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Abstract

The field of Voting Theory is concerned with the design and analysis of procedures

for collective decision-making, called social choice functions, or voting rules. Many

impossibility results having been provided, it is well known that there is no voting

rule that will satisfy all kinds of desirable properties that could be asked for. An

implication of such results is that the strengths and weaknesses of voting rules need

to be assessed carefully so as to determine which rules are appropriate to use for

different problems of collective decision-making. For rules in the class of Size Approval

Voting rules, voters submit ballots corresponding to those alternatives they approve of,

and their ballot is weighted based on the number of alternatives it contains. Despite

its inherent simplicity and the prominence of some of its members, this class of voting

rules has not been studied in great detail. This thesis studies the class of Size Approval

Voting rules from several angles of Computational Social Choice, with the aim of better

understanding the properties of the class and its members.
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Chapter 1

Introduction

This thesis studies a class of voting rules called Size Approval Voting rules from several

angles of Computational Social Choice, in an effort to get a better understanding of

properties of the class and its members.

Voting Theory, a subfield of Social Choice Theory, studies the problem of how best to

aggregate the choices of individuals into outcomes that are representative of the pref-

erences of collective. In the typical voting problem, we model choices of individuals

as ballots cast over a set of alternatives, and we call a procedure for aggregating the

ballots of voters into a collective outcome a voting rule. There is myriad of different

ways to make decisions based on the preferences of a group, and throughout the his-

tory of voting theory, many different voting rules have been proposed Zwicker [2016],

Fleurbaey and Salles [2021]. Out of the many voting rules that have been, and can be,

defined, which should we use? The answer seems simple: naturally, we should use the

good ones.

What then, makes a voting rule a good voting rule? For one, what normative principles

should a voting rule abide by? In the traditional Social Choice Theory, this issue has

been studied extensively by use of axioms, formal properties that describe normatively

desirable criteria that we would like a voting rule to fulfill, and the analysis of such

axioms. As examples of normative desiderata, we might want to require that a voting

rule never discriminates between voters or alternatives, or that the voting rule is such

that no voter can achieve a more preferred outcome by misrepresenting their preferences

instead of voting truthfully. These three characteristics correspond to properties called
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neutrality, anonymity, and strategyproofness, respectively.

Already early on, several results in Social Choice Theory showed that there is no single

voting rule that can simultaneously fulfill all kinds of socially desirable criteria we may

want to impose. Notably, Arrow [1951], with a result that is considered to have sparked

the beginning of modern Social Choice Theory, proved that dictatorships are the only

rules that simultaneously satisfy Independence of Irrelevant Alternatives1, respects

unanimous choices of voters, and always chooses a single alternative as winning, thus

showing that a small number of basic desirable properties are inherently incompatible.

Gibbard [1973] and Satterthwaite [1975] showed that dictatorships are the only rules

that are strategyproof and always choose a unique winnning alternative, a result that

was later generalized by Duggan and Schwartz [1999] to show that we cannot guarantee

much more when using voting rules that allow for ties between alternatives. We call

such results impossibility results, and there are numerous other impossibility results

that establish the inherent limitations of voting procedures.

The implication of these impossibility results is not that we should choose voting rules

arbitrarily. The fact that there provably exists no perfect voting rule rather motivates

studying the properties of different voting rules thoroughly. Since we cannot expect

any rule to exhibit all socially desirable properties we could wish for, we need to be

able to assess the strengths and weaknesses of each rule, so that we can make informed

choices about which rules are appropriate to use, depending on what properties we

deem particularly relevant in any given situation.

Over the last few decades, the computational aspects of voting rules, as studied in the

area of Computational Social Choice, has gained more attention [Chevaleyre et al.,

2007]. The reason is twofold. Firstly, the use of techniques from computer science

has provided new insights on the quality of voting rules from perspectives not covered

by traditional Voting Theory. For instance, it has been shown that for some voting

rules, the problem of finding a successful way to manipulate is computationally hard

[Bartholdi et al., 1989a, Xia et al., 2009], suggesting that although no natural voting

rule is strategyproof in the general case, some rules may be more robust towards

1Independence of Irrelevant Alternatives is a property that requires, roughly, that the collective
choice between two options should depend only on the individual preferences between the two options,
and not on any other ‘̀ırrelevant’ alternative [Arrow, 1951].
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strategic behavior than others. On the other hand, Bartholdi et al. [1989b] showed

that for certain voting rules, there mere problem of computing the outcome of an

election can be computationally hard, leaving some rules that may be well-regarded in

terms of socially desirable characteristics practically infeasible. Secondly, procedures

from Voting Theory have many applications in computer science and AI [Chevaleyre

et al., 2009], bearing particular relevance to, e.g., multi-agent systems, information

retrieval, and crowdsourcing [Endriss, 2014, Brandt et al., 2016]. Many of these use

cases require procedures that not only meet a number of normative desiderata, but

that also have concise representations, are computationally efficient, and are not too

demanding with respect to the information required to be provided by users.

Out of the many voting rules that have been proposed, a notable class is that of scoring

rules. Roughly, a scoring rule is a rule that lets each voter assign some number of points

to each alternative on their ballot, and that chooses as winning those alternatives with

the highest total number of points. This class of rules has been shown to uniquely

satisfy a set of very natural and socially desirable properties [Young, 1975, Myerson,

1995, Fishburn, 1979]. In particular, rules in this class never discriminate between

voters or alternatives, they always respect the choices of an overwhelming majority,

and for any voting situation in which voters are spread across different electorates that

mutually favor some alternatives, they always choose those mutually favored candidates

as winning when the electorates are assembled. Additionally, scoring rules are among

the simplest and most foundational voting procedures, are computationally feasible

to use for many problems in collective decision-making, and – perhaps due to their

inherent simplicity – are prominent in real-world elections.

In much of the literature on Voting Theory, the ballots of voters are assumed to be

linear orders over the set of alternatives. Despite its intuitive appeal with respect to

modelling the preferences of voters, the approach has its limitations. For instance,

voters may lack the information to compare all alternatives that are voted over, or

they may be indifferent between some of the alternatives. In such cases, demanding

that voters rank all alternatives is too rigid a requirement. Approval balloting, as an

alternative to ranked ballots, has been noticed increasingly in recent years. In this

balloting system, the ballot of a voter is simply a subset of the full set of alternatives,

intuitively representing those alternatives that the voter approves of. Demanding only
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that voters are able to determine which alternatives they approve of, approval balloting

has been recognized for its simplicity and flexibility.

The central object of study in this thesis is a class of voting rules coined Size Approval

Voting rules by Alcalde-Unzu and Vorsatz [2009]. A Size Approval Voting rule takes as

input approval ballots from voters, and for each ballot, awards the same non-negative

score to each alternative on that ballot, requiring that the score given to alternatives

on a ballot is never lower than the score given to alternatives on another ballot of

larger size. That is, a Size Approval Voting rule associates a non-negative weight with

every ballot size, where weights are assumed to be weakly decreasing in the size of

the ballots. The weighted votes are tallied, and those alternatives that have been

awarded maximal weighted support are chosen as winning. This class is a class of

scoring rules, and contains several natural scoring rules over approval ballots. Most

notably, it includes the plurality rule, which can be represented as the Size Approval

Voting rule that assigns the same positive weight to all ballots consisting of a single

alternative and a weight of zero to all other ballot sizes; Approval Voting, under which

all ballot sizes are assigned the same positive weight; and Even and Equal Cumulative

Voting, where the weight of each ballot is inversely proportional to the size of the ballot.

Plurality voting is perhaps the most prominent rule with respect to real-world usage.

Despite its widespread usage, the rule has been widely criticized, among other things

for its inclination to elect winning alternatives that have received only a minority of

the votes in real-world elections [Zwicker, 2016]. Related to this issue is the problem

known as the wasted vote problem, often observed under plurality, where voters have to

strategically decide between voting for their favorite alternative and another alternative

that is more likely to win [Brams and Fishburn, 1978]. One common argument in

support of Approval Voting is that it avoids this drawback of plurality voting [Brams

and Fishburn, 1978, Merrill and Nagel, 1987]. Both of these rules have been studied

extensively, and for one, it is known that Approval Voting is strategyproof when voters

have dichotomous preferences [Brams and Fishburn, 1978].

Despite the prominence of some if its members and the increasing interest in approval

balloting, properties of the class of Size Approval Voting rules at large have not been

studied in great detail. In particular, there are many questions concerning the com-

putational aspects of the class that remain unsettled. This thesis seeks to analyze the
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class of Size Approval Rules from various perspectives of Computational Social Choice,

in an effort to gain a better understanding of the class at large.

Outline

This thesis is structured as follows. Chapter 2 provides the basic background needed

to follow the work in the remainder of the thesis. In Chapter 3, I analyze the class of

Size Approval Voting rules from an axiomatic perspective, axiomatically relating the

class to scoring rules over approval ballots and exploiting the ideas of Alcalde-Unzu and

Vorsatz [2009] to derive the class from the class of scoring rules over approval ballots.

I furthermore consider two notable subclasses of the class and provide a characteriza-

tion for the rule Even and Equal Cumulative Voting. Chapter 4 is dedicated to the

issue of strategic manipulation in voting. In this chapter, I study the manipulability

of rules in the class and show that many of the rules are particularly vulnerable to

the manipulation tactic of bullet voting, under which a voter gives all their support to

a single alternative. I furthermore show that it is computationally easy to determine

whether there exists a successful manipulation tactic that a voter can use to make a

given alternative win, and consider the susceptibility of rules in the class under partial

information. In Chapter 5, I study the problem of computing possible and necessary

winners in elections with incomplete information about alternatives, under two differ-

ent assumptions about how voters will respond to new information. I show that the

problem of computing necessary winners is computationally easy for all Size Approval

Voting rules under both assumptions, and provide some limited results concerning the

characterization of possible winners under each of the assumptions. In Chapter 6, I

summarize the contents of the thesis, and discuss limitations and future work.
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Chapter 2

Preliminaries

2.1 Basic Framework

Let X be a set of alternatives of size m ≥ 2 and N ⊂ N a finite electorate of voters

from a universal set of individuals represented by N. For i ∈ N , the ballot of i is a

set Bi ∈ 2X . We call a collection of the ballots of all voters from the electorate N a

profile. I will let a profile of ballots cast by a set of voters N be represented as vector

BN = (Bi)i∈N , where, with some slight abuse of notation, the index i of a ballot Bi

denotes the name of the voter casting that ballot. To give an example, given the set

N = {3, 4, 6}, the ballot profile over the electorate N is BN = (B3, B4, B6). When

no confusion arises from it, I will simply use B in place of BN to refer to a profile

over a given electorate N . Given an electorate N and voter i ∈ N , denote with B−i

the partial profile consisting of all ballots aside from Bi. Furthermore, for disjoint

electorates A,A′ ⊂ N, let BA +BA′ denote the profile (Bi)i∈A∪A′ .

Given an electorate N , a voting rule is a function f : (2X)|N | → 2X \{∅}, mapping each

possible profile over electorate N to some non-empty subset of the set of alternatives

X. For example, the plurality rule is the voting rule that maps any profile B over any

electorate to the set of those alternatives in X that are on more singleton ballots in

B than any other alternative; Approval Voting is the rule that maps profile B to the

alternatives that are on the most ballots in B; and the trivial rule is the voting rule

that maps every profile B to the full set of alternatives X.

I will now introduce some classes of voting rules that are of particular relevance to
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this thesis, namely the class of (simple) scoring rules, the class of lexicographic scoring

rules, and finally, the class of Size Approval Voting rules. Let us first define some

notation that will be useful for defining the rules and later discussion.

Given 0 < k ≤ m, call Suppk(B, x) = |{i ∈ N : x ∈ Bi and |Bi| = k}| the support

of size k to alternative x in B. That is, the support of size k given to an alternative

x is the number of voters with a k-size ballot that includes x. Call Supp(B, x) =∑
k≤m Suppk(B, x) the total support of x in profile B. Furthermore, given a vector of

weights w = (w1, ..., wm), let Suppwk
(B, x) = wk ·Suppk(B, x) be the weighted support

of size k to alternative x in profile B, and let Suppw =
∑

k≤m Suppwk
(B, x) be the

total weighted support to x in profile B.

A voting rule f is a (simple) scoring rule if there exists a vector of weights w =

(w1, ..., wm) of weights wk ∈ R such that, for all profiles B,

f(B) = argmax
x∈X

Suppw(B, x).

In words, a scoring rule is a rule that associates a weight wk with every ballot size

k, and that chooses as winning those alternatives that receive maximal weighted sup-

port. For example, the plurality rule is the scoring rule parameterized by the vector

w = (1, 0, ..., 0); Approval Voting is the scoring rule parameterized by the vector

w = (1, 1, ..., 1); Even and Equal Cumulative Voting is the scoring rule parameterized

by w = (1, 1
2
, ..., 1

m
); anti-plurality is the scoring rule w = (−1, 0, ..., 0), and the trivial

rule is the scoring rule w = (0, 0, ..., 0)1.

A voting rule is a lexicographic scoring rule if there exists a sequence of weight vectors

w1, ...,wt with t ≥ 1 such that for all profilesB and all x ∈ X, we have that x ∈ f(B) if

and only if there are no y ∈ X and t′ ≤ t such that Suppwt′ (B, y) > Suppwt′ (B, x) and

Suppwj(B, y) = Suppwj(B, x) for all j < t′. If for some x ∈ X, there are such y ∈ X

and t′ ≤ t, we will say that y lexicographically dominates x. Thus, a lexicographic

scoring rule is a rule that applies a series of scoring rules in lexicographic order and

1Note that most scoring rules will have infinitely many representations, i.e., will be induced by
infinitely many weight vectors. As such, it is technically not correct to suggest that the rules given
are all parameterized by unique weight vectors. However, we will think of the vectors given as the
archetypal representations of the rules.
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chooses as winning those alternatives that are not lexicographically dominated by any

other alternative. As an example of a lexicographic scoring rule, fw1,w2 with w1 =

(1, 0, ..., 0) and w1 = (0, 1, ..., 0) is the lexicographic scoring rule which first applies the

plurality rule, and, if some alternatives were tied under plurality, chooses as winning

those alternatives that are on the maximal number of ballots of size two.

A voting rule f is a Size Approval Voting rule if there exists a vector of weights

w = (w1, ..., wm), with wk ∈ R+ and wk ≥ wk+1 for all k < m, such that, for all profiles

B ∈ (2X)n,

f(B) = argmax
x∈X

Suppw(B, x).

That is, a Size Approval Voting rule is a scoring rule for which weights are required to

be non-negative and weakly decreasing in the size of ballots.

To give some examples of rules that are Size Approval Voting rules, plurality, Approval

Voting, Even and Equal Cumulative Voting and the trivial rule are all Size Approval

Voting rules. The anti-plurality rule, on the other hand, is an example of a scoring

rule that is not a Size Approval Voting rule.

Observe that we did not impose the condition that wm ∈ R+ in the definition of Size

Approval Voting rules. The reason is simple: whenever a ballot of size m is cast, all

alternatives in the set X are given the same amount of support from the ballot, and as

such, a ballot of size m never has any effect on determining the outcome. Therefore,

the weight wm associated with a ballot of size m can be chosen arbitrarily.

2.2 Axioms

In Voting Theory, axioms are formal properties that describe characteristics of rules.

This section gives an overview of axioms of particular relevance for the content of this

thesis.

I start with the axiom of Anonymity. Anonymity intuitively describes the unbiased

treatment of voters. We can consider this property to state that the names of voters

should not have an effect on the outcome. We can formally describe this property in

the following way.
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Axiom (Anonymity). For all profiles B and all permutations π : N → N , we have

f(B) = f(π(B)).

Neutrality can be considered the counterpart of Anonymity, intuitively describes the

unbiased treatment of alternatives that are voted over. While the property of Anonymity

requires that the names of voters do not affect the outcome, Neutrality requires that

the names of alternatives do not affect the outcome. Given a permutation µ : X → X,

let µ∗ be the extension of the permutation µ to a profile B in the natural way. That

is, µ∗(B) = (µ(B1), ..., µ(Bn)). We define neutrality in the following way.

Axiom (Neutrality). For all profiles B and all permutations µ : X → X, we have

µ(f(B)) = f(µ∗(B)).

Consider now any situation in which an electorate is split into separate districts of

voters. The property of reinforcement requires that if two separate districts of voters

choose some common alternatives as winning, then those common alternatives should

also be the ones that win if the districts are assembled into a single electorate. This

property, originally introduced by Young [1974, 1975], is also sometimes called con-

sistency, as it requires some level of consistency between the collective choices of an

electorate and the collective choices of subgroups of the electorate.

Axiom (Reinforcement). For all profiles B and all disjoint electorates A,A′, we have

that f(BA) ∩ f(BA′) ̸= ∅ implies f(BA +BA′) = f(BA) ∩ f(BA′).

Various properties in the literature are so-called continuity properties. From a social

perspective, these properties establish some level of influence that an overwhelming

majority of voters has on the collective outcome. I mention two. The first one is the

continuity-property used by Alcalde-Unzu and Vorsatz [2009]. I will simply call this

property continuity. Essentially, the property of continuity states that a group of voters

should not be able to dictate the outcome of the election, when massively outnumbered

by other voters who together would choose completely different winning alternatives

than the group would. We make this precise with the following definition.
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Axiom (Continuity). For all profiles B, all collections of disjoint electorates {Np}p∈N
such that f(BNp) = W for all p ∈ N and some W ⊆ X, and any electorate A for which

A ∩Np = ∅ for all p ∈ N and f(BA) ∩W = ∅, there is k ∈ N such that

f(BN1 +BN2 + · · ·+BNk
+BA) ∩W ̸= ∅.

Similar, but stronger, is the requirement that if there are alternatives that are uniformly

supported by an overwhelming majority of voters, then a voting procedure should limit

the set of possible winners to those alternatives. This kind of property is used in

Fishburn [1979] under the name continuity, and in Myerson [1995], under the name

overwhelming majority. The following axiom is a variation of the property used by

Fishburn [1979] and Myerson [1995]2 To distinguish the property from the continuity

property given above, I will follow Myerson [1995] and refer to this property as the

axiom of Overwhelming Majority. The property is defined as follows.

