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Abstract

This thesis introduces a novel doxastic logic, denoted as LTB , which addresses
the challenges posed by traditional accounts of hyperintensionality. In LTB , we
use the notion of topic-relevance to achieve hyperintensionality, modeling belief
based on the fragments generated by topics and information pieces.

In this thesis, we show that LTB can deal with different variations of the
logical omniscience problem and provide a nuanced interpretation of a model
alethic operator within a doxastic context. We present a sound axiomatisation
for LTB and we compare LTB with other existing hyperintensional theories.
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Chapter 1

Introduction

In contemporary logic, the exploration and modeling of knowledge, belief and
other epistemic notions is a popular area of research. Tracing back to Hintikka’s
foundational works [26, 25], epistemic concepts are interpreted in terms of possi-
ble world semantics and are framed as modal operators in epistemic modal logic
[47]. According to this kind of logic, knowing a proposition means that this
proposition is true in all the possible worlds of the epistemic state of the agent,
where an epistemic state is usually a set of possible worlds that are considered
epistemically indistinguishable to the agent. However, this traditional approach
is far from perfect and struggles with challenges, including difficulties in dealing
with problems tied to various forms of logical omniscience and the intricacies of
alethic modal operators that are used in combination with epistemic attitudes.

While mainly studied in the context of knowledge, the problem of logical
omniscience also applies to the doxastic attitude of belief. Belief is typically
taken to be non-factive and hence it differs from knowledge in an essential way,
as knowledge is assumed to be truthful. Logics for a variety of notions of belief
have been studied in the literature and range from the doxastic logic KD45 based
to logics based on plausibility models or probabilistic models [4, 48, 28, 9].

The principal aim of this thesis is to confront the challenges posed by stan-
dard modal logics for epistemic attitudes, by focusing in the first instance on
the doxastic attitude–belief. This thesis adopts a qualitative account of belief,
grounded in a relational Kripke-style semantics, while integrating the idea of
fragmentationalism. This suggests that an agent’s epistemic states are divided
into fragments based on subject matter, and it is from these fragments that
beliefs arise. Drawing inspiration from recent works of Berto et al. [5, 37, 23],
this thesis endeavors to develop a doxastic logic for modelling hyperintensional
belief through the use of the concept of topic-relevance.
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1.1 Logical omniscience
The traditional Hintikkan style epistemic logics lead to undesired results when
modeling the reasoning of human agents. The logical systems demand agents
to possess knowledge or beliefs that are unrealistic, given that they only have
limited computational, conceptual and reasoning capacities, as well as finite
time restrictions [44, 13]. This is called the logical omniscience problem: only
omniscient agents know or believe all tautologies and all logical consequences of
their knowledge or belief. For instance, if human agents believe or know that
1+1=2, then standard logical systems may require them to believe or know
the truth of Fermat’s Last Theorem, since the two propositions are logically
equivalent. Nonetheless, in reality, agents may believe the former but not the
latter if they are not skilled in mathematics.

Although logical omniscience pertains both to knowledge and belief, in this
thesis we only focus on the latter, as our aim is to construct a hyperintensional
theory for belief. The following list includes some of the most classic logical
omniscience principles as applied to belief, following the exposition in [47, 54,
42]:

• Omniscience rule: All truths are believed. Formally, if ⊨ then ϕ ⊨ Bϕ,
where B is the belief operator and Bϕ means that ϕ is believed by an
implicitly assumed agent. It says that if ϕ is valid, then the agent believes
ϕ.

• Closure under disjunction introduction: A disjunction is believed if one
disjunct is believed. Formally, it is noted as Bϕ ⊨ B(ϕ ∨ ψ). It says that
if ϕ is believed then the agent believes ϕ ∨ ψ.

• Closure under material implication: A consequent of a material implica-
tion is believed if the antecedent is believed. This is formally noted as
(ψ → ϕ) ∧Bψ ⊨ Bϕ, where the material implication ψ → ϕ is defined by
¬ψ ∨ ϕ classically. It says that if the agent believes ψ and ψ → ϕ is valid,
then the agent believes ϕ.

• Closure under strict implication: A consequent of a strict implication is
believed if the antecedent is believed. This is formally noted as 2(ψ →
ϕ) ∧ Bψ ⊨ Bϕ, where 2 is the S5 modal operator and is interpreted as
“necessary”. It says that if the agent believes ψ and 2(ψ → ϕ) is valid,
then the agent believes ϕ.

• Closure under logical consequence: A logical consequence is believed if
the logical antecedent is believed. Formally, if ψ ⊨ ϕ, then Bψ ⊨ Bϕ. It
says that if ψ logically entails ϕ and the agent believes ϕ, then the agent
believes ψ.

• Closure under logical equivalence: A formula is believed if its logically
equivalent formula is believed. Formally, if ψ ⊨⊨ ϕ, then Bψ ⊨ Bϕ. It
says that if ψ logically equivalent to ϕ and the agent believes ψ, then the
agent believes ϕ.
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To address the logical omniscience problem, hyperintensional logics and the-
ories are developed. These approaches are hyperintensional since they allow
for distinctions between the propositions that may be true in the same possible
worlds but are not equivalent due to some reasons. There are various popular
theories aiming to deal with the problem, such as those discussed in [13, 22, 6].
Some theories aim to deal with closures under different kinds of implications, like
relevance logic [39] and analytic implication [15], which capture the relevance
between antecedents and consequent. There are also approaches for dealing with
general logical omniscience, such as syntactical approaches where the knowledge
of an agent is represented by a set of formulas. One of the most classic variant
of this approach is awareness logic, developed by Halpern and Fagin[14, 21]. In
awareness logic an additional function that assigns a set of propositions to each
world, indicating which propositions an agent can be aware of. Then an agent
can believe a proposition only when he is aware of the proposition [41]. Another
important solution to the logical omniscience problem is the impossible worlds
approach [38, 35], which relies on the notion of impossible world and posits that
the agents may consider possible worlds that are logically inconsistent.

While previous approaches offer some degree of resolution to certain om-
niscience problems, there is still no universally accepted theory capable of re-
solving all forms of logical omniscience. Theories based one impossible worlds
receives various objections as its notion is both philosophically and logically
controversial [50, 51, 45, 6]. Other theories like those based on awareness logic
or relevance logic fall short in dealing with some variant versions of omniscient
inferences. For example, in awareness logic, if the agent is aware of a proposition
and the proposition is a tautology, then the proposition is believed by the agent.
But this is counterintuitive. It’s easy to imagine a 20th-century mathematician
who was aware of Fermat’s last theorem yet did not believe it to be true, despite
the fact that we currently know that it is equivalent to a tautology.

We denote the condition clause, such as “the agent is aware of the proposi-
tion”, “the agent is thinking about the proposition” or “the proposition is relevant
to the agent” as the hyperintension condition, since they can be used to distin-
guish the propositions that are true in the same possible worlds. Our aim is not
to equate these sentences, but rather to highlight a shared effect: it is noticeable
that the omniscience inferences become valid in theories like awareness logic [41]
or topic-sensitive logic [37] when they are restricted by the hyperintension con-
dition. But this problem can be avoided in our theory. We introduce the formal
form of the hyperintension condition in section 3.5 and we present the proofs
in section 4.1 that all of the aformentioned omniscience principles, even when
restricted by the hyperintension condition like the following, remain invalid in
our logic:

• Restricted omniscience rule: All relevant truths are believed. If ϕ is valid
and the agent is aware of or thinking about ϕ, then the agent believes ϕ.

• Restricted closure under disjunction introduction: A relevant disjunction
is believed if one disjunct is believed. If ϕ is believed and the agent is
aware of or thinking about ϕ ∨ ψ, then the agent believes ϕ ∨ ψ.
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• Restricted closure under material implication: A relevant consequent of a
material implication is believed if the antecedent is believed. If ψ → ϕ is
true and the agent believes ψ and is aware of or thinking about ϕ, then
the agent believes ϕ.

• Restricted closure under strict implication: A relevant consequent of a
strict implication is believed if the antecedent is believed. It says that if
2(ψ → ϕ) is valid and the agent believes ψ and is aware of or thinking
about ϕ, then the agent believes ϕ.

• Restricted closure under logical consequence: A relevant logical conse-
quence is believed if the logical antecedent is believed. If ψ logically entails
ϕ and the agent believes ϕ and is aware of or thinking about ϕ, then the
agent believes ψ.

• Restricted closure under logical equivalence: A relevant formula is believed
if its logically equivalent formula is believed. If ψ logically equivalent to
ϕ and the agent believes ϕ and is aware of or thinking about ϕ, then the
agent believes ψ.

1.2 Fragmentation
Traditional epistemic logics and even hyperintensional logics (e.g. awareness
logic) assume that an agent has a single coherent belief system or knowledge
system that guides their actions at all moments in time. However, it is argued
that this is too ideal for an actual human being. Inspired by this concern,
the idea of fragmentation was proposed by Lewis[32], Stalnaker [43], Fagin and
Halpern [14], and recently developed by Egan [12], Yalcin [55], Berto and Özgün
[8]. According to fragmentationalism, the systems of belief that we in fact have
are fragmented or compartmentalized. Rather than having a single epistemic
state for all of our beliefs, our epistemic state is fragmented into different parts
and we can use only one part or several parts in one situation.

Consider the following example from Lewis [32]:

Example 1. I used to think that Nassau Street ran roughly east-west; that the
railroad nearby ran roughly north-south; and that the two were roughly parallel.

This belief of Lewis seems inconsistent, since if Nassau Street ran roughly
east-west and the railroad nearby ran roughly north-south, then the two could
not be roughly parallel. However, this can be a belief for Lewis or any of us
in daily life. We can imagine, for example, that a friend of Lewis told him
about the orientation of Nassau Street when they were shopping nearby and
another friend of Lewis told him the orientation of the railroad when they were
drinking on the train and Lewis himself knows that the two are roughly parallel
when he checked the map. Then it is possible that Lewis held all of the three
inconsistent beliefs since he never put these three situations and beliefs together
and considered them as a whole.
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Thus, as Lewis writes: “So each sentence in an inconsistent triple was true
according to my beliefs, but not everything was true according to my beliefs.
Now, what about the blatantly inconsistent conjunction of the three sentences?
I say that it was not true according to my beliefs. My system of beliefs was
broken into (overlapping) fragments. Different fragments came into action in
different situations, and the whole system of beliefs never manifested itself all
at once... The inconsistent conjunction of all three did not belong to, was in
no way implied by, and was not true according to, any one fragment. That is
why it was not true according to my system of beliefs taken as a whole. Once
the fragmentation was healed, straightway my beliefs changed: now I think that
Nassau Street and the railroad both run roughly northeast-southwest.” [32]

From the fragmentationalism point of view, Lewis’ example can be explained
naturally. Since Lewis’ belief system is fragmented, he may use fragment 1 to
form the belief that Nassau Street ran roughly east-west and use fragment 2
to form the belief that the railroad nearby ran roughly north-south and use
fragment 3 to form the belief that the two were roughly parallel. The three
beliefs are formalized reasonable based on the corresponding fragments of the
epistemic state. But when Lewis puts the three fragments together and checks
them as a whole, he can realize that the three beliefs are inconsistent.

A good motivation for fragmentationalism is that non-omniscient agents only
have limited cognitive capacity [54, 55]. We may receive a very large amount
of information, but can only process part of the information we get, due to
computational, conceptual and time limitation. Given a specific situation, we
only need to focus on the information pieces that are relevant to the situation.
For example, in a English exam we need not to think about Fermat and in a
maths exam we need not to think about Shakespeare, although we have the
information of both of them.

The approach of fragmentation blocks at least two kinds of inferences:

• Closure under conjunction: A conjunction is believed if all the conjuncts
are believed. Formally, this is noted as Bϕ∧Bψ ⊨ B(ϕ∧ ψ). It says that
if the agent believes both ϕ and ψ, then the agent also believes ϕ ∧ ψ. In
short, the agent can always put beliefs together.

• Closure under doxastic implication: A consequence is believed if the im-
plication and the antecedent are believed. Formally, this is noted as
Bψ ∧ B(ψ → ϕ) ⊨ Bϕ. It means that if the agent believes both ψ and
ψ → ϕ, then the agent also believes ϕ. Note that it is different to Closure
under material implication, since the latter only requires the implication
to be valid but not believed.

