual spaces
(since points are maximal elements, which in the product are
tuples of maximal elements), and the basic observables applying
to each point are just the properties from each individual space
applying to the corresponding component of the tuple. With our
understanding of atoms, we can also reformulate the projections
𝜋𝑖 : ⨉𝐷𝑗 → 𝐷𝑖 as relations on atoms, with (𝑎,𝑖) →𝜋𝑖 𝑎 for all
𝑎 ∈At𝐷𝑖, and mediators ⨉𝑓𝑖 :𝐸→⨉𝐷𝑖 as 𝑒→⨉𝑓𝑗 𝑓𝑖(𝑒)×{𝑖} for
all 𝑖.

The remark after the proof of ⟨obs*=conc+finset⟩ pointed out
that 𝖮𝖻𝗌∗ is equivalent to Conc𝖥𝗂𝗇𝖲𝖾𝗍+. As shown in [3], Conc𝖢
forms a quasitopos for each concrete category 𝖢. In particular, this
means that 𝖮𝖻𝗌∗ has all (small) limits and colimits.

PROPOSITION 3.2.4. The category 𝖮𝖻𝗌∗ has limits of all small ⟨obs*-lim⟩
diagrams. For 𝖨 a small category and 𝐼 : 𝖨 → 𝖮𝖻𝗌∗ a diagram, the A cone to a diagram 𝐼 : 𝖨 → 𝖢 is a

collection of morphisms 𝑓𝑖 : 𝑒→ 𝐼𝑖
for each 𝑖 ∈ 𝖨 such that

𝑒

𝐼𝑖 𝐼𝑗

𝑓𝑖 𝑓𝑗

𝐼𝑓

commutes for all 𝑓 : 𝑖→ 𝑗 in 𝖨. A
limit of 𝐼 is a cone 𝜋𝑖 : lim𝐼→ 𝐼𝑖
of morphisms called projections,
such that for each cone 𝑓𝑖 : 𝑒→ 𝐼𝑖
to 𝐼 there exists a unique mediator
⨉𝑓𝑖 : 𝑒→ lim𝐼 such that

𝑒

𝐼𝑖 lim𝐼

⨉𝑓𝑗

𝜋𝑖

𝑓𝑖

commutes for all 𝑖 ∈ 𝖨.

limit lim𝐼 is given by the domain (𝜎,⊆) for (𝑃,𝜎) the following
observation system. Let

𝑃≔{⨂
𝑖∈𝖨

𝑎𝑖 ∈⨂
𝑖∈𝖨

At𝐼𝑖 ∣ 𝐼𝑓(𝑎𝑖) = 𝑎𝑗 for all 𝑓 : 𝑖→ 𝑗 in 𝖨}

be the set of tuples in the cartesian product of the sets of atoms
of all domains in the diagram such that each domain mapping in
the diagram maps the atom coming from its domain to the atom
coming from its codomain. Here we denote the cartesian product
for atoms using ⊗ to distinguish it from the product in 𝖮𝖻𝗌. Let
𝜎 ≔ {𝑆 ⊆ 𝑃 ∣ ∀𝑖.{𝑎𝑖 ∣ ⨂𝑎𝑗 ∈ 𝑆} ∈ 𝒞(At𝐷𝑖)}. The projections 𝜋∗𝑖
are given by the domain mappings 𝜋∗𝑖 (⨂𝑎𝑗) = 𝑎𝑖 for all atoms of

79

𝜎, and for any collection of 𝑓𝑖 :𝐸→ 𝐼𝑖 in 𝖮𝖻𝗌∗ with 𝑓𝑖 ; 𝐼𝑓 =𝑓𝑗 for
all 𝑓 : 𝑖 → 𝑗, the mediator ⨂𝑓𝑖 is given by 𝑎↦⨂(𝑓𝑖(𝑎)) for all
𝑎 ∈At𝐸.
Proof. Limits in the category [𝖥𝗂𝗇𝖱𝖾𝗅op,𝖲𝖾𝗍] of presheaves are com-
puted pointwise, and 𝖮𝖻𝗌∗ is a full subcategory of this category
by ⟨obs*=conc+finset⟩. As is easy to see from inspecting the def-
inition of limits, full subcategory inclusions reflect them, so if
the pointwise limit happens to be in Conc+fin𝖥𝗂𝗇𝖲𝖾𝗍, it is also the
limit in 𝖮𝖻𝗌∗. A pointwise limit of concrete presheaves is always
concrete [3, Proposition 39].

Furthermore, a pointwise limit of non-empty concrete presheaves
is always non-empty: if 𝐼𝑖 is non-empty, say 𝜑 ∈ 𝐼𝑖(𝑁), then
𝐼𝑖(𝟎𝑁)(𝜑) ∈ 𝐼𝑖(𝟎), where 𝟎𝑁 : 𝟎 → 𝑁 is the empty map. Any
two 𝜑,𝜑′ ∈ 𝐼𝑖(𝟎) vacuously have 𝐼𝑖(𝑛)(𝜑) = 𝐼𝑖(𝑛)(𝜑′) for all 𝑛 ∈
𝖥𝗂𝗇𝖲𝖾𝗍(𝟏,𝟎) ≅∅, so 𝜑=𝜑′ by concreteness. Thus each 𝐼𝑖(𝟎) has a
unique element, and every natural transformation 𝛼:𝐼𝑖 →𝐼𝑗 must
map the unique • ∈ 𝐼𝑖(𝟎) onto • ∈ 𝐼𝑗(𝟎). By the way limits are
computed in 𝖲𝖾𝗍, it follows that lim(𝐼(−)(𝟎)) is a singleton, so
lim𝐼 is non-empty.
Thus the pointwise limit of 𝐼 in [𝖥𝗂𝗇𝖱𝖾𝗅op,𝖲𝖾𝗍] is in Conc+𝖥𝗂𝗇𝖲𝖾𝗍.
Explicitly, for each 𝑁∈ 𝖥𝗂𝗇𝖲𝖾𝗍 we have that lim𝐼(𝑁) is the set of tu-
ples ⨂𝜑𝑖 with 𝜑𝑖 ∈ 𝐼𝑖(𝑁) for all 𝑖 ∈ 𝖨 and 𝐼𝑓(𝑁)(𝜑𝑖) = 𝜑𝑗 for all 𝑓:
𝑖 → 𝑗 in 𝖨. Then 𝐼𝑗(𝑛)(𝜑𝑗) = 𝐼𝑗(𝑛)(𝐼𝑓(𝑁)(𝜑𝑖)) = 𝐼𝑓(𝟏)(𝐼𝑖(𝑛)(𝜑𝑖))
for all 𝑛∈𝑁 by naturality, so by concreteness we can equivalently
consider ⨂𝜑𝑖 as an 𝑁-indexed tuple of atoms ⨂𝑎𝑖 ∈⨂𝐼𝑖(𝟏) such
that for each 𝑖 the component {𝑎𝑖 ∣⨂𝑎𝑗 ∈⨂𝜑𝑖(𝑁)} is consistent
(i.e. the image of some 𝜑𝑖 under 𝐼𝑖(𝑁)), with 𝐼𝑓(𝟏)(𝑎𝑖) = 𝑎𝑗 for
all 𝑓 : 𝑖→ 𝑗.
Using the construction given in the proof of the essential surjec-
tivity in ⟨obs*=conc+finset⟩, we can then determine what obser-
vation system this corresponds to. First, we have that lim𝐼(𝟏) ≅
lim(𝐼(−)(𝟏)) in 𝖲𝖾𝗍 is simply given by 𝑃 as stated above. By the
above, the set 𝜎 of consistent subsets is given lim𝐼(𝑁)(𝜑) for

80

each 𝜑 ∈ lim𝐼(𝑁) for each 𝑁∈ 𝖥𝗂𝗇𝖲𝖾𝗍 contains precisely the sets
of tuples of atoms from 𝑃 such that each component is consistent.
Thus 𝜎 is as stated in the proposition. The equivalent domain is
then given by the ideal completion of 𝜎, but in this case this has
no effect because (𝑃,𝜎) already satisfies ⟨fin-compat⟩: suppose
𝐹 ∈ 𝜎 for all 𝐹 ⊆fin 𝑆 ⊆ 𝑃, then for all 𝑖, we have that each fi-
nite 𝐹′ ⊆ {𝑎𝑖 ∣⨂𝑎𝑗 ∈𝑆} must be in 𝒞(At𝐷𝑖) by definition, hence
{𝑎𝑖 ∣⨂𝑎𝑗 ∈𝑆} ∈ 𝒞(At𝐷𝑖) by ⟨fin-compat⟩ of (At𝐷𝑖,𝒞(At𝐷𝑖)).

The definition of the projections and mediators directly follows
from the corresponding definitions for lim(𝐼(−)(𝟏)) in 𝖲𝖾𝗍.

As a corollary, we in particular have a terminal object 𝟏∗ (the limit
of the empty diagram), given by the one-atom CABA {⊥,⊤} with
a top element ⊤. The unique atom-preserving domain mapping
𝟏∗𝐷 :𝐷→𝟏∗ has 𝑎↦⊤ for all 𝑎 ∈At𝐷.

Furthermore, 𝖮𝖻𝗌∗ has all (small) products, since products are
just limits of discrete (containing only identity arrows) diagrams.
We readily compute the product ⨂𝐷𝑖 in 𝖮𝖻𝗌∗ of a collection
of domains to have atoms ⨂At𝐷𝑖, and a set {⨂𝑎𝑗𝑖 ∣ 𝑗 ∈ 𝐽} is
consistent iff each {𝑎𝑗𝑖 ∣ 𝑗 ∈ 𝐽} is consistent in 𝐷𝑖. There does
not seem to be a simple characterisation of this construction in
domain-theoretic terms without resorting to the language of obser-
vation systems, except if the domains are of the form 𝒫𝒞(𝐷𝑖):
then, ⨂𝒫𝒞(𝐷𝑖) ≅ 𝒫𝒞(⨉𝐷𝑖) because 𝒫𝒞 is a right adjoint by
⟨obs*-obs-adj⟩, and right adjoints preserve limits. We can still
consider observation spaces equivalent to products in 𝖮𝖻𝗌∗: the
points of such spaces are maximal consistent sets, which are clearly
given by {⨂𝑎𝑗𝑖 ∣ 𝑗 ∈ 𝐽} such that each {𝑎𝑗𝑖 ∣ 𝑗 ∈ 𝐽} is maximal in
𝐷𝑖, i. e. they are again tuples of maximal elements of 𝐷𝑖, just like
for the product in 𝖮𝖻𝗌. However, in contrast to the product in 𝖮𝖻𝗌,
the observable properties are now given by tuples of observable
properties, each applying to the respective component.

81

PROPOSITION 3.2.5. The category 𝖮𝖻𝗌∗ has colimits of all ⟨obs*-colim⟩
small diagrams. For 𝖨 a small category and 𝐼 : 𝖨 → 𝖮𝖻𝗌∗ a diagram,
the colimit colim𝐼 is given by (ℐ(𝜎),⊆), for (𝑃,𝜎) the follow-
ing observation system. Let 𝑃 be the disjoint union ⋃𝑖∈𝖨 {(𝑎,𝑖) ∣
𝑎 ∈ At𝐼𝑖} quotiented by the equivalence relation ∼ generated by
‘‘(𝑎,𝑖) ∼ (𝑏,𝑗) iff 𝐼𝑓(𝑎) = 𝑏 for some 𝑓 : 𝑖→ 𝑗 in 𝖨’’, and let 𝜎 con-
tain precisely the sets of the form {[(𝑎,𝑖)] ∣ 𝑎 ∈ 𝐴} for some 𝑖 ∈ 𝖨
and 𝐴 ∈ 𝒞(At𝐼𝑖). The insertions 𝜄𝑖 are given by 𝑎↦ [(𝑎,𝑖)], and
for any collection of atom-preserving 𝑓𝑖 : 𝐼𝑖 →𝐸 with 𝐼𝑓 ; 𝑓𝑗 = 𝑓𝑖
for all 𝑓 : 𝑖→ 𝑗 in 𝖨, the mediator ⨉𝑓𝑖 is given by [(𝑎,𝑖)]↦ 𝑓𝑖(𝑎).
Proof. By [3, Proposition 50], colimits in categories of concrete
presheaves can be computed by first computing pointwise and then
applying a ‘‘concretisation’’ functor which simply quotients each
𝐹(𝑐) under the equivalence relation 𝐹(−)(𝜑) = 𝐹(−)(𝜑′). This
functor has a right adjoint [3, Lemma 47], given by the inclusion
Conc𝖢 ↪ [𝖢op,𝖲𝖾𝗍], and the adjunction clearly restricts to an
adjunction between Conc+𝖢 and [𝖢op,𝖲𝖾𝗍] since the concretisation
of a presheaf 𝐹 just takes quotients of each 𝐹(𝑐), which is non-
empty if 𝐹(𝑐) is non-empty, so the concretisation of a non-empty
presheaf is non-empty.

Thus colimits exist in 𝖮𝖻𝗌∗ and we can compute them in the same
manner. Again, we use ⟨obs*=conc+finset⟩ to find the equivalent
observation system. Its set of properties is given by colim(𝐼(−)(𝟏))
in 𝖲𝖾𝗍, which is just 𝑃. Now each [𝜑] ∈ colim(𝐼(−)(𝑁)) is the
equivalence class of some 𝜑 ∈ 𝐼𝑖(𝑁), under the equivalence rela-
tion generated by 𝐼𝑓(𝑁)(𝜓) = 𝜓′ for some 𝑓 : 𝑗 → 𝑘 in 𝖨, which
like in ⟨obs*-lim⟩ just means that there is an arrow 𝑓 such that
𝐼𝑓(𝟏)(𝐼𝑗(𝑛)(𝜓)) = 𝐼𝑘(𝑛)(𝜓′) for all 𝑛 ∈𝑁, so that after applying
concretisation we can think of such a [𝜑] as corresponding to the
set of equivalence classes of atoms of 𝜑. It directly follows that
the consistent sets are given by 𝜎 as stated. This time, ideal com-
pletion is not automatic° and needs to be applied, as we do in °For example, consider the chain

𝟏⊆ 𝟐⊆ 𝟑⊆…
containing a set of each cardinality
in 𝖥𝗂𝗇𝖲𝖾𝗍 together with inclusions,
embedded into 𝖮𝖻𝗌∗. The point-
wise colimit of this diagram only
specifies finite consistent sets, but
the colimit in 𝖮𝖻𝗌∗ is (𝒫(ℕ),⊆),
which also contains infinite sets.

the statement of the proposition. Insertions and mediators again
follow from their definitions for colim(𝐼(−)(𝟏)) in 𝖲𝖾𝗍.

82

The colimit can also be described as the (order-theoretic) ideal
completion of the quotient of the disjoint union of the domains
𝐼𝑖 under the equivalence relation generated by 𝐼𝑓(𝑥) = 𝑦 for some
𝑓 and identifying bottom elements of all 𝐼𝑖, together with the
order [𝑥] ⊑ [𝑦] if 𝑥 ⊑𝑖 𝑦 in 𝐷𝑖, extended to the ideal completion,
with insertions 𝜄𝑖(𝑥) = [(𝑥,𝑖)] and mediators ⨉𝑓𝑖 defined on finite
elements by [(𝑥,𝑖)] ↦ 𝑓𝑖(𝑥) and then uniquely extended to the
ideal completion.

Left adjoints preserve° colimits, 𝖮𝖻𝗌∗ is cocomplete (has all col- °We say that a functor 𝐹:𝖢 → 𝖣
preserves the colimit of a functor
𝐼 : 𝖨 → 𝖢 if 𝐹(colim𝐼) is a colimit
of colim(𝐼 ;𝐹), together with the
insertions 𝐹(𝜄𝑖) for 𝑖 ∈ 𝖨.

imits) by ⟨obs*-colim⟩, and the inclusion 𝖮𝖻𝗌∗ ↪ 𝖮𝖻𝗌 is a left
adjoint by ⟨obs*-obs-adj⟩. As a corollary, the initial object in
𝖮𝖻𝗌∗ (the colimit of the empty diagram) is sent by the inclusion
to an initial object in 𝖮𝖻𝗌, which as we know from ⟨obs-zero⟩ is
given by the zero-atom CABA 𝟎, together with empty domain
mappings (which are atom-preserving when going out of 𝟎), so 𝟎
must also be initial in 𝖮𝖻𝗌∗.

Coproducts in 𝖮𝖻𝗌∗, which are colimits of discrete diagrams, are
then simply given by disjoint unions of domains, but identifying
bottom elements. As is easy to see, the disjoint union automatically
satisfies ⟨dir-comp⟩, so ideal completion need not be applied in
this case. We then also have the following.

PROPOSITION 3.2.6. The category 𝖮𝖻𝗌 has all (small) coprod- ⟨obs-coprod⟩
ucts, computed like in 𝖮𝖻𝗌∗.
Proof. A coproduct is a colimit of a discrete diagram, and discrete
diagrams automatically contain only atom-preserving maps, so the
diagram is in 𝖮𝖻𝗌∗. Now 𝖮𝖻𝗌∗ is cocomplete by ⟨obs*-colim⟩, and
the inclusion 𝖮𝖻𝗌∗ ↪ 𝖮𝖻𝗌 is a left adjoint by ⟨obs*-obs-adj⟩, hence
preserves colimits. It follows that the coproduct in 𝖮𝖻𝗌∗ exists and
is also the coproduct in 𝖮𝖻𝗌.

The observation spaces corresponding to coproducts are simply
disjoint unions of the spaces, and each observable property only
applies to the points of the original space it belongs to.

83

More generally, it follows that 𝖮𝖻𝗌 has colimits of all diagrams
factoring through the inclusion 𝖥𝗂𝗇𝖮𝖻𝗌∗ ↪ 𝖥𝗂𝗇𝖮𝖻𝗌. However, 𝖮𝖻𝗌
is otherwise neither complete nor cocomplete. The diagram in the

• •
• • • •

• •margin does not have an equaliser, nor a coequaliser, which follows
from the fact that a (co)equaliser would imply a splitting of the
idempotent relation {(♠,♠),(♡,♠),(♡,♡)} [5, Proposition 6.5.4],
which is the blue arrow in the diagram, but this cannot be split.

MONOIDAL CLOSEDNESS

Intuitively speaking, a category is closed if it has an object [𝑐,𝑑]
for each pair of objects that is in a sense an ‘‘object of morphisms’’
from 𝑐 to 𝑑. In our case, this is desirable because we want to have
a function space between domains that is itself a domain, so that
e.g. the dynamical systems on a space are (maximal) elements of
the function space on the corresponding domain. Often, one cares
about categories that are cartesian closed, which can be defined
succinctly by saying that the category has finite products and the
induced functor −×𝑐 has a right adjoint [𝑐,−] for every 𝑐. This
is motivated by analogy to the situation in 𝖲𝖾𝗍, where functions
going out of a product 𝑋×𝑌 → 𝑍 are equivalently functions
𝑋→(𝑌→𝑍) going into a function space (‘‘currying’’).

The category 𝖮𝖻𝗌 is not cartesian closed: every cartesian closed
category with a zero object is trivial.° This is not a significant °For, we would have 𝖢(𝑐,𝑑) ≅ 𝖢(𝑐×

𝟏,𝑑) ≅ 𝖢(𝑐, [𝟏,𝑑]) ≅ 𝖢(𝑐, [𝟎,𝑑]) ≅
𝖢(𝑐×𝟎,𝑑) ≅ 𝖢(𝟎,𝑑) ≅ {•} for all
pairs of objects 𝑐,𝑑 ∈ 𝖢.

limitation, though, because it instead comes with a monoidal struc-
ture with respect to which it is closed. Pleasantly, this structure
is provided by the cartesian monoidal structure of 𝖮𝖻𝗌∗.

DEFINITION: TENSOR PRODUCT. For every collection of do-
mains 𝐷𝑖 ∈ 𝖮𝖻𝗌, their tensor product is defined as their product
in 𝖮𝖻𝗌∗ and denoted ⨂𝐷𝑖.

PROPOSITION 3.2.7. The category 𝖮𝖻𝗌 forms a symmetric mo- A symmetric monoidal category
is a category 𝖢 with a functor
⊗:𝖢×𝖢 → 𝖢, an object called the
tensor unit, several natural iso-
morphisms, namely the associator,
the braiding, and the left and right
unitor satisfying various identities,
namely the triangle, pentagon, and
hexagon identities, and a symmetry
condition for the braiding; see [5,
Section 6.1].

noidal category together with ⊗.

84

Proof. First, we need to check that the tensor product ⊗ can
be extended to a functor from 𝖮𝖻𝗌×𝖮𝖻𝗌 into 𝖮𝖻𝗌. For objects,
this is clear since this is just the product in 𝖮𝖻𝗌∗, which is a wide
subcategory of 𝖮𝖻𝗌, so the tensor product is defined for all objects.
For domain mappings →𝑓,→𝑔 :𝐷→𝐷1,𝐷2, define 𝑎 (→𝑓⊗→𝑔)
(𝑏1⊗𝑏2) iff 𝑎→𝑓 𝑏1 and 𝑎→𝑔 𝑏2, and let the tensor product functor
map (→𝑓,→𝑔):(𝐷1,𝐷2)→ (𝐷′

1,𝐷
′
2) to →𝑓,𝑔 ≔(𝜋∗1 ;→𝑓)⊗(𝜋∗2 ;→𝑔),

which has the property that (𝑎1⊗𝑎2) →𝑓,𝑔 (𝑏1⊗𝑏2) iff 𝑎1 →𝑓 𝑏1
and 𝑎2 →𝑔 𝑏2.° °Note that the action of this func-

tor on morphisms is often denoted
→𝑓⊗→𝑔, but we avoid this here
because we use this notation for
mediators, and the extension we
made to our notation coincides
with mediators if both maps are
atom-preserving.

⟨⊗ is a functor⟩
⟨⊗ is well-defined⟩

We need to show that →𝑓,𝑔 is a domain mapping. Let
𝐴 ∈ 𝒞(At(𝐷1⊗𝐷2)). Then, →𝑓,𝑔(𝐴) = {𝑎′⊗𝑏′ ∣ ∃(𝑎⊗𝑏) ∈
𝐴.𝑎 →𝑓 𝑎′, 𝑏 →𝑔 𝑏′}. Here {𝑎′ ∈ At𝐷′

1 ∣ ∃(𝑎⊗ 𝑏) ∈ 𝐴,𝑏′ ∈
At𝐷′

2.𝑎 →𝑓 𝑎′, 𝑏 →𝑔 𝑏′} ⊆ →𝑓(𝐴) ∈ 𝒞(At𝐷′
1) since →𝑓 is

a domain mapping, so the subset is consistent by ⟨⊆-cl⟩
of (At𝐷′

1,𝒞(At𝐷′
1)), and analogously for the subset of the

𝑏′ ∈ At𝐷′
2, so →𝑓,𝑔(𝐴) ∈ 𝒞(At(𝐷1⊗𝐷2)) by definition of

consistency in the product in 𝖮𝖻𝗌∗.
⟨⊗ preserves identities⟩

We have (𝑎⊗ 𝑏) →id,id (𝑐⊗𝑑) iff 𝑎 →id 𝑐 and 𝑏 →id 𝑑 iff
𝑎= 𝑐 and 𝑏 = 𝑑.

⟨⊗ preserves composites⟩
For pairs (→𝑓,→𝑔) : (𝐷1,𝐷2) → (𝐷′

1,𝐷
′
2) and (→𝑓′,→𝑔′) :

(𝐷′
1,𝐷

′
2) → (𝐷″

1,𝐷
″
2), we have (𝑎⊗𝑏)→𝑓;𝑓′,𝑔;𝑔′ (𝑎″⊗𝑏″) iff

𝑎→𝑓;𝑓′ 𝑎″ and 𝑏→𝑔;𝑔′ 𝑏″, iff there are 𝑎′, 𝑏′ such that 𝑎→𝑓
𝑎′ →𝑓′ 𝑎″ and 𝑏→𝑔 𝑏′ →𝑔′ 𝑏″, iff there is an 𝑎′⊗𝑏′ ∈At(𝐷′

1⊗
𝐷′
2) such that (𝑎⊗𝑏)→𝑓,𝑔 (𝑎′⊗𝑏′) and (𝑎′⊗𝑏′)→𝑓′,𝑔′ (𝑎″⊗

𝑏″), iff (𝑎⊗𝑏) (→𝑓,𝑔; →𝑓′;𝑔′) (𝑎′⊗𝑏′), as required.

As the tensor unit, we designate the object 𝟏∗. The associator is

85

given as a domain mapping by ((𝑎⊗𝑏)⊗𝑐)→𝛼 (𝑎⊗(𝑏⊗𝑐)), the
left and right unitors are ⊤⊗𝑎→𝜆 𝑎 and 𝑎⊗⊤→𝜚 𝑎, respectively,
and the braiding is 𝑎⊗𝑏→𝛽 𝑏⊗𝑎.
The triangle, pentagon, and hexagon identities, as well as sym-
metry of the braiding are satisfied because the structure we have
specified restricted to 𝖮𝖻𝗌∗ is the cartesian monoidal structure on
𝖮𝖻𝗌∗ coming with any category with finite products, and any such
structure is automatically symmetric monoidal, hence satisfying
all these identities, which suffices since 𝖮𝖻𝗌∗ is a wide subcategory
of 𝖮𝖻𝗌.
However, we still need to show that all of these are natural iso-
morphisms. The isomorphism part is obvious (just transpose all
the relations in the definitions to get the inverse), so it remains to
show that naturality extends to arbitary morphisms in 𝖮𝖻𝗌.
⟨naturality of 𝛼⟩

Let ((→𝑓,→𝑔),→ℎ) be a morphism in (𝖮𝖻𝗌×𝖮𝖻𝗌)×𝖮𝖻𝗌. Then,
there exists an (𝑎′⊗𝑏′)⊗𝑐′) with ((𝑎⊗𝑏)⊗𝑐)→→𝑓,𝑔,→ℎ

((𝑎′⊗
𝑏′)⊗𝑐′)→𝛼 (𝑎′⊗(𝑏′⊗𝑐′)) iff there exist 𝑎′, 𝑏′,𝑐′ with 𝑎→𝑓 𝑎′,
𝑏→𝑔 𝑏′, and 𝑐→ℎ 𝑐′, iff ((𝑎⊗𝑏)⊗𝑐)→𝛼 (𝑎⊗(𝑏⊗𝑐))→→𝑓,→𝑔,ℎ
(𝑎′⊗(𝑏′⊗𝑐′)).

⟨naturality of 𝜆 and 𝜚⟩
Let →𝑓 be a morphism in 𝖮𝖻𝗌. Then, there exists a 𝑏 with
⊤⊗𝑎 →id,𝑓 ⊤⊗𝑏 →𝜆 𝑏 iff there exists a 𝑏 with 𝑎 →𝑓 𝑏, iff
⊤⊗𝑎→𝜆 𝑎→𝑓 𝑏. The proof for 𝜚 is analogous.

⟨naturality of 𝛽⟩
Let (→𝑓,→𝑔) be a morphism in 𝖮𝖻𝗌×𝖮𝖻𝗌. Then, there exists
an 𝑎′⊗𝑏′ with (𝑎⊗𝑏)→𝑓,𝑔 (𝑎′⊗𝑏′)→𝛽 (𝑏′⊗𝑎′) iff there exist
𝑎′, 𝑏′ with 𝑎→𝑓 𝑎′, 𝑏→𝑔 𝑏′, iff (𝑎⊗𝑏)→𝛽 (𝑏⊗𝑎)→𝑔,𝑓 (𝑏′⊗𝑎′).

PROPOSITION 3.2.8. The category 𝖮𝖻𝗌 with ⊗ is symmetric ⟨obs-closed⟩
monoidal closed. For two domains (𝐷1,⊑1), (𝐷2,⊑2) ∈ 𝖮𝖻𝗌, the

86

internal hom [𝐷1,𝐷2] is given by the set of domain mappings In a monoidal category, an internal
hom of 𝑐 and 𝑑 is an object [𝑐,𝑑]
together with a morphism eval :
([𝑐,𝑑]⊗𝑐) → 𝑑 such that for any
object 𝑒 with a morphism 𝑓 : (𝑒⊗
𝑐)→𝑑, there is a unique morphism
𝜆𝑓 :𝑒→ [𝑐,𝑑] such that

𝑒⊗𝑐 [𝑐,𝑑]⊗𝑐

𝑑
𝑓

𝜋∗
𝑒;𝜆𝑓⊗𝜋∗

𝑐

eval

commutes.

with domain𝐷1 and codomain𝐷2, ordered by inclusion of relations.
The morphism eval is given by (𝑎→ 𝑏)⊗𝑎→eval 𝑏, and for any →𝑓
from 𝐸⊗𝐷1 to 𝐷2, the transpose 𝜆𝑓 is given by 𝑒→𝜆𝑓 (𝑎→ 𝑏) iff
𝑒⊗𝑎→𝑓 𝑏.
Proof.
⟨ [𝐷1,𝐷2] is a domain⟩

It suffices to show that (At𝐷1×At𝐷2, [𝐷1,𝐷2]) is an observa-
tion system since [𝐷1,𝐷2] is ordered by inclusion of sets.
⟨⊆-cl⟩

If → ∈ [𝐷1,𝐷2] and →′ ⊆ →, and 𝑆 ∈ 𝒞(At𝐷1), then we
have →(𝑆) ∈ 𝒞(At𝐷2) and →′(𝑆) ⊆ →(𝑆), so →′(𝑆) ∈
𝒞(At𝐷2) by ⟨⊆-cl⟩ of (At𝐷2,𝒞(At𝐷2)), so →′ is a domain
mapping, hence in [𝐷1,𝐷2].

⟨fin-compat⟩
If for some relation →⊆At𝐷1×At𝐷2, every finite →𝐹 ⊆→
is in [𝐷1,𝐷2], and 𝑆 ∈ 𝒞(At𝐷1), let 𝐹 ⊆ →(𝑆) be finite.
For each 𝑎 ∈ 𝐹, there is an 𝑠𝑎 ∈ 𝑆 such that 𝑠𝑎 → 𝑎. Let
→𝐹 ≔ {𝑠𝑎 → 𝑎 ∣ 𝑎 ∈ 𝐹}, then →𝐹 is clearly finite and a
subset of →, so it must be a domain mapping, and then 𝐹=
→𝐹(𝑆) ∈ 𝒞(At𝐷2). Thus →(𝑆) ∈ 𝒞(At𝐷2) by ⟨fin-compat⟩
of (At𝐷2,𝒞(At𝐷2)), and →∈ [𝐷1,𝐷2].

⟨eval is a domain mapping⟩
If {(𝑎𝑖 →𝑏𝑖)⊗𝑐𝑖 ∣ 𝑖 ∈ 𝐼} is consistent, then by definition of the
tensor product, {𝑎𝑖 →𝑏𝑖 ∣ 𝑖 ∈ 𝐼} and {𝑐𝑖 ∣ 𝑖 ∈ 𝐼} are consistent.
Then also {𝑐𝑖 ∣ 𝑖 ∈ 𝐼,𝑎𝑖 = 𝑐𝑖} = eval({(𝑎𝑖 → 𝑏𝑖)⊗𝑐𝑖 ∣ 𝑖 ∈ 𝐼}) is
consistent, as required.

⟨𝜆𝑓 is a domain mapping⟩
If {𝑒𝑖 ∣ 𝑖 ∈ 𝐼} is consistent, then →𝜆𝑓({𝑒𝑖 ∣ 𝑖 ∈ 𝐼}) = {𝑎 → 𝑏 ∣
𝑒𝑖⊗𝑎 →𝑓 𝑏}, which is consistent since if a set 𝐴 ⊆ At𝐷1 is
consistent, then its image under the relation given by {𝑏 ∣ ∃𝑖 ∈

87

𝐼,𝑎 ∈𝐴.𝑒𝑖⊗𝑎→𝑓 𝑏} =→𝑓({𝑒𝑖⊗𝑎 ∣ 𝑖 ∈ 𝐼,𝑎 ∈𝐴}) is consistent
because the latter set is consistent in 𝐸⊗𝐷1, and then so must
be its image under →𝑓 since →𝑓 is a domain mapping.

⟨𝜆𝑓 is a unique mediator⟩
We have that 𝑒⊗𝑎 →𝑓 𝑏 iff 𝑒 →𝜆𝑓 (𝑎 → 𝑏) iff 𝑒⊗𝑎 →𝜆𝑓,id
(𝑎 → 𝑏)⊗𝑎 →eval 𝑏. Now if →𝑚 satisfies this property, then
𝑒⊗𝑎→𝑓 𝑏 iff there exists an (𝑎′ → 𝑏′) such that 𝑒⊗𝑎→𝑚,id
(𝑎′ →𝑏′)⊗𝑎→eval 𝑏, which by definition of →eval is the case
iff 𝑎′ =𝑎 and 𝑏′ = 𝑏, so iff 𝑒→𝑚 (𝑎→ 𝑏).

THE QUASITOPOS 𝖮𝖻𝗌∗

As mentioned in the previous subsection, 𝖮𝖻𝗌∗ is a quasitopos, The slice category of 𝖢 over an ob-
ject 𝑐, denoted 𝖢⁄𝑐, has as objects
all morphisms in 𝖢 with codomain
𝑐 and as morphisms between 𝑓 and
𝑔 all commutative triangles

𝑎 𝑏

𝑐
𝑓

ℎ

𝑔

A category is locally cartesian
closed if all its slice categories are
cartesian closed.

The category 𝖮𝖻𝗌∗ is locally carte-
sian closed. For a domain 𝐷 ∈
𝖮𝖻𝗌∗ and 𝑓,𝑔 ∈ 𝖮𝖻𝗌∗ ⁄𝐷, the ex-
ponential [𝑓,𝑔] is given by the ob-
ject (𝜎,⊆), where 𝑃 is the set of
pairs (𝑑,ℎ) for 𝑑 ∈ At𝐷 and ℎ ∈
𝖲𝖾𝗍(𝑓−1(𝑑),𝑔−1(𝑑)), and 𝜎 has all
subsets {(𝑑𝑖,ℎ𝑖) ∣ 𝑖 ∈ 𝐼} ⊆ 𝑃 such
that {𝑑𝑖 ∣ 𝑖 ∈ 𝐼} ∈ 𝒞(At𝐷) and if
⋃{𝐴𝑖 ⊆ 𝑓−1(𝑑𝑖) ∣ 𝑖 ∈ 𝐼} is consis-
tent, then so is ⋃{ℎ𝑖(𝐴𝑖) ∣ 𝑖 ∈ 𝐼};
together with the morphism 𝑝[𝑓,𝑔] :
[𝑓,𝑔] → 𝐷 with (𝑑,ℎ) ↦ 𝑑. The
map eval : 𝑝[𝑓,𝑔]⊗𝐷 𝑓→𝑔 is given
by (𝑑,ℎ)⊗𝑑1 ↦ ℎ(𝑑1). For 𝑝𝐸 ∈
𝖮𝖻𝗌∗ ⁄𝐷 with 𝑚: (𝑝𝐸⊗𝐷 𝑓) → 𝑔,
the adjunct 𝜆𝑚 is given by 𝑒 ↦
(𝑝𝐸(𝑒),𝑚(𝑒⊗−)).

which is a finitely complete, cocomplete, locally cartesian closed
category with a classifier for strong subobjects. We have already
seen that 𝖮𝖻𝗌∗ is in fact complete and cocomplete (not just finitely
so).

The locally cartesian closed structure is never used in this thesis,
so we will not discuss it. The interested reader can find a definition
of the local internal hom in the margins.

For the strong-subobject classifier, we need a bit of preparation
on the various kinds of monomorphisms in 𝖮𝖻𝗌 and 𝖮𝖻𝗌∗; this
is also relevant for the developments in Section ‘sec:cat-char’.
Recall that a monomorphism is a morphism 𝑚 such that for every
diagram

𝑏 𝑐 𝑑
𝑓

𝑔
𝑚

if 𝑓 ;𝑚= 𝑔 ;𝑚, then 𝑓= 𝑔, while an epimorphism is a morphism
𝑒 such that for every diagram

𝑐 𝑑 𝑏𝑒 𝑓

𝑔

88

if 𝑒;𝑓 = 𝑒;𝑔, then 𝑓= 𝑔. As [3, Proposition 31] shows, a morphism
𝛼:𝐹→𝐺 in a category of concrete presheaves is a monomorphism
iff 𝛼(𝟏) is an injective function, and an epimorphism iff 𝛼(𝟏)
is surjective. This means that a domain mapping in 𝖮𝖻𝗌∗ is a
mono/epi in 𝖮𝖻𝗌∗ iff it is an injective/surjective function on atoms.