Axiom (Overwhelming Majority). For all profiles B, all collections of disjoint elec-

torates {Np}p∈N such that f(BNp) = W for all p ∈ N and some W ⊆ X, and any

electorate A for which A ∩ Np = ∅ for all p ∈ N and f(BA) ∩W = ∅, there is k ∈ N
such that

f(BN1 +BN2 + · · ·+BNk
+BA) ⊆ W.

Observe that the axiom of Overwhelming Majority only differs from the axiom of

Continuity in that it requires the collective outcome over to be a subset of the choices

of the majority, whereas Continuity only requires the collective outcome to have a

non-empty intersection with the choices of the majority.

Suppose now that some alternative loses an election based on the votes of a given

electorate. It seems natural to require that this alternative stays losing if the electorate

is extended with a group of voters that uniformly disapprove of the alternative. This

2Note that for convenience, the property of Overwhelming Majority is formulated to be as similar as
possible to the Continuity axiom introduced by Alcalde-Unzu and Vorsatz [2009]. In this formulation,
the property is technically not equivalent to the property of Myerson [1995] and Fishburn [1979] when
no other axioms are assumed, but it is straightforward to show that the continuity-property used by
both Myerson [1995] and Fishburn [1979] is implied by the axiom of Overwhelming Majority whenever
Anonymity, Neutrality and Reinforcement are also required.
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property is used by Alcalde-Unzu and Vorsatz [2009] under the name of Congruity, and

is formalized as follows.

Axiom (Congruity). For all profiles B and all disjoint electorates A,A′,

if we have that x /∈ f(BA) and x /∈ Bi for all i ∈ A′, then x /∈ f(BA +BA′).

The following property, Contraction, also used by Alcalde-Unzu and Vorsatz [2009],

may be thought of as a property that grants voters a basic level of decisiveness over the

election outcome. Specifically, this property states that if some voter is able to restrict

their set of approved alternatives to some smaller set, and that smaller set contains

some alternatives that would have been winning before the voter restricted their choice,

then those alternatives should stay winning after the voter has restricted their choice.

Furthermore, no previously losing alternative should become winning. The property is

formulated precisely in the following way.

Axiom (Contraction). For all profiles B, B′ and all sets of voters A ⊆ N such that

B′
i ⊂ Bi for a single i ∈ A and B′

j = Bj for all j ∈ A \ {i}, if f(BA) ∩B′
i ̸= ∅, we have

that

B′
i ∩ f(BA) ⊆ f(B′

A) ⊆ f(BA).

Faithfulness is a property that requires a voting rule to exhibit some basic level of

faithfulness to the votes of an electorate. Specifically, a voting rule is faithful if, when-

ever the electorate consists of a single voter, the outcome is exactly the choices of that

voter. To the best of my knowledge, this kind of property was first used by Young

[1974] in the context of ranked ballot systems, and by Fishburn [1978] in the context

of approval-based ballot systems. The property is defined as follows.

Axiom (Faithfulness). For any single-voter profileB = (B1), we have that B1 = f(B).

Consider now an election with two voters who do not mutually approve of any alter-

native. The property of Disjoint Equality, first used by Fishburn [1978], states that

in such a scenario, the voting procedure should choose the choices of both voters as

winning. Formally, we define disjoint equality as follows.
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Axiom (Disjoint Equality). For any profile B and i, j ∈ N , Bi ∩Bj = ∅ implies

f(B{i,j}) = Bi ∪Bj.

Finally, suppose in some election, that all alternatives get the same number of votes.

The axiom of Cancellation, used by Fishburn [1979], states that in this case, the col-

lective outcome should correspond to the full set of alternatives.

Axiom (Cancellation). For any profile B, whenever Supp(B, x) = Supp(B, y) for all

x, y ∈ X, we have

f(B) = X.

Having defined the formal framework and central axioms, we are now ready to move on

Chapter 3, in which I study the class of Size Approval Voting rules from an axiomatic

point of view.
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Chapter 3

Axiomatic Analysis

In this chapter, I study the class of Size Approval Voting rules from an axiomatic point

of view.

The axiomatic method is perhaps the most foundational tool of analysis in Voting

Theory. In this chapter, I study the class of Size Approval Voting rules from an

axiomatic perspective. In the first part of the chapter, I consider how to axiomatically

relate the class of Size Approval Voting rules to the class of scoring rules based on

existing characterizations of the classes, and provide different characterizations of the

class of Size Approval Voting rules. In the second part of the chapter, I study two of

the most notable subclasses of Size Approval Voting rules more closely, and suggest

axioms that can be used to derive said subclasses from the class of Size Approval Voting

rules. The latter section also includes a possible characterization of the rule of Even

and Equal Cumulative Voting.

I will first discuss some work on axiomatic characterizations of voting rules that re-

lates to the contents of the chapter1. Most notably, Alcalde-Unzu and Vorsatz [2009]

give an axiomatic characterization of the class of Size Approval Voting rules using the

axioms of Anonymity, Neutrality, Reinforcement, Contintuity, Congruity, and Con-

1Despite the axiomatic method being the most common approach to analyzing the basic properties
of voting rules, it is hardly the only one. For instance, in Epistemic Social Choice (see, e.g., [Elkind
and Slinko, 2016]), voting rules are interpreted as truth-tracking devices, and their properties are
analyzed accordingly. It is worth mentioning that Allouche et al. [2022], in this context, study the
truth-tracking abilities of Size Approval Voting rules for which weights decrease strictly in the size of
ballots
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traction. Furthermore, despite the class itself not having been studied significantly

beyond the work of Alcalde-Unzu and Vorsatz [2009], there is a vast body of literature

on axiomatic characterizations of classes of voting rules that are related to the class

of Size Approval Voting rules. In particular, Young [1975] characterizes the class of

positional scoring rules, which are scoring rules defined for ranked balloting systems,

using axioms Anonymity, Neutrality, Reinforcement, and a continuity property simi-

lar to Overwhelming Majority. Myerson [1995] characterizes the class of generalized

scoring rules using Anonymity, Neutrality, Reinforcement and Overwhelming Majority,

generalizing the results of Young [1975] to a setting where no assumptions are made

about the structure of ballots. Fishburn [1979] uses the same set of axioms to char-

acterize the class of scoring rules over approval ballots, and furthermore characterizes

the superclass of lexicographic scoring rules using the axioms Anonymity, Neutrality

and Reinforcement.

As mentioned previously, the plurality rule and Approval Voting have both been stud-

ied at length. In particular, much of the work from the body of literature on Approval

Voting is relevant to this thesis. To name some work of relevance, Fishburn [1978] char-

acterizes Approval Voting using the axioms of Anonymity, Neutrality, Reinforcement,

and Disjoint Equality, and Brandl and Peters [2022] provide a series of characteriza-

tions of Approval Voting under dichotomous preferences, all of which rely on the axiom

of Reinforcement. In particular, they show that Approval Voting can be characterized

by Reinforcement, Faithfulness, and Disjoint Equality.

There are also a few works that study classes of rules similar to Size Approval Voting

rules in other contexts of Voting Theory and Preference Aggregation. Terzopoulou and

Endriss [2019] study the aggregation of incomplete pairwise preferences using weight

rules, which are rules that associate with each pairwise preference on a ballot a weight

that only depends on the size of said ballot, choosing as winning those sets of prefer-

ences that maximize total weight across the electorate. Introducing an axiom called

Splitting, which states that election outcome is not affected if a group of voters with

disjoint pairwise preferences come together to each report the combination of their

preference sets, they show that versions of said axiom can be used to characterize the

Even and Equal weight rule, analogous to the rule of Even and Equal Cumulative Vot-

ing. Furthermore, Dong and Lederer [2023] study Approval-Based Committee Scoring

16



(ABCS) rules in the context of Multi-winner Elections2 and characterize the class of

Ballot-Size Weighted Approval Voting rules, a subclass of ABCS rules consisting of

rules that associate a non-negative weight with every ballot size, using the axioms of

Anonymity, Neutrality, Reinforcement, Overwhelming Majority, Weak Efficiency (dis-

approved alternatives are never ‘better’ than disapproved ones), and a new axiom called

Choice Set Convexity, particular to the context of Multi-winner Elections.

3.1 Scoring Rules and Size Approval Rules

In this section, I look more closely at the relation between scoring rules and Size Ap-

proval Voting rules from an axiomatic perspective. I first consider the class of scoring

rules over approval ballots. The Continuity axiom used by Alcalde-Unzu and Vorsatz

[2009] in their characterization of Size Approval Voting rules superficially imposes a

weaker condition than the continuity properties used in characterizations of scoring

rules. Thus, it is not clear whether the axioms of Anonymity, Neutrality, Reinforce-

ment and Continuity alone capture the class of scoring rules, and, as such, whether it is

possible to separate the axioms used by Alcalde-Unzu and Vorsatz [2009] to obtain the

class of scoring rules over approval ballots. Therefore, I first investigate the relation

between the axiom of Continuity and the axiom of Overwhelming Majority, relating

characterizations of scoring rules [Fishburn, 1979, Myerson, 1995] to the characteriza-

tion of Size Approval Voting rules given by Alcalde-Unzu and Vorsatz [2009].

Thereafter, I investigate the axioms of Congruity and Contraction, to clarify the role

that these two axioms play in characterizing the class of Size Approval Voting rules. I

show that it is possible to exchange Congruity for a weakened version of Faithfulness,

and that some aspects of the axiom of Contraction become redundant for the purpose of

characterizing Size Approval Voting rules, when combined with other axioms. Finally,

I give possible characterizations of Size Approval Rules implied by combinations of

results in the section.

2See, e.g., [Faliszewski et al., 2017, Lackner and Skowron, 2023].
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3.1.1 Scoring Rules over Approval Ballots

The axioms of Anonymity, Neutrality, Reinforcement, and Overwhelming Majority are

all extensively used in the literature, and several works use the four axioms in com-

bination to characterize the class of scoring rules over various ballot representations

[Young, 1975, Myerson, 1995, Fishburn, 1979]. As noted in Chapter 2, the axiom of

Continuity, as defined by Alcalde-Unzu and Vorsatz [2009], superficially appears to be

somewhat weaker than the axiom of Overwhelming Majority. Thus, one natural start-

ing point for determining how to derive the class of Size Approval Voting rules from

the class of scoring rules, is to consider whether the axioms Anonymity, Neutrality,

Reinforcement, and Continuity together are sufficient to characterize said class. The

main purpose of this subsection is to explicitly relate the class of Size Approval Voting

rules to scoring rules by showing that Overwhelming Majority can be exchanged with

Continuity when characterizing the class of scoring rules over approval ballots. To

show this, I will rely on two theorems from Fishburn [1979]. The first theorem states

that Anonymity, Neutrality and Reinforcement characterize the class of lexicographic

scoring rules, defined in Chapter 2. The second theorem states that Anonymity, Neu-

trality, Reinforcement and Overwhelming Majority together characterize the class of

scoring rules over approval ballots. The interested reader may consult Fishburn [1979]

for proofs of the theorems.

Theorem 3.1.1 (Fishburn [1979]). A voting rule f satisfies Anonymity, Neutrality

and Reinforcement if and only if it is a lexicographic scoring rule.

Theorem 3.1.2 (Fishburn [1979]). A voting rule f satisfies Anonymity, Neutrality,

Reinforcement and Overwhelming Majority if and only if it is a (simple) scoring rule.

I will now show that, when we restrict the analysis to lexicographic scoring rules, it

turns out that the axiom of Continuity implies the axiom of Overwhelming Majority.

The crucial idea is that, whenever f is a lexicographic scoring rule and an overwhelming

majority of voters can be guaranteed some representation in the sense that is required

by the axiom of Continuity, the overwhelming majority need only increase by a single

disjoint electorate with identical collective choice to determine the outcome of the

election.

Proposition 3.1.3. Let f be a voting rule that satisfies the axioms of Anonymity,
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Neutrality, Reinforcement, and Continuity. Then f also satisfies Overwhelming Ma-

jority.

Proof. Let f be a voting rule that satisfies Anonymity, Neutrality, Reinforce-

ment and Continuity. I will show that f satisfies Overwhelming Majority.

Observe first that by Theorem 3.1.1, f must be a lexicographic voting rule.

Let B be a profile, {Np}p∈N a collection of disjoint electorates such that

f(BNp) = W for all p and some subset W ⊆ X, and let A be a subset of

voters such that A ∩ Np = ∅ for all p and f(BA) ∩W = ∅. By Continuity,

there is a k ∈ N such that f(BN1 + · · · + BNk
+ BA) ∩W ̸= ∅. Let W =

f(BN1 + · · ·+BNk
+BA)\W . If W = ∅, then f(BN1 + · · ·+BNk

+BA) ⊆ W ,

so suppose that W ̸= ∅. I will show that f(BN1 + · · ·+BNk+1
+BA) ⊆ W .

Since f(BN1+· · ·+BNk
+BA)∩W ̸= ∅, there is some y ∈ f(BN1+· · ·+BNk

+

BA) such that, for all x ∈ W and all p ∈ N, we have that Suppwt′ (BNp , y) >

Suppwt′ (BNp , x) for some t′ ∈ {1, ..., t} and Suppwj(BNp , y) ≥ Suppwj(BNp , x)

for all j < t′. That is, for each x ∈ W , we have that y lexicographically dom-

inates x in BNp , for all p ∈ N. From this it follows that y lexicographically

dominates every element x ∈ W in the profile BN1 + · · · + BNk
, and that y

lexicographically dominates every element x ∈ W in the profile BNk+1
.

Now, since y ∈ f(BN1 + · · ·+BNk
+BA) and W ⊆ f(BN1 + · · ·+BNk

+BA),

we must have that Suppwt′ (BN1 + ... +BNk
+BA, y) = Suppwt′ (BN1 + ... +

BNk
+ BA, x) for all x ∈ W and t′ ∈ {1, ..., t}. Thus, for all x ∈ W , we get

that

Suppwt′ (BN1 + ...+BNk
+BNk′

+BA, y)

= Suppwt′ (BN1 + ...+BNk
+BA, y) + Suppwt′ (BNk′

, y)

> Suppwt′ (BN1 + ...+BNk
+BA, x) + Suppwt′ (BNk′

, x)

= Suppwt′ (BN1 + ...+BNk
+BNk′

+BA, x)
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for some t′ ∈ {1, ..., t}, and furthermore, that

Suppwj(BN1 + ...+BNk
+BNk+1

+BA, y)

= Suppwj(BN1 + ...+BNk
+BA, y) + Suppwj(BNk+1

, y)

≥ Suppwj(BN1 + ...+BNk
+BA, x) + Suppwj(BNk+1

, x)

= Suppwj(BN1 + ...+BNk
+BNk+1

+BA, x)

for all j < t′, so y lexicographically dominates each x ∈ W in the profile

BN1 + ...+BNk+1
+BA. Consequently, f(BN1 + ...+BNk+1

+BA)∩W = ∅.
Thus, f(BN1 + ...+BNk+1

+BA) ⊆ W , so f satisfies Overwhelming Majority.

It follows as a corollary of Proposition 3.1.3 that the class of scoring rules over approval

ballots can be characterized by the axioms of Anonymity, Neutrality, Reinforcement

and Continuity. Note that this strengthens Theorem 3.1.2. Furthermore, this makes

it clear that we obtain exactly the scoring rules over approval ballots by excluding

the axioms of Congruity and Contraction in the characterization of Alcalde-Unzu and

Vorsatz [2009].

Corollary 3.1.4. A voting rule f satisfies Anonymity, Neutrality, Reinforcement and

Continuity if and only if f is a (simple) scoring rule.

Let us now move on to study the axioms of Congruity and Contraction, as well as other

possible properties that can be used to derive the class of Size Approval Voting rules

from the class of scoring rules.

3.1.2 Congruity and Contraction

In contrast to the axioms of Anonymity, Neutrality, Reinforcement and properties

of continuity, the axioms of Congruity and Contraction are not commonly used as

properties in the literature. Congruity, stating that an alternative x that loses in a

given profile B does not become winning when the profile is extended with a set of

voters that do not vote for x, is thought to be rather weak, and it mainly excludes a

collection of rules in which ballots can be given non-trivial negative weight. I give an

example of a rule that would not be allowed by Congruity.
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Example 3.1.5. Consider a scoring rule f parameterized by weight vector w =

(−1, 0, ..., 0). We can think of f as the veto rule, under which voters are asked to

veto a single alternative, and those alternatives that are vetoed by the least number

of voters win the election. Consider now the set X = {x, y}, and let B be a profile

with N = {1, 2, 3}, where B1 = {x} and B2 = B3 = {y}. Then f(B{1}) = {y}, while
f(B) = {x}. Thus, f does not respect Congruity.

Contraction, on the other hand, states that if a single voter restricts their vote to some

new vote that contains a previously winning alternative, then that alternative continues

to win, and no previously losing alternatives become winning. The main role of the

axiom of Contraction is intuitively to force weights to be weakly decreasing in the size

of the ballots. However, in the characterization of the class of Size Approval Voting

rules provided by Alcalde-Unzu and Vorsatz [2009], this property is also considered

to play some role in forcing weights of rules to be non-negative. The following is an

example of a rule excluded by Contraction.

Example 3.1.6. Let f be the scoring rule parameterized by weight vector w =

(−1, 1, 2, ...,m−1), where voters are penalized for casting singleton ballots, and where,

more generally, the weight of a ballot increases with the size of the ballot. Despite be-

ing somewhat strange-looking, this rule bears some relevance to voting situations in

which voters are incentivized to be flexible. For example, if we think of the alter-

natives in X as representing timeslots, and of voters as voting to schedule a meet-

ing, we may consider the rule to require that no voter chooses only a single times-

lot, while simultaneously encouraging voters to choose as many of the available slots

as possible. Let X = {x, y, z}, and let B be a profile with N = {1, 2, 3}, where

B1 = {x, y}, B2 = {y, z}, and B3 = {x, z}. Consider the profile B′ = (B′
1, B2, B3),

where B′
1 = B1 \ {y}. Then f(B) = X and f(B)∩B′

1 = {x}, but f(B′) = {z}. Thus,
f does not respect Contraction.