Closure under conjunction says that if the two conjuncts are believed, then
the conjunction is believed. This is invalid according to fragmentationalism
since the two conjuncts can be believed in different fragments and there may
be no fragments based on which the conjunction is believed. This is just what
Lewis’ example indicates. Closure under doxastic implication is also invalid
due to the same reason. The agent can use one fragment to believe ψ and use
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another fragment to believe ψ → ϕ, but there may be no fragment based on
which the agent believes ϕ.

However, it is also noticeable that the fragmentationalism still remains con-
troversial and has been criticized by Norby and Jago [36, 30]. They pointed out
that the fragmentation approach is ad hoc. Although it solves some problems,
the theory itself does not explain why the agent’s epistemic state should be frag-
mented in one way rather than another way. In other words, the fragmentation
is trivial, since it only says that the agent forms a belief in one circumstance
by one fragment but says nothing about why the agent forms the belief in the
circumstance by the fragment and nothing about the connections between be-
liefs, circumstances and fragments. As Norby [36] writes: “The fragmentational
theory won’t work, then, and it won’t work for the simple reason that the the-
ory makes it too easy for a mental state to have the connection to thought and
behavior that belief is supposed to have. That’s setting the bar too low. It is far
from clear that the notion of a ‘fragment’ serves any purpose except as an aid
to imagination, a way to more simply restate the phenomenon that we’re trying
to understand: that an agent can manifest a belief in one set of circumstances
and not another.”

Despite the criticism, fragmentationalism remains a valuable tool for solving
the logical omniscience problem. The subsequent chapters of this thesis will still
adhere to the idea of fragmentation but will also strive to refine it, by linking
fragmentation to the agent’s belief system. The details of our solution and how
it addresses the critics’ concerns will be explained and examined in the next
chapters.

1.3 Epistemic modality and epistemic contradic-
tion

Epistemic modality pertains to the application of alethic modal operators in
epistemic contexts. The epistemic modalized sentences, such as “I believe/know
/suppose/think that it is possibly/necessarily/might/may that...” are very spe-
cial, since they appear to bridge the gap between the epistemic state and the
real world, talking about both what the agent supposes to be true and what
might be true. This also introduces some unique challenges [49, 53, 24].

In particular, the use of alethic modal operators within a doxastic context can
give rise to problems that are similar to, but also different to Moore’s Paradox
[34, 17]. This happens when one asserts the doxastic possibility of a proposition
conjoined with its negation, like “I believe that it’s raining and possibly it’s not
raining”. Consider the example from Yalcin [53]:

• It is raining and it might not be raining

• It is raining and possibly it is not raining

• It is not raining and it might be raining

10



• It is not raining and possibly it is raining

According to Yalcin [53], “all of these sentences are odd, contradictory-sounding,
and generally unassertable at a context. They all contain modal operators
which, in these sentential contexts, are default interpreted epistemic.” And he
calls this phenomenon “epistemic contradiction”.

We use the S5 alethic modal operator 2 and interpret it as “necessary”. We
use 3 as an abbreviation of ¬2¬ and interpret it as “possibly” or “might”. Then
all of the above sentences have the form ϕ∧3¬ϕ. These sentences themselves are
satisfiable in a given logical system, but the above example shows that a human
agent cannot form beliefs towards the sentences since they are epistemically
contradictory. Formally, epistemic contradiction requires B(ϕ ∧ 3¬ϕ) to be
contradictory. This is also very similar to the form of Moore’s sentence which
says that ϕ ∧ ¬Kϕ cannot be known [34], where K is the knowledge operator
and Kϕ means that the agent knows ϕ. Thus, it is argued that the reason to
accept the principle of epistemic contradiction is the same as the reason to reject
knowing a Moore’s sentence, since the former entails the latter: if I believe it is
possibly not ϕ, then I don’t know ϕ.

But from another perspective, the issue of epistemic contradiction is different
from the Moore paradox. Consider the following sentences:

• Suppose that it is raining and I don’t know that it is raining

• Suppose that it is raining and it might not be raining

The first sentence has no problem and can appear in a daily conversation, for
instance, one may say “suppose that it is raining and I don’t know that it is
raining, then I would get wet when I step out of the building”. In contrast,
the second sentence is not acceptable or not even intelligible, since one cannot
suppose something contradictory-sounding. It seems that the Moore’s sentence
can be embedded in a supposition context while the epistemic contradiction
cannot. This is why people like Yalcin propose to treat epistemic contradiction
and Moore’s sentence differently [53].

There are several existing theories that address epistemic modals and the
problem of epistemic contradiction. Authors like Yalcin [53], Hawke and Steinert-
Threlkeld [24], and Aloni [1] have provided valuable insights and potential so-
lutions. However, there remains substantial room for further exploration of
epistemic modalities, particularly regarding the interaction between epistemic
modality and other logical omniscience inferences.

In this thesis, we initially focus on the doxastic alethic modality, dealing
with the sentences like “I believe that it might be„” or “I believe that it must
be...”. The following list includes some features for doxastic alethic modality
that will be investigated in this thesis:

• Epistemic contradiction: A belief in an epistemic contradiction leads to
contradiction. Formally, this is noted as B(ϕ ∧3¬ϕ) ⊨ ⊥, where ⊥ is the
abbreviation for “falsum” or “contradiction”.
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• Belief to necessity: A belief in n necessity leads to necessity. Formally,
this is noted as B2ϕ ⊨ 2ϕ. It says that if the agent believes that ϕ is
necessary, then ϕ is necessary.

• Apriori Omniscience: All necessities are believed. Formally, this is noted
as 2ϕ ⊨ B2ϕ. It says that if ϕ is necessary, then the agent believes that
ϕ is necessary.

A good theory for doxastic alethic modality should uphold the first princi-
ple above, which involves treating the belief towards epistemic contradiction as
contradictory itself. The last two principles should be deemed invalid. Due to
the non-factive nature of belief, believing a proposition to be necessary does not
make the proposition necessary in reality. Also, human agents are not apriori
omniscient, implying that they may not hold beliefs in all necessary truths. No-
tice that these aspects are not discussed or not solved in usual hyperintensional
systems, such as in standard awareness semantics [14] or in impossible world
semantics [35].

1.4 Overview of results in this thesis
Inspired by recent works of Berto, Özgün and Hawke [5, 7, 37, 23, 8], this thesis
aims to develop a logic that achieves hyperintensional belief through the use of
the concept of topic-relevance.

The main goal of this thesis is to create a doxastic logic and to partially
solve the problems of logical omniscience, fragmentation and epistemic modal-
ity in one uniform system. This thesis aims to introduce a novel method for
achieving hyperintensional outcomes. The underlying notion is that to believe
in a proposition, say A, we only need to concentrate on the information pieces
that are relevant to A–the A-relevant parts of our epistemic state. This implies
that only specific portions of our epistemic state are utilized, indicating that
the epistemic state is fragmented. Hence, topics can segment the belief set into
fragments, thereby gaining the anticipated benefits of fragmentation without
introducing it as a primitive element in the model.

This approach also allows for a unique yet intuitive interpretation of necessity
operators within doxastic contexts, interpreting “Believe that A is necessary” as
“Believe A after considering it thoroughly” . While to believe a proposition we
only need to check the relevant parts of our epistemic state, to believe that the
proposition is necessary we need to check the whole epistemic state, exhausting
our epistemic ability. The latter requires that the proposition is topic relevant
to all the parts of the epistemic state, which can be modeled by an operator
representing full comprehension or thorough understanding. More philosophical
discussions will be provided in chapter 2.

Building on these ideas, the expected logic in chapter 3 is weaker than stan-
dard awareness logic so that it allows us to avoid some of the criticism on frag-
mentationalism and to get a more nuanced interpretation of doxastic alethic
modality. The main result of the thesis is in chapter 4, where we show the
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hyperintensional properties of our logic. We provide a sound axiomatisation
for our logical system in chapter 5. Connections between this logic and other
theories of doxastic attitudes will be investigated in chapter 6.
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Chapter 2

From topic-relevance to
hyperintensionality

2.1 Topics and the topic-sensitive model
“Topicality” is a concept that has gained significant attention from scholars in
various fields, including philosophy, linguistics, and logic (Fine [15]; Humber-
stone [29]; Roberts [40]; Yablo [52]; Fine [16]; Berto [5]). The majority of
scholars identify the topic or aboutness of a sentence as the subject matters it
addresses or concerns, and it is widely accepted that this kind of subject matters
is the key to deal with the logical omniscience problems.

Recently, a series of hyperintensional systems based on topic have been de-
veloped by Berto, Hawke and Özgün [5, 7, 8, 37, 23]. In 2019, Berto [5] originally
developed a topic-sensitive model based on a mereology structure of topics. Ac-
coring to Berto, the mereology structure of topics can be defined as:

Definition 1. A mereology of topic is a tuple T = ⟨T,⊕⟩

• T is a non-empty set of topics,

• ⊕ : T × T → T is a binary operator on topics representing topic fusion,
which is idempotent, commutative and associative.

The fusion x⊕ y of x and y is the smallest topic that contains the topic of x
and y. With the topic fusion operator ⊕, we can further define a binary relation
≤ for topic-inclusion on T as: for all x, y ∈ T , x ≤ y if and only if x ⊕ y = y.
Then ⟨T,⊕⟩ is a join semilattice and ⟨T,≤⟩ is a poset.

This structure allows topics to possess proper parts, enables distinct topics
to share common parts, and permits one topic to be included within another,
wherein every part of the former is also a part of the latter. Moreover, there
is a topic assignment function in the topic-sensitive system that assigns topics
to propositions and epistemic states. Thus, both the topics of propositions and
the topic-inclusion relationship between epistemic state and proposition can be
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modeled. As a direct result, logically or necessarily equivalent propositions can
be different since they may be about different topics. Later works of Hawke
and Özgün also shows that Berto’s model can deal with not only logical omni-
science problems [23], but also dynamic hyperintensional updates [37], indicative
conditionals [7] and imagination based on fragmentation [8].

Berto and his co-authers have shown that their topic-sensitive system can
deal with a large amount of problems caused by hyperintensionality. However,
in [23], they also found that mathematical necessity can give rise an difficulty
that can hardly be solved in their model. Formally, they found that

2ϕ ∧B(ϕ ∨ ¬ϕ) ⊨ 2ϕ

is valid in their system, but this is not a desired result. For example, Fermat’s
Last Theorem is necessarily true, and anyone that heard the name of the theorem
believes that the theorem is either true or false. But one may not believe that the
theorem is true if one hasn’t heard that the theorem is proved or one doesn’t even
understand the theorem. We call this the problem of mathematical knowledge.

In this thesis, we build upon the successful approach pioneered by Berto by
adopting the topic-sensitive model to formalize doxastic attitudes. The novelty
lies in combining their methodology with fragmentation and model-update. The
latter is a technique from dynamic epistemic logic [19, 3], and it can be used to
constrict a model to a smaller domain. In this way, the logic in this thesis can
tackle the unresolved issues, such as the problems of mathematical necessity and
epistemic modality. To distinguish my theory from existing ones, I will employ
the term “topic-relevant” instead of “topic-sensitive” moving forward.

2.2 Fragmentation generated by topic-relevance
As we discussed in section 1.2, fragmentation is a popular approach for dealing
with logical omniscience problems [12, 55]. Fragmentationalism proposes that
agents’ epistemic sets are divided into fragments and only some of them are used
once a time. Given that a non-omniscient agent only has limited computational,
conceptual and reasoning capacities, he only considers some of rather than all the
information he can access. But then, one may question why the agent chooses to
consider some worlds while ignore others and what are the connections between
beliefs, circumstances and fragments? This just what philosophers including
Norby [36] and Jago [30] are criticising.

