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Abstract

We study applications of restrictions of homomorphism vectors for finite relational models
in database theory and modal logic. Assume some fixed enumeration (M;);e., of all finite
relational models (up to isomorphism), and let M be some finite relational model. The
left homomorphism vector of M is the countably infinite vector whose i*" entry is the
number of homomorphisms from M; to M. Similarly, the right homomorphism vector of
M is the countably infinite vector whose it entry is the number of homomorphisms from
M to M;. A restriction of a homomorphism vector is a vector obtained by removing some
of the entries.

In particular, we study (right) finite characterizations, which are restrictions of the
right homomorphism vector of a model M to a finite number of entries which characterize
M up to isomorphism. Interpreting the characterized model as a canonical model of
a conjunctive query, a finite characterization can equivalently be seen as a collection of
database instances, where the answers to the query in each instance of the collection under
the bag semantics determine the query up to isomorphism. Given an arbitrary finite model
M, we construct a finite characterization of M containing at most exponentially-many
examples, each of which has domain size bounded by the domain size of M. We also
construct polynomially-large finite characterizations for certain special classes of models.

Additionally, we study which relations preserving different modal languages can be
captured by restricting the left homomorphism vector of labeled transition systems. In
this vein, we show that simulation and graded bisimulation are captured by the restriction
of the left homomorphism vector to the class of directed tree-shaped labeled transition
systems under the Boolean and counting semantics, respectively. We then lift these
results to show that modal languages with backward and global modalities are captured
by the restriction of the left homomorphism vector to appropriate classes of tree-shaped
and directed forest models, respectively. We also show that no relation finer than directed
simulation and coarser than bisimulation can be captured by a restriction of the left
homomorphism vector under the Boolean or the counting semantics.
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Chapter 1

Introduction

Homomorphisms and Homomorphism Vectors

This thesis is primarily concerned with finite model theory, defined in our case as the
study of logical languages interpreted over the class of finite relational structures (or
finite models). The simplest example of such a structure is a directed graph, although in
general we allow relations of arbitrary arity, each corresponding to a particular relation
symbol in our formal language. Between structures of the same signature, there may or
may not exist one or more structure-preserving maps, called homomorphisms (cf. Figure
. A map is structure-preserving if, whenever a tuple of elements in the first structure
occurs in some relation, then the image of that tuple must also occur in the corresponding
relation in the second structure. Homomorphisms need not be injective nor surjective,
and the relations only need to be preserved from the first structure to the second. Thus
homomorphisms generalize isomorphisms, which must be bijective and preserve relations

in both directions.
e ——— @
@)

Figure 1.1: A homomorphism (in red) between two directed graphs.

Given two finite models, a natural question is: does a homomorphism exist between
them? And if so, how many? These are the homomorphism existence and homomorphism
counting problems, respectively. Our primary object of study will be homomorphism
vectors, which encode the answers to the homomorphism counting problem between a
fixed model M and all other finite models. More explicitly, assume some fixed enumeration
(M;)ie., of all finite models. The left homomorphism vector (or left profile) of M is the
countably infinite vector whose i* entry is the number of homomorphisms from M; to M.
Similarly, the right homomorphism vector (or right profile) of M is the countably infinite
vector whose i entry is the number of homomorphisms from M to M;. Note that we use
the terms “homomorphism vector” and “profile” interchangeably. The terms “left” and
“right” indicate whether we are considering homomorphism in to or out of the model M
(cf. figure[L.2).

In our initial presentation, we have defined each entry of a homomorphism vector as
an answer to the homomorphism counting problem. However, homomorphism vectors can
be defined with regard to various “semantics.” In some sense, the most natural semantics
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The left profile The right profile
Figure 1.2: A depiction of the left and right profiles of a model M

is the one in which the counting is done over the domain of the natural numbers. This
is the counting semantics, in which each entry of the vector corresponds to an answer
to an instance of the homomorphism counting problem, as seen above. We could also
define homomorphism vectors in which counting is done over only Boolean values, where
all entries greater than 0 are rounded to 1. This is the Boolean semantics, in which
each entry of the vector corresponds to an answer to an instance of the homomorphism
existence problem. In general, we can count over the elements of an arbitrary semiring.

An immediate question of interest is: what does it mean for two models to have the
same homomorphism vector under some fixed semantics? In the case of the Boolean
semantics, two models have the same homomorphism count vector (either left or right)
if and only if there exist homomorphisms in both directions between them (i.e., they are
homomorphically equivalent) [AKW21]. In the case of the counting semantics, a well-
known theorem of Lovész states that two finite relational models are isomorphic if and
only if their left profiles are identical [Lov67|. Similarly, a theorem of Chaudhuri and Vardi
states that isomorphism between models is also characterized by right profile equivalence
[CV93]. However, one might ask: in order to verify isomorphism between two models,
do we need to check equivalence of the entire right profile, or could we check only a
finite number of entries? If so, how many entries do we need to check? Another natural
question is: which equivalence relations strictly weaker than isomorphism can be captured
by restricting the left profile? Our goal is to shed light on these kinds of questions.

Up to this point, we have discussed our subject matter entirely from the perspective of
finite relational models and morphisms between them. From a technical standpoint, this
is entirely sufficient, and will be our primary perspective throughout the majority of this
thesis. However, the motivation for the questions investigated come from database theory
and process theory. In the case of database theory, this is because database instances and
queries can be represented as finite relational models and logical formulas, respectively.
In the case of process theory, we can view finite-state computational processes as finite
relational models, and we can describe properties of these processes using logical formulas.

Finite Characterizations of Conjunctive Queries

Modern database systems are increasingly large and complex, and the queries posed by
users to these databases have correspondingly grown in size and complexity. As a result,
it can become increasingly difficult for users to write queries with the intended semantic
meaning. Furthermore, users may outsource query-writing to artificial intelligence lan-
guage models to generate a query with a particular meaning described in natural language.
However, it may be difficult to verify correctness of such a query. One solution, given
an Al-generated query, is to automatically generate a finite number of pairs of labeled
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database examples where the label is the answer to ) when it is posed to the database
example. If we can guarantee that any query @’ which produces the same answer as Q
on each database example must be answer-equivalent on all databases, then such a finite
collection of examples could be used to verify the correctness of ). We refer to such a
collection as a finite characterization of Q).

Another application of a finite characterization is in exact learning of queries. This
is a supervised learning context in which the learner maintains a “guess” regarding the
query @ to be learned, updating it iteratively after each example. At each training step,
the guess must be consistent with all examples seen up to that point (i.e., it must return
the labeled answer). In exact learning, the goal is for the learning algorithm to halt, after
some finite number of training examples, with the final guess for the query being exactly
the desired query (up to answer-equivalence). A necessary condition for exact learning to
be possible is that there exists a finite collection of training examples such that any query
@’ which is consistent with the collection must be answer-equivalent to Q. Otherwise,
there will be some non-equivalent query whose answers match @ on all of the training
examples, in which case the algorithm is not guaranteed to halt with the correct query.

In database theory, an important class of database queries are the conjunctive queries,
equivalent to the formulas of first-order logic using only conjunction and existential quan-
tification. Because of this equivalence, the task of a database query language, when
determining an answer to a query in some database instance, is equivalent to determin-
ing the truth value of a logical formula in a finite model M representing the database
instance. In the case of conjunctive queries, this problem turns out to be closely related
to the homomorphism problem. For each conjunctive query @, up to query equivalence,
there exists a unique model M, called the canonical model of @), such that a satisfying
assignment for () in a model N corresponds precisely to an appropriate homomorphism
from M to N. Under the usual semantics of first-order logic, this means that the problem
of determining whether or not a query is satisfied by some tuple in a model reduces to
the homomorphism existence problem.

Most work in database theory assumes set semantics, in which the answer to a query
in a database instance is the set of tuples satisfying the query. In [CV93], Chaudhuri and
Vardi pointed out that this assumption was not applicable in most database languages.
Instead, languages like SQL return multi-sets of tuples satisfying the query, where the
multiplicity of a tuple is the number of assignments witnessing that the tuple satisfies the
query. We refer to this as bag semantics. This extends the usual semantics of first-order
logic for conjunctive queries: the truth value of a formula is not just a Boolean value (i.e.,
an indicator of the existence of a satisfying assignment), but is actually the number of
satisfying assignments. Since satisfying assignments for conjunctive queries correspond
to homomorphisms, this implies that the problem of determining the multiplicity of a
tuple in the answer to a query (under the bag semantics) reduces to the homomorphism
counting problem.

Because of the correspondence between conjunctive queries and finite relational mod-
els, we can define the left and right homomorphism vectors of a conjunctive query as
those of its canonical model. Furthermore, due to the relationship between satisfying as-
signments and homomorphisms, we can now take a different perspective on these vectors.
Suppose @ is a conjunctive query and [ is a database instance which is represented by
the canonical model of (). Under the Boolean semantics, the left profile indicates which
conjunctive queries are satisfied in I, while the right profile indicates which database in-
stances satisfy ). Similarly, under the counting semantics, the left profile indicates the
number of satisfying assignments for each query in I, while the right profile indicates the
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number of satisfying assignments for @) in all other models. This implies that two con-
junctive queries have the same left (or right) profiles if and only if the results of evaluating
those queries on all database instances under the bag semantics are identical.

The right profile of a conjunctive query is particularly interesting, representing the
answers to that query in all database instances. However, this is not particularly useful
from a computational perspective: the right profile is infinite. However, recall our earlier
question: can we characterize a model up to isomorphism by considering only a finite
number of entries of its right profile? Restated in terms of queries and databases, this
question becomes: can we characterize a query up to answer-equivalence (under the bag
semantics) with only a finite collection of labeled examples, where an example is a database
instance, and the associated label is the number of satisfying assignments for the query in
that instance? If so, can we derive bounds on the number and size of the examples needed?
Answering these questions regarding finite characterizations under the bag semantics is
the focus of Chapter 3.

Characterizing Modal Equivalence Relations by Restricting the Left Pro-
file

Lovasz’s theorem states that isomorphism between finite models is captured by left profile
equivalence. It is natural to ask if there are other relations weaker than isomorphism which
can be captured by some restriction of the left profile to a smaller class of structures; as
it turns out, there are interesting results in this area. The most striking results show
that the left profile of an undirected graph restricted to the class of trees characterizes
four seemingly disparate notions from logic, linear algebra, graph theory, and artificial
intelligence (see Section for an overview of these results).

Most of the literature in this area has confined attention to undirected graphs. How-
ever, many other natural structures appearing in computer science applications are not
best modeled by graphs. In particular, labeled transition systems are models with a finite
number of directed binary relations, called actions, as well as a finite number of unary
predicates, called proposition letters. In this setting, elements of the domain of a model
might represent possible states of a computational process. The unary predicates would
then represent properties of a given state, while the binary predicates represent transitions
from one state to another.

In the context of labeled transition systems, isomorphism between structures is not
particularly interesting. Instead, there are more natural notions of process equivalence,
such as simulation, directed simulation, bisimulation, or graded bistimulation. These no-
tions are known to correspond, over the class of finite labeled transition systems, to
invariance of structures over different modal logics. These modal logics are expressive
enough to describe many interesting properties of processes, and are useful due to their
well-known computational qualities. The focus of Chapter 4 is to determine whether or
not these modal equivalence relations can be characterized by restricting the left profiles
of labeled transition systems.
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Preliminaries

2.1 Notation and Basic Definitions for First-Order Logic

In this section, we will establish our notational conventions and basic definitions for first-
order logic (FO). We use o and 7 to denote first-order signatures. Throughout this thesis,
we will confine attention to relational signatures: those with relation symbols, but no
constants or function symbols. We write ¢, 1, x, to denote arbitrary FO-formulas, and
a, B to denote atomic formulas. We will also refer to atomic formulas as facts.

We typically use z;, y;, z; to denote variables and a;, b;, ¢;, d;, m;, n; to denote objects in
models. We write Vars for the set of all variables. We will frequently drop the subscripts on
variables and objects. When working with canonical models (to be defined later), variables
will also appear as elements of models; this will be clear from the context. We denote

We will frequently make the free variables of a formula ¢ explicit by writing ¢(z1,...,zy)
or ¢(T).

We use A, B,C, M, N, T to denote models. Given a o-model M, we write dom(M ) for
the domain of M, and for each relation symbol R € o, we write RM for the interpretation
of Rin M. If (ay,...,a;) € RM, then we say that RM(ay,...,ax) holds, and say that
R(ai,...,a) is a fact of M. We write Facts(M) for the collection of all facts of M, and
Rel(M) for the collection of all possible facts on M. For an arbitrary fact a of a model
M, we write el(a) for the tuple of elements occurring in «, and rel(a) for the relation
symbol occurring in a.

We frequently work with models with distinguished elements. Given a tuple a =
ai,...,an of (not necessarily distinct) elements of M, we write (M, aq,...,ay) or (M,a)
to denote the model M along with distinguished elements aq,...,a,. All elements not
among ai, . . ., a, are non-distinguished elements of (M, ay, ..., ay). In particular, a model
M without designated distinguished elements has only non-distinguished elements. Given
a fixed relational signature o, we write MY for the class of all finite o-models with n
distinguished elements.

If A C dom(M) contains all distinguished elements of (M, a), then we write (A, a) to
denote the submodel of M induced by S (i.e., the model with domain A and relations
restricted to A). When no confusion results, we will also sometimes equate a model with
its domain. We are interested only in finite models over relational signatures; as a result,
we will assume that all models are finite and non-empty unless explicitly stated.

We write M |= ¢ to indicate that the model M satisfies an FO-formula ¢. Given a
formula ¢(x1,...,zx), we write M |= (a1, ..., a) to indicate that the model M satisfies
the formula ¢(z1,...,z;) with the variable assignment x; — a; for 1 < i < k. We will
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write M, g = ¢ to indicate that M satisfies ¢ under the variable assignment g. If M | ¢
whenever M = v, then we write ¢ = . If ¢ = ¢ and ¢ = ¥, we write ¢ = .

Definition 2.1.1. Let (M, @) and (NN, b) be models, where @ = ay ...ay and b = by ... by.

1. A homomorphism from (M, @) to (N,b) is a map h : dom(M) — dom(NN) such that
a; — b; for i <k, and RM(my,...,m,) implies RN (h(m1),...,(m,)) for all n-ary
relation symbols R.

2. An isomorphism from (M, @) to (N,b) is a bijective homomorphism f : dom(M) —
dom(NV) whose inverse is also a homomorphism.

We refer to a homomorphism h : (M,a) — (M,a) as an endomorphism. Let h :
(M,a) — (N,b) be a homomorphism. We say that h is injective when, for all elements
a,b € M, we have that h(a) = h(b) only if a = b. We say that h is surjective when, for
each b € N, there’s some a € M such that h(a) = b. We say that h is fully surjective if it
is surjective and if, for all relation symbols R in the signature, if (b1,...,bz) € RY, then
there exists a tuple (ay,...,ax) € RM such that (h(a1),...,h(az)) = (by,...,bx).

If there exists a homomorphism h : (M,a) — (N,a), then we say that (M,a) homo-
morphically maps to (N,a) (notation: (M,a) — (N,a)). We say that (M,a) and (N,a)
are homomorphically equivalent (notation: (M,a) = (N,a)) if (M,a) — (N,a) and
(N,a) — (M,a). Clearly homomorphic equivalence is symmetric, and the identity map
is an endomorphism on any model. Then because homomorphisms are preserved under
functional composition, we have that homomorphic equivalence constitutes an equiva-
lence relation on models. If there exists an isomorphism f : (M,a) — (N, a), then we say
that (M, @) and (N, @) are isomorphic (notation: (M,a) = (N,a). As with homomorphic
equivalence, isomorphism also induces an equivalence relation on models.

2.2 Conjunctive Queries

The primary type of FO-formula of interest to us is the conjunctive query (CQ), which
is a formula of the form

o1, ... xy) = Jyp . Elym(/\ a;),
i€l

where each «; is an atomic relation, possibly an equality, whose free variables are among
{z1,.. ., Tn, Y1, ., Ym}. We further assume that every CQ satisfies the safety condition,
which requires that every variable which occurs in the formula also occurs in some (non-
equality) atomic relation in the formula. The arity of a conjunctive query is the number
of free variables in the query. We write CQ for the class of all conjunctive queries, and
CQF for the class of all k-ary conjunctive queries.