In this subsection, I consider the role these two axioms play in capturing the class

of Size Approval Voting rules, by looking at the subclasses of scoring rules obtained

by requiring each of them separately. I also show that the axioms can be relaxed or

exchanged for simpler axioms to obtain the same classes of rules.
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Non-negative scoring rules

As noted in the introduction to this section, aside from forcing weights to be weakly

decreasing, the axiom of Contraction plays some part in excluding rules with negative

weights in the characterization due to Alcalde-Unzu and Vorsatz [2009]. Bearing in

mind this dual role played by the axiom in this work, it is worth considering whether,

in the context of scoring rules, the axiom of Congruity is sufficient to force weights to

be non-negative. For this purpose, it is convenient to define the class of non-negative

scoring rules.

Definition 3.1.7 (Non-negative scoring rule). A voting rule f is a non-negative scoring

rule if there exists a vector w = (w1, ..., wm) of weights, with wk ≥ 0 for all k < m,

such that for all profiles B,

f(B) = argmax
x∈X

Suppw(B, x)

The following proposition states that the scoring rules that satisfy Congruity are exactly

the non-negative scoring rules. The proof of the proposition serves as an illustration of

how Congruity forces weights to be non-negative. The property requires that no losing

alternative can become winning by extending the profile with any set of ballots not

including the losing alternative. In other words, no group of voters can make an already

losing alternative win by down-voting every other alternative. Now, for any voting

rule parameterized by a weight vector containing some non-trivial negative weight, we

can construct a voting scenario that defies congruity by defining a sufficiently large

set of voters all casting equal-sized negatively valued votes, assigning alternatives to

ballots appropriately. This is possible for any case in which there is a negative weight

associated with a non-trivial ballot size, and so the property boils down to making it

impossible for any ballot to give negative support.

Proposition 3.1.8. A scoring rule f satisfies Congruity if and only if it is a non-

negative scoring rule.

Proof. (⇐) Let f be a non-negative scoring rule. Consider an arbitrary profile

B and let A,C ⊆ N be disjoint. Suppose that, for some x ∈ X, x /∈ f(BA)

and x /∈ Bi for i ∈ C. Since x /∈ f(BA), there is some y ∈ X such that

Suppw(BA, y) > Suppw(BA, x). Now, since wk ≥ 0 for all k < m and x /∈ Bi
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for any i ∈ C, we must have that Suppwk
(BC , y) ≥ Suppwk

(BC , x) for all

k ≤ m, and so Suppw(BC , y) ≥ Suppw(BC , x). Thus, x /∈ f(BA +BC).

(⇒) By contraposition. Let X be a set of alternatives with |X| = m ≥ 2, and

let f be a scoring rule for which wk < 0 for some k < m. I will show that f does

not respect Congruity. The crucial idea is that if all voters vote with ballots of

size k, we can make sure that all alternatives are down-voted. Consider a set

of voters N = {1, ..., n} with n = ⌈m
k
⌉, and let B be a profile where |Bi| = k

for all i ∈ N . Observe that ⌈m
k
⌉ is exactly the number of voters needed for us

to be able to place every alternative on some ballot when all ballots are of size

k. Now, fix an alternative x ∈ X, and suppose that x ∈ B1. Since |B1| = k,

it follows that x /∈ f(B{1}). Further suppose that x /∈ Bi, for all remaining

voters i ∈ N \{1}, and for each alternative y ∈ X\{x}, suppose that y ∈ Bi for

some i ∈ N . Then we have that Suppwk
(B, x) ≥ Suppwk

(B, y) for all y ∈ X.

Since |Bi| = k for all i ∈ N , it follows that x ∈ f(B) = f(B{1} + BN\{1}).

However, since x /∈ f(B{1}) and x /∈ Bi for any i ∈ N \ {1}, we would have by

Congruity that x /∈ f(B). Thus, f does not respect Congruity.

Could we express a property that excludes the possibility of negative weights in more

simple terms? One property of relevance is that of faithfulness. As the name sug-

gests, the faithfulness property requires that a voting rule exhibits some basic level

of faithfulness to the votes of an electorate. Specifically, a voting rule is faithful if,

in any voting scenario where the electorate consists of a single voter, the voting rule

chooses the ballot of the single voter as winning. However basic, this property is still

somewhat too strong for the given purposes, as it would exclude any rule that gives

value zero to some ballot of size strictly smaller than that of the full set of alternatives.

On the other hand, for any electorate consisting of a single voter, we should expect any

non-negative scoring rule to produce an output that includes the ballot of the single

voter. Conversely, if a scoring rule applied to any single-voter profile does include the

ballot of the single voter in its output, no ballot could possibly be valued negatively.

Therefore, consider the following weakened version of the faithfulness property.

Axiom (Weak Faithfulness). For any single-voter profile B = (B1), we have B1 ⊆
f(B).
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It is easy to verify that the scoring rules that satisfy the weak faithfulness property are

exactly the non-negative scoring rules.

Proposition 3.1.9. A scoring rule f satisfies Weak Faithfulness if and only if it is a

non-negative scoring rule.

Proof. (⇐) Let f be a non-negative scoring rule and let B = (B1).

Since wk ≥ 0 for all k < m, Suppw(B, x) ≥ Suppw(B, y) for all x ∈ B1 and

all y ∈ X, and so B1 ⊆ f(B).

(⇒) Let f be a scoring rule with wk < 0 for some k < m. If B = (B1) and

|B1| = k, then f(B) = X \ B1, and so B1 ̸⊆ f(B). Thus, f does not satisfy

Weak Faithfulness.

The reason that we can obtain the class of non-negative scoring rules by imposing such

a weak axiom as Weak Faithfulness is the following. Whenever a voting procedure

f is neutral and we have a profile B containing only a single individual i, we must

have that f(B) ∈ {{Bi}, {X \ Bi}, {X}}. If we then impose Weak Faithfulness, by

definition of the axiom, we cannot have that f(B) = X \Bi. The consequence of this

fact for the class of scoring rules is that no ballot size can be associated with a negative

weight. Note also that if we require Faithfulness in its regular form, we obtain the class

of those scoring rules for which all non-trivial weights are positive.

In this subsection, we showed that the scoring rules that satisfy Congruity are exactly

those that assign non-negative weights to all ballot sizes, thus establishing that it is

sufficient to impose Congruity to exclude rules with negative weights. We also observed

that we can obtain the class of non-negative scoring rules by use of the axiom Weak

Faithfulness instead of Congruity. We now move on to investigating the axiom of

Contraction.

Contraction and weakly decreasing weights

Let us now consider the axiom of Contraction. As was noted previously, this axiom

plays a dual role in the characterization by Alcalde-Unzu and Vorsatz [2009]. Consider

again the definition of the axiom, as given in Chapter 2:
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Axiom (Contraction). For all profiles B, B′ and all sets of voters A ⊆ N such that

B′
i ⊂ Bi for a single i ∈ A and B′

j = Bj for all j ∈ A \ {i}, if f(BA) ∩B′
i ̸= ∅, we have

that

B′
i ∩ f(BA) ⊆ f(B′

A) ⊆ f(BA).

To get a better understanding of how the axiom works, it might be convenient to

consider the two conditions imposed by the axiom of Contraction, that is, B′
i∩f(BA) ⊆

f(B′
A) and f(B′

A) ⊆ f(BA), separately. I will refer to the properties that we obtain

by separating the conditions of Contraction as Contraction 1 and Contraction 2.

Axiom (Contraction 1). For all profiles B, B′ and all sets of voters A ⊆ N such that

B′
i ⊂ Bi for a single i ∈ A and B′

j = Bj for all j ∈ A \ {i}, if f(BA) ∩B′
i ̸= ∅, we have

that

B′
i ∩ f(BA) ⊆ f(B′

A).

Axiom (Contraction 2). For all profiles B, B′ and all sets of voters A ⊆ N such that

B′
i ⊂ Bi for a single i ∈ A and B′

j = Bj for all j ∈ A \ {i}, if f(BA) ∩B′
i ̸= ∅, we have

that

f(B′
A) ⊆ f(BA).

It turns out that if we require a scoring rule to satisfy the property Contraction 1,

weights must be weakly decreasing in the size of ballots.

Proposition 3.1.10. A scoring rule f with weight vector w = (w1, ..., wm) satisfies

Contraction 1 if and only if wk ≤ wk−1 for all 1 < k < m.

Proof. (⇐) Let f be a scoring rule such that wk ≤ wk−1 for all 1 < k < m.

Let B,B′ be profiles and A ⊆ N a subset of voters such that B′
i ⊂ Bi for

a single i ∈ A and B′
j = Bj for all j ∈ A \ {i}, and let x ∈ B′

i ∩ f(BA).

Since x ∈ f(BA), we have that x ∈ argmaxy∈X Suppw(BA, y). Now, from

B′
i ⊂ Bi, we get that w|B′

i| ≥ w|Bi|. Thus, since x ∈ B′
i, it follows that

Suppw(B
′
A, x) ≥ Suppw(BA, x). All else being equal, we must have that

x ∈ argmaxy∈X Suppw(B
′
A, y). Thus, x ∈ f(B′

A).

(⇒) By contraposition. Let X be a set of alternatives with |X| = m and
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f a scoring rule with wk > wk−1 for some k < m. I will show that we can

construct a voting scenario for which f does not respect Contraction 1. Let

|N | = m and define B such that |Bi| = k for all i ∈ N and Suppwk
(B, x) = k

for all x ∈ X. By construction f(B) = X, and for each x ∈ X there is some

i ∈ N such that x /∈ Bi. Let now B′ be the profile obtained from B by letting

B′
1 = B1 \ {x} for some x ∈ B1, while B′

j = Bj for all j ∈ N \ {1}. Note

that since k > 1, we must have that B′
1 ̸= ∅. Fix some alternative y ∈ B′

1.

By construction, y ∈ f(B) ∩ B′
1. Now, since |B1| = k and |B′

1| = k − 1, we

have that w|B′
1| < w|B1|, and so Suppw(B

′, y) < Suppw(B, y). Now, observe

that since |Bj| = k < m for all j ∈ N , we have that Bj ⊂ X for each j ∈ N ,

so there is some alternative z ∈ X such that Suppw(B
′, z) = Suppw(B, z) =

Suppw(B, y) > Suppw(B
′, y). Thus, y /∈ f(B′). But y ∈ f(B) ∩ B′

1, so

f(B) ∩B′
1 ̸⊆ f(B′). Hence, f does not respect Contraction 1.

It furthermore turns out that, in the context of scoring rules, Contraction 1 implies

Contraction 2.

Proposition 3.1.11. If f is a scoring rule and f satisfies Contraction 1, then f also

satisfies Contraction 2.

Proof. Let f be a scoring rule and suppose that for all B,B′ and all A ⊆ N

such B′
i ⊂ Bi for a single i ∈ A, B′

j = Bj for all j ∈ A \ {i}, and f(BA) ∩
B′

i ̸= ∅, we have f(BA) ∩ B′
i ⊆ f(B′

A). We want to show that f(B′
A) ⊆

f(BA). Suppose for contradiction that x ∈ f(B′
A) and x /∈ f(BA) for some

x ∈ X. By assumption, f(BA) ∩ B′
i ̸= ∅, and so there is some y ∈ B′

i

such that Suppw(BA, y) > Suppw(BA, x). Suppose first that x ∈ B′
i. Then

Suppw(B
′
A, x)−Suppw(BA, x) = Suppw(B

′
A, y)−Suppw(BA, y), i.e., y and x

must have experienced the same increase in weighted support from i restricting

their ballot. Secondly, suppose that x /∈ B′
i. Then, everything else being equal,

Suppw(B
′
A, x) ≤ Suppw(BA, x), i.e., x has not gained support in B′. In both

cases, it follows that Suppw(B
′
A, y) > Suppw(B

′
A, x), which contradicts the

assumption that x ∈ f(B′
A). Thus, f(B

′
A) ⊆ f(BA).

For the remainder of the thesis, I will generally not consider voting rules that do not

belong to the class of scoring rules over approval ballots, and so it will be sufficient

to work with with the property Contraction 1 in place of Contraction in its full form.
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Therefore, I will from here on work with the simplified version of Contraction given by

Contraction 1.

Axiom (Contraction). For all profiles B, B′ and all sets of voters A ⊆ N such that

B′
i ⊂ Bi for a single i ∈ A and B′

j = Bj for all j ∈ A \ {i}, if f(BA) ∩B′
i ̸= ∅, we have

that

B′
i ∩ f(BA) ⊆ f(B′

A).

I will now summarize the sections so far by giving possible characterizations of the

class of Size Approval Voting that follow from the results we have seen.

Size Approval Voting Rules

So far in this section, we have looked at axioms that have previously been used to

characterize the class of Size Approval Voting rules, axiomatically related the class to its

superclass of scoring rules, and considered whether certain axioms used to characterize

Size Approval Voting rules can be simplified or exchanged for other axioms. In this

subsection, I conclude the section by giving several characterizations of Size Approval

Voting rules that follow directly from results previously given.

Theorem 3.1.12. A voting rule f satisfies each of the following combinations of axioms

if and only if f is a Size-Approval Voting rule:

(1) Anonymity, Neutrality, Reinforcement, Overwhelming Majority, Congruity, and

Contraction.

(2) Anonymity, Neutrality, Reinforcement, Overwhelming Majority, Weak Faithful-

ness, and Contraction.

(3) Anonymity, Neutrality, Reinforcement, Continuity, Congruity, and Contraction.

(4) Anonymity, Neutrality, Reinforcement, Continuity, Weak Faithfulness and Con-

traction.

Proof. I only show (4), the other cases are similar. Let f be a voting rule.

By Theorem 3.1.2 due to Fishburn [1979], the rule f satisfies Anonymity, Neu-

trality, Reinforcement and Overwhelming Majority if and only if f is a scoring

rule. By Proposition 3.1.3, it follows that f satisfies Anonymity, Neutrality,

27



Reinforcement and Continuity if and only if f is a scoring rule. By Proposi-

tion 3.1.9, a f satisifes Weak Faithfulness if and only if f is a non-negative

scoring rule. Finally, by Proposition 3.1.10, a f satisfies Contraction if and

only if weights are weakly decreasing in the size of ballots.

Let us now shift our focus from questions about the area surrounding the class of

Size Approval Voting rules, to issues concerning the landscape inside the class. In the

next section, I look more closely at subclasses of Size Approval Voting rules and their

members.

3.2 Classes of Size Approval Voting Rules

This section is dedicated to a closer inspection of two notable subclasses of Size Ap-

proval Voting rules and some important rules in these classes. In particular, I look

at how to obtain the subclass of Size Approval Voting rules called p-approval rules,

which are those rules that allow voters to approve of any number of candidates up

to some fixed value p, and the subclass of Size Approval Voting rules with weights

that are strictly decreasing in the size of ballots. These are arguably subclasses that

contain the most natural of the Size Approval Voting rules. I mainly consider how to

obtain these classes from the class of Size Approval Voting rules. In addition, I give a

characterization of the rule Even and Equal Cumulative Voting (EECV), belonging to

the subclass of Size Approval Voting rules with strictly decreasing weights.

3.2.1 p-Approval Rules

Let us start by considering the class of p-approval rules. For rules in this class, all

ballots of sizes up to some fixed p are awarded some identical non-negative score, and

all ballots of size larger than p are discarded. Most notably, this subclass contains the

rules Approval Voting and plurality voting, parameterized by the weight vectors w =

(1, 1, ..., 1) and w = (1, 0, ..., 0), respectively. These two rules are arguably the most

well-known of the Size Approval Voting rules, and have both been studied extensively

from many angles. Naturally, the p-approval class also includes all restricted approval

rules that allow voters to approve of more than a single alternative, but fewer than all

alternatives. I start with giving a formal definition of the class of p-approval rules.
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Definition 3.2.1 (p-approval rule). A Size-Approval rule f is a p-approval rule if there

exists a p ≤ m such that wk = wℓ > 0 for all k, ℓ ≤ p, and wk = 0 for all k > p.

We are primarily interested in determining how these rules are similar. One point

worth stressing is that these rules may behave quite differently despite their structural

similarity. This point is perhaps best motivated in this context by considering some

differences between the plurality rule and Approval Voting. As noted in the introduc-

tion, Approval Voting avoids a problem observed in elections under plurality, known as

the wasted vote problem, where voter may have to decide between ‘wasting’ their vote

on their most-preferred alternative and voting for another less-preferred alternative

that has a better chance of winning the election [Brams and Fishburn, 1978, Merrill

and Nagel, 1987]. On the other hand, Approval Voting allows for the possibility of the

electorate choosing as winning some alternative, sometimes called the lowest common

denominator, which to many voters is not particularly interesting, since additionally

voting for said alternative does not affect the support given to other alternatives on

the same ballot [Alcalde-Unzu and Vorsatz, 2009].

Nevertheless, the structural similarity between the p-approval rules suggests some sim-

ilarity in their behavior. One way to think of the class of p-approval rules is as those

rules that behave like, or simulate, Approval Voting up to a certain point. This per-

spective will motivate the approach I take to obtain the class of p-approval rules from

the class of Size Approval Voting rules. Recall the axiom of Disjoint Equality defined

in Chapter 2.

Axiom (Disjoint Equality). For any profile B and i, j ∈ N , Bi ∩Bj = ∅ implies

f(B{i,j}) = Bi ∪Bj.

The axiom of Disjoint Equality has been used in several characterizations of Approval

Voting. In particular, Fishburn [1978] shows that Approval Voting is the only voting

rule that satisfies Anonymity, Neutrality, Reinforcement and Disjoint Equality, and

Brandl and Peters [2022] show that Approval Voting is the only voting rule that sat-

isfies Reinforcement, Faithfulness and Disjoint Equality. Consider now the following

property, called Bounded Disjoint Equality, which we can view as a restricted form

29



of Disjoint Equality. The axiom of Bounded Disjoint Equality requires, roughly, that

whenever we only consider the ballots of two voters in an election instance and those

voters do not have any approved alternatives in common, the voting procedure should

elect the choices of both voters as winning, as long as the number of alternatives voted

for by each voter is bounded by some fixed p ≤ m. Additionally, we will require that,

whenever a voter submits a ballot of size larger than p, the voting procedure chooses

all alternatives as winning.

