
| 1
|

i 1 LH | Is

luk

Re

D
D

a
n

s
a
.

st
eh
t,

e
d
t
}

T
S

al
ai
n

\
T
r
a
n
e

<=
 S

30
5

at ad

a
a
.
»

PS

&

ncepts
tural Co

chies
tarn rierar

in Rela
Leen Torenvliet

STRUCTURAL CONCEPTS IN RELATIVISED HIERARCHIES

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van

doctor in de Wiskunde en Natuurwetenschappen

aan de Universiteit van Amsterdam

op gezag van de Rector Magnificus

dr D.W. Bresters

hoogleraar in de Faculteit der Wiskunde en Natuurwetenschappen

in het openbaar te verdedigen in de Aula der Universiteit

(in de Lutherse kerk, ingang Singel 411, hoek Spui)

op woensdag 17 september 1986

des namiddags te 17.30 uur (precies)

door

Leendert Torenvliet

geboren te Amsterdam

1986

PROMOTOR: P. VAN EMDE BOAS

ONTENTS

Preface

Voorwoord voor de leek

Acknowledgements

Chapter 1 Introduction

The natural numbers and computational complexity

The classes P, NP, and Co-NP

A Polynomial Time Hierarchy

Chapter 2 The First Level of a Relativised Hierarchy

Chapter 3 Strong Separations between the first two levels

Chapter 4 The Second Level

Epilogue

Bibliography

Summary

Samenvatting

35

69

89

99

103

115

117

PREFA

The present thesis is based on three papers on the relativised Polynomial Time Hierarchy. This

subject represents a specialised area of one of the central topics in theoretical computer science

which is known as Computational Complexity Theory. The common theme of these papers is

constituted by investigations after the nature of this infinite hierarchy of complexity classes which is

believed to exist between polynomially bounded time and polynomially bounded space.

Many Years of Great Effort by famous scientists have learned that the nature of this hierarchy itself

is far too difficult to allow for absolute assertions on its structure to be proved, and form a

rewarding (in the sense of paper producing) object of study.

Therefore, instead of looking at the real world, we create different parallel universes, in which we

realise potential properties of this hierarchy. Limiting our world of interest to surroundings in

which this hierarchy exists at least partially, we derive theorems on the way these classes in the

hierarchy can be separated. We are interested especially in creating worlds in which the hierarchy is

fairly stretched at bottom levels.

Our work was initiated in the summer of 1983 when we acquired by coincidence, a draft paper of

José Balcazar titled "Simplicity for Relativised Complexity Classes", which later appeared in SIAM

Journal of Computing under the title "Simplicity, Relativisations and Nondeterminism". In this

paper the question was posed whether there could exist an oracle relative to which NP could have a

language both simple and P-immune. At first sight it seemed that there should be an as

Straightforward answer to this question, as to other problems which had been solved before. But

numerous discussions I had with P. van Emde Boas during the subsequent period (some of which

are still going on) gave evidence to the conjecture that it may not be as straightforward as it seemed

then.

It was not until the summer of 1984 that we found a construction of an oracle which provided a

positive answer to the question and could start to write the paper "Combined Simplicity and

Immunity for Relativised NP" which we submitted (and was accepted) for STACS8S held at

Saarbriicken in January 1985. The full paper was accepted as a submission for Information and

Control, and will appear in this journal at a later time.

In the spring of 1985 we extended the concept of Immunity and Simplicity to the second level of

the Polynomial Time Hierarchy inspired by questions posed by Homer and Gasarch in their paper

on the relation between relativised NP and exponential time bounded complexity classes, and again

by Balcázar in his invited lecture at the conference on Mathematical Foundations of Computer

Science.

il

Most of the techniques needed for the constructions of the oracles were developed in an electronic

mail correspondence I had with P. van Emde Boas, who at that time was on sabbatical leave

working at IBM Research Center in San José. The results were accumulated in the two papers

“Towards a Strong P-Time Hierarchy", and "Simplicity for Relativised NP", which have appeared

as reports in the series of the Computer Science department at the University of Amsterdam. The

combination of these results establishes strong separations between language classes in the first two

levels of the Relativised Polynomial Time Hierarchy. It seems that by similar methods strong

separations above the first levels can not be obtained, and hence that (apart from a nagging open

problem mentioned in Chapter 3), this thesis covers all separation results which can be achieved by

constructive methods.

IV

VOORWOORD VOOR DE LEEK

In het voor u liggende proefschrift worden een aantal algoritmen beschreven die in het vakgebied

bekend staan onder de naam diagonalisaties. Een diagonalisatie is wellicht het best te vergelijken

met een verkiezingsprogamma dat tot doel heeft (en erin slaagt) geen enkele stem te verwerven.

Omdat de in dit proefschrift gebruikte wiskundige termen geen betekenis hebben voor iemand die

niet dagelijks deze termen hanteert, en gekweld wordt door de hierachter verborgen vragen, wil ik

proberen door het schetsen van een analogie, het soort problemen dat in dit proefschrift wordt

aangevallen te verduidelijken.

De door mij beoogde situatie is vol van discriminatie op grond van ras, geloof en

levensovertuiging, en van ongelijke behandeling tussen mannen en vrouwen, ja zelfs van ongelijke

behandeling tussen mannen onderling. Het lijkt mij daarom verreweg het veiligst, de situatie te

plaatsen in een ver land in opper Mongolië, alwaar in een onherbergzaam en van de buitenwereld

afgesloten gebied sinds jaar en dag de stam der Yakhushi is gevestigd. Ik wil hier (wellicht ten

overvloede) stellen dat, hoewel de Yakhushi in sommige opzichten beschouwd kunnen worden als

familie, ik hun politieke inzichten niet deel, noch dat ik instem met de aldaar gebruikelijke riten.

Door een genetische afwijking worden in het geslacht der Yakhushi sinds het begin der eeuwigheid

zowel witte als zwarte individuen geboren, en alle vormen van selectie hebben in deze situatie geen

verandering kunnen brengen. Er zijn perioden in de geschiedenis geweest dat de witte Yakhushi

allen heengezonden werden naar de Noordpool om daar te verkommeren, er zijn perioden geweest

dat men de zwarte exemplaren onderdompelde in de geitemelk in de hoop dat door de inname van

veel witte vloeistof de kleur van de huid zou veranderen, en er zijn perioden geweest dat de beide

rassen een voortplantingsverbod kregen opgelegd. (Dit betekende destijds bijna het einde der stam.

Gelukkig heeft men dit op tijd ingezien, en werd de wetgeving veranderd.) Alle vormen van

opgelegde selectie door combinatie van individuen heeft niet geleid tot een verbetering van de

situatie. Voornoemde afwijking heeft namelijk tot gevolg dat zowel uit een huwelijk tussen twee

witte Yakhushi zwarte nakomelingen kunnen komen, als dat uit een huwelijk tussen twee zwarte

Yakhushi witte nakomelingen kunnen komen.

Sinds het diepgravende werk "De Scheiding der Kleuren" van (de inmiddels hooggeleerde) Tsjing

Bo Ru, die voor zijn promotieonderzoek gedurende vier jaren van zijn promotor, de Heilige Keizer

Kwa Ni Ping de volledig vrije hand kreeg om huwbare Yakhushi aan elkaar te verbinden is men er

echter wel van overtuigd dat het maximaliseren van het in de omgeving huisvesten van één der twee

soorten, het geboren worden van de andere soort bemoeilijkt. Zoals het een goed wetenschapper

betaamt heeft Tsjing zich in zijn streven naar objectief verkregen resultaten bij het experiment onder

40.000 huwbare Yakhushi uitsluitend geconcentreerd op de effecten van combinaties van

verschillende kleuren op het nageslacht, en zich niets aangetrokken van mogelijkheden van

emotionele verbondenheid tussen twee verschillende exemplaren. De periode volgend op zijn

promotie heeft zich dan ook gekenmerkt door een grote bloei in de horeca sector in het land der

Yakhushi.

Zoals eveneens door Tsjing is vastgesteld, is het vooral de kleur der mannen die zwaar doorweegt

in de kleur van het nageslacht, en is de kleur der vrouwen nauwelijks van enige betekenis. Het

gerucht heeft een tijd gegaan dat deze stelling pas later (na de grote bloei der horeca) aan het

proefschrift werd toegevoegd, en er heeft zich intussen een afscheidingsbeweging "Nee tegen

stelling 347" gevormd die de wetenschappelijke onderbouwdheid van deze stelling in twijfel wenst

te trekken, en voortaan ook de kleur der vrouwen in de selectieprocedure wil laten meetellen. Tot

nu toe heeft deze groepering echter nog geen meerderheid verkregen, en gezien de razzias die

voortdurend onder andersdenkenden in dit land worden gehouden ziet het ernaar uit dat dit ook

voorlopig niet het geval zal zijn. Wij kunnen dus in het volgende de rol die door vrouwen gespeeld

wordt in de bepaling van de kleur van het nageslacht rustig verwaarlozen.

Zoals gezegd worden de Yakhushi geregeerd door een Keizer die persoonlijk alle huwelijkszaken

voor zijn volk regelt. (Het onderzoek van Tsjing is het laatst bekende geval waarin dit gedelegeerd

is geweest.) De Keizer (zelf al sinds "De Grote Slag" een exemplaar van het witte ras) streeft ernaar

door middel van het tot stand brengen van de juiste huwelijken, zoveel mogelijk (liefst alle) witte

Yakhushi mannen aan zich te verbinden, en zoveel mogelijk (liefst alle) zwarte Yakhushi mannen

uit het hof te weren. Eeuwenoude wetgeving betreffende de uithuwelijking en de toekenning van

lintjes, verzameld in het boek “De Dans om de Macht" stellen de Keizer in staat dit doel te

verwezenlijken. Conform de eeuwenoude wetten gaat de ceremonie van uithuwelijking als volgt in

zijn werk:

Met grote regelmaat nodigt de keizer een aantal huwbare Yakhushi mannen uit in de Kamer der

Keuzen, welke zij niet ongehuwd èn levend meer zullen verlaten. Gedurende een aantal dagen toont

de keizer deze mannen nu elke dag een aantal vrouwen, en zal tevens aan het eind van de dag

bekend maken welke vrouwen draagster zullen zijn van de Keizerlijke Grootzegelring. De keizer

bepaalt tevens onder de vrouwen een relatie, die we bij gebrek aan betere naamgeving maar "zuster"

zullen noemen. Opgemerkt dient de worden dat deze "zuster" relatie niet noodzakelijk symmetrisch

is. De Keizer is geheel vrij in het bepalen van deze zuster relatie, en ook in het al dan niet toekennen

van een zegel. Een eenmaal bepaalde relatie kan echter niet meer worden ontbonden, en een

eenmaal toegekend zegel kan niet meer worden ontnomen.

vi

De Yakhushi man maakt nu bij elke vertoonde vrouw kenbaar, haar al of niet tot zijn echtgenote te

willen nemen. Als het antwoord ja is, dan worden hij en zijn echtgenote onmiddelijk door de Keizer

in de echt verbonden, en zal hij nimmer meer van haar kunnen scheiden. In het verleden heeft men

wel getracht gesloten huwelijken te ontbinden, doch de toorn des Keizers achtervolgde de

(inmiddels niet meer) geliefden tot in de verste uithoeken van het land, en er is dan ook nog nooit

een succesvolle poging tot ontbinding van een huwelijk gedaan. Om de Yakhushi man niet elke

vrijheid te ontnemen, zorgt de oude wetgeving ervoor dat de Yakhushi man niet een ja antwoord

hoeft te geven, maar ook een "ja, mits...’ mag laten horen. Hij mag een ja voor een bepaalde

vrouw laten afhangen van de status van vijf andere vrouwen. Bepalend is hierbij of deze vijf andere

vrouwen al dan niet zegeldraagster zijn of worden aan het eind van de dag waarop ze door de

Keizer worden getoond. De Yakhushi man kan bv. zeggen "Ik zal vrouw0 wel willen hebben als

vrouwl wel-, vrouw2 niet-, vrouw3 en vrouw5 wel- en vrouw4 niet zegeldraagster zijn/worden."

Hierbij kan het zijn dat alle vijf vrouwen in het verleden zijn getoond, doch het is ook toegestaan

de keuze te laten afhangen van in de toekomst aan vrouwen toe te kennen zegels. Daar onder de

Yakhushi het geruchtencircuit op volle toeren draait, is de keizer er nog nimmer in geslaagd geheim

te houden welke vrouwen hij op welke dag van plan is te gaan vertonen binnen een maand na de

huidige dag. Het is wellicht daarom dat de bepaling is ontstaan dat deze "toekomstige" vrouwen

dan wel binnen vijf dagen dienen te worden getoond. Eeuwen van witte heerschappij hebben op dit

punt een ongelijkheid tussen wit en zwart doen ontstaan. Mag de zwarte man bij een enkele vrouw

slechts een vaste verzameling van vijf vrouwen kiezen. De witte man mag bij een vrouw een

willekeurige hoeveelheid van verzamelingen van vijf vrouwen kiezen. Hij is hierbij echter wel

gehouden om indien één van die verzamelingen een geactualiseerd wordt door de Keizer, zijn ja

woord gestand te doen. De witten hebben dus in dit opzicht meer keuze, maar zij leven ook

gevaarlijker.

Natuurlijk is het ook bij deze stam niet zo dat de echtgenotes uitsluitend op grond van hun uiterlijke

kwaliteiten, dan wel op andere emotionele gronden worden verkozen. De achtergrond voor elk

huwelijk dat bij de Yakhushi wordt gesloten is het streven naar Politiek Gewin. De oude wetgeving

schrijft immers voor, dat de man die gehuwd is met een vrouw die een zuster heeft die

zegeldraagster is voor het leven aan het hof verbonden is terwijl de man wier echtgenote niet in deze

omstandigheid verkeert, voor eeuwig naar een onherbergzaam oord zal worden verbannen. Zoals

we al hebben opgemerkt streeft de keizer ernaar door zegeltoekenning de witten aan zich te

verbinden, en de zwarten te verwijderen. Gezien de bovengeschetste ingewikkelde wetgeving

betreffende de keuzevrijheid der Yakhushi mannen, zal de lezer begrijpen dat dit voor de Keizer

geen eenvoudige opgave is. Temeer daar onder het zwarte deel van de bevolking het plan leeft een

voet tussen de deur te krijgen in het Hof om aldaar een paleisrevolutie te creëren, de Keizer af te

zetten, en de broeders uit het onherbergzame gebied onder begeleiding van veel feestgedruis weer

vil

naar de hoofdstad te halen. Erger is nog, dat er onder de witte Yakhushi mannen onbetrouwbare

figuren rondlopen die erop uit schijnen te zin naar het onherbergzame oord te ontsnappen om aldaar

een democratie te stichten. Tot op de dag van vandaag zijn de Keizers echter afkomstig uit één

familie, en is nog geen witte erin geslaagd te ontsnappen. De reden hiervoor is dat de Keizers een

ijzersterke algoritme hebben om te bepalen welke vrouwen wel, en welke vrouwen niet het

Keizerlijke zegel zullen dragen.

Allereerst worden aan het begin van elke dag niet meer dan tien witte, en tien zwarte Yakhushi in de

Kamer der Keuzen worden toegelaten. Niet alle tien zullen zij onmiddelijk tijdens deze zitting van

een vrouw kunnen worden voorzien, dus is er een voorrangsregeling opgesteld. Alle Yakhushi

krijgen een cijfer tussen de O en de 9, zo dat voor elk cijfer één vertegenwoordiger van het witte

ras, en één vertegenwoordiger van het zwarte ras aanwezig is. Hierbij hebben de nablijvers van de

vorige zitting de laagste nummers, en is de volgorde van de vorige zitting onverstoord gebleven.

Als een witte en een zwarte met hetzelfde nummer dezelfde vrouw wensen, dan krijgt de witte

voorrang.

De Keizer nu zal vijf dagen na elke zitting aan geen enkele vrouw een zegel toekennen, hiermee

voorkomend dat een gegeven ja antwoord door een der mannen op grond van de gewijzigde situatie

in het aantal zegeldraagsters kan veranderen in een nee antwoord. De duur van een zitting is sterk

afhankelijk van het verloop der gebeurtenissen. Zolang geen der witten heeft gezegd een vrouw te

willen, is er geen reden aan enige vrouw het zegel toe te kennen, dus gebeurt er niets. Als een witte

heeft gezegd een vrouw te willen, en een zwarte met een lager cijfer wil dezelfde vrouw, dan wordt

deze vrouw toegekend aan de zwarte (met het laagste cijfer), en alle vijf vrouwen die bepalend zijn

voor het ja antwoord van deze zwarte wordt het zegel onthouden. (Uiteraard voor zover zij al niet

een zegel hebben.) De zwarte wordt verbannen en de zitting wordt gesloten. Doet een dergelijk

conflict zich niet voor, dan zal de Keizer ertoe overgaan het ja antwoord van de witte te garanderen

door een verzameling van vijf vrouwen waarop dit ja antwoord gebaseerd is te bewaren voor de

eeuwigheid door alle vrouwen in deze verzameling die het zegel nog niet dragen dit ook nimmer te

geven. Tevens zal een nieuwe zegeldraagster worden benoemd, die zuster is van de onderhavige

vrouw. Hiermee bindt de Keizer de witte aan het hof. De situatie van vorige dagen kan echter door

het benoemen van een nieuwe zegeldraagster zijn gewijzigd. Daarom worden voor de afgelopen vijf

dagen alle vrouwen herschouwd, en het bovenbeschreven spel opnieuw opgevoerd (eventueel een

nieuwe herschouwing implicerend). Aangezien er niet meer dan tien witte candidaten in de zaal zijn,

kunnen er niet meer dan tien herschouwingen plaatsvinden, daarom wacht de keizer nadat de laatste

keer een witte dan wel een zwarte is gebonden aan een ja antwoord een periode van vijf en vijftig

dagen, alvorens de zitting gesloten te verklaren en een nieuwe zitting te openen. Gebeurt er niets,

dan wordt de zitting gesloten. Zegt een der witten ja, dan wordt het gehele spel nogmaals

opgevoerd.

Omdat er een beperkt aantal witten en zwarten in de zaal is, zal de zitting uiteindelijk worden

gesloten, en zullen er nieuwe candidaten in de zaal verschijnen, die alleen nieuwe vrouwen, en

eventueel vrouwen uit herschouwingen te zien zullen krijgen. De bovengeschetste algoritme heeft

ervoor gezorgd dat geen der witte Yakhushi mannen een vrouw kan kiezen zonder zich daardoor

aan het hof te verbinden, en dat geen der zwarte Yakhushi mannen een vrouw kan kiezen zonder

zich daardoor een verbanning op de hals te halen. Een bewijs voor de correctheid ervan zal ik u

besparen, omdat de correctheid niet alleen afhankelijk is van de algoritme als boven geschetst, maar

ook van een nauwkeurige en slimme bepaling van het aantal zusters dat aan een bepaalde vrouw

wordt toegekend. Er moeten immers bij alle uitsluitingen altijd nog genoeg zusters voor een

bepaalde vrouw over zijn om haar man door toekenning van het zegel aan deze zuster aan het hof te

verbinden. Bovendien zou de situatie zich heel goed kunnen voordoen dat de Keizer is opgescheept

met een verzameling nee knikkers, d.w.z. een twintigtal candidaten dat elke voorbijkomende vrouw

afwijst, en daarmee het voortbestaan van de stam als geheel ernstig in gevaar brengt. Het gerucht

gaat dat een dergelijke situatie zich in het verleden wel eens heeft voorgedaan. De Keizer, aan het

belang van de stam denkend (en zijn geduld verliezend) heeft bij die gelegenheid besloten alle

twintig candidaten te doen koppen, daarmee zowel de invariant van de algoritme bewarend als

toekomstige halsstarrigheden ontmoedigend. Tegenwoordig is de standaardsituatie dat elke voor de

Keizer geroepen Yakhushi regelmatig zijn instemming met de geboden waar betuigt.

De bovengeschetste algoritme is een weergave van de constructie die in dit proefschrift als stelling

vijf verschijnt. Deze weergave is sterk vereenvoudigd door het kiezen van constanten waar in de

oorspronkelijke vorm functies staan, en het is niet geheel duidelijk of de correctheid van de

algoritme onder deze transformatie bewaard is gebleven. De lezer die, ondanks deze uitleg, de

werking van de bovengeschetste algoritme niet onmiddelijk doorgrondt, behoeft niet te wanhopen.

Hij bevindt zich in goed gezelschap. Met de ontwikkeling van deze algoritme is een begin gemaakt

in het voorjaar van 1984 en het is niet tot het verschijnen van dit proefschrift dat een begrijpelijke en

vermoedelijk correcte versie ervan (in Hoofdstuk 2) werd opgeschreven.

ACKNOWLEDGEMENTS

As a dissertation is generally viewed as the beginning of the period of scientific maturity of the

author of the thesis, there should be a place in any thesis where the persons who have contributed

to his education are commemorated.

First there were my parents who have, sometimes at great personal sacrifice, created a surrounding

in which I could fight my dragons without worrying about troubles creeping in from the outside.

Then I would like to thank all of my teachers some of whom have just contributed to the expansion

of my knowledge (many times at their own despair) and others who have handed me tools to gain

insight in the structure of problems. Special thanks is due to (in chronological order) Mrs. J. van

Winsen, who believed that my disinterest was not caused by sheer stupidity, and probably gave my

life a different course, to H.W. Boot who taught me the value of “Systematisch Denken", (I always

remember these words when confronted with a new and dazzling puzzle, though I'm seldom able

to put them to practice), to J. A. Bergstra who in the spring of 1985 took over 2 hours in his busy

schedule to have a "where do we go from here" conversation with me and showed me by example

that organisation is at least as important as scientific qualities in a research environment, and most

of all to P. van Emde Boas (not fitting in the chronological order, since it seems that he was always

there) who first started to light up my way into science in the spring of 1977, and has never

stopped since. (Even during his eight month sabbatical in San José, he kept in touch with me on a

daily basis.) I owe practically everything I know about Computer Science and most of what I know

of Mathematics to his wise lessons. He never failed to correct me when I was strolling along dark

paths of ignorance, and with enormous patience he corrected the errors in many wild ideas I put on

his doorstep. Without him this document could certainly not have been written.

Then I would like to thank all of my colleagues both in the department of Mathematics and the

department of Computer Science, who have greatly inspired me to continue with scientific work.

Special thanks is due to J. Bruijning, with whom I had in the spring of 1984 a conversation of

three days trying to establish the theorem which appears as theorem 5 in this thesis, (we failed then,

but this conversation greatly helped to gain the insight which eventually lead to the construction), to

K. Koymans who helped me with useful comments on most of the constructions in chapters III and

IV, and to W. Bouma and H. van der Meer who joined me in a quest to which experience I

probably owe much of the perseverance which was needed to develop the algorithms in this thesis.

I also like to thank the readers of this thesis who took the time to correct errors in an earlier version.

Special thanks is due to K. Ambos-Spies, who sent me a 14 (!) page comment on one of the first

versions. I believe it greatly helped to improve the quality, though I do not believe the work is now

flawless.

I am much indebted to M.G. de Bruin, who graciously allowed me to use the hardware to print the

manuscript. In this respect thanks is also due to D. Zwarst for fitting me in the very busy schedule

of the printing-office at the CWI and thanks on forehand for undoubtedly doing a magnificent job

in printing, and T. Baanders for producing the final version of the cover from the rough sketch I

produced with an electronic painting program. Finally I like to thank my wife Marian for putting up

with me all of those sleepless nights.

Almost all statements which (i) have been extensively studied

by mathematicians and (ii) are known to be arithmetically

expressible can be seen from a relatively superficial

examination, to have quite low level in the AAF n: AS has been

occasionally remarked, the human mind seems limited in its

ability to understand and visualize beyond four or five

alternations of quantifier. Indeed, it can be argued that the

inventions, subtheories, and central lemmas of various parts of

mathematics are devices for assisting the mind in dealing with

one or two additional alternations of quantifier.

Rogers, Theory of Recursive Functions

and Effective Computability,

Mc Graw-Hill '67 p 322.

TINTROD N.

1, The Natural Numbers an mputational Complexi

One of the immediate implications of dualism is the ‘urge to count’. Dividing the perceived world

into categories automatically implies the creation of sets of different cardinality of objects with

apparently the same properties. In some Oriental Philosophies there is only room for the Universe

or Karma with which man tries to unify, and since human perception and ways to describe the

world are essentially of a dualistic nature, there are claims that such philosophies (e.g. Zen) are

after the destruction of language [50].

The western world is filled with objects which all have a well defined place in space. At a very

early stage in life children are introduced to the natural numbers, which according to some are

supplied by God (we will return to this at the end of this section), and learn to use and abuse them.

Not only human beings seem to experience this urge to count. It seems that the natural numbers

also play an important role in the life of animals. The interested reader should await the publication

of [130] in which an extensive survey is given on habits and anomalies of counting all over the

world as an introduction to a study of the behaviour and possibilities of counting and counter

machines. In this thesis we will present some aspects of counting, but we will use counting

methods as a vehicle rather than as an object of study, as is the case in [130].

Virtually all theorems in this thesis are based on ways of counting elements in sets of which the

sizes vary with time. Correctness proofs of diagonalisation methods, the common core of all

constructions in this thesis, are all based on comparison of the sizes of several sets of strings which

are growing during intervals of eternity. It seems that the intricate and beautiful arguments used in

this thesis, almost always boil down to the following two simple observations:

Introduction he

1) Infinite is greater than finite.

2)Exponential is eventually greater than polynomial.

These two arguments will appear again and again in the following sections, and their importance

will become clearer and clearer. When kept firmly in mind during proofreading even the most

intricate method will become understandable.