Now for 𝖮𝖻𝗌, we first note that the functor 𝒫𝒞 :𝖮𝖻𝗌 → 𝖮𝖻𝗌∗ is
a right adjoint and faithful, which implies that it preserves and
reflects monomorphisms, respectively. This means that a morphism
→⊆At𝐷×At𝐸 in 𝖮𝖻𝗌 is a monomorphism iff 𝒫𝒞(𝑓) is a morphism
in 𝖮𝖻𝗌∗, i. e. iff it is injective as a function 𝐷→𝐸 on elements (via
the correspondence of consistent subsets and elements).° °The condition for a morphism in

𝖮𝖻𝗌 to be an epimorphism, how-
ever, is surjectivity on atoms, i.e.
every atom in the codomain must
be the image of an atom in the
domain.

While a morphism in 𝖮𝖻𝗌∗ that is both a monomorphism and an
epimorphism is thus always a bijection on atoms, in contrast to
categories like 𝖲𝖾𝗍, it is not necessarily an isomorphism, as the
example in the margin shows: the domain mapping does not have
an inverse. epic monomorphism does not im-

ply isomorphism:
•

• • • •
• •

For 𝖮𝖻𝗌∗, an isomorphism is an atom-preserving domain mapping
with an atom-preserving inverse. Since every inverse to a morphism
𝑓 is also an inverse to 𝑓 seen as a function between sets, it follows
that 𝑓 is an isomorphism iff it is a bijection on atoms such that
its (unique) inverse is also a domain mapping. This is evidently
the case iff it is a bijection that not only preserves, but also
reflects consistent sets of atoms, i. e. if 𝑆∈ 𝒞(At𝐷2), then 𝑓−1(𝑆) ∈
𝒞(At𝐷1), which clearly fails in the example just shown.

As it turns out, reflection of consistent subsets is also precisely A strong monomorphism is a mo-
nomorphism 𝑚 such that for every
commutative square

𝑎 𝑏

𝑑 𝑐

𝑒

𝑓 𝑔
𝑚

with 𝑒 an epimorphism, there exists
a unique ℎ such that

𝑎 𝑏

𝑑 𝑐

𝑒

𝑓 𝑔ℎ

𝑚

commutes.

the condition that distinguishes strong monomorphisms in 𝖮𝖻𝗌∗
from general monomorphisms [3, Proposition 34].

It is easy to see that every morphism in 𝖮𝖻𝗌 that is an injective
function on atoms and reflects consistent subsets has a left inverse,
given by its transpose relation. By definition, this makes such

89

morphisms split monomorphisms, and conversely every atom-
preserving split monomorphism in 𝖮𝖻𝗌 is a monomorphism in 𝖮𝖻𝗌∗
that reflects consistent subsets, because left-inverses of injective
total univalent relations are necessarily given by their transposes,
and the transpose of a domain mapping is a domain mapping iff
the domain mapping reflects consistent subsets, as is clear from
the definition.

Thus strong monomorphisms in 𝖮𝖻𝗌∗ are precisely the atom-
preserving split monomorphisms in 𝖮𝖻𝗌. In fact, in 𝖮𝖻𝗌, these
are also the embeddings from domain theory, namely morphisms
𝑓 that have a left-inverse 𝑓T such that 𝑓T ; 𝑓 ⊆ id. Note, however, strong monomorphism does not

imply split in 𝖮𝖻𝗌∗:
• •

• • • • •
• •

injective split monomorphism does
not imply atom-preserving in 𝖮𝖻𝗌:

• •
• • • • • •

• •

that a strong monomorphism in 𝖮𝖻𝗌∗ is not necessarily split in
𝖮𝖻𝗌∗ (see the margins) and a split monomorphism in 𝖮𝖻𝗌 is not
necessarily atom-preserving, not even when it is an injective re-
lation, i.e. no atom is hit twice (moreover, the notions of strong
and split monomorphisms in 𝖮𝖻𝗌 coincide).

Now we can work out what strong subobjects in 𝖮𝖻𝗌∗ look like.
Subobjects in any category are obtained as follows. The collection
of monomorphisms 𝑖 :𝐷𝑖 ↪𝐷 with codomain 𝐷 forms a preorder
under the relation ‘‘𝑖 ⊴ 𝑗 iff there exists a 𝑘 :𝐷𝑖 ↪𝐷𝑗 such that
𝑖 = 𝑘;𝑗’’. The poset of subobjects is obtained from this preorder by
turning it into a partial order in the usual way. Thus subobjects of
𝐷 are equivalence classes of monomorphisms under the equivalence
relation 𝑖 ⊴ 𝑗 ⊴ 𝑖.

If two monomorphisms are part of the same equivalence class,
then their domains are isomorphic, and because monomorphisms
in 𝖮𝖻𝗌∗ are injective, there is a canonical representative for each
subobject of 𝐷 that is given by a subset of 𝐷 together with the
induced order and the inclusion into 𝐷. Now a strong subobject is
an equivalence class of a strong monomorphism, so it is represented
by a subset of the atoms of 𝐷 together with all joins of those atoms
that 𝐷 admits. Thus a strong subobject is completely determined

90

by the subset of atoms it contains, and every such subset gives
rise to a unique strong subobject.

In a topos, subobjects are ‘‘classified’’ by a subobject classifier. A subobject classifier is an object
Ω together with a morphism 1 :
𝟏 → Ω from the terminal object
such that for each monomorphism
𝑚:𝐴′ →𝐴, there exists a unique
𝜒𝑚 :𝐴→Ω such that

𝐴′ 𝟏

𝐴 Ω

𝟏𝐴′
𝑚 1

𝜒𝑚

is a pullback square (i.e. 𝐴′ is a
limit of the rest of the diagram).

However, 𝖮𝖻𝗌∗ is not a topos, but just a quasitopos, and it only
has a classifier for strong subobjects. The classifier Ω∗ for strong
subobjects in 𝖮𝖻𝗌∗ is given by the domain

⊤

𝑓 𝑡

⊥

together with the domain mapping 1 :𝟏∗ →Ω∗ with ⊤→1 𝑡, and
for each strong subobject 𝐸 ↪ 𝐷 the mapping 𝜒𝐸 : 𝐷 → Ω∗ is
defined as 𝜒𝐸(𝑎) = 𝑡 if 𝑎 ∈ At𝐸 and 𝜒𝐸(𝑎) = 𝑓 otherwise. This
only works for strong subobjects: all the morphism 𝜒𝐸 can do
is map each atom of 𝐷 to either 𝑓 or 𝑡, and the pullback along
𝜒𝐸 will always include all joins of the atoms mapped to 𝑡 that 𝐷
admits. Observe that Ω∗ is the product 𝟏∗×𝟏∗ in 𝖮𝖻𝗌, and the
arrow 1 is given by the product mediator id𝟏∗ ×𝟎𝟏∗,𝟏∗.

As a final note, every quasitopos contains a topos as a full subcat-
egory. The objects of this subcategory are those objects for which
epic monomorphisms are ‘‘seen as if they were’’ isomorphisms.
These objects are called coarse objects. For 𝖮𝖻𝗌∗, coarse objects An object 𝑐 is called coarse if for

every epic monomorphism 𝑓 :𝑑→
𝑑′ and every morphism 𝑔 : 𝑑 → 𝑐
there is a unique ℎ : 𝑑′ → 𝑐 such
that 𝑔= 𝑓 ;ℎ.

can be seen to be precisely the domains that are CABAs, so the
topos inside 𝖮𝖻𝗌∗ is in fact just 𝖲𝖾𝗍.

ALGEBRAS OF ENDOFUNCTORS

There are many techniques for solving recursive domain equations
in categories of domains in the literature. We will not pursue this
in any complexity; instead, we just give two objects that are useful
as computational types.

91

PROPOSITION 3.2.9. The category 𝖮𝖻𝗌 has an inductive natu- ⟨obs-nno⟩
ral numbers object, i.e. an object with morphisms

𝟏∗ 𝑁 𝑁𝑧 𝑠

such that for each

𝟏∗ 𝑀 𝑀𝑜 𝑓

there exists a unique 𝑢:𝑁→𝑀 such that

𝟏∗ 𝑁 𝑁

𝑀 𝑀

𝑧

𝑜

𝑠

𝑢 𝑢
𝑓

commutes.
Proof. Let ℕ⊥ denote the domain consisting of a bottom element
and elements 𝑛 for each 𝑛∈ℕ, with the order ⊥⊑𝑛 for all 𝑛∈ℕ
but each pair of 𝑛≠𝑚∈ℕ unordered. Define 𝑧 as the map ⊤↦0
and 𝑠 as 𝑛↦𝑛+1. Both are clearly domain mappings.

For any object 𝑀 as stated, let 𝑢(0) = 𝑜(⊤) and for each 𝑛, let
𝑢(𝑛+ 1) = 𝑓(𝑢(𝑛)). This defines 𝑢 by the recursion principle
for the natural numbers. That this is a domain mapping can
be shown by induction: 𝑢(0) = 𝑜(⊤) is consistent because 𝑜 is a
domain mapping, and for 𝑛∈ℕ, we have that 𝑢(𝑛+1) = 𝑓(𝑢(𝑛)) is
consistent because 𝑢(𝑛) is consistent by the induction hypothesis,
and then 𝑓(𝑢(𝑛)) is consistent because 𝑓 is a domain mapping.
This suffices since ℕ⊥ does not have any non-trivial consistent
sets.
Clearly 𝑢(𝑧(⊤)) = 𝑢(0) = 𝑜(⊤) and 𝑢(𝑠(𝑛)) = 𝑢(𝑛+1) = 𝑓(𝑢(𝑛)).
Every 𝑢′ with these properties needs 𝑢′(0) = 𝑢′(𝑧(⊤)) = 𝑜(⊤)
and 𝑢′(𝑛+1) = 𝑢′(𝑠(𝑛)) = 𝑓(𝑢′(𝑛)), so 𝑢′ =𝑢 by the uniqueness
property of recursively defined functions.

92

This also shows that ℕ is the initial algebra for the endofunctor
𝟏∗+−, and it is equivalently the coproduct ⨉𝑛∈ℕ𝟏∗. We also
have something close to a dual, namely a terminal coalgebra for
the functor 𝟏∗×−, given by the object ⨉𝑛∈ℕ𝟏∗. This object will
be useful for expressing 𝜇-recursion in the type theory. Note that
𝟏∗ is not terminal in 𝖮𝖻𝗌, and × is not a (co)product in 𝖮𝖻𝗌∗, so
this is not precisely a dual construction to the above (however,
the material in Section 3.3 implies that 𝟏∗ is terminal and × a
coproduct when restricted to the full subcategory 𝖲𝖾𝗍 inside 𝖮𝖻𝗌∗).

PROPOSITION 3.2.10. The category 𝖮𝖻𝗌 has a coinductive nat- ⟨obs-conno⟩
ural numbers object, i.e. an object with morphisms

𝟏∗ ℕ ℕ𝑧 𝑝

such that for each

𝟏∗ 𝑀 𝑀𝑜 𝑓

there exists a unique 𝑢:𝑀→ℕ such that

𝟏∗ ℕ ℕ

𝑀 𝑀

𝑧

𝑜

𝑝

𝑢 𝑢
𝑓

commutes.
Proof. Let ℕ≔ (𝒫(ℕ),⊆). Define 𝑧 as the relation with 0→𝑧 ⊤
and 𝑝 as 𝑛+1→𝑝 𝑛 for all 𝑛∈ℕ. For any object 𝑀 as stated, let
𝑢 be the map 𝑚↦{𝑛 ∣ 𝑜(𝑓𝑛(𝑚)) =⊤}. This is trivially a domain
mapping because ℕ is a CABA.

Now 𝑧(𝑢(𝑚)) = ⊤ iff 0 ∈ 𝑢(𝑚) iff 𝑜(𝑓0(𝑚)) = ⊤, i. e. 𝑜(𝑚) = ⊤,
so 𝑢 ; 𝑧 = 𝑜. Furthermore, 𝑚 →𝑢;𝑝 𝑛 iff 𝑚 →𝑢 𝑛+ 1, which is

93

the case iff 𝑜(𝑓𝑛+1(𝑚)) = ⊤. On the other hand, 𝑚 →𝑓;𝑢 𝑛 iff
𝑜(𝑓𝑛(𝑓(𝑚))) = 𝑜(𝑓𝑛+1(𝑚)) =⊤, so 𝑢; 𝑝= 𝑓 ;𝑢.

Suppose 𝑢′ satisfies the same property. We show by induction on
𝑛∈ℕ that for all 𝑚∈𝑀, we have 𝑛∈𝑢′(𝑚) iff 𝑜(𝑓𝑛(𝑚)) =⊤; it
then immediately follows that 𝑢′ =𝑢. First, 𝑜(𝑓0(𝑚)) = 𝑜(𝑚)=⊤
iff 𝑧(𝑢′(𝑚)) = ⊤, by commutativity of the left triangle, and the
latter is the case iff 0 ∈ 𝑢′(𝑚). Now if the claim holds for some 𝑛,
then 𝑛+1 ∈ 𝑢′(𝑚) iff 𝑛∈ 𝑝(𝑢′(𝑚)) = 𝑢′(𝑓(𝑚)) by commutativity
of the square, which by the induction hypothesis is the case iff
𝑜(𝑓𝑛(𝑓(𝑚))) = 𝑜(𝑓𝑛+1(𝑚)) =⊤.

3.3 CHARACTERISATION AS A FREE CATEGORY

In order to capture the properties of our categories fully in a
type theory, it is beneficial to characterise them in terms of a
free construction. Intuitively, this is because the types in a type
theory are ‘‘freely generated’’ from the rules of the theory, which
in turn capture universal properties, so if we can describe how to
construct a category via certain universal properties, then we can
automatically derive a type theory from that description which
matches the category perfectly. Since a uniform definition of free
constructions runs into size issues, let us instead see with a well-
known example how this works. This is just for illustration; we
give more detailed proofs for the other categories.

PROPOSITION 3.3.1. The category 𝖥𝗂𝗇𝖲𝖾𝗍 is the free finitely ⟨finset-free⟩
cocartesian category generated by the trivial category 𝟏 with a
single object and a single morphism. That is, 𝖥𝗂𝗇𝖲𝖾𝗍 has finite

𝖢

𝟏 𝖥𝗂𝗇𝖲𝖾𝗍
𝐼

𝐽 !
coproducts and there is a functor 𝐼 :𝟏→ 𝖥𝗂𝗇𝖲𝖾𝗍 such that for each
𝐽 :𝟏→ 𝖢 with 𝖢 having all finite coproducts, there exists a finite-
coproduct-preserving functor 𝐹:𝖥𝗂𝗇𝖲𝖾𝗍 → 𝖢, unique up to natural
isomorphism, with 𝐽≅ 𝐼 ;𝐹 naturally.

94

Proof. Clearly 𝖥𝗂𝗇𝖲𝖾𝗍 has finite coproducts, given by disjoint
unions, with the initial object (the empty coproduct) given by
the empty set. Take 𝐼 : 𝟏 → 𝖥𝗂𝗇𝖲𝖾𝗍 with 𝐼(•) = 𝟏 and let 𝐽 :
𝟏 → 𝖢 with 𝖢 finitely cocartesian. Let 𝐹 : 𝖥𝗂𝗇𝖲𝖾𝗍 → 𝖢 map 𝑁 ∈
𝖥𝗂𝗇𝖲𝖾𝗍 to ⨉𝑛∈𝑁𝐽(•) and 𝑓 :𝑁→𝑀 to ⨉𝑛∈𝑁𝜄𝑓(𝑛) : ⨉𝑛∈𝑁𝐽(•)→
⨉𝑚∈𝑀𝐽(•). This arrow exists by the mediating property of the co-
product in 𝖢. Notice that 𝐹(𝑓) is unique with the property that 𝜄𝑛;
𝐹(𝑓) = 𝜄𝑓(𝑛) for all 𝑛∈𝑁. This defines a functor since 𝜄𝑛;𝐹(id𝑁) =
𝜄id𝑁(𝑛) = 𝜄𝑛 for all 𝑛∈𝑁, so 𝐹(id𝑁) = id𝐹(𝑁) by uniqueness of me-
diators, and 𝜄𝑛 ;𝐹(𝑓);𝐹(𝑔) = 𝜄𝑓(𝑛) ;𝐹(𝑔) = 𝜄𝑔(𝑓(𝑛)) = 𝜄𝑛 ;𝐹(𝑓;𝑔), so
𝐹(𝑓;𝑔) =𝐹(𝑓);𝐹(𝑔). It preserves finite coproducts: on objects, this
is clear, and an insertion 𝜄𝑁 : ⨉𝑁𝟏→ ⨉𝑀∈𝑆 ⨉𝑚∈𝑀𝟏 is mapped
to ⨉𝑛∈𝑁𝜄𝖢𝑛 = 𝜄𝖢𝑁 in 𝖢. Clearly 𝐹(𝐼(•)) =𝐹(𝟏) = ⨉𝑛∈𝟏𝐽(•) ≅ 𝐽(•)
and any finite-coproduct-preserving functor 𝐹′ satisfying this must
have 𝐹′(𝑁) ≅𝐹′(⨉𝑁𝟏) ≅ ⨉𝑁𝐹′(𝟏) ≅ ⨉𝑁𝐽(•) ≅𝐹(•), with natu-
rality following by uniqueness of mediators.

This means that we can generate 𝖥𝗂𝗇𝖲𝖾𝗍 by taking a trivial ob-
ject and ‘‘freely adding’’ finite coproducts, in the sense that we
add (nothing but) fresh objects for every coproduct and all the
morphisms that are required to satisfy the universal property,
only identifying those morphisms that are necessarily equal by
category-theoretic laws. We now do the same for 𝖥𝗂𝗇𝖱𝖾𝗅. Then,
we show how subcategories of categories of presheaves can be ob-
tained as free constructions, including a general recipe for concrete
presheaves. The latter is mainly for future reference; for the pur-
poses of this thesis, we will need a different construction to build
𝖥𝗂𝗇𝖮𝖻𝗌 out of 𝖥𝗂𝗇𝖱𝖾𝗅, which is the final task we will complete in
this chapter.

THE CATEGORY 𝖥𝗂𝗇𝖱𝖾𝗅 AS A FREE CATEGORY
Recall that a pointed category is a category 𝖢 with a zero ob-
ject 𝟎, which is both initial and terminal. The unique composite
𝟎𝑐,𝑑 : 𝑐 → 𝟎→ 𝑑 between any pair of objects is termed the zero

95

morphism; a zero morphism composed with any morphism yields
a zero morphism by uniqueness. Note that 𝖥𝗂𝗇𝖱𝖾𝗅 is pointed, with
the zero object given by the empty set and the zero morphisms
given by empty relations.

Suppose a pointed category 𝖢 has the coproduct ⨉𝑐𝑖 of a collec-
tion of objects 𝑐𝑖. Notice that then, each 𝑐𝑖 also has a canonical
‘‘projection’’ 𝜋𝑖 : ⨉𝑐𝑗 →𝑐𝑖 defined by 𝜄𝑖 ;𝜋𝑖 = id and 𝜄𝑗 ;𝜋𝑖 =𝟎𝑗,𝑖 if
𝑗≠ 𝑖. This defines 𝜋𝑖 uniquely by the uniqueness property of the
mediator from the coproduct. Writing (𝑖 = 𝑗)? : 𝑐𝑖 → 𝑐𝑗 for id if
𝑖 = 𝑗 and 𝟎𝑖,𝑗 otherwise, we can thus define 𝜋𝑖 = ⨉𝑗(𝑗= 𝑖)?. We
then also get a cone from ⨉𝑐𝑖 given by the collection of the 𝜋𝑖.

This cone need not make ⨉𝑐𝑖 into a product of the 𝑐𝑖, but if it
does, we call it a biproduct of the 𝑐𝑖 and denote it ＊𝑐𝑖. Note
that a morphism 𝑓 : ⨉𝑐𝑖 → ⨉𝑑𝑗 is uniquely determined by its
collection of 𝜄𝑖 ;𝑓;𝜋𝑗. Namely, if 𝜄𝑖 ;𝑓;𝜋𝑗 = 𝜄𝑖 ;𝑔;𝜋𝑗 for all 𝑖, 𝑗, then
each 𝜄𝑖 ; 𝑔 is, by uniqueness of the mediator of the product ⨉𝑑𝑖,
equal to ⨉𝑗(𝜄𝑖 ;𝑔;𝜋𝑗). At the same time, 𝑔 is, by uniqueness of the
mediator of the product ⨉𝑐𝑖, equal to ⨉𝑖(𝜄𝑖;𝑔) = ⨉𝑖⨉𝑗(𝜄𝑖;𝑔;𝜋𝑗) =
⨉𝑖⨉𝑗(𝜄𝑖 ; 𝑓 ; 𝜋𝑗) = 𝑓. In particular, this holds for any morphism
between biproducts.

Call a category 𝖢 finitely bicartesian if it has biproducts of all
finite discrete diagrams. The category 𝖥𝗂𝗇𝖱𝖾𝗅 is finitely bicartesian,
with biproducts given by the disjoint union of sets together with
the obvious projections and insertions. Mediators ⨉𝑅𝑖 and ⨉𝑅𝑖
are simply given by the union of relations (appropriately composed
with biproduct projections and insertions).

In well-behaved cases, including 𝖥𝗂𝗇𝖱𝖾𝗅, we can compose mediators
of arrows 𝑓𝑖 : 𝑏 → 𝑐𝑖 and 𝑔𝑖 : 𝑐𝑖 →𝑑 in a component-wise fashion:
each 𝑓𝑖 ; 𝑔𝑖 gives an arrow 𝑏 → 𝑑, and we have the composite
⨉𝑓𝑖; ⨉𝑔𝑖, but not much can be derived about the calculation of this
composite in terms of the components 𝑓𝑖 ;𝑔𝑖. In 𝖥𝗂𝗇𝖱𝖾𝗅, we can just

96

take the union of the individual composites, and without making
additional assumptions, we cannot construct 𝖥𝗂𝗇𝖱𝖾𝗅 as a free finitely
bicartesian category. One possibility is to enrich the category one
works with in commutative monoids, so that its morphisms already
come with a predefined addition operation. Indeed, 𝖥𝗂𝗇𝖱𝖾𝗅 is known
to be the free ‘‘semi-additive’’ bicompletion of the Boolean ring
with two elements [7, Example 2.4]. This makes the treatment
easier, but less amenable to our type-theoretic aspirations. There
is a simple condition on the composition of mediators we can
impose instead.

DEFINITION: IDEMPOTENCE. Let 𝖢 be a finitely bicartesian
category. Then 𝖢 is called idempotent if for all 𝑓1,2 : 𝑏→ 𝑐1,2 and
𝑔1,2 : 𝑐1,2 →𝑑, if 𝑓1 ; 𝑔1 =𝑓2 ; 𝑔2, then (𝑓1×𝑓2) ; (𝑔1+𝑔2) = 𝑓1 ; 𝑔1.

From the canonical isomorphisms 𝑐∗𝑑≅ 𝑑∗𝑐, 𝑐∗(𝑑∗𝑒) ≅ (𝑐∗𝑑)∗𝑒,
and 𝑐∗𝟎≅ 𝑐, we can furthermore derive that this operation (seen
as an operation on the morphisms 𝑓𝑖 ; 𝑔𝑖) is commutative and
associative, and that zero morphisms are neutral for it, i.e. if
𝑓 ; 𝑔 = 𝟎𝑏,𝑑, then (𝑓×𝑓′) ; (𝑔+𝑔′) = 𝑓′ ; 𝑔′ (see [29, Section 4.1],
which shows this for additive categories, but only using properties
that generally apply in categories with biproducts).

PROPOSITION 3.3.2. 𝖥𝗂𝗇𝖱𝖾𝗅 is the free idempotent finitely bi- ⟨finrel-free⟩
cartesian category on the trivial category. That is, 𝖥𝗂𝗇𝖱𝖾𝗅 has finite
biproducts, there is a functor 𝐼 :𝟏→ 𝖥𝗂𝗇𝖱𝖾𝗅, and for each 𝐽 :𝟏→ 𝖢
with 𝖢 idempotent finitely bicartesian there exists an 𝐹:𝖥𝗂𝗇𝖱𝖾𝗅 → 𝖢
unique up to isomorphism such that 𝐹 preserves finite biproducts
and 𝐼 ;𝐹≅ 𝐽 naturally.
Proof. We have already discussed that 𝖥𝗂𝗇𝖱𝖾𝗅 is finitely bicartesian.
Furthermore, for any relations 𝑅1,2 :𝑁→𝑀1,2 and 𝑅′

1,2 :𝑀1,2 →𝐿
we have 𝑛 (𝑅1×𝑅2 ;𝑅′

1+𝑅′
2) 𝑙 iff there exists an 𝑖 and an 𝑚∈𝑀𝑖

such that 𝑛𝑅𝑖 𝑚𝑅′
𝑖 𝑙. Now if 𝑅1 ;𝑅′

1 =𝑅2 ;𝑅′
2, then this is clearly

the case iff 𝑛 (𝑅1 ;𝑅′
1) 𝑙. Thus 𝖥𝗂𝗇𝖱𝖾𝗅 is idempotent. We set 𝐼 :𝟏→

𝖥𝗂𝗇𝖱𝖾𝗅 as 𝐼(•) = 𝟏.

97

Let 𝖢 be an idempotent finitely bicartesian category and 𝐽 :𝟏→
𝖢. Define 𝐹 : 𝖥𝗂𝗇𝖱𝖾𝗅 → 𝖢 sending 𝑁 ∈ 𝖥𝗂𝗇𝖱𝖾𝗅 to ＊𝑛∈𝑁𝐽(•) and
relations 𝑅:𝑁→𝑀 to ⨉𝑛∈𝑁⨉𝑚∈𝑀(𝑛 𝑅𝑚)?, with the property
that 𝜄𝑛 ;𝐹(𝑅) ;𝜋𝑚 = id if 𝑛𝑅𝑚 and 𝟎𝐽(•),𝐽(•) otherwise.

⟨𝐹 is functorial⟩
⟨well-defined⟩

By assumption, 𝖢 has finite biproducts and all sets in 𝖥𝗂𝗇𝖲𝖾𝗍
are finite, and thus the given mediators must exist in 𝖢.

⟨preservation of identities⟩
Identities id :𝑁→𝑁 are mapped onto morphisms with 𝜄𝑛 ;
𝐹(id);𝜋𝑚 = (𝑛=𝑚)?. But id also satisfies this by definition
of the 𝜋𝑚, so 𝐹(id) = id by the biproduct mediator property
discussed at the beginning of this subsection.

⟨preservation of composites⟩
For 𝑅:𝑁→𝑀 and 𝑅′ :𝑀→𝐿, we check that 𝐹(𝑅 ;𝑅′) =
𝐹(𝑅);𝐹(𝑅′) by showing that 𝐹(𝑅);𝐹(𝑅′) fulfills the defin-
ing mediating property. Note that for all 𝑛∈𝑁 and 𝑙 ∈ 𝐿,
we have 𝜄𝑛 ;𝐹(𝑅);𝐹(𝑅′) ;𝜋𝑙 =⨉𝑚(𝑛 𝑅𝑚)? ; ⨉𝑚(𝑚𝑅′ 𝑙)?.° °Here we used the fact that

⨉𝑖⨉𝑗𝑓𝑖,𝑗 =⨉𝑗 ⨉𝑖𝑓𝑖,𝑗,
which follows by observing that

𝜄𝑘 ; ⨉𝑖⨉𝑗𝑓𝑖,𝑗 ; 𝜋𝑙 =𝑓𝑘,𝑙
= 𝜄𝑘 ;⨉𝑗 ⨉𝑖𝑓𝑖,𝑗 ; 𝜋𝑙

by associativity of composition.

Clearly each (𝑛 𝑅 𝑚)? ; (𝑚 𝑅′ 𝑙)? is id if 𝑛 𝑅 𝑚 𝑅′ 𝑙 and
𝟎𝐽(•),𝐽(•) otherwise. Since each composite is either id or a
zero morphism, by repeatedly applying idempotence, neu-
trality of zero morphisms, as well as associativity and com-
mutativity, the composite ⨉𝑚(𝑛 𝑅 𝑚)? ; ⨉𝑚(𝑚 𝑅′ 𝑙)? re-
duces to id if (𝑛 𝑅𝑚)? ; (𝑚𝑅′ 𝑙)? = id for some 𝑚∈𝑀, i. e.
𝑛𝑅𝑚𝑅′ 𝑙, and to 𝟎𝐽(•),𝐽(•) otherwise, i. e. to (𝑛 (𝑅 ;𝑅′) 𝑙)?.
But this defines precisely 𝐹(𝑅;𝑅′).

⟨𝐹 preserves finite biproducts⟩
Biproducts in any bicartesian category are associative: if each
𝐼𝑠 for 𝑠 ∈ 𝑆 is a set of indices and each 𝑥𝑠𝑖 for 𝑠 ∈ 𝐼𝑠 for 𝑠 ∈ 𝑆 an
object, then the biproduct ＊𝑠∈𝑆＊𝑖∈𝐼𝑠 𝑥

𝑠
𝑖 is also a biproduct

＊𝑠∈𝑆,𝑖∈𝐼𝑠 𝑥
𝑠
𝑖 , namely via insertions 𝜄𝑠,𝑖 ≔𝜄𝑠𝑖 ;𝜄𝑠 and projections

98

𝜋𝑠,𝑖 ≔𝜋𝑠 ; 𝜋𝑠𝑖 . Thus each insertion 𝜄𝑠 :＊𝑖∈𝐼𝑠 𝑥
𝑠
𝑖 →＊𝑡∈𝑆,𝑖∈𝐼𝑡 𝑥

𝑡
𝑖

uniquely has the property that 𝜄𝑠𝑖 ; 𝜄𝑠 ; 𝜋𝑡,𝑗 = 𝜄𝑠𝑖 ; 𝜄𝑠 ; 𝜋𝑡 ; 𝜋
𝑡
𝑗 = id

iff 𝑠 = 𝑡 and 𝑖 = 𝑗, and 𝟎(𝑠,𝑖),(𝑡,𝑗) otherwise.

Now 𝐹 maps biproducts ＊𝑠∈𝑆𝑁𝑠 ≅＊𝑠∈𝑆,𝑛∈𝑁𝑠
𝟏 onto biprod-

ucts ＊𝑠∈𝑆,𝑛∈𝑁𝑠
𝐽(•) ≅＊𝑠∈𝑆＊𝑛∈𝑁𝑠

𝐽(•) ≅＊𝑠∈𝑆𝐹(𝑁𝑠), and
it maps insertions 𝜄𝑠 :＊𝑚∈𝑁𝑠

𝟏→＊𝑡∈𝑆,𝑛∈𝑁𝑡
𝟏 with 𝑚𝜄𝑠 (𝑡,𝑛)

iff 𝑠 = 𝑡 and 𝑚 = 𝑛 to the morphism ⨉𝑚∈𝑁𝑠
⨉𝑡∈𝑆,𝑛∈𝑁𝑡

(𝑠 =
𝑡∧𝑚=𝑛)?, which defines precisely the appropriate insertion,
as just discussed. The argument for the projections is analogous.

⟨𝐼 ;𝐹≅ 𝐽⟩
Clearly 𝐹(𝐼(•)) =𝐹(𝟏) =＊𝑛∈𝟏𝐽(•) ≅ 𝐽(•), which is necessar-
ily natural since 𝐹 and 𝐽 are functors and 𝟏 is trivial.

⟨𝐹 is unique⟩
If 𝐼;𝐹′ ≅𝐽 naturally for 𝐹′ preserving finite biproducts, denote
by ≅𝟏 the isomorphism 𝐹(𝟏) = 𝐹(𝐼(•)) = 𝐽(•) ≅ 𝐹′(𝐼(•)) =
𝐹′(𝟏). Then for all 𝑁∈ 𝖥𝗂𝗇𝖱𝖾𝗅, we have 𝐹′(𝑁) ≅𝐹′(＊𝑛∈𝑁𝟏) ≅
＊𝑛∈𝑁𝐹′(𝟏) ≅＊𝑛∈𝑁𝐹(𝟏) ≅ 𝐹(𝑁) by preservation of finite
biproducts, and so ≅𝑁 ≔ ⨉𝑛∈𝑁(≅𝟏 ; 𝜄′𝑛) :𝐹(𝑁)→𝐹′(𝑁) is an
isomorphism since the ≅𝟏 ; 𝜄′𝑛 make 𝐹′(𝑁) into a coproduct
⨉𝑛∈𝑁𝐹(𝟏). Notice that also ≅𝑁 = ⨉𝑛∈𝑁(𝜋𝑛 ; ≅𝟏) since 𝜄𝑛 ;
⨉𝑛∈𝑁(≅𝟏 ;𝜄′𝑛);𝜋′𝑚 =≅𝟏 ;𝜄′𝑛 ;𝜋′𝑚 =≅𝟏 if 𝑛=𝑚 and 𝟎𝐹(𝟏),𝐹′(𝟏)
otherwise, which is the same for 𝜄𝑛 ;⨉𝑛∈𝑁(𝜋𝑛 ;≅𝟏) ; 𝜋′𝑚 = 𝜄𝑛 ;
𝜋𝑚 ;≅𝟏.
We show that this isomorphism defines a natural transfor-
mation. Let 𝑅 :𝑁 → 𝑀. Then for all 𝑛 ∈ 𝑁, we have 𝜄𝑛 ;
𝐹(𝑅);≅𝑀 ;𝜋′𝑚 =⨉𝑚∈𝑀(𝑛 𝑅𝑚)? ;𝜋𝑚 ;≅𝟏 = (𝑛𝑅𝑚)? ;≅𝟏, and
𝜄𝑛;≅𝑁;𝐹′(𝑅);𝜋′𝑚 =≅𝟏;𝜄′𝑛;𝐹′(𝑅);𝜋′𝑚 =≅𝟏;𝐹′(𝜄𝖥𝗂𝗇𝖱𝖾𝗅

𝑛 ;𝑅;𝜋𝖥𝗂𝗇𝖱𝖾𝗅
𝑚)

because 𝐹′ preserves the biproduct insertions and projections,
and this is ≅𝟏 if 𝑛 𝑅 𝑚 since then 𝜄𝖥𝗂𝗇𝖱𝖾𝗅

𝑛 ; 𝑅 ; 𝜋𝖥𝗂𝗇𝖱𝖾𝗅
𝑚 = id

and 𝐹′(id) = id, and otherwise 𝟎𝐹(𝟏),𝐹′(𝟏) since 𝜄𝖥𝗂𝗇𝖱𝖾𝗅
𝑛 ; 𝑅 ;

99

𝜋𝖥𝗂𝗇𝖱𝖾𝗅
𝑚 =𝟎𝟏,𝟏 and 𝐹′(𝟎𝟏,𝟏) = 𝟎𝐹′(𝟏),𝐹′(𝟏) because 𝐹′ preserves

the zero object and composites, hence zero morphisms. Thus
𝐹(𝑅) ;≅𝑀 =≅𝑁 ;𝐹′(𝑅) as required.

CATEGORIES OF CONCRETE PRESHEAVES AS FREE CATEGORIES

As we have seen, 𝖮𝖻𝗌∗ and 𝖥𝗂𝗇𝖮𝖻𝗌 are subcategories of categories of
presheaves. The category of all presheaves on a category 𝖢 is its free
cocompletion, i. e. the free completion of 𝖢 under taking arbitrary
(small) colimits (at least if 𝖢 is small) rather than just coproducts
as for 𝖥𝗂𝗇𝖲𝖾𝗍. A subcategory of the category of presheaves can then
be obtained as the free completion under some colimits only. The
following lemma should be well-known, but I cannot find it in the
literature, so let us prove it here.