We define the canonical model of a conjunctive query ¢(x1,...,2,) to be the model
(Mg, x1,...,2,) whose elements are the variables of the query and whose relations are
defined by the atomic formulas of the query. We also take the free variables to be distin-
guished elements of the model. Furthermore, we define the canonical query of a model
(M,ay,...,a,) to be the conjunctive query ¢pr(x1,...,z,) whose free variables corre-
spond to aq, ..., a,, whose bound variables correspond to the number of non-distinguished
elements of the model, and whose facts are those occurring in M, replacing elements of
each fact by the appropriate variables.
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Example 2.2.1. Consider the queries

Y1(z1) := Iy Iy (R(z1,91) A R(y1,y2)), and
Po(z1) = Jy1 (R(w1,y1) A R(y1,71)) -

The canonical models of these queries are (My,,x1) and (My,, 1), depicted below:

1 U1
X1 Y2 r1
(Mduﬂxl)) (M¢2,1‘1))

The canonical model and canonical query constructions are inverses of each other, and
so we have a bijective correspondence between the collection of conjunctive queries and
the collection of finite relational models (up to isomorphism). The following well-known
result creates a correspondence between satisfying assignments to conjunctive queries and
homomorphisms from the canonical model of the query. We include the proof because it
is illustrative of a common theme throughout this thesis.

Lemma 2.2.2 (Magic Lemma, [CV93]). Given a CQ ¢(Z) and a model (M,a), the
following are equivalent:

1. M E ¢(a).

2. There exists a homomorphism h : (M,, =) — (M, a).

Proof.

Let ©(Z) := 3y1 ... Iym(/\;c; @i). For the forward direction, suppose that (M,a) =
©(Z). Let h be some satisfying variable assignment such that h(xz;) = a; for each
a; € a. We claim that h : (M,,Z) — (M, a) is a homomorphism. To see this, consider
some fact o; of (M, T). By construction, o; is a fact of ¢(Z), and so M, h = ;. It
then follows that h is a homomorphism. We argue similarly for the reverse direction,
showing that any homomorphism ¢ : (M,,Z) — (M,a) is an assignment such that
M, g = ¢(7) (and hence M = p(a)). O

Due to the fact that homomorphisms are preserved under composition, the preceding
lemma can be extended further, showing that the existence of a homomorphism between
two canonical models equates to logical implication between the appropriate queries.

Theorem 2.2.3. (Chandra-Merlin Theorem, [CV93]) Given CQs ¢(Z) and v(T), the
following are equivalent:

L 9(@) = ¢ (@).

2. There exists a homomorphism h : (My,T) — (My,T).

Proof.

For the forward direction, suppose that (%) = ¢(z). Clearly M, |= ¢ (T), and so
My, = ¢(z). Then by the magic lemma, there exists a homomorphism h : (M, T) —
(My,T). For the reverse direction, suppose that there exists a homomorphism F :
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(M,,Z) — (My,T), and that N = ¢(a) for some model N. By the magic lemma,
there exists a homomorphism g : (My,Z) — (N,a). Then go h : (M,,Z) — (N,a) is
a homomorphism, and so we have again by the magic lemma that N = ¢(a). O

The following proposition follows immediately from the Chandra-Merlin theorem.
Proposition 2.2.4. Given CQs ¢(T), 9 (T), we have that
o(T) = 9(@) = (My,T) = (My, T).

Example 2.2.5. In light of the magic lemma, we can revisit the structures in example
We can define a homomorphism (My,, 1) = (My,, 1) as follows:

Y1 Y1
561/ Y2 r1
\—/
(My,,21)) (My,, 1))

By the magic lemma, we then have that (My,, z1) |= 11 (x1). However, it’s easy to see that
there is no homomorphism (My,, 1) — (My,,21), and so, again by the magic lemma, we
have that (My,,x1) /= ¢a(x1).

Thus far, we have that the transformation mapping queries to their canonical models
constitutes a one-for-one correspondence between CQs and the class of all finite mod-
els (up to isomorphism). The magic lemma extends this correspondence by relating the
satisfaction of a CQ in a model to the existence of an appropriate homomorphism be-
tween the canonical models. This is further extended by the Chandra-Merlin theorem,
which equates validity (of implication) between two CQs to the existence of homomor-
phisms. The next definition, defined originally for undirected graphs but easily extended
to arbitrary finite models, provides canonical representatives (up to isomorphism) of each
=-equivalence class.

Definition 2.2.6. A core of a model (M,a) is an induced submodel (Cjs,a) of M such
that (Cyr,a) = (M,a) and such that every endomorphism h : (Cpr,a) — (Car,a) is
surjective. If Cyy = M, then we say that (M, a) is a core.

Proposition 2.2.7 ([HN92]). The following are some basic properties of cores:
1. Every finite model has a core.
2. The core of a finite model is unique up to isomorphism.

3. The cores of any two homomorphically equivalent models are isomorphic.

2.3 Semiring Semantics for Conjunctive Queries

We now introduce semiring semantics for conjunctive queries, which generalize the typical
semantics of first-order logic [GKT07].

10
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Definition 2.3.1. A semiring is an algebraic structure (S, +, -, 0, 1), where S is a domain
set, 0 and 1 are constants in S, and + and - are binary operations on S satisfying the
following properties:

l.a+(b+c)=(a+b)+c
2.a+0=0+a=a
3.a+b=b+a

4. a-(b-c)=(a-b)-c

6. a-(b+c)=(a-b)+(a-c)
7. (a+b)-c=(a-c)+(b-¢)
8. a-0=0-a=0

Some important semirings are the Boolean semiring ({0,1},V,A,0,1) and the semir-
ing of the natural numbers (N, +,-,0,1). When no confusion results, we will identify a
semiring (S, +, -, 0, 1) with its domain set S. In particular, we will write B for the Boolean
semiring, and N for the semiring of the natural numbers. To define semiring semantics in
their most general form, we first need an expanded notion of a finite model. Recall that
Rel(M) denotes the collection of all possible facts on the model M over its signature.

Definition 2.3.2. Let S be a semiring. An S-labeled model (or simply S-model) is a
pair (M, ), where M is a finite relational model, and X : Rel(M) — S is called an S-
interpretation (on M), and is required to satisfy that A(R™ (ay, ..., ax)) # 0 for any k-ary
relation symbol R such that R (ay,...,ax) holds, and A(RM (a1, ...,ax)) = 0 otherwise.

In other words, an S-labeled model is one in which each possible fact is assigned some
element (a truth value) in the semiring S, with facts of the model assigned nonzero truth
values, while atomic relations which do not hold in the model are assigned 0. We are now
ready to define semiring semantics.

Definition 2.3.3. Let S be a semiring, and let (M, \) be an S- labeled model. Given
a variable assignment g : Vars — M, the S-semantics are the map 1/( M), :CQ — S
defined recursively as follows:

S

V(M, =

s _ [ i@ =)
(M.2).9 0therw1se

(Mk)g(‘p/\w) VM)\) (o) - (MA)g(w), and

s
V(n),g(F29) - ZVM)\,g:m—m] ©),
aeM

where the notation g[x — a] denotes the assignment which maps = to a and which agrees
with ¢ on all other variables. Note that product operation in the clause for conjunction
is defined by the - operation for .S, while the summation in the clause for existential
quantification is defined by the + operation for S.

11
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It is easy to verify, given a semiring S, an S-model (M, \), and a conjunctive query
o(x1,...,x1), that for any variable assignments g and ¢’ such that g(x;) = ¢'(z;) for each
i < k, we have that

V(SM,A),g(‘P) = V(SM,A),g/(@-

In other words, given a tuple @ = ay, ..., ax, we can use the more concise notation

VEQM,)\) (@(a)) = VESVM,/\),g(QD)a

where g is any variable assignment such that z; — a; for each ¢ < k. Furthermore, observe
that for any finite relational model M and any semiring .S, the following map is a valid
S-labeling:

1 if M E R(a)

0 otherwise.

V%\IM,,\) (R(a)) = {

We refer to this as the trivial labeling. When A is the trivial labeling, we will simplify our
notation, writing
S — S —
v (0(@)) := viagn (0(a)).
We refer to B-semantics as the Boolean semantics. It is worth noting that the trivial

labeling is the only valid B-labeling on any finite relational model M. The following
proposition equates Boolean semantics with the usual semantics of first-order logic.

Proposition 2.3.4. Let M be a model and let A : Rel(M) — B be the trivial labeling.
Then for any tuple ay,...,a; in M and CQ ¢(z1,...,zx), we have that

v (9(@) =1 <= M E ¢(a).

We omit the proof of this proposition because it is developed nearly in parallel to the
following analysis of the N-semantics.

For the N-semantics, which we will prefer to call the counting semantics, we first
consider the special case of an N-labeled model (M, \), where A is the trivial labeling. We
can view such a model as a typical first-order structure, in the sense that

1 if M |= R(@)

0 otherwise.

var(R(@) = {

Let ¢©(T) := 3y1 ... Iym(Nic; i) be a CQ with free variables = x1,...,z; and bound
variables ¥ = y1,...,ym. Let

Since conjunction under N-semantics is interpreted using the - operation, we have that

_ {lﬁMkw@m

N _
b)) =
Vi (¥(@)) 0 otherwise,

where @ = ay,...,a, and b = by, ..., b, are tuples of elements in M. So far, we have not
departed from the typical semantics of first-order logic. However, it is the N-semantics
for the existential quantifier that justify the name “counting semantics.” Since the +
operation in the semiring of the natural numbers is standard addition, we have that

vie@) = > vh(¥(@ b, ..., b))

by bmEM

12
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is the number of satisfying assignments g in M for ¢(x1,...,zx) such that g(x;) = a;
for each ¢ < k. Note that a summation of several 1s under the Boolean semiring simply
yields another 1. As a result, if we were to view A as the B-interpretation on M, then we
would have that v5(p(@)) = 1 if and only if there’s at least one appropriate satisfying
assignment, which justifies Proposition [2.3.4]

More generally, since 1-1 =1 for all semirings S, we have for all semirings S that

_ {1 if M = (a,b)

S _
v a,b)) =
1 (¥(@,)) 0 otherwise,

and thus

varp@) = Y v (@b, b))

b1,....bmEM

We can go further, observing that, by the proof of Lemma each satisfying
assignment g for ¢(T) in a model M such that g(x;) = a; for each i < k corresponds to a
homomorphism from the canonical model (M, ) to (M, @). It follows that 3, (¢(a@)) is
the number of homomorphisms from (M, ) to (M, @), while v3;(»(@)) indicates whether
or not such a homomorphism exists. In most of the later parts of this thesis, we will
assume the trivial labeling, and so the above analysis will hold. Given the relationship
between homomorphism counting and S-semantics, we now define a more convenient
notation for tracking homomorphisms.

b), we write Hom((N,b), (M, a)) for
a). Then we write

Definition 2.3.5. For finite models (M,a) and (N,
the collection of homomorphisms from (N, b) to (M,

homg((N,b), (M,a)) := > lg,
heHom((N.,b),(M,a))
where 1g is the 1 element of S and the summation is defined by the + operation for S.

Then by our preceding discussion, we obtain the following proposition.

Proposition 2.3.6. Let (M,a) and (N, b) be finite models. Then
homs((N,b), (M,a)) := vy (pn(@))-

In particular, we have the following proposition for the special cases of the B-semantics
and N-semantics, which essentially restates the magic lemma and generalizes it to the
counting semantics.

Proposition 2.3.7. Let (M,a) and (N, b) be finite models. Then we have that

homg((N,b), (M,a)) = {1 if Hom((N,b), (M, a)) # 0

0 otherwise,

and
homy((N, 5)7 (M,a)) = \Hom((N,B), (M, @))|.

For finite models (M, @) and (N, b), we will also write Sur((M,a), (N, b)) for the set
of surjective homomorphisms from (M, @) to (N, b), and we will write

sury((M, @), (N, 5)) = |[Sur((M, @), (N7B))|

13
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For arbitrary N-models where A may not be the trivial labeling, the only change to our
analysis is that V%\IM’)\) (Y(a1,...,ak,b1,...,by) becomes the product over all the N-labels
for the facts occurring in the conjunction under the assignment g such that y; — b; for
each i < m. We then sum over this product for all possible tuples b1,...,b, in M to
determine I/?IM7 yw(wla, ... a)). In fact, this more general context applies to any semiring
S: each term of the sum corresponds to a distinct homomorphism, and each term is the
product of the S-labels for the facts of the query for the corresponding assignment.

2.4 Homomorphism Vectors

We now introduce homomorphism vectors, the central concept of this thesis. Fix a fi-
nite relational signature o and some enumeration ((M;,@"));c,, of all finite o-models
with n distinguished elements. Recall that MY, denotes the class of all o-models with n
distinguished elements.

Definition 2.4.1. Let S be a semiring and let (M,a) be an arbitrary o-model with n
distinguished elements. Then the left homomorphism vector of (M, @) under S (or S left
profile of (M,@)) is the countably infinite vector homg(MZ, (M, @)) whose k" entry is
homg ((My, @), (M, a)).

Definition 2.4.2. Let S be a semiring and let (M,a) be an arbitrary o-model with n
distinguished elements. Then the right homomorphism vector of (M,a) under S (or S
right profile of (M,@)) is the countably infinite vector homg (M, MZ) whose k" entry is
homg((M, @), (My,a™)).

The use of M in the notation will be justified when we consider restrictions of
homomorphism vectors.

Remark 2.4.3. We refer to homg(M?, (M,a)) and homp((M,a), M?) as the Boolean
left profile of (M, @) and the Boolean right profile of (M, @), respectively. We refer to
homy(MZ, (M, a)) and homy((M,a), M?) as the counting left profile of (M,@) and the
counting right profile of (M, a), respectively.

It is worth noting, at this point, that we have abstracted away any reference to con-
junctive queries in our notation. However, the correspondence between CQs and finite
relational models, as well as the correspondence between satisfying assignments to CQs
and homomorphisms between canonical models, provide that these vectors are rich in
semantic content. If we knew every entry of, say, the Boolean left profile of a o-model
(M, @) with n distinguished elements, then we would know which n-ary CQs are satisfied
by the tuple @ in M and which are not. Similarly, if we knew the Boolean right profile of
(M, @), then we would know which finite models with n distinguished elements satisfy its
canonical query oy (T).

We will soon see that the Boolean homomorphism vectors capture homomorphic equiv-
alence, while the counting homomorphism vectors capture isomorphism. These were some
of the earliest results on the expressive power of homomorphism vectors. In particular,
these results capture the expressive power of homomorphism vectors with respect to the
class of all finite relational models, M¢. However, we can consider smaller classes, and
ask which relations between models are captured by homomorphism vectors restricted to
that class. To make this notion precise, we need the following definition:

Definition 2.4.4. Let S be a semiring, C be any class of finite relational models with
n distinguished elements, and ((Mjy,,a@));cr be the subsequence of the fixed enumeration

14



Chapter 2 — Preliminaries

((Mp,@))ke,, containing only those models which occur in C. Then, given a finite model
(M, a),

1. the left profile of (M, @) restricted to C (notation: homg(C, (M, a))) is the vector (of
length |I]) whose i entry, for i € I, is homg((My,,a" ), (M,a)), an

2. the right profile of (M a) restricted to C (notation: homg((M, a), )) is the vector
(of length |I]) whose i*" entry, for i € I, is homg((M,a), (My,,@*)).

Definition [2.4.4] justifies the use of M in the notation for Definitions [2.4.1 and [2.4.2]
At a high level, restrictions of homomorphism vectors are the primary focus of our later
chapters. We will now review some of the key known results regarding the expressive
power of homomorphism vectors over M7 .

Theorem 2.4.5. (JAKW21]) For models (M, a) and (N, b), the following are equivalent:
1. (M,a) and (N,b) are homomorphically equivalent.
2. (M, @) and (N,b) have the same Boolean left profile.

3. (M, @) and (N,b) have the same Boolean right profile.

Proof.