Axiom (Bounded Disjoint Equality). There exists a p ≤ m such that, for any profile

B and all i, j ∈ N , Bi ∩ Bj = ∅ and |Bi|, |Bj| ≤ p implies f(B{i,j}) = Bi ∪ Bj, and

|Bi| > p implies f(B{i}) = X.

The following proposition show that the Size-Approval rules that satisfy Bounded Dis-

joint Equality correspond exactly to the subclass of p-approval rules.

Proposition 3.2.2. A Size-Approval rule f satisfies Bounded Disjoint Equality if and

only if it is a p-approval rule.

Proof. (⇐) Let f be a p-approval rule. Then there is a p ≤ m such that

wk−1 = wk > 0 for all k ≤ p and wk = 0 for all k > p. Fix this p. Let i ∈ N

and suppose that |Bi| = k > p. Since k > p, we have by definition that wk = 0,

and so f(Bi) = X. Secondly, suppose for some i, j ∈ N that |Bi|, |Bj| ≤ p

and Bi ∩ Bj = ∅. Since wk = wl > 0 for all k, l ≤ p, Suppw(B{i,j}, x) =

Suppw(B{i,j}, y) > Suppw(B{i,j}, z) for all x, y ∈ Bi ∪ Bj and z /∈ Bi ∪ Bj.

Thus f(B{i,j}) = Bi ∪Bj.

(⇒) Let f be a Size-Approval rule that satisfies Bounded Disjoint Equality,

and fix the p stated to exist by the property. Note that if f is the trivial rule

for which wk = 0, for all k ≤ m, we can easily construct a voting scenario

for which f defies Bounded Disjoint Equality, so assume that f is non-trivial.

By Bounded Disjoint Equality, for all ballots Bi with |Bi| > p, we have that

f(B{i}) = X. Thus, we can let wk = 0 for all k > p. It remains to show that

wk = wl > 0 for all k, l ≤ p. Suppose that there is some k ≤ p such that

wk = 0. Assume without loss of generality that k < m. Since f is not the

trivial rule, there is some l ̸= k such that wl > 0. Since wl > wk, we must
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have l < k by the fact that weights are weakly decreasing. If l ̸= 1, it follows

for the same reason that w1 ≥ wl > wk, so assume without loss of generality

that l = 1. Let i, j ∈ N , and let |Bi| = 1 and |Bj| = k. Then |Bi|, |Bj| ≤ p,

but f(B{i,j}) = Bi, and so f does not satisfy Bounded Disjoint Equality.

Are there other approaches we could take to obtain the class of p-approval rules from

the class of Size Approval Voting rules? Perhaps. For example, one approach could be

to use a limited version of the axiom of Cancellation, saying that the outcome should

correspond to the full set of alternatives whenever all alternatives are given the same

number of votes and no voter abstains (that is, casts a ballot that awards the same

amount of support to every alternative in the set of alternatives). Such a condition

would intuitively be trivially fulfilled by the trivial rule, but this issue could be mediated

by slightly strengthening the axiom of Weak Faithfulness to require that there exists

some profile for which the collective outcome corresponds exactly to the vote of the

single-voter electorate. However, such an approach may also rely on properties that

turn out to be somewhat technical when formalized.

I will now move on to consider the subclass of Size Approval Voting rules with weights

that strictly decrease with the size of ballots. This class will be referred to as the class

of Strictly Decreasing Size Approval Voting Rules.

3.2.2 Strictly Decreasing Size Approval Voting Rules

Another natural subclass of Size Approval Voting rules is the subclass containing those

rules for which weights are strictly decreasing in the size of ballots. I will call this

subclass the class of Strictly Decreasing Size Approval Voting (SDSAV) rules. The most

notable of these rules, and perhaps also the most natural, is the rule of Even and Equal

Cumulative Voting (EECV), parameterized by the weight vector w = (w1, ..., wm) with

wk = 1
k
for all k ≤ m. To illustrate the more extreme points of the class, consider the

two following rules:

• the rule w = (w1, ..., wm), with w1 = 1 and wk = wk−1 − ϵk−1 for each k > 1

and some small ϵ > 0, for which weights decrease infinitesimally with the size of

ballots.

• the rule w = (w1, ..., wm) with w1 = 1 and wk = ϵk for each k > 1 and some
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small ϵ > 0, for which weights drastically decrease with the size of ballots.

In this section, I first discuss how to obtain the class of SDSAV rules from the class

of Size Approval Voting rules, and thereafter look more closely at the rule EECV,

providing a possible characterization of the rule.

Definition 3.2.3 (Strictly Decreasing Size-Approval Voting rule). A Size Approval

Voting rule f is a SDSAV rule if wk < wk−1 for all 1 < k < m. In words, a SDSAV

rule is a SAV rule with weights that are strictly decreasing in the size of ballots.

A simple way to obtain the class of SDSAV rules from the class of Size Approval

Voting rules is through strengthening the axiom of Contraction. In this strengthened

version of the Contraction axiom, we will require that whenever in some profile a single

voter i restricts their ballot to one that includes some alternatives that were already

winning, the winners in the profile obtained from i restricting their ballot is exactly

the previously winning alternatives on i’s new ballot. Intuitively, this property enables

voters to sometimes break ties between their approved alternatives and alternatives

they do not approve of, describing situations in which the choice of a single voter plays

a pivotal role for the election outcome. I will refer to this strengthened version of the

Contraction axiom as Pivotal Contraction, formally defined as follows.

Axiom (Pivotal Contraction). For all profiles B,B′ and all sets of voters A ⊆ N such

that B′
i ⊂ Bi for a single i ∈ A, Bj = B′

j for all j ∈ A \ {i} and f(BA) ∩ B′
i ̸= ∅, we

have that B′
i ∩ f(BA) = f(B′

A).

Proposition 3.2.4. A SAV rule f satisfies Pivotal Contraction if and only if it is a

SDSAV rule.

Proof. (⇒) Let f be a SDSAV rule. By definition, f is a Size Approval Voting

rule, and so it is sufficient to show that f satsifies the additional property

imposed by the axiom of Pivotal Contraction. Thus, let B,B′ be profiles

and A ⊆ N be a subset of the electorate such that B′
i ⊂ Bi for a single

i ∈ A and B′
j = Bj for all j ∈ A \ {i}, and let f(BA) ∩ B′

i ̸= ∅. The

inclusion f(B′
A) ⊇ f(BA)∩B′

i follows from Conctraction, so I only show that

f(B′
A) ⊆ f(BA) ∩ B′

i. Contrapositively, suppose that x /∈ f(BA) ∩ B′
i. We
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want to show that x /∈ f(B′
A). Since f(BA) ∩ B′

i ̸= ∅, there is some y ∈ B′
i

such that Suppw(BA, y) ≥ Suppw(BA, x
′) for all x′ ∈ X. Suppose first that

x /∈ f(BA). Then Suppw(BA, y) > Suppw(BA, x). Since y ∈ B′
i ⊂ Bi and

w|B′
i| > w|Bi|, it follows that Suppw(B

′
A, y) > Suppw(B

′
A, x) whether or not

x ∈ B′
i, and so x /∈ f(B′

A). Suppose on the other hand that x ∈ f(BA).

Since x /∈ f(BA) ∩ B′
i, it follows that x /∈ B′

i. All else being equal, we have

that Suppw(BA, x) ≥ Suppw(B
′
A, x). Now, y ∈ f(BA) ∩ B′

i and B′
i ⊂ Bi,

from which it follows that Suppw(B
′
A, y) > Suppw(BA, y) = Suppw(BA, x) ≥

Suppw(B
′
A, x), and so x /∈ f(B′

A). Hence, f(B
′
A) ⊆ f(BA) ∩B′

i.

(⇐) Let f be a Size Approval Voting rule that satisfies Pivotal Contraction.

We want to show that wk < wk−1 for all 1 < k < m.

By contraposition, suppose that wk ≥ wk−1 for some 1 < k < m. Since f

is a Size Approval Voting rule, f satisfies Contraction, and so it cannot be

that wk > wk−1. Thus, assume that wk = wk−1. Consider a profile B with

|N | = m and |Bi| = k for all i ∈ N . For each x ∈ X, let Supp(B, x) = k.

That is, let each alternative x ∈ X be on k votes in B. Note that this

is possible since |N | = m. Since |Bi| = k for all i ∈ N , it follows that

Suppw(B, x) = Suppw(B, y) for all x, y ∈ X, and thus f(B) = X. Now,

let B′ be a profile obtained from B by letting a single voter remove a single

alternative from their ballot. That is, let B′
i = Bi \ {y} for some y ∈ Bi and a

single i ∈ N , let B′
j = Bj for all j ∈ N \ {i}.

Observe that B′
i ⊂ Bi with |B′

i| = k−1, and consequently that Suppw(B, y) >

Suppw(B
′, y). Further, since f(B) = X, it follows that f(B) ∩ B′

i = B′
i.

Now, since w|B′
i| = w|Bi| while B′

j = Bj for all j ∈ N \ {i}, we have that

Suppw(B, x) = Suppw(B
′, x) for all x ∈ X such that x ∈ B′

i or x /∈ Bi. Thus,

f(B′) = X \ {y}. Now, since |Bi| = k for all i ∈ N , there is some z ∈ X such

that z ∈ f(B′) and z /∈ B′
i = f(B) ∩ B′

i, and so f(B′) ̸⊆ f(B) ∩ B′
i. Thus, f

does not satisfy Pivotal Contraction.

The axiom of Pivotal Contraction, like Contraction, is perhaps a somewhat technical
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property. However, the class of SDSAV rules allows for any rule with weights that are

strictly decreasing in the size of ballots. Different rules in this class may incentivize very

different voting behavior and yield very different outcomes. Compare, for example, the

rules w = (w1, ..., wm), with w1 = 1 and wk = wk−1 − ϵk−1 for each k > 1 and some

small ϵ > 0, for which weights decrease infinitesimally with the size of ballots, and the

rules w = (w1, ..., wm) with w1 = 1 and wk = ϵk for each k > 1 and some small ϵ > 0,

for which weights drastically decrease with the size of ballots, mentioned previously.

Under the first kind of rule, the support given to each alternative on a ballot barely

reduces as the size of the ballot increases, and as such, voters sacrifice very little in

approving of a large number of alternatives. For the second kind of rule, the opposite is

true. Under such a rule, the sacrifice that comes with approving of several alternatives

is great, as this makes the support given to each alternative miniscule. In this sense,

these two kinds of rules are closer to Approval Voting and plurality voting, respectively,

than they are to each other. As such, it not a given that there will be many natural

properties shared by all of these rules which simultaneously distinguish them from

others. A more serious objection is that the axiom of Pivotal Contraction may not be

very desirable at all. For one, the property has some relation to bullet voting, an act

of manipulation where a voter votes gives all their support to a single alternative that

is not necessarily among their favourites, in an effort to bring about some particular

election outcome. As we will see in later chapters, many Size Approval Voting rules,

and in particular the SDSAV rules, incentivize bullet voting.

Let us now look more closely at the rule Even and Equal Cumulative Voting (EECV).

To characterize this rule, I will take another approach than that of building on the

characterization of the SDSAV class using Pivotal Contraction, instead using Faith-

fulness and an axiom more specific to EECV to obtain the rule from the class of Size

Approval Voting rules.

Even and Equal Cumulative Voting

The most natural rule in the class of SDSAV rules is probably Even and Equal Cumu-

lative Voting, given by weight vector w = (1, 1
2
, ..., 1

m
). The rule is a cumulative voting

rule3 that allows voters to distribute one unit of points equally between any number

3Under cumulative voting rules, voters are given a fixed amount of points to distribute over some
number of chosen candidates. See, e.g., Glasser [1959]
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of alternatives. While not as prominent as the plurality rule and Approval Voting,

the rule is used in some real-world elections [Alcalde-Unzu and Vorsatz, 2009]. The

rule furthermore is the single-winner analogue of the rule Satisfaction Approval Voting

originally defined by Brams and Kilgour [2010], used in the context of Multi-winner

Elections.

One characteristic feature of EECV is that it can be considered to satisfy the ‘one

voter, one vote’ principle, in the sense that each voter distributes exactly one unit of

support across alternatives. That is, under EECV, voters have exactly the same voting

power. However, it turns out to not be very straightforward to define a property of

equal voting power in a general way that separates the influence of a voter on the

election from the actual ballot of the voter.

What other defining characteristics of the rule EECV can be used to characterize the

class? I will consider a property motivated by the following scenario. Consider a group

of voters who have disjoint but mutually compatible favorite alternatives trying to

determine how to cooperatively vote in an election. Under EECV, if each voter favors

a single alternative, it should make no difference on the outcome whether each voter

in the group votes for their favorite alternative separately or all voters in the group

vote for the union of their favorite alternatives. I state this condition formally using

the following axiom. This axiom is analogous to a version of the Splitting axiom used

by Terzopoulou and Endriss [2019] to characterize the Even and Equal weight rule. I

will therefore call the following property Splitting.

Axiom (Splitting). For all B and all 1 < k ≤ m, we have

f(B + ({x1}, ..., {xk})) = f(B + ({x1, ..., xk})k)

I will show that in the context of Size Approval Voting rules, the rule of EECV can

be characterized by Faithfulness, and Splitting. Recall that faithfulness requires that,

whenever the electorate only has a single voter, the voting procedure used must stay

faithful to that voter’s choices.

Axiom (Faithfulness). For any single-voter profileB = (B1), we have that B1 = f(B).
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Intuitively, there are only two Size Approval Voting rules that satisfy the Splitting

axiom, namely EECV and the trivial rule, represented by w = (0, ..., 0). The following

lemma confirms this, showing that the only non-trivial Size Approval Voting rule that

satisfies Splitting is EECV. The trivial rule clearly does not satisfy Faithfulness, thus

it will follow that the only Size Approval Voting rule satisfying both of these axioms

is EECV.

Lemma 3.2.5. If f is a SAV rule that satisfies Splitting, and f is not the trivial rule,

then wk =
1
k
for all 1 < k < m.

Proof. Suppose that f is a SAV rule that satisfies Splitting, and that f

is not the trivial rule. It is to show that wk = 1
k
for all 1 < k < m.

Without loss of generality, we may assume that w1 = 1. Let B be a pro-

file and fix 1 < k < m. Denote with B′
1 the profile ({x1}, ..., {xk}) and

with B′
k the profiles ({x1, ..., xk})k, where x1, ..., xk ∈ X. I will show that

Suppw(B+B′
1, x) = Suppw(B+B′

2, x) for all x ∈ X, from which the claim will

follow. Fix some alternative x ∈ X. Observe that if x /∈ {x1, ..., xk}, it follows
immediately that Suppw(B+B′

1, x) = Suppw(B+B′
2, x). Therefore, suppose

that x ∈ {x1, ..., xk}, and assume for contradiction that Suppw(B +B′
1, x) ̸=

Suppw(B + B′
2, x). Since f is a Size Approval Rule, wk ≤ wk−1 for all 1 <

k < m, so since Suppw(B, x) = Suppw(B, x), it follows that Suppw(B
′
1, x) >

Suppw(B
′
2, x). If Suppw(B

′
2, x

′) > Suppw(B
′
2, x) for some x′ ∈ {x1, ..., xk},

let f(B) = X. Then, x ∈ f(B + B′
1), but x /∈ f(B + B′

2), since there is

x′ ∈ {x1, ..., xk} such that Suppw(B
′
2, x

′) > Suppw(B
′
2, x). Similarly, if there

is some x′ ∈ {x1, ..., xk} such that Suppw(B
′
2, x) > Suppw(B

′
2, x

′), then if

f(B) = X, it follows analogously that x′ ∈ f(B +B′
1) and x′ /∈ f(B +B′

2).

Thus, in both cases, f(B + B′
1) ̸= f(B + B′

2), which contradicts Splitting.

Thus, suppose that Suppw(B
′
2, x) = Suppw(B

′
2, x

′) for all x′ ∈ {x1, ..., xk}.
Now, let f(B) = X \ {x1, ..., xk} and Suppw(B, y)− Suppw(B, x′) = 1 for all

y ∈ X \ {x1, ..., xk} and all x′ ∈ {x1, ..., xk}. It follows that f(B +B′
1) = X

and that f(B) = X \ {x1, ..., xk}, which contradicts Splitting. Thus, we must

have that Suppw(B + B′
1, x) = Suppw(B + B′

2, x) for all x ∈ {x1, ..., xk}.
Consequently, since Suppw(B, x) = Suppw(B, x) for all x ∈ X and w1 = 1,

we must have that wk = 1
k
. Since 1 < k < m was arbitrary, it follows that

wk =
1
k
for all 1 < k < m.
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The following proposition states that EECV can be characterized by Faithfulness and

Splitting, together with the axioms used to characterize Size Approval Voting rules.

Proposition 3.2.6. A Size Approval Voting rule f satisfies Faithfulness and Splitting

if and only if it is the rule EECV.

Proof. (⇐) First, observe that EECV clearly satisfies Faithfulness: Consider

any profile B with |N | = 1. Assume without loss of generality that |B1| < m.

Since w|B1| =
1

|Bi| , Suppw(B, x) = 1
|B1| for all x ∈ B1, and Suppw(B, y) = 0

for all y /∈ B1. Thus, f(B) = B1.

Secondly, I show that EECV satisfies Splitting. Let f be such that w =

(1, 1
2
, ..., 1

m
), and consider two profiles B+({x1}, ..., {xk}), B+({x1, ..., xk})k).

Suppose that x ∈ f(B + ({x1}, ..., {xk})). We want to show that x ∈ f(B +

({x1, ..., xk})k)). If x ̸= xi for any i ≤ k, then the claim holds trivially, so

suppose that x = xi for some i ≤ k. It is sufficient to show that

Suppw(({x1}, ..., {xk}), x) = Suppw(({x1, ..., xk})k), x).