In this first chapter we will introduce the reader to the part of computational complexity necessary

to understand the results of the following chapters. We will presume no prior knowledge of any

kind except the ability to count. In the next subsection we will introduce a model of computation

which we will embed in the natural numbers. Using this model of computation, we will introduce

the complexity classes P, NP and Co-NP, and the concept of NP-completeness. Finally we will

define the Polynomial Time Hierarchy which is the central object of study in this thesis

Already in the 17th century mechanisms were built to do the more complicated counting actions

faster and more reliable than could by done by hand. At the beginning of this (the 20th) century

electronic devices were introduced to do the job. Machines could do faster, and more complicated

counting than was ever possible before. As problems have a habit to grow with the capacity to

solve them, problems emerged which were so complicated that even the fastest machines took

considerable time to solve them. Inventing faster and faster machines did not (and will not in the

future) really help. However fast a machine may get, a step in a computation must take some time.

Very fast machines will need very little time to do a single step, but a large number of steps will still

sum up to considerable time.

Instead of standing by the machine waiting till it has finished, one can by studying the algorithm or

program, do forecasts on the number of steps (and therefore the amount of time) the machine will

take to finish. Usually the size of the problem is a parameter in this type of metacounting. This

- 2 −

Introduction ht

branch of mathematics, later called analysis of algorithms, can also be generalised away from the

study of specific algorithms. More than sometimes it is possible to do a classification of difficulty

of a problem depending only on its size. This general branch of mathematics, called computational

complexity theory, is the source and main inspiration for the present work.

Many different machines have many different sorts of steps, and one step for one machine may

represent many steps for another. Mathematicians, who were occupied with counting long before

anyone else, are by nature far more familiar with blackboard and chalk than with real life machines.

Instead of standing by the machine and counting the clicks, they were more at ease with an abstract

entity. It was Alan M. Turing [128] who in 1932 designed an abstract model for machinery,

claiming that on this model -if constructed- any computation on a real life machine can be

simulated. In fact any number which can be computed algorithmically in finite time, can be

computed by a machine corresponding to the model. This claim which has become known as the

Church-Turing Thesis has not (yet) met with a counterexample. Theorems in this thesis depend on

(variations of) the Turing machine model, and we will therefore introduce this model to the reader

in order to provide him with a clear and precise basis for the results.

The variety of existing models for computation makes it necessary to make precise on which variant

the present results are built. The difference between various descriptions of Turing Machines and

related models and results on simulation of one model by the other is however all ancient history,

and in fact most of it is (or should be) presently part of any introductory course in Computer

Science. Therefore in this survey we deal with results requiring long and complicated proofs in a

few sentences. The suspicious reader is encouraged to read the standard reference [53] in which all

details can be found.

Introduction he

The Turing machine model

Initially the Turing Machine was not at all intended to model real machines. The model of a

computing machine described by Turing was inspired by the picture of a man doing calculations

with a pencil and a piece of paper. Inspired by the observation that human memory capacity is

finite, Turing modelled the man as a finite control, which can be in any of a finite number of states.

The piece of paper was modelled by a (two way infinite) tape divided into cells as a "childs

arithmetic book"([128] p135). Communication between man and paper (reading and writing) is

modelled by a tape head which scans the tape cell by cell moving left, right or staying stationary.

The man has a fixed plan or algorithm which is pictured by a state transition diagram or Turing

Machine program consisting of fixed number of instructions stating:

"If in state q reading symbol s goto state q' write symbol s' and move left/right/don't."

Initially the Turing Machine is assumed to be in a special Initial State. The machine halts if and

when the combination of the state it is in and the symbol currently read is not compatible with any

instruction in the program.

Since Turing studied computable numbers, i.e. numbers which can be produced algorithmically in

finite time, the demand of a two way infinite tape is not an unreasonable (though an unnecessary)

demand. In finite time the head can only visit finitely many cells. The man modelled by the machine

on the other hand can go out and buy more paper if such an action is necessary. In the model there

are only finitely many different symbols which can be put on the tape (or read from it). This set of

symbols is usually called (tape) alphabet. Many different ways to encode sets in binary numbers

show that this is also a reasonable constraint. Besides, the man modelled by the machine could

never have mastered an infinite number of symbols to be used in his computation. In both cases

infinity of resources is not a necessary condition, but to be a general model resources are required

to be unlimited.

Introduction hu

Initially only a finite portion of the tape is filled with symbols from the alphabet. A special symbol

called blank - which is denoted by D- is assumed to be part of any alphabet and is assumed to be in

any cell which is not yet visited by the tape head. The portion of the tape initially written is called

input. The machine can be pictured as follows:

Tape

[é [rlela [x [Sl w[n |eiafeln IxI«is lev IOF |

Tape Program

Head

Fig 1. Turing Machine Model

Basically there are two different ways of using a Turing Machine. Originally it was thought of as a

model for the computation of functions. In this case the input is viewed as an integer number

argument to the function. If and when the machine halts, an integer number being value of the

function value for this argument will have been written on the tape. In this thesis we will only

consider the alternative use of the model: the language acceptor model. Here the input is viewed as

a string of alphabet symbols and the Turing machine program determines membership of this string

to a set represented by its program. There are different ways of communicating a yes or no answer

to the outside world. As in the case of the computation of functions the Turing Machine can before

halting write an some (sequence of) alphabet symbol(s) on the tape, where a special (sequence of)

symbol(s) means "yes", and all other (sequences of) symbol(s) mean "no". As there are only two

types of answers required, we can also determine acceptance or rejection by halting. If the machine

halts, then the answer is "yes", otherwise the answer is no. This means the introduction of

unbounded computations, but this is generally not viewed as an obstruction. The two sketched

− 5 -

Introduction sa

models are equivalent to a model with "accepting states". if the machine can halt at all, there will be

certain state/symbol combinations for which there is no successor state. By introduction of new

state qr and inserting the instruction "goto state qf in the program for all state/symbol combinations

which have no successor, we enforce that if the machine halts, then it will be in state qf. Of course

there will be no instruction in the program for the combination of qf and any tape symbol. All three

models are equivalent in the sense of computational power, but we have to choose. In the sequel

we will assume this last model of acceptation. In case of a yes answer we Say that the Turing

Machine accepts its input, otherwise it rejects its input. The set of all strings that are accepted by a

Turing Machine is usually called its language.

In general we will let the tape alphabet consist of 0,1 and blank, and sometimes the special

separator symbol #. Since any finite alphabet can be encoded as strings of symbols of this

alphabet, this is no serious objection. Numerous variations of the model sketched here exist, which

can all be shown to be equivalent to this model from a computational point of view in a very strong

sense. Therefore we will abstain from describing them.

A Turing Machine program is conceived as a set of five tuples (q,s,q',s',D), where q is the present

state of the machine, s is the symbol presently scanned by the tape head, q' is the next state of the

machine, s' is the symbol written on the tape, and D is a direction which is one of Left, Right and

Z. Since both the alphabet and the set of states are finite, we can order them and encode tape

symbols and states by integer numbers. Hence -as there are only three different directions for the

tape head- a Turing machine program can be written as a string like:

#1, #17 #IZHigtig#ig#...#l, , where each ij is an integer from a finite set written in binary.

Refining the encoding by writing 00 for 0, 01 for 1 and 11 for #, we can write an entire Turing

machine program as a single string consisting of O's and 1's. Fixing a (meaningless) 1 to the left

hand side of this string gives an encoding where every possible Turing Machine program can be

represented by a single integer written in binary. To determine the special status of the initial and

- 6 -

Introduction sa

accepting state among the encoded states many conventions are possible. For instance we can agree

to encode the initial state by the smallest integer in the sequence, and the accepting state by the

largest integer in the sequence. On the other hand any integer number can be viewed as a Turing

Machine program, though many of them will not fit the above encoding, and hence cannot be

interpreted. However it is a mechanical effort to show that a Turing Machine program can be

written to check if an integer encodes a series of five-tuples in this way. By defining that all

integers which do not encode a Turing Machine program in this way represent an acceptor of the

empty set, we get around this problem.

A Universal Machine.

Having convinced ourselves that the correct encoding of a Turing Machine program can be checked

mechanically, it is not a big step to introduce a ‘programmable’ Turing Machine. Instead of just

receiving input, this machine finds pairs "programs#input' on its tape in the initial configuration.

First it checks whether or not the (binary encoded) "program" part is the correct encoding of a

Turing Machine program. If not, it erases the tape and gives the answer no (simulating an acceptor

for the empty set). If so it simulates a computation using the program. In order to simplify this

simulation, in some models the Universal Machine is equipped with one or more extra tapes for

administrative purposes. In each step, when having decided upon the next state the machine must

search for an instruction corresponding to the combination of this state and the symbol presently

under the (simulated) tape head. As the number of states and the number of tape symbols are by

definition also limited for this universal model, the simulated states cannot be encoded in the states

of this machine, and therefore have to be stored on tape. Though the use of "worktapes" is

conceptually easier, the same simulation can also be performed by a single tape universal machine

by allowing for more than one track on the tape. On a two track tape the left hand side of a two way

infinite tape can be simulated by using the upper track, whilst the lower track is used for the

- 7 -

Introduction het

simulation of the right hand side. The use of four tracks allows for marking the place of the tape

head in the simulated instruction whilst the real tape head is doing administration or searching for a

next instruction in the program. The administrative information itself (remembering present state

and symbol) may grow rather large, but never larger than the size of the (encoding of the) program.

Therefore before the simulation, the input can be shifted to the right far enough to create space for

the administrative data. The multitrack tape in its turn can be simulated on a single track model if we

allow for extension of the alphabet; it is also possible by increasing the size of the program to

represent a larger alphabet by blocks of symbols from a binary alphabet.

Left hand side

Z

>
LO

LK

LK

h
d

fe)

O O a
 O fo)

O oO Ka
m!

D
n

—
_

o —
_

oO

—
_

Right hand side

Program Part Administration Part Input /Work part

Fig 2. A simulation tape

Up to this point in the discussion we have kept one important aspect under the table. Searching for

a next instruction when simulating a Turing Machine program, the Universal Turing Machine may

get into trouble. We have already agreed on the definition that a Turing Machine halts if there is no

next instruction applicable, so there is no problem simulating this behaviour. If the Universal

Turing Machine finds no next instruction to simulate, it halts also. However in our definition of a

Turing Machine program there is no obstruction for having more than one possible next instruction

for given state and tape symbol. Since we did not bother to define the meaning of such a situation

for the original model, we can hardly expect to agree on how to simulate the computation in this

case.

Therefore we define the behaviour of a Turing Machine with a program in which there are

state/symbol combinations with more than one possible successor state. When arriving in such a

Introduction he

state the machine may choose any of the possible instructions. One can easily see that this may lead

to a conflicting situation. One possible sequence of choices may lead to rejection of the input whilst

another sequence of choices may lead to acceptation. Here we define that the Turing Machine will

accept if there is any possible sequence of choices leading to a acceptation of the input; otherwise

the machine rejects (note that this definition also incorporates the situation where the Turing

Machine never halts on an input). We will name the class of programs where in any situation there

is at most one possible instruction (the class of) deterministic programs. As a consequence the class

of programs which do not have this restriction is called (the class of) non-deterministic programs.

It is convenient to view (as we did) a deterministic program just as a special case of a

nondeterministic program and therefore the class of deterministic programs as included in the class

of nondeterministic programs

Based on this interpretation we can come to an agreement on the simulation of the computation by

the Universal Turing Machine.

The encoding of a Turing Machine program as described above can also be interpreted as a log on

the actions of a Turing Machine during its computation on a certain input. (i.e. Turing machine

program and computation may have the same encoding.) The only difference is that a certain five

tuple may appear more than once in the encoding. Therefore an integer number can be interpreted as

the encoding of the history of a computation as easily (and with the same encoding) as it can be

interpreted as a Turing Machine program. By the Church-Turing Thesis a Turing Machine can

count, and as we have left half of the infinite tape unused in the model, the Universal Turing

Machine can subsequently generate on this part of the tape all natural numbers. This leads to a

model for the simulation of the behaviour of any Turing Machine program. Starting with 0 on the

left hand side of the tape the Universal Turing Machine checks by simulation if the number

generated is the correct encoding of an accepting computation using the input program, and the

encoded input to this program. If not, it generates the next natural number. Since any computation

- 9 −

Introduction be

can be encoded in a natural number, the Universal Turing Machine must find an encoding of an

accepting computation if such an encoding exists. If not, it will run forever. Though this is perhaps

not the most efficient simulation possible, it is correct. Perhaps the only bug in the model is that

some program-input combinations may take forever to establish that the input will not be accepted,

but then we also don't have any guarantee that the Turing Machine will halt on a given input in the

original case. As this thesis is on complexity theory rather than on recursion theory, we are only

interested in finite computations. We will only consider languages L ¢ {0,1 }" which are

recognised by some Turing Machine with the additional constraint that for any string x in {0,1}"

the Turing machine halts on input x after finitely many steps. We say that for any string x in {0,1}

the question “xe L?" is decidable. Such languages are called Recursive Sets. Moreover we will

consider special Recursive Sets for which the number of steps is bounded by a special type of

function of the length of the input. These Subrecursive Sets are considered in the next section.

Polynomially Bounded Computations

Instead of defining a set by “acceptation by a given Turing Machine program", we can also define a

set of strings by “acceptation by a given Turing Machine program within a bounded number of

steps”. Obviously if this number of steps is fixed, then the set of strings accepted by the Turing

Machine is finite or otherwise trivial. (In a fixed number of steps only a fixed part of the input tape

can be scanned, in which only a fixed number of different strings can be written. For the rest it is

an "accept all" or "reject all" without inspection situation.) The case where the bound on the number

of steps is some kind of function of the input is therefore more interesting one. For various reasons

we let the bound be a function of the size of the input (i.e. the number of nonblank tape cells at the

start of the computation.) Moreover in this thesis we will consider only the case where the bound is

a polynomial in the size of the input. There are various reasons for considering polynomial time

bounded Turing Machines. First all known different models of computation (2-tapes, k-tapes,

2-dimensional tapes and even entirely different models like RAMS, RASPS, etc) can -with the

- 10 -

Introduction he

possible exception of models for unbounded parallelism which form a "second machine

class"[{129]- simulate each other with a polynomially bounded overhead in the number of steps.

Therefore as "a polynomial of a polynomial is still a polynomial" the (two) classes of languages

defined by polynomially bounded computations are invariant under the used model for

computation. Second any finite tape alphabet can be encoded by {0,1,0} at the price of multiplying

the input length by a constant factor. As polynomial time bounds remain polynomial if the argument

is multiplied by a constant factor, we can restrict ourselves to the binary tape alphabet.

Finally the class of polynomially bounded nondeterministic programs forms a characterisation for

many interesting problems in practice, and the characterisation of this class as a class of

deterministic programs is a long standing and important open problem in computational complexity

theory which is also of considerable importance for algorithms used in practice. Richard Karp

recently devoted a large part of his Turing Award Lecture [66] to this subject, and we gladly direct

the readers attention to this outstanding and most comprehensible paper.

A Clocked Polynomial Time Bounded Turing Machine first counts the number of nonblank input

cells, then computes a (usually the) polynomial of this number, before starting the computation.

After each step the number computed is diminished by 1. If this number reaches O before the

machine has halted and accepted its input, it will halt and reject its input. Usually the resulting

number is written on an extra work/clock tape but we have already seen that this can be simulated

on a single tape. In fact the clocked machine can be simulated very efficiently on a single tape. One

can easily see in a single tape-multi track model that simulation can be done in a logarithmic time

bounded overhead if the encoding of the clock is kept near the tape head. (If a sufficient part of the

clock is kept near the tape head this can even be reduced to loglog time overhead.) Fiirer in [41]

designed a redundant representation of the clock which makes it even possible to maintain a clock

in real time (i.e. no overhead at all.)

Introduction ha

Simulation of clocked machines

The usual form of a polynomial is c,X"+c,.pxn! +...+C,X+Cg. Therefore we can fix an

encoding for a polynomial by simply mentioning the coefficients separated by #. Of course the

encoding C,,#C,,_1#...#Cg can be converted to a single integer by using the same encoding as in

the case of programs and computations, and then a pair of "program#polynomial" can again be

encoded by a single integer. Hence any integer can be interpreted by a Universal Turing Machine as

a pair of "program#polynomial". Since a polynomial is a computable function, and the Universal

Machine can count the size of the input, it can by using (a second track of) the left hand side of its

tape for counting the number of simulated steps, also simulate a Clocked Turing Machine. In the

case of clocked machines the Universal Machine can determine that the simulated machine rejects its

input. It only needs to generate a finite number of computation encodings. Encodings which are

longer (i.e. contain more steps) than the polynomial in the size of the input need not be generated.

The integers (inputs for the Universal Machine) which do not represent the correct encoding of a

pair "program#polynomial" are treated in the same manner as before. These incorrect programs are

defined to represent the acceptor of the empty set. The bound on the number of steps for this

acceptor of the empty set is defined to be one.

Program Gener

We have seen in the previous sections that any natural number can be interpreted as a pair

program#polynomial, and conversely to any program a natural number can be assigned. For the

purpose of our diagonalisation algorithms in the next chapter however, we wish to have a relation

of a slightly different kind between natural numbers and programs. We wish to have separate

. 12 -

Introduction de

enumerations for deterministic and non-deterministic programs. (Although the former class is

contained in the latter.) In this section we will show how such a relation might be obtained.

We have already observed that checking whether or not an integer number represents the correct

encoding of a pair "program#polynomial" is a doable job for a Universal Turing machine.

Therefore we can use this fact as a source for Turing Machine programs. We define an Enumerator

for the class of nondeterministic clocked polynomially time bounded Turing Machine programs to

be a Universal Turing machine which on input 1 starts with writing consecutive natural numbers on

the left hand side of its tape starting with zero. Each time the natural number represents the correct

encoding (and here we mean correct in the strong sense of an actual listing of five tuples followed

by # followed by the encoding of a polynomial in some fixed well-defined encoding) of a

"program#polynomial" pair, the number 1 is diminished by 1. When i has reached zero, the

machine halts, and the tape is cleaned up after which the output represents the i'th pair in this

enumeration. This pair, which is usually denoted by @; for the program part and ®; for the

polynomial part can be used for simulation of computation of the machine on certain inputs by

another Universal Turing Machine. Of course the program of the Universal machine can also be

reorganised to first generate the required "program#polynomial" pair and then simulate the

computation. Note that a single program when combined with different polynomial time bounds

can in principle encode many different languages. Since Turing Machines cannot "take longer to

reject an input" this class of languages is ordered by "inclusion modulo finite difference”. If

polynomial py is greater than polynomial pz then the combination of program M with polynomial

pj will eventually recognise all strings (and maybe more) which are recognised by the combination

Mep. However constants in py may cause pz to be the greater one on an initial segment of the

natural numbers.

The number i which is input to the enumerator is usually called the index of the machine, this set of

indices introduce an ordering on the clocked nondeterministic polynomial time bounded Turing

− 13 -

Introduction ht.

Machines which we will call priority. In many constructs we make use of this ordering. As the

enumerator discards invalid codings, an infinite number of acceptors for the empty set is ruled out

in this model. Still the padding lemma in combination with the existence of a correct program

which rejects everything, ensures that an infinite number of programs for an acceptor of the empty

set is generated by the enumerator:

A program that rejects any input either by state or by exceeding its computation time is clearly an

acceptor for the empty set. Such a program can be extended with any length of correctly encoded

instructions without changing its behaviour. We will make use of this observation in many proofs

to follow.

As we have already observed, the property of being nondeterministic is a mechanically checkable

property of programs. Hence the program generator may be modified in such a way that it discards

generated non-deterministic programs. (Note the difference. Here we mean by non-deterministic

programs which are not deterministic.) The modified generator then becomes an enumerator for the

clocked deterministic polynomial time bounded Turing Machines. We now have two enumerators:

one for the general class of Turing Machine programs together with corresponding bounding

polynomials, and one for the class of Deterministic Turing Machine programs together with

corresponding bounding polynomials. As we have seen that natural numbers may encode any

program#polynomial pair, any legal pair will actually appear for some input i in the corresponding

enumeration.

To prevent confusion we will agree on the following notation:

1) When the enumerator for deterministic programs is used, we will use the notation We for the e'th

generated program, and YP, for the corresponding time bound.

2) When the general enumerator is used, we will use the notation @, for the e'th generated

program, and ®, for the corresponding time bound.

− 14 -

Introduction beat.

In the sequel we will often use a notation like x € @,. The meaning of such a notation is explained

by the fact that we can use the notation @, not only to identify the Turing Machine, but also to

identify the language formed by all strings x for which there exists an accepting computation of ©,

on input x in length not exceeding the time bound ®,(|x)).

We make one final exclusion. By the choice of "polynomials" above constant functions are also

polynomials. Many proofs to follow however would be complicated by having to deal with

constants appearing infinitely often as the polynomial part of a "program#polynomial" pair. It is

quite easy to see (as we have already observed) that any 'program#polynomial"” pair where the

polynomial is a constant function represents a finite set. A finite set can also be recognised by a

program which enumerates all of its members on the tape and consequently compares the input to

all of these members. It is therefore no loss of generality to assume that the two enumerators

defined above only produce "program#polynomial" pairs where the polynomial part is at least

linear. (i.e. 2 X)

The choice of using two enumerators for different types of machines clears away some trouble we

might have encountered in diagonalisations. In some cases the same program has to be handled

twice by a diagonalisation algorithm. Once because it is a deterministic program, and once because

being a deterministic program it is also a nondeterministic program. The use of two separated

enumerators for the two classes solves this problem because the two enumerators will know the

same program under different names. (i.e. will generate this program#polynomial pair for different

inputs and hence the index corresponding to this pair when generated by the general enumerator

will be different (usually smaller) then the index of this pair when it is generated by the

deterministic enumerator)

Introduction bet

Oracle Machines.

A popular way of classification of problems according to their computational complexity is by

translation of problems of which the complexity is (more or less) known. If problem P1 can be

translated into problem P2 with reasonable efficiency, then we know that P2 is at least as difficult

as Pl. Any program that solves P2 can be transformed into a program for solving P1 with a

negligible overhead in time. Therefore knowing that P1 is difficult (i.e. costly) to solve implies that

P2 is difficult to solve, and on the other hand showing that P2 is easy proves that P1 is easy as

well. This method of classification is known as reduction and stems from Recursion Theory. This

important tool which was first brought into prominence by the work of logician Emil Post, was

used to prove thousands of NP-Completeness results after Richard Karp had shown the existence

of a resource bounded tool in [65]. The entire theory of NP-Completeness in [43] is built on this

method.

A standard way of modelling reductions is by Oracle Turing Machines. The original one tape

machine is extended with a second tape (the so called oracle tape), which is a write-only tape, and a

second head. Three special states called QUERY, YES and NO are introduced. During computation

the machine may write a string on the oracle tape. It may also enter state QUERY. (This process is

of course controlled by the program) The state QUERY has two successor states: If the string

currently written on the Oracle Tape is a member of a fixed language called Oracle Set, then the

successor state of QUERY is YES. If it is not a member of this set, then the successor state is NO.

The states YES and NO may have any possible successor. This has the important consequence that

an acceptor for a language may be converted to an acceptor for its complement in the following

way. Acceptor M copies its input to the oracle tape, and then enters the state QUERY. The state

YES has only itself as successor (i.e. the machine doesn't halt), or equivalently a rejecting state,

- 16 -

Introduction het

and the state NO has q¢ as successor (i.e. the machine halts and accepts).

There also exists a limited version of the Oracle Machine model: All state/symbol combinations

which have no successor in the original case (1.e. where the machine halts) now have successor

state QUERY. The state QUERY has two successors. The state NO has a rejecting successor state,

and the state YES has qf as successor state. Hence the model may only query the oracle once

during computation, and the result of the query is the same as the result of the computation. In

Recursion Theory the general oracle model is used to model so called "Turing-Reduction" whilst

this limited form of reduction is known as "Many-One-Reduction". When limiting oracle sets to

languages recognizable by non-deterministic polynomial time bounded Turing Machines, and oracle

machines to deterministic polynomial time bounded machines, it is presently an open problem

whether the two sketched models of Oracle Machines are equivalent.

A Universal Machine for Oracle Machines.

The simulation of an Oracle Machine can also be done by a Universal Machine. We extend the

model of the Universal Machine with the same Oracle Tape. The program of a single tape Oracle

Machine consists of the (encoding of) a row of 7-tuples. (q,s,q',s',D,s",D') where s" encodes

the symbol to be written on the oracle tape, and D' encodes the direction of the head on the oracle

tape. The Universal Machine performs a step by step simulation of theses instructions. When the

machine simulated enters the state QUERY, the Universal Machine also enters the state QUERY,

and the YES state for the Universal Machine has as its successor a state where a subprogram starts

to simulate the behaviour of a YES answer to the original Query. The situation is similar for the

behaviour of the machine in case of a NO answer.

A simple way of giving special status to the Initial State, and the states QUERY, YES and NO is by

- 17 -

Introduction ba

stipulating that they are the first four states in any encoding of an Oracle Machine Program. It is of

course understood that the oracle set is the same for both the original and the Universal Machine.

The rest of the theory remains unchanged.

In many a paper on computational complexity theory handling relativised results, on can find a

sentence like: "We assume an enumeration of the clocked non-deterministic polynomial time

bounded Oracle Machines".(e.g. [10] [11] [12] [109]) The above 17 pages give one possible

interpretation of such a sentence.