To obtain (2) from (1), suppose that (M, @) and (N, b) are homomorphically equiva-
lent. Then there exist homomorphisms h : (M,a) — (N,b) and g : (N,b) — (M, a).
Now consider (My,a*), the k" model of the enumeration. If there’s a 1 in the
k" entry of the Boolean left profile of (M, @), then there’s a homomorphism f :
(My,aM+) — (M, @). Hence ho f : (My,a"*) — (N,b) is a homomorphism, and so
there’s a 1 in the k¥ entry of the Boolean left profile of (N,b) as well. A symmetric
argument establishes that (M, @) and (N,b) must have the same value in each entry
of their Boolean left profiles. A nearly identical argument gives (3) from (1).

To obtain (1) from (2), suppose (M, @) and (N, b) have the same left profile. The
identity maps idys : (M, @) — (M,a) and idy : (N,b) — (N, b) are clearly homomor-
phisms. Furthermore, (M, @) and (N,b) must occur somewhere in the enumeration.
As a result, since (M,a) and (N,b) have homomorphisms to themselves, and they
have the same Boolean left profiles, they must also have homomorphisms to each
other. A similar argument gives (1) from (3). O

The next two theorems state that isomorphism is captured by the counting profiles.

Theorem 2.4.6 (Lovész Theorem, [Lov67]). Two models (M,a) and (N,b) have the
same (counting) left profile if and only if (M, @) = (N, b).

Theorem 2.4.7 (Chaudhuri-Vardi Theorem, [CV93]). Two models (M,a) and (N,b)
have the same (counting) right profile if and only if (M, @) = (N, b).

Definition 2.4.8. Let C be some class of models. We write Inj(C) for the class of models
(N,b) such that there exists some injective homomorphism & : (N,b) — (M, @) for some
(N,b) € C. We write Sur(C) for the class of models (N,b) such that there exists some
fully-surjective homomorphism A : (M,a) — (N,b) for some (N,b) € C. We define the
extension class of C to be Ext(C) := Inj(C) N Sur(C).

Clearly Ext(M?) = M, and so the next theorem generalizes Theorems and
247
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Theorem 2.4.9 (JAKW21]). Let C be a non-empty class of finite structures with n
distinguished elements. For all (M, @), (N,b) € C, the following are equivalent:

1. (M,a) = (N,b);
2. homy(Ext(C), (M,a)) = homy(Ext(C), (N,b));

3. homy((M, @), Ext(C)) = homy((N, 5), Ext(C)).

2.5 Important Classes of Finite Models

In this section, we introduce some important properties of finite models.

Definition 2.5.1. A fact path in a model M is a finite sequence of facts P = fi ... f
with el(fi) Nel(fiy1) # 0 for each i < k. Given a,b € M, we say that P is a fact path
froma tobifa € f; and b € fy.

Given a model M whose signature contains a relation symbol R, we refer to a fact
path containing only facts of R as an RM-path.

Definition 2.5.2. A model M is connected if there’s a fact path between any a,b € M.

An important class of CQs are those which are “acyclic.” To make this notion precise,
we need the following preliminary definitions.

Definition 2.5.3. The incidence graph of a model (M,a) is the (undirected) bipartite
multigraph (V' = dom(M) U Facts(M), E), where (b, f) € E whenever b € M occurs in
f € Facts(M). Note that we allow duplicate edges if an element b occurs more than
once in a fact f. A path in the incidence graph of a model M is a sequence of edges
P = (agp, fo) - .- (ag, fr) such that a; = a;41 or f; = fiy1 for each i < k. P is a simple
path if all of its elements are distinct, and P is a simple cycle if all but its first and last
elements are distinct, and the first and last elements are equivalent.

See Figure for an example of an incidence graph.

Definition 2.5.4. A model is acyclic if there are no simple cycles in its incidence graph,
and c-acyclic if every simple cycle in its incidence graph contains a distinguished element.

4
mo «—— My my fa
bil ) f3 N m3 % f3
2 ma P

m1 m3 my i Ji

[ —

M Incidence graph of M

Figure 2.1: A model M along with its incidence graph.

Observe that the incidence graph of the model M depicted in Figure contains a
simple cycle, and so the model is not acyclic. The incidence graph of any CQ is the
incidence graph of its canonical model, and we call a CQ acyclic (resp. c-acyclic) if its
canonical model is acyclic (resp. c-acyclic).
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0/. 0/.\.
O/ \. \.

Figure 2.2: Example of a forest model.
a
/ N\
[ ] [ ]
/N
[ ]
/N
[ ] o

Figure 2.3: Example of a tree-shaped model (M, a).

Definition 2.5.5. A forest is an acyclic model over a signature with no relation symbols
of arity greater than 2.

Definition 2.5.6. A tree-shaped model is a connected forest with one distinguished ele-
ment.

Figure depicts a forest, while Figure depicts a tree-shaped model. Given a
tree-shaped model (M, a), we refer to a as the root of the model. By acyclicity, there’s a
unique fact path from a to each element m € M, and we define depth(m) to be the length
of this fact path. The depth of (M, a) is max,,cps depth(m). If n is the unique element
occurring with m in the last fact of this path, then we write n = parent(m).

Definition 2.5.7. Given a model M, a binary relation R C M x M, and a,b € M, an
R-directed path from a to b is a sequence (a,c1)(c1,¢2) ... (ck—1,ck)(ck,b) of tuples in R.

Definition 2.5.8. Let R; be a binary relation symbol for each ¢ € I, where [ is a finite
index set. A directed tree with respect to {R; | i € I} is a tree-shaped model (M, a)
such that every element m € M can be reached by an R-directed path from a, where

R = U, Ri.
Figure [2.4] depicts a directed tree.

a
n/
[ ] [
w/ \m
[ ] [
n/\r
[ ] [
Figure 2.4: A directed tree (M, a) with respect to {R; | 1 <14 < 3}.
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Definition 2.5.9. Let (M;, a;) be a directed tree for each i € I, where [ is some finite
index set. Let (M, a) be the model obtained by taking the disjoint union M = ;. M;
and setting a = a; for some i € I. We say that (M, a) is a directed forest.

Proposition 2.5.10. Let (M, a) be a directed tree with respect to {R; | i € I}, and let
(N,b) be an arbitrary model. Then

hom((M,a),(N,0)) =] ]I > hom((M',m),(N',n)),

1€l m:RM (a,m) n:RY (b,n)
where (M',m) and (N’,n) are the subtrees of M and N rooted at m and n, respectively.

Proof.
We will show this by induction of the depth of the directed tree (M, a). For the base

case, a has no successors, and so the result is trivial. For the inductive step, suppose
that (M, a) has depth k + 1, and that

hom((T,c),(N,0) =] ] >~ hom((M’,m),(N',n))

i€l m:RM (e,;m) n:RYN (b,n)

holds for all directed trees (7', c¢) of depth k. Any homomorphism h : (M, a) — (N,b)
must have that h(a) = b. It follows that each subtree rooted at an R;-child m of
a must have its root mapped to some R;-child n of b. Then h restricted M’ is a
homomorphism from (M’,m) to (N’,n). Thus we can choose to map each subtree
rooted at a child of a to any homomorphism from (M’,m) to (N’,n). The total
number of such maps is given by

> hom((M',m),(N',n)).

n:RN (bn)

Thus, choosing without replacement, we have that

hom((M,a),(N,0)) =[] ]I > hom((M',m),(N',n)).

i€l m:RM (a,m) n:RY (b,n)
This completes the proof. ]

The above recursive formula will be useful in Chapter 4.
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Chapter 3

Finite Characterizations of
Database Queries under Bag
Semantics

In database query languages such as SQL, users can pose queries to structured data
stored in database instances. These queries are formal expressions evaluated under some
semantics to determine an answer. Most of the literature on the theory of such queries
has assumed set semantics. Under this assumption, the answer to a query is a collection
of objects (without duplicates) in the database instance satisfying the requirements of the
query. However, in SQL and many other languages, the default setting is to instead return
multi-sets, where objects satisfying a query may appear more than once, representing how
many different ways the objects satisfy the requirements of the query. This is the bag
semantics.

A finite characterization of a query @ is a collection of examples of database instances,
such that any other query @’ which returns the same answer as @ on each of the examples
must also agree with @ on all possible database instances. The problem of finding and
bounding the number of examples needed to finitely characterize a conjunctive query has
been explored under the set semantics [CD22]. In this chapter, we explore these same
problems under the bag semantics.

3.1 Database Theory and Logic

In this section, we will develop the basics of database theory, and justify the sufficiency
of a finite model-theoretic perspective in addressing database-theoretic questions.

The central objects in database theory are database instances and database queries.
A database instance is a finite collection I = (17, ...,T,) of finite two-dimensional tables,
each with an associated name as well as an arity equal to the number of columns in the
table. See Figure for an example of a database instance. The collection of all table
names for a given database instance, along with their associated arities, constitutes a
database schema. The terminology of a “database instance” is justified by the observation
that there might be many instances of the same database schema. Typically, the entries
of a database instance will be some kind of data object, like a string or a number. For our
purposes, we will just refer to these entries as “elements” of the table, and ignore what
type of objects they actually are.
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Family Information Alma Mater
Student | Parent 1 | Parent 2 Student University
Kurt Rudolf Marianne Kurt Vienna University
Lewis Matthew Marta Lewis West, Point
Alvin Cornelius Lettie Alvin Yale University

Figure 3.1: A database instance with two tables.

The active domain of a database instance I, denoted adom([), is the collection of
elements occurring in some table in I. For example, the active domain of the database
instance in Figure [3.1] is the set

{Kurt, Lewis, Alvin, Rudolf, Matthew, Cornelius, Marianne,
Marta, Lettie, Vienna University, West Point, Yale University}.

Given a database instance I = (T3,...,T),), we can define a corresponding finite
relational model M; as follows. The signature of the model will contain a relation symbol
for each table name whose arity is the arity of the table, and the domain of the model
is adom(/). For a given relation symbol R of arity k in the signature, we will say that
RMi(ay, ..., a;) holds if there is a row in the R-table containing the entries a1, ..., ag.
In other words, we view each table as a relation on the active domain, where each row
represents a fact of that relation. Figure depicts this transformation.

R

ajc b—d
b|d =

c|b a>£
d|c

Figure 3.2: A simple translation from a database instance to a finite model.

A query, in the database-theoretic setting, is some function mapping database in-
stances to answers. We additionally require that a query always produces the same
answer on isomorphic database instances (i.e., database instances which are identical up
to a re-ordering of the rows of the tables and a renaming of their entries). Typically,
queries take the form of expressions written in some formal database query language.
The answer to a query written in a formal language (notation: E(I)) is either a collection
of tuples of elements (all of the same length) of the database instance “satisfying” the
query under some database semantics, or otherwise is some semantic value (like “true” or
“false”). If a query returns tuples, then we refer to the length of the tuples as the arity
of the query. The problem of computing the answer to a query in a database instance is
referred to as query evaluation.

There are various database languages in which a query can be written, including the
relational calculus (comparable to first-order logic) and relational algebra (comparable to
SQL syntax). We say that a query @ is expressible in a formal language L if there exists
some expression E in L such that Q(I) = E(I) on all database instances I. We ignore
the details of the syntax and semantics for relational algebra. For our purposes, it suffices
to note that these languages are roughly equally expressive, by the following well-known
result.
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Theorem 3.1.1. (Codd’s Theorem, [Cod71]) Let @ be a k-ary query. Then the following
are equivalent.

1. There is an expression E of the relational calculus such that Q(I) = E(I) for all
database instances I.

2. There is a formula () of the relational algebra (FO) such that Q(I) = {(a € M) |
M; E ¢((a))} for all database instances I.

Note that (2) of the preceding theorem implicitly relies on the assumption that the
formula ¢ is interpreted over the active domain of the database instance. In other words,
to evaluate a query of the relational algebra (and hence of commonly-used languages like
SQL) in a database instance I, it suffices to determine the collection of tuples in M
satisfying an appropriately-constructed FO-formula.

In our previous description of queries, we have been intentionally vague about what
constitutes an answer to a query in a formal database query language. We will now clarify
this point by defining two important database semantics for FO-formulas.

Definition 3.1.2. The set semantics for conjunctive queries of arity k£ in a database
instance I is the map [-]3"* : CQF — P(I*) given by

lo(z1,...,2k) id’“ = {{ay,...,ar) | My = p(ai,...,ax)}.
We write [-]5¢ for the union of these maps for each .

Observe that the set semantics are assumed for query evaluation in Codd’s theorem.
Furthermore, recall that first-order semantics for conjunctive queries are precisely the
Boolean semantics:

Proposition 2.3.4. Let M be a model and let A : Rel(M) — B be the trivial labeling.
Then for any tuple ay,...,a; in M and CQ ¢(z1,...,x), we have that

v (9(@) =1 <= ME ¢(a).

Thus we can equivalently define the map []3** as

[, z)]3™ = {(a1, .. an) | viy, (plar, .. a)) = 1},

Thus far, our development has been predicated upon two (unwarranted) assumptions,
which we will now address. The first assumption is that query evaluation is performed
under the set semantics. However, as was pointed out by Chaudhuri and Vardi in [CV93],
most database query languages (like SQL) do not use set semantics by default. Instead,
the answer to a SQL query is a multi-set, where the multiplicity of a tuple in the answer
is the number of assignments under which the query is satisfied for that tuple. In other
words, the default semantics for most database query languages is as in the following
definition.

Definition 3.1.3. The bag semantics for conjunctive queries of arity k in a database
instance I is the map [ ]2 : CQ* — P(I*) given by
b
[, . a)]2 = {((ar,. . a), ) | 1= vy, (plar, . ag))) > O},

We write [[-]]l}ag for the union of these maps for each k.
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Thus the answer to a CQ ¢(x1, ..., x;) under the bag semantics is a multi-set, where
the multiplicity of a tuple a1, ..., a in the answer is the number of satisfying assignments
for ¢ such that g(x;) = a; for each i < k. It follows that the bag semantics more faithfully
represents the true semantics of database query languages than does the set semantics.

Our second unwarranted assumption is that database instances can be represented
using an appropriately-defined standard finite first-order model. To see that this is not
always the case, recall that the rows of a database instance I determine the facts of the
corresponding finite model M. However, it is allowed in database query languages, and
occurs frequently in actual database instances, that duplicate rows may appear in some
table of the instance. Furthermore, the output of a query might change dependent on the
existence and number of duplicate rows. To preserve all of the information in the table,
we need to extend our translation of database instances.

To do this, given a database instance I, we will augment the standard first-order model
My with a N-interpretation Apz, (cf. Definition to obtain an N-model (M7, Ay, ).
For each a € Facts(My), we define Ay, (o) to be the number of times that the row
corresponding to « occurs in the database table in I. Note that, for the special case in
which I does not have any duplicate rows, the resulting N-interpretation is the trivial
interpretation, which is in concord with our earlier analysis of the counting semantics
for standard first-order models. We will refer to a database instance without duplicate
rows as a set database instance, while a database instance which may have duplicates is
a bag database instance. In particular, we will view set databases as a special case of bag
databases.

3.2 Finite Characterizations

We now turn our attention to the notion of finite characterizations of finite models, which
can be defined with respect to any semiring S. We will focus only on finite characteriza-
tions of the right profile, but the notion can be easily extended to the left profile.

Definition 3.2.1. Let S be a semiring and (M, @) be a finite o-model. A (right) finite
characterization of (M, a) under S is a finite collection ¥ C M such that, for all finite

models (N, b), we have that
homg ((M, @), %) = homg((N,b),¥) <= homg((M,a), M?) = homg((N,b), M?).

We refer to elements of such a set ¥ as ezamples, and we say that two models
(M,a) and (N,b) agree on a model (i.e., an example) (A,¢) if homg((M,a), (A,¢)) =

homg((V,b), (A,¢)). Otherwise, we say that (M,a) and (N,b) are separated by (A,¢).
Given a collection ¥ of models, we say that (M, @) and (IV,b) agree on X if and only
if (M,a) and (N,b) agree on each (A,¢) € ¥. So far, we have described finite charac-
terizations of models; however, we can also speak in terms of finite characterizations of
conjunctive queries, where we define a finite characterization of a CQ ¢(Z) to be a finite
characterization of its canonical model (M, ).

Figure depicts a finite characterization for the two element linear order (Lo, a),
where the first element of the order is a distinguished element of the model. Any model
which agrees with (Lg,a) on the first example must have the same domain size. The next
four examples, as we will see in the proof of Theorem separate any model (N, b)
with a different counting right profile than (L, a) such that |[dom(N)| = |dom(Lq)|. It
then follows by the Chaudhuri-Vardi theorem that any model which agrees with (Lg,a)
on the entire collection of examples is isomorphic to (Lg,a).
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Figure 3.3: A finite characterization under the counting semantics for the two-element
linear order (L9, a) with the first element of the order as a distinguished element.