PROPOSITION 3.3.3. Let 𝔻 be a class of diagrams in a cat- ⟨prshf-free⟩
egory 𝖢 that includes all functors 𝟏 → 𝖢. Then, the full sub-
category [𝖢op,𝖲𝖾𝗍]𝔻 of the category of presheaves [𝖢op,𝖲𝖾𝗍] on 𝖢
given by functors 𝐹 ≅ colim(𝐼 ;よ) where 𝐼 ∈ 𝔻, together with
よ :𝖢 → [𝖢op,𝖲𝖾𝗍]𝔻, the corestriction of the Yoneda embedding, is
the free 𝔻-cocompletion of 𝖢. That is, [𝖢op,𝖲𝖾𝗍]𝔻 has all colimits
of diagrams 𝐼;よ for 𝐼 ∈𝔻, and for each category 𝖣 with a functor
𝐽 :𝖢 → 𝖣 that has all colimits of diagrams 𝐼 ;𝐽 for 𝐼 ∈𝔻, there ex-
ists, up to natural isomorphism, a unique functor 𝑀:[𝖢op,𝖲𝖾𝗍] → 𝖣
such that 𝑀 preserves colimits of diagrams 𝐼 ;よ for 𝐼 ∈ 𝔻, and
よ ;𝑀≅𝐽 naturally.

To prepare for the proof, we need another lemma: colimits of dia-
grams computed pointwise after embedding them into the presheaf
category of their codomain are ‘‘free’’ in the sense that if two dia-
grams have the same pointwise colimit in the presheaf category,
then they have the same colimit ‘‘everywhere’’, i. e. even if they
are mapped via some functor into another category.

PROPOSITION 3.3.4. For all 𝐼:𝖨 → 𝖢 and 𝐼′ :𝖨′ → 𝖢, if colim(𝐼; ⟨prshf-colim-absolute⟩
よ) ≅ colim(𝐽 ;よ) naturally, then for all 𝐽 :𝖢 → 𝖣, the colimit

100

colim(𝐼 ;𝐽) exists iff colim(𝐼′ ;𝐽) exists, and if they exist, they are
isomorphic as objects.
Proof. This is claimed in [30, Proposition 3.9] and shown in [28,
Theorem 3.2]. One constructs for all diagrams 𝐼:𝖨 → 𝖢 a final func-
tor 𝐹:𝖨 →elcolim(𝐼 ;よ) into the category of elements of colim(𝐼 ;
よ) such that 𝐹;𝜋colim(𝐼;よ) ≅ 𝐼. Then, if colim(𝐼 ;よ) ≅ colim(𝐼′ ;
よ), the categories of elements of these two functors are equiva-
lent and 𝜋colim(𝐼;よ) ≅𝜋colim(𝐼′;よ), and so colim(𝐼 ;𝐽) ≅ colim(𝐹 ;
𝜋colim(𝐼;よ) ; 𝐽) ≅ colim(𝜋colim(𝐼;よ) ; 𝐽) ≅ colim(𝜋colim(𝐼′;よ) ; 𝐽) ≅
colim(𝐹′ ; 𝜋colim(𝐼′;よ) ; 𝐽) ≅ colim(𝐼′ ; 𝐽) if either colimit exists, by
finality of 𝐹 and 𝐹′.

The functor 𝐹 maps 𝑖 onto (𝐼𝑖, 𝜄𝑖(𝐼𝑖)(id)), and 𝑓 : 𝑖 → 𝑗 onto 𝐼𝑓,
where 𝜄𝑖 :よ(𝐼𝑖) → colim(𝐼 ;よ) is the insertion. From the point-
wise computation of colimits of presheaves in 𝖲𝖾𝗍, each (𝑐,𝜑) ∈
elcolim(𝐼;よ) is the equivalence class of some element inよ(𝐼𝑖)(𝑐),
which gives an arrow into (𝐼𝑖, 𝜄𝑖(𝐼𝑖)(id)), and any two such arrows
yield two elements with the same equivalence class, so they must
be connected via a zig-zag in 𝖨 that translates to a zig-zag connect-
ing the two in the category of elements; see [30, Proposition 3.7]
for details.

Now we can prove ⟨prshf-free⟩.
Proof. It is clear that [𝖢op,𝖲𝖾𝗍]𝔻 has all 𝔻-colimits since it is a
full subcategory of the category of presheaves and full subcategory
inclusions reflect colimits. Furthermore, よ :𝖢 → [𝖢op,𝖲𝖾𝗍]𝔻 is well-
defined because 𝔻 contains all trivial diagrams in 𝖢, so the image
of the Yoneda embedding of 𝖢 is a full subcategory of [𝖢op,𝖲𝖾𝗍]𝔻.

Thus suppose 𝐽 :𝖢 → 𝖣 is a functor such that 𝖣 has all colimits
of diagrams 𝐼 ;𝐽 for 𝐼 ∈ 𝔻. Construct a functor 𝑀: [𝖢op,𝖲𝖾𝗍]𝔻 →
𝖣 as follows. Each 𝐹 ∈ [𝖢op,𝖲𝖾𝗍]𝔻 by definition is of the form
colim(𝐼 ;よ) for 𝐼 ∈ 𝔻. Let 𝑀 map 𝐹 to colim(𝜋𝐹 ; 𝐽), which
by ⟨prshf-colim-absolute⟩ is isomorphic to colim(𝐼 ;𝐽) because

101

colim(𝐼 ;よ) ≅ 𝐹≅ colim(𝜋𝐹 ;よ), hence exists by assumption on
𝖣.
A natural transformation 𝛼:𝐹→𝐺 between presheaves induces a
functor el𝐹→ el𝐺 mapping (𝑐,𝜑) to (𝑐,𝛼(𝑐)(𝜑)) and 𝑓 : (𝑐,𝜑)→
(𝑑,𝜓) to 𝑓 : (𝑐,𝛼(𝑐)(𝜑))→ (𝑑,𝛼(𝑑)(𝜓)) which is in el𝐺 since

𝐺(𝑓)(𝛼(𝑑)(𝜓)) = 𝛼(𝑐)(𝐹(𝑓)(𝜓)) = 𝛼(𝑐)(𝜑)

by naturality of 𝛼. For each (𝑐,𝜑) ∈ el𝐹, we have that 𝐽(id𝑐) :
𝐽(𝜋𝐹(𝑐,𝜑))→ 𝐽(𝜋𝐺(𝑐,𝛼(𝑐)(𝜑))), giving an arrow

𝜄(𝑐,𝛼(𝑐)(𝜑)) : 𝐽(𝜋𝐹(𝑐,𝜑))→ colim(𝜋𝐺 ; 𝐽).

This constitutes a cocone from 𝜋𝐹 ; 𝐽 to colim(𝜋𝐺 ; 𝐽) since each
𝑓 : (𝑐,𝜑)→ (𝑑,𝜓) has that

𝐽(𝜋𝐹(𝑓)) ; 𝜄(𝑐,𝛼(𝑐)(𝜑)) =𝐽(𝜋𝐺(𝑓)) ; 𝜄(𝑐,𝛼(𝑐)(𝜑)) = 𝜄(𝑑,𝛼(𝑑)(𝜓))

by the cocone property of colim(𝜋𝐺 ; 𝐽). Thus let 𝑀 map 𝛼 to
⨉(𝑐,𝜑)∈el𝐹𝜄(𝑐,𝛼(𝑐)(𝜑)). Then 𝑀(𝛼) is unique with the property
that 𝜄(𝑐,𝜑) ;𝑀(𝛼) = 𝜄(𝑐,𝛼(𝑐)(𝜑)) for all 𝑐 ∈ 𝖢 and 𝜑∈𝐹(𝑐).

⟨ functoriality of 𝑀⟩
Just like for 𝖥𝗂𝗇𝖲𝖾𝗍: we have 𝜄(𝑐,𝜑) ;𝑀(id) = 𝜄(𝑐,id(𝜑)) = 𝜄(𝑐,𝜑)
and 𝜄(𝑐,𝜑) ;𝑀(𝛼);𝑀(𝛽) = 𝜄(𝑐,𝛼(𝑐)(𝜑)) ;𝑀(𝛽) = 𝜄(𝑐,𝛽(𝑐)(𝛼(𝑐)(𝜑))) =
𝜄(𝑐,(𝛼;𝛽)(𝑐)(𝜑).

⟨よ ;𝑀≅𝐽⟩
We have 𝑀(よ(𝑐)) = colim(𝜋よ(𝑐) ;𝐽) = 𝐽(𝑐) since elよ(𝑐) has a
terminal object (𝑐, id𝑐),° and the colimit of a diagram with a ter- °For all (𝑑,𝑓) ∈ elよ(𝑐), we have

よ(𝑐)(𝑓)(id𝑐) = 𝑓 ; id𝑐 = 𝑓, so 𝑓 is
an arrow (𝑑,𝑓)→ (𝑐, id𝑐), and it is
the unique choice for 𝑔 such that
𝑔 ; id𝑐 =𝑓.

minal object in the index category is just the image of that ob-
ject (a corollary to the relevant property of final functors). Now
for any 𝑓:𝑐→𝑑 in 𝖢, we have 𝑀(よ(𝑓)) = ⨉(𝑒,𝜑)∈elよ(𝑐)𝜄(𝑒,𝜑;𝑓),
which reduces to just 𝜄(𝑐,id𝑐;𝑓) = 𝜄(𝑐,𝑓) = 𝐽(𝑓) since the inser-
tions into the colimit of a diagram with a terminal object are

102

clearly given by the unique morphisms into that object, and 𝑓
is a morphism (𝑐,𝑓)→ (𝑑, id𝑑) in elよ(𝑑). Naturality is trivial
since we can even choose the colimits in constructing 𝑀 so
that commutativity is strict.

⟨preservation of colimits⟩
Let 𝐼 : 𝖨 → 𝖢 be a diagram in 𝔻. We have 𝑀(colim(𝐼 ;よ)) ≅
colim(𝜋colim(𝐼;よ);𝐽) ≅ colim(𝐼;𝐽) by ⟨prshf-colim-absolute⟩,
and colim(𝐼;𝐽) ≅ colim(𝐼;よ;𝑀) by commutativity just shown.
Insertions 𝜄𝑖 :よ(𝐼𝑖)→ colim(𝐼;よ) are mapped onto morphisms
⨉(𝑐,𝜑)∈elよ(𝐼𝑖)𝜄

𝖣
(𝑐,𝜄𝑖(𝑐)(𝜑))

= 𝜄𝖣(𝐼𝑖,𝜄𝑖(𝐼𝑖)(id))
= 𝜄𝖣𝑖 , as required.°

°Again, the category elよ(𝐼𝑖) has a
terminal object (𝐼𝑖, id), and medi-
ators of cocones from colimits of
such diagrams are clearly given by
the unique arrow in the cocone that
comes from the terminal object.

⟨uniqueness⟩
Ifよ ;𝑀≅𝐽′ ≅よ ;𝑀′ naturally, then also 𝑀(𝐹)≅𝑀(colim(𝐼;
よ)) ≅ colim(𝐼;よ ;𝑀) ≅ colim(𝐼;よ ;𝑀′) ≅𝑀′(colim(𝐼;よ)) ≅
𝑀′(𝐹) for some 𝐼 ∈𝔻 for all 𝐹∈ [𝖢op,𝖲𝖾𝗍]𝔻 since 𝑀′ must pre-
serve colimits of diagrams in 𝔻. Let 𝛿𝐹 denote the unique
isomorphisms 𝑀(𝐹) ≅ 𝑀′(𝐹) commuting with the colimit
insertions. We show that this is a natural transformation.
Let 𝛼 ∈ [𝖢op,𝖲𝖾𝗍]𝔻(𝐹,𝐺). Then, for all (𝑐,𝜑) ∈ el𝐹, we have
𝜄𝑀(𝑐,𝜑) ;𝑀(𝛼) ; 𝛿𝐺 = 𝜄𝑀(𝑐,𝛼(𝑐)(𝜑)) ; 𝛿𝐺 = 𝜄𝑀

′

(𝑐,𝛼(𝑐)(𝜑)) and 𝜄𝑀(𝑐,𝜑) ; 𝛿𝐹 ;

𝑀′(𝛼) = 𝜄𝑀
′

(𝑐,𝜑) ;𝑀
′(𝛼) =𝑀′(𝜑);𝑀′(𝛼) =𝑀′(𝜑;𝛼) = 𝜄𝑀

′

(𝑐,𝛼(𝑐)(𝜑)),
where the last steps follow because 𝑀′ preserves the colimit
of 𝜋𝐹 ;よ (as this is isomorphic to a colimit of 𝐼 ;よ for 𝐼 ∈𝔻),
hence the insertions of よ(𝜋𝐹(𝑐,𝜑)) into colim(𝜋𝐹 ;よ), given
by 𝜑.° Thus 𝑀(𝛼);𝛿𝐺 =𝛿𝐹 ;𝑀′(𝛼) by uniqueness of mediators, °The property of final functors gives

a canonical correspondence of col-
imiting cocones, and then the proof
of ⟨prshf-colim-absolute⟩ yields
a canonical correspondence of col-
imiting cocones of the two func-
tors given here, from which it can
straightforwardly be shown that
insertions are preserved.

as required.

To exhibit 𝖮𝖻𝗌∗ as a free cocompletion, we need to identify which
diagrams of representables have concrete presheaves as their col-
imit. We provide a general condition that can be applied to any
category of concrete presheaves. A concise way of defining a di-
agram 𝐼 : 𝖨 → 𝖢 such that colim(𝐼 ;よ) is concrete would be to
say that whenever 𝑐 ∈ 𝖢 and 𝜑 ∈ 𝖢(𝑐,𝑑) and 𝜑′ ∈ 𝖢(𝑐,𝑑′) have

103

𝑥 ; 𝜑 ↭𝐼 𝑥 ; 𝜑′ for all 𝑥 ∈ 𝖢(𝟏,𝑐), then 𝜑 ↭𝐼 𝜑′. We will give a
definition that is a bit more involved, but it avoids having to talk
about zig-zags in the diagram. The definition is not equivalent to
the previous one: there are diagrams that have concrete colimits
without being concrete in the sense of the following definition.

DEFINITION: CONCRETE DIAGRAM. A diagram 𝐼 : 𝖨 → 𝖢 in The situation we need to prevent,
illustrated in terms of 𝖮𝖻𝗌, is that
all the atoms of two CABAs are
glued together without their joins
being glued together, which hap-
pens e.g. in the pointwise colimit
of the diagram

• •
• • • •

• •
• •
• •

which is not a concrete presheaf.

The condition ⟨conc-1⟩ simplifies
reasoning about the diagrams, be-
cause it implies that if two atoms
in the CABAs coming from 𝐼𝑖 and
𝐼𝑖′ are identified in 𝐼𝑗, then there
is already an object in the diagram
that accounts for this.

Condition ⟨conc-2⟩ then says that
if there are is a CABA (given by
よ(𝑐)) that fits into two objects
of the diagram such that all the
corresponding atoms hit by each
CABA are identified (which is de-
tected by the presence of objects
directly identifying each pair of
atoms like in ⟨conc-1⟩), then there
must be a CABA in the diagram
that directly identifies these pairs
of atoms, which means that it also
identifies their joins.

a concrete category 𝖢 is called concrete if
⟨conc-1⟩ for each commuting square

𝐼𝑗

𝐼𝑖 𝐼𝑖′

𝟏

𝐼𝑓 𝐼𝑓′

𝑥 𝑦

in 𝖢, there exists a diagram

𝑖 𝑘 𝑖′𝑔 𝑔′

in 𝖨 and an arrow 𝑧 :𝟏→ 𝐼𝑘 in 𝖢 such that

𝐼𝑖 𝐼𝑘 𝐼𝑖′

𝟏

𝐼𝑔 𝐼𝑔′

𝑥 𝑦𝑧

commutes, and
⟨conc-2⟩ for each pair 𝑖,𝑖′ ∈ 𝖨 and every diagram

𝐼𝑖 𝑐 𝐼𝑖′
𝑓 𝑓′

104

in 𝖢: if for each 𝑥 ∈ 𝖢(𝟏,𝑐) there exists a diagram

𝑖 𝑘𝑥 𝑖′
𝑔𝑥 𝑔′𝑥

in 𝖨 and an arrow 𝑧𝑥 : 𝟏→ 𝐼𝑘𝑥 in 𝖢 such that

𝐼𝑖 𝐼𝑖′

𝐼𝑘𝑥 𝑐

𝟏

𝐼𝑔𝑥

𝐼𝑔′𝑥𝑓

𝑓′

𝑧𝑥 𝑥

commutes, then there exists a diagram

𝑖 𝑘∗ 𝑖′𝑔 𝑔′

in 𝖨 and an arrow 𝑧 : 𝑐→ 𝐼𝑘∗ such that

𝐼𝑖 𝐼𝑘∗ 𝐼𝑖′

𝑐

𝐼𝑔 𝐼𝑔′

𝑓 𝑓′
𝑧

commutes.

PROPOSITION 3.3.5. Let 𝖢 be a small concrete category. The ⟨conc-free⟩
category Conc𝖢 together with よ :𝖢 →Conc𝖢 is the free cocom-
pletion of 𝖢 under small concrete diagrams in 𝖢.
Proof. By ⟨prshf-free⟩, we just need to show that every concrete
presheaf is isomorphic to colim(𝐼 ;よ) for some concrete diagram
𝐼, and conversely that every such colimit is a concrete presheaf.

105

⟨concrete presheaves are colimits of concrete diagrams⟩
Let 𝐹 ∈ Conc𝖢. We simply show that 𝜋𝐹 is concrete; that
colim(𝜋𝐹 ;よ) ≅𝐹 is the co-Yoneda lemma.
⟨conc-1⟩

Suppose we have a commuting square

𝜋𝐹(𝑑,𝜓)

𝜋𝐹(𝑐,𝜑) 𝜋𝐹(𝑐′,𝜑′)

𝟏

𝜋𝐹(𝑓) 𝜋𝐹(𝑓′)

𝑥 𝑦

in 𝖢. By definition of el𝐹, then 𝐹(𝑓)(𝜓) = 𝜑 and 𝐹(𝑓′)(𝜓) =
𝜑′, and so 𝐹(𝑥)(𝜑) = 𝐹(𝑥)(𝐹(𝑓)(𝜓)) = 𝐹(𝑥 ; 𝑓)(𝜓) = 𝐹(𝑦 ;
𝑓′)(𝜓) =𝐹(𝑦)(𝐹(𝑓′)(𝜓)) =𝐹(𝑦)(𝜑′) by assumption of com-
mutativity. We then get arrows

(𝟏,𝐹(𝑥)(𝜑)) = (𝟏,𝐹(𝑦)(𝜑′))→ (𝑐,𝜑),(𝑐′,𝜑′)

in el𝐹 via 𝑥 and 𝑦, and with id𝟏 : 𝟏 → 𝜋𝐹(𝟏,𝐹(𝑥)(𝜑)) we
have id𝟏 ; 𝜋𝐹(𝑥) = 𝑥 and id𝟏 ; 𝜋𝐹(𝑦) = 𝑦 as needed.

⟨conc-2⟩
Suppose that for (𝑑,𝜑),(𝑑′,𝜑′) ∈ el𝐹 we have

𝜋𝐹(𝑑,𝜑) 𝑐 𝜋𝐹(𝑑′,𝜑′)𝑓 𝑓′

in 𝖢 such that for each 𝑥 ∈ 𝖢(𝟏,𝑐) there exist

(𝑑,𝜑) (𝑘𝑥,𝜓𝑥) (𝑑′,𝜑′)
𝑔𝑥 𝑔′𝑥

106

in el𝐹 and an arrow 𝑧𝑥 : 𝟏→ 𝜋𝐹(𝑘𝑥,𝜓𝑥) in 𝖢 such that

𝜋𝐹(𝑑,𝜑) 𝜋𝐹(𝑑′,𝜑′)

𝜋𝐹(𝑘𝑥,𝜓𝑥) 𝑐

𝟏

𝜋𝐹(𝑔𝑥)

𝜋𝐹(𝑔′𝑥)𝑓
𝑓′

𝑧𝑥 𝑥

commutes. For all 𝑥 ∈ 𝖢(𝟏,𝑐), we then have 𝐹(𝑔𝑥)(𝜑) =
𝜓𝑥 =𝐹(𝑔′𝑥)(𝜑′). Now 𝑧𝑥 ; 𝑔𝑥 =𝑥;𝑓, so

𝐹(𝑧𝑥)(𝜓𝑥) =𝐹(𝑧𝑥)(𝐹(𝑔𝑥)(𝜑)) =𝐹(𝑧𝑥 ; 𝑔𝑥)(𝜑) =𝐹(𝑥 ;𝑓)(𝜑) =𝐹(𝑥)(𝐹(𝑓)(𝜑)),

and with 𝑧𝑥 ; 𝑔′𝑥 =𝑥;𝑓′ we analogously derive 𝐹(𝑧𝑥)(𝜓𝑥) =
𝐹(𝑥)(𝐹(𝑓′)(𝜑′)), hence 𝐹(𝑥)(𝐹(𝑓)(𝜑)) = 𝐹(𝑥)(𝐹(𝑓′)(𝜑′)).
By concreteness of 𝐹, then 𝐹(𝑓)(𝜑) =𝐹(𝑓′)(𝜑′). Thus 𝑓,𝑓′
induce arrows (𝑐,𝐹(𝑓)(𝜑)) → (𝑑,𝜑),(𝑑′,𝜑′) and id𝑐 : 𝑐 →
𝜋𝐹(𝑐,𝐹(𝑓)(𝜑)), with id𝑐 ; 𝑓 = 𝑓 and id𝑐 ; 𝑓′ =𝑓′.

⟨concrete colimits are concrete⟩
Let 𝐼 be a concrete diagram in 𝖢. We show that the pointwise
colimit of 𝐼′ ≔𝐼;よ in the category of presheaves is concrete.
The claim directly follows because full subcategories reflect all
colimits.
The pointwise colimit of 𝐼 ;よ is the functor sending 𝑐 ∈ 𝖢 to
the disjoint union of all 𝐼′𝑖(𝑐) quotiented by the equivalence
relation generated by ‘‘[𝜑] ∼ [𝜑′] iff there exists an 𝑓:𝑖→ 𝑗 such
that 𝐼′𝑓(𝑐)(𝜑) = 𝜑′’’, and morphisms 𝑓 to ⨉(𝐼′𝑖(𝑓) ; 𝜄𝑖).

Now let 𝑐 ∈ 𝖢, [𝜑], [𝜑′] ∈ colim𝐼′(𝑐) for 𝜑 ∈ 𝐼′𝑖(𝑐) and 𝜑′ ∈
𝐼′𝑖′(𝑐), and suppose colim𝐼′(𝑥)([𝜑]) = colim𝐼′(𝑥)([𝜑′]) for all
𝑥 ∈ 𝖢(𝟏,𝑐). We want to show that [𝜑] = [𝜑′], i. e. 𝜑 ∼ 𝜑′, by

107

using ⟨conc-2⟩ to obtain

𝑖 𝑘∗ 𝑖′𝑔 𝑔′

in 𝖨 such that 𝐼′𝑔(𝑐)(𝜓) = 𝜑 and 𝐼′𝑔′(𝑐)(𝜓) = 𝜑′ for some 𝜓 ∈
𝐼′𝑘∗(𝑐), which would prove 𝜑∼𝜑′. By the Yoneda lemma, there
is a bijection between 𝐼′𝑖(𝑐) =よ(𝐼𝑖(𝑐)) and natural transfor-
mations from よ(𝑐) to よ(𝐼𝑖), which correspond to morphisms
𝑐 → 𝐼𝑖 in 𝖢, so let us identify 𝜑 : 𝑐 → 𝐼𝑖 and 𝜑′ : 𝑐 → 𝐼𝑖′ with
their morphisms in 𝖢. By definition of the Yoneda embedding,
it then suffices if there is an arrow 𝑧 : 𝑐→ 𝐼𝑘∗ such that

𝐼𝑖 𝐼𝑘∗ 𝐼𝑖′

𝑐

𝐼𝑔 𝐼𝑔′

𝜑 𝜑′𝑧

commutes, like in the consequent of ⟨conc-2⟩.
Thus we need to check that the requirements of the antecedent
are satisfied. Let 𝑥 ∈ 𝖢(𝟏,𝑐). Now because colim𝐼′(𝑥)([𝜑]) =
colim𝐼′(𝑥)([𝜑′]), by definition of the equivalence relation, there
exists a finite sequence of elements 𝑖𝑘 in 𝖨 of length 𝑛 and arrows
𝑓𝑘 : 𝑖𝑘 → 𝑖𝑘+1 or 𝑓𝑘 : 𝑖𝑘+1 → 𝑖𝑘 and elements 𝑎𝑘 ∈ 𝐼′𝑖𝑘(𝟏) such
that 𝑎1 = 𝐼′𝑖(𝑥)(𝜑), 𝑎𝑛 = 𝐼′𝑖′(𝑥)(𝜑

′), and 𝐼′𝑓𝑘(𝟏)(𝑎𝑘) = 𝑎𝑘+1 or
𝐼′𝑓𝑘(𝟏)(𝑎𝑘+1) = 𝑎𝑘 for all 𝑘. Here we used that colim𝐼′(𝑥)([𝜑]) =

⨉(𝐼′𝑗(𝑥) ; 𝜄𝑗)([𝜑]) = 𝜄𝑖(𝐼′𝑖(𝑥)(𝜑)).

We show by induction on 𝑛 that there exists a 𝑘𝑥 in 𝖨 with a
𝑧𝑥 ∈ 𝐼′𝑘𝑥(𝟏) and arrows 𝑔𝑥,𝑔′𝑥 :𝑘𝑥 →𝑖,𝑖′ such that 𝐼′𝑔𝑥(𝟏)(𝑧𝑥) =
𝑎1 = 𝐼′𝑖(𝑥)(𝜑) and 𝐼′𝑔′𝑥

(𝟏)(𝑧𝑥) = 𝑎𝑛 = 𝐼′𝑖′(𝑥)(𝜑
′). This is clearly

the required commutativity in ⟨conc-2⟩.
⟨𝑛= 1⟩

We can choose 𝑘𝑥 = 𝑖 and 𝑧𝑥 =𝑎1 with 𝑔𝑥,𝑔′𝑥 = id.

108

⟨𝑛= 2⟩
W.l.o.g. 𝑓1:𝑖→ 𝑖′ and let 𝑘𝑥 = 𝑖, 𝑧𝑥 =𝑎1, 𝑔𝑥 = id, and 𝑔′𝑥 =
𝑓1. Then 𝐼′𝑔𝑥(𝟏)(𝑧𝑥) = 𝑎1 and 𝐼′𝑔′𝑥

(𝟏)(𝑧𝑥) = 𝐼′𝑓1(𝟏)(𝑎1) = 𝑎2
by assumption.

⟨𝑛> 2⟩
By the induction hypothesis, there exists a 𝑘−𝑥 in 𝖨 with
a 𝑧−𝑥 ∈ 𝐼′𝑘−𝑥 (𝟏) and arrows 𝑔−𝑥 ,𝑔−𝑥 ′ : 𝑘−𝑥 → 𝑖2, 𝑖′ such that
𝐼′𝑔−𝑥 (𝟏)(𝑧

−
𝑥) = 𝑎2 and 𝐼′𝑔′𝑥

(𝟏)(𝑧−𝑥) = 𝑎𝑛.

[𝑓1 : 𝑖2 →𝑖]
Let 𝑘𝑥 =𝑘−𝑥 , 𝑧𝑥 =𝑧−𝑥 , 𝑔𝑥 =𝑔−𝑥 ;𝑓1, and 𝑔′𝑥 =𝑔−𝑥 ′. Then,
we have 𝐼′𝑔𝑥(𝟏)(𝑧𝑥) = 𝐼′𝑓1(𝐼

′
𝑔−𝑥

(𝟏)(𝑧−𝑥)) = 𝐼′𝑓1(𝑎2) = 𝑎1 as
well as 𝐼′𝑔′𝑥

(𝟏)(𝑧𝑥) = 𝐼′𝑔−𝑥 ′(𝟏)(𝑧−𝑥) = 𝑎𝑛 by assumption.
[𝑓1 : 𝑖→ 𝑖2]

Then 𝐼′𝑓1(𝟏)(𝑎1) = 𝑎2 = 𝐼′𝑔−𝑥 (𝟏)(𝑧
−
𝑥), and so by ⟨conc-1⟩,

there exists a 𝑘𝑥 ∈ 𝖨 and 𝑔𝑥,𝑔
+
𝑥 : 𝑘𝑥 → 𝑖,𝑘−𝑥 and an

arrow 𝑧𝑥 : 𝟏 → 𝐼′𝑘𝑥 ∈ 𝐼′𝑘𝑥(𝟏) such that 𝐼′𝑔𝑥(𝟏)(𝑧𝑥) = 𝑎1
and 𝐼′

𝑔+𝑥 ;𝑔′𝑥
(𝟏)(𝑧𝑥) = 𝐼′𝑔−𝑥 (𝟏)(𝑧

−
𝑥) = 𝑎𝑛, as required.

We then have the following corollaries.

PROPOSITION 3.3.6. The category 𝖮𝖻𝗌∗ is the free cocomple- ⟨obs*-free⟩
tion of 𝖥𝗂𝗇𝖲𝖾𝗍+ under colimits of concrete diagrams as well as the
free cocompletion of 𝖥𝗂𝗇𝖲𝖾𝗍 under colimits of concrete non-empty
diagrams.
Proof. As remarked before, an adaptation to the proof of the
statement ⟨obs*=conc+finset⟩ shows that 𝖮𝖻𝗌∗ is equivalent to
the category Conc𝖥𝗂𝗇𝖲𝖾𝗍+, which is the free cocompletion under
concrete diagrams by ⟨conc-free⟩. A presheaf is non-empty iff it is
the pointwise colimit of a non-empty diagram by the way pointwise
colimits are computed, since unions of non-empty sets are non-
empty. Since 𝖮𝖻𝗌∗ is equivalent to Conc+𝖥𝗂𝗇𝖲𝖾𝗍 and ⟨conc-free⟩

109

shows that concrete presheaves are precisely those of the form
colim(𝐼 ;よ) for 𝐼 concrete, together we obtain that 𝖮𝖻𝗌∗ is the
category of presheaves on 𝖥𝗂𝗇𝖲𝖾𝗍 with objects colim(𝐼 ;よ) for 𝐼 a
non-empty concrete diagram, hence the free cocompletion under
such diagrams by ⟨prshf-free⟩.

PROPOSITION 3.3.7. The category 𝖥𝗂𝗇𝖮𝖻𝗌 is the free cocomple- ⟨finobs-prshf-free⟩
tion of 𝖥𝗂𝗇𝖱𝖾𝗅 under colimits of diagrams 𝐼;↪;よ factoring through
the inclusion 𝖥𝗂𝗇𝖲𝖾𝗍 ↪ 𝖥𝗂𝗇𝖱𝖾𝗅 such that colim(𝐼;よ) ∈ Conc+fin𝖥𝗂𝗇𝖲𝖾𝗍,
or equivalently of diagrams 𝐼;↪;よ such that 𝐼 is finite, non-empty,
and concrete in 𝖥𝗂𝗇𝖲𝖾𝗍.
Proof. The first part of the claim follows directly from the state-
ments ⟨finobs-prshf-finrel⟩ and ⟨prshf-free⟩ since the preshe-
aves colim(𝐼 ;↪;よ) for colim(𝐼 ;よ) ∈ Conc+fin𝖥𝗂𝗇𝖲𝖾𝗍 are precisely
those of the form colim(𝜋𝐹 ; ↪ ;よ) for 𝐹 ∈ Conc+fin𝖥𝗂𝗇𝖲𝖾𝗍 by
⟨prshf-colim-absolute⟩ because colim(𝜋colim(𝐼;よ);よ) ≅ colim(𝐼;
よ) for all 𝐼 : 𝖨 → 𝖥𝗂𝗇𝖲𝖾𝗍. The second part follows from that and
⟨obs*-free⟩ while noting that finite presheaves are precisely those
that are colimits of finite diagrams of representables.

For the full category 𝖮𝖻𝗌, things are more complicated; colimits do
not seem to be enough. Since we cannot capture infinitary objects
fully in a type theory, there would not be any benefit to describing
the whole category 𝖮𝖻𝗌 as a free category for our purposes, but for
future reference, let me conjecture that 𝖮𝖻𝗌 can be obtained from
𝖥𝗂𝗇𝖱𝖾𝗅 by performing a different kind of construction on the same
diagrams as for 𝖥𝗂𝗇𝖮𝖻𝗌 (except that they may be infinite), namely
taking colimits which additionally satisfy the property that any
object with a cone to the ‘‘transposed’’ diagram (transposing all
relations in it) of a directed subset of such a diagram has a unique
mediator to the colimit commuting with the cone and projections
given by the transposes of the colimit insertions. That is, the
object should be a colimit but also canonically behave like a limit
to each directed subset of its diagram.

110

THE CATEGORY 𝖥𝗂𝗇𝖮𝖻𝗌 AS A FREE CATEGORY
The characterisation of 𝖥𝗂𝗇𝖮𝖻𝗌 via colimits of concrete diagrams The example domain from the be-

ginning of this chapter

• • •

• • •

•
can be constructed using repeated
split pushouts by first taking

• •
• • • •

• •
•
•

then constructing the intersection
with the third maximal element

• •
• •

•
and then putting everything to-
gether

• • •
• • • • •

• •
• •

•

seems to be of limited use for creating a type theory out of it,
because it is difficult to describe concrete diagrams using type-
theoretic notation. Future research may determine a generally
applicable way for doing that. For the case of 𝖥𝗂𝗇𝖮𝖻𝗌, we will
instead give an alternative representation as a free category of
presheaves constructed from repeated pushouts of a certain shape.
See Section 3.2, subsection on the quasitopos 𝖮𝖻𝗌∗, for a discus-
sion of split and strong monomorphisms in 𝖮𝖻𝗌 and 𝖮𝖻𝗌∗, which
straightforwardly transfers to 𝖥𝗂𝗇𝖮𝖻𝗌 and 𝖥𝗂𝗇𝖮𝖻𝗌∗.

DEFINITION: SPLIT PUSHOUT. Let 𝖢 be a category and 𝐽 :
𝖥𝗂𝗇𝖱𝖾𝗅 → 𝖢 a functor. A split pushout diagram is a diagram in 𝖢
that is either of the form 𝐼;𝐽 for some 𝐼:𝟏→ 𝖥𝗂𝗇𝖱𝖾𝗅, or of the form
𝐼 :𝖯 → 𝖢 where 𝖯 is the category •← •→• and the image of 𝐼 is

𝐴 𝐶 𝐵𝑟 𝑠

where 𝐴, 𝐵, and 𝐶 are colimits of split pushout diagrams, 𝑟 is a
split monomorphism, and both 𝑟 and 𝑠 are functional. A morphism
in 𝖢 is called functional if it is one of the following:
• a morphism 𝐽(↪(𝑓)) : 𝐽(↪(𝑁)) → 𝐽(↪(𝑀)) for some 𝑓 ∈

𝖥𝗂𝗇𝖲𝖾𝗍(𝑁,𝑀),
• an identity morphism,
• a composite of functional morphisms,
• an insertion into colim𝐼 for 𝐼 a split pushout diagram,
• a mediator of functional morphisms forming a cocone from a
split pushout diagram.

The pair (𝖢,𝐽) is called split-pushout-cocomplete if it has colimits
of all split pushout diagrams. A functor 𝐹 : (𝖢,𝐽) → (𝖣,𝐽′) be-
tween split-pushout-cocomplete categories is called split-pushout-
cocontinuous if it preserves colimits of split pushout diagrams.

111

We are going to use split pushouts in the type theory to construct
all the objects of 𝖥𝗂𝗇𝖮𝖻𝗌. This is more feasible than using the
characterisation as strong monomorphisms in 𝖥𝗂𝗇𝖮𝖻𝗌∗ because it
will be easy to define split monomorphisms in the type theory, and
furthermore every functor preserves split monomorphisms, which
will play a central role in proving the claim we want to establish.
However, it is often easier to work with the category 𝖥𝗂𝗇𝖮𝖻𝗌∗ in
the proofs that follow, so we shall also define a corresponding
construction for 𝖥𝗂𝗇𝖮𝖻𝗌∗.

