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Abstract

This thesis is a proof-theoretical study of various systems of inquisitive logic. In the

first part, we consider the basic system of propositional inquisitive logic, denoted by

InqB (see, e.g., Ciardelli 2022). We construct a natural deduction system for InqB,

prove a normalization theorem and establish a restricted subformula property. Our

system is based on an extended natural deduction formalism in which not only for-
mulas, but also rules can act as assumptions that may be discharged in the course of

a derivation. We then present a G3-style labelled sequent calculus with internalized

support semantics for InqB. Our system is shown to satisfy a number of conve-

nient structural properties such as cut-admissibility, height-preserving admissibility

of weakening and contraction, and height-preserving invertibility of all rules. After-

wards, we modularly adapt our sequent calculus to other systems of inquisitive logic,

including an intuitionistic variant of InqB described by Ciardelli et al. (2020) and ex-

tensions of InqB with Kripke modalities. We provide a general method that allows to

construct cut-free labelled sequent calculi for all inquisitive Kripke logics character-

ized by a certain type of first-order formulas, known as geometric implications. This

generalizes a famous result for ordinary modal logic established by Negri (2005).
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Introduction

This thesis is devoted to the proof theory of inquisitive logic. Inquisitive logic provides a semantic

framework for propositional and first-order logic that allows to formalize not only the informative
content of sentences in natural language, but also the issues raised by such a sentence. This makes

it possible to account for the meaning of both statements and questions in a uniform way. The

basic system of propositional inquisitive logic was first described by Ciardelli (2009), Groenendijk

and Roelofsen (2009) as well as Ciardelli and Roelofsen (2011). Roughly speaking, this system is

obtained by enriching classical propositional logic with a new connective ∨, referred to as the

inquisitive disjunction operator. This connective is used in order to form alternative questions

such as ‘Have you lost your wallet or your keys?’ within the language of the system. Thus,

intuitively,φ∨ψ stands for the questionwhetherφ orψ. The familiar truth-conditional semantics

of classical logic is extended to a more general state-based semantics centered around the notion

of support. That is, rather than specifying what it means for a formula to be true or false with

respect to an atomic valuation (or with respect to a possible world), inquisitive semantics specifies

what it means for a formula to be supported by an information state, representing a certain body

of information. In inquisitive logic, information states are modelled as sets of possible worlds—

namely, those worlds that are compatible with the information conveyed by the state. Intuitively,

a formulaφ is said to be supported by an information state s, just in case s implies the information

conveyed by φ and s resolves the issue raised by φ. From a technical point of view, standard

inquisitive logic can be conceived from two different perspectives: on the one hand, it can be

seen as a conservative extension of classical logic; on the other hand, it can be seen as a logic

that is intermediate between intuitionistic and classical logic. However, inquisitive logic is not

an intermediate logic in the usual sense, since it is not closed under uniform substitution. This

makes it particularly difficult to define simple, analytic proof systems for inquisitive logic.

Recent years have seen a growing interest in the semantic features of inquisitive logic, its

linguistic applications and its relationship to other frameworks (see, e.g., Ciardelli et al. 2019;

Ciardelli 2022). However, the proof-theoretical properties of the system have received little atten-

tion in the literature so far. In fact, apart from a few exceptions (namely, Frittella et al. 2016; Chen

and Ma 2017), there exists no work on the proof theory of inquisitive logic. The present thesis

aims to fill this gap, by providing an extensive proof-theoretical investigation of basic inquisitive

logic and related systems. The achievements of this thesis are manifold: on the one hand, we

will construct various analytic proof systems for basic inquisitive logic and some of its variants,

including a system of intuitionistic inquisitive logic described by Ciardelli et al. (2020) and a wide

range of inquisitive modal logics; on the other hand, we will carefully investigate the properties

of our proof systems and provide a solid ground for further research in this direction.

Roughly speaking, a proof system is said to be analytic, if every valid formula φ of the under-

lying logic has a proof containing only formulas that are, in some sense, ‘relevant’ to φ. In most

v



vi Introduction

cases, this simply means that the proof system satisfies a suitable version of the subformula prop-
erty: every valid formula φ should have a proof containing only subformulas of φ. Since this is a

very demanding requirement, weaker forms of the subformula property are usually also accepted

as being sufficient for an analytic proof system. In the case of natural deduction systems, ana-

lyticity is usually established by means of a normalization theorem, stating that every deduction

in the system can be transformed into a deduction without ‘detours’ (cf. Troelstra and Schwicht-

enberg 1996, pp. 178–189). In the case of sequent calculi, there are two different methods. If

the cut rule is assumed to be included in the calculus, then analyticity is typically established

by a suitable cut-elimination theorem, i.e., by providing a constructive procedure that allows to

transform any derivation in the system into a cut-free derivation. If the cut rule is not included

in the calculus, then the system is already analytic by design. However, in order to establish the

completeness of such a system proof-theoretically, one has to show that the cut rule is admissible
in the system, i.e., whenever the premises of the rule are derivable, then so is the conclusion of

the rule (cf. Negri and Von Plato 2001; Troelstra and Schwichtenberg 1996).
1

In this thesis, we

will always opt for the second strategy, so all our sequent calculi are cut-free by definition.

While analyticity is taken to be the most important criterion for the quality of a proof system

in this thesis, we will occasionally also evaluate our systems against other criteria. For example,

in a well-designed system of natural deduction, we expect each connective to have exactly one

introduction rule and exactly one elimination rule, and these rules should exhibit some kind of

‘harmony’ or ‘symmetry’ (a similar requirement should be adopted for the left and the right rules

of a sequent calculus). Another important property is modularity: if one logic is an extension or

a slight modification of another logic, then there should be an easy way to turn a proof system

for the latter into a proof system for the former (ideally just by adding a few rules).

The main contributions of this thesis can be summarized as follows. In the first part, we con-

sider the basic system of propositional inquisitive logic, denoted by InqB. We provide an ele-

gant natural deduction system for InqB, establish a normalization theorem and derive a weak

form of the subformula property for our system. This is achieved by adopting an extended nat-

ural deduction formalism inspired by the so-called calculus of higher-level rules developed by

Schroeder-Heister (1981; 1984). In the extended setting, not only formulas, but also rules can

serve as assumptions that may be discharged in the course of a derivation. Afterwards, we con-

struct a cut-free labelled sequent calculus for InqB. Labelled sequent calculi extend the traditional

sequent-style formalism introduced by Gentzen (1935a; 1935b) with labels, allowing to incorpo-

rate the semantics of a logic directly into the syntax of the proof system. Our sequent calculus is

shown to have a number of convenient structural properties. In particular, we will see that the

structural rules of weakening, contraction and cut are admissible in our system, i.e., whenever

the premises of these rules are derivable, then also the conclusion is derivable. In the case of

weakening and contraction, admissibility also preserves the height of derivations. We also show

that each rule of our system is height-preserving invertible, i.e., if the conclusion of one of these

rules is derivable, then so is each premise of the rule, with at most the same derivation height.

In the second part, we consider various extensions and modifications of basic inquisitive logic.

First, we provide a labelled sequent calculus for an intuitionistic variant of InqB described by

Ciardelli et al. (2020). Our sequent calculus for this variant is obtained from the sequent calculus

for InqB in a modular way, and is shown to have the same structural properties. Finally, we

consider various systems of inquisitive Kripke logic, i.e., extensions of InqBwith modal operators

interpreted over ordinary Kripke models (see Ciardelli 2016b, Chapter 6). We provide a generic

method that allows to construct cut-free labelled sequent calculi for all inquisitive Kripke logics

characterized by a certain type of first-order frame conditions, known as geometric implications.
This generalizes a well-known result of Negri (2005) from the proof theory of ordinary (i.e., non-

1

Alternatively, one can use a semantic argument in order to give a direct completeness proof for the cut-free calculus.
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inquisitive) modal logic. Each of our sequent calculi is shown to satisfy cut-admissibility, height-

preserving admissibility of weakening and contraction, and height-preserving invertibility of all

rules. Below, we provide a more detailed, chapter-by-chapter overview of the thesis.

Structure of the Thesis

Chapter 1. Preliminaries. In this chapter, we give a short introduction to inquisitive semantics

and provide a detailed exposition of the basic system of propositional inquisitive logic (InqB). We

also present some standard axiomatizations of InqB, including a natural deduction system intro-

duced by Ciardelli (2016b) and a Hilbert-style system described by Ciardelli and Roelofsen (2011).

However, from a proof-theoretical point of view, none of these axiomatizations is well-behaved.

Chapter 2. Natural Deduction for InqB. We define a new natural deduction system for InqB and

establish a normalization theorem for our system. More precisely, we provide a constructive pro-

cedure that allows to transform every deduction in our system into a deduction without ‘detours’.

Our system is based on an extended natural deduction formalism in which not only formulas, but

also rules can act as assumptions. The basic idea is inspired by the work of Schroeder-Heister

(1981; 1984; 2014). We also prove a restricted subformula property for our system, which turns

out to be rather weak though. However, for a certain special case, a full subformula property

will be obtained. Moreover, we will see that the subformula property is still strong enough to

establish some interesting properties of inquisitive logic in a purely proof-theoretical way.

Chapter 3. Labelled Sequents for InqB. In this chapter, we provide a cut-free labelled sequent cal-

culus for InqB. Our system, denoted byGLinqB, can be regarded as aG3-style sequent calculus in

the sense of Ketonen (1944) and Kleene (1952), so weakening and contraction are fully ‘absorbed’

into the axioms and the remaining rules of the system. Labelled formulas will be used in order

to incorporate the support semantics of InqB directly into the proof rules of GLinqB. We care-

fully investigate the structural properties of our system. In particular, we show that GLinqB en-

joys cut-admissibility, height-preserving admissibility of weakening and contraction, and height-

preserving invertibility of all rules. The completeness of GLinqB is established proof-theoreti-

cally, by exploiting the admissibility of the cut rule in our system. We also discuss a possible proof

search strategy for GLinqB and prove a normal form result for the labels used in our system.

Chapter 4. Intuitionistic Inquisitive Logic. We define a labelled sequent calculus for a variant of

InqB in which the background logic for statements is no longer classical logic, but intuitionistic

logic. This variant is denoted by InqI and was first described by Ciardelli et al. (2020). Our sequent

calculus for InqI is obtained from the system GLinqB in a very elegant way and is shown to have

the same structural properties. The completeness is again established proof-theoretically.

Chapter 5. Inquisitive Kripke Logic. In this chapter, we consider various inquisitive logics obtained

by enriching InqB with a modal operator □, interpreted over ordinary Kripke models. For every

normal modal logic L, we will define a corresponding inquisitive system InqL. The weakest logic

obtained in this way is denoted by InqK and can be seen as an inquisitive extension of the basic

modal logic K. The most important contribution of this chapter is a general strategy that allows

to construct a cut-free labelled sequent calculus GLinqLA for every inquisitive Kripke logic InqL
determined by a finite set A of geometric implications, i.e., first-order frame conditions of the form

∀w⃗(φ→ ψ), where φ and ψ do not contain implications or universal quantifiers. The construc-

tion is based on a method described by Negri (2003; 2005), which allows to generate sequent rules

from geometric implications in a schematic way. Each of the systems GLinqLA is shown to en-

joy cut-admissibility, height-preserving admissibility of weakening and contraction, and height-

preserving invertibility of all rules. Our completeness proof is based on the construction of an

infinite proof search tree and the extraction of a countermodel from an open branch of this tree.



Chapter 1

Preliminaries

In this chapter, we will give a short introduction to inquisitive logic, explain the semantics of

the system and describe some of its standard axiomatizations. The basic system of propositional

inquisitive logic is denoted by InqB and goes back to the work of Ciardelli (2009), Groenendijk

and Roelofsen (2009) as well as Ciardelli and Roelofsen (2011).
1

From a technical point of view,

InqB is obtained by enriching classical propositional logic with an inquisitive disjunction operator
∨, allowing to form alternative question within the language of the system. Thus, intuitively, a

formula φ ∨ψ represents the question whether φ or ψ. The ordinary truth-conditional semantics

of classical logic is replaced by a more general support semantics, specifying the conditions under

which a formula is supported by some body of information. This allows to define a generalized

notion of entailment, capable of dealing not only with statements, but also with questions.

The chapter is organized as follows. In Section 1.1, we will sketch the basic ideas underly-

ing inquisitive logic and motivate the semantic setup from an informal point of view. We will

see that, in inquisitive logic, the main semantic difference between questions and assertions lies

in the concept of truth-conditionality: a proposition is non-inquisitive, just in case it is truth-

conditional. In Section 1.2, we will then provide a formal exposition of the system InqB. The key

concept is the so-called support relation, determining the support conditions for all formulas of

InqB. Afterwards, in Section 1.3, we will define the notion of a Harrop formula and show that any

such formula is guaranteed to be truth-conditional in InqB. In Section 1.4, we will describe some

further properties of the system. It will turn out that InqB can be considered from two different

angles: on the one hand, it may be seen as a conservative extension of classical logic; on the other

hand, it can be seen as a non-standard intermediate logic. In Section 1.5, finally, we will present

some well-known axiomatizations of InqB, including a non-normalizing natural deduction sys-

tem and a Hilbert-style axiomatization based on the Kreisel-Putnam axiom. We also provide a

new Hilbert-style system for InqB and establish its completeness in a proof-theoretical way.

1.1 Information States and Inquisitive Propositions

We start by giving an informal explanation of the fundamental semantic concepts and the basic

ideas underlying inquisitive logic. A more comprehensive exposition of the material is provided

by Ciardelli (2016b, Chapter 1) as well as Ciardelli et al. (2019, Chapter 2).

Traditionally, logic is considered to be the study of valid inference patters between a specific

type of linguistic entities, namely declarative sentences, or statements, or assertions.2 In classical

1

Important predecessors of modern inquisitive logic include the partition theory of questions (Groenendijk and

Stokhof 1984), Groenendijk’s logic of interrogation (Groenendijk 1999; ten Cate and Shan 2007) and inquisitive pair

semantics (Groenendijk 2009; Mascarenhas 2009). For further details, we refer to Ciardelli (2022, pp. 41–49).

2

Throughout this thesis, the terms ‘declarative sentence’, ‘statement’ and ‘assertion’ will be used synonymously.

1



2 Chapter 1. Preliminaries

logic, the semantic content of such a sentence is usually assumed to be given by its truth condi-
tions, i.e., by the conditions that must be satisfied by a state of affairs in order to make the sentence

true. In this section, any formal specification of a complete state of affairs will be referred to as

a possible world. In particular, we do not care about the concrete way in which possible worlds

are represented; instead, we simply assume an intuitive understanding of this concept.

It is well known that there is also an alternative way of formalizing the meaning of a declarative

sentence. Under this approach, which is very common in the literature on intensional logic, the

semantic content of an assertion is identified with its truth-set, i.e., the set of all possible worlds

making the assertion true. The truth-set of an assertion α is also referred to as the proposition
expressed by α (cf. Stalnaker 1976, p. 80). Thus, in this setting, a proposition simply amounts to a

subset P ⊆W , where W stands for the entire logical space (i.e., the set of all possible worlds).

This standard way of formalizing the semantic content of sentences works well, if only asser-
tions are involved. However, it falls short as soon as one wishes to formalize also the meaning

of questions. For one thing, it is not clear what it could mean for an interrogative sentence to be

true or false at a possible world; for another, an appropriate formalization of questions should

take into account not only the informative content of a sentence, but also the issues it raises.

Inquisitive logic overcomes this limitation by employing a more general semantics centered

around the notion of support. That is, rather than specifying what it means for a sentence to be

true or false at a possible world, inquisitive semantics specifies what it means for a sentence to be

supported by an information state. Formally, an information state is modelled as a set of possible

worlds—namely, those worlds that are compatible with the information conveyed by the state.
3

Writing again W for the entire logical space, we thus adopt the following definition.

Definition 1.1.1 (Information State). An information state is a set of possible worlds s ⊆W .

Intuitively, every information state represents a certain body of information, since it locates

the actual world within a particular sphere of the logical space. More formally, a state s ⊆ W
conveys the information that the actual world is one of the worlds in s and that all worlds in

W \ s are ruled out. Note that, if we have s ⊆ t for some states s, t ⊆W , then every world ruled

out by t is also ruled out by s, so s contains at least as much information as t. For this reason,

any subset s ⊆ t of an information state t is also referred to as an enhancement of t.
Observe that the empty set, ∅, and the set of all possible worlds,W , are also information states.

Intuitively, W is the least informative state, because it does not rule out any candidate for the

actual world. In this sense, one might say that W is the trivial information state. The empty

state ∅, on the other hand, rules out every candidate for the actual world, so it represents an

inconsistent body of information. For this reason, we refer to ∅ as the inconsistent state.
Using the notion of an information state, it is now possible to represent the semantic con-

tent of both questions and assertions in a uniform way. In inquisitive semantics, this is achieved

by enriching the structure of propositions, enabling them to encode not only the information

conveyed by a sentence, but also the issues it raises. But how could such an issue be modelled

formally? The basic idea is to identify an inquisitive proposition with a set of information states:
those states that contain enough information to resolve the issue raised by the proposition.

There are now two things to consider. First, it seems natural to assume that every issue can be

resolved by at least one information state, so propositions should always be non-empty. Secondly,

if the issue raised by a proposition is resolved by some state s, then it should also be resolved by

every enhancement of s. In other words, we should require propositions to be downward closed.

Definition 1.1.2 (Proposition). A proposition is a set of information states P ⊆ P(W ) such that:

(i) P is non-empty, i.e., P ̸= ∅,
(ii) P is downward closed, i.e., for all s, t ⊆W , if s ∈ P and t ⊆ s, then also t ∈ P .

3

This way of modelling information is also used outside inquisitive logic (see, e.g., Hintikka 1962; Stalnaker 1978).
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Figure 1.1: Some propositions.

The informative content of a proposition P is denoted by info(P ) and defined to be the union

of all states in P . That is, info(P ) is the information state given by info(P ) :=
⋃
P . Clearly,

every proposition P must contain the inconsistent state: because P is non-empty, there must be

at least one state s ∈ P . But then, since P is downward closed and ∅ ⊆ s, it also holds ∅ ∈ P . In

inquisitive logic, the most fundamental semantic concept is taken to be support, rather than truth.

Intuitively, a state s supports a proposition P , just in case it implies the information conveyed

by P , i.e., s ⊆ info(P ), and it resolves the issue raised by P , i.e., s ∈ P . Observe that the first of

these two conditions is implied by the second. Thus, support can simply be defined as follows.

Definition 1.1.3 (Support). An information state s supports a proposition P , if s ∈ P .

Using the notion of support, one can now also define a suitable notion of truth. Intuitively, P
is true at a world w, if w is compatible with the information conveyed by P , i.e., w ∈ info(P ).
But this just means that P is supported by the singleton state {w}, so we define truth as follows.

Definition 1.1.4 (Truth). A proposition P is true at a world w ∈W , if P is supported by {w}.

In order to make sense of the notions just introduced, let us consider some examples. Figure 1.1

depicts a number of propositions over the set of worlds W = {w1, w2, w3, w4}. For simplicity,

only the maximal elements of the propositions are displayed. The reader should bear in mind,

however, that all enhancements of these maximal elements are also assumed to be included in the

propositions.
4

The maximal elements of a proposition P are also referred to as the alternatives
of P . The proposition in Figure 1.1 (a) has only one alternative, so it does not raise any issue,

but simply conveys the information that the actual world is a member of {w1, w2, w3}. The

very same information is conveyed by the proposition in Figure 1.1 (b), but this proposition also

raises the issue as to whether the actual world is contained in {w1, w2} or in {w1, w3}. In order

to resolve this issue consistently, an information state has to establish either that the actual world

is in {w1, w2} or that the actual world is in {w1, w3}. The proposition in Figure 1.1 (c) does not

convey any (non-trivial) information, but raises the issue as to which of the four worlds is the

actual one. Thus, an information state supports this issue, just in case it is either inconsistent or

it contains exactly one candidate for the actual world. The proposition in Figure 1.1 (d), finally,

corresponds to the power set P(W ), so it is trivially supported by every state s ⊆W .

In inquisitive logic, the semantic difference between questions and assertions is captured by the

concept of inquisitiveness. Intuitively, a proposition P is inquisitive, if the information conveyed

by P does not suffice to resolve the issue raised by P . This leads to the following definition.

Definition 1.1.5. A proposition P is inquisitive, if info(P ) /∈ P .

Intuitively, an inquisitive proposition represents the semantic content of a question, whereas a

non-inquisitive proposition represents the semantic content of a statement. One readily sees that,

4

So, for example, the proposition in Figure 1.1 (a) actually corresponds to the set of states P({w1, w2, w3}).
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for propositions containing only finitely many states, the concept of inquisitiveness is closely

related to the number of alternatives of a proposition: a finite proposition P is inquisitive if and

only if P has at least two alternatives. For infinite propositions, however, this connection breaks

down, since there may also be inquisitive propositions that do not have any alternatives.
5

To

see some examples, consider again the propositions depicted in Figure 1.1. An easy inspection

shows that the propositions in (b) and (c) are inquisitive, but the ones in (a) and (d) are not.

So far, we have characterized non-inquisitive propositions solely in terms of their informative

content. However, it is also possible to characterize non-inquisitive propositions differently, by

using the concept of truth-conditionality. This concept is defined in the following way.

Definition 1.1.6 (Truth-Conditionality). A proposition P over W is truth-conditional, if for ev-

ery state s ⊆W , we have: s supports P if and only if, for all worlds w ∈ s, P is true at w.

In other words, a truth-conditional proposition is a proposition for which support at a state s
simply comes down to truth at every world in s. It is now easy to show thatP is truth-conditional

if and only if info(P ) is the unique alternative in P , i.e., if P is non-inquisitive. Hence, truth-

conditionality represents the fundamental semantic difference between questions and assertions:

every non-inquisitive proposition is truth-conditional, and every inquisitive proposition is not.

Fact 1.1.7. A proposition P is non-inquisitive if and only if P is truth-conditional.

Finally, one can now also define a notion of semantic entailment between propositions. Intu-

itively, a proposition P entails another proposition Q, if the information conveyed by P implies

the information conveyed by Q, i.e., info(P ) ⊆ info(Q), and every state that resolves the issue

raised by P also resolves the issue raised by Q, i.e., P ⊆ Q. But note that the first of these two

conditions is implied by the second, so entailment can simply be defined as follows.

Definition 1.1.8 (Entailment). A proposition P entails another proposition Q, if P ⊆ Q.

Note that, in inquisitive semantics, entailment is not restricted to statements, but may also

involve questions. For example, a statement α entails a question µ, if the information conveyed

by α resolves the issue raised by µ. And a question µ entails a statement α, if µ presupposes the

information conveyed by α. For further information, we refer to Ciardelli (2022, p. 16).

1.2 Propositional Inquisitive Logic

Let us now give a more formal exposition of the system. The basic framework of propositional

inquisitive logic is denoted by InqB and was first described by Ciardelli (2009), Groenendijk and

Roelofsen (2009) as well as Ciardelli and Roelofsen (2011). It may be conceived as the result of

enriching classical propositional logic with a question-forming operator ∨, referred to as the in-
quisitive disjunction operator. Intuitively, ∨ is used in order to form alternative questions within

the language of InqB, so a formula of the form φ ∨ψ is intended to denote the question whether
φ or ψ. To make things precise, we henceforth assume a countably infinite set P of atomic propo-

sitions, denoted by the meta-variables p, q, r, etc. The formulas of InqB are now built up from

the atoms in P and the falsum constant ⊥ by means of the binary connectives ∧,→ and ∨.

Definition 1.2.1 (Language of InqB). The language of InqB is denoted by LB and consists of all

formulas generated by the following grammar, where p ranges over atomic propositions from P:

φ ::= p | ⊥ | φ ∧ φ | φ→ φ | φ ∨ φ.
5

To see an example, consider the infinite proposition P defined by P := {[n] | n ∈ N}, where [n] := {0, . . . , n}
for every n ∈ N. Clearly, we have info(P ) = N and N /∈ P , so P is inquisitive. But since every element of P is

included in some larger element, P does not have any alternatives (cf. Ciardelli et al. 2019, p. 20).
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We will adopt the usual abbreviations familiar from classical logic. That is, the verum constant
⊤, the negation operator ¬ and the classical disjunction operator ∨ are taken to be defined by

⊤ := ¬⊥, ¬φ := φ → ⊥ and φ ∨ ψ := ¬(¬φ ∧ ¬ψ), respectively. As we will see below,

the semantics for ∨ is quite different from the one for ∨, so these two operators should not be

confused. In addition, we also introduce the question mark operator ?, which is defined as follows.

Definition 1.2.2 (Question Mark Operator). For every φ ∈ LB, we put ?φ := φ ∨ ¬φ.

Intuitively, ?φ represents the polar questionwhetherφ. By what was said above, the connective

∨ plays a special role in InqB, because it allows us to form interrogative sentences within the

language of the system. Conversely, we thus expect any formula not containing ∨ to be purely

declarative. In the system InqB, the underlying background logic for declarative sentences is

assumed to be classical logic, so ∨-free formulas will also be referred to as classical formulas.

Definition 1.2.3 (Classical Formula). A formula φ ∈ LB is said to be classical, if φ does not

contain any occurrences of ∨. The set of all classical formulas in LB is denoted by LBc .

In what follows, we will always use α, β, γ, etc., as meta-variables for classical formulas, while

φ, ψ, χ, etc., will be used for arbitrary formulas of InqB. Let us now turn to the semantics of the

system. The formulas of InqB are evaluated with respect to so-called propositional information
models. Any such model consists of a non-empty set of possible worlds W and a valuation func-

tion V , assigning a truth value to each atomic proposition p ∈ P at each possible world w ∈W .

Definition 1.2.4 (Information Model). An information model is a pair M = ⟨W,V ⟩, where W
is a non-empty set of possible worlds, and V :W × P→ {0, 1} is a valuation function.

Recall that, in inquisitive logic, the most fundamental semantic concept is taken to be support,
not truth. Thus, instead of defining what it means for a formula to be true at a possible world, we

have to define what it means for a formula to be supported by an information state. Formally,

information states are modelled as sets of possible worlds, so we adopt the following definition.

Definition 1.2.5. Let M = ⟨W,V ⟩ be a model. An information state over M is a subset s ⊆W .

Following the terminology introduced in the previous section, we will refer to ∅ as the incon-
sistent state and to every non-empty state s ̸= ∅ as a consistent state. Moreover, a subset s ⊆ t of

a state t is also said to be an enhancement of t. We are now ready to give an inductive definition

of the support conditions for all formulas in the language of InqB (cf. Ciardelli 2016b, pp. 47–50).

Definition 1.2.6 (Support Semantics for InqB). LetM = ⟨W,V ⟩ be a model. The support relation
between states s ⊆W and formulas φ ∈ LB is inductively defined in the following way:

(i) M, s p :⇔ V (w, p) = 1 for all w ∈ s,
(ii) M, s ⊥ :⇔ s = ∅,

(iii) M, s φ ∧ ψ :⇔ M, s φ and M, s ψ,

(iv) M, s φ→ ψ :⇔ for all t ⊆ s, if M, t φ, then M, t ψ,

(v) M, s φ ∨ ψ :⇔ M, s φ or M, s ψ.

If M, s φ holds, then we say that φ is supported by s in M . The support clauses can be read

as follows. An atomic formula p is supported by a state s, just in case p is true at every world in s.
The falsum constant ⊥ is supported only by the inconsistent state ∅. A conjunction is supported

by a state s, if each of the two conjuncts is supported by s. An implication is supported by s, if

every enhancement of s which supports the antecedent also supports the consequent. And an

alternative question is supported by s, if s supports at least one of the two alternatives.
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Using Definition 1.2.6, one can now also derive support conditions for the defined connectives

¬ and ∨. For the sake of simplicity, let us say that a state s over some model M is incompatible
with a formula φ, notation s ‡ φ, if there exists no consistent enhancement t ⊆ s such that

M, t φ. It is now possible to prove the following proposition (cf. Ciardelli 2022, p. 58).

Proposition 1.2.7. LetM be a model, let s be a state overM and let φ,ψ ∈ LB be formulas.
(i) M, s ¬φ ⇔ s ‡ φ,
(ii) M, s φ ∨ ψ ⇔ there is no consistent t ⊆ s such that both t ‡ φ and t ‡ ψ.

As outlined in Section 1.1, the notion of truth can be recovered from the notion of support in a

natural way: a formula is true at a worldw, just in case it is supported by the singleton state {w}.

Definition 1.2.8 (Truth). Let M = ⟨W,V ⟩ be a model, let w ∈W be a world and let φ ∈ LB be

a formula. We write M,w φ and say that φ is true at w, if we have M, {w} φ.

By an easy inspection of the support conditions given above, one can now spell out the truth
conditions for all formulas of InqB. We summarize the resulting clauses in the next proposition.

Proposition 1.2.9 (Truth Conditions). LetM = ⟨W,V ⟩ be a model and let w ∈W be a world.
(i) M,w p ⇔ V (w, p) = 1,
(ii) M,w ̸ ⊥,
(iii) M,w φ ∧ ψ ⇔ M,w φ andM,w ψ,
(iv) M,w φ→ ψ ⇔ M,w ̸ φ orM,w ψ,
(v) M,w φ ∨ ψ ⇔ M,w φ orM,w ψ,
(vi) M,w ¬φ ⇔ M,w ̸ φ,
(vii) M,w φ ∨ ψ ⇔ M,w φ orM,w ψ.

As can be seen, the classical connectives simply have their usual truth conditions familiar from

classical logic. Moreover, the truth conditions for the inquisitive disjunction ∨ are exactly the

same as those for the classical disjunction ∨. That is, if we restrict ourselves to singleton states,
then ∨ and ∨ become indistinguishable. This, however, is no longer the case as soon as we

consider states of arbitrary size. For example, if s is a state containing a world where p is true

and another world where p is false, then p ∨ ¬p is supported by s, but ?p = p ∨ ¬p is not.

The truth-set of a formula φ in a model M is now defined to be the set of all worlds in M
where φ is true. And the support-set of φ in M is the set of all states that support φ in M .

Definition 1.2.10. Let M = ⟨W,V ⟩ be a model and let φ ∈ LB be a formula.

(i) The truth-set of φ in M is the information state given by |φ|M := {w ∈W |M,w φ}.
(ii) The support-set of φ in M is the set of states given by ⟨φ⟩M := {s ⊆W |M, s φ}.

An important feature of support in InqB is persistency: if a formula is supported by an infor-

mation state s, then it is also supported by every enhancement t ⊆ s. In addition, it is possible

to show that each formula of InqB is supported by the inconsistent state ∅. In a sense, this may

be seen as a semantic version of the well-known principle of explosion (ex falso quodlibet).

Proposition 1.2.11. LetM be a model, let s and t be states overM and let φ ∈ LB be a formula.
(i) Persistency: ifM, s φ and t ⊆ s, thenM, t φ.
(ii) Empty state property: M, ∅ φ.

Both statements are proved by induction on the structure of φ. As a consequence of this result,

one readily sees that, for any formula φ ∈ LB and any model M , the support-set ⟨φ⟩M is in fact

a proposition in the sense of Definition 1.1.2: it is downward closed by the persistency of support



1.2. Propositional Inquisitive Logic 7

pq pq

pq pq

(a) p ∧ q

pq pq

pq pq

(b) p→ q

pq pq

pq pq

(c) ¬p

pq pq

pq pq

(d) p ∨ q

pq pq

pq pq

(e) ?p

pq pq

pq pq

(f) p ∨ q

pq pq

pq pq

(g) ?p ∧ ?q

pq pq

pq pq

(h) p→ ?q

Figure 1.2: The propositions expressed by some formulas of InqB. In the figures, pq stands

for a world where p and q are both true, pq for a world where p is true and q is false, etc.

in InqB; and it is non-empty, since φ is always supported by ∅. Clearly, the truth-set |φ|M simply

amounts to the informative content of this proposition, so we have |φ|M =
⋃
⟨φ⟩M .

Let us now consider some examples. Figure 1.2 depicts a number of propositions expressible

by formulas in the language of InqB. The underlying model is assumed to contain four possible

worlds: pq represents a world where both p and q are true, pq represents a world where p is true

and q is false, and so on. As usual, only maximal elements are displayed, so all enhancements

of the depicted states are also assumed to be included in the propositions. First, consider the

formulas in Figure 1.2 (a–d). Each of these formulas is classical and the associated propositions

have exactly one alternative, so they are all non-inquisitive in the sense of Definition 1.1.5. In fact,

as we shall see below, this can be generalized: classical formulas are always truth-conditional in

InqB. Note that the maximal elements are simply the usual truth-sets familiar from classical

logic. So, for example, the unique alternative for p∧ q is just the set of worlds where p and q are

both true, and the unique alternative for p→ q is the set of worlds where p is false or q is true.

Consider now the formulas in Figure 1.2 (e–h). Each of these formulas is non-classical and

the associated propositions are inquisitive. Figure 1.2 (e) depicts a polar question ?p = p ∨ ¬p
such as ‘Have you lost your wallet?’ An information state resolving this question should either

establish that p or that ¬p. Thus, in particular, it does not suffice to establish that at least one of

p and ¬p must be true: an information state really has to choose one of the two alternatives. A

similar observation holds for the formula p ∨q, depicted in Figure 1.2 (f). Intuitively, this formula

represents an alternative question such as ‘Have you lost your wallet or your keys?’ The formula

in Figure 1.2 (g), on the other hand, is a conjoined question, which corresponds to a sentence of

the form ‘Have you lost your wallet, and are you upset?’ In order to resolve the issue expressed

by this question, an information state has to resolve each of the two conjuncts. The formula in

Figure 1.2 (h), finally, is a conditional question of the form p→ ?q. In order to resolve the issue

expressed by this question, one has to resolve ?q under the assumption that p. That is, a state s
supports p→ ?q, just in case q is either true at all p-worlds in s, or it is false at all p-worlds in s.
This corresponds to a sentence of the form ‘If you have lost your wallet, will you be upset?’

Using the support relation for InqB, one can now also define a suitable notion of entailment.
In fact, entailment can simply be characterized as preservation of support: a formula φ entails
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another formula ψ, just in case every state that supports φ in a model M also supports ψ in M .

Definition 1.2.12 (Entailment). Let Γ∪{φ} ⊆ LB be a set of formulas. We write Γ φ and say

that Γ entails φ, if for every model M = ⟨W,V ⟩ and for every state s ⊆W , we have: M, s Γ
implies M, s φ. Here, M, s Γ is used as an abbreviation for ‘M, s ψ for all ψ ∈ Γ’.

Observe that we have φ ψ if and only if ⟨φ⟩M ⊆ ⟨ψ⟩M for every model M . Hence, with

respect to the semantic content of formulas, entailment in InqB simply amounts to set-inclusion,

as anticipated in Definition 1.1.8. The notions of logical equivalence and validity are now defined

in the usual way. That is, two formulas are called equivalent, if they mutually entail each other.

And a formula is said to be valid, if it is supported by every information state over ever model.

Definition 1.2.13 (Equivalence and Validity). Let φ,ψ ∈ LB be formulas.

(i) We say that φ and ψ are equivalent, notation φ ≡ ψ, if we have both φ ψ and ψ φ.

(ii) We say that φ is valid, notation φ, if it holds M, s φ for all models M and all states s.

Finally, it is worth noting that InqB also validates the well-known deduction theorem, i.e., for

every subsetΓ ⊆ LB and for all formulasφ,ψ ∈ LB, we have: Γ, φ ψ if and only ifΓ φ→ ψ.

1.3 Truth-Conditionality

In Section 1.1, we have already seen that truth-conditionality represents the fundamental seman-

tic difference between questions and assertions: a proposition is non-inquisitive if and only if it is

truth-conditional. For formulas of InqB, the concept of truth-conditionality is defined as follows.

Definition 1.3.1 (Truth-Conditionality). A formula φ ∈ LB is truth-conditional, if for all models

M and for all states s over M , we have: M, s φ if and only if M,w φ for all w ∈ s.

Observe that, by persistency, the left-to-right direction of the equivalence is satisfied by every
formula. Hence, the important part of the definition is the converse implication: the support

conditions of a truth-conditional formula are always completely determined by its truth condi-

tions. We might now say that a formula φ ∈ LB is an assertion, if φ is truth-conditional, and we

might say that φ is a question otherwise. As pointed out in the discussion above, formulas not

involving ∨ behave in essentially the same way as in classical logic. Thus, it should not come as a

surprise that classical formulas—in the sense of Definition 1.2.3—are always truth-conditional in

inquisitive logic. In fact, it is even possible to identify a richer syntactic fragment of InqB that is

guaranteed to have this property. The formulas in this fragment are known as Harrop formulas.6

Definition 1.3.2 (Harrop Formulas). The set ofHarrop formulas is denoted byLBH and consists of

all formulas generated by the following grammar, where φ ∈ LB ranges over arbitrary formulas:

α ::= p | ⊥ | α ∧ α | φ→ α.

In other words, by a Harrop formula, we simply mean any formula of InqB in which all occur-

rences of ∨ are contained in the antecedent of an implication. Observe that, in particular, every

classical formula is also a Harrop formula. However, the converse of this statement is not true.

For example, (p ∨q)→ p is a Harrop formula, but it is not a classical formula, because it contains

an occurrence of ∨. By overloading notation, we will henceforth use the meta-variables α, β, γ,

etc., for both classical formulas and Harrop formulas. No confusion will arise, since it will always

be clear from the context whether a classical formula or a Harrop formula is meant. We are now

ready to prove the desired statement: in InqB, Harrop formulas are always truth-conditional.

6

Harrop formulas were introduced by Ronald Harrop (1956; 1960) in order to strengthen the well-known disjunction

and existence property for intuitionistic logic (cf. Troelstra and Schwichtenberg 1996, p. 107). We will come back to

this concept in Chapter 2 in order to give a purely syntactical proof of the disjunction property for InqB.
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Proposition 1.3.3. Every Harrop formula α ∈ LBH is truth-conditional.

Proof. By induction on the structure of α. The base case and the inductive step for ∧ are straight-

forward. Thus, we only need to consider the case in which α is of the form α = φ→ β for some

arbitrary formula φ ∈ LB and some Harrop formula β ∈ LBH . Let M be an arbitrary model and

let s be an arbitrary state. By what was said above, it suffices to show that, if M,w φ→ β for

all w ∈ s, then M, s φ→ β. We prove the contrapositive: if M, s ̸ φ→ β, then there exists

a world w ∈ s such that M,w ̸ φ→ β. Suppose that we have M, s ̸ φ→ β, i.e., there exists

some t ⊆ s such thatM, t φ andM, t ̸ β. By induction hypothesis, we know that β is truth-

conditional. Hence, because M, t ̸ β, there must be some world w ∈ t such that M,w ̸ β.

Since M, t φ and w ∈ t, this world also satisfies M,w φ by persistency (see Proposi-

tion 1.2.11). But then, by Proposition 1.2.9, we may conclude M,w ̸ φ→ β, as desired.

As an immediate corollary, it follows that every classical formula of InqB is truth-conditional

and therefore purely declarative. Note that, since classical formulas have their usual truth con-

ditions in InqB, we thus arrive at the following general conclusion: a classical formula α ∈ LBc is

supported by an information state if and only if α is classically true at every world in the state.

Corollary 1.3.4. Every classical formula α ∈ LBc is truth-conditional.

In addition, recall that ¬φ was defined to be an abbreviation for φ → ⊥, which is a Harrop

formula. Hence, not only classical formulas, but also every negated formula is truth-conditional

in InqB. In order to conclude this section, let us now mention some alternative ways of character-

izing truth-conditionality in inquisitive logic. First, we introduce the following terminology: the

classical variant of a formula φ is denoted by φcl
and defined to be the classical formula obtained

from φ by replacing every occurrence of ∨ by an occurrence of ∨. It is now possible to show that

a formula φ is truth-conditional if and only if φ is equivalent to φcl
. Consequently, every truth-

conditional formula can equivalently expressed as a classical formula. Using this fact, one easily

checks that there is a tight connection between truth-conditionality and the double negation law:

a formulaφ is truth-conditional if and only ifφ is equivalent to¬¬φ (cf. Ciardelli 2022, pp. 65–66).

Proposition 1.3.5. Let φ ∈ LB be a formula. The following three conditions are equivalent:
(i) φ is truth-conditional,
(ii) φ satisfies φ ≡ φcl ,
(iii) φ satisfies φ ≡ ¬¬φ.

1.4 Properties of InqB

We now want to give a brief outline of some further properties of inquisitive logic. First of all, a

characteristic feature of InqB is the fact that truth-conditional assumptions always distribute over

inquisitive disjunctions: an alternative questionφ∨ψ is entailed by some set of truth-conditional

formulas Γ if and only if at least one of the two alternatives is entailed by Γ. This is usually

referred to as the split property and may be seen as a variant of the famous disjunction property
under hypotheses known from intuitionistic logic (cf. Troelstra and Schwichtenberg 1996, p. 106).

Proposition 1.4.1 (Split Property). Let Γ ⊆ LB be a set of truth-conditional formulas and let
φ,ψ ∈ LB be arbitrary formulas. It holds Γ φ ∨ ψ if and only if Γ φ or Γ ψ.

A proof is provided by Ciardelli (2022, p. 80). Closely related to this is another interesting

property: if α is truth-conditional, then any formula of the form α → (φ ∨ ψ) is equivalent to

the formula (α→ φ) ∨ (α→ ψ). This is known as the split equivalence (cf. Ciardelli 2022, p. 82).
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Proposition 1.4.2 (Split Equivalence). Let α ∈ LB be a truth-conditional formula and let φ,ψ ∈
LB be arbitrary formulas. It holds α→ (φ ∨ ψ) ≡ (α→ φ) ∨ (α→ ψ).

Proof. Let α,φ, ψ ∈ LB be arbitrary such that α is truth-conditional. Moreover, let M be an

arbitrary model and let s be an arbitrary state. First of all, one easily checks that, for any χ ∈ LB,

we have M, s α→ χ iff M, s ∩ |α|M χ by the truth-conditionality of α. Hence, it follows:

M, s α→ (φ ∨ ψ) ⇔ M, s ∩ |α|M φ ∨ ψ
⇔ M, s ∩ |α|M φ or M, s ∩ |α|M ψ

⇔ M, s α→ φ or M, s α→ ψ

⇔ M, s (α→ φ) ∨ (α→ ψ).

Observe that, in inquisitive logic, the split equivalence has a very natural interpretation: a

declarative sentence α resolves an alternative question, just in case the information conveyed by

α establishes at least one of the two alternatives. Another important property is a well-known

normal form result, established by Ciardelli (2016b, pp. 56–57). It says that every formula of InqB
is equivalent to an inquisitive disjunction of classical formulas. As we shall see below, this normal

form of a formula plays a crucial role in the completeness proof for the standard axiomatization of

InqB (see Section 1.5). In order to prove this result, one first defines, for every formula φ ∈ LB,

a finite set of classical formulas R(φ), representing the different ‘ways’ in which φ might be

settled by an information state. The elements ofR(φ) are also referred to as the resolutions of φ.

Definition 1.4.3 (Resolutions). Let φ ∈ LB be a formula. The set of resolutions of φ is denoted

byR(φ) and inductively defined in the following way:

(i) R(p) := {p} for all p ∈ P,

(ii) R(⊥) := {⊥},
(iii) R(φ ∧ ψ) := {α ∧ β | α ∈ R(φ) and β ∈ R(ψ)},
(iv) R(φ→ ψ) := {

∧
α∈R(φ)(α→ f(α)) | f : R(φ)→ R(ψ)},

(v) R(φ ∨ ψ) := R(φ) ∪R(ψ).

By induction on φ, one easily verifies that R(φ) is in fact finite and contains only classical

formulas. Resolutions can also be defined for sets of formulas. Given any subset Γ ⊆ LB, we say

that f : Γ→ LBc is a resolution function of Γ, just in case f satisfies f(φ) ∈ R(φ), for all φ ∈ Γ.

A resolution of Γ is now defined to be a set of classical formulas ∆ ⊆ LBc such that, for some

resolution function f of Γ, we have ∆ = {f(φ) | φ ∈ Γ}. In other words, a resolution of Γ is

just a set of classical formulas containing one resolution for each element of Γ. The set of all reso-

lutions of Γ is denoted byR(Γ). It is now possible to prove the desired normal form result: every

formula is equivalent to the inquisitive disjunction of its resolutions (cf. Ciardelli 2016b, p. 57).

Proposition 1.4.4. For any φ ∈ LB, it holds φ ≡ α1 ∨ . . . ∨ αn, whereR(φ) = {α1, . . . , αn}.

Finally, let us say a bit more about the relationship between inquisitive logic and classical

propositional logic, henceforth denoted by CPL. We already observed that, in InqB, classical

formulas are always truth-conditional, with the same truth conditions as in classical logic. Con-

sequently, if we treat ∨ as a new connective that is added to the language of classical logic, then

InqB can be seen as a conservative extension of CPL: if we restrict ourselves to classical formulas,

then entailment in InqB simply amounts to entailment in classical logic (cf. Ciardelli 2022, p. 78).

Proposition 1.4.5 (Conservativity over Classical Logic). Let Γ ∪ {α} ⊆ LBc be a set of classical
formulas. We have Γ α if and only if α is entailed by Γ in classical propositional logic.



1.5. Standard Axiomatizations of InqB 11

However, one can also take a different perspective on inquisitive logic. This perspective was

examined in detail by Ciardelli (2009) as well as Ciardelli and Roelofsen (2011) and treats InqB
as logic which is intermediate between CPL and intuitionistic propositional logic (IPL). Let us

elaborate a bit more on this. First of all, if we identify ∨with the ordinary disjunction operator of

classical logic, then every formula falsified by some possible world in CPL is clearly also falsified

by the corresponding singleton state in InqB. As a consequence, CPL can be conceived as an

extension of InqB, so we have InqB ⊆ CPL.
7

Observe that this inclusion must be strict: for

example, the formula ?p = p ∨ ¬p is only valid in CPL, but not in InqB. On the other hand, it is

also possible to show that, if ∨ is identified with the ordinary disjunction of intuitionistic logic,

then InqB can be seen as an extension of IPL, i.e., we have IPL ⊆ InqB. Again, note that this

inclusion is strict: for instance, the formula¬¬p→ p is only valid in InqB, but not in IPL. Putting

things together, we thus obtain the following proposition (cf. Ciardelli and Roelofsen 2011, p. 71).

Proposition 1.4.6. Suppose that the inquisitive disjunction ∨ is identified with the disjunction
operator of intuitionistic and classical logic, respectively. Then we have IPL ⊊ InqB ⊊ CPL.

In this sense, inquisitive logic is in fact ‘intermediate’ between IPL and CPL. This, however,

does not mean that InqB is also an intermediate logic in the usual sense.
8

The reason is that InqB
is not closed under uniform substitution: for example, the classical formula ¬¬p→ p is valid in

InqB, but the substitution instance ¬¬?p→ ?p is not (cf. Ciardelli and Roelofsen 2011, p. 67).

1.5 Standard Axiomatizations of InqB

In preparation of the main part of this thesis, we now want to recall some standard axiomatiza-

tions of inquisitive logic. Throughout this thesis, we will often make use of these axiomatizations

in order to establish the completeness of our proof systems in a proof-theoretical manner. Ar-

guably the most widespread axiomatization of InqB today is a system of natural deduction, which

was first described by Ciardelli (2016b). This system, henceforth denoted by NinqB, is obtained

by extending a standard natural deduction system for intuitionistic propositional logic (see Fig-

ure 1.3) with two additional rules, denoted by (split) and (dne), respectively (see Figure 1.4).

Let us briefly comment on the rules of this system. As can be seen, the intuitionistic base calcu-

lus presented in Figure 1.3 simply comprises the usual introduction and elimination rules for the

connectives, together with the intuitionistic absurdity rule (efq), accounting for the validity of

the principle of explosion (ex falso quodlibet). Observe that, in the rules ∨I and ∨E, the inquisi-

tive disjunction operator ∨ now takes the role of the ‘ordinary’ disjunction of intuitionistic logic.

Consider now the special rules depicted in Figure 1.4. Importantly, these rules come with a side

condition, saying that α must be a classical formula in the sense of Definition 1.2.3. Without this

restriction, neither of the two rules would be sound for InqB.
9

The split rule, denoted by (split),
allows to distribute a classical antecedent over an inquisitive disjunction, which accounts for the

left-to-right direction of the split equivalence established in Proposition 1.4.2 (the other direction

of the equivalence is already derivable by means of the intuitionistic rules). The double negation
rule, on the other hand, is denoted by (dne) and allows to infer a classical formula α from its dou-

7

Here and in the following, we adopt the convention of identifying a logic with the set of its validities. Thus, InqB
refers to the set of all formulas valid in inquisitive logic andCPL refers to the set of all formulas valid in classical logic.

8

Recall that an intermediate logic is a consistent extension of IPL that is closed under modus ponens and uniform

substitution (see, e.g., Chagrov and Zakharyaschev 1997, p. 109). For further information about the connections

between intermediate logics and InqB, we refer to Ciardelli (2009) as well as Ciardelli and Roelofsen (2011).

9

For example, if we would allow α to range over arbitrary formulas in the rule (split), then we would be able to derive

the invalid formula (?p → p) ∨ (?p → ¬p) from the intuitionistically valid formula ?p → ?p. And if we would

allow α to be non-classical in the rule (dne), then NinqB would simply be a proof system for classical logic.
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φ ψ
∧I

φ ∧ ψ
φ1 ∧ φ2 ∧E (i = 1, 2)
φi

φi ∨I (i = 1, 2)
φ1 ∨ φ2

φ ∨ ψ

[φ]

χ

[ψ]

χ
∨E

χ

[φ]

ψ
→I

φ→ ψ

φ→ ψ φ
→E

ψ

⊥
(efq)

φ

Figure 1.3: A natural deduction system for intuitionistic propositional logic (IPL). The

inquisitive disjunction operator ∨ is identified with the ordinary intuitionistic disjunction.

α→ (φ ∨ ψ)
(split)

(α→ φ) ∨ (α→ ψ)

¬¬α
(dne)

α

Figure 1.4: Special rules of the natural deduction system NinqB described by Ciardelli

(2016b). In either case, we require α to be a classical formula, so we must have α ∈ LBc .

ble negation¬¬α. This accounts for the fact that, in virtue of Proposition 1.3.5, every classical for-

mula does indeed behave ‘classically’ in InqB, in the sense that we have α ≡ ¬¬α for all α ∈ LBc .

Definition 1.5.1 (The System NinqB). We define NinqB to be the natural deduction system con-

sisting of the ‘intuitionistic’ rules given in Figure 1.3 and the special rules given in Figure 1.4.