Manilla and R&dih& were the first to explore characterizing a database query @ by
giving examples of database instances [MR89]. In their setting, they were interested in
finding a single database instance I such that any query @’ which returned the same
answer as ) in I must be equivalent (under the set semantics) to @. The use of database
instances is noteworthy, since the answer under the set semantics for a database instance
I is any tuple of elements from I which satisfy the query, and so their examples have
the form (I, [[Q}]fet), where I is a database instance. This would be equivalent, in our
setting, to using a collection of the form {(M,a) | @ € M;} for some database instance [
as a finite characterization under the Boolean semantics of (). In other words, their single
database instance I with active domain of size n translates in our context to a collection
of (})-many models (i.e., to O(n¥)-many examples).

This work was extended by Bottcher et. al. to the bag semantics [BLZ14|, with
attention confined to a very restricted class of queries. Say that a query is self-join free if
it contains at most one occurrence of each relation symbol in the signature. In [BLZ14], the
authors were interested in giving a single database instance which distinguished a self-join
free query from any other non-equivalent self-join free query over the same signature. It is
worth noting, in this case, that this restriction means that the query to be characterized
needs only to be distinguished from finitely many other queries. Furthermore, following
Manilla and Réihé, they were interested in the full answer to the query under the bag
semantics, and so their single example has the form (I, [Q] I}ag ) and corresponds to a finite
characterization of polynomially-many examples. The last notable difference is that the
authors permitted the use of constants.

We seek a strictly more general setting than that of Bottcher et. al. Our examples
are models (M, ay,...,ax) with distinguished elements matching the arity of the query to
be characterized. Our labels are implicit, corresponding to the multiplicity of the tuple
ai,...,a in the answer to the query in M, rather than the full answer to the query in M.
However, this distinction is not significant, since the existence of a characterizing set 3 of
examples of size n of our form for a query () implies the existence of a characterizing set
S of labeled database examples of size n of the form (I, Q(I)). To see this, consider S =
{(I,Q(I)) | (My,a) € X}. Furthermore, we want to characterize arbitrary conjunctive
queries relative to all other conjunctive queries. As a consequence, it is not immediately
obvious that a finite characterization should exist at all. Finally, we will study finite
characterizations of queries without constants and briefly state how to extend our results
to queries containing constants.

By Theorem two finite models have the same Boolean right profile if and only if
they are homomorphically equivalent. By Proposition [2.2.4] two conjunctives queries are
equivalent if and only if their canonical models are homomorphically equivalent. Thus a
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finite characterization of (M, @) under B is a finite set ¥ C MY such that

(M, @) and (N,b) agree on each A € ¥ <= (M, a) and (INV,b) have the same Boolean
right profile
<= (M,a) = (N,b)

<~ QM = PN-

Suppose that ¥ is a finite characterization under B of a conjunctive query ¢(Z). Then
any query 1(z) whose canonical model agrees with (M, Z) on all examples in ¥ is satisfied
by all and only tuples ¢ in a model A at which ¢(Z) is satisfied. We claim that, when
posed to a database instance I under the set semantics, ¢(Z) and 1 (Z) always return the
same answers. 1o see this, simply observe that for any model A, we have

ce Al AR (@)} = fce A| A (@),
Then directly from the definition of the set semantics, we obtain the following proposition.

Proposition 3.2.2. Let X be a finite characterization under B of a conjunctive query
©(T). Then for any conjunctive query 9 (Z), we have that

le@]" = [v@)]
for all set database instances I if and only if (M, 7) and (N, T) agree on X.
Finite characterizations under B are characterized by the following theorem.

Theorem 3.2.3 ([CD22]). A model has a finite characterization under B if and only if
its core is c-acyclic. Furthermore, c-acyclic queries have polynomially-large finite charac-
terizations.

What about under the bag semantics? We will refer to a finite characterization under
N as a counting finite characterization. Let’s now suppose that ¥ is a counting finite
characterization of a model (M, @). Then we have by Theorem that

(M,a) and (N, b) agree on each A € ¥ <= (M, @) and (IV,b) have the same counting
right profile
< (M,a) = (N,b).

Since (M, @) and (N, b) have the same counting right profiles, it follows that ¢/ (Z) and
©n(Z) have the same number of satisfying assignments in any model B. This implies
that the multiplicity of a tuple @ € B in the answer to ¢(T) equals its multiplicity in
the answer to ¢n(%). In other words, when posed to a set database I under the bag
semantics, pps and pn always return the same answers.

What about for arbitrary bag database instances? We have defined finite character-
izations to be collections of finite models of first order logic. However, we saw in the
preceding section that bag databases are modeled using N-models. It is then natural to
ask: do ¢ (T) and N (T) always return the same answer on any bag database?

The answer to this question is yes. To see why, we need only look at the canonical
query construction and the N-semantics (cf. Definition . By the canonical query
construction, it’s easy to see that ¢js and @y are the same conjunctive query, up to a
reordering of the atomic facts and a renaming of the variables; in database theoretic terms,
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they are isomorphic. It then follows from our analysis of the N-semantics for arbitrary
N-labeled models that

vi(pm (@) = vi(on (@)

for any tuple @ in an N-labeled model (A4, \). Thus we obtain the following proposition.

Proposition 3.2.4. Let ¢(T) be a conjunctive query with a finite characterization ¥
(under the counting semantics). Then for any conjunctive query (%), we have that

[e@)]7 = [L@1}*
for all database instances I if and only if (M, Z) and (My,T) agree on X.

This proposition shows that our finite characterizations, defined only in terms of
standard finite models, are sufficient to capture equivalence of queries under the bag
semantics.

3.3 Finite Characterizations for Arbitrary Models

Fix some arbitrary relational signature ¢. In this section, we prove that every o-model
with k£ distinguished elements has a finite characterization under the counting semantics.
In particular, we provide an upper bound of the size of such finite characterizations —
exponential in the domain size of the model. The first step of our construction is to argue
that we can confine attention to models of the same size. We do this with two lemmas.

Lemma 3.3.1. There exists a collection I', of models such that, for any o-models (M, a)

and (N,b) with @ = ay,...,a, and b = by, ..., by, if (M, @) and (N,b) agree on I',, then
a; = a; if and only if b; = b; ()
holds for all 4,5 < k.

Proof.
For any partition P of the set [k], we can define a o-model (Xp,c") with ¢ =
... cl as follows. Every element of dom(Xp) will be a distinguished element,

and the model will satisfy that

1 and j occur in the same set in P if and only if CZP = cf .

The facts of the model will be all possible facts on its domain. Define
I'y = {(XP,EP) | P is a partition of [k]}.

Since homomorphisms must preserve distinguished elements, it follows easily that for
any o-model (M,a) with @ = ay,...,a, we have that homy((M,a), (Xp,e")) > 0
implies

P_ P

i —Cj — a; = aj.

Consider the partition PM such that i and j occur in the same set in PM if and only
if a; = a;. This is clearly the finest partition P to which homy((M,a), (Xp,e")) > 0.
Furthermore, homy((M,a), (Xpr,e")) > 0 for any partition P’ coarser than P. Note
that this analysis also holds for all other o-models with k distinguished elements, and
so any such model which agrees with (M,a) on I', satisfies (t) for all 7,5 < k. O
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It is worth noting that, given a fixed signature, the size of the collection of models in
Lemma depends only on the fixed number of distinguished elements &, and hence is
constant in the size of the domain of the model. Additionally, it follows that any models
which agree on I', must have exactly the same number of distinct distinguished elements.
The next lemma will allow us to also count the non-distinguished elements of o-models.

Lemma 3.3.2. There exists a o-model (Xs,0) with € = ¢1,..., ¢, such that, for any
o-models (M, @) and (N,b) with@ = ay,...,ar and b= by, ..., by, if (M, @) and (N,b) do
not have the same number of distinct non-distinguished elements, then (M, a) and (N, b)

are separated by (X,,¢).

Proof.

Define (X,,¢) as follows. The domain of the model will have two elements, d; and
dy. We set ¢; = dyi for each i < k. The facts of the model will be all possible facts
over its domain. Let (M, a) be any model, and define

n=|{m € dom(M) | m # a; for any i < k}|.

In other words, n is the number of non-distinguished elements of (M,a). Clearly,
any map h : dom(M) — dom(X,) such that a; — d; for each ¢ < k is a homomor-
phism. To count the number of such maps, we can observe that any non-distinguished
elements of (M, a) can be mapped freely to either element of (X,,¢). It follows that

homy((M,a), (Xs,¢)) = 2".

In particular, (M,a@) has exactly n-many non-distinguished elements. Since this
analysis also holds for any other o-model, we have that any (NN, b) with b = by, ..., by
which agrees with (M, @) on (X,,¢) must have the same number of non-distinguished
elements. O

It follows from Lemma and Lemma that whenever o-models (M, a) and
(N, b) agree on all examples of I', U {(X,,¢)}, we must have that |dom(M)| = |[dom(N)|.
Recall now that our goal is, given a model (M, @), to provide a collection of examples ¥
such that any model (N, b) which agrees with (M, @) on ¥ must be isomorphic to (M, a).

We begin with a naive, non-constructive argument which makes use of the Chaudhuri-
Vardi theorem (Theorem . We can start our finite characterization for a o-model
(M, @) with the collection I'; U{ X, ¢}. By the preceding two lemmas, all o-models which
do not have domain size |dom(M )| are separated by this collection. Hence we need only
to ensure that all non-isomorphic o-models with domain size |dom(M)| (of which there
are finitely many) are separated by some example in our finite characterization. By the
Chaudhuri-Vardi theorem, we know that any (IV,b) which is not isomorphic to (M, @)
must disagree on the k' entry of their right profiles for some k& € N. For each such
model, we can add the model (My,@*) to our collection. It follows that any model not
isomorphic to (M, a) is separated from (M, @) by some example in the collection, and so
it is a finite characterization of (M, a).

The argument in the preceding paragraph has several undesirable qualities. The
first is that its use of the Chaudhuri-Vardi theorem to find separating examples is non-
constructive, and so it is not clear how we would compute such a finite characterization
in practice. The second issue is that we have no way of bounding the size of these non-
constructively produced examples. We know that they exist, but it could be that they
have a domain significantly larger than |dom(M)|. Finally, given a signature o whose
maximum-arity relation symbol has arity k, the number of o-models of size n is O(2"").
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We will now refine our argument to address these issues, providing a finite character-
ization ¥ for an arbitrary finite model (M, @) which is constructive, contains only models
of domain size at most |[dom(M)|, and has a total size of O(29°™(M)) " To this end, we
will construct ¥ first by including (X,,¢) and ', to enforce that any model (N, b) which
agrees with (M,a) on ¥ has domain size |[dom(M)|. Then we will include examples to
ensure that any non-isomorphic o-model of size [dom(M)]| is separated by some example
in ¥. It follows that ¥ is a finite characterization of (M,@). To do this, we first need the
following technical lemma.

Lemma 3.3.3. Let (M,a), (N,b), and (A,¢) be o-models with @ = ay,...,ax, b =
bi,....bg, and € = c1,...,cp. If g € Surn((M,@),(N,b)) and h; : (N,b) — (A,e) is
distinct for each i < n, then h;og: (M,a) — (A,¢) is a distinct homomorphism for each
1 < n.

Proof.

Suppose that g € Sury((M, @), (N,b)) and h; : (N,a) — (A,a) is distinct for each
¢ < n, and suppose for a contradiction that there exists h;, hy, for distinct j, k& < n such
that hjog = hiog. Then for each m € dom(M), we have that h;og(m) = hyog(m).
Let n € dom(N) be arbitrary. Then since g is surjective, there’s some m € dom(M)
such that g(m) = n. Thus h;(n) = hj o g(m) = hy o g(m) = hg(n). Therefore,
hj = hy, which is a contradiction. ]

The next definition provides useful collections of o-models that we will use to build
our finite characterizations.

Definition 3.3.4. For any o-model (M, a) with @ = ay, ..., ax, we define

1. F~1((M,a)) to be the collection of o-models obtained by removing one fact from
(M, a);

2. Sub((M,a)) to be the collection of induced submodels of (M, a);

3. S™Me((M,a)) to be the collection of induced submodels of (M,a) of domain size
|dom(M)| — 1.

The next two lemmas will show how to use various examples, or collections of examples,
to separate any non-isomorphic models (M, @) and (N, b) of the same domain size.

Lemma 3.3.5. Let (M,a) and (N, b) be non-isomorphic o-models with @ = a1,...,ay
and b = by, ..., b, and suppose that [dom(M)| = |dom(N)|. If sury((N,b), (M, a)) # 0,
then (M,a) and (NV,b) are separated by some (A,a) € F~1((M,a)).

Proof.
Suppose that sury((N,b), (M,a)) # 0, and let g : (N,b) — (M, @) be a surjective
homomorphism. Since |dom(M)| = |[dom(N)|, we have that g is also injective, and so

|[Facts(IV)| < |Facts(M)|. If |Facts(N)| = |Facts(M)|, then g would be fully surjec-
tive (and hence an isomorphism). Then because we know that (M,a) % (N, b), the
inequality must be strict: |Facts(NV)| < |Facts(M)|. This implies that an isomorphic
copy of (N,b) can be obtained by removing facts from (M, @). Consequently, there
exists some (A,@) € F~1((M,a)) such that g can also be seen as a surjective homo-
morphism from (N, b) to (A,a). However, since (A, @) has fewer facts than (M, a), we
have that sury((M,a), (A,a)) = 0. Let Homn((M,a), (A,a)) = {h1,...,hr}. Then
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by applying Lemma we have that S = {h;og | i < k} is a set of k distinct

homomorphisms, none of which are surjective. Hence

homy((N,b), (A,a)) > k+ 1 > homn((M, a), (4,a)),
which completes the proof. O

Lemma 3.3.6. Let (M,a) and (V,b) be non-isomorphic o-models with @ = ay, ..., ay
and b = by,...,bg, and suppose that [dom(M)| = |[dom(N)|. If surn((N,b), (M,a)) = 0,
then (M,a) and (N, b) are separated by some (A, a) € Sub((M,a)).

Proof.

Suppose that sury((N,b), (M, a)) = 0. We want to show that (M, @) and (N,b) are
separated by at least one element of Sub((M,a)), possibly (M, a) itself. To this end,
suppose that (M, @) and (N, b) are not separated by any proper substructure (A, a)
of (M,a). In other words,

homy((M, @), (A,@)) = homy((N,b), (4,a))

for each (A,a) € Sub((M,a)) \ {(M,a)}. We will now argue that (M, @) and (N, b)
are separated by (M,a). First, we observe that, for any o-models (C,¢) and (A, a),
we have that

hOHlN((C, E)) (A¢a)) = Z SUI'N((C, E)? (Alva))
(A’ a)eSub((A,a))

- > surn((C, ), (4',@))

(A’ @) Sub((A,a)\{Aa}
+ surn((C, ), (4,a)). (1)

Consider the following claim.

Claim: For each (A,a) € Sub((M,a)) \ {(M,a)}, we have that
sury((M,a), (A,a)) = surn((N,b), (A, @)).

Proof.

We proceed by induction on |dom(A)|. For the base case, [dom(A)| = 1, and so
every homomorphism into (A, @) must be surjective. Thus, by the assumption
that

homN((Ma a)a (A,E)) = homN((N7 b)a (A,E)),

we have that B
sury((M,a), (A,a)) = surn((N, b), (A, a)).

For the inductive step, suppose that
sury((M, @), (A',@)) = sury((N,b), (A", a))

for all (A’,@) € Sub((M,a)) such that |dom(A’)| < |[dom(A)|. Then, in particu-
lar, since

Sub((A,a)) C Sub((M,a)),
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we have that ~
surn((M,a), (A',a)) = sury((NV, b), (4’,a))

for each (A4’,a) € Sub((A,@)). Then since we have that
homy((M,a), (4,@)) = homn((N, b), (4,a)),

we can conclude by (1) and the inductive hypothesis that

SllI‘N((M, a)a (Aaa)) = SUI‘N<(N, b)7 (Ava»
This completes the inductive step, proving the claim. O

From the claim, we can conclude that

> sury((M, @), (A,a)) = > sury((N, D), (A, a)).