Here we want to provide a direct answer to the above question: the agent
only considers the relevant information with respect to his epistemic state. And
topics can just play the role of determining which information pieces are relevant.
Adopting the approach of modelling information and information states from
dynamic semantics [11, 20], in this thesis we use sets of possible worlds to
represent information pieces. Intuitively, such an information piece means that
the agent has information that the actual world is in this set of worlds. Note
that the agent may possess different and even inconsistent information pieces
and these information pieces may be about different topics.
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We propose that the epistemic state of an agent is divided into different parts,
which can be regarded as different information pieces. But notice that these
information pieces are not fragments yet. With the help of the topic-relevance
model and the topic assignment function, we can assign each proposition a
topic and each information piece a set of topics. Then we get the relevance
relation between propositions and information pieces. To be specific, when an
agent is considering a propositional atom p, he just takes the union of all the
p-relevant information pieces as a relevant fragment and checks if p is true over
this fragment. And the other parts of his epistemic state are just irrelevant
and be ignored. As for complex propositions, the agent just takes unions or
intersections of information pieces as the corresponding relevant fragment, with
respect to the structure of the proposition. For instance, if the relevant fragment
of the proposition p is X and the relevant fragment of the proposition is Y , then
the relevant fragment of p∧ q is just the X ∪Y , since both of the fragments are
relevant to a conjunct of the conjucntion. The details will be explained formally
in section 3.3. In short, aiming to take the ideal and technical advantages of
the fragmentation approach while avoid the philosophical disadvantages, we no
longer treat fragmentation as a primitive element in the model, but as something
generated by topics. Fragments here are just unions or intersections of relevant
information pieces.

Thus, by tagging information pieces with topics, the agent can fragment his
epistemic state naturally. The obtained fragmentation is generated directly by
topic-relevance, which means that the connection from beliefs to the fragments
that form the beliefs and to the reasons for choosing the fragments is obvious and
clear. In this way, we achieve the desired advantages of fragmentation without
directly introducing it as primitive element in the model. Unlike traditional
fragmentation, the connection between circumstances, fragments and beliefs are
well explained by topic-relevance. Hence, the theory can overcome the criticism
from Norby [36] and Jago [30].

2.3 Relevance, awareness and comprehension
In the last section, we see that a proposition is relevant to an information piece
if and only if the information piece includes the topic of the proposition. In a
more general sense, we also say that a proposition is topic-relevant to the agent
if there is a relevant fragment generated by the agent’s epistemic state. One
may feel that this latter notion is very similar to the notion of awareness in
awareness logic [14, 21, 41]. Though they have close connections, awareness and
relevance do have a radical difference. Awareness is more like a local concept
describing whether the agent is aware of something in a world. In contrast,
topic-relevance here is about the agent’s opinion about a proposition based on
his epistemic state, which is global. In short, topic-relevance is about something
of the epistemic state while awareness is about something in a world.

It is also very easy to distinguish awareness from relevance in daily conver-
sation. An agent cannot think or know or believe that he himself is not aware
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of a proposition, since these epistemic attitudes already assume the awareness
of the proposition. But one can easily think that the proposition is irrelevant:

Example 2. A student studying cooking enters a wrong room, which is a math
classroom, but he does not realize that. Then he asks his teacher in maths class
about how to cook lamb shanks.

In this example, the teacher may answer that “I think cooking lamb shanks
is irrelevant” and cannot say that “I think I am not aware of cooking lamb
shanks”. This is because the teacher is already aware of lamb shanks when the
student asks the question. But whether the student asks the question or not,
lamb shanks must not be relevant, since it is a maths classroom.

However, the awareness discussed above is just a weak version of awareness
in early versions of awareness logic [14]. In some later versions of awareness logic
as in [41, 46], for an agent to be explicitly aware of a proposition, we require
the agent to believe that he is aware of the proposition, that is to require the
agent to be aware of the proposition in all the worlds in his epistemic state. In
other words, the agent is not only aware of the proposition in the current world
but also aware of the proposition based on the epistemic state. Obviously, the
latter notion of awareness is stronger than the former one.

This thesis proposes to treat this strong version of awareness as another
epistemic attitude, which I call thorough comprehension. To thoroughly com-
prehend a proposition is different to just saying that there is one information
piece to which the proposition is topic-relevant. While the latter only requires
the agent to consider the topic of the proposition, the former indicates a clearer
understanding of the proposition. Thorough comprehension requires that all
information pieces in the epistemic state are relevant to the proposition, which
means that the agent considers the proposition in all the possible worlds he can
access, exhausting his epistemic capacity. Thorough comprehension means that
the agent has already checked his whole epistemic state to grasp the proposition
and cannot have a clearer understanding in the future.

Moreover, this thesis proposes that thorough comprehension is an ideal tool
to interpret doxastic necessity. To be specific, we propose: saying that the agent
believes that p is necessarily true is the same as saying that the agent compre-
hends p thoroughly and believes that p is true. This is because as human agents
with only limited epistemic capacity, we cannot access any real or ontological
necessities. We say we believe that a proposition is necessary only because we
are extremely confident that it is true, which only means that we believe that it
is true even after we have considered it carefully and have comprehended it thor-
oughly. In the next chapter, thorough comprehension will be defined formally
and be represented by the comprehension operator U .

In summary, this thesis will not use the world-based notion of awareness. We
use the term topic-relevance to describe the relationship between propositions
and (unions of) information pieces. We treat comprehension as a global notion
based on an agent’s whole epistemic state.
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Chapter 3

Logic of topic-relevant belief
LTB

In this chapter, we introduce our logic of topic-relevant belief, which is denoted
as LTB . We present and explain all the notions and the formal definitions used
in LTB .

3.1 Syntax of LTB
The syntax of logic of topic-relevant belief LTB is an extension of standard epis-
temic logic that includes an operator U for complete comprehension or thor-
ough understanding. This comprehension operator requires the proposition to
be topic-relevant over all parts of the epistemic state, which means that the
agent can check the whole epistemic state and exhaust his capacity to form a
belief about the proposition. To construct the language, we begin by selecting
a countable set P of proposition letters.

Definition 2 (Language ). The language of LTB is defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | 2ϕ | Bϕ | Uϕ

where p ∈ P, Bϕ means that the agent believes ϕ and Uϕ means that the agent
comprehends ϕ thoroughly. Other operators are the same as in standard modal
logics.

In addition, we will also use the operators for disjunction ∨, material impli-
cation → and possibility 3. They are defined by the primitive operators in the
classic way: ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ), ϕ→ ψ := ¬(ϕ ∧ ¬ψ), 3ϕ := ¬2¬ϕ.

3.2 Model of LTB
Definition 3 (Model). A model of LTB is a tuple M = ⟨W,B, V, T , t⟩, such
that:
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• W is a nonempty set of possible worlds.

• B ⊆ P(W ) is a finite non-empty set of non-empty sets of possible worlds.
B represents the agent’s epistemic state and the elements in B are informa-
tion pieces of the agent, from which fragmentation generates. It satisfies
the condition that B is nonempty downward closed under intersection:
∀f1, f2 ∈ B, if f1 ∩ f2 ̸= ∅ then f1 ∩ f2 ∈ B. Moreover, we denote b =

⋃
B,

and we call it the epistemic set.

• V is a world-dependent valuation function V :W × P → {1, 0}.

• T = ⟨T,⊕⟩ is a topic-sensitive structure. The topic-inclusion relation
defined by ⊕ is noted as ≤.

• t : Prop∪B → T ∪P(T ) is a function assigning topics to each proposition
and sets of topics to each information piece, which is similar to the function
in [8]. It satisfies the condition that all operators are topic transparent:
t(ϕ) = ⊕V ar(ϕ) = t(p1)⊕ t(p2)⊕ ...⊕ t(pk), where V ar(ϕ) = {p1, ...pk} is
the set of all propositional atoms in ϕ. Additionally, for any information
piece f , we denote ⊕t(f) as the fusion of all topics in t(f).

B represents the agent’s epistemic state, which is a finite set of sets of possi-
ble worlds. These sets of possible worlds are information pieces in the epistemic
state. Considering a specific proposition, the agent only uses relevant infor-
mation pieces to form a fragment and the agent checks the proposition only
on the fragment. Here we require the epistemic state to have the nonempty
intersection closure property, which means that the nonempty intersections of
information pieces are also information pieces. Intuitively, this indicates that
we can always get a new information pieces if we put two different consistent
information pieces together. The closure property guarantees proposition 1 in
the next section. Moreover, we denote the union of all the information pieces,⋃
B, as b and call it the epistemic set.
The topic assignment function t assigns topics to propositions and sets of

topics to information pieces. With this, we can define the topic-relevance re-
lation between propositions and information pieces. We say a proposition ϕ is
relevant to an information piece f if and only if t(ϕ) ≤ ⊕t(f). In addition, we
require all the operators in the logic to be topic transparent, which means that
topic-relevance is only generated by the proposition atoms. This is a well moti-
vated requirement that appears in many hyperintensional theories, see [21, 8] for
similar requirements and detailed arguments. Notice that we choose to adopt
this general transparency condition only for simplicity, more fine-grained re-
quirements such as t(ϕ) ≤ t(Bϕ) are also well-justified and can be adopted in
our theory. But since they are not necessary for our logic, we do not discuss
them further.

We have already defined topic-relevance and information pieces in this sec-
tion. But notice that these information pieces are still not the fragments we
mentioned in chapter 1 and 2. In the next section, we will see how the agent
uses relevant information pieces to form a fragment.
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3.3 Relevant domain
To illustrate how to form fragments through information pieces, we need to
define a notion called relevant domain. Given a specific proposition, a relevant
domain of the proposition is a tuple, consisting of two elements: a positive
relevant set and a negative relevant set. The first element is a set of relevant
worlds, which we call a positive relevant set, denoting the set of worlds the agent
needs to check when he wants to check the proposition. The second element is a
set of worlds which we call a negative relevant set, denoting the set of worlds the
agent needs to check when he wants to check the negation of the proposition.
Here we need both positive and negative relevant domain to achieve doxastic
double negation elimination B¬¬ϕ ↔ Bϕ. If we only have positive relevant
domain then we get a logic fragment in which doxastic double negation fails,
about which we will not discuss in this thesis.

The relevant set of each proposition is just the relevant fragment of the
epistemic state of the agent that the agent needs to check, generated by the topic
of the proposition. Relevant sets are formed by information pieces recursively
as following:

Definition 4. G iven a model M = ⟨W,B, V, T , t⟩, the relevant domain of a
formula ϕ is a binary tuple DM[ϕ] = ⟨DM[ϕ]1, D

M[ϕ]2⟩. When the model is
fixed, we usually abbreviate it as D[ϕ] = ⟨D[ϕ]1, d[ϕ]2⟩ for simplicity. It is
defined inductively as follows:

D[p] = ⟨
⋃
{f ∈ B | t(p) ≤ ⊕t(f)},

⋃
{f ∈ B | t(p) ≤ ⊕t(f)}⟩

D[¬ϕ] = ⟨D[ϕ]2, D[ϕ]1⟩
D[ϕ ∧ ψ] = ⟨D[ϕ]1 ∪D[ψ]1, D[ϕ]2 ∩D[ψ]2⟩
D[Uϕ] = D[Bϕ] = D[ϕ]
D[2ϕ] = ⟨b,D[ϕ]2⟩

This says that,

• The positive and negative relevant sets of a propositional atom are the
same, which is the union of all the information pieces that include the
topic of the atom.

• The positive relevant set of a negation ¬ϕ is the negative relevant set of
ϕ. The negative relevant set of a negation ¬ϕ is the positive relevant set
of ϕ. This guarantees doxastic double negation elimination B¬¬ϕ↔ Bϕ.

• The positive relevant set of ϕ ∧ ψ is the union of the positive relevant
set of the ϕ and the positive relevant set of ψ. The negative relevant set
of ϕ ∧ ψ is the intersection of the negative relevant set of the ϕ and the
negative relevant set of ψ. Briefly, to consider a conjunction we need to
consider the union of the fragments of all the conjuncts, and to consider
the negation of a conjunction, we need to consider the intersection of the
fragments of all the conjuncts.
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• The relevant domain of belief Bϕ and comprehension Uϕ is the relevant
domain of ϕ. In this way, we have positive introspection for belief and
comprehension in the logic, which means that if the agent believes a propo-
sition then he believes that he believes the proposition and if the agent
comprehends the proposition then he comprehends that he comprehends
the proposition.

• The positive relevant set of necessity 2ϕ is the whole epistemic set. The
negative relevant set of necessity 2ϕ is the negative relevant set of ϕ.
This leads to the desired interpretation for necessity operator mentioned
in section 2.3. Consequently, several problems can be solved, which will
be shown in chapter 4.