DEFINITION: STRONG PUSHOUT. A strong pushout diagram
is a diagram in 𝖥𝗂𝗇𝖮𝖻𝗌∗ that is either of the form 𝐼 ;よ for 𝐼 : 𝖨 →
𝖥𝗂𝗇𝖲𝖾𝗍 or of the form 𝐼 :𝖯 → 𝖢 where 𝖯 is the category •← •→ •
and the image of 𝐼 is

𝐴 𝐶 𝐵𝑟 𝑠

such that 𝐴,𝐵,𝐶 are colimits of strong pushout diagrams and 𝑟
is a strong monomorphism.

We refer to colimits of split/strong pushout diagrams simply as
split/strong pushouts.

PROPOSITION 3.3.8. Every object 𝐷 ∈ 𝖥𝗂𝗇𝖮𝖻𝗌∗ is a strong ⟨finobs*-strong⟩
pushout.
Proof. By induction on |max𝐷| (which is at least 1 since 𝐷 is
non-empty). If |max𝐷| = 1, then 𝐷 is necessarily a CABA, hence
isomorphic to よ(At𝐷), with At𝐷∈ 𝖥𝗂𝗇𝖲𝖾𝗍 because 𝐷 is finite.

Now suppose |max𝐷| > 1 and all 𝐷′ with |max𝐷′| < |max𝐷|
are strong pushouts. Let 𝑥 ∈ max𝐷 and consider the set 𝐸 ≔
↓(max𝐷\ {𝑥}) of elements in 𝐷 that are below some maximal
element other than 𝑥. Together with the induced order from 𝐷,
this is a domain: it is non-empty because 𝐷 has at least two
maximal elements by assumption, it is nuclear and atomistic, and
bounded-complete because it is a down-set in a domain,° and °That is, it includes all atoms below

elements it contains, and all joins
of these atoms, which are in bijec-
tion with consistent sets of atoms
because 𝐷 is a domain.

112

it is trivially directed-complete because it is finite. In addition,
let 𝐸′ ≔ 𝐸∩↓𝑥. This is also a domain (like any intersection of
two domains, in fact): non-emptiness follows because ⊥∈𝐸 and
⊥∈ ↓𝑥 and the rest follows like for 𝐸 since 𝐸′ is a down-set in 𝐷.
By ⟨obs*-colim⟩, it is clear that 𝐷 is the colimit of the diagram

𝐸 𝐸′ よ(At𝑥)

where 𝐸′ ↪𝐸 and 𝐸′ ↪よ(At𝑥) ≅ ↓𝑥 are the obvious inclusions
(which are clearly atom-preserving domain mappings): naming the
elements of 𝐸, 𝐸′, and よ(At𝑥) in accordance with the names in
𝐷, of which all these domains are subsets, the inclusions identify
all elements with the same name, so the computation of the colimit
amounts to taking the union 𝐸∪𝐸′∪よ(At𝑥), which is 𝐷 because
every element of 𝐷 is below 𝑥 or a maximal element of 𝐸.
Thus it only remains to show that the diagram satisfies the condi-
tions from the definition of strong pushouts. First, 𝐸′ is a strong
subobject of 𝐸: whenever 𝑆⊆At𝐸′ has a join in 𝐸, then because
𝑆⊆At↓𝑥 and ↓𝑥 is a CABA, that join is also in ↓𝑥, hence in 𝐸′.
Thus the inclusion 𝐸′ ↪𝐸 is a strong monomorphism in 𝖥𝗂𝗇𝖮𝖻𝗌∗.
Furthermore, 𝐸 has strictly fewer maximal elements than 𝐷 since
max𝐸=max𝐷\{𝑥}⊊max𝐷 because 𝑥 is maximal. The domain
𝐸′ also has fewer maximal elements, which we show via an injection
max𝐸′ →max𝐸: send every maximal element in 𝐸′ to a maximal
element of 𝐸 above it, which exists because 𝐸 is a domain. If
two 𝑥,𝑦 ∈ max𝐸′ have 𝑥,𝑦 ⊑ 𝑧 ∈ max𝐸, then 𝑥⊔ 𝑦 exists by
⟨bnd-comp⟩, and At(𝑥⊔𝑦) ∈ 𝒞(At𝐸) implies At(𝑥⊔𝑦) ∈ 𝒞(At𝐸′)
by strongness, so 𝑥⊑ 𝑥⊔𝑦= 𝑦 by maximality of 𝑦 and then 𝑥= 𝑦
by maximality of 𝑥. Clearly |maxよ(At𝑥)| = |{𝑥}| = 1< |max𝐷|
by assumption. By the induction hypothesis, it follows that 𝐸, 𝐸′,
and よ(At𝑥) are strong pushouts, concluding the proof.

Because 𝖥𝗂𝗇𝖮𝖻𝗌∗ is cocomplete, the converse holds, too: every
strong pushout diagram has a colimit in 𝖥𝗂𝗇𝖮𝖻𝗌∗. However, to show

113

that they are ‘‘free’’, we need to make sure that strong pushouts
can be computed pointwise, in the category of all presheaves on
𝖥𝗂𝗇𝖲𝖾𝗍.

PROPOSITION 3.3.9. The pointwise colimit of every strong ⟨pointwise-strong-finobs*⟩
pushout diagram in 𝖥𝗂𝗇𝖮𝖻𝗌∗, calculated in [𝖥𝗂𝗇𝖲𝖾𝗍op,𝖲𝖾𝗍], is in
𝖥𝗂𝗇𝖮𝖻𝗌∗.
Proof. If the diagram is trivial, this is clear because Conc+fin𝖥𝗂𝗇𝖲𝖾𝗍
contains all the representables. Thus let

𝐴 𝐶 𝐵𝑟 𝑠

be a strong pushout diagram with pointwise colimit 𝑃. Note that
𝑃 is non-empty and finite since the diagram is non-empty and
finite and so are the presheaves in the diagram. We show that 𝑃
is concrete, from which the claim immediately follows. Thus let
𝑁 ∈ 𝖥𝗂𝗇𝖲𝖾𝗍 and [𝜑], [𝜑′] ∈ 𝑃(𝑁) such that 𝑃(𝑛)([𝜑]) = 𝑃(𝑛)([𝜑′])
for all 𝑛 ∈𝑁. We show that [𝜑] = [𝜑′]. The only non-trivial case
is where w. l.o.g. 𝜑 ∈ 𝐴(𝑁) and 𝜑′ ∈ 𝐵(𝑁). This means that for
all 𝑛∈𝑁, there exists an 𝑎𝑛 ∈𝐶(𝟏) such that 𝑟(𝟏)(𝑎𝑛) =𝐴(𝑛)(𝜑)
and 𝑠(𝟏)(𝑎𝑛) =𝐵(𝑛)(𝜑′). Then, 𝑟(𝟏)({𝑎𝑛 ∣ 𝑛 ∈𝑁}) =𝐴(𝑁)(𝜑), so
because 𝑚 is strong, there exists a 𝜓 ∈ 𝐶(𝑁) with 𝑟(𝑁)(𝜓) = 𝜑
(like in [3, Proposition 34]), so 𝑟(𝟏)(𝐶(𝑛)(𝜓)) =𝐴(𝑛)(𝑟(𝑁)(𝜓)) =
𝐴(𝑛)(𝜑) = 𝑟(𝟏)(𝑎𝑛) for all 𝑛 ∈ 𝑁, hence 𝐶(𝑛)(𝜓) = 𝑎𝑛 because
𝑟(𝟏) is injective. It follows that 𝐵(𝑛)(𝑠(𝑁)(𝜓)) = 𝑠(𝟏)(𝐶(𝑛)(𝜓)) =
𝑠(𝟏)(𝑎𝑛) =𝐵(𝑛)(𝜑′) for all 𝑛∈𝑁, so 𝑠(𝑁)(𝜓) = 𝜑′ by concreteness
of 𝐵. Thus 𝑟(𝑁)(𝜓) = 𝜑 and 𝑠(𝑁)(𝜓) = 𝜑′, hence [𝜑] = [𝜑′].

We transfer split pushouts in 𝖥𝗂𝗇𝖮𝖻𝗌∗ to strong pushouts in 𝖥𝗂𝗇𝖮𝖻𝗌.
We can see directly using the equivalences in ⟨obs*=conc+finset⟩
and ⟨finobs-prshf-finrel⟩ that the inclusion 𝖥𝗂𝗇𝖮𝖻𝗌∗ ↪ 𝖥𝗂𝗇𝖮𝖻𝗌
sends representable presheaves よ(𝑁) ∈ 𝖥𝗂𝗇𝖮𝖻𝗌∗ to representables
よ(↪(𝑁)) ∈ 𝖥𝗂𝗇𝖮𝖻𝗌 and morphisms よ(𝑓) to よ(↪(𝑓)). It then
follows that 𝖥𝗂𝗇𝖮𝖻𝗌 has colimits of all finite diagrams 𝐼 ;↪ ;よ
for colim(𝐼 ;よ) ∈ 𝖥𝗂𝗇𝖮𝖻𝗌 since the inclusion preserves colimits
and 𝖥𝗂𝗇𝖮𝖻𝗌∗ is finitely cocomplete. By ⟨prshf-free⟩, it follows

114

that there is a unique functor 𝖥𝗂𝗇𝖮𝖻𝗌∗ → 𝖥𝗂𝗇𝖮𝖻𝗌 commuting with
よ and よ ;↪ and preserving colimits of finite diagrams 𝐼 ;よ
with colim(𝐼 ;よ) ∈ 𝖥𝗂𝗇𝖮𝖻𝗌. But the inclusion 𝖥𝗂𝗇𝖮𝖻𝗌∗ ↪ 𝖥𝗂𝗇𝖮𝖻𝗌
does precisely that, so we know that it is of the form given in
the proof of ⟨prshf-free⟩. Note furthermore that there exists a
similar colimit-preserving inclusion [𝖥𝗂𝗇𝖲𝖾𝗍op,𝖲𝖾𝗍] ↪ [𝖥𝗂𝗇𝖱𝖾𝗅op,𝖲𝖾𝗍]
since [𝖥𝗂𝗇𝖱𝖾𝗅op,𝖲𝖾𝗍] is cocomplete and thus in particular has all
colimits of diagrams factoring through ↪;よ, and inspecting its
definition in ⟨prshf-free⟩, we find that it restricts to the inclusion
𝖥𝗂𝗇𝖮𝖻𝗌∗ ↪ 𝖥𝗂𝗇𝖮𝖻𝗌 on those full subcategories.

PROPOSITION 3.3.10. Every split pushout diagram in 𝖥𝗂𝗇𝖮𝖻𝗌 ⟨split-strong⟩
factors through the inclusion 𝖥𝗂𝗇𝖮𝖻𝗌∗ ↪ 𝖥𝗂𝗇𝖮𝖻𝗌 via a strong push-
out diagram in 𝖥𝗂𝗇𝖮𝖻𝗌∗.
Proof. For a diagram 𝐼 ;よ𝖥𝗂𝗇𝖱𝖾𝗅 where 𝐼 selects a single object
𝑁 ∈ 𝖥𝗂𝗇𝖱𝖾𝗅, this is clear since then 𝑁 ∈ 𝖥𝗂𝗇𝖲𝖾𝗍 and the inclusion
sends よ𝖥𝗂𝗇𝖲𝖾𝗍(𝑁) to よ𝖥𝗂𝗇𝖱𝖾𝗅(↪(𝑁)). Thus let

𝐴 𝐶 𝐵𝑟 𝑠

be a split pushout diagram in 𝖥𝗂𝗇𝖮𝖻𝗌. Clearly 𝐴,𝐵,𝐶 ∈ 𝖥𝗂𝗇𝖮𝖻𝗌∗,
and by ⟨finobs*-strong⟩, they are strong pushouts. Furthermore,
as we discussed in Section 3.2, every split monomorphism in 𝖥𝗂𝗇𝖮𝖻𝗌
that happens to be atom-preserving is a strong monomorphism in
𝖥𝗂𝗇𝖮𝖻𝗌∗, so we only need to check that 𝑟 and 𝑠 are atom-preserving.

We show that every functional morphism is atom-preserving by in-
duction on the definition of functional morphisms. A morphism of
the form よ(↪(𝑓)) :よ(↪(𝑁)) → 𝐽(↪(𝑀)) for 𝑓 ∈ 𝖥𝗂𝗇𝖲𝖾𝗍(𝑁,𝑀)
has that よ(𝑓) :よ(𝑁) → よ(𝑀) is a morphism in 𝖥𝗂𝗇𝖮𝖻𝗌∗ and
the inclusion sends よ(𝑓) to よ(↪(𝑓)). Identities and compos-
ites of atom-preserving maps are atom-preserving, and insertions
into split pushouts that by induction hypothesis factor through
𝖥𝗂𝗇𝖮𝖻𝗌∗ ↪ 𝖥𝗂𝗇𝖮𝖻𝗌 are the image of atom-preserving maps because
𝖥𝗂𝗇𝖮𝖻𝗌∗ is finitely cocomplete, hence the split pushout has a col-
imit, and the inclusion preserves colimits, hence colimit insertions.

115

Finally, a mediator of atom-preserving maps for a pushout factor-
ing through the inclusion is equally atom-preserving in 𝖥𝗂𝗇𝖮𝖻𝗌∗,
again by finite cocompleteness of 𝖥𝗂𝗇𝖮𝖻𝗌, and so the image of the
corresponding mediator under the inclusion is that same mediator
since the inclusion preserves colimits and composites.

Eventually, we want to use ⟨prshf-free⟩ to show the claim. Note
that ⟨prshf-free⟩ only makes a claim about the category of
presheaves that are colimits of diagrams 𝐼 ;よ with 𝐼 : 𝖨 → 𝖢 a
specified type of diagram. However, we want to use these freely
constructed pushouts from objects that may already be presheaves.
There may be an obvious abstract argument that solves this issue,
but the only solution I found was to ‘‘unfold’’ a pushout diagram
in the category of presheaves recursively into a diagram in the
underlying category, so this is what we shall do.

DEFINITION: RECURSIVE PUSHOUT. A recursive pushout
shape is a category 𝖨 such that either 𝖨 ≅ 𝟏 or 𝖨 consists of sub-
categories 𝖨𝐴, 𝖨𝐵, and 𝖨𝐶, such that each of these categories is
a recursive pushout shape, and for each 𝑐 ∈ 𝖨𝐶 there exists an
𝑎 ∈ 𝖨𝐴 with an arrow 𝑐→ 𝑎 and a 𝑏 ∈ 𝖨𝐵 with an arrow 𝑐→ 𝑏 in
𝖨 and any two such arrows 𝑓,𝑓′ : 𝑐 → 𝑎,𝑎′ ∈ 𝖨𝐴,𝐵 have 𝑓 ↭id 𝑔.
A recursive pushout diagram is a diagram 𝐼 : 𝖨 → 𝖢 of recursive
pushout shape.

Given a recursive pushout diagram, which we think of as a repre-
sentation of repeated applications of pushouts, we can reassemble
it under certain conditions into a pushout diagram.

PROPOSITION 3.3.11. Let 𝐼 : 𝖨 → 𝖢 be a recursive pushout ⟨rec-colim⟩
diagram. If 𝖨 ≅ 𝟏, then 𝐼 evidently has a colimit colim𝐼 ≅ 𝐼(•).
Otherwise, if 𝐼𝐴,𝐵,𝐶° have a colimit and the diagram °From here on, we denote diagram

functor application by 𝐼(𝑖), be-
cause we use 𝐼𝐴,𝐵,𝐶 to denote the
restrictions of recursive pushout
diagrams 𝐼 to their constituent cat-
egories.

colim𝐼𝐴 colim𝐼𝐶 colim𝐼𝐵
𝑟 𝑠

with arrows 𝑟,𝑠 given as the mediators ⨉𝑖:𝑐→𝑎∈𝖨𝐴𝐼(𝑖) ; 𝜄𝑎 and
⨉𝑗:𝑐→𝑏∈𝖨𝐵𝐼(𝑗);𝜄𝑏 has a pushout, then 𝐼 has a colimit, given by that

116

pushout together with the natural insertions 𝜄𝑥 ; 𝜄𝑋 arising from
composition of the insertions into colim𝐼𝐴,𝐵,𝐶 with the arrows of
those colimits into the pushout.
Proof. First, note that the respective mediators exist because
by definition of recursive pushout shapes, there exists an arrow
𝑖 : 𝑐 → 𝑎 for each 𝑐 ∈ 𝖨𝐶, hence an arrow 𝑖 ; 𝜄𝑎 : 𝑐 → colim𝐼𝐴, and
any two such arrows 𝑖,𝑖′ have 𝑖 ↭ 𝑖′, hence also 𝑖 ; 𝜄𝑎 = 𝑖′ ; 𝜄𝑎′
because the 𝜄 form a cocone which commutes with the zig-zag;
analogously for 𝖨𝐵, so the collections of arrows form cocones into
the respective colimits.

Let 𝑃 denote the pushout of the given diagram, with insertions
𝜄𝐴,𝐵. We show that it satisfies the universal property of a colimit
of 𝐼. First, we establish a cocone from each element of 𝖨. For
𝑎 ∈ 𝖨𝐴, let 𝑓𝑎 = 𝜄𝑎 ;𝜄𝐴, for 𝑏 ∈ 𝖨𝐵, let 𝑓𝑏 = 𝜄𝑏 ;𝜄𝐵, and for 𝑐 ∈ 𝖨𝐶, let
𝑓𝑐 = 𝜄𝑐 ;𝑟 ; 𝜄𝐴 = 𝜄𝑐 ;𝑠 ; 𝜄𝐵 by the cocone property of the pushout. To
show that this is a cocone, let 𝑓 be an arrow in 𝖨 and distinguish
three cases.
[𝑓 :𝑎→𝑎′ for 𝑎,𝑎′ both in 𝖨𝐴 or 𝖨𝐵]

W. l.o.g. assume both are in 𝖨𝐴. Then 𝐼(𝑓);𝑓𝑎′ = 𝐼(𝑓);𝜄𝑎′ ;𝜄𝐴 =
𝜄𝑎 ; 𝜄𝐴 =𝑓𝑎 by the cocone property of colim𝐼𝐴.

[𝑓 : 𝑐→ 𝑐′ for 𝑐,𝑐′ both in 𝖨𝐶]
Then 𝐼(𝑓) ; 𝑓𝑐′ = 𝐼(𝑓) ; 𝜄𝑐′ ; 𝑟 ; 𝜄𝐴 = 𝜄𝑐 ; 𝑟 ; 𝜄𝐴 = 𝑓𝑐 by the cocone
property of colim𝐼𝐶.

[𝑓 : 𝑐→𝑎 for 𝑐 ∈ 𝖨𝐶 and 𝑎 ∉ 𝖨𝐶]
W. l.o.g. assume 𝑎 ∈ 𝖨𝐴. Then 𝐼(𝑓);𝑓𝑎 = 𝐼(𝑓);𝜄𝑎;𝜄𝐴 = 𝜄𝑐;𝑟;𝜄𝐴 =
𝑓𝑐 by the mediating property of 𝑟.

Now suppose 𝑄 has a cocone 𝑔𝑖 from 𝖨. We construct an arrow
𝑃→𝑄 as follows. Since 𝑄 has a cocone from 𝖨, in particular, it has
cocones from 𝖨𝐴 and 𝖨𝐵, hence colimit mediators 𝑚𝐴,𝐵 :𝐴,𝐵→𝑄.
Then for all 𝑐 ∈ 𝖨𝐶, we have 𝜄𝑐 ; 𝑟 ;𝑚𝐴 = 𝐼(𝑖) ;𝑚𝐴 = 𝑔𝑐 for some
𝑖 : 𝑐→ 𝑎 by the mediating properties of 𝑟 and 𝑚𝐴, and similarly
𝜄𝑐 ; 𝑠 ;𝑚𝐵 = 𝐼(𝑗) ;𝑚𝐵 = 𝑔𝑐, so 𝑟 ;𝑚𝐴 = 𝑠 ;𝑚𝐵 by uniqueness of

117

mediators. Thus there exists a mediator𝑚:𝑃→𝑄 with 𝜄𝐴;𝑚=𝑚𝐴
and 𝜄𝐵 ;𝑚=𝑚𝐵.
We show that 𝑚 is a unique mediator of the cocone 𝑔𝑖. First,
commutativity. Distinguish three cases.
[𝑔𝑎 for 𝑎 ∈ 𝖨𝐴,𝐵]

W. l.o.g. 𝑎 ∈ 𝖨𝐴. Then, 𝑓𝑎 ;𝑚= 𝜄𝑎 ; 𝜄𝐴 ;𝑚= 𝜄𝑎 ;𝑚𝐴 =𝑔𝑎 by the
mediating properties of 𝑚 and 𝑚𝐴.

[𝑔𝑐 for 𝑐 ∈ 𝖨𝐶]
Then, 𝑓𝑐 ;𝑚 = 𝜄𝑐 ; 𝑟 ; 𝜄𝐴 ;𝑚 = 𝐼(𝑖) ; 𝜄𝑎 ;𝑚𝐴 = 𝐼(𝑖) ; 𝑔𝑎 = 𝑔𝑐 for
some 𝑖 : 𝑐→ 𝑎 since the 𝑔𝑗 form a cocone.

Finally, we show that every mediator 𝑚′ :𝑃→𝑄 with 𝑓𝑖 ;𝑚′ =𝑔𝑖
also has 𝜄𝐴 ;𝑚′ =𝑚𝐴 and 𝜄𝐵 ;𝑚′ =𝑚𝐵, from which uniqueness
follows by uniqueness of the pushout mediator. We have 𝜄𝑎;𝜄𝐴;𝑚′ =
𝑓𝑎 ;𝑚′ = 𝑔𝑎 and 𝜄𝑎 ;𝑚𝐴 = 𝑔𝑎 for all 𝑎 ∈ 𝖨𝐴, so 𝜄𝐴 ;𝑚′ = 𝑚𝐴 by
uniqueness of the colimit mediator for 𝐼𝐴, and analogously for 𝐼𝐵.

Now let us see how a recursive pushout diagram can be created
from a pushout diagram.

DEFINITION: UNFOLDING. For a strong pushout diagram in
𝖥𝗂𝗇𝖮𝖻𝗌∗, define its unfolding, if it exists, recursively as a diagram
𝐼 : 𝖨 → 𝖥𝗂𝗇𝖲𝖾𝗍 as follows. If the diagram is trivial with value よ(𝑁),
let 𝖨 =𝟏 and 𝐼 map • onto 𝑁. Otherwise, it is of the form

𝐴 𝐶 𝐵𝑟 𝑠

where we suppose that 𝐴,𝐵,𝐶 are colimits of strong pushout
diagrams with unfoldings 𝐼𝐴,𝐵,𝐶 : 𝖨𝐴,𝐵,𝐶 → 𝖥𝗂𝗇𝖲𝖾𝗍 with colimits
colim(𝐼𝐴,𝐵,𝐶 ;よ) ≅𝐴,𝐵,𝐶 in 𝖥𝗂𝗇𝖮𝖻𝗌∗. Then, let 𝖨 be the disjoint
union of 𝖨𝐴,𝐵,𝐶 together with arrows 𝑐→ 𝑎,𝑏 whenever there is
an 𝑓 : 𝐼𝐶(𝑐) → 𝐼𝐴(𝑎),𝐼𝐵(𝑏) in 𝖥𝗂𝗇𝖲𝖾𝗍 such that 𝜄𝑐 ; 𝑟 =よ(𝑓) ; 𝜄𝑎,𝑏,
and let 𝐼 map each such arrow onto the corresponding arrow 𝑓,
and otherwise coincide with 𝐼𝐴,𝐵,𝐶.

118

PROPOSITION 3.3.12. Every unfolding is a recursive pushout ⟨unfold-rec⟩
diagram.
Proof. By structural induction on the strong pushout diagram.
Suppose it is of the form よ(𝑁) for some 𝑁∈ 𝖥𝗂𝗇𝖲𝖾𝗍. Then 𝖨 = 𝟏
and 𝐼:•↦𝑁, which is a recursive pushout diagram. Now suppose
the diagram is of the form

𝐴 𝐶 𝐵𝑟 𝑠

with unfoldings 𝐼𝐴,𝐵,𝐶 : 𝖨𝐴,𝐵,𝐶 → 𝖥𝗂𝗇𝖲𝖾𝗍 with colim(𝐼𝐴,𝐵,𝐶 ;よ) ≅
𝐴,𝐵,𝐶 and assume each of these unfoldings is a recursive pushout
diagram. We show that 𝐼 as in the definition of unfoldings is a
recursive pushout.

For that, we only need to check that for each 𝑐 ∈ 𝖨𝐶, there exists
an 𝑎 ∈ 𝖨𝐴 with an arrow 𝑖 : 𝑐→ 𝑎 in 𝖨, and any two such 𝑖,𝑖′ have
𝑖↭𝑖′; the case for 𝑏 ∈ 𝖨𝐵 will be analogous. Thus let 𝑐 ∈ 𝖨𝐶. We
first show that there exists an 𝑓:𝐼𝐶(𝑐)→ 𝐼𝐴(𝑎) in 𝖥𝗂𝗇𝖲𝖾𝗍 such that
𝜄𝑐 ; 𝑟 =よ(𝑓) ; 𝜄𝑎. Because 𝜄𝑐 ; 𝑟 maps よ(𝐼𝐶(𝑐)) into colim𝐼𝐴, it
must map all of the CABA よ(𝐼𝐶(𝑐)) onto a consistent subset of
colim𝐼𝐴, which by computation of colimits is contained entirely
in some よ(𝐼𝐴(𝑎)), so 𝜄𝑐 ; 𝑟 factors through 𝜄𝑎 via a map between
representables, which is a function in 𝖥𝗂𝗇𝖲𝖾𝗍. If it factors through
two such insertions, the corresponding consistent sets must be
mapped onto the same set in the colimit, hence connected by a
zig-zag in 𝖨𝐴.

PROPOSITION 3.3.13. Every strong pushout diagram 𝐼 : 𝖨 → ⟨strong-unfold⟩
𝖥𝗂𝗇𝖲𝖾𝗍 has an unfolding 𝐼 such that the diagram for 𝐼 ;よ𝖥𝗂𝗇𝖲𝖾𝗍 in
⟨rec-colim⟩ is a strong pushout diagram with the same colimit as
𝐼 ;よ.
Proof. By induction on the diagram. If the diagram is trivial, this
is clear. Otherwise, it is of the form

𝐴 𝐶 𝐵𝑟 𝑠

119

where we suppose that 𝐴,𝐵,𝐶 are colimits of strong pushout
diagrams that have unfoldings with colim(𝐼𝐴,𝐵,𝐶 ;よ) ≅ 𝐴,𝐵,𝐶.
Construct 𝐼 like in the definition of unfoldings. By ⟨unfold-rec⟩,
this is a recursive pushout, and then the pushout of

colim(𝐼𝐴 ;よ) colim(𝐼𝐶 ;よ) colim(𝐼𝐵 ;よ)𝑟′ 𝑠′

with 𝑟′ given as ⨉𝑖:𝑐→𝑎∈𝐼𝐴よ(𝐼(𝑖));𝜄𝑎 = ⨉𝑖:𝑐→𝑎∈𝐼𝐴𝜄𝑐;𝑟 = 𝑟 by def-
inition of the unfolding, and 𝑠′ analogously, is simply the original
strong pushout, which has a colimit in 𝖥𝗂𝗇𝖮𝖻𝗌∗ by finite cocom-
pleteness. Then by ⟨rec-colim⟩, the colimit of 𝐼 ;よ exists and is
given by the pushout.

Note that this also shows that for every unfolding of a strong
pushout, the colimit can be computed like in ⟨rec-colim⟩, which
reduces it to the computation of the original pushout. Using
⟨pointwise-strong-finobs*⟩, colimits of strong pushout diagrams
can be computed pointwise, then with ⟨strong-unfold⟩ we can
see inductively that colimits of 𝐼 ;よ where 𝐼 is an unfolding can
also be computed pointwise.

To establish the free construction, we will unfold strong pushout
diagrams and then reassemble them in a split-pushout-cocomplete
category. We have to make sure that the unfoldings do reassem-
ble into a split pushout diagram. The crucial point is that split
monomorphisms are preserved by this process.

Define the canonical unfolding of a domain 𝐷∈ 𝖥𝗂𝗇𝖮𝖻𝗌∗ as the un-
folding arising from the construction in ⟨finobs*-strong⟩.° That °Note that the canonical unfolding

is not unique, but it can be made
unique by fixing an enumeration
of the elements of the domain.

is, write each domain 𝐷 as the colimit of a trivial diagram if
|max𝐷| = 1 and otherwise write it as a strong pushout like in
⟨finobs*-strong⟩, create the canonical unfoldings recursively for
the domains in that diagram, and compose them into a recursive
pushout by adding arrows like in the definition of unfoldings. We
first show some facts about these canonical unfoldings.

120

PROPOSITION 3.3.14. Every recursive pushout shape 𝖨 has a ⟨rec-term⟩
weakly terminal set 𝑇⊆ 𝖨. That is, for each 𝑖 ∈ 𝖨 there exists a
𝑡 ∈𝑇 such that there exists an arrow 𝑖→ 𝑡.
Proof. By structural induction on 𝖨. For 𝖨 ≅𝟏, this is trivial. Thus
suppose the statement holds for 𝖨𝐴,𝐵,𝐶. We show that 𝑇𝐴∪𝑇𝐵 is
a terminal set. Let 𝑖 ∈ 𝖨 and distinguish two cases.
[𝑖 ∈ 𝖨𝐴,𝐵]

By the induction hypothesis, there exists a 𝑡 ∈ 𝑇𝐴,𝐵 with an
arrow 𝑖→ 𝑡.

[𝑖 ∈ 𝖨𝐶]
By definition, there exists an 𝑎 ∈ 𝖨𝐴 with an arrow 𝑖→ 𝑎, which
by the induction hypothesis has an arrow 𝑎→ 𝑡 ∈𝑇𝐴, so the
composite 𝑖→ 𝑎→ 𝑡 gives an arrow into 𝑇𝐴∪𝑇𝐵.

PROPOSITION 3.3.15. For each domain 𝐷∈ 𝖥𝗂𝗇𝖮𝖻𝗌∗, its canon- ⟨canon-inj-max⟩
ical unfolding 𝐼 : 𝖨 → 𝖥𝗂𝗇𝖲𝖾𝗍 has that for each terminal 𝑡 ∈ 𝖨, the
insertion 𝜄𝑡 :よ(𝐼(𝑡))→ colim(𝐼 ;よ) ≅𝐷 is a monomorphism, and
the image of the maximal element ofよ(𝐼(𝑡)) under 𝜄𝑡 is a maximal
element of 𝐷.
Proof. By induction on 𝐼. If 𝖨 is trivial, this is clear. Otherwise,
by ⟨strong-unfold⟩ the colimit 𝐼;よ is given as the pushout from
⟨rec-colim⟩. Let 𝑡 ∈ 𝖨 be terminal, w. l.o.g. 𝑡 ∈ 𝖨𝐴. Then, 𝜄𝑡 :
よ(𝐼(𝑡)) → colim(𝐼𝐴 ;よ) is a monomorphism by the inductive
hypothesis, and 𝜄𝐴 :colim(𝐼𝐴 ;よ)→ colim(𝐼;よ), the insertion into
the pushout, is clearly a monomorphism as computation of colimits
in 𝖥𝗂𝗇𝖮𝖻𝗌∗ by ⟨obs*-colim⟩ shows. Thus 𝜄𝑡 ;𝜄𝐴 is a monomorphism
as the composite of monomorphisms.

Furthermore, the canonical unfolding has that colim(𝐼𝐴 ;よ) ≅
↓(max𝐷\{𝑥}) and colim(𝐼𝐵 ;よ) ≅ ↓𝑥, so every terminal element
𝑡 (which is either in 𝖨𝐴 or 𝖨𝐵) has that the image of よ(𝐼(𝑡))
under 𝜄𝑡 hits a maximal element in ↓(max𝐷\{𝑥}) or in ↓𝑥 by the
inductive hypothesis. But ↓𝑥 only has one maximal element, which
is maximal in 𝐷 by construction of the canonical unfolding, and

121

every maximal element in ↓(max𝐷\{𝑥}) is necessarily maximal
in 𝐷. Thus the image under 𝜄𝑡 ; 𝜄𝐴,𝐵 is maximal in 𝐷.

PROPOSITION 3.3.16. Let (𝖢,𝐽) be split-pushout-cocomplete ⟨unfold-colim⟩
and 𝐼 : 𝖨 → 𝖥𝗂𝗇𝖲𝖾𝗍 an unfolding of a strong pushout diagram in
𝖥𝗂𝗇𝖮𝖻𝗌∗. Then 𝐼 ;↪;𝐽 has a colimit given as a split pushout like
in ⟨rec-colim⟩.

Proof. By structural induction on 𝐼. The case where 𝖨 ≅ 𝟏 is
trivial. Thus suppose that 𝐼𝐴,𝐵,𝐶 are unfoldings and the dia-
grams 𝐼𝐴,𝐵,𝐶 ;↪ ;𝐽 have colimits given as split pushouts like in
⟨rec-colim⟩. We can restrict our attention to canonical unfoldings
of 𝐴,𝐵,𝐶: let 𝐼𝐴 be an unfolding and 𝐼′𝐴 the canonical unfolding of
the colimit of 𝐼𝐴 ;よ in 𝖥𝗂𝗇𝖮𝖻𝗌∗. By ⟨pointwise-strong-finobs*⟩
and ⟨strong-unfold⟩, colim(𝐼𝐴 ;よ) ≅ colim(𝐼′𝐴 ;よ) in the presheaf
category, so by ⟨prshf-colim-absolute⟩, also colim(𝐼𝐴 ;↪ ;𝐽) ≅
colim(𝐼′𝐴 ;↪ ;𝐽).

Since 𝐼 is a recursive pushout by ⟨unfold-rec⟩, 𝐼;↪;𝐽 is a recursive
pushout as well. By ⟨rec-colim⟩, it suffices to show that the
pushout

colim(𝐼𝐴 ;↪ ;𝐽) colim(𝐼𝐶 ;↪ ;𝐽) colim(𝐼𝐵 ;↪ ;𝐽)𝑟 𝑠

with 𝑟= ⨉𝑖:𝑐→𝑎∈𝖨𝐴𝐽(↪(𝐼(𝑖)));𝜄𝑎 and 𝑠 = ⨉𝑗:𝑐→𝑏∈𝖨𝐵𝐽(↪(𝐼(𝑖)));
𝜄𝑏 exists. Since 𝖢 is split-pushout-cocomplete, we simply show that
𝑟 and 𝑠 are functional and that 𝑟 is a split monomorphism. This
also shows that the pushout is split since each colim(𝐼𝐴,𝐵,𝐶 ;↪;よ)
is a split pushout by the induction hypothesis.

⟨𝑟 and 𝑠 are functional⟩
We first show that each 𝜄𝑎 is functional, by structural induction
on 𝖨𝐴. If 𝖨𝐴 ≅𝟏, then 𝜄• = id, which is functional. Otherwise,

122

𝖨𝐴 consists of 𝖨𝐴′,𝐵′,𝐶′, and colim(𝐼𝐴 ;↪;𝐽) is the split pushout

colim(𝐼𝐴 ;↪ ;𝐽)

colim(𝐼𝐴′ ;↪ ;𝐽) colim(𝐼𝐵′ ;↪ ;𝐽)

colim(𝐼𝐶′ ;↪ ;𝐽)

𝜄𝐴′ 𝜄𝐵′

𝑟′ 𝑠′

with each insertion 𝜄𝑥 given by 𝜄𝑥 ; 𝜄𝑋 for 𝑥 ∈ 𝖨𝑋 and 𝑋 ∈
{𝐴′,𝐵′,𝐶′}. Then 𝜄𝑎′ is functional by hypothesis, 𝜄𝐴′ is func-
tional since it is a split pushout insertion, and so 𝜄𝑎 is functional
as the composite of functional morphisms.
Now we show that 𝑟= ⨉𝑖:𝑐→𝑎∈𝖨𝐴𝐽(↪(𝐼(𝑖))) ; 𝜄𝑎 is functional,
by structural induction on 𝖨𝐶. If 𝖨𝐶 ≅𝟏, then 𝑟 is just a com-
posite 𝐽(↪(𝐼(𝑖)));𝜄𝑎 for some 𝑎 ∈ 𝖨𝐴, which is functional since
it is the composite of 𝐽(↪(𝐼(𝑖))) with 𝐼(𝑖) a morphism in
𝖥𝗂𝗇𝖲𝖾𝗍, and 𝜄𝑎, which is functional as just shown. Otherwise,
decompose 𝖨𝐶 as 𝖨𝐴′,𝐵′,𝐶′, and then colim(𝐼𝐶 ;↪;𝐽) is the split
pushout of a diagram like the above. Then 𝑟 can by unique-
ness of mediators be written as (⨉𝑖:𝑎′→𝑎∈𝖨𝐴𝐽(↪(𝐼(𝑖))) ; 𝜄𝑎)+
(⨉𝑖:𝑏′→𝑎∈𝖨𝐴𝐽(↪(𝐼(𝑖))) ; 𝜄𝑎), which is a split pushout mediator
of by hypothesis functional morphisms, hence functional. The
argument for 𝑠 is analogous.