(A@)eSub((M,a))\{(M,a)} (A@)eSub((M,a))\{(M,a)}

Then since (M, @) also has the surjective homomorphism id : (M,a) — (M, @), while
by assumption sur((N, b), (M, @)) = 0, we conclude by (f) that homn((M,a), (M, a@)) >

k+1 > homy(((V,b),b),(M,a)), and so (M, a) and (N, b) are separated by (M,a).
O

We are now ready to prove our main result.

Theorem 3.3.7. Every o-model (M, @) can be finitely characterized with O(2/4°m(M)l)
examples, where the domain size of each example is at most |[dom(M)].

Proof.
Fix some o-model (M, a), and define

Y((M,a)) := {(X,,6)} UT, U F~Y((M,a@)) U Sub((M,a)).

We observed earlier that {(X,,¢)} UTI', has a size that is constant in |dom(M)].
Since |Facts(M)| is polynomial in |dom(M)|, we have that F~!((M,a)) is polyno-
mial in |dom(M)|, and since Sub((M,a@)) < 219l we obtain that |X((M,a))| =
O(2ldem()y - To see that X((M,a)) is a finite characterization of (M, @), fix an ar-
bitrary o-model (N,b) which is not isomorphic to (M,@). If [dom(M)| # |[dom(N)|,
then by Lemmasand (M,a) and (N, b) are separated by either (X,,¢) or
some (Xp,e’) € T',. Now suppose |dom(M)| = |dom(N)|, and distinguish cases:

1. If sury((N,b), (M,@)) # 0, then (M, @) and (N, b) are separated by some (A, @) €
F~Y((M,a)) (Lemma [3.3.5).

2. If sury((N,b), (M,@)) = 0, then (M, @) and (N, b) are separated by some (A, @) €
Sub((M,a)) (Lemma [3.3.6]).

Thus every non-isomorphic o-model (N, b) is separated from (M, a) by some example
in X((M,a)). Therefore, ¥((M,a)) is a finite characterization of (M, a). O

Theorem 3.3.7] provides an explicit construction, for any model (M, a), of a set ((M,a))
which contains a separating example for any non-isomorphic o-model. This implies that
any non-isomorphic o-models must disagree on some entry of their counting right profiles.
In particular, this construction constitutes an alternative proof of the Chaudhuri-Vardi
theorem.

29



Chapter 3 — Finite Characterizations of Database Queries under Bag Semantics

We will now briefly explain how these results can be extended to hold for queries whose
signature contains some finite number of constants. Let (M, @) be the canonical model of
the query to be characterized. First, observe that our treatment of distinguished elements
is very similar to constants: we require that they be preserved by homomorphisms. Then
we can construct a set S analogous to the construction of I', which enforces that equalities
between interpretations of constants hold in a model which agrees with (M, @) on S if and
only if those same equalities hold in (M,@). Aside from this, the only other significant
change is that we must define induced submodels to always contain all interpretations of
constants. The remainder of the upper bound proof remains the same. It follows that
our setting is strictly more general than that of Bottcher et. al.

An additional point worthy of mention is the complexity of enumerating the finite
characterization in Theorem Each model in the characterization for (M,@) has
domain size at most the size of dom(M). Furthermore, we claim that we can compute
the examples using linear space and exponential time. That we can do this for (X,,¢)
and T, is clear. We can also do this in the case of F~1((M,@)) by removing one fact at a
time, while in the case of Sub((M,a)) we need only to traverse the power set of dom(M)
in a fixed order.

3.4 Finite Characterizations for Restricted Classes

In this section, we will establish the existence of even smaller finite characterizations for
more restricted classes of o-models, where ¢ is an arbitrary finite relational signature.
To begin, first note that, in the construction of ¥((M,a)) in Theorem the source
of the exponential size in general of the finite characterization is due to the inclusion
of Sub((M,a)). However, it’s worth noting that many classes of models do not have
exponentially-many induced submodels. Hence we obtain the following result.

Corollary 3.4.1. Let C be any class of o-models such that the number of non-isomorphic
induced submodels of each model with domain size n in C is O(n*) for some fixed k.
Then there exist finite characterizations of the models in C which are bounded by some
polynomial in the domain size of the models.

For an example of a class satisfying the requirements of Corollary consider the
class of cliques with self-loops. In other words, the collection of all 7-models (M, a), with
RM(m,n) for each m,n € dom(M), where T is a signature containing only one binary
relation R. Each model of this class has at most one submodel (up to isomorphism) of
each cardinality smaller than dom(M), and so |Sub(M)| = O(|dom(M)|).

We can also prove better bounds on the size of finite characterizations for cores. Recall
that a core is a model with only surjective endomorphisms. Many important classes of
models are cores, including linear orders, cliques (without self-loops), and directed cycles.
Below, we show that each model in the class of cores has a finite characterization whose
size is polynomial in the domain size of the model.

Theorem 3.4.2. Any o-model (M, @) which is a core can be finitely characterized with
O(|dom(M)|**) examples, where k, denotes the maximum arity of any relation symbol
in o.

Proof.
Let (M,a) be a o-model, and define

A((M,a)) = {(X,,2),(M,a)} UT, U F~Y((M,a)) U 8™ ((M,a)).
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We claim that A((M,a)) is a finite characterization of (M,a); since the size of
A((M,a)) is dominated by |F~1((M,a@))| = O(|dom(M)|*<), the result follows. Let
N, b) be any model which agrees with (M, @) on A((M,a)). By Lemmas and
3.3.2 since (M,a) and (N, b) agree on (X,,¢) and Iy, we have that M and N have
the same domain size. Since (M, a), as a core, has no non-surjective endomorphisms,
we conclude that homy((M,a), (B,a)) = 0 for all (B,a) € S™*((M,a)), and hence
homn((N, b), (B,a@)) = 0 for all (B,a) € S™%((M,a)). Thus every homomorphism
from (N, b) to (M, @) must be surjective.

Let h : (N,b) — (Cp,b) be any homomorphism, which by the definition of cores
must be surjective. Note that no non-surjective homomorphism A’ : (Cy,b) — (M, a)
can exist (otherwise, ' o h : (N,b) — (M, @) would be a non-surjective homomor-
phism). Thus for any homomorphism & : (N,b) — (M,a), we have that the map
h | dom(Cy) : (Cy,b) — (M, @), which is also a homomorphism, must be surjective.
Hence |[dom(N)| = |dom(M)| < |dom(Cy)|, and so dom(N) = dom(Cy), which
implies that (N, b) is a core.

Since |dom(M)| = |dom(N)| and (N,b) has a surjective homomorphism to (M,a),
it follows that |Facts(N)| < |Facts(M)|. If |Facts(N)| < |Facts(M)|, then there’s
a homomorphism g : (N,b) — (A,a) for some (A,@) € F~1((M,a)). Then because
(M,a) and (N,b) agree on every example in F~1((M,@)), there’s some homomor-
phism f : (M,a) — (A,a). Since f can also be seen as a homomorphism from (M, @)
to itself, we conclude that f must be surjective. Hence we have that (M,a) has at
most as many facts as (4, @), contradicting the definition of (A4, a). Thus (N, b) must

have the same number of facts as (M, a), and so (N,b) = (M, a). O

3.5 Conclusion

Recall that our initial motivation for studying finite characterizations of models was to
obtain characterizations of conjunctive queries up to answer-equivalence under the bag se-
mantics. By the correspondence between finite relational models and conjunctive queries,
we have succeeded in this regard. Phrased in database theoretic terms, the results of
this chapter imply that, for any conjunctive query @, we can find a finite collection of
labeled database examples such that any query @’ which fits all of the labels on each
example is answer-equivalent to () under the bag semantics. These finite collections can
be computed in exponential time in general, and in polynomial time in certain special
cases. In particular, we were interested in computing characterizing examples for use in
debugging, allowing users to verify correctness of complex queries; given the query @), our
constructions are all enumerable and permit this application. Furthermore, our proof of
the existence of finite characterizations shows that a necessary condition for exact learning
of conjunctive queries under the counting semantics holds.

In finite model-theoretic terms, we have provided exponentially-large constructions
of finite characterizations for arbitrary models and polynomially-large constructions for
some special cases of models, where all examples are bounded by the domain size of the
characterized model. These constructions only provide upper bounds on the size of finite
characterizations, and we leave open the question of whether or not we could make do with
less. In particular, the problem of determining a tight lower bound on the size of finite
characterizations in the general case appears to be combinatorially difficult. We are also
interested in whether or not c-acyclic conjunctive queries can be finitely characterized
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under the counting semantics with only polynomially-many examples, as they can be
under the Boolean semantics.

Finite characterizations can be seen within the larger context of right query algorithms.
A right query algorithm for a class of conjunctive queries takes as input a query and
poses that query to a sequence of examples, determining membership of the query in the
class based on the answers. In an adaptive right-query algorithm, later examples in the
sequence are allowed to be conditioned on the answers to earlier examples. These were
studied in [CFLX22] under the counting semantics for the class of undirected graphs.
In a non-adaptive right-query algorithm, the sequence of examples is fixed in advance.
In [CDKW23|, ten Cate et. al. expanded the notion of query algorithms under the
counting semantics to arbitrary semiring semantics. Under the counting semantics, a finite
characterization can then be seen as providing a non-adaptive right-query algorithm which
determines membership in the class of models isomorphic to the characterized model.
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Chapter 4

Left-Homomorphism Vectors and
Modal Relations

Lovéasz’s Theorem (Theorem provides that equivalence of the counting left profile
captures isomorphism between finite models. A natural follow-up question is to ask:
which equivalence relations between finite models (coarser than isomorphism) can be
captured by an appropriate restriction of the left profile? In this chapter, we explore this
question for the natural model-theoretic relations arising in process theory and modal
logic, namely, simulation, directed simulation, bisimulation, and graded bisimulation.

4.1 Characterizing Equivalence Relations with Restricted
Left Profiles

Lovasz’s theorem grew out of the study of a fundamental computational problem in graph
and complexity theory: the (undirected) graph isomorphism problem. This problem is
significant because it is not known to be solvable in polynomial time, but is also not
known to be NP-complete. In fact, recent work by Babai has shown that the problem
can be resolved in quasipolynomial time [Babl6], and it is considered to be a potential
member of the conjectured class of NP-intermediate problems, which exist if and only
if P # NP. Due to the relatively high running time of known exact algorithms for
the graph isomorphism problem, and the difficulty in determining a lower bound on its
complexity, researchers have developed many heuristic algorithms that have found much
use in practice. One such algorithm is the color-refinement algorithm, which can very
quickly distinguish many (but not all) non-isomorphic graphs.

The study of restrictions of the left homomorphism vector was initiated by Dvordk,
who showed that two undirected graphs have the same left profile restricted to trees if
and only if they are indistinguishable by the color-refinement algorithm [DvolQ]. This
result, later proven independently by Dell et. al. [DGRI1S], is analogous to that of Lovész:
rather than characterizing isomorphism with left profile equivalence over the class of all
structures, it characterizes indistinguishability by the color-refinement algorithm with left
profile equivalence over the class of trees. In fact, Dvoidk and Dell et. al. provided a more
general result: the left profile restricted to graphs of tree width k captures indistinguisha-
bility by the k-dimensional Weisfeiler-Leman (WL) method, where the color-refinement
algorithm is the special case of the k-dimensional WL method for k£ = 1.

This is not the end of the story: there are other ways to characterize classes of graphs
indistinguishable by the color refinement algorithm. Given two graphs with adjacency
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matrices A and B, an isomorphism between them can be interpreted as a permutation
matrix X such that AX = B. When we drop the requirement that X contain only binary
values, allowing instead positive rational number entries such that each column and row
sums to 1, then we say that X is a fractional isomorphism. The existence of a fractional
isomorphism between two graphs is strictly weaker than the existence of an isomorphism,
and so induces a less-refined equivalence relation on the class of all graphs. Fractional
isomorphisms are an inherently linear algebraic notion, and yet it has also been shown
that two graphs are indistinguishable by the color-refinement algorithm if and only if a
fractional isomorphism exists between their adjacency matrices [Tin86, [Tin91].

In logic, the two-variable fragment (FO?) is the fragment of first-order logic in which
only two variable are allowed. An important extension of this language is the two-variable
fragment with counting quantifiers (C?), which contains quantifiers of the form 32* such
that 32*2¢(x) asserts the existence of at least k elements satisfying ¢(x). The logic C?
is important because its satisfiability problem is decidable, unlike that of full first-order
logic. In addition, a theorem of Cai et. al. shows that two graphs are invariant under C?
(satisfying the same formulas) if and only if they are indistinguishable by the the color-
refinement algorithm [CFI92|. In fact, they show that two graphs are invariant under the
k-variable fragment with counting quantifiers (C*), which naturally generalizes C2, if and
only if they are distinguishable by the (k — 1)-dimensional WL method (for k£ > 2).

Finally, in artificial intelligence, graph neural networks (GNNs) are a type of machine
learning architecture, represented using graphs, which have found applications in areas
such as bioinformatics, web analysis, and natural language processing. In [MRFT19],
Morris et. al. showed that the power of GNNs to distinguish non-isomorphic graphs is
precisely the same as that of the color-refinement algorithm. Inspired by the observation
that C2 and the color-refinement algorithm can be lifted to C* and the k-dimensional WL
method, respectively, the authors proposed a natural generalization of GNNs, which they
call k-dimensional GNNs. They showed that these k-dimensional GNNs can distinguish
non-isomorphic graphs with the same expressive power as the k-dimensional WL method.

We have now seen that several seemingly distinct notions — the color-refinement al-
gorithm from graph theory, fractional isomorphism from linear algebra, the two-variable
fragment with counting quantifiers from logic, and graph neural networks from machine
learning — all induce the same equivalence class on the class of undirected graphs. Fur-
thermore, they are all undergirded by the same phenomenon: the expressive power of
homomorphism vectors restricted to a particular class of graphs. These results, as well
as some others found in the literature, are depicted in Figure [4.1

Invariance Relation Restriction Citation
Color-refinement indistinguishability [Dvol0l DGRIS]
Fractional isomorphism Tin&6, Tin91
C? equivalen(i homy(T, &) | [CFI92] |
GNN indistinguishability IMRET19]
k-dimensional WF indistinguishability [Dvol0, DGRIS]
Ck+1 equivalence hompy(Tg, G) [CET92]
k-dimensional GNN indistinguishability IMRET19]
Quantifier depth k£ FO-invariance homy (T¥, G) [Gro20]
Co-spectrality homy(C, G) [DGRI1S]

Figure 4.1: Summary of known characterization results for equivalence relations on
graphs, where T is the class of undirected trees, Ty is the class of graphs of tree width k,
T* is the class of graphs of tree depth k, and C is the class of undirected cycles.
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Because of these deep results, Atserias et. al. set out to determine what equivalence
relations between graphs can be expressed by restricting homomorphism vectors to some
fixed class of graphs [AKW21], pursuing both positive and negative results. For negative
results, they showed that chromatic equivalence and FO*-equivalence cannot be captured
by any restriction of the left homomorphism vector to a class of graphs. In this chapter,
we pursue a similar line of research, with an emphasis on modal logics.

In particular, Barcelo et. al. recently showed that nodes of undirected graphs are
indistinguishable by a special case of GNNs (aggregate-combine GNNs) if and only if
they satisfy the same formulas of graded modal logic (i.e., are graded modal equivalent), a
syntactic fragment of C? [BKMT20]. Given that indistinguishability by standard GNNs
and C? can be captured by the restriction of the left homomorphism vector to the class of
undirected trees, this result suggests that a similar restriction should exist which captures
graded modal logic. However, the structures over which graded modal logic is typically
interpreted are not undirected graphs; rather, they are a more general type of structure
arising in process theory: labeled transition systems.

In this chapter, we are interested in finding classes which capture the natural model-
theoretic equivalence relations arising in process theory and modal logic, or otherwise
proving that no such class exists. Similar to the results we have seen in the undirected
case, we will see that tree-like structures will be of critical importance in this regard.
However, a consequence of the more general setting of labeled transition systems will be
that we must consider structures with directed edges. As we will see, different notions
of tree-like structures will characterize different modal logics, and so our more general
setting is of great consequence for our results.