As promised in the second paragraph of this section we will now get back to the origin of the

natural numbers. There appears to be some confusion to the exact words of this claim. Cajori[30]

and Fine[38] both ascribe these magic words to Kronecker. Cajori (p362) claims that Kronecker

said: “Die ganze zahl schuf der liebe Gott, alles Uebrige ist Menschenwerk.", whereas Fine (p183)

claims to "once heard him say: ‘God created numbers and geometry, but man the functions."

Both may be right if Kronecker gave vent to this conviction more than once. Kronecker himself

however[73] (p337) ascribed the idea of divinity of numbers to Jacobi. With the text of the above

sections I hope to have convinced the reader that Kronecker was wrong. God just needed to create

one natural number (and being God, He of course knew which one), after which the natural

numbers created (create and keep on creating) themselves.

2. The classes P, NP and Co-NP.

We have already mentioned that many interesting problems in practice can be solved by

non-deterministic polynomial time bounded Turing machines. From now on we will use the

notation NP for the class of all languages for which there is a non-deterministic polynomial time

bounded acceptor, and the notation P for the class of all languages for which there is a

- 18 -

Introduction su

deterministic polynomial time bounded acceptor. By our definition P ¢ NP. An impressive list of

problems can be encoded as a language recognition problem and falls in the class NP. In 1979 the

first major compilation of problems which have been shown to be "complete" in NP in the

preceding ten years, was published in [43]. D. Johnson continued the history writing on problems

in NP in [60]. In this thesis we will limit ourselves to giving just a few examples, and establishing

the importance of a question which has become known as the P vs. NP problem.

For the Universal Turing Machine simulating an NP-acceptor is equivalent to successively

checking all possible computation paths which have a length bounded by a polynomial in the length

of the input. It can easily be seen that the number of different computation paths 1s limited by an

exponential function in the size of the input. Hence -as the Universal Turing Machine is a

deterministic device- any polynomial time bounded nondeterministic language acceptation algorithm

can easily be transformed to a deterministic exponential time bounded algorithm.

An exponential time bounded algorithm is however not an attractive algorithm to run on a real life

computer. When the size of the problem becomes interesting, the number of steps needed to solve

the problem becomes so large that even the fastest computer will take forever to finish. In many

textbooks on Computational Complexity Theory (see for example the introduction of [43]

“Computers and Intractability") the following picture is used to illustrate the intuition on the

difference between polynomial and exponential time bounded algorithms. For various sizes of the

input the number of steps needed by a time bounded automaton is pictured for various polynomial

and exponential time-bounding functions. We copy this figure below:

Introduction

Time Sizer
Complexity

function 10 20 30 40 50 60

.00001 .00002 .00003 .00004 .00005 .00006

n second second second second second second

2 0001 0004 ‚0009 ‚0016 0025 0036

n second second second second second second

5 ‚0o1 ‚008 027 064 125 216
n second second second second second second

5 1 3.2 24.3 1.7 5.2 13.0
n second seconds seconds minutes minutes minutes

n 001 1.0 17.9 12.7 35.7 366
2 second second minutes days years centuries

zn 059 58 6.5 3855 2x108 =| 1.3x10 15
second minutes | years centuries | centuries | centuries

Fig 3: Polynomial vs Exponential time. Computation times on a hypothetical machine executing

10° instructions per second for various input sizes, and time bounds on the computation.

This illustration should discourage the use of algorithms which may take exponential time for real

life computations.

Most known problems in NP have obvious recognition algorithms which are all more or less a

variation of the "exhaustive search method": Formulate all possible solutions to a problem and

throw away solutions which do not meet boundary conditions. Frequently these problems have

exponentially many possible solutions. Checking the validity of a possible solution is (as an

accepting computation must by nature be polynomial time bounded) a polynomial time bounded

process. Hence the existence of a deterministic polynomial time bounded algorithm cannot be ruled

out a priori.

Since nondeterministic machines are not presumed to exist in real life, we have to do with

deterministic machines and therefore the question of the existence of a deterministic polynomial

time bounded algorithm is crucial to the tractability of a problem. For many problems in NP, the

20

Introduction het.

exhaustive search method has been refined by trying to predict whether computations are heading to

success or not, in this way pruning huge chunks from the exponentially large tree of possible

computations. "Branch and Bound methods” are a typical example of such refinements. Up till now

however none of these algorithms can be guaranteed to run in polynomial time in all possible cases.

Hence modifications of exhaustive search are generally not accepted as practical solutions but more

as emergency exits.

Knapsack.

Perhaps the best known problem having the above sketched behaviour is the so called "knapsack

problem”. In its original form a number of objects are presented, all of which have a certain weight

and a certain value. Any of the objects can be put into a knapsack which is to be carried by human

strength. The human in the story has a known carrying capacity which is exceeded by the total sum

of the weights of the objects, and hence some of the objects have to be left home. The question is:

"Which of the objects should be put into the knapsack, and which should be left home in order to

maximise the total value of the objects in the of the knapsack without exceeding the capacity of the

carrier.”

First we observe that the exhaustive search method gives a solution to the problem. If there are n

objects then the knapsack might hold any of 2" different combinations of the objects when we

disregard the capacity. If we investigate all 2" different possible solutions, discarding any solution

which exceeds the capacity and select the maximum of the remaining solutions, we have solved the

problem.

It is not quite obvious that this problem is in NP, since we have characterised problems in NP as

having a solutions verifiable in polynomial time. Given a combination of objects however, it is

unclear whether it is easily decidable if this is the optimal combination, without comparing all

- 21 -

Introduction sa

possible other combinations which do not exceed the capacity. Therefore the knapsack problem is

usually formulated differently:

KNAPSACK:

INSTANCE : n objects xj...x,, all of which have a known (integer) weight w...Wy.

and a(n integer) bound b. -

QUESTION: Is it possible to find a subset S of {1,...,n} such that Lies w; = b.

Note that we have also identified weight and value. /

A given solution (i.e. a given combination) is easily checked in polynomial time by summing up the

corresponding weights. Given an algorithm for the decision problem we can solve the optimisation

problem sketched above, for if we know the capacity b, we can successively formulate the decision

problem for b, b-1, b-2, b-3, etc until the answer to the decision problem is yes. Then we will have

found the solution. If the decision problem can be solved in time t, then the optimisation problem

can be solved in time bxt. Strange as it may seem however bxt is a time overhead which may not

be polynomially bounded. If the encoding of the capacity b 1s a substantial part of the input then the

input may have a length of order log b (which is the length of b in binary notation), and hence b

steps may be an exponential time overhead. Fortunately there exists an algorithm to speed up

things. Instead of trying b-1, b-2 etc we try b/2, and if the answer is no try b/4, and if the answer is

yes try (3xb)/4 etc. This bisection algorithm is known to run in log b steps, so the total time

becomes log b x t, which is certainly a polynomial overhead. So the optimisation problem and the

decision problem are equivalent in the sense that either both belong to P or none of the two belongs

to P.

Another point to be made here is that the decision problem corresponds to actually generating a

solution. In the case of KNAPSACK we may not be interested in if it is possible to select objects for

which the weights sum up to the given bound, but rather which objects to take. However a P-time

− 22 - .

Introduction bt.

decision algorithm for KNAPSACK would easily give a solution in hands. To see this suppose the

objects are xj,...,X,. For i=1,...,n perform the following actions:

1) throw away x; ;

2)run the decision algorithm with the same bound b;

3)If the result is YES then do nothing, else add x; again to the set of objects; x; is one of the objects

to take. ∙

After n runs, we are left with a set of objects of which the weights sum up to b. (Unless such a set

does not exist, but then we will find this out in the first run.)

Completeness.

The ‘guess and verify’ nature of problems in NP is perhaps more fundamental then might appear at

first sight. It is a basic property of the acceptor of these languages, and of course finding a

polynomial time deterministic simulator for the non-deterministic acceptor means (indirectly)

finding a polynomial time deterministic algorithm for all problems in NP. Because of the strong

structural similarity of problems in NP however, this ‘handle’ to identify P and NP is not limited

to finding such a simulator. There exists an extensive list of problems in NP each of which has the

property that finding a deterministic polynomial time bounded algorithm for one of them indirectly

means finding a deterministic polynomial time bounded algorithm for any problem in NP. These

"maximal" problems in NP are called NP-complete problems. Finding (and proving) a problem to

be NP-complete is based on the Oracle Turing Machine Model. If, given problem P as an oracle

set, every problem in NP is recognizable by a deterministic polynomial time bounded oracle

machine then of course P is at least as difficult as any problem in NP, or NP-hard. If moreover P

is in NP, then P is NP-complete by definition. Note at this point that the nature of oracle machines

implies that NP-hardness is a transitive property. If problem P1 is NP-hard, and problem P1 can

be recognised by a polynomial time bounded deterministic oracle machine with oracle P2, then P2

is NP-hard, since any polynomial time bounded oracle machine with oracle P1 can be converted to

− 23 -

Introduction de

a polynomial time bounded oracle machine with oracle P2 recognising the same language.

In 1971 Steve Cook [34] was the first to show that the problem of determining the existence of an

assignment to the boolean variables of a propositional formula satisfying this formula (i.e. making

the value of the formula true) is NP-complete, and it is at that point in history that we place the

"date of birth" of the notorious P vs NP problem. If it can be shown that there is one problem in

NP for which there cannot exist a deterministic polynomial time bounded algorithm, then of course

P# NP. On the other hand: finding a deterministic polynomial time bounded algorithm for an

NP-complete problem implies P=NP. As Cooks proof is rather complicated, we choose to show

the completeness of another problem first and come back to Cooks problem (known as

SATISFIABILITY) at a later point in this section.

Bounded Tiling.

A problem which by nature is very close to finding a deterministic simulator for the

nondeterministic machine, and should therefore be the basis of NP-completeness theory is

BOUNDED TILING. It first appeared in the literature in [79]. Lewis & Papadimitriou[80] and later

Savelsbergh and van Emde Boas [102] showed how the entire theory of NP-completeness could be

set up from BOUNDED TILING instead of from SATISFIABILITY. This strategy has two advantages.

First the BOUNDED TILING problem is easy understandable (contrary to satisfiability it requires no

familiarity with logic), and second the reductions of BOUNDED TILING to other NP-Complete

problems seem easier. The problem is presented thus:

BOUNDED TILING

INSTANCE:A finite set of tiles; an NxN square with a colouring on the border.

QUESTION: Does there exist a tiling of the entire square, extending the colouring along the border.

- 24 -

Introduction ht

Finding a deterministic polynomial time bounded algorithm which solves any instance of BOUNDED

TILING, (i.e. says "yes" to all instances for which such a tiling exists and "no" to all instances for

which such tiling does not exist) leads to the construction of a polynomial time bounded

deterministic simulator for the non-deterministic polynomial time bounded Turing Machine. Given

a (nondeterministic) Turing Machine program, a polynomial time bound, and an input, we

construct in polynomially bounded time, an instance of BOUNDED TILING which is guaranteed to

have a tiling if and only if the given Turing Machine program accepts its input within the time

bound.

For technical reasons we first do a little "preprocessing" on the input Turing Machine program to

guarantee that the computation to be simulated by the tiling of the square has the following two

properties:

1)The tape head never moves left of the cells originally occupied by the input.

2)There exists no state q such that the machine can move both left and right while going into this

State.

Assume that the resulting program has states q;...q,, and time bound ®.

Next we create an instance of BOUNDED TILING:

We introduce the following colours:

1) To encode the n different states: cj Cn

2) To encode the 3xn different state/symbol combinations

CQ 1°--->COn

Ci 1°-:>CIn

CD Joe Sn

3)To encode the tape symbols 0,1, and 0

©3063 1°32

Introduction het

4)To encode two "clean up" states combined with symbols

CECOF:C1F:C2F

CE;COR"C1F“C2F'

The first tile we introduce is used to transport symbols which are not presently under the tape head

along horizontal strips. For s € {0,1,2} we have the tile:

C35

To simulate the arrival of the reading head in a tape cell in state q reading symbol s, we have for

qe {0,...,n} and for se {0,1,2}:

Ss Ss

Cc Cc q q

Cog Coq

To simulate the instructions (q,s,q',s',L), (q,8,q',s',R), and (q,s,q',s',O) we have for all of these

instructions which appear in the program respectively:

Cc Cc
“sq sq sq

Cq' eq

CC,
s Es: “s'q

For any symbol/state combination s/q, where q= qf (i.e. at which point the machine accepts the

input), we have the tile:

Introduction het

which forces the simulation into the first of the two "final states" and simulates a move right. For

this first final state we have a tile to accept the head:

and one to transport the head in state F in the next move if the symbol under the head is 0 or 1, and

to reverse the direction and get into the second final state if the nght end of the tape is reached:

Cc

€30 C34

In the second final state F’, the entire tape is erased, upto the leftmost column, and the rest of the

tape is filled with blank tiles:

“35

CE: Cf: Ce:

With this set of tiles we formulate the problem. If x=x),...,x, is an encoding of the input, we

construct a square of size (P(|x|) + 2) x 3@(|x|). Only the top border of the square is coloured.

Cells 3 to |x| +1 have colour c39 if the corresponding bit of x is 0, and colour c3, if it is 1. Cell 2

has colour cq, if xj =0, and cy, if xj=l (Initial state should be encoded here). All other border cells

are white. If there exists an accepting computation of ®(|x|) steps or less, then a tiling can be found

in which after (|x|) all colours can be erased. As the Turing Machine can visit no more than (|x!)

cells in @(|x|) steps this takes up no more than D(|xl)+1 extra rows. The square can then be filled

with blank tiles.

Introduction de

On the other hand any tiling of the square encodes an accepting computation within 3@(|x|) steps.

Note: the size of the square is no longer of the form NxN, but this can easily be patched by adding

more columns which can only be filled by entirely blank tiles.

Having established a "master problem" for the NP-completeness theory, it is no big effort to show

that other problems are NP-complete. First we treat the old master problem SATISFIABILITY, which

is presented thus:

SATISFIABILITY

INSTANCE: A collection C={c},...,C,,} of clauses on a finite set U of variables.

QUESTION: Is there a truth assignment for U that satisfies all the clauses in C.

Here:

Variables are elements drawn from the set {x ,...x,}. The variables x1,...,x, can have value true

or false. A literal is either variable x; or the negation of a variable X;.For all i: If the value of x; is

true, then the value of X; is false, and vice versa. A truth value assignment to a set of variables is

a function which gives each variable the value true or false. A clause is either a literal, or a

sequence "clause connective clause", where "connective" stands for A or v. By definition if cj and

cj are clauses then cjAcg is true if and only if both cj and cj are true and cj vc is true if and

only if at least one of cj, cj is true. A clause is satisfied by a truth value assignment if this

assignment makes the clause true.

The presented proof can also be found in Lewis and Papadimitriou. We introduce the variables

kijke! <i,j<N, and 1<k<|T|, representing the possibility of locating the tile T, on the square (ij).

We need four types of clauses:

Introduction de

(1) To guarantee that at least one tile will be placed upon each square of the plane:

A; iV zij)
(2) To guarantee that exactly one tile will be placed upon each square of the plane:

N ij A ver ijk ¥ Zij)
(3) To guarantee that the adjacency conditions between tiles are satisfied

A ij A kijk v Zijm)

For all pairs (Ty, Ty) which cannot occur as a horizontally adjacent pair.

Aij A rijk v Xa)
For all pairs (Tj, Ty) which cannot occur as a vertically adjacent pair

(4) To guarantee that the boundary conditions are satisfied

X1 jk for all tiles T, which cannot be placed upon the square (1,));

XNik for all tiles Tj, which cannot be placed upon the square (N.j);

Xjjk for all tiles Tj, which cannot be placed upon the square (1,1);

Xing for all tiles T, which cannot be placed upon the square (i,N);

For any instance of BOUNDED TILING, we now have created a Boolean Formula for which a truth

value assignment can be found satisfying the formula if and only if a tiling of the square satisfying

the boundary conditions exists. Hence a recogniser for SATISFIABILITY can be transformed into a

recogniser for BOUNDED TILING, which means that SATISFIABILITY is also NP-hard.(It is obvious

that SATISFIABILITY is in NP, and hence SATISFIABILITY is NP-Complete.)

Using this knowledge we can prove that the problem KNAPSACK with which we started this

subsection is also NP-complete. Given any boolean formula we construct an instance of

KNAPSACK which has a solution if and only if the input formula is satisfiable:

Let C.C be the clauses in the Boolean Formula

Let k be the maximal number of literals in any clause.

- 29 -

Introduction he.

Let d > 4k2.

Let X1,...,Xp,%1--+2%p, be the literals in the Boolean Formula.

Let &; ; =] if x; € C; else Ei j = 0

Let Oj j=l if Xi EC else 65 j= 0

Construct objects 01,...,0),0],.--5p

With resp weights w1,...,Wp,W1>--.¥p

Where: wi =D, em &i,j * dj 4qm+i

Wi= ». 5; | .am+i i= Siem xd) +d
oJ

and "fill" objects {fj | 1<j<m,0 <p <k} with weights

wf) = (k+p)xdJ

Finally let b = (2k+d™) x (d™-1) / (d-1)

Now since d > 42, the coefficients 1,...,2k cannot sum up to d so this choice forces that for

l <i<m one of w; or W; be part of the sum of weights, which means that one of {0;,0;) has to

be chosen, and since the coefficient of d™+1 is 1 in b, they cannot both be chosen. This choice

represents a truth value assignment to the variables x1,...,x,,. If for some j<m both Ei. and Oi; are

0 for all i in the chosen set of objects, then since any of the fill objects has weight greater than kad)

and less than 2kxdì, the coefficient of cannot sum up to 2k in the sum of weights, which is

required to meet b. Hence the truth value assignment has to satisfy all the clauses Cj. If on the other

hand at least one of {€;j, dij} is equal to 1, then the fill objects can be used to make up the

difference.

The NP-hardness proof for KNAPSACK given here remains unreferenced for lack of enthusiasm to

search for the proof in the literature. Usually KNAPSACK is proven to be NP-complete via two or

more other problems using the transitivity of this property. Moreover, for all of these "natural"

NP-complete problems, Hartmanis and Mahaney [44] have constructed a general method with

which the existence of an invertible reduction can be demonstrated (without actually generating the

reduction). Because NP-completeness is not the main subject of this thesis we wish to limit the

- 30 -

Introduction het

number of examples of NP-complete problems and therefore we have chosen the direct method of

constructing a reduction here.

Co-NP and Co-NP-completeness.

Another interesting class of languages is formed by the complements of NP languages. This class

is called Co-NP. Of course if P= NP, then Co-NP= NP, since P is closed under

complementation. But let us assume for the sake of argument that P# NP. What then is the

complement of e.g. a language like SATISFIABILITY? A Boolean formula F is not a satisfiable

formula if and only if all possible truth value assignments to its variables make F false. That is to

say the complement —F is true under all possible truth value assignments. Which means that -F is

a tautology. So TAUTOLOGIES which 1s (almost) the complement of SATISFIABILITY is a language

in Co-NP. Moreover TAUTOLOGIES is Co-NP-complete.

Since SATISFIABILITY is NP-complete, there exists for any problem P in NP a deterministic

polynomial time bounded oracle machine M with SATISFIABILITY as its oracle set. If the oracle is

replaced by TAUTOLOGIES, this machine can be transformed into a deterministic polynomial time

bounded recogniser for the complement of P. For given an instance x of P, the machine M

transforms this instance into a satisfiable formula F iff xe P, and into a non-satisfiable formula if

x¢ P. Converting a boolean formula to its negation is a polynomial time bounded operation, hence

M can be extended to produce -F which is a tautology iff x¢ P. Note that this conversion works

for both the limited and the general type of oracle machines.

A Polynomial Time Hierarchy.

If we consider only the general type of oracle machines, then we could limit ourselves to

considering only SATISFIABILITY as an oracle to recognise both all NP and all Co-NP

- 31 -

Introduction ha.

languages(and more). With the general type machine 'no' answers can easily be converted to 'yes'

answers and vice versa. Therefore the class of languages NP U Co-NP is included in the class of

languages characterised by P(SAT). We define formally:

For a set A: P(A) = { w;(A) |i € ©}; NP(A) ={ 9;(A) |i EO};

For a class of sets C: P(C) = U € G P(A) ; NP(C) = Uacc NP(A)

Since SATISFIABILITY is NP-complete one can easily see that since for any language L in NP there

is an index i such that L = y;(SAT) we have that P(L) ={ wil W;(SAT)) | je @ } and hence that

P(NP) = Oaenp({ WA) li € 0 })= aeNP(LWi(W(SAD)) Ije @ & A= W(SAT) }) =

P(SAT) since the composition of two deterministic oracle machines is a deterministic oracle

machine, and the composition of two polynomials is a polynomial.

Instead of considering only deterministic polynomial time bounded oracle machines, we can also

consider non-deterministic polynomial time bounded oracle machines, and obtain the P vs NP

problem on a next level. That is "is P(NP) equal to NP(NP) or not?", and of course NP(NP)

can itself be used as a class of oracles, and yet another level can be obtained considering the classes

PCNP(NP)) and NP(NP(NP)).

Thus we obtain a hierarchy of deterministic and non-deterministic complexity classes, at each level

of which the P vs NP problem plays a crucial role. It is of course clear that if at one level we find

that P(NP...(NP)...) = NP(NP...(NP)...) then the hierarchy does not exist above that level.

Especially if. P =NP then the hierarchy does not exist at all.

We can also consider bringing the class Co-NP into this game by observing Co-NP(NP) and

Co-NP(NP(...(NP)...). Then we obtain the NP vs Co-NP question repeated at infinitely many

levels. At each level proving an inequality means solving the P vs NP problem.

Introduction he.

Characterisation with quantifiers.

The hierarchy introduced above can also be characterised in an equivalent way which seems entirely

different at first sight. The class NP may be thought of as a class of deterministic polynomial time

bounded relations to which one polynomially bounded existential quantifier is applied. Co-NP on

the other hand may be thought of as a class of deterministic polynomial time bounded relations to

which one universal quantifier is applied. In fact virtually all NP problems when formulated with

words sound like "does there exist a ... such that...", and as a consequence all Co-NP problems

are formulated as "Is it the case that for all..."

By using quantifiers for characterisation, we obtain a hierarchy of expressions like:

Q1X1---QnXpR(X1,---X_ py) where the quantifiers J and V alternate. It turns out that for every

language L in NP(NP...(NP)...) there is a deterministic polynomial time bounded computable

relation R such that if n is equal to the number of times NP appears in the expression minus one

then for any y: ye Liff dx1...Q,x,R(Xx1,...,X,,y) (So for every language L in NP there is

deterministic polynomial time computable relation R such that ye L iff dxR(x,y)) Likewise for

every language L' in Co-NP(NP...(NP)...) there exists a deterministic polynomial time bounded

computable relation R' such that for any y: ye L' iff Vxj...Q49x,R'(x1,...,X,,y) Celia Wrathall

first proved this relation in [132].

The classes of languages in the hierarchy are named Xe Il, , and Ay. At first sight this may

seem somewhat peculiar. 2 and II seem to have more to do with sums and products then with

alternation of quantifiers or Oracle Turing Machines. The reason for this terminology is that the

P-Time Hierarchy was introduced as a resource bounded analog of Kleene's [69] Arithmetical

Hierarchy, and that the names of this Arithmetical Hierarchy were inherited.

Instead of from Polynomial Time Bounded computable relations, Kleene's Hierarchy is set up from

- 33 −

Introduction ht

Primitive Recursive Predicates on natural numbers: If x is a natural number and P(x) is a primitive

recursive predicate then Jx.P(x) is equivalent to P(O) or P(1) or P(2) or Using + for or, this

can be denoted by P(O) + P(1) + P(2)... or » P(x). Likewise VxP(x) is equivalent to P(O) and

P(1) and ... , which can be denoted by Ir»), using x for and. Now the class Dy is defined as

the sum of Primitive Recursive Predicates, Il, is defined as the product of primitive recursive

predicates, Dy is defined as the sum of IL, predicates and Il, is defined as the product of

rt predicates. We will adopt the names for this hierarchy and define the Polynomial Time

Hierarchy:

>, = I1,- Aj =P,

Ave = P (Ly),

Die = NP(>, and

Hi-Co- Yn

Thus having set up the theory in the absolute case, we can conclude the introductory part of this

thesis and start to relativise. Because the ordering of the polynomial time hierarchy is based on the

Oracle Machine Model we can easily add an extra oracle A to the definition and thus obtain for any

oracle A the Polynomial Time Hierarchy Relativised to Oracle A as:

©; (A)= IT; A) = A} (A) =P (A),

Aver (A) =P (2x (A)),

Zien (A) = NP(Ly (A)), and

P P
Il, (A) =Co- Done (A)

It is this Relativised Polynomial Time Hierarchy which is the central object of study in this thesis.

- 34 -

FIRST F A RELATIVISED HIERAR

In the present and following chapters we shall present the construction of oracle sets relative to

which complexity classes have certain properties. Traditionally the name for an oracle set is A. We

will however present many different oracle sets with many different properties. To discern between

the different oracle sets many authors (including myself) have turned to the use of the other capitals

of the Roman alphabet B,C, etc. In any particular construction however there is always only one

oracle set under construction therefore the use of a single capital A to identify all oracle sets to

follow in turn cannot lead to confusion. We choose to use the letter A for all oracles constructed in

this and the following chapters with the exception of quantification. When a quantification over all

possible oracles is presented we use the capital X to identify the (unknown) oracle set.