The provability relation of NinqB is denoted by N and defined in the usual way. That is, given

any set of formulas Γ∪{φ} ⊆ LB, we write Γ N φ and say that φ is provable from Γ in NinqB,

if there exists a deductionD in NinqB such that φ is the conclusion ofD and all open hypotheses

of D are contained in Γ. In this case, D is also said to be a deduction for Γ N φ.

The completeness of NinqB is established by a canonical model construction. To make things

precise, let Γ ⊆ LBc be a set of classical formulas.
10

We say that Γ is consistent, if Γ ̸ N ⊥. And we

say that Γ is maximally consistent, if Γ is consistent and there is no proper extension ∆ ⊋ Γ with

∆ ⊆ LBc such that ∆ is also consistent. The canonical model for InqB is defined to be the pair

Mc := ⟨Wc, Vc⟩, where Wc is the set of all maximally consistent sets of classical formulas and

Vc is given by Vc(Γ, p) = 1 :⇔ p ∈ Γ, for all Γ ∈ Wc and p ∈ P. As shown by Ciardelli (2016b,

pp. 90–91), one can now prove a support-based generalization of the well-known truth lemma,

familiar from completeness proofs for classical logic. This is known as the support lemma and

says that, for every state S ⊆Wc and for every formula φ ∈ LB, we have Mc, S φ if and only

if Mc,
⋂
S N φ. Using this fact, it is now possible to establish the desired completeness result.

Theorem 1.5.2 (Soundness and Completeness). The system NinqB is sound and complete with
respect to InqB. That is, for every Γ ∪ {φ} ⊆ LB, we have: Γ N φ if and only if Γ φ.

A proof is provided by Ciardelli (2016b, pp. 85–92). The soundness is shown by a straightfor-

ward induction on the structure of a deduction for Γ N φ in NinqB. For the completeness part,

10

The restriction to classical formulas is not essential here. It is only used in order to simplify the discussion a bit.
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Axioms:

(A1) φ→ (ψ → φ),
(A2) (φ→ (ψ → χ))→ ((φ→ ψ)→ (φ→ χ)),
(A3) (φ ∧ ψ)→ φ and (φ ∧ ψ)→ ψ,

(A4) φ→ (ψ → (φ ∧ ψ)),
(A5) φ→ (φ ∨ ψ) and ψ → (φ ∨ ψ),
(A6) (φ→ χ)→ ((ψ → χ)→ ((φ ∨ ψ)→ χ)),
(A7) ⊥ → φ.

The only rule of inference is modus ponens: from Γ φ and Γ φ→ ψ, infer Γ ψ.

Figure 1.5: A Hilbert-style system for intuitionistic propositional logic (IPL). The inquisitive

disjunction operator ∨ is again identified with the ordinary intuitionistic disjunction.

Axioms:

(IPL) All axioms of the ‘intuitionistic’ system given in Figure 1.5,

(Split) (α→ (φ ∨ ψ))→ ((α→ φ) ∨ (α→ ψ)), where α ∈ LBc is classical,

(DN) ¬¬α→ α, where α ∈ LBc is classical.

The only rule of inference is modus ponens: from Γ φ and Γ φ→ ψ, infer Γ ψ.

Figure 1.6: The Hilbert-style system HinqB.

assume that Γ ̸ N φ. One can then show that there exists some resolution ∆ ∈ R(Γ) such that,

for all α ∈ R(φ), it holds ∆ ̸ N α. Suppose now that R(φ) = {α1, . . . , αn} and let i with

1 ≤ i ≤ n be arbitrary. Since ∆ ̸ N αi, it is clear that the set ∆ ∪ {¬αi} must be consistent.

Hence, by a suitable version of Lindenbaum’s lemma, it can be extended to a maximally consis-

tent set Θi ⊆ LBc . Let now S ⊆Wc be the state given by S := {Θ1, . . . ,Θn}. Using the support

lemma, one can then show that we have Mc, S Γ and Mc, S ̸ φ, so it follows Γ ̸ φ.

For our purposes, it will often be more convenient to base our considerations on a Hilbert-style
system for InqB, rather than on a natural deduction system. Such a Hilbert-style system can eas-

ily be obtained by converting the natural deduction rules of NinqB into corresponding axiom

schemes. The resulting proof system, henceforth denoted by HinqB, is presented in Figure 1.6.

As can be seen, HinqB is obtained by extending a standard Hilbert-style system for intuitionistic

logic (see Figure 1.5) with two additional axiom schemes, denoted by (Split) and (DN), respec-

tively. These axiom schemes are used in order to simulate the effect of the split rule and the double

negation rule included in the natural deduction system NinqB. Note that, as before, we require

α to be a classical formula. Furthermore, in HinqB, the only rule of inference is modus ponens.

Definition 1.5.3 (The System HinqB). We define HinqB to be the Hilbert-style system depicted

in Figure 1.6. The provability relation of HinqB is denoted by H and inductively defined in the

usual way. That is, for every set of formulas Γ ∪ {φ} ⊆ LB, we write Γ H φ and say that φ is

provable from Γ in HinqB, if at least one of the following three conditions is satisfied:

(i) φ is an element of Γ,

(ii) φ is an instance of one of the axiom schemes of HinqB,
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(iii) There exists some ψ ∈ LB such that Γ H ψ and Γ H ψ → φ.

If the last condition is satisfied, we also say that Γ H φ is obtained from Γ H ψ and

Γ H ψ → φ by an application of modus ponens. The easiest way to prove the soundness and

completeness of this system is to show that HinqB is equivalent to the natural deduction system

NinqB, in the sense that everything provable in HinqB is also provable in NinqB and vice versa.

First of all, using induction on the definition of Γ H φ, it is easy to show that the provability

relation H is monotonic, i.e., for all Γ,∆ ⊆ LB and φ ∈ LB, if we have Γ H φ and Γ ⊆ ∆,

then also ∆ H φ. Using this fact, it is now possible to prove the deduction theorem for HinqB.

Theorem 1.5.4 (Deduction Theorem). In HinqB, we have Γ, φ H ψ if and only if Γ H φ→ ψ.

Proof. We first prove the right-to-left direction. Suppose that Γ H φ → ψ. By monotonicity,

this yields Γ, φ H φ → ψ. Furthermore, by definition of H, we also have Γ, φ H φ. Now,

from Γ, φ H φ and Γ, φ H φ→ ψ, it follows Γ, φ H ψ by an application of modus ponens.

In order to prove the left-to-right direction, suppose Γ, φ H ψ. We show Γ H φ → ψ by

induction on the definition ofΓ, φ H ψ. By Definition 1.5.3, there are the following possibilities.

Case 1: Suppose that ψ ∈ Γ∪{φ}, i.e., we have ψ ∈ Γ or ψ = φ. If it holds ψ ∈ Γ, then we also

have Γ H ψ by definition of H. Using axiom (A1) and an application of modus ponens, this

yields Γ H φ→ ψ. On the other hand, if ψ = φ, then Γ H φ→ ψ follows immediately from

the fact that φ→ φ is already provable in the intuitionistic base calculus given in Figure 1.5.

Case 2: Suppose that ψ is an axiom of HinqB. Then, by definition of H, we also have Γ H ψ.

Now, using axiom (A1) and an application of modus ponens, it follows Γ H φ→ ψ.

Case 3: Suppose that Γ, φ H ψ is obtained from Γ, φ H χ and Γ, φ H χ → ψ by an

application of modus ponens. Then, by induction hypothesis, we must also have Γ H φ → χ
and Γ H φ→ (χ→ ψ). Because (φ→ (χ→ ψ))→ ((φ→ χ)→ (φ→ ψ)) is an instance of

axiom scheme (A2), we now obtain Γ H φ→ ψ by two applications of modus ponens.

We are now ready to prove that HinqB is equivalent to the natural deduction system NinqB.

Theorem 1.5.5. Let Γ ∪ {φ} ⊆ LB be a set of formulas. We have Γ H φ in the Hilbert-style
system HinqB if and only if Γ N φ holds in the natural deduction system NinqB.

Proof. For the left-to-right direction, one proceeds by induction on the definition of Γ H φ. This

is very easy, since all axioms of HinqB are clearly derivable in NinqB and modus ponens corre-

sponds to→E. For the right-to-left direction, one can use induction on the structure of a natural

deduction proofD for Γ N φ. This is also straightforward, since most of the rules of NinqB cor-

respond directly to some axiom of HinqB and the discharging of hypotheses can be ‘simulated’

using the deduction theorem for HinqB. For example, suppose that D ends with an application

of→I . In this case, φ is of the form φ = ψ → χ and D contains an immediate subdeduction

for Γ, ψ N χ. By induction hypothesis, we now have Γ, ψ H χ in our Hilbert-style system

HinqB. But then, by the deduction theorem, it follows Γ H ψ → χ and therefore Γ H φ.

Corollary 1.5.6 (Soundness and Completeness). The system HinqB is sound and complete with
respect to InqB. That is, for every Γ ∪ {φ} ⊆ LB, we have: Γ H φ if and only if Γ φ.

Proof. The statement follows immediately from Theorems 1.5.2 and 1.5.5.

It is worth noting that there is also an alternative Hilbert-style axiomatization for InqB, which

was shown to be sound and complete by Ciardelli (2009) as well as Ciardelli and Roelofsen (2011).

This system, presented in Figure 1.7, is defined in the same way as our system HinqB, except that

the double negation axiom is now restricted to atomic formulas and the split axiom is replaced
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Axioms:

(IPL) All axioms of the ‘intuitionistic’ system given in Figure 1.5,

(KP) (¬φ→ (ψ ∨ χ))→ ((¬φ→ ψ) ∨ (¬φ→ χ)),
(ADN) ¬¬p→ p, where p ∈ P is atomic.

The only rule of inference is modus ponens: from Γ φ and Γ φ→ ψ, infer Γ ψ.

Figure 1.7: The Hilbert-style system HinqBKP.

by the so-called Kreisel-Putnam axiom (KP).11
Observe that (KP) has almost the same form as our

split axiom: the only difference is that the classical formula involved in (Split) is now replaced by

a negated formula ¬φ. In virtue of Proposition 1.3.5, the two axiom schemes are easily seen to be

equivalent in InqB. For one thing, every negated formula ¬φ is equivalent to its classical variant

¬φcl
, so (Split) entails (KP). For another, every classical formula α is equivalent to its double

negation ¬¬α, so (KP) entails (Split). However, later on in this thesis, we will also consider an

intuitionistic variant of InqB, in which ∨-free formulas do not in general validate the double

negation law. In order to allow for a smooth transition to this modified setting, we decided to

adopt the Hilbert-style system HinqB rather than the alternative system presented in Figure 1.7.

11

The Kreisel-Putnam axiom has some historical significance: Łukasiewicz (1952) famously conjectured that IPL is

the strongest intermediate logic having the disjunction property. This was disproved by Kreisel and Putnam (1957),

who used the axiom scheme (KP) in order to construct a proper extension of IPL which still satisfies this property.
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Natural Deduction for InqB

Readers familiar with proof theory may have noticed that there is a serious lack of ‘harmony’

in the standard natural deduction system for inquisitive logic: the split rule (split), depicted in

Figure 1.4, appears to be rather artificial and does not fit into the scheme of introduction and

elimination rules typical of natural deduction systems in the style of Gentzen (1935a; 1935b) and

Prawitz (1965). As a result, it is difficult to come up with a reasonable notion of a ‘detour’ in a

deduction and to establish a suitable normal form result for NinqB. In order to overcome these

limitations, we will now present a more well-behaved natural deduction system for InqB. Our

system, henceforth referred to as NinqB+
, is based on an extended natural deduction formalism

in which not only formulas, but also rules can act as assumptions that may be discharged in the

course of a derivation. The basic idea is inspired by the so-called calculus of higher-level rules de-

veloped by Schroeder-Heister (1981; 1984; 2014) as a ‘natural extension of natural deduction’. We

will see that, in the extended setting, the split rule can be fully ‘absorbed’ by a suitably reformu-

lated version of the elimination rule for ∨. This makes it possible to prove a normalization theorem
for our system: every deduction in NinqB+

can be reduced to a deduction without detours.

The chapter is structured as follows. In Section 2.1, we will define some basic notions and

give a detailed exposition of the natural deduction system NinqB+
. In Section 2.2, we will then

show that NinqB+
is equivalent to the standard natural deduction system for inquisitive logic:

everything which is provable in NinqB+
is also provable in NinqB and vice versa. The sound-

ness and completeness of NinqB+
then follows as an immediate corollary. In Section 2.3, we will

provide a precise definition of the notion of a detour and give a brief outline of the normalization

procedure for our system. Afterwards, in Section 2.4, we will turn to the proof of our normaliza-

tion theorem. More precisely, we will describe an effective procedure that allows to transform

any deduction in our system into a deduction containing no detours. This requires an extension

of the technique used in classical and intuitionistic logic and will make up the main part of this

chapter. In Section 2.5, finally, we will derive several corollaries from our normalization theorem.

It will turn out that our system only satisfies a weak form of the subformula property, so it is not

an analytic proof system in a strict sense. However, for a certain special case, a full subformula

property will be obtained. Moreover, the subformula property for NinqB+
is still strong enough

to establish various properties of inquisitive logic in a purely proof-theoretical way.

2.1 The Natural Deduction System NinqB+

We start by providing a formal exposition of our proof system. As explained above, we will use

an extended natural deduction formalism which is strongly inspired by the so-called calculus of
higher-level rules introduced by Schroeder-Heister (1981; 1984; 2014). The basic idea can be ex-

plained as follows: in ordinary natural deduction systems, formulas can be used as assumptions

16
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or hypotheses, and by applying certain rules of inference, these assumptions may become dis-
charged in the course of a derivation. The extended setting considered here generalizes this idea:

instead of allowing only formulas to act as assumptions, we now also allow rules to be assumed

and discharged in a natural deduction proof. More precisely, every proof tree in our system will

be constructed from two types of rules: on the one hand, our system comprises a finite number

of primitive rules—namely, an introduction rule and an elimination rule for each connective and

certain additional rules for the falsum constant ⊥. The primitive rules are considered to be a

‘static’ component of our proof system, so applications of these rules never get discharged by

other rules. On the other hand, we also allow proof trees to contain one or more applications of

so-called non-primitive rules. These rules are treated as assumptions (made purely for the sake of

argument) and have to be discharged by other rule applications in the proof tree.

Let us now turn to the technical details. In many respects, our system is much simpler than the

framework described by Schroeder-Heister (1981; 1984). Most importantly, Schroeder-Heister

also considers non-primitive rules that are able to discharge other non-primitive rules, which in

turn may discharge further non-primitive rules, and so on. In other words, Schroeder-Heister’s

system is capable of dealing with rules of arbitrary level, where the level of a rule is taken to rep-

resent the complexity of the rule: formulas are identified with rules of level 0 and a rule of level

n ≥ 1 is built up from rules of level at most n− 1 (cf. Schroeder-Heister 1981, p. 47).
1

In our sys-

tem, the discharging of non-primitive rules will be accomplished only by one rule—namely, a suit-

ably reformulated version of the elimination rule for the connective ∨. Thus, in particular, non-

primitive rules are never allowed to discharge any other non-primitive rules or open hypotheses

in a proof tree. Instead, every non-primitive rule of our system will simply be of the form

α1 α2 · · · αn

φ

whereα1, . . . , αn ∈ LBc are classical formulas (acting as the premises of the rule) andφ ∈ LB is an

arbitrary formula (acting as the conclusion of the rule).
2

Given any finite set of classical formulas

Θ = {α1, . . . , αn} and an arbitrary formula φ, we will also use ‘Θ⇒ φ’ as a name for the non-

primitive rule with premises α1, . . . , αn and conclusion φ.
3

There are now two important things

to note here. First of all, we always require the premises of a non-primitive rule to be classical
formulas, so these premises are not allowed to contain occurrences of the inquisitive disjunction

operator ∨ (see Definition 1.2.3). The importance of this restriction will become apparent later on,

when we will establish the soundness of our proof system. Secondly, every non-primitive rule is

assumed to be non-schematic, in the sense that both the premisesα1, . . . , αn and the conclusionφ
are considered to be fixed formulas, rather than syntactic meta-variables that may be substituted

by arbitrary formulas from the language. In other words, the non-primitive rules of our system

are always specific: they allow us to infer one specific formula φ from a fixed set of n specific

formulas α1, . . . , αn. As soon as one of the formulas φ, α1, . . . , αn is replaced by some other

formula, we obtain a distinct non-primitive rule that will not be identified with the original one.

Definition 2.1.1 (Non-Primitive Rule). By a non-primitive rule, we mean any (non-schematic)

rule that allows to infer a specific formula φ ∈ LB from a specific set of n classical formulas

α1, . . . , αn ∈ LBc . Given any finite set of classical formulas Θ ⊆ LBc and an arbitrary φ ∈ LB, we

will also write Θ⇒ φ for the non-primitive rule with conclusion φ and set of premises Θ.

As we will see below, every application of a non-primitive rule in a proof tree will be either open
or it will be discharged. The notational conventions regarding the discharging of non-primitive

1

In his 1984 paper, Schroeder-Heister uses a slightly different level assignment, but the basic idea is the same.

2

So, using the terminology of Schroeder-Heister (1981), one could say that all our non-primitive rules are of level≤ 1.

3

Thus, in particular, we do not assign any order to the premises α1, . . . , αn of a non-primitive rule.
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φ ψ
∧I

φ ∧ ψ
φ1 ∧ φ2 ∧E (i = 1, 2)
φi

φi ∨I (i = 1, 2)
φ1 ∨ φ2

⊥
(efq)

φ

[φ]

D
ψ

→I
φ→ ψ

φ→ ψ φ
→E

ψ

[Θ]

D1

φ ∨ ψ

[Θ⇒ φ]

D2

χ

[Θ⇒ ψ]

D3

χ ∨E+
χ

[¬α]
D
⊥

(raa)
α

Figure 2.1: Primitive rules of the natural deduction system NinqB+
. In the rule ∨E+, we

require Θ to be a finite set of classical formulas. And in the rule (raa), α must be classical.

rules will be essentially the same as those used for ordinary hypotheses in natural deduction. So,

given a non-primitive rule Θ⇒ φ and a proof treeD with conclusion ψ, we will use the notation

Θ⇒ φ

D
ψ

in order to emphasize the fact that D contains some (possibly zero) undischarged applications

of the rule Θ ⇒ φ. By enclosing a non-primitive rule in square brackets, as in [Θ ⇒ φ], we

indicate that the corresponding applications of the rule have been discharged. Note that, as an

important special case, we also allow the set of premises Θ of a non-primitive rule to be empty.

Clearly, using a non-primitive rule of the form ∅ ⇒ φ in a proof tree has exactly the same effect

as assuming φ as a hypothesis in the tree, so ∅ ⇒ φ may simply be identified with φ.

We are now ready to define our natural deduction system NinqB+
. The primitive rules of

our system are presented in Figure 2.1. As can be seen, NinqB+
is obtained from the natural

deduction system given in Figure 1.3 by omitting the ordinary elimination rule for ∨, and by

adding two special rules, denoted by ∨E+ and (raa), respectively.
4

Let us give a brief explanation

of these special rules. The rule (raa) is a restricted version of reductio ad absurdum and formalizes

the principle of proof by contradiction: if we can derive ⊥ from a hypothesis ¬α, then we are

entitled to infer α and to discharge all open occurrences of the hypothesis ¬α. Note that, in

order to make sure that NinqB+
is sound with respect to InqB, this rule is restricted to classical

formulas (without this restriction, we would simply obtain a proof system for classical logic).

The rule ∨E+, on the other hand, is a generalization of the ordinary elimination rule for ∨ and

should be read as follows: let D1 be a proof tree ending with some formula φ ∨ ψ and suppose

that there exists a finite set of classical formulas Θ ⊆ LBc such that each element of Θ occurs as

an open hypothesis in D1. Moreover, let D2 and D3 be two proof trees ending with χ such that

D2 contains some undischarged applications of the non-primitive rule Θ⇒ φ, and D3 contains

some undischarged applications of the non-primitive rule Θ ⇒ ψ. Then, using the rule ∨E+,

we are entitled to infer χ and to discharge all open occurrences of the hypotheses from Θ in

D1, all undischarged applications of the non-primitive rule Θ ⇒ φ in D2, and all undischarged

applications of the non-primitive rule Θ ⇒ ψ in D3. Note that, by choosing Θ = ∅ in an

application of ∨E+, one can also obtain the ordinary elimination rule for ∨ as a special case:

D1

φ ∨ ψ

u
φ

D2

χ

u
ψ

D3

χ ∨Eu
+χ

4

Of course, by the ‘ordinary elimination rule for ∨’, we always mean the rule which is just like the standard elimina-

tion rule for disjunction in intuitionistic logic, except that ∨ is identified with the intuitionistic disjunction operator.
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where the label u is used in order to indicate that the corresponding applications of the rules

∅ ⇒ φ and ∅ ⇒ ψ are discharged by the application of ∨E+ at the bottom of the proof tree.

Definition 2.1.2 (Primitive Rules of the System NinqB+
). We define NinqB+

to be the ‘higher-

level’ natural deduction system whose primitive rules are the ones given in Figure 2.1.

Any proof tree built up using the primitive rules of our system and arbitrary (open or dis-

charged) applications of non-primitive rules will be referred to as a quasi-deduction. Throughout

this chapter, quasi-deductions will be denoted by the meta-variablesD, D1, D2, etc. Given a for-

mula φ ∈ LB and an arbitrary set of formulas and non-primitive rules Γ, we will write Γ +
N φ

and say that φ is derivable from Γ, if there exists a quasi-deduction D such that φ is the con-

clusion of D and all open hypotheses and open applications of non-primitive rules in D are

contained in Γ. In this case, D is also said to be a quasi-deduction for Γ +
N φ. By a deduction

in the system NinqB+
, we mean a quasi-deduction in which all applications of non-primitive

rules are discharged by some application of ∨E+. So, in particular, every deduction is also a

quasi-deduction, but not the other way around. Given any set of formulas Γ∪{φ} ⊆ LB, we will

say that φ is provable from Γ in our system, if there exists a deduction D for Γ +
N φ in NinqB+

.

In order to see a concrete example, let α, β ∈ LBc be classical formulas and let φ,ψ, χ ∈ LB be

arbitrary formulas. We may then construct the following quasi-deduction in our system:

α→ (β → (φ ∨ ψ)) [α]u
→E

β → (φ ∨ ψ) [β]u
→E

φ ∨ ψ

χ→ α [χ]v
→E

α β
u

φ
→Iv

χ→ φ
∨I

(χ→ φ) ∨ (¬χ→ ψ)

α ∧ χ
∧E

α

[¬χ]w χ
→E⊥

(efq)
β
u

ψ
→Iw¬χ→ ψ

∨I
(χ→ φ) ∨ (¬χ→ ψ) ∨Eu

+
(χ→ φ) ∨ (¬χ→ ψ)

As indicated by the label u, all applications of the non-primitive rules α, β ⇒ φ and α, β ⇒ ψ in

this quasi-deduction are discharged by the application of ∨E+ at the bottom. Hence, this quasi-

deduction contains no undischarged applications non-primitive rules, so it is also a deduction.

In order to conclude this section, let us now introduce some useful terminology. The set of

classical formulas Θ involved in an application of ∨E+ will be referred to as the set of auxiliary
formulas of this application. By the auxiliary rules of an application of ∨E+, we will henceforth

mean the non-primitive rules Θ ⇒ φ and Θ ⇒ ψ which are discharged in the course of this

application. And the side formulas of an application of ∨E+ are the two formulasφ andψ serving

as the conclusions of the auxiliary rules Θ ⇒ φ and Θ ⇒ ψ. It is easy to see that applications

of the rule ∨E+ may also involve some redundancy. For example, if one of the auxiliary rules

Θ⇒ φ and Θ⇒ ψ of such an application does not occur in the corresponding quasi-deduction

ending with χ, then the application of ∨E+ can always be eliminated. The process is illustrated

below, where we assume that Θ⇒ φ does not occur as an undischarged rule in the subtree D2:

[Θ]u

D1

φ ∨ ψ
D2

χ

[Θ⇒ ψ]u

D3

χ ∨Eu
+χ

converts to
D2

χ

Furthermore, if an auxiliary formula α does not occur as an open hypothesis in the quasi-

deduction ending with the premise φ ∨ψ, then one can always simplify the application of ∨E+

by removing α from the set of auxiliary formulas. This is illustrated by the following conversion:

[Θ]u

D1

φ ∨ ψ

[Θ, α⇒ φ]u

D2

χ

[Θ, α⇒ ψ]u

D3

χ ∨Eu
+χ

converts to

[Θ]u

D1

φ ∨ ψ

[Θ⇒ φ]u

D′
2

χ

[Θ⇒ ψ]u

D′
3

χ ∨Eu
+χ
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where α is assumed not to occur as an open hypothesis in D1, and the quasi-deductions D′
2 and

D′
3 are obtained from D2 and D3 by replacing all open occurrences of the rules Θ, α ⇒ φ and

Θ, α ⇒ ψ by the simplified rules Θ ⇒ φ and Θ ⇒ ψ, respectively.
5

For technical reasons, we

will henceforth assume that applications of ∨E+ never involve any redundancy of this kind. In

particular, every quasi-deduction under consideration is assumed to satisfy the conditions men-

tioned in the following lemma, which is a direct consequence of the observations made above.

Lemma 2.1.3. Let φ ∈ LB be a formula and let Γ be a set of formulas and non-primitive rules. If
φ is derivable from Γ in our system, then there exists a quasi-deduction D for Γ +

N φ such that
every auxiliary rule and every auxiliary formula of an application of ∨E+ in D does in fact have
at least one undischarged occurrence in the corresponding subtree belonging to this application.

For later purposes, we also need to define a suitable notion of substitution. To this end, let D
be a quasi-deduction containing some undischarged applications of a non-primitive rule Θ⇒ φ
and let D′

be a quasi-deduction for Γ,Θ +
N φ, where Γ is an arbitrary set of formulas and

non-primitive rules. In this case, we will write D{D′ : Θ⇒ φ} for the result of replacing every

undischarged application of the rule Θ⇒ φ in D by an occurrence of the tree D′
. For example,

let Θ be the set of classical formulas Θ = {α, β} and let D be the following quasi-deduction:

α

α [β]u
#

φ [β]u
∧I

φ ∧ β
→I

φ→ (φ ∧ β)
α

[¬β]v [β]u
→E⊥

(raa)v
β

#
φ
→E

φ ∧ β
∧E

β
#

φ
→Iu

β → φ

In this quasi-deduction, there are three undischarged applications of the non-primitive rule Θ⇒
φ, marked with the symbol #. Let now Γ be a set of formulas and non-primitive rules and letD′

be a quasi-deduction for Γ,Θ +
N φ. The quasi-deduction D{D′ : Θ⇒ φ} is then of the form

α

α [β]u

D′

φ [β]u
∧I

φ ∧ β
→I

φ→ (φ ∧ β)

α

[¬β]v [β]u
→E⊥

(raa)v
β

D′

φ
→E

φ ∧ β
∧E

β
D′

φ
→Iu

β → φ

In other words, D{D′ : Θ ⇒ φ} is obtained from D by simultaneously substituting the quasi-

deduction D′
for every undischarged occurrence of the rule Θ⇒ φ. Note that, if some formula

from Θ does not actually occur as an open hypothesis inD′
, then every subtree inD ending with

the corresponding premise of Θ ⇒ φ will simply be omitted in the course of the substitution

(in this case, some open hypotheses or undischarged rules in D may get ‘lost’, but this is un-

problematic). Clearly, by performing such a substitution, we do not change the conclusion of the

quasi-deductionD, andD{D′ : Θ⇒ φ} cannot contain any new undischarged rules or open hy-

potheses that were not already present inD orD′
. In fact, it is easy to verify the following claim.

5

Note that, by performing this conversion, all subtrees ending with the premise α of the corresponding applications

of the rules Θ, α⇒ φ and Θ, α⇒ ψ are simply omitted from D2 and D3. The details are left to the reader.
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Fact 2.1.4. Let Γ and ∆ be arbitrary sets of formulas and non-primitive rules, let Θ ⊆ LBc be a
finite set of classical formulas and let φ,ψ ∈ LB be arbitrary formulas. IfD is a quasi-deduction for
∆,Θ⇒ φ +

N ψ (soD possibly contains some undischarged applications of the ruleΘ⇒ φ) and if
D′ is a quasi-deduction for Γ,Θ +

N φ, then D{D′ : Θ⇒ φ} is a quasi-deduction for Γ,∆ +
N ψ.

2.2 Soundness and Completeness

Before turning to the main part of this chapter, let us first establish the soundness and complete-

ness of our proof system. We have to show that, for any set of formulas Γ ∪ {φ} ⊆ LB, there

exists a deduction for Γ +
N φ in NinqB+

if and only if φ is entailed by Γ in InqB. To this end, we

will prove that NinqB+
is equivalent to the standard natural deduction system NinqB introduced

in Definition 1.5.1, i.e., everything that is provable in NinqB+
is also provable in NinqB and vice

versa. First, we show that NinqB+
is sound with respect to NinqB: if a formula φ is provable

from a set of hypotheses in NinqB+
, then it is also provable from these hypotheses in NinqB.

Lemma 2.2.1. Let Γ∪{φ} ⊆ LB be a set of formulas. If it holds Γ +
N φ in our natural deduction

system NinqB+, then we also have Γ N φ in the standard natural deduction system NinqB.6

Proof. We will show that every deduction in NinqB+
can be transformed into a deduction in

NinqB. For this purpose, let NinqBa
be the auxiliary system which is just like NinqB+

, except

that NinqBa
also includes the ordinary elimination rule ∨E from Figure 1.3 and the special rules

(split) and (dne) from Figure 1.4. As before, by a quasi-deduction in NinqBa
, we mean any proof

tree built up using the primitive rules of NinqBa
and arbitrary (open or discharged) applications

of non-primitive rules. And a deduction in NinqBa
is a quasi-deduction in which all applications

of non-primitive rules are discharged by applications of ∨E+. The derivability relation ofNinqBa

is denoted by
a
N, so we write Γ a

N φ, if there exists a quasi-deduction D in NinqBa
such that

φ is the conclusion of D and all undischarged rules and open hypotheses of D are in Γ.

We will prove the following more general claim: for any set of formulas Γ∪{φ} ⊆ LB, if there

exists a deduction D for Γ a
N φ in the auxiliary system NinqBa

, then there also exists a deduc-

tion D′
for Γ N φ in the standard system NinqB (since every deduction in NinqB+

is also a

deduction inNinqBa
, this is sufficient to establish the claim). LetΓ∪{φ} ⊆ LB be an arbitrary set

of formulas and let D be an arbitrary deduction for Γ a
N φ in the auxiliary system NinqBa

(so,

in particular,D cannot contain any undischarged applications of non-primitive rules). Moreover,

let n be the number of applications of the modified elimination rule ∨E+ in D. Using induction

on n, we show that there is also a deduction D′
for Γ N φ in the standard system NinqB.

For the base case, assume that D contains n = 0 applications of ∨E+. In this case, D cannot

contain any applications of non-primitive rules since every such application would have to be

discharged by some application of ∨E+. Hence, we only need to get rid of all applications of (raa)
inD. LetD′

be the proof tree obtained fromD by rewriting every application of (raa) as follows:

[¬α]u

D′′

⊥
(raa)u

α

converts to

[¬α]u

D′′

⊥
→Iu¬¬α
(dne)

α

Then, clearly, D′
is a deduction for Γ a

N φ which contains no applications of non-primitive

rules and no applications of the rules ∨E+ and (raa). Consequently, D′
is also a deduction in

the standard natural deduction system NinqB, so we may conclude Γ N φ, as desired.

6

Recall that we write

+
N for the provability relation of NinqB+

and N for the provability relation of NinqB.
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For the inductive step, assume that D contains n ≥ 1 applications of the rule ∨E+. In this

case, we select a topmost application of ∨E+ in D. In other words, we write D in the form

[Θ]u

D3

ψ1 ∨ ψ2

[Θ⇒ ψ1]
u

D1

χ

[Θ⇒ ψ2]
u

D2

χ ∨Eu
+χ

D4

where none of the quasi-deductions D1, D2 and D3 contains an application of ∨E+. By as-

sumption, Θ is a finite set of classical formulas, so we must have Θ = {α1, . . . , αk} for some

α1, . . . , αk ∈ LBc . Let now i = 1, 2 be arbitrary and consider the subtree Di ending with the

premise χ of the selected application of ∨E+. Let ∆i be the set of all open hypotheses and

undischarged rules other than Θ⇒ ψi in this subtree. That is, ∆i is the smallest set such thatDi

is a quasi-deduction for ∆i,Θ⇒ ψi
a
N χ. Furthermore, letD∗

i be the quasi-deduction obtained

from Di by rewriting every undischarged application of the rule Θ⇒ ψi in the following way:

D′
1

α1 · · ·
D′

k

αk
Θ⇒ ψi

ψi

D′′

converts to

∧
Θ→ ψi

D′
1

α1 · · ·
D′

k

αk ∧I∧
Θ
→E

ψi

D′′

where

∧
Θ stands for the conjunction of the elements of Θ and the dashed line indicates k−1 ap-

plications of the rule∧I . Then, clearly,D∗
i contains no undischarged applications of the ruleΘ⇒

ψi anymore, but it contains an additional open hypothesis

∧
Θ → ψi instead. In other words,

D∗
i must be a quasi-deduction for ∆i,

∧
Θ → ψi

a
N χ. Using the quasi-deductions D∗

1 and D∗
2

thus obtained, we may now transform the whole deductionD into the proof treeD∗
of the form

[
∧
Θ]u
∧E

Θ
D3

ψ1 ∨ ψ2 →Iu∧
Θ→ (ψ1 ∨ ψ2) (split)

(
∧
Θ→ ψ1) ∨ (

∧
Θ→ ψ2)

[
∧

Θ→ ψ1]
v

D∗
1

χ

[
∧

Θ→ ψ2]
v

D∗
2

χ
∨Ev

χ

D4

where ∨E refers to the ordinary elimination rule for ∨. Note that, since every element of Θ is

assumed to be a classical formula, the conjunction

∧
Θ of these elements must also be a classical

formula, so the indicated application of (split) is in fact correct. It is now easy to see thatD∗
does

not contain any new undischarged rules or open hypotheses that were not already present inD.

Hence,D∗
must still be a deduction for Γ a

N φ. Furthermore, by construction,D∗
contains only

n−1 applications of the modified elimination rule ∨E+. Therefore, using the induction hypoth-

esis, we now obtain the desired deduction D′
for Γ N φ in the standard system NinqB.

Next, we will show that our system is also complete with respect to NinqB: if φ is provable

from a set of hypotheses in NinqB, then it is also provable from these hypotheses in NinqB+
.

Lemma 2.2.2. Let Γ ∪ {φ} ⊆ LB be a set of formulas. If Γ N φ holds in the standard natural
deduction system NinqB, then we also have Γ +

N φ in our new natural deduction system NinqB+.

Proof. By what was said in the previous section, every instance of the ordinary elimination rule

∨E can be identified with an instance of the generalized rule ∨E+ in which the set of auxiliary
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formulas Θ is taken to be the empty set. Therefore, it suffices to show that the special rules (split)
and (dne), depicted in Figure 1.4, are derivable in our system NinqB+

.
7

In order to show the

derivability of (split), let α ∈ LBc be a classical formula and let φ,ψ ∈ LB be arbitrary formulas.

Using the generalized rule ∨E+, we may then construct the following deduction in NinqB+
:

α→ (φ ∨ ψ) [α]w
→E

φ ∨ ψ

[α]u
w

φ
→Iu

α→ φ
∨I

(α→ φ) ∨ (α→ ψ)

[α]v
w

ψ
→Iv

α→ ψ
∨I

(α→ φ) ∨ (α→ ψ) ∨Ew
+

(α→ φ) ∨ (α→ ψ)

Note that, as indicated by the label w, all applications of the non-primitive rules α ⇒ φ and

α⇒ ψ in this deduction are discharged by the application of ∨E+ at the bottom. Hence, the rule

(split) is in fact derivable in our system. The derivability of the rule (dne), on the other hand, can

be established by the following deduction in NinqB+
, where α ∈ LBc is again a classical formula:

¬¬α [¬α]u
→E⊥

(raa)u
α

As we have seen, each of the rules ∨E, (split) and (dne) is derivable in NinqB+
. Consequently,

given any subset Γ ∪ {φ} ⊆ LB and a deduction D for Γ N φ in the standard system NinqB,

one can always transform D into a corresponding deduction D′
for Γ +

N φ in NinqB+
.

By combining the previous two lemmas, we may now conclude that our system is in fact equiv-

alent to the standard natural deduction system for inquisitive logic: everything that is provable

in NinqB+
is also provable in the standard system NinqB and vice versa. Since NinqB is sound

and complete with respect to InqB, this yields the desired completeness result for our system.

Theorem 2.2.3 (Soundness and Completeness). The system NinqB+ is sound and complete with
respect to InqB. That is, for any set of formulasΓ∪{φ} ⊆ LB, we have: Γ +

N φ if and only ifΓ φ.

Proof. The statement follows directly from Theorem 1.5.2, Lemma 2.2.1 and Lemma 2.2.2.

2.3 Cut Segments and Conversions

In this and the next section, we will establish a so-called normalization theorem for our system,

i.e., we will show that every deduction in NinqB+
can be transformed into a detour-free deduc-

tion. The underlying technique goes back to Gentzen, who started thinking about normalization

in the early 1930s as part of his work on the consistency of Peano arithmetic (cf. Von Plato 2008;

2012). Unfortunately, Gentzen did not succeed in proving normalization for classical natural de-

duction, which led him to develop the sequent calculus and to prove a cut-elimination theorem

instead. (For intuitionistic logic, however, Gentzen had already found a direct normalization

proof, but never published it. This became known in 2005, when a handwritten manuscript of

his doctoral thesis was found. See Von Plato 2008). The first published proof of normalization

for both classical and intuitionistic logic was provided by Prawitz (1965). Let us start by giving a

brief explanation of the basic idea. Roughly speaking, by a cut formula in a deduction, we mean

an occurrence of a formula that is introduced by an application of an introduction rule or an ap-

plication of a rule for the falsum constant, and which is eliminated right away by an application

7

Roughly speaking, a rule is said to be derivable in our system, if it satisfies the condition that, whenever there is a

deduction for each of the premises of the rule, then there is also a deduction for the conclusion of the rule.
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of an elimination rule (so, in a sense, a cut formula may be regarded as a ‘detour’ in a deduction,

since a formula which has just been introduced gets instantly eliminated again). For example,

consider the following deduction in our system, where α is assumed to be a classical formula and

the two applications of α⇒ φ and α⇒ ψ are discharged by the application of ∨E+ at the end:

α→ φ [α]v
→E

φ
∨I

(1) φ ∨ ψ

¬φ
[α]w

v
φ
→E⊥

(efq)
(2) φ ∧ ψ

∧E
ψ

[α]u
v

ψ
→Iu

(3) α→ ψ [α]w
→E

ψ ∨Ev
+ψ

→Iw
α→ ψ

This deduction contains three cut formulas, marked with (1), (2) and (3), respectively. The first

one is the formula marked with (1), since this formula is obtained by the introduction rule for

∨ and eliminated right away by the corresponding elimination rule. The second cut formula is

(2), because this formula is introduced by an application of a falsum rule and eliminated by the

elimination rule for conjunction. And the last cut formula is (3), since this formula is obtained

by the introduction rule for→ and instantly eliminated again by the respective elimination rule.

In order to make things precise, let us introduce some further terminology. Given any appli-

cation of a (primitive or non-primitive) rule of inference, we will call the formula occurrences

directly above the line the premises, and the formula occurrence directly below the line the con-
clusion of this application. For each of the binary connectives ∧,→ and ∨, our system comprises

exactly one introduction rule and exactly one elimination rule.8 In addition, NinqB+
also includes

the rules (efq) and (raa), which we will refer to as falsum rules. In elimination rules, we distinguish

between two types of premises, referred to as major premises and minor premises, respectively.

Definition 2.3.1 (Major Premise, Minor Premise). In an application of an elimination rule, the

premise which contains the corresponding occurrence of the logical connective is said to be the

major premise of this application. All other premises (if any) will be referred to as minor premises.

So, for example, in an application of→E, the major premise is the formula of the form φ→ ψ
and the minor premise is the formula φ. And in an application of ∨E+, the major premise is the

formula φ ∨ψ and the minor premises are the two occurrences of χ standing immediately above

the line. Without loss of generality, we will assume that the major premise of an elimination rule

is always the leftmost premise of this rule. It might now seem that a cut could simply be defined as

an occurrence of a formula which is both the conclusion of an introduction rule or the conclusion

of a falsum rule, and the major premise of an elimination rule. However, things are actually a bit

more complicated, since applications of the rule ∨E+ allow us to produce repetitions of formulas

in deductions. For example, one could also construct a deduction of the following form:

θ1 ∨ θ2
χ1 ∨ χ2

D
φ

D′

ψ
∧I

φ ∧ ψ φ ∧ ψ ∨E+
φ ∧ ψ φ ∧ ψ ∨E+
φ ∧ ψ

∧E
φ

This deduction contains a sequence of three consecutive occurrences of the formulaφ∧ψ, starting

with the conclusion of an introduction rule and ending with the major premise of an elimination

rule. Clearly, our definition of a cut should also account for detours of this kind. Thus, rather than

8

Note that, for the inquisitive disjunction operator ∨, the elimination rule is now the ‘higher-level’ rule ∨E+, rather

than the ordinary elimination rule for disjunction used in classical and intuitionistic natural deduction.
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considering single occurrences of formulas, we must actually consider sequences of consecutive

occurrences of the same formula. A sequence of this kind will be referred to as a segment.

Definition 2.3.2 (Segment). LetD be a quasi-deduction in our system. By a segment of length n
inD, we mean a sequence ξ1, . . . , ξn of n consecutive occurrences of a formula φ inD such that:

(i) ξ1 is not the conclusion of an application of ∨E+,

(ii) each ξi with 1 ≤ i < n is a minor premise of an application of ∨E+,

(iii) ξn is not a minor premise of an application of ∨E+.

A cut segment is now defined to be a segment that begins with the conclusion of an introduction

rule or the conclusion of a falsum rule, and ends with the major premise of an elimination rule.

Definition 2.3.3 (Cut Segment). Let D be a quasi-deduction in NinqB+
. By a cut segment of

lengthn inD, we mean a segment ξ1, . . . , ξn inD such that ξ1 is the conclusion of an introduction

rule or the conclusion of a falsum rule, and ξn is the major premise of an elimination rule. If π is

a cut segment, then the unique formula occurring in π will also be called the cut formula of π.

The main goal of this chapter is to show that any deduction can be transformed into a deduction

containing no cut segments. A cut-free deduction will also be referred to as a normal deduction.

Definition 2.3.4 (Normal Deduction). A deduction D is said to be a normal deduction, if D
contains no cut segments and all conclusions of falsum rule applications inD are atomic formulas.

The overall structure of our normalization proof will be as follows: first, we will show that

the falsum rules can be restricted to instances in which the conclusion is an atomic formula.

Afterwards, we will describe a procedure that allows to get rid of all cut segments starting with

the conclusion of an introduction rule. The argument is based on the observation that any cut

segment of length n > 1 can be transformed into a cut segment of length one by permuting the

major premise at the end of the segment over the minor premises of ∨E+ in the middle of the

segment. This is achieved by performing the following permutation conversion, where (E) stands

for an arbitrary instance of an elimination rule with major premise χ and conclusion µ:

[Θ]u

D3

φ ∨ ψ

[Θ⇒ φ]u

D1

χ

[Θ⇒ ψ]u

D2

χ ∨Eu
+χ D4 (E)

µ

D5

converts to

[Θ]u

D3

φ ∨ ψ

[Θ⇒ φ]u

D1

χ D4 (E)
µ

[Θ⇒ ψ]u

D2

χ D4 (E)
µ ∨Eu

+µ

D5

Unfortunately, naive applications of the permutation conversion do not necessarily yield the

desired result. The reason is that (E) itself might be an instance of ∨E+ which discharges some

hypotheses occurring in the subtreeD3. In this case, permuting the major premise of (E) upwards

would cause the respective hypotheses inD3 to become open hypotheses. For example, consider

the following deduction in our system, which contains two consecutive applications of ∨E+:

[Θ]u [Ω]v

D3

φ1 ∨ φ2

[Θ⇒ φ1]
u [Ω]v

D1

ψ1 ∨ ψ2

[Θ⇒ φ2]
u [Ω]v

D2

ψ1 ∨ ψ2 ∨Eu
+ψ1 ∨ ψ2

[Ω⇒ ψ1]
v

D4

χ

[Ω⇒ ψ2]
v

D5

χ ∨Ev
+χ

D6

In this deduction, the upper application of ∨E+ (i.e., the one with label u) is associated with

the set of auxiliary formulas Θ and the lower application of ∨E+ (i.e., the one with label v) is
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associated with the set of auxiliary formulas Ω. Since some of the auxiliary formulas from Ω also

occur as hypotheses in the subtreeD3, we cannot simply apply the aforementioned permutation

conversion, since this would cause these hypotheses to become open. However, this problem

can easily be resolved, since it is always possible to ‘shift’ all occurrences of the hypotheses

from Ω in D3 to the subtrees D1 and D2. To make this more precise, let us assume that it holds

Θ = {α1, . . . , αn} and Ω = {β1, . . . , βm}, where each αi and each βi is a classical formula.

Moreover, let k = 1, 2 be arbitrary and let D∗
k be the quasi-deduction obtained from Dk by

rewriting every open application of the non-primitive rule Θ⇒ φk in the following way:

D′
1

α1 · · ·
D′

n

αn Θ⇒ φk
φk

D′′

converts to

D′
1

α1 · · ·
D′

n

αn β1 · · · βm
Θ,Ω⇒ φk

φk

D′′

In other words, we simply replace all undischarged applications of the rule Θ ⇒ φk in Dk by

undischarged applications of Θ,Ω ⇒ φk. Note that, in the course of this conversion, we add

a number of new occurrences of the open hypotheses β1, . . . , βm to the proof tree. Using the

quasi-deductions D∗
1 and D∗

2 thus obtained, we can now transform the whole deduction into

[Θ,Ω]u

D3

φ1 ∨ φ2

[Θ,Ω⇒ φ1]
u [Ω]v

D∗
1

ψ1 ∨ ψ2

[Θ,Ω⇒ φ2]
u [Ω]v

D∗
2

ψ1 ∨ ψ2 ∨Eu
+ψ1 ∨ ψ2

[Ω⇒ ψ1]
v

D4

χ

[Ω⇒ ψ2]
v

D5

χ ∨Ev
+χ

D6

In this deduction, the lower application of ∨E+ does not discharge any hypotheses in D3 any-

more, since all open hypotheses from Ω in D3 are now discharged by the upper application.

Therefore, we can now safely apply our permutation conversion in order to permute the major

premise of the lower application of ∨E+ over the minor premises of the upper application.

Using successive applications of the permutation conversion, it is possible to transform any cut

segment into a cut segment containing only a single occurrence of the cut formula. The cut itself

can then be eliminated using the following logical conversions for cut segments of length one:

D1

φ1

D2

φ2 ∧I
φ1 ∧ φ2 ∧E
φi

D3

converts to

Di

φi

D3

[φ]u

D1

ψ
→Iu

φ→ ψ

D2

φ
→E

ψ

D3

converts to

D2

φ

D1

ψ

D3

[Θ]u

D3

φi ∨I
φ1 ∨ φ2

[Θ⇒ φ1]
u

D1

χ

[Θ⇒ φ2]
u

D2

χ ∨Eu
+χ

D4

converts to

Di{D3 : Θ⇒ φi}
χ

D4

Observe that, in the last conversion, we use the substitution operator defined in Section 2.1, so

Di{D3 : Θ⇒ φi} stands for the result of replacing every undischarged application of the non-
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primitive ruleΘ⇒ φi inDi by an occurrence of the quasi-deductionD3 (this is in fact legitimate,

since D3 is assumed to end with the conclusion φi). Using Fact 2.1.4, it is easy to verify that this

conversion does not affect the conclusion or the set of open hypotheses of the whole deduction,

i.e., for any set of formulas Γ ∪ {φ} ⊆ LB, if the full proof tree was a deduction for Γ +
N φ

before the conversion, then it will also be such a deduction after the conversion.

The main difficulty in our normalization proof arises from the fact that each of the logical con-

versions may produce new cut segments and the last two conversions may even increase the total

number of cut segments in a deduction. Therefore, it is not obvious from the outset that repeated

applications of these conversions will eventually yield a normal deduction. For example, in the

conversion rule for cut formulas of the form φ→ ψ, each of the two formulas φ and ψ may be-

come a new cut formula and all cut segments occurring in the subtreeD2 might be duplicated, de-

pending on how often φ occurs as an open hypothesis inD1. Furthermore, in the conversion rule

for cut formulas of the form φ1 ∨φ2, not only φi but also every formula in the set Θ may become

a new cut formula, and these formulas can be arbitrarily ‘complex’. In addition, all cut segments

inD3 might be duplicated, depending on how oftenΘ⇒ φi occurs as an undischarged rule inDi.

2.4 Normalization

Let us now turn to the proof of normalization for our system. We first show that the falsum rules,

(efq) and (raa), can be restricted to instances in which the conclusion is an atomic formula.
9

Note

that, since major premises of elimination rules are never atomic, this also shows that cut segments

starting with the conclusion of a falsum rule can always be avoided in a deduction. In order to

prove the desired claim, we will argue that one can successively reduce the complexity of the

conclusion of a falsum rule application until it finally becomes an atomic formula. Here, the com-

plexity of a formula will be measured in terms of its degree, which is defined in the following way.

Definition 2.4.1. The degree of a formula φ, notation deg(φ), is inductively defined as follows:

(i) deg(p) := 0 for all atoms p ∈ P, and deg(⊥) := 1,

(ii) deg(ψ ⊗ χ) := deg(ψ) + deg(χ) + 1 for ⊗ ∈ {∧,→, ∨}.

In other words, the degree of a formula simply amounts to the number of occurrences of the

logical symbols ⊥, ∧, →, ∨ in this formula. The basic idea of our argument is to decrease the

degree of the conclusion of a falsum rule application step by step, by applying suitable conver-

sions to the deduction. To make this more precise, let us first introduce some useful terminology.

The conclusion of a falsum rule application will also be referred to as a falsum rule conclusion.