4.2 Basic Modal Logic

Definition 4.2.1. A labeled transition system (LTS) is any model whose signature con-
tains binary relations R; for ¢ € I (where [ is some finite index set), called actions, and
some finite number of unary predicates, called proposition letters. We refer to domain
elements of such a model as states.

Note that we will work with both finite and infinite LTSs throughout this chapter,
and so we will always explicitly state when models are finite or infinite. We will primarily
work with pointed LTSs, which are LTSs with one distinguished element. For a pointed
LTS (M,a), we will prefer the notation M,. Given an LTS M and an element a € M,
we write R;[a] for the set {b € M | RM(a,b)}, and we refer to the elements of this set as
R;-successors of a in M; we define R[a] := |J;c; R;i[a]. We use p, ¢, 7 to denote proposition
letters, and we write Prop to denote the set of proposition letters. It will sometimes be
convenient to refer to the set of proposition letters true at a state m € M, which we call
the marking of m (notation: m(m)).

Definition 4.2.2. The basic modal language is the collection BML of formulas generated
by the following recursive grammar:

p:=plonp|-p|Oip| D,

where p € Prop and ¢ € I. Symbols of the form ¢; and [; are called modalities; each
modality corresponds to a different action in the signature.

We have been primarily dealing with conjunctive queries, which are formulas of first-
order logic. As it turns out, there is a simple syntactic translation from formulas of the

35



Chapter 4 — Left-Homomorphism Vectors and Modal Relations

basic modal language to equivalent formulas of first-order logic. This so-called “standard
translation” witnesses that basic modal logic is a semantic fragment of first-order logic.

Definition 4.2.3. The standard translation of BML formulas is given by the following
recursive definition.

STy (p) == P(z),
STi( Atp) == STu() N ST (¥),
STy(~p) = =STy (),
ST (Oip) == Fy(Ri(z,y) A STy(p)), and
ST, (Oip) = Yy(Ri(z,y) — STy(p)).

Two restrictions of modal logic that we will consider later on are positive modal logic
and positive-eristential modal logic. Positive modal logic (notation: ML) is the fragment
of ML which excludes negation, while positive-existential modal logic (notation: ML:;)
excludes both negation and the [J; modalities. It is not difficult to see that the standard
translation of any formula of MLg is, in fact, expressible as a conjunctive query. Later
on, we will say more about the structure of the queries expressible in ML:;.

We have previously claimed that the basic modal language represents a semantic
fragment of first-order logic. To see that this is actually the case, let us now take a look
at the semantics of the basic modal language, from which it is easily seen that the standard
translation does, in fact, preserve the semantics of the BML formulas being translated.

Definition 4.2.4. Given a pointed LTS M,, we recursively define the modal satisfaction
relation recursively as follows:

M,aE=p if a € pM,

M,alE=@oANy if Myal @ and M,a =,

M,a = —p it M,alE o,

M,a = O if there’s some b € R;[a] such that M,b = ¢, and
M,a =00  if for all b € R;[a], we have that M,b = ¢.

We say that a formula ¢ of the basic modal language is satisfied at a pointed LTS M,
whenever M, = ¢. We define the relation of basic modal equivalence (notation: =pr)
between LTSs M, and N, to hold if and only if they satisfy the same formulas of the basic
modal language. We similarly define positive modal equivalence (notation EMLX).

Definition 4.2.5. A bisimulation between pointed LTSs M, and N, is a binary relation
Z C M x N with (a,b) € Z and meeting the following three conditions:

(prop) If (m,n) € Z, then w(m) = m(n).

(forth) For each i € I, if (m,n) € Z and there’s s € M such that RM(m,s), then
there’s some t € N such that RY (n,t) and (s,t) € Z.

(back) For each i € I, if (m,n) € Z and there’s t € N such that RN (n,t), then there’s
some s € M such that RM(m, s) and (s,t) € Z.

If such a relation Z C M x N exists, then we say M, and N, are bisimilar (notation:
M, = Nyp). Bisimilarity between two LTSs implies basic modal equivalence.

Theorem 4.2.6. (Bisimulation Invariance, [Benl4]) For LTSs M, and Ny, if M, < N,
then Ma =ML Nb.
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It is natural to ask whether the converse of Theorem holds. As it turns out,
this it not true in general, but holds over the class of image-finite LTSs, which are those
models M, such that the successor set R;[m] is finite for each element m € M and i € I.

Theorem 4.2.7. (Hennessy-Milner Theorem, [HMS85]) For image-finite LTSs M, and Ny,
if M, =1 Np, then M, € Np.

It is clear that all finite pointed LTSs must be image-finite. Thus Theorem [4.2.7]
applies, in particular, to the class of finite LTSs. The name “bisimulation” indicates that
the relation is bidirectional, which is captured by the equality in the (prop) clause, and
the presence of the (back) clause. The next notion simultaneously weakens both of these.

Definition 4.2.8. A simulation between pointed LTSs M, and N, is a binary relation
Z C M x N with (a,b) € Z and meeting the following three conditions:

(prop) If (m,n) € Z, then w(m) C m(n).

(forth) For each i € I, if (m,n) € Z and there’s s € M such that RM (m,s), then
there’s some ¢t € N such that RN (n,t) and (s,t) € Z.

We say M, and N, are simulation equivalent (notation: M, <4 Np) if there exists a
simulation Z C M x N as well as a simulation Z’ C N x M with (a,b) € Z and (b,a) € Z'.
Simulation equivalence preserves formulas of Mng.

Theorem 4.2.9. (Simulation Equivalence Invariance, [JLW20]) For image-finite LTSs
M, and Ny, we have that M, £, N, if and only if M, =ML} Np.

We can also weaken only the (prop) clause to obtain the following definition.

Definition 4.2.10. A directed simulation between pointed LTSs M, and N, is a binary
relation Z C M x N with (a,b) € Z and meeting the following three conditions:

(prop) If (m,n) € Z, then w(m) C m(n).

(forth) For each i € I, if (m,n) € Z and there’s s € M such that RM(m,s), then
there’s some t € N such that RY(n,t) and (s,t) € Z.

(back) For each i € I, if (m,n) € Z and there’s t € N such that RN (n,t), then there’s
some s € M such that RM(m, s) and (s,t) € Z.

We say M, and N, are directed simulation equivalent (notation: M, <4 Np) if there
exists a directed simulation Z C M x N as well as a directed simulation Z’ C N x M with
(a,b) € Z and (b,a) € Z'. Directed simulation equivalence preserves formulas of ML*.

Theorem 4.2.11. (Directed Simulation Equivalence Invariance, [KR97]) For image-finite
LTSs M, and Ny, we have that M, <4 N, if and only if M, =+ Np.

For most of this chapter, we will be interested in characterizing the relations induced
between LTSs by restricting their Boolean and counting homomorphism vectors to the
class of directed tree-shaped LT'Ss, defined as follows.

Definition 4.2.12. A directed tree-shaped LTS is a pointed LTSs M, that is a directed
tree with respect to R),..., RM (cf. Definition . We write 7 for the class of
all finite directed tree-shaped LTSs, and we write 7% for the class of all finite directed
tree-shaped LTSs of depth k.
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Recall the following definition from Chapter 2:

Definition 2.4.8. Let C be some class of models. We write Inj(C) for the class of models
(N,b) such that there exists some injective homomorphism h : (N,b) — (M,a) for some
(N,b) € C. We write Sur(C) for the class of models (N,b) such that there exists some
fully-surjective homomorphism h : (M,a) — (N,b) for some (N,b) € C. We define the
extension class of C to be Ext(C) := Inj(C) N Sur(C).

The proof of the next proposition is adapted from a similar proof for undirected trees
from [AKW21].

Proposition 4.2.13. 7 = Ext(7).

Proof.

It’s easy to see that 7 C Ext(T), and so we need only show that every M € Ext(T) =
Inj(7) N Sur(7) is a directed tree-shaped LTS. To see this, first observe that, since
M € Inj(T), we have that M is a submodel of a directed tree-shaped LTS. Fur-
thermore, since M € Sur(7), and every directed tree-shaped LTS is connected, we
must have also that M is connected. Since M is a connected submodel of a directed
tree-shaped LTS, it must also be a directed tree-shaped LTS. O

4.3 Capturing Simulation Equivalence

In this section, we will characterize ML&F equivalence for image-finite LTSs via the restric-
tion of their left-profiles to the class of directed tree-shaped L'T'Ss. By Theorem this
is equivalent for the class of image-finite models to simulation invariance. Before stating
the theorem, we begin with a key lemma.

Lemma 4.3.1. Ifpisa 1\/IL<J>r formula, then ST, () is a conjunctive query whose canonical
model is a finite directed tree-shaped LTS.

Proof.

We proceed by induction on the complexity of formulas. For the base case, ¢ is just
a proposition letter, in which case the canonical model of ST, (y) is just a single
element at which the proposition letter p is true. For the inductive step, either
ST, () = STy (1) A ST, (1h2) for some formulas 1)1, 19, or ST, (p) = Jy(R;(x,y) A1)
for some formula . In the first case, the canonical model of ST,(y) is just the
directed tree-shaped LTS obtained by equating the roots of the canonical models of
ST, (1) and ST, (1)2). In the second case, the standard translation of ST, (y) is the
tree obtained by adding a new root to the canonical model of ST, (1) with the old
root as an R;-successor. ]

Up to this point, we have only defined counting left homomorphism vectors with
respect to finite models. However, given an arbitrary image-finite LTS M,, we can define
the left homomorphism vector of M, with respect to 7T, since there will always be finitely
many homomorphisms from a finite directed tree-shaped LTS T, to M,. To see this,
observe that any homomorphism h : T, — M, must map ¢ to a and must map fact
paths of length n in T, to fact paths of length n in M,. Furthermore, all actions in
T. are oriented in the same direction (away from c¢). Hence only elements of dom(M)
occurring in the image of some homomorphism h : T, — M, are those reachable from a
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by a directed path of actions (cf. Definition [2.5.7)) of length at most depth(7¢). Then by
image-finiteness of M,, it follows that

U Im(h)
he Hom(T.,Mg)
is a finite set, and so Hom(7T,, M,) must also be finite. Thus homy(7, M,) is well-defined
for all image-finite LTSs, and so we will prove our next characterization result for all
image-finite LT'Ss, rather than only finite L'TSs.

Theorem 4.3.2. If M,, N, are image-finite LTSs, then the following are equivalent:
1. homg (T, M,) = homg(T, Ny),
2. M, 24 Ny, and
3. M, =Lt Np.

Proof.

By the Theorem it suffices to show (1) if and only if (3). For (1) to (3),
suppose that homg (7, M,) = homg(7,Ny). Let ¢ be any formula of ML{. By
Lemma we have that (Mgr, (), ) € T. By the magic lemma, we have that
there’s a homomorphism from (Mgr, (), 7) to M, if and only if M, = ST,(p) (and
similarly for N,). It then follows from our initial assumption that M, | ¢ if and
only if Ny = ¢. Hence M, =wirt Ny.

For (3) to (1), we will show that for any finite directed tree-shaped LTS T, there is
a formula H3(T.) of MLz>r such that, for all image-finite LTSs M, and any element
a € M, we have that M, = ¢ if and only if there exists a homomorphism from 7 to
M,. From this, it clearly follows that all image-finite L'T'Ss satisfying the same MLér
formulas must have the same left profile with respect to finite directed tree-shaped
LTSs. We will proceed by induction on the height of the tree T..

Base Case
For any element b of an LTS N, let

mark := /\ D.
pEm(b)
If height(7}) = 0, then T is a single (distinguished) element. Then homg(7¢, M,) =1
if and only if 7(c) C 7(a); otherwise, homg (T, M,) = 0. It follows easily that mark’
expresses H(T).

Inductive Step
Suppose Mng can express H 3(Tc’,) for all finite directed tree-shaped LTSs T, of

height less than k. Let T, be an arbitrary tree of height k. Then MLg can express
H?(T.) with the formula

markc/\/\ /\ OH?(Ty).

el dERZ’[C]

To see that this is correct, observe that the first conjunct implies that m(c) C m(a).
Furthermore, we have that each R;-successor of ¢ has a homomorphism to some
R;-successor of a. Hence T, has a homomorphism to M. O
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4.4 Graded Modal Logic

In this section, we introduce graded modal logic. Graded modal logic is an extension of
the basic modal language whose modalities allow for counting the number of successors
satisfying some formula. As we will see, the primary notion used to indicate that two
LTSs satisfy the same modal formulas is that of the graded bisimulation. However, a more
convenient characterization of graded modal equivalence will be unraveling invariance.

Definition 4.4.1. Graded modal logic is the collection MLy of formulas generated by
the following recursive grammar:
>k
p=plerel-p| 07,
where p € Prop, i € I, and k € N.

For the common operators, the semantics of MLy and BML are identical, so we need
only define the semantics for the modalities of ML..

Definition 4.4.2. Given a pointed LTS M, and an MLy-formula ¢, we define

M,a = ()izkgo if there exist at least k-many elements b € R;[a] such that M,b = ¢.

It’s easy to see that the semantics of Oizlgo and Q;p are identical. Thus, for any
formula ¢ of BML, it’s clear that ML contains an equivalent formula, and so we can say
that MLy is a semantic extension of BML. We will also make use of the abbreviation
Oi:k@ = Oizkw A —K)?kﬂgo, where clearly

M,a = O7%p if there are exactly k many elements b € R;[a] such that M,b |= .

As in the case of the basic modal language, we say that a formula ¢ of MLy is
satisfied in a pointed LTS M, if M,a = ¢. We similarly define the relation of graded
modal equivalence (notation: =y, ) between pointed LTSs in the natural way. Just as
bisimulation between pointed LTSs preserves the satisfaction of basic modal formulas, the
following notion preserves formulas of graded modal logic.

Definition 4.4.3. A graded bisimulation between pointed LTSs M, and Ny is a binary
relation Z C M x N with (a,b) € Z and meeting the following three conditions:

(prop) If (m,n) € Z, then w(m) = m(n).

(forth) If (m,n) € Z, then for all n € N and all distinct s1,...s, € R;[m], there are
distinct R;-successors t1, .. .,t, € R;[n| such that

e For every s;, there’s some ¢; such that (s;,%;) € Z, and

e For every t;, there’s some s; such that (s;,¢;) € Z.

(back) If (m,n) € Z, then for all n € N and all distinct ¢1,...t, € R;[n], there are
distinct R;-successors si, ..., sp, € R;[m] such that

e For every t;, there’s some s; such that (s;,t;) € Z, and

e For every s;, there’s some t; such that (s;,t;) € Z.

If a graded bisimulation between M, and NN, exists, then we write M, €4 Nj,.
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Theorem 4.4.4. (Graded Bisimulation Invariance, [Rij00]) For LTSs M, and N, if
M, S Ny, then M, =MLy Np.

While graded bisimulations preserves satisfaction of ML-formulas in pointed LT'Ss,
they are generally cumbersome and difficult to use. However, there is an alternative way
to show graded modal equivalence, based on the notion of unravelings.

Definition 4.4.5. Let M, be a pointed LTS. The unraveling of M at a is the model
unr(M,) such that

1. dom(unr(M,)) is all non-empty finite strings over M,
2. R;LW(M“) = {(w,w™u) | (last(w),u) € RM}, and
3. w e pMa) — Jast(w) € pM,

where (a) is the unique distinguished element of the model, last is the function mapping
strings to their last element, and w™u denotes string concatenation. It is a well known
fact that unr(M,) is a directed tree-shaped LTS. We write unr®(M,) for the submodel
of M, induced the by set of states at most depth k from the root (a).

Theorem 4.4.6 (Unraveling Invariance, [BCV09]). Let M, be a pointed LTS. Then
M, a = ¢ if and only if unr(M,), (a) = ¢.

The graph of the map last : dom(unr(M,)) — dom(M,) is easily seen to be a graded
bisimulation between M, and its unraveling. Furthermore, the composition of two graded
bisimulations is also a graded bisimulation. It follows that, to show that a graded bisim-
ulation exists between two image-finite LTSs M, and Ny, it suffices to show that their
unravelings are isomorphic.

4.5 Capturing Graded Bisimulation

In this section, using a similar methodology to the proof of Theorem[4.3.2] we will establish
that, under the counting semantics, if two image-finite LTSs have the same left-profile
with respect to the class of finite directed tree-shaped LTSs, then their unravelings are
isomorphic. We will prove this result through a series of lemmas.