However, by definition of EECV, w = (1, 1
2
, ..., 1

m
), so then it is clear that

1 = Suppw(({x1}, ..., {xk}), x) = Suppw(({x1, ..., xk})k), x) = 1
k
· k = 1. Thus,

x ∈ f(B + ({x1, ..., xk})k)). The converse direction is analogous.

(⇒) By Lemma 3.2.5, if f satisfies Splitting and is not the trivial rule, then

f must correspond to EECV, so it suffices to show that the trivial rule does

not satisfy Faithfulness. This is immediate: let w = (0, ..., 0), and consider

any profile B with |N | = 1, and suppose that |B1| < m. Since w|B1| = 0

regardless of |B1|, f(B) = X. However, by Faithfulness, we should have that

f(B) = B1 ⊂ X.

We may observe that that any non-trivial Size Approval Voting rule that satisfies

the Splitting axiom also satisfies the axiom of Contraction. Since Faithfulness clearly

implies Weak Faithfulness, it follows that EECV is the only voting rule satisfying the

axioms characterizing scoring rules together with Faithfulness and Splitting.
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Corollary 3.2.7. A voting rule f satisfies Anonymity, Neutrality, Reinforcement, Con-

tinuity, Faithfulness and Splitting if and only if f is the rule EECV.

3.3 Discussion

In this chapter, I have considered the class of Size Approval Voting rules from an

axiomatic perspective. I began by considering axioms that govern the class of Size

Approval Voting rules, axiomatically relating the class to its superclass of scoring rules,

and studying the role of the axioms of Congruity and Contraction, used by in axiomatic

characterization of the Size Approval Voting rules due to Alcalde-Unzu and Vorsatz

[2009]. I showed that we can replace Congruity by a weakened form of Faithfulness, and

that we can simplify the axiom of Contraction for the purposes of characterizing the

class. Subsequently, I looked at two of the most natural subclasses of the class, namely

the p-approval and the Strictly Decreasing Size Approval rules. I proposed properties

that can be used to obtain these classes from the class of Size Approval Voting rules.

Finally, I showed that the rule Even and Equal Cumulative Voting, belonging to the

class of Strictly Decreasing Size Approval rules, can be characterized by the axioms of

Anonymity, Neutrality, Reinforcement, Continuity, Faithfulness, and Splitting.

As briefly discussed, some axioms suggested in this section, in particular axioms used to

capture the two subclasses of Size Approval Rules considered, are somewhat artificial.

The primary defense for using these axioms is that both subclasses, while on the

surface being natural groups of rules, are composed of rules that may behave quite

differently from a normative point of view. As such, properties used to capture such

subclasses may end up being more on the technical side. However, there may still be

less artificial axioms yet to be considered that could be used to capture the classes we

have considered.
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Chapter 4

Strategic Behavior

This chapter considers the class of Size Approval Voting rules from the point of view of

strategic behavior, studying the vulnerability of Size Approval Voting rules with respect

to manipulation by voters.

The issue of manipulability of voting systems is central to Voting Theory. There are

many situations in which voters (or other agents with some role in the election) may

seek to manipulate so as to produce an outcome that is to their benefit. Manipulation

can be detrimental to the decision-making process in several ways. I give some examples

of potential adverse consequences of manipulation. For one, the legitimacy of a voting

rule that can be manipulated may be questioned, and the use of such a voting rule

may reduce voter turnout. Furthermore, if enough voters part-taking in the election

attempt to manipulate, we may end up with an outcome that is far from being in line

with the preferences of the electorate. Finally, a system that allows for manipulation

puts an unnecessarily large burden on voters with respect to deciding how they can

best act in their own self-interest: in such a system, voters may have to spend a lot

of effort reasoning about the actions of others to be able to determine their own best

choice.

The simplest manipulation scenario is that of a single voter submitting a vote that is

not in line with their true preferences in an effort to produce an election outcome that is

to their benefit. We call this the problem of strategic manipulation, and we say that a

rule is strategyproof if it is immune to strategic manipulation [Zwicker, 2016]. Working

with rules that are strategyproof is clearly the ideal – if a rule is strategyproof, it will
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always be in the best interest of voters to vote in line with their true preferences, and

so we can avoid the adverse effects of manipulation on the decision-making process.

Unfortunately, in the general case, this ideal is out of reach for all natural voting rules,

as illustrated by results such as those by Gibbard [1973], Satterthwaite [1975] and

Duggan and Schwartz [1999], showing that only dictatorships are strategyproof.

Nevertheless, despite no natural rule being immune to manipulation in the most general

case, the are special cases for which some rules become strategyproof. For example,

Brams and Fishburn [1978] showed that Approval Voting is strategyproof when voters

have true preferences that are dichotomous, and Black [1948] showed that a rule called

the median rule is strategyproof when the preferences of voters satisfy a property known

as single-peakedness. Furthermore, for some voting rules, the problem of determining

whether there exists a successful manipulation tactic is computationally intractable

[Bartholdi et al., 1989a, Xia et al., 2009]. In addition, many results concerning the

strategic vulnerability of voting rules rely on the assumption that voters have full

information about the given election, having access to the ballot of every other voter.

It is however rarely the case in practice that voters have access to all information

about the choices of other members of the electorate. The problem of manipulability

of voting rules under partial information has previously been studied by, e.g., Conitzer

et al. [2011], Reijngoud and Endriss [2012], and Endriss et al. [2016], and in particular,

some of the results from these works show that it is sometimes possible to guard against

manipulation by hiding information from prospective manipulators.

In this chapter, I study the class of Size Approval Voting rules from a strategic point

of view. I first describe the problem of relating the underlying preferences of voters to

approval ballots and discuss the strategic vulnerability of rules in the class with respect

the notion of sincerity defined by Brams and Fishburn [1978] and the notion of strong

insincerity, due to Merrill and Nagel [1987]. Subsequently, I consider the computational

complexity of strategic manipulation for Size Approval Voting rules, showing that the

problem of determining whether there exists a successful manipulation tactic is trivial

for all rules in the class. Thereafter, I discuss vulnerability of Size Approval Voting rules

to manipulation under partial information, based on a model of partial information

developed by Conitzer et al. [2011] and Reijngoud and Endriss [2012].
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4.1 Underlying Preferences and Sincerity

To be able to discuss strategic behavior, we first need to represent the underlying

preferences of voters. Given a set X of alternatives, let ⪰i be i’s preference order

over alternatives in X. That is, ⪰i is a weak total order on the set X, where x ⪰i y

expresses that i weakly prefers alternative x to alternative y. Let x ≻i y be shorthand

for x ⪰i y and y ̸⪰i x, expressing that i strictly prefers x to y. Furthermore, let x ≃i y

be shorthand for x ⪰i y and y ⪰i x, expressing i is indifferent between x and y.

In the traditional Voting Theory setting, where ballots are represented as rankings

over the set of alternatives, we say that the ballot cast by a voter is truthful if the

ballot equals the true preferences of the voter. In this case, a voting rule f is said

to be strategyproof if there exists no voting scenario in which some voter can benefit

from reporting a preference order that is not truthful. Crucially, when working with

approval ballots, the above notion of truthfulness, and, as such, of strategyproofness,

no longer applies. The reason is the following: in the context of approval balloting,

there are 2m possible ballots that can be cast over a set of alternatives of size m, but a

whole m! possible rankings over the set of alternatives. Therefore, we can not obtain

underlying preferences of voters from approval ballots. Instead, the standard notion

when considering strategic behavior under rules that use approval ballots is sincerity,

due to Brams and Fishburn [1978], which roughly requires that voters never approve

of some alternative x without also approving of every alternative y preferred to x, and

we say that a choice that does not meet this requirement in insincere. In addition

to using this notion to evaluate the strategic vulnerability of Size Approval Voting

rule, I will also make use of the notion of strong insincerity, due to Merrill and Nagel

[1987]. Roughly, the ballot of a voter is strongly insincere if the voter approves of some

alternative, but not does not approve of any of their most-preferred alternatives.

In this chapter, it will be convenient to distinguish various Size Approval Voting rules

based on which ballots are legal under any given rule. For a Size Approval Voting rule

f , ballot B is legal if w|B| > 0, and I will say that two rules have the same balloting

system if they have the same legal ballots. That is, two Size Approval Voting rules

fw, fw′ have the same balloting system if wk > 0 whenever wk′ > 0. For any election

instance and any voter i ∈ N , a strategy is any ballot Bi ∈ 2X . I will consider the set of
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feasible strategies for any voter to consist of all legal ballots, and of a single abstention

ballot if the set of legal ballots does not already include a vote for all alternatives.

If the set of legal ballots already includes a vote for all alternatives, we will consider

this vote to be an abstention. That is, for any Size Approval Voting rule f , the set

of feasible strategies for any given i ∈ N consists of all ballots Bi for which w|Bi| > 0

and a single Bi for which w|Bi| = 0, and we require that wm = 0. Note that in general,

any two rules with the same balloting system will have the same number of feasible

strategies. To illustrate with some examples of feasible strategies under various Size

Approval Voting rules, voters have

• m+ 1 feasible strategies under plurality voting, namely all singleton ballots and

abstention;

• 2m − 1 feasible strategies under Approval Voting and Even and Equal Cumu-

lative Voting, corresponding to the number of non-empty subsets of the set of

alternatives.

• one feasible strategy under the trivial rule w = (0, ..., 0).

In this chapter, I will mainly be concerned with the feasible strategies of voters, and so,

when no confusion arises from it, I will simply refer to feasible strategies as strategies.

Given a set of (feasible) strategies, it is in the best interest of the voter to choose a

strategy that produces the best possible outcome according to the preferences of the

voter. In our context, the collective outcome under any voting rule is a non-empty

subset of the set of alternatives. In general, it is not possible to determine the prefer-

ences a voter i has over subsets of the alternatives based only on the preferences i has

over individual alternatives. In particular, the preferences of voter i over subsets of the

alternatives will not only depend on their preferences over individual alternatives, but

also on i’s beliefs about how ties are broken between co-winning alternatives [Endriss,

2013]. However, I will make some mild assumptions about how the the preferences of

voters over individual alternatives extend to preferences over subsets of alternatives,

imposing the following axiom due to Gärdenfors [1976], commonly referred to as the

Gärdenfors principle. Roughly, the axiom states that a subset of the alternatives is

strictly preferred to another subset if it can be obtained from the other subset by adding

an alternative that is considered better than all the other alternatives in the subset
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or by removing an alternative that is considered to worse than all other alternatives

in the subset. Note that the property is equivalent to the assumptions made about

preference extensions by Brams and Fishburn [1978].

Gärdenfors principle. Let i ∈ N , x ∈ X and Y ⊆ X. We then have that

• Y ∪ {x} ≻i Y if x ≻i y for all y ∈ Y , and

• Y ≻i Y ∪ {x} if y ≻i x for all y ∈ Y .

For convenience, it is also worth mentioning that the following axioms are known to

be implied by the Gärdenfors principle [Endriss, 2013]. The first axiom, Extension,

states that the preferences any voter has over singleton sets directly correspond to

the preferences the voter has over individual alternatives. The second axiom states

that the singleton set containing the most preferred alternative from a given subset of

alternatives is always as least as good as the full subset, and that the full subset is

always at least as good as the singleton containing the least preferred alternative from

the subset.

Extension. {x} ≻i {y} if x ≻i y, for all i ∈ N and x, y ∈ X.

MaxMin. Let i ∈ N , Y ⊆ X and x ∈ X. Then we have that

• {x} ⪰i Y if x ⪰i y for all y ∈ Y , and

• Y ⪰i {x} if y ⪰i x for all y ∈ Y .

For i ∈ N , let X i
1, ..., X

i
ℓ be a partition of the set X of alternatives into subsets such

that for each 1 ≤ j ≤ ℓ, we have x ≃i y for all x, y ∈ X i
j, and for each j′ > j, we

have x ≻i y for all x ∈ X i
j and y ∈ X i

j′ . That is, we partition the set of alternatives

into subsets of equally preferred alternatives, where all alternatives in X i
j are strictly

preferred to all alternatives in Xj′ whenever j′ > j. I will call X i
1, ..., X

i
ℓ voter i’s

preference partition. If ℓ = 2, we say that voter i has dichotomous preferences; if

ℓ = 3, we say that voter i has trichotomous preferences; if ℓ ≥ 4, we say that voter i

has multichotomous preferences.

Lemma 4.1.1. Let i ∈ N be a voter with preference partition X i
1, ..., X

i
ℓ. For any

X i
j ∈ {X i

1, ..., X
i
ℓ} and any nonempty Y i

j ⊆ X i
j, we have Y i

j ≃i X
i
j.
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Proof. Let i ∈ N be a voter with preference partition X i
1, ..., X

i
ℓ, and let

X i
j ∈ {X i

1, ..., X
i
ℓ}. Let x ∈ X i

j. Since x ∈ X i
j, we have x ≃i y for all y ∈ X i

j,

and so {x} ≃i X
i
j. Now, let y ⊆ Xj. We want to show that Y ∪ {x} ≃i X

i
j.

Since Y ⊆ X i
j, x ≃i y for all y ∈ Y , so {x} ≃i Y , and so Y ∪ {x} ≃ Y . Thus

Y ∪ {x} ≃i X
i
j.

Lemma 4.1.2. Let i ∈ N and let X i
j, X

i
j′ ∈ {X i

1, ..., X
i
ℓ} with j < j′. Then Y i

j ≻i Y
i
j′

for all subsets Y i
j ⊆ X i

j and Y i
j′ ⊆ X i

j′ .

Proof. By definition of preference partitions, we have that X i
j ≻i X

i
j′ . By

Lemma 4.1.1, Y i
j ≃i X i

j for all Y i
j ⊆ X i

j and Y i
j′ ≃ X i

j′ . Thus we get that

Y i
j ≃i X

i
j ≻i X

i
j′ ≃ Y i

j′ , and so Y i
j ≻i Y

i
j′ .

Let us now discuss the strategies of voters in more detail. Out of the feasible strategies

of any given voter, which ones can we expect the voter to use, without making too

many assumptions about the strategic attitudes of the voter? Following Brams and

Fishburn [1978], I will assume that each i ∈ N may choose to play any strategy Bi for

which there does not exist another unique strategy B′
i such that B′

i, according to i’s

preferences, produces an outcome that is equally good as the outcome produced by Bi

in all scenarios, while also producing an outcome that is strictly better in some scenario.

If such a strategy B′
i exists for a strategy Bi, we will call Bi dominated. Otherwise,

Bi is undominated. Then, the strategies voters may use are exactly those (feasible)

strategies that are undominated. I make this precise with the following definition.

Definition 4.1.3 (Domination). Let f be a scoring rule and let i ∈ N . Then, a

strategy Bi dominates strategy B′
i if f(B) ⪰i f(B−i, B

′
i) for all partial profiles B−i

and there is some partial profile B−i such that f(B) ≻i f(B−i, B
′
i). A strategy B′

i is

undominated if there is no strategy Bi that dominates B′
i.

Let us now define the notions of sincere, insincere and strongly insincere strategies

more precisely. We will say that the strategy of a voter i is sincere if whenever i

votes for some alternative x ∈ X, i also votes for any alternative y ∈ X that is strictly

preferred to x according to ⪰i, and that a strategy is insincere otherwise. Furthermore,

i’s strategy is strongly insincere if i does not abstain and does not vote for any of their

most preferred alternatives. I state this precisely with the following definition.
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Definition 4.1.4 (Sincerity and insincerity). Given a set of alternatives X and voter

i ∈ N with preference order ⪰i, a strategy Bi is sincere if x ⪰i y for all x ∈ Bi and all

y ∈ X \ Bi, and insincere otherwise. Furthermore, a strategy Bi is strongly insincere

if w|Bi| > 0, while Bi ∩X i
1 = ∅.

I give an example of sincere strategies and undominated (feasible) strategies under

plurality, Approval Voting and Even and Equal Cumulative Voting.

Example 4.1.5 (Sincere and undominated strategies). Let X = {x, y, z} and let i ∈ N

be a voter with preference order x ≻i y ≻i z. The sincere strategies of i are {x}, {x, y}
and {x, y, z}. Under Approval Voting, i has undominated strategies {x} and {x, y};
under the plurality rule, i has undominated strategies {x} and {y}; under EECV, i

has undominated strategies {x}, {y}, and {x, y}. Note that the strategy {x, y} is

undominated under EECV because it is not uniquely dominated by either {x} or {y}.
However, it is never better than both strategies simultaneously.

We say that a voting rule f is sincere if, for each voter i and any voting situation,

all (feasible) undominated strategies of i are sincere. Furthermore, a voting rule f is

strategyproof if in each profile, each voter has a unique undominated strategy, and that

unique undominated strategy is sincere.

Defining voting rules only with respect to balloting systems, and working with assump-

tions on preference extensions that are equivalent to the Gärdenfors principle, Brams

and Fishburn [1978] show that all voting rules are sincere and that Approval Voting

is strategyproof when voters have dichotomous preferences. In this case, under Ap-

proval Voting, the unique undominated (sincere) strategy for each voter is to vote for

all of their most-preferred alternatives. Furthermore, it is shown that Approval Voting

is the only sincere voting rule when voters have trichotomous preferences, and that

no voting rule is sincere when voters have multichotomous preferences. These results

directly apply to all p-approval rules in the class of Size Approval Voting rules. In

particular, we may observe that any p-approval rule simulates Approval Voting as long

as every voter has at most p most-preferred alternatives. An implication of this is that

any p-approval rule is strategyproof in the case where voters have preferences that are

dichotomous and sets of most-preferred alternatives of size bounded by p. The result,
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however, is not applicable to the class of Size Approval Voting rules in general. This is

due to the fact that Brams and Fishburn [1978] only define voting rules with respect

to balloting systems. Since several different Size Approval Voting rules may have the

same balloting system, this definition does not enable us to distinguish sufficiently be-

tween rules in the class, and as such, the class of Size Approval Voting rules does not

fit the definition of approval-based systems used by Brams and Fishburn [1978]. For

example, under this definition, any Size Approval Voting rules for which wk > 0 for

all k < m are equivalent to Approval Voting. The implication is of this is that all

properties of Approval Voting with respect to sincerity would also hold for such rules.