⟨𝑟 is a split mono⟩
We explicitly construct the retraction of 𝑟, as follows. Be-
cause the inclusion 𝖥𝗂𝗇𝖮𝖻𝗌∗ ↪ 𝖥𝗂𝗇𝖮𝖻𝗌 preserves colimits and
by ⟨strong-unfold⟩, the strong pushout diagram is sent by
the inclusion to a diagram in 𝖥𝗂𝗇𝖮𝖻𝗌 with the same colimit
as 𝐼 ;↪;よ𝖥𝗂𝗇𝖱𝖾𝗅 which under ⟨rec-colim⟩ reduces to that di-
agram. Because strong monomorphisms in 𝖥𝗂𝗇𝖮𝖻𝗌∗ are split
in 𝖥𝗂𝗇𝖮𝖻𝗌, the mediator 𝑅≔ ⨉𝑖:𝑐→𝑎よ𝖥𝗂𝗇𝖱𝖾𝗅(↪(𝐼(𝑖))) ; 𝜄𝑎 from
⟨rec-colim⟩ is a split monomorphism, so it has a retraction
𝑅′, which is a mediator ⨉よ(𝑟′𝑎) ; 𝜄𝑐 for all morphisms 𝑟′𝑎 ∈

123

𝖥𝗂𝗇𝖱𝖾𝗅(↪(𝐼(𝑎)),↪(𝐼(𝑐))) such that 𝜄𝑎 ; 𝑅′ =よ(𝑟′𝑎) ; 𝜄𝑐, by an
argument like in the proof of ⟨strong-unfold⟩.

For each 𝑐 ∈ 𝖨𝐶, by ⟨rec-term⟩, there is a terminal element
𝑡 ∈ 𝖨𝐶 with an arrow 𝑡𝑐 :𝑐→ 𝑡, and 𝜄𝑐 =よ(↪(𝑡𝑐)) ; 𝜄𝑡 since the
insertions form a cocone. Since 𝜄𝑡 ;𝑅 factors through some 𝜄𝑎
for 𝑎 ∈ 𝖨𝐴, which has an arrow 𝑡′𝑎 :𝑎→ 𝑡′ with 𝑡′ terminal in 𝖨𝐴,
it also factors through 𝜄𝑡′ by composition withよ(↪(𝑡′𝑎)). Thus
there exists an arrow 𝑓𝑡:𝑡→ 𝑡′ such that 𝜄𝑡;𝑅=よ(↪(𝐼(𝑓𝑡)));𝜄𝑡′,
so 𝜄𝑡 = 𝜄𝑡 ; 𝑅 ;𝑅′ =よ(↪(𝐼(𝑓𝑡))) ; 𝜄𝑡′ ; 𝑅′. By ⟨canon-inj-max⟩,
𝜄𝑡 is an injective function on atoms, and then よ(↪(𝐼(𝑓𝑡)))
must also be injective, and on the image of よ(↪(𝐼(𝑓𝑡))), the
morphism 𝜄𝑡′ ; 𝑅′ also needs to be an injective function on
atoms. Now the image of よ(↪(𝐼(𝑡′))) under 𝜄𝑡′ ;𝑅′ needs to
be a consistent set of atoms of colim(𝐼𝐶 ;↪ ;よ), and it is
necessarily a superset of the atoms in よ(↪(𝐼(𝑡))). By maxi-
mality ofよ(↪(𝐼(𝑡))), it follows that the image ofよ(↪(𝐼(𝑡′)))
under 𝜄𝑡′ ;𝑅′ is precisely よ(↪(𝐼(𝑡))), so combined with injec-
tivity we have that 𝜄𝑡′ ;𝑅′ factors through 𝜄𝑡 via the transpose
よ(↪(𝐼(𝑓𝑡))T). Note that ↪(𝐼(𝑓𝑡)) ;↪(𝐼(𝑓𝑡))T = id.

Now let 𝑟′ ≔ ⨉𝐽(𝑟′𝑎) ; 𝜄𝖢𝑐 . Because the 𝑟′𝑎 were obtained from
a mediator like in the definition of unfoldings, an argument
like in the proof of ⟨rec-colim⟩ shows that the mediator 𝑟′
exists. Then, for all 𝑐 ∈ 𝖨𝐶, we have 𝜄𝖢𝑐 ;𝑟 ;𝑟′ =𝐽(↪(𝐼(𝑡𝑐 ;𝑓𝑡))) ;
𝜄𝖢𝑡′ ; 𝑟

′ for 𝑡𝑐 : 𝑐→ 𝑡 with 𝑡 terminal, and then this is 𝐽(↪(𝐼(𝑡𝑐 ;
𝑓𝑡)));𝐽(↪(𝐼(𝑓𝑡))T);𝜄𝖢𝑡 =𝐽(↪(𝐼(𝑡𝑐)));𝐽(↪(𝐼𝑓𝑡);↪(𝐼𝑓𝑡)

T);𝜄𝖢𝑡 =
𝐽(↪(𝐼(𝑡𝑐))) ; id ; 𝜄𝖢𝑡 = 𝐽(↪(𝐼(𝑡𝑐))) ; 𝜄𝖢𝑡 = 𝜄𝖢𝑐 , so 𝑟 ; 𝑟′ = id and 𝑟
is a split monomorphism.

Now we can finally put all the pieces together.

THEOREM 2. The category 𝖥𝗂𝗇𝖮𝖻𝗌 together with the inclusion ⟨finobs-free⟩
𝖥𝗂𝗇𝖱𝖾𝗅 ↪ 𝖥𝗂𝗇𝖮𝖻𝗌 is the free split-pushout-cocomplete category. That
is, it is split-pushout-cocomplete, and for any category that is

124

split-pushout-cocomplete, there exists a unique-up-to-isomorphism
split-pushout-cocontinuous functor from 𝖥𝗂𝗇𝖮𝖻𝗌 into it.
Proof. By ⟨split-strong⟩, every split pushout diagram in 𝖥𝗂𝗇𝖮𝖻𝗌
factors through the inclusion 𝖥𝗂𝗇𝖮𝖻𝗌∗ ↪ 𝖥𝗂𝗇𝖮𝖻𝗌 and 𝖥𝗂𝗇𝖮𝖻𝗌∗ is
finitely cocomplete, with the inclusion preserving colimits, so
𝖥𝗂𝗇𝖮𝖻𝗌 is split-pushout-cocomplete. Thus let (𝖢,𝐽) split-pushout-
cocomplete. We show that ⟨unfold-finobs⟩ the pointwise colimit
of every diagram 𝐼 ;↪;よ such that 𝐼 is an unfolding of a strong
pushout is in 𝖥𝗂𝗇𝖮𝖻𝗌, and that ⟨finobs-unfold⟩ every presheaf in
𝖥𝗂𝗇𝖮𝖻𝗌 is the pointwise colimit of a diagram 𝐼 ;↪ ;よ for 𝐼 the
unfolding of a strong pushout. Thus 𝖥𝗂𝗇𝖮𝖻𝗌 is precisely the full cat-
egory of presheaves 𝐹∈ [𝖥𝗂𝗇𝖱𝖾𝗅op,𝖲𝖾𝗍] such that 𝐹≅ colim(𝐼;↪;よ)
for 𝐼 some unfolding. By ⟨prshf-free⟩, it follows that 𝖥𝗂𝗇𝖮𝖻𝗌 is the
free cocompletion of 𝖥𝗂𝗇𝖱𝖾𝗅 for diagrams 𝐼;↪ with 𝐼 the unfolding
of a strong pushout in 𝖥𝗂𝗇𝖮𝖻𝗌. By ⟨unfold-colim⟩, 𝖢 has colimits
of all diagrams 𝐼;↪;𝐽 with 𝐼 an unfolding. By ⟨prshf-free⟩, there
then exists a functor 𝐹:𝖥𝗂𝗇𝖮𝖻𝗌 → 𝖢, unique up to isomorphism
with the property that 𝐹 preserves colimits of diagrams 𝐼 ;↪;よ
for 𝐼 an unfolding and よ ; 𝐹 ≅ 𝐽. Finally, we show that 𝐹 pre-
serves split pushouts, and then that every split-pushout-preserving
functor 𝐹′ :𝖥𝗂𝗇𝖮𝖻𝗌 → 𝖢 with よ ;𝐹′ ≅ 𝐽 preserves colimits of dia-
grams 𝐼;↪;よ with 𝐼 an unfolding, so that 𝐹′ ≅𝐹 by the defining
property of 𝐹. It then follows that there exists a unique-up-to-
isomorphism split-pushout-cocontinuous functor 𝖥𝗂𝗇𝖮𝖻𝗌 → 𝖢, as
claimed.
⟨unfold-finobs⟩

Let 𝐼 be the unfolding of a strong pushout. The colimit of
𝐼 ;よ in 𝖥𝗂𝗇𝖮𝖻𝗌∗ can be computed pointwise by the remark
after ⟨strong-unfold⟩. Because the functor [𝖥𝗂𝗇𝖲𝖾𝗍op,𝖲𝖾𝗍] ↪
[𝖥𝗂𝗇𝖱𝖾𝗅op,𝖲𝖾𝗍] given by colim(−;↪;よ) as well as its restriction
𝖥𝗂𝗇𝖮𝖻𝗌∗ ↪ 𝖥𝗂𝗇𝖮𝖻𝗌 preserve colimits, it follows that colim(𝐼;↪;
よ) is both the colimit in the presheaf category [𝖥𝗂𝗇𝖱𝖾𝗅op,𝖲𝖾𝗍]
as well as in 𝖥𝗂𝗇𝖮𝖻𝗌, hence computed pointwise.

125

⟨finobs-unfold⟩
Let 𝐷∈ 𝖥𝗂𝗇𝖮𝖻𝗌. Since 𝐷∈ 𝖥𝗂𝗇𝖮𝖻𝗌∗, by ⟨finobs*-strong⟩, it is
a strong pushout, and by ⟨strong-unfold⟩, its diagram has an
unfolding 𝐼 with colim(𝐼;よ) ≅𝐷. Then, because the inclusion
𝖥𝗂𝗇𝖮𝖻𝗌∗ ↪ 𝖥𝗂𝗇𝖮𝖻𝗌 preserves colimits, colim(𝐼 ;↪ ;よ) ≅ 𝐷 ∈
𝖥𝗂𝗇𝖮𝖻𝗌.

⟨𝐹 preserves split pushouts⟩
For split pushout diagrams of the form よ(↪(𝑁)) for 𝑁 ∈
𝖥𝗂𝗇𝖲𝖾𝗍, the functor 𝐹 preserves the colimit trivially. Thus let

𝑃

𝐴 𝐵

𝐶

𝜄𝐴 𝜄𝐵

𝑟 𝑠

be a split pushout in 𝖥𝗂𝗇𝖮𝖻𝗌. Using ⟨split-strong⟩ as well as
⟨strong-unfold⟩, there is an unfolding 𝐼 with colim(𝐼;↪;よ) ≅
𝑃 so that we can rewrite the above diagram as

colim(𝐼 ;↪;よ)

colim(𝐼𝐴 ;↪ ;よ) colim(𝐼𝐵 ;↪ ;よ)

colim(𝐼𝐶 ;↪ ;よ)

𝜄𝐴 𝜄𝐵

𝑟 𝑠

with colim(𝐼𝐴,𝐵,𝐶;↪;よ) ≅𝐴,𝐵,𝐶 and 𝑟= ⨉𝑖:𝑐→𝑎よ(↪𝐼(𝑖));
𝜄𝑎 and 𝑠 = ⨉𝑗:𝑐→𝑏よ(↪(𝐼(𝑗))) ; 𝜄𝑏.

We show that 𝐹(colim(𝐼 ;↪;よ)) together with 𝐹(𝜄𝐴,𝐵) is the
split pushout of

126

𝐹(colim(𝐼𝐴 ;↪ ;よ)) 𝐹(colim(𝐼𝐶 ;↪ ;よ)) 𝐹(colim(𝐼𝐵 ;↪ ;よ))
𝐹(𝑟) 𝐹(𝑠)

as required. By preservation of colimits of unfoldings, 𝐹 maps
colim(𝐼;↪;よ) onto colim(𝐼;↪;よ;𝐹) ≅ colim(𝐼;↪;𝐽), which
by ⟨unfold-colim⟩ is given by the split pushout of

colim(𝐼𝐴 ;↪ ;𝐽) colim(𝐼𝐶 ;↪ ;𝐽) colim(𝐼𝐵 ;↪ ;𝐽)𝑟′ 𝑠′

with 𝑟′ = ⨉𝑖:𝑐→𝑎𝐽(↪(𝐼(𝑖)));𝜄𝖢𝑎 and 𝑠′ = ⨉𝑗:𝑐→𝑏𝐽(↪(𝐼(𝑗)));𝜄𝖢𝑏 ,
together with insertions 𝜄𝖢𝑥 ; 𝜄𝖢𝑋. Since よ ; 𝐹 ≅ 𝐽, this is the
pushout of

colim(𝐼𝐴 ;↪ ;よ ;𝐹) colim(𝐼𝐶 ;↪ ;よ ;𝐹) colim(𝐼𝐵 ;↪ ;よ ;𝐹)𝑟′ 𝑠′

where we have 𝑟′ = ⨉𝑖:𝑐→𝑎𝐹(よ(↪(𝐼(𝑖)))) ; 𝜄𝖢𝑎 as well as 𝑠′ =
⨉𝑗:𝑐→𝑏𝐹(よ(↪(𝐼(𝑗)))) ; 𝜄𝖢𝑏 . Preservation of colimits of unfold-
ings also implies that insertions and composites, hence media-
tors, are mapped appropriately, so that 𝐹(𝑟) = 𝑟′ and 𝐹(𝑠) = 𝑠′

since 𝜄𝖢𝑐 ; 𝑟′ = 𝐹(よ(↪(𝐼(𝑖)))) ; 𝜄𝖢𝑎 = 𝐹(𝜄𝑐 ; 𝑟) = 𝐹(𝜄𝑐) ; 𝐹(𝑟) =
𝜄𝖢𝑐 ;𝐹(𝑟) and mediators are unique. Again by preservation of
colimits of unfoldings, this is the pushout of

𝐹(colim(𝐼𝐴 ;↪ ;よ)) 𝐹(colim(𝐼𝐶 ;↪ ;よ)) 𝐹(colim(𝐼𝐵 ;↪ ;よ))
𝐹(𝑟) 𝐹(𝑠)

where we have that 𝜄𝖢𝑎 ; 𝐹(𝜄𝐴) = 𝐹(𝜄𝑎 ; 𝜄𝐴) is the insertion of
よ(↪(𝐼𝐴(𝑎))) into colim(𝐼;↪;よ;𝐹) by preservation of colimits
of unfoldings, just like 𝜄𝖢𝑎 ; 𝜄𝖢𝐴, so 𝐹(𝜄𝐴) = 𝜄𝖢𝐴 by uniqueness of
the colimit mediator from colim(𝐼𝐴 ;↪;よ;𝐹), and analogously
for 𝜄𝐵, as claimed.

⟨𝐹′ preserves colimits 𝐼 ;↪;よ for 𝐼 unfolding⟩
By structural induction on 𝖨. If 𝖨 ≅𝟏, this is trivial. Otherwise,
by ⟨unfold-colim⟩, we have that colim(𝐼 ;↪ ;よ) is given by
the split pushout

127

colim(𝐼𝐴 ;↪ ;よ) colim(𝐼𝐶 ;↪ ;よ) colim(𝐼𝐵 ;↪ ;よ)𝑟 𝑠

for 𝑟= ⨉𝑖:𝑐→𝑎よ(↪(𝐼(𝑖))) ; 𝜄𝑎 and 𝑠 = ⨉𝑗:𝑐→𝑏よ(↪(𝐼(𝑗))) ; 𝜄𝑏
together with the insertions 𝜄𝑥 ;𝜄𝑋 for 𝑥 ∈ 𝖨𝑋 for 𝑋∈ {𝐴,𝐵,𝐶}.
The induction hypothesis is that𝐹′ preserves colimits of 𝐼𝐴,𝐵,𝐶;
↪ ;よ. Then 𝐹′(colim(𝐼 ;↪;よ)) is the split pushout of

𝐹′(colim(𝐼𝐴 ;↪ ;よ)) 𝐹′(colim(𝐼𝐶 ;↪ ;よ)) 𝐹′(colim(𝐼𝐵 ;↪ ;よ))
𝐹′(𝑟) 𝐹′(𝑠)

by preservation of split pushouts. By the induction hypothesis,
this is also the pushout of

colim(𝐼𝐴 ;↪ ;よ ;𝐹′) colim(𝐼𝐶 ;↪ ;よ ;𝐹′) colim(𝐼𝐵; ↪ ;よ ;𝐹′)
𝐹′(𝑟) 𝐹′(𝑠)

which since each 𝐼𝐴,𝐵,𝐶 ;↪;よ ;𝐹′ is a recursive pushout with
𝐹′(𝑟) = ⨉𝑖:𝑐→𝑎𝐹′(よ(↪(𝐼(𝑖)))) ; 𝜄𝖢𝑎 and analogously for 𝑠 is
the colimit of 𝐼 ;↪ ;よ ; 𝐹 by ⟨rec-colim⟩, with insertions
𝜄𝖢𝑥 ; 𝜄𝖢𝑋 = 𝐹′(𝜄𝑥) ; 𝐹′(𝜄𝑋) = 𝐹′(𝜄𝑥 ; 𝜄𝑋) by preservation of the
insertions 𝜄𝑥 by the induction hypothesis and preservation of
𝜄𝑋 by preservation of split pushouts.

128

4 TYPE THEORIES FOR DYNAMICAL
SYSTEMS

We finally turn to the derivation of the type theories we set out to
develop. Because 𝖮𝖻𝗌∗ is locally cartesian closed, we could actually
write down an internal dependent type theory for it. However, this
is not necessary for us in order to create a type theory that is
complete for the finitary fragment of 𝖮𝖻𝗌, and not sufficient for
the infinitary case. Since the aim is to show how the derivation of
a type theory can be done in principle, we will instead keep it as
simple as possible.

The building blocks of any type theory are terms and types, as
well as judgments stating that a term (usually containing a free
variable of a given type) has a certain type. The valid judgments
are generated via derivation rules. We will also use kinds, which
are types of types, to model multiple categories within a single
theory. This way, we can mimick the construction of categories as
free categories on top of another category in the type theory.

DEFINITION: TYPE THEORY. Let 𝑉 be a set, called the set of
variables. A judgment is an expression of one of the four following
forms:
• 𝐾:▢, where 𝐾 is a kind;

129

• 𝐴:𝐾, where 𝐾 is a kind and 𝐴 a type;
• 𝑥 :𝐴 ⊢𝑁:𝐵:𝐾, where 𝑥 ∈𝑉, 𝐾 is a kind, 𝐴 and 𝐵 are types,
and 𝑁 is a term;

• 𝑥 :𝐴 ⊢𝑁=𝑀:𝐵 :𝐾, where 𝑥 ∈𝑉, 𝐾 is a kind, 𝐴 and 𝐵 are
types, and 𝑁 and 𝑀 are terms.

A type theory is a set of judgments closed under a set of derivation
rules.

Categories will be turned into kinds, and objects in the category
become types of the corresponding kind. Judgments 𝑥:𝐴 ⊢𝑁:𝐵:𝐾
where 𝐴 and 𝐵 are types representing objects and 𝑁 is a term
should correspond to morphisms in the category from the object
represented by 𝐴 to the object represented by 𝐵. Judgments
𝑥 :𝐴 ⊢𝑁=𝑀:𝐵:𝐾 indicate that the morphisms represented by
𝑥 :𝐴 ⊢𝑁:𝐵:𝐾 and 𝑥 :𝐴 ⊢𝑀:𝐵:𝐾 are equal. This is all we need
to capture the structure of a category in a type theory.

Note that the definition leaves unspecified what a kind, a type, or
a term is. This is because the sets of these things are generated
inductively via the derivation rules. A judgment 𝑥 :𝐴 ⊢𝑁:𝐵 :𝐾
in the conclusion of a derivation rule thus actually expresses two
things: that 𝑁 in context 𝑥 :𝐴 is a well-formed term, and that it
is of type 𝐵. Since derivation rules are in turn defined in terms of
judgments, this means that the formal definitions of judgments and
type theories should be understood as being mutually recursive.

Note also that in contrast to common type theories, our contexts
(the left-hand side of a judgment) contain exactly one variable.
This is to keep interpretations simple, and it suffices because
multiple variables can still be modelled using product types. In fact,
product types are necessary for this, but some of our categories do
not even have products. We are not trying to model a particular
type theory categorically, but we are trying to do the reverse, so we

130

shall tailor the type theories to fit the demands of the categories
we want to describe.

For a judgment 𝑥 :𝐴 ⊢𝑁:𝐵:𝐾, the term 𝑁 will usually contain
occurrences of the variable 𝑥. We define substitution 𝑁[𝑀⁄𝑥]
where 𝑀 is another term as the term 𝑁 where 𝑥 is replaced with
𝑀. However, we may only replace free occurrences of 𝑥 in 𝑁.
There may be subterms of 𝑁 of the form 𝑥.𝑁′, indicating that 𝑥
is bound by the binder 𝑥. if it occurs in 𝑁′, and then 𝑥 inside 𝑁′

must not be replaced with 𝑀. By the principle of 𝛼-equivalence,
we do not distinguish between terms that only differ in the names
of bound variables. We will not specify the details of bound and
free variables and substitution and rely on the reader’s intuition to
handle these correctly; a proper discussion of this for the 𝜆-calculus
is found in [26, Sections 1.3–1.5].

Derivation rules will be added step by step in this chapter. They
are of the form

𝛤1 𝛤2 … 𝛤𝑛
𝛥1 𝛥2 … 𝛥𝑛

stating that if all judgments 𝛤𝑖 are included in a type theory,
then all judgments 𝛥𝑖 are included in it, too. The judgments in a
derivation rule usually contain variables for terms and types and
are thus not technically judgments but merely stand for judgments
of the given shapes.° °Variables, including term and type

variables, occurring in judgments
are implicitly universally quanti-
fied. With this, the rules ⟨tt-var⟩
and ⟨tt-subs⟩ presented soon al-
low changing the names of free vari-
ables in judgments as well, which
we will often do implicitly.

We often simplify notation using the following conventions. We
drop the left-hand side of a judgment along with the turnstile ⊢ if
the variable declared in it is common to all judgments and not ex-
plicitly used, and we drop the upper part of a derivation rule if it is
empty. We may leave out antecedents that are obviously necessary
to soundly interpret a rule and rely on the reader’s benevolence in
using the rules. We usually leave out kind annotations in type and
equality judgments if it is obvious what kind we are talking about,
and we may similarly leave out type annotations from equality
judgments.

131

There are a few derivation rules we will assume any type theory to
be closed under. First, there are rules corresponding to the axioms
of category theory:

⟨tt-var⟩ 𝑥 :𝐴 ⊢ 𝑥 :𝐴 ⟨tt-subs⟩ 𝑥 :𝐴 ⊢𝑁:𝐵 𝑦 :𝐵 ⊢𝑀:𝐶
𝑥 :𝐴 ⊢𝑀[𝑁⁄𝑦] :𝐶

For equality, we need

⟨tt-eq-refl⟩ 𝑁=𝑁 ⟨tt-tt-eq-sym⟩ 𝑁=𝑀
𝑀=𝑁

⟨tt-eq-trans⟩ 𝑁=𝑀 𝑀=𝐿
𝑁=𝐿

as well as a rule

⟨tt-eq-subs⟩ 𝑥 :𝐴 ⊢𝑁=𝑁′ :𝐵 𝑦 :𝐵 ⊢𝑀=𝑀′ :𝐶
𝑥 :𝐴 ⊢𝑀[𝑁⁄𝑦] =𝑀′[𝑁′ ⁄𝑦] :𝐶

stating that we can replace the free variable in a term with equal
terms and obtain equal terms. Now, we are ready to look at the
categorical interpretation of type theories, which we should discuss
before giving the type theories to make it clear where the rules
are coming from. Then, we will first give a sound and complete
type theory for finite observation domains along with relevant
subcategories of 𝖥𝗂𝗇𝖮𝖻𝗌, before giving a sound and incomplete, but
more expressive, type theory that can deal with all computable
functions.

4.1 CATEGORICAL SEMANTICS OF TYPE THEORIES

We first define how to interpret a type theory in a category. Note
that a type theory may speak about multiple categories, so we will
just pick one of them. For a type theory 𝛩 and 𝐾:▢ ∈𝛩, write
𝛬𝐾 for the language of 𝐾, defined as {𝐴:𝐾 ∣ 𝐴:𝐾∈𝛩𝐾}∪{𝑥:𝐴 ⊢
𝑁:𝐵:𝐾∈𝛩 ∣ 𝐴:𝐾,𝐵:𝐾∈𝛩}, and then define 𝛩𝐾 as 𝛬𝐾∪{𝑥:𝐴 ⊢
𝑁=𝑀:𝐵 :𝐾 ∈ 𝛩 ∣ 𝑥 :𝐴 ⊢ 𝑁:𝐵 :𝐾 ∈ 𝛬𝐾,𝑥 :𝐴 ⊢𝑀:𝐵 :𝐾 ∈ 𝛬𝐾},
containing all judgments of 𝛩 that are about 𝐾.

132

DEFINITION: INTERPRETATION. Let 𝛩 be a type theory and
𝐾:▢ ∈𝛩. An interpretation of 𝛩𝐾 is given by a category 𝖢 along
with an assignment 〚 ⋅〛𝖢 :𝛬𝐾 → 𝖢 such that
⟨intp-obj⟩ 〚𝐴〛𝖢 ∈ 𝖢 for 𝐴:𝐾∈𝛬𝐾,
⟨intp-arr⟩ 〚𝑥:𝐴 ⊢𝑁:𝐵〛𝖢 ∈ 𝖢(〚𝐴〛𝖢,〚𝐵〛𝖢) for 𝑥:𝐴 ⊢𝑁:𝐵∈𝛬𝐾,
⟨intp-id⟩ 〚𝑥 :𝐴 ⊢ 𝑥 :𝐴〛𝖢 = id〚𝐴〛𝖢 for 𝑥 :𝐴 ⊢ 𝑥 :𝐴 ∈𝛬𝐾,

⟨intp-comp⟩ 〚𝑥:𝐴 ⊢𝑁:𝐵〛𝖢;〚𝑥:𝐵 ⊢𝑀:𝐶〛𝖢 = 〚𝑥:𝐴 ⊢𝑀[𝑁⁄𝑥]:𝐶〛𝖢
for 𝑥 :𝐴 ⊢𝑁:𝐵∈𝛬𝐾 and 𝑥 :𝐵 ⊢𝑀:𝐶∈𝛬𝐾.

DEFINITION: CATEGORY OF INTERPRETATIONS. Let 𝛩
be a type theory and 𝐾 : ▢ ∈ 𝛩. The category of interpreta-
tions 𝖨(𝛬𝐾) of 𝛬𝐾 has as objects all pairs (𝖢,〚 ⋅〛𝖢) where 𝖢 is a
small category and 〚 ⋅〛𝖢 : 𝛬𝐾 → 𝖢 an interpretation of 𝛬𝐾 in 𝖢.
Morphisms from (𝖢,〚 ⋅〛𝖢) to (𝖣,〚 ⋅〛𝖣) are given by all functors
𝐹:𝖢 → 𝖣 such that
⟨intp-iso⟩ 𝐹(〚𝐴〛𝖢) ≅ 〚𝐴〛𝖣 for all 𝐴:𝐾∈𝛬𝐾, and
⟨intp-nat⟩ 𝐹(〚𝑥 :𝐴 ⊢𝑁:𝐵〛𝖢) ;≅𝐵 =≅𝐴 ; 〚𝑥 :𝐴 ⊢𝑁:𝐵〛𝖣 for all

𝑥 :𝐴 ⊢𝑁:𝐵∈𝛬𝐾, where ≅𝐶 :𝐹(〚𝐶〛𝖢)→ 〚𝐶〛𝖣 is the
isomorphism from ⟨intp-iso⟩.

Note that interpretations behave like functors from a category
built out of 𝛬𝐾, and morphisms of interpretations are required to
commute with those functor-like interpretations ‘‘naturally’’.

PROPOSITION 4.1.1. Let 𝛩 be a type theory and 𝐾:▢ ∈ 𝛩.
Then 𝖨(𝛬𝐾), with composition defined as the usual composition
of functors, is a category.
Proof. The composite of functors is a functor, and preservation of
interpretations along composition of 𝐹:(𝖢,〚 ⋅〛𝖢)→ (𝖣,〚 ⋅〛𝖣) and
𝐺: (𝖣,〚 ⋅〛𝖣)→ (𝖤,〚 ⋅〛𝖤) is seen in as folllows.
⟨intp-iso⟩

Since ≅𝖣
𝐴 :𝐹(〚𝐴〛𝖢)→ 〚𝐴〛𝖣 is an isomorphism by ⟨intp-iso⟩ of

𝐹, then so is 𝐺(≅𝖣
𝐴) :𝐺(𝐹(〚𝐴〛𝖢))→𝐺(〚𝐴〛𝖣) as functors pre-

133

serve isomorphisms, and then so is 𝐺(≅𝖣
𝐴);≅

𝖤
𝐴 :(𝐹;𝐺)(〚𝐴〛𝖢)→

〚𝐴〛𝖤 by ⟨intp-iso⟩ of 𝐺 and because the composite of isomor-
phisms is an isomorphism.

⟨intp-nat⟩
We have a diagram

𝐺(𝐹(〚𝐴〛𝖢)) 𝐺(〚𝐴〛𝖣) 〚𝐴〛𝖤

𝐺(𝐹(〚𝐵〛𝖢)) 𝐺(〚𝐵〛𝖣) 〚𝐵〛𝖤

𝐺(𝐹(〚𝑥:𝐴⊢𝑁:𝐵〛𝖢))

𝐺(≅𝖣
𝐴) ≅𝖤

𝐴

𝐺(〚𝑥:𝐴⊢𝑁:𝐵〛𝖣) 〚𝑥:𝐴⊢𝑁:𝐵〛𝖤

𝐺(≅𝖣
𝐵) ≅𝖤

𝐵

where the left side is the image of ⟨intp-nat⟩ of 𝐹 under 𝐺,
which commutes since functors preserve commuting squares,
and the right side is ⟨intp-nat⟩ of 𝐺, so the whole rectangle
commutes.

The identity functor trivially preserves interpretations and is the
neutral element for composition of functors.

Our aim is to prove soundness and completeness for certain type
theories and classes of interpretations. We can now define what
that means precisely.

DEFINITION: SOUNDNESS AND COMPLETENESS. Let 𝛩
be a type theory, 𝐾:▢ ∈𝛩, and 𝖨 ↪ 𝖨(𝛬𝐾) a full subcategory of
the category of interpretations of 𝛬𝐾. Then 𝛩𝐾 is called sound for
𝖨 if for all (𝖢,〚 ⋅〛𝖢) ∈ 𝖨 and 𝑥 :𝐴 ⊢𝑁=𝑀:𝐵∈𝛩𝐾, we have that
〚𝑥 :𝐴 ⊢ 𝑁 :𝐵〛𝖢 = 〚𝑥 :𝐴 ⊢ 𝑀:𝐵〛𝖢 in 𝖢(〚𝐴〛𝖢,〚𝐵〛𝖢). Conversely,
𝛩𝐾 is called complete for 𝖨 if for each pair 𝑥 :𝐴 ⊢𝑁:𝐵∈𝛬𝐾 and
𝑥 :𝐴 ⊢𝑀:𝐵 ∈ 𝛬𝐾 with 〚𝑥 :𝐴 ⊢𝑁:𝐵〛𝖢 = 〚𝑥 :𝐴 ⊢𝑀:𝐵〛𝖢 for all
(𝖢,〚 ⋅〛𝖢) ∈ 𝖨, we have 𝑥 :𝐴 ⊢𝑁=𝑀:𝐵∈𝛩𝐾.

We can easily define a canonical subcategory of the category of
interpretations for each theory for which that theory is both sound

134

and complete, so the equalities between morphisms constructed
by the theory are precisely those that are provable (i.e. contained)
in the theory.

DEFINITION: MODELS. Let 𝛩 be a type theory and 𝐾:▢ ∈𝛩.
A model of 𝛩𝐾 is an object (𝖢,〚 ⋅〛𝖢) ∈ 𝖨(𝛬𝐾) such that for each
𝑥:𝐴 ⊢𝑁=𝑀:𝐵∈𝛩𝐾, we have 〚𝑥:𝐴 ⊢𝑁:𝐵〛𝖢 = 〚𝑥:𝐴 ⊢𝑀:𝐵〛𝖢.
The category of models 𝖬(𝛩𝐾) is the full subcategory of 𝖨(𝛬𝐾)
containing precisely the models of 𝛩𝐾.

Clearly 𝛩𝐾 is sound for 𝖬(𝛩𝐾). To show completeness, we first
need to construct a generic model of the theory, which we call its
syntactic category.

DEFINITION: SYNTACTIC CATEGORY. Let 𝛩 be a type the-
ory and 𝐾:▢ ∈𝛩. The syntactic category Syn(𝛩𝐾) of 𝛩𝐾 is de-
fined as follows. Its objects are types 𝐴 for 𝐴:𝐾∈𝛬𝐾, and its mor-
phisms from 𝐴 to 𝐵 with 𝐴:𝐾,𝐵:𝐾∈𝛬𝐾 are equivalence classes
of judgments 𝑥 :𝐴 ⊢ 𝑁 :𝐵 ∈ 𝛬𝐾 under the equivalence relation
‘‘(𝑥 :𝐴 ⊢𝑁:𝐵) ∼ (𝑥 :𝐴 ⊢𝑀:𝐵) iff 𝑥:𝐴 ⊢𝑁=𝑀:𝐵∈𝛩𝐾’’. Com-
position is defined as [𝑥:𝐴 ⊢𝑁:𝐵];[𝑥:𝐵 ⊢𝑀:𝐶] = [𝑥:𝐴 ⊢𝑀[𝑁⁄𝑥]],
with the identity on 𝐴 given by [𝑥 :𝐴 ⊢ 𝑥 :𝐴].

PROPOSITION 4.1.2. Let 𝛩 be a type theory and 𝐾:▢ ∈ 𝛩.
The syntactic category Syn(𝛩𝐾) is a category.
Proof. First, note that ∼ is really an equivalence relation, due
to 𝛩 being closed under the rules ⟨tt-eq-refl⟩, ⟨tt-eq-sym⟩, and
⟨tt-eq-trans⟩. Then, composition is well-defined since if 𝑥 :𝐴 ⊢
𝑁 :𝐵 ∈ 𝛩𝐾 and 𝑥 :𝐵 ⊢ 𝑀 :𝐶 ∈ 𝛩𝐾, then by ⟨tt-subs⟩, 𝑥 :𝐴 ⊢
𝑀[𝑁 ⁄ 𝑥] : 𝐶 ∈ 𝛩𝐾, and if [𝑥 : 𝐴 ⊢ 𝑁 :𝐵] = [𝑥 : 𝐴 ⊢ 𝑀′ : 𝐵] and
[𝑥 :𝐵 ⊢𝑁:𝐶] = [𝑥 :𝐵 ⊢𝑁′ :𝐶], then 𝑥 :𝐴 ⊢𝑁=𝑁′ :𝐵 ∈ 𝛩𝐾 and
𝑥 :𝐵 ⊢ 𝑀 = 𝑀′ : 𝐶 ∈ 𝛩𝐾, so 𝑥 :𝐴 ⊢ 𝑀[𝑁⁄𝑥] = 𝑀′[𝑁′ ⁄𝑥] :𝐶 by
⟨tt-eq-subs⟩ and thus [𝑥 :𝐴 ⊢𝑀[𝑁⁄𝑥]] = [𝑥 :𝐴 ⊢𝑀′[𝑁′ ⁄𝑥]] by
definition, i.e. composition is defined independently of the choice
of representatives.