In short, the positive relevant sets are the fragments we want. Both positive
and negative relevant sets are formed by the information pieces, or to be clearer,
they are unions of information pieces. Every relevant set is a union of some
elements in B.

Proposition 1. Given a model M = ⟨W,B, V, T , t⟩, for any formula ϕ, if D[ϕ]1
is nonempty, then there is a nonempty set of information pieces S1 ⊆ B such
that

⋃
S1 = D[ϕ]1; and if D[ϕ]2 is nonempty, then there is a nonempty set of

information pieces S2 ⊆ B such that
⋃
S2 = D[ϕ]2.

Proof. We apply induction on the structure of ϕ:

• Base step: ϕ = p, where p is a propositional atom. Assume the relevant
sets are nonempty. Then D[p]1 = D[p]2 =

⋃
{f ∈ B | t(p) ≤ ⊕t(f)} ̸= ∅.

Then let S = {f ∈ B | t(p) ≤ ⊕t(f)}, we have S is non-empty and
D[p]1 = D[p]2 =

⋃
S.

• Induction step:

– ϕ = ¬ψ. Assume the relevant sets are nonempty. By definition 4,
We have D[ϕ]1 = D[¬ψ]1 = D[ψ]2 and D[ϕ]2 = D[¬ψ]2 = D[ψ]1.
By the induction hypothesis, there is a nonempty S1 ⊆ B such that⋃
S1 = D[ψ]1 and a nonempty S2 ⊆ B such that

⋃
S2 = D[ψ]2.

Thus there is a nonempty S1 ⊆ B such that
⋃
S1 = D[¬ψ]2 and a

nonempty S2 ⊆ B such that
⋃
S2 = D[¬ψ]1.

– ϕ = ψ1∧ψ2. Assume the relevant sets are nonempty. By definition 4,
we have D[ψ1 ∧ ψ2]1 = D[ψ1]1 ∪D[ψ2]1 and D[ψ1 ∧ ψ2]2 = D[ψ1]2 ∩
D[ψ2]2. By the induction hypothesis, there is a nonempty S1 ⊆ B
such that

⋃
S1 = D[ψ1]1, a nonempty S2 ⊆ B such that

⋃
S2 =

D[ψ2]1, a nonempty S3 ⊆ B such that
⋃
S3 = D[ψ1]2, a nonempty

S4 ⊆ B such that
⋃
S4 = D[ψ2]2. Thus, we have a nonempty S1 ∪

S2 ⊆ B and
⋃
(S1 ∪ S2) = D[ψ1 ∧ ψ2]1. We define S0 = {f1 ∩

f2 | f1 ∈ S3 & f2 ∈ S4 & f1 ∩ f2 ̸= ∅}. This set includes all
nonempty intersections of information pieces from S3 and S4, which
by nonempty intersection closure property of B in definition 3, are
also in B. Then we have a nonempty S0 ⊆ B and

⋃
S0 = D[ψ1∧ψ2]2.
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– ϕ = Bψ or ϕ = Uψ. Assume the relevant sets are nonempty. Then
by definition 4 D[ϕ]1 = D[ψ]1 and D[ϕ]2 = D[ψ]2. By the induction
hypothesis, there exist nonempty sets of information pieces S1, S2 ⊆
B such that

⋃
S1 = D[ψ]1 and

⋃
S2 = D[ψ]2. It follows that

⋃
S1 =

D[Uψ]1 = D[Bψ]1 and
⋃
S2 = D[Uψ]2 = D[Bψ]2.

– ϕ is 2ψ. Assume the relevant sets are nonempty. Then, by definition
4, D[2ψ]1 = b and D[2ψ]2 = D[ψ]2. By the induction hypothesis,
there exist a nonempty set of information pieces S2 ⊆ B such that⋃
S2 = D[ψ]2. Then we can let S1 = B, and we have

⋃
S1 = b =

D[2ψ]1 and
⋃
S2 = D[2ψ]2.

Therefore, if a relevant set is nonempty, then it is a union of some information
pieces.

Moreover, we can also see the connection between the topic-inclusion relation
and the relevant domain. If a proposition is relevant to an information piece,
then the information piece must be a subset of the relevant domain of the
proposition.

Proposition 2. Given a model M = ⟨W,B, V, T , t⟩, for any formula ϕ and any
information piece f ∈ B, if t(ϕ) ≤ ⊕t(f), then f ⊆ D[ϕ]1 and f ⊆ D[ϕ]2.

Proof. Given a model M = ⟨W,B, V, T , t⟩ and f ∈ mB. Assume t(ϕ) ≤ ⊕t(f).
We apply induction on the structure of ϕ to show that f ⊆ D[ϕ]1 and f ⊆ D[ϕ]2:

• Base step: ϕ = p, where p is a propositional atom. Then D[p]1 = D[p]2 =⋃
{f ∈ B | t(p) ≤ ⊕t(f)}. Thus, f ⊆ D[p]1 and f ⊆ D[p]2.

• Induction step:

– ϕ = ¬ψ. Then D[¬ψ]1 = D[ψ]2 and D[¬ψ]2 = D[ψ]1. Since logical
connectives are topic transparent, by induction hypothesis, we know
that f ⊆ D[ψ]2 and f ⊆ D[ψ]1. This means that f ⊆ D[ϕ]1 and
f ⊆ D[ϕ]2.

– ϕ = ψ1∧ψ2. Then D[ψ1∧ψ2]1 = D[ψ1]1∪D[ψ2]1 and D[ψ1∧ψ2]2 =
D[ψ1]2 ∩D[ψ2]2. Since logical connectives are topic transparent, by
induction hypothesis, we have f ⊆ D[ψ1]1, f ⊆ D[ψ2]1, f ⊆ D[ψ1]2
and f ⊆ D[ψ2]2. Thus we have f ⊆ D[ϕ]1 and f ⊆ D[ϕ]2.

– ϕ = Bψ or ϕ = Uψ. Assume the relevant sets are nonempty. Then
D[ϕ]1 = D[ψ]1 and D[ϕ]2 = D[ψ]2. Since logical connectives are
topic transparent, by induction hypothesis, we have f ⊆ D[ψ]1 and
f ⊆ D[ψ]2. Thus, f ⊆ D[ϕ]1 and f ⊆ D[ϕ]2.

– ϕ is 2ψ. Then D[2ψ]1 = b and D[2ψ]2 = D[ψ]2. By the induction
hypothesis, f ⊆ D[ψ]2. Also, f ⊆ b. Thus, f ⊆ D[ϕ]1 and f ⊆ D[ϕ]2.

Therefore, if an information piece is relevant to a proposition, then it is a subset
of the relevant domain of the proposition.
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3.4 Semantics of LTB
When the agent is considering a specific proposition, he only needs to check the
relevant parts of his epistemic state and the irrelevant parts of the epistemic
state are ignored. Then, from the perspective of the agent, the domain of the
model shrinks to these relevant parts, which is the positive relevant set. With
the help of the technique of model-update from dynamic epistemic logic [48, 3],
we can restrict the original model to the relevant set. Under this operation, the
domain of the updated model becomes the relevant set while other elements of
the model are restricted to the domain. The updated model is just the model
that the agent needs to check when he is considering the proposition.

Definition 5. Given a model M = ⟨W,B, V, T , t⟩ and a proposition ϕ, ifD[ϕ]1 ̸=
∅, we define MD[ϕ] = ⟨WD[ϕ],BD[ϕ], VD[ϕ], T , tD[ϕ]⟩, where

• WD[ϕ] = D[ϕ]1

• BD[ϕ] = {f ∈ B | f ⊆WD[ϕ]}

• VD[ϕ](w, p) = V (w, p) for all w ∈WD[ϕ] and p ∈ P

• TD[ϕ] = T

• tD[ϕ](x) = t(x) for all x ∈ Prop ∪ BD[ϕ].

This new model, MD[ϕ], can be regarded as a subjective internal model
constructed by the agent. We say it is subjective since the domain of the model
is based on a relevant set, and the latter is based on the epistemic state of the
agent, which is fully subjective. We say it is internal since the updated model
is a submodel of the original model M and can be constructed only within an
existing model. The agent constructs and checks his own model based on his
epistemic state when he is considering the proposition. To see whether the agent
believes a proposition, we only need to see whether the proposition is globally
true in the model of the agent. The idea of working with an agent’s subjective
and internal model is in line with the ideas and approach developed by Aucher
[2] but is here used in the context of a hyperintensional setting.

Through the definition 5 above, we can see that the domain of the updated
model is the positive relevant set. The updated epistemic state is a subset of
the original epistemic state, and the elements of the updated epistemic state
are subsets of the updated domain. The topic-sensitive structure remains the
same. The updated truth valuation and the topic assignment function are just
the restricted versions of the original ones.

Proposition 3. Given a model M = ⟨W,B, V, T , t⟩, for any formula ϕ, if
D[ϕ]1 ̸= ∅, then BD[ϕ] ⊆ B and

⋃
BD[ϕ] ⊆ WD[ϕ] ⊆ b, where BD[ϕ] is the

updated epistemic state.

Proof. By definition 5, BD[ϕ] = {f ∈ B | f ⊆ WD[ϕ]}. Then for any f ∈ BD[ϕ],
f ∈ B and f ⊆ WD[ϕ]. Thus BD[ϕ] ⊆ B and

⋃
BD[ϕ] ⊆ WD[ϕ]. By proposition

1, there is a S ⊆ B such that D[ϕ] =
⋃
S. Since

⋃
S ⊆ b, we get D[ϕ] ⊆ b.
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Most importantly, we can prove that if the positive relevant set is non-empty,
then the updated model always exists, since the updated epistemic state is non-
empty.

Proposition 4. Given a model M = ⟨W,B, V, T , t⟩, for any formula ϕ, if
D[ϕ]1 ̸= ∅, then the updated model MD[ϕ] exists.

Proof. The assumption says that WD[ϕ] = D[ϕ]1 ̸= ∅. Given that the topic
sensitive model, the valuation function and the topic assignment function always
exist, we only need to prove that the updated epistemic state BD[ϕ] exists, that
is to prove that it is nonempty.

By proposition 1, we know there is a nonempty S ⊆ B such that
⋃
S = D[ϕ]1.

Since S is nonempty, there is at least an f ∈ S. Then f ∈ B and f ⊆ D[ϕ]1,
which also means that f ⊆ WD[ϕ]. Thus, by definition 5, f ∈ BD[ϕ] and then
BD[ϕ] is nonempty.

This proves that the nonempty relevant set acts as an effective domain for
the updated model and our method for model-update is consistent. We can see
that the updated model allows the agent to evaluate a proposition, using only
the information pieces which are relevant to the proposition, and ignore all the
irrelevant information.

With the notions of relevant domain and model-update, the semantic relation
called “support” for the logic of topic-relevance belief LTB can be defined.

Definition 6. Given a world w and a model M = ⟨W,B, VD[ϕ], T , t⟩ of LTB ,
the support relation ⊨ is defined inductively as follows:

M, w ⊨ p iff V (w, p) = 1
M, w ⊨ ¬ϕ iff M, w ̸⊨ ϕ
M, w ⊨ ϕ ∧ ψ iff M, w ⊨ ϕ and M, w ⊨ ψ
M, w ⊨ U(ϕ) iff ∀f ∈ B, t(ϕ) ≤ ⊕t(f)
M, w ⊨ 2ϕ iff ∀x ∈W , M, x ⊨ ϕ
M, w ⊨ Bϕ iff ∀x ∈ D[ϕ]1 ̸= ∅ and MD[ϕ], x ⊨ ϕ ∧ Uϕ

The semantics clauses for ¬, ∧ and 2 are standard. The semantics for U
says that the agent can understand or comprehend a proposition thoroughly if
and only if the topics of the proposition are included in the topics of all the in-
formation pieces of the agent, which means that the agent can employ the whole
epistemic state to consider the proposition. The clause for Bϕ indicates that
the agent believes a proposition if and only if ϕ (1) the positive relevant set of ϕ
is nonempty, and (2) the proposition is everywhere true and fully comprehended
in the model generated by the relevant domain.

Given proposition 4, (1) means that the updated model generated by the
positive relevant set of ϕ exists. (2) means that the agent only needs to check
the model to believe ϕ, which leads to the aforementioned interpretation for
belief, especially belief towards necessity in section 1.4. This leads to all the
desired advantages, including taking the good effect of fragmentation, explaining
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epistemic modality and invalidating mathematical necessity and all other forms
of logical omniscience. All these results will be explored in chapter 4.