Lemma 4.5.1. For all finite directed tree-shaped LTSs T, and all n € N, there’s a formula
¢ of MLy such that, for all image-finite LTSs M, and all a € M, we have that M, |= ¢
if and only if hom(7,, M,) = n.

Proof.

Since MLy extends MLX, we have by the proof of Lemmamthat ML can express
H3(T,.) for all finite directed tree-shaped LTSs T,.. We want to show that, for all finite
directed tree-shaped LTSs T¢. and all n € N, there’s a formula H~(n,T,) of MLy such
that, for all image-finite pointed LTSs M,, we have that M, = H=(n,T,) if and only
if hom(7¢, M,) = n. We will show this by induction on the height of Tt.

Base Case
Recall that we defined

mark’? := /\ .
pem(c)
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Since there can only be at most one map from a directed tree-shaped LTS T, of height
0 to M, (namely, ¢ — a), we can express H=(0,T;) with —mark; and H=(1,T;) with
marky, while H=(k,T,) for any k > 1 is expressed by L.

Inductive Step

Now suppose inductively that MLy can express H=(n,T,,) for any n € N and all
finite directed tree-shaped LTSs T, of height less than k. Let T be an arbitrary
finite directed tree-shaped LTS of height k. We will construct H=(n,T.), for any
n € N in several parts. To start, we will give a formula H;-(l,n,T,) (for any tree 17,
of height less than k) such that

M, = H; (I,n,T.,) <= there are exactly l-many R;-successors of a such that
H; (n,T,) holds.

(2

By the inductive hypothesis, we can express this for any n € N with the ML-formula
07 "(Hi (n,Ty)).

)

We will now define a formula H}(T,) such that
M, = H(T.) <= there are exactly [-many R;-successors of a such that H(T}.).
We can express this with the ML-formula
07 'H(Te).

Let T}, be the subtree of T;. rooted at some d € R;[c]. Note that T, has height less
than k. Then we claim that, by the inductive hypothesis, we can express, for each
n € N, a formula H*(n,T}), such that

M, = HP(n,T)) <= > homy(T}, M,) =n.
zER;|a]

To see this, we define H;*(n,T}) to be the ML-formula

\/ HP (T A V N B 0]k T)

m<n Flml )T, fG)=n \k<n

To see that this formula works, suppose that M, = H(n,T}). Fix any m < n and
consider the corresponding disjunct. We first have that M, |= H;"(T}); thus there are
exactly m R;-successors z of a such that there’s a homomorphism from d to M,. The
next disjunction ranges over all functions f : [m] — [n] such that > ., f(j) = n.
We interpret f(j) =1 to mean that there are exactly [-many homomorphisms to the
4t Rj-successor of a to which T’ has some homomorphism. Since there can be at
most n successors y of a such that hom(T), M,) > 1 while ) Rifa] = M- it follows
that M, satisfies a disjunct of this formula if and only if > Rila] = N> 88 required.

Finally, we can express that there are exactly N homomorphisms from 7, to M, with

mark? A \/ /\ /\ H(f(c), Te)

f:R[a]=>[N]:T]ceppe) F(6)=N \i€l c€R;[a]

The correctness of this formula is justified by Proposition [2.5.10 O
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Note that if M, is an image-finite LTS, then unr(M,) is also image-finite, and thus
has a well-defined left profile with respect to the class of finite directed tree-shaped LTSs.
We use this fact in the following lemma.

Lemma 4.5.2. For any image-finite pointed LTS M,, we have that
homy (7, M,) = homy (T, unr(M,)).

Proof.

Let Tt be an arbitrary finite directed tree-shaped LTS. We will show that [Hom(7", M, )| <
|[Hom (7, unr(M,))| and |Hom(T, M,)| > [Hom(T,unr(M,))|, thereby establishing
the claim.

(<) For each h € Hom(T,, M,), define a new map g : T, — unr(M,) by the following
recursion on the depth of the elements of T,:

(a)
gi(parent(m)) " h(m)

We claim that g is a homomorphism. To see that g preserves proposition letters,

observe that, for any proposition letter p € P, we have that
T(m) = pM(h(m)) (since h is a homomorphism)
= pu”T(M“)(g(m)) (since h(m) = last(g(m))

b

To show that g preserves actions, it suffices to show that, for any ¢ € I and any node
m € T, with R;-children s1,...,s,, we have that R?nr(M“)(g(m), s;) for each j <.

For this to hold, we need only to make the following two observations:

1. g(s;) extends g(m) (by the definition of g);
2. RM(last(g(z)),last(g(s;))) if and only if RM(h(z),h(s;)) (since h; is a homo-

morphism).

Thus ¢ is a homomorphism. Furthermore, it’s clear that this construction constitutes
an injective map from Hom(7,, M,) to Hom(7,, unr(M,)), and so we're done.

(>) For each g € Hom(T,, unr(M,)), define a map h : T, — M, by m — last(g(m)).
That h is a homomorphism is immediate from the definition of unravelings. We need
to also show that this construction is injective. To see this, let h, h' : T, — unr(M,)
be homomorphisms, and let g, ¢’ be the corresponding maps in Hom(T, M,). Suppose
that h = h'.

We now show by induction on depth of the elements of T, that ¢ = ¢’. The base
case is immediate, since g(¢) = ¢'(¢) = (a). Now suppose inductively that g and
g agree on all elements of depth less than k, and let m € T, be some element
of depth k. By assumption, we have that h(m) = h'(m), and so last(g(m)) =
last(g'(m)). Furthermore, by the inductive hypothesis, since parent(m) has depth
less than k, we have that g(parent(m)) = ¢'(parent(m)). Since g and ¢’ are homo-

morphisms and RI (parent(m), m), we have that R?W(M“)(g(parent(m)),g(m)) and

R?RT(M“)(g’ (parent(m)), ¢’(m)). Then by definition of the actions for unravelings,
we have g(m) = ¢’(m). This completes the induction, and so g = ¢’. Hence our

construction is an injective map from Hom(T,, M,) to Hom(T,,unr(M,)). O
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Lemma 4.5.3. Let M, and N, be finite directed tree-shaped LTSs of depth k. If
hom(7*, M,) = hom(T*, N;), then M, = Nj.

Proof.

Let T, be any finite directed tree-shaped LTS of depth strictly greater than k. Since
M, and N, have no directed paths of length greater than k, clearly hom(7,, M,) =
hom(7T¢, Ny) = 0. Hence hom(7, M,) = hom(7,Np). Then by Proposition
and Theorem [2.4.9] we have that M, = N,. ]

Lemma 4.5.4. If M,, N, are image-finite directed tree-shaped LTSs and M} = le for
all k € N, then M, = N,.

Proof.

If M, or N is finite, then the result is trivial, so suppose they are both infinite.
Consider the sequence of sets (5;);e,, such that S; is the collection of isomorphisms
M — Ng, and let S = (J,;,, Si- By assumption, each S; is nonempty. Since M, and
Ny are image-finite, we have also that each M* and le is finite, and hence each S;
is finite. Furthermore, it’s easy to see that, for all i € N, we have that each f € S;
must extend some g € S; for any j < ¢. We will now recursively construct sequences
(9i)i<n for each n € N such that, for each i € N, the following properties hold:

(1)
(2) gi € git1, and
(3)

Let go be the map a + b. This is clearly an isomorphism from MY to Nl? , and every
map in S extends go; this concludes the base case of the construction.

gi : M — Ny is an isomorphism,

there exist infinitely many isomorphisms in S extending g,.

Now suppose inductively that (g;)i<, for some n € N is a sequence meeting conditions
(1)-(3). Let T" C S denote the set of infinitely many isomorphisms in S extending
gn. Since S, is finite, we have that 7'\ Sy,4+1 is also infinite. Furthermore, for each
function f in 7'\ Sp41, there’s some function g in S,,4+1 such that f extends g. Since
Sp+1 is finite, there must be at least one g,41 in S,4+1 such that infinitely many of
the functions in 7'\ Sy,4+1 extend g,41. This completes the construction.

By our construction, we have a sequence of isomorphisms (g;)ic meeting properties
(1)-(3). Let g = U;c,, 9i- It follows immediately that g : M, — Ny is an isomorphism,
and so M, = Np. ]

We are now ready to prove the main result.
Theorem 4.5.5. Let M, and N, be image-finite LTSs. Then the following are equivalent:
1. homy(7, M,) = homy(7T, Np),
2. unr(M,) = unr(Np),
3. M, 24 Ny,

4. Ma EML# Nb-
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Proof.

For the direction (1) to (2), we first apply Lemma[4.5.2|to obtain that homy (7, M,) =
homy (7, unr(M,)) = homy(T,unr(Ny)) = homy(7,Ny). Then clearly, for each
k € N, we have that homy(7", unr*(M,)) = homy(T,unr*(Ny)), and so by Lemma
we have that unr®(M,) = unr¥(Ny). Since M, and N, are image-finite LTSs,
their unravelings are image-finite directed tree-shaped LTSs. Thus we have by Lemma

that unr(M,) = unr(Np).

The direction (2) to (3) follows from the fact that every LTS has a graded bisimulation
to its unraveling, as well as the fact that the composition of two graded bisimulations
is also a graded bisimulation. The direction (3) to (4) is immediate from Theorem
4.4.4 For (4) to (1), suppose that M, and N satisfy the same graded modal formulas.
It then follows immediately from Lemma that homy(T,, M,) = homy(T¢, Np)
for any finite directed tree-shaped LTS T,.. Therefore, we have that homy(7, M,) =
hOmN(T, N, b) . ]

Observe that we have proven the following result, analogous to Theorem [4.2.7]

Corollary 4.5.6. (Graded Hennessy-Milner Theorem) For image-finite LTSs M, and Np,
if M, =MLy Ny, then M, 24 Np.

4.6 Backward and Global Modalities

In this section, we will lift our results from earlier sections to languages containing back-
ward and global modalities. The corresponding extended languages will be captured by
restricting the left profile to more general classes of structures than 7. In this section, it
will be important to track signatures, and so we will write that a model M, is a ¢-LTS
if all facts of M are interpretations of actions and proposition letters in the signature o.
Furthermore, we will parametrize classes of LTSs by the relevant signature. For example,
we will write 77 for the class of directed tree-shaped o-LTSs.

We will now lift our previous results to languages containing backward modalities.
Given a 0-LTS M and an element a € M, we define R; '[a] := {b € M | RM(b,a)}, and
we refer to the elements of this set as R;-predecessors of a in M.

Definition 4.6.1. Given a pointed o-LTS M, and an MLx-formula ¢, we define

M, a = Q?kcp if there exist at least k-many elements b € R; '[a] such that M,b |= ¢.

We refer to Qizk as a backward modality for the action R;, where i € I. Let MLg’B
denote the extension of MLZ>F with the backward modalities for £k = 1, and let MLfE
denote the extension of MLy with the backward modalities for each k& € N. We define

positive-existential modal equivalence with backward modalities (notation: =% , ;) and
ML

graded modal equivalence with backward modalities (notation: between pointed

EK/ILﬁ)
0-LTSs in the natural way. The relations preserving these languages are back-and-forth

simulation equivalence and back-and-forth graded bisimulation, respectively [DNV95].

Definition 4.6.2. Let o be a fixed signature whose actions are R; for each i € I, where [
is a finite index set. Define the expanded signature o D o to have actions R; and B; for
each ¢ € I, as well as the same collection of proposition letters occurring in o. For each
1 € I, we write O%{z for the graded modality associated with the action B;, and we retain
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the notation Oizk for the graded modality associated with R;. Given a pointed o-LTS
M,, we define the backward expansion of M, to be the op-LTS M which is identical to

M,, except that we provide an interpretation for B; for each ¢ € I as follows: BiM . (m,n)
holds for m,n € dom(M) if and only if RM (n,m) holds.

Figure depicts the backward expansion transformation.

R1 Rl
a [ ] a [ ]
\/
By
Ry
R3 = RQ Rs BS
Bo
R2 R2
[ ] [ [ [}
v’\_/
By
M, MpB

Figure 4.2: Transformation from o-LTS M, to its backward expansion.

Definition 4.6.3. Let A denote the class of finite tree-shaped (cf. Definition [2.5.6])
0-LTSs with one distinguished element.

Definition 4.6.4. Let T, € A°. Then the directed tree around T, is the og-LTS TCi with
the same domain as T and the same proposition letters true at each state, and whose
interpretation of the actions in op are defined by the following rules:

1. If RF(m,n) holds where depth(m) < depth(n), then RiTé(m, n) holds.

2. If RT(m,n) holds where depth(n) < depth(m), then BZ.TCL (m, n) holds.

Note that, given some T, € T3, we can define the tree-shaped model around T, to be
the reverse construction, denoted by T CT . These transformations are exact inverses of one
another: T, = (Ti )T for any T, € A°. Figure depicts this transformation.

a a
VAN m/\2
[ ] [ [ ] [ ]
Rs/ \ B3 = Bs/ \ B3
[ ] [ ] [ ] [ ]
VAT m/\p
[ ] [ [ ] [ ]
T, Ty
Figure 4.3: A tree-shaped o-LTS T, and the directed tree around T.

Observe that T¥ is a directed tree with respect to {R; | i € I} U{B; | i € I} for any
T, € A°. This implies that if T, € A°, then TS € Tos.

In Sections and we stated our results for arbitrary image-finite LT'Ss M,. This
assumption was sufficient in those cases because we were only considering homomorphisms
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from finite directed tree-shaped LTSs to M,. However, we will now consider (possibly non-
directed) finite tree-shaped LTSs T, and so image-finiteness is not enough to guarantee
that Hom(T,, M,) is finite. To remedy this, we will assume a slightly stronger condition
for M,. We say that M, is degree-finite if R;[m] and R;'[m] are both finite for all
m € dom(M). By assuming that M, is degree-finite, it follows easily that

U Im(h)

he Hom(T¢,Mg)

is finite. Thus only finitely many homomorphisms from a tree-shaped LTS T, to M, can
exist, and so homy(.A?, M,,) is well-defined. Furthermore, note that if M, is a degree-finite
0-LTS, then MP is also a degree-finite o2-LTS.

Proposition 4.6.5. Let M, be a degree-finite o-LTS, and T, be an arbitrary finite tree-
shaped o-LTS. Then homy(7T,, M,) = homy (T, MPB).

Proof.

Let h : T, — M, be any homomorphism. Clearly A is also a map from 7; ¥ to MPB, and
we claim that it is a homomorphism. Since 7T, and TCi satisfy the same proposition
letters at the same states, clearly h preserves proposition letters from T# to MPE. For
actions, we distinguish cases.

1
1. Suppose that RZTC (m,n) holds for some m,n € T, Y. Then, by construction of

T+ , we have that R;TFC (m,n) must also hold. Then because h preserves actions
from T, to M,, we have that RM(h(m), h(n)) also holds. Then by construction

of MP, we have that waf(h(m), h(n)) holds.

0
2. Suppose that B;‘;FC (m,n) holds for some m,n € TS Then, by construction of

T , we have that RiTC (n,m) must also hold. Then because h preserves actions
from T¢ to M,, we have that RZM“ (h(n), h(m)) also holds. Then by construction

of MB, we have that Bl-M‘?(h(m), h(n)) holds.

Thus h preserves all facts from Tci to Mf , and so h is a homomorphism between

these structures. Using a similar argument, we also obtain that any homomorphism
g: T — MP is also a homomorphism from T, to M,. It then follows immediately
that homy(T%, M,) = homy(T¥, MPB). O

The following proposition is immediate from Proposition [4.6.5] and the observation
that, for each T/ € T8, there’s some T, € A7 such that T/ = T¢ (and hence Ty = Ty).

Proposition 4.6.6. Let M, be a degree-finite op-LTS, and T, be an arbitrary directed
tree-shaped op-LTS. Then homy (T, MB) = homy(TJ, M,).

Lemma 4.6.7. Let M, and N, be degree-finite o-LTSs. Then homy (A7, M,) = homy(.A?, Np)
if and only if homy(772, MP) = homy(77%, NP).