A falsum rule conclusion φ in a deduction D is said to be maximal, if there is no falsum rule

conclusion of higher degree in the deduction, i.e., if for every falsum rule conclusion ψ in D, we

have deg(ψ) ≤ deg(φ). And the falsum rank of a deduction D is the pair of natural numbers

fr(D) = (m,n) defined in the following way: if all falsum rule conclusions inD are atomic, then

we put fr(D) := (0, 0). Otherwise, we put fr(D) := (m,n), wherem is the degree of a maximal

falsum rule conclusion in D and n is the number of maximal falsum rule conclusions in D.

We will show that any deduction of falsum rank greater than (0, 0) can be transformed into

a deduction of lower falsum rank (by iterating this argument, we will then finally arrive at a

deduction containing only atomic falsum rule conclusions). In order to make this notion of

‘greater than’ and ‘lower than’ precise, we will assume that falsum ranks are ordered lexico-
graphically. That is, given a deduction D with fr(D) = (m,n) and another deduction D′

with

fr(D′) = (m′, n′), we will write fr(D) < fr(D′) and say that the falsum rank of D is smaller
than the falsum rank of D′

, if we either have m < m′
, or we have both m = m′

and n < n′. We

will also write> for the inverse relation of the lexicographic ordering<. Using these notions, we

9

To be clear: by an atomic formula, we will always mean a propositional letter from the set P introduced at the

beginning of Section 1.2. Thus, in particular, the falsum constant ⊥ will not be treated as an atomic formula.
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can now prove the desired result: if φ is provable from a set of hypotheses Γ in our system, then

one can always find a deduction of φ from Γ in which all falsum rule conclusions are atomic.

Lemma 2.4.2. Let Γ ∪ {φ} ⊆ LB be a set of formulas. If Γ +
N φ holds in our system, then there

exists a deduction for Γ +
N φ in which the conclusion of every falsum rule application is atomic.

Proof. Let Γ ∪ {φ} ⊆ LB be arbitrary and suppose that there exists a deduction D for Γ +
N φ

in our system. If all falsum rule conclusions in D are atomic, then we are finished. Otherwise,

D contains at least one non-atomic falsum rule conclusion and we must have fr(D) = (m,n) >
(0, 0) for some integers m,n ≥ 0. We first show that D can be transformed into a deduction D′

with smaller falsum rank. To this end, let θ be a maximal falsum rule conclusion inD such that all

falsum rule conclusions above θ inD are of smaller degree than θ. That is, θ satisfies deg(θ) = m,

and it holds deg(µ) < m for all falsum rule conclusions µ in the subtree ending with θ.

First, suppose that θ is the conclusion of an application of (raa). In this case, θ must be a clas-
sical formula. Depending on the form of θ, we now perform one of the following conversions:

[¬(α ∧ β)]u

D1

⊥
(raa)u

α ∧ β
D2

converts to

[¬α]v
[α ∧ β]u

∧E
α
→E⊥

→Iu¬(α ∧ β)
D1

⊥
(raa)v

α

[¬β]x
[α ∧ β]w

∧E
β
→E⊥

→Iw¬(α ∧ β)
D1

⊥
(raa)x

β
∧I

α ∧ β
D2

[¬(α→ β)]u

D1

⊥
(raa)u

α→ β

D2

converts to

[¬β]v
[α→ β]u [α]w

→E
β
→E⊥

→Iu¬(α→ β)

D1

⊥
(raa)v

β
→Iw

α→ β

D2

[¬⊥]u

D1

⊥
(raa)u⊥

D2

converts to

[⊥]u
→Iu¬⊥

D1

⊥
D2

LetD′
be the deduction arising from the conversion and let fr(D′) = (m′, n′) be the falsum rank

ofD′
. In the first two conversions, the old application of (raa) is replaced by one or more new ap-

plications of (raa) and the conclusions of these new applications are of lower degree than the con-

clusion θ of the old application. Moreover, although the quasi-deduction D1 is used twice in the

first conversion, this cannot increase the the total number of maximal falsum rule conclusions: by

assumption, all falsum rule conclusions occurring inD1 are of lower degree than θ. On the other

hand, in the last conversion, the application of (raa) is completely eliminated. Hence, if θ was the

only maximal falsum rule conclusion in D, then the degree of a maximal falsum rule conclusion

inD′
must be smaller thanm, so it holdsm′ < m. And if θ was not the only maximal falsum rule

conclusion inD, then the number of maximal falsum rule conclusions inD′
must be smaller than

n, so we have both m′ = m and n′ < n. In either case, it follows fr(D′) < fr(D), as desired.
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Assume now that θ is the conclusion of an application of (efq). In this case, the conversions for

the classical connectives are similar to the ones presented above, so we only need to consider the

case in which θ is of the shape θ = ψ ∨χ. The corresponding conversion has the following form:

D1

⊥
(efq)

ψ ∨ χ
D2

converts to

D1

⊥
(efq)

ψ
∨I

ψ ∨ χ
D2

In this conversion, the new falsum rule conclusion is again of lower degree than the old one.

Therefore, ifD′
is the deduction arising from the conversion, then we must have fr(D′) < fr(D).

Now, as we have seen, each of the conversions reduces the falsum rank ofD. Thus, by repeating

the procedure, we can construct a sequence of deductions with strictly decreasing falsum ranks.

Since the lexicographic ordering on falsum ranks is well-founded, this finally yields a deduction

D′′
for Γ +

N φ such that fr(D′′) = (0, 0), so all falsum rule conclusions in D′′
are atomic.

It is easy to check that this proof would fail, if the conclusion of (raa) would be allowed to

contain the inquisitive disjunction operator ∨. This is an interesting observation, because the

restriction posed on (raa), tracing back to Ciardelli’s (2016) double negation rule, was initially

motivated on purely semantic grounds. It thus seems that there might be a deeper connection be-

tween non-inquisitiveness in natural language and normalization in natural deduction systems.

Next, we need to show that one can also eliminate all cut segments starting with the conclu-

sion of an introduction rule. The overall strategy will be similar to the technique employed in

the previous lemma: we always select a cut segment with maximum complexity, transform the

deduction in such a way that the complexity is decreased and repeat the procedure until each

cut segment has been eliminated. However, as we have seen in Section 2.3, the ‘higher-level’

elimination rule ∨E+ now causes some additional complications. In particular, by performing

the logical conversion for cut segments ending with the major premise of an application of ∨E+,

each of the auxiliary formulas of this application (i.e., each of the formulas from the set Θ) may

become a new cut formula, and these formulas can have an arbitrarily large degree. In order to

solve this problem, we need a more sophisticated measure of the ‘complexity’ of a formula.

Definition 2.4.3 (Inquisitive Degree, Classical Degree, Rank). Let φ ∈ LB be a formula.

(i) The inquisitive degree of φ is denoted by deg i(φ) and defined to be the number of occur-

rences of the inquisitive disjunction ∨ in φ. And the classical degree of φ is denoted by

degc(φ) and defined to be the number of occurrences of the connectives ∧ and→ in φ.

(ii) The rank of φ is defined to be the ordered pair given by rank(φ) := (deg i(φ), degc(φ)).

In what follows, we will assume that ranks of formulas are ordered lexicographically. That is,

we will write rank(φ) < rank(ψ) and say that the rank of φ is smaller than the rank of ψ, if we

either have deg i(φ) < deg i(ψ), or we have both deg i(φ) = deg i(ψ) and degc(φ) < degc(ψ).
The following lemma summarizes some immediate consequences of the preceding definitions.

Lemma 2.4.4. Let φ1, φ2 ∈ LB be arbitrary formulas. It holds:
(i) rank(φi) < rank(φ1 ⊗ φ2) for i = 1, 2 and ⊗ ∈ {∧,→, ∨},
(ii) rank(α) < rank(φ1 ∨ φ2) for every classical formula α ∈ LBc .

Proof. We only prove statement (ii), the other part is trivial. Let φ1, φ2 ∈ LB be arbitrary for-

mulas and let α ∈ LBc be a classical formula. Since φ1 ∨ φ2 contains an occurrence of ∨, its

inquisitive degree must satisfy deg i(φ1 ∨ φ2) ≥ 1. On the other hand, because α is a classical

formula, we also know that it holds deg i(α) = 0. Therefore, it follows deg i(α) < deg i(φ1 ∨φ2),
so we may conclude rank(α) < rank(φ1 ∨ φ2) by definition of the lexicographic ordering.
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Most importantly, this lemma tells us that the logical conversions described in Section 2.3 do

indeed decrease the complexity of cut segments in a deduction: if a new cut formula arises from

one of these conversions, then it must always be of smaller rank than the original one. Using

the rank of a formula, we may now define some useful concepts. First of all, by the rank of a
cut segment, we will henceforth mean the rank of the cut formula occurring in this segment.

For convenience, the rank of a cut segment π will also be denoted by rank(π). The notion of a

maximal cut segment and the cut rank of a deduction are now defined in the following way.

Definition 2.4.5 (Maximal Cut Segment, Cut Rank). Let D be a deduction in our system.

(i) By a maximal cut segment in D, we mean a cut segment π in D such that π has maximal

rank, i.e., for every cut segment σ in D holds rank(σ) < rank(π) or rank(σ) = rank(π).
(ii) The cut rank ofD is the triple cr(D) = (m,n, p) defined as follows: ifD contains no cut seg-

ments, then we put cr(D) := (0, 0, 0). Otherwise, we put cr(D) := (m,n, p), where (m,n)
is the rank of a maximal cut segment inD and p is the number of maximal cut segments inD.

As with the ranks of formulas, we assume that cut ranks of deductions are ordered lexico-
graphically. In other words, given a deductionD with cr(D) = (m,n, p) and another deduction

D′
with cr(D′) = (m′, n′, p′), we will write cr(D) < cr(D′) and say that the cut rank of D is

smaller than the cut rank of D′
, if one of the following three conditions is satisfied: (1) m < m′

,

or (2) m = m′
and n < n′, or (3) m = m′

, n = n′ and p < p′. It is now possible to show that cut

ranks of non-normal deductions can always be decreased: every deduction containing at least

one cut segment can be transformed into a deduction of smaller cut rank.

Lemma 2.4.6. Let Γ ∪ {φ} ⊆ LB be a set of formulas and let D be a deduction for Γ +
N φ such

that all falsum rule conclusions in D are atomic. If cr(D) > (0, 0, 0), then there exists a deduction
D′ for Γ +

N φ such that cr(D′) < cr(D) and all falsum rule conclusions in D′ are still atomic.

Proof. Let Γ ∪ {φ} ⊆ LB be an arbitrary set of formulas, let D be a deduction for Γ +
N φ and

suppose that all falsum rule conclusions in D are atomic. So, in particular, D cannot contain

any cut segments starting with the conclusion of a falsum rule application.
10

Furthermore, let

cr(D) = (m,n, p) be the cut rank ofD and assume that it holds cr(D) > (0, 0, 0). Then, clearly,

D must contain at least one cut segment (which, by assumption, must start with the conclusion

of an introduction rule). Let now π be a maximal cut segment in D such that all cut segments

occurring above π in D are of lower rank than π. In other words, π is a cut segment with

rank(π) = (m,n), and it holds rank(σ) < rank(π) for every cut segment σ occurring in the

subtree ending with the conclusion of the elimination rule at the bottom of π. Let ξ be the cut for-

mula occurring in π and let k be the length of the segment π. If k > 1, then we first perform the

following permutation conversion, possibly in combination with a prior ‘shifting’ of hypotheses,

in order to avoid hypotheses in D3 to become open in the course of the permutation:
11

[Θ]u

D3

φ1 ∨ φ2

[Θ⇒ φ1]
u

D1

ξ

[Θ⇒ φ2]
u

D2

ξ ∨Eu
+ξ D4 (E)

µ

D5

converts to

[Θ]u

D3

φ1 ∨ φ2

[Θ⇒ φ1]
u

D1

ξ D4 (E)
µ

[Θ⇒ φ2]
u

D2

ξ D4 (E)
µ ∨Eu

+µ

D5

Note that, although this conversion produces two identical copies ofD4, this cannot increase the

cut rank of the deduction: by assumption, π is an uppermost maximal cut segment, so all cut seg-

ments occurring inD4 are of lower rank than π. Each application of the permutation conversion

10

Again, this follows immediately from the fact that major premises of elimination rules are always non-atomic.

11

That is, if (E) is an instance of ∨E+ that discharges some open hypotheses in the subtree D3, then we first apply

the procedure described in Section 2.3 in order to ‘shift’ these hypotheses from D3 to the subtrees D1 and D2.



2.4. Normalization 31

reduces the length of the cut segment by one, so after k−1 steps, we must arrive at a deductionD∗

for Γ +
N φ in which π contains only a single occurrence of the cut formula ξ. Since neither the

‘shifting’ of hypotheses nor the permutation itself can produce any new maximal cut segments,

this deductionD∗
must have the same cut rank asD, so it holds cr(D∗) = (m,n, p). Depending

on the form of the cut formula ξ, we now perform the corresponding logical conversion:

D1

φ1

D2

φ2 ∧I
φ1 ∧ φ2 ∧E
φi

D3

converts to

Di

φi

D3

[ψ]u

D1

χ
→Iu

ψ → χ

D2

ψ
→E

χ

D3

converts to

D2

ψ

D1

χ

D3

[Θ]u

D3

φi ∨I
φ1 ∨ φ2

[Θ⇒ φ1]
u

D1

χ

[Θ⇒ φ2]
u

D2

χ ∨Eu
+χ

D4

converts to

Di{D3 : Θ⇒ φi}
χ

D4

We consider in detail only the case in which ξ is of the form ξ = φ1 ∨ φ2, so we assume that

the last of these three conversions has been performed. LetD′
be the deduction arising from the

conversion and let cr(D′) = (m′, n′, p′) be the cut rank ofD′
. First of all, it is easy to see thatD′

is still a deduction for Γ +
N φ and all falsum rule conclusions in D′

are still atomic. Moreover,

recall thatDi{D3 : Θ⇒ φi} stands for the result of replacing every undischarged application of

the rule Θ⇒ φi in Di by an occurrence of D3. Hence, the only new cut formulas possibly aris-

ing from the conversion are the formula φi and the classical formulas contained in the set Θ. By

Lemma 2.4.4, we know that it holds rank(φi) < rank(φ1 ∨ φ2) and rank(α) < rank(φ1 ∨ φ2)
for every classical formula α ∈ LBc . Therefore, all new cut formulas must be of lower rank than

the original cut formula ξ = φ1 ∨φ2. Furthermore, by assumption, all cut segments occurring in

D3 are of rank smaller than (m,n), so we are not in danger of duplicating maximal cut segments.

Thus, if ξ was the only maximal cut segment in D∗
, then we have (m′, n′) < (m,n). Otherwise,

we have (m′, n′) = (m,n) and p′ < p. In either case, it follows cr(D′) < cr(D), as desired.

Observe that this proof would fail, if the set of auxiliary formulas Θ of an application of ∨E+

would be allowed to contain non-classical formulas. Again, this is an interesting observation,

since the restriction to classical formulas, inherited from the split rule depicted in Figure 1.4,

was initially motivated purely semantically. We are now ready to prove the main result of this

chapter: every deduction in our natural deduction system reduces to a normal deduction.

Theorem 2.4.7 (Normalization Theorem). Let Γ∪{φ} ⊆ LB be a set of formulas. Every deduction
D for Γ +

N φ in the system NinqB+ can be transformed into a normal deduction D′ for Γ +
N φ.

Proof. Let Γ ∪ {φ} ⊆ LB be arbitrary and let D be an arbitrary deduction for Γ +
N φ. By

Lemma 2.4.2, we may assume that all falsum rule conclusions inD are atomic. IfD is already nor-

mal, then we are finished. Otherwise, we can repeatedly apply Lemma 2.4.6 in order to construct

a sequenceD1,D2,D3, etc., of deductions forΓ +
N φ such that the corresponding cut ranks form

a descending chain cr(D) > cr(D1) > cr(D2) > . . . After a finite number of steps, this must

result in a deductionD′
with cr(D′) = (0, 0, 0). But then, clearly, D′

is a normal deduction.
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2.5 Properties of Normal Deductions

In order to conclude our treatment of natural deduction, let us now investigate some conse-

quences of our normalization theorem. To this end, we first need to introduce some terminology.

Recall that, by an auxiliary rule of an application of ∨E+ with major premiseφ∨ψ and set of aux-

iliary formulas Θ, we mean any occurrence of the non-primitive rules Θ⇒ φ and Θ⇒ ψ which

is discharged in the course of this application. And the side formulas of such an application of

∨E+ are the occurrences of the formulasφ andψ serving as the conclusions of the auxiliary rules

Θ⇒ φ and Θ⇒ ψ. The notion of a track in a deduction is now defined in the following way.

Definition 2.5.1 (Track). LetD be a deduction in NinqB+
. By a track inD, we mean a sequence

of formula occurrences φ1, . . . , φn in D such that each of the following conditions is satisfied:

(i) φ1 is an open or discharged hypothesis in D.

(ii) Each φi with 1 ≤ i < n is not a premise of a non-primitive rule and not the minor premise

of an application of→E, and it holds:

(a) Ifφi is not the major premise of an application of ∨E+, then its successorφi+1 is simply

the formula occurrence standing immediately below φi.

(b) If φi is the major premise of an application of ∨E+, then its successor φi+1 is one of

the side formulas of this application.

(iii) φn is either a premise of a non-primitive rule, or it is the minor premise of an application

of→E, or it is the conclusion of the deduction D.

In other words, a track in a deduction D is a sequence of consecutive formula occurrences

in D, beginning with a hypothesis and possibly ending with the conclusion of D, except that

(1) a track passing through the major premise of an application of ∨E+ is always continued at

one of the side formulas of this application, and (2) a track always stops as soon as a premise

of a non-primitive rule or the minor premise of an application of→E is encountered. So, as a

consequence, none of the formula occurrences in a track, except possibly the last one, can be a

premise of a non-primitive rule or the minor premise of an application of→E. In what follows,

a track τ in a deduction D will be referred to as a main track, if the last formula occurrence in τ
is the conclusion of the deductionD. To see an example, let us consider the following deduction:

(1) (α ∨ β)→ (φ ∨ ψ)
(6) [α]u

∨I
(7) α ∨ β

→E
(2) φ ∨ ψ

(8) [α ∧ β]v
∧E

(9) α
u

(3) φ

(12) ¬ψ

(10) [α ∧ β]v
∧E

(11) α
u

(15) ψ
→E

(13) ⊥
(efq)

(14) φ ∨Eu
+

(4) φ
→Iv

(5) (α ∧ β)→ φ

A straightforward inspection shows that this deduction contains exactly six tracks. The main

tracks of the deduction are the two sequences τ1 = (1, 2, 3, 4, 5) and τ2 = (12, 13, 14, 4, 5). And

the other four tracks are the sequences τ3 = (1, 2, 15), τ4 = (6, 7), τ5 = (8, 9) and τ6 = (10, 11).
It is easy to see that every deduction in our system must have at least one main track. In fact, such

a main track can always be found by going upwards from the conclusion of the deduction in such

a way that, if a side formula of an application of ∨E+ or the conclusion of an application of→E
is encountered, then the search is always continued at the major premise of this application. In

addition, one can show that every formula occurrence in a deduction belongs to at least one track.

Proposition 2.5.2. Let D be a deduction in our system. Then D has at least one main track.
Furthermore, every formula occurrence in D belongs to some track in D.
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Proof. The basic idea is as follows: first, we define a pre-track in a quasi-deduction D in exactly

the same way as a track, except that a pre-track is also allowed to start with the conclusion of

an undischarged application of a non-primitive rule. A pre-track is said to be maximal, if it ends

with the conclusion of the deduction. Using induction on the structure of a quasi-deduction, it is

then possible to show that each quasi-deduction must have at least one maximal pre-track and

that every formula occurrence in a quasi-deduction belongs to at least one pre-track. The desired

statement now follows from the observation that, if D is a deduction (i.e., if all applications of

non-primitive rules in D are discharged), then every pre-track in D is also a track.

Obviously, every track can also be divided into a sequence of segments rather than into a se-

quence of formula occurrences. The first segment in a track will be referred to as the top segment of

the track and the last segment will be referred to as its end segment. For simplicity, we also say that

a segment is the conclusion of a rule of inference, if the first formula occurrence in the segment is

such a conclusion. And a segment is said to be a (major or minor) premise of a rule application, if

the last formula occurrence in the segment is such a premise. Recall that, in a normal deduction,

no segment can be both the conclusion of an introduction rule or the conclusion of a falsum rule,

and the major premise of an elimination rule. As a consequence, we now obtain the following fact.

Proposition 2.5.3 (Structure of Tracks). LetD be a normal deduction and let τ be a track inD. All
major premises of elimination rules in τ precede all premises of falsum rules and all premises of intro-
duction rules in τ . Moreover, there can be at most one premise of a falsum rule in τ and this premise
succeeds all major premises of elimination rules and precedes all premises of introduction rules.

Proof. Let D be a normal deduction, let τ be a track in D and let π1, . . . , πn be the sequence of

segments in τ . We start by proving the first claim. Towards a contradiction, suppose that there

exists a premise of an introduction rule or a premise of a falsum rule in τ that precedes a major

premise of an elimination rule. Then, clearly, there must be a segment πi which is both the con-

clusion of an introduction rule or falsum rule, and the major premise of an elimination rule. But

this is a contradiction to the assumption that D is normal. Hence, all major premises of elimina-

tion rules in τ precede all premises of falsum rules and all premises of introduction rules in τ .

For the second claim, suppose for a contradiction that there is a premise of an introduction rule

which precedes a premise of a falsum rule in τ . Consider the last such premise πi. By what was

said above, the successor πi+1 cannot be the major premise of an elimination rule, so it must be

the premise of a falsum rule. But in this case, the formula occurring in πi+1 is⊥, which is impos-

sible since⊥ cannot be the conclusion of an introduction rule. Thus, all premises of falsum rules

succeed all major premises of elimination rules and precede all premises of introduction rules in τ .

This also shows that there can be at most one premise of a falsum rule in τ : otherwise, there would

be a premise of a falsum rule that is immediately followed by another premise of a falsum rule,

which is a contradiction to the assumption that all falsum rule conclusions in D are atomic.

Proposition 2.5.3 tells us that every track in a normal deduction can be divided into two (possi-

bly empty) parts: an elimination part containing only major premises of elimination rules, and an

introduction part containing only premises of introduction rules and the end formula of the track.

In order to strengthen this result, we first define the concept of a strictly positive subformula.

Definition 2.5.4. The strictly positive subformulas of φ ∈ LB are inductively defined as follows:

(i) φ is a strictly positive subformula of itself.

(ii) If ψ ⊗ χ with ⊗ ∈ {∧, ∨} is a strictly positive subformula of φ, then so are both ψ and χ.

(iii) If ψ → χ is a strictly positive subformula of φ, then so is χ.

In other words, an occurrence of a subformula is strictly positive, if it is not contained in the

antecedent of an implication. Note that, in particular, a Harrop formula might now simply be

described as a formula that does not contain any strictly positive subformulas of the form φ ∨ψ
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(see Definition 1.3.2). By inspection of the primitive rules of our system, it is now easy to check

that, if a track contains a premise of an introduction rule, then this premise must always be a

strictly positive subformula of its immediate successor in the track. And if a track contains a

major premise of an elimination rule, then this premise always contains its immediate successor

as a strictly positive subformula.
12

As a consequence, we now obtain the following proposition.

Proposition 2.5.5. Let D be a normal deduction, let τ be a track in D and let π1, . . . , πn be the
sequence of segments in τ . There is a segment πk in τ , called the minimum segment of τ , such that:
(i) Each πi with 1 ≤ i < k is a major premise of an elimination rule and the formula occurring

in πi is a strictly positive subformula of the formula occurring in the top segment π1.
(ii) πk is a premise of an introduction rule or the premise of a falsum rule or it is the conclusion ofD.
(iii) Each πi with k < i < n is a premise of an introduction rule and the formula occurring in πi

is a strictly positive subformula of the formula occurring in the end segment πn.

Proof. Let D be a normal deduction, let τ be a track in D and let π1, . . . , πn be the sequence of

segments in τ . If τ contains a premise of an introduction rule or a premise of a falsum rule, then

let πk be the segment that ends with the first such formula in τ . Otherwise, let πk be the end

segment of the track τ . Then, by Proposition 2.5.3, all segments preceding πk in τ must be major

premises of elimination rules and all segments succeeding πk in τ are premises of introduction

rules. The second part of statements (i) and (iii) can now be established by a straightforward

induction on the length of the elimination part and the introduction part, respectively.

Note that, by definition, every track in a deduction either ends with a premise of a non-

primitive rule, or with the minor premise of an application of→E, or it ends with the conclusion

of the deduction. Thus, one can assign an order to all tracks in a deduction in the following way:

a main track is assigned the order 0, and a track ending with the minor premise of an instance of

→E is assigned the order m+1, if the major premise of this instance belongs to a track of order

m. Finally, if τ is a track ending with a premise α of a non-primitive rule Θ⇒ φ, discharged by

some application of ∨E+, then we assign τ the orderm+1, wherem is the maximum order of all

tracks starting with the auxiliary formula α of this application of ∨E+. So, for example, letD be

an arbitrary deduction and suppose thatD contains an application of ∨E+ of the following form:

[Θ]u

D1

φ ∨ ψ

[Θ⇒ φ]u

D2

χ

[Θ⇒ ψ]u

D3

χ ∨Eu
+χ

Consider an arbitrary auxiliary formula α ∈ Θ and let τ1, . . . , τn be the collection of all tracks in

D1 that start with an occurrence of the discharged hypothesisα. In this case, every track inD2 or

D3 that ends with the premise α of one of the auxiliary rules Θ⇒ φ and Θ⇒ ψ will be assigned

the order m + 1, where m is the maximum order of the tracks τ1, . . . , τn. In what follows, the

order of a track τ will also be denoted by ord(τ). We can now prove the following statement.

Proposition 2.5.6. Let D be a normal deduction and let τ be a track in D. If τ contains the
major premise of an application of ∨E+, then every track starting with an auxiliary formula of
this application is of order strictly greater than ord(τ). As a consequence, a main track of a normal
deduction can never begin with an auxiliary formula of an application of ∨E+.

Proof. LetD be a normal deduction and suppose thatD contains a major premise φ ∨ψ of some

application of ∨E+ with set of auxiliary formulas Θ. Let τ1, . . . , τn be the collection of all tracks

containing this major premise φ ∨ψ and let D′
be the subtree ending with φ ∨ψ. Then, clearly,

12

Note that, for this observation to hold, it is in fact essential that tracks passing through the major premise of an ap-

plication of ∨E+ are always continued at one of the side formulas (rather than at the conclusion) of this application.
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the initial parts of τ1, . . . , τn ending with φ ∨ψ are the only main tracks of D′
and the auxiliary

formulas from Θ can occur as hypotheses only in D′
. Therefore, either there exists an α ∈ Θ

which is the top formula of some τi, or every track starting with an auxiliary formula from Θ
is of order greater than ord(τi) for all 1 ≤ i ≤ n. Towards a contradiction, assume that there

exists an α ∈ Θ which is the top formula of some τi. By Proposition 2.5.5, φ ∨ ψ occurs in the

elimination part of τi, so it must be a subformula of α. But this is impossible, since α is a classical

formula and φ ∨ ψ is not. Thus, every track starting with an auxiliary formula from Θ must be

of order greater than ord(τi), for all 1 ≤ i ≤ n. This establishes the first claim. The second claim

follows as an immediate consequence: for, if a main track of a normal deduction would start with

an auxiliary formula of an application of ∨E+, then also the major premise of this application

would have to belong to this track. However, as we have just seen, this cannot be the case.

It is well known that, for the standard system of intuitionistic natural deduction, one can

prove an unrestricted version of the so-called subformula property: every formula occurring in a

normal intuitionistic deduction is either a subformula of the conclusion of the deduction, or it is

a subformula of some open hypothesis of the deduction (cf. Prawitz 1965, p. 53). Unfortunately,

for the natural deduction system NinqB+
, this is not in general the case. As in classical logic,

one problem arises from the presence of the reductio ad absurdum rule, since this rule allows to

construct normal deductions like the one below, where p ∈ P is an arbitrary atomic formula:

[¬p]u p
→ E⊥

(raa)u
p

As can be seen, this normal deduction contains an occurrence of the negated formula ¬p and a

subsequent occurrence of⊥, but neither of these two formulas is a subformula of the conclusion

or a subformula of an open hypothesis of the deduction. Consequently, in our system, a normal

deduction for Γ +
N φ might in general also contain the constant⊥ or the negation of an atomic

formula occurring in φ or in Γ.
13

For convenience, we will henceforth say that a formula φ is a

weak subformula of some formulaψ, just in caseφ is either a subformula ofψ, or it is the negation

of an atomic subformula of ψ, or it is of the form φ = ⊥. So, in our system, a normal deduction

may contain not only subformulas, but also weak subformulas of the conclusion or the open hy-

potheses of the deduction. However, there is also a more severe problem arising from the intricate

structure of the ‘higher-level’ elimination rule ∨E+. For example, in the systemNinqB+
, one can

also construct a normal deduction of the following form, whereα, β ∈ LBc are classical formulas:

α→ (φ ∨ φ)
[α ∧ β]u

∧E
α
→E

φ ∨ φ

α β
∧I

α ∧ β
u

φ

α β
∧I

α ∧ β
u

φ ∨Eu
+φ

In this deduction, there are three occurrences of the auxiliary formula α ∧ β, belonging to the

application of ∨E+ at the bottom of the deduction. However, this formula is neither a subformula

of the conclusion nor a subformula of an open hypothesis of the proof tree. Note that, in a sense,

α∧ β behaves just like a cut formula here: it is the conclusion of an introduction rule in the two

subtrees ending with the minor premise φ; and it is, at the same time, the major premise of an

elimination rule in the subtree on the left-hand side. Given these observations, we cannot hope to

obtain a strong subformula property for NinqB+
. In fact, in our system, the subformula property

only holds up to the first track starting with an auxiliary formula of an application of ∨E+.

13

Note that, since all falsum rule applications in normal deductions are restricted to instances in which the conclusion

is an atomic formula, this is in fact sufficient in order to account for the effect of the rule (raa).
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Theorem 2.5.7 (Restricted Subformula Property). Let Γ ∪ {φ} ⊆ LB be a set of formulas and let
D be a normal deduction for Γ +

N φ. Moreover, let m be the largest number such that no track
of order ≤ m begins with an auxiliary formula of an application of ∨E+.14 Then every formula
occurring in a track τ of D with ord(τ) ≤ m is a weak subformula of some formula in Γ ∪ {φ}.

Proof. Let Γ ∪ {φ} ⊆ LB be arbitrary, let D be a normal deduction for Γ +
N φ and let m be the

largest number such that no track of order ≤ m in D begins with an auxiliary formula of some

application of ∨E+. Consider an arbitrary track τ in D such that ord(τ) ≤ m. Then, clearly, τ
cannot start with an auxiliary formula of an application of ∨E+ and it cannot end with a premise

of a non-primitive rule. We now proceed by induction on the order of τ . Let ord(τ) = k and

suppose that the statement holds for all tracks of order less than k. Moreover, let ψ1, . . . , ψn

be the sequence of formulas in τ and let ψi be arbitrary. First, assume that ψi occurs below the

minimum segment in τ . Then, by Proposition 2.5.5, ψi is a subformula of the end formula ψn,

which must be either the conclusion of D or a minor premise of→E. If ψn is the conclusion of

D, then we are finished. And if ψn is a minor premise of→E, then the associated major premise

must belong to a track of order less than k, so the claim follows from the induction hypothesis.

Assume now that ψi occurs in the minimum segment or above the minimum segment. Then, by

Proposition 2.5.5, ψi is a subformula of the hypothesis ψ1 at the top of τ . If this hypothesis is

not discharged, then we are done. Otherwise, it must be discharged by an application of (raa) or

→I . If ψ1 is discharged by (raa), then ψi must either be of the form⊥ or it must be the negation

of an atom occurring in the introduction part of τ or in the introduction part of some track of

order less than k. Hence, using the induction hypothesis, we may conclude that ψi is a weak

subformula of some formula in Γ ∪ {φ}. And if ψ1 is discharged by an application of→I , then

the conclusion of this application must belong to the introduction part of τ or to the introduction

part of some track of order less than k, so the statement follows in the same way as above.

This result is rather weak and shows that applications of ∨E+ may have a very disturbing

impact on the structure of normal deductions. However, there is also an important special case in

which the subformula property for our system can be strengthened: if Γ +
N φ can be established

by a deduction in which all auxiliary formulas of applications of ∨E+ are implication-free, then

one can always find a normal deduction for Γ +
N φwhich satisfies a full subformula property.

15

Proposition 2.5.8. Let Γ∪{φ} ⊆ LB and letD be a deduction for Γ +
N φ such that all auxiliary

formulas of applications of ∨E+ inD are implication-free. Then there is a normal deductionD′ for
Γ +

N φ such that every formula occurring inD′ is a weak subformula of some formula in Γ∪{φ}.

Proof. We only sketch the basic idea. Let Γ ∪ {φ} ⊆ LB be arbitrary and let D be a deduction

for Γ +
N φ such that all auxiliary formulas of applications of ∨E+ in D are implication-free.

Moreover, let us say that a formula ψ is a prime formula, if it is either atomic of it is of the form

ψ = ⊥. We first show that all applications of ∨E+ in D can be restricted to instances in which

the auxiliary formulas are prime. To this end, we select a topmost application of ∨E+ in D
which has at least one non-prime auxiliary formula γ. By assumption, γ is implication-free, so

we must have γ = α∧β for some classical formulas α, β ∈ LBc . Let Θ = {γ1, . . . , γn} be the set

of all other auxiliary formulas of this application of ∨E+. We can then write D in the form

[Θ]u [α ∧ β]u

D3

ψ1 ∨ ψ2

[Θ, α ∧ β ⇒ ψ1]
u

D1

χ

[Θ, α ∧ β ⇒ ψ2]
u

D2

χ ∨Eu
+χ

D4

14

Recall that, by what was said in Proposition 2.5.6, no main track of D can begin with an auxiliary formula of an

application of ∨E+. Thus, because main tracks are the only tracks of order 0, we must always have m ≥ 1.

15

Of course, by an implication-free formula, we mean a formula not containing any occurrences of the connective →.
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Let now i = 1, 2 be arbitrary and let D∗
i be the quasi-deduction obtained from Di by rewriting

every undischarged application of the non-primitive rule Θ, α ∧ β ⇒ ψi in the following way:

D′
1

γ1 · · ·
D′

n

γn

D′

α ∧ β
Θ, α ∧ β ⇒ ψi

ψi

D′′

converts to

D′
1

γ1 · · ·
D′

n

γn

D′

α ∧ β
∧E

α

D′

α ∧ β
∧E

β
Θ, α, β ⇒ ψi

ψi

D′′

Thus, in the resulting quasi-deductionD∗
i , every undischarged application of the rule Θ, α∧β ⇒

ψi is replaced by an undischarged application of the rule Θ, α, β ⇒ ψi. Using the quasi-deduc-

tions D∗
1 and D∗

2 thus obtained, we can now transform the whole deduction D into

[Θ]u
[α]u [β]u

∧I
α ∧ β
D3

ψ1 ∨ ψ2

[Θ, α, β ⇒ ψ1]
u

D∗
1

χ

[Θ, α, β ⇒ ψ2]
u

D∗
2

χ ∨Eu
+χ

D4

Observe that, in the resulting deduction, the old auxiliary formula α ∧ β is now replaced by

two new auxiliary formulas α and β, which are of lower degree than the old one. Therefore,

by repeating the procedure, we must finally arrive at a deduction D∗
for Γ +

N φ in which all

auxiliary formulas of applications of ∨E+ are prime. We now apply the procedure described in

Section 2.4, in order to transform D∗
into a normal deduction D′

for Γ +
N φ. Clearly, this does

not affect the auxiliary formulas in the deduction, so these formulas must still be prime in D′
.

We will now prove that every formula inD′
is a weak subformula of some formula in Γ∪{φ}.

To this end, let ξ be an arbitrary formula occurrence in D′
. Then, by Proposition 2.5.2, ξ must

belong to some track τ = ψ1, . . . , ψn inD. We now proceed by induction on the order of τ . Most

cases are treated in the same way as in the proof of Theorem 2.5.7. We only need to consider

the case in which τ starts with an auxiliary formula discharged by an application of ∨E+, and

the case in which τ ends with a premise of a non-primitive rule. First, assume that τ starts with

an auxiliary formula. By assumption, this formula is prime, so the elimination part of τ must be

empty and ξ must occur in the introduction part of τ . But then, by Proposition 2.5.5, ξ is a subfor-

mula of the formula ψn occurring at the bottom of τ , which must be either the conclusion of D′
,

or a minor premise of→E, or a premise of a non-primitive rule. Ifψn is the conclusion ofD′
, then

we are finished. And ifψn is a minor premise of→E or a premise of a non-primitive rule, thenψn

must also occur as a subformula on some track of order less than ord(τ), so the statement follows

from the induction hypothesis.
16

Assume now that τ ends with a premise of a non-primitive rule,

belonging to some application of ∨E+. By assumption, this premise is prime, so the introduction

part of τ must be empty and ξ occurs in the elimination part of τ . Hence, by Proposition 2.5.5,

ξ is a subformula of the hypothesis ψ1 at the top of τ . If this hypothesis is open, then we are

done. Otherwise, ψ1 must be discharged by some application of ∨E+ or it must be discharged

by an application of (raa) or→I . If ψ1 is discharged by ∨E+, then we use the same argument as

above. And if ψ1 is discharged by (raa) or→I , then ξ must occur as a weak subformula in some

track of order less than ord(τ), so the statement follows from the induction hypothesis.

Although one cannot in general hope to obtain a strong subformula property for our system,

it is nevertheless possible to establish some interesting properties of inquisitive logic in a purely

16

Note that, if ψn is a premise of a non-primitive rule, then this rule must be discharged by some application of ∨E+.

Consequently,ψn also occurs as a (discharged) hypothesis in the subtree ending with the major premise of this appli-

cation of ∨E+. And by definition of ord(τ), every track starting with such a hypothesis is of order less than ord(τ).
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proof-theoretical way. For example, using Theorem 2.5.7, we can now prove that our system is

conservative over classical logic: if a classical formula is provable from a set of classical hypothe-

ses, then it is also provable from these hypotheses in classical logic (see also Proposition 1.4.5).

Proposition 2.5.9 (Conservativity over Classical Logic). Let Γ ∪ {α} ⊆ LBc be a set of classical
formulas. If it holds Γ +

N α in our system, then α is provable from Γ in classical natural deduction.

Proof. Let Γ∪{α} ⊆ LBc be a set of classical formulas and suppose that Γ +
N α. Then, by Theo-

rem 2.4.7, there exists a normal deduction D for Γ +
N α. Let m be the largest number such that

no track of order≤ m inD begins with an auxiliary formula of an application of ∨E+. Towards

a contradiction, suppose that there is a formula with main connective ∨ in D. Let τ be a track

containing such a formulaφ∨ψ and suppose that no track of order less than ord(τ) also contains

such a formula. Then, in particular, all major premises of applications of ∨E+ must occur on

tracks of order ≥ ord(τ). Hence, by Proposition 2.5.6, the corresponding auxiliary formulas can

occur only on tracks of order> ord(τ), so it follows ord(τ) ≤ m. Thus, by Theorem 2.5.7, φ ∨ψ
must be a weak subformula of some formula in Γ∪{α}. But this is impossible, since all formulas

in Γ∪{α} are classical. Therefore,D does not contain a formula with main connective ∨. Conse-

quently,D contains no applications of ∨I or ∨E+, so it is also a deduction in classical logic.

Furthermore, by exploiting the structure of normal deductions, one can also give a purely

syntactical proof of the disjunction property for inquisitive logic: if an inquisitive disjunction is

provable from a set of Harrop formulas, then at least one of the two disjuncts must be provable

from this set. This can be seen as a special case of the split property described in Proposition 1.4.1.

Proposition 2.5.10 (Disjunction Property). Let Γ ⊆ LBH be a set of Harrop formulas and let
φ,ψ ∈ LB be arbitrary. If it holds Γ +

N φ ∨ ψ in our system, then also Γ +
N φ or Γ +

N ψ.

Proof. Let Γ ⊆ LBH be a set of Harrop formulas, so no formula in Γ has a strictly positive sub-

formula with main connective ∨. Moreover, let φ,ψ ∈ LB be arbitrary and suppose that it holds

Γ +
N φ ∨ ψ. Then, by Theorem 2.4.7, there exists a normal deduction D for Γ +

N φ ∨ ψ. Con-

sider the conclusion φ ∨ψ of this deduction. We show that φ ∨ψ must have been obtained by an

application of ∨I . First, suppose for a contradiction thatφ ∨ψ is the conclusion of an application

of ∨E+. Consider the major premise χ1 ∨χ2 of this application and let τ = ξ1, . . . , ξn be a track

to which χ1 ∨χ2 belongs. By Proposition 2.5.5, χ1 ∨χ2 occurs in the elimination part of τ , so it

must be a strictly positive subformula of the hypothesis ξ1 at the top of τ . As a consequence, this

hypothesis cannot be discharged by ∨E+, since this would require ξ1 to be a classical formula. In

addition, ξ1 can also not be discharged by an application of (raa) or→I , since no such application

occurs below χ1 ∨χ2 inD. Thus, ξ1 must be an open hypothesis. But this implies ξ1 ∈ Γ, which

is a contradiction to the assumption that Γ contains only Harrop formulas. Hence, φ ∨ ψ is not

the conclusion of an application of ∨E+. However, it can also not be the conclusion of another

elimination rule: for, if it were, then φ ∨ψ would be the minimum segment of a main track τ in

D and therefore a strictly positive subformula of the hypothesis at the top of τ . Using the same

argument as above, one could then show that this hypothesis must be open, in contradiction to

the assumption that Γ is a set of Harrop formulas. Furthermore, since φ ∨ψ is non-atomic, it can

also not be the conclusion of a falsum rule. Hence, φ ∨ψ must be the conclusion of an application

of ∨I . But then, clearly, D contains an immediate subdeduction for Γ +
N φ or for Γ +

N ψ.



Chapter 3

Labelled Sequents for InqB

In this chapter, we will provide a cut-free labelled sequent calculus for InqB. Labelled sequent

calculi play an important role in the proof theory of non-classical logics and can be seen as

an extension of the traditional sequent-style formalism developed by Gentzen (1935a; 1935b).

The systematic study of these proof systems was primarily promoted by Negri, who developed

labelled sequent calculi for a wide range of modal and intermediate logics (see Negri 2005; Dy-

ckhoff and Negri 2012).
1

The basic idea is to enrich the language of ordinary sequent calculi in

order to incorporate the semantics of a logic directly into the syntax of the proof system. In the

extended setting, sequents are no longer built up from ordinary formulas, but from expressions

of the form π : φ, where π is a label and φ is a formula. In our sequent calculus, labels will be

used to represent information states and π : φ will be interpreted as ‘φ is supported by π’.

The chapter is structured as follows. In Section 3.1, we will provide a detailed description of our

labelled sequent calculus for InqB. Our system will be denoted by GLinqB and can be regarded

as a G3-style sequent calculus in the sense of Ketonen (1944) and Kleene (1952), so weakening

and contraction are fully ‘absorbed’ into the axioms and the remaining rules of the system. In

Section 3.2, we will investigate some important properties of our sequent calculus. Above all, we

will prove that the structural rules of weakening, contraction and cut are admissible in GLinqB,

i.e., whenever the premises of these rules are derivable in our system, then also the conclusion

is derivable. In the case of weakening and contraction, admissibility also preserves the height of

derivations. In addition, we will show that each rule of GLinqB is height-preserving invertible, i.e.,

whenever the conclusion of one of these rules is derivable, then also each premise of the rule is

derivable, with at most the same derivation height. In Section 3.3, we will then prove the sound-

ness and completeness of our sequent calculus. The completeness will be established proof-the-

oretically, i.e., instead of giving a semantic argument, we will exploit the admissibility of the cut

rule in our system in order to show that GLinqB is complete with respect to the Hilbert-style sys-

tem HinqB introduced in Chapter 1. In Section 3.4, finally, we will outline a possible proof search

strategy for our sequent calculus and discuss some issues that have to be resolved in order to make

sure that the procedure is terminating. We also establish a normal form result for the labels used

in our system, which might play an important role in an effective proof search procedure for

GLinqB. However, the full specification of the desired algorithm will be left for future work.

3.1 The Sequent Calculus GLinqB

Let us start by giving a formal exposition of our labelled sequent calculus for InqB. Our system,

henceforth denoted by GLinqB, can be seen as a non-trivial extension of a labelled sequent cal-

1

Important predecessors of modern-day labelled sequent calculi include the modal sequent calculus with ‘spotted

formulas’ provided by Kanger (1957), the ‘prefixed tableaux’ of Fitting (1983), the ‘indexed’ sequent calculi described

by Mints (1997) and the labelled natural deduction systems of Viganò (2000). See also Goré and Ramanayake (2012).

39
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culus for intuitionistic logic previously described by Dyckhoff and Negri (2012). An alternative

labelled sequent calculus for InqB has been provided by Chen and Ma (2017), but their system is

not as well-behaved as the system GLinqB presented here. For one thing, Chen and Ma (2017)

do not provide a modular construction, capable of being easily adapted to variants of InqB such

as the system of intuitionistic inquisitive logic discussed in the next chapter. For another, our

system is also much simpler and allows for a more elegant cut-admissibility proof.

From a technical point of view, GLinqB may be regarded as a G3-style sequent calculus in the

sense of Ketonen (1944) and Kleene (1952). Sequent calculi of this type usually enjoy very strong

structural properties, arising from the fact that the structural rules of weakening and contraction

are fully ‘absorbed’ into the axioms and the remaining rules of these systems. For further details

about the family of G3-style calculi, we refer to Troelstra and Schwichtenberg (1996, pp. 77–85).

Labelled sequent calculi were systematically developed by Negri (2005) and may be seen as

an extension of the traditional sequent-style formalism originating with Gentzen (1935a; 1935b).

The basic idea is to enrich the underlying language of a sequent calculus so as to incorporate

some kind of semantic information directly into the syntax of the proof system. In the extended

setting, sequents are no longer built up from ordinary formulas, but from expressions of the form

π : φ, where π is some label and φ is a formula. The interpretation of the extended language now

varies, depending on the semantics of the underlying logic. So, for example, in a labelled sequent

calculus for modal logic, π might be a representation of a possible world in a Kripke model and

an expression of the form π : φ could stand for the statement ‘φ is true at π’ (cf. Negri 2005).

In our labelled sequent calculus for InqB, we have to incorporate the more complicated support
semantics described in Chapter 1. For this reason, labels will not be used in order to represent

possible worlds, but in order to represent information states (i.e., sets of worlds). An expression

of the form π : φ is then interpreted as ‘φ is supported by π’. In order to make this precise, we

henceforth assume two countably infinite sets of state variables, defined by S := {wi | i ∈ N}
and V := {xi | i ∈ N}, respectively. In what follows, the variables in S are used for singleton
states and the variables in V are used for states of arbitrary size. In order to avoid confusion, we

will always use the meta-variables u, v, w, etc., for elements of S and the meta-variables x, y, z,

etc., for elements of V. The set of labels is now built up from the variables in S and V by means

of additional symbols representing the intersection and the union of two information states.

Definition 3.1.1 (Labels). The set of labels is denoted by Λ(S,V) and consists of all expressions

generated by the following grammar, where w ∈ S and x ∈ V are arbitrary variables:

π ::= w | x | ∅ | π · π | π + π.

Throughout this thesis, we will use the meta-variables π, σ, τ , etc., for arbitrarily complex

labels. Intuitively, a label of the form π ·σ represents the intersection of the states described by π
and σ, while π+σ stands for the union of π and σ. The constant ∅, on the other hand, represents

the inconsistent state. For simplicity, we will also use πσ as an abbreviation for π ·σ. We can now

define two types of expressions, referred to as labelled formulas and relational atoms, respectively.

Definition 3.1.2 (Labelled Formula, Relational Atom). By a labelled formula, we mean an expres-

sion of the form π : φ, where π ∈ Λ(S,V) is a label and φ ∈ LB is a formula. A relational atom,

on the other hand, is an expression of the form π ⩽ σ, where π, σ ∈ Λ(S,V) are both labels.

As outlined above, labelled formulas will be used in order to incorporate the semantic support

relation of InqB directly into the syntax of our proof system. Thus, intuitively, π : φ should be

read as ‘φ is supported by π’. Relational atoms, on the other hand, are used in order to represent

the subset ordering on information states, so π ⩽ σ stands for the statement ‘π is a subset of σ’.

The elements of our proof system will be referred to as sequents. Formally, a sequent is defined

to be an expression of the form Γ ⇒ ∆, where Γ is a finite multiset containing labelled for-

mulas and relational atoms, and ∆ is a finite multiset containing only labelled formulas (but no
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relational atoms). Hence, in particular, we allow relational atoms to occur only on the left-hand

side of a sequent, but not on the right-hand side. This will simplify our treatment and is more in

line with the intuitionistic system described by Dyckhoff and Negri (2012).
2

Given any sequent

Γ ⇒ ∆, we also call Γ the antecedent and ∆ the succedent of the sequent. As in ordinary se-

quent calculi, sequents are assumed to have a ‘conjunctive’ reading on the left and a ‘disjunctive’

reading on the right. Moreover, the sequent arrow ⇒ will be interpreted as an implication in

the meta-language. Thus, intuitively, a sequent Γ ⇒ ∆ is considered to be ‘valid’, if it satisfies

the condition that, whenever all expressions in Γ are ‘true’, then at least one expression in ∆ is

‘true’.
3

A precise definition of this notion of ‘validity’ and ‘truth’ will be provided in Section 3.3.

For the moment, we content ourselves with an intuitive interpretation of sequents.

We are now ready to define our labelled sequent calculus for InqB. Our system will be denoted

by GLinqB and can be found in Figure 3.1. Throughout this chapter, any finite tree of sequents

built up from the axioms and the rules of our system will be referred to as a derivation or a proof
tree in GLinqB. Moreover, given any finite set of formulas Γ ∪ {φ} ⊆ LB, we will say that φ
is provable from Γ, if there exists a derivation for the sequent x : Γ ⇒ x : φ in our system,

where x is an arbitrary state variable from V and x : Γ is the set of labelled formulas defined by

(x : Γ) := {x : ψ | ψ ∈ Γ}. Intuitively, this accounts for the fact that, in InqB, entailment is

defined as preservation of support: φ is entailed by Γ, if every state which supports all formulas in

Γ also supportsφ (see Definition 1.2.12). As we shall see below, the concrete choice of the variable

x is actually irrelevant when it comes to provability in our system: if a sequent x : Γ⇒ x : φ is

derivable in GLinqB, then also y : Γ⇒ y : φ will be derivable, for every state variable y ∈ V.