Validity and logical consequence of LTB are defined in a standard way:

Definition 7. For any proposition ϕ,

• ⊨ ϕ iff for any world w and model M, M, w ⊨ ϕ

• Σ ⊨ ϕ iff for any world w and model M, if M, s ⊨ ψ for all ψ ∈ Σ, then
M, s ⊨ ϕ.

3.5 Hyperintension condition
In the above sections, we use the notion of topic-relevance to define the oper-
ators for belief, comprehension and necessity. But we still need a formula in
our logic to express sentences like “the agent is considering the proposition”.
This kind of sentences is called as the hyperintension condition here, which is
firstly introduced in section 1.1. In other words, given a proposition, we need
to find a formula to express that the proposition is topic-relevant. For the ex-
pected formula to depict the hyperintension condition, it should at least fulfil
the following two requirements.

Firstly, it should be compatible with the notion of relevant domain. Given
that the positive relevant set of a proposition is the agent’s epistemic fragment
towards the proposition, it follows that if the proposition holds relevance to
the agent, the positive relevant set of the proposition must not be empty. In
short, given a proposition ϕ, the expected formula should entail that D[ϕ] ̸= ∅.
Secondly, the expected formula should serve as a necessary condition for belief.
The agent can believe the proposition only when the proposition is relevant
to the agent. Thus, given a proposition ϕ, the expected formula should be a
consequence of Bϕ.

In light of the two requirements, we propose that B(Uϕ) is the appropriate
formula. This formula says that the agent believes that he understands or
comprehends the proposition thoroughly. It satisfies the first requirement as
such a belief presupposes the non-emptiness of the relevant domain.

Proposition 5. Given a model M = ⟨W,B, V, T , t⟩, a world w ∈ W and a
proposition ϕ, if M, w ⊨ B(Uϕ), then D[ϕ]1 ̸= ∅.

Proof. From M, w ⊨ B(Uϕ), we know that D[Uϕ]1 ̸= ∅. Since D[Uϕ]1 = D[ϕ]1,
we get D[ϕ]1 ̸= ∅.

It also satisfies the second requirement. This is because when an agent
believes a proposition, he also believes that he understands or comprehends the
proposition. In other words, agents believe that they understand their beliefs.

Proposition 6. Given a model M = ⟨W,B, V, T , t⟩, a world w ∈ W and a
proposition ϕ, if M, w ⊨ Bϕ, then M, w ⊨ B(Uϕ)
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Proof. Assume that M, w ⊨ Bϕ. Then D[ϕ]1 ̸= ∅ and for any w′ ∈ WD[ϕ]

MD[ϕ], w
′ ⊨ ϕ ∧ Uϕ. Given that D[ϕ]1 = D[Uϕ]1, we have D[Uϕ]1 ̸= ∅ and

MD[ϕ] = MD[Uϕ]. Thus, for any w′ ∈ WD[Uϕ], MD[Uϕ], w
′ ⊨ ϕ ∧ Uϕ, which also

indicates that MD[Uϕ], w
′ ⊨ Uϕ ∧ UUϕ. This means that M, w ⊨ B(Uϕ).

These show that BUϕ successfully meets the two requirements. In forth-
coming sections of this thesis, we will use it as the principle of hyperintension
condition.

It’s worth noting another special formula, B(ϕ∨¬ϕ), which is widely used in
the works of Berto et al. [8, 37, 23] as something similar to our hyperintension
condition. It is very natural to accept that the proposition is relevant to or is
considered by the agent if and only if the agent believes that it is either true
or false. However, in our logical system, it is possible that D[ϕ ∨ ¬ϕ] is empty
while D[ϕ] is nonempty, since D[¬ϕ]1 can be empty. Thus, we cannot deduce
B(ϕ∨¬ϕ) from Bϕ, indicating its non-compliance with the second requirement.
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Chapter 4

Hyperintensional properties
of LTB

In this chapter, we discuss the hyperintensional properties of LTB . We show
why the problems mentioned in section 1.1, section 1.2 and section 1.3 can be
solved in LTB . We provide philosophical explanations as well as formal proofs
of the results.

4.1 Logical omniscience revisited
The main goal of this thesis to provide a tenable solution for the logical omni-
science problems. In this section, we examine all the logical omniscience princi-
ples and their restricted versions mentioned in section 1.1. We use B(Uϕ) as the
hyperintension condition, which can be interpreted as sentences like “the agent
is considering about ϕ”.

4.1.1 Omniscience rule
The first principle is the omniscience rule ϕ ⊨ Bϕ. This principle should be
rejected because non-omniscient human agents cannot believe all the truths. Its
restricted version ϕ ∧ B(Uϕ) ⊨ Bϕ should also be rejected. The reason is that
we may not find a proposition to be true even when we are thinking about it.
Consider the following example:

Example 3. Tom is a 7 years old little boy. He can recognize the numbers
from 1 to 1000 and he can do addition and subtraction very well. But he is not
so good at multiplication yet, especially when the numbers are large.

Tom may be not sure about whether 37× 5 = 135 given that he is not good
at multiplication. Then, even though we ask him to check the equation and he
is also thinking hard about it, he may still not believe the equation is right.
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Fact 1. Omniscience rule ϕ ⊨ Bϕ and its restricted version ϕ ∧BUϕ ⊨ Bϕ are
invalid in LTB .

Proof. Counterexample: Construct a model M = ⟨W,B, V, T , t⟩ such that W =
{w1, w2}, B = {f} where f = {w2}, V (p) = {w1} and t(p) ≤ ⊕t(f). Then,
MD[Up] ⊨ Up since t(p) ≤ ⊕t(f). Thus, M, w1 ⊨ p ∧ BUp. But M, w1 ̸⊨ Bp,
since MD[p] ̸⊨ p.

4.1.2 Disjunction
The next princple is closure under disjunction introduction Bϕ ⊨ B(ϕ∨ψ). This
principle and its restricted version should be rejected because the agent cannot
put the disjuncts together and believe the disjunction if they are irrelevant. In
same example of Tom, assume that he believes that snow is white. Even though
he is considering whether 37× 5 = 135 is right, it is still very weird for him to
have a belief in the disjunction “either snow is white or 37× 5 = 135”.

Fact 2. Closure under disjunction introduction Bϕ ⊨ B(ϕ∨ψ) and its restricted
version Bϕ ∧BUψ ⊨ B(ϕ ∨ ψ) are invalid in LTB .

Proof. Counterexample: Construct a model M = ⟨W,B, V, T , t⟩ such that W =
{w1, w2}, B = {f1, f2} where f1 = {w1} and f2 = {w2}, V (p) = {w1} = V (q),
t(f1) = {t(p)} and t(f2) = {t(q)}. Then, MD[Uq] ⊨ Uq and MD[p] ⊨ p ∧ Up.
This means that M, w1 ⊨ Bp ∧ BUq. But M, w1 ̸⊨ B(p ∨ q), since D[p ∨ q]1 =
D[p]2 ∩D[q]2 = ∅.

4.1.3 Material implication and strict implication
The next two principles are closure under material implication Bψ ∧ (ψ → ϕ) ⊨
Bϕ and closure under strict implication Bψ ∧ 2(ψ → ϕ) ⊨ Bϕ. Since the
material implication is weaker than strict implication, if we reject the latter one
we also need to reject the former one. Closure under strict implication and its
restricted version Bψ ∧ BUϕ ∧ 2(ψ → ϕ) ⊨ Bϕ should be rejected, since the
agent may not realize that the consequent can be deduced from the antecedent.
In example 3, the schoolboy may not be sure whether 136 is bigger than 37× 5,
even though he believes the obvious proposition 136 is bigger than 135. This
is just because he cannot conduct the deduction or perform the calculation
37× 5 = 135.

Fact 3. Closure under strict implication Bψ∧2(ψ → ϕ) ⊨ Bϕ and its restricted
version Bψ ∧BUϕ ∧2(ψ → ϕ) ⊨ Bϕ are invalid in LTB .

Proof. Counterexample: Construct a model M = ⟨W,B, V, T , t⟩ such that W =
{w1, w2}, B = {f1, f2} where f1 = {w1} and f2 = {w2}, V (p) = V (q) =
{w1}, t(f1) = {t(p)} and t(f2) = {t(q)}. Then, we have MD[Uq] ⊨ Uq and
MD[p] ⊨ p ∧ Up. We also have M, w1 ⊨ 2(p → q). This means that M, w1 ⊨
Bp ∧BUq ∧2(p→ q). But M, w1 ̸⊨ Bq, since MD[q] ̸⊨ q.
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The above proof also shows the invalidity of closure under material implica-
tion and its restricted version.

Fact 4. Closure under material implication Bψ ∧ (ψ → ϕ) ⊨ Bϕ and its re-
stricted version Bψ ∧BUϕ ∧ (ψ → ϕ) ⊨ Bϕ are invalid in LTB .

Proof. The same counterexample in the proof of fact 3.

4.1.4 Logical consequence and logical equivalence
The last two principles are closure under logical consequence and closure under
logical equivalence. Since a logical equivalence must also be a logical conse-
quence, we can just focus on the latter. Closure under logical equivalence and
its restricted version should be rejected. The reason is the same as the reason
to reject closure under strict implication: in example 3, the school boy may not
realize that the proposition “37 × 5 is less than 136” is logically equivalent to
the proposition “135 is less than 136”.

Fact 5. Closure under logical equivalence and its restricted version are invalid
in LTB . Formally, ψ ⊨⊨ ϕ does not mean that Bψ ∧BUϕ ⊨ Bϕ.

Proof. Counterexample: Construct a model M = ⟨W,B, V, T , t⟩ such that W =
{w1, w2}, B = {f1, f2} where f1 = {w1} and f2 = {w2}, V (r) = {w1}, t(f1) =
{t(p), t(r)} and t(f2) = {t(q), t(r)}. Let ϕ = (p → p) ∧ r and ψ = (q → q) ∧ r,
then we know ϕ and ψ are logically equivalent. We also have MD[Uψ] ⊨ Uψ and
MD[ϕ] ⊨ ϕ∧Uϕ, which means that M, w1 ⊨ Bϕ∧BUψ. But M, w1 ̸⊨ Bψ, since
MD[ψ] ̸⊨ ψ.

The above proof also shows the invalidity of closure under logical conse-
quence and its restricted version.

Fact 6. Closure under logical consequence and its restricted version are invalid
in LTB . Formally, ψ ⊨ ϕ does not mean that Bψ ∧BUϕ ⊨ Bϕ.

Proof. The same counterexample in the proof of fact 5.

4.2 Fragmentation revisited
Our logic system is built upon the idea of fragmentation. Given a proposition,
the agent uses the relevant pieces of information in his epistemic state to form
a relevant domain, which is actually a fragment. Then, the agent only needs
to check the proposition in this fragment, i.e., to check the updated model
generated by the relevant domain. In this way, our theory can leverage the
advantages of fragmentation while avoiding some of the philosophical criticisms,
as fragments are constructed directly from the epistemic state and are not an
initial element in the model.
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4.2.1 Conjunction
As a result of fragmentation, our logic invalidates the principle of closure under
conjunction introduction Bϕ ∧ Bψ ⊨ B(ϕ ∧ ψ). This states that if the agent
believes all the conjuncts, then they should also believe the conjunction. At first
glance, this principle seems intuitive, but there are counterexamples in daily life.
Recall that in example 1 of section 1.2, Lewis believed that Nassau Street ran
roughly east-west, the nearby railroad ran roughly north-south, and the street
and the railroad were roughly parallel. Even though these three statements are
contradictory, Lewis could still believe them separately. This is because Lewis
never combined the three sentences into one belief in one epistemic fragment,
and so did not realize the contradiction. This example demonstrates that we
may not believe the conjunction even though we believe all the conjuncts.