Oracle sets are constructed by infinitely many stages by means of diagonalisation. A single

requirement (like e.g. L(A) ¢ P(A)) to be met by the construction is replaced by an infinite set of

requirements R, (like e.g. Re : Wel A) # L(A)) which are all met or satisfied at some stage s 2e

during the construction, for all e € w. A construction always starts with a basic set which is of

fairly simple structure. This set will invariably be called A. Then at following stages elements are

added to A or deleted from A to achieve a next refinement, and to achieve the desired property for

more and more machines. We formalise this by constructing at stage s+1, a new set A, 1 which

consists of all the elements of A, plus or minus some new elements. It is then understood that the

oracle A is the limit of the sets A, as s approaches infinity. For the satisfaction of requirements

(and to prevent that requirements already satisfied at earlier stages become unsatisfied) it is often

equally important not to add certain strings to the oracle set A, and making a commitment not to do

so in the future, as it is to extend A at some stage. For this purpose either an explicit restraint set is

maintained throughout the construction, or a "bound on the length of strings", where it is

understood that at no stage a string which is in the restraint set, or has a length less than or equal to

the bound is added to A. In the case of an injury priority argument this agreement may be violated

- 35 -

The first level ha

under certain conditions. However we feel that this 1s too complicated to treat generally. Therefore

we defer the treatment of priority constructions until the point where we really need them

We will start this section by showing the existence of an oracle set A such that NP(A) # P(A), as is

historically correct. This construction was first presented by Baker, Gill, and Solovay[10] and was

the inspiration for many results to follow. The construction is done by diagonalisation with the help

of an enumerator for the clocked deterministic polynomial time bounded oracle machines.

Consider the language L(X) = {0°|Ixe X. |x| =s }. Clearly for any oracle X the language

L(X) € NP(X), since the corresponding oracle machine need only guess a string which has the

same length as the input and write it on the oracle tape. The intention of the construction of the

oracle set A is to ensure that L(A) ¢ P(A). Therefore the construction has to ensure that the

language L(A) is not recognised by any clocked deterministic polynomial time bounded oracle

machine. Or Ve: w,(A) # L(A). Here we first use the argument that the exponential function 2*

eventually outgrows any polynomial. On input x the machine We can only take ‘¥,((x|) steps,

therefore it cannot write more than ‘¥,(|x|) different strings on its oracle tape during a computation

on input x. On the other hand since x is written in binary there are 2\Xl different strings of length |x|.

By our definition of L(X) for any such string y, if ye A then xe L(A). So after simulation of

We(Ag) on input x at stage s+1 of the diagonalisation if we have that 2ixl 5 Yellxl) then a string y

of length |x| can be chosen such that x e L(A,U{y}) and y is not queried in (and hence does not

influence) the simulated computation. By the same argument it cannot write a string longer than

Ye(lxl) symbols on the oracle tape, since each symbol takes at least one step to write. Hence

ensuring that changes to the oracle made at stage s+1 are limited to strings of which the length is

exponential in strings involved at stage s, ensures that actions taken at stage s need not be

influenced by actions taken at stage s+1. Now the diagonalisation is simply described by the

following:

The first level he.

Requirements: Ve : y.(A) # L(A)

Construction

stage 0: Ag = ©;mp=0;

stage s+1: First compute m,, ; which is the smallest integer such that my, > ‘¥,(m,) and

2™Ms1 > Y. 1(m,,1). Then find a string y of length mj such that y is

not queried by W,, 1 on input Os;

Now if Ws, 1(Ag) accepts Oss then we do nothing, but

else we let Ay.) = As U {y}.

end of stage s+1

end of construction

Note: As we have assumed that ‘Y, , ; is at least linear we have that m5 > Pe 1(Ms41) 2 mg,

so oracle changes at later stages cannot disturb computations of earlier stages.

The construction above yields our first theorem which is (according to the paper [10] in which it

first appeared) due to Richard Ladner.

Theorem 1: There exists a recursive oracle set A such that P(A) # NP(A).

Proof: Construct A as above.

Suppose L(A) is recognised by some deterministic polynomial time bounded oracle machine w,(A).

Let A=m,. Then there are two cases:

case 1:04 e WelAg-j) then there is no stage s+1 at which a string of length less than or equal to

P(A) is in Ag, 1-Ae-j» and since no string of length A is in Ag_, at stage e, we have that

Oke WelA) -L(A), or

case 2: or € VelAe-j) but then Ohe L(Ag) and hence Oje L(A). Moreover since 2h > P(A)

- 37 -

The first level he.

have that 0X ¢ w,(A,), and since (Ve' >e) [me: > P(A] we have that 0 ¢ y,(A).

In either case W.(A) # L(A) contradicting our assumption.

End of proof

Thus we find that separating relativised P from relativised NP requires no big effort. With

comparative ease relativised NP can be separated from relativised Co-NP as is shown in the same

paper by Baker, Gill and Solovay. In this case we want to diagonalise over the class of

nondeterministic machines, so we use the general enumerator to obtain all nondeterministic

polynomial time bounded Turing Machines in priority order.

We use the same language L(X) = {0° | 3x € X. |x| =s } as above, but now instead of constructing

A such that L(A) is not entirely recognised by any We machine, we construct A such that the

complement of L(A) is not recognised by any of the machines @, considered when e ranges over

all natural numbers, thus achieving that there is at least one language in (Co- NP) - NP.

We present the construction first.

Requirements: Ve : @.(A) # L(A)®

Construction:

stage 0: Ag = ©; mp=0;

stage s+1: First compute m,, ; which is the smallest integer such that my, 1 >®,(m,) and

Der > De. 1(Ms 41).

If Oss € Ps+1(Ag) then choose any accepting computation of @., (Ag) on input

OTls+ and let y be a string of length m,, j which is not queried in this computation.

Let Ay, =Ag U {y}, otherwise As+1= Às

end of stage s+1

end of construction.

The first level bet

If OM € Ps, 1(Ag) then OM € Pe, 1(As;1) Since the string y does not influence the chosen

accepting computation. On the other hand @;,j can query only strings of length less than or equal

to De, (Mg; 1) on input OMs1 and if Os ¢ Ps, 1(Ag) then all strings in A-As are of length

greater than De, (ms, 1).

From this : OTs € @,1(A) > 01 € Oo, 1 (Ag) > OM € L(A) & OM € L(A)®. Hence

Theorem 2: There exists a recursive oracle A such that NP(A)# Co-NP(A).

The nature of the separation of relativised NP(A), P(A) and Co-NP(A) is left somewhat unclear by

these two theorems. An oracle A is constructed such that NP(A) has a language which cannot be

recognised by any P(A) machine; but is it just one point, or just finitely many points which escape

the computational power of a single P(A) machine? In other words is any subset of this language

deterministic polynomial time computable? Or is the difference stronger?

It is certainly so that any finite subset of the language is in P(A) as any finite language is

deterministically recognizable in constant time by simple enumeration. However it is possible to

construct the oracle A in such a way that any infinite subset of the language in NP(A)-P(A) is not

in P(A). This new demand introduces some constraints on the diagonal method.

To achieve that no subset of L(A) is in P(A) we must ensure that any deterministic Turing Machine

operating in polynomial time and accepting some infinite language accepts at least one string in the

complement of L(A). Therefore the diagonalisation method cannot, at stage s, fix the oracle in such

a way that the requirement is satisfied for machine with index s; it has to wait until machine s

accepts some string. Then by fixing this computation and changing the oracle such that this string is

not in L(A), the requirement can be satisfied.

The diagonalisation method now at stage s considers all requirements with index less than or equal

39 -

The first level Ja

to s, and tries to satisfy one of them. Therefore requirement with index s is satisfied at some stage t

which is greater than or equal to s. Because of this behaviour the diagonalisation method used is

called slow diagonalisation or wait and see argument. Formally the construction is described by:

Requirements: Ve : \We(A)| = ce > WelA) NLA) #@

Construction

stage 0: Ag =O; mo = 0;Req = G;

Stage s+1: First compute m, , ; which is the smallest integer such that

My > max{‘¥;(m,) | i<s} and 2™s1 > pe es Fims);

If Vie Req : 0s" £ w; (Ag) then find a string y such that |y| =m, , ; and y is

not queried by any of the w; (A) on input Os for alli < s;

As+1= Ag U tyt

else Req := Req - { i] Os € w; (A,)};

Ag, 1=Ag S+1

endif;

Req := Req U {s}

end of stage s+1

end of construction

Lemma 1: Vie @: |y;(A)| =e > W;(A) NLA) #D

Proof: Consider an arbitrary stage s+1 >i ;either Os € Wi(A) but then since m,,9> Wilms, 1)

we have that Os" € w;(A) and since mg, > mg, we have that Os: ¢ L(A), and so

Wi(A) A L(A)S # ©, or OM ¢ Wi(A,) whence OM ¢ w;(A). In either case Wi(A) can

have only finitely many elements of the form Oss. Since L(A) is a subset of {O™s | se @},

this completes the proof.

End of Proof

The first level he

Lemma 1 states that no infinite subset of L(A) can be recognised by a deterministic polynomial time

bounded Turing Machine. For completeness of the argument we must also have that L(A) itself is

infinite (or else L(A) itself would be in P(A), and the whole subject would become trivial). To

prove this we use a consequence of the padding lemma.

Lemma 2: L(A) is infinite.

Proof: Suppose L(A) is finite. Then at all but finitely many stages the else case in the construction

is chosen. This means that at all but finitely many stages at least one index is removed from

Req. This means that Req remains bounded in size throughout the construction. However

there are infinitely many indices of the empty set, each of which is added to Reg at is own

stage, and is never removed from Req.

End of proof

The strong separation between relativised P and relativised NP above is of a more structural kind

than the incidental separation described by Baker, Gill and Solovay. A general name for this kind

of separation of language classes stems from Recursion Theory:

Definition 1: Let C be a class of languages C ¢ 2{0,1}* A language L is C-immune if |L] is

infinite and there is no L'e C such that |L'| is infinite and L' ¢ L.

It was first shown by Bennet and Gill [17] that an oracle A exists such that NP(A) has a P(A)

immune set. Later Schöning and Book [109] showed that a recursive oracle A exists such that

NP(A) has a P(A) immune set. The construction above of course yields a recursive oracle set.

Whence:

Theorem 3: There exists a recursive oracle A such that NP(A) has a P(A)-immune set.

The first level het.

A similar strong separation can be achieved between relativised NP and relativised Co-NP. We can

construct an oracle A such that Co-NP(A) has an NP(A)-immune set. The complement of this set is

by definition an element of NP(A), hence this set can be viewed as an NP(A) set with an

NP(A)-immune complement. Such sets are also known from Recursion Theory, and are called

"simple" sets:

Definition 2: Let C be a class of languages C ¢ 210,1}* A language L is C-simple. If Le C

and LE is C-immune.

A C-immune set is often called a set “immune to C"; a C-simple set is often called a set "simple in

C", or just simple” since it is by definition clear to what class of languages this set belongs. The

first construction of an oracle A such that NP(A) has a simple set is due to Homer and Maass [52].

Balcázar [12] later constructed a recursive oracle set by slow diagonalisation. The language used in

this construction must have a non-empty intersection with any infinite NP(A) language (This is

equivalent to the definition), therefore a language like the one we used above will not suffice. The

language used above is a subset of {0}", and can therefore have no intersection with for instance

{1}", which is clearly an NP(A) language. Balcázar proposed the following language for all

oracles X:

L(X) = {0,1}* - {0}* U{O™] axe X: |x|=m}

The construction starts with Ag = {0}". Hence L(Ag) = {0,1} , which has a nonempty

intersection with any language. Now at each stage a string is "added to the complement of the

language" if it satisfies no requirement.

Formally the construction is described by:

Requirements:

Vel |pe(A)l = co P(A) A L(A) # Ji]

The first level het

Construction:

Stage 0: Ag= for"; mp=0;Reqg = QO;

Stage s+1: First compute ms, 1 which is the smallest integer such that

m,,1 > max{®;(m,) |i < s} and 2+ > Dis Dime) 3

Let B, = Ag - {0M};

If Jie Req, s.t. OM € ©;(B,) then

for all i such that Os" € @;(B,) choose some accepting computation ¥,,

and let y be a string such that ly| = m,, ;, and y is not queried in any of the

chosen ¥; ;

As+1=Bs U {y};

Req ,, = (Req, - {il OM € (As, 1)}) U{s}

Bs; else As +15

Req ‚1 = Req, U{s}

endif

end of stage s+1

end of construction

We can easily see that

Lemma 3: Vie @:|p;(A)l=ee > P(A) NL(A) #D

Proof: suppose @;(A) ¢ L(A) and consider an arbitrary stage s+1 >i. First 0" € @;(Ag, 1)

would mean that 0s e @;(A) since m,,7 > @;(m,, 1). If the then case is chosen we have

that Os © L(A), and then by assumption that 0's ¢ @(A) whence 0 ¢ @;(Ag, 1).

Hence we may infer from the assumption that 1 is not removed from Req, , ; at any stage s >i.

This means that the else case can only be chosen at stage s+1 if Os ¢ (;(B,), and then since

As+j = By we see that Olen ¢ @;(A). So in both cases Oss ¢ @;(A) and since by

− 43 -

The first level het.

assumption @;(A) consists only of strings of the form Os, the assumption made leads to

lp;(A)| Si.

End of proof

The same argument as used before leads to:

Lemma 4: L(A)® is infinite

Proof: Suppose L(A) is finite then the else case in the construction is chosen at only finitely many

stages, but at each stage s+1 where the then case is chosen an index is in Req,-Req,, }.

Since at each stage only one index is in Req, ; - Reqg, the cardinality of this set must

remain bounded by some constant throughout the construction. However there are infinitely

many indices of the empty set...

End of proof

Lemma 3 and 4 together yield

Theorem 4: There exists a recursive oracle A such that NP(A) has a simple set.

The construction presented by Balcázar is one of the few oracle constructions known from the

literature in which strings are removed from the oracle set at a given stage. Usually such an

approach leads to disaster, since the computational classification of such a set is an unachievable

goal. The reason why the construction yet leads to a rather tame recursive set is that Balcázar has a

moving bound which guarantees that for any length n, there is a stage s in the construction such

that membership to the oracle of strings with length less than or equal to n is fixed for all stages

greater than or equal to s. Hence membership of an arbitrary string to the oracle can be decided

upon in finite time. We will later see that this "trick" can be used to obtain new separation results

from existing ones with trivial effort.

The first level da

There exists a construction of an oracle A such that NP(A) has a simple set which involves only

addition of strings to the oracle at any given stage. This method however involves a rather

complicated diagonalisation method. This method is part of the construction of an oracle A such

that NP(A) has a set which is both simple and P(A)-immune, with which construction we will

conclude this chapter. The idea of the construction is the same as in [52]. At this point we present

the construction merely as an introduction to a complicated construction in an easy context.

First we present the language; for all oracles X:

L(X) = { x | dy s.t. |yl=|x| & xey € X}

In the following the concatenation of x and y is frequently denoted by xey .

Now Starting with the empty set, the method proceeds examining all strings x in Fr“ until it finds

some @j such that xe 9;(A,) with A, the oracle constructed thus far. (To do this in some

predetermined order we need some ordering of I" . Such an ordering is easily obtained e.g. by

fixing a meaningless 1 to the left hand side of a string in T” and interpreting the result as a natural

number written in binary. In this way we transfer the ordering of the natural numbers to I". The

inverse of this function applied to the natural numbers provides an enumeration of r™.) Then it

simply adds a string xey , with |x|=ly|, to A, which is not queried in some accepting computation

of p;(A) on input x thus forcing that at stage s+1 this string xe @;(Ag, 1) NL(Ag, 4) (and hence

x € L(A)). If we can prevent the existence of a stage t > s+1 such that x & @;(A;y) ML(A;, 1) then

the requirement R; is satisfied at stage s+1. However there may exist a string y < x and an index

j such that for allu<s: yé¢ Pj(Ay) but changes made to the oracle at stage s+1 to add x to

L(Ag,) imply that for allt2s +1: ye @;(A)-L(A)). An NP(A) machine may in this fashion grow

infinite without being recognised by the diagonalisation. To prevent this from happening we install

a backward search in the method which reexamines all strings less than or equal to x after the

addition of x to the language. (i.e. relative to the expanded oracle set). To prevent requirements

- 45 -

The first level he

which are satisfied at earlier stages to become unsatisfied (injured is the right term) as a

consequence of this backward search, we maintain for each of these requirements a restraint set

which consists of the strings queried in some chosen accepting computation certifying the

satisfaction of this requirement, which were not yet in the oracle at the time this requirement was

satisfied. Now it is only allowed to add a string to the oracle at stage t to satisfy a requirement Re,

and possibly injure other requirements, if this string is not a member of the restraint sets maintained

for requirements R,: with e' < e. By this method we ensure that a requirement R, is injured at

most a finite number of times. Hence if we have the guarantee that R, has the possibility of being

satisfied infinitely many times then R, will eventually be satisfied at some stage s and never be

injured at later stages. Say R, is permanently satisfied at stage s.

The (also required) infinity of the complement of L(A) is not an automatic consequence of the

construction as it was in the immunity construction. We have to enforce this property by the

installation of requirements also. To do this we introduce an infinite number of requirements

(hereby stratifying the requirement "L(A)° is infinite") Ne: 4x [|x| > e & x € L(A)]. These

requirements are satisfied by restraining all strings of a given (even) length with priority

corresponding to index e, and since they can also be injured at most finitely many times, we have

the guarantee that infinitely many strings will constitute L(A)®. To prevent clashes, we agree that

positive requirement P, has priority 2e and negative requirement Ne has priority 2e+1. At this

point of the discussion however we observe that since all strings in Tr” are reexamined, the special

treatment of the first requirement to be satisfied is unnecessary. Instead we can just at each stage

choose some point in I” and look back to 0 from that point to see if some requirement can be

satisfied.

The diagonalisation method presented here is characterised by the fact that requirements are injured

only a finite number of times. Therefore this method is called a finite injury method, which name

stems from Recursion Theory. Since it cannot be decided at any finite stage whether a requirement

- 46 -

The first level het

R, will be injured at some future stage, this method is also of the infinite extension type. (i.e. we

need an infinite extension of the oracle to see whether or not a requirement is permanently satisfied.

A requirement is injured iff dxds such that xe A; Restraint set (R,). Because of the

classification of sets in the arithmetical hierarchy, the method presented here is also classified as a

0' method. The diagonalisation algorithm needs at least a 0' oracle to decide upon the satisfaction of

requirements. We use at stage s+1 of the diagonalisation below a set POS, to store the "positive"

requirements which are satisfied by extension of the language with some string. We use a set

NEG, to store the indices of the "negative" requirements, i.e. requirements of which the

satisfaction is used to make L(A)° infinite. We use a set RES, to store the "restraint sets"

belonging to requirements, 1.e. sets of strings which may not be added to the oracle if the

satisfaction of the corresponding requirement is to be preserved. RES, consists of pairs G,V;)

where Vj is a set of strings belonging to priority j. Sets Py, Po, Ny,N>,R),R2, and R3 are used at

each stage to store (proposed) extensions and reductions of the sets POS, ,, NEG, | and

RES, w.r.t. POS,, NEG, and RES,

We present the construction.

Requirements:

Ve [Pet | Pel(A)| = ee > 9 (A) A L(A) #0]

Ve [Ne: 3x [|x| >e & x £ L(A)]]

Construction

Stage 0: Ag = © ; POSg = © ; NEG = O; RESo=@; x09=0;

Stage s+1: Ny, :=No :=@;

P, :=Pj:= @;

Ry := Ry := R3 =D;

Xo = X.+1;

The first level

Backward Search

If (Sy < xj)(de< min NEG,)[e € POS,& ye 9,(A,) & 29 > Del IyD]

and an accepting computation Ye of @.(Ag) on input y exists s.t. dz with:

1) ly| =lzl

2) y © zis not queried in Ye

3) Vjss[G,VG)) e RES, & y eze VG)] >j>2e

Then Let e be minimal in POS, with these properties, and , the

corresponding computation;

Let Ve be the set of strings queried in Ye;

Ri :={G,VG)) e RES, | yeze VQ) };

Py :={jl (2),V(2j)) € Ry};

Ni := {jl (2j+1,V(2j+1)) € Ry};

Ro := {(2e, Ve)};

P> := {e};

As+1 “Ag UL y #2}
Else {No positive requirement can be satisfied, or the smallest negative

requirement has higher priority }

Let i = min NEG,;

N> = {i};

R3 = (2i+1, { Xo 41 OZ | |z| Xs +1 });

As+1 =Ag

Endif

POS, ; := (POS, U Pj)-P2) U {s} ;

NEG 1 := (NEG, U Ny) - No) U {s};

RES, 4 := (RES‚- Rj) U Ry) U R3

End of stage s+1

End of construction

The first level ht

The important difference between this construction and constructions presented earlier is that the

satisfaction of requirements is no longer permanent. Hence proving that all requirements are

satisfied at a given stage no longer suffices for the proof of the required property for L(A).

First we show a so called injury lemma, which gives a coarse estimate of the number of stages at

which a given requirement is added to the set of requirements to be satisfied.

Lemma 5: Let I(e) denote the number of stages s for which e¢ POS, ande € POS, | 1.

Then 1(O) = 1, and I(e) <1 + Xi. I(f).

Proof: First by construction 0 ¢ POS and 0 e POS,. Moreover if there is any stage s for which

Oe POS,, then for all stages t2s 0 ¢ POS,, the presence of the string y e z in V(O) makes

it impossible to satisfy condition 3) of the backward search.

Next take an arbitrary index e > 0 and assume that at stage s +1: e ¢ POS, ande e POS, then

eithers=e, or e € Pj atstage s+1. The latter means that there is aj <e such that j e POS,

and je POS, , ;. For any particular j, this situation can occur at most I(j) times by definition

of I. Hence: I(e) <1 + ir. I(f).

End of proof

By the same argument we show:

Lemma 6: Let N(e) denote the number of stages s such that e¢ NEG, ande e NEG,).

Then N(e) <1 + I(e).

Proof: Any index e is in NEG, j-NEG, at stage e+1, and if it is ever in NEG,-NEG, ; at stage

s>e+1, then an index i Se is in POS, _j-POS, at the same stage.

End of proof

The first level pa

Now we show that the construction has the required properties. First for the negative requirements.

Lemma 7: Vee ws V t>s e¢ NEG.

Proof: To arrive at a contradiction first suppose that Js V t>see NEG,. (By lemma 6 this is

equivalent to Vs 3 t>se € NEG,) Without loss of generality we assume that e is the least

index with this property. So take a stage u so large that (V t 2 u) e = min NEG. From this

we have by construction that (V t2 u) Gi<e)[ie POS, &i¢ POS,, 1], which

contradicts lemma 5.

End of proof

Since each satisfied negative requirement represents a string permanently in the complement of

L(A) this gives.

Corollary 1: L(A)© is infinite.

The positive requirements are also satisfied.

Lemma 8: Vee @ |,(A) | =e > (A) A L(A) #D

Proof: Assume for a contradiction that |pe(A) | =eo & P(A) M L(A) = @ By lemma 5 we may

assume that (Vise) (A s(i)) (Vt>s(i)) [ie POS, > ie POS,, 1].

Since Vt>s(e): e ¢ POS, would mean that p.(A) 7 L(A) # ©, we have that Vt>s(e): e € POS, by

assumption. By lemma 7 there is a stage u such that (Vt>u) [min NEG, > e].

Then take v = max { u, max { s(1) | iSe } }.

Take z € P(A) so large that :

1) zZ > Xv+1

2) (Vi <e) [(i, V@)) e RES,,; > z> max VG].

− 50 -

The first level bt.

3) 2/21 > @, (lz)

Note that at stage v all positive and negative requirements of priority greater than e are either

satisfied, or never will be satisfied. Hence restraint sets belonging to requirements with

higher priority will not move after stage v. From this we infer that z satisfies the conditions

of a backward search at the first stage t+ 1 where t+1 > v+1, and ze @, (A,). Now since by

assumption we have that e is the least index remaining in POS, with this property, we have

thate ¢ POS,, 1 a contradiction

End of proof

We are now ready to present the last theorem of this chapter, which requires probably the most

involved construction of this thesis. The result appeared earlier in [123] in a much more difficult

(and probably incorrect) form. I am very grateful to K. Ambos-Spies for his comments which lead

to the present form of the construction.

For a language we use the same language as above.

For all oracles X: L(X) = { x | dy s.t. lyl=|x| & xeye X}

This language has the nice property that its local density can entirely be controlled by the oracle.

Inserting many strings locally into the oracle set means that the language locally becomes very

thick, which is needed to acquire the simplicity property, and inserting few strings locally into the

oracle results in a locally very thin language, which is needed to acquire the immunity property. As

above, the diagonalisation examines all strings of {0,1 } in some predetermined order to find out

if a nonempty intersection with one of the machines @,(A) can be enforced. As above, a backward

search is installed to prevent machines to grow infinite without being caught by the method.

However we observe that a backward search does not have to involve all strings smaller that the

string with which the present stage is initiated to guarantee the simplicity property.

- 51 -

The first level het

On input x machine @,(A,) can only query strings of length less than or equal to ®,(|x|). Hence if

at stage s a string y is added to the oracle, we only have to reexamine all strings greater than or

equal to the least x for which ®,(|x|) 2 ly| , to make sure the algorithm does not miss @.. If indeed a

new string is found and the oracle is changed again, then the backward search has to be repeated,

but then only for indices of priority higher than e, so the repetition is performed not more than e

times. This means that given an index e and a string y, we can compute the length of such a cascade

of backward searches as a function of e and y.

If at stage s+1 a string y can be found such that for some string x presently considered: x ¢ L(A,)

and xe PelAg UV fy})OL (Ag U {y}), then we would like to say Ag,) = Ag U {y} and make

sure that x © @.(A;) NL (A) for all t > s+1. The observation that the cascade of backward

searches reaches back to a border which can be computed on forehand makes this possible. Simply

prevent the diagonalisation from adding a string to the oracle at stage s+2, which would imply a

backward search reaching back beyond ®,([x)).