Definition 3.1.3 (The System GLinqB). We define GLinqB to be the labelled sequent calculus de-

picted in Figure 3.1. A sequent Γ⇒ ∆ is called derivable in our system, if there exists a proof tree

inGLinqB ending with this sequent. For any finite subsetΓ∪{φ} ⊆ LB, we also say thatφ is prov-
able from Γ in GLinqB, if there is some x ∈ V such that x : Γ⇒ x : φ is derivable in GLinqB.

4

A proof tree ending with a sequent Γ ⇒ ∆ is also referred to as a derivation for Γ ⇒ ∆. In

what follows, derivations will be denoted by the meta-variables D, D1, D2, etc. By a branch in a

derivation D, we mean any sequence β of consecutive sequents in D such that the first sequent

in β is the conclusion (i.e., the root node) ofD and the last sequent in β is one of the axioms (i.e.,

a leaf node) in D. The length of a branch β is taken to be the number of sequents occurring in β.

And the height of a derivation D is defined to be the length of a longest branch in D.

As can be seen from Figure 3.1, the components of our system may roughly be divided into

three groups. The first group consists of axioms or, as they are sometimes called, initial sequents.
Each axiom reflects the idea that certain sequents are trivially ‘valid’ given the intuitive interpre-

tation of labelled formulas and relational atoms outlined above. For example, Ax⊥
accounts for

the fact that ⊥ is only supported by the inconsistent state ∅. Therefore, if w is a variable repre-

senting a singleton, then w : ⊥ must always be ‘false’, so any sequent of the form w : ⊥,Γ⇒ ∆
will be ‘valid’. Observe that, in the first axiom Ax , we require p to be an atomic formula.

Let us now turn to the second group, consisting of the logical rules of our system. As in

traditional sequent calculi, each logical connective is assigned a pair of rules, consisting of a left
rule and a right rule. In addition to that, we now also have a left and a right rule for atomic

formulas and for the falsum constant ⊥. Intuitively, the logical rules are used in order to reflect

the support conditions for the formulas of InqB presented in Definition 1.2.6. So, for example, the

2

Nevertheless, it also possible to define an extension of our system in which relational atoms may occur on both sides

of a sequent. For a large class of modal logics, systems of this kind have been described in detail by Negri (2005).

3

Note that, in particular, every sequent in our system should be interpreted as a statement in the meta-language,
rather than as a formula in the object language. This is an important difference to ordinary (i.e., label-free) sequent

calculi, where the meaning of a sequent Γ ⇒ ∆ can usually also be described by the formula

∧
Γ →

∨
∆.

4

Note that, since every set is also a multiset, the notion of derivability is actually defined for x : Γ ⇒ x : φ.
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Axioms:

Ax
w : p,Γ⇒ ∆, w : p

Ax⊥

w : ⊥,Γ⇒ ∆
Ax∅

w ⩽ ∅,Γ⇒ ∆

Logical Rules:

w : p, w ⩽ π, π : p,Γ⇒ ∆
Lp

w ⩽ π, π : p,Γ⇒ ∆

w ⩽ π,Γ⇒ ∆, w : p
Rp

Γ⇒ ∆, π : p

w : ⊥, w ⩽ π, π : ⊥,Γ⇒ ∆
L⊥

w ⩽ π, π : ⊥,Γ⇒ ∆

w ⩽ π,Γ⇒ ∆, w : ⊥
R⊥

Γ⇒ ∆, π : ⊥
π : φ, π : ψ,Γ⇒ ∆

L∧
π : φ ∧ ψ,Γ⇒ ∆

Γ⇒ ∆, π : φ Γ⇒ ∆, π : ψ
R∧

Γ⇒ ∆, π : φ ∧ ψ
π : φ,Γ⇒ ∆ π : ψ,Γ⇒ ∆

L∨
π : φ ∨ ψ,Γ⇒ ∆

Γ⇒ ∆, π : φ, π : ψ
R∨

Γ⇒ ∆, π : φ ∨ ψ
π ⩽ σ, σ : φ→ ψ,Γ⇒ ∆, π : φ π ⩽ σ, σ : φ→ ψ, π : ψ,Γ⇒ ∆

L→
π ⩽ σ, σ : φ→ ψ,Γ⇒ ∆

x ⩽ π, x : φ,Γ⇒ ∆, x : ψ
R→

Γ⇒ ∆, π : φ→ ψ

Order Rules:

π ⩽ τ, π ⩽ σ, σ ⩽ τ,Γ⇒ ∆
(tr)

π ⩽ σ, σ ⩽ τ,Γ⇒ ∆

π ⩽ πσ + πτ, π ⩽ σ + τ,Γ⇒ ∆
(dis)

π ⩽ σ + τ,Γ⇒ ∆

π ⩽ στ, π ⩽ σ, π ⩽ τ,Γ⇒ ∆
(in)

π ⩽ σ, π ⩽ τ,Γ⇒ ∆

π + τ ⩽ σ, π ⩽ σ, τ ⩽ σ,Γ⇒ ∆
(un)

π ⩽ σ, τ ⩽ σ,Γ⇒ ∆

πσ ⩽ π,Γ⇒ ∆
(il)

Γ⇒ ∆

σπ ⩽ π,Γ⇒ ∆
(ir)

Γ⇒ ∆

π ⩽ π + σ,Γ⇒ ∆
(ul)

Γ⇒ ∆

π ⩽ σ + π,Γ⇒ ∆
(ur)

Γ⇒ ∆

π ⩽ ∅, π ⩽ w,Γ⇒ ∆ w ⩽ π, π ⩽ w,Γ⇒ ∆
(sg)

π ⩽ w,Γ⇒ ∆

π ⩽ π,Γ⇒ ∆
(rf)

Γ⇒ ∆

w ⩽ π,w ⩽ π + σ,Γ⇒ ∆ w ⩽ σ,w ⩽ π + σ,Γ⇒ ∆
(cd)

w ⩽ π + σ,Γ⇒ ∆

Figure 3.1: The system GLinqB. In each case,w ranges over variables from S, x ranges over

variables from V, and π, σ, τ , etc., stand for arbitrary labels. In applications of Rp and R⊥,

w must be a fresh variable not occurring in the conclusion of the rule and π is required to be

a non-singleton label, so we must have π /∈ S. Similarly, x must be a fresh variable in R→.

rules Lp and Rp account for the fact that an atom p ∈ P is supported by a state π if and only

if this atom is true at every world in π, i.e., if p is supported by every singleton state w ⊆ π.

The rules L→ and R→, on the other hand, reflect the support clause for implication: a formula

φ→ ψ is supported by a state π, if every enhancement of π that supports φ also supports ψ.

Importantly, each of the rules Rp, R⊥ and R→ is subject to a side condition, imposing certain

restrictions on the variables involved in applications of these rules. In particular, in an applica-

tion of Rp or R⊥, we require w ∈ S to be a fresh variable, i.e., a variable not occurring in the

conclusion of the rule. And in an application of R→, we require x ∈ V to be fresh. Throughout

this thesis, the fresh variables involved in applications ofRp,R⊥ andR→will also be referred to

as the eigenvariables of these rules. Moreover, a rule with eigenvariables is said to be a dynamic
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rule, and all other rules are called static rules. Note that, for the rules Rp and R⊥, there is also

another restriction, saying that π must be a non-singleton label satisfying π /∈ S. As we shall see

below, this restriction is necessary in order to make sure that the rules Rp and R⊥ are height-

preserving invertible, in the sense that, whenever the conclusion of one of these rules is derivable,

then also the corresponding premise is derivable, with at most the same derivation height.
5

Finally, let us consider the third group, consisting of the so-called order rules. The purpose

of these rules is to formalize the set-theoretic properties of information states. For example, the

rules (rf) and (tr) account for the reflexivity and the transitivity of the subset ordering⊆. And the

rule (in) says that, if a state π is a subset of two other states σ and τ , then π is also a subset of their

intersection σ∩ τ . A similar property of the union operator is formalized by the rule (un): if two

states π and τ are both subsets of some other state σ, then also their union π∪τ must be a subset

of σ. The rules (sg) and (cd) are somewhat special, since they allow to make a case distinction
in a derivation. Intuitively, (sg) says that, if a state π is a subset of a singleton w, then π must

either be empty (in which case π is a subset of ∅) or π must be equal to w (in which case w is also

a subset of π). The rule (cd), on the other hand, accounts for the fact that, if a singleton w is a

subset of the union of two states π and σ, then w must also be a subset of at least one of π and σ.

Note that, by instantiating the meta-variables π, σ, τ , etc., with labels, one might sometimes

also produce a duplication of relational atoms (i.e., two copies of the same relational atom) in the

conclusion of an order rule. In order to avoid certain technicalities arising from such a duplica-

tion, we henceforth need to adopt the so-called closure condition going back to Negri (2003).
6

Convention 3.1.4 (Closure Condition). If an instance of an order rule produces a duplication

of an atom π ⩽ σ in the conclusion of the rule, then also the contracted instance of the rule (in

which the two copies of π ⩽ σ are replaced by a single π ⩽ σ) is assumed to be part of our system.

So, for example, the instance of the rule (un) depicted on the left-hand side below is also

allowed to be replaced by the corresponding contracted instance shown on the right-hand side:

π + π ⩽ σ, π ⩽ σ, π ⩽ σ,Γ⇒ ∆
(un)

π ⩽ σ, π ⩽ σ,Γ⇒ ∆
can be replaced by

π + π ⩽ σ, π ⩽ σ,Γ⇒ ∆
(un)

π ⩽ σ,Γ⇒ ∆

Clearly, for every order rule, there is only a finite number of contracted rules to be added to our

system, so this convention is unproblematic (see also Negri and Von Plato 1998; Negri 2005).

As we have seen in Chapter 2, our natural deduction system for InqB only satisfies a weak form

of the subformula property, so it is not an analytic proof system in a strict sense. For the system

GLinqB, this problem no longer occurs. In fact, using induction on the structure of a derivation,

one can easily prove that GLinqB satisfies an unrestricted version of the subformula property,

provided that we ignore all labels (and therefore all relational atoms) occurring in a derivation.

Fact 3.1.5 (Subformula Property). If all labels are ignored, then every formula occurring in a deriva-
tion D for Γ⇒ ∆ is a subformula of some formula in Γ or a subformula of some formula in∆.

In this sense, our proof system is indeed fully ‘analytic’. However, for labelled sequent cal-

culi, it is also reasonable to consider another kind of analyticity, which can be expressed by the

so-called subterm property. Roughly speaking, a labelled sequent calculus is said to satisfy the

subterm property, if in this proof system, every label occurring in a derivation for Γ⇒ ∆ is ei-

ther an eigenvariable or a label occurring in Γ⇒ ∆ (cf. Negri and Von Plato 2011; Dyckhoff and

Negri 2012). Clearly, this constraint is not satisfied by the proof system GLinqB. For example, by

5

Strictly speaking, the constraint π /∈ S is only needed for the rule Rp, but not for the rule R⊥. However, adopting

the constraint for both Rp and R⊥ has some technical advantages that will become apparent later on.

6

The importance of the closure condition will become clearer in Section 3.2.2. For the moment, it suffices to under-

stand that, without the closure condition, our system would lose some important structural properties.
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performing a root-first application of the order rule (un) in a derivation D, one can create a new

label of the form π + σ, which is not guaranteed to occur in the conclusion of D.

We conclude this section by introducing some useful terminology. In each of the rules and

axioms presented in Figure 3.1, the multiset Γ is called the left context and the multiset ∆ is called

the right context. In the conclusion of each rule, and also in the axioms, the labelled formulas

and relational atoms not belonging to the context are said to be principal. The corresponding

expressions occurring in the premises of a rule are called active. So, for example, in an application

ofR→with premise x ⩽ π, x : φ,Γ⇒ ∆, x : ψ and conclusion Γ⇒ ∆, π : φ→ ψ, the labelled

formula π : φ→ ψ is principal, and each of the expressions x ⩽ π, x : φ and x : ψ is active. On

the other hand, in an application of (ul) with premise π ⩽ π+σ,Γ⇒ ∆ and conclusion Γ⇒ ∆,

there is no principal expression and the only active expression is π ⩽ π+σ. Observe that, in the

order rules and in each of the logical rules Lp, L⊥ and L→, the principal expressions occurring

in the conclusion are always repeated in each of the premises of the rule (a rule of this type is also

said to be ‘cumulative’). This repetition of expressions is necessary in order to make sure that

these rules are invertible, in the sense that, whenever their conclusion is derivable, then also each

of their premises is derivable. We will return to the concept of invertibility in the next section.

3.2 Properties of GLinqB

In this section, we will investigate some important properties of our proof system. Most impor-

tantly, we will show that the cut rule and the rules of weakening and contraction are admissible
in GLinqB. That is, whenever the premises of one of these rules are derivable in our system, then

also the conclusion of the rule is derivable. In the case of weakening and contraction, admissi-

bility also preserves the height of derivations. In addition to that, we will prove that all rules

of GLinqB are height-preserving invertible, i.e., whenever the conclusion of one of these rules is

derivable, then also each premise of the rule is derivable, with at most the same derivation height.

3.2.1 Generalized Initial Sequents

We first show that one can derive generalized versions of the initial sequents of our system. For

the initial sequent Ax , this is accomplished by the following lemma. Note that, intuitively, the

first sequent in the lemma also reflects the persistency of the support relation: ifφ is supported by

a state σ and if π is an enhancement of σ, then φ is also supported by π (see Proposition 1.2.11).

Lemma 3.2.1. All sequents of the following form are derivable in GLinqB:
(i) π ⩽ σ, σ : φ,Γ⇒ ∆, π : φ,
(ii) π : φ,Γ⇒ ∆, π : φ.

Proof. The derivability of (i) is established by induction on the structure of φ. For the base case,

assume that φ = p is atomic. If π satisfies π /∈ S, then we construct the following derivation:

Ax
w : p, w ⩽ σ,w ⩽ π, π ⩽ σ, σ : p,Γ⇒ ∆, w : p

Lp
w ⩽ σ,w ⩽ π, π ⩽ σ, σ : p,Γ⇒ ∆, w : p

(tr)
w ⩽ π, π ⩽ σ, σ : p,Γ⇒ ∆, w : p

Rp
π ⩽ σ, σ : p,Γ⇒ ∆, π : p

If we have π ∈ S, then the derivation is the same, except that we omit the applications of (tr)
andRp at the bottom of the derivation. The case φ = ⊥ is treated in essentially the same way. In

the inductive step for conjunction and implication, we construct the following two derivations:
7

7

In the following, we will use dashed lines in derivations in order to indicate the use of an assumption or the appli-

cation of a previously established result (such as, e.g., a lemma saying that a certain rule is admissible). If necessary,

we will also write ‘. . .’ to indicate that some expressions in a sequent are not shown explicitly due to a lack of space.
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By ind. hyp.

π ⩽ σ, σ : ψ, σ : χ,Γ⇒ ∆, π : ψ
L∧

π ⩽ σ, σ : ψ ∧ χ,Γ⇒ ∆, π : ψ

By ind. hyp.

π ⩽ σ, σ : ψ, σ : χ,Γ⇒ ∆, π : χ
L∧

π ⩽ σ, σ : ψ ∧ χ,Γ⇒ ∆, π : χ
R∧

π ⩽ σ, σ : ψ ∧ χ,Γ⇒ ∆, π : ψ ∧ χ

By ind. hyp.

x ⩽ x, . . . , x : ψ,Γ⇒ ∆, x : χ, x : ψ
(rf)

. . . , x : ψ,Γ⇒ ∆, x : χ, x : ψ

By ind. hyp.

x ⩽ x, . . . , x : χ, x : ψ,Γ⇒ ∆, x : χ
(rf)

. . . , x : χ, x : ψ,Γ⇒ ∆, x : χ
L→

x ⩽ σ, x ⩽ π, π ⩽ σ, σ : ψ → χ, x : ψ,Γ⇒ ∆, x : χ
(tr)

x ⩽ π, π ⩽ σ, σ : ψ → χ, x : ψ,Γ⇒ ∆, x : χ
R→

π ⩽ σ, σ : ψ → χ,Γ⇒ ∆, π : ψ → χ

The inductive step for inquisitive disjunction is similar to the inductive step for conjunction. The

sequent in (ii) can now be obtained from the sequent in (i) by an application of the rule (rf).

The following lemma shows that there are also derivable generalizations of Ax ∅
and Ax⊥

.

Intuitively, the first two sequents account for the fact that, in InqB, every formula is supported

by the inconsistent state ∅. This corresponds to the empty state property expressed by Proposi-

tion 1.2.11. The last two sequents reflect the support conditions for the falsum constant: since⊥ is

supported only by ∅, any enhancement of a state supporting⊥ also supports every other formula.

Lemma 3.2.2. All sequents of the following form are derivable in GLinqB:
(i) π ⩽ ∅,Γ⇒ ∆, π : φ,
(ii) Γ⇒ ∆, ∅ : φ,
(iii) π ⩽ σ, σ : ⊥,Γ⇒ ∆, π : φ,
(iv) π : ⊥,Γ⇒ ∆, π : φ.

Proof. The derivability of (i) and (iii) is established by induction on φ. We only prove the deriv-

ability of (iii). For the base case, let φ = p be atomic. If π /∈ S, then we construct the derivation

Ax⊥

w : ⊥, w ⩽ σ,w ⩽ π, π ⩽ σ, σ : ⊥,Γ⇒ ∆, w : p
L⊥

w ⩽ σ,w ⩽ π, π ⩽ σ, σ : ⊥,Γ⇒ ∆, w : p
(tr)

w ⩽ π, π ⩽ σ, σ : ⊥,Γ⇒ ∆, w : p
Rp

π ⩽ σ, σ : ⊥,Γ⇒ ∆, π : p

If π ∈ S, then the derivation is the same, except that we leave out the applications of (tr) andRp.

The case φ = ⊥ is similar. In the inductive step for ∧ and ∨, the statement follows directly from

the induction hypothesis. And in the inductive step for→, we construct the following derivation:

By ind. hyp.

x ⩽ σ, x ⩽ π, π ⩽ σ, σ : ⊥, x : ψ,Γ⇒ ∆, x : χ
(tr)

x ⩽ π, π ⩽ σ, σ : ⊥, x : ψ,Γ⇒ ∆, x : χ
R→

π ⩽ σ, σ : ⊥,Γ⇒ ∆, π : ψ → χ

This concludes the induction. For the sequent in (i), the induction works in essentially the same

way. The sequents in (ii) and (iv) can be derived from (i) and (iii) by an application of (rf).

3.2.2 Basic Admissibility and Invertibility Results

Next, we want to establish some important structural properties of our proof system. In partic-

ular, we will see that the structural rules of weakening and contraction are height-preserving

admissible in our system and that each rule of GLinqB is height-preserving invertible. For the

sake of clarity, let us first define the relevant notions. By the rules of weakening and contraction,

we will henceforth mean the six rules depicted in Figure 3.2. As can be seen, the weakening rules
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Γ⇒ ∆
LW

π : φ,Γ⇒ ∆
Γ⇒ ∆

RW
Γ⇒ ∆, π : φ

Γ⇒ ∆
W⩽

π ⩽ σ,Γ⇒ ∆

π : φ, π : φ,Γ⇒ ∆
LC

π : φ,Γ⇒ ∆

Γ⇒ ∆, π : φ, π : φ
RC

Γ⇒ ∆, π : φ

π ⩽ σ, π ⩽ σ,Γ⇒ ∆
C⩽

π ⩽ σ,Γ⇒ ∆

Figure 3.2: The structural rules of weakening and contraction.

(displayed in the first row) allow us to introduce a new expression in the antecedent or the succe-

dent of a sequent. And the contraction rules (displayed in the second row) are used in order to

remove multiple occurrences of the same expression in a sequent. Note that, in particular, weak-

ening and contraction are applicable not only to labelled formulas, but also to relational atoms.
A rule of inference is said to be admissible in GLinqB, if it satisfies the condition that, when-

ever each premise of the rule is derivable, then also the conclusion of the rule is derivable. Thus,

intuitively, an admissible rule may be regarded as a rule that is redundant: if something is deriv-

able by using an admissible rule, then it is also derivable without using the admissible rule. If

the admissibility of a rule preserves the height of derivations, then the rule is also said to be

height-preserving admissible (cf. Troelstra and Schwichtenberg 1996; Negri and Von Plato 2001).
8

Definition 3.2.3 (Admissibility). LetR be a rule with premises P1, . . . , Pm and conclusion C .

(i) We say thatR is admissible in our system if, whenever an instance of P1, . . . , Pm is deriv-

able in GLinqB, then also the corresponding instance of C is derivable in GLinqB.

(ii) We say thatR is height-preserving admissible (or hp-admissible) in GLinqB if, whenever an

instance of P1, . . . , Pm is derivable by a proof tree of height at most n in GLinqB, then also

the corresponding instance of C is derivable by a proof tree of height at most n in GLinqB.

On the other hand, we will say that a rule is invertible if, whenever the conclusion of the

rule is derivable, then also each of the premises of the rule is derivable. And a rule is said to be

height-preserving invertible, if the invertibility of the rule preserves the height of derivations.

Definition 3.2.4 (Invertibility). LetR be a rule with premises P1, . . . , Pm and conclusion C .

(i) We say thatR is invertible in GLinqB if, whenever an instance of C is derivable in GLinqB,

then also the corresponding instance of Pi is derivable in GLinqB, for every 1 ≤ i ≤ m.

(ii) We say that R is height-preserving invertible (or hp-invertible) in GLinqB if, whenever an

instance of C is derivable by a proof tree of height at most n in our system, then also the

corresponding instance of Pi is derivable by a tree of height at most n, for every 1 ≤ i ≤ m.

For technical reasons, we also need to show that our system allows to perform height-preserving
substitutions on labels. To this end, we first define a substitution operator in the following way.

Definition 3.2.5 (Substitution). Let s ∈ S∪V be a variable and let π ∈ Λ(S,V) be an arbitrary

label. The result of substituting π for s in a label is inductively defined by the following clauses:

(i) for any variable t ∈ S ∪V, we put t(π/s) := π, if s = t, and we put t(π/s) := t, if s ̸= t,
(ii) ∅(π/s) := ∅,

(iii) (σ ⊛ τ)(π/s) := σ(π/s)⊛ τ(π/s) for ⊛ ∈ {·,+}.
IfΓ is a multiset of labelled formulas and relational atoms, we also writeΓ(π/s) for the result of

substituting π for s in every label occurring in Γ. The substitution rules are defined to be the rules

Γ⇒ ∆ (u/w)
Γ(u/w)⇒ ∆(u/w)

and
Γ⇒ ∆ (π/x)

Γ(π/x)⇒ ∆(π/x)

8

Recall that, by the height of a derivation D, we mean the length of a longest branch in D.
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where u and w are variables from S, x is a variable from V, and π is an arbitrary label. Thus, in

particular, we allow singleton variables to be replaced only by other singleton variables, but not

by any other label. Variables from V, on the other hand, can be replaced by arbitrary labels.

Proposition 3.2.6. The substitution rules are hp-admissible in GLinqB.

Proof. For the sake of brevity, we only prove the hp-admissibility of the first substitution rule

(for the second rule, the proof is similar). Let D be an arbitrary derivation for Γ ⇒ ∆ and let

u,w ∈ S be arbitrary singleton variables. Using induction on the height of D, we show that

Γ(u/w)⇒ ∆(u/w) is also derivable, with at most the same derivation height. For the base case,

assume thatD has height n = 1. In this case, Γ⇒ ∆ must be an instance of an axiom. But then,

clearly, the sequent Γ(u/w)⇒ ∆(u/w) is also an instance of this axiom, so the claim follows.
9

For the inductive step, suppose that D has height n > 1. We consider the last rule applied in

D. If this rule does not have an eigenvariable from the set S, then we simply apply the induction

hypothesis to the premises of the rule, and then the rule itself. On the other hand, if the last rule

in D has an eigenvariable from S, then we first use the induction hypothesis in order to rename

the eigenvariable, before performing the desired substitution (u/w). To see an example, let us

suppose that the last step in D is an application of Rp. In this case, D must be of the form

D′

v ⩽ π,Γ⇒ Θ, v : p
Rp

Γ⇒ Θ, π : p

where v ∈ S is a fresh variable, π is a non-singleton label andD′
is a derivation of height n− 1.

By applying the induction hypothesis to the subderivation D′
, we first replace the eigenvariable

v by a fresh variable v′ ∈ S satisfying the condition v′ ̸= w. This yields a derivationD′′
of height

at most n − 1 for v′ ⩽ π,Γ ⇒ Θ, v′ : p. We can now apply the induction hypothesis again in

order to perform the substitution (u/w) in the derivation D′′
. Using a subsequent application of

Rp, we thus obtain the desired derivation of height at most n for Γ(u/w)⇒ ∆(u/w).

Recall that, according to Definition 3.1.3, a formula φ is said to be provable from Γ in GLinqB,

if for some variable x ∈ V, the sequent x : Γ⇒ x : φ is derivable. The previous proposition tells

us that, in fact, the concrete choice of this variable does not matter: if the sequent x : Γ⇒ x : φ
is derivable in GLinqB, then also y : Γ⇒ y : φ is derivable, for any y ∈ V. We are now ready to

prove the desired admissibility and invertibility results: weakening and contraction are height-

preserving admissible in our system and each rule of GLinqB is height-preserving invertible.

Proposition 3.2.7. The weakening rules are hp-admissible in GLinqB.

Proof. We only prove the hp-admissibility of LW . For the other two weakening rules, the proof

is similar. Let D be an arbitrary derivation for Γ ⇒ ∆ and let π : φ be an arbitrary labelled

formula. Using induction on the height of D, we show that π : φ,Γ⇒ ∆ is also derivable, with

at most the height of D. For the base case, suppose that D has height n = 1. This means that

Γ⇒ ∆ is an instance of an axiom. But then, clearly, π : φ,Γ⇒ ∆ is also an axiom.

For the inductive step, assume that D has height n > 1. We consider the last rule applied in

D. If this rule does not have an eigenvariable, then we apply the induction hypothesis to the

premises of the rule, and the the rule itself. Otherwise, we first use Proposition 3.2.6 in order

to introduce a fresh eigenvariable not occurring in the weakening formula π : φ. For example,

suppose that the last step inD is an application ofR→with eigenvariable x, soD is of the form

D′

x ⩽ σ, x : ψ,Γ⇒ Θ, x : χ
R→

Γ⇒ Θ, σ : ψ → χ

9

Note that, for this step, it is in fact essential that u is also a variable from S. Otherwise, it might be the case that

Γ ⇒ ∆ is an instance of an axiom, but the sequent resulting from the substitution is not an axiom anymore.
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where D′
is a derivation of height n− 1. By performing a height-preserving substitution in the

subderivation D′
, we obtain a derivation of height at most n− 1 for y ⩽ σ, y : ψ,Γ⇒ Θ, y : χ,

where y ∈ V is a fresh variable not occurring in π. By induction hypothesis, this yields a

derivation of height at most n−1 for π : φ, y ⩽ σ, y : ψ,Γ⇒ Θ, y : χ. Hence, by an application

of R→, we obtain the desired derivation of height at most n for π : φ,Γ⇒ Θ, σ : ψ → χ.

Proposition 3.2.8. All rules of GLinqB are hp-invertible.

Proof. For the ‘cumulative’ rules of our system (that is, for the rules Lp, L⊥, L→ and for the

order rules), hp-invertibility follows immediately from the hp-admissibility of weakening. For

all other rules of GLinqB, the proof proceeds by induction on the height of a derivation for the

conclusion of the rule. We illustrate the basic idea for the rule Rp. Let π /∈ S be a non-singleton

label, let D be an arbitrary derivation for the sequent Γ⇒ ∆, π : p and let n be the height of D.

Moreover, let w ∈ S be an arbitrary variable not occurring in Γ⇒ ∆, π : p. Using induction on

n, we show that w ⩽ π,Γ⇒ ∆, w : p is also derivable by a proof tree of height at most n.

For the base case, assume that D has height n = 1. Then, clearly, Γ ⇒ ∆, π : p must be an

instance of an axiom. Since we have π /∈ S by assumption, one readily sees that the labelled

formula π : p cannot be principal in this axiom (recall that, in an instance of Ax , the principal

formula must always be labelled with a variable from S). Hence, the sequentw ⩽ π,Γ⇒ ∆, w :
p is also an instance of an axiom and therefore derivable by a proof tree of height n = 1.

10

For the inductive step, suppose thatD has height n > 1. If the last step inD is a rule for which

π : p is not principal, then we apply the induction hypothesis to the premises of the rule (possibly

together with a height-preserving substitution), and we then use the same rule again. On the

other hand, ifD ends with an application ofRp for which π : p is principal, thenD is of the form

D′

u ⩽ π,Γ⇒ ∆, u : p
Rp

Γ⇒ ∆, π : p

where u ∈ S is a fresh variable andD′
is of height n−1. By substitutingw for u in the subderiva-

tion D′
, we now obtain the desired derivation of height at most n for w ⩽ π,Γ⇒ ∆, w : p.

Proposition 3.2.9. The contraction rules are hp-admissible in GLinqB.

Proof. The hp-admissibility of the three contraction rules is established simultaneously, by in-

duction on the height of a derivation for the premise of the respective rule. More generally, let

D be an arbitrary derivation for some sequent Γ ⇒ ∆, let n be the height of D and suppose

that either the antecedent or the succedent of Γ ⇒ ∆ contains a duplication of some relational

atom or a duplication of some labelled formula. Using induction on n, we show that also the

contracted version of the sequent Γ⇒ ∆ is derivable by a proof tree of height at most n.

For the base case, assume that D has height n = 1, so Γ⇒ ∆ is an instance of an axiom. But

then, clearly, also the contracted version of Γ⇒ ∆ must be an instance of this axiom.

For the inductive step, suppose that D has height n > 1. There are the following possibilities.

Case 1: Suppose that the duplicated expression in Γ ⇒ ∆ is a relational atom π ⩽ σ. In this

case, Γ⇒ ∆ must be of the form π ⩽ σ, π ⩽ σ,Θ⇒ ∆. We now consider the last rule applied

in D. If at most one of the two occurrences of π ⩽ σ is principal in this rule, then we simply

apply the induction hypothesis to the premises of the rule, and then the same rule again. And

if both occurrences of π ⩽ σ are principal in the last rule applied in D, then we use the closure

10

Note that, without the restriction π /∈ S, this argument would no longer work. In fact, in this case, it might be the

case that Γ ⇒ ∆, π : p is an axiom, but w ⩽ π,Γ ⇒ ∆, w : p is not (namely, if π : p is the principal formula of

the axiom). Thus, the restriction π /∈ S makes sure that the invertibility of Rp is in fact height-preserving.
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condition (Convention 3.1.4). For example, suppose that the last step in D is an application of

(un) for which both occurrences of π ⩽ σ are principal. In this case, D must be of the form

D′

π + π ⩽ σ, π ⩽ σ, π ⩽ σ,Θ⇒ ∆
(un)

π ⩽ σ, π ⩽ σ,Θ⇒ ∆

where D′
is of height n− 1. By applying the induction hypothesis to D′

, we get a derivation of

height at most n−1 for π+π ⩽ σ, π ⩽ σ,Θ⇒ ∆. Now, by the closure condition, we can use the

contracted version of (un) in order to obtain a derivation of height at most n for π ⩽ σ,Θ⇒ ∆.

Case 2: Suppose that the duplicated expression in Γ⇒ ∆ is a labelled formula π : φ. Without

loss of generality, assume that the duplication occurs in the succedent, so Γ ⇒ ∆ is of the form

Γ⇒ Θ, π : φ, π : φ (if the duplication is in the antecedent, the proof is similar). We now consider

the last rule applied in D. If π : φ is not principal in this rule, then both occurrences of π : φ
also appear in each of the premises of the rule. Thus, by applying the induction hypothesis to the

premises and then the same rule again, we obtain the desired derivation for Γ ⇒ Θ, π : φ. On

the other hand, if π : φ is principal in the last rule applied inD, we consider the following cases.

Case 2.1: Letφ = p be atomic. In this case,D ends with an application ofRp, so it is of the form

D′

w ⩽ π,Γ⇒ Θ, w : p, π : p
Rp

Γ⇒ Θ, π : p, π : p

where w ∈ S is a fresh variable, π satisfies π /∈ S and D′
is of height n − 1. By applying the

hp-invertibility of Rp and a subsequent height-preserving substitution to the subderivation D′
,

we get a derivation of height at most n− 1 for the sequent w ⩽ π,w ⩽ π,Γ⇒ Θ, w : p, w : p.

Now, using the induction hypothesis and a subsequent application of Rp, this yields the desired

derivation of height at most n for Γ⇒ Θ, π : p. The case φ = ⊥ is treated similarly.

Case 2.2: Let φ = ψ ∧ χ. In this case, the last step is an application of R∧, so D is of the form

D1

Γ⇒ Θ, π : ψ, π : ψ ∧ χ
D2

Γ⇒ Θ, π : χ, π : ψ ∧ χ
R∧

Γ⇒ Θ, π : ψ ∧ χ, π : ψ ∧ χ

whereD1 andD2 are of height at most n−1. By applying the hp-invertibility ofR∧ to each of the

two derivationsD1 andD2, we obtain derivations of height at most n−1 for Γ⇒ Θ, π : ψ, π : ψ
andΓ⇒ Θ, π : χ, π : χ. By induction hypothesis and a subsequent application ofR∧, this yields

the desired derivation of height at most n for Γ⇒ Θ, π : ψ ∧ χ. The case φ = ψ ∨ χ is similar.

Case 2.3: Let φ = ψ → χ. In this case, D ends with an application of R→, so it is of the form

D′

x ⩽ π, x : ψ,Γ⇒ Θ, x : χ, π : ψ → χ
R→

Γ⇒ Θ, π : ψ → χ, π : ψ → χ

where x ∈ V is fresh and D′
is of height n− 1. We now apply the hp-invertibility of R→ and a

subsequent height-preserving substitution toD′
in order to obtain a derivation of height at most

n− 1 for x ⩽ π, x ⩽ π, x : ψ, x : ψ,Γ⇒ Θ, x : χ, x : χ. By induction hypothesis and an appli-

cation of R→, this yields the desired derivation of height at most n for Γ⇒ Θ, π : ψ → χ.

3.2.3 Admissibility of the Cut Rule

In this section, we will show that the structural rule of cut is admissible in GLinqB. This can be

seen as the most important structural property of our proof system and will help us to establish
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the completeness of GLinqB in a purely proof-theoretical manner (see Section 3.3). First, let us

introduce some terminology. By the cut rule, we will henceforth mean the sequent rule given by

Γ⇒ ∆, π : φ π : φ,Σ⇒ Θ
(cut)

Γ,Σ⇒ ∆,Θ

where π : φ is an arbitrary labelled formula, referred to as the cut formula of the corresponding

application of the cut rule. Note that, if we take ∆ = ∅ and read the sequent arrow⇒ as an impli-

cation in the meta-language, then the cut rule has a very natural interpretation: if a statement π :
φ follows from some set of assumptions Γ, and if Θ follows from π : φ and Σ, then we can always

infer Θ directly from Γ and Σ, without using the intermediate step represented by π : φ (so, in a

sense, the occurrence of π : φ is ‘cut out’ by the rule). The formulation of the cut rule given above

is also said to be context-mixing (or multiplicative), since we allow the contexts of the left and the

right premise to be distinct. There is also a context-sharing (or additive) version of the cut rule,

in which these contexts are required to be the same. However, due to the admissibility of weak-

ening and contraction, the two formulations are easily seen to be equivalent: adding one version

of the cut rule to GLinqB has exactly the same effect as adding the other version to GLinqB.
11

Importantly, our admissibility proof for the cut rule will be fully constructive, in the sense that

it can easily be turned into an effective procedure that allows to transform any given derivation

containing applications of the cut rule into a corresponding cut-free derivation. The general idea

goes back to Gentzen (1935a; 1935b), who first proved a cut-elimination theorem for classical and

intuitionistic first-order logic (this is known today as Gentzen’s Hauptsatz). Since then, many

extensions and variations of Gentzen’s method have been developed. Our argument will be

somewhat similar to the standard cut-admissibility proof for G3-style systems outlined by Negri

and Von Plato (2001, pp. 35–40).
12

The basic idea is to consider an arbitrary application of the cut

rule and to prove the admissibility of the rule by induction on the complexity of this application.

However, when measuring the complexity of a cut formula π : φ, we must now also take into

account the complexity of the label π, rather than considering only the complexity of the formula

φ, as it is done in standard cut-admissibility proofs for labelled and unlabelled sequent calculi

(see, e.g., Negri 2005). To this end, we first define the degree of a label in the following way.

Definition 3.2.10. The degree of a label π is denoted by deg(π) and defined as follows: if π ∈ S
is a singleton variable, then we put deg(π) := 0, and if π /∈ S, then we put deg(π) := 1.

In other words, we simply assign the degree 0 to every singleton variable w ∈ S and the

degree 1 to every non-singleton label π /∈ S. The degree of a formula φ is now defined to be the

number of occurrences of the logical symbols in φ, so we adopt the following definition.

Definition 3.2.11. The degree of a formula φ, notation deg(φ), is inductively defined as follows:

(i) deg(p) := 0 for all atoms p ∈ P, and deg(⊥) := 1,

(ii) deg(ψ ⊗ χ) := deg(ψ) + deg(χ) + 1 for ⊗ ∈ {∧,→, ∨}.

Finally, using the degree of a label and the degree of a formula, we define the rank of a labelled
formula π : φ to be pair of natural numbers rank(π : φ) := (deg(φ), deg(π)), where deg(φ)
is the degree of the formula φ and deg(π) is the degree of the label π. In order to compare

the ranks of labelled formulas, we will employ a lexicographic ordering. That is, we will write

rank(π : φ) < rank(σ : ψ) and say that the rank of π : φ is smaller than the rank of σ : ψ, if

we either have deg(φ) < deg(ψ), or we have both deg(φ) = deg(ψ) and deg(π) < deg(σ). The

following lemma summarizes some immediate consequences of the preceding definitions.

11

Moreover, the cut-admissibility proof given below can easily be adapted to the context-sharing version of the rule.

12

A corresponding cut-elimination strategy is described by Troelstra and Schwichtenberg (1996, pp. 94–101).
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Lemma 3.2.12. Let π and σ be arbitrary labels and let w ∈ S be a singleton variable. It holds:
(i) If π /∈ S, then rank(w : φ) < rank(π : φ),
(ii) rank(π : φi) < rank(σ : φ1 ⊗ φ2) for i = 1, 2 and ⊗ ∈ {∧,→, ∨}.

Proof. For the first part, suppose that w ∈ S and π /∈ S. Then, by Definition 3.2.10, we have

deg(w) = 0 and deg(π) = 1, so it follows deg(w) < deg(π). Using the definition of the lex-

icographic ordering, this yields rank(w : φ) < rank(π : φ), as desired. For the second part,

it suffices to observe that we have deg(φi) < deg(φ1 ⊗ φ2), so the rank of π : φi must be

lexicographically smaller than the rank of σ : φ1⊗φ2, regardless of the degrees of π and σ.

We are now ready to define a suitable measure of the complexity of a cut rule application. To

this end, let us consider the following cut, where D1 and D2 are two derivations in our system:

D1

Γ⇒ ∆, π : φ

D2

π : φ,Σ⇒ Θ
(cut)

Γ,Σ⇒ ∆,Θ

The rank of the indicated cut rule application is defined to be the rank of the associated cut for-

mula π : φ. Thus, in particular, we assume that ranks of cut rule applications are ordered lexico-

graphically. The height of the cut rule application is defined to be the sum h(D1)+h(D2), where

h(D1) is the height of the derivation D1 and h(D2) is the height of the derivation D2.
13

In other

words, the height of a cut rule application is the sum of the heights of the two derivations for the

premises of this application. In order to prove our cut-admissibility theorem for GLinqB, we will

now use a main induction on the rank of a cut rule application, together with a subinduction on

the height of this application. That is, given an arbitrary application of the cut rule, we will show

that the corresponding derivation can be transformed in such a way that all new applications of

the cut rule are either of lower rank than the original one, or they are of the same rank but have

lower height. Using this strategy, we are now able to prove the desired admissibility result.

Theorem 3.2.13 (Cut-Admissibility). The cut rule is admissible in GLinqB.

Proof. Throughout this proof, we consider an arbitrary application of the cut rule given by

D1

Γ⇒ ∆, π : φ

D2

π : φ,Σ⇒ Θ
(cut)

Γ,Σ⇒ ∆,Θ

where D1 and D2 are two derivations in GLinqB. Let d1 := deg(φ) be the degree of the formula

φ, let d2 := deg(π) be the degree of the label π, and let h := h(D1)+h(D2) be the height of the

selected cut rule application. In order to prove the admissibility of the cut rule, we proceed by a

main induction on the rank (d1, d2) of the cut rule application, with a subinduction on the height

h of the cut.
14

In other words, we have to show that the proof tree can be transformed in such a

way that all new cut rule applications are either of rank smaller than (d1, d2), or they are also of

rank (d1, d2), but their height is less than h. Note that, in particular, there are now two induction

hypotheses: we have amain induction hypothesis, saying that all cuts of rank smaller than (d1, d2)
are admissible; and we have a subinduction hypothesis, saying that all cuts of rank (d1, d2) and

of height smaller than h are admissible. We need to consider the following three main cases:

(1) At least one of D1 and D2 is an instance of an axiom.

(2) D1 andD2 are not axioms, and the cut formula is not principal in at least one ofD1 andD2.

(3) D1 and D2 are not axioms, and the cut formula is principal on both sides.

13

Again, by the height of a derivation, we mean the length of a longest branch in this derivation.

14

Or, to put it differently, we perform a well-founded lexicographic induction on the triple (d1, d2, h).
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Case 1: Suppose that at least one of D1 and D2 is an axiom. There are the following possibilities.

Case 1.1: At least one ofD1 andD2 is an instance of an axiom and the cut formula π : φ is not

principal in this instance. In this case, the conclusion of the cut rule application must also be an

axiom, so we can eliminate the cut completely. For example, suppose that the left premise of the

cut rule application is an instance of Ax for which π : φ is not principal, so the cut is of the form

Ax
w : p,Γ⇒ ∆, w : p, π : φ

D2

π : φ,Σ⇒ Θ
(cut)

w : p,Γ,Σ⇒ ∆,Θ, w : p

As can be seen, the conclusion w : p,Γ,Σ ⇒ ∆,Θ, w : p is also an instance of Ax , so it can be

derived without any applications of the cut rule. For the other axioms, the argument is similar.

Case 1.2: D1 is an instance of Ax for which π : φ is principal, and D2 ends with a rule R
for which π : φ is not principal. In this case, we permute the cut upwards over the application

of R on the right, possibly in combination with a height-preserving substitution in order to re-

name the eigenvariable of R. To see a representative case, let us assume that D2 ends with an

application of the rule Rp for which the cut formula is not principal, so the cut is of the form

Ax
w : p,Γ⇒ ∆, w : p

D′
2

u ⩽ σ,w : p,Σ⇒ Θ, u : q
Rp

w : p,Σ⇒ Θ, σ : q
(cut)

w : p,Γ,Σ⇒ ∆,Θ, σ : q

where σ is a non-singleton label and u ∈ S is a fresh variable not occurring in the sequent w :
p,Σ⇒ Θ, σ : q. Using the hp-admissibility of substitution, this proof tree is transformed into

Ax
w : p,Γ⇒ ∆, w : p

D′
2

u ⩽ σ,w : p,Σ⇒ Θ, u : q
(v/u)

v ⩽ σ,w : p,Σ⇒ Θ, v : q
(cut)

w : p,Γ, v ⩽ σ,Σ⇒ ∆,Θ, v : q
Rp

w : p,Γ,Σ⇒ ∆,Θ, σ : q

where v ∈ S is a fresh variable not occurring in the sequent w : p,Γ,Σ ⇒ ∆,Θ, σ : q. In this

proof tree, the new application of the cut rule is of lower height than the original one, so it can

be eliminated by the subinduction hypothesis in order to obtain the desired cut-free derivation.

Case 1.3: D1 is an instance of Ax for which π : φ is principal, andD2 ends with an application

of Lp for which π : φ is also principal. In this case, the cut rule application must be of the form

Ax
w : p,Γ⇒ ∆, w : p

D′
2

u : p, u ⩽ w,w : p,Σ⇒ Θ
Lp

u ⩽ w,w : p,Σ⇒ Θ
(cut)

u ⩽ w,w : p,Γ,Σ⇒ ∆,Θ

Using the admissibility of weakening, we can now eliminate the cut by constructing the following

proof tree, where ‘W ’ refers to a sequence of multiple applications of the weakening rules:

D′
2

u : p, u ⩽ w,w : p,Σ⇒ Θ
Lp

u ⩽ w,w : p,Σ⇒ Θ
W

u ⩽ w,w : p,Γ,Σ⇒ ∆,Θ

Case 1.4: Both of the derivations D1 and D2 are instances of Ax and the cut formula π : φ is

principal on both sides. In this case, the application of the cut rule must be of the following form:

Ax
w : p,Γ⇒ ∆, w : p

Ax
w : p,Σ⇒ Θ, w : p

(cut)
w : p,Γ,Σ⇒ ∆,Θ, w : p
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As can be seen, the conclusion is also an instance of Ax , so the cut can be eliminated completely.

Case 1.5: D2 is an instance ofAx⊥
for which π : φ is principal, andD1 ends with an application

of some rule R. Note that, since π : φ is the principal formula of the instance of Ax⊥
on the

right, it must be of the form w : ⊥ for some singleton variable w ∈ S. Consequently, the cut

formula cannot be principal in the application of R on the left: this would only be possible, if

R would be an instance of R⊥; but in this case, π would have to be a non-singleton label, i.e.,

π /∈ S. Therefore, we may assume that w : ⊥ is not principal in D1. Using this fact, we can now

permute the cut upwards over the application of R on the left, possibly in combination with a

height-preserving substitution in order to rename the eigenvariable ofR. For example, ifD1 ends

with an application ofR→ for which the cut formula is not principal, then the cut is of the form

D′
1

x ⩽ σ, x : ψ,Γ⇒ ∆, x : χ,w : ⊥
R→

Γ⇒ ∆, σ : ψ → χ,w : ⊥
Ax⊥

w : ⊥,Σ⇒ Θ
(cut)

Γ,Σ⇒ ∆,Θ, σ : ψ → χ

where x ∈ V is a fresh variable not occurring in the sequent Γ ⇒ ∆, σ : ψ → χ,w : ⊥. Using

the hp-admissibility of substitution, we can now eliminate the cut by constructing the proof tree

D′
1

x ⩽ σ, x : ψ,Γ⇒ ∆, x : χ,w : ⊥
(y/x)

y ⩽ σ, y : ψ,Γ⇒ ∆, y : χ,w : ⊥
Ax⊥

w : ⊥,Σ⇒ Θ
(cut)

y ⩽ σ, y : ψ,Γ,Σ⇒ ∆,Θ, y : χ
R→

Γ,Σ⇒ ∆,Θ, σ : ψ → χ

where y ∈ V is some fresh variable not occurring in the conclusion. In this proof tree, the new

cut is of lower height than the old one, so it can be eliminated by the subinduction hypothesis.

Case 1.6: D2 is an instance of Ax for which π : φ is principal, andD1 ends with an application

of some ruleR. In this case, we proceed in the same way as in the previous case.

Case 2: Suppose that neitherD1 norD2 is an axiom and the cut formula π : φ is not principal in

at least one ofD1 andD2. Without loss of generality, assume that π : φ is not principal in the left

derivation D1, and letR be the last rule applied in D1 (if π : φ is not principal on the right, then

the argument is similar). Since π : φ is not principal inD1, we can now permute the cut upwards

over the application ofR on the left, possibly in combination with a height-preserving substitu-

tion in order to rename the eigenvariable ofR. To see a concrete example, let us assume thatD1

ends with an application of the two-premise rule (sg). In this case, the cut must be of the form

D′
1

σ ⩽ ∅, σ ⩽ w,Γ⇒ ∆, π : φ

D′′
1

w ⩽ σ, σ ⩽ w,Γ⇒ ∆, π : φ
(sg)

σ ⩽ w,Γ⇒ ∆, π : φ

D2

π : φ,Σ⇒ Θ
(cut)

σ ⩽ w,Γ,Σ⇒ ∆,Θ

We now permute the cut upwards over the application of (sg) by constructing the proof tree

D′
1

σ ⩽ ∅, σ ⩽ w,Γ⇒ ∆, π : φ

D2

π : φ,Σ⇒ Θ
(cut)

σ ⩽ ∅, σ ⩽ w,Γ,Σ⇒ ∆,Θ

D′′
1

w ⩽ σ, σ ⩽ w,Γ⇒ ∆, π : φ

D2

π : φ,Σ⇒ Θ
(cut)

w ⩽ σ, σ ⩽ w,Γ,Σ⇒ ∆,Θ
(sg)

σ ⩽ w,Γ,Σ⇒ ∆,Θ

Note that, in this proof tree, both of the two new applications of the cut rule are of lower height

than the original one, so they can be eliminated according to the subinduction hypothesis.

Case 3: Suppose that neither D1 nor D2 is an instance of an axiom, and the cut formula π : φ
is principal in both premises of the cut rule application. There are the following possibilities.
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Case 3.1: Suppose that φ = p is an atomic formula. In this case, the cut must be of the form

D′
1

w ⩽ π,Γ⇒ ∆, w : p
Rp

Γ⇒ ∆, π : p

D′
2

u : p, u ⩽ π, π : p,Σ⇒ Θ
Lp

u ⩽ π, π : p,Σ⇒ Θ
(cut)

u ⩽ π,Γ,Σ⇒ ∆,Θ

whereπ /∈ S is a non-singleton label andw ∈ S is a fresh variable not occurring inΓ⇒ ∆, π : p.

Using the admissibility of substitution and contraction, this proof tree is now transformed in the

following way, where ‘C’ stands for a sequence of multiple applications of the contraction rules:

D′
1

w ⩽ π,Γ⇒ ∆, w : p
(u/w)

u ⩽ π,Γ⇒ ∆, u : p

D′
1

w ⩽ π,Γ⇒ ∆, w : p
Rp

Γ⇒ ∆, π : p

D′
2

u : p, u ⩽ π, π : p,Σ⇒ Θ
(cut)

u : p, u ⩽ π,Γ,Σ⇒ ∆,Θ
(cut)

u ⩽ π, u ⩽ π,Γ,Γ,Σ⇒ ∆,∆,Θ
C

u ⩽ π,Γ,Σ⇒ ∆,Θ

In this proof tree, the uppermost of the two new cuts (i.e., the one with cut formula π : p) has

lower height than the original one, so it can be eliminated according to the subinduction hypoth-

esis. On the other hand, since π /∈ S and u ∈ S, we also have rank(u : p) < rank(π : p) by

Lemma 3.2.12 (i). Therefore, the lowermost cut (i.e., the one with cut formula u : p) has lower

rank than the original one, so it can be eliminated by the main induction hypothesis.