The lottery paradox also provides a compelling reason to reject closure of
belief under conjunction introduction. The lottery paradox was first formulated
by Kyburg [31]. Assume there are a million tickets and only one winner in a
fair lottery, then the probability of “This ticket is a losing ticket” is very high.
Therefore, for any single given ticket, it is reasonable to believe that the ticket
will not win. If we label the tickets from number 1 to 1000000, then we believe
that “ticket 1 will not win”, “ticket 2 will not win”... “ticket 1000000 will not win”.
However, we do not believe the conjunction of all propositions, i.e., we do not
believe that no ticket will win, since there is always a winner. As argued by Foley
in [18], the lottery paradox shows that belief is not closed under conjunction.
In LTB , it is possible that the agent believes the conjuncts but does not believe
the conjunction. This is because different statements about the lottery tickets
may have different topics, for example when they are learned or observed in
different contexts by the agent, and the agent may have no relevant fragment
for the conjunction of all the statements about all the lottery tickets.

LTB invalidates closure under conjunction Bϕ ∧ Bψ ⊨ B(ϕ ∧ ψ). This is
because Bϕ ∧ Bψ only means that ϕ is everywhere true in D[ϕ]1 and ψ is
everywhere true in D[ψ]1. But this does not guarantee that ϕ∧ψ is everywhere
true in D[ϕ ∧ ψ]1 = D[ϕ]1 ∪D[ψ]1.

Fact 7. Closure under conjunction introduction Bϕ∧Bψ ⊨ B(ϕ∧ψ) is invalid
in LTB .

Proof. Counterexample: Construct a model M = ⟨W,B, V, T , t⟩ such that W =
{w1, w2}, B = {f1, f2} where f1 = {w1} and f2 = {w2}, V (p) = {w1}, V (q) =
{w2}, t(f1) = {t(p)} and t(f2) = {t(q)}. Then, we have MD[p] ⊨ p ∧ Up and
MD[q] ⊨ q ∧ Uq, which means that M, w1 ⊨ Bp ∧ Bq. However, we also have
MD[p∧q] ̸⊨ U(p∧q), since t(p∧q) ̸≤ ⊕t(f1) and t(p∧q) ̸≤ ⊕t(f2). Consequently,
M, w1 ̸⊨ B(p ∧ q).

However, LTB validates a weaker version of closure under conjunction intro-
duction, formally denoted as B(ϕ ∧ Uψ) ∧B(ψ ∧ Uϕ) ⊨ B(ϕ ∧ ψ). This closure
indicates that if the agent believes ϕ when considering ψ and believes ψ when
considering ϕ, then the agent believes ϕ∧ψ. This is a desired validity since if the
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agent already has a large fragment to consider and believes both the conjuncts,
then he should, of course, believe the conjunction.

Fact 8. Weak closure under conjunction introduction B(ϕ∧Uψ)∧B(ψ∧Uϕ) ⊨
B(ϕ ∧ ψ) is valid in LTB .

Proof. Assume that M, w ⊨ B(ϕ∧Uψ)∧B(ψ∧Uϕ). Then we have MD[ϕ∧Uψ] ⊨
ϕ ∧ U(ψ ∧ ϕ) and MD[Uϕ∧ψ] ⊨ ψ ∧ U(ψ ∧ ϕ). Since D[ϕ ∧ Uψ] = D[Uϕ ∧
ψ] = D[ϕ ∧ ψ], we also have MD[ϕ∧ψ] ⊨ ϕ ∧ ψ ∧ U(ψ ∧ ϕ), which means that
M, w ⊨ B(ϕ ∧ ψ).

Additionally, the classic principle of conjunction elimination B(ϕ∧ψ) ⊨ Bϕ
remains valid in LTB . This is also a desirable outcome, given that the agent
will believe the conjuncts if he believes the conjunction. This follows from the
axiom B1 in the given axiomatisation section 5.1

Fact 9. Closure under conjunction elimination B(ϕ∧ψ) ⊨ Bϕ is valid in LTB .

Proof. Assume that M, w ⊨ B(ϕ∧ψ). Then we have MD[ϕ∧ψ] ⊨ ϕ∧ψ∧U(ψ∧ϕ).
This means that for all information pieces f ∈ BD[ϕ∧ψ], t(ϕ) ≤ ⊕t(f). By
proposition 2, we get f ⊆ D[ϕ]1 for all f ∈ BD[ϕ∧ψ]. Thus,

⋃
BD[ϕ∧ψ] =

D[ϕ∧ψ]1 ⊆ D[ϕ]1. By definition 4, D[ϕ]1 ⊆ D[ϕ∧ψ]1. Thus, we have D[ϕ]1 =
D[ϕ ∧ ψ]1 and MD[ϕ] = MD[ϕ∧ψ]. Hence, we get MD[ϕ] ⊨ ϕ ∧ Uϕ, which means
that M, w ⊨ Bϕ.

4.2.2 Doxastic implication
Another result of fragmentation is that LTB invalidates the principle of closure
under doxastic implication. This principle indicates that if the agent believes
an implication and believes the antecedent of the implication, then he also be-
lieves the consequent of the implication. The reason to reject closure under
doxastic implication is similar to the reason to reject closure under conjunc-
tion introduction. If the agent cannot put the antecedent of the implication
and the implication together, then he just cannot identify that the former is
the antecedent of the latter, thereby blocking modus ponens deduction. We can
replace the “knows” by “believes” in the example of [10] to get a counterexample:

Example 4. Jones knows that Mary lives in New York, that Fred lives in
Boston and that Boston is in north of New York. Yet Jones fails to realize the
obvious: that Mary will have to travel north to visit Fred.

LTB invalidates closure under doxastic implication Bψ ∧ B(ψ → ϕ) ⊨ Bϕ,
because the positive relevant set of ψ → ϕ or the positive relevant set of ψ may
be smaller than the positive relevant set of ϕ.

Fact 10. Closure under doxastic implication Bψ ∧ B(ψ → ϕ) ⊨ Bϕ and its
restricted version Bψ ∧BUϕ ∧B(ψ → ϕ) ⊨ Bϕ are invalid in LTB .
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Proof. Counterexample: Construct a model M = ⟨W,B, V, T , t⟩ such that W =
{w1, w2, w3}, B = {f1, f2, f3} where f1 = {w1}, f2 = {w2} and f3 = {w3},
V (p) = {w1, w2}, V (q) = {w2}, t(f1) = {t(p)}, t(f2) = {t(p), t(q)} and t(f3) =
{t(q)}. Then, we have D[p]1 = f1 ∪ f2, D[p → q]1 = f2 and D[q]1 = f2 ∪ f3.
Then we have M, w1 ⊨ Bp∧B(p→ q), since MD[p→q] ⊨ (p→ q)∧U(p→ q) and
MD[p] ⊨ p ∧ Up. Since MD[Uq] ⊨ Uq, We also have M, w1 ⊨ BUq. This means
that M, w1 ⊨ Bp∧BUq∧B(p→ q). However, M, w1 ̸⊨ Bq, since MD[q] ̸⊨ q.

Thus, the modus ponens inference within a doxastic context is blocked in
LTB . This means that we achieve the expected results of fragmentation.

4.3 Epistemic modality revisited

4.3.1 Epistemic contradiction
The epistemic contradiction B(ϕ∧3¬ϕ) ⊨ ⊥ should be valid in the LTB logical
system, as it is counterintuitive to assume that we can believe or suppose a
proposition like “It’s raining and it might not be raining”. In LTB , this desired
outcome can be achieved. If the agent believes a proposition, then this proposi-
tion is globally true in the model generated by its relevant domain. Then there
can be no world is this model such that the negation of the proposition is true.

Fact 11. Epistemic contradiction B(ϕ ∧3¬ϕ) ⊨ ⊥ is valid in LTB .

Proof. Assume that M, w ⊨ B(ϕ∧3¬ϕ). ThenD[ϕ∧3¬ϕ]1 ̸= ∅ and MD[ϕ∧3¬ϕ] ⊨
ϕ ∧ 3¬ϕ. However, MD[ϕ∧3¬ϕ] ⊨ ϕ means that for all w′ ∈ D[ϕ ∧ 3¬ϕ]
we have MD[ϕ∧3¬ϕ], w

′ ⊨ ϕ, while MD[ϕ∧3¬ϕ] ⊨ 3¬ϕ means that there is a
w′′ ∈ D[ϕ ∧3¬ϕ] such that MD[ϕ∧3¬ϕ], w

′′ ⊨ ¬ϕ. Contradiction.

Thus, believing a proposition and the possibility of the negation of the propo-
sition is contradictory in LTB .

4.3.2 Necessity
Given that beliefs are non-factive, believing a proposition to be necessary does
not entail that the proposition is indeed necessary. In LTB , we have this desired
outcome, while this kind of doxastic modality is sometimes overlooked in other
hyperintensional theories.

LTB invalidates the inference from belief to necessity B2ϕ ⊨ 2ϕ. This is
because even though the agent believes that ϕ is necessary, ϕ can still be false
in a world outside the epistemic state.

Fact 12. Doxastic necessity to necessity B2ϕ ⊨ 2ϕ is invalid in LTB .

Proof. Counterexample: Construct a model M = ⟨W,B, V, T , t⟩ such that W =
{w1, w2}, B = {f} where f = {w1}, V (p) = {w1} and t(f1) = {t(p)}. Then
D[2p] = f and we have M, w1 ⊨ B2p since MD[2p] ⊨ p∧Up. However, M, w1 ̸⊨
2p since M, w2 ̸⊨ p.
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In the other direction, not all necessities are believed, as human agents are
not a priori omniscient. For instance, even though Fermat’s last theorem is a
necessary truth, a 20th-century mathematician might not believe it. In LTB ,
a priori omniscience in the form 2ϕ ⊨ Bϕ and its weak version in the form
2ϕ ∧ BUϕ ⊨ Bϕ are invalid. This is because, even though ϕ is necessary
and the agent believes ϕ, the agent may not believe 2ϕ as he may not fully
comprehend ϕ.

Fact 13. Apriori omniscience 2ϕ ⊨ B2ϕ and its weak version 2ϕ∧BUϕ ⊨ B2ϕ
are invalid in LTB .

Proof. Counterexample: Construct a model M = ⟨W,B, V, T , t⟩ such that W =
{w1, w2}, B = {f1, f2} where f1 = {w1} and f2 = {w2}, V (p) = {w1, w2},
t(f1) = {t(p)} and t(f2) = ∅. Then we have M, w1 ⊨ 2p ∧ Bp since MD[p] ⊨
p ∧ Up. However, M, w1 ̸⊨ U2p since t(2p) = t(p) ̸≤ ⊕t(f2). Given that
D[2p] = f1 ∪ f2 = W , we have M = MD[2p]. Thus, MD[2p] ̸⊨ U2p, which
means that M, w1 ̸⊨ B2p.

4.3.3 Necessity to comprehension
As discussed in section 2.3, this thesis proposes to interpret the sentences like
“the agent believes that the proposition is necessarily true” as “the agent believes
that the proposition is true even when he comprehends the proposition thor-
oughly”. Formally, this means that B2ϕ ⊨⊨ Bϕ∧Uϕ. This is valid in LTB , since
believing a necessity requires a thorough comprehension in the model generated
by the whole epistemic state, which is also the original model.

Fact 14. Doxastic necessity as comprehension: B2ϕ ⊨⊨ Bϕ ∧ Uϕ is valid in
LTB .

Proof. By definition 6 and definition 4, we have M, w ⊨ B2ϕ ⇔ MD[2ϕ] ⊨
2ϕ∧U2ϕ⇔MD[2ϕ] ⊨ ϕ∧Uϕ. Thus we only need to prove that MD[2ϕ] ⊨ ϕ∧Uϕ
⇔ M ⊨ Bϕ ∧ Uϕ.

From left to right, assume that MD[2ϕ] ⊨ ϕ ∧ Uϕ. This also means that
t(ϕ) ≤ ⊕t(f) for all f ∈ BD[2ϕ]. By proposition 2, we have f ⊆ D[ϕ]1 for all
f ∈ BD[2ϕ], which means that D[2ϕ]1 =

⋃
BD[2ϕ] ⊆ D[ϕ]1. By definition 4, we

have D[ϕ]1 ⊆ D[2ϕ]1. Thus D[ϕ]1 = D[2ϕ]1 and MD[2ϕ] = MD[ϕ]. Then, we
have MD[ϕ] ⊨ ϕ ∧ Uϕ which means that M ⊨ Bϕ. And we also have M ⊨ Uϕ,
since MD[2ϕ] ⊨ Uϕ. Thus, we get M ⊨ Bϕ ∧ Uϕ.