The thus created gap may hide strings from the method with which other requirements of higher

priority may be satisfied, but this can be overcome by installing also a forward search stretching out

over this gap. As in the case of a backward search finding a new string to be put in the oracle may

make repetition of the forward search necessary with new computed borders, but again only for

indices with higher priority (< e). So in this case also a border can be computed which given the

first index e, and the first string y will certainly not be crossed.

The diagonalisation can now at stage s given the last border try to find an unsatisfied requirement e

and a string x, such that if x is added to L(A, +) at the next stage, a cascade of backward searches

would not reach back beyond this border, and the requirement with the least possible index is

satisfied in the region between this and the next computed border. Note that this computed border

depends not only on the border of stage s, but also on the index e of the first requirement to be

− 52 −

The first level bat

satisfied at stage s+1. Perhaps the idea is best illustrated with a picture:

(0,1)
7

Forward Search

> a a

=| an hit 1st hit 3d hit

E \.backwd search __/

Border of Critical Region of stage s+1 Computed
stage s

border of

stage s+1

Fig 4: Harmonica method in progress

At this point the reader may wonder why all this complicated forward and backward searching is

necessary, if the simplicity property can be established installing only one backward search as is

indicated above. The answer is of course that the method using one (unlimited) backward search at

each stage seems to disallow the establishment of the immunity property.

The immunity property enforces that for certain indices with high priority corresponding to

deterministic machines some strings may not be put in the language if they are recognised by this

machine. However a diagonalisation method using a single backward search may find at stage s

that a string x is not recognised by any of the deterministic machines under consideration, and

consequently change the oracle such that this string will be eventually in L(A). After a successful

backward search the oracle may be changed such that x is recognised by some deterministic

machine. At that point changing the oracle such that x is no longer in L(A) may lead to

complications which we cannot oversee.

An at first sight rather complicated construction of backward and forward searches however makes

The first level ht

it possible to ensure for an ever growing number of (and hence eventually all) indices of

deterministic machines that if a given string is put in the language then it will never be recognised at

a later stage by any of these machines. To see this we need the observation (and we will derive this

below) that by definition of the critical region the difference in length of the longest and the shortest

string in this region is polynomially bounded.

Before we present the construction we will explain this in some more detail. Suppose y is the first

string added to the oracle in an attempt to satisfy a requirement with index e. Let € be a polynomial

such that €.(x) 2 De:(x) for all x and all e' Se. If y is the first string added to the oracle at stage

s+1 to satisfy requirement with index e, then the shortest string examined at this stage need have a

length no shorter than min { x | §.(&-(...(§.(x)).--)) 2 lyl }, where €, is iterated e times. Given a

border b, we wish to preserve the invariant that no string of length less than or equal to b is

examined as a candidate for the oracle set (hence preserving computations of satisfied requirements

at stage s+1). By the argument above we know that this will exclude strings y from being a

candidate for examination, having a length such that min { x | Gel &-(...(€e(x)).-.)) 2 lyl } < b. So

these strings will be candidate for a forward search before stage s+1 is closed. A new border is

computed from index e, candidate string x, and the polynomials bounding the computations for

machines (deterministic and non-deterministic) with index less than or equal toe. Anyway given a

candidate string x, the proposed border b is polynomial in the length of x. So the forward search

stretches out to strings of length bounded by a polynomial in the length of x.

The forward search is repeated at most e times at stage s+ 1. Hence the maximal length of strings

actually considered in a forward search is less than or equal to a polynomial in the length of x,

where x is the first string considered. Given the fact that |x| itself is less than or equal toa

polynomial in the length of the shortest string considered in a backward search, we arrive at the

conclusion that the lengths of both the longest and shortest string considered at stage s+1 have

polynomial relations which can be computed from e, the first candidate index of a nondeterministic

- 54 -

The first level Ja

machine for satisfaction at this stage, and x, the candidate string for this satisfaction. We will later

see that the relation between the longest and the shortest string can be formulated only depending

on the length of these strings and e. In Fact 5 below we will get back to this issue, when we have

developed a more precise notation.

At this point we assume to have shown this polynomial relation and wish to draw the readers

attention to an important consequence of this fact. Suppose for given pair (e‚x) we compute at stage

s+1 that m is the minimal length of strings, and n is the maximum length of strings considered at

stage s+1. By the argumentation above there exists a polynomial €, such that €.(m) > n. Moreover

Ce depends only on e. If an attempt is made to satisfy index e at stage s+1, then the backward and

forward searches are executed only to search to satisfy a requirement with index e' < e, and the

searches stop when this fails for the first time. Consequently stage s+1 will consist of no more than

e substages (to prevent confusion we will speak of a new substage of stage s+1 each time a search

as described above is performed), and |A,, }-A,| < e since only one string has to be added to

satisfy a positive requirement. By the arguments presented above we have to choose m so large that

m > b, (by is the border of stage s).

Suppose we choose m so large that 2™ > ex(L: ce t j(n)+max{@®;(n) li Se}). Then on e different

strings of length less than or equal to n all deterministic machines with index < e together cannot

query all available strings of Jength m' where m' = m, moreover there's no nondeterministic

machine with index < e that can query all available strings of length m on input of e different strings

of length m. (allowed of course one specific computation on each of these strings.) This is in fact

the crucial observation which gives the algorithm "room to diagonalise". We will also get back to

this point in Fact 5 below.

The final observation we want to make before starting the formal part of the construction is that

forward and backward searches may be merged. Instead of first performing a backward search and

− 55 -

The first level ha.

then performing a forward search we may compute at some substage of stage s+1 a search window

in which we search for a requirement of higher priority to be satisfied. This probably does not alter

the construction essentially. However we think that it simplifies the intuition, and it certainly helps

to clean up proofs.

To specify the polynomials mentioned above we define the following border computing

polynomials:

1) Let k(e) be the least natural number > 1 such that

Vne w.max{'P;(n), ®;(n), 2(n) |i<e} < nk(e) + ke)

2) For m,n € @ and fixed e define:

inductively: §.(1,n) = nK(€) +. ke);

€.(m,n) = (€,(m-1,n))K©)+k(e);

3) For n,e € @ let fmin(e,n) = min { m| €(e,m) 2n }

4) For m,n € w and fixed e define

inductively: C.(1,n) = E.(e,nk(©)4k(e)+1)

Ge (m,n) = Gele, Ce(m-1,n))

5) For n,e € @ let fmax(e,n) = C.(e,n)

6) Finally for n,e € let

fsat(e,n) = min{m | € (e‚n) < m &

gfmin(e‚m) . ex (Li, (fmax (e‚m))} + max{®; (fmax (e,m)) | i<e})

}

An informal interpretation for these functions is as follows:

- 56 -

The first level su

Suppose at stage s+1 we wish to satisfy a requirement with index e by adding a string x to the

language at this stage. We know that:

1) fmin(e, |x|) gives minimal length of strings consequently examined in searches

2) fmax(e, |x|) gives the maximal length of strings consequently examined in searches

3) if |x| 2 fsat(e,b) for some b, then fmin(e,|x|) > b and not all strings of length fmin(e,|x|) are

queried during a set of Se x (e+ 1) computations simulated at substages of stage s+1

We will now present the construction:

A set of indices POS, is maintained to represent the positive requirements corresponding to NP(A)

languages (we call these requirements positive because they require expansion of the oracle to be

satisfied.) Likewise a set NEG, is maintained to represent the negative requirements. At each stage

s+1, a new index s is added to both sets. Initially Ag is empty, and the border of stage 0 is set to 0

(bo). Whenever a positive requirement e is found which has the possibility of being satisfied, then

an attempt is made to expand A, accordingly. Stage s+1 then consists of < e substages at which

forward and backward search is performed.

Requirements:

(Ve) [Pe : l®e(A) | = 2° Pel) ND L(A) #8]

(We) [Ne : WelA) | = 2° => WelA) N L(A)® # O]

Construction:

Stage 0: Ap = @; bo = 0;POSp= @; NEGy=@;

Stage s+1:

If de e POS, and 4 x {0,1} such that x € @.(Ag,) and fsat(e,b,) < |x| <s

Then

Step 1)

Let eg be minimal in POS, with this property and xp the corresponding x.

Let Xp = @; {Strings to be added to the oracle at the end of stage s+1}

- 57 -

The first level ha.

Yo =; {Set of strings restrained at stage s+1}

1=0; {Index of the substage }

bsg = b,;{ Computed border; candidate for bg , 1 }

Step 2)

€ = €;; Yj = some accepting computation of @, (A, U Xj) on input x;;

yl. (U.<. {strings queried in the computation of Wi(Ag U Xi xj) on

input x; which are not in A, UX; }] UY;

If (Vje NEG,): [x; € WilAs U X;) or j > €]

Then Y2= { strings queried in y; which are not in A, UX; };

Yi =Yi U YI Uy’;

Let y; be a string such that: (See Fact 5 below)

Dye Lin
2) x1 © Pe (Ag U XU {yj PALA, U XU {y;}})

and set:

Kin = Xi VY ty

bs;, = max { max {|z| | ze Y;, ,}, bs;} ;

Else Xi, = Xi; Yin, = Yi UY!

bs;,j = max { max {|z| | ze Y;, ;}, bs;,2 x |x;| };

€ = min { j e NEG, | x; € Vj (As UX) }

Endif

Step 3 : {Search}

If X;., #X; Then min;, j= min{ k | Gj <e) [®;(k) 2 min (X;, 1-X;)] }

Else min; 1 = Xi

Endif:

max;, 1 := max {fsat(j,bs;‚j) | j <€ };

- 58 -

The first level bt.

If 3(e < €) € POS, and 3y st:

min;,j Sly|Smaxj,1 &y © Pe (As U Xj, 4)

Then let e;, ; be the minimal index with this property, and and set x;_,

to one of the values of such an y corresponding to e;,, 1.

Perform steps 2 and 3 with 1=i+1

Endif:

Step 4:

bs41 =bsi4 1»

Ast = Ag VAi

POS, ‚1 = (POS, -{j e POS, [3x [xe P;(As1) AL(Ag, 1)

& ®i((xl) $ bg 1]}) U {8}
NEG, ,; = (NEG, U {je NEG, |4x[xe ViAgi po L(Ag, 1)°

& (xl) < ds 4]}) U {5}

Else { No positive requirement can be satisfied at this stage }

A s+1= Ag; POS 4 =POS, U {s}; NEG, 1= NEG, U {s}; bs+1=bs

End of stage s+1

End of Construction

It remains to be shown that A constructed as above indeed has the property that L(A) is both simple

and P(A)-immune. This requires some effort. First we state a few more or less trivial facts about

the construction:

Fact 1: For any index e and stage s+1: if e is in POS, - POS, ; (NEG,- NEG, , ;) then there is no

stage t+1>s+1 such that ee POS, - POS,, | (NEG,- NEG,, 3)

Proof: An index can only be removed if it is added at a previous stage, and this happens for index e

not before stage e+1. Hence any s+1 for which e e POS, - POS, ‚must be greater than

e+1. The only index added to POS,, ; at stage t+1 is index t for which t > s> e.

End of proof

The first level hea

Fact 2: For any index e and stage s+1 : ife € POS, - POS.) (ee NEG, - NEG, 1) then

Pe(AJAL(A) # Da (We(A)AL(A)® # @)

Proof: If e € POS, - POS, ; (ee NEG, - NEG, , }) then (cf step 4) AX € Pe(Ag, AL(Ag, 1) :

[Axe (Ag, ALA, pd moreover bj is set to a value of at least D.(|x|) ('‘¥e(Ixl)),

which ensures that this fact is maintained for all following stages.

End of proof

Fact 3: The search windows are overlapping i.e. max; ; 2 min; and min; , ;S max;

Proof: x;, 1 S max; 1 SO min, S maxi, 4; Xj,1 2 Minj,j SO max; , 2 min;, , End of proof

Fact 4: For any pair e,m if 2fmin(e,m) „ ex; bi ce Y;(fmax(e,m)) + max{ ®;(fmax(e,m)) | i<e})

then 2fmin(e'‚n) „ e'xf pn <e'Pi(fmax(e',n)) + max{ ;(fmax(e',n)) | i Se'}) for any e'Se

and any n2m

Proof: By definition of fmin we have for fixed e that E-(e,fmin(e,m)) 2m for any m. By definition

of fmax for fixed e and arbitrary n: Gele‚n) = fmax(e,n).Hence we see that the polynomial

Pe(x) = Gele, §-(€,x)) has the property that pe(fmin(e,x)) 2 fmax(e,x) for any x. Moreover

Pe'(X) S pe(x) where e' Se by definition of k(e). So once by simple “exponential vs

polynomial growth” once we have that:

gfmin(e‚m) , ex(Li. _.P;(fmax(e,m)) + max{ ®;(fmax(e,m)) | i<e})

we have that

gfmin(e'‚n) „ e'x(Dn <e'Pilfmax(e',n)) + max{ ®;(fmax(e',n)) | i Se'})

for alle’ Se, and n 2 m.

End of proof

The final observation to be made is our “there's room to diagonalise" observation Fact 5. It follows

almost immediately from Fact 4.

The first level he

Fact 5: For any stage s+1: if stage s+1 has an i-th substage, then y; can be found.

Proof: Since the desired length of y; is 2|x;| it suffices to show that there can be no substage s at

which | Y;,j © rly; |= 22Ixil We first derive that there is an upperbound on the length of

strings x; considered at any substage 1.

Recall that fsat(e,n) is the minimal m such that:

1) Ee (en) < m

2) 2fmin(e,m) , ex (Arce P;(fmax (e‚m))) + max{®; (fmax (e,m)) | i<e})

Since all bs;2b, and all e; Seg) we have by Fact 4 that in Step 3 whenever Ge'(bs;) < |z|, then

consequently |z| 2 fsat(e,bs;). Hence at each substage 1 we find that max;,1 S Ge'(bs;). From

the definition of fmax we can now easily infer that there can be no substage 1 at which

max;,j > fmax(eg, |xol). Hence any x;,1 will be < fmax(eg, |xo|) (Since by definition

nK(©).‚k(e) also maximises 2|x;|).

We can now derive an upperbound for [Y;, ;|. For notation let € = eg; t=e;. Now at any substage i

we have that:

Divisie Pi) $ Lice Vj(fmax(e,|xgl))

2) [Y?| < Dil) < max { Dj(fmax(e, Ixol)) | ie}
So since there are no more than e substages we have that

Yi. Sex ((24 ce'Pi(fmax(e, xql))) + max{ ;(fmax(e, {xq)) | j<€})

On the other there can be no substage 1 at which |x;| < fmin(e,|xo|) as can be easily seen from the

computation of min;, 1 in Step 3 and the definition of fmin. So for all substages i we have

that 2}*il > 2fmin(€,|xgl) … [Y;, | which was to be proven.

End of proof

Now we show first that no infinite P(A) language can be entirely within L(A).

Lemma 9: Vee @: |We(A) | = 2° => we(A) NL(A)F # ©.

Proof: Assume for a contradiction that |\W.(A) | = ee and WelA) ¢ L(A). First observe that if a

string is added to L(A) to satisfy a positive requirement i e POS, at some stage s+1, then the

corresponding computation is preserved by expansion of Y? at the corresponding substage,

- 61 -

The first level hea.

and its index is consequently in POS,-POS,,, ; in step 4, and so (Vt>s) [i ¢ POS,] If we

have that y,(A) is infinite within L(A) then there must be infinitely many stages s +1 such

that:

Gie POS) [Sx € (L(Ag, 4) - LAP) A (A) My, (A)], since strings are only added to

L(A) to satisfy positive requirements. And since each positive requirement can be removed

only once (Fact 1), all these indices are different, whence infinitely many indices in this row

are greater than e. Consider the first x in this sequence for which 1 > e. We will argue that x

cannot be in L(A) Ny, (A).

The string x is added at the j-th substage of stage s+1 in Step 2 of the diagonalisation when a set

Xj is constructed such that xe @i(A, U Xj). Either xe WelAs U Xj) orx€ WelAs U Xj).

In the former case x is not in L(A, 4-Ag), and bj is at least equal to 2x|x|, whence

x¢ L(A), and in the latter case all strings which are queried in the computation of y.(A,UX:)
J

are in Y! whence x € WelA). So an infinite sequence as presumed cannot exist.

End of proof

We can also show that positive requirements are satisfied if the corresponding machines recognise

an infinite language. In lemmas 10 and 11 we will first show that if a given positive requirement

has the possibility of being satisfied infinitely many times, then it will eventually be satisfied.

Lemma 10: If the diagonalisation algorithm enters Step 2 at the i-th substage of stage s+1 with

e; =e, then for at least one requirement e' € POS, U NEG, with e' Se: e' is removed

from POS, or NEG, in Step 4 of stage s+1.

Proof: if the diagonalisation enters step 2 at the i-th substage of stage s+1 with i=m then from this

point in the diagonalisation until step 4 is reached (and stage s+1 is closed) with i=n either:

1) X44, =Xm_ (de no extra string will be added to the oracle)

or 2) Xn41 2 Xm (ie. at least one string will be added to the oracle)

In case 1 there's an e' < e such that e' € NEG,-NEG, +1 since Xn must have been

- 62 -

The first level ht.

recognised by WelAg UX) and certainly no string queried in the corresponding

computation will be in any A, for t 2 s+1 moreover since be, 1 22x|x,,| we have that

x¢ L(A, 1); and in case 2 at least one of the positive requirements is satisfied, since the

accepting computation is always protected by Y2 whenever X; is altered.

End of proof

Lemma 11: For a given positive requirement P, there can only be finitely many stages s+1 at

which the diagonalisation algorithm enters step 2 in the i-th substage with e; = e.

Proof: Assume the contrary. Then there must exist an infinite sequence of stages (sjt ie q@ at

which the diagonalisation enters Step 2 in the i-th substage with e;=e. (Here i depends on Si)

According to lemma 10 in step 4 of each of the stages sjt+l at least one of the requirements

{Pe le' Se} U{N, | e' Se} is removed from either POS or NEG. Since there are only

finitely many indices e' < e, at least of these indices must be removed an infinite number of

times, contradicting fact 1.

End of proof

In lemmas 12, 13 and 14 we present two possible "types of behaviour" of NP(A) languages. There

are languages which "stay close to the diagonalisation” ie. there are strings in these languages only

around the border or (worse) before the border line for all but finitely many stages. Or there are the

(more friendly) type of languages which have strings far beyond the border. The first type is

discussed in lemma 12, the second type in lemma 13 and 14. It turns out that both types of

languages are "caught" by the diagonalisation.

Lemma 12: For a given positive requirement P, there can only be finitely many stages s+1 such that

De e POS,

2) bs 41 >De
3) For the some substage, say the i-th substage of stage s+] Jxe (@elAs U XM Pels, 1))

with min;, 1 <|x| and |x| < fsat(e,b,, j)

The first level het

Proof: Assume an infinite sequence. At all stages where b,, ; > bs the diagonalisation algorithm

must have entered Step 2 at least once, and consequently have removed an index from either

POS or NEG in Step 4. Only finitely many indices can be less than e. We may therefore

assume the existence of a stage s+1 at which no requirement with higher priority than P, can

be satisfied. Without loss of generality we assume that xe ,(A, U Xj) for all j>1. If not

then there is a maximal j such that xe (A, U Xj) - PelAs U Xj_1) and for this substage

|x| 2 min, + > and we take i=j. Since by assumption any index e' removed from POS or

NEG in Step 4 is greater than e, we have that for the last substage of stage s+1, say the n-th

substage that max, ; 2 max {fsatQ,b., 1) lJ Seq} 2 |x|, since eg 2 e by assumption. (Recall

that be, ;=bs,,, 1, and hence that max, , ; 2 fsat(e,b,, 1)) By Fact 3 there is a k with isk<n

such that min, S |x| S max;,, and at this substage P is the least requirement which fits

the conditions of Step 3 and will consequently be in POS,-POS, ,

End of proof.

Lemma 13: For a given positive requirement P, there can only be finitely many stages s+1 such that

1) ee POS,

2) dxe Pe(Ag) NPe(Ag, 1) such that fsat(e,bg) < |x| S fsat(e,b., 1)

Proof: Assume an infinite sequence. As in lemma 12 there are only finitely many stages in this

sequence at which requirements with higher priority can be satisfied. Hence without loss of

generality we may assume that no requirement of higher priority can be satisfied at stage s+1.

There are two cases:

case 1: |x| Ss Then e is the least index which satisfies the conditions of Step 1. So according

to lemma 11 and the assumption of an infinite sequence this case can occur only finitely

many times.

case 2: |x| > s. Since fsat(e,b., 1) > fsat(e,b.) and hence boi1 bs, we have that at least one

requirement is satisfied at stage s, and hence the diagonalisation algorithm must have entered

Step 2 at least once. Let (e'‚y) be the pair satisfying the conditions of Step 1 when Step 2 is

− 64 -

The first level ht.

first entered. Since |y| < s, we have that ly| < |x|. Since by assumption we also have that

e'>e we have that max;,j > fsat(e,bs;, 1) for all substages i. First we argue that

XE O,(A,U Xj) for all substages 1 of stage s+1. Suppose the contrary then since

XE Mo(Ag, 1), there is a substage j (maximal) such that xe @.(A,U Xj 41) - Pe(AgU Xj), s+1

consequently x > min, ‚j and infinite occurrence of this situation is defied by lemma 12.

Now if ly| < |x| then |x| > min, and since |x| < fsat(e,b,, 1) we get exactly the same result,

namely the existence of a substage k with 0 <k <n such that min, , 1 < |x| and infinite

occurrence of this situation is defied by lemma 12. We must conclude that case 2 can also

occur only finitely many times, and that an infinite sequence as presumed cannot exist.

End of proof.

Lemma 14: For given positive requirement P, there are only finitely many stages s+1 such that:

Dee POS,

2) Axe @(Ag)) [x 2 fsat(e,b,) & (Vt2s)[x © PelAD 11

Proof: Assume for a contradiction that e is the least index such that there are infinitely many stages

s+1 such that (Ax € @,(Ag)) [x 2 fsat(e,b.) & (Vt 2s) [x © @(A;)]] (*) andee POS,. By

this assumption there is a stage sq such that for all u > sq and all e' < e eithere'¢ POS, or

(Vx € O(A,)) [(Vt2 8) [xe PelAp) = x < fsat(e,b,)]] (**)

Choose an arbitrary stage s+1 > Sg and let x,, 1 be the least x satisfying (*). Assume Xe [+t

Either:

case 1 t<s, but since in this case the e is the least index satisfying the conditions of Step 1, Step 2 is

entered at such stages with eg=e. Lemma 11 then defies the existence of an infinite sequence.

case 2 t>s. In this case consider stage t+1. Since t>s we have that t >sg and hence that (**) holds

for t and all e' < e at stage t+1. Either:

case 2a: Ix. 4/2 fsat(e,b,), but then again we have that step 2 is entered with eg=e, and we

cannot have such a sequence of stages t+1 by Lemma 11.

- 65 -

The first level hat

case 2b: |x, ‚jl < fsat(e,b,) Hence we have that there exists an infinite sequence of stages s+1

and t+1 such that (AxVu2s [xe @.(A,) & |x| > fsat(e,b,) & |x| < fsat(e,b,)]. We infer that

for any such pair s+1, t+1 there must exist a stage v+1 such that s<v<t-1 and xe P(A) &

XE O(A,,1) & |x| > fsat(e,b,,) & |x| < fsat(e,b,, j). An infinite sequence of these stages

v+1 however contradicts lemma 13.

End of proof.

Now it is time to show that the types of languages discussed in lemmas 12, 13 and 14 are indeed

the only types of infinite NP(A) languages. This is done in lemmas 15 and 16. Lemma 15 first

states 2 facts which may seem trivial. In lemma 16 then, the actual work is done. Due to the right

preparation this work is limited to a few lines.

Lemma 15: For any NP(A) language P(A):

1) Vx [xe P(A) S xe (Ag) for all but finitely many s].

2)Vx [xe PelA) > [De(lxl) > min{ly| |y € Ag, 1-Ag |s=max {t|x € PelA) }}
Proof: 1) We show that b, moves to infinity with s, and hence that eventually b, > ®,(|x|). As no

string of length less than or equal to by is in A, -Ag_ for any s, this means that x € 9,(A) if

XE PelAs) when by > Dellxl).

Suppose that for all but finitely many s: bej = b.=C for some constant C. Consider the language

L= {x | x > C }. Evidently L is an NP(A) language represented by some positive

requirement P, and P, is never satisfied. L certainly has elements x with |x| > fsat(e,b,) and

hence Step 2 of the diagonalisation algorithm will be entered with egse when stage t+1=|x|+1

is reached, since at least one of the requirements in POS, (namely e) satisfies the conditions

of step 1. But then b,, ; 2 |x| > bg.

2) If xe (Ag) for all s then then were done, else since xe @,(A) there is a maximal t such that

XE Mo(A;,) by 1) Assume that for this t: D, (|x|) > min{ly| | ye Ay,)-A;} then the

computation of @.(A;) on input x is the same as the computation of @.(A;,1) on input x

whence x¢é P(A), a contradiction.