This is clearly not the case, as illustrated by Example 4.1.5.

The following proposition shows that whenever voters have dichotomous preferences,

any Size Approval Voting rule is sincere.

Proposition 4.1.6. Every Size Approval Voting rule f is sincere when voters have

dichotomous preferences.

Proof. Let f be a Size Approval Voting rule, and let i ∈ N be a voter with

preference partition X i
1, X

i
2. We want to show that i only has undominated

strategies that are sincere. Let B∗
i be an insincere strategy. I will show that

there exists a sincere strategy B′
i that dominates B∗

i . Observe that since B∗
i is

insincere, we have that X i
1 ̸⊆ B∗

i and B∗
i ̸⊆ X i

1. We can generally distinguish

two cases: B∗
i ∩X i

1 = ∅, and B∗
i ∩X i

1 ̸= ∅.

If B∗
i ∩ X i

1 = ∅, let B′
i = {x} for some x ∈ X i

1, and if B∗
i ∩ X i

1 ̸= ∅, let
B′

i = B∗
i ∩X i

1. Observe that in both cases, B′
i is a sincere strategy. The proof

that B′
i is a dominating strategy in the second case is analogous to the proof

that B′
i is a dominating strategy in the first case, so I only show the first case.

Thus, suppose that B∗
i ∩X i

1 = ∅ and let B′
i = {x} for some x ∈ X i

1.

Claim: B′
i dominates B∗

i .

I will show that f(B−i.B
′
i) ⪰i f(B−i, B

∗
i ) for all partial profiles B−i, and

f(B−i.B
′
i) ≻i f(B−i, B

∗
i ) for some partial profile B−i. First, to see that

f(B−i, B
′
i) ≻i f(B−i, B

∗
i ) for some partial profile B−i, let B−i be a par-

tial profile such that f(B−i) = X. Since B∗
i ∩ X i

1 = ∅, B∗
i ⊆ X i

2, and so
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f(B−i, B
∗
i ) ⊆ X i

2. Further, f(B−i, B
′
i) = {x}. Since x ∈ X i

1, x ≻i y for all y ∈
X i

2, and so it follows by the Gärdenfors principle that f(B, B′
i) ≻i f(B, B∗

i ).

It remains to show that f(B−i.B
′
i) ⪰i f(B−i, B

∗
i ) for all partial profiles B−i.

Note that f(B−i.B
′
i) ≃i f(B−i, B

∗
i ) whenever f(B−i.B

′
i) = f(B−i, B

∗
i ), so

assume that f(B−i.B
′
i) ̸= f(B−i, B

∗
i ). Distinguish three cases: f(B−i, B

∗
i ) ⊆

X i
1, f(B−i, B

∗
i ) ⊆ X i

2, and {y, z} ⊆ f(B−i, B
∗
i ) for some y ∈ X i

1 and z ∈ X i
2.

Suppose first that f(B−i, B
∗
i ) ⊆ X i

1. Since B
∗
i ∩X i

1 = ∅ and f(B−i, B
∗
i ) ⊆ X i

1,

it follows that f(B−i, B
′
i) ⊆ X i

1, since no alternative y ∈ X i
1 has lost support

and no alternative z ∈ X i
2 has gained support. It follows by Lemma 4.1.1 that

f(B−i, B
′
i) ≃i f(B−i, B

∗
i ).

Secondly, suppose that f(B−i, B
∗
i ) ⊆ X i

2. Since B∗
i ∩ X i

1 = ∅, we have

that Suppw(B−i, B
∗
i , y) = Suppw(B−i, B

′
i, y) for all y ∈ X i

1 \ {x}. Thus,

f(B−i, B
′
i) ⊆ X i

2 ∪ {x}. If x ∈ f(B−i, B
′
i), it follows by the Gärdenfors

principle that f(B−i, B
′
i) ≻i f(B−i, B

∗
i ). If x /∈ f(B−i, B

′
i), it follows by

Lemma 4.1.1 that f(B−i, B
′
i) ≃i f(B−i, B

∗
i ).

Finally, suppose that {y, z} ⊆ f(B−i, B
∗
i ) for some y ∈ X i

1 and z ∈ X i
2. Since

B∗
i ∩X i

1 = ∅, we must have that Suppw(B−i, B
′
i, y) ≥ Suppw(B−i, B

∗
i , y) for

all y ∈ X i
1 and Suppw(B−i, B

′
i, z) ≤ Suppw(B−i, B

∗
i , z) for all z ∈ X i

2, and

as such, f(B−i, B
′
i) ∩X i

1 ̸= ∅. Now, if f(B−i, B
′
i) ∩X i

2 = ∅, it follows by the

Gärdenfors principle and Lemma 4.1.1 that f(B−i, B
′
i) ≻i f(B−i, B

∗
i ). Sup-

pose therefore that f(B−i, B
′
i)∩X i

2 ̸= ∅. By the fact that Suppw(B−i, B
′
i, y) ≥

Suppw(B−i, B
∗
i , y) for all y ∈ X i

1 and Suppw(B−i, B
′
i, z) ≤ Suppw(B−i, B

∗
i , z)

for all z ∈ X i
2, it follows that f(B−i, B

′
i)∩X i

2 ⊆ f(B−i, B
∗
i )∩X i

2. Consequently,

by the fact that f(B−i, B
′
i) ̸= f(B−i, B

∗
i ), we get that f(B−i, B

′
i) ∩ X i

2 ⊂
f(B−i, B

∗
i ) ∩ X i

2 or that there is some y∗ ∈ X i
1 such that y∗ ∈ f(B−i, B

′
i)

and y∗ /∈ f(B−i, B
∗
i ). Since Suppw(B−i, B

′
i, y) = Suppw(B−i, B

∗
i , y) for all

y ∈ X i
1 \ {x}, we must have that y∗ = x. In each case, it follows that

f(B−i, B
′
i) ≻i f(B−i, B

∗
i ).

Thus, we have that f(B−i.B
′
i) ⪰i f(B−i, B

∗
i ) for all partial profiles B−i and
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f(B, B′
i) ≻i f(B, B∗

i ) for some partial profile B−i, so B′
i = {x} dominates

B∗
i .

The above result does not extend to those cases in which the preferences of voters

are trichotomous or multichotomous. In fact, in these cases, we can show that any

voter will have an undominated and strongly insincere strategy whenever f is a Size

Approval Voting rule for which w1 > w2. In particular, for any voter with trichotomous

and multichotomous preferences, there will always be some partial ballot B−i in which

a strategy of bullet voting for some alternative that is not among the most-preferred

alternatives of the voter will be strictly better than any other strategy.

Proposition 4.1.7. Let f be a Size Approval Voting rule with w1 > w2 and let

i ∈ N . If i has trichotomous or multichotomous preferences, then i has an undominated

strategy that is strongly insincere.

Proof. Let f be a Size Approval Voting rule with w = (w1, ..., wm) such that

w1 > w2. Assume without loss of generality that w1 = 1. Let i ∈ N be a

voter with trichotomous or multichotomous preferences, and let X i
1, ..., X

i
ℓ be

i’s preference partition. Since i has trichotomous or multichotomous pref-

erences, ℓ ≥ 3 and |X| ≥ 3. We want to show that i has an undomi-

nated, strongly insincere strategy. Let Bi = {x} for some x ∈ X i
2. Since

Bi ̸= ∅ and Bi ∩ X i
1 = ∅, Bi is strongly insincere. I will show that there

is no B′
i such that f(B−i, B

′
i) ⪰i f(B−i, B

′
i) for all partial profile B−i and

f(B−i, B
′
i) ≻i f(B−i, Bi) for some partial profile B−i. It is sufficient to show

that there is some partial profile B−i such that f(B−i, Bi) ≻i f(B−i, B
′
i) for

all strategies B′
i ̸= Bi.

Let B−i be a partial profile such that f(B−i) = X i
ℓ and Suppw(B−i, y) −

Suppw(B−i, x) = 1 and Suppw(B−i, y) − Suppw(B−i, z) > 1 for all y ∈ X i
ℓ

and all z ∈ X \ (X i
ℓ ∪ {x}). Observe that since w1 = 1 and wk ≥ wk+1

for all k < m, there is no strategy B′
i such that z ∈ f(B−i, B

′
i) for any

z ∈ X \ (X i
ℓ ∪ {x}). Thus, f(B−i, B

′
i) ⊆ X i

ℓ ∪ {x} for all B′
i. Further, since

x ∈ Bi and w|Bi| = 1, it follows that f(B−i, Bi) = X i
ℓ ∪ {x}. Since x ∈ X i

2

and ℓ ≥ 3, x ≻i y for all y ∈ X i
ℓ. It follows by the Gärdenfors principle

that X i
ℓ ∪ {x} ≻i X i

ℓ, and by Lemma 4.1.1 that X i
ℓ ∪ {x} ≻i Y i

ℓ for any
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Y i
ℓ ⊆ X i

ℓ. Thus, f(B−i, Bi) = X i
ℓ ∪ {x} ≻i f(B−i, B

′
i) for all B

′
i, and so Bi is

undominated.

It follows, in particular, that under all SDSAV rules, all voters with trichotomous or

multichotomous preferences will have some undominated and strongly insincere strat-

egy. Note how this is reflected by the axiom of Pivotal Contraction introduced in

Chapter 3.

In this section, I have considered properties of Size Approval Voting rules with re-

spect to sincerity and manipulation. We have seen that all Size Approval Voting rules

are sincere when voters have dichotomous preferences. On the other hand, for many

rules in the class, voters will have strongly insincere undominated strategies whenever

their preferences are multichotomous, due to the fact that the structure of these rules

incentivize bullet voting. I will now move on to consider the problem of strategic ma-

nipulation from the perspective of computational complexity, where the incentives of

voters to bullet vote will turn out to be highly relevant.

4.2 Complexity of Strategic Manipulation

As noted in the chapter introduction, the computational complexity1 of the problem

of determining whether there exists a successful manipulation tactic has been shown

to be NP-complete for certain voting rules [Bartholdi et al., 1989a, Xia et al., 2009],

and one interpretation of such results is that said rules are resistant to manipulation,

since the problem of computing a successful manipulation tactic is computationally

intractable in the worst case 2. In this section, I consider the computational complexity

of strategic manipulation under Size Approval Voting rules. Consider the following

decision problem, Manipulability(f).

1See, e.g., Arora and Barak [2009] for basic background on computational complexity.
2Note, however, that since NP-hardness relates to worst-case complexity, this interpretation can

be contested, since it is not a given that the instances would-be manipulators would need to compute
manipulation tactics for are among the hard instances. It has therefore been suggested that determin-
ing whether manipulation is ‘usually’ hard is more informative. See, e.g., Conitzer and Walsh [2016],
section 6.5, for more on this.
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Manipulability(f)

Input: Partial profile B−i, voter i ∈ N alternative x∗ ∈ X

Question: Does there exists a ballot Bi such that x∗ ∈ f(B−i, Bi)?

As we saw in the previous section, many of the Size Approval Voting rules incentivize

manipulation by bullet voting, under which a would-be manipulator gives all their

support to a single alternative, which is not necessarily among the most-preferred

alternatives of that voter. For rules in the class in general, the best tactic of a given

voter i who wants to make an alternative x∗ win will always be to bullet vote for x∗,

as no other ballot of i will give the alternative more weighted support. From this, it is

easy to see that the problem of determining a successful manipulation tactic is trivial:

suppose B−i is a partial profile containing all ballots except that of i, and that i seeks

to vote so as to make x∗ win. Observe that if Suppw(B−i, y)− Suppw(B−i, x
∗) > w1

for some y ∈ X, no single vote can make x∗ win. If, however, Suppw(B−i, y) −
Suppw(B−i, x

∗) ≤ w1 for all y ∈ X, the vote {x∗} is guaranteed to make x∗ win.

Thus, to solve Manipulability(f) for any Size Approval Voting rule f , we can just

compute the collective outcome under f of the given partial profile B−i together with

the ballot {x∗}. If x∗ ∈ f(B−i, {x∗}), there exists a successful manipulation tactic.

Otherwise, such a tactic does not exist. It follows that Manipulability(f) (trivially)

is in P for all Size Approval Voting rules f .

Conversely, we may consider a destructive version of Manipulability(f), and ask

whether there exists a ballot a voter i can submit so as to make sure a given alternative

x∗ does not win. This problem is also easily shown to be in P . If there is some y for

which Suppw(B−i, x
∗) − Suppw(B−i, y) < w1, then i can submit the singleton ballot

{y} to make x∗ lose. If no such y exists, there is nothing i can do to stop x∗ from

winning.

4.3 Manipulation and Partial Information

When considering manipulability in the previous subsections, we have assumed that the

would-be manipulator has full information about the election sought to be manipulated.

It is however rarely the case in practice that voters have access to all information about
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the choices of other members of the electorate. The impact of informational restrictions

on the manipulability of voting rules has previously been studied by, among others,

Conitzer et al. [2011], Reijngoud and Endriss [2012], and Endriss et al. [2016], who

provide results about the vulnerability of voting rules with respect to manipulation

under various cases of of incomplete information. In these works, the ballots of voters

are rankings, and the limited information of a voter i in a given profile B is represented

by use of information sets composed of all profiles that i cannot distinguish from B

based on the information i has. In this section, I make some observations about the

manipulability of Size Approval Voting rules based on the model of partial information

used by Conitzer et al. [2011], Reijngoud and Endriss [2012] and Endriss et al. [2016].

Given a voter i, let π : B → I be a function mapping a profile B to the information I
that i has access to. We call π an information function. LetWπ(B)

i be the set of profiles

that i cannot distinguish from B having access only to information π(B). Formally,

we let

Wπ(B)
i = {B′ ∈ (2X)n | π(B′) = π(B) and Bi = B′

i}.

Reijngoud and Endriss [2012] consider a series of possible information functions. Not

all of the information functions considered in their work are applicable to our context,

but I will consider the following:

• the zero information function π(B) = ⊥, under which a voter has no information

about the election instance. In this case, we have that

W0(B)
i = {B′ ∈ (2X)n | Bi = B′

i}.

• the winner information function π(B) = f(B), under which the voter i has access

to the outcome of the given profile. The set of indistinguishable profiles for i is

then

Wf(B)
i = {B′ ∈ (2X)n | f(B) = f(B′) and Bi = B′

i}.

• the score information function w(B), under which a voter has information about

the weighted support of every alternative voted over in the profile B. We then
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have set of indistinguishable profiles

Ww(B)
i = {B′ ∈ (2X)n | Suppw(B′, x) = Suppw(B, x) for all x ∈ X, and Bi = B′

i}.

• the full information function π(B) = B that maps a profile to itself. Then

Wπ(B)
i = {B}.

Furthermore, in Conitzer et al. [2011], Reijngoud and Endriss [2012], Endriss et al.

[2016], it is assumed that a voter i only has incentive to manipulate in a truthful

profile B if the manipulation is equally good as the truthful strategy Bi in all profiles

indistinguishable from B with respect to the information available, while also being

strictly better in some profile indistinguishable fromB. Intuitively, this is exactly when

the manipulation is ‘safe’ for i, based on the limited information i has. Followiing this

approach, let us assume that given a profile B that includes a sincere strategy Bi, and

some insincere strategy B∗, i will only use B∗
i instead of Bi if f(B

′
−i, B

∗
i ) ⪰i f(B

′
−i, B

∗
i )

for all B′
−i with (B′

−i, Bi) ∈ Wg(B)
i and f(B′

−i, B
∗
i ) ≻i f(B

′
−i, Bi) for some B′

−i with

(B′
−i, Bi) ∈ Wg(B)

i .

This is a stronger assumption than the one we used, following Brams and Fishburn

[1978], in Section 4.1: under this assumption, if a voter i has full information in a

given profile B, then an insincere strategy B∗
i would only be used by the voter if

f(B−i, B
∗
i ) ≻i f(B−i, B

′
i) for any sincere strategy B′

i available to i. That is, in this

case, a voter will only use an insincere strategy if it is better than any sincere strategy.

I will first make some comments about manipulation when voters have full informa-

tion or information about the score of alternatives. First of all, note that for all Size

Approval Voting rules, having access to the scores given to each alternative provides

voters with all relevant information about the election, i.e., for any rule in the class,

having information about the scores of alternatives coincides with having full informa-

tion about the election. Furthermore, it is easy to see that there will be rules in the

class for which there are profiles B in which a voter i has an insincere strategy B∗
i such

that f(B−i, B
∗
i ) ≻i f(B−i, B

′
i) for any sincere strategy B′

i available to i. I illustrate
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with an example under the rule of EECV.

Example 4.3.1. Let f be the EECV rule, and letX = {x, y, z, w} andN = {1, 2, 3, 4}.
Suppose that x ≻1 y ≻1 z ≻1 w, and consider the profile B in which B1 = {x, y},
B2 = {y}, B3 = {w}, and B4 = {z, w}. Then f(B) = {y, w}. Consider now the

insincere strategy B∗
1 = {y}. Since f(B) = {y, w} and B∗

1 ⊂ B1, it follows that

f(B−1, B
∗
1) = {y}. Now, since y ≻1 w, we have that f(B−1, B

∗
1) ≻1 f(B). Further-

more, observe that there is exists no sincere strategy B′
1 such that {x} ⊆ f(B−1, B

′
1),

and that Suppw(B−1, B
∗
1 , y) > Suppw(B−1, B

′
1, y) for all sincere strategies B′

1. Thus,

the insincere strategy B∗
1

Let us now discuss how voters will behave under zero information. In this case, since

W0(B)
i = {B′ ∈ (2X)n | Bi = B′

i}, it is clear that for any rule f in the class, every

voter has some undominated sincere strategy in any profile, namely one in which the

voter votes for some feasible subset of their most preferred alternatives. To see that

this is the case, it is sufficient to observe that, given a profile B and a voter i who

votes with a (feasible) ballot Bi ⊆ X i
1, there is some B′ ∈ W0(B)

i such that f(B′) =

B′
i. Since f(B′ is composed only of alternatives that are among i’s most preferred

alternatives, it follows that this outcome is as good as any other outcome. Thus, there

is no Size Approval Voting rule f for which voters have incentive to manipulate under

zero information.