Case 3.2: Let φ = ⊥. This case is treated in essentially the same way as the previous case.

Case 3.3: Let φ = ψ ∧ χ. In this case, the cut rule application must have the following form:

D′
1

Γ⇒ ∆, π : ψ

D′′
1

Γ⇒ ∆, π : χ
R∧

Γ⇒ ∆, π : ψ ∧ χ

D′
2

π : ψ, π : χ,Σ⇒ Θ
L∧

π : ψ ∧ χ,Σ⇒ Θ
(cut)

Γ,Σ⇒ ∆,Θ

Using the admissibility of contraction, we now transform the proof tree into

D′′
1

Γ⇒ ∆, π : χ

D′
1

Γ⇒ ∆, π : ψ

D′
2

π : ψ, π : χ,Σ⇒ Θ
(cut)

π : χ,Γ,Σ⇒ ∆,Θ
(cut)

Γ,Γ,Σ⇒ ∆,∆,Θ
C

Γ,Σ⇒ ∆,Θ

In the resulting tree, all new cuts are of lower rank than the old one, so they can be eliminated by

the main induction hypothesis (i.e., we first use the induction hypothesis in order to remove the

topmost cut, and we then use the induction hypothesis again in order to remove the second cut).

Case 3.4: Let φ = ψ ∨ χ. This case is similar to the previous case.

Case 3.5: Let φ = ψ → χ. In this case, the cut rule application must have the following form:

D′
1

x ⩽ π, x : ψ,Γ⇒ ∆, x : χ
R→

Γ⇒ ∆, π : ψ → χ

D′
2

σ ⩽ π, π : ψ → χ,Σ⇒ Θ, σ : ψ

D′′
2

σ ⩽ π, π : ψ → χ, σ : χ,Σ⇒ Θ
L→

σ ⩽ π, π : ψ → χ,Σ⇒ Θ
(cut)

σ ⩽ π,Γ,Σ⇒ ∆,Θ

where x ∈ V is a fresh variable. This derivation is now transformed into the proof tree

D′

(σ ⩽ π)2,Γ2,Σ⇒ ∆2,Θ, σ : χ
D′′

σ ⩽ π, σ : χ,Γ,Σ⇒ ∆,Θ
(cut)

(σ ⩽ π)3,Γ3,Σ2 ⇒ ∆3,Θ2

C
σ ⩽ π,Γ,Σ⇒ ∆,Θ
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σ : φ, σ ⩽ π, π : φ,Γ⇒ ∆
(glp)

σ ⩽ π, π : φ,Γ⇒ ∆

w ⩽ π,Γ⇒ ∆, w : α
(grp)

Γ⇒ ∆, π : α

Figure 3.3: Admissible generalizations of Lp and Rp. In the rule (grp), w must be a fresh

variable not occurring in the conclusion of the rule and α ∈ LBH must be a Harrop formula.

where D′
and D′′

are the following two derivations:

D′
1

x ⩽ π, x : ψ,Γ⇒ ∆, x : χ
R→

Γ⇒ ∆, π : ψ → χ

D′
2

σ ⩽ π, π : ψ → χ,Σ⇒ Θ, σ : ψ
(cut)

σ ⩽ π,Γ,Σ⇒ ∆,Θ, σ : ψ

D′
1

x ⩽ π, x : ψ,Γ⇒ ∆, x : χ
(σ/x)

σ ⩽ π, σ : ψ,Γ⇒ ∆, σ : χ
(cut)

(σ ⩽ π)2,Γ2,Σ⇒ ∆2,Θ, σ : χ

D′
1

x ⩽ π, x : ψ,Γ⇒ ∆, x : χ
R→

Γ⇒ ∆, π : ψ → χ

D′′
2

σ ⩽ π, π : ψ → χ, σ : χ,Σ⇒ Θ
(cut)

σ ⩽ π, σ : χ,Γ,Σ⇒ ∆,Θ

As can be seen, the original cut is now replaced by four new cuts. An easy inspection shows that

the two uppermost of these cuts (i.e., those with cut formula π : ψ → χ) are of lower height than

the original one, and the two other cuts are of lower rank. Thus, using the subinduction hypothe-

sis and then the main induction hypothesis, we can successively remove each of the four cuts.

3.2.4 Further Admissibility Results

Using the results obtained in the previous sections, we now want to present a number of addi-

tional rules that can be shown to be admissible in GLinqB. First, we will prove the admissibility

of the rules (glp) and (grp), depicted in Figure 3.3. In a sense, the rule (glp) can be seen as a gen-

eralization of the rule Lp, reflecting the persistency of the support relation in inquisitive logic: if

a formula φ is supported by some state π and if σ is an enhancement of π, then φ must also be

supported by σ (see Proposition 1.2.11). The rule (grp), on the other hand, generalizes the ruleRp
and accounts for the truth-conditionality of Harrop formulas in InqB: if a Harrop formulaα is true

at every world in a state π, then α is supported by π (see Proposition 1.3.3).
15

Note that the truth-

conditionality of α is in fact essential here (without this restriction, the rule would not be sound).

Proposition 3.2.14. The rules (glp) and (grp) are admissible in GLinqB.

Proof. We first show that (glp) is admissible. To this end, assume that σ : φ, σ ⩽ π, π : φ,Γ ⇒
∆ is derivable by a proof tree D. Using this proof tree, we may then construct the following

derivation, where ‘C’ stands for a sequence of multiple applications of the contraction rules:

By Lemma 3.2.1 (i)

σ ⩽ π, π : φ⇒ σ : φ
D

σ : φ, σ ⩽ π, π : φ,Γ⇒ ∆
(cut)

σ ⩽ π, σ ⩽ π, π : φ, π : φ,Γ⇒ ∆
C

σ ⩽ π, π : φ,Γ⇒ ∆

Hence, by the admissibility of the cut rule, it follows that (glp) is admissible. In order to prove the

admissibility of the rule (grp), we proceed by induction on the structure of the Harrop formula α.

15

Recall that, by a Harrop formula, we mean any formula φ in which all occurrences of ∨ are contained in the an-

tecedent of an implication. For an inductive definition of the set of all Harrop formulas, we refer to Definition 1.3.2.
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For the base case, let α = p be an atomic formula and suppose that w ⩽ π,Γ ⇒ ∆, w : p is

derivable, where w ∈ S is a fresh variable not occurring in the sequent Γ ⇒ ∆, π : p. If we

have π /∈ S, then the derivability of Γ ⇒ ∆, π : p follows immediately from the derivability of

w ⩽ π,Γ ⇒ ∆, w : p by an application of the rule Rp. Thus, let us now assume that we have

π ∈ S. In this case, we can apply the substitution (π/w) to the sequent w ⩽ π,Γ⇒ ∆, w : p in

order to obtain a derivation for π ⩽ π,Γ⇒ ∆, π : p. Now, using an application of the rule (rf),
this yields the desired derivation for Γ⇒ ∆, π : p. The case α = ⊥ is treated similarly.

In the inductive step, we only have to consider the following two cases.

Case 1: Let α be of the form α = β ∧ γ for some Harrop formulas β, γ ∈ LBH . Suppose that

the sequent w ⩽ π,Γ⇒ ∆, w : β ∧γ is derivable, where w ∈ S is again a fresh variable. By the

invertibility of the rule R∧, this implies that there is also a derivation D1 for the sequent w ⩽
π,Γ⇒ ∆, w : β and a derivation D2 for the sequent w ⩽ π,Γ⇒ ∆, w : γ. Using these deriva-

tions and the induction hypothesis, we now obtain the desired derivation in the following way:

D1

w ⩽ π,Γ⇒ ∆, w : β
IH

Γ⇒ ∆, π : β

D2

w ⩽ π,Γ⇒ ∆, w : γ
IH

Γ⇒ ∆, π : γ
R∧

Γ⇒ ∆, π : β ∧ γ

Case 2: Let α be of the form α = φ→ β for some arbitrary formula φ ∈ LB and some Harrop

formula β ∈ LBH . Suppose that the sequent w ⩽ π,Γ ⇒ ∆, w : φ → β is derivable, where

w ∈ S is fresh. By the invertibility of the rule R→, this implies that, for some fresh variable

x ∈ V, there is also a derivation D for the sequent x ⩽ w,w ⩽ π, x : φ,Γ ⇒ ∆, x : β. Using

this derivation and the induction hypothesis, we may now construct the desired derivation in the

following way, where ‘W ’ refers to a sequence of multiple applications of the weakening rules:

D
x ⩽ w,w ⩽ π, x : φ,Γ⇒ ∆, x : β

(w/x)
w ⩽ w,w ⩽ π,w : φ,Γ⇒ ∆, w : β

W
w ⩽ w,w : φ,w ⩽ π,w ⩽ x, x ⩽ π, x : φ,Γ⇒ ∆, w : β

(rf)
w : φ,w ⩽ π,w ⩽ x, x ⩽ π, x : φ,Γ⇒ ∆, w : β

(glp)
w ⩽ π,w ⩽ x, x ⩽ π, x : φ,Γ⇒ ∆, w : β

(tr)
w ⩽ x, x ⩽ π, x : φ,Γ⇒ ∆, w : β

IH

x ⩽ π, x : φ,Γ⇒ ∆, x : β
R→

Γ⇒ ∆, π : φ→ β

This concludes the induction. Therefore, the rule (grp) is admissible in GLinqB.

As a corollary of this proposition, we can now prove that, if α is a Harrop formula, then every

sequent of the form π : α, σ : α,Γ ⇒ ∆, π + σ : α is derivable in GLinqB. Intuitively, this

accounts again for the truth-conditionality of Harrop formulas in InqB: if a Harrop formula α is

supported by two states π and σ, then it must also be supported by the union of π and σ.

Corollary 3.2.15. Ifα ∈ LBH is a Harrop formula, then every sequent of the form π : α, σ : α,Γ⇒
∆, π + σ : α is derivable in GLinqB.

Proof. For an arbitrary Harrop formula α ∈ LBH , we may construct the following proof tree:

By Lemma 3.2.1 (i)

w ⩽ π,w ⩽ π + σ, π : α, σ : α,Γ⇒ ∆, w : α

By Lemma 3.2.1 (i)

w ⩽ σ,w ⩽ π + σ, π : α, σ : α,Γ⇒ ∆, w : α
(cd)

w ⩽ π + σ, π : α, σ : α,Γ⇒ ∆, w : α
(grp)

π : α, σ : α,Γ⇒ ∆, π + σ : α

Thus, by the admissibility of (grp), the desired sequent is derivable in GLinqB.
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π ⊛ σ ≈ σ ⊛ π,Γ⇒ ∆
(com)

Γ⇒ ∆

π ⊛ (σ ⊛ τ) ≈ (π ⊛ σ)⊛ τ,Γ⇒ ∆
(ass)

Γ⇒ ∆

π ⊛ π ≈ π (id)
Γ⇒ ∆

π(σ + τ) ≈ πσ + πτ
(i-dis)

Γ⇒ ∆

π + στ ≈ (π + σ)(π + τ)
(u-dis)

Γ⇒ ∆

π(π + σ) ≈ π,Γ⇒ ∆
(i-abs)

Γ⇒ ∆

π + πσ ≈ π,Γ⇒ ∆
(u-abs)

Γ⇒ ∆

Figure 3.4: Some further admissible rules. In each case, we assume that ⊛ ∈ {·,+}. The

notation ‘π ≈ σ’ is used as an abbreviation for the pair of relational atoms ‘π ⩽ σ, σ ⩽ π’.

Finally, it is worth noting that our system also allows to derive the usual algebraic properties

of the intersection and the union operator. In Figure 3.4, we summarize a number of additional

rules that can be shown to be admissible in our sequent calculus. Note that, in the figure, the

symbol ⊛ acts as a placeholder, representing either the intersection or the union operator, and

‘π ≈ σ’ is used as a shorthand for the pair of relational atoms ‘π ⩽ σ, σ ⩽ π’. Intuitively, the

rules (com), (ass) and (id) account for the commutativity, associativity and idempotence of union

and intersection. The other four rules account for the usual distributivity and absorption laws.

Proposition 3.2.16. Each of the rules depicted in Figure 3.4 is admissible in GLinqB.

Proof. For the sake of brevity, we only show the admissibility of the two absorption rules (i-abs)
and (u-abs). In order to prove the admissibility of (i-abs), let D be a derivation for the sequent

π(π + σ) ≈ π,Γ⇒ ∆. Using this derivation, we may then construct the following proof tree:

D
π(π + σ) ⩽ π, π ⩽ π(π + σ),Γ⇒ ∆

W
π(π + σ) ⩽ π, π ⩽ π(π + σ), π ⩽ π, π ⩽ π + σ,Γ⇒ ∆

(il)
π ⩽ π(π + σ), π ⩽ π, π ⩽ π + σ,Γ⇒ ∆

(in)
π ⩽ π, π ⩽ π + σ,Γ⇒ ∆

(rf)
π ⩽ π + σ,Γ⇒ ∆

(ul)
Γ⇒ ∆

Thus, (i-abs) is admissible. In order to prove the admissibility of (u-abs), let us now suppose that

π + πσ ≈ π,Γ⇒ ∆ is derivable by a proof tree D. We may then construct the derivation

D
π + πσ ⩽ π, π ⩽ π + πσ,Γ⇒ ∆

W
π + πσ ⩽ π, π ⩽ π + πσ, π ⩽ π, πσ ⩽ π,Γ⇒ ∆

(ul)
π + πσ ⩽ π, π ⩽ π, πσ ⩽ π,Γ⇒ ∆

(un)
π ⩽ π, πσ ⩽ π,Γ⇒ ∆

(rf)
πσ ⩽ π,Γ⇒ ∆

(il)
Γ⇒ ∆

This show that (u-abs) is admissible. For the other rules from Figure 3.4, the proof is similar.

3.3 Soundness and Completeness

In this section, we will prove the soundness and completeness of our sequent calculus, i.e., we

will show that, for every finite set of formulas Γ∪{φ} ⊆ LB and for every variable x ∈ V, there

exists a derivation for x : Γ⇒ x : φ in GLinqB if and only if φ is entailed by Γ in InqB.
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To begin with, let us establish the soundness of our system. For this purpose, we have to prove

that every sequent derivable in GLinqB is also ‘valid’ with respect to the support semantics of

InqB. In order to give a precise definition of what it means for a sequent to be ‘valid’, we first

need to specify how the labels of our proof system are interpreted in an information model.

Definition 3.3.1 (Interpretation). LetM = ⟨W,V ⟩ be an information model.
16

An interpretation
over M is a function I : S ∪V→ P(W ) such that, for all singleton variables w ∈ S, the state

I(w) ⊆ W is a singleton. Given any interpretation I over some model M , it is inductively

extended to a function from the set Λ(S,V) of all labels to the set P(W ) in the following way:

(i) I(∅) := ∅,
(ii) I(π · σ) := I(π) ∩ I(σ),

(iii) I(π + σ) := I(π) ∪ I(σ).

In other words, an interpretation is a function that assigns a singleton state to each variable

from S and an arbitrary state to each variable from V. Such a function is then extended to arbi-

trary labels in the obvious way. So, in particular, the constant ∅ is interpreted as the inconsistent
state, π ·σ is interpreted as the intersection of the states I(π) and I(σ), and π+σ is interpreted as

the union of I(π) and I(σ). Given any interpretation I over some modelM , we will now say that

a labelled formula π : φ is satisfied by I , just in case φ is supported by the state I(π) in M . And

a relational atom π ⩽ σ is said to be satisfied by I , if the state I(π) is an enhancement of I(σ).

Definition 3.3.2 (Satisfaction). Let I be an interpretation over some model M . The notion of

satisfaction is defined in the following way: we say that a labelled formula π : φ is satisfied by I ,

if we have M, I(π) φ. And a relational atom π ⩽ σ is satisfied by I , if it holds I(π) ⊆ I(σ).

We are now able to define a suitable notion of validity for sequents. As explained in Section 3.1,

every sequent is assumed to have a ‘conjunctive’ reading on the left and a ‘disjunctive’ reading

on the right. In line with this, we will call a sequent Γ ⇒ ∆ valid in a model M , if every

interpretation overM that satisfies all expressions in Γ also satisfies at least one expression in ∆.

Definition 3.3.3 (Validity). Let M be a model. We say that a sequent Γ ⇒ ∆ is valid in M ,

if for every interpretation I over M , the following holds: if I satisfies all labelled formulas and

relational atoms in Γ, then there exists a labelled formula π : φ in ∆ such that I satisfies π : φ.

Using this notion of validity, we can now establish the soundness of our labelled sequent calcu-

lus: if a formula φ is provable from Γ in GLinqB, then φ is entailed by Γ in the basic system InqB.

Proposition 3.3.4 (Soundness). For every finite set of formulas Γ ⊆ LB and for every formula
φ ∈ LB, if the sequent x : Γ⇒ x : φ is derivable in GLinqB for some x ∈ V, then Γ φ.17

Proof. We first prove that, if a sequent Γ ⇒ ∆ is derivable in GLinqB, then Γ ⇒ ∆ is valid in

every information model M . For this purpose, let Γ ⇒ ∆ be an arbitrary sequent and suppose

that there exists a derivationD for Γ⇒ ∆ in GLinqB. Moreover, letM = ⟨W,V ⟩ be an arbitrary

model. Using induction on the structure of D, we show that Γ⇒ ∆ is valid in M .

In the base case, we have to show that all axioms of GLinqB are valid in M . This is straight-

forward. For example, let us assume that D is an instance of Ax⊥
. In this case, Γ ⇒ ∆ must

be of the form w : ⊥,Θ ⇒ ∆ for some singleton variable w ∈ S. By Definition 3.3.1, every

interpretation overM must assign a singleton state tow. Hence, because⊥ is supported only by

the inconsistent state ∅, there can be no interpretation overM that satisfiesw : ⊥, so the sequent

w : ⊥,Θ⇒ ∆ is trivially valid in M . Similar arguments can be found for the other axioms.

16

Recall thatW stands for a non-empty set of possible worlds and V stands for a valuation function, assigning a truth

value to each atomic formula p ∈ P at each possible world w ∈W . For further details, we refer to Definition 1.2.4.

17

As before, we write x : Γ for the set given by (x : Γ) := {x : ψ | ψ ∈ Γ}. Moreover, recall that Γ φ was defined

to hold, if for every model M and for every state s, it holds: M, s Γ implies M, s φ (see Definition 1.2.12).
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For the inductive step, let us assume thatD ends with an application of one of the logical rules

or one of the order rules of GLinqB. For simplicity, we only consider a few representative cases.

Case 1: Suppose that the last step in D is an application of the rule Rp, so D is of the form

D′

w ⩽ π,Γ⇒ Θ, w : p
Rp

Γ⇒ Θ, π : p

where π /∈ S is a non-singleton label and w ∈ S is a fresh variable not occurring in the conclu-

sion of D. By induction hypothesis, we know that the sequent w ⩽ π,Γ ⇒ Θ, w : p is valid in

M . We have to show that this also holds for Γ⇒ Θ, π : p. Towards a contradiction, assume that

Γ⇒ Θ, π : p is not valid inM , i.e., there exists an interpretation I overM such that I satisfies all

expressions in Γ, but I satisfies neither π : p nor any expression in Θ. By the support conditions

for atomic formulas (see Definition 1.2.6), this implies that there exists some world u ∈ I(π) such

that M,u ̸ p. Let now I∗ be the interpretation which is just like I , except that the variable w
is mapped to the singleton state {u}, so we put I∗(w) := {u}. Then, by assumption, I∗ satisfies

w ⩽ π and each expression in Γ. Hence, by induction hypothesis, I∗ must also satisfy w : p
or some expression in Θ. If I∗ satisfies w : p, then we must have M,u p, which is a contra-

diction to the fact that M,u ̸ p. And if I∗ satisfies some element of Θ, then also the original

interpretation I must satisfy this element, which is a contradiction to our assumption about I .

Case 2: Suppose that D ends with an application of L⊥. In this case, D is of the form

D′

w : ⊥, w ⩽ π, π : ⊥,Θ⇒ ∆
L⊥

w ⩽ π, π : ⊥,Θ⇒ ∆

By induction hypothesis,w : ⊥, w ⩽ π, π : ⊥,Θ⇒ ∆ is valid inM . Suppose for a contradiction

thatw ⩽ π, π : ⊥,Θ⇒ ∆ is not valid. Then, in particular, there must be an interpretation I over

M such that I satisfies both w ⩽ π and π : ⊥, so we have I(w) ⊆ I(π) and M, I(π) ⊥. Since

⊥ is only supported by the inconsistent state ∅, this implies I(π) = ∅. But then, because I(w) is

non-empty by Definition 3.3.1, it follows I(w) ̸⊆ I(π), which is a contradiction to I(w) ⊆ I(π).
Case 3: Suppose that D ends with an application of L→, so D is of the form

D1

π ⩽ σ, σ : φ→ ψ,Θ⇒ ∆, π : φ

D2

π ⩽ σ, σ : φ→ ψ, π : ψ,Θ⇒ ∆
L→

π ⩽ σ, σ : φ→ ψ,Θ⇒ ∆

By induction hypothesis, π ⩽ σ, σ : φ→ ψ,Θ⇒ ∆, π : φ and π ⩽ σ, σ : φ→ ψ, π : ψ,Θ⇒ ∆
are both valid. In order to show that this also holds for the conclusion of D, let I be an arbitrary

interpretation over M and suppose that I satisfies π ⩽ σ, σ : φ→ ψ and each expression in Θ.

Then, by induction hypothesis, I must also satisfy π : φ or some element of ∆. If the latter holds,

then we are finished. Thus, let us assume that I satisfies π : φ. By assumption, we also have

I(π) ⊆ I(σ) and M, I(σ) φ → ψ. Using the support conditions for implication (see Defini-

tion 1.2.6), one readily sees that this yieldsM, I(π) ̸ φ orM, I(π) ψ. Therefore, since I satis-

fies π : φ, it followsM, I(π) ψ. As we have seen, I satisfies each of the expressions π ⩽ σ, σ :
φ→ ψ, π : ψ and every element ofΘ. But then, by induction hypothesis, I must also satisfy some

element of ∆. Because I was arbitrary, this shows that the conclusion of D is in fact valid in M .

Case 4: Suppose that the last step in D is an application of R→, so D is of the form

D′

x ⩽ π, x : φ,Γ⇒ Θ, x : ψ
R→

Γ⇒ Θ, π : φ→ ψ

where x ∈ V is a fresh variable not occurring in the conclusion. By induction hypothesis, we

know that x ⩽ π, x : φ,Γ⇒ Θ, x : ψ is valid in M . In order to show that this also holds for the
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conclusion ofD, suppose for a contradiction that Γ⇒ Θ, π : φ→ ψ is not valid inM , i.e., there

exists an interpretation I over M such that I satisfies each element of Γ, but I neither satisfies

π : φ → ψ nor any element of Θ. Then, since M, I(π) ̸ φ → ψ, there must be some state

s ⊆ I(π) such that M, s φ and M, s ̸ ψ. Let now I∗ be the interpretation which is just

like I , except that the variable x is mapped to s, so we put I∗(x) := s. Then, clearly, I∗ satisfies

x ⩽ π, x : φ and each element of Γ. Therefore, by induction hypothesis, it must also satisfy x : ψ
or some element of Θ. If I∗ satisfies x : ψ, then we have M, s ψ by definition of I∗, which

is a contradiction to M, s ̸ ψ. And if I∗ satisfies some element of Θ, then also the original

interpretation I must satisfy this element, which is a contradiction to our assumption about I .

Case 5: Suppose thatD ends with an application of the rule (un). In this case,D is of the form

D′

π + τ ⩽ σ, π ⩽ σ, τ ⩽ σ,Θ⇒ ∆
(un)

π ⩽ σ, τ ⩽ σ,Θ⇒ ∆

By induction hypothesis, π + τ ⩽ σ, π ⩽ σ, τ ⩽ σ,Θ ⇒ ∆ is valid in M . We have to show

that this also holds for the conclusion of D. To this end, I be an arbitrary interpretation over

M and suppose that I satisfies π ⩽ σ, τ ⩽ σ and each expression in Θ. Then, in particular, we

have I(π) ⊆ I(σ) and I(τ) ⊆ I(σ), so it follows I(π) ∪ I(τ) ⊆ I(σ). Hence, I also satisfies

the relational atom π + τ ⩽ σ. Therefore, by induction hypothesis, some element of ∆ must be

satisfied by I . Since I was arbitrary, this shows that π ⩽ σ, τ ⩽ σ,Θ⇒ ∆ is valid in M .

Case 6: Suppose that the last step in D is an application of (sg), so D is of the form

D1

π ⩽ ∅, π ⩽ w,Θ⇒ ∆

D2

w ⩽ π, π ⩽ w,Θ⇒ ∆
(sg)

π ⩽ w,Θ⇒ ∆

By induction hypothesis, π ⩽ ∅, π ⩽ w,Θ⇒ ∆ andw ⩽ π, π ⩽ w,Θ⇒ ∆ are both valid inM .

In order to show that this also holds for the conclusion of D, let I be an arbitrary interpretation

over M and suppose that I satisfies π ⩽ w and each element of Θ. Since I(w) is a singleton

and I(π) ⊆ I(w), we must either have I(π) = ∅ or I(π) = I(w). In the first case, I satisfies

π ⩽ ∅, and in the second case, I satisfiesw ⩽ π. Hence, by induction hypothesis, I satisfies some

element of ∆, as desired. Because I was arbitrary, this shows that π ⩽ w,Θ⇒ ∆ is valid in M .

The other rules are treated similarly. This concludes the induction. Let now Γ ∪ {φ} ⊆ LB be

an arbitrary finite set and suppose that x : Γ ⇒ x : φ is derivable in GLinqB for some x ∈ V.

As we have just seen, this implies that, for every model M and for every interpretation I over

M , if M, I(x) ψ for all ψ ∈ Γ, then M, I(x) φ. But then, clearly, we also have Γ φ.

Next, we will establish the completeness of our sequent calculus. This will be achieved in a

purely proof-theoretical manner, i.e., instead of giving a semantic argument, we will use our cut-

admissibility theorem in order to show that GLinqB is complete with respect to the Hilbert-style

system HinqB depicted in Figure 3.5. As demonstrated in Section 1.5, this Hilbert-style system

is sound and complete with respect to InqB. Therefore, in order to prove the completeness of

our sequent calculus, it suffices to show that every formula provable in HinqB is also provable

in GLinqB. To this end, we first need to show that every axiom of HinqB is derivable in GLinqB.

Lemma 3.3.5. Let φ be an instance of one of the axiom schemes of HinqB. Then, φ is provable in
GLinqB, i.e., for any variable x ∈ V, there exists a derivation for the sequent⇒ x : φ in GLinqB.

Proof. For the ‘intuitionistic’ axioms given in Figure 1.5, the proof is a matter of routine (in fact,

the only non-trivial case is the axiom⊥ → φ, but this axiom can be easily derived from part (iv)

of Lemma 3.2.2). Therefore, we only need to show the derivability of the split axiom (Split) and
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Axioms:

(IPL) All axioms of the ‘intuitionistic’ system given in Figure 1.5,

(Split) (α→ (φ ∨ ψ))→ ((α→ φ) ∨ (α→ ψ)), where α ∈ LBc is classical,

(DN) ¬¬α→ α, where α ∈ LBc is classical.

The only rule of inference is modus ponens: from Γ φ and Γ φ→ ψ, infer Γ ψ.

Figure 3.5: The Hilbert-style system HinqB.

the double negation axiom (DN). In order to derive the split axiom, let α ∈ LBc be a classical for-

mula and let φ,ψ ∈ LB be arbitrary formulas. We may then construct the following derivation:

By Corollary 3.2.15

. . . , z1 : α, z2 : α⇒ z1 : φ, z2 : ψ, z1 + z2 : α
D

. . . , z1 + z2 : φ ∨ ψ ⇒ z1 : φ, z2 : ψ
L→

z1 + z2 ⩽ y, z2 ⩽ y, z1 ⩽ y, y ⩽ x, y : α→ (φ ∨ ψ), z1 : α, z2 : α⇒ z1 : φ, z2 : ψ
(un)

z2 ⩽ y, z1 ⩽ y, y ⩽ x, y : α→ (φ ∨ ψ), z1 : α, z2 : α⇒ z1 : φ, z2 : ψ
R→

z1 ⩽ y, y ⩽ x, y : α→ (φ ∨ ψ), z1 : α⇒ z1 : φ, y : α→ ψ
R→

y ⩽ x, y : α→ (φ ∨ ψ)⇒ y : α→ φ, y : α→ ψ
R∨

y ⩽ x, y : α→ (φ ∨ ψ)⇒ y : (α→ φ) ∨ (α→ ψ)
R→⇒ x : (α→ (φ ∨ ψ))→ ((α→ φ) ∨ (α→ ψ))

where the subderivation D is of the form

By Lemma 3.2.1 (i)

z1 ⩽ z1 + z2, . . . , z1 + z2 : φ⇒ z1 : φ, z2 : ψ
(ul)

. . . , z1 + z2 : φ⇒ z1 : φ, z2 : ψ

By Lemma 3.2.1 (i)

z2 ⩽ z1 + z2, . . . , z1 + z2 : ψ ⇒ z1 : φ, z2 : ψ
(ur)

. . . , z1 + z2 : ψ ⇒ z1 : φ, z2 : ψ
L∨

. . . , z1 + z2 : φ ∨ ψ ⇒ z1 : φ, z2 : ψ

Note that, since α is a classical formula, it is also a Harrop formula, so Corollary 3.2.15 is in fact

applicable here. In order to derive the double negation axiom (DN), letα ∈ LBc be again a classical

formula. Then, using the admissible rule (grp) from Figure 3.3, we may construct the derivation

By Lemma 3.2.2 (i)

z ⩽ ∅, . . .⇒ w : α, z : ⊥
By Lemma 3.2.1 (i)

w ⩽ z, . . . , z : α⇒ w : α, z : ⊥
(sg)

z ⩽ w,w ⩽ y, y ⩽ x, y : ¬¬α, z : α⇒ w : α, z : ⊥
R→

w ⩽ y, y ⩽ x, y : ¬¬α⇒ w : α,w : ¬α
Ax⊥

. . . , w : ⊥ ⇒ w : α
L→

w ⩽ y, y ⩽ x, y : ¬¬α⇒ w : α
(grp)

y ⩽ x, y : ¬¬α⇒ y : α
R→⇒ x : ¬¬α→ α

Again, observe that α is also a Harrop formula, so the application of (grp) is in fact correct.

In a similar way, one can also derive the axioms of the alternative Hilbert-style systemHinqBKP
presented in Figure 1.7. The derivations are almost the same. In particular, in the derivation for

the Kreisel-Putnam axiom (KP), one can again use Corollary 3.2.15, since negated formulas, too,

are always Harrop formulas. In the derivation for the atomic double negation axiom (ADN), one

can also useRp instead of (grp). For the next step, let now (mp) be themodus ponens rule given by

⇒ x : φ ⇒ x : φ→ ψ
(mp)⇒ x : ψ

Using our cut-admissibility theorem, it is easy to verify that (mp) is admissible in GLinqB.
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Lemma 3.3.6. The modus ponens rule (mp) is admissible in GLinqB.

Proof. Suppose that there is a derivation D1 for⇒ x : φ and a derivation D2 for⇒ x : φ→ ψ.

We have to show that there is also a derivation for⇒ x : ψ. By applying the invertibility of the

rule R→ to the derivation D2, we first obtain a derivation D′
2 for y ⩽ x, y : φ ⇒ y : ψ, where

y ∈ V is a fresh variable. Using D1 and D′
2, we may now construct the following derivation:

D1

⇒ x : φ

D′
2

y ⩽ x, y : φ⇒ y : ψ
(x/y)

x ⩽ x, x : φ⇒ x : ψ
(cut)

x ⩽ x⇒ x : ψ
(rf)⇒ x : ψ

Therefore, by the admissibility of the cut rule, it follows that (mp) is admissible in GLinqB.

By combining the previous two lemmas, we can now prove that our labelled sequent calculus

is weakly complete with respect to HinqB: if a formula φ is provable in the Hilbert-style system

HinqB, then it is also provable in the sequent calculus GLinqB. The strong completeness of

GLinqB is then obtained as an immediate corollary, by using the deduction theorem for HinqB.

Theorem 3.3.7. For every formula φ ∈ LB, if we have H φ in the Hilbert-style system HinqB,
then the sequent⇒ x : φ is derivable in GLinqB, for any variable x ∈ V.18

Proof. The statement is proved by induction on the structure of a Hilbert-style proof for H φ
(see Definition 1.5.3). This is trivial, since we already know that all axioms of HinqB are provable

in GLinqB and that modus ponens is admissible in GLinqB (see Lemma 3.3.5 and 3.3.6).

Corollary 3.3.8 (Soundness and Completeness). The labelled sequent calculus GLinqB is sound
and strongly complete with respect to InqB. That is, for every finite set of formulas Γ ∪ {φ} ⊆ LB,
we have Γ φ if and only if x : Γ⇒ x : φ is derivable in GLinqB, for any variable x ∈ V.

Proof. The soundness of GLinqB has been established in Proposition 3.3.4. For the completeness

part, let Γ ∪ {φ} ⊆ LB be an arbitrary finite set of formulas and suppose that Γ φ. By the

completeness of HinqB (see Corollary 1.5.6), this yields Γ H φ. Now, because Γ is finite, we

have Γ = {ψ1, . . . , ψn} for some formulas ψ1, . . . , ψn ∈ LB. Thus, from Γ H φ, it follows H

ψ1 → (ψ2 → . . . (ψn → φ) . . .) by the deduction theorem for HinqB (see Theorem 1.5.4). One

readily sees that this implies H
∧
Γ → φ, where

∧
Γ is the conjunction of the formulas in Γ.

Hence, by Theorem 3.3.7, we may conclude that⇒ x :
∧
Γ→ φ is derivable in GLinqB, for any

x ∈ V. Therefore, by the invertibility of the rulesR→ and L∧, the sequent y ⩽ x, y : Γ⇒ y : φ
is also derivable, where y ∈ V is fresh. But then, by performing the substitution (x/y) and a

subsequent application of (rf), we obtain the desired derivation for x : Γ⇒ x : φ in GLinqB.

3.4 Towards a Proof Search Procedure for Inquisitive Logic

In the previous section, we have seen that GLinqB is sound and complete with respect to inquis-

itive logic, so a formula φ is provable in our system if and only if φ is valid in InqB. It would now

be desirable to have an effective proof search procedure for our sequent calculus, i.e., an algorithm

that, given any formula φ as input, either outputs a derivation for a sequent of the form⇒ x : φ,

or a finite countermodel for the formula φ. In this section, we want to take a first step towards

such an algorithm. In particular, we will outline the overall structure of a possible proof search

18

Recall that we write H for the provability relation of the Hilbert-style system HinqB (see Definition 1.5.3).
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strategy for GLinqB and discuss some problems that have to be resolved in order to make sure

that the procedure is terminating. The full specification of the desired algorithm and the corre-

sponding termination proof will be left for future work. We start by defining some basic notions.

Definition 3.4.1 (Proof Search Tree, Branch). Let φ ∈ LB be a formula. A proof search tree for φ
is a finite tree of sequents T, built up from a root node of the form⇒ x : φ with x ∈ V, by root-

first applications of the rules of our system.
19

A branch in a proof search tree T is a sequence β of

consecutive sequents in T, starting with the root node and ending with one of the leaf nodes of T.

A branch β in a proof search tree is said to be closed, if the topmost sequent in β is an instance

of one of the axioms of our system. Otherwise, the brach is said to be open. And a proof search

tree T is called closed, if every branch in T is closed, and it is called open otherwise. Recall that,

by a dynamic rule, we mean a sequent rule that allows to introduce a fresh variable (i.e., an eigen-
variable) in the course of a derivation. In the sequent calculus GLinqB, this includes the logical

rules Rp, R⊥ and R→. All other rules of our system are said to be static rules (see Section 3.1).

As explained above, we are interested in an algorithm that allows to find sequent proofs for

formulas in a systematic and mechanical way. The basic idea is to use a ‘bottom-up’ search

strategy in the style of Schütte (1956) and Takeuti (1987). That is, given any formula φ ∈ LB as

input, our algorithm should start to construct a proof search treeT forφ by successively applying

all rules of our system root-first to the topmost sequents in the tree. If the input formula φ is

valid, then the search tree T should become closed after a finite number of steps. In this case, our

algorithm should output T, which is now a derivation for the root node⇒ x : φ. Otherwise, the

procedure should stop as soon as some open branch in T satisfies a suitable saturation condition.

Intuitively, a branch β is said to be saturated, if the topmost sequent in β is not an instance of

an axiom and β is closed under non-redundant applications of all rules of our sequent calculus.

If a branch β in the search tree T becomes saturated at some stage of the construction, then our

algorithm should be able to use this branch in order to construct a finite countermodel Mβ and

an interpretation function Iβ such that Mβ, Iβ(x) ̸ φ, where φ stands for the input formula.

In order for this strategy to work, one has to design the search procedure and the saturation

condition for branches in such a way that the algorithm is guaranteed to terminate on each input,

so every branch in the proof search tree should in fact become either closed or saturated after

a finite number of steps. In addition to that, a saturated branch should always allow us to ‘read

off’ the desired countermodel for the input formula. Unfortunately, finding a suitable saturation

condition for our sequent calculus turns out to be quite difficult. In order to get an idea of the

difficulties, let us discuss some technical problems that may arise during the search process.

One problem is related to the complex syntax of the labels used in our proof system. In par-

ticular, by performing a root-first application of an order rule, we may introduce a new label in a

branch which can then be used in order to introduce further labels and so on. This might cause our

algorithm to get stuck in an infinite loop of order rule applications, producing increasingly more

complex labels. For instance, using only the rule (un), we may create an infinite loop of the form

((x+ y) + x) + y ⩽ z, (x+ y) + x ⩽ z, x+ y ⩽ z, x ⩽ z, y ⩽ z,Γ⇒ ∆
(un)

(x+ y) + x ⩽ z, x+ y ⩽ z, x ⩽ z, y ⩽ z,Γ⇒ ∆
(un)

x+ y ⩽ z, x ⩽ z, y ⩽ z,Γ⇒ ∆
(un)

x ⩽ z, y ⩽ z,Γ⇒ ∆

From a semantic point of view, the repeated applications of (un) in this loop do not yield any new

information, since the relational atoms x+ y ⩽ z, (x+ y)+x ⩽ z and ((x+ y)+x)+ y ⩽ z all

19

By a root-first application of a rule, we mean that the rule is applied ‘bottom-up’, i.e., if one of the leaf nodes of T is

an instance of the conclusion of the rule, then we write the corresponding premises of the rule above this leaf node.
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have exactly the same ‘meaning’.
20

In order to avoid loops of this kind, one has to find a suitable

mechanism that prevents our algorithm from producing ‘equivalent’ relational atoms in a branch.

Luckily, this problem has an easy solution, since it is possible to show that every label of our

system can be reduced to a suitable normal form. To make this more precise, let us introduce some

terminology. First of all, we say that two labels π and σ are equivalent, notation π ≡ σ, if for

every model M and for every interpretation I over M , it is the case that I(π) = I(σ). In other

words, π and σ are equivalent, if they denote exactly the same information state under every

possible interpretation. By an intersection of variables, we mean any label of the form s1s2 · · · sn,

where each si is a variable, i.e., si ∈ S ∪V for all 1 ≤ i ≤ n. Given an intersection of variables

π = s1 · · · sn, we will also write S(π) for the set of variables given by S(π) := {s1, . . . , sn}. It is

now possible to show that each label of our system can be transformed into an equivalent label

of the form π1+ . . .+πn, where each πi is an intersection of variables. In order to make sure that

this normal form is unique, we have to require that the intersections π1, . . . , πn and the variables

occurring in these intersections are ordered in a fixed way. To this end, we henceforth assume a

strict total order < on the set of all labels Λ(S,V), i.e., an irreflexive, asymmetric, transitive and

connected relation between labels.
21

The notion of a normal form can now be defined as follows.

Definition 3.4.2 (Normal Form). A label π is said to be a normal form, if π is either of the form

∅, or it is of the form π = π1 + . . .+ πn and each of the following three conditions is satisfied:

(i) Each πi is an intersection of variables πi = s1 · · · sk such that si < sj for all 1 ≤ i < j ≤ k.

(ii) For all intersections πi and πj with 1 ≤ i < j ≤ n, we have πi < πj .
(iii) There are no intersections πi and πj with i ̸= j such that S(πi) ⊆ S(πj).

Observe that, by the first two conditions, no variable can occur more than once in any of

the intersections πi and these intersections must always be pairwise distinct. The last condition

ensures that normal forms do not contain any ‘superfluous’ intersections: if we would have

S(πi) ⊆ S(πj) for two distinct intersections πi and πj , then it would follow I(πj) ⊆ I(πi) for

every interpretation I , so the label πj could also be removed from the union π1+. . .+πn without

changing the ‘meaning’ of the normal form. Using the concept of a normal form, it is now possible

to avoid redundant applications of order rules during the search process. Let us make this idea

more precise. First of all, given any branch β in a proof search tree, we write Sβ for the set of all

variables from S that occur in β, and we write Vβ for the set of all variables from V that occur

in β. Moreover, let Λnf
β be the set of all normal forms built up from the variables in Sβ ∪ Vβ .

Note that, since every branch in a search tree is finite, both of the sets Sβ and Vβ must be finite

as well. Using this fact, it is easy to see that Λnf
β contains only finitely many normal forms.

Proposition 3.4.3. For every branch β in a proof search tree, Λnf
β is finite.

Proof. Let β be an arbitrary branch in a proof search tree, let Vβ := Sβ ∪ Vβ be the set of all

variables occurring in β and let n := |Vβ| be the cardinality of Vβ . Clearly, every normal form

π1+ . . .+πk from Λnf
β can be uniquely encoded by the set {S(π1), . . . , S(πk)}, which is a subset

of P(Vβ). Since there are exactly 22
n

such subsets, Λnf
β can contain at most 22

n
elements.

In addition, we can now prove the desired normal form result for the labels of our system.

Proposition 3.4.4 (Existence of Normal Forms). For every label π, there exists a unique normal
form σ with π ≡ σ. Moreover, there is an algorithm that computes this normal form, for any label π.

Proof. Let π be an arbitrary label. In order to compute the normal form of π, we may perform the

following steps: first, we use the left-to-right direction of the equivalences σ(τ1+τ2) ≡ στ1+στ2
and (τ1 + τ2)σ ≡ τ1σ + τ2σ in order to distribute all intersections in π over the unions in π.

20

This follows immediately from the way in which labels are interpreted in a model (see Definition 3.3.1).

21

We do not care about the exact definition of this relation—all that matters is that such a relation can be defined.
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After a finite number of steps, this must result in a label of the form π1+ . . .+πn, where each πi
is an intersection built up from variables and the constant ∅. If each πi contains an occurrence

of ∅, then the desired normal form is taken to be ∅. Otherwise, we delete all intersections πi that

contain ∅ and all intersections πi for which there is another intersection πj with S(πj) ⊆ S(πi).
Finally, we use the equivalences στ ≡ τσ and σ + τ ≡ τ + σ in order to arrange the remaining

intersections πi and the variables occurring in these intersections in the right order. Clearly, each

of the transformations preserves equivalence, so this finally yields a normal form σ with π ≡ σ.

In order to prove the uniqueness of normal forms, it suffices to show that distinct normal forms

are always non-equivalent. To this end, let π and σ be arbitrary normal forms and suppose that

π ̸= σ. We have to show that it also holds π ̸≡ σ. If one of π and σ is of the form ∅, then the argu-

ment is trivial. Thus, assume that π = π1+. . .+πn and σ = σ1+. . .+σk, where each πi and each

σi is an intersection of variables. Moreover, let Π := {π1, . . . , πn} and Σ := {σ1, . . . , σk}. By a

distinguishing term for π and σ, we mean an intersection of variables τ which is contained in only

one of the two sets Π and Σ, but not in the other one. Since we have π ̸= σ by assumption, there

clearly exists at least one distinguishing term for π and σ. Let now τ be a smallest distinguishing

term, i.e., suppose that there is no other distinguishing term τ ′ ̸= τ with S(τ ′) ⊆ S(τ). Without

loss of generality, suppose that τ ∈ Π and τ /∈ Σ, i.e., there exists someπi with τ = πi and it holds

τ ̸= σj for all 1 ≤ j ≤ k. Towards a contradiction, suppose that there is a σj withS(σj) ⊆ S(πi).
Then, by Definition 3.4.2 (iii), this σj cannot be contained in Π. Hence, σj is a distinguishing term

that is smaller than τ = πi, in contradiction to our assumption about τ . Thus, for every j with

1 ≤ j ≤ k, we have S(σj) ̸⊆ S(πi). Let nowM be a model with two distinct worldsw and u and

let I be the interpretation that assigns the singleton {w} to all variables inS(τ), and the singleton

{u} to every other variable. Then, clearly, we have I(τ) = I(πi) = {w}, so it follows w ∈ I(π).
However, since S(σj) ̸⊆ S(τ) for all 1 ≤ j ≤ k, we must have w /∈ I(σj) for each σj ∈ Σ,

which implies w /∈ I(σ). Now, from w ∈ I(π) and w /∈ I(σ), we may conclude π ̸≡ σ.

In what follows, we will also write nf(π) for the unique normal form of a label π. Using

our normal form result, it is now possible to circumvent the aforementioned problem in a very

elegant way. The basic idea is as follows: first, we can define a variant GLinqBnf
of the proof

system GLinqB by reformulating all order rules in such a way that the new labels introduced by

these rules are always required to be in normal form. So, for example, the old formulation of the

rule (un) presented in Figure 3.1 would be replaced by the following reformulated version:

nf(π + τ) ⩽ σ, π ⩽ σ, τ ⩽ σ,Γ⇒ ∆
(un)

π ⩽ σ, τ ⩽ σ,Γ⇒ ∆

In the modified sequent calculus GLinqBnf
, we can now use a suitable loop-checking mechanism

in order to avoid redundant applications of order rules during the construction of a proof search

tree. For instance, before performing a root-first application of the rule (un) in a branch β, we first

check whether the resulting atom nf(π+τ) ⩽ σ does already occur in the topmost sequent of β.

If this is the case, then the application is taken to be redundant and we refrain from applying the

rule. Otherwise, the application is carried out in the usual way. Note that, in the systemGLinqBnf
,

all new labels introduced by order rule applications in a branch β are taken from the finite set

Λnf
β , so there are only finitely many order rule applications to be performed at each step.

22
This

avoids the problem of infinite loops constructed from redundant applications of order rules.

However, there is also a more severe problem that has not been fully resolved yet. This problem

arises from the interaction between the dynamic rules and the rule L→ and might cause our

algorithm to generate infinitely many new variables in the course of the search process. For

22

Strictly speaking, this also requires to impose a suitable restriction on those order rules that do not have any principal

atoms in the conclusion of the rule. However, such a restriction is unproblematic. The details are left to the reader.
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example, using alternating applications of the rulesR→ and L→, our procedure might create an

infinite loop of the following form (in applications of L→, only the left premise is displayed):

z ⩽ x, z ⩽ y, y ⩽ x, x ⩽ x, x : ¬¬φ, y : φ, z : φ⇒ x : φ, y : ⊥, z : ⊥, z : ¬φ
L→

z ⩽ x, z ⩽ y, y ⩽ x, x ⩽ x, x : ¬¬φ, y : φ, z : φ⇒ x : φ, y : ⊥, z : ⊥
(tr)

z ⩽ y, y ⩽ x, x ⩽ x, x : ¬¬φ, y : φ, z : φ⇒ x : φ, y : ⊥, z : ⊥
R→

y ⩽ x, x ⩽ x, x : ¬¬φ, y : φ⇒ x : φ, y : ⊥, y : ¬φ
L→

y ⩽ x, x ⩽ x, x : ¬¬φ, y : φ⇒ x : φ, y : ⊥
R→

x ⩽ x, x : ¬¬φ⇒ x : φ, x : ¬φ
L→

x ⩽ x, x : ¬¬φ⇒ x : φ
(rf)

x : ¬¬φ⇒ x : φ

As can be seen, each application of L→ in this loop introduces an occurrence of the formula ¬φ
in the succedent of the corresponding premise. This formula is then used in an application of

R→ in order to introduce a fresh variable, giving rise to another application of L→, and so on.

Similar loops can also be constructed by using the dynamic rules Rp or R⊥ instead of R→.

In order to resolve this problem, one would have to define a suitable saturation condition that

tells our algorithm to refrain from applying a dynamic rule as soon as an ‘essentially identical’

application of the rule already occurs in the branch. For example, in the loop given above, the

variable z does not yield any new information, since everything which can be obtained from the

formulas labelled with z can also be obtained from the formulas labelled with y. The desired satu-

ration condition should be able to detect this kind of redundancy in a search tree and should block

the application of dynamic rules at an appropriate stage of the construction. For an intuitionistic

labelled sequent calculus, such a saturation condition has been formulated by Negri (2014, pp. 39–

41). Unfortunately, this condition cannot be easily adapted to our labelled sequent calculus for

InqB. The main problem lies in the complex syntax of the labels used in our system, which makes

it much more difficult to detect loops of the type mentioned above and to construct the desired

countermodel in an adequate way. A detailed solution to this problem is left for future work.



Chapter 4

Intuitionistic Inquisitive Logic

Recall that, in the basic inquisitive system InqB, the underlying background logic for declarative

sentences was assumed to be classical: every truth-conditional formula of InqB behaves in essen-

tially the same way as a formula of classical propositional logic. We will now turn to a variant

of inquisitive logic in which the logic of statements is no longer classical logic, but intuitionistic

logic. This system, denoted by InqI and referred to as intuitionistic inquisitive logic, was intro-

duced by Ciardelli et al. (2020). Roughly speaking, InqI may be regarded as the result of adding

the question-forming operator ∨ to the basic system of intuitionistic propositional logic. In this

chapter, we will present a cut-free labelled sequent calculus for InqI, investigate the structural

properties of our proof system and establish its completeness in a proof-theoretical way.