End of proof

The first level het

Lemma 16: For all e: if |@,(A)| = ee then L(A) 1 9,(A) #@

Proof: By lemma 15 for all xe @,(A) there is a maximal stage s(x) such that xe PelAs(x))-

There are two cases:

casel: For all but finitely many x,y s.t. xe @.(A) & ye P(A) we have bs(x) = bs(y): Then let

t=max{ s(x) | x € P(A) }. Then for all stages s+1 > t+1 we have for all x € ,(A) that

XE (Ag). Then since P(A) is infinite we can choose for each of these stages s+1 an

x(s+1) such that @,(A,) for all t > s and x 2 fsat(e,b,). By lemma 14 there can only be

finitely many of these stages s+1 at which e e POS,.

case 2: There is an infinite sequence S = (Xie S-t Xj €Pe(Ag) and s(x; 1) > S(x;). Let

X= { s(x) |xEe@ (Ay) & x2 fsat(e,b.(x) } and Y = S-X; Since |S| = eo, we have that either

|X|=co or |Y|=eo. But if |X|=co then X is an infinite sequence of stages satisfying the

conditions of lemma 14, and hence there can only be finitely many of these stages s(x)+1 at

which e e POS,. If on the other hand |Y] = ee then we have for all of the stages s(x) € Y,

that x => min {ly||y e As(x) 417 Ag(x) } and hence there can only be finitely many of these

stages s(x)+1 at which e e POS, by lemma 12.

End of proof

It remains to show that both L(A) and L(A) are infinite. This is however an almost immediate

consequence of the work already done.

Lemma 17: L(A) is infinite

Proof: this is an immediate consequence of the proof (part 1) of lemma 15.End of proof

Lemma 18: L(A)° is infinite

Proof: Suppose L(A)° is finite. Then L(A)C e P(A) and as P(A) is closed under complementation,

it follows that L(A) e P(A). But then by lemma 17 we have that L(A) is infinite, and clearly

L(A) ¢ L(A), contradicting lemma 9.

End of proof

The first level he

We now have established all the required properties to yield the last theorem of this chapter and

State:

Theorem 5: There exists a recursive oracle A such that NP(A) has a set which is both simple and

P(A)-immune.

This theorem concludes our survey of separation results between the language classes of the first

level in the relativised P-Time Hierarchy. In the following chapter we will study separation results

between classes in the first level, and classes of the second level of this hierarchy.

Il] STRONG SEPARATIONS BETWEEN THE FIRST TWO LEVELS.

In this chapter we will step up one level in the relativised hierarchy and consider separation results

L ?
between classes NP and A, on one hand and the classes >» and IL, on the other hand. The

P

following chapter will then deal with separations on the second level, 1.e. separations between Dp

P P
and IL First we will construct an oracle A such that »(A) has an NP(A)-immune set.

Homer and Gasarch [51] first suggested that the construction of such an oracle might be possible in

the section concerning further research of their paper on exponential time bounded classes, and the

relation of these classes with relativised NP. It turns out that there exists an easy to understand

straightforward slow diagonalisation for this construction.

First we present the language. For all oracles X consider the language:

L(X)= { os | FU I=s V Vivi=s .ueve X}

FP

Clearly L(X) € DX) for any oracle X. We will construct an oracle A such that L(A) is

NP(A)-immune. As in the previous chapters we first give an informal description of the strategy.

At stage 0 we start with the empty oracle Ag = @. At each stage s+1, the set A, , j is defined as an

extension of A,. We maintain a border b, to preserve accepting computations of machines on

inputs considered at earlier levels. We construct A in such a way that if |x| < bj then

x€ Ag, 1-Ag. As before we let A = lim, _,., Ag.

During the construction we maintain a set Req of indices of requirements. At each stage s+1 the

index s is added to Req. Requirement R, is active at stage s+1 if e is in Req, at stage s+1, and

there's a set V such that all strings in V have length 2xb, and moreover OPs e PelAs UV V). We

choose the active requirement with the least index eg at stage s and let A,,; be A, U V(eq). Since

- 69 −

Between two levels bet.

V(eg) can be chosen to have only polynomially many elements, and none of the strings of length

2xb, is added to A before stage s+1, we can force @. to recognise a string in the complement of

L(A), and thus satisfying the corresponding requirement Rg.

If no requirement is active we add an exponential number of strings to A at stage s+1 trying to

make L(A) infinite.

Formally we describe the construction by:

Requirements:

(Ve) [Re: \Pe(A)l =ee = PelA) NLA) # J]

Construction

Stage 0: Ag = O; Rego = O;bp=0;

Stage s+1:

If Jee Req, such that ®,(b,) < 25s anda Ve I such that:

1) For all v in V: |v| = 2xbs

2) OP: is recognised by @,(A, U V).

Then let eg be the minimal e with this property, and Vo a corresponding set of

minimal cardinality.

As+1 = As U Vo;

Reqs‚j = (Reg, - feg}) v {s}
Else

Ag, j= Ag U { OPsew | |wi=b.};

Req,,; = Req, U {s}

endif;

be y=max{2xb, ,max{®j(b,)|1< s }} +1;

End of stage s+1

End of construction.

Between two levels hat

We will now show that A constructed as above has the desired properties. First we show that

L(A)© has a nonempty intersection with each @,(A) if the corresponding requirement is satisfied at

some stage. This lemma is used just to streamline proof.

Lemma 18: If is ee Req, -Req,, ; at stage s+1 then (A) 0 L(A’ # @

proof: If e e Req, -Req,,; at stage s+1 then OP: € Pe(Ag,1), and since the minimal string in

A1 - Ay has length > ®,(b,) consequently OPse Oel(A). Moreover by construction we have

that for allt Ss Ayn [?s — ©, so OPs ¢ L(Ag). But then since Vg<®,(b,) < 2Ds at stage

s+1, we have that OP: ¢ L(Ag, 1) and hence since b,, 1 > 2xb, for all t >s: OP: ¢ L(A,) and

so OP: ¢ L(A).

End of proof

Next we show that the requirements belonging to infinite languages are all satisfied.

Lemma 19: For all e if @,(A) is infinite then (A) M L(A)* # @.

Proof: Suppose to the contrary that @,(A) is infinite within L(A). By Lemma 18 we must assume

that Requirement R, is never satisfied. Since at each stage the least active requirement is

satisfied if there are any requirements active , we must assume that there are only finitely

many stages at which R, is active. Let s+1 >e be such that:

1) Delb,) < 2

2) Re is not active at stage s+1.

3) there is a t 2s+1 such that Os e PelAP A L(A})

Since Re is inactive at stage s+1, there is no set of strings V c r2xbs, such that

OPse PelAs U V). However since bej is at least D.(b,)+1, for all t>s the only strings in

AA which can be queried by @, on input OPs have length 2xb, (note OPse L(A)). Hence

there can be no accepting computation of @,(A,) on input OP: and we have a contradiction.

End of proof

Between two levels he

As before the padding lemma provides for the infinity of L(A)

Lemma 20: L(A) is infinite.

proof: Suppose L(A) is finite. Then there can only be finitely many stages s+1 for which we have

that L(A,,1)-L(A,)# ©. This means that at all but finitely many stages the "then" case in

the construction is chosen, a requirement is satisfied and its index removed from Req. This

means that Req remains finite. However there are infinitely many indices of the empty set,

each of which is added to Req at its own stage, and never removed from s, which means

that Req grows infinite, and we have a contradiction.

End of proof -

This gives us:
P

Theorem 6: There exists a recursive oracle A such that DL» (A) has an NP(A) immune set.

Applying Balcázar's trick to the oracle construction of theorem 6, we easily obtain a strong
P

separation between relativised NP, and relativised IL. Consider the language for all oracles X:

L(X) =D" - {0}* U {08 | Zunj-s V Viyjes «eve X}

Then L(X) is clearly a 2,09 language and hence L(X)° is a Thc language. Now we adapt the

construction by inverting the decisions. Instead of trying to establish a nonempty intersection with

L(A)®, we try to establish a nonempty intersection with L(A). A minor complication is formed by

the fact that A is extended simultaneously to fix an accepting computation and add a new element to

L(A), but the restriction D,(b,) < 2s can now be used to ensure that there is at least one string of

length b, such that no extension of this string can be queried in a chosen accepting computation.

With these extensions we can extend Ag +1:

Between two levels bat

Requirements:

(Ve) [Re: IPe(A)] = ee > (A) N L(A) #9]

Construction

Stage 0: Ag = { x| |x| is even }; Reqg = ;bp=0;

Stage s+1:

Bs = Ag - {x | |x|=2bg}

If Jee Req, such that ®,(b,) < Ps, and 3 V CI™ such that:

1) For all v in V: |v| = 2xb,

2) OP: is recognised by ,(B, UV V).

Then lete, be the minimal e with this property, Vg a corresponding set of minimal

cardinality. Y some accepting computation of @,.(B, U V) on input OPs and

x some string of length b, such that none of {xew | |w|=|x|} is queried in Yo;

Agi, = Be U Vo YU { xew | |wl=|x| };

Reqs,1 = (Req, - {eg} U {s}

Else

As+1=Bs;

Req, 1 = Req, U {s}

endif;

bo, y=max{2xb, ,max{@;i(b,)|i<s }} +1;

End of stage s+1

End of construction.

An analogous proof yields:

FP

Theorem 7: There exists a recursive oracle A such that Tha) has an NP(A) -immune set.

Between two levels bet

The results above can be strengthened by a so called bi-immune separation. We can construct a

P
single language L(A) e Xe» such that both L(A) and L(A)® (Which is a IL, language) are immune to

NP(A). First bi-immunity is formally defined.

Definition 3: Let C be a class of languages, C ¢ 21* A language L is C-bi-immune (or

bi-immune to C) if both L and LC are C-immune.

In the constructions above we could afford to be rather careless with strings. The complement of

L(A) was allowed to grow rather uncontrolled. Therefore L(A) itself could be rather thin (or thick

in the second case). When constructing a bi-immune set, we cannot afford such luxury. In

particular, the language L(A) cannot be a tally set. (a set which 1s a subset of {or) Else the

language nj would be entirely in its complement and so L(A)® would not be NP(A)-immune.

We recall that we have been in a similar situation on level 1 when providing simultaneously for

simplicity and P(A) immunity. The present problem is just a shifted version of the problem we had

there. Therefore we propose the following language. For all oracles X:

L(X)={x | Fy =I] V Vivj=|x} - xoueve X }

Which is just a shifted version of the language used to establish theorem 5. Again it's clear that
P

L(X) is in 2000. First we give an informal description of the strategy.

Again we start the construction with an empty oracle Ag, and a moving border b, initially set to 0.

As in the previous construction no string with length less than b, is added to A at stage s+1. We

can however in the present case not limit the addition of strings to A at stage s+1 to strings of

length 2xb.

In the previous construction we could, if the answer to the question: "Is there an extension

Vc rè , of the present oracle A, such that the input x now under consideration is recognised

74 -

Between two levels ht

by any of the machines now under consideration with oracle A,UV?", was negative, freeze this

answer by creating a gap in the construction.

In the present case an infinite union of these gaps may ‘hide’ some infinite NP(A) set, thus making

L(A)® not NP(A) immune. Therefore, if the question above is answered in the negative, we can do

nothing else than pose the same question for the string x+1.(Here x+1 stands for the successor of

the string x in some chosen but fixed ordering of Tr). This however creates another problem since

now if at some stage s the answer of machine @, to input x was "no", changes may be made to the

oracle influencing this answer. It may well be that there is a V Cc reds, such that x € @,(A,U V),

and expansions of the oracle at stage t>s may cause A to locally look like A, UV. Since now

xe L(A), infinite repetition of this situation for a single requirement may cause the loss of NP(A)

immunity for L(A)°. Therefore we change the question tested at stage s+1 to: "Is there an index e<s

for which the nonempty intersection of @,(A) with either L(A) or L(A)° is not yet fixed, and an

extension V of the oracle such that for all v € V and the present subject string x: by< [vl SDe(lxl)

and xe @.(A,UV) ?" If not then consider x+1, if so let e be the least index of such a requirement.

If the negative requirement is not yet satisfied, we let Aj be A, U V, fixing the intersection with

the complement of L(A). If the negative requirement is satisfied, and the positive requirement is not

yet satisfied, we extend A, with a set W such that x eL (A, U W) N @(A,UW). To make this

possible we have to impose the condition ®, (|x|) < 2/X! on the length of x. For any index e this

condition will eventually become true.

After having satisfied a requirement at stage s, we wish to preserve this satisfaction at later stages,

and therefore we wish to move b, beyond max{ ®,(|x!), 3/x|} to make sure that at later stages

neither the accepting computation of ®e On input x is altered, nor that x is inadvertently added to the

language. (Actually 3|x| is only needed in the case of the satisfaction of a negative requirement.)

This gap construction may again lead to the loss of NP(A)-immunity of L(A)C. The difference

between the gaps constructed here, and the gaps proposed above is that this gap is proposed to

- 75 -

Between two levels bet

preserve the satisfaction of a named requirement e. Therefore we can again make use of the priority

construction forward search explained in the proof of theorem 5. Before making the extension V

or W and closing the gap, we investigate all strings in the interval between x+1 and O41, where

A=max{ ®,(Ix|), 3|x|) } to see if there is some unsatisfied requirement e' < e and a string in this

interval such that an extension V' or W' of B, may be found with which this smaller requirement

may be satisfied. If so, we overrule the extension V, and repeat the forward search with e'

substituted for e. Only for the last requirement found in this chain of forward searches we make the

corresponding extension to the oracle and create a gap.

Several ‘finiteness observations’ guarantee the correct performance of the diagonalisation.

For given index e let N, denote the negative requirement (A) M L(A)° # @, and Pe denote the

positive requirement (A) L(A) # © which have to be satisfied by the diagonalisation in the case

that |_(A)| = co.

1) For any e there are only finitely many requirements (positive and negative) with higher priority

than N.(P,) , hence each stage can consist of only finitely many forward searches.

2) For any e there are only finitely many requirements with higher priority than N,(P.), hence the

assumption that N,(P.) is ‘the first to be found’ at infinitely many stages will result in a

contradiction since a forward search can only succeed at finitely many of these stages. (Whence

N- (Pe) is satisfied after finitely many stages.)

3) For any e there are only finitely many requirements with higher priority than N,(P.), hence

N.(P,) can only ‘hide’ in finitely many gaps without being found in a forward search.

The version of the forward search we use in the following construction is actually less complicated

than the one used in the proof of theorem 5, because in the present construction we don't have to

- 16 -

Between two levels sa

keep track of earlier changes to the oracle. In this case however there is a (degenerate form of a)

finite injury argument in the construction since the satisfaction of a requirement can be undone. As

the least requirement satisfied at a given stage is permanently satisfied this finite injury argument is

also of the finite extension type, and hence the method is not a so called 0' diagonalisation method

as was the case in the second version of the construction of an oracle for a simple set in relativised

NP. Since we can only guarantee the satisfaction of the requirement found in the last forward

search, we don't have to keep track of all earlier proposed extensions of the oracle. For any e and x

if V is the proposed extension of the oracle, an extension V' exists such that pe(AgU V U V')

accepts x only if an extension W exists such that PelAsU W) accepts x. Hence we don't have to

‘remember’ all extensions proposed at earlier substages. We will impose the condition that

max{@®j(|x|) |i se} < 2|XI for the first e to be found at stage s+1. Then on one hand none of the

sets V can consist of all 221! possible extensions of one string x, and hence x ¢ L(A, U V), on the

other hand there is at least one string y such that none of the strings of length 3|x| that are

extensions of y is queried by the considered NP machine in the accepting computation. This string

can be used to achieve xe L(Ag, }).

We now come to a formal description of the construction.

Requirements:

(Ve) [Pe: lPelA)l=ee > (A) L(A) #9)

(Ve) [Ne: P(A) = 2° > PelA) NL(A)® #@]

Construction

Stage 0: Ag = ©; bo=0; NEGo=-O;POSp=@;

Stage s+1:

Step 1) i =0;

Step 2)

IF Je e NEG, U POS, s.t. dx such that:

- 77 -

Between two levels

a) |x| = bs

b) max { ®;({x|) |i se} < 2!"

c)dVc r s.t.

cl) Vve V [bs <Ivl < De (IxI)]

C2) XE Pel Ag U V)

Then i:= 1+1;

Endif

Step 3)

Let e; be the least e with this property, x; the corresponding x,

V; corresponding V of minimal cardinality , and (for €=e;)

let y; be some accepting computation of pe(As U Vj) on input x;.

Ife; € POS, Then

u; = min {v| |v|=|x;| &Vw [|w| = |x;] >xjvw is not queried in ¥;]}

Let Y;={y | y=xjujw, w eI”, |w|=|u;|}

Wi=V; U Yi;

Else

W3=V;

Endif

Forward search

If de < e; & Ax with x>x; and |x|< max{3|x;|,max{®;([x;{) i<e;}}

such that condition c holds for this pair e,x and

e € NEG, U POS,

Then perform the then case of step 2

Endif

If 1>0 Then

bj = max {3}x;|, max {®; (xD lj < e;}};

As+1 = Ag U Wi;

- 78 -

Between two levels he

If xe L(Ag, 1)

Then POS,,, = (POS, - {e;}) U{s};

NEG, ; = NEG, U{s}

Else NEG,,; = (NEG, - {e;}) U{s}5

POS,, | = POS, U{s}

Endif

Else A1 = As;

boyy =Ds+1;

POS, = POS, U{s};

NEG, = NEG, U{s}

Endif

End of stage s+1

End of construction

We will now show that A constructed as above indeed has the desired properties. First we will

show that the intersection of L(A) (and of L(A)°) with an infinite NP(A) set is nonempty.

Lemma 21: For all e, if |pe(A)l=ee then @.(A)AL(A)# D and @,(A)AL(A)* # ©

proof: We show the case of the negative requirement, the other part of the proof is an almost

complete analog. Assume for a contradiction that |p,(A)|=>° and (A) O L(A)°=@. Without

loss of generality we assume there is a Stage s in the diagonalisation such that for all indices

i<e either p;(A) A Ts = Qori¢ NEG, U POS, for all t 2 s. (Since we have that at each

Stage S+1: bej 2 b, +1 this assumption takes care of all finite sets, and infinite sets of higher

priority.) Choose an arbitrary t for which this holds and choose y € @,(A) so large that:

1) max{®(ly|) |i Se} < 21!

2) ly| = de.

Then either:

Between two levels he.

case 1: there is a stage u+1 > t+1 such that |y|=b,, but then the pair (e,y) satisfies the conditions of

step 2 and since no index of higher priority can be satisfied at this stage, requirement R, will

be satisfied and @,(A) 7 L(A)°#@ (forward search is excluded by priority), in contradiction

to our assumption.

case 2: There is a stage u+1 > t+1 such that b, < ly| < by,4, but then b,,; # b,+1, and we

conclude that a forward search has taken place at stage u+1. Since |yl < b,,,), there must

have been a substage of stage u+1 at which strings of length |y| were considered, but at this

substage, e was the least index of an active requirement. (Note that since y € ,(A) there

must be a set of strings V in which all strings have length < @;(ly|) such that A, can be

extended such that ye (A, U V), and since such sets are apparently considered at stage

u+1 requirement R, is active) and requirement R, will consequently be satisfied. Again after

Rg is satisfied, no forward search can take place

End of proof

The second property of bi-immunity is a corollary of the following lemma.

Lemma 22: Let L c I” and for alle: LA Pe #D, then |L| = oo.

Proof : If VxeL [x <C] then LA {x|x>C}=@ End of proof

Corollary 2: L(A) and L(A) are infinite.

Lemma 21 and corollary 2 together yield

Theorem 8: There exists a recursive oracle A such that D(A) has an NP(A)-bi-immune set.

Again we do a step up in the hierarchy to study the relationship between relativised A, , relativised

? ? ?
Xr and relativised IL. First we will construct an oracle A such that (A) has a A.(A) immune

set. This construction is the shifted version of the Schöning construction of a P(A) immune set in

- 80 -

Between two levels hn

NP(A). To perform the diagonalisation we need a somewhat special characterisation of relativised
Pr

Àz.

Consider the following language.

K(X) = {erxewl @, recognises input x in less than |w| steps, relative to oracle X}

Obviously for all oracles X, K(X) is NP(X) complete and hence: A; = P(K(X))

The technique diagonalising over machines belonging to the class A; must be essentially different

from the techniques used in the previous section. Before we could decide on the basis of a

polynomial amount of strings. The presence of a string x in the oracle K(X) depends on the

existence of an accepting computation of a non-deterministic Turing Machine. Since there may be

exponentially many accepting computations possible, this presence may depend on an exponential

number of strings in the oracle X. Yet there is room to diagonalise.

The intuition here is that if the oracle K(X) gives the answer no to a string x, then this answer

cannot be prevented from turning into a yes answer without restraining exponentially many strings

from the oracle X, but if the answer is yes, then the corresponding computation of the NP machine

encoded in x is not longer than |x| steps and can therefore depend on at most |x| queries to the oracle

X. Hence if a yes answer of oracle K(X) to a string x 1s at all possible, it can be preserved by

adding to X (and restraining from X at later stages) a polynomial amount of strings.

The diagonalisation strategy now tries for requirements and strings satisfying a certain length

condition to maximise the yes answers to queries asked of the oracle K(X). The amount of strings

restrained from or added to the oracle X is now polynomial, and hence after freezing the

computation on input x of all eligible P(K(X)) machines, a decision of whether or not to add x to

L(X) at the present stage can still be met. With this strategy we obtain for a certain input x an oracle

− 81 -

Between two levels he.

Xeiy such that for all machines with index < e the answers to queries made on input x are stable

under all extensions of Xs +1:

This technique of obtaining stable answers of a K(X) oracle appears in the proof of the following

“There's room to diagonalise" Lemma, and was developed as a consequence of a private

(electronic) communication with P. van Emde Boas in the spring of 1985. The technique is used by

the diagonalisation method to follow. We introduce at this point the notation y,(A;x) to denote the

outcome of the computation (i.e. accept or reject) of machine y, on input x relative to oracle A.

Lemma 23: Let A and B be disjoint sets of strings, e an index and x a string then there exist sets V

and W such that (AUV) M (BUW) =@ and:

D for all X € I: [K3(AUV) & X A (BUW) Bl We(K(X);x) = We(K(AgU V);x)

ID [VOW] S CF e(Ix!))?

Ml) max { ly||ye VU W } s ‘PE (x)

proof: I) Start Vg and Wo initially empty. The construction of V and W consists of k stages where

we will see that k < ‘¥,(|x|). At stage 1<s Sk run We on input x with oracle K(A, U Vo)

for exactly s steps. If yw. queries string y in step s then if a set Vy can be found such that

(Vy (Ws B)) =O andy e KAUV,. 1 U Vy) then by definition of K(X) there is

some index 1, and strings x and w , such that y=itx#w, and wp; recognises x using the

oracle set AU Voy U Vy within |w| steps. Choose for an arbitrary triple an accepting

computation and let V; be the set of strings queried in this computation (Note that [V;| < ly).

Set Vo= (Vj N(AU Ve_4 VV) U Vs1 Ws = (Vi (AU Vo UVy U Wes

(Note that |[V.-V._1| + | We-We_jl < ly|) If such a set cannot be found then trivially for all

oracles X s.t. XDA, U Vs and K N (W,_} UVB) = @, we have that y € K(X) so we let

V.=V._1 and W.=W,g. 1.

Between two levels da

Il) The cardinality of V U W will be maximal if at each stage sk a set Vy can be found.

As we have already seen in this case the sum of the expansions of the sets V, and W, is less

than or equal to |y| strings. On input x, machine We can make no more than ‘V,(|x|) queries

to the simulated oracle K(X), each of which has length less than or equal to ‘¥,(|x|). So at

each stage |[V.-V._4| + |[We-We_4] Slyl SF;(lxl) and there are no more than ‘¥,(|x|) stages.

This means that | [Use Vy] U [Use Wy] | $ (Pe (Ix1))?.

III) This is immediate from the fact that the set V; of part I can contain no strings longer than ly|,

which in turn is a string queried by We on input x, and hence cannot be longer than ‘¥,, (|x|)

End of proof

Lemma 23 has an easy corollary that allows us to diagonalise.

Corollary 3: Let A and B be disjoint sets, e an index, and x a string. Then there exist disjoint finite

sets V and W s. t: (AUV) N (BUW) = @ and,

HDVvxXc I vas e) [X 2 (AUV) & X N (BUW) = OB] > wj(K(X);x) = wy(K(AVV);x)

ID) [VOUW] < Lice (Fj ((x)))?
II) max { ly|| ye VU W } < max {‘¥;([x|) li Se }

proof: Successively apply Lemma 23 for all indices i<e and find sets V; and W; for the disjoint sets

AU (Uj iv) and BU (Uj <iW})- Finally V=Uj<pV; and W=U;<.W;

End of proof

Now we are ready to present the diagonalisation. For a language we use L(X). For all oracles X:

L(X)= { 08 | AUjyjos St V Viyjag - eve X}
P

The construction of the oracle A such that L(A) is A,-immune is now more or less analogous to the

construction in the proof of theorem 6.

Between two levels pn

Requirements

(Ve) [| We(K(A)) | = > WelK(A)) A L(A) 4)

Construction

Stage 0: Ap=@; Bp=@; bo=0;Reqg=@;

Stage s+1:

Find the largest index e in Req, such that 2:<.(¥;(b,))* < 225;

bo, y= max {max{ ‘V;(b,) |i Se}, 2xbo} +1;

By corollary 3 construct sets V and W such that:

1) [VOW < Lice¥i(x))?
2) (AVV) A Bs UW) = ©

3)V Xe T° [X2(As UV) & XA(BUW) =D] >

Vise. yi(K(X);0°s) = wi(K(A,UV);0°)

4) max {Iyllye VUW }< bej

If Ji<e such that 0° is recognised by w;(K(A, U V))

then Let ip be minimal with this property.