Finally, consider the case where voters have access (only) to the set of winning al-

ternatives f(B) in a profile B. In this case, a strategy B∗
i of a voter i dominates

Bi if f(B, B∗
i ) ≻i f(B′) for some B′ such that f(B′) = f(B) and B′

i = Bi, and

f(B, B∗
i ) ⪰i f(B

′) for all B′ such that f(B′) = f(B) and B′
i = Bi. Now, the crucial

thing to observe is that, when a voter i only has access to f(B), it is not possible for i

to determine whether an alternative x /∈ f(B) can become winning if i changes their

strategy. Thus, for every x /∈ f(B), i must consider possible some profile B′ such that

x ∈ f(B′
−i, B

′
i) for some strategy B′

i ̸= Bi. For some rules in the class, in partcular

those rules for which w1 > w2 > 0, there will in this case be situations in which the

outcomes f(B′), f(B′′) of profiles B′,B′′ that only differ with respect to the strategy

chosen by i cannot be compared based on the assumptions made in Section 4.1 about

how the preferences of voters over individual alternatives extend to preferences over

sets. This is perhaps best illustrated with an example.
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Example 4.3.2. Suppose that f is a Size Approval Voting rule for which w1 > w2 > 0.

Let X = {x, y, z} and i a voter with preference order x ≻i y ≻i z. In this case, i has

(feasible) sincere strategies {x} and {x, y}. Let B be a profile for which f(B) = {y, z},
and Bi = {x, y}. Since f(B) = {y, z} and Bi = {x, y}, the insincere strategy B∗

i = {y}
dominates Bi. Consider now the other sincere strategy B′

i = {x} of i. Observe that

there is a profile B′ such that f(B′′) = f(B) and B′′
i = B′

i, where x ∈ f(B′′
−i, B

′).

However, since y ∈ Bi, w|Bi| = w2 > 0 and y /∈ B′
i, it follows by the fact that

f(B) = {y, z} that y /∈ f(B′′). On the other hand, since the support of alternative

z is not affected by i’s change of strategy, it is possible that z ∈ f(B′′
−i, B

′). Thus,

suppose that f(B′′
−i, B

′) = {x, z}, and observe that we cannot determine whether

or not {x, z} ⪰i {y} based only on the assumptions made in Section 4.1 about how

preferences over individual alternatives extend to sets of alternatives.

4.4 Discussion

In this chapter, I have considered the properties of the class of Size Approval Voting

rules with respect to manipulability. Relying on the notion of sincerity from Brams

and Fishburn [1978], I showed that all rules in the class are sincere when all voters

have dichotomous preferences, and that many of the rules in the class can be seen

as to incentivize strongly insincere behavior under less strict assumptions about the

preferences of voterrs. In particular, we saw that many rules in the class are vulnerable

to the manipulation act of bullet voting whenever preferences are trichotomous or

multichotomous. These results can be interpreted as showing that members of the

class are not vulnerable to manipulative behavior when the approval balloting system

is in direct correspondence with the preferences of voters, and furthermore that we

lose this robustness towards manipulation for many of the rules in the class whenever

the preferences of voters are too multifaceted to be captured by mere approval and

disapproval. I subsequently discussed the complexity of determining whether a given

voter has a successful manipulation tactic to make a given alternative win (resp. lose).

Under any rule in the class, the best strategy of a voter who wishes to make a given

alternative win is the strategy of bullet voting for that alternative. An implication

of this property is that the problem of determining whether a voter has a successful

manipulation tactic to make a given alternative win (resp. lose) is computationally

easy. Finally, I discussed some basic observations about the susceptibility of various
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Size Approval Voting rules to manipulation under different cases of partial information.

In Section 4.1, following Brams and Fishburn [1978], we assumed that a voter will con-

sider using any strategy for which there does not exist another strategy that, according

to the preferences of the voters, produces an equally good outcome in every profile and

a strictly better outcome in some profile. This is a relatively weak assumption that

leaves open the possibility that a voter will use an insincere strategy in situations where

there is some equally good sincere strategy. It is perhaps equally reasonable to assume

that a voter will choose among their sincere strategies whenever there is no insincere

strategy that dominates all their sincere strategies. However, as we saw when con-

sidering the incentives of voters to manipulate under full information in Section 4.3,

certain rules in the class are still susceptible to manipulation by insincere strategies

when we assume that voters will only use an insincere strategy when it strictly domi-

nates their sincere strategies. There are also other assumptions that could have been

made as to how the preferences of voters over individual alternatives extend to sets.

For instance, the result of Duggan and Schwartz [1999] relies on notions of optimistic

and pessimistic voters3. We say that a voter is optimistic if the voter prefers one set to

another whenever the favorite alternative of the voter in the first set is preferred to the

favorite alternative in the second set, and that a voter is pessimistic if the voter prefers

one set to another whenever the least favorite alternative of the voter in the first set is

preferred to the least favorite alternative in the second set [Endriss, 2013]. Note that,

in Example 4.3.2, there is a dominant sincere strategy if we assume that voters are

optimistic, and a dominant insincere strategy if we assume voters are pessimistic.

The issues of manipulability discussed in the chapter were restricted to the setting

in which a single voter attempts to manipulate the outcome of a given election. In

practice, however, a single voter may not have much impact on the election alone.

Therefore, it may be equally relevant to consider the problem of coalitional manipu-

lation, in which a group of voters coordinate their votes in an attempt to affect the

outcome [Conitzer and Walsh, 2016]. The computational complexity of coalitional ma-

nipulation has been studied by, e.g., Betzler et al. [2011], Xia et al. [2010]. For the rules

in our class, we may observe that the best strategy for a group of voters collaboratively

3Duggan and Schwartz [1999] refer to voters that are optimistic and pessimistic as taking the
Heroic Approach and the Maximin approach, respectively.
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attempting to make an alternative win, will be the one in which each member of the

group bullet votes for that alternative, for reasons analogous to the case of a single

manipulator. Similarly, to determine whether a coalition of voters has a successful

strategy to make a given alternative x lose, we can simply compute whether there is

another alternative y such that the weighted support of x minus the weighted support

of y is less than ℓ · w1, where ℓ is the size of the coalition. If so, all members bullet

voting for y is a successful strategy; if not, no successful manipulation tactic exists for

the coalition.

Furthermore, there are various other categories of manipulation problems that have not

been considered, such as electoral control and bribery [Faliszewski and Rothe, 2016].

In problems of electoral control, some agent, often thought of as the chair, attempts

to control the outcome of the election by, e.g., adding or removing alternatives or

voters. Note that the special case of the problem of electoral control in which the chair

attempts to control the election by adding alternatives is closely related to the problem

of determining possible and necessary winners when some number of alternatives is

missing, studied in Chapter 5. This problem has been studied by Bartholdi et al. [1992],

Hemaspaandra et al. [2009], who provide complexity results for problems electoral

control under several voting rules. In particular, Bartholdi et al. [1992] studies the

complexity of electoral control by adding alternatives when there is no limitation on

the number of alternatives that can be added, and Hemaspaandra et al. [2009] studies

the complexity of the same problem where the number of alternatives that can be

added is bounded by some fixed ℓ. In bribery problems, some external entity attempts

to bribe voters in an election to vote in a way preferred by the entity. Such problems

were first studied by Faliszewski et al. [2009], and shortly after by Elkind et al. [2009],

who both study the complexity of various bribery problems. Note that certain versions

of bribery problems also closely relate to the problem of determining possible winners

[Faliszewski and Rothe, 2016].
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Chapter 5

Computing Possible and Necessary

Winners

In this chapter, I consider some basic issues concerning the problem of determining

possible and necessary winners given incomplete profiles with missing alternatives under

two different assumptions about how profiles can be completed.

Suppose, in some election, that we only have partial information about the ballots of

voters. This can be the case in many situations. For instance, if an electorate consists

of subelectorates that vote at different times, or if an election allows voters to vote

by, e.g., post, some voter ballots may become available later than others. We may

also have that alternatives become available at different times – think, for example,

of political elections in which some candidates join the race late, or of job applicants

submitting applications for a given position at different times.

In such situations, we will often not be able to decide whether an alternative will be

a winner of the election in its complete form. However, we may still be interested in

determining whether an alternative can come out as winning, based on the information

we already have. This can be due to concerns of resource use with respect to computing

the outcome of the election, or relate to the interest of voters and/or alternatives.

Suppose, for instance, that we can determine, in some incomplete election, that some

alternatives cannot win regardless of how the election is made complete. Then, for the

sake of computing the outcome of the election, it will usually be more efficient to restrict

the analysis to those alternatives that still stand a chance of winning. Furthermore,
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if the alternatives voted over are, e.g., job applicants in a hiring process, it will be in

the interest of applicants who do not stand a chance of being hired to know as soon as

possible, so that they can look for other opportunities1.

The problem of determining whether it is possible for an alternative to come out as

winning, based only on incomplete information about the ballots of voters, is called the

Possible Winner Problem. Similarly, we call the problem of determining whether an

alternative is a necessary winner, given incomplete information, the Necessary Winner

Problem. These problems were first studied by Konczak and Lang [2005], who study

the computational complexity of the Possible Winner Problem and the Necessary Win-

ner Problem under various voting rules in the context of ranked ballots. Besides being

relevant to the situations described above, the Possible Winner and Necessary Winner

problems are closely related to the problem of Coalitional Manipulation when only vot-

ers, and not alternatives, are missing [Boutilier and Rosenschein, 2016]: if an alternative

is a possible winner in an incomplete profile missing only voters, then a coalition can

successfully manipulate the election to make the alternative win. On the other hand,

if the alternative is not a possible winner, there is no way the coalition can vote to

make the alternative win. The problem of determining possible and necessary winners

when only alternatives are missing is, on the other hand, related to the problem of

Electoral Control by Adding Candidates [Faliszewski and Rothe, 2016], in which the

chair of the election attempts to control the outcome of the election by introducing

some amount of new alternatives. This problem was first studied by [Bartholdi et al.,

1992], who study a version of the problem where the chair can add an unlimited (un-

bounded) number of new alternatives, and later by [Hemaspaandra et al., 2009], who

consider a version of the problem where the number of alternatives that can be added

by the chair is bounded by some number ℓ. Furthermore, the problem of determining

possible and necessary winners is of relevance to procedures of preference elicitation
2: if, when eliciting preferences, we keep track of the possible and necessary winners,

then we know that we have elicited preferences sufficiently when the sets of possible

and necessary winners coincide.

In this chapter, I study basic issues related to the problem of determining possible and

1This example is similar to a motivating example used by Xia et al. [2011], in which committees
vote over research proposals and some proposals may arrive late.

2See, e.g., [Boutilier and Rosenschein, 2016], section 10.5 and [Conitzer and Sandholm, 2002].
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necessary winners of elections with missing alternatives for the class of Size Approval

Voting rules. The problem of determining possible and necessary winners in profiles

with (only) missing alternatives has been studied by Chevaleyre et al. [2012] and Xia

et al. [2011]. Chevaleyre et al. [2012] study the complexity of computing possible

winners in profiles with missing alternatives under various scoring rules over ranked

ballots. Xia et al. [2011] study the problem of determining possible winners when

alternatives are missing for various voting rules not considered by Chevaleyre et al.

[2012], and in particular, they consider the computational complexity of determining

possible winners with missing alternatives for Approval Voting, under three different

assumptions about how voters may change their ballots when gaining access to new

information. Furthermore, Barrot et al. [2013] study the Possible Winner problem

under Approval Voting in the context of ranked-ballot systems. I follow the approach of

Xia et al. [2011], and consider some issues related to determining possible and necessary

winners in profiles with missing information under two of the three assumptions about

how voters respond to new information used in Xia et al. [2011].

5.1 Possible and Necessary Winners when New Al-

ternatives are Added

Before discussing the problem of determining possible and necessary winners under

Size Approval Voting rules, we first need to define what it means for a ballot to be

missing information. To avoid confusion with the notion of a partial ballot, as defined

in Chapter 2, I will call a ballot that possibly is missing some information about the

election an incomplete ballot. As usual, let X denote the full set of alternatives and

N the full set of voters, and let |X| = m and |N | = n. We will assume that X can

be divided into two disjoint subsets representing the known alternatives and unknown

alternatives. Let K denote the set of known alternatives of X, and U the set of

unknown alternatives of X, from which some subset U ′ ⊆ U of new alternatives can

be added. I will in some cases assume that the number of new alternatives that can be

added is unrestricted, that is, that the number of new alternatives that can be added is

not restricted by some fixed number ℓ. However, in general, the number of alternatives

that can be added may also be restricted3. Furthermore, I will require that X = K∪U
3Note that this should not be confused the case in which the number of alternatives that will be

added is fixed.
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and that K∩U = ∅. Note that, if all alternatives are known, we have X = K∪U = K.

An incomplete profile is defined as follows.

Definition 5.1.1 (Incomplete profile). Given a set of alternatives X = K ∪ U and a

set of votersN = {1, ..., n}, an incomplete profile is an elementBinc = (Binc
1 , ..., Binc

n′ ) ∈
(2K)n

′
, where n′ ≤ n.

In words, an incomplete profile is a profile of the ballots cast by some (not necessarily

strict) subset of the electorate over the set of known alternatives. As discussed in the

chapter introduction, I will only be concerned with the problem of determining possible

and necessary winner for the case in which only alternatives are missing. Therefore,

unless stated otherwise, we will assume that an incomplete profile contains a ballot

for each member of the electorate. However, this definition of incomplete profiles also

allows us to consider the problem of determining possible and necessary winners with

some number of voters missing.

To be able to consider the problem of determining whether an alternative is a possible

or necessary winner in an incomplete Binc under some voting rule f , we need to be

able to pinpoint how an incomplete profile can be made complete. This is less than

straightforward. If for some voting problem, all alternatives are known but some voters

are missing, an incomplete profile may be completed by any combination of possible

ballots for remaining voters without issue. However, if some alternatives are missing,

we need to account for the fact that voters may change their ballots at the arrival of

new alternatives not previously known or considered. In this case, voters may not only

expand or restrict their ballot, but may also exchange some alternatives on their ballot

for newly arrived alternatives. For example, consider the following scenario. A group

of voters are voting over three alternatives, where the winner is chosen by plurality

vote and the third alternative joins the election later than the first two. Suppose now

that there is some voter who would vote for the first alternative over the second when

only the two first alternatives are considered. Further, suppose that when the third

alternative joins, this voter prefers the first alternative to the third alternative to the

second alternative, and that the voter believes the third alternative to have a better

chance of winning against the second alternative than the first alternative has. Under

these circumstances, it is reasonable to think that the voter will change their vote so

as to vote for the third alternative instead of the first. On the other hand, if the voter
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prefers alternative one to two to three, but believes alternative two to have a better

chance of winning than three, the voter may even exchange the first alternative for the

second.

Let us call a ballot that completes another ballot an extension of the first ballot, and

say that a profile B extends an incomplete profile Binc if each voter’s ballot in B is

an extension of their ballot in Binc. If we allow voters to make any conceivable change

to their ballot (that is, expanding, restricting, exchanging alternatives for old and new

ones), then any ballot extends the old ballot. In this case, it follows that for any

incomplete profile Binc, any alternative is a possible winner. On the other hand, no

alternative is a necessary winner. This is not very informative. Therefore, we need to

restrict the possible ways voters can extend their ballots. I make use of two different

definitions of ballot extensions due to Xia et al. [2011]4.

The first definition requires that voters only possibly extend their ballot with new

alternatives, while never removing some already approved alternative or approving of

some previously disapproved alternative. Note that this definition of ballot extension is

quite restrictive. In particular, since this definition does not allow voters to re-evaluate

their approval of old alternatives when new alternatives arrive, a consequence of using

the definition is that the problem of determining possible and necessary winners under

plurality voting becomes trivial.

Definition 5.1.2 (Extension 1). A ballot B′ ⊆ X = K ∪ U is an extension of a ballot

B ⊆ K if B′ ∩ K = B. Furthermore, a profile B is an extension of an incomplete

profile Binc if Bi extends B
inc
i for all i ∈ N .

Under the second definition of ballot extension, voters can either keep their ballot

unchanged or exchange some number of old alternatives for some number of new alter-

natives.

Definition 5.1.3 (Extension 2). B′ ⊆ X = K ∪ U is an extension of B ⊆ K if one of

the following conditions holds

4Xia et al. [2011] also consider a third definition of ballot extension, under which voters may
come to approve of previously disapproved alternatives when new information arrives. Under such a
definition of ballot extensions, every alternative will a possible winner, so I will not consider it.
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• B = B′

• B′ ∩ U ̸= ∅ and B′ ∩K ⊆ B.

I will first discuss the problem of determining possible and necessary winners for various

Size Approval Voting rules under Extension 1. In this case, I will assume that no voter

will extend their ballot in such a way that a ballot that was non-trivial becomes trivial.

That is, given an incomplete profile Binc, I will only consider extensions B′ of Binc for

which it holds, for each i ∈ N , that w|B′
i| > 0 whenever w|Binc

i | > 0. If we exclude this

assumption, the problem of computing possible winners becomes for many rules in the

class: if all voters extend their ballots to ballots that have zero weight, all alternatives

become winning. Thus, every alternative is a possible winner.

We can formulate the problem of determining whether an alternative is a possible

winner as the following decision problem.

PWE1(f)

Input: Incomplete profile Binc, alternative x∗ ∈ K

Question: Is x∗ a possible winner with under voting rule f with Extension 1?

Xia et al. [2011] show that under Approval Voting, an alternative x ∈ K is a possible

winner in an incomplete profile Binc if and only if the alternative is a winner in the

incomplete profile Binc. This result extends easily to any other p-approval rule, under

the assumption made above.

Proposition 5.1.4. Let f be a p-approval rule, Binc an incomplete profile. Then

x ∈ K is a possible winner in Binc with Extension 1 if and only if

x ∈ f(Binc).

Proof. Let f be a p-approval rule, Binc an incomplete profile, and x ∈ K.