Proof.
For the forward direction, we proceed by contraposition. Suppose that

homy (778, MP) # homy(T78, NP),
so that there is some T, € T°E such that

hompy (T, M) # homy(T,, NP).
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Then by Proposition we have that

homp (T, M,) # homy (T, Ny).
Since TJ € A7, this implies that

hompy (A7, M,) # homn(A7, Ny).
For the reverse direction, we again proceed by contraposition. Suppose that

homy(A%, M,) # homy (A%, Np),
so that there’s some T, € A such that

homy (¢, Ma) # homy(Te, Nb).
Then by Proposition we have that

homy (T, MP) # homy (T, NP).
Since T} € 778, this implies that

homy (772, MEP) # homy (775, NF),
which is what we wanted to show. O
Lemma 4.6.8. Let M, and N, be degree-finite o-L'TSs. Then M,

: B 0B B
lf Ma :ML# Nb .

EK/[L:; N if and only

Proof.
Given an MLi—formula @ over o, let trp(p) denote the MLy-formula over op ob-

tained by replacing all occurrences of the backward modality Qizk with the graded
modality O%i. Using the construction of MP, it is then a straightforward induction
to show that

Moy = M Etrglp),

and similarly, that
Ny <= Ny Etr(p).

Furthermore, trp is clearly a bijective translation, and so it follows immediately that

a

— B _ B
Ma :i/[Li Nb <~ M :i/[BL# Nb .
This completes the proof. O

The following theorem shows that MLi—equivalence is captured by restricting the
counting left profile to the class of tree-shaped LSTs.

Theorem 4.6.9. Let M, and N; be degree-finite o-L'TSs. The following are equivalent.
1. hom (A%, M,) = hom(A?, Ny), and

2. M, E&Lz Np.
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Proof.
Let M, and N, be degree-finite 0-LT'Ss. Then we have that

hom(A?, M,) = hom(A%, N,) <= hom(7°%, M?) = hom(A?%, Nf)  (Lemma [£6.7)

— MP EK/IBL# NP (Theorem (4.5.5))
— M, E&Lﬁ Np. (Lemma [4.6.8)
This completes the proof. O

We now turn our attention to languages with global modalities.
Definition 4.6.10. Given a pointed o-LTS M, and an ML-formula ¢, we define
M,a }=EZFp if there exist at least k-many elements b € M such that M,b = ¢.

We refer to EZF as a global modality. Let MLg’G denote the extension of ML2>F with
the global modality for k£ = 1, and let ML%;E denote the extension of MLy with the global

modalities for each £ € N. We write ngz for the graded modalities associated with the
action Rg. We define positive-existential modal equivalence with global modalities (no-
g

tation: =7 +.¢) and graded modal equivalence with global modalities (notation: E&Lg)

between pointed LTSs in the natural way. The relations preserving these languages are
global simulation equivalence and global graded bisimulation, respectively [OP0S].

Definition 4.6.11. Let o be a fixed signature whose actions are R; for ¢ € I, where [ is
a finite index set. Define the expanded signature oo O o to have actions R; for i € I, a
fresh action Rq, and the same collection of proposition letters occurring in . Given a
pointed o-LTS M,, we define the global expansion of M, to be the og¢-LTS MQG which is
identical to M,, except that RJ\G/[G (m,n) holds for all m,n € dom(M).

Definition 4.6.12. Let F7 denote the class of ¢-LT'Ss which are finite directed forests
(cf. Definition [2.5.9)) with one distinguished element. We refer to such models as forest
o-LTSs.

Definition 4.6.13. Let T, € F?. We say that a og-expansion T of T, is an Rg-
connection of T, if T! is a directed tree-shaped og-LTS and T, =T | 0.

It’s easy to see that every T/ € T°¢ is an Rg-connection of some T, € F7. In other
words, we have that

T°¢ = {T. | T! is an Rg-connection of some T. € F7}. (1)

Furthermore, any 7, € F° can be formed by simply removing the interpretation of Rg
from some 7T € 7?¢. Thus we have that

F?={T.|T.=T. | o for some T, € T¢}. (1)

In the case of the global modality, we will state our results only for finite o-LT'Ss,
to ensure that the counting left homomomorphism vector with respect to F7 is always
well-defined. To see that this is necessary, observe that, since there exist models T, in F¢
with connected components which do not contain ¢, these connected components could be
mapped anywhere in an infinite degree-finite LTS M,. Hence there might, in general, be
infinitely many homomorphisms from 7, to M,, even if M, is degree-finite. Note that, for
any finite o-LTS M,, we have that M is finite (and hence image-finite) as well. However,
if M, were infinite, then MS would not be image-finite.
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Proposition 4.6.14. Let M, be a finite o-LTS. Then for any 7, € F° and any 7, which
is an Rg-connection of T, we have that homy(7., M,) = homy(T", MS).

Proof.

To see that this is the case, let h : T, — M, be a homomorphism. Clearly h is
also a map from T/ to M. By the construction of MC, it’s easy to see that h
preserves all facts from T/ to MS from the signature o. Furthermore, since R® is

the total relation on MaG , clearly h also preserves the facts for the Rg action from

T! to M& as well. Furthermore, since T, = T | o and M, = MS | o, clearly any
homomorphism g : T/ — ME is also a homomorphism from T, to M,. It follows that
homp (7T, M) = homy(T, MS). O

Lemma 4.6.15. Let M, and N be finite 0-LTSs. The following are equivalent.
1. hOInN(.FU, Ma) = hOmN(]:J, Nb), and
2. homy(77¢, MY) = homy(T°¢, NF).

Proof.
For the forward direction, we proceed by contraposition. Suppose that

homy (776, M&) # homy(77¢, N&),
so that there is some 7). € T?¢ such that
homy (T2, ME) # homy(T%, N&).

Then by (t), there’s some T, € F such that T, = T\, | o, and by Proposition [4.6.14
we have that
hOIIlN(TC, Ma) 75 hOInN(TC, Nb).

Since T, € F7, this implies that
homp (F7, M,) # homy(F7, Np).

For the reverse direction, we again proceed by contraposition. Suppose that
homy (F7, M,) # homy(F7, Ny),

so that there’s some T, € F? such that
homy (T, Ma) # homy (T, Ny).

Then by (1), there’s some T, € T9¢ such that T, = T/ | o, and by Proposition 4.6.14
we have that
homp (T, MS) # homy(Te, NS).

Since T, € T9¢, this implies that
homy(77¢, Mf) # homy(77¢, NbG),
which is what we wanted to show. O

Lemma 4.6.16. Let M, and N, be finite o-LTSs. Then M, EK/ILG Ny if and only if
#

G —oqg G
ME =55 NE.
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Proof.
Given an MLg&—formula @ over o, let trg(p) denote the MLy-formula over o ob-

tained by replacing all occurrences of the global modality EZ*; with the modality
Qékz By the construction of M, it is a straightforward induction to show that

M, = ¢ < MF Etra(e),

and similarly, that
Ny ¢ <= N [ tro(e).

Furthermore, trg is clearly a bijective translation, and so it follows immediately that

a

Mo =g No < Mg =6, Ny
This completes the proof. O
Theorem 4.6.17. Let M, and Nj be finite 0-LTSs. The following are equivalent.
1. homy(F7, M,) = homy(F?, Np), and
2. M, EK/ILg Np.

Proof.
Let M, and N, be finite 0-LTSs. Then

hom(F?, M,) = hom(F?, Ny) <= hom(77¢, MY) = hom(7°¢, NF) (Lemma [£.6.15)
— MY EK/&# NE (Theorem [4.5.5))

a

— M, E&Li Ny, (Lemma [4.6.16))
This completes the proof. O

We have chosen to work out the proofs for the more complicated case of extending
MLy with backwards and global modalities. However, using highly parallel arguments,
we also obtain the following results.

Theorem 4.6.18. Let M, and N; be degree-finite o-L'T'Ss. The following are equivalent.
1. homp (A%, M,) = homp (A7, N}), and

2. M, = ., N,
MLO’

Theorem 4.6.19. Let M, and Nj be finite 0-LTSs. The following are equivalent.
1. homp(F?, M,) = homg(F?, Np), and

2. M, =° Ny.
a ML-&-,G b

Note that, even in the Boolean case, we still require the assumption that M, is degree-
finite (for Theorem [4.6.18) and finite (for Theorem [4.6.19)). These assumptions are re-
quired to guarantee that M and MaG are image-finite, allowing us to apply Theorem

[4.3.2 at the appropriate point in the proofs.
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4.7 Negative Results

We have seen that simulation and graded bisimulation are captured by restricting the
Boolean and counting left profiles, respectively, to the class of directed tree-shaped LTSs.
Could a similar restriction of the Boolean or counting left profiles capture the notions of
directed simulation or bisimulation? As it turns out, this is not possible. Let ~ and = be
equivalence relations on pointed LTSs. We say that ~ is a refinement of =~ if M, ~ N,
implies M, ~ Np, in which case we say that ~ is finer than =, and = is coarser than ~.
We show that no relation finer than directed simulation can be captured by restricting
the Boolean left profile, and that no relation finer than directed simulation and coarser
than bisimulation can be captured by restricting the counting left profile.

Proposition 4.7.1. Let ~ be an equivalence relation on LT'Ss finer than directed sim-
ulation. Then there’s no class C such that homg(C, M,) = homg(C, N) if and only if
M, ~ N,

Proof.
Suppose for a contradiction that some such C exists. Consider the following LTSs:
a b
P e LAY LY
(M, a) (N, b)

Since Ny is the core of M, we have that M, = Ny, and so homg(C, M,) = hompg(C, Np).
However, there’s no successor of b whose proposition letters are a subset of those sat-
isfied at the left successor of a. It follows that M, <4 Ny. Then since ~ is finer
than 4, we have that M, ¢ N, which is a contradiction. Therefore, no such class
C exists. O

Note that the example in Proposition uses directed tree-shaped LTSs. This
implies that equivalence relations finer than directed simulation cannot be characterized
even if we confine attention only to the class of directed tree-shaped LTSs. Furthermore,
two-way directed simulation equivalence, two-way bisimulation, global directed simulation
equivalence, and global bisimulation are all equivalence relations finer than directed simu-
lation equivalence, and so cannot be captured by a restriction of the Boolean left profile.

Proposition 4.7.2. Let ~ be any equivalence relation on LTSs finer than directed sim-
ulation and coarser than bisimulation. Then there’s no class C such that homy(C, M,) =
hompy(C, Ny) if and only if M, ~ Np.

Proof.
Suppose for a contradiction that some such class C exists. Consider two cases:

1. For each A, € C, we have |A.| = 1. Consider again the example from proposition
For each A, € C, we have that homy(A., M,) = homy(A,, Np) = 1 if and
only if 7(¢) = 0, and homy(A., M,) = homy(A., N) = 0 otherwise. Hence
homy(C, M,) = homy(C, Np). Since no directed simulation exists between M,
and N, we have that M, ¥, Ny, and since ~ is finer than directed simulation,
we have M, # Ny, contradicting our initial assumption about C.
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2. There’s some A, € C such that |A.] > 1. Let K7 and K" be the LTSs with
n and n + 1 elements whose actions hold between any two elements, and whose
states satisfy all proposition letters. It follows easily that Z = K™ x K"l is a
bisimulation, and so K} < KZ?H. Then since ~ is coarser than bisimulation,
we have that K] ~ K,’;‘H. However, clearly any maps from A. to K such
that ¢ — a or from A, — K, l’?“ such that ¢ — b are homomorphisms. Clearly,
then, we have that homN(A,Kg‘H) > homn(A, K7'). Thus homy(C, K}) #
homp(C, K. b"“), contradicting our initial assumption about C.

It follows that no such class C exists. O]

Call a class C trivial if it contains only one-element structures. It is worth nothing that,
if we consider only non-trivial classes, then we can complete the proof of Proposition [4.7.2]
without considering the first case of the case distinction. Auditing the proof, we then see
that we would only need to appeal the assumption that ~ is coarser than bisimulation,
but not the assumption that it is finer than directed simulation. Thus we obtain the
following proposition, which we interpret to say that the counting left profile restricted
to any non-trivial class is too powerful to capture relations weaker than bisimulation.

Proposition 4.7.3. Let ~ be any equivalence relation on LTSs coarser than bisimulation.
Then there’s no non-trivial class C such that homy(C, M,) = homy(C, N) if and only if
M, ~ Np.

4.8 Conclusion

Figure summarizes the main results of this chapter.

Language Invariance Relation Characterizing Vector
ML:>r Simulation Equivalence homg (7, M,)
ML™ Directed Simulation Equivalence None for B or N
BML Bisimulation None for B or N
ML Graded Bisimulation homn (7, M)
MLX’B Back-and-Forth Simulation Equivalence hompg (A, M,)
ML ¢ Global Simulation Equivalence homg (F, M,)
MLﬁ Back-and-Forth Graded Bisimulation homp(A, M,)
MLg Global Graded Bisimulation homy(F, M,)

Figure 4.4: Summary of Characterization Results.

Note that we stated our results for various different classes: finite, image-finite, and
degree-finite LT'Ss. These results imply that the LTSs within these classes can be rep-
resented, up to various different notions of process equivalence, by infinite-dimensional
vectors. These representations create geometric abstractions, which, if made finite, could
be used as feature vectors for applications in machine learning. We leave for future work
the task of determining which classes of LTSs can be represented, up to these notions of
equivalence, using only finite-length vectors. Furthermore, it is worth noting that modal
logics and LT'Ss commonly occur outside of process theory in research areas such as knowl-
edge representation and description logics. We leave for future work whether these results
can be applied in these areas.

Some other common variations of LT'Ss are weighted and probabilistic LTSs, which
assign weights and probabilities to the actions of the model, respectively. These can be
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naturally interpreted as S-labeled models for appropriately chosen semirings S (depending
on the application). The process-theoretic equivalence notions (like bisimulation) can be
extended to these types of structures. We leave for future work the task of characterizing
these structures via a restriction of the left profile to some class (or showing that no such
characterizing class exists).

Additionally, a well-studied extension of modal logic is the guarded fragment, which can
also be extended with counting quantifiers to form the counting guarded fragment. These
are appropriately preserved by guarded bistmulations and graded guarded bistmulations.
We leave for future work the task of characterizing these structures via a restriction
of the left profile to some class (or showing that no such characterizing class exists).
We conjecture that guarded bisimulation cannot be characterized by a restriction of the
counting left profile, and that graded guarded bisimulation can be characterized by the
restriction of the counting left profile to the class of hypergraph-acyclic structures.
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Conclusion

In this thesis, we studied restrictions of homomorphism vectors of finite models. These
were defined very broadly, over arbitrary semirings. We primarily confined attention to
the homomorphism vectors defined under the Boolean and counting semantics. Further-
more, we defined both left and right homomorphism vectors. In Chapter 3, we studied
restrictions of the counting right homomorphism vector, while in Chapter 4, we studied
restrictions of both the Boolean and counting left homomorphism vector.

In Chapter 3 we studied finite characterizations of models, which can be seen as finite
restrictions of the (counting) right profile capturing a model up to isomorphism. We moti-
vated this line of research by its applications in database theory: a finite characterization
of a finite model can also be interpreted as a characterization of the model’s canonical
query. In this way, a finite characterization could be manually checked to verify correct-
ness of a complex query. However, one might also study finite characterizations of models
with respect to the left profile. This can equivalently be interpreted as a (counting) left
characterization of a database instance I, which is a finite collection of queries whose
answers in I under the bag semantics determine I up to isomorphism. We leave this for
future work.

In Chapter 4, we studied which modal relations can be characterized by restrictions
of the left profile. At a high level, these investigations were motivated by similar elegant
results relating C2-equivalence to different notions in linear algebra, machine learning, and
heuristics for the graph isomorphism problem. In a more fine-grained view, these were
motivated by the observation in [BKM™20| that invariance under formulas of graded
modal logic correspond to indistinguishability by certain restricted forms of graph neural
networks. However, one could ask which relations between models can be characterized by
restrictions of the right profile. This line of research was initiated in [AKW21], in which
the authors showed that several relations of interest, including co-spectrality, fractional
isomorphism, and C2-equivalence, cannot be captured by restrictions of the counting right
profile.

In general, homomorphism vectors over various semirings are a powerful tool for cap-
turing various finite model-theoretic relations. While we confined attention to the Boolean
semiring and the semiring of the natural numbers, numerous other semirings exist whose
corresponding semantics are meaningful in various applications in computer science. We
leave exploration of restrictions of homomorphism vectors over these semirings for future
work.
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