Ag,1 = As UV;

Req, 1 = (Reds - {io} U {s}

else Let v be a string such that |v| = b, and {vew | |v| = |w| } 1 W = @;

Agi, = Ag U V U {vew | |y| = |wI };

Reg, ; = Req, U {s}

endif;

Baiz{ylyel &lyl Sb 4-1 }- Agi ys
End of stage s+1

End of Construction.

The correctness proof for this construction is -given the Stable Query Method- really a mechanical

effort. Eventually the condition Di ce(¥;(b,))” < 2s for becoming active will become true for any

- 84 −

Between two levels he

index e at some stage. From that stage on the computation of the corresponding machine on the

candidate input for the language is frozen, so if the string OPs is not recognised then and there, it

never will. Note that at stage s+2 the set B,, ; contains the union of all sets W determined at

previous stages. So no string can be added to A at this stage which can alter computations

considered at these earlier stages. Moreover at stage s+1, b., 1 is set to a value of greater than the

maximum of the maximum of strings in VLW and two times b, this means that bj is greater than

the length of any string in A, ; (by induction). Whence at stage s+2 the oracle A, ; will contain

no strings of length b,, 1, and since B, 1 contains only strings of length less than or equal to

bj - 1, there must remain at least one string x of length b,, j at stage s+2 after computation of

the set W at this stage, such that { xew | |w| = |x| } © W = ©. To see that requirements for which

machines recognise OPs for an infinite number of s, are satisfied, just use a proof of a slow

diagonalisation.

The other type of indices are actually more interesting. For the first time in this thesis we see that

the oracle set is changed at an infinite number of stages without the intention to satisfy a

requirement. There are requirements for which stabilisation of the computation on input ops

always yields the answer no. Hence such a requirement is not actually satisfied at any stage s. Yet

the stabilisation of the computation serves to achieve that the intersection of the language

corresponding to this requirement and {0Ps | se w } remains finite throughout the construction.

Therefore this requirement is satisfied at infinity. The method maintains an ever growing set of

requirements for which it takes measures at each following stage to satisfy them at infinity,

sometimes one ore more of the requirements "drop out" because they can be satisfied at a finite

stage. However it is undecidable if a requirement is of the second type, so all requirements have to

be considered until they byte.

The properties described here are characteristic for a so called forcing method and the above

diagonalisation is the first example in this thesis of such a method. One could argue that these

− 85 -

Between two levels he.

characteristics have also appeared in the immunity construction, and especially in the combined

simplicity and immunity construction for the sake of keeping languages recognised by deterministic

automata finite, but there the measures taken by the diagonalisation method to achieve this were

limited to changing the restraint set. In the above case we see for the first time that the oracle set

itself is changed at an infinite number of stages to satisfy a single requirement.

It just remains to show that L(A) is infinite. However we again observe (since the diagonalisation is

concerned with the enumerator for the deterministic machines) that there will be infinitely many

indices of the empty set (which machines just won't use the oracle K(A)), and find that L(A) grows

infinite by the same arguments as used in lemma 20.

These observations together yield:

F

Theorem 9: There exists a recursive oracle A such that (A)

P .

has a A, (A) -Immune set.

Finally applying Balcázar's trick to this diagonalisation and using the stable query method , we can
? F

also obtain a A, (A) -immune set in IL).

Again we use the language for all oracles X:

LX) = T™- {0}" 0 £ 08 | Suyy)_gVvjyjag vev e X}

And analogous to the transformation of the construction of theorem 6 to the construction of theorem

7 we have:

Requirements:

(Ve) [| WelK(A)) |= 29 > WelK(A)) A L(A) # B]

- 86 -

Between two levels he

Construction

Stage 0: Ag={x | |x| is even} ; Bg=O; bg=0;Reqn=9;

Stage s+1:

Find the largest index e in Req, such that Dice V(b)” < 2bs.

Let by,) = max { max {‘¥;(b,) Jise},2x bg} +1;

Coiy = (Ag - £ x1 [xX] = 2b) OM Ly | lyl < bs 7h;

Find sets V and W such that V X c T[X2(C, UV) & XA(B,UW) =@] >

Vise. w;(K(X);0°5) = wy(K(C, , ,UV);0%)

If Si<e such that OPs is recognised by wj(K(A, U V))

then Let i be minimal with this property, and let v; be a string of length be

such that { v;w | |wl=b, } A W =@;

Agi1 =Cs41 UV YU £ vjwl |wl=be} U {y | ly| is even & y 2 by 7};

Req, ; = (Reg, - {i}) U {s}

else Agy1 = Cy, 1 UV YU {Ly | ly| is even & y 2 by, 1};

Req, ; = Req, U {s}

endif;

Boi=tylye r* &lyls beid }- Agia;

End of stage s+1

End of Construction.

The correctness proof of this construction is actually the same as above, although C, , ; partly plays

the role of A, ;.(But note that Ag, ; 2 Cs+1) By, 1 2 W by corollary 3 (III), and that Bo, 1 ©

Ag,4= © by brute force) Instead of deriving that C,,) is empty at length 2b, at stage s+1 we

force C‚‚j to be empty at this length. However by the same reasoning as above we can show that

there are no strings of this length that are important for computations preserved at earlier stages.

Again B,,1 has only strings of length <b,, ; -1 as above. We have:

Between two levels het.

P ↿⋅∙
Theorem 10: There exists a recursive oracle A such that TL) has a A.(A)-immune set.

The next logical step would of course be to shift the strategy used to obtain theorem 11, and

construct an oracle A such that D(A) has a A (A)-bi-immune set. This is however not

straightforward. In the construction of theorem 8 a polynomially bounded extension to the oracle

was made each time the possibility of satisfying a requirement occurred. Hence the maximal

extension of the oracle could be kept polynomially bounded at each stage, though all strings of a

given length were considered, simply by taking a bounded number of requirements into

consideration. The stable query method however requires the stabilisation of computations on input

strings regardless whether a requirement is satisfied or not. Stabilising computations for all strings

of a given length would mean a possibly exponential extension of the oracle at a given stage, and

hence the loss of control to add a string to the subject language or not. We infer that if it is at all

possible to construct an oracle A such that D(A) has a A,(A)-bi-immune set, a new observation is

required to which we presently don't have access.

THE ND LEVE

The present chapter is entirely devoted to a single theorem. We will show the existence of an oracle

A such that X(A) has a simple set. As before in the case of the construction of an oracle A such

that D(A) has a A, (A)-bi-immune set, the stable query method is not powerful enough to

accomplish this result. Though we can apply Balcázar's trick and may consider only one string at

each stage of the diagonalisation, stabilising computations by using a polynomially bounded set of

strings fails. In the A; case we had to deal with a polynomially bounded number of queries, and

could force the existence of only one computation on a given input by a given machine. As D(X)

is equivalent to NP(K(X)), for all oracles X, we have to live with the fact that there are

exponentially many different possible computations on a given input, regardless of the local

structure of K(X). Any single computation in this set can be stabilised to be accepting or rejecting

by using the stable query method developed in chapter III to stabilise computations. Unfortunately

this method does not especially favour accepting computations. (Stabilisation of only one accepting

computation would mean acceptance throughout the construction, and this would require a

polynomial amount of strings) As we cannot choose between fixing acceptation or fixing rejection,

fixation of the outcome of a computation may make it necessary to freeze exponentially many

rejecting computations querying exponentially many different strings in K(X), which may imply a

restraint set of exponential size on X, as stage s, and thus make xe L(X) or xe L(X) independent

of the rest of the algorithm. °

It seems that we have met here with Heller's thesis[49] that "Two polynomial quantifiers are as

powerful as one exponential quantifier.", and hence diagonalisation over machines with
P

recognising capacity of D> level is not possible with standard techniques.

An entirely different argument has to be used to make diagonalisation possible. Instead of just

counting strings in I", we will count in a counting lemma to follow subsets of strings of I”. The

- 89 -

The second level he

idea of this subset counting is due to Baker and Selman who have in '76 successfully used a special

form of the counting lemma for the separation of relativised x, and IL. We will look at the

number of instantiation sets which make > formulas and I, true. Recall that relativised > and

relativised I; can be characterised as the classes of languages corresponding to a polynomial time

computable 3-ary relation to which two alternating polynomially bounded quantifiers are applied.

Let R(x,y,z) denote the relation, and p(|x|) denote the polynomial bound on the length of strings to

which the quantifiers refer. Baker and Selman [11] illustrate the difference in the number of

different sets of strings which can determine the value of R(x,y,z) with the following picture:

>, SyVz.R(x,y,Z) TT vyaz.R¢x,y,2)

2 fr
KTI; x y, Z

Z P(lxl) N

y Pax) |

Fig 5: Sizes of the instantiation sets

This picture intends to illustrate the intuitive notion of the number of different subsets of an oracle

set A which may determine the value of R(xq,y,z) for fixed xg when R is computed relative to A

and quantified by JV and VG respectively. Experience learns that this picture requires some

explaining:

Take xq fixed, and picture the relation R(xp,y,z) as a subset of lx Tr, AS we are dealing with

bounded quantification we are only concerned with pairs of the relation for which both strings have

length less than or equal to p(|x|). For notation let N= 2P(XI)+1 1 be the number of different

− 90 −

The second level Sat.

strings with this property. This leaves a subset of N2 pairs. Suppose we have a mechanism (oracle

construction) by which we can set to an arbitrary value the truth value of R(xp,y,z) at each

particular point y,z of this square grid. Setting the value of R(xo,y9,Z9) to false means that the

expression Vz(xo,y,z) gets the value false for all points y where y=yo.

This means that there are N different minimal subsets S of size N of this grid for which setting

R(xp,y,Z) to true for all pairs (y,z) € S has the effect that dyVz R(X,y,Z) becomes true. (Here the

word minimal is used to emphasise that any set S' such that R(x0,y,Z) is set to true for all pairs

(y,z) € S' which has the effect that JyVz R(xo,y,z) becomes true must contain one of these sets

S as a subset.) On the other hand for all N different y, we can choose an arbitrary z such that

setting R(xo,y,z) to true at point y,z means that Vydz R(xg,y,z) becomes true. This gives that

there are NN different minimal subsets of the grid for which setting R(xo,y,z) to true for all pairs

(y,z) € S has the effect that Vydz R(xo,y,z) becomes true. This situation is perhaps best illustrated

with a picture.

yl ∙∙∙∙∙∙∙∙∙∙∙∙∙ yl ∙∙⋅⋅⋅∙∙∙ ⊡∙∙

∶∙ ⋍≖≼∣≍∥ ra 2 2(lx))

Fig 6: Sizes of the instantiation sets

The left hand grid in the above picture illustrates a set which makes JyVz R(xo,y,z) true, and the

right hand side grid illustrates one of the sets for which Vydz R(xo,y,z) becomes true.

The gap between N and NN is exponential, and therefore Baker and Selman observed that an oracle
P

dependent I-expression could be found having for each x at least 2\xl2" different sets S, such

− 01 -

The second level ht

that the expression is true at point x for all oracles A where one of the S, is a subset of A, and since
P

for any bounded »,-expression with bounding polynomial p the number of different sets on which

the expression can be made true is limited by 2P(Ix!)_ there must be a point at which the

? ?
I L-expression can be made true without making the »,-expression true or vice versa.

The extension needed for the construction of a simple set is that this reasoning goes through for a

⋅ ↿∎ ∙ ↿∎ ∙ ∙ ∣∣⊋∣≖↿
growing number of 2,-expressions. If the I1,-expression expression can be made true at 21*

Pr

different instantiation sets, and a number of »,-expressions say Aj, Aj have different values at

at most 2Pi(Ix!) different sets, then whenever 2/2" > LPD either there is a set such that the
? ?

I1,-expression is false and one of the 2,-expressions is true, or there is a set at which the

P LJ P . . P . . .

I L,-expression is true, and none of the Dp-expressions is true. As a I L-expression expression 1S
P

the negation of a »,-expression, this observation clears the path for diagonalisation.

At a later point in this chapter we will come to a formal proof of the difference in the number of

instantiation sets explained above. For now let us assume that we have the ‘room to diagonalise'

explained in a-c below:

a) For all oracles X let L(X) = {0,1}"-{0}" WV {OS AY yes Zizi=s yze X}. Clearly L(X) e D(X)

for any oracle X.

b)We argue that the set of all relativised >,-expressions can be represented by a recursively

enumerable class of machines, i.e. we may assume an enumeration of all relativised

Ys-expressions giving for each index e € wa polynomial time computable 3-ary relation

Re(x‚y,z), a deterministic oracle machine We which computes the relation R,(x,y,z), with time

bound Yellxl) and a polynomial de such that de (Ix!) is a bound on the length of the strings y and z

for which R,(x,y,z) is computed to determine the value of dyVzR,(x,y,z). Such an enumerator is

easily constructed in the same fashion as in chapter 1. We denote this enumeration by {O;};. AN

We denote by O ; the set of all x € Tr such that Jy yi<q,(x)¥2 Izi<q,(x)Ri(%Y.2). Likewise for

- 02 −

The second level ha

oracle set A we denote by O;(A) the set of all xe I” such that AY yi<a,(x) VZ Izi<q,(x)Ri(A;x,y,2).

(We will use R;(A;x,y,z) for R(x,y,z) computed relative to A)

c) We will prove in lemma 24 that for any finite oracle set A, any index e and any string x with:

DAnr2kl-g

2) diceWj(Ixl) < 222

3) max{a;(lxl) | ise} < 2/2
We can find a finite set E ¢ T2IX| such that for oracle A UE either:

case a)x € L(AUE) and Fise.xe O,(AVE)

or case b) x ¢ L(AUE) and Vise. xe O,(AUE)

We use this observation in a simple forcing method constructing an oracle A such that L(A) is

simple. L(A) will be a simple set if for all indices e the following requirement is fulfilled:

Re : |O,(A) | =00 > O-(A) NL(A) #@

We start the construction with Ag = Use @{0%ev | |vl=s }, so that at stage 0 we have that

L(Ao) = Tr”. We maintain a set Req, of active requirements. Requirement with index s is added to

Req, at stage s. The inductive step is as follows:

At stage s+1 the diagonalisation first computes a length m,,; which is so large that changes made

to the oracle at length m,, , cannot affect the value of expressions represented by indices smaller

than s+1 for strings of length < m,. Next it makes the oracle empty at length m,, j. For this

purpose we maintain a set B, which at stage s+1 represents A, minus all strings of length mg , j.

Now according to lemma 24 for the largest index e satisfying Dice Wi(|x!) < 2|X/2 we can either find

an oracle Eg P2/e1 and an index i < e such that Re can be satisfied, in which case we extend the

oracle with this E (By the choice of m, 4 requirement R, will remain satisfied.), or we can find an

oracle E'¢ T2s1 s.t. for all indices i < e the expression corresponding to this index is not true at

02*Ms and 02“Ms ¢ L(B,, }UE). In this case Ag, ; will be equal to B,, ; extended with E'.

- 93 -

The second level het

Formally we describe the construction by:

Construction

Stage 0: Ag = U je 07” { uv | lul=lvl} ; mg=0;Reqo=O;

Stage s+1: :

4 = max { q;(m,), Yj(m,) |i < s} +1;

Ms+1 = A; Boy, =Ag- {0Av | lVI=A };

If Jie Req, such that there exists a set E¢ T2A such that

Ohe O,(B,,; VE) and Ode L(B,,) VE)

Then

Let j be the minimal 1 with this property, and Ej the corresponding set.

As+1= Boy UES

Reqoi4 = Req, 7 {j}U{s};

Else

Let eg=max{ee Reqs | Zie; < 2/2 & max {q;(A) |i ze} < 2/2}

and let E' ¢ pa be such that or & L(B,,1 VE) and for all ise, in Req,

{cf lemma 24 to see that E' can in fact be chosen}

O¢ O.(B,,) VE);

Ags 1 = Bs+1 VES

Req,, ; = Req, U {s}

Endif;

End of stage s+1

End of construction

Before we show the correctness of this construction we will first show that our counting argument

is indeed valid and state the announced counting lemma.

- 94 -

The second level ht

To keep the proof of this lemma readable we will agree upon some more notation:

VixXy meaning "for all y such that ly| <q;(|xl)" , and

FiXy meaning "there exists an y with ly| <q;(|x|) such that...”

We will now state our “there's room to diagonalise lemma”:

Lemma 24 : For all oracles X let L(X)= {08 Aylyjas¥Zizjns YZEX}

Suppose:

(1) Lis a finite set of indices and x € {or such that:

(a) Dier P;(lxi) < 22/2

(b) max{qj((x\) liel} < 2/2
(2) F is a fixed oracle such that F A r2kl _ g

(3) VE rk [xe L(FUE) > Viel x ¢ OF VE)

Then 3E ¢ F2/*! such that [x ¢ L(FUE)& xe O,(F VE)]

Proof: The proof follows the same lines as the proof of lemma 2.4 in [11] We assume the contrary:

Then for all oracles E ¢ r2lxl (3) holds and there's an i(E) e I such that

(4) xe LUE) > x¢ Op) UE)

For ue TX define d={ uv | |ul=|v| }, and let D'= UG.

Clearly xe L(D') and D'c Y2/*1. There are 2!*! different i and each à has cardinality 2/*! .

Let Sis j=i,...,(2®b2" be the collection of all "sample sets" which consist of exactly one point

from each ü. Let D=F UD".

If Qs D' and |Q| < 2/X! then D-Q must include some ù . Thus xe L(D-Q) . Hence by assumption

(3) we have:

(5) VieIx ¢ O,(D-Q)

For each Sample set Sj» Xe L(D-S}) and hence by (4) we have that Vj Ji x ¢ O;(D-S;)

For ie I and ly| < max {q;({x|) |i el } define V(i,y) = { S; | VWixz R;(D-S; ;x,y,z) }

- 95 -

The second level hat

Since by assumption each S; is in at least one V(i,y) , we have that
J

Hier Ujylcmax{q(xi) lier} VN 12 2

By (1)(b) the number of distinct y's satisfying |y|<max{q;(|x|) | ie I} is less than 22

so there must be one y for which | Vie 1V(iyg)l > ho [2-2

Let Ko = Vie 1V(yO) and Qo= D

We summarise the current situation as follows:

(i) The cardinality of Kg > laf

(ii) The cardinality of Q9=0

(iii) Qg | LS: Se Ko}

(iv) SEKg = Ziel V'*z R;(D-S; x,yo,z)

For y=1,..,2/1 , we will next define sets Ky and Qu such that:

(i) The cardinality of Ky, > 2|x|(2"-/2-24)

(ii) The cardinality of Qu =

(iii) Qu GS O{S:Se Ky} and

(iv) Se Ky => die IV'*z R‚(D-S; x,y,z).

We have thus far shown that conditions (i)-(iv) are true for u=0.

Assume as induction hypothesis that (1)-(iv) are true for u, O<p<2lxl, Since the cardinality of

Qu is U, and <i! we have that (5) holds for yg and Quy or:

Vie I 3*z -R,(D-Qy ; 90,2)

For each i choose z(i) such that |z(1)| < q;({x|) and “R{D-Qy, ; X,Y0»Z(1)). By (iv) we know

that for each S in Ky, diel such that V'%z R;(D-S;x,y0,z). Hence for each S in K,, there's a

pair (i,w) with ie I and we S-Qy such that oracle machine w; with oracle D-Q), queries w

on input <x,yg,zZ(i)>. Otherwise R;(D-S;x,yg,z(i)) would also be false. Since each Wi

- 96 -

The second level du

queries at most P;(|xl) many strings on input <x,yg,z(i)>, there can be no more than

Lie] YY; (|x|) different points w, so there's some point w such that w is queried by some

Wj on input <x,yg,z(i)> and such that w belongs to at least (Ky 2je] YY; (|x|) distinct sets

S.

Let Ky 41 be this set of S's, then we have that

1/2- 24
Kea! = (Ky 2iey Pill) > 2|xl(28-p/2-2") 7 am

— glxl(2*-p/2-1/2-2%)

_9|x|(2"-(U+1)/2-2")

Thereby proving that (1) is true at +1. (iv) is clearly true since Ky 4] is a subset of Ky. Let

Qu 41= Quviwh. It follows that (i1) and (iii) are also true.

The induction argument is now complete and we are ready to observe a contradiction, namely for

||.

By (iii) since each S in Ky is a sample set of size 2Ix| we conclude that Ky consists of exactly one

set S. On the other hand by (i) the cardinality of Ky, 2-2 2)-2#1) >1

End of proof

Corollary 4: [Baker & Selman] There exists a recursive oracle A such that DACA) + IA).

proof: Consider the case |I| = 1 in lemma 24 and use direct diagonalisation. End of proof

We will now show that the construction described above indeed makes the language L(A) (where

A= lim, Ag) simple in D(A). Therefore we have to show that for each index e requirement Re

is eventually satisfied, and that L(A) has an infinite complement. We start with:

Lemma 25: V ee wf {xe | xe O,(A)}] =0¢ = axe T:xe O,(A) AL(A)]
P

Proof: Suppose to the contrary that there is an index e such that the D(A) expression is true at

infinitely many points, and all these points are in L(A)©. Without loss of generality we may

- 07 -

The second level hat

assume that e is the least index with this property, hence we may assume that all indices i <e

representing an infinite D(A) set are removed from Req, after finitely many stages s, or the

corresponding expressions are only true at points of the form 0™s finitely many times. All

points in L(A)® are of the form 0™s. Now take stage t where this holds and:

1)t>e

Die Pim) < 27/2 & max{qj(m,) lie} < 27?

3) OMt e O,(A).

By assumption Oft e L(A)E, so the else case in the construction must have been chosen.

However by construction the extension E' of the oracle at stage t is now chosen such that

OM e O e(By,1 VE) contradicting assumption (3) Since all strings added to A at later

stages have length at least max {qe (m,) , Pelm,) } +1.

End of proof

The enumerator of relativised >, expressions must generate infinitely many indices representing an

empty set, we can again show that the diagonalisation is "slow enough" to render L(A)° infinite.

Lemma 26: L(A)° is infinite.

Proof: Suppose to the contrary that L(A)° is finite, then for all but finitely many stages the "then"

case in the construction must be chosen. Hence at all but finitely many stages a requirement

is satisfied, and its index is consequently in Req,-Req,, 1. Since at each stage s+1 only one

new index is in Req, , ;-Req,. This set must remain bounded by a constant throughout the

construction. However there are infinitely many indices of the empty set, each of which is

added to Req at its own stage, and is never removed from Req.

End of proof

These observations together yield the final theorem of this chapter and the final theorem of this

thesis:

The second level he.

P

Theorem 11: There exists a recursive oracle A such that 2,(A) has a simple set.

EPIL

We have considered in this thesis a large number of diagonalisation methods developed for and

used in a polynomial setting. The interesting question to be put forward at this point is of course:

“What makes 'em tick?" Or more precisely : "What are the special structural properties of

polynomial time bounded complexity classes that make these methods work?" We will sum up

what we feel are the most important arguments used either explicitly or implicitly in the

constructions above. Two inherent arguments immediately draw attention:

1) Exponential is greater than polynomial

The exponential function 2* eventually outgrows all polynomials p(x). The time bounds on all

machines considered are polynomials, and a machine consumes a computation step by performing a

query to the oracle. Since we are working with {0,1} as an embedding for our languages, this

means that for any machine @, there is a length n, where the machine on input of length n, cannot

query all strings of length n. This situation would drastically change if we were to consider

monosymbolic languages. It is remarkable that this argument seems to fail on the 3d level of the

P-Time Hierarchy.

As the sum of polynomials is still a polynomial we have also seen that for fixed e the function 2%

eventually outgrows Nice; and therefore this observation can also be used by forcing

arguments where an unbounded number of requirements has to be "controlled" during an infinite

number of steps.

Two observations can be made. First the time bounds are not actually used as time bounds, but

- 09 −

The second level het.

rather as a bound on the number of different queries possible. In fact in most cases we just need

that we can find one string not queried in the computation of a set of machines on certain inputs.

Second the gap between polynomial and exponential is not used entirely. We just use that

exponential is greater than polynomial. An infinite row (8))ie @ of functions can be conceived

between O and 2%, such that if the number of queries for machines in an enumeration is bounded

by g; a machine can be found in the next (i.e. bounded by g;, 1 class) separating these two classes.

Kintala and Fischer first observed this in [67]. An extensive survey of this observation can be

found in Book[24]. Basically the same observation is used by Young[136] for the unrelativised

complexity class NP. Instead of looking at NP entirely, the class is stratified into an infinite

number of classes NPK, where all machines in NPK are uniformly time bounded by the polynomial

k n*+k. The difference in the number of steps can now be used to derive separations between the

different classes.

2) Infinite is greater than finite.

This 1s an argument used also in Recursion Theory and hence not specific for the polynomial

setting. If a requirement has the potential of being satisfied infinitely many times, e.g. because the

corresponding machine recognises an infinite language, and there are only finitely many

requirements of higher priority, then the requirement will eventually be satisfied. (Or permanently

satisfied in case of an injury argument.)

Specific for the polynomial setting is the nice side effect of this argument that all time bounds are

finite. Hence in a computation the length of the strings written on the oracle tape are bounded by

some constant known in advance. A machine @, in time ®,(n) cannot write strings longer than

®,(n) on its oracle tape, since the writing of each bit takes up one step. Hence considering only

strings as candidates for the oracle of length longer than De(n), fixes the situation for machine 9,

on all inputs of length less than or equal to n.

The second level pn

The second question to be answered at this point is: “Why bother?", or: “why do we pursue results

in a relativised polynomial setting, while knowing that such results can have no meaning for the P

vs. NP question from which the research originated?" There are many answers possible to this

question. We name three:

1) Methods are interesting.