135

Composition is associative due to the purely syntactic fact that
(𝐿[𝑀⁄𝑥])[𝑁 ⁄ 𝑥] yields the same expression as 𝐿[𝑀[𝑁 ⁄ 𝑥] ⁄ 𝑥].
Now for each object 𝐴, we have 𝐴 :𝐾 ∈ 𝛩𝐾, thus by ⟨tt-var⟩,
𝑥:𝐴 ⊢ 𝑥:𝐴 ∈𝛩𝐾. This is the identity with respect to composition
since 𝑁[𝑥⁄𝑥] is just 𝑁.

PROPOSITION 4.1.3. Let 𝛩 be a type theory and 𝐾:▢ ∈ 𝛩. ⟨syn-mod⟩
The syntactic category Syn(𝛩𝐾) has an interpretation 〚 ⋅〛Syn of
𝛬𝐾 given by 〚𝐴〛Syn = 𝐴 and 〚𝑥 :𝐴 ⊢ 𝑁 :𝐵〛Syn = [𝑥 :𝐴 ⊢ 𝑁 :𝐵],
and this interpretation makes (Syn(𝛩𝐾),〚 ⋅〛Syn) a model of 𝛩𝐾.
Proof.
⟨〚 ⋅〛Syn is an interpretation⟩

⟨intp-obj⟩
For each 𝐴:𝐾∈𝛬𝐾, we have that 〚𝐴〛Syn =𝐴 is an object
in Syn(𝛩𝐾).

⟨intp-arr⟩
If 𝑥 :𝐴 ⊢ 𝑁 :𝐵 ∈ 𝛬𝐾, then by definition of 𝛬𝐾 we have
𝐴 :𝐾,𝐵 :𝐾 ∈ 𝛩𝐾, so 𝐴 and 𝐵 are objects in Syn(𝛩𝐾),
and thus [𝑥 :𝐴 ⊢𝑁:𝐵] is a morphism from 〚𝐴〛Syn =𝐴 to
〚𝐵〛Syn =𝐵.

⟨intp-id⟩
Clearly 〚𝑥 :𝐴 ⊢ 𝑥 :𝐴〛Syn = [𝑥 :𝐴 ⊢ 𝑥 :𝐴] = id𝐴 = id〚𝐴〛Syn.

⟨intp-comp⟩
We have 〚𝑥:𝐴 ⊢𝑁:𝐵〛Syn ;〚𝑥:𝐵 ⊢𝑀:𝐶〛Syn = [𝑥:𝐴 ⊢𝑁:𝐵];
[𝑥:𝐵 ⊢𝑀:𝐶] = [𝑥:𝐴 ⊢𝑀[𝑁⁄𝑥]:𝐶] = 〚𝑥:𝐴 ⊢𝑀[𝑁⁄𝑥]:𝐶〛Syn.

⟨(Syn(𝛩𝐾),〚 ⋅〛Syn) is a model of 𝛩𝐾 ⟩

If 𝑥 :𝐴 ⊢𝑁=𝑀:𝐵∈𝛩Syn
𝐾 , then by definition of 𝛩𝐾, we have

𝑥:𝐴 ⊢𝑁:𝐵∈𝛩𝐾 and 𝑥:𝐴 ⊢𝑀:𝐵∈𝛩𝐾, and by definition of
∼ for Syn(𝛩𝐾), then [𝑥 :𝐴 ⊢𝑁:𝐵] = [𝑥 :𝐴 ⊢𝑀:𝐵].

136

PROPOSITION 4.1.4. Let 𝛩 be a type theory and 𝐾:▢ ∈ 𝛩.
Then 𝛩𝐾 is complete for its category of models 𝖬(𝛩𝐾).
Proof. Suppose that for two judgments 𝑥 :𝐴 ⊢ 𝑁 :𝐵 ∈ 𝛬𝐾 and
𝑥 :𝐴 ⊢𝑀:𝐵 ∈ 𝛬𝐾 we have 〚𝑥 :𝐴 ⊢𝑁:𝐵〛𝖢 = 〚𝑥 :𝐴 ⊢𝑀:𝐵〛𝖢 for
all (𝖢,〚 ⋅〛𝖢) ∈ 𝖬(𝛩𝐾). By ⟨syn-mod⟩, Syn(𝛩𝐾) ∈ 𝖬(𝛩𝐾), so in
particular, 〚𝑥 :𝐴 ⊢𝑁:𝐵〛Syn = 〚𝑥 :𝐴 ⊢𝑀:𝐵〛Syn. By definition of
Syn(𝛩𝐾), then [𝑥 :𝐴 ⊢ 𝑁 :𝐵] = [𝑥 :𝐴 ⊢𝑀:𝐵], which is the case
only if 𝑥 :𝐴 ⊢𝑁=𝑀:𝐵∈𝛩𝐾.

In fact, there is an even closer relationship between a type theory,
its category of models, and its syntactic category, encapsulated by
the following.

PROPOSITION 4.1.5. Let 𝛩 be a type theory and 𝐾:▢ ∈ 𝛩. ⟨syn-free⟩
Then Syn(𝛩𝐾) is an initial object in 𝖬(𝛩𝐾). An initial object in a 2-category ℂ

of categories and (some) functors is
given by a category 𝟢 ∈ℂ such that
for each category 𝖢 ∈ℂ there exists
a functor 𝐹∈ℂ(𝟢,𝖢) and for any
functor 𝐹′ ∈ℂ(𝟢,𝖢) there exists a
natural isomorphism 𝐹≅𝐹′.

Initial objects in such 2-categories
are unique up to equivalence of
categories: if 𝟢,𝟢′ are initial ob-
jects, then there are functors 𝐹∈
ℂ(𝟢,𝟢′) and 𝐹′ ∈ℂ(𝟢′,𝟢), and then
𝐹;𝐹′ ≅ id𝟢 and 𝐹′ ;𝐹 ≅ id𝟢′ since
all functors in ℂ(𝟢,𝟢) and ℂ(𝟢′,𝟢′)
are naturally isomorphic to each
other, which includes the identity
functors and composites 𝐹;𝐹′ since
ℂ is a category.

Proof. Let (𝖢,〚 ⋅〛𝖢) ∈ 𝖬(𝛩𝐾). There is an obvious functor 𝐹 :
(Syn(𝛩𝐾),〚 ⋅〛Syn) → (𝖢,〚 ⋅〛𝖢) given by 𝐹(𝐴) = 〚𝐴〛𝖢 and 𝐹([𝑥 :
𝐴 ⊢𝑁:𝐵]) = 〚𝑥 :𝐴 ⊢𝑁:𝐵〛𝖢.
⟨𝐹 is a morphism in 𝖬(𝛩𝐾)⟩

⟨well-defined⟩
By ⟨intp-obj⟩ and ⟨intp-arr⟩, and since if [𝑥 : 𝐴 ⊢ 𝑁 :
𝐵] = [𝑥 : 𝐴 ⊢ 𝑁′ : 𝐵], then 𝑥 :𝐴 ⊢ 𝑁 = 𝑀 ∈ 𝛩𝐾 and thus
〚𝑥 :𝐴 ⊢𝑁:𝐵〛𝖢 = 〚𝑥 :𝐴 ⊢𝑁′ :𝐵〛𝖢 as 𝖢 is a model.

⟨ functorial⟩
It preserves identities and composites since 𝐹([𝑥 :𝐴 ⊢ 𝑥 :
𝐴]) = 〚𝑥 :𝐴 ⊢ 𝑥 :𝐴〛𝖢 = id〚𝑥〛𝖢 by ⟨intp-id⟩, and 𝐹([𝑥 :𝐴 ⊢
𝑁:𝐵];[𝑥:𝐵 ⊢𝑀:𝐶]) = 〚𝑥:𝐴 ⊢𝑁:𝐵〛𝖢 ;〚𝑥:𝐵 ⊢𝑀:𝐶〛𝖢 = 〚𝑥:
𝐴 ⊢𝑀[𝑁⁄𝑥]:𝐶〛𝖢 =𝐹([𝑥:𝐴 ⊢𝑀[𝑁⁄𝑥]:𝐶]) by ⟨intp-comp⟩.

⟨commutes with interpretation⟩
By construction, 𝐹(〚𝐴〛Syn) = 𝐹(𝐴) = 〚𝐴〛𝖢, so the iden-
tity constitutes an isomorphism 𝐹(𝐴)≅ 〚𝐴〛𝖢, from which

137

⟨intp-nat⟩ trivially follows since 𝐹(〚𝑥 :𝐴 ⊢ 𝑁 :𝐵〛Syn) =
𝐹([𝑥 :𝐴 ⊢𝑁:𝐵]) = 〚𝑥 :𝐴 ⊢𝑁:𝐵〛𝖢.

⟨𝐹 is unique⟩
Let𝐹′:(Syn(𝛩𝐾),〚 ⋅〛Syn)→ (𝖢,〚 ⋅〛𝖢). Then necessarily𝐹′(𝐴) =
𝐹′(〚𝐴〛Syn) ≅ 〚𝐴〛𝖢 = 𝐹(𝐴) by ⟨intp-iso⟩ of 𝐹′, with an iso-
morphism ≅𝐴 :𝐹′(𝐴)→𝐹(𝐴) for all 𝐴∈ Syn(𝛩𝐾), and for all
[𝑥:𝐴 ⊢𝑁:𝐵] ∈ Syn(𝛩𝐾)(𝐴,𝐵), we have 𝐹′([𝑥:𝐴 ⊢𝑁:𝐵]);≅𝐵 =
𝐹′(〚𝑥:𝐴 ⊢𝑁:𝐵〛Syn);≅𝐵 =≅𝐴 ;〚𝑥:𝐴 ⊢𝑁:𝐵〛𝖢 =≅𝐴 ;𝐹([𝑥:𝐴 ⊢
𝑁:𝐵]), by ⟨intp-nat⟩ of 𝐹′, so the isomorphism is natural.

We have thus basically characterised the syntactic category of a
theory 𝛩𝐾 via a free construction: it is the free model of 𝛩𝐾. This
will be useful for proving a strong correspondence between the
categories we have constructed and the type theories we are using
to describe them. We will do so by proving that Syn(𝛩𝐾) satisfies
the universal property of the category we are trying to describe,
as established in Section 3.3.° It then follows that Syn(𝛩𝐾) is °A bit more elegant would be an

argument to show that the cate-
gory of models of the theory is
equivalent to the category of cate-
gories of which our category is the
‘‘free’’ category, which implies that
their initial objects are equivalent.
However, this is out of reach with
our setup, because e.g. models of
a type theory with coproduct

types need not have finite coprod-
ucts, but they only have to contain
a (not even necessarily full) sub-
category restricted to which there
are finite coproducts, and then we
would have had to prove e.g. that
𝖥𝗂𝗇𝖲𝖾𝗍 is the free category that has
a subcategory with all coproducts.

equivalent to that category. Such an equivalence has many useful
consequences.

DEFINITION: STRONG SOUNDNESS AND COMPLETENESS.
Let 𝛩 be a type theory and 𝐾:▢ ∈𝛩. Then 𝛩𝐾 is called strongly
sound and complete for a category 𝖢 if Syn(𝛩𝐾) ≅ 𝖢.

PROPOSITION 4.1.6. Let 𝛩 be a type theory, 𝐾:▢ ∈𝛩, and ⟨syn-equiv⟩
suppose 𝛩𝐾 is strongly sound and complete for a category 𝖢. Let
𝐹:Syn(𝛩𝐾)→ 𝖢 denote the equivalence. Then 〚 ⋅〛𝖢 :𝛬𝖢

𝐾 → 𝖢 given
by 𝐴:𝐾↦𝐹(𝐴), 𝑥:𝐴 ⊢𝑁:𝐵↦𝐹([𝑥:𝐴 ⊢𝑁:𝐵]) has the following
properties:
⟨syn-obj-sound⟩ for each 𝐴 :𝐾 ∈ 𝛬𝐾, we have that 〚𝐴〛𝖢 is an

object in 𝖢,
⟨syn-obj-compl⟩ conversely, for each object 𝑐 ∈ 𝖢, there is an

𝐴:𝐾∈𝛬𝐾 such that 〚𝐴〛𝖢 ≅ 𝑐;

138

⟨syn-arr-sound⟩ for each 𝑥:𝐴 ⊢𝑁:𝐵∈𝛬𝐾, we have that 〚𝑥:𝐴 ⊢
𝑁:𝐵〛𝖢 is a morphism in 𝖢 from 〚𝐴〛𝖢 to 〚𝐵〛𝖢,

⟨syn-arr-compl⟩ conversely, for each morphism 𝑓 in 𝖢 from 〚𝐴〛𝖢
to 〚𝐵〛𝖢, there is an 𝑥:𝐴 ⊢𝑁:𝐵∈𝛬𝐾 such that
〚𝑥 :𝐴 ⊢𝑁:𝐵〛𝖢 =𝑓;

⟨syn-eq-sound⟩ for each 𝑥 :𝐴 ⊢ 𝑁 = 𝑀:𝐵 ∈ 𝛩𝐾, we have that
〚𝑥 :𝐴 ⊢𝑁:𝐵〛𝖢 = 〚𝑥 :𝐴 ⊢𝑀:𝐵〛𝖢, and

⟨syn-eq-compl⟩ conversely, if for some pair 𝑥 :𝐴 ⊢ 𝑁 :𝐵 ∈ 𝛬𝐾
and 𝑥:𝐴 ⊢𝑀:𝐵∈𝛬𝐾 we have 〚𝑥:𝐴 ⊢𝑁:𝐵〛𝖢 =
〚𝑥 :𝐴 ⊢𝑀:𝐵〛𝖢, then 𝑥 :𝐴 ⊢𝑁=𝑀:𝐵∈𝛩𝐾.

Proof.
⟨syn-obj-sound⟩

Because 𝐹 is a functor.
⟨syn-obj-compl⟩

Since 𝐹 is an equivalence, it is essentially surjective, so for
each 𝑐 ∈ 𝖢 there is an 𝐴∈ Syn(𝛩𝐾) with 𝑐 ≅𝐹(𝐴) = 〚𝐴〛𝖢.

⟨syn-arr-sound⟩
Because 𝐹 is a functor and by construction of Syn(𝛩𝐾).

⟨syn-arr-compl⟩
Since 𝐹 is an equivalence, it is full, so for each morphism
𝑓 in 𝖢 from 〚𝐴〛𝖢 = 𝐹(𝐴) to 〚𝐵〛𝖢 = 𝐹(𝐵) there is an [𝑥 :
𝐴 ⊢𝑁:𝐵] ∈ Syn(𝛩𝐾)(𝐴,𝐵), i. e. 𝑥 :𝐴 ⊢𝑁:𝐵 ∈ 𝛬𝐾, such that
〚𝑥 :𝐴 ⊢𝑁:𝐵〛𝖢 =𝐹([𝑥 :𝐴 ⊢𝑁:𝐵]) = 𝑓.

⟨syn-eq-sound⟩
If 𝑥 :𝐴 ⊢𝑁=𝑀:𝐵 ∈𝛩𝐾, then [𝑥 :𝐴 ⊢𝑁:𝐵] = [𝑥 :𝐴 ⊢𝑀:𝐵]
by construction of Syn(𝛩𝐾).

⟨syn-eq-compl⟩
Since 𝐹 is an equivalence, it is faithful, so if 𝐹([𝑥:𝐴 ⊢𝑁:𝐵]) =
〚𝑥 :𝐴 ⊢ 𝑁 :𝐵〛𝖢 = 〚𝑥 :𝐴 ⊢ 𝑀 :𝐵〛𝖢 = 𝐹([𝑥 :𝐴 ⊢ 𝑀 :𝐵]), then

139

[𝑥:𝐴 ⊢𝑁:𝐵] = [𝑥:𝐴 ⊢𝑀:𝐵], hence 𝑥:𝐴 ⊢𝑁=𝑀:𝐵∈𝛩𝐾 by
definition of Syn(𝛩𝐾).

Thus, a category 𝖢 equivalent to Syn(𝛩𝐾) is ‘‘essentially’’ com-
pletely described by 𝛩𝐾: every object can be constructed in the
type theory (up to isomorphism), every morphism between con-
structible objects can be constructed, and every equality between
constructible morphisms between constructible objects can be
shown. The converse holds, too, making 𝛩𝐾 an arguably perfect
match as the type theory of 𝖢. Note that in particular, ⟨syn-equiv⟩
implies that 𝛩𝐾 is sound and complete for the one-object subcat-
egory of 𝖨(𝛬𝐾) given by (𝖢,〚 ⋅〛𝖢).

4.2 A COMPLETE TYPE THEORY FOR FINITE DOMAINS

We construct the type theory in several stages. First, we create a
type theory for 𝖥𝗂𝗇𝖲𝖾𝗍, then for 𝖥𝗂𝗇𝖱𝖾𝗅, and finally for 𝖥𝗂𝗇𝖮𝖻𝗌. We
let 𝛩 denote the smallest type theory which is closed under the
rules presented in this section.

TYPE THEORY I: 𝖥𝗂𝗇𝖲𝖾𝗍
As shown in ⟨finset-free⟩, 𝖥𝗂𝗇𝖲𝖾𝗍 is the free cocompletion of the
trivial category under finite coproducts. First, we introduce a new
kind and make sure that the trivial object is included.

⟨tt-set-kind⟩ SET :▢ ⟨tt-unit-form⟩ Unit :SET

For a category to have finite coproducts is equivalent to having
an initial object and binary coproducts. This formulation is better
suited for type-theoretic syntax. The initial object becomes an
Empty type. The universal property states that there should be an
arrow to every object, and any two such arrows should be equal.
With the material from Section 4.1, it should be clear how the

140

following rules capture precisely this property; we will give slightly
more detail for the case of coproducts.

⟨tt-empty-form⟩ Empty :SET

⟨tt-empty-elim⟩ 𝑥 :Empty⊢ bot 𝑥 :𝐴 ⟨tt-empty-eta⟩ 𝑥 :Empty⊢ bot 𝑥=𝑁:𝐴

Then, we just need to describe the universal property of a coprod-
uct. First, we include a type formation rule that says that if we
have two types, we can create their coproduct or Sum type.

⟨tt-sum-form⟩ 𝐴 :SET 𝐵:SET
Sum 𝐴 𝐵:SET

Next, we specify how to create terms of that type, namely via the
insertions into the coproduct.

⟨tt-sum-intro⟩ 𝑥 :𝐴 ⊢ inl 𝑥 :Sum 𝐴 𝐵 𝑥:𝐵 ⊢ inr 𝑥 :Sum 𝐴 𝐵

A term elimination rule is given by the coproduct mediators.

⟨tt-sum-elim⟩ 𝑦 :𝐴 ⊢𝑁:𝐶 𝑦 :𝐵 ⊢𝑀:𝐶
𝑥 :Sum 𝐴 𝐵⊢ case 𝑥 𝑦.𝑁 𝑦.𝑀:𝐶

Coproduct mediators commute with cocones, which is expressed
by 𝛽-reduction rules.

⟨tt-sum-beta⟩ case (inl 𝑥) 𝑦.𝑁 𝑦.𝑀=𝑁[𝑥⁄𝑦] case (inr 𝑥) 𝑦.𝑁 𝑦.𝑀=𝑀[𝑥⁄𝑦]

Finally, mediators are unique, leading to an 𝜂-conversion rule.° °The rule expresses that (𝜄1 ; 𝑓)+
(𝜄2 ;𝑓) = 𝑓, which is true by unique-
ness of mediators, and conversely
it implies uniqueness: if 𝑚,𝑚′ have
𝜄1,2 ;𝑚= 𝜄1,2 ;𝑚′, then by this rule
𝑚= (𝜄1 ;𝑚)+(𝜄2 ;𝑚) = (𝜄1 ;𝑚′)+
(𝜄2 ;𝑚′) =𝑚′.

⟨tt-sum-eta⟩ case 𝑥 (𝑦.𝑁[inl 𝑦⁄𝑧]) (𝑦.𝑁[inr 𝑦⁄𝑧]) =𝑁[𝑥⁄𝑧]

We now show soundness and completeness for this theory to illus-
trate the general approach. Intuitively, we want to say that the
rules above say precisely that a category has an object 𝟏, an initial
object, and binary coproducts; and 𝖥𝗂𝗇𝖲𝖾𝗍 is the free such category.
We do this in detail for 𝖥𝗂𝗇𝖲𝖾𝗍 to check that the setup works since
this is the simplest type theory we discuss.

141

Let us formulate more precisely what universal property 𝖥𝗂𝗇𝖲𝖾𝗍
satisfies. Call a pair (𝖢,𝐼) finitely cocartesian if 𝖢 is a small° °The category 𝖥𝗂𝗇𝖲𝖾𝗍 is not small,

because there is no set of all fi-
nite sets. To avoid size issues, we
prefer dealing with 2-categories of
small categories only. This is not a
problem because every category is
equivalent to its skeleton, which
is obtained as the quotient under
isomorphisms, i. e. picking a single
set of each cardinality in the case of
𝖥𝗂𝗇𝖲𝖾𝗍. The proof of ⟨finset-free⟩
straightforwardly applies to the
skeleton as well.

category with finite coproducts and 𝐼 : 𝟏 → 𝖢 a functor. Call a
functor 𝐹 : (𝖢,𝐼) → (𝖣,𝐽) finitely cocartesian if 𝐹 is a functor
from 𝖢 to 𝖣 that preserves finite coproducts and 𝐼;𝐹≅ 𝐽 naturally.
Then, ⟨finset-free⟩ implies that the skeleton of the category
𝖥𝗂𝗇𝖲𝖾𝗍 together with the functor selecting 𝟏 is an initial object in
the category of small finitely cocartesian categories with finitely
cocartesian functors. It then suffices to show that Syn(𝛩SET) is
also an initial object in that category to prove that it is equivalent
to the skeleton of 𝖥𝗂𝗇𝖲𝖾𝗍, and by extension to 𝖥𝗂𝗇𝖲𝖾𝗍.

PROPOSITION 4.2.1. The theory 𝛩SET is strongly sound and ⟨set-sound-complete⟩
complete for the category 𝖥𝗂𝗇𝖲𝖾𝗍.
Proof. We show that Syn(𝛩SET) together with the functor 𝐼 :
𝟏 → Syn(𝛩SET) with 𝐼(•) = Unit is the free finitely cocartesian
category. It follows that Syn(𝛩SET) and 𝖥𝗂𝗇𝖲𝖾𝗍 are equivalent by
⟨finset-free⟩.
⟨Syn(𝛩SET) has finite coproducts⟩

We show that Syn(𝛩SET) has both an initial object and binary
coproducts, which implies that it has all finite coproducts.
For the initial object, we have that Empty ∈ Syn(𝛩SET) by
⟨tt-empty-form⟩. Let 𝐴 ∈ Syn(𝛩SET). Then, using the rule
⟨tt-empty-elim⟩, there is an arrow [𝑥 : Empty ⊢ bot 𝑥 : 𝐴] :
Empty→𝐴 in Syn(𝛩SET). Now if [𝑥 :Empty⊢𝑁:𝐴] :Empty→𝐴
is an arrow, then 𝑥:Empty⊢𝑁:𝐴∈𝛩SET, so by ⟨tt-empty-eta⟩,
we have 𝑥:Empty⊢ bot 𝑥=𝑁:𝐴, hence [𝑥:Empty⊢ bot 𝑥:𝐴] =
[𝑥 :Empty⊢𝑁:𝐴], as required.
Now let 𝐴,𝐵 ∈ Syn(𝛩SET), i. e. 𝐴 : SET,𝐵 : SET ∈ 𝛩SET. Then,
by ⟨tt-sum-form⟩, we have Sum 𝐴 𝐵∈𝛩SET, hence Sum 𝐴 𝐵∈
Syn(𝛩SET). We show that this is a coproduct of 𝐴 and 𝐵.
First, by ⟨tt-sum-intro⟩, there are morphisms [𝑥 :𝐴 ⊢ inl 𝑥 :
Sum 𝐴 𝐵] :𝐴 → Sum 𝐴 𝐵 and [𝑥 : 𝐵 ⊢ inr 𝑥 : Sum 𝐴 𝐵] :𝐵 →
Sum 𝐴 𝐵. Now suppose 𝐶 has morphisms [𝑦 :𝐴 ⊢𝑁:𝐶]:𝐴→𝐶

142

and [𝑦 : 𝐵 ⊢ 𝑀 :𝐶] : 𝐵 → 𝐶. Then, 𝑦 : 𝐴 ⊢ 𝑁 :𝐶 ∈ 𝛩SET and
𝑦 : 𝐵 ⊢ 𝑀 : 𝐶 ∈ 𝛩SET, so by ⟨tt-sum-elim⟩, 𝑥 : Sum 𝐴 𝐵 ⊢
case 𝑥 𝑦.𝑁 𝑦.𝑀:𝐶∈𝛩SET, i. e [𝑥:Sum 𝐴 𝐵⊢ case 𝑥 𝑦.𝑁 𝑦.𝑀:
𝐶] :Sum 𝐴 𝐵→𝐶. For commutativity, we have [𝑥 :𝐴 ⊢ inl 𝑥 :
Sum 𝐴 𝐵];[𝑥:Sum 𝐴 𝐵⊢ case 𝑥 𝑦.𝑁 𝑦.𝑀:𝐶], which is equal to
[𝑥:𝐴 ⊢ case (inl 𝑥) 𝑦.𝑁 𝑦.𝑀:𝐶] = [𝑥:𝐴 ⊢𝑁[𝑥⁄𝑦]:𝐶] = [𝑦:𝐴 ⊢
𝑁 :𝐶] by definition of substitution in Syn(𝛩SET) and due to
⟨tt-sum-beta⟩, with inr analogous. For uniqueness, suppose
[𝑥:Sum 𝐴 𝐵⊢𝑋:𝐶] is a mediator, i. e. [𝑦:𝐴 ⊢𝑋[inl 𝑦⁄𝑥]:𝐶] =
[𝑦:𝐴 ⊢𝑁:𝐶] and [𝑦:𝐵 ⊢𝑋[inr 𝑦⁄𝑥]:𝐶] = [𝑦:𝐴 ⊢𝑀:𝐶]. Then,
𝑦:𝐴 ⊢𝑋[inl 𝑦⁄𝑥] =𝑁:𝐶∈𝛩SET and 𝑦:𝐵 ⊢𝑋[inr 𝑦⁄𝑥] =𝑀:
𝐶∈𝛩SET. We then have 𝑥:Sum 𝐴 𝐵⊢𝑋= case 𝑥 (𝑦.𝑋[inl 𝑦⁄
𝑥]) (𝑦.𝑋[inr 𝑦 ⁄𝑥]) = case 𝑥 𝑦.𝑁 𝑦.𝑀 :𝐶 by ⟨tt-sum-eta⟩
and ⟨tt-eq-subs⟩.

Now let (𝖢,𝐽) be finitely cocartesian. We want to use ⟨syn-free⟩ to
obtain a functor Syn(𝛩SET)→ 𝖢. To this end, we need to show that
𝖢 is a model of 𝛩SET. We equip it with the following interpretation:

〚Unit〛= 𝐼(•) 〚Empty〛=𝟎 〚Sum 𝐴 𝐵〛= 〚𝐴〛+ 〚𝐵〛

〚𝑥 :𝐴 ⊢ 𝑥 :𝐴〛= id〚𝐴〛 〚𝑥 :Empty⊢ bot 𝑥 :𝐴〛=𝟎〚𝐴〛
〚𝑥 :𝐴 ⊢ inl 𝑥 :Sum 𝐴 𝐵〛= 𝜄1 : 〚𝐴〛→ 〚𝐴〛+ 〚𝐵〛 〚𝑥 :𝐵 ⊢ inr 𝑥 :Sum 𝐴 𝐵〛= 𝜄2 : 〚𝐵〛→ 〚𝐴〛+ 〚𝐵〛
〚𝑥 :Sum 𝐴 𝐵⊢ case 𝑥 𝑦.𝑁 𝑦.𝑀:𝐶〛= 〚𝑦 :𝐴 ⊢𝑁:𝐶〛+ 〚𝑦 :𝐵 ⊢𝑀:𝐶〛 : 〚𝐴〛+ 〚𝐵〛→ 〚𝐶〛

⟨(𝖢,〚 ⋅〛) ∈ 𝖬(𝛩SET)⟩
⟨〚 ⋅〛 is an interpretation⟩

⟨intp-obj⟩
Every 𝐴: SET ∈ 𝛬SET has 𝐴= Unit, 𝐴= Empty, or 𝐴=
Sum 𝐵 𝐵′ with 𝐵:SET,𝐵′ :SET∈𝛬SET. Furthermore 𝐼(•)
is an object in 𝖢 and 𝖢 has an initial object as well as
all binary coproducts.

⟨intp-arr⟩
Every 𝑥 :𝐴 ⊢𝑁:𝐵 ∈ 𝛬SET is a consequence of the rule
⟨tt-var⟩, ⟨tt-subs⟩, ⟨tt-empty-elim⟩, ⟨tt-sum-intro⟩,

143

or ⟨tt-sum-elim⟩. We prove by structural induction on
derivations that in each case, the assigned morphism
exists in 𝖢(〚𝐴〛,〚𝐵〛).
⟨tt-var⟩

If 𝑥 :𝐴 ⊢ 𝑥 :𝐴 ∈ 𝛬SET as a result of this rule, then
𝐴:SET∈𝛬SET since the antecedent must be satisfied.
Thus 〚𝐴〛 is an object in 𝖢 by ⟨intp-obj⟩, and it has
an identity morphism by definition of categories.

⟨tt-subs⟩
It can be shown by induction that every judgment
that is a consequence of ⟨tt-subs⟩ can be derived
using the other rules, i. e. the rule itself is derivable
by structural induction, as is usually the case in type
theory [32, A.2.2].

⟨tt-empty-elim⟩
Since Empty is interpreted as the initial object, every
object has an initial morphism from 𝟎.

⟨tt-sum-intro⟩
If 𝑥 :𝐴 ⊢ inl 𝑥 :Sum 𝐴 𝐵∈𝛬SET, then 𝐴,Sum 𝐴 𝐵∈
𝛬SET by definition of 𝛬SET. These objects are inter-
preted as 〚𝐴〛 and 〚𝐴〛+ 〚𝐵〛, and so the coproduct
insertion exists. The case for inr is analogous.

⟨tt-sum-elim⟩
If 𝑥:Sum 𝐴 𝐵⊢ case 𝑥 (𝑦.𝑁) (𝑦.𝑀):𝐶 ∈𝛬SET, then
𝑦 : 𝐴 ⊢ 𝑁 :𝐶 ∈ 𝛬SET and 𝑦 : 𝐵 ⊢ 𝑀 :𝐶 ∈ 𝛬SET. By
the inductive hypothesis, these are interpreted as
morphisms 〚𝐴〛→ 〚𝐶〛 and 〚𝐵〛→ 〚𝐶〛, thus there
exists a mediator from the coproduct 〚𝐴〛+ 〚𝐵〛 to
〚𝐶〛.

⟨intp-id⟩
By construction.

144

⟨intp-comp⟩
If 𝑥 :𝐴 ⊢ 𝑁:𝐵 ∈ 𝛬SET and 𝑥 :𝐵 ⊢𝑀:𝐶 ∈ 𝛬SET, then a
tedious double structural induction over the derivations
of both judgments shows that the composite of their
interpretations is the interpretation of 𝑥:𝐴 ⊢𝑀[𝑁⁄𝑥]:𝐶.

⟨〚 ⋅〛 makes 𝖢 a model⟩
We use structural induction on the derivations of equality
judgments to show that if 𝑥 :𝐴 ⊢ 𝑁=𝑀:𝐵 ∈ 𝛩SET, then
〚𝑥 : 𝐴 ⊢ 𝑁 :𝐵〛 = 〚𝑥 : 𝐴 ⊢ 𝑀 :𝐵〛 in 𝖢. For ⟨tt-eq-refl⟩,
⟨tt-eq-sym⟩, and ⟨tt-eq-trans⟩, this is clear since equality
of morphisms is reflexive, symmetric, and transitive. For
⟨tt-eq-subs⟩, this follows from ⟨intp-comp⟩ and the fact
that equality of morphisms is preserved by composition.
⟨tt-empty-eta⟩

If 𝑥 : Empty ⊢ bot 𝑥 = 𝑁 :𝐴 ∈ 𝛩SET, then 〚𝑥 : Empty ⊢
𝑁 :𝐴〛 ∈ 𝖢(𝟎,〚𝐴〛), hence 〚𝑥 : Empty ⊢ 𝑁 :𝐴〛 = 𝟎〚𝐴〛 =
〚𝑥 :Empty ⊢ bot 𝑥 :𝐴〛 by the universal property of the
initial object.

⟨tt-sum-beta⟩
If 𝑥:𝐴 ⊢ case (inl 𝑥) 𝑦.𝑁 𝑦.𝑀=𝑁:𝐶∈𝛩SET, then we
calculate 〚𝑥 :𝐴 ⊢ case (inl 𝑥) 𝑦.𝑁 𝑦.𝑀:𝐶〛= 〚𝑥 :𝐴 ⊢
inl 𝑥:Sum 𝐴 𝐵〛 ; 〚𝑥:Sum 𝐴 𝐵⊢ case 𝑥 𝑦.𝑁 𝑦.𝑀:𝐶〛=
𝜄1 ; (〚𝑦 : 𝐴 ⊢ 𝑁 :𝐶〛+ 〚𝑦 : 𝐵 ⊢ 𝑀 :𝐶〛) using ⟨tt-subs⟩,
which is equal to 〚𝑦:𝐴 ⊢𝑁:𝐶〛= 〚𝑥:𝐴 ⊢𝑁[𝑥⁄𝑦]:𝐴〛 by
the mediating property of the coproduct, and the case
for inl is analogous.

⟨tt-sum-eta⟩
If 𝑥:Sum𝐴𝐵⊢ case 𝑥 (𝑦.inl 𝑦) (𝑦.inr 𝑦) = 𝑥:Sum𝐴𝐵∈
𝛩SET, then 〚𝑥:Sum 𝐴 𝐵⊢ case 𝑥 (𝑦.inl 𝑦) (𝑦.inr 𝑦)〛=
〚𝑦 :𝐴 ⊢ inl 𝑦 : Sum 𝐴 𝐵〛+ 〚𝑦 :𝐵 ⊢ inr 𝑦 : Sum 𝐴 𝐵〛 =
𝜄1+𝜄2, which is equal to id〚𝐴〛+〚𝐵〛 = id〚Sum 𝐴 𝐵〛 = 〚𝑥 :

145

Sum 𝐴 𝐵 ⊢ 𝑥 : Sum 𝐴 𝐵〛 by uniqueness of coproduct
mediators.