From right to left, assume that M ⊨ Bϕ ∧ Uϕ. Then D[ϕ]1 = D[2ϕ]1 = b,
given that M ⊨ Uϕ and proposition 2. Thus MD[ϕ] = MD[2ϕ]. We also have
MD[ϕ] ⊨ ϕ ∧ Uϕ since M ⊨ Bϕ. Thus, we get MD[2ϕ] ⊨ ϕ ∧ Uϕ.

In fact LTB , validates a stronger inference from necessity to comprehension:
if the agent believes a conjunction and one of the conjuncts is a necessity, then
the agent comprehend all the conjuncts. Formally, B(ϕ ∧ 2ψ) ⊨ Uϕ is valid in
LTB . This is because the relevant domain of the conjunction is the same as the
relevant domain of the necessary conjunct.
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Fact 15. Doxastic necessity to comprehension: B(ϕ ∧ 2ψ) ⊨ Uϕ is valid in
LTB .

Proof. Assume that M, w ⊨ B(ϕ∧2ψ). Then MD[ϕ∧2ψ] ⊨ ϕ∧2ψ ∧U(ϕ∧2ψ).
Since D[ϕ ∧ 2ψ] is the epistemic set b, we also have M, w ⊨ U(ϕ ∧ 2ψ), which
means that M, w ⊨ Uϕ.

This validity may seem weird at first glance, but it can be explained natu-
rally. Assume that the agent believes ϕ ∧ 2ψ, then he should search over his
whole epistemic state to see if ψ is true. But during this process, he is not
only considering ϕ, but also considering the whole conjunction. Thus, if the
agent believes the conjunction, then he also exhausts his whole epistemic state
to believe ϕ. This means that the agent comprehends ϕ thoroughly.

4.4 The problem of mathematical knowledge
Most importantly, LTB can address the problem of mathematical knowledge
mentioned in [23]. Many hyperintensional theories that do not introduce im-
possible worlds validate the principle 2ϕ∧B(ϕ∨¬ϕ) ⊨ Bϕ. This suggests that if
a proposition is necessarily true and the agent is considering whether it is true,
then the agent believes the proposition. If this were true, a mathematician
would believe every mathematical knowledge under consideration, given that
mathematical knowledges are necessary and mathematical propositions are ei-
ther true or false. As a result, any mathematician in the last century would have
believed Fermat’s Last Theorem, provided they had thought about it. However,
this is obviously not the case, indicating that this principle should be rejected.

Unlike most other possible world semantics, LTB handles this issue very
well. Firstly, LTB invalidates the variant of a priori omniscience 2ϕ ∧ B(2ϕ ∨
¬2ϕ) ⊨ B2ϕ, as the antecedent does not imply U(ϕ), suggesting that the
agent might not fully comprehend the proposition and thus may not believe
it. Consequently, LTB successfully invalidates 2ϕ ∧ B(ϕ ∨ ¬ϕ) ⊨ Bϕ. We
can easily get a counterexample when ϕ = 2p. For instance, suppose 2p is
necessarily true, and the agent believes that 2p is either true or false, indicating
the positive relevant set of 2p is non-empty. However, the agent might still not
fully comprehend 2p, which means that the agent might not believe 2p.

Fact 16. Mathematical knowledge 2ϕ ∧ B(ϕ ∨ ¬ϕ) ⊨ Bϕ and its variation
2ϕ ∧BUϕ ⊨ Bϕ are invalid in LTB .

Proof. Counterexample: Construct a model M = ⟨W,B, V, T , t⟩ such that W =
{w1, w2}, B = {f1, f2} where f1 = {w1} and f2 = {w2}, V (p) = {w1, w2},
t(f1) = {t(p)} and t(f2) = ∅. Then D[p]1 = D[2p]2 = D[2p ∨ ¬2p]1 = f1,
we have M, w1 ⊨ 22p and M, w1 ⊨ B(2p ∨ ¬2p) ∧ BUp, since MD[2p∨¬2p] ⊨
U2p ∧ (2p ∨ ¬2p). However, M, w1 ̸⊨ U2p since t(2p) = t(p) ̸≤ ⊕t(f2). Given
that D[2p]1 = f1 ∪ f2 =W , we have M = MD[2p]. Thus, MD[2p] ̸⊨ U2p, which
means that M, w1 ̸⊨ B2p.
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Our solution can also be naturally explained: all mathematical propositions
best be interpreted by 2, meaning that we need to fully comprehend them before
believing them. Even though we believe Fermat’s Last Theorem to be either
true or false and we cannot find a world in which it is false, we do not believe
it as long as we fail to comprehend it thoroughly and check it across the whole
epistemic state. The reason for why a mathematical knowledge is not believed
by us is precisely because we do not fully comprehend it.

4.5 Overview
The following table summarizes the hyperintensional properties of LTB that we
proved in this chapter.

Properties Validities
Omniscience rule: ϕ ⊨ Bϕ Invalid
Restricted omniscience: ϕ ∧BUϕ ⊨ Bϕ Invalid
Closure under disjunction: Bϕ ⊨ B(ϕ ∨ ψ) Invalid
Restricted closure under disjunction: Bϕ ∧BUψ ⊨ B(ϕ ∨ ψ) Invalid
Closure under material implication: Bψ ∧ (ψ → ϕ) ⊨ Bϕ Invalid
Restricted closure under material implication: Bψ ∧BUϕ ∧ (ψ → ϕ) ⊨ Bϕ Invalid
Closure under strict implication: Bψ ∧2(ψ → ϕ) ⊨ Bϕ Invalid
Restricted closure under strict implication: Bψ ∧BUϕ ∧2(ψ → ϕ) ⊨ Bϕ Invalid
Closure under logical consequence: ψ ⊨ ϕ then Bψ ⊨ Bϕ Invalid
Restricted closure under logical consequence: ψ ⊨ ϕ then Bψ ∧BUϕ ⊨ Bϕ Invalid
Closure under logical equivalence: ψ ⊨⊨ ϕ then Bψ ⊨ Bϕ Invalid
Restricted closure under logical equivalence: ψ ⊨⊨ ϕ then Bψ ∧BUϕ ⊨ Bϕ Invalid
Closure under conjunction introduction: Bϕ ∧Bψ ⊨ B(ϕ ∧ ψ) Invalid
Weak closure under conjunction introduction: B(ϕ ∧ Uψ) ∧B(ψ ∧ Uϕ) ⊨ B(ϕ ∧ ψ) Valid
Closure under conjunction elimination: B(ϕ ∧ ψ) ⊨ Bϕ Valid
Closure under doxastic implication: Bψ ∧B(ψ → ϕ) ⊨ Bϕ Invalid
Restricted closure under doxastic implication: Bψ ∧BUϕ ∧B(ψ → ϕ) ⊨ Bϕ Invalid
Epistemic contradiction: B(ϕ ∧3¬ϕ) ⊨ ⊥ Valid
Doxastic necessity to necessity: B2ϕ ⊨ 2ϕ Invalid
Apriori omniscience: 2ϕ ⊨ B2ϕ Invalid
Restricted apriori omniscience: 2ϕ ∧Bϕ ⊨ B2ϕ Invalid
Doxastic necessity as comprehension: B2ϕ ⊨⊨ Bϕ ∧ Uϕ Valid
Doxastic necessity to comprehension: B(ϕ ∧2ψ) ⊨ Uϕ Valid
mathematical knowledge 1: 2ϕ ∧B(ϕ ∨ ¬ϕ) ⊨ Bϕ Invalid
mathematical knowledge 2: 2ϕ ∧BUϕ ⊨ Bϕ Invalid
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Chapter 5

Axiomatisation of LTB

5.1 Axiomatisation
The following table provides a sound axiomatisation TB for the logic of topic-
relevant belief LTB . The notion of derivation, denoted by ⊢, in TB is defined
as usual. Thus, ⊢ ϕ means ϕ is a theorem in TB.

Axiomatisation TB
CPL classic propositional tautologies and Modus Ponens
S52 S5 axioms and rules for 2

Axioms for U:
U1 U(ϕ ∧ ψ) ↔ (U(ϕ) ∧ U(ψ))
U2 U(ϕ) ↔ U(¬ϕ)
U3 U(ϕ) ↔ U(U(ϕ))
U4 U(ϕ) ↔ U(Bϕ)
U5 U(ϕ) ↔ U(2ϕ)

Axioms for B:
B1 B(ϕ ∧ ψ) → Bϕ ∧Bψ
B2 B(ϕ ∧ Uψ) ∧B(ψ ∧ Uϕ) → B(ϕ ∧ ψ)
B3 Bϕ→ ¬B¬ϕ
B4 Bϕ→ BUϕ

Axioms connecting B, U and 2:
C1 Bϕ→ 2Bϕ
C2 Uϕ→ 2Uϕ
C3 Uϕ→ BUϕ
C4 2(ψ → ϕ) ∧B(ψ ∧ Uϕ) → Bϕ
C5 B2ϕ↔ Bϕ ∧ Uϕ
C6 B(ϕ ∧2ψ) → Uϕ
C7 B¬2ϕ→ ¬Bϕ
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5.2 Soundness
We prove that TB is a sound axiomatisation for LTB .

Theorem 1. The logic TB is sound with respect to the models of LTB as given
above in the semantics in section 3.4: for every formula ϕ, ⊢ ϕ ⇒ ⊨ ϕ.

Proof. Soundness is proved as usual by showing the validity of the axioms and
the preservation of soundness under the inference rules. We skip the trivial
proofs for the validity of the axioms and inference rules of classical propositional
logic. Also, the proofs for validity of the S5 axioms and rules for 2 are standard.
For the proofs of other cases, let M = ⟨W,B, V, T , t⟩ be an arbitrary model and
w ∈W .

• Axioms for U :

– Validity of U1 U(ϕ ∧ ψ) ↔ (U(ϕ) ∧ U(ψ)):
M, w ⊨ U(ϕ∧ψ) if and only if t(ϕ∧ψ) ≤ ⊕t(f) for all the f ∈ B. The
latter is equivalent to the statement that t(ϕ) ≤ ⊕t(f) and t(ψ) ≤
⊕t(f) for all the f ∈ B. This is also equivalent to M, w ⊨ Uψ ∧ Uϕ.

– Validity of U2 U(ϕ) ↔ U(¬ϕ):
M, w ⊨ U(ϕ) if and only if t(ϕ) ≤ ⊕t(f) for all the f ∈ B. The latter
is equivalent to the statement that t(¬ϕ) ≤ ⊕t(f) for all the f ∈ B.
This is also equivalent to M, w ⊨ U¬ϕ.

– Validity of U3 U(ϕ) ↔ U(Uϕ):
M, w ⊨ U(ϕ) if and only if t(ϕ) ≤ ⊕t(f) for all the f ∈ B. The latter
is equivalent to the statement that t(Uϕ) ≤ ⊕t(f) for all the f ∈ B.
This is also equivalent to M, w ⊨ UUϕ.

– Validity of U4 U(ϕ) ↔ U(Bϕ):
M, w ⊨ U(ϕ) if and only if t(ϕ) ≤ ⊕t(f) for all the f ∈ B. The latter
is equivalent to the statement that t(Bϕ) ≤ ⊕t(f) for all the f ∈ B.
This is also equivalent to M, w ⊨ UBϕ.

– Validity of U5 U(ϕ) ↔ U(2ϕ):
M, w ⊨ U(ϕ) if and only if t(ϕ) ≤ ⊕t(f) for all the f ∈ B. The latter
is equivalent to the statement that t(2ϕ) ≤ ⊕t(f) for all the f ∈ B.
This is also equivalent to M, w ⊨ U2ϕ.

• Axioms for B:

– Validity of B1 B(ϕ ∧ ψ) → Bϕ ∧Bψ:
The same proof of fact 9.

– Validity of B2 B(ϕ ∧ Uϕ) ∧B(ψ ∧ Uϕ) → B(ϕ ∧ ψ):
The same proof of fact 8.

– Validity of B3 Bϕ→ ¬B¬ϕ:
Assume that M, w ⊨ Bϕ, MD[ϕ] ⊨ ϕ. Then assume towards contra-
diction that M, w ⊨ B¬ϕ, then MD[ϕ] ⊨ ¬ϕ, contradiction. Thus,
M, w ̸⊨ B¬ϕ, which means that M, w ⊨ ¬B¬ϕ.
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– Validity of B4 Bϕ→ BUϕ:
The same proof of proposition 6.