The development of weapons to attack problems with is always a worth-while cause. Posts

question was not answered by the study of Simple, Hypersimple and Hhsimple sets, but this study

opened an entirely new field in Recursion Theory. To achieve stronger and stronger separation

results in the relativised setting ever more complicated diagonalisation seem to be needed.

Kozen[71], and later Regan[97] have indicated that:"If P can be separated from NP, then it can

also be done by diagonalisation." Therefore the study of diagonalisation methods remains

interesting.

2)Results are easily obtainable.

While there has been a flood of relativised results in the last few years, results in the unrelativised

setting have been very meager. Some progress has been made [62][63], but the complicated paper

of [96] is a strong witness that it is beyond human capacity to directly prove the power of

nondeterminism.

3) P # NP by contradiction

By showing ever stronger separations in the relativised setting we keep up the hope that someday a

strong separation can be shown which is not possible for any oracle if one assumes that P=NP. It

is worth mentioning at this point that up to now (and again to our knowledge), there is no result

whatsoever of the type “there can be no oracle A such that C;(A) and C‚(A) are separated by...”

As it is unlikely that such a result would require diagonalisation (or could be achieved by

diagonalisation) however, this is not the place to speculate on such a possibility. Recent results of

Selman, Book and Xu Mei-Rui[112] show that bounding the number of queries can imply that

results for relativised classes have consequences for the relation between unrelativised classes.

- 101 -

The second level pn

It should be mentioned here also that Hartmanis and Hemachandra [48] have recently derived some

results on the type of oracles which separate relativised P from relativised NP under the

assumption that P=NP, and opened up another direction of research. We are aware of the fact that

"NP # P by contradiction" is not the strongest thinkable motivation for research, but it is as strong

a motivation as the motivation which can be given for proving the NP-Completeness of the 1000

and so maniest problem.

And finally "What about the Hierarchy?". We have set up and separated two levels of the hierarchy,

but made no comments on the third and following levels. As we've already stated Polynomial vs

Exponential is an argument which fails on the 3d level. Since the sizes of the instantiation sets

become "two to the power polynomial” on both the > and the II side. The alternation of

quantifiers itself gives different size of instantiation sets, but the number of points on which these

sets may vary stays limited to 2p(Ix!), therefore adding more quantifiers cannot "lift" the size of the

instantiation sets above double exponential, and double exponential size is reached on both sides

already at the third level.

By using a straightforward diagonalisation method and a connection between circuit theory and the

P-Time Hierarchy, Fürst, Saxe and Sipser showed in [42] that "If the parity function of n boolean

variables cannot be computed by bounded depth, nPOly 108 n size circuits, then there is an oracle A

that separates PSPACE(A) from Ye for every k". Yao recently succeeded in showing an

exponential lower bound for bounded depth circuits for the parity function and hence we may

conclude that there must exist an oracle relative to which the P-Time Hierarchy is infinite.

Unfortunately the argument of Furst, Saxe and Sipser cannot be stretched to show the existence of

an immune or simple set at each level of the Hierarchy. In view of the difficulty of constructive

methods on low levels of the Hierarchy, and arguments given above it seems unlikely at this point

that there also exists a constructive method for separating the Polynomial Time Hierarchy, let alone

a constructive method for obtaining strong separations.

- 102 -

BIBLIOGRAPHY.

1.

10.

11.

12.

Ambos-Spies K., P-mitotic sets, Techn Report Nr. 167 U. Dortmund 1983.

Ambos-Spies K., Three Theorems on Polynomial Degrees of NP-Sets, Proc. 26th IEEE

FOCS (1985) pp51-55.

Ambos-Spies K., Complete Problems for Complexity Classes, Univ Dortmund

Forschungsbericht 200 (1985)

Ambos-Spies K., On the Structure of the Polynomial Time degrees of Recursive Sets,

Habilitationsschrift (1985) Univ. Dortmund.

Ambos-Spies K., H. Fleischhack & H.Huwig, P-Generic Sets, Proc. 11th ICALP, Lect.

Notes in Comp. Sci. 172 (1984) pp58-68.

Angluin D., On Counting Problems and the Polynomial Time Hierarchy, Theor. Comp.

Science 12 (1980) 161-173.

Ausiello G, A. D'Atri & M. Protasi, Lattice Theoretic Ordering Properties for NP- Complete

Optimization Problems, Univ. Roma (1978) TR78-18.

Ausiello G, A. D'Atri & M. Protasi, Combinatorial Problems over Power Sets, Univ. di

Roma (1979) TR79-43

Axt P., On a subrecursive hierarchy and primitive recursive degrees, Trans. AMS 92

(1959).

Baker T, J. Gill & R. Solovay, Relativizations of the P =NP question, SIAM J. Comp. 4

(1975) 431 - 442

Baker T.P. & A.L. Selman, A second step toward the polynomial hierarchy, Theor. Comp.

Science 8 (1979) 177-187.

Balcazar J.L., Simplictiy, Relativisations and Nondeterminism, SIAM J. of Comp. 14

(1985) 148-157.

- 103 −

Bibliography sa

13. Balcazar J.L., Separating , Strongly Separating and Collapsing Relativised Complexity

Classes, Proc. MFCS(Invited Lecture), Lect. Notes in Comp. Sci. 176 (1984) pp1-16

14. Balcazar J.L. & R.V. Book, Sets with Small Generalised Kolmogorov Complexity,

TR-Berkely-Calif. MSRI 00918-86.

15. BalcazarJ.L. & R.V. Book, On Generalised Kolmogorov Complexity, Proc. 3d STACS,

Lect. Notes in Comp. Sci. 210 (1986) pp334-340.

16. BalcazarJ.L.,R.V. Book & U. Schöning, On Bounded Query Machines, Theor. Comp.

Science 40 (1985) 237-244.

17. Benett, C.H & J. Gill, Relative to a random oracle P(A) #NP(A) #co-NP(A) with

probability 1, SIAM J. Comp. 10 (1981) 96-113

18. Berman P., Relationship between density and deterministic complexity of NP complete

languages, proc. 5th ICALP, Lect. Notes in Comp. Sci. 62 (1979), pp63-71.

19. Berman P. & J. Hartmanis, On Isomorphisms and Density of NP and Other Complete sets ,

SIAM J. of Comp. 6 (1977) 305-327.

20. BookR.V., Tally Languages and Complexity classes, Inf. & Contr. 26 (1974) 186-193.

21. BookR.V., On Languages accepted in Polynomial Time , SIAM J. on Comp. 1 (1972)

27-39.

22. BookR.V., C. Wilson & Xu Mei Rui, Relativizing Time and Space, SIAM J. on Comp. 11

(1982) 571-581.

23. Book R.V. & C. Wrathal, Bounded Query machines on NP() and NPQUERY, Theor.

Comp. Science 15 (1981) 41-50.

24. BookR.V., Separating Relativised Complexity Classes, to appear.

- 104 -

Bibliography hea.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Book R.V., Bounded Query Machines on NP And PSPACE, Theor. Comp. Science 15

(1981) 27-39

Book R.V., A.L. Selman & C. Wrathall, Inclusion complete tally languages and the

Hartmanis-Berman Conjecture „Math. Systems Theory 11 (1977) 1-8

Book R.V. , T.J.Long & A.L. Selman , Controlled relativizations of P and NP, Theor.

Comp. Science 145 (1983) 85-99

Book R.V., C. Wilson & Xu Mei-rui, Relativizing time, space and time-space , SIAM J.

Comp. 11 571-581 (1982)

Borodin A. Constable R.L. & Hopcroft J.E., Dense and nondense families of complexity

classes , IEEE Conf. Record Tenth Annual Symp on Switching and Automata Theory

pp7-19 (1969)

Cajori F, A History of Mathematics, Chelsea NY (1980).

Chew P. & M. Machtey, A note on Structure and Looking Back applied to the relative

complexity of computable functions ,J.of Comp. and System Sci. 22 (1981) 53-59.

Cook S.A., A Hierarchy of Nondererministic Time Complexity , J. of Computer & System

Sci. 7 (1973) 343-353

Cook S.A., An observation on Time-Storage Tradeoff, Proc. Sth ACM STOC (1973)

pp29-34.

Cook S.A., The complexity of Theorem Proving Procedures, Proc. 3d ACM STOC Science

(1971) pp151-158

Daley R.P. & W. Reynolds, Towards Modular constructions of unsolvability, Univ. of

Pittsburg TR80-05

Dowd M., Forcing the P hierarchy , Laboratory for Computer Science Research, Rutgers

Univ. LCSR-TR-35 (to appear)

- 105 -

Bibliography at

37. Dowd M. , Isomorphism of complete sets , Laboratory for Computer Science Research,

38.

39.

40.

41.

42.

43.

45.

46.

47.

48.

Rutgers Univ. LCSR-TR-34 (to appear)

Fine R, Kronecker and his Arithmetical Theory of the Algebraic Equation, Bulletin of the

American Mathematical Society 1 (1892) p183.

Flajolet P. & J. Steyaert , On sets having only hard subsets , Proc. 2nd ICALP, Lect. Notes

in Comp. Sci. 14 (1974) pp446-457.

Fortune S. , A note on sparse complete sets, SLAM J. of Comp. 8 (1979) 431-433.

Fiirer M, The tight deterministic time hierarchy, Report on the 1st GTI workshop Univ. of

Paderborn (1983) pp96-104.

Fürst M., J. Saxe & M. Sipser, Parity Circuits and the Polynomial Time Hierarchy, Proc.

22nd IEEE FOCS (1981) pp260-270.

Garey M.R. & D.S. Johnson, Computers & Intractability, W.H. Freedman & Co S.

Fransisco (1979)

Hartmanis J. & Mahaney S., An essay about research on sparse NP-Complete sets, Comp.

Sci. Dept. TR80-422 Cornell (1980)

Hartmanis J. V. Sewelson & N. Immerman, Sparse Sets in NP-P: EXPTIME versus

NEXPTIME, Proc. 15th ACM STOC (1983) pp381-391.

Hartmanis J. , Generalized Kolmogorov Complexityand the Structure of Feasible

Computations, Proc. 24th IEEE FOCS(1983) pp439-450.

Hartmanis J. , On sparse sets in NP-P, Information Processing Letters 16 (1983) 55-60.

Hartmanis J. & L. Hemachandra , On Sparse Oracles Separating Feasible Complexity

Classes, Proc. 3d STACS, Lect. Notes in Comp. Sci. 210 (1986) pp321-333.

- 106 -

Bibliography sa

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Heller H. , On relativized Polynomial Hierarchies extending two levels, Conference on

Computational Complexity,S. Barbara California pp109-114 (1983)

Hofstadter D.R., Gödel, Escher Bach: an eternal golden braid, Vintage Books N.Y.

Homer S. & I. Gasarch , Relativizations comparing NP and Exponential time, Information &

Control (1985)

Homer S. & W. Maass , Oracle dependent properties of the lattice of NP sets , Theor.

Comp. Science 24 (1983) 279-289

Hopcroft J. And J. Ullman , Introduction to Automata Theory Languages and Computations,

Addison-Wesley Reading Mass. 1979

Hopcroft J. & W. Paul , A Graph Theoretical approach to time versus space and other

results, Unpublished Manuscript (Cornell)

Ibarra O. , A note concerning nondeterministic tape complexities, Journal of the ACM 19

(1972) 608-612

Immerman & Mahaney , Oracles for which NP has polynomial Size circuits, Conference on

Computational Complexity S. Barbara California (1983) pp89-93

Jockush C. , Notes on genericity for r.e. sets, to appear

John T. , A weak separation result between deterministic and Non deterministic Log Space,

Conference on Computational Complexity S. Barbara California. pp128-139 (1983)

Johnson D.S. , Approximation Algorithms for Combinatorial problems, Proc. 5th ACM

STOC pp38-49 (1973) -

Johnson D.S. , The NP Completeness Column:An ongoing guide. Journal of Algorithms 3

- 107 -

Bibliography ft

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

Kannan R. , Alternation and the power of nondeterminism, Proc. 15th ACM STOC (1983)

pp344-346

Kannan R. , Toward separating Nondeterministic Time from Deterministic Time. Proc 22th

IEEE FOCS (1983) pp344-346

Kannan R. , A method for proving the power of Nondeterminism, Conference on

Computational Complexity S. Barbara California pp56-63 (1983)

Karp R.M. & RJ. Lipton , Some connections between non-uniform and uniform complexity

classes, Proc. 12th ACM STOC (1980) pp302-309

Karp R.M. , Reducibility among Combinatorial Problems, Complexity of Computer

Computations, R.E. Miller & J.W. Thatcher Eds. Plenum N.Y. pp85-103 (1972)

Karp R.M., Combinatorics, Complexity, and Randomness, Communications ACM 29

(1985) 97-111.

Kintala C.M.R & P. Fischer , Refining Nondeterminism in relativized polynomial time

bounded computations, SIAM J. Comp. 9 (1980) 46-53.

Kintala C.M.R. , Computations with a Restricted Number of Nondeterministic steps, Ph. D.

Dissertation Pennsylvania State University (1977)

Kleene S.C. , Recursive Predicates and Quantifiers, Tans. Am. Math. Soc. 53 (1943)

41-73.

Ko, K & D. Moore , Completeness, approximation and density, SIAM J. of Comp. 10

(1981) 787-796

Kozen D.C. , Indexing of Subrecursive Classes, Proc 10th ACM STOC (1978) pp287-295

Kozen D. & M. Machtey , On relative diagonals, IBM Res. Rep. RC8184 (1980)

- 108 -

Bibliography fat

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

Kronecker L., Ueber den Zahlbegriff, Die Reine und Angewandte Mathematik Bd101(1887)

p43.

Kurtz S.A. , Sparse sets in NP-P: Relativizations, SIAM J. on Comp. 14 (1985)

pp113-119.

Kurtz S.A. , The Fine structure of NP Relativizations., Conference on Computational

Complexity S. Barbara California pp42-50 (1983)

Ladner R.E. , On the structure of Polynomial Time Reducibility, Journal of the ACM 22

(1975) 155-171

Ladner R.E., N.A. Lynch & A.L. Selman , A Comparison of Polynomial time

Reducibilities, Theor. Comp. Science 1 (1975) 103-123

Landweber L. R.Lipton & E. Robertson , On the structure of sets in NP and other

complexity classes. Comp. Science Dept. TR342 Univ. of Wisconsin-Madison.(1978)

Levin L.A., Universal Sequential Search Problems, Problems of Information Transmission

9 (1973) 265-266

Lewis H.R. & C.H. Papadimitriou, Elements of the Theory of Computation, Prentice Hall

(1981).

Long T. , Strong nondeterministic time, Theor. Comp. Science 21 (1982) 1-25

Long T. , Relativizing nondeterministic time , unpublished manuscript.(1981)

Long T.J. , On relativizing Complexity Classes. Conference on Computational Complexity

S. Barbara California (1983) pp104-108

Lynch N. , On reducibility to complete or sparse sets, Journal of the ACM 22 341-345

(1975)

- 109 -

Bibliography hea

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

Lynch N. , Relativization of the theory of computational complexity, Tech. Rep TR-99,

Project NAC; Ph. D. Th. M.I.T Cambridge Mass. (1972).

Maass, W. , Recursively enumerable generic sets , J. Symb. Logic 47 (1982) 809-823.

Machtey M. , Classification of computable functions by primitive recursive classes, Proc. 3d

ACM STOC (1971) pp251-257.

Machtey M. , The honest subrecursive classes are a lattice. Inf. & Control. 24 (1974)

247-263

Machtey M. , On the density of honest subrecursive classes. Tech Rep. CSD TR 92, Comp.

Sci. Dept Purdue Univ. Lafayette Ind. (1973)

Machtey M. & P. Young , An Introduction to the general Theory of Algorithms., Theory of

Computation Series, P.J. Fischer (ed), Elsevier North Holland (1978)

Mc Aloon K. , Models of Arithmetic & Problems in Complexity Theory, Conference on

Computational Complexity S. Barbara California pp16-29 (1983).

Mahaney, S.R. , On the number of p-isomorphism classes of NP-Complete sets , Proc. 22th

IEEE FOCS (1981) pp271-278.

Mahaney, Stephen R., Sparse Complete Sets for NP: Solution of a Conjecture by Berman &

Hartmanis , Rep TR80-417 Cornell Univ. DCS.

K. Melhorn , Polynomial and abstract subrecursive classes, Ph.D. Thesis Cornell Univ.

(1974).

Papadimitriou C.H. & K. Steiglitz , Some complexity results for the TSP , Proc. 8th ACM

STOC (1976), pp1-9.

Paul W., N. Pippenger, E. Szemeredi & W. Trotter , On determinism versus

nondeterminism and related problems, Proc. 24th IEEE FOCS (1983) pp429-438

- 110 -

Bibliography sa

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

Regan K. , Computability enumerability and the polynomial hierarchy, Oxford Univ. M.Sc.

qualif. diss. 1982.

Regan K.W. , On Diagonalization Methods & The structure of Language Classes, Proc.

FCT, Lect. Notes in Comp. Sci. 158 (1983) pp368-380.

Rogers Jr. H. , Theory of Recursive Functions and Effective Computability, Mc Graw-Hill

Book Company (1967)

Rosier L.E. & H.C. Yen, Logspace Hierarchies, Polynomial Time, and the Complexity of

Fairness Problems Concerning @-Machines, Proc. 3d STACS, Lect. Notes in Comp. Sci.

210 (1986) pp306-320

Russo D. & Zachos St. , Relationships between probabilistic Polynomial Complexity

Classes and their Relativizations, Conf. on Comp. Complexity S. Barbara California (1983)

pp115-122.

Savelsbergh M. & P. van Emde Boas, BOUNDED TILING, an alternative to

SATISFIABILITY?, Report CW1(1984) OS-R8405

Sahni S. , General Techniques for combinatorial Approximation, TR76- Univ. of Minnesota

DCS.

Santos E. , Computability by probabilistic Turing Machines , transactions AMS 159 (1971)

pp165-185 ’

Schöning U. , Relativization and infinite subsets of NP sets unpublished manuscript (1982)

Schöning U. , A uniform approach to obtaining diagonal sets in complexity classes, Theor.

Comp. Science 18 (1982) 95-103

Schöning U. , Untersuchungen zur strukture von NP, Ph.D. Dissertation Stuttgart Univ.

1981

Bibliography at

108.

109.

110.

111.

112.

113.

114,

115.

116.

117.

118.

119.

120.

Schöning U. , A high and a low hierarchy within NP, Conference on Computational

Complexity S. Barbara California (1983) pp56-63.

Schöning U. & R.V. Book , Immunity, Relativization & Nondeterminism, SIAM J. Comp.

13 (1984) 329-337.

Seiferas J.I. , Techniques for separating complexity Classes, J. Comp. Sys. Sci. 14 (1977)

73-99,

Seiferas J.I., M.J. Fischer & A.R. Meyer , Refinements of the non-deterministic time and

space hierarchies , TEE Symp on Switching and Aut.th.14 (1973) pp130-137.

Selman A.L , Xu mei-rui & R.V. Book, Positive relativizations of complexity classes,

SIAM J. of Comp. 12 (1983) 565-579.

Selman A.L. , Analogues of Semirecursive Sets &Effective Reducibilities to The Study of

NP Complexity, Inf. & Control 52 (1982) 36-51.

Selman A.L. , P-Selective sets, Tally Languages and the behaviour of polynomial time

reducibilities on NP, Math. Systems Theory 13 (1979) 55-65.

Selman A.L. , Polynomial Time Reducibilities: The modus operandi of complexity theory,

Conference on Computational Complexity S. Barbara California (1983) pp82-88

Selman A.L. , Reductions on NP and P-selective sets, Manuscript Iowa State Univ.

Selman A.L. , Polynomial time Enumeration Reducibility, SIAM J. of Comp 7 (1978)

Sewelson V. , The structure of NP under relativization, Conference on Computational

Complexity S. Barbara California (1983) pp93-103

Soare R.L. , Computational Complexity of RE sets, Inf. & Control 52 (1982) 8-18

Soare R.I. Recursively Enumerable Sets and Degrees: The Study of Computable Functions

and Computably Generated Sets, to appear in Springer Q series.

- 112 -

Bibliography he

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

Solovay R. , On sets Cook-reducible to Sparse sets, SIAM J. of Comp. 5 (1976) 646-652

Stockmeyer L.J. , The Polynomial Time Hierarchy, Theor. Comp. Science 3 (1976) 1-22

Torenvliet L. & P. van Emde Boas , Combined Simplicity and Immunity in Relativized NP ,

Proc. 2nd STACS Lect. Notes in Comp. Sci. 182 (1985) pp339-350.

Torenvliet L .& P. van Emde Boas , Diagonalisation Methods and the Separation of

Relativized Complexity Classes, Univ. of Amsterdam TR-MI-84-31.

Torenvliet L .& P. van Emde Boas , Diagonalisation Methods in a Polynomial Setting, Univ.

of Amsterdam TR-MI-86-08.

Torenvliet L. , Towards a Strong P-Time Hierarchy, Univ. of Amsterdam TR-FVI-85-03.

P

Torenvliet L., Simplicity for relativised L, Univ. of Amsterdam TR-FVI-85-04.

Turing A.M. , On Computable Numbers, with an application to the Entscheidungsproblem,

Proc. London Math Soc.2 (1936/37) pp230-265

Van Emde Boas P., The Second Machine Class: Models of Parallelism, in J.van Leeuwen &

J.K. Lenstra (eds) CWI Syllabus 9 (1986) pp133-161.

Vitány P.M.B, Counting, Number Representation and Counter Machine Algorithms, to

appear.

Wilson C.B. , Relativization, Reducibilities, and the exponential time Hierarchy, Techn.

Rep. 140/80 DCS Univ. of Toronto (1980)

Wrathal C. , Complete sets and the polynomial hierarchy, Theor. Comp. Science 3 (1976)

23-33.

Xu mei-rui, J. Doner & R.V. Book , Refining Nondeterminism in Relativized Complexity

Classes. Journal of the ACM 30 (1983)

- 113 -

Bibliography he

134.

135.

136.

137.

Yao A.C., Separating the Polynomial-Time Hierarchy by Oracles: Part I, Proc. 26th IEEE

FOCS (1985) pp1-10

Yesha , On certain polynomial time truth table reducibilities of complete sets to sparse Sets.

SIAM J. of Comp. 12 (1983) 411-425

Young P., Some Structural Properties of Polynomial Reducibilities and Sets in NP, Proc.

15th ACM STOC (1983) pp392-401.

Zachos S., Collapsing probabilistic polynomial hierarchies, Conference on Computational

Complexity S. Barbara California pp75-81 (1983)

− 114 -

SUMMARY

In this thesis we show by construction of oracle sets that a strong separation of complexity classes

in the lower levels of the Polynomial Time Hierarchy is possible.

In chapter I we develop a model for the interpretation of the constructions in subsequent chapters in

an informal but precise way, and we develop precisely that part of computational complexity theory

needed to understand the notions used in these chapters.

In chapter II we (partially) quote existing theory, and prove one new theorem. We show in this

chapter the constructions which would give to oracle set A the following properties respectively:

NP(A) # P(A), NP(A) # Co- NP(A), NP(A) has a P(A)-immune set, NP(A) has a simple set

(with two different constructions), and NP(A) has a single set which is both simple and P(A)

immune.

In chapter III we treat the separation results between the first and second level of the hierarchy. We

limit ourselves in this chapter to strong separations. We show the constructions which would give

to oracle set A the following properties respectively: D(A) has an NP(A) i immune set, TL; (A) has

an NP(A) i immune set, D(A) has an NP(A) bi-immune set, D(A) has an A, (A) immune set, and

Tha) has an A, (A) immune set.

In chapter IV we treat the construction of an oracle set A such that D(A) has a simple set, and thus

obtain a strong separation between D(A) and Tha) on the second level of the hierarchy.

- 115 -

SAMENVATTING

In dit proefschrift wordt door constructie van een aantal orakelverzamelingen aangetoond dat een

sterke scheiding tussen de complexiteitsklassen in van de onderste lagen de Relatieve Polynomiale

Tijd Hierarchie mogelijk is.

In hoofdstuk I wordt op informele doch precieze wijze uitgaande van de natuurlijke getallen een

model gemaakt voor de interpretatie van de constructies in de volgende hoofdstukken, en wordt

precies dat deel van de complexiteitstheorie geschetst dat nodig is voor het hanteren van de

begrippen die in deze volgende hoofdstukken worden gebruikt.

In hoofdstuk II wordt (een gedeelte van) de bestaande theorie aangehaald, en één nieuwe stelling

bewezen. We laten in dit hoofdstuk de constructies zien van een orakel A voor achtereenvolgens de

eigenschappen: NP(A) # P(A) , NP(A) # Co-NP(A), NP(A) heeft een P(A)-immune verzameling,

NP(A) heeft een simpele verzamelingen (met twee verschillende constructies), en NP(A) heeft een

verzameling die zowel simpel als P(A)-immuun is. Deze resultaten behandelen het eerste niveau

van de hierarchie.

In hoofdstuk III behandelen we de resultaten van scheidingen tussen het eerste en het tweede

niveau van de hierarchie. We beperken ons in dit hoofdstuk tot de sterke scheidingen. We laten in

dit hoofdstuk de constructies zien van een orakel A voor de volgende eigenschappen: D(A) heeft

een NP(A) immune verzameling, TIA) heeft een NP(A) immune verzameling, (A) heeft een

NP(A) bi-immune verzameling, D(A) heeft een Ag (A) immune verzameling, en 1 1,(A) heeft een

A, (A) immune verzameling.

In hoofdstuk IV behandelen we de constructie van een orakel A zo dat > (A) een simpele

verzameling heeft, en bereiken aldus een sterke scheiding tussen D(A) en TIA) op het tweede

niveau van de hierarchie

- 117 -