Thus by ⟨syn-free⟩, there exists a functor 𝐹 : Syn(𝛩SET) → 𝖢,
unique up to isomorphism such that 𝐹 commutes with the inter-
pretation. We show that this functor has 𝐼 ;𝐹≅ 𝐽 and preserves
finite coproducts, and that conversely every such functor com-
mutes with the interpretation. It immediately follows that there is
a unique-up-to-isomorphism functor Syn(𝛩SET) → 𝖢 commuting
with 𝐼 and 𝐽 and preserving finite coproducts, as required.
⟨𝐼 ;𝐹≅ 𝐽 and 𝐹 preserves finite coproducts⟩

We have 𝐹(𝐼(•)) = 𝐹(Unit) = 𝐹(〚Unit〛Syn) ≅ 〚Unit〛 = 𝐽(•)
by ⟨intp-iso⟩, and since the category 𝟏 is trivial, 𝐼 ;𝐹 ≅ 𝐽
naturally.
For the preservation of finite coproducts, it suffices to show
the preservation of the initial object and of binary coproducts.
For the initial object, this is clear by construction.
Now𝐹(𝐴+𝐵)=𝐹(Sum𝐴𝐵)=𝐹(〚Sum𝐴𝐵〛Syn) ≅ 〚Sum𝐴𝐵〛=
〚𝐴〛+〚𝐵〛≅𝐹(〚𝐴〛Syn)+𝐹([𝐵〛Syn) =𝐹(𝐴)+𝐹(𝐵) by property
⟨intp-iso⟩, and 𝐹(𝜄1);≅Sum 𝐴 𝐵 =𝐹([𝑥:𝐴 ⊢ inl 𝑥:Sum 𝐴 𝐵]);
≅Sum 𝐴 𝐵 =𝐹(〚𝑥:𝐴 ⊢ inl 𝑥:Sum 𝐴 𝐵〛Syn);≅Sum 𝐴 𝐵 =≅𝐴 ;〚𝑥:
𝐴 ⊢ inl 𝑥 :Sum 𝐴 𝐵〛=≅𝐴 ; 𝜄1 by ⟨intp-nat⟩, and analogously
for 𝜄2, so because ≅𝐴 ; 𝜄1 and ≅𝐵 ; 𝜄2 make 〚𝐴〛+ 〚𝐵〛 a coprod-
uct of 𝐹(𝐴) and 𝐹(𝐵), it follows that 𝐹(𝜄1) and 𝐹(𝜄2) make
𝐹(𝐴+𝐵) a coproduct of these, too.

Now let 𝐹′ be a finite-coproduct-preserving functor Syn(𝛩SET)→ 𝖢
with 𝐼 ;𝐹′ ≅𝐽.
⟨𝐹′ commutes with interpretations⟩

⟨intp-iso⟩
We have that𝐹′(〚Unit〛Syn) =𝐹′(Unit) =𝐹′(𝐼(•)) ≅ 𝐽(•) =
〚Unit〛 by commutativity, that 𝐹′(〚Empty〛 = 𝐹′(Empty) ≅
𝟎 = 〚Empty〛 by preservation of initial objects, and that
𝐹′(〚Sum 𝐴 𝐵〛Syn) = 𝐹′(Sum 𝐴 𝐵) ≅ 𝐹′(𝐴+𝐵) ≅ 𝐹′(𝐴)+

146

𝐹′(𝐵) ≅ 〚𝐴〛+ 〚𝐵〛 = 〚𝐴+𝐵〛 inductively by preservation
of coproducts, the last isomorphism being the mediator
𝜄𝐹′(𝐴) ;≅𝐴+𝜄𝐹′(𝐵) ;≅𝐵.

⟨intp-nat⟩
We have

𝐹′(〚Empty〛Syn) 𝟎

𝐹′(〚𝐴〛Syn) 〚𝐴〛

≅

𝐹′(〚𝑥:Empty⊢bot 𝑥:𝐴〛Syn) 𝟎〚𝐴〛

≅

for the initial morphisms by their uniqueness property, and

𝐹′(〚𝐴〛Syn) 𝐹′(〚𝐴〛Syn) 〚𝐴〛

𝐹′(〚Sum 𝐴 𝐵〛Syn) 𝐹′(〚𝐴〛Syn)+𝐹′(〚𝐵〛Syn) 〚𝐴〛+ 〚𝐵〛

id

𝐹′(〚𝑥:𝐴⊢inl 𝑥:Sum 𝐴 𝐵〛Syn)

≅

𝜄𝐹′(〚𝐴〛Syn) 𝜄〚𝐴〛
≅ ≅

for insertions, with the left side commuting due to preser-
vation of coproduct cocones, and the right side due to the
mediating property of the isomorphism as defined above.
For 𝑥 :Sum 𝐴 𝐵⊢ case 𝑥 (𝑦.𝑁) (𝑦.𝑀) :𝐶, we have

𝐹′(〚Sum 𝐴 𝐵〛Syn) 𝐹′(〚𝐴〛Syn)+𝐹′(〚𝐵〛Syn) 〚𝐴〛+ 〚𝐵〛

𝐹′(〚𝐶〛Syn) 𝐹′(〚𝐶〛Syn) 〚𝐶〛

≅

𝐹′(〚𝑥:Sum 𝐴 𝐵⊢case 𝑥 (𝑦.𝑁) (𝑦.𝑀):𝐶〛)

≅

𝐹′(〚𝑦:𝐴⊢𝑁:𝐶〛Syn)+𝐹′(〚𝑦:𝐵⊢𝑀:𝐶〛Syn) 〚𝑦:𝐴⊢𝑁:𝐶〛+〚𝑦:𝐵⊢𝑀:𝐶〛

id ≅

147

where the left side commutes since the top isomorphism
is the mediator of the insertions into the coproduct in the
middle, which exists because 𝐹′(〚Sum 𝐴 𝐵〛Syn) is a coprod-
uct of the same objects by preservation of coproducts, and
then commutativity follows because the composite arrows
satisfy the same mediating property, and the argument for
the right side is similar, except that we also need to apply
⟨intp-nat⟩ for 𝐴, 𝐵, and 𝐶 by induction.

That was a lot of entirely trivial work, but we had to do it to verify
that the categorical semantics we defined generally work. In the
future, we shall omit these proofs, and instead trust our ability to
read off from the type theory the universal property its syntactic
category satisfies. This is of course an informal way of argument,
but as we have just seen, the actual proofs are not very insightful,
and any mistakes we make this way are probably easy to fix.

TYPE THEORY II : 𝖥𝗂𝗇𝖱𝖾𝗅
The category 𝖥𝗂𝗇𝖱𝖾𝗅 is the free idempotent finitely bicartesian
category on the trivial category. Like for 𝖥𝗂𝗇𝖲𝖾𝗍, we simply write
down the definition of the universal properties involved.

⟨tt-rel-kind⟩ REL :▢

The existence of finite biproducts is equivalent to the existence of
a zero object and binary biproducts. We import all the rules from
𝛩SET while replacing the (implicit) kind annotations : SET with
:REL. Then, we modify the imported types, adding new rules to
them. First, we turn the initial object into a zero object.

⟨tt-empty-intro⟩ 𝑥 :𝐴 ⊢ bot 𝑥 :Empty ⟨tt-empty-beta⟩ 𝑥 :𝐴 ⊢ bot 𝑥=𝑁:Empty

We turn coproducts into biproducts.
⟨tt-bi-elim⟩ 𝑥 :Sum 𝐴 𝐵⊢ outl 𝑥 :𝐴 𝑥 :Sum 𝐴 𝐵⊢ outr 𝑥 :𝐵

⟨tt-bi-intro⟩ 𝑥 :𝐶 ⊢𝑁:𝐴 𝑥 :𝐶 ⊢𝑀:𝐵
𝑥 :𝐶 ⊢ pair 𝑁 𝑀:Sum 𝐴 𝐵

148

⟨tt-bi-beta⟩ outl (pair 𝑁 𝑀)=𝑁:𝐴 outr (pair 𝑁 𝑀)=𝑀
⟨tt-bi-eta⟩ pair (outl 𝑥) (outr 𝑥) = 𝑥

We also need to specify the relationship between the insertions
and projections.
⟨tt-bi-in-out-id⟩ outl (inl 𝑥) = 𝑥 outr (inr 𝑥) = 𝑥

⟨tt-bi-in-out-bot⟩ outl (inr 𝑥) = bot 𝑥 outr (inl 𝑥) = bot 𝑥

Finally, biproducts need to be idempotent.

⟨tt-bi-comp⟩
𝑀[𝑁⁄𝑦] =𝑀′[𝑁′ ⁄𝑦]

case (pair 𝑁 𝑁′) 𝑦.𝑀 𝑦.𝑀′ =𝑀[𝑁⁄𝑦]

Analogously to 𝖥𝗂𝗇𝖲𝖾𝗍, we can now show the following.

PROPOSITION 4.2.2. The type theory 𝛩REL is strongly sound ⟨rel-sound-complete⟩
and complete for the category 𝖥𝗂𝗇𝖱𝖾𝗅.
Proof. Like ⟨set-sound-complete⟩, by noticing that the rules
capture the definition of finite idempotent biproducts via binary
biproducts and a zero object, and 𝖥𝗂𝗇𝖱𝖾𝗅 is the free idempotent
finitely bicartesian category on a trivial object by ⟨finrel-free⟩.
We defined a biproduct to be a coproduct such that the media-
tors ⨉𝑗(𝑗 = 𝑖)? form a product cone; it is clear that then, the
object is both a product and a biproduct, and 𝜄𝑗 ; 𝜋𝑖 = id if 𝑗= 𝑖
and 𝟎𝑗,𝑖 otherwise, just as prescriped by ⟨tt-bi-in-out-id⟩ and
⟨tt-bi-in-out-bot⟩, but also the converse holds: if an object has
coproduct insertions and product projections and it satisfies the
conditions ⟨tt-bi-in-out-id⟩ and ⟨tt-bi-in-out-bot⟩, then the
projections have 𝜄𝑗;𝜋𝑖 = (𝑗= 𝑖)?, so 𝜋𝑖 = ⨉𝑗(𝑗= 𝑖)? by uniqueness
of coproduct mediators, so the object is a biproduct.

TYPE THEORY II I : 𝖥𝗂𝗇𝖮𝖻𝗌
We add split pushouts to REL. In order to keep track of the
functional—i.e. atom-preserving—morphisms, we define a type

149

theory for 𝖥𝗂𝗇𝖮𝖻𝗌∗ in parallel.

⟨tt-obs-kind⟩ OBS :▢ ⟨tt-obs*-kind⟩ OBS* :▢

We import 𝖥𝗂𝗇𝖱𝖾𝗅 into 𝖥𝗂𝗇𝖮𝖻𝗌.

⟨tt-rel-obs⟩ 𝐴 :REL 𝐵:REL 𝑥 :𝐴 ⊢𝑁:𝐵 :REL 𝑥 :𝐴 ⊢𝑀:𝐵:REL 𝑥 :𝐴 ⊢𝑁=𝑀:𝐵:REL
𝐴:OBS 𝐵:OBS 𝑥 :𝐴 ⊢𝑁:𝐵 :OBS 𝑥 :𝐴 ⊢𝑀:𝐵:OBS 𝑥 :𝐴 ⊢𝑁=𝑀:𝐵:OBS

In the same fashion, we import 𝖥𝗂𝗇𝖲𝖾𝗍 into 𝖥𝗂𝗇𝖮𝖻𝗌∗ via a rule
⟨tt-set-obs*⟩ that is like ⟨tt-rel-obs⟩ where REL is replaced
with SET and OBS with OBS*. This kind of import is different to the
way we imported rules from SET into REL in that those rules are
now ‘‘fossilised’’: new judgments cannot be constructed in OBS*
and OBS from these rules; in particular, the sum types will not be
coproducts anymore in the new syntactic categories.

Now we can define the pushout type. In the following rules, when-
ever we leave out kind annotations, it means that the rules are
valid irrespective of whether the kind in question is OBS or OBS*.

⟨tt-push-form⟩
𝑦 :𝐶 ⊢𝑁:𝐴 :OBS* 𝑦 :𝐶 ⊢𝑀:𝐵:OBS* 𝑧 :𝐴 ⊢𝑁′ :𝐶 𝑦 :𝐶 ⊢𝑁′[𝑁⁄𝑧] = 𝑦 :𝐶

Push 𝐶 𝑦.𝑁:𝐴 𝑦.𝑀:𝐵
⟨tt-push-intro⟩ 𝑥 :𝐴 ⊢ pshl 𝑥 :Push 𝐶 𝑦.𝑁:𝐴 𝑦.𝑀:𝐵

𝑥 :𝐵 ⊢ pshr 𝑥 :Push 𝐶 𝑦.𝑁:𝐴 𝑦.𝑀:𝐵
𝑦 :𝐶 ⊢ pshl 𝑁= pshr 𝑀:Push 𝐶 𝑦.𝑁:𝐴 𝑦.𝑀:𝐵

⟨tt-push-elim⟩
𝑧 :𝐴 ⊢ 𝑆 :𝐷 𝑧 :𝐵 ⊢𝑇:𝐷 𝑦 :𝐶 ⊢𝑆[𝑁⁄𝑧] =𝑇[𝑀⁄𝑧] :𝐷
𝑥 :Push 𝐶 𝑦.𝑁:𝐴 𝑦.𝑀:𝐵⊢ pshcase 𝑥 𝑧.𝑆 𝑧.𝑇 :𝐷 :OBS

⟨tt-push-elim*⟩
𝑧 :𝐴 ⊢ 𝑆 :𝐷 :OBS* 𝑧 :𝐵 ⊢𝑇:𝐷:OBS* 𝑦 :𝐶 ⊢𝑆[𝑁⁄𝑧] =𝑇[𝑀⁄𝑧] :𝐷

𝑥 :Push 𝐶 𝑦.𝑁:𝐴 𝑦.𝑀:𝐵⊢ pshcase 𝑥 𝑧.𝑆 𝑧.𝑇 :𝐷 :OBS*
⟨tt-push-beta⟩ pshcase (pshl 𝑥) 𝑧.𝑆 𝑧.𝑇=𝑆[𝑥⁄𝑧] pshcase (pshr 𝑥) 𝑧.𝑆 𝑧.𝑇=𝑇[𝑥⁄𝑧]
⟨tt-push-eta⟩ pshcase 𝑥 (𝑧.𝑋[pshl 𝑧⁄𝑦]) (𝑧.𝑋[pshr 𝑧⁄𝑦]) =𝑋[𝑥⁄𝑦]

THEOREM 3. The theory 𝛩OBS is sound and complete for the ⟨obs-sound-complete⟩
category 𝖥𝗂𝗇𝖮𝖻𝗌.

150

Proof. (Sketch.) By ⟨finobs-free⟩, 𝖥𝗂𝗇𝖮𝖻𝗌 is the free cocomple-
tion of 𝖥𝗂𝗇𝖱𝖾𝗅 under split pushouts, and the ⟨tt-push-*⟩-rules
formulate the universal property of such a pushout, while the
rule ⟨tt-rel-obs⟩ makes sure that the theory of 𝖥𝗂𝗇𝖱𝖾𝗅 is included.
It is clear that the rules applying to OBS* capture the definition
of a functional morphism, namely a morphism either imported
from SET, or an identity or composite of functional morphisms
(via ⟨tt-var⟩ and ⟨tt-subs⟩, which also applies to OBS*), or an
insertion into a split pushout, or a mediator of split pushouts via
⟨tt-push-elim*⟩, and the antecedent of ⟨tt-push-form⟩ requires
both morphisms to be functional and one of them to be a split
monomorphism. Finally, every type in OBS is either the result of
a split pushout or a type imported from REL, so the definition of
split pushouts is satisfied.

4.3 AN INFINITARY EXTENSION

While the theory 𝛩OBS is complete for 𝖥𝗂𝗇𝖮𝖻𝗌, it is not very ex-
pressive. Obviously, we cannot construct infinite domains with
it, but there are more limitations: for example, the Empty type is
a zero object not only with respect to the objects coming from
REL, but for all of 𝖥𝗂𝗇𝖮𝖻𝗌. However, there is no rule in the type
theory that makes this apparent. We can prove in the meta-logic
that all terms 𝑥 :Empty ⊢𝑁:𝐴 :OBS and 𝑥 :𝐴 ⊢𝑁:Empty :OBS are
equal and that at least one such term exists, by induction on the
structure of types, using pushout insertions and mediators from
and to Empty, but we cannot show it using a derivation inside
the type theory alone. Similarly, the type theory is silent on the
existence of product types in 𝖥𝗂𝗇𝖮𝖻𝗌, and if we added them, we
would somehow have to ensure that they are not ‘‘freely’’ added
in the syntactic category but are in some specified relationship to
the existing types by adding equality rules that allow constructing
the relevant isomorphisms.

151

This is rather complicated, so we shall instead give up on com-
pleteness (which seems even more difficult, if not impossible, to
achieve in the infinitary case) and just write down a type theory
that allows us to construct as many objects and morphisms in 𝖮𝖻𝗌
as possible while at least being soundly interpretable in 𝖮𝖻𝗌. As
we shall see, with the type theory we give here, we can in a sense
construct all computable domain mappings.

In the following, we start with a ‘‘clean’’ type theory 𝛩 that only
includes the necessary rules as stated in the beginning of this
chapter. We add two kinds, one for 𝖮𝖻𝗌 and one for 𝖮𝖻𝗌∗.

⟨tt-obsx-kind⟩ OBSX :▢ ⟨tt-obsx*-kind⟩ OBSX*

Unless the kind is explicitly specified, it is assumed that the
rules apply to both; in particular, we will leave out the kind
in type formation rules. Furthermore, we make sure that every-
thing constructed in OBSX* can be imported into OBSX via a rule
⟨tt-obsx*-obsx⟩ analogous to ⟨tt-rel-obs⟩.

TERMINAL AND INITIAL OBJECTS

Recall from ⟨obs-zero⟩, ⟨obs*-colim⟩, and ⟨obs*-lim⟩ that 𝖮𝖻𝗌
and 𝖮𝖻𝗌∗ have isomorphic initial objects, and that in 𝖮𝖻𝗌 this
is also a terminal object, while the category 𝖮𝖻𝗌∗ has a different
terminal object.

⟨tt-empty-form⟩ Empty

⟨tt-empty-intro⟩ 𝑥 :𝐴 ⊢ bot 𝑥 :Empty :OBSX
⟨tt-empty-elim⟩ 𝑥 :Empty⊢ bot 𝑥 :𝐴
⟨tt-empty-eta⟩ 𝑥 :𝐴 ⊢𝑁= bot 𝑥 :Empty 𝑥 :Empty⊢𝑁= bot 𝑥 :𝐴
⟨tt-unit-form⟩ Unit

⟨tt-unit-intro⟩ 𝑥 :𝐴 ⊢ top 𝑥 :Unit
⟨tt-unit-eta⟩ 𝑥 :𝐴 ⊢𝑁= top 𝑥 :Unit :OBSX*

152

PRODUCTS AND COPRODUCTS

We have products in 𝖮𝖻𝗌 and 𝖮𝖻𝗌∗ by ⟨obs-prod⟩ and ⟨obs*-lim⟩,
as well as coproducts by ⟨obs*-colim⟩ which coincide as shown in
⟨obs-coprod⟩. The tensor product, which is the product in 𝖮𝖻𝗌∗
is cast into a Smash type.

⟨tt-prod-form⟩ 𝐴 𝐵
Prod 𝐴 𝐵

⟨tt-prod-elim⟩ 𝑥 :Prod 𝐴 𝐵⊢ outl 𝑥 :𝐴 :OBSX 𝑥 :Prod 𝐴 𝐵⊢ outr 𝑥 :𝐵 :OBSX

⟨tt-prod-intro⟩ 𝑥 :𝐶 ⊢𝑁:𝐴 𝑥 :𝐶 ⊢𝑀:𝐵
𝑥 :𝐶 ⊢ pair 𝑁 𝑀:Prod 𝐴 𝐵:OBSX

⟨tt-prod-beta⟩ outl (pair 𝑁 𝑀)=𝑁 outr (pair 𝑁 𝑀)=𝑀
⟨tt-prod-eta⟩ pair (outl 𝑥) (outr 𝑥) = 𝑥

⟨tt-sum-form⟩ 𝐴 𝐵
Sum 𝐴 𝐵

⟨tt-sum-intro⟩ 𝑥 :𝐴 ⊢ inl 𝑥 :Sum 𝐴 𝐵 𝑥:𝐵 ⊢ inr 𝑥 :Sum 𝐴 𝐵

⟨tt-sum-elim⟩ 𝑦 :𝐴 ⊢𝑁:𝐶 𝑦 :𝐵 ⊢𝑀:𝐶
𝑥 :Sum 𝐴 𝐵⊢ case 𝑥 𝑦.𝑁 𝑦.𝑀:𝐶:OBSX

⟨tt-sum-elim*⟩ 𝑦 :𝐴 ⊢𝑁:𝐶 :OBSX* 𝑦 :𝐵 ⊢𝑀:𝐶:OBSX*
𝑥 :Sum 𝐴 𝐵⊢ case 𝑥 𝑦.𝑁 𝑦.𝑀:𝐶

⟨tt-sum-beta⟩ case (inl 𝑥) 𝑦.𝑁 𝑦.𝑀=𝑁[𝑥⁄𝑦] case (inr 𝑥) 𝑦.𝑁 𝑦.𝑀=𝑀[𝑥⁄𝑦]
⟨tt-sum-eta⟩ case 𝑥 (𝑦.𝑁[inl 𝑦⁄𝑧]) (𝑦.𝑁[inr 𝑦⁄𝑧]) =𝑁[𝑥⁄𝑧]

⟨tt-smash-form⟩ 𝐴 𝐵
Smash 𝐴 𝐵

⟨tt-smash-elim⟩ 𝑥 :Smash 𝐴 𝐵⊢ atl 𝑥 𝑥 :Smash 𝐴 𝐵⊢ atr 𝑥

⟨tt-smash-intro⟩ 𝑥 :𝐶 ⊢𝑁:𝐴 𝑥 :𝐶 ⊢𝑀:𝐵
𝑥 :𝐶 ⊢ atpair 𝑁 𝑀:Smash 𝐴 𝐵

⟨tt-smash-beta⟩ atl (atpair 𝑁 𝑀)=𝑁:𝐴 :OBSX* atr (atpair 𝑁 𝑀)=𝑀:𝐵:OBSX*
⟨tt-smash-eta⟩ atpair (atl 𝑥) (atr 𝑥) = 𝑥 :Smash 𝐴 𝐵:OBSX*

153

MONOIDAL HOM

There is a function type, which uses the tensor product induced
by the product from 𝖮𝖻𝗌∗, see ⟨obs-closed⟩. To extend the tensor
product to a functor on 𝖮𝖻𝗌, we need to allow tensor product
‘‘mediators’’ of non-atom-preserving maps, which we did by leaving
out the kind specification in the rule ⟨tt-smash-intro⟩.

⟨tt-fun-form⟩ 𝐴 𝐵
Fun 𝐴 𝐵

⟨tt-fun-elim⟩ 𝑥 :Smash (Fun 𝐴 𝐵) 𝐴⊢ eval 𝑥 :𝐵 :OBSX

⟨tt-fun-intro⟩ 𝑧 :Smash 𝐶 𝐴⊢𝑁:𝐵
𝑦 :𝐶 ⊢ lambda 𝑥 𝑁[atpair 𝑦 𝑥⁄𝑧] :Fun 𝐴 𝐵:OBSX

⟨tt-fun-beta⟩ eval (atpair (lambda 𝑦 𝑁[atpair (atl 𝑥) 𝑦⁄𝑧]) (atr 𝑥)) =𝑁[𝑥⁄𝑧]
⟨tt-fun-eta⟩ lambda 𝑥 (eval (atpair 𝑓 𝑥)) = 𝑓

ADJUNCTION BETWEEN 𝖮𝖻𝗌 AND 𝖮𝖻𝗌∗

The inclusion 𝖮𝖻𝗌∗ ↪ 𝖮𝖻𝗌 is left adjoint to the power domain
operation by ⟨obs*-obs-adj⟩. We only formulate the universal
property of the left adjoint. The right adjoint operations can be
derived. This way, we avoid having to define the whole powerset
functor.

⟨tt-pow-form⟩ 𝐴
Pow 𝐴

⟨tt-pow-elim⟩ 𝑥 :Pow 𝐴⊢ join 𝑥 :𝐴 :OBSX

⟨tt-pow-intro⟩ 𝑥 :𝐴 ⊢𝑁:𝐵
𝑥 :𝐴 ⊢ atoms 𝑁:Pow 𝐵

⟨tt-pow-beta⟩ join (atoms 𝑥) = 𝑥
⟨tt-pow-eta⟩ atoms (join 𝑥) = 𝑥

QUASITOPOS STRUCTURE

We will not describe the whole structure, but we shall add pull-
backs from the strong-subobject classifier (see Section 3.2 on the

154

quasitopos 𝖮𝖻𝗌∗) as well as quotient types, which in combination
with sum types should allow computing many types of colimits.
See ⟨obs*-lim⟩ and ⟨obs*-colim⟩. We shall write Prop as an ab-
breviation for Prod Unit Unit and true 𝑥 for pair (top 𝑥) (bot 𝑥).
The rules for the type Sub 𝑥.𝑃 𝐴 formulate the universal property
of a pullback of the arrow 𝟏∗ →Ω∗ = 〚Prop〛 with ⊤↦⊤×⊥ along
the arrow from 〚𝐴〛 into Ω∗ represented by 𝑥.𝑃.

⟨tt-sub-form⟩ 𝑥 :𝐴 ⊢𝑃:Prop :OBSX*
Sub 𝑥.𝑃 𝐴

⟨tt-sub-elim⟩ 𝑥 :Sub 𝑦.𝑃 𝐴⊢ incl 𝑥 :𝐴 𝑃[incl 𝑥⁄𝑦] = true 𝑥

⟨tt-sub-intro⟩
𝑥 :𝐶 ⊢𝑁:𝐴 :OBSX* 𝑃[𝑁⁄𝑦] = true 𝑥

𝑥 :𝐶 ⊢ sub 𝑁:𝐴
⟨tt-sub-beta⟩ incl (sub 𝑁)=𝑁
⟨tt-sub-eta⟩ sub (incl 𝑥) = 𝑥

The Quot 𝐴 𝑥.𝑅 type below formulates the universal property of
𝑃 𝟏∗

〚𝐴〛⊗ 〚𝐴〛 Ω∗

〚𝐴〛

𝑖

𝟏∗

id×𝟎
〚𝑅〛

𝜋∗1 𝜋∗2

the following coequaliser. The term 𝑅 is intended to represent an
equivalence relation on the atoms of 〚𝐴〛 stating which atoms we
would like to identify. This can be realised as a coequaliser of the
arrows 𝑖 ; 𝜋∗1 and 𝑖 ; 𝜋∗2 in the diagram in the margins, where 𝑃 is
the strong subobject of 〚𝐴〛⊗〚𝐴〛 corresponding to 𝑅. Note that 𝑅
need not actually be an equivalence relation; the resulting domain
will have all atoms identified that are related by the equivalence
relation generated by 𝑅.

⟨tt-quot-form⟩ 𝑥 :Smash 𝐴 𝐴⊢𝑅:Prop :OBSX*
Quot 𝐴 𝑥.𝑅

⟨tt-quot-intro⟩ 𝑥 :𝐴 ⊢ in 𝑥 :Quot 𝐴 𝑥.𝑅
in (atl (incl 𝑥)) = in (atr (incl 𝑥))

⟨tt-quot-elim⟩
𝑦 :𝐴 ⊢𝑁:𝐶 :OBSX* 𝑁[atl (incl 𝑥)⁄𝑦] =𝑁[atr (incl 𝑥)⁄𝑦]

𝑥 :Quot 𝐴 𝑦.𝑅 ⊢ match 𝑥 𝑦.𝑁
⟨tt-quot-beta⟩ match (in 𝑥) 𝑦.𝑁=𝑁[𝑥⁄𝑦]
⟨tt-quot-eta⟩ match 𝑥 (𝑦.𝑁[in 𝑦⁄𝑧]) =𝑁[𝑥⁄𝑧]

155

RECURSIVE TYPES

Finally, we add the computational types from ⟨obs-nno⟩ and
⟨obs-conno⟩.
⟨tt-nat-form⟩ Nat

⟨tt-nat-intro⟩ 𝑥 :Unit⊢ zero 𝑥 :Nat 𝑥 :Nat⊢ succ 𝑥 :Nat

⟨tt-nat-elim⟩ 𝑦 :Unit⊢𝑍:𝐴 𝑦 :𝐴 ⊢ 𝑆 :𝐴
𝑥 :Nat⊢ rec 𝑥 𝑦.𝑍 𝑦.𝑆 :𝐴 :OBSX

⟨tt-nat-beta⟩ rec (zero 𝑥) 𝑦.𝑍 𝑦.𝑆=𝑍 rec (succ 𝑛) 𝑦.𝑍 𝑦.𝑆=𝑆[rec 𝑛 𝑦.𝑍 𝑦.𝑆⁄𝑦]
⟨tt-nat-eta⟩ rec 𝑥 (zero 𝑦) (𝑦.succ 𝑦) = 𝑥

⟨tt-conat-form⟩ Conat

⟨tt-conat-intro⟩ 𝑥 :Conat⊢ iszero 𝑥 :Unit :OBSX 𝑥 :Conat⊢ pred 𝑛:Conat :OBSX

⟨tt-conat-elim⟩ 𝑦 :𝐴 ⊢𝑍:Unit 𝑦 :𝐴 ⊢𝑃:𝐴
𝑥 :𝐴 ⊢ corec 𝑥 𝑦.𝑍 𝑦.𝑃 :Conat :OBSX

⟨tt-conat-beta⟩ iszero (corec 𝑥 𝑦.𝑍 𝑦.𝑃) =𝑍[𝑥⁄𝑦]
pred (corec 𝑥 𝑦.𝑍 𝑦.𝑃) = corec 𝑥 𝑦.𝑍 𝑦.𝑃[𝑃⁄𝑦]

⟨tt-conat-eta⟩ corec 𝑥 (𝑦.iszero 𝑦) (𝑦.pred 𝑦) = 𝑥

This concludes the definition of the type theory. We should now
have the following.

PROPOSITION 4.3.1. The theories 𝛩OBSX and 𝛩OBSX* are sound
for 𝖮𝖻𝗌 and 𝖮𝖻𝗌∗, respectively.
Proof. (Sketch.) Before giving the rules describing each individual
universal property, we gave references to the statements showing
that the respective construction exists in 𝖮𝖻𝗌 or 𝖮𝖻𝗌∗. It should
then be clear how the categories can be equipped with an inter-
pretation that makes them models of the type theories.

As discussed at the beginning of this section, this theory cannot
be expected to be complete. However, we want to make a smaller
claim, namely that it is in a sense ‘‘Turing-complete’’, i. e. it

156

can express all computable functions. This requires a small trick
in defining the interpretation of computable functions. We will
use general recursive functions 𝑓 : ℕ𝑘 ↛ ℕ, which are partial
functions, and define their interpretation 𝑓 to be the univalent
domain mapping ⨂𝑘

𝑖=1ℕ → ℕ from the tensor product of the
natural numbers object into the coinductive natural numbers
object, defined as 𝑓(⨂𝑎𝑖) = 𝑓(⨉𝑎𝑖) if 𝑓 is defined on ⨉𝑎𝑖, and
𝑓(⨂𝑎𝑖) =⊥ otherwise. Notice that this always defines a univalent
domain mapping because ℕ is a CABA and 𝑓 outputs a natural
number, which can be interpreted as an atom of ℕ, or nothing,
which is interpreted as ⊥. This is clearly a faithful interpretation
of 𝑓.

We trust that it is clear how to interpret the judgments in 𝛩OBSX as
objects and morphisms in 𝖮𝖻𝗌, so we will not justify uses of such in-
terpretations. Write Nat𝑘 for Smash Nat (Smash Nat (Smash Nat …))
with 𝑘 instances of Nat. This is interpreted as the domain ⨂𝑘ℕ,
with atoms all 𝑘-tuples of natural numbers and no non-trivial
consistent sets of atoms, see ⟨obs-nno⟩ and ⟨obs*-lim⟩. Thus
we will give a construction that turns general recursive func-
tions 𝑓 : ℕ𝑘 → ℕ into judgments 𝑥 : Nat𝑘 ⊢ 𝐹 : Conat such that
〚𝑥 :Nat𝑘 ⊢𝐹:Conat〛=𝑓.

Let us see what terms of type Nat and Conat actually look like. For
Nat, the term introduction rules give us terms zero and succ 𝑥
for 𝑥 : Nat. Thus every term is an 𝑛-fold application of succ to
zero, corresponding to an atom 𝑛∈ℕ, as was to be expected. For
Conat, we cannot explicitly construct terms out of nothing, but
given a term, we can check whether it is 0, and if not, we can do
the same for its predecessor. Of course, if the term is bot, then
we will never be able to tell. To interpret a term of type Conat as
a natural number (extended by ⊥), we would like to first check
if the term evaluates to bot, and if not, count how many times
we need to apply pred to the outcome until iszero yields top.
This can of course not be an effective procedure, chiefly because

157

checking if a term of type Conat is ⊥ cannot be implemented
effectively—otherwise, the theorem we are about to prove would
imply that the halting problem is decidable. It directly follows
that term equality is not decidable in the theory.

THEOREM 4. The theory 𝛩OBSX is Turing-complete. That is, for ⟨obsx-turing⟩
every general recursive function 𝑓:ℕ𝑘 →ℕ, there exists a judgment
𝑥 :Nat𝑘 ⊢𝐹:Conat such that 〚𝑥 :Nat𝑘 ⊢𝐹:Conat〛= 𝑓, where 〚 ⋅〛
is the interpretation of 𝛩OBSX in 𝖮𝖻𝗌.
Proof. (Sketch.) Every general recursive function can be written
as an application of the 𝜇-operator to a primitive recursive function.
We first show that all primitive recursive functions ℕ𝑘 →ℕ can
be constructed. We interpret such functions as atom-preserving
domain mappings ℕ→ℕ, i. e. the codomain is the natural numbers
object, not the coinductive one.

Every category with a parametrised natural numbers object can
‘‘express’’ all primitive recursive functions. While 𝖮𝖻𝗌 does not
have such an object, it has a ‘‘tensorial’’ parametrised natural
numbers object; see the margin for the relevant diagram. This For all 𝐴:

𝐴 𝐴⊗𝑁 𝐴⊗𝑁

𝑀 𝑀

id⊗(𝟏𝐴;𝑧)

𝑜

𝜋1⊗(𝜋2;𝑠)

𝑢 𝑢

𝑓

follows from the fact that for each 𝐴∈ 𝖮𝖻𝗌, the functor 𝐴⊗− is a
left adjoint, with the right adjoint given by the internal hom [𝐴,−],
as ⟨obs-closed⟩ shows. This implies that 𝐴⊗− preserves initial
algebras [27, Theorem 7.2], in particular the natural numbers
object, from which the diagram on the right directly follows. The
proof that categories with parametrised natural numbers objects
express all primitive recursive functions as morphisms ℕ → ℕ,
given in [19, Theorem 2.4], also shows that the same applies to a
category with a tensorial parametrised natural numbers object, and
then a corresponding judgment can be derived in 𝛩OBSX because
it contains all the rules necessary to prove the existence of such
an object in the syntactic category.
In short, the type Nat provides constant zero and a successor func-
tion by ⟨tt-nat-intro⟩, and primitive recursion via ⟨tt-nat-elim⟩
together with the Smash type to model the parametrised version

158

of the natural numbers object, which is necessary to account for
the fact that in a primitive recursive definition rec 𝑥 (𝑦.𝑍) (𝑦.𝑆),
the term 𝑆 may not just depend on the result of itself applied
to the predecessor of the argument 𝑥, but also on the value of
the predecessor. Without this, e.g. the predecessor function is not
definable. Functions with arities greater than 1 can be handled us-
ing ⟨tt-smash-intro⟩, ⟨tt-smash-elim⟩, and ⟨tt-subs⟩. Now for
general recursive functions, for simplicity we ignore these cases of
arities greater than 1.
Thus let 𝑓 :ℕ → ℕ be a general recursive function of the form
𝑓(𝑛) = 𝜇𝑚.𝑝(𝑚,𝑛) for 𝑝 primitive recursive. Create a new func-
tion 𝑝′ :ℕ2 →ℕ as follows. On input (𝑚,𝑛), if 𝑝(𝑖,𝑛) = 0 for some
𝑖 <𝑚, return 1. Otherwise, return 𝑝(𝑚,𝑛). Now 𝑝′ is primitive
recursive because 𝑝 is and bounded quantification and case dis-
tinction are primitive recursive operations. By the above, there
then is a judgment 𝑥:Smash Nat Nat⊢𝑃′ :Nat in 𝛩OBSX interpreted
as 𝑝′ seen as an atom-preserving domain mapping ℕ⊗ℕ→ℕ.
We derive a term that represents 𝑓.