• Axioms connecting B, U and 2:

– Validity of C1 Bϕ→ 2Bϕ:
Assume that M, w ⊨ Bϕ, then MD[ϕ] ⊨ ϕ. This means that M, w′ ⊨
Bϕ for any w′ ∈W . Thus, M, w ⊨ 2Bϕ.

– Validity of C2 Uϕ→ 2Uϕ:
Assume that M, w ⊨ Uϕ, then t(ϕ) ≤ ⊕t(f) for any f ∈ B. This
means that M, w′ ⊨ Uϕ for any w′ ∈W . Thus, M, w ⊨ 2Uϕ.

– Validity of C3 Uϕ→ BUϕ:
Assume that M, w ⊨ Uϕ, then t(ϕ) ≤ ⊕t(f) for any f ∈ B. This also
means that MD[ϕ] ⊨ Uϕ. Thus, M, w ⊨ BUϕ.

– Validity of C4 2(ψ → ϕ) ∧B(ψ ∧ Uϕ) → Bϕ:
Assume that M, w ⊨ 2(ψ → ϕ) ∧ B(ψ ∧ Uϕ), then MD[ψ∧Uϕ] ⊨
ψ∧U(ψ∧Uϕ)∧2(ψ → ϕ). This means that MD[ψ∧Uϕ] ⊨ ϕ∧Uϕ. This
indicates that t(ϕ) ≤ ⊕t(f) for all f ∈ BD[ψ∧Uϕ]. By proposition 2,
f ⊆ D[ϕ]1 for all f ∈ BD[ψ∧Uϕ], which also means that D[ψ∧Uϕ]1 =⋃

BD[ψ∧Uϕ] ⊆ D[ϕ]1. By definition 4, we have D[ϕ]1 ⊆ D[ψ ∧ Uϕ]1.
Thus, we get D[ϕ]1 = D[ψ ∧ Uϕ]1 and MD[ϕ] = MD[ψ∧Uϕ]. Hence,
we have MD[ϕ] ⊨ ϕ ∧ Uϕ, which means that M, w ⊨ Bϕ.

– Validity C5 B2ϕ↔ Bϕ ∧ Uϕ:
The same proof of fact 14.

– Validity C6 B(ϕ ∧2ψ) → Uϕ:
The same proof of fact 15.

– Validity C7 B¬2ϕ→ ¬Bϕ:
Assume that M, w ⊨ B¬2ϕ. Assume towards contradiction that
M, w ⊨ Bϕ. This means that M, w ⊨ B(3¬ϕ ∧ Uϕ) and M, w ⊨
B(ϕ∧U(3¬ϕ)). By the validity of B2, we have M, w ⊨ B(¬2ϕ∧ ϕ).
However, the proof of fact 11 shows that this is contradictory. Thus,
M, w ̸⊨ Bϕ, which means that M, w ⊨ ¬Bϕ.

This concludes the soundness proof of TB.
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Chapter 6

Comparison

In this chapter, we compare our logic LTB with other pre-existing theories.
In the following sections, we briefly introduce the awareness logic approach
developed by Fagin and Halpern [14], the question-sensitive approach from Lewis
[33] and Yalcin [54], and the topic-sensitive approach of Berto, Hawke and Özgün
[5, 37, 23]. We explain the connections between our theory and the previous
ones and we show the advantages of working with LTB in comparison to these
works.

6.1 Awareness logic approaches
Traditional epistemic logic for addressing knowledge or belief leads to the logical
omniscience problem. Awareness logic, introduced by Fagin and Halpern [14],
offers an approach to solve the logical omniscience problem by modelling not
only what agents believe but also what they are aware of. This framework
addresses the problem of logical omniscience by differentiating between implicit
and explicit belief. Implicit belief is just the classical Hintikkan concept of belief.
In contrast, explicit belief consists of two elements: a statement ϕ is explicitly
believed if and only if (1) ϕ is implicitly believed, and (2) the agent is aware of
ϕ. This distinction ensures that logical omniscience is a characteristic of implicit
belief, but not of explicit belief.

Awareness in this system is modeled by a set of propositions called the
awareness set. This set contains all the propositions that the agent is aware
of, and it captures the hyperintensional aspects of belief in a syntactic manner.
The structure of an awareness set can vary greatly depending on the particular
approach and it might consist of any arbitrary collection of propositions. Specific
constraints may be imposed, for example, in many awareness logics we require
that if a formula is in the awareness set then all its subformulas should also be
in the set.

However, the awareness logic approach encounters several challenges. The
first one is determining the appropriate constraints for the awareness set, such
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that it can validate the desired epistemic closure principles while invalidating
the undesired ones. Since the awareness set is defined purely syntactically, it
is difficult to find a perfect justification for why should the agent be aware of
these propositions but not the others [42]. Moreover, as previously mentioned
in section 1.1, standard awareness logic cannot handle some variant versions
of logical omniscience, such as the principles restricted by the hyperintension
condition. In the example of the Fermat’s Last Theorem, a 20-century mathe-
matician might not believe the theorem even when he was aware of it. But in
awareness logic, awareness of the theorem leads to the omniscient belief of it,
which is problematic.

In contrast, these obstacles are circumvented in LTB . We adopt the topic-
sensitive model in LTB so that we do not need a syntactical awareness set to
achieve hyperintensionality. Moreover, we demonstrated in section 4.1 that LTB
is weaker than the standard awareness logic [41], as the logical omniscience
principles restricted by the hyperintension condition are still invalid in LTB .
This means that the hyperintensional senarios like the Fermat example can be
handled well in LTB .

6.2 Question-sensitive approaches
In awareness logics, the notion of awareness is utilized to achieve the hyper-
intensional results while in LTB we use topic-relevance to do the same job.
However, alternative conceptions might be employed instead of topicality or
awareness. It has also been proposed that questions are the essential reason
for hyperintensionality. This approach was initiated by Lewis [33], with more
recent developments by Yalcin [54] and Hoek [27].

The question-sensitive approaches propose that the meaning of a proposition
is shaped by a context in which it is evaluated and so that a belief can be formed
only as an answer towards a question. Thus, beliefs are question-sensitive. For
example, in [54], Yalcin proposes the concept of resolution of a logical space as
a way to understand how beliefs are influenced by the questions being asked
and the context in which they are evaluated. The resolutions of a logical space
are partitions over the logical space, representing agents’ cognitive abilities and
computational limitations. A resolution divides the space into exclusive cells,
such that the worlds within a cell are indistinguishable to the agent. This means
that agents may not have the ability to distinguish the true world from others.
In Yalcin’s theory, he defines foreground and background propositions based
on the notion of resolution: With respect to a resolution, foreground proposi-
tions are those that align with the resolution, and are constructed entirely from
(unions of) cells of the resolution, which means that they do not cut through
the cells [54]. The remaining propositions are background propositions, which
with respect to the resolution, cannot be believed explicitly. As a result, the
similar conceptions of explicit and implicit belief as in awareness logics can be
defined, but in terms of partitions and questions.

The question-sensitive approaches can successfully achieve hyperintensional-
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ity non-syntactically. However, being partition-based, these approaches cannot
handle some kinds of logical omniscience. For instance, they cannot invalidate
closure under logical equivalence, as logically equivalent formulas are true in
the same possible worlds and thus always cut cross the same partition cells.
Consequently, confining content to possible worlds, these approaches cannot
distinguish the logically equivalent sentences. In [54], Yalcin also admits that
fragmentation should be introduced to solve the problem.

In contrast, this problem is dealt with well in LTB . As shown in section
4.1, LTB invalidates both closure under logical equivalence and its restricted
version. And this invalidity itself does not require fragmentation, since we use
topic-relevance to distinguish two logical equivalent propositions.

6.3 Topic-sensitive approaches
In 2019, Berto [5] originally developed a topic-sensitive model based on a mereol-
ogy structure of topics. Building on Berto’s initial concept, recent collaborations
by Berto, Hawke, and Özgün [7, 8, 37, 23] have led to a series of hyperinten-
sional systems based on the topic-sensitive model, which can solve various kinds
of logical omniscience problems.

Our topic-relevance logic LTB can be regarded as a close variant of the
topic-sensitive logic that originated from Berto’s work, since we also adopt the
topic-sensitive structure and assign topics to propositions. As already shown
in [37, 7], the topic-sensitive approaches can not only deal with logical omni-
science problems but also handle hyperintensional belief revision and indicative
conditionals.

Despite these achievements, we notice that epistemic modality –the issue
pertaining to the modal operators in an epistemic context, does not receive
enough attention from the authors following the topic-sensitive approaches. This
oversight is also found in other hyperintensional theories such as awareness logics
and question-sensitive approaches. As a result, the topics of the sentences like
“the proposition might be true”, along with the modeling of beliefs towards such
sentences remain relatively unexplored.

Additionally, as Berto, Hawke and Özgün noted in [23], mathematical knowl-
edge can give rise to a problem in their logic. Formally, their topic-sensitive
logics validate 2ϕ ∧ B(ϕ ∨ ¬ϕ) ⊨ Bϕ, which is not a desired result. Recall the
example in section 2.1, Fermat’s Last Theorem is necessarily true, and anyone
that heard the name of the theorem believes that the theorem is either true or
false. But one may not believe that the theorem is true if one hasn’t heard that
the theorem has been proved or one doesn’t even understand the theorem.

This observation leads us to a significant innovation in our theory LTB .
We introduce an operator for comprehension and we interpret sentences like
“believing the proposition is necessarily true” as “believing the proposition even
after comprehending it thoroughly”. As a result, the problem of mathematical
knowledge is resolved in LTB , as already shown in section 4.4.
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Chapter 7

Conclusion

This thesis introduces LTB , a novel hyperintensional doxastic logic based on
the idea of topic-relevance and fragmentation. By modeling belief based on
fragments generated by topics and information pieces, LTB overcomes some of
the challenges faced by traditional epistemic logic in handling hyperintensional
scenarios.

In chapter 2 of the thesis, we explain the philosophical ideas behind our
logic. The formal semantics are laid out in chapter 3. The primary results of
our research, namely the hyperintensional properties of LTB , are presented in
chapter 4.

We have demonstrated that a variety of omniscience principles, including
the omniscience rule, closure under disjunction, closure under material impli-
cation, closure under strict implication, closure under logical consequence, and
closure under logical equivalence, as well as their variations restricted by the
hyperintension condition, are invalid in LTB . Since our framework is built upon
the notion of fragmentation, we have also proved the invalidity of closure under
conjunction, supported by arguments from sources such as [42, 31, 23], while
a weaker version remains valid and is motivated by taking beliefs tied to topi-
cality into account. As another result of fragmentation, closure under doxastic
implication and its restricted version are invalid in LTB . Moreover, we have
established the validity of the epistemic contradiction, whereas the inferences
from doxastic necessity to necessity, a priori omniscience inferences, and their re-
stricted versions are found to be invalid in LTB . Most importantly, our research
has led to a compelling interpretation of doxastic necessity as comprehension,
contributing a possible solution to the problem of mathematical knowledge.

In chapter 5 we introduce a provisional logical axiomatisation for LTB , and
its soundness has been proved. Finally, chapter 6 draws comparisons between
our logic and other pre-existing theories. LTB not only addresses more versions
of logical omniscience than the awareness logic approaches and the question-
sensitive approaches, it also proposes a novel and intuitive interpretation for
the alethic operator within a doxastic context. Thus, LTB provides a potential
solution to the unresolved issue of mathematical knowledge, a problem that
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persists in the topic-sensitive approaches.
While LTB offers a promising framework for hyperintensional doxastic rea-

soning, there are still open areas and opportunities for further exploration and
refinement. One area of exploration is extending LTB with the operators for dy-
namic belief revision and belief update. Incorporating operators that can cause
changes of information or topics in LTB would allow for more sophisticated mod-
eling of agents’ evolving epistemic states. Exploring a multi-agent framework or
adding operators for more attitudes in a multi-modal framework are similarly
intriguing directions. Another important direction for investigation concerns
the meta-logical theory involving our newly proposed axiomatisation. Given
that in this thesis we only have a sound axiomatisation, the pursuit of a sound
and complete axiomatisation for our logic remains an essential and stimulating
challenge ahead.
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