If B′ is an extension of Binc for which it holds that w|B′
i| > 0 for all i ∈ N

such that w|Binc
i | > 0, we must have that Suppw(B

′, x) = Suppw(B
inc, x) for

all x ∈ K. Thus, it follows that if x /∈ f(Binc), there is no extension B′

of Binc for which x ∈ f(B′). Suppose now that x ∈ f(Binc), and consider

62



the extension B′ = Binc, where no voter extends their ballot with any new

alternative. It is immediate that x ∈ f(B′).

It follows that PWE1(f) is in P for all p-approval rules f .

For those rules for which the (non-zero) weights of ballot sizes differ, the problem of

determining possible winners in incomplete profiles becomes more complicated. Under

such rules, an alternative may come to win because another alternative that previously

had strictly more weighted support has lost a significant amount of that weighted sup-

port through voters extending their ballots to include new alternatives. Furthermore,

whether it is possible for such a situation to occur under a given rule is dependent

not only on the weights that parameterize the rule, but also on the number of new

alternatives that can be added. Thus, there is not an immediate clear cut way to

characterize the possible winners in a given profiles for such rules. However, if the

number of alternatives is sufficiently large and f is a rule with weights that decrease

‘sufficiently’ with the size of ballots, we can characterize the possible winners in an

incomplete profile Binc under Extension 1 as follows: the possible winners are those

known alternatives x for which there exists no other known alternative y such that the

set of ballots in support of y is a strict superset of the ballots in support of x. The

idea is that, in such cases, we can construct an extension B′ of Binc by ‘overloading´
the ballots not in support of x with new alternatives. If the set of new alternatives is

sufficiently large and weights decrease sufficiently with the size of ballots, we can make

sure that the weighted support given to x in the profile B exceeds both that of the new

alternatives and that of old alternatives that previously had more weighted support

than x. In particular, this is possible for many of the SDSAV rules. As a concrete

example, I show that this is the case for the rule of EECV.

Proposition 5.1.5. If the number of new alternatives to be added is unrestricted,

x ∈ K is a possible winner under EECV with Extension 1 if and only if there is no

y ∈ K such that y ∈ Bi for all i ∈ N with x ∈ Bi and x /∈ Bi for some i ∈ N with

x ∈ Bi.

Proof sketch.

(⇒) Let x ∈ K and suppose there is a y ∈ K such that y ∈ Binc
i for all

i ∈ N with x ∈ Binc
i and x /∈ Binc

i for some i ∈ N with x ∈ Binc
i . Then

Suppw(B
inc, y) > Suppw(B

inc, x). Furthermore, because y ∈ Binc
i for all
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i ∈ N with x ∈ Binc
i , it follows that if y experiences some reduction in support

by some voter i with y ∈ Bi extending their ballot, then x will experience the

same reduction. Thus. Suppw(B
′, y) > Suppw(B

′, x), for all profiles B′ that

extend Binc, so x is not a possible winner in Binc.

(⇐) Suppose there is no y ∈ K such that y ∈ Binc
i for all i ∈ N with x ∈ Binc

i

and x /∈ Binc
i for some i ∈ N with x ∈ Binc

i . Observe that since the number of

new alternatives that can be added is not restricted to some fixed ℓ, we can

keep adding new alternatives from U to each ballot Binc
i such that x /∈ Binc

i

until we have an extension B′ of Binc in which Suppw(B
′, x) ≥ Suppw(B

′, y)

for all y ∈ K ∪ U . Thus, x is a possible winner in Binc.

I give an example of a SDSAV rule for which the above characterization does not hold.

Example 5.1.6. Consider the SDSAV rule given by w = (w1, ..., wm), with w1 = 1

and wk = wk−1 − ϵk−1 for each k > 1 and some small ϵ > 0, briefly mentioned in 3.2.2.

Suppose that ϵ = 0.1. Since wk = wk−1 − 0.1k−1 for any k > 1, we have, for a given

ballot B, that w|B| tends to 0.9 as |B| goes towards ∞. Consider now a known set

of alternatives K = {x, y} and voters N = {1, 2, 3}, and suppose that B1 = {x} and
B2 = B3 = {y}. Obviously, the set ballots in support of alternative y is not a superset

of the ballots in support of x. However, by the above discussion, there is no way to

extend the ballots B2 and B3 so that alternative x wins.

Consider now the problem of determining necessary winners under Size Approval

Voting rules, given Extension 1, formulated as the following decision problem.

NWE1(f)

Input: Incomplete profile Binc, alternative x∗ ∈ K

Question: Is x∗ a necessary winner under voting rule f with Extension 1?

Under Extension 1, each voter may extend their ballot to include any new alternative,

and in particular, all voters may extend their ballot to include the same new alternative.

Thus, an alternative x ∈ K can only be a necessary winner in an incomplete profile

Binc under Approval Voting if the alternative x has unanimous support in Binc. The

same holds for any Size Approval Voting rule for which wk > 0 for all k < m. It is

however not generally true for rules in the class. For example, under the trivial rule,
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all alternatives are both possible and necessary winners. More crucially, under the

assumption that voters will not extend a ballot Binc
i with associated non-zero weight

to one for which the associated weight is zero, there are several rules for which it may

not be possible for some voter i to extend their ballot Binc
i with new alternatives,

because wB′
i
= 0 for all ballots B′

i of size larger than Bi. In such cases, an alternative

could be a necessary winner in an incomplete profile Binc without having unanimous

support in said profile. For example, as mentioned earlier, under the plurality rule no

voter will ever be able to include new alternatives on their ballot. In this case, the

necessary winners of an incomplete profile Binc correspond to the set f(B).

Consider now the following algorithm for determining whether an alternative is a neces-

sary winner in incomplete profileBinc under Size Approval Voting rule f and Extension

1. The algorithm works as follows: given an incomplete profile Binc and some alterna-

tive x∗ ∈ K as input, we let the set of alternatives X be composed of K and a single

new alternative d. If x∗ is dominated in Binc by some other alternative y ∈ K, the

algorithm rejects, as x∗ cannot be a necessary winner. Otherwise, we construct an

extension B′ of Binc by adding the alternative d to every ballot that can be extended

with a new alternative. If the total weighted support given to alternative d in the

profile B′ is greater than that given to x∗, the algorithm accepts. Otherwise, it rejects.

Algorithm 1: NWE1(f)

Input:Binc = (B1, ..., Bn), x
∗ ∈ K

X ← K ∪ {d}
if x /∈ f(Binc) then

Reject.

else

for Bi ∈ Binc do

if w|Bi|+1 > 0 then
B′

i ← Bi ∪ {d}
else

B′
i ← Bi

B′ ← (B′
1, ..., B

′
n)

if x∗ ∈ f(B′) then
Accept.

else
Reject.
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Observe that the algorithm must correctly determine whether an alternative x∗ ∈ K

is a necessary winner in a profile Binc under any Size Approval Voting rule f that is

not the trivial rule. By definition, the alternative x∗ is a necessary winner in Binc if

and only if it is not dominated by any other (old or new) alternative in any extension

B′ of Binc. If the alternative x∗ is dominated by an alternative y ∈ K, then x∗ is also

dominated by the alternative y in the extension B′ = Binc, so x∗ is not a necessary

winner. On the other hand, since no alternative y ∈ K can gain support by ballots

being extended under Extension 1, it follows that if x∗ is not dominated by y in Binc,

then Binc is not dominated by y in any extension B′ of Binc. Furthermore, if a new

alternative d ∈ U ′ does not dominate the alternative x∗ in the extension B′ where

d is the only new alternative added to those ballots that can be extended with new

alternatives, then d does not dominate x∗ in any extension B′′ ̸= B′. On the other

hand, if the alternative d does dominate x∗ in such an extension B′, x∗ is clearly not

a necessary winner.

It follows that the problem of determining necessary winners in an incomplete profile

under Extension 1 is in P for all Size Approval Voting rules.

Proposition 5.1.7. NWE1(f) is in P for all Size Approval Voting rules f .

Proof. Let f be a Size Approval Voting rule. First, if f is the trivial rule, it is

immediate that all alternatives are necessary winners. Therefore, suppose f is

not the trivial rule. Consider a problem instance consisting of some incomplete

profile Binc and alternative x∗ ∈ K. By the discussion above, Algorithm 1

accepts the problem instance if and only if the alternative x∗ is a possible

winner in the incomplete profile Binc. Furthemore, it is easy to see that the

algorithm runs in time polynomial in the size of the input.

Let us now consider the problem of determining possible and necessary winners under

Size Approval Voting rules f , assuming that voters extend their ballots according to

Extension 2.

PWE2(f)

Input: Incomplete profile Binc, alternative x∗ ∈ K

Question: Is x∗ a possible winner with Extension 2 under voting rule f?

I again discuss the special case of determining possible winners under the assumption
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that the number of new alternatives that can be added is unrestricted. Let us assume

additionally that for any voter i, we have Binc
i ∩ B′

i = ∅ for any ballot Binc
i with

associated weight w|Binc
i | = 0 and extension B′

i with w|Binc
i

> 0. In words, assume that

a voter who abstained from giving strictly positive support to any known alternative

will not change their mind about this once new alternatives arrive. Then it holds

for any Size Approval Voting rule f , modulo the trivial rule, that an alternative is a

possible winner in a profile Binc if and only if it is on some ballot that has strictly

positive weight.

Proposition 5.1.8. Let f be a Size Approval Voting rule, and suppose that f is not

the trivial rule. If no voter who abstained from giving strictly positive support to

any known alternative changes their mind about the known alternatives when new

alternatives arrive, then an alternative x ∈ K is a possible winner in incomplete profile

Binc if and only if x ∈ Binc
i for some Binc

i with w|Binc
i | > 0.

Proof. Observe first that by the assumption made above, a known alternative

that received zero weighted support in Binc cannot be a winner in any exten-

sion B′ of Binc. On the other hand, suppose for x ∈ K that x ∈ Binc
i for some

Binc
i with w|Binc

i | > 0. Consider a profile B′ with B′
j ∩B′

j′ = ∅ for all j, j′ ∈ N ,

obtained from Binc by replacing the ballot Bj of every j ∈ N \ {i} with a

ballot B′
j containing |Bi| new alternatives. This profile is a valid extension

of Binc under Extension 2. Furthermore, since there is no restriction on the

number of alternatives that can be added, we can clearly construct it. Observe

now that since B′
j ∩B′

j′ = ∅ for all j, j′ ∈ N , each new alternative added only

occurs on a single ballot. Furthermore, no known alternative that is not on

the ballot Binc
i receives any support in B′

i. It follows that the alternative x

must have maximal weighted support in B′.

Determining possible winners under Extension 2 in the more general case where the

number of new alternatives that can be added may be bounded by some ℓ is less

straightforward. Xia et al. [2011] shows that the Possible Winner Problem under

Extension 2 is NP-complete for Approval Voting, and it is reasonable to think that

this is the case for several other rules in the class. However, I have not been able to

provide results to confirm this.
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Finally, consider the problem of determining necessary winners in an incomplete profile

Binc under Extension 2.

NWE2(f)

Input: Incomplete profile Binc, alternative x∗ ∈ K

Question: Is x∗ a necessary winner with Extension 2 under voting rule f?

It is easy to see that under this definition of ballot extensions, there is no alternative

that is a necessary winner, for any Size Approval Voting rule f that is not the trivial

rule.

Proposition 5.1.9. No alternative is a necessary winner under Extension 2 for any

incomplete profile Binc or Size Approval Voting rule f .

Proof. Let f be any Size Approval Voting rule, let Binc be an incomplete

profile and let x ∈ K. Consider any extension B′ of Binc in which B′
i∩K = ∅

for all i ∈ N . Clearly, x /∈ f(B′), and so x is not a necessary winner in

Binc.

5.2 Discussion

This chapter has been dedicated to issues concerning the problem of determining pos-

sible and necessary winners under Size Approval Voting rules when some alternatives

are missing. Under two different assumptions, due to Xia et al. [2011], about how vot-

ers will respond when new alternatives arrive, I studied the problem of characterizing

possible and necessary winners under various Size Approval Voting rules. I showed

that, under each of the assumptions, the Necessary Winner problem is in P for all

Size Approval Voting rules, being trivial under one of the assumptions. Furthermore,

under each of the assumptions, I characterized possible winners under various rules in

the class for the special case where there is no fixed limit on the number of new alter-

natives that can be added. In particular, I characterized possible winners under the

rule of EECV when the number of new alternatives that can be added is not limited

by some fixed number ℓ. It is worth mentioning that these results suggest the problem

of electoral control by adding an unlimited number of new alternatives, as studied by

Bartholdi et al. [1992], is in P for EECV.
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The results obtained in this chapter were quite limited. In particular, I have not

provided many general results regarding the complexity of the Possible Winner Problem

for rules in the class. Such results should be provided for more rules in the class. In

particular, it would be beneficial to determine the complexity of the Possible Winner

Problem for the rule of EECV, under each of the assumptions about voters’ response

to new information that were considered.
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Chapter 6

Conclusion and Future Work

In an attempt to better understand the class of Size Approval Voting rules and its mem-

bers, I have analyzed the class from different angles of Computational Social Choice.

In this section, I discuss the work that has been done. I will first summarize results

obtained, reiterate limitations discussed, and make some general observations about

the class, and thereafter outline some directions for future work.

In Chapter 3, I considered the class of Size Approval Voting rules from an axiomatic

point of view. I axiomatically related the class to the class of scoring rules, simplified

a previous characterization of the class, and gave some alternative axiomatizations

of the class based on its relation to scoring rules and said simplification. I further

suggested axioms that can be used to obtain two important subclasses of the class,

and gave a characterization of the rule EECV. As was pointed out in Chapter 3, some

axioms suggested in this section, in particular axioms used to capture the subclasses of

Size Approval Rules considered, were somewhat artificial. I defended the use of these

axioms by pointing out that the classes themselves can be seen as somewhat artificial.

However, it should still be considered whether these subclasses can be captured using

axioms that are less technical than the ones suggested in this thesis.

Subsequently, in Chapter 4, I studied the properties of the class with respect to manip-

ulability. Relying on the notion of sincerity from Brams and Fishburn [1978], I showed

that all rules in the class are sincere when all voters have dichotomous preferences,

and that many of the rules in the class can be seen as to incentivize strongly insincere

behavior under less strict assumptions about the preferences of voterrs. As mentioned,
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these results can be thought of as showing that no rule in the class is vulnerable to

manipulative behavior when the approval balloting system directly reflects the prefer-

ences of voters, and that many rules are vulnerable to manipulation when this does

not hold. I furthermore showed that the decision problem of strategic manipulation

is trivial for all Size Approval Voting rules. Additionally, I discussed the problem of

manipulation under partial information. Under the assumption that a voter will only

use an insincere strategy if it dominates the sincere strategies of the voter, I showed

that voters are disincentivized from using insincere strategies under zero information.

We also saw that, under the (lack of) assumptions made about how the preferences of

voters extend to sets of alternatives, it is not possible to determine whether voters are

incentivized to use insincere strategies when knowing (only) the winners of an election

under certain rules in the class. Some of the results concerning the (in)sincerity of

rules in the class could be made more precise, e.g., by characterizing more exactly and

exhaustively the conditions under which rules in the class admit the use of insincere

strategies. The issues considered in Chapter 4 were limited to ones that concern the

vulnerability of the rules with respect to manipulation by individual voters. However,

as noted in the discussion, there are several other kinds of manipulation problems in

Voting Theory, such as the problem of coalitional manipulation [Conitzer and Walsh,

2016], bribery, and electoral control [Faliszewski and Rothe, 2016]. Although we briefly

discussed the properties of Size Approval Voting rules with respect to the problem of

coalitional manipulation, the properties of the class with respect to the latter two

problems should be studied further.

Lastly, in Chapter 5, I considered the problem of computing possible and necessary

winners in incomplete elections with missing alternatives, under two different assump-

tions about how voters complete their votes when given access to new information. I

showed that the problem of determining necessary winners is computationally easy for

all rules in the class under each of the assumptions considered. I furthermore provided

results characterizing possible winners under various rules in the class when the num-

ber of new alternatives that can be introduced is restricted. The results concerning the

problem of determining possible winners were limited, and more general results should

be provided. In particular, it would be interesting to determine the complexity of both

versions of the Possible Winner Problem for more natural rules in the class, such as

the rule of EECV.
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Overall, many of the results obtained in this thesis suggest that properties shared by

rules in the class are limited. The fact that rules in the class exhibit quite different

properties with respect to several of the problems considered could suggest that the

class has some degree of artificiality. On the other hand, being quite general and

imposing relatively few restrictions, it is hardly surprising that the class allows for

rules that can behave very differently. The class perhaps also serves as an example of

the limitations to defining scoring rules over approval ballots. It contains some of the

most natural scoring rules that we can define in an approval-based system, but there

aren’t many such rules relative to the size of the class.

I now briefly discuss future work beyond the open problems discussed above. There

are many problems studied in Voting Theory that go beyond the scope of this the-

sis. In particular, it could be of interest to study the properties of the class of Size

Approval Voting rules with respect to several problems not considered that, like the

problems of determining possible and necessary winners based on incomplete informa-

tion, concern the informational and communicational burdens imposed by voting rules.

I mention two. Firstly, it is sometimes advantageous to use voting rules that minimize

the communication burden put on voters with respect to computing the outcome of an

election. The number of bits required from voters to be able to compute the outcome

of an election under a given voting rule f is called the communication complexity of f .

This problem has been studied by Conitzer and Sandholm [2005], who, for one, derive

tight bounds on the communcation complexity of Approval Voting. It is easy to see

that, for n voters and m alternatives, the communication complexity of rules in the

class of Size Approval Voting is upper bounded by nm, as each voter can submit one

bit corresponding to approval or disapproval for each of the m alternatives. However,

lower bounds on the communication complexity of rules in the class should also be

derived. A related problem is that of determining the minimal amount of information

from an intermediary election needed to be stored for later purposes. For a given vot-

ing rule f , the number of bits required to store the information of an intermediary

election is called the compilation complexity of f . Chevaleyre et al. [2009] study the

compilation complexity of several voting rules, among others the plurality rule, and

derive tight bounds on the compilation complexity of the rules using a technique that

relies on counting the number of profile equivalence classes under a given voting rule.
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