The chapter is organized as follows. In Section 4.1, we will first provide a formal exposition of

intuitionistic inquisitive logic. The language of InqI is obtained by enriching the language of basic

inquisitive logic with a new primitive connective ∨, representing the non-inquisitive disjunction

operator of the system. The formulas of InqI are evaluated with respect to ordinary intuitionistic

Kripke models and the new connective ∨ is interpreted in the same way as the so-called tensor
disjunction adopted in dependence logic (see, e.g., Väänänen 2007; Yang and Väänänen 2016). In

Section 4.2, we will present a completeness result by Ciardelli et al. (2020) and define a sound and

complete Hilbert-style system for intuitionistic inquisitive logic. Afterwards, in Section 4.3, we

will turn to the description of our labelled sequent calculus for InqI. Our system will be denoted

by GLinqI and can be seen as a careful modification of the sequent calculus GLinqB considered in

the previous chapter. In fact, apart from a few minor changes, most of the rules of GLinqB can be

easily transferred to the system GLinqI. In addition to that, GLinqI also includes a number of new

rules, reflecting the semantics of the tensor disjunction ∨ and the properties of the accessibility

relation of an intuitionistic Kripke model. In Section 4.4, we will explore the structural properties

of our system. We will see that GLinqI enjoys cut-admissibility, height-preserving admissibility

of weakening and contraction and height-preserving invertibility of all rules. In Section 4.5,

finally, we will prove the soundness and completeness of our system. As before, the completeness

will be established proof-theoretically, by exploiting the admissibility of the cut rule in GLinqI.

4.1 An Intuitionistic Variant of Inquisitive Logic

Let us first give a brief introduction to the system of intuitionistic inquisitive logic, henceforth

referred to as InqI. A much more comprehensive exposition of the material is provided by Cia-

rdelli et al. (2020). As explained above, InqI differs from the standard system of inquisitive logic

in terms of the underlying background logic for declarative sentences: in InqB, the background

logic was taken to be classical logic, whereas in InqI, it is assumed to be intuitionistic logic. At the
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syntactic level, this means that, in InqI, the non-inquisitive disjunction operator ∨ can no longer

be viewed as a defined connective (as it was done in InqB), but has to be added to the language as

a primitive operator. To make things precise, we assume again a countably infinite set P of atomic

propositions, denoted by the meta-variables p, q, r, etc. The formulas of InqI are now built up from

the atoms in P by means of the usual connectives of InqB and the new disjunction operator ∨.

Definition 4.1.1 (Language of InqI). The language of InqI is denoted by LI and consists of all

formulas generated by the following grammar, where p ranges over atomic propositions from P:

φ ::= p | ⊥ | φ ∧ φ | φ→ φ | φ ∨ φ | φ ∨ φ.

The negation operator and the question mark operator are again treated as abbreviations, by

putting ¬φ := φ → ⊥ and ?φ := φ ∨ ¬φ. Moreover, we will refer to ∨ as the inquisitive
disjunction and to ∨ as the standard disjunction of InqI. As in the classical setting, the operator

∨ is used in order to form interrogative sentences within the language of our system, so φ ∨ ψ
represents the alternative question whether φ or ψ. Conversely, any formula not containing ∨ is

intended to represent a purely declarative sentence. In InqI, the underlying background logic for

declarative sentences is no longer classical logic, but intuitionistic logic. For this reason, ∨-free

formulas are now referred to as standard formulas, rather than classical formulas.

Definition 4.1.2 (Standard Formula). A formula φ ∈ LI is said to be a standard formula, if φ
contains no occurrences of ∨. The set of all standard formulas is denoted by LIs.

Throughout this chapter, standard formulas will be denoted by the meta-variables α, β, γ, etc.,

whereas φ, ψ, χ, etc., will be used for arbitrary formulas of InqI. The formulas of our system

are evaluated with respect to ordinary intuitionistic Kripke models. As usual, any such model

consists of a set of possible worlds W , a reflexive and transitive accessibility relation R between

these worlds, and a valuation function V satisfying the well-known persistency requirement.

Definition 4.1.3. An intuitionistic Kripke model is defined to be a triple M = ⟨W,R, V ⟩, where

(i) W is a set whose elements are referred to as possible worlds,
(ii) R ⊆W ×W is a preorder, i.e., a reflexive and transitive relation on W ,

1

(iii) V : W × P → {0, 1} is a valuation function satisfying the persistency condition: for all

worlds w, u ∈W and for all atoms p ∈ P, if V (w, p) = 1 and wRu, then also V (u, p) = 1.

Intuitively, every world in an intuitionistic Kripke model may be regarded as an incomplete

state of affairs, determining certain aspects of reality and being indeterminate with respect to

certain other aspects. In line with this, wRu can be interpreted as saying that u is a refinement of

w, in the sense that everything which is determined at w is also determined at u (but not neces-

sarily the other way around). This is also reflected by the persistency condition: if a proposition

p is determinately true at some world w, then it must stay so at every refinement of w.
2

Let us introduce some terminology. Given an intuitionistic Kripke modelM = ⟨W,R, V ⟩ and

arbitrary worlds w, u ∈ W , we will say that u is a successor of w in M , just in case we have

wRu. The upset of a world w ∈ W in M is denoted by R(w) and defined to be the set of all

successors of w, so we put R(w) := {u ∈ W | wRu}. As usual, a set of worlds s ⊆ W is also

referred to as an information state over M . And the upset of a state s ⊆W , notation R(s), is the

1

Strictly speaking, Ciardelli et al. (2020) also require R to be antisymmetric (and thus a partial order). However, it is

easy to see that this additional requirement does not affect the set of formulas valid with respect to the support se-

mantics given below, so the two notions of an intuitionistic Kripke model give rise to essentially the same semantics.

2

It is well known that there is also another natural interpretation of the components of an intuitionistic Kripke model.

According to this interpretation, the worlds of a model are viewed as points in time and the accessibility relation

describes the temporal order of these points. If an atom p has the value 1 at some worldw, then this means that p has

been proved at w. And if p has value 0 at w, then this means that p has not yet been proved at w (cf. Kripke 1965).
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set of all successors of the elements of s, so we define R(s) :=
⋃

w∈sR(w). Note that, as before,

every state can be thought of as representing a certain body of information, because it locates the

actual world within a particular region of the logical space.
3

However, contrary to the classical

setting, there are now two ways in which a state s may be strengthened: on the one hand, s
may become more informative by eliminating some worlds from s, thus reducing the number of

possible candidates for the actual world. On the other hand, smay also become more informative

by replacing some of the worlds in s by other worlds that are more refined with respect to the

preorder R. Hence, it is natural to define the notion of an enhancement in the following way.

Definition 4.1.4 (Enhancement). Let M = ⟨W,R, V ⟩ be an intuitionistic Kripke model and let

s, t ⊆W be states. We say that s is an enhancement of t in M , just in case s ⊆ R(t).

As shown by the following proposition, one can also describe the reflexivity and transitivity of

an accessibility relation in terms of states, rather than worlds. This will be useful later on, when

we will translate the properties of an accessibility relation into corresponding sequent rules.

Proposition 4.1.5. LetW be a set of worlds and let R ⊆W ×W be a binary relation onW .
(i) R is reflexive if and only if, for every state s ⊆W , it holds s ⊆ R(s).
(ii) R is transitive if and only if, for all states s, t ⊆W , if s ⊆ R(t), then R(s) ⊆ R(t).

Proof. We only prove part (ii), the other part is trivial. For the left-to-right direction, suppose

that R is transitive. Moreover, let s, t ⊆ W be arbitrary states and assume that s ⊆ R(t). We

need to show that it holds R(s) ⊆ R(t). To this end, let u ∈ R(s) be an arbitrary world. Then,

by definition of R(s), there exists some world v ∈ s such that vRu. Since v ∈ s and s ⊆ R(t),
we also have v ∈ R(t), so there must also be a worldw ∈ twithwRv. Now, fromwRv and vRu,

we may conclude wRu by the transitivity of R. But then, because w ∈ t, it follows u ∈ R(t).
Since u was an arbitrary world with u ∈ R(s), this shows that R(s) ⊆ R(t), as desired.

For the right-to-left direction, suppose that, for all states s, t ⊆ W , it is the case that, if s ⊆
R(t), then R(s) ⊆ R(t). Let u, v, w ∈W be arbitrary worlds and assume that it holds uRv and

vRw. We have to show that uRw. For this purpose, let s, t ⊆W be the singleton states given by

s := {v} and t := {u}. Then, clearly, since uRv, we have s ⊆ R(t), so it follows R(s) ⊆ R(t)
by assumption. On the other hand, from vRw, we may also conclude w ∈ R(s). Together with

R(s) ⊆ R(t), this implies w ∈ R(t). But then, because t = {u}, we also have uRw.

We can now give an inductive definition of the support conditions for all formulas of InqI.

Definition 4.1.6 (Support Semantics for InqI). Let M = ⟨W,R, V ⟩ be an intuitionistic Kripke

model. The support relation between states and formulas is inductively defined as follows:

(i) M, s p :⇔ V (w, p) = 1 for all w ∈ s,
(ii) M, s ⊥ :⇔ s = ∅,

(iii) M, s φ ∧ ψ :⇔ M, s φ and M, s ψ,

(iv) M, s φ→ ψ :⇔ for all t ⊆ R(s), if M, t φ, then M, t ψ,

(v) M, s φ ∨ ψ :⇔ M, s φ or M, s ψ,

(vi) M, s φ ∨ ψ :⇔ there are t1, t2 ⊆W such that s = t1 ∪ t2, M, t1 φ and M, t2 ψ.

If M, s φ holds, then we say that φ is supported by the state s in M . Note that, for atomic

formulas and for the logical symbols ⊥, ∧ and ∨, the support clauses are exactly the same as

in the basic system InqB (see Definition 1.2.6). The support clause for implication, on the other

hand, has now been reformulated in order to account for the different notion of an enhancement

in intuitionistic inquisitive logic: whereas in InqB, we only had to consider subsets t ⊆ s, we

3

More precisely, a state s ⊆ W conveys the information that the actual world corresponds to one of the states of

affairs in s and that all states of affairs not contained in s are ruled out as possible candidates for the actual world.
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now have to consider subsets t ⊆ R(s). A genuinely new component is the support clause for

the standard disjunction ∨, which reads as follows: a formula φ ∨ ψ is supported by a state s,
just in case it is possible to divide the worlds in s into two substates t1 and t2 such that φ is

supported by t1 and ψ is supported by t2. This corresponds to the semantics of the so-called

tensor disjunction adopted in dependence logic, which in turn resembles the semantics of tensor

in linear logic (cf. Väänänen 2007; Yang 2014; Yang and Väänänen 2016; Ciardelli 2016a).

As in the classical setting, entailment in InqI is simply defined as preservation of support. That

is, given any set of formulas Γ ∪ {φ} ⊆ LI, we will write Γ φ and say that φ is entailed by

Γ, if for every intuitionistic Kripke model M and for every state s over M , it is the case that

M, s Γ implies M, s φ (where, as usual, M, s Γ is used as an abbreviation for ‘M, s ψ
for all ψ ∈ Γ’). We will say that two formulas φ,ψ ∈ LI are equivalent, notation φ ≡ ψ, if

these formulas mutually entail each other, i.e., if we have both φ ψ and ψ φ. And a formula

φ ∈ LI is said to be valid in InqI, if it is supported by every state over every model, i.e., if for every

intuitionistic Kripke model M and for each state s, we have M, s φ (cf. Ciardelli et al. 2020).

We now want to point out some interesting properties of InqI. First of all, it is easy to show that

support in InqI is again persistent: if a formulaφ is supported by a state s, then it is also supported

by every enhancement of this state. Importantly, this now also holds for the refined notion of an

enhancement given by Definition 4.1.4. In addition, we also have the usual empty state property,

familiar from the basic system: in InqI, every formula is supported by the inconsistent state ∅.

Proposition 4.1.7. LetM be an intuitionistic Kripke model, let s and t be states and let φ ∈ LI.
(i) Persistency: ifM, s φ and t ⊆ R(s), thenM, t φ.
(ii) Empty state property: M, ∅ φ.

As before, both statements are proved by induction on φ. The notion of truth at a possible

world is defined in exactly the same way as in the classical setting (see Definition 1.2.8). That is,

given any formula φ ∈ LI and a world w in a model M , we will write M,w φ and say that φ
is true atw inM , just in case φ is supported by the singleton state {w}. Moreover, a formula φ is

said to be truth-conditional, if for every modelM and for every state s overM , we haveM, s φ
if and only ifM,w φ for all worlds w ∈ s. In other words, a formula is truth-conditional, if its

support conditions are completely determined by its truth conditions, in the sense that support

at a state simply comes down to truth at every world in the state. As usual in inquisitive logic,

truth-conditionality is again taken to be the fundamental semantic difference between declara-

tive and interrogative sentences: a formula φ represents an assertion, if it is truth-conditional,

and it represents a question otherwise. As anticipated above, it is now possible to show that

standard formulas are always truth-conditional and therefore purely declarative in InqI.

Proposition 4.1.8. Every standard formula α ∈ LIs is truth-conditional.4

Proof. By induction on the structure of α. Most cases are treated in essentially the same way as

in the classical setting (see the proof of Proposition 1.3.3). Thus, we only need to consider the case

in which α is of the form α = β∨γ for some β, γ ∈ LIs. LetM = ⟨W,R, V ⟩ be an arbitrary intu-

itionistic Kripke model and let s be an arbitrary state. We have to show that M, s β ∨ γ if and

only ifM,w β∨γ for allw ∈ s. The left-to-right direction follows directly from the persistency

of support and from the fact that, for all w ∈ s, we have {w} ⊆ R(s) by the reflexivity of R. For

the right-to-left direction, suppose that we haveM,w β∨γ for allw ∈ s. Using the semantics

of ∨, one readily sees that this yields M,w β or M,w γ for all w ∈ s. Let now t1, t2 ⊆ s be

given by t1 := {w ∈ s |M,w β} and t2 := s \ t1. Then, clearly, we must have M,w β for

4

As in our treatment of InqB, it is actually possible to extend this proposition to the class of those formulas in

which ∨ occurs only in the antecedent of an implication (one might refer to such a formula as an ‘extended Harrop

formula’). However, for our purposes, it is sufficient to prove the truth-conditionality of standard formulas only.
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all w ∈ t1, and M,u γ for all u ∈ t2. Therefore, by induction hypothesis, it follows M, t1 β
and M, t2 γ. Since s = t1 ∪ t2, this implies M, s β ∨ γ by the semantics of ∨.

Using this result, one can now also prove that, for standard formulas, the truth conditions

determined by the support semantics of InqI are simply the familiar ones from intuitionistic logic.

Proposition 4.1.9 (Truth Conditions for Standard Formulas). LetM be an intuitionistic Kripke
model, let w be a world inM and let α, β ∈ LIs be standard formulas. We have:
(i) M,w p ⇔ V (w, p) = 1,
(ii) M,w ̸ ⊥,
(iii) M,w α ∧ β ⇔ M,w α andM,w β,
(iv) M,w α→ β ⇔ for all u ∈ R(w), ifM,u α, thenM,u β,
(v) M,w α ∨ β ⇔ M,w α orM,w β.

Proof. We only prove part (iv), the other parts are trivial. For the left-to-right direction, suppose

that M,w α→ β. Let u ∈ R(w) be arbitrary such that M,u α. Then, since {u} ⊆ R(w) is

an enhancement of {w}, it follows M,u β by assumption. For the right-to-left direction, sup-

pose that, for all worlds u ∈ R(w), it is the case that M,u α implies M,u β. Let s ⊆ R(w)
be an arbitrary enhancement of {w} such that M, s α. Then, by Proposition 4.1.8, we must

haveM,u α for all u ∈ s. Using the assumption and the fact that s ⊆ R(w), this yieldsM,u
β for all u ∈ s. But then, by Proposition 4.1.8, we may conclude M, s β. Since s ⊆ R(w) was

an arbitrary enhancement with M, s α, this shows that M,w α→ β, as desired.

Thus, putting things together, it follows that standard formulas do indeed behave ‘intuition-

istically’ in InqI: they are always truth-conditional, so their support conditions are completely

determined by their truth conditions; and these truth conditions are simply the ordinary ones

from intuitionistic Kripke semantics. In other words, a standard formula α is supported by an

information state s if and only if α is intuitionistically true at every world in s. Using this fact, it

is easy to show that InqI is a conservative extension of intuitionistic logic: if we restrict ourselves

to standard formulas, then entailment in InqI simply amounts to intuitionistic entailment.

Proposition 4.1.10 (Conservativity over Intuitionistic Logic). Let Γ∪{α} ⊆ LIs be a set of stan-
dard formulas. We have Γ α if and only if α is entailed by Γ in intuitionistic propositional logic.

Hence, with respect to standard formulas, InqI has exactly the same expressive power as or-

dinary intuitionistic logic. One might now ask whether this can be generalized to all truth-

conditional formulas of InqI. In other words, does the presence of questions in the language

allow us to express new truth-conditional meanings, going beyond the expressivity of intuition-

istic logic? As shown by Ciardelli et al. (2020, p. 101), the answer is negative: for every truth-

conditional formula of InqI, there exists an equivalent standard formula. Consequently, standard

formulas are in fact representative of all truth-conditional meanings expressible in InqI.

Proposition 4.1.11. A formula φ ∈ LI is truth-conditional if and only if there exists a standard
formula α ∈ LIs such that φ ≡ α.

Finally, one can show that the inquisitive disjunction still validates the usual split property

and the split equivalence familiar from our treatment of InqB (see Propositions 1.4.1 and 1.4.2).

Proposition 4.1.12 (Split Property, Split Equivalence). Let Γ ⊆ LI be a set of truth-conditional
formulas, let α ∈ LI be a truth-conditional formula and let φ,ψ ∈ LI be arbitrary formulas.
(i) Split property: Γ φ ∨ ψ if and only if Γ φ or Γ ψ.
(ii) Split equivalence: α→ (φ ∨ ψ) ≡ (α→ φ) ∨ (α→ ψ).
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α→ (φ ∨ ψ)
(split)

(α→ φ) ∨ (α→ ψ)

φ ∨ ψ
(com)

ψ ∨ φ
φ ∨ (ψ ∨ χ)

(dis)
(φ ∨ ψ) ∨ (φ ∨ χ)

φi ∨I (i = 1, 2)

φ1 ∨ φ2

φ ∨ ψ

[φ]

α

[ψ]

α
∨E

α

φ ∨ ψ

[φ]

φ′

[ψ]

ψ′
(ex)

φ′ ∨ ψ′

Figure 4.1: Special rules of the natural deduction system NinqI described by Ciardelli et al.

(2020). In the rules ∨E and (split), we require α to be a standard formula, i.e., α ∈ LIs.

4.2 Standard Axiomatizations of InqI

In their paper, Ciardelli et al. (2020) provide a sound and complete natural deduction system

for InqI. Their proof system, henceforth denoted by NinqI, consists of the usual rules of the

‘intuitionistic’ base calculus given in Figure 1.3, and the special rules for the new connective ∨
depicted in Figure 4.1. Let us give a brief explanation of the special rules of this system. First

of all, the rules ∨I and ∨E are very similar to the ordinary rules for disjunction in classical

and intuitionistic logic. However, in the elimination rule ∨E, the conclusion α is now required

to be a standard formula. This restriction is necessary in order to make sure that NinqI is sound

with respect to InqI. In particular, an unrestricted elimination rule for ∨would allow us to derive

standard formulas that are not intuitionistically valid, in contradiction to Proposition 4.1.10.
5

Due

to the restriction on the elimination rule for ∨, it is now necessary to include additional rules,

accounting for those properties of ∨ that are not derivable in terms of ∨I and ∨E. The rule (com)
accounts for the commutativity of ∨, and (dis) accounts for the fact that standard disjunctions

distribute over inquisitive disjunctions. The rule (ex), finally, allows to replace each disjunct in a

standard disjunction by some other formula derivable from the disjunct. In addition to the special

rules for ∨, the system also includes the usual split rule (split) familiar from the standard natural

deduction system for InqB. The double negation rule (dne), however, is now excluded from the

system: as before, this is necessary in order to make sure that NinqI is sound with respect to InqI.

Definition 4.2.1 (The System NinqI). We define NinqI to be the natural deduction system com-

prising each of the rules presented in Figure 1.3, together with the special rules from Figure 4.1.

In what follows, we will write N for the provability relation of NinqI. The soundness of the

system is established by an easy induction on the structure of a derivation in NinqI. In order to

prove the completeness of NinqI, one can first generalize the definition of resolutions and the

normal form result for InqB (see Definition 1.4.3 and Proposition 1.4.4) to the extended language

of InqI. The completeness of NinqI is then established in very much the same way as in the classi-

cal setting (see Theorem 1.5.2). For further details, we refer to Ciardelli et al. (2020, pp. 102–103).

Theorem 4.2.2 (Soundness and Completeness). The system NinqI is sound and complete with
respect to InqI. That is, for every Γ ∪ {φ} ⊆ LI, we have: Γ N φ if and only if Γ φ.

For our purposes, it will be more convenient to have a Hilbert-style system for InqI, rather

than a natural deduction system. As in the case of InqB, such a Hilbert-style system can be eas-

ily obtained by converting each of the natural deduction rules of NinqI into corresponding axiom

5

A concrete example is the Kreisel-Putnam axiom (¬p → (q ∨ r)) → ((¬p → q) ∨ (¬p → r)), which is known to

be invalid in intuitionistic logic. By dropping the restriction on ∨E, this formula would become provable in NinqI.
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Axioms:

(IPL) All axioms of the ‘intuitionistic’ system given in Figure 1.5,

(Intro) φ→ (φ ∨ ψ) and ψ → (φ ∨ ψ),
(Elim) (φ→ α)→ ((ψ → α)→ ((φ ∨ ψ)→ α)), where α is a standard formula,

(Com) (φ ∨ ψ)→ (ψ ∨ φ),
(Dis) (φ ∨ (ψ ∨ χ))→ ((φ ∨ ψ) ∨ (φ ∨ χ)),
(Ex) (φ→ φ′)→ ((ψ → ψ′)→ ((φ ∨ ψ)→ (φ′ ∨ ψ′))),
(Split) (α→ (φ ∨ ψ))→ ((α→ φ) ∨ (α→ ψ)), where α is a standard formula.

The only rule of inference is modus ponens: from Γ φ and Γ φ→ ψ, infer Γ ψ.

Figure 4.2: The Hilbert-style system HinqI.

schemes. The resulting proof system, henceforth referred to as HinqI, is presented in Figure 4.2.

The provability relation of the systemHinqI is denoted by H and inductively defined in the usual

way. That is, given any set of formulas Γ∪{φ} ⊆ LI, we will write Γ H φ and say thatφ is prov-
able from Γ in HinqI, if φ is either an element of Γ, or φ is an axiom of HinqI, or there exists some

formula ψ ∈ LI such that we have both Γ H ψ and Γ H ψ → φ (in the last case, we also say

that Γ H φ is obtained from Γ H ψ and Γ H ψ → φ by an application of modus ponens). Us-

ing induction on the definition ofΓ H φ, it is again easy to show that the provability relation H

is monotonic: if we have Γ H φ and Γ ⊆ ∆, then also ∆ H φ. In order to establish the sound-

ness and completeness of our Hilbert-style system, we will now prove that HinqI is equivalent to

the natural deduction system NinqI, in the sense that everything provable in NinqI is also prov-

able inHinqI and vice versa. To this end, one first has to establish the deduction theorem forHinqI.

Theorem 4.2.3 (Deduction Theorem). In HinqI, we have Γ, φ H ψ if and only if Γ H φ→ ψ.

The proof works in exactly the same way as in the classical setting (see Theorem 1.5.4). That

is, the left-to-right direction is established by a straightforward induction on the definition of

Γ, φ H ψ. For the right-to-left direction, one uses the fact that, from Γ H φ → ψ, it follows

Γ, φ H φ→ ψ by the monotonicity of H. Together with Γ, φ H φ, this yields Γ, φ H ψ by

an application of modus ponens. Using the deduction theorem, it is now easy to show that our

Hilbert-style system is in fact equivalent to the natural deduction system provided by Ciardelli

et al. (2020). The soundness and completeness of HinqI then follows as an immediate corollary.

Theorem 4.2.4. Let Γ ∪ {φ} ⊆ LI be a set of formulas. We have Γ H φ in the Hilbert-style
system HinqI if and only if Γ N φ holds in the natural deduction system NinqI.

Proof. The left-to-right direction is proved by induction on the definition of Γ H φ. This is

straightforward, since all axioms of HinqI are obviously derivable in NinqI and modus ponens

corresponds to→E. For the right-to-left direction, one proceeds by induction on a natural de-

duction proof for Γ N φ. This is also not difficult, since most of the natural deduction rules

correspond directly to some axiom of HinqI and the discharging of hypotheses can be ‘simulated’

using the deduction theorem for HinqI. For further details, see the proof of Theorem 1.5.5.

Corollary 4.2.5 (Soundness and Completeness). The system HinqI is sound and complete with
respect to InqI. That is, for every Γ ∪ {φ} ⊆ LI, we have: Γ H φ if and only if Γ φ.

Proof. The statement follows immediately from Theorem 4.2.2 and Theorem 4.2.4.
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4.3 The Sequent Calculus GLinqI

We are now ready to introduce our labelled sequent calculus for InqI. Our proof system will

be denoted by GLinqI and can be seen as a slight modification of the labelled sequent calculus

GLinqB described in Section 3.1. As before, we will assume two countably infinite sets of state
variables, denoted by S and V, respectively. The variables in S are used for singleton states and

the variables in V are used for arbitrarily large information states. In order to avoid confusion,

we will again use the meta-variables u, v, w, etc., for variables from S, and the meta-variables

x, y, z, etc., for variables from V. The labels of our system are now defined in the following way.

Definition 4.3.1 (Labels). The set of labels is denoted by Λ(S,V) and consists of all expressions

generated by the following grammar, where w ∈ S and x ∈ V are arbitrary state variables:

π ::= w | x | ∅ | π · π | π + π | R(π).

As in our labelled sequent calculus for InqB, labels will be denoted by the meta-variables π,

σ, τ , etc. Intuitively, every label can be seen as a description of an information state. So, in

particular, π ·σ stands for the intersection and π+σ stands for the union of the states represented

by π and σ. A label of the form R(π), on the other hand, is intended to denote the upset of the

state described by π, i.e., the set of all successors of the worlds in π (see Section 4.1). Following

the convention adopted in the previous chapter, we will also write πσ as a shorthand for π · σ.

Let us recall some terminology. By a relational atom, we will mean an expression of the form

π ⩽ σ, where π, σ ∈ Λ(S,V) are arbitrary labels. A labelled formula, on the other hand, is

defined to be an expression of the form π : φ, where π ∈ Λ(S,V) is a label and φ ∈ LI is a

formula. Relational atoms and labelled formulas are interpreted in the usual way. That is, π ⩽ σ
stands for the statement ‘π is a subset of σ’ and π : φ stands for the statement ‘φ is supported by

π’. By a sequent, we will mean any expression of the form Γ ⇒ ∆, where Γ is a finite multiset

containing labelled formulas and relational atoms, and ∆ is a finite multiset containing only

labelled formulas (but no relational atoms). The intended meaning of a sequent is the same as in

our treatment of InqB. Thus, intuitively, Γ ⇒ ∆ is considered to be ‘valid’, if it is the case that,

whenever all expressions in Γ are ‘satisfied’, then at least one of the expressions in ∆ is ‘satisfied’.

Given any sequent Γ⇒ ∆, we will also call Γ the antecedent and ∆ the succedent of the sequent.

Our labelled sequent calculus for InqI is presented in Figure 4.3. As can be seen, most of the

rules of our system are very similar to the corresponding rules of the sequent calculus GLinqB
discussed in the previous chapter. However, there are also some important differences. First of all,

in the rulesLp andRp, each of the relational atomsw ⩽ π is now replaced by a relational atom of

the formw ⩽ R(π). This change has been made in order to account for the ‘internal’ persistency

associated with the preorderR of a Kripke model (as opposed to the ‘external’ persistency of the

support relation of InqI). That is, an atomic formula p is supported by a state π if and only if p is

true at every world in the upset R(π) of this state. A similar modification has also been adopted

for the rules L⊥ and R⊥. The rules for implication have been slightly reformulated in order to

accommodate the refined notion of an enhancement in intuitionistic inquisitive logic: whereas in

InqB, an enhancement of a state swas simply defined to be a subset t ⊆ s, it is now defined to be a

subset t ⊆ R(s) (see Definition 4.1.4). In addition to that, our sequent calculus now also includes

the new rules L∨ and R∨, which mirror the support conditions for standard disjunctions: a

formula φ ∨ ψ is supported by a state π, just in case π can be divided into two subsets such that

the first subset supports φ and the second subset supports ψ. Note that, in applications of L∨,

we require x and y to be fresh variables not occurring in the conclusion of the rule.

The order rules of our system are now divided into two groups, referred to as internal order
rules and external order rules, respectively. The internal order rules are used in order to formalize
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Axioms:

Ax
w : p,Γ⇒ ∆, w : p

Ax⊥

w : ⊥,Γ⇒ ∆
Ax∅

w ⩽ ∅,Γ⇒ ∆

Logical Rules:

w : p, w ⩽ R(π), π : p,Γ⇒ ∆
Lp

w ⩽ R(π), π : p,Γ⇒ ∆

w ⩽ R(π),Γ⇒ ∆, w : p
Rp

Γ⇒ ∆, π : p

w : ⊥, w ⩽ R(π), π : ⊥,Γ⇒ ∆
L⊥

w ⩽ R(π), π : ⊥,Γ⇒ ∆

w ⩽ R(π),Γ⇒ ∆, w : ⊥
R⊥

Γ⇒ ∆, π : ⊥
π : φ, π : ψ,Γ⇒ ∆

L∧
π : φ ∧ ψ,Γ⇒ ∆

Γ⇒ ∆, π : φ Γ⇒ ∆, π : ψ
R∧

Γ⇒ ∆, π : φ ∧ ψ
π : φ,Γ⇒ ∆ π : ψ,Γ⇒ ∆

L∨
π : φ ∨ ψ,Γ⇒ ∆

Γ⇒ ∆, π : φ, π : ψ
R∨

Γ⇒ ∆, π : φ ∨ ψ
π ⩽ R(σ), σ : φ→ ψ,Γ⇒ ∆, π : φ π ⩽ R(σ), σ : φ→ ψ, π : ψ,Γ⇒ ∆

L→
π ⩽ R(σ), σ : φ→ ψ,Γ⇒ ∆

x ⩽ R(π), x : φ,Γ⇒ ∆, x : ψ
R→

Γ⇒ ∆, π : φ→ ψ

π ⩽ x+ y, x : φ, y : ψ,Γ⇒ ∆
L∨

π : φ ∨ ψ,Γ⇒ ∆

π ⩽ σ + τ,Γ⇒ ∆, π : φ ∨ ψ, σ : φ π ⩽ σ + τ,Γ⇒ ∆, π : φ ∨ ψ, τ : ψ
R∨

π ⩽ σ + τ,Γ⇒ ∆, π : φ ∨ ψ

Internal Order Rules:

π ⩽ R(π),Γ⇒ ∆
(r-rf)

Γ⇒ ∆

R(π) ⩽ R(σ), π ⩽ R(σ),Γ⇒ ∆
(r-tr)

π ⩽ R(σ),Γ⇒ ∆

R(π + σ) ⩽ R(π) +R(σ),Γ⇒ ∆
(r-dis)

Γ⇒ ∆

R(∅) ⩽ ∅,Γ⇒ ∆
(r-emp)

Γ⇒ ∆

External Order Rules:

π ⩽ τ, π ⩽ σ, σ ⩽ τ,Γ⇒ ∆
(tr)

π ⩽ σ, σ ⩽ τ,Γ⇒ ∆

π ⩽ πσ + πτ, π ⩽ σ + τ,Γ⇒ ∆
(dis)

π ⩽ σ + τ,Γ⇒ ∆

π ⩽ στ, π ⩽ σ, π ⩽ τ,Γ⇒ ∆
(in)

π ⩽ σ, π ⩽ τ,Γ⇒ ∆

π + τ ⩽ σ, π ⩽ σ, τ ⩽ σ,Γ⇒ ∆
(un)

π ⩽ σ, τ ⩽ σ,Γ⇒ ∆

πσ ⩽ π,Γ⇒ ∆
(il)

Γ⇒ ∆

σπ ⩽ π,Γ⇒ ∆
(ir)

Γ⇒ ∆

π ⩽ π + σ,Γ⇒ ∆
(ul)

Γ⇒ ∆

π ⩽ σ + π,Γ⇒ ∆
(ur)

Γ⇒ ∆

π ⩽ ∅, π ⩽ w,Γ⇒ ∆ w ⩽ π, π ⩽ w,Γ⇒ ∆
(sg)

π ⩽ w,Γ⇒ ∆

π ⩽ π,Γ⇒ ∆
(rf)

Γ⇒ ∆

w ⩽ π,w ⩽ π + σ,Γ⇒ ∆ w ⩽ σ,w ⩽ π + σ,Γ⇒ ∆
(cd)

w ⩽ π + σ,Γ⇒ ∆

Figure 4.3: The systemGLinqI. As usual,w ranges over variables fromS, x and y range over

variables from V, and π, σ, τ , etc., stand for arbitrary labels. In the rulesRp andR⊥,wmust

be a fresh variable and π must be a non-singleton label, i.e., π /∈ S. Similarly, inR→, xmust

be fresh. In applications of L∨, we require x and y to be fresh and distinct from each other.
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the model-internal properties of the preorder R of an intuitionistic Kripke model. In particular,

the rules (r-rf) and (r-tr) account for the state-based characterization of reflexivity and transitivity
provided in Proposition 4.1.5. And the order rules (r-emp) and (r-dis) reflect the observation that

we haveR(∅) = ∅ andR(π∪σ) = R(π)∪R(σ), for all states π and σ.
6

The external order rules,

finally, are simply the usual order rules familiar from our labelled sequent calculus for InqB.

Definition 4.3.2 (The System GLinqI). We define GLinqI to be the sequent calculus depicted in

Figure 4.3. A sequent is derivable in GLinqI, if there exists a proof tree ending with this sequent

in GLinqI. Given any finite subset Γ ∪ {φ} ⊆ LI, we say that φ is provable from Γ in GLinqI, if

for some (or, in fact, any) variable x ∈ V, the sequent x : Γ⇒ x : φ is derivable in GLinqI.7

In order to make sure that contraction on relational atoms is admissible in our system, we will

again assume the closure condition discussed in the previous chapter: if an instance of an order

rule produces a duplication of relational atoms in the conclusion of the rule, then also the con-

tracted instance of the rule is added to our system (a more detailed explanation of the closure con-

dition is provided in Section 3.1). To end this section, let us briefly recall some basic vocabulary.

First of all, the fresh variables involved in applications of the rulesRp,R⊥,R→ andL∨ are again

referred to as the eigenvariables of these rules.
8

Furthermore, in each of the axioms and rules de-

picted in Figure 4.3, the multiset Γ is referred to as the left context and the multiset ∆ is referred

to as the right context. In an instance of an axiom or in the conclusion of a rule of inference, all ex-

pressions not belonging to the context are said to be principal. The corresponding expressions in

the premises of a rule are called active. So, for example, in an instance ofL∨with premise π ⩽ x+
y, x : φ, y : ψ,Γ⇒ ∆ and conclusionπ : φ∨ψ,Γ⇒ ∆, the labelled formulaπ : φ∨ψ is principal

and each of the expressions π ⩽ x+y, x : φ and y : ψ is active. On the other hand, in an applica-

tion of (r-tr) with premise R(π) ⩽ R(σ), π ⩽ R(σ),Γ⇒ ∆ and conclusion π ⩽ R(σ),Γ⇒ ∆,

the relational atom π ⩽ R(σ) is principal, whereas both R(π) ⩽ R(σ) and π ⩽ R(σ) are active.

4.4 Basic Properties of GLinqI

We will now point out some important features of our sequent calculus. As in the classical setting,

we will see that GLinqI enjoys cut-admissibility, height-preserving invertibility of all rules and

height-preserving admissibility of weakening and contraction. To begin with, we show the deriv-

ability of generalized initial sequents for our system. Note that, intuitively, the first sequent in the

following lemma also reflects the more general notion of persistency in InqI: if φ is supported by

a state σ and if π is a subset of R(σ), then φ must also be supported by π (see Proposition 4.1.7).

Lemma 4.4.1. All sequents of the following form are derivable in GLinqI:
(i) π ⩽ R(σ), σ : φ,Γ⇒ ∆, π : φ,
(ii) π ⩽ σ, σ : φ,Γ⇒ ∆, π : φ,
(iii) π : φ,Γ⇒ ∆, π : φ.

Proof. The derivability of (i) is established by induction on the structure of φ. For the base case,

let us suppose that φ = p is atomic. If it holds π /∈ S, then we construct the derivation

Ax
w : p, w ⩽ R(σ), w ⩽ R(π), R(π) ⩽ R(σ), π ⩽ R(σ), σ : p,Γ⇒ ∆, w : p

Lp
w ⩽ R(σ), w ⩽ R(π), R(π) ⩽ R(σ), π ⩽ R(σ), σ : p,Γ⇒ ∆, w : p

(tr)
w ⩽ R(π), R(π) ⩽ R(σ), π ⩽ R(σ), σ : p,Γ⇒ ∆, w : p

(r-tr)
w ⩽ R(π), π ⩽ R(σ), σ : p,Γ⇒ ∆, w : p

Rp
π ⩽ R(σ), σ : p,Γ⇒ ∆, π : p

6

Both of these statements follow immediately from the definition of the upset operator given in Section 4.1.

7

As usual, we write x : Γ for the multiset of labelled formulas given by (x : Γ) := {x : ψ | ψ ∈ Γ}.

8

So, in particular, in an application of the rule L∨, there are now two eigenvariables, rather than just a single one.
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If it holds π ∈ S, then the derivation is the same, except that we leave out the applications of

(tr), (r-tr) and Rp at the bottom of the derivation. The case φ = ⊥ is treated similarly. In the

inductive step for ∧ and ∨, the statement follows immediately from the induction hypothesis.

And in the inductive step for→ and ∨, we construct the following two derivations:

By ind. hyp.

x ⩽ R(x), . . . , x : ψ,Γ⇒ ∆, x : χ, x : ψ
(r-rf)

. . . , x : ψ,Γ⇒ ∆, x : χ, x : ψ

By ind. hyp.

x ⩽ R(x), . . . , x : χ, x : ψ,Γ⇒ ∆, x : χ
(r-rf)

. . . , x : χ, x : ψ,Γ⇒ ∆, x : χ
L→

x ⩽ R(σ), x ⩽ R(π), R(π) ⩽ R(σ), π ⩽ R(σ), σ : ψ → χ, x : ψ,Γ⇒ ∆, x : χ
(tr)

x ⩽ R(π), R(π) ⩽ R(σ), π ⩽ R(σ), σ : ψ → χ, x : ψ,Γ⇒ ∆, x : χ
(r-tr)

x ⩽ R(π), π ⩽ R(σ), σ : ψ → χ, x : ψ,Γ⇒ ∆, x : χ
R→

π ⩽ R(σ), σ : ψ → χ,Γ⇒ ∆, π : ψ → χ

By ind. hyp.

R(x) ⩽ R(x), . . . , x : ψ,Γ⇒ ∆, . . . , R(x) : ψ
(rf)

. . . , x : ψ,Γ⇒ ∆, . . . , R(x) : ψ

By ind. hyp.

R(y) ⩽ R(y), . . . , y : χ,Γ⇒ ∆, . . . , R(y) : χ
(rf)

. . . , y : χ,Γ⇒ ∆, . . . , R(y) : χ
R∨

. . . , π ⩽ R(x) +R(y), R(σ) ⩽ R(x) +R(y), π ⩽ R(σ), x : ψ, y : χ,Γ⇒ ∆, π : ψ ∨ χ
(tr)

. . . , R(σ) ⩽ R(x) +R(y), π ⩽ R(σ), x : ψ, y : χ,Γ⇒ ∆, π : ψ ∨ χ
(tr)

. . . , R(σ) ⩽ R(x+ y), R(x+ y) ⩽ R(x) +R(y), π ⩽ R(σ), x : ψ, y : χ,Γ⇒ ∆, π : ψ ∨ χ
(r-dis)

. . . , R(σ) ⩽ R(x+ y), σ ⩽ x+ y, x+ y ⩽ R(x+ y), π ⩽ R(σ), x : ψ, y : χ,Γ⇒ ∆, π : ψ ∨ χ
(r-tr)

σ ⩽ R(x+ y), σ ⩽ x+ y, x+ y ⩽ R(x+ y), π ⩽ R(σ), x : ψ, y : χ,Γ⇒ ∆, π : ψ ∨ χ
(tr)

σ ⩽ x+ y, x+ y ⩽ R(x+ y), π ⩽ R(σ), x : ψ, y : χ,Γ⇒ ∆, π : ψ ∨ χ
(r-rf)

σ ⩽ x+ y, π ⩽ R(σ), x : ψ, y : χ,Γ⇒ ∆, π : ψ ∨ χ
L∨

π ⩽ R(σ), σ : ψ ∨ χ,Γ⇒ ∆, π : ψ ∨ χ

Finally, the sequents in (ii) and (iii) can be derived from (i) by using the rules (r-rf) and (tr).

Lemma 4.4.2. All sequents of the following form are derivable in GLinqI:
(i) π ⩽ ∅,Γ⇒ ∆, π : φ,
(ii) Γ⇒ ∆, ∅ : φ,
(iii) π ⩽ σ, σ : ⊥,Γ⇒ ∆, π : φ,
(iv) π : ⊥,Γ⇒ ∆, π : φ.

Proof. As before, the derivability of (i) and (iii) is established by induction on φ. We only show

the derivability of (i). For the base case, suppose that φ = p is atomic. If π ∈ S, then (i) is an

instance of Ax ∅
, so the proof is trivial. And if π /∈ S, then we construct the derivation

Ax∅

w ⩽ ∅, w ⩽ R(∅), w ⩽ R(π), R(π) ⩽ R(∅), R(∅) ⩽ ∅, π ⩽ R(∅), π ⩽ ∅, ∅ ⩽ R(∅),Γ⇒ ∆, w : p
(tr)

w ⩽ R(∅), w ⩽ R(π), R(π) ⩽ R(∅), R(∅) ⩽ ∅, π ⩽ R(∅), π ⩽ ∅, ∅ ⩽ R(∅),Γ⇒ ∆, w : p
(tr)

w ⩽ R(π), R(π) ⩽ R(∅), R(∅) ⩽ ∅, π ⩽ R(∅), π ⩽ ∅, ∅ ⩽ R(∅),Γ⇒ ∆, w : p
(r-emp)

w ⩽ R(π), R(π) ⩽ R(∅), π ⩽ R(∅), π ⩽ ∅, ∅ ⩽ R(∅),Γ⇒ ∆, w : p
(r-tr)

w ⩽ R(π), π ⩽ R(∅), π ⩽ ∅, ∅ ⩽ R(∅),Γ⇒ ∆, w : p
(tr)

w ⩽ R(π), π ⩽ ∅, ∅ ⩽ R(∅),Γ⇒ ∆, w : p
(r-rf)

w ⩽ R(π), π ⩽ ∅,Γ⇒ ∆, w : p
Rp

π ⩽ ∅,Γ⇒ ∆, π : p

The case φ = ⊥ is treated in essentially the same way. In the inductive step for ∧,→ and ∨, the

proof is easy. And in the inductive step for ∨, we construct the following derivation:

By ind. hyp.

π ⩽ π + π, π ⩽ ∅,Γ⇒ ∆, π : ψ ∨ χ, π : ψ

By ind. hyp.

π ⩽ π + π, π ⩽ ∅,Γ⇒ ∆, π : ψ ∨ χ, π : χ
R∨

π ⩽ π + π, π ⩽ ∅,Γ⇒ ∆, π : ψ ∨ χ
(ul)

π ⩽ ∅,Γ⇒ ∆, π : ψ ∨ χ
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This concludes the induction. For the sequent in (iii), the induction is similar. Finally, the sequents

in (ii) and (iv) can be derived from (i) and (iii), respectively, by an application of (rf).

Next, we will show that GLinqI also preserves the structural properties of the labelled sequent

calculus considered in the previous chapter. As before, a branch in a derivation D is defined to

be a sequence β of consecutive sequents in D such that the first sequent in β is the conclusion

of D and the last sequent is one of the leaf nodes of D. By the length of a branch β, we mean the

number of sequents occurring in β. And the height of a derivation D is defined to be the length

of a longest branch in D. A rule of inference is now said to be height-preserving admissible (or

hp-admissible), if it satisfies the condition that, whenever all premises of the rule are derivable

by a proof tree of height at most n, then also the conclusion of the rule is derivable by a proof

tree of height at most n. If the admissibility of a rule is not height-preserving, then the rule

is simply called admissible. Furthermore, we say that a rule is height-preserving invertible (or

hp-invertible), if it satisfies the condition that, whenever the conclusion of the rule is derivable

by a proof tree of height at most n, then also each of the premises of the rule is derivable by

such a proof tree. For a more precise definition of the relevant concepts, the reader is referred

to Section 3.2.2. The substitution operator for labels is defined in exactly the same way as in the

classical setting (see Definition 3.2.5), except that, for any state variable s ∈ S∪V, we now also

put R(σ)(π/s) := R(σ′), where σ′ is the label given by σ′ = σ(π/s). The definition is then

extended to multisets in the usual way, so we will write Γ(π/s) for the result of substituting π
for s in every label occurring in Γ. As before, the substitution rules are defined to be the rules

Γ⇒ ∆ (u/w)
Γ(u/w)⇒ ∆(u/w)

and
Γ⇒ ∆ (π/x)

Γ(π/x)⇒ ∆(π/x)

where u and w are variables from S, x is a variable from V, and π is an arbitrary label.

Proposition 4.4.3. The substitution rules are hp-admissible in GLinqI.

Proof. By induction on the height of a derivation for Γ ⇒ ∆. For the base case, suppose that

Γ ⇒ ∆ is derivable by a proof tree of height n = 1. In this case, Γ ⇒ ∆ must be an axiom of

GLinqI. But then, clearly, Γ(u/w)⇒ ∆(u/w) and Γ(π/x)⇒ ∆(π/x) are axioms as well.

For the inductive step, suppose that Γ⇒ ∆ is derivable by a proof treeD of height n > 1. We

consider the last rule applied inD. If this rule does not have eigenvariables, then we simply apply

the induction hypothesis to the premises of the rule, and then the same rule again. On the other

hand, if the last rule in D has eigenvariables, then we first appeal to the induction hypothesis in

order to rename the eigenvariables, before performing the desired substitution. So, for example,

suppose that we want to substitute a label π ∈ Λ(S,V) for some variable x ∈ V. Moreover,

assume that the last step in D is an application of the rule L∨, so D is of the form

D′

σ ⩽ y + z, y : φ, z : ψ,Θ⇒ ∆
L∨

σ : φ ∨ ψ,Θ⇒ ∆

where y and z are the eigenvariables of the indicated application of L∨, andD′
is a derivation of

height n−1. By applying the induction hypothesis toD′
, we first replace the eigenvariables y and

z by fresh variables y′ and z′, respectively, such that x, y′ and z′ are pairwise distinct. This yields

a derivationD′′
of height at most n− 1 for σ ⩽ y′+ z′, y′ : φ, z′ : ψ,Θ⇒ ∆. We now apply the

induction hypothesis again in order to perform the substitution (π/x). By a subsequent applica-

tion ofL∨, we then obtain the desired derivation of height at most n for Γ(π/x)⇒ ∆(π/x).

We are now ready to prove the desired results: the structural rules of weakening and contrac-

tion, given in Figure 4.4, are hp-admissible in GLinqI and each rule of our system is hp-invertible.
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Γ⇒ ∆
LW

π : φ,Γ⇒ ∆
Γ⇒ ∆

RW
Γ⇒ ∆, π : φ

Γ⇒ ∆
W⩽

π ⩽ σ,Γ⇒ ∆

π : φ, π : φ,Γ⇒ ∆
LC

π : φ,Γ⇒ ∆

Γ⇒ ∆, π : φ, π : φ
RC

Γ⇒ ∆, π : φ

π ⩽ σ, π ⩽ σ,Γ⇒ ∆
C⩽

π ⩽ σ,Γ⇒ ∆

Figure 4.4: The structural rules of weakening and contraction.

Proposition 4.4.4. The weakening rules are hp-admissible in GLinqI.

Proof. For each of the three weakening rules, we proceed by induction on the height of a deriva-

tionD for the premise of the respective rule. In the inductive step, we distinguish cases, depend-

ing on the last rule applied in D. If this rule does not have eigenvariables, we simply apply the

induction hypothesis to the premises of the rule, and then the same rule again. Otherwise, we first

use Proposition 4.4.3 in order to introduce fresh eigenvariables not clashing with the variables

occurring in the weakening formula. For further details, see the proof of Proposition 3.2.7.

Proposition 4.4.5. All rules of GLinqI are hp-invertible.

Proof. The hp-invertibility of the logical rules for atomic formulas, the falsum constant and the

connectives ∧, ∨ and→ is established in the same way as in the previous chapter (see Propo-

sition 3.2.8). Furthermore, the hp-invertibility of the ‘cumulative’ rules (including the new rule

R∨ and the internal and external order rules) follows immediately from the hp-admissibility of

weakening.
9

Thus, we only need to show that L∨ is hp-invertible. For this purpose, let D be an

arbitrary derivation for π : φ∨ψ,Γ⇒ ∆ and let n be the height ofD. Moreover, let x, y ∈ V be

arbitrary but distinct variables not occurring in π : φ∨ψ,Γ⇒ ∆. Using induction on n, we show

that there is also a derivation of height at most n for the sequent π ⩽ x+y, x : φ, y : ψ,Γ⇒ ∆.

For the base case, assume that D has height n = 1. In this case, π : φ ∨ ψ,Γ ⇒ ∆ must be

an instance of an axiom. Since φ ∨ ψ is not atomic, the labelled formula π : φ ∨ ψ cannot be

principal in this instance. Hence, the sequent π ⩽ x + y, x : φ, y : ψ,Γ ⇒ ∆ must also be an

instance of an axiom, so it is derivable by a proof tree of height n = 1, as desired.

For the inductive step, suppose that D has height n > 1. If the last step in D is a rule for

which π : φ∨ψ is not principal, then we simply apply the induction hypothesis to the premises

of the rule (possibly in combination with a height-preserving substitution in order to take care

of eigenvariables), and we then use the very same rule again. On the other hand, if D ends with

an application of the rule L∨ for which π : φ ∨ ψ is principal, then D must be of the form

D′

π ⩽ z1 + z2, z1 : φ, z2 : ψ,Γ⇒ ∆
L∨

π : φ ∨ ψ,Γ⇒ ∆

where z1 and z2 are the eigenvariables of the indicated application of L∨ and D′
is a derivation

of height n− 1. By substituting x for z1 and y for z2 in the subderivation D′
, we now obtain the

desired derivation of height at most n for the sequent π ⩽ x+ y, x : φ, y : ψ,Γ⇒ ∆.