⟨1⟩ 𝑥 :Smash Nat Nat⊢ atl 𝑥 :Nat ⟨tt-smash-elim⟩

⟨2⟩ 𝑥 :Smash Nat Nat⊢ atr 𝑥 :Nat ⟨tt-smash-elim⟩

⟨3⟩ 𝑥 :Nat⊢ succ 𝑥 :Nat ⟨tt-nat-intro⟩

⟨4⟩ 𝑥 :Smash Nat Nat⊢ succ (atl 𝑥) :Nat ⟨tt-subs⟩ @ ⟨1⟩,⟨3⟩

⟨5⟩ 𝑥 :Smash Nat Nat⊢ atpair (succ (atl 𝑥)) (atr 𝑥) :Smash Nat Nat ⟨tt-smash-intro⟩ @ ⟨4⟩,⟨2⟩

Denote the term just derived by 𝑄. We find that ⟨5⟩ is interpreted
as a function 𝑞 :ℕ⊗ℕ→ℕ⊗ℕ with 𝑚⊗𝑛↦ (𝑚+1)⊗𝑛.

⟨6⟩ 𝑦 :Unit⊢ 𝑦 :Unit ⟨tt-var⟩

⟨7⟩ 𝑦 :Unit⊢ bot 𝑦 :Empty ⟨tt-empty-intro⟩

⟨8⟩ 𝑦 :Empty⊢ bot 𝑦 :Unit ⟨tt-empty-elim⟩

⟨9⟩ 𝑦 :Unit⊢ bot 𝑦 :Unit ⟨tt-subs⟩ @ ⟨7⟩,⟨8⟩

⟨A⟩ 𝑥 :Nat⊢ rec 𝑥 𝑦.𝑦 𝑦.bot 𝑦 :Unit ⟨tt-nat-elim⟩ @ ⟨6⟩,⟨9⟩

159

⟨B⟩ 𝑥 :Smash Nat Nat⊢𝑃′ :Nat by assumption

⟨C⟩ 𝑥 :Smash Nat Nat⊢ rec 𝑃′ 𝑦.𝑦 𝑦.bot 𝑦 :Unit ⟨tt-subs⟩ @ ⟨B⟩,⟨A⟩

Denote the term in ⟨C⟩ by 𝑍. This gets interpreted as a function
𝑧:ℕ⊗ℕ→𝟏∗ that sends 𝑚⊗𝑛 to ⊤ if 𝑝′(𝑚,𝑛) = 0 and otherwise
to ⊥, which we also denote (𝑝′(𝑚,𝑛) = 0)?.

⟨D⟩ 𝑦 :Nat⊢ zero 𝑦 :Nat ⟨tt-nat-intro⟩

⟨E⟩ 𝑦 :Nat⊢ 𝑦 :Nat ⟨tt-var⟩

⟨F⟩ 𝑦 :Nat⊢ atpair (zero 𝑦) 𝑦 :Smash Nat Nat ⟨tt-smash-intro⟩ @ ⟨D⟩,⟨E⟩

⟨G⟩ 𝑦 :Smash Nat Nat⊢ corec 𝑦 𝑥.𝑍 𝑥.𝑄 :Conat ⟨tt-conat-elim⟩ @ ⟨C⟩,⟨5⟩

⟨H⟩ 𝑦 :Nat⊢ corec (atpair (zero 𝑦) 𝑦) 𝑥.𝑍 𝑥.𝑄 :Conat ⟨tt-subs⟩ @ ⟨F⟩,⟨G⟩

Denote the interpretation of ⟨H⟩ by 𝑓′ :ℕ→ℕ. I claim that 𝑓= 𝑓′.
On input 𝑛, we have that 𝑓′ returns the set of all 𝑚 such that
𝑧(𝑞𝑚(0,𝑛)) =⊤. Since 𝑞(𝑚′,𝑛′) = (𝑚′+1,𝑛′) for all 𝑚′,𝑛′, we find
that 𝑞𝑚(0,𝑛) = (𝑚,𝑛) for all 𝑚, and then 𝑧(𝑞𝑚(0,𝑛)) = 𝑧(𝑚,𝑛) =
(𝑝′(𝑚,𝑛) = 0)?. By construction of 𝑝′, we have that 𝑝′(𝑚,𝑛) = 0
iff 𝑚 is least such that 𝑝(𝑚,𝑛) = 0. Of course, there is at most one
such 𝑚, and so this returns {𝑚} if 𝑝(𝑚,𝑛) = 0 and 𝑝(𝑖,𝑛) ≠ 0 for
all 𝑖 <𝑚, or ⊥ if no such 𝑚 exists, which is precisely the definition
of the interpretation of 𝜇𝑚.𝑝(𝑚,𝑛) = 𝑓(𝑛).

160

5 APPLICATIONS

We briefly sketch some ideas for how the framework we have
developed may be applied in practice to dynamical systems, first
within the realm of programming, then within the realm of logical
reasoning.

5.1 PROGRAMMING WITH DYNAMICAL SYSTEMS

Let us consider the Cantor space, ubiquitous in the theory of
dynamical systems, as an observation space. This is the set of
countably infinite binary sequences (𝑎𝑛)𝑛∈ℕ, equipped with the
countable product of the discrete topology on {0,1}. We will use
a set of subbasic clopens as observable properties, specified by 0𝑛
and 1𝑛 for each 𝑛 ∈ ℕ, where 𝑏𝑛 ∈ {0𝑛,1𝑛} represents the set of
all binary sequences (𝑎𝑖)𝑖∈ℕ such that 𝑎𝑛 = 𝑏𝑛. The maximally
consistent sets of properties are the points of the Cantor space,
i.e. collections of properties that include either 0𝑛 or 1𝑛 for each
𝑛 ∈ ℕ, and it follows that the consistent sets are precisely those
that do not include both 0𝑛 and 1𝑛 for any 𝑛. We can see from
⟨obs-prod⟩ that the domain ⨉𝑛∈ℕ(𝟏∗+𝟏∗) satisfies precisely this
property.

161

We did not include the possibility of recursive type definitions in
the theory (with which we could define a type such as Cantor≔
Prod (Sum Unit Unit) Cantor), but there is an isomorphic domain
that we can construct, namely the function space [ℕ,𝟏∗ +𝟏∗].
Let State ≔ Sum Unit Unit and Cantor ≔ Fun Nat State. We a
shorthand Dyn 𝐴 for Fun 𝐴 𝐴, the type of dynamical systems
on the space represented by the type 𝐴. In symbolic dynamics,
one often considers shift operators, which we can use here to
immediately obtain a term of type Dyn Cantor. The shift operator
sends the sequence (𝑎𝑛)𝑛∈ℕ to (𝑎𝑛+1)𝑛∈ℕ. We can interpret this
by saying that each point in the Cantor space represents a history
of events 0 and 1, and the shift operator updates a history, sending
it one step into the future. We straightforwardly construct this
as shift 𝑥≔ lambda 𝑦 (eval (atpair 𝑥 (succ 𝑦))), for which the
judgment 𝑥 : Cantor ⊢ shift 𝑥 : Cantor can be derived in 𝛩OBSX,
and then we can obtain 𝑦:Unit⊢ lambda 𝑥 (shift 𝑥) :Dyn Cantor.
Contrast this with the definition of the shift operator on the
domain [ℕ,𝟏∗+𝟏∗] as a relation: it sends every history to which
property (𝑛+1)→ 𝑏 applies to one where 𝑛→ 𝑏 applies, and the
properties 0 → 𝑏 to ⊥. It can easily be seen that this relation
is indeed a maximal element of [[ℕ,𝟏∗+𝟏∗], [ℕ,𝟏∗+𝟏∗]], hence
corresponds to a dynamical system via ⟨dynsys=max-cons⟩.

Since we can form arbitrary function spaces, we can also consider
transformations between dynamical systems. Let us construct such
a transformation taking a dynamical system on the Cantor space
and perturbing it by inverting its output. First, we define flip 𝑥≔
case 𝑥 (𝑦.inr 𝑦) (𝑦.inl 𝑦), with 𝑥 :State⊢ flip 𝑥 :State. Then,
we have 𝑥:Cantor⊢ lambda 𝑦 (eval (atpair 𝑥 (flip 𝑦))) :Cantor,
which gives us
𝑥 :Dyn Cantor⊢ lambda 𝑦 (lambda 𝑧 (flip (eval (atpair 𝑥 (eval (atpair 𝑦 𝑧)))))) :Dyn Cantor.
Applying this to the shift operator, the resulting dynamical system
flips the history on every second time step.

One of the more unusual features of the type theory is the presence

162

of different interlinking kinds. We have a theory 𝛩OBSX*, which
can be interpreted to make judgments about atoms, i. e. observ-
able properties, and 𝛩OBSX, which makes judgments about the
elements, i. e. (partial descriptions of) points of the space. For
example, we have two kinds of product types (see ⟨tt-prod-form⟩
and ⟨tt-smash-form⟩), one being universal for atom-preserving
maps only, and the other one being universal for general domain
mappings. A term atpair 𝑥 𝑦:Smash 𝐴 𝐵 should be thought of as
a pair of atoms, while pair 𝑥 𝑦 :Prod 𝐴 𝐵 is an arbitrary pair of
elements of the domain.

The interaction between these constructions and types of dy-
namical systems seems worth exploring further; we will have to
leave this to the future. For example, the types Dyn (Prod 𝐴 𝐵),
Dyn (Smash 𝐴 𝐵), Prod (Dyn 𝐴) (Dyn 𝐵), and Smash (Dyn 𝐴) (Dyn 𝐵)
all provide different kinds of terms that may be considered to be
pairs of dynamical systems. As we have mentioned, tensor prod-
uct and cartesian product spaces both have the same maximal
elements, but they are observed using different properties: pairs of
properties in the first case, and individual properties from either
space in the second case. An element of a cartesian product space
of dynamical systems is then specified via a collection of proper-
ties that either dynamical system satisfies, while for the tensor
product space, we need to simultaneously specify two properties,
one satisfied by each dynamical system.

The coinductive natural numbers type from ⟨tt-conat-form⟩ is
not only useful to model general recursion: ⟨obs-conno⟩ suggests
that we can feed it with a dynamical system 𝑓 :𝐴→𝐴 as well as
a domain mapping 𝑜 :𝐴→𝟏∗ that makes a selection of observable
properties of 𝐴 that interest us, and then corecursion returns a
function that takes a point of 𝐴 and returns a set of time steps such
that the state of the dynamical system is in the region specified by
𝑜 at that time step. This suits our conception of dynamical systems
as functions for which time progresses through self-application very
well.

163

5.2 REASONING ABOUT DYNAMICAL SYSTEMS

There are many different levels on which logical reasoning may be
implemented in our framework. First, we have the equality rules in
the type theory, which for some theories fully capture the equalities
in the categories they describe. All of the following approaches
rely on those equalities, which means that completeness of the
resulting logic depends on the completeness of the type theory we
use, and also that these logics will generally not be decidable.

Any quasitopos comes with an internal logic, which is very similar
to the intuitionistic predicate logic that can be developed inside
a topos. See [38, Chapter 3] for an in-depth exposition of this
approach. We did not include local internal homs or related con-
structions in the type theory, which implies that we cannot talk
about quantification. However, we did include pullbacks from the
strong-subobject classifier. The Sub types from ⟨tt-sub-form⟩ can
be used to talk about atoms of a domain satisfying a proposition.
Namely, if 𝑥:Unit⊢𝑋:𝐴:OBSX* is a term, which gets interpreted as
an atom-preserving domain mapping 𝟏∗ → 〚𝐴〛 selecting an atom
of 〚𝐴〛, and 𝑦 :𝐴 ⊢𝑃:Prop represents an atom-preserving domain
mapping into the strong-subobject classifier, then we could say
that 𝑋⊨𝑃:𝐴 if 𝑥:Unit⊢𝑃[𝑋⁄𝑦] = true 𝑥:Prop, which is the case
precisely if the element selected by the term 𝑋 is in the strong
subobject generated by pullback along 𝑃 (see the quasitopos sub-
section in Section 3.2). This way, we can determine whether the
atom we selected is in a selected set of atoms, which means that
we can interpret 𝑃 as a proposition about atoms of 𝐴. We can
define logical operations on the terms, for example conjunction of
𝑥 :𝐴 ⊢ 𝑃,𝑄 :Prop as 𝑃∧𝑄 constructed from composing the pair
atpair 𝑃 𝑄: Smash Prop Prop with a term corresponding to the
domain mapping Ω∗⊗Ω∗ →Ω∗ with (⊤×⊥)⊗(⊤×⊥)↦ (⊤×⊥)
and 𝑥⊗𝑦↦ (⊥×⊤) otherwise. However, notice that this is just
the logic of subsets of atoms, which completely ignores the other
elements of the domains and is thus not very interesting.

164

We would like to talk about subsets other than strong subobjects.
The natural choice in domain theory are certain up-sets of domains,
because they more closely correspond to actual logical properties.
For example, for an atom 𝑎 ∈ At𝐷, the set ↑𝑎 contains all the
points of the observation space to which 𝑎 applies. Unfortunately,
up-sets of atoms generally do not form domains, but we can still
talk about them in the type theory. Namely, we can select a set of
atoms via a term 𝑥:𝐴 ⊢𝑃:Unit, sending the atoms we want to select
to top. Then, also all elements above the selected atoms will be
sent to top. We can again whether 𝑋⊨𝑃:𝐴 for any global element
𝑥 : Unit ⊢ 𝑋 :𝐴 by checking if 𝑥 : Unit ⊢ 𝑃[𝑋⁄𝑥] = top 𝑥 : Unit.
For this, we can define truth 1 as the term 𝑥 : 𝐴 ⊢ top : Unit
given by ⟨tt-unit-intro⟩, falsity 0 as 𝑥:𝐴 ⊢ bot 𝑥:Unit obtained
from ⟨tt-empty-intro⟩ and ⟨tt-empty-elim⟩ via ⟨tt-subs⟩, and
disjunction 𝑃∨𝑄 as the composite 𝑥 :𝐴 ⊢ top (pair 𝑃 𝑄) :Unit.
Conjunction 𝑃∧𝑄 cannot be defined, however: there is no way
to map the product 𝟏∗×𝟏∗ to 𝟏∗ such that only the top element
of 𝟏∗×𝟏∗ is sent to ⊤ and the rest to ⊥, by preservation of joins.
Indeed, intersections of up-sets of atoms are usually not up-sets
of atoms.

An approach somewhere between the two approaches just discussed
would be to consider general subobjects in 𝖮𝖻𝗌∗, rather than just
strong ones.° This means that we need to select a set of atoms, and °Subobjects in 𝖮𝖻𝗌, however, are

too general to admit a useful inter-
pretation as logical properties.

then we can specify a down-set of joins of these atoms we want to
include. This includes some interesting sets such as ↓↑𝑎 for 𝑎 an
atom, which contains the same maximal elements of ↑𝑎 but has
the advantage of forming a domain. This set includes precisely the
descriptions that are consistent with 𝑎, i. e. those that may apply
together with 𝑎 to a point in the space. Because the Sub types
can only create strong subobjects, we would have to assemble
these types ‘‘by hand’’. We can however define these subobjects by
defining what a monomorphism is in 𝖮𝖻𝗌∗: namely, 𝑥:𝐴′ ⊢𝑀:𝐴 is a
monomorphism if whenever 𝑦:𝐵 ⊢𝑀[𝑁⁄𝑥] =𝑀[𝑁′⁄𝑥]:𝐴 ∈𝛩OBSX*
for some 𝐵,𝑁,𝑁′, then 𝑦 :𝐵 ⊢𝑁=𝑁′ :𝐴′ ∈𝛩OBSX*. Note that we
cannot make this definition into a derivation rule of the usual

165

form, but we can only prove that something is a monomorphism
‘‘from outside’’, by proving things about the theory. Since the type
theory is most likely not complete, it cannot be expected that all
monomorphisms can be identified this way. Now, if 𝑥:Unit⊢𝑋:𝐴
and 𝑦:𝐴′ ⊢𝑀:𝐴 is a monomorphism, we can define 𝑋⊨𝑀:𝐴 as the
existence of an 𝑥:Unit⊢𝑁:𝐴′ such that 𝑥:Unit⊢𝑀[𝑁⁄𝑦] =𝑋:𝐴.

If we allow such meta-inferences about the type theory, we can
in fact recover the order relation of the domains in the theory, as
follows. In any pointed category 𝖢, we can define an order ⊴ on
the morphisms by saying that 𝑓 ⊴ 𝑔 iff for all appropriate ℎ,ℎ′, we
have ℎ;𝑔 ;ℎ′ =𝟎 implies ℎ;𝑓 ;ℎ′ =𝟎. This is always reflexive and
transitive.° Observe that in the case of 𝖮𝖻𝗌 (and 𝖱𝖾𝗅), this precisely °This means that pointed categories

are not just automatically enriched
in pointed sets, but even in pre-
ordered sets.

means that 𝑓 ⊆ 𝑔 as a relation: if 𝐻;𝐺 ;𝐻′ = 𝟎, then there are
no 𝑢,𝑣,𝑤,𝑥 with 𝑢𝐻𝑣𝐺𝑤𝐻′ 𝑥, and then there can be no such
𝑢,𝑣,𝑤,𝑥 for 𝐹⊆𝐺 either; conversely, if the implication holds and
𝑣𝐹𝑤, then •→𝑣𝐹𝑤→• with arrows from and into 𝟏 relating to
nothing but 𝑣 and 𝑤 makes the composite non-empty, and the only
way for the composite with 𝐺 to be non-empty is then if 𝑣𝐺𝑤. We
can now talk about the order on global elements 𝑥:Unit⊢𝑋:𝐴 and
𝑥 :Unit ⊢𝑌:𝐴 by saying 𝑋≤𝑌 iff 𝑥 :Unit ⊢𝑁[𝑌⁄𝑦] = bot 𝑥 :𝐵
implies 𝑥 : Unit ⊢ 𝑁[𝑋⁄ 𝑦] = bot 𝑥 :𝐵 for all 𝑦 : 𝐴 ⊢ 𝑁 :𝐵. We
can interpret global elements variously as propositions selecting a
consistent set of atoms, or as elements of a domain, and we could
take 𝑋⊨𝑃:𝐴 to just mean 𝑃≤𝑋, so logical entailment reduces
to the order on the domain. We can now also define what an atom
is in 𝛩OBSX, namely a global element 𝑥 : Unit ⊢ 𝑋 :𝐴 that is an
atom under ≤, and then an atom-preserving map is just a term
that composed with every atom yields an atom, which would allow
us to include another rule into the theory stating that if we have
proved a term to be atom-preserving in this way, we may also add
it to 𝛩OBSX*.

166

6 CONCLUSION

We have derived a type theory from a model of denotational
semantics for dynamical systems within a paradigm of ‘‘finitary
observation’’ or ‘‘description’’. Here is a summary of the individual
steps we took.
1. In Chapter 2, we developed observation systems to implement

the concept of finitary observation via observable properties.
We showed that they have a spatial interpretation, given by
observation spaces, which connect to topology and topologi-
cal dynamical systems (Theorem ⟨dynsys=max-cons⟩), see Sec-
tion 2.2, and a domain-theoretic interpretation, Section 2.3.
Morphisms between observation domains called domain map-
pings can be seen as partial descriptions of dynamical systems.

2. We studied the category of domains and domain mappings
and found that it is monoidal closed, implying that dynamical
systems on a domain form a domain on their own, that it
has products and coproducts in addition to a tensor product,
and that it contains a subcategory which is a quasitopos, in
Section 3.2. We characterised several relevant categories using
free constructions in Section 3.3, in particular the category of
finite domains in Theorem ⟨obs-free⟩.

3. We developed a framework of categorical semantics for type

167

theories in Section 4.1 and showed how characterisations of free
constructions can be used to obtain sound and complete type
theories for individual categories. In particular, we argued that
we have a complete type theory for finite observation domains
in Theorem ⟨obs-sound-complete⟩, but we did not prove this
in detail. Then, we gave a sound theory that is Turing-complete,
Theorem ⟨obsx-turing⟩.° °We have also briefly discussed that

complete logics for (finite) dynami-
cal systems may be developed on
the basis of the complete type the-
ory, Section 5.2, while the Turing-
complete type theory may serve
as a programming language for dy-
namical systems, Section 5.1.

Other notable results include a characterisation of the category
of finite sets and relations as a free construction in Proposi-
tion ⟨finrel-free⟩, as well as a generally applicable character-
isation of categories of concrete presheaves as certain free cocom-
pletions. In dealing with denotational semantics of a particular
model of computation via domain theory, one often works with
a category of domains representing types, and it might then be
of great interest to obtain a sound and complete theory for this
particular category. We have demonstrated that this can be done
(at least for the case of the category of finite sets and functions, in
⟨set-sound-complete⟩) by characterising the category using a free
construction. This is a somewhat unusual approach in categorical
semantics because one typically only considers completeness of
a theory for a class of categories (e.g. locally cartesian closed
categories for dependent type theories) [34].

While we did obtain a type theory that arguably speaks about
dynamical systems, there still remains a lot more work to be done.
First and foremost, applications of the theories to the study of
dynamical systems remain mostly unexplored, so it is yet to be
determined how useful it is in practice. In particular, the difference
between tensor and product types calls for an interpretation in
terms of constructions involving dynamical systems. Furthermore,
if we want to be certain about the completeness of the type theory
for finite domains, we may still want to work out a full proof of
Theorem ⟨obs-sound-complete⟩. We deliberately kept the type
theories simple because we focused on the overall approach we
tried to demonstrate, so the theories are not optimised for usability

168

e.g. as a programming language. For increased usefulness, the
Turing-complete theory may also be extended with recursive type
definitions, as is common in domain theory [2]. An even more
ambitious project would be to obtain a complete type theory for
suitably defined ‘‘computable’’ countable domains and computable
domain mappings.

On a more general level, we may wonder about the applicability
of our conceptual setup of ‘‘finitary observation’’ to the theory of
dynamical systems. While we have argued for the connection of the
definitions we made to the standard notions of dynamical systems,
the relationship between these needs to be elucidated in more
detail. What examples of observation spaces exist, besides the
straightforward ones such as the Cantor space? What properties
does a ‘‘weakly continuous’’ (see ⟨weak-cont⟩) function between
topological spaces have compared to a (standard) continuous one?
What are the implications of the condition ⟨max-det⟩ in the defi-
nition of dynamical systems? How can what we did be integrated
into the study of measure-theoretic dynamical systems? Can we
generalise the method sufficiently and apply it to the category of
dynamical domains in [12]?

Also on the category-theoretic side, some open questions remain.
The relationship between 𝖮𝖻𝗌 and 𝖮𝖻𝗌∗ is intriguingly similar to
the relationship between 𝖲𝖾𝗍 and 𝖱𝖾𝗅, which also becomes apparent
from the way we can represent the two as categories of certain
presheaves. How can this be made precise? Finally, how can the
concrete diagrams from ⟨concrete-free⟩ be formalised in a type
theory? Doing so would allow us to automatically derive sound
and complete type theories for categories of concrete presheaves,
which have been explored as ‘‘convenient’’ categories of spaces
since they always form quasitopoi [3]. In this way, I hope to have
demonstrated the feasibility of a general method that may be used
in the future to derive type theories for a variety of computational
processes from their semantics.

169

REFERENCES

[1] Samson Abramsky. Domain theory in logical form. Annals of pure and
applied logic, 51(1-2):1–77, 1991.

[2] Samson Abramsky and Achim Jung. Domain theory. 1994.

[3] John Baez and Alexander Hoffnung. Convenient categories of smooth spaces.
Transactions of the American Mathematical Society, 363(11):5789–5825,
2011.

[4] Valérie Berthé. Symbolic dynamics and representations. Les cours du CIRM,
5(1):1–16, 2017.

[5] Francis Borceux. Handbook of categorical algebra: volume 1, Basic category
theory, volume 1. Cambridge University Press, 1994.

[6] Robert Bringhurst. The elements of typographic style. Hartley & Marks
Vancouver, 2004.

[7] Bob Coecke, John Selby, and Sean Tull. Two roads to classicality. arXiv
preprint arXiv:1701.07400, 2017.

[8] Jean-Yves Girard. The system f of variable types, fifteen years later. Theo-
retical computer science, 45:159–192, 1986.

[9] Jean-Yves Girard. Linear logic: its syntax and semantics. London Mathemat-
ical Society Lecture Note Series, pages 1–42, 1995.

170

[10] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Math-
ematics: A Foundation for Computer Science. Addison-Wesley, Reading,
1989.

[11] John J Hopfield. Neural networks and physical systems with emergent col-
lective computational abilities. Proceedings of the national academy of
sciences, 79(8):2554–2558, 1982.

[12] Levin Hornischer. Dynamical systems via domains: Toward a unified foun-
dation of symbolic and non-symbolic computation. PhD thesis, University
of Amsterdam, 2021.

[13] Thomas J Jech. The axiom of choice. Courier Corporation, 2008.
[14] Anna Jenčová and Gejza Jenča. On monoids in the category of sets and

relations. International Journal of Theoretical Physics, 56:3757–3769, 2017.
[15] Peter T Johnstone. The point of pointless topology. Bulletin of the American

Mathematical Society, 8(1):41–53, 1983.
[16] Achim Jung. Cartesian closed categories of domains, volume 66. Citeseer,

1989.
[17] Alexander Kechris. Classical descriptive set theory, volume 156. Springer

Science & Business Media, 2012.
[18] Max Kelly. Basic concepts of enriched category theory, volume 64. CUP

Archive, 1982.
[19] Joachim Lambek and Philip J Scott. Introduction to higher-order categorical

logic, volume 7. Cambridge University Press, 1988.
[20] Leslie Lamport. How to write a 21st century proof. Journal of fixed point

theory and applications, 11(1):43–63, 2012.
[21] Tom Leinster. Basic category theory, volume 143. Cambridge University

Press, 2014.
[22] Alfred J Lotka. Contribution to the theory of periodic reactions. The Journal

of Physical Chemistry, 14(3):271–274, 2002.
[23] Saunders Mac Lane. Categories for the working mathematician, volume 5.

Springer Science & Business Media, 2013.

171

[24] Saunders MacLane and Ieke Moerdijk. Sheaves in geometry and logic: A
first introduction to topos theory. Springer Science & Business Media, 2012.

[25] James R Munkres. Topology (2nd edn), 2000.

[26] Rob Nederpelt and Herman Geuvers. Type theory and formal proof: an
introduction. Cambridge University Press, 2014.

[27] Fernando Lucatelli Nunes and Matthijs Vákár. Chad for expressive total
languages. arXiv preprint arXiv:2110.00446, 2021.

[28] Robert Paré. Connected components and colimits. Journal of Pure and
Applied Algebra, 3(1):21–42, 1973.

[29] Bodo Pareigis. Kategorien und Funktoren. Springer-Verlag, 2013.

[30] Paolo Perrone and Walter Tholen. Kan extensions are partial colimits. Applied
Categorical Structures, 30(4):685–753, 2022.

[31] Andrew M Pitts. Categorical logic. Handbook of logic in computer science,
5:39–128, 2001.

[32] The Univalent Foundations Program. Homotopy type theory: Univalent
foundations of mathematics. arXiv preprint arXiv:1308.0729, 2013.

[33] Dana Scott. Outline of a mathematical theory of computation. Oxford
University Computing Laboratory, Programming Research Group Oxford,
1970.

[34] Robert AG Seely. Locally cartesian closed categories and type theory. InMath-
ematical proceedings of the Cambridge philosophical society, volume 95,
pages 33–48. Cambridge University Press, 1984.

[35] Marshall H Stone. The theory of representation for boolean algebras. Trans-
actions of the American Mathematical Society, 40(1):37–111, 1936.

[36] Jan Tschichold. Willkürfreie Maßverhältnisse der Buchseite und des
Satzspiegels. Springer, 1975.

[37] Jaap van Oosten and BRICS Lecture Series LS. Basic category theory. 1995.

[38] Oswald Wyler. Lecture notes on topoi and quasitopoi. World Scientific,
1991.

172

INDEX

⟨𝒩-cpf⟩, 28
⟨T1+compact:pf-max⟩, 30
⟨T1-⋂𝒩⟩, 28
⟨T1:𝒩-max⟩, 28
⟨T1:cpf*⟩, 29
⟨T1:cpf-𝒩⟩, 29
⟨T1⟩, 26
⟨antisym⟩, 42
⟨apc:dom-sys-dom⟩, 49
⟨bcdcpo-sys⟩, 48
⟨canon-inj-max⟩, 119
⟨conc-1⟩, 102
⟨conc-2⟩, 103
⟨conc-free⟩, 103
⟨conc-nat-𝟏⟩, 62
⟨conc-rewrite⟩, 61
⟨div-diff⟩, 3
⟨dm-at-reflect⟩, 53
⟨dom-sys-dom⟩, 49

⟨dynsys=max-cons⟩, 39
⟨el⊑->el⟩, 69
⟨finobs*-strong⟩, 110
⟨finobs-free⟩, 123
⟨finobs-prshf-finrel⟩, 70
⟨finobs-prshf-free⟩, 108
⟨finrel-free⟩, 95
⟨finset-free⟩, 93
⟨fip-ne⟩, 27
⟨inf-many-primes⟩, 3
⟨intp-arr⟩, 131
⟨intp-comp⟩, 131
⟨intp-id⟩, 131
⟨intp-iso⟩, 131
⟨intp-nat⟩, 131
⟨intp-obj⟩, 131
⟨lub⟩, 42
⟨max-𝒩⟩, 28
⟨max-det⟩, 37

173

⟨nabcpo-alg⟩, 46
⟨napo:at-fin⟩, 45
⟨napo:finat-fin⟩, 46
⟨obs*-colim⟩, 80
⟨obs*-free⟩, 107
⟨obs*-lim⟩, 77
⟨obs*-obs-adj⟩, 72
⟨obs*=conc+finset⟩, 63
⟨obs-closed⟩, 85
⟨obs-conno⟩, 91
⟨obs-coprod⟩, 81
⟨obs-max-elem⟩, 22
⟨obs-nno⟩, 90
⟨obs-prod⟩, 75
⟨obs-sound-complete⟩, 148
⟨obs-zero⟩, 74
⟨obs:cpf**⟩, 29
⟨obsx-turing⟩, 156
⟨pointwise-strong-finobs*⟩, 112
⟨prshf-colim-absolute⟩, 99
⟨prshf-free⟩, 98
⟨rec-colim⟩, 114
⟨rec-term⟩, 119
⟨refl⟩, 42
⟨rel-sound-complete⟩, 147
⟨sep:sys-spc-sys⟩, 34
⟨set-sound-complete⟩, 140
⟨spc-sepsys⟩, 32
⟨spc-sys-spc⟩, 34

⟨split-strong⟩, 113
⟨strong-unfold⟩, 117
⟨subs-nabcpo⟩, 47
⟨syn-arr-compl⟩, 137
⟨syn-arr-sound⟩, 136
⟨syn-eq-compl⟩, 137
⟨syn-eq-sound⟩, 137
⟨syn-equiv⟩, 136
⟨syn-free⟩, 135
⟨syn-mod⟩, 134
⟨syn-obj-compl⟩, 136
⟨syn-obj-sound⟩, 136
⟨sys-dom⟩, 48
⟨sys-spc⟩, 33
⟨trans⟩, 42
⟨tt-bi-beta⟩, 146
⟨tt-bi-comp⟩, 147
⟨tt-bi-elim⟩, 146
⟨tt-bi-eta⟩, 147
⟨tt-bi-in-out-bot⟩, 147
⟨tt-bi-in-out-id⟩, 147
⟨tt-bi-intro⟩, 146
⟨tt-conat-beta⟩, 154
⟨tt-conat-elim⟩, 154
⟨tt-conat-eta⟩, 154
⟨tt-conat-form⟩, 154
⟨tt-conat-intro⟩, 154
⟨tt-empty-beta⟩, 146
⟨tt-empty-elim⟩, 138, 150

174

⟨tt-empty-eta⟩, 138, 150
⟨tt-empty-form⟩, 138, 150
⟨tt-empty-intro⟩, 146, 150
⟨tt-eq-refl⟩, 130
⟨tt-eq-subs⟩, 130
⟨tt-eq-trans⟩, 130
⟨tt-fun-beta⟩, 152
⟨tt-fun-elim⟩, 152
⟨tt-fun-eta⟩, 152
⟨tt-fun-form⟩, 152
⟨tt-fun-intro⟩, 152
⟨tt-nat-beta⟩, 154
⟨tt-nat-elim⟩, 154
⟨tt-nat-eta⟩, 154
⟨tt-nat-form⟩, 154
⟨tt-nat-intro⟩, 154
⟨tt-obs*-kind⟩, 147
⟨tt-obs-kind⟩, 147
⟨tt-obsx*-kind⟩, 150
⟨tt-obsx*-obsx⟩, 150
⟨tt-obsx-kind⟩, 150
⟨tt-pow-beta⟩, 152
⟨tt-pow-elim⟩, 152
⟨tt-pow-eta⟩, 152
⟨tt-pow-form⟩, 152
⟨tt-pow-intro⟩, 152
⟨tt-prod-beta⟩, 151
⟨tt-prod-elim⟩, 151
⟨tt-prod-eta⟩, 151

⟨tt-prod-form⟩, 151
⟨tt-prod-intro⟩, 151
⟨tt-push-beta⟩, 148
⟨tt-push-elim*⟩, 148
⟨tt-push-elim⟩, 148
⟨tt-push-eta⟩, 148
⟨tt-push-form⟩, 148
⟨tt-push-intro⟩, 148
⟨tt-quot-beta⟩, 153
⟨tt-quot-elim⟩, 153
⟨tt-quot-eta⟩, 153
⟨tt-quot-form⟩, 153
⟨tt-quot-intro⟩, 153
⟨tt-rel-kind⟩, 146
⟨tt-rel-obs⟩, 148
⟨tt-set-kind⟩, 138
⟨tt-set-obs*⟩, 148
⟨tt-smash-beta⟩, 151
⟨tt-smash-elim⟩, 151
⟨tt-smash-eta⟩, 151
⟨tt-smash-form⟩, 151
⟨tt-smash-intro⟩, 151
⟨tt-sub-beta⟩, 153
⟨tt-sub-elim⟩, 153
⟨tt-sub-eta⟩, 153
⟨tt-sub-form⟩, 153
⟨tt-sub-intro⟩, 153
⟨tt-subs⟩, 130
⟨tt-sum-beta⟩, 139, 151

175

⟨tt-sum-elim*⟩, 151
⟨tt-sum-elim⟩, 139, 151
⟨tt-sum-eta⟩, 139, 151
⟨tt-sum-form⟩, 139, 151
⟨tt-sum-intro⟩, 139, 151
⟨tt-tt-eq-sym⟩, 130
⟨tt-unit-eta⟩, 150
⟨tt-unit-form⟩, 138, 150
⟨tt-unit-intro⟩, 150
⟨tt-var⟩, 130
⟨ub⟩, 42
⟨unfold-colim⟩, 120
⟨unfold-rec⟩, 117
⟨weak-cont⟩, 37

algebraicity, 43
atom-preservation, 56
atomistic order, 44

bounded-completeness, 44

category of interpretations, 131
category of observation domains, 56
compactness, 30
concrete category, 61
concrete diagram, 102
concrete presheaf, 61
connectedness, 68
consistency, 37
continuity, 36

dcpo, 43
diagram of a presheaf, 67
directed set, 43
domain, 55
domain mapping, 51, 56
domain mapping (alternative), 53
dynamical system, 37

final functor, 68
finite element, 43
FIP (finite intersection property), 27

ideal completion, 24
idempotence, 95
interpretation, 130

models, 133

nuclearity, 45

observation domain, 47
observation filters, 27
observation space, 26
observation system, 22

partial order, 42
presheaf, 58

recursive pushout, 114
representable presheaf, 59

176

Scott-continuity, 54
separation, 25
soundness and completeness, 132
split pushout, 109
strong pushout, 110
strong soundness and completeness,

136

subset system, 21
supremum, 42
syntactic category, 133

tensor product, 82
type theory, 127

unfolding, 116

177