Proposition 4.4.6. The contraction rules are hp-admissible in GLinqI.
9

Recall that, by a ‘cumulative’ rule, we mean a rule in which the principal formulas and the principal atoms from

the conclusion are always repeated in each of the premises of the rule. See also Section 3.1 for further details.
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Proof. For each of the three contraction rules depicted in Figure 4.4, the proof is done simulta-
neously, by induction on the height of a derivation for the premise of the respective rule. For

simplicity, we only sketch the inductive step for the rule LC .
10

Let D be a derivation for some

sequent of the form π : φ, π : φ,Γ ⇒ ∆ and let n > 1 be the height of D. We show that there

is also a derivation of height at most n for the contracted sequent π : φ,Γ ⇒ ∆. To this end,

consider the last rule applied in D. If π : φ is not principal in this rule, then both occurrences of

π : φ must also be present in each of the premises of the rule. Hence, by applying the induction

hypothesis to the premises and then the same rule again, we obtain the desired derivation of

height at most n for π : φ,Γ⇒ ∆. On the other hand, if π : φ is principal in the last rule applied

in D, then we distinguish cases, depending on the form of φ. If φ is not a standard disjunc-

tion, then the argument is the same as in the classical setting (see the proof of Proposition 3.2.9).

Therefore, let us assume that φ = ψ ∨χ for some ψ, χ ∈ LI. In this case, D must be of the form

D′

π ⩽ x+ y, x : ψ, y : χ, π : ψ ∨ χ,Γ⇒ ∆
L∨

π : ψ ∨ χ, π : ψ ∨ χ,Γ⇒ ∆

where x, y ∈ V are fresh variables and D′
is of height n− 1. By applying the height-preserving

invertibility of L∨ and subsequent height-preserving substitutions to the conclusion of the sub-

derivationD′
, we now obtain a derivation of height at most n−1 for the sequent π ⩽ x+y, π ⩽

x+ y, x : ψ, x : ψ, y : χ, y : χ,Γ⇒ ∆. Using the induction hypothesis and a subsequent appli-

cation of L∨, this yields the desired derivation of height at most n for π : ψ ∨ χ,Γ⇒ ∆.

Next, we will prove that the cut rule is admissible in GLinqI. As before, this rule is of the form

Γ⇒ ∆, π : φ π : φ,Σ⇒ Θ
(cut)

Γ,Σ⇒ ∆,Θ

where π : φ is an arbitrary labelled formula, referred to as the cut formula. The overall structure

of the cut-admissibility proof will be the same as in our treatment of InqB. We thus proceed by a

main induction on the rank of an arbitrary cut rule application, with a subinduction on the height

of this application. Moreover, as in the previous chapter, the rank of a cut formula π : φ will be

measured not only in terms of the complexity of the formulaφ, but also in terms of the complexity

of the associated label π. To this end, we first define the degree of a label in the familiar way.

Definition 4.4.7 (Degree of a Label). The degree of a label π is denoted by deg(π) and defined

as follows: if π ∈ S, then we put deg(π) := 0, and if π /∈ S, then we put deg(π) := 1.

That is, as usual, we simply assign the degree 0 to every singleton variable w ∈ S and the

degree 1 to every non-singleton label π /∈ S. The degree of a formulaφ ∈ LI, on the other hand, is

now defined to be the number of occurrences of the logical symbols⊥, ∧,→, ∨, ∨ in φ. The rank
of a labelled formula π : φ is again defined to be the pair rank(π : φ) := (deg(φ), deg(π)), where

deg(φ) is the degree of the formula φ and deg(π) is the degree of the label π. As in the previous

chapter, ranks of labelled formulas are compared using a lexicographic ordering, so we will write

rank(π : φ) < rank(σ : ψ) and say that the rank of π : φ is smaller than the rank of σ : ψ, if

we either have deg(φ) < deg(ψ), or we have both deg(φ) = deg(ψ) and deg(π) < deg(σ).

Lemma 4.4.8. Let π and σ be arbitrary labels and let w ∈ S be a singleton variable. It holds:
(i) If π /∈ S, then rank(w : φ) < rank(π : φ),
(ii) rank(π : φi) < rank(σ : φ1 ⊗ φ2) for i = 1, 2 and ⊗ ∈ {∧,→, ∨,∨}.

10

As before, the contraction rulesRC andC⩽
can be treated similarly. Note that, in order to show the hp-admissibility

of C⩽
, one has to appeal to the closure condition. For further details, we refer to the proof of Proposition 3.2.9.
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Both statements are proved in exactly the same way as in the classical setting (see the proof of

Lemma 3.2.12). We now define the height of a cut rule application to be the sum of the heights of

the two derivations for the premises Γ⇒ ∆, π : φ and π : φ,Σ⇒ Θ of this application (where

the height of a derivation is again taken to be the length of a longest branch in this derivation).

And the rank of a cut rule application is defined to be the rank of the associated cut formula π : φ.

Theorem 4.4.9 (Cut-Admissibility). The cut rule is admissible in GLinqI.

Proof. As before, we select an arbitrary application of the cut rule and proceed by a main induc-

tion on the rank of the cut formula, with a subinduction on the height of the cut. The general

structure of the argument is the same as in the proof of Theorem 3.2.13. In particular, we need

to consider the same main cases, and we perform essentially the same conversions in each case.

The most interesting new part of the proof is the case in which the cut formula is of the form

π : φ ∨ ψ and principal on both sides. In this case, the cut rule application must be of the form

D1

π ⩽ σ + τ,Γ⇒ ∆, π : φ ∨ ψ
D2

π : φ ∨ ψ,Σ⇒ Θ
(cut)

π ⩽ σ + τ,Γ,Σ⇒ ∆,Θ

where the left and the right subderivation are given by

D1 =


D′

1

π ⩽ σ + τ,Γ⇒ ∆, π : φ ∨ ψ, σ : φ

D′′
1

π ⩽ σ + τ,Γ⇒ ∆, π : φ ∨ ψ, τ : ψ
R∨

π ⩽ σ + τ,Γ⇒ ∆, π : φ ∨ ψ

D2 =


D′

2

π ⩽ x+ y, x : φ, y : ψ,Σ⇒ Θ
L∨

π : φ ∨ ψ,Σ⇒ Θ

Note that, without loss of generality, we may assume that the variable y does not occur in the label

σ (if this condition is not satisfied, then we simply perform a height-preserving substitution in the

subderivationD′
2 in order to replace y by some fresh variable). Hence, using the hp-admissibility

of substitution and contraction, we may now transform the whole derivation into the proof tree

D′′

π ⩽ σ + τ,Γ,Σ⇒ ∆,Θ, τ : ψ

D′

π ⩽ σ + τ,Γ,Σ⇒ ∆,Θ, σ : φ

D′
2

π ⩽ x+ y, x : φ, y : ψ,Σ⇒ Θ
(σ/x)

π ⩽ σ + y, σ : φ, y : ψ,Σ⇒ Θ
(τ/y)

π ⩽ σ + τ, σ : φ, τ : ψ,Σ⇒ Θ
(cut)

(π ⩽ σ + τ)2, τ : ψ,Γ,Σ2 ⇒ ∆,Θ2

(cut)
(π ⩽ σ + τ)3,Γ2,Σ3 ⇒ ∆2,Θ3

C
π ⩽ σ + τ,Γ,Σ⇒ ∆,Θ

where D′
and D′′

are the following two derivations:

D′ =


D′

1

π ⩽ σ + τ,Γ⇒ ∆, π : φ ∨ ψ, σ : φ

D′
2

π ⩽ x+ y, x : φ, y : ψ,Σ⇒ Θ
L∨

π : φ ∨ ψ,Σ⇒ Θ
(cut)

π ⩽ σ + τ,Γ,Σ⇒ ∆,Θ, σ : φ

D′′ =


D′′

1

π ⩽ σ + τ,Γ⇒ ∆, π : φ ∨ ψ, τ : ψ

D′
2

π ⩽ x+ y, x : φ, y : ψ,Σ⇒ Θ
L∨

π : φ ∨ ψ,Σ⇒ Θ
(cut)

π ⩽ σ + τ,Γ,Σ⇒ ∆,Θ, τ : ψ
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R(π) ⩽ R(σ),Γ⇒ ∆
(rel)

π ⩽ σ,Γ⇒ ∆

R(R(π)) ≈ R(π),Γ⇒ ∆
(idem)

Γ⇒ ∆

R(π + σ) ≈ R(π) +R(σ),Γ⇒ ∆
(g-dis)

Γ⇒ ∆

R(∅) ≈ ∅,Γ⇒ ∆
(g-emp)

Γ⇒ ∆

Figure 4.5: Further admissible rules. In each case, ‘π ≈ σ’ stands for ‘π ⩽ σ, σ ⩽ π’.

As can be seen, the original cut rule application is now replaced by four new cuts. The two up-

permost of these new cuts (i.e., those with cut formula π : φ ∨ ψ) are of lower height than the

original one, and the two other cuts are of lower rank. Thus, using the subinduction hypothesis

and then the main induction hypothesis, one can successively remove each of the four cuts.

In order to conclude this section, let us point out some further properties of our sequent cal-

culus. Figure 4.5 comprises a number of additional rules that can be shown to be admissible in

GLinqI. Note that, in the figure, the notation ‘π ≈ σ’ is used as a shorthand for the pair of re-

lational atoms ‘π ⩽ σ, σ ⩽ π’. Intuitively, the rule (rel) accounts for the observation that, if a

state π is a subset of some state σ, then also R(π) must be a subset of R(σ). The rule (idem)
reflects the idempotence of the upset operator: applying theR-operator multiple times to a state

has exactly the same effect as applying R only once to that state. The rules (g-dis) and (g-emp),
finally, can be seen as simple generalizations of the internal order rules (r-dis) and (r-emp).

Proposition 4.4.10. Each of the rules depicted in Figure 4.5 is admissible in GLinqI.

Proof. We only show the admissibility of the rules (rel) and (idem). For this purpose, suppose

that the premise of (rel) is derivable by a proof tree D1 and the premise of (idem) is derivable by

a proof tree D2. Using these proof trees, we may then construct the following two derivations:

D1

R(π) ⩽ R(σ),Γ⇒ ∆
W

R(π) ⩽ R(σ), π ⩽ R(σ), π ⩽ σ, σ ⩽ R(σ),Γ⇒ ∆
(r-tr)

π ⩽ R(σ), π ⩽ σ, σ ⩽ R(σ),Γ⇒ ∆
(tr)

π ⩽ σ, σ ⩽ R(σ),Γ⇒ ∆
(r-rf)

π ⩽ σ,Γ⇒ ∆

D2

R(R(π)) ⩽ R(π), R(π) ⩽ R(R(π)),Γ⇒ ∆
W

R(R(π)) ⩽ R(π), R(π) ⩽ R(R(π)), R(π) ⩽ R(π),Γ⇒ ∆
(r-rf)

R(R(π)) ⩽ R(π), R(π) ⩽ R(π),Γ⇒ ∆
(r-tr)

R(π) ⩽ R(π),Γ⇒ ∆
(rf)

Γ⇒ ∆

Hence, (rel) and (idem) are admissible. For the other rules from Figure 4.5, the proof is similar.

For later purposes, we also need to show that the truth-conditionality of standard formulas

can be reflected by means of formal derivations in the system GLinqI. This is accomplished by

the following lemma. Intuitively, both of the sequents in the lemma express the fact that, if a

standard formula α is supported by two states, then it is also supported by the union of these

states. The proof proceeds by a routine induction on the structure of α and is therefore omitted.
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Lemma 4.4.11. For any standard formula α ∈ LIs, the following sequents are derivable in GLinqI:
(i) π : α, σ : α,Γ⇒ ∆, π + σ : α,
(ii) π ⩽ σ + τ, πσ : α, πτ : α,Γ⇒ ∆, π : α.

4.5 Soundness and Completeness

In order to conclude our treatment of intuitionistic inquisitive logic, we will now prove that

GLinqI is sound and complete with respect to InqI. First, let us establish the soundness of our

proof system. The notion of an interpretation is defined in exactly the same way as in the classical

setting, except that we now also need to specify how labels of the form R(π) are interpreted.

Definition 4.5.1 (Interpretation). Let M = ⟨W,R, V ⟩ be an intuitionistic Kripke model. An

interpretation over M is a function I : S ∪ V → P(W ) such that, for all singleton variables

w ∈ S, the state I(w) ⊆W is a singleton. Given any interpretation I over some model M , it is

inductively extended to a function from the set of all labels to the setP(W ) in the following way:

(i) I(∅) := ∅,
(ii) I(π · σ) := I(π) ∩ I(σ),

(iii) I(π + σ) := I(π) ∪ I(σ),
(iv) I(R(π)) := R(I(π)).

Labelled formulas and relational atoms are interpreted in the usual way. That is, given any

interpretation I over some intuitionistic Kripke model M , we will say that a labelled formula

π : φ is satisfied by I , just in case φ is supported by the sate I(π), i.e., if we have M, I(π) φ.

And we will say that a relational atom π ⩽ σ is satisfied by I , if I(π) is a subset of I(σ), i.e., if

it holds I(π) ⊆ I(σ). A sequent Γ ⇒ ∆ is said to be valid in a Kripke model M , if for every

interpretation I overM , the following holds: if I satisfies all expressions in Γ, then there exists a

labelled formula π : φ in ∆ such that I satisfies π : φ. We are now ready to prove the soundness

of our sequent calculus: if a formulaφ is provable fromΓ inGLinqI, thenφ is entailed byΓ in InqI.

Proposition 4.5.2 (Soundness of GLinqI). For every finite set of formula Γ ⊆ LI and for every
formula φ ∈ LI, if the sequent x : Γ⇒ x : φ is derivable in GLinqI for some x ∈ V, then Γ φ.11

Proof. We first show that, if a sequent Γ ⇒ ∆ is derivable in GLinqI, then Γ ⇒ ∆ is is valid in

every intuitionistic Kripke model. LetD be an arbitrary derivation for some sequent Γ⇒ ∆ and

letM = ⟨W,R, V ⟩ be an arbitrary intuitionistic Kripke model. Using induction on the structure

ofD, we prove thatΓ⇒ ∆ is valid inM . Most cases can be treated in the same way as in the clas-

sical setting (see the proof of Proposition 3.3.4). Therefore, we only consider the following cases.

Case 1: Suppose that the last step in D is an application of the rule L∨, so D is of the form

D′

π ⩽ x+ y, x : φ, y : ψ,Θ⇒ ∆
L∨

π : φ ∨ ψ,Θ⇒ ∆

where x, y ∈ V are fresh variables not occurring in the conclusion ofD. By induction hypothesis,

we know that π ⩽ x+ y, x : φ, y : ψ,Θ⇒ ∆ is valid inM . In order to show that this also holds

for π : φ∨ψ,Θ⇒ ∆, let I be an arbitrary interpretation overM and suppose that I satisfies π :
φ∨ψ and each expression inΘ. Since I satisfies π : φ∨ψ, we must haveM, I(π) φ∨ψ, so there

exist two states t1, t2 ⊆W such that I(π) = t1∪t2,M, t1 φ andM, t2 ψ. Let now I∗ be the

interpretation which is just like I , except that x is mapped to t1 and y is mapped to t2, so we put

I∗(x) := t1 and I∗(y) := t2. Then, clearly, I∗ satisfies π ⩽ x+y, x : φ, y : ψ and each expression

in Θ. Hence, by induction hypothesis, there must be some labelled formula in ∆ which is also

11

Recall that we write x : Γ for the set of labelled formulas given by (x : Γ) := {x : ψ | ψ ∈ Γ}.
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Axioms:

(IPL) All axioms of the ‘intuitionistic’ system given in Figure 1.5,

(Intro) φ→ (φ ∨ ψ) and ψ → (φ ∨ ψ),
(Elim) (φ→ α)→ ((ψ → α)→ ((φ ∨ ψ)→ α)), where α is a standard formula,

(Com) (φ ∨ ψ)→ (ψ ∨ φ),
(Dis) (φ ∨ (ψ ∨ χ))→ ((φ ∨ ψ) ∨ (φ ∨ χ)),
(Ex) (φ→ φ′)→ ((ψ → ψ′)→ ((φ ∨ ψ)→ (φ′ ∨ ψ′))),
(Split) (α→ (φ ∨ ψ))→ ((α→ φ) ∨ (α→ ψ)), where α is a standard formula.

The only rule of inference is modus ponens: from Γ φ and Γ φ→ ψ, infer Γ ψ.

Figure 4.6: The Hilbert-style system HinqI.

satisfied by I∗. Since neither x nor y occurs in ∆, this labelled formula must also be satisfied by

the original interpretation I . Thus, because I was arbitrary, it follows that π : φ ∨ ψ,Θ⇒ ∆ is

valid in M . If the last step in D is an application of R∨, then the argument is similar.

Case 2: Suppose that D ends with an application of (r-tr). In this case, D is of the form

D′

R(π) ⩽ R(σ), π ⩽ R(σ),Θ⇒ ∆
(r-tr)

π ⩽ R(σ),Θ⇒ ∆

By induction hypothesis, we know that R(π) ⩽ R(σ), π ⩽ R(σ),Θ ⇒ ∆ is valid in M . Let

now I be an arbitrary interpretation over M and suppose that I satisfies π ⩽ R(σ) and each

expression in Θ. Then, in particular, we must have I(π) ⊆ R(I(σ)). Because R is transitive,

this implies R(I(π)) ⊆ R(I(σ)) by Proposition 4.1.5. Hence, I also satisfies R(π) ⩽ R(σ).
Therefore, by induction hypothesis, there must be some labelled formula in ∆ which is satisfied

by I . Since I was arbitrary, this shows that π ⩽ R(σ),Θ⇒ ∆ is valid in M . If D ends with an

application of one of the other internal order rules, then the argument is similar.

This concludes the induction. Hence, if Γ⇒ ∆ is derivable in GLinqI, then Γ⇒ ∆ is valid in

every intuitionistic Kripke model. Let now Γ ∪ {φ} ⊆ LI be an arbitrary finite set of formulas

and suppose that x : Γ ⇒ x : φ is derivable in GLinqI for some x ∈ V. As we have seen, this

implies that, for every model M and for every interpretation I over M , if M, I(x) ψ for all

ψ ∈ Γ, then alsoM, I(x) φ. But then, by definition of entailment, we clearly have Γ φ.

Next, we will establish the completeness of our sequent calculus. To this end, we will exploit

the completeness of the Hilbert-style system HinqI introduced in Section 4.2 and displayed again

in Figure 4.6. First, we need to show that each of the axioms of HinqI is provable in GLinqI.

Lemma 4.5.3. Let φ be an instance of one of the axiom schemes of HinqI. Then, φ is provable in
GLinqI, i.e., for any variable x ∈ V, there exists a derivation for the sequent⇒ x : φ in GLinqI.

Proof. As before, showing the derivability of the axiom schemes from Figure 1.5 is straightfor-

ward. Therefore, we only need to prove that the special axioms given in Figure 4.6 are derivable.

For the axiom schemes (Intro), (Com) and (Dis), we may construct the following derivations:
12

By Lemma 4.4.1 (iii)

y ⩽ y + ∅, y ⩽ R(x), y : φ⇒ . . . , y : φ

By Lemma 4.4.2 (ii)

y ⩽ y + ∅, y ⩽ R(x), y : φ⇒ . . . , ∅ : ψ
R∨

y ⩽ y + ∅, y ⩽ R(x), y : φ⇒ y : φ ∨ ψ
(ul)

y ⩽ R(x), y : φ⇒ y : φ ∨ ψ
R→⇒ x : φ→ (φ ∨ ψ)

12

For simplicity, we only give a derivation for the first variant of (Intro). The other variant can be derived similarly.
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By Lemma 4.4.1 (iii)

. . . , z1 : φ, z2 : ψ ⇒ y : ψ ∨ φ, z2 : ψ

By Lemma 4.4.1 (iii)

. . . , z1 : φ, z2 : ψ ⇒ y : ψ ∨ φ, z1 : φ
R∨

. . . , y ⩽ z2 + z1, y ⩽ R(x), z1 : φ, z2 : ψ ⇒ y : ψ ∨ φ
(tr)

. . . , y ⩽ z1 + z2, z1 + z2 ⩽ z2 + z1, y ⩽ R(x), z1 : φ, z2 : ψ ⇒ y : ψ ∨ φ
(un)

y ⩽ z1 + z2, z1 ⩽ z2 + z1, z2 ⩽ z2 + z1, y ⩽ R(x), z1 : φ, z2 : ψ ⇒ y : ψ ∨ φ
(ul)

y ⩽ z1 + z2, z1 ⩽ z2 + z1, y ⩽ R(x), z1 : φ, z2 : ψ ⇒ y : ψ ∨ φ
(ur)

y ⩽ z1 + z2, y ⩽ R(x), z1 : φ, z2 : ψ ⇒ y : ψ ∨ φ
L∨

y ⩽ R(x), y : φ ∨ ψ ⇒ y : ψ ∨ φ
R→⇒ x : (φ ∨ ψ)→ (ψ ∨ φ)

By Lemma 4.4.1 (iii)

. . . , y : φ⇒ . . . , y : φ

By Lemma 4.4.1 (iii)

. . . , z : ψ ⇒ . . . , z : ψ
R∨

. . . , x′ ⩽ y + z, y : φ, z : ψ ⇒ . . . , x′ : φ ∨ ψ

By Lemma 4.4.1 (iii)

. . . , y : φ⇒ . . . , y : φ

By Lemma 4.4.1 (iii)

. . . , z : χ⇒ . . . , z : χ
R∨

. . . , x′ ⩽ y + z, y : φ, z : χ⇒ . . . , x′ : φ ∨ χ
L∨

x′ ⩽ y + z, x′ ⩽ R(x), y : φ, z : ψ ∨ χ⇒ x′ : φ ∨ ψ, x′ : φ ∨ χ
L∨

x′ ⩽ R(x), x′ : φ ∨ (ψ ∨ χ)⇒ x′ : φ ∨ ψ, x′ : φ ∨ χ
R∨

x′ ⩽ R(x), x′ : φ ∨ (ψ ∨ χ)⇒ x′ : (φ ∨ ψ) ∨ (φ ∨ χ)
R→⇒ x : (φ ∨ (ψ ∨ χ))→ ((φ ∨ ψ) ∨ (φ ∨ χ))

In order to show the derivability of the axiom scheme (Elim), let now α ∈ LIs be a standard

formula and letφ,ψ ∈ LI be arbitrary formulas. We may then construct the following derivation:

By Lemma 4.4.1 (ii)

x0x1 ⩽ x1, . . . , x1 : φ⇒ x0 : α, x0x1 : φ
(ir)

. . . , x1 : φ⇒ x0 : α, x0x1 : φ

D
. . . , x0 ⩽ R(z), x0x1 : α, . . . , x2 : ψ ⇒ x0 : α

L→
. . . , x0x1 ⩽ R(y), x0 ⩽ R(z), x0 ⩽ x1 + x2, y : φ→ α, z : ψ → α, x1 : φ, x2 : ψ ⇒ x0 : α

(tr)
. . . , x0x1 ⩽ x0, x0 ⩽ R(y), x0 ⩽ R(z), x0 ⩽ x1 + x2, y : φ→ α, z : ψ → α, x1 : φ, x2 : ψ ⇒ x0 : α

(il)
. . . , x0 ⩽ R(y), x0 ⩽ R(z), x0 ⩽ x1 + x2, y : φ→ α, z : ψ → α, x1 : φ, x2 : ψ ⇒ x0 : α

(tr)
. . . , x0 ⩽ R(z), R(z) ⩽ R(y), x0 ⩽ x1 + x2, y : φ→ α, z : ψ → α, x1 : φ, x2 : ψ ⇒ x0 : α

(r-tr)
x0 ⩽ R(z), z ⩽ R(y), y ⩽ R(x), x0 ⩽ x1 + x2, y : φ→ α, z : ψ → α, x1 : φ, x2 : ψ ⇒ x0 : α

L∨
x0 ⩽ R(z), z ⩽ R(y), y ⩽ R(x), y : φ→ α, z : ψ → α, x0 : φ ∨ ψ ⇒ x0 : α

R→
z ⩽ R(y), y ⩽ R(x), y : φ→ α, z : ψ → α⇒ z : (φ ∨ ψ)→ α

R→
y ⩽ R(x), y : φ→ α⇒ y : (ψ → α)→ ((φ ∨ ψ)→ α)

R→⇒ x : (φ→ α)→ ((ψ → α)→ ((φ ∨ ψ)→ α))

where the subderivation D is of the form

By Lemma 4.4.1 (ii)

x0x2 ⩽ x2, . . . , x2 : ψ ⇒ x0 : α, x0x2 : ψ
(ir)

. . . , x2 : ψ ⇒ x0 : α, x0x2 : ψ

By Lemma 4.4.11 (ii)

. . . , x0 ⩽ x1 + x2, x0x1 : α, x0x2 : α⇒ x0 : α
L→

. . . , x0x2 ⩽ R(z), x0 ⩽ x1 + x2, x0x1 : α, z : ψ → α, x2 : ψ ⇒ x0 : α
(tr)

. . . , x0x2 ⩽ x0, x0 ⩽ R(z), x0 ⩽ x1 + x2, x0x1 : α, z : ψ → α, x2 : ψ ⇒ x0 : α
(il)

. . . , x0 ⩽ R(z), x0 ⩽ x1 + x2, x0x1 : α, z : ψ → α, x2 : ψ ⇒ x0 : α

The derivation for the axiom (Ex) is similar to the derivation for (Elim). And the split axiom (Split)
can be derived in exactly the same way as in the classical setting, by using part (i) of Lemma 4.4.11

(see also the proof of Lemma 3.3.5). Therefore, all axioms of HinqI are provable in GLinqI.

We are now ready to prove the desired completeness result for our sequent calculus. To this

end, we first show that GLinqI is weakly complete with respect to the Hilbert-style system HinqI,
i.e., if a formulaφ is provable inHinqI, then it is also provable inGLinqI. The strong completeness

of GLinqI then follows as an immediate corollary, by using the deduction theorem for HinqI.
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Theorem 4.5.4. Let φ ∈ LI be an arbitrary formula. If we have H φ in the Hilbert-style system
HinqI, then the sequent⇒ x : φ is derivable in GLinqI, for any variable x ∈ V.

Proof. By induction on the structure of a Hilbert-style proof for H φ. In the base case, one has

to show that all axioms of HinqI are provable in GLinqI. This has been done in Lemma 4.5.3. For

the inductive step, it suffices to show that the rule of modus ponens, given by

⇒ x : φ ⇒ x : φ→ ψ
(mp)⇒ x : ψ

is admissible inGLinqI. This follows directly from the invertibility ofR→ and the admissibility of

the cut rule in GLinqI. For further details, the reader is referred to the proof of Lemma 3.3.6.

Corollary 4.5.5 (Soundness and Completeness). The labelled sequent calculus GLinqI is sound
and strongly complete with respect to InqI. That is, for every finite set of formulas Γ ∪ {φ} ⊆ LI,
we have Γ φ if and only if x : Γ⇒ x : φ is derivable in GLinqI, for any variable x ∈ V.

Proof. The soundness of GLinqI has been established in Proposition 4.5.2. For the completeness

part, one may use essentially the same argument as in the proof of Corollary 3.3.8. We only sketch

the basic idea. Let Γ ∪ {φ} ⊆ LI be an arbitrary finite set of formulas and suppose that Γ φ.

Then, by the completeness of HinqI (see Corollary 4.2.5), we must have Γ H φ. Now, using the

deduction theorem for HinqI (see Theorem 4.2.3), one readily sees that this yields H
∧
Γ→ φ,

where

∧
Γ stands for the conjunction of the formulas in Γ. Hence, by Theorem 4.5.4, we may

conclude that⇒ x :
∧
Γ→ φ is derivable in GLinqI, for an arbitrary variable x ∈ V. Using the

invertibility of R→ and L∧, this implies that y ⩽ R(x), y : Γ ⇒ y : φ is also derivable, where

y ∈ V is some fresh variable. But then, by performing the substitution (x/y) and a subsequent

application of (r-rf), we obtain the desired derivation for x : Γ⇒ x : φ in GLinqI.



Chapter 5

Inquisitive Kripke Logic

In this chapter, we will extend our labelled sequent calculus for InqB to various systems of modal
inquisitive logic. In the literature on this topic, two general settings have been discussed so far,

both of which originate with the work of Ciardelli and Roelofsen (see Ciardelli 2014; Ciardelli

and Roelofsen 2015; Ciardelli 2016b). In this chapter, we will only consider the first of these two

settings, which is known as inquisitive Kripke logic (cf. Ciardelli 2016b, Chapter 6). The second

setting extends the first one with ‘properly inquisitive modalities’ and will not be treated in this

thesis. For further information about this second setting, we refer to Ciardelli (2016b, Chapter 7).

Roughly speaking, inquisitive Kripke logic is the result of enriching InqB with a modal opera-

tor □, interpreted over ordinary Kripke models—or, to put it differently, the result of adding the

question-forming operator ∨ to ordinary modal logic. The weakest logic obtained in this way will

be called InqK and constitutes an inquisitive extension of the basic modal logic K. Although InqK
has some advantages over ordinary modal logic when it comes to formalizing modal statements

in natural language more uniformly, we will see that the presence of questions in the language

does not allow us to express new truth-conditional meanings: given any truth-conditional for-

mula in InqK, one can always find an equivalent formula in ordinary modal logic.

Just as in standard modal logic, it is possible to construct various extensions of InqK by re-

stricting the semantic consequence relation to specific classes of Kripke frames. So, for example,

by restricting the semantics to the class of all reflexive and transitive frames, we may construct an

inquisitive extension InqKT4 of the standard modal logic KT4 (which is also known as S4). More

generally, for every normal modal logic L, one can define a corresponding inquisitive system

InqL. Furthermore, as shown by Ciardelli (2016b), there exists a general strategy that allows to

transform any sound and complete axiomatization of a canonical normal modal logic L into a

sound and complete axiomatization of its inquisitive counterpart, InqL. Unfortunately, the proof

systems obtained in this way are not analytic and Ciardelli’s strategy only yields a recursive
axiomatization for InqL, if a decidable set of axioms for L is already known in advance.

For this reason, we will henceforth focus on a specific class of inquisitive Kripke logics. This

class comprises all logics InqLwhose characteristic frame property can be described by a number

of geometric implications, i.e., first-order formulas of the form ∀w⃗(φ→ ψ), whereφ andψ are not

allowed to contain implications or universal quantifiers. The most important contribution of this

chapter is a general method that allows to construct a cut-free labelled sequent calculus GLinqLA
for every inquisitive system InqL determined by some finite set A of geometric implications. This

generalizes a famous result for standard modal logic established by Negri (2005).

The chapter is structured as follows. In Section 5.1, we will define the basic system of inquis-

itive Kripke logic, denoted by InqK. The formulas of the language are evaluated with respect to

ordinary Kripke models and the support clause for □ can be seen as a natural generalization of

the ordinary truth-conditional semantics for □ familiar from standard modal logic. We will see

87
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that, although □ may now also embed questions (rather than just assertions), any formula of the

form □φwill be truth-conditional and therefore non-inquisitive. In Section 5.2, we will consider

various extensions of the basic framework. For every normal modal logic L, we will define a cor-

responding inquisitive system InqL, obtained from InqK by restricting the semantics to Kripke

models based on L-frames. After presenting a generic completeness result by Ciardelli (2016b),

we then give a precise definition of the class of all geometric extensions of InqK. In Section 5.3, we

will turn to the construction of labelled sequent calculi for the full class of geometric extensions

of InqK. To this end, we will describe a general strategy that allows to transform any set of ge-

ometric implications into a corresponding set of sequent rules. For every inquisitive logic InqL
determined by some finite set of geometric axioms A, we thus obtain a cut-free labelled sequent

calculus GLinqLA. In Section 5.4, we will investigate the properties of our sequent calculi. We

will see that each of our proof systems enjoys cut-admissibility, height-preserving admissibility

of weakening and contraction and height-preserving invertibility of all rules. In Section 5.5, we

will prove the soundness of our calculi and show that, for some concrete choices of the under-

lying base logic L, the completeness of GLinqLA may also be established indirectly, by using a

suitable Hilbert-style system for InqL. In Section 5.6, finally, we will give a general completeness

proof, covering each of the calculi GLinqLA. The argument is based on the construction of an

infinite proof search tree and the extraction of a countermodel from an open branch of this tree.

5.1 Kripke Modalities in Inquisitive Logic

Let us start by introducing the basic framework of inquisitive Kripke logic. The system described

in this section will be called InqK1
and may be considered from two different angles: on the one

hand, it may be seen as the result of adding the question-forming operator ∨ to the standard

system K of basic modal logic. On the other hand, it can be conceived as the result of adding the

Kripke modality □ to the system InqB of basic inquisitive logic. As before, we will assume an

infinite set P of atomic propositions, denoted by p, q, r, etc. The formulas of InqK are now built

up from the atoms in P by means of the usual connectives of InqB and the modal operator □.

Definition 5.1.1 (Language of InqK). The language of InqK is denoted by LK and consists of all

formulas generated by the following grammar, where p ranges over atomic propositions from P:

φ ::= p | ⊥ | φ ∧ φ | φ→ φ | φ ∨ φ | □φ.

As in the basic system InqB, the connectives ¬ and ∨ will be treated as abbreviations, by

putting ¬φ := φ→ ⊥ and φ ∨ ψ := ¬(¬φ ∧ ¬ψ). In addition, the dual modality □ is taken to

be defined by □φ := ¬□¬φ. The symbols □ and □ will also be called the box operator and the

diamond operator, respectively. By adopting the terminology used in the previous chapters, we

will refer to ∨ as the inquisitive disjunction and to ∨ as the standard disjunction of our system.

Moreover, a formula not containing occurrences of ∨ is said to be a standard formula. As before,

standard formulas will be denoted by the meta-variables α, β, γ, etc., whereas φ, ψ, χ, etc., will

be used for arbitrary formulas. Moreover, the set of all standard formulas is denoted by LKs .

For the sake of illustration, we will usually adopt an epistemic interpretation of the modalities.

Under this interpretation, □ is used to express the knowledge of an agent, so □φ may be read as

‘The agent knows φ’ and □φ may be read as ‘φ is compatible with the knowledge of the agent’

or ‘The knowledge of the agent does not rule out φ’. The reader should bear in mind, however,

that the epistemic reading is not the only possible interpretation and different readings of □ and

□ can be given as well. A short overview is provided by Ciardelli (2022, pp. 249–250, 252).

1

It should be noted that Ciardelli (2016b) uses the name InqBK instead of InqK. In order to avoid an overly complicated

nomenclature (especially when introducing our sequent calculi), we will henceforth deviate from this notation.
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Note that, in the language LK, the modality □ can be used to embed both questions and asser-
tions. This is an important difference to standard modal logic, where □ can only be applied to

statements. To appreciate this fact, let us consider the following sentences in natural language:

(1) Alice knows that Bob is lying.

(2) Alice knows whether Bob is lying.

In the first sentence, Alice’s knowledge is directed towards a purely declarative proposition, say-

ing that Bob is lying. Thus, if we take □ to express Alice’s knowledge, then (1) can be repre-

sented by a standard formula of the shape □p. Intuitively, we expect this formula to be true at

a possible world, if Alice’s knowledge state at this world entails the information conveyed by p.

Now, consider sentence (2). In this sentence, Alice’s knowledge is directed towards an inquisitive
proposition—namely, the proposition whether Bob is lying. In the language LK, this corresponds

to a formula of the form □?p, where □ now embeds the alternative question ?p.
2

Intuitively, this

formula is true at a world, just in case Alice’s knowledge state at this world settles the issue raised

by ?p. Note that, by the semantics of ∨, this is equivalent to saying that Alice’s knowledge either

entails p or it entails ¬p, so we expect □?p to be equivalent to the standard formula □p ∨□¬p.

In fact, as we will see later on, the modal operator □ always distributes over inquisitive disjunc-

tions, turning them into standard ones, so InqK validates the equivalence □(φ ∨ψ) ≡ □φ∨□ψ.

As a consequence, an inquisitive disjunction occurring in the scope of a box operator can al-

ways be paraphrased away by means of a standard disjunction. So, what is the point of allowing

questions to be embedded under □ in InqK? The answer is that, by adding ∨ to standard modal

logic, InqK allows for a uniform treatment of sentences like (1) and (2). This is an advantage over

standard modal logic, where paraphrasing is necessary in order to cope with sentences like (2).

We now want to give a brief outline of the semantics of InqK and sketch some important prop-

erties of the system. Our presentation mainly follows the exposition given by Ciardelli (2016b,

Chapter 6), which is also an excellent source for further details. To start with, the formulas of

InqK are evaluated with respect to ordinary Kripke models, which are defined in the usual way.

Definition 5.1.2 (Kripke Frame, Kripke Model). A Kripke frame is defined to be a pair F =
⟨W,R⟩, whereW is a set whose elements are called worlds, andR ⊆W ×W is a binary relation

on W , referred to as the accessibility relation of the frame. By a Kripke model, we mean a triple

M = ⟨W,R, V ⟩, where ⟨W,R⟩ is a Kripke frame and V :W×P→ {0, 1} is a valuation function.

Given a Kripke frame F = ⟨W,R⟩ and worlds w, u ∈ W , we will say that u is a successor of

w in F , just in case we have wRu. Furthermore, the neighbourhood of a world w in F is denoted

by R(w) and defined to be the set of all successors of w, so we put R(w) := {u ∈ W | wRu}.
As before, a set of worlds s ⊆W is also referred to as an information state over F .

Intuitively, every world in a Kripke model may be conceived as a possible state of affairs. This is

similar to the interpretation of worlds in the basic inquisitive system InqB. However, in contrast

to the standard setting, the state of affairs represented by a world w is now determined not only

by the propositional atoms true at w, but also by the information state R(w) assigned to w.

Under the epistemic interpretation of □ explained above, R(w) could be taken to represent the

information available to an agent at worldw—or, to put it differently, the set of worlds considered

to be possible according to the current knowledge of the agent at that world.

Since formulas of inquisitive logic are evaluated with respect to information states, rather than

worlds, we cannot simply adopt the usual truth-conditional semantics for□ known from standard

modal logic. Instead, we have to find a suitable support clause for formulas of the shape □φ. But

how could such a support clause look like? Recall that, under the epistemic interpretation, a

2

As usual, ?φ is defined to be an abbreviation for φ ∨ ¬φ.
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formula of the form □φ is read as ‘The agent knows φ’. Now, given a specific world w in a

Kripke model, we would expect an agent to know a proposition φ at w, just in case the agent’s

knowledge state R(w) at w entails the information conveyed by φ, and R(w) settles the issue

raised by φ. In other words, the agent knows φ at world w if and only if R(w) supports φ. By

generalizing this observation to information states, we thus find that a formula □φ should be

supported by a state s if and only if, for every world w ∈ s, the formula φ is supported by R(w).
This yields the following support semantics for the language of InqK (cf. Ciardelli 2016b, p. 202).

Definition 5.1.3 (Support Semantics for InqK). Let M = ⟨W,R, V ⟩ be a Kripke model. The

support relation between states s ⊆W and formulas φ ∈ LK is inductively defined as follows:

(i) M, s p :⇔ V (w, p) = 1 for all w ∈ s,
(ii) M, s ⊥ :⇔ s = ∅,

(iii) M, s φ ∧ ψ :⇔ M, s φ and M, s ψ,

(iv) M, s φ→ ψ :⇔ for all t ⊆ s, if M, t φ, then M, t ψ,

(v) M, s φ ∨ ψ :⇔ M, s φ or M, s ψ,

(vi) M, s □φ :⇔ M,R(w) φ for all w ∈ s.

IfM, s φ holds, then we say that φ is supported by s inM . Observe that, in InqK, the notion

of support is defined in exactly the same way as in the basic system InqB, except that we now

also have a support clause for the modal operator □. Using the support relation , we can now

define some important semantic concepts. To begin with, given a Kripke frameF = ⟨W,R⟩ and a

formulaφ, we write F φ and say thatφ is valid in the frame F , if for every modelM = ⟨F, V ⟩,
based onF , and for every state s ⊆W , we haveM, s φ. A formulaφ is said to be valid in InqK,

denoted φ, if φ is valid in every frame. Furthermore, given a formula φ and a set of formulas

Γ, we write Γ φ and say that φ is entailed by Γ, if for every Kripke model M = ⟨W,R, V ⟩
and for every state s ⊆W , it is the case that M, s Γ implies M, s φ.

3
Finally, two formulas

φ and ψ are called equivalent, notation φ ≡ ψ, if we have both φ ψ and ψ φ.

We now want to highlight some basic properties of InqK. For a more detailed account, we

refer to Ciardelli (2016b, Chapter 6). First of all, it is easy to check that the support relation of

InqK is persistent and that every formula φ ∈ LK is supported by the empty information state.

Proposition 5.1.4. LetM be a Kripke model, let s and t be states and let φ ∈ LK be a formula.
(i) Persistency: ifM, s φ and t ⊆ s, thenM, t φ.
(ii) Empty state property: M, ∅ φ.

Both statements can be proved by a straightforward induction on the structure of φ. Next,

we can show that InqK validates the usual principle of necessitation: if a formula φ ∈ LK is

valid in InqK, then so is □φ. In addition, □ distributes over implications, so InqK validates the

well-known axiom scheme K familiar from standard modal logic (cf. Blackburn et al. 2001, p. 33).

Proposition 5.1.5 (Validity of K and Necessitation). For all φ,ψ ∈ LK, the following holds:
(i) □(φ→ ψ)→ (□φ→ □ψ),
(ii) if φ, then □φ.

Proof. The proof of the first part is easy and therefore omitted. In order to prove the second part,

suppose that we have φ. Let M be an arbitrary Kripke model and let s be an arbitrary state

over M . Because φ, we must have M,R(w) φ for all worlds w ∈ s. Hence, by the support

clause for □, it follows M, s □φ. Since M and s were arbitrary, this shows that □φ.

We now want to work out some more exciting properties of InqK. As in our treatment of

basic inquisitive logic, InqB, we will say that a formula φ is true at a world w of a model M ,

3

As before, M, s Γ is used as a shorthand for ‘M, s ψ for all ψ ∈ Γ’.
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if φ is supported by the singleton state {w}. In this case, we also write M,w φ instead of

M, {w} φ. Moreover, a formula φ is said to be truth-conditional, if for every model M and

every state s, we have: M, s φ if and only if M,w φ for all w ∈ s. That is, a truth-

conditional formula is a formula for which support at a state simply boils down to truth at every

world in the state. Now, by a straightforward inspection of the support clause for □ given in

Definition 5.1.3, one readily sees that every formula of the form □φ is truth-conditional in InqK.

Proposition 5.1.6. For every φ ∈ LK, the formula □φ is truth-conditional.

In our exposition of the basic system InqB, we have already seen that all standard formulas of

classical logic remain truth-conditional in the inquisitive setting (see Corollary 1.3.4). Proposi-

tion 5.1.6 tells us that this can be generalized to all formulas of standard modal logic, i.e., to all

formulas in LK not containing ∨. In fact, since □ always yields a truth-conditional formula—

even when applied to a question—we may even identify a richer syntactic fragment of InqK that is

guaranteed to have this property. The formulas in this fragment will be referred to as declaratives.

Definition 5.1.7. The declarative fragment of InqK is the set of formulas LK! generated by the

following grammar, where p ranges over atoms and φ ranges over arbitrary formulas in LK:

α ::= p | ⊥ | □φ | α ∧ α | α→ α.

By overloading notation, we will henceforth use the meta-variables α, β, γ, etc., for both

declarative formulas and standard formulas. In any case, no confusion will arise, since it will

always be clear from the context whether a declarative or a standard formula is meant. Note that

every standard formula is also a declarative formula but not vice versa: for instance, □(p ∨ q)
is a declarative, but not a standard formula, since it contains an occurrence of ∨. Now, using

Proposition 5.1.6 and the fact that truth-conditionality is preserved by the connectives ⊥, ∧ and

→, we may conclude that every formula in the declarative fragment of InqK is truth-conditional.

Proposition 5.1.8. Every formula in the fragment LK! is truth-conditional.

By the support clause for □, we know that □φ is true at a world w of a Kripke model M , just

in case φ is supported by the neighbourhoodR(w) ofw. Consequently, if φ is a truth-conditional
formula, then the truth conditions for □φ, as determined by our support semantics, are simply

the familiar ones from standard modal logic, so we have M,w □φ if and only if M,u φ
for all worlds u with wRu. Now, because every standard formula is truth-conditional—with the

same truth conditions as in standard modal logic—it is easy to see that InqKmust be a conservative
extension of the basic modal logic K. That is, a standard formula α ∈ LKs is valid in InqK if and

only if α is valid in K. As shown by Ciardelli (2016b, p. 209), there is even a more intriguing

connection between InqK and standard modal logic: a formula of InqK is truth-conditional if

and only if it is equivalent to some standard modal formula α ∈ LKs . Therefore, with respect to

statements, InqK has exactly the same expressive power as standard modal logic.

Proposition 5.1.9. A formula φ ∈ LK is truth-conditional if and only if there exists a standard
formula α ∈ LKs such that φ ≡ α.

The right-to-left direction of the proposition is trivial, since standard formulas are always

truth-conditional by Proposition 5.1.8. For the other direction, one uses the observation that

every φ ∈ LK can be translated to a standard formula φs ∈ LKs in such a way that φ and φs
have

the same truth conditions. Thus, if φ itself is truth-conditional, then φs
will be equivalent to φ

(cf. Ciardelli 2016b, pp. 208–209). We already mentioned above that, intuitively, a formula of the

form□?p should be equivalent to□p∨□¬p. The following proposition confirms this intuition: in

InqK, the modality □ distributes over inquisitive disjunctions, turning them into standard ones.
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Proposition 5.1.10 (Distributivity of□ over ∨). For allφ,ψ ∈ LK, it holds□(φ∨ψ) ≡ □φ∨□ψ.

Proof. By Proposition 5.1.8, we know that □(φ ∨ ψ) and □φ ∨ □ψ are both truth-conditional.

Hence, it suffices to check that they have the same truth conditions. This is achieved as follows:

M,w □(φ ∨ ψ) ⇔ M,R(w) φ ∨ ψ
⇔ M,R(w) φ or M,R(w) ψ

⇔ M,w □φ or M,w □ψ

⇔ M,w □φ ∨□ψ.

Observe that, in the last step, we used the ordinary truth conditions for the defined connective

∨, which clearly remain valid in InqK (see also Proposition 1.2.9).

Using the support semantics given in Definition 5.1.3, one may now also derive a support clause

for the defined modality □ (for the other defined operators, the clauses are the same as in InqB).

Proposition 5.1.11 (Support-Conditions for □). For every Kripke modelM and for every state s,
we haveM, s □φ if and only if, for everyw ∈ s, there exists some u ∈ R(w) such thatM,u φ.

Note that, as a consequence, □φ is true at a world w of a model M , just in case we have

R(w)∩|φ|M ̸= ∅, where |φ|M denotes the truth-set ofφwith respect toM (see Definition 1.2.10).

Thus, as expected, □φ expresses that the agent’s knowledge is compatible with the information

conveyed by φ. For later purposes, we also need the following lemma, saying that failure of

support can be restricted to states of finite size: if a formula φ is not supported by some state s,
then one can always find a finite enhancement t ⊆ s such that φ is not supported by t.

Lemma 5.1.12. Let M be a Kripke model. For every formula φ ∈ LK and for every state s over
M , if it holdsM, s ̸ φ, then there exists a finite substate t ⊆ s such thatM, t ̸ φ.

Proof. By induction on the structure of φ. The base case and the inductive step for ∧ are trivial.

Consider now the case in which φ is of the form φ = ψ → χ. Suppose that we have M, s ̸
ψ → χ for some state s over M . By the semantics of→, there must be some r ⊆ s such that

M, r ψ and M, r ̸ χ. Hence, by induction hypothesis, there exists a finite subset t ⊆ r ⊆ s
such that M, t ̸ χ. Since we have M, r ψ and t ⊆ r, we must also have M, t ψ by the

persistency of support in InqK. Therefore, t is a finite substate of s such that M, t ̸ ψ → χ.

Let nowφ be of the formφ = ψ ∨χ and suppose that we haveM, s ̸ ψ ∨χ. By the semantics

of ∨, this yields M, s ̸ ψ and M, s ̸ χ. Thus, by induction hypothesis, there are finite subsets

t1, t2 ⊆ s such that M, t1 ̸ ψ and M, t2 ̸ χ. Consider the union t := t1 ∪ t2. Since t1 and t2
are both finite, tmust be finite as well. Now, suppose for a contradiction thatM, t ψ ∨χ. This

yieldsM, t ψ orM, t χ, so it followsM, t1 ψ orM, t2 χ by the persistency of support.

But this is a contradiction to our assumption about t1 and t2. Hence, we have M, t ̸ ψ ∨ χ.

Finally, let us consider the case φ = □ψ. Suppose that we have M, s ̸ □ψ for some state s
over M . By the semantics of □, there must be some world w ∈ s such that M,R(w) ̸ ψ. But

then, clearly, for the finite state t ⊆ s given by t := {w}, we also have M, t ̸ □ψ.

5.2 Extensions of InqK

In the previous section, we constructed InqK as an inquisitive extension of the basic modal logic

K. It is well known that K can be seen as the weakest standard modal logic, since validity in K
simply boils down to validity in all Kripke frames. For this reason, in standard modal logic, one

usually also defines various extensions of K: either by imposing further restrictions on the acces-

sibility relation of a Kripke frame, or by requiring frames to validate certain additional axioms.
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In this section, we will do something analogous for the inquisitive system InqK. More precisely,

for every normal modal logic L, we will define a corresponding inquisitive extension InqL. After

introducing some standard terminology, we will see a general completeness result by Ciardelli

(2016b), covering all those systems InqL for which the underlying base logicL is canonical. At the

end of this section, we will also introduce a special class of inquisitive logics, referred to as geo-
metric extensions of InqK. Roughly speaking, this class comprises all systems InqL that can be de-

termined by first-order frame conditions of the form ∀w⃗(φ→ ψ), where φ and ψ are not allowed

to contain implications or universal quantifiers. This will become important in Section 5.3, where

we will define cut-free labelled sequent calculi for the full class of geometric extensions of InqK.

5.2.1 Some Basic Notions

To begin with, let us recall some basic terminology from standard modal logic. For a more com-

prehensive exposition of the material, we refer to Blackburn et al. (2001, Chapter 4). First, a

normal modal logic is a set of standard formulas L such that L contains all propositional tautolo-

gies and all instances of the K-schema, and L is closed under modus ponens and necessitation.

Definition 5.2.1 (Normal Modal Logic). By a normal modal logic, we will mean any set of stan-

dard modal formulas L ⊆ LKs such that each of the following four conditions is satisfied:

(i) L contains all instances of propositional tautologies,

(ii) L contains all formulas of the form □(α→ β)→ (□α→ □β),
(iii) If α ∈ L and (α→ β) ∈ L, then β ∈ L,

(iv) If α ∈ L, then □α ∈ L.

Observe that normal modal logics are characterized in a purely syntactic manner. In fact, Defi-

nition 5.2.1 can be seen as a straightforward generalization of the concept provability in Hilbert-

style systems for modal logics. It is a generalization, since it does not talk directly about proofs
in such a system, but focuses on what is actually important: the availability of certain axioms

and the closure under modus ponens and necessitation. In line with this syntactic perspective,

we will also say that a standard formula α ∈ LKs is a theorem of a normal modal logic L, notation

L α, if α is an element of L. More generally, given any set of standard formulas Γ∪ {α} ⊆ LKs
and a normal modal logic L, we write Γ L α and say that α is deducible from Γ in L, just in

case we have L α or there are formulas β1, . . . , βn ∈ Γ such that L (β1 ∧ . . . ∧ βn)→ α.

Note that, according to Definition 5.2.1, the set of all standard formulas is also a normal modal

logic (one might call this the ‘trivial’ or the ‘inconsistent’ modal logic). Furthermore, it is easy

to verify that any (finite or infinite) intersection of normal modal logics is again a normal modal

logic. As a consequence, one can show that, for every set of standard formulas Γ ⊆ LKs , there

exists a smallest normal modal logic LΓ containing Γ, i.e., LΓ satisfies Γ ⊆ LΓ, and for every

normal modal logic L with Γ ⊆ L, we have LΓ ⊆ L. In what follows, we will call LΓ the normal

modal logic generated or axiomatized by Γ, and we say that Γ is an axiom system for LΓ.

Let us consider some examples of normal modal logics. The normal modal logic generated by

the empty set is denoted by K and may be conceived as the smallest or the weakest normal modal

logic, since we clearly have K ⊆ L for every normal modal logic L. Now, let us turn to some ex-

tensions of K. In Table 5.1, we list a number of well-known axiom schemes from standard modal

logic. For every combination of these schemes, we may obtain an extension of the basic system

K by constructing the normal modal logic generated by the schemes. It is common practice to

denote the systems obtained in this way simply by attaching the names of the corresponding

schemes to the letter K. So, for example, KT refers to the normal modal logic generated by the

scheme T, whereas KD4 stands for the modal logic generated by the schemes D and 4. How-

ever, some logics also carry traditional names that are often more common in the literature. For

instance, instead of KT, KD, KT4 and KT5, one also writes T, D, S4 and S5, respectively.
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Axiom Scheme Frame Condition First-Order Formula

T □α→ α Reflexivity ∀u.Ruu
4 □α→ □□α Transitivity ∀uvw.(Ruv ∧Rvw → Ruw)
5 □α→ □ □α Euclideanness ∀uvw.(Ruv ∧Ruw → Rvw)
B α→ □ □α Symmetry ∀uv.(Ruv → Rvu)
D □α→ □α Seriality ∀u∃v.Ruv

Table 5.1: Some famous axiom schemes and the corresponding frame properties.

It is well known that axiom schemes of standard modal logic can also be used to characterize

certain classes of Kripke frames. Roughly speaking, we say that a class C of Kripke frames is

defined by a scheme Θ, just in case, for every frame F , we have F ∈ C if and only if F validates

all instances of Θ.
4

The classes of frames defined by the schemes T, 4, 5, B and D are presented

in the second column of Table 5.1. Thus, for example, one can show that a Kripke frame F is

reflexive if and only if all instances of the T-schema are valid in F ; and a frame F is transitive if

and only if all instances of axiom scheme 4 are valid in F . As indicated in the last column of the

table, many properties of frames can also be characterized by a formula of first-order logic. This

will become important in Section 5.2.3, where we want to consider the class of all Kripke frames

that are characterized by a certain type of such formulas, known as geometric implications.
So far, we have considered normal modal logics mainly from a syntactic point of view. But

there is also a semantic perspective. To make things precise, we must introduce some further ter-

minology. Given a normal modal logicL, we say that a frameF is anL-frame, ifF validates every

formula in L. Moreover, for every set of standard formulas Γ∪ {α} ⊆ LKs , we write Γ L α and

say that α is entailed by Γ in L, if for every Kripke model M , based on an L-frame, and for every

world w in M , it is the case that M,w Γ implies M,w α. In other words, L is the conse-

quence relation obtained by restricting the usual notion of entailment in standard modal logic to

Kripke models based on L-frames.
5

The link between the syntactic and the semantic perspective

is provided by the concepts of soundness and completeness which are defined in the usual way.

Definition 5.2.2 (Soundness and Completeness). Let L be a normal modal logic. We say that L
is sound, if for every set of standard formulas Γ ∪ {α} ⊆ LKs , we have: Γ L α implies Γ L α.

And L is called complete, if for any Γ ∪ {α} ⊆ LKs , it is the case that Γ L α implies Γ L α.

A useful tool for showing the completeness of a normal modal logic are canonical models.
Towards a definition of this concept, consider an arbitrary normal modal logic L and an arbitrary

set of standard formulas Γ ⊆ LKs . We say that Γ is L-consistent, if Γ ̸ L ⊥. And we say that Γ is

maximally L-consistent, if Γ is L-consistent and no proper extension ∆ ⊋ Γ is also L-consistent.

Definition 5.2.3 (Canonical Model for L). Let L be a normal modal logic. The canonical model
for L is the Kripke model ML = ⟨WL, RL, VL⟩ defined as follows:

(i) WL is the set of all maximally L-consistent sets,

(ii) (Γ,∆) ∈ RL :⇔ for all α ∈ LKs , if □α ∈ Γ, then α ∈ ∆,

(iii) VL(Γ, p) = 1 :⇔ p ∈ Γ.

The Kripke frame FL := ⟨WL, RL⟩ is also referred to as the canonical frame for L. Crucially,

in the canonical model for any normal modal logic L, truth at a world Γ simply boils down to

membership in the set Γ. This is known as the truth lemma (cf. Blackburn et al. 2001, p. 199).

4

Recall that, in standard modal logic, a formula α is said to be valid in a Kripke frame F , just in case α is true at every

world of every Kripke modelM based on F . Since standard modal formulas are guaranteed to be truth-conditional

in InqK, this coincides with the notion of validity introduced in Section 5.1.

5

One may also define entailment more generally, by relativizing consequence to an arbitrary class of frames C (cf.

Blackburn et al. 2001, p. 31). Our definition can then be seen as the special case in whichC is the class of allL-frames.
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Proposition 5.2.4 (Truth Lemma). For every normal modal logicL, for every maximallyL-consis-
tent set Γ ⊆ LKs and for every standard formula α ∈ LKs , we have:ML,Γ α if and only if α ∈ Γ.

The usefulness of canonical models stems from the fact that, for many modal logics, they

provide us with a simple completeness proof. However, this only works if the frame FL actually

validates the formulas inL. A normal modal logic satisfying this constraint is said to be canonical.

Definition 5.2.5 (Canonicity). A normal modal logic L is canonical, if FL is an L-frame.

It is well known that every normal modal logic generated by one or more of the axiom schemes

given in Table 5.1 is canonical. However, there are also normal modal logics that are not canoni-

cal. A famous example of such a logic is KL, the normal modal logic generated by the Löb axiom:

□(□α→ α)→ □α. A proof of this fact is provided by Blackburn et al. (2001, p. 211). As outlined

above, canonicity always implies completeness, so we have the following general result.

Proposition 5.2.6. If a normal modal logic L is canonical, then it is complete.

The general idea of the proof can be described as follows: suppose that L is canonical and

Γ ̸ L α. Then, Γ ∪ {¬α} is L-consistent. Thus, by a suitable variant of Lindenbaum’s lemma, it

can be extended to a maximally L-consistent set ∆. We now have ML,∆ Γ and ML,∆ ̸ α
by the truth lemma. Since L is canonical, ML is based on an L-frame, so this yields Γ ̸ L α.

5.2.2 Extensions of InqK Based on Normal Modal Logics

For every normal modal logic L, we may now define a corresponding inquisitive system InqL
which extends the system InqK introduced above. Formally, InqL is obtained from InqK by

restricting entailment to Kripke models based on L-frames, so we adopt the following definition.

Definition 5.2.7 (The Systems InqL). Let L be a normal modal logic. For any set of formulas

Γ∪{φ} ⊆ LK, we writeΓ Inq
L φ and say thatφ is entailed byΓ in InqL, if for every Kripke model

M , based on an L-frame, and for every state s over M , we have: if M, s Γ, then M, s φ.

Given any normal modal logic L, we will also say that InqL is the inquisitive system based on
L. Observe that, in particular, InqK is the system based on the smallest normal modal logic, K.

Moreover, it is easy to see that, for every normal modal logic L, InqL is in fact an extension of

InqK, in the sense that every formula valid in InqK is also valid in InqL but not necessarily the

other way around. In other words, if InqK and InqL are identified with the sets of their validities,

then InqK ⊆ InqL. As an immediate consequence of this, we obtain the following facts.

Proposition 5.2.8. For every normal modal logic L and for all formulas φ,ψ ∈ LK, we have:
(i) Inq

L □(φ→ ψ)→ (□φ→ □ψ),
(ii) Inq

L □(φ ∨ ψ)→ (□φ ∨□ψ),
(iii) If Inq

L φ, then Inq
L □φ.

Proof. The statements follow immediately from Propositions 5.1.5 and 5.1.10.

In Section 5.1, we already mentioned that InqK is a conservative extension of the normal modal

logicK. Thus, a standard formula is valid in InqK if and only if it is valid inK. The following propo-

sition shows that this can be generalized to each of the logics InqL (cf. Ciardelli 2016b, p. 213).

Proposition 5.2.9 (Conservativity over L). Let L be a normal modal logic. Then, for every set of
standard formulas Γ ∪ {α} ⊆ LKs , we have: Γ

Inq
L α if and only if Γ L α.
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α→ (φ ∨ ψ)
(split)

(α→ φ) ∨ (α→ ψ)

□(φ→ ψ)
(→dis)

□φ→ □ψ

¬¬α
(dne)

α

□(φ ∨ ψ)
(∨dis)

□φ ∨□ψ

φ
(nec)

□φ

Figure 5.1: Special rules of the natural deduction system for InqL given by Ciardelli

(2016b). In the rules (split) and (dne), α ∈ LK! must be a declarative formula. Moreover, the

rule (nec) can only be applied if the subdeduction ending with φ has no open hypotheses.

However, note that this correspondence between a normal modal logic L and its inquisitive

counterpart, InqL, is restricted to standard formulas only. In particular, it may very well be the

case that L validates certain axiom schemes for standard formulas that do not remain valid in

InqL when instantiated with arbitrary formulas from LK. For example, consider the modal logic

T, axiomatized by the scheme □α→ α. By Proposition 5.2.9, we know that this scheme remains

valid in InqT for all standard formulas α ∈ LKs . However, for arbitrary φ ∈ LK, the scheme

□φ→ φ turns out to be invalid in InqT. To see this, let M be a reflexive Kripke model with two

worlds u and w such that R = {(u, u), (w,w)}, V (u, p) = 0 and V (w, p) = 1. Then, clearly, for

the state s = {u,w}, we have M, s □?p and M, s ̸ ?p, so it follows ̸ Inq
T □?p→ ?p.

In order to conclude this section, we now want to present a generic completeness result by

Ciardelli (2016b) that holds for all systems InqL which are based on a canonical modal logic L.

More precisely, we will describe a general strategy that allows to turn any axiom system Θ for

a canonical modal logic L into a sound and complete natural deduction system NinqLΘ for its

inquisitive counterpart, InqL. Recall that, by an axiom system for a modal logic L, we mean

any set of standard formulas Θ ⊆ LKs such that L is the smallest normal modal logic containing

Θ. Thus, for example, the empty set would be an axiom system for the logic K, and the set

containing all standard instances of □α → α would be an axiom system for the logic T. Note

that, in principle, it would also be legitimate to take L itself as an axiom system for L.
6

Now, given any canonical modal logic L, Ciardelli (2016b, pp. 214–217) provides us with a gen-

eral recipe that allows to transform any axiom system Θ ⊆ LKs for L into a sound and complete

natural deduction system for the corresponding inquisitive logic InqL. The system obtained by

Ciardelli’s method will be referred to as NinqLΘ and can be defined in the following way.

Definition 5.2.10 (The Systems NinqLΘ). Let L be a canonical modal logic and let Θ ⊆ LKs be an

axiom system for L. The natural deduction system NinqLΘ comprises all rules of the system pre-

sented in Figure 1.3, together with the axioms from Θ and the special rules depicted in Figure 5.1.

In what follows, we will write
N
Θ for the provability relation of the system NinqLΘ. Note

that, for every canonical modal logic L, Definition 5.2.10 does not give us a single proof system

for InqL, but a whole family of such systems—namely, one system for each possible choice of Θ.

Furthermore, by definition, all elements of the underlying axiom system Θ for L are also taken

to be axioms of the natural deduction system NinqLΘ. So, for instance, in the natural deduction

system for InqT, we might adopt all instances of the schema □α → α, and in the system for

InqK4, we might adopt all instances of □α → □□α.
7

This is necessary in order to account

6

As we will see later on, this has some notable consequences for the decidability of Ciardelli’s proof systems.

7

Note that, in either case, we require α to be a standard formula, i.e., α ∈ LK
s .
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for the fact that InqL is a conservative extension of L, so NinqLΘ should allow us to derive the

characteristic schemes of the underlying base logic L and all logical consequences thereof.

Let us now say a bit more about the special rules given in Figure 5.1. First of all, in the rules

(split) and (dne), the meta-variable α is now allowed to range over arbitrary declarative formulas

and not just over standard formulas. Thus, α is allowed to contain occurrences of ∨, provided

that they are in the scope of a box operator. This is necessary in order to account for the truth-

conditionality of declarative formulas in InqL (see Proposition 5.1.8). The rules (→dis), (∨dis)
and (nec), on the other hand, are used to account for the fact that □ distributes over both→ and

∨, and that necessitation is valid in each of the systems InqL (see Proposition 5.2.8). Note that, in

the necessitation rule (nec), we require all hypotheses of the deduction to be discharged. Without

this restriction, our systems would allow us to prove invalid formulas such as p→ □p.
8

It is now

possible to show that each of the systems NinqLΘ is sound and complete with respect to InqL.

Theorem 5.2.11 (Soundness and Completeness). LetL be a canonical modal logic and letΘ ⊆ LKs
be an axiom system for L. For every Γ ∪ {φ} ⊆ LK, we have: Γ N

Θ φ if and only if Γ Inq
L φ.

A proof is provided by Ciardelli (2016b, pp. 217–221). For the completeness part, he uses the

canonical model ML for L. The basic idea is as follows: suppose that we have Γ ̸ N
Θ φ. Using a

support-based generalization of the truth lemma, this allows us to find a state S over ML such

that ML, S Γ and ML, S ̸ φ. But then, since L is canonical, it follows Γ ̸ Inq
L φ.

5.2.3 Geometric Extensions of InqK

Ciardelli’s completeness result for the Kripke logics InqL obviously has some limitations. For one

thing, his natural deduction systems NinqLΘ are clearly not analytic in the sense that one might

prove a normalization theorem for them and derive a suitable version of the subformula property

thereof. For another, Ciardelli’s general strategy is only applicable in practice, if a suitable axiom

system Θ for L is already known in advance. In order to be a bit more specific about this, suppose

that we want to use Ciardelli’s method in order to find a sound and complete natural deduction

system for some InqL, where L is assumed to be canonical. If an appropriate set of axioms Θ for

L is not given to us in advance, all we can do is to use the set L itself as an axiom system for L
when constructing the natural deduction system NinqLΘ.

9
However, in this case, we are facing

the problem that L might not be a decidable set of formulas, so the resulting axiomatization for

InqL is not guaranteed to be recursive.10
Furthermore, rather than considering modal logics from

an axiomatic point of view, we are often more interested in modal logics given to us by a frame
condition such as ‘the logic of all reflexive frames’ or ‘the logic of all transitive frames’.

For this reason, we will henceforth only consider inquisitive systems based on a certain type of

canonical modal logics. The logics belonging to this type are known as geometric extensions of the

basic system K and they are determined by a first-order frame condition of the form ∀w⃗(φ→ ψ),
where φ and ψ are not allowed to contain implications or universal quantifiers. A frame con-

dition of this kind is also known as a geometric implication (see Negri 2003; 2005).
11

To make

8

Strictly speaking, Ciardelli (2016b, pp. 214–217) uses a slightly more general version of the necessitation rule, which

may be described in the following way: given a subdeduction of φ from Γ and additional premises □ψ for each

ψ ∈ Γ, we may infer □φ and discharge all hypotheses in Γ. However, due to the presence of the rule (→dis), the

two formulations of the necessitation rule are easily seen to be equivalent.

9

As mentioned in the previous section, this would in fact be a legitimate choice in Ciardelli’s construction.

10

Recall that an axiomatization of a logic is said to be recursive, if it has a decidable set of axioms (cf. Blackburn et al.

2001, p. 342). By Craig’s theorem, this is equivalent to saying that the set of theorems of the logic is recursively enu-
merable (cf. Craig 1953; Putnam 1965). Observe that, since NinqLΘ comprises all formulas from Θ as axioms, it will

only be a recursive axiomatization for InqL, if Θ is a decidable axiom system for L (see also Ciardelli 2016b, p. 216).

11

This terminology actually comes from the field of topos theory, where first-order theories axiomatized by geometric

implications are an important subject of study. For further details, we refer to Mac Lane and Moerdijk (1994).
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things precise, let us import some further terminology from standard modal logic. In what fol-

lows, properties of frames will be described by first-order formulas taken from a so-called frame
language. It comprises all first-order formulas built up from a binary relation symbol R, which

is interpreted as the accessibility relation of a Kripke frame (cf. Blackburn et al. 2001, p. 126).

Definition 5.2.12 (Frame Language). The frame language over a set of variablesS is denotedLSF
and consists of all first-order formulas built up from a binary relation symbolR and the variables

in S by means of the constants⊥ and⊤, the connectives∧, ∨ and→, and the quantifiers ∀ and ∃.

In standard modal logic, it is usually assumed that the frame language also includes the identity
predicate =. For simplicity, we will henceforth neglect the issues arising from this predicate and

restrict ourselves to the simplified frame language without equality. Nevertheless, this is not an

essential restriction and the reader can easily adjust our results to the more general setting.

As usual in first-order logic, we will say that a formula φ ∈ LSF is closed, if it does not contain

free variables. Note that, by interpreting the binary relation symbolR as the accessibility relation

of a frame, every Kripke frame may now be considered as a model for the first-order language

LSF . Hence, given a frame F and a closed formula φ ∈ LSF , we will write F φ and say that F
satisfies φ, if F satisfies φ in classical first-order logic. For any set of closed formulas Φ ⊆ LSF ,

we will also use the notation F Φ as an abbreviation for ‘F φ for all φ ∈ Φ’.

Let now Φ ⊆ LSF be an arbitrary set of closed formulas. The class of frames determined by Φ
is denoted by Fr(Φ) and defined to be the class of all Kripke frames satisfying the formulas in Φ.

In other words, we put Fr(Φ) := {F | F is a frame with F Φ}. On the other hand, the modal
logic determined byΦ is denoted by L(Φ) and consists of all standard formulas that are valid in all

frames from Fr(Φ), so we define L(Φ) := {α ∈ LKs | F α for all F ∈ Fr(Φ)}.12
A modal logic

determined by at least one set of sentences Φ ⊆ LSF is also said to be elementarily determined.

Let us consider some examples. As indicated in Table 5.1, the class of all reflexive Kripke frames

is determined by the first-order sentence ∀u.Ruu and the corresponding standard modal logic

is known as KT or T. On the other hand, the class of all transitive frames is determined by the

sentence ∀uvw.(Ruv∧Rvw → Ruw) and the very same sentence also determines the standard

modal logic K4. These two first-order sentences together determine the class of all frames that

are both reflexive and transitive, which corresponds to the modal logic known as KT4 or S4.

It was already mentioned that we are only interested in frame conditions of a specific type—

namely, those conditions that can be described by a number of geometric implications. Towards a

definition of this concept, let us say that a first-order formula φ ∈ LSF is geometric, if it does not

contain occurrences of→ or ∀. We now import the following notions from Negri (2003; 2005).

Definition 5.2.13 (Geometric Implication, Geometric Axiom). By a geometric implication, we

will mean a closed formula of the shape ∀w⃗(φ→ ψ), where φ,ψ ∈ LSF are geometric formulas.

A geometric axiom, on the other hand, is a closed formula of the form ∀w⃗(φ→ ∃u⃗(ψ1∨. . .∨ψn)),
where each φ,ψ1, . . . , ψn is a conjunction of atomic formulas from the frame language LSF .

13

In the definition of a geometric axiom, we also allow the special case in which some of the

conjunctions φ,ψ1, . . . , ψn are empty. In particular, if the antecedent φ of the implication is

empty, we identify it with ⊤ and write the geometric axiom in the form ∀w⃗∃u⃗(ψ1 ∨ . . . ∨ ψn).
Similarly, if each of the formulas ψ1, . . . , ψn is an empty conjunction, the whole consequent

∃u⃗(ψ1 ∨ . . . ∨ ψn) will be identified with ⊥, so the geometric axiom has the form ∀w⃗¬φ.

We are now ready to introduce the most important concept of this section: the class of all

geometric extensions of the basic modal logic K. This class comprises all standard modal logics

that are determined by at least one finite set of geometric implications from the frame language.

For the sake of simplicity, such an extension ofKwill also be referred to as a geometric modal logic.
12

Recall that F αwas defined to mean that α is valid over F in the inquisitive system InqK. However, by the truth-

conditionality of standard formulas, this is equivalent to saying that α is valid over F in the standard modal logic K.

13

To be clear: by an atomic formula from LS
F , we mean any formula of the form Ruv, where u, v ∈ S. Thus, in

particular, the logical constants ⊥ and ⊤ will not be considered as atomic formulas.



5.3. Sequent Calculi for Geometric Extensions of InqK 99

Definition 5.2.14 (Geometric Modal Logic). A standard modal logicL ⊆ LKs is said to be geomet-
ric, if there exists a finite set of geometric implications Φ ⊆ LSF such that L is determined by Φ.

14

An inquisitive system InqL will be called geometric, if the underlying base logic L is geometric.

In order to see some examples, let us consider the first-order sentences depicted in Table 5.1. One

readily sees that each of these sentences is a geometric implication (and, in fact, even a geometric
axiom).

15
Consequently, every normal modal logic generated by some combination of the axiom

schemes T, 4, 5, B and D is a geometric modal logic. As we have seen above, this includes a wide

range of very famous modal logics such as, for example, T, B, D, S4, S5 and many others.

It is easy to see that every geometric axiom is also a geometric implication, but not the other

way around. Nevertheless, it is possible to show that every geometric implication is equivalent

to a conjunction of geometric axioms. As a consequence, we obtain the following proposition.

Proposition 5.2.15. A standard modal logic L ⊆ LKs is geometric if and only if there exists a finite
set of geometric axioms A ⊆ LSF such that L is determined by A.

Proof. The right-to-left direction is trivial, since every geometric axiom is also a geometric im-

plication. For the other direction, suppose that L ⊆ LKs is geometric, i.e., there exists a finite

set Φ ⊆ LSF of geometric implications such that L is determined by Φ. Consider an arbitrary

such implication ∀w⃗(φ → ψ) from Φ. As observed by Palmgren (2002, p. 298), φ and ψ are

equivalent to formulas of the form ∃v⃗(φ1∨ . . .∨φm) and ∃u⃗(ψ1∨ . . .∨ψn), respectively, where

each φi and ψi is a conjunction of atomic formulas and u⃗, v⃗ and w⃗ are assumed to be pairwise

disjoint. But then, clearly, ∀w⃗(φ→ ψ) is equivalent to the conjunction of the geometric axioms

∀w⃗(φi → ∃u⃗(ψ1 ∨ . . . ∨ ψn)) where 1 ≤ i ≤ m. By repeating this procedure for the other

elements of Φ, we thus obtain a finite set of geometric axioms A ⊆ LSF that determines L.

Proposition 5.2.15 shows that every geometric modal logic can also be determined by a set of

geometric axioms, rather than by a set of geometric implications. This will play a crucial role

in the next section, where we will see a general strategy that allows to transform any set of

geometric axioms into a corresponding set of sequent rules. Using this strategy, we will obtain

cut-free labelled sequent calculi for all geometric extensions of the inquisitive system InqK.

Finally, let us say a bit more about the relationship between geometric modal logics and the no-

tions introduced in Section 5.2.1. First, it is easy to verify that every geometric modal logic is also

a normal modal logic in the sense of Definition 5.2.1. In fact, it is even possible to prove a stronger

claim: every geometric modal logic is canonical. This follows from a more general result by Fine

(1975), saying that any modal logic determined by first-order frame conditions is canonical.
16

As

shown by Goldblatt et al. (2003), however, the converse of this statement is not true, i.e., there

exist canonical modal logics that are not elementarily determined (and therefore not geometric).

We thus arrive at the following picture: the geometric modal logics form a proper subclass of the

canonical modal logics, which in turn form a proper subclass of the normal modal logics.

5.3 Sequent Calculi for Geometric Extensions of InqK

We now want to define labelled sequent calculi for the full class of geometric extensions of the

basic system InqK. More specifically, for every geometric standard modal logic L determined by

a finite set of geometric axioms A ⊆ LSF , we will construct a cut-free labelled sequent calculus

14

Strictly speaking, the finiteness of Φ is not a necessary condition for the results we will obtain in this chapter.

Nevertheless, we will keep this constraint, as it greatly simplifies the completeness proof given in Section 5.6.

15

Observe that, in the first-order formulas corresponding to reflexivity and seriality, the antecedent of the implication

is taken to be ⊤ and therefore not displayed in the table.

16

This result is also known as Fine’s canonicity theorem. See Goldblatt (2020) for further details.
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GLinqLA that is sound and complete with respect to the corresponding inquisitive system InqL.

The construction is based on a general strategy described by Negri (2003; 2005), which allows to

generate sequent rules from geometric axioms in a schematic and uniform way.

As before, we will assume two countably infinite sets of state variables, denoted by S and V,

respectively. The variables in S are used for singleton states and the variables in V are used for

arbitrary information states. For convenience, we shall assume that S is also the set of variables

that we used in our definition of the frame language LSF (see Definition 5.2.12). Following the

convention adopted in the previous chapters, we will use the meta-variables u, v, w, etc., for

elements of S and the meta-variables x, y, z, etc., for elements of V. The set of labels is defined

in exactly the same way as in our treatment of intuitionistic inquisitive logic, except that the

R-operator can no longer be used to embed arbitrary labels, but only variables from S.

Definition 5.3.1 (Labels). The set of labels is denoted by Λ(S,V) and consists of all expressions

generated by the following grammar, where w ∈ S and x ∈ V are arbitrary variables:

π ::= w | x | ∅ | π · π | π + π | R(w).

Labels are interpreted in the usual way as descriptions of information states. Thus, intuitively,

π ·σ stands for the intersection and π+σ for the union of the states denoted by π and σ. As before,

we will also use the notation πσ as a shorthand for π · σ. A label of the form R(w) represents

the neighbourhood of a world w, i.e., the set of all worlds accessible from w in a Kripke model.

Let us recall some basic vocabulary. A relational atom is defined to be an expression of the form

π ⩽ σ, where π and σ are arbitrary labels. A labelled formula, on the other hand, is an expression

of the form π : φ, where π is a label and φ ∈ LK is a formula. Relational atoms and labelled

formulas have their usual (intended) meaning. That is, π ⩽ σ should be read as ‘π is a subset of

σ’ and π : φ should be read as ‘φ is supported by π’. By a sequent, we mean any expression of

the form Γ⇒ ∆, where Γ is a finite multiset containing labelled formulas and relational atoms,

and ∆ is a finite multiset containing only labelled formulas (but no relational atoms). Given a

sequent Γ⇒ ∆, we also call Γ the antecedent and ∆ the succedent of the sequent.

We start by defining a labelled sequent calculus GLinqK for the basic system InqK of inquis-

itive Kripke logic. Afterwards, we will describe how GLinqK can be extended to a proof system

for arbitrary geometric systems InqL.
17

Our sequent calculus for InqK is presented in Figure 5.2.

As can be seen, the axioms, the rules for the propositional connectives and most of the order rules

are exactly the same as in our labelled sequent calculus for InqB. The only new ingredients are the

rules L□,R□ and (nb). Intuitively, (nb) says that, if a singleton statew is a subset of another sin-

gleton state u, then also the neighbourhood ofw is a subset of the neighbourhood of u. The rules

L□ and R□, on the other hand, mirror the support clause for □ introduced in Definition 5.1.3.

Note that R□ comes with a side condition, saying that w must be a fresh variable not occurring

in the conclusion of the rule. Moreover, as usual, we assume that order rules always satisfy the

closure condition: if an instance of an order rule produces a duplication of relational atoms in the

conclusion of the rule, then also the contracted instance of the rule is added to our system.
18

Definition 5.3.2 (The System GLinqK). We define GLinqK to be the sequent calculus depicted

in Figure 5.2. A sequent Γ⇒ ∆ is derivable in our system, if there exists a proof tree in GLinqK
ending with this sequent. Given any finite subset Γ∪{φ} ⊆ LK, we say that φ is provable from Γ
in GLinqK, if for some (or, in fact, any) variable x ∈ V, the sequent x : Γ⇒ x : φ is derivable.

19

We adopt the usual terminology from the previous chapters. That is, in an instance of an

axiom or a rule of inference, the multiset Γ is called the left context and the multiset ∆ is called

17

Recall that an inquisitive system InqL is called geometric, if the underlying standard modal logic L is geometric.

18

As before, this is necessary in order to ensure that contraction on relational atoms is admissible in our system.

19

As in the previous chapters, we write x : Γ for the set of labelled formulas defined by (x : Γ) := {x : ψ | ψ ∈ Γ}.
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Axioms:

Ax
w : p,Γ⇒ ∆, w : p

Ax⊥

w : ⊥,Γ⇒ ∆
Ax∅

w ⩽ ∅,Γ⇒ ∆

Logical Rules:

w : p, w ⩽ π, π : p,Γ⇒ ∆
Lp

w ⩽ π, π : p,Γ⇒ ∆

w ⩽ π,Γ⇒ ∆, w : p
Rp

Γ⇒ ∆, π : p

w : ⊥, w ⩽ π, π : ⊥,Γ⇒ ∆
L⊥

w ⩽ π, π : ⊥,Γ⇒ ∆

w ⩽ π,Γ⇒ ∆, w : ⊥
R⊥

Γ⇒ ∆, π : ⊥
π : φ, π : ψ,Γ⇒ ∆

L∧
π : φ ∧ ψ,Γ⇒ ∆

Γ⇒ ∆, π : φ Γ⇒ ∆, π : ψ
R∧

Γ⇒ ∆, π : φ ∧ ψ
π : φ,Γ⇒ ∆ π : ψ,Γ⇒ ∆

L∨
π : φ ∨ ψ,Γ⇒ ∆

Γ⇒ ∆, π : φ, π : ψ
R∨

Γ⇒ ∆, π : φ ∨ ψ
π ⩽ σ, σ : φ→ ψ,Γ⇒ ∆, π : φ π ⩽ σ, σ : φ→ ψ, π : ψ,Γ⇒ ∆

L→
π ⩽ σ, σ : φ→ ψ,Γ⇒ ∆

x ⩽ π, x : φ,Γ⇒ ∆, x : ψ
R→

Γ⇒ ∆, π : φ→ ψ

R(w) : φ,w ⩽ π, π : □φ,Γ⇒ ∆
L□

w ⩽ π, π : □φ,Γ⇒ ∆

w ⩽ π,Γ⇒ ∆, R(w) : φ
R□

Γ⇒ ∆, π : □φ

Order Rules:

π ⩽ τ, π ⩽ σ, σ ⩽ τ,Γ⇒ ∆
(tr)

π ⩽ σ, σ ⩽ τ,Γ⇒ ∆

π ⩽ πσ + πτ, π ⩽ σ + τ,Γ⇒ ∆
(dis)

π ⩽ σ + τ,Γ⇒ ∆

π ⩽ στ, π ⩽ σ, π ⩽ τ,Γ⇒ ∆
(in)

π ⩽ σ, π ⩽ τ,Γ⇒ ∆

π + τ ⩽ σ, π ⩽ σ, τ ⩽ σ,Γ⇒ ∆
(un)

π ⩽ σ, τ ⩽ σ,Γ⇒ ∆

πσ ⩽ π,Γ⇒ ∆
(il)

Γ⇒ ∆

σπ ⩽ π,Γ⇒ ∆
(ir)

Γ⇒ ∆

π ⩽ π + σ,Γ⇒ ∆
(ul)

Γ⇒ ∆

π ⩽ σ + π,Γ⇒ ∆
(ur)

Γ⇒ ∆

π ⩽ ∅, π ⩽ w,Γ⇒ ∆ w ⩽ π, π ⩽ w,Γ⇒ ∆
(sg)

π ⩽ w,Γ⇒ ∆

π ⩽ π,Γ⇒ ∆
(rf)

Γ⇒ ∆

w ⩽ π,w ⩽ π + σ,Γ⇒ ∆ w ⩽ σ,w ⩽ π + σ,Γ⇒ ∆
(cd)

w ⩽ π + σ,Γ⇒ ∆

R(w) ⩽ R(u), w ⩽ u,Γ⇒ ∆
(nb)

w ⩽ u,Γ⇒ ∆

Figure 5.2: The systemGLinqK. In each case,w and u range over variables fromS, x ranges

over variables from V, and π, σ, τ , etc., stand for arbitrary labels. In Rp and R⊥, w must

be a fresh variable not occurring in the conclusion of the rule and π is required to be a non-

singleton label, i.e., π /∈ S. Similarly, w must be fresh in R□, and x must be fresh in R→.

the right context. In the conclusion of each rule, and also in the axioms, the labelled formulas

and relational atoms not belonging to the context are said to be principal. The corresponding

expressions occurring in the premises of a rule are called active. So, for example, in an application

of R□ with premise w ⩽ π,Γ ⇒ ∆, R(w) : φ and conclusion Γ ⇒ ∆, π : □φ, the labelled

formula π : □φ is principal, while the expressions w ⩽ π and R(w) : φ are both active.
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u ⩽ R(u),Γ⇒ ∆
(T)

Γ⇒ ∆

u ⩽ R(v), v ⩽ R(u),Γ⇒ ∆
(B)

v ⩽ R(u),Γ⇒ ∆

v ⩽ R(u),Γ⇒ ∆
(D)

Γ⇒ ∆

w ⩽ R(u), w ⩽ R(v), v ⩽ R(u),Γ⇒ ∆
(4)

w ⩽ R(v), v ⩽ R(u),Γ⇒ ∆

w ⩽ R(v), v ⩽ R(u), w ⩽ R(u),Γ⇒ ∆
(5)

v ⩽ R(u), w ⩽ R(u),Γ⇒ ∆

Figure 5.3: Some instances of the geometric rule scheme. The rules correspond to reflexiv-

ity, symmetry, seriality, transitivity and Euclideanness, respectively. Rule (D) has a side con-

dition, saying that v ∈ Smust be a fresh variable not occurring in the conclusion of the rule.

We now want to extend our calculus GLinqK to a proof system for arbitrary geometric in-

quisitive systems InqL. To this end, we will employ a general method by Negri (2003; 2005) that

allows to transform any given set of geometric axioms into a corresponding set of proof rules.

The basic idea is as follows: consider an arbitrary inquisitive system InqL such that L is a ge-

ometric standard modal logic. Then, by Proposition 5.2.15, there exists a finite set of geometric

axioms A ⊆ LSF such that L is determined by A. We choose an arbitrary geometric axiom θ ∈ A.

By Definition 5.2.13, the axiom θ must be of the form ∀w⃗(φ→ ∃u⃗(ψ1 ∨ . . . ∨ ψn)), where each

φ,ψ1, . . . , ψn is a conjunction of atomic formulas from the frame language. For simplicity, we

restrict ourselves to the case in which u⃗ contains only one variable, and we distribute the ex-

istential quantifier over the disjunctions. More precisely, we transform θ into a formula of the

shape ∀w⃗(φ→ (∃u1ψ1∨ . . .∨∃unψn)), where none of the variables ui occurs free in φ. Let now

Φ be the multiset of all atoms occurring in φ and let Ψi be the multiset of all atoms occurring

in ψi. Furthermore, given any set of atoms from the frame language Σ ⊆ LSF , let us write Σ◦

for the result of replacing each atomic formula Rv1v2 in Σ by the corresponding relational atom

v2 ⩽ R(v1). The geometric axiom θ is then converted into the sequent rule (θ-grs) of the form

Ψ◦
1(v1/u1),Φ

◦,Γ⇒ ∆ · · · Ψ◦
n(vn/un),Φ

◦,Γ⇒ ∆
(θ-grs)

Φ◦,Γ⇒ ∆

where each vi is a fresh variable from S and Ψ◦
i (vi/ui) stands for the result of substituting vi for

ui in each relational atom occurring in the multiset Ψ◦
i . The generic rule (θ-grs) is also referred

to as the geometric rule scheme (cf. Negri 2003; Dyckhoff and Negri 2012).
20

To see an example,

consider the geometric axiom ∀uvw.(Ruv ∧ Rvw → Ruw), expressing the transitivity of a

Kripke frame. The corresponding instance of the geometric rule scheme takes the form

w ⩽ R(u), w ⩽ R(v), v ⩽ R(u),Γ⇒ ∆
(4)

w ⩽ R(v), v ⩽ R(u),Γ⇒ ∆

which can be seen as a proof-theoretical formulation of axiom scheme 4. In the same way, one

can also generate instances of the geometric rule scheme for each of the other geometric axioms

presented in Table 5.1. The resulting sequent rules are depicted in Figure 5.3. For every inquisitive

system InqL given by some set of geometric axioms A, we may now construct a sequent calculus

GLinqLA by extending GLinqK with the respective instances of the geometric rule scheme.

20

If the consequent of θ is empty (that is, if θ is of the form ∀w⃗¬φ), then (θ-grs) is taken to be a zero-premise rule
(and thus an axiom). Moreover, one can also extend the rule scheme to the more general setting in which the frame

language includes the identity predicate =. In this case, an atomic formula of the form v1 = v2 should be translated

as the pair of relational atoms v1 ⩽ v2, v2 ⩽ v1. As mentioned above, however, we will not deal with this case here.
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Definition 5.3.3 (The Systems GLinqLA). Let InqL be a geometric inquisitive logic and let A ⊆
LSF be a finite set of geometric axioms such that L is determined by A.

21
We define GLinqLA

to be the labelled sequent calculus obtained by adding, for each geometric axiom θ ∈ A, the

corresponding instance (θ-grs) of the geometric rule scheme to the basic system GLinqK.

For example, in order to obtain a sequent calculus for the inquisitive system InqKT, we may

enrich the proof system GLinqK with the sequent rule (T) presented in Figure 5.3. And in order

to obtain a sequent calculus for the logic InqKD4, we may add the rules (D) and (4) to GLinqK.

As usual, we say that a formula φ is provable from a finite subset Γ ⊆ LK in one of the calculi

GLinqLA, if there is a variable x ∈ V such that x : Γ⇒ x : φ is derivable in GLinqLA. In order to

make sure that contraction is admissible in each of the systemsGLinqLA, we also adopt the famil-

iar closure condition for instances of the geometric rule scheme. That is, if an instance (θ-grs) of the

scheme produces a duplication of relational atoms in the multiset Φ◦
occurring in the conclusion

of the rule, then also the contracted version of (θ-grs) is taken to be part of our sequent calculi.

The rest of this chapter is organized as follows. In Section 5.4, we will highlight some remark-

able structural properties of our proof systems. We will see that each of the calculi GLinqLA
enjoys cut-admissibility, height-preserving invertibility of all rules, and height-preserving admis-

sibility of weakening and contraction. In Section 5.5, we will establish the soundness of our proof

systems and show that, if L is determined by some combination of the geometric axioms pre-

sented in Table 5.1, then the completeness of GLinqLA can also be established indirectly, by using

a suitable Hilbert-style system for InqL. In Section 5.6, finally, we will use a countermodel con-

struction in order to provide a general completeness proof covering each of the calculi GLinqLA.

5.4 Basic Properties

Let us start by pointing out some important features of our proof systems. Throughout this

section, let A ⊆ LSF be an arbitrary but fixed finite set of geometric axioms and let GLinqLA be

the corresponding labelled sequent calculus introduced in Definition 5.3.3. We first show that

the generalized initial sequents, familiar from the previous chapters, are derivable in GLinqLA.

Lemma 5.4.1. All sequents of the following form are derivable in GLinqLA:
(i) π ⩽ σ, σ : φ,Γ⇒ ∆, π : φ,
(ii) π : φ,Γ⇒ ∆, π : φ.

Proof. The derivability of (i) is proved in the usual way, by induction on the structure of φ. Most

cases are treated in the same way as in the classical setting (see the proof of Lemma 3.2.1). The

only new case is the inductive step for □. In this case, we construct the following derivation:

By ind. hyp.

R(w) ⩽ R(w), R(w) : ψ,w ⩽ σ,w ⩽ π, π ⩽ σ, σ : □ψ,Γ⇒ ∆, R(w) : ψ
(rf)

R(w) : ψ,w ⩽ σ,w ⩽ π, π ⩽ σ, σ : □ψ,Γ⇒ ∆, R(w) : ψ
L□

w ⩽ σ,w ⩽ π, π ⩽ σ, σ : □ψ,Γ⇒ ∆, R(w) : ψ
(tr)

w ⩽ π, π ⩽ σ, σ : □ψ,Γ⇒ ∆, R(w) : ψ
R□

π ⩽ σ, σ : □ψ,Γ⇒ ∆, π : □ψ

The sequent in (ii), on the other hand, can be derived from (i) by an application of (rf).

Lemma 5.4.2. All sequents of the following form are derivable in GLinqLA:
(i) π ⩽ ∅,Γ⇒ ∆, π : φ,
(ii) Γ⇒ ∆, ∅ : φ,
(iii) π ⩽ σ, σ : ⊥,Γ⇒ ∆, π : φ,
(iv) π : ⊥,Γ⇒ ∆, π : φ.

21

Recall that, by Proposition 5.2.15, such a set of geometric axioms does in fact exist.
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Proof. The derivability of (i) and (iii) is established by induction on φ (see Lemma 3.2.2). The only

new part is the inductive step for □, which is covered by the following two derivations:

Ax∅

w ⩽ ∅, w ⩽ π, π ⩽ ∅,Γ⇒ ∆, R(w) : ψ
(tr)

w ⩽ π, π ⩽ ∅,Γ⇒ ∆, R(w) : ψ
R□

π ⩽ ∅,Γ⇒ ∆, π : □ψ

Ax⊥

w : ⊥, w ⩽ σ,w ⩽ π, π ⩽ σ, σ : ⊥,Γ⇒ ∆, R(w) : ψ
L⊥

w ⩽ σ,w ⩽ π, π ⩽ σ, σ : ⊥,Γ⇒ ∆, R(w) : ψ
(tr)

w ⩽ π, π ⩽ σ, σ : ⊥,Γ⇒ ∆, R(w) : ψ
R□

π ⩽ σ, σ : ⊥,Γ⇒ ∆, π : □ψ

As before, the sequents in (ii) and (iv) can be obtained from (i) and (iii) by the rule (rf).

Next, we want to show that GLinqLA also preserves the structural properties of the labelled

sequent calculi considered in the previous chapters. As usual, we say that a rule of inference

is height-preserving admissible (or hp-admissible), if it satisfies the condition that, whenever all

premises of the rule are derivable by a proof tree of height at most n, then also the conclusion

of the rule is derivable by a proof tree of height at most n (where the height of a tree is taken to

be the length of its longest branch). If the admissibility of a rule is not height-preserving, then

the rule is simply called admissible. In addition, a rule is said to be height-preserving invertible
(or hp-invertible), if it is the case that, whenever the conclusion of the rule is derivable by a proof

tree of height at most n, then also each of its premises is derivable by such a proof tree.

The substitution operator for labels is defined in exactly the same way as in our sequent cal-

culus for InqI (see Section 4.4). Thus, in particular, if u, v, w ∈ S are singleton variables, then

we put R(w)(u/v) := R(u), if v = w, and R(w)(u/v) := R(w), if v ̸= w. The definition is

extended to multisets in the usual way. The substitution rules are now defined to be the rules

Γ⇒ ∆ (u/w)
Γ(u/w)⇒ ∆(u/w)

and
Γ⇒ ∆ (π/x)

Γ(π/x)⇒ ∆(π/x)

where u and w are variables from S, x is a variable from V, and π is an arbitrary label.

Proposition 5.4.3. The substitution rules are hp-admissible in GLinqLA.

Proof. By induction on the height of a derivation for Γ⇒ ∆. The base case is treated in the same

way as in the proof of Proposition 3.2.6. For the inductive step, suppose that Γ⇒ ∆ is derivable

by a proof tree D of height n > 1. Consider the last rule applied in D. If this rule does not have

eigenvariables, then we simply apply the induction hypothesis to the premises of the rule, and

then the rule itself.
22

And if the last rule in D has eigenvariables, then we first use the induction

hypothesis in order to rename the eigenvariables, before performing the desired substitution. So,

for example, suppose that we want to substitute a variable u ∈ S for some other variablew ∈ S.

Moreover, assume thatD ends with an application of the geometric rule scheme having the form

D1

Ψ1(v1/u1),Φ,Γ
′ ⇒ ∆′ · · ·

Dm

Ψm(vm/um),Φ,Γ′ ⇒ ∆′
(θ-grs)

Φ,Γ′ ⇒ ∆′

where each vi ∈ S is an eigenvariable of the rule. By applying the induction hypothesis to the

m premises, we first replace the eigenvariables vi by fresh variables v′i satisfying v′i ̸= w. For

22

As in our labelled sequent calculus for InqB, a rule is said to have an eigenvariable, if a root-first application of this

rule allows to introduce a fresh variable in a derivation. In the proof system GLinqLA, this includes the rules Rp,

R⊥,R→,R□ and possibly some instances of the geometric rule scheme. For further details, we refer to Section 3.1.
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Γ⇒ ∆
LW

π : φ,Γ⇒ ∆
Γ⇒ ∆

RW
Γ⇒ ∆, π : φ

Γ⇒ ∆
W⩽

π ⩽ σ,Γ⇒ ∆

π : φ, π : φ,Γ⇒ ∆
LC

π : φ,Γ⇒ ∆

Γ⇒ ∆, π : φ, π : φ
RC

Γ⇒ ∆, π : φ

π ⩽ σ, π ⩽ σ,Γ⇒ ∆
C⩽

π ⩽ σ,Γ⇒ ∆

Figure 5.4: The structural rules of weakening and contraction.

each i with 1 ≤ i ≤ m, this yields a derivation D′
i for Ψi(v

′
i/ui),Φ,Γ

′ ⇒ ∆′
such that D′

i is of

height at most n − 1. We now use the induction hypothesis again in order to perform the sub-

stitution (u/w) in each of these m derivations. Finally, by an application of the rule (θ-grs), we

obtain a derivationD′
for Φ(u/w),Γ′(u/w)⇒ ∆′(u/w) such thatD′

is of height at most n. This

concludes the proof. For the other rules involving eigenvariables, the argument is similar.

We can now prove that the structural rules ofweakening and contraction, depicted in Figure 5.4,

are hp-admissible inGLinqLA. In addition, we show that all rules of our system are hp-invertible.

Proposition 5.4.4. The weakening rules are hp-admissible in GLinqLA.

Proof. For each of the three weakening rules, the proof proceeds by an easy induction on the

height of a derivation D for the premise of the rule. In the inductive step, we consider the last

rule applied in D. If this rule does not have eigenvariables, then we apply the induction hypoth-

esis to the premises of the rule, and then the rule itself. Otherwise, we first use Proposition 5.4.3

in order to introduce a new eigenvariable not clashing with the variables occurring in the weak-

ening formula. For further details, the reader is referred to the proof of Proposition 3.2.7.

Proposition 5.4.5. All rules of GLinqLA are hp-invertible.

Proof. The hp-invertibility of the rules for the propositional connectives is established in the same

way as in the proof of Proposition 3.2.8. Moreover, the hp-invertibility of L□ and the order rules

(including instances of the geometric rule scheme) follows immediately from the hp-admissibility

of weakening. Thus, we only need to show that R□ is hp-invertible. To this end, let D be an

arbitrary derivation for Γ ⇒ ∆, π : □φ and let n be the height of D. Using induction on n, we

show that, for every singleton variable w ∈ S not occurring in the sequent Γ ⇒ ∆, π : □φ,

there is also a derivation D′
for w ⩽ π,Γ⇒ ∆, R(w) : φ such that D′

has height at most n.

For the base case, assume that D has height n = 1. In this case, Γ ⇒ ∆, π : □φ must be

an instance of an axiom and π : □φ cannot be principal (recall that the principal formula of an

instance of Ax is always of the form w : p for some atom p). Hence, w ⩽ π,Γ ⇒ ∆, R(w) : φ
is also an instance of an axiom and therefore derivable by a proof tree D′

of height n = 1.

For the inductive step, suppose thatD has height n > 1 and letw ∈ S be an arbitrary variable

not occurring in Γ⇒ ∆, π : □φ. If the last step in D is a rule for which π : □φ is not principal,

then we apply the induction hypothesis to the premises of the rule (possibly together with a

height-preserving substitution), and we then use the same rule again. On the other hand, if the

last step in D is an application of R□ for which π : □φ is principal, then D must be of the form

D∗

u ⩽ π,Γ⇒ ∆, R(u) : φ
R□

Γ⇒ ∆, π : □φ

where u ∈ S is a fresh variable not occurring in Γ⇒ ∆, π : □φ. By substituting w for u in the

subderivation D∗
, we now obtain the desired derivation D′

for w ⩽ π,Γ⇒ ∆, R(w) : φ.
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Proposition 5.4.6. The contraction rules are hp-admissible in GLinqLA.

Proof. For each of the three contraction rules, the proof is done simultaneously, by induction

on the height of a derivation for the premise of the respective rule. The overall structure of the

argument is the same as in the proof of Proposition 3.2.9. For the sake of brevity, we only consider

the inductive step for the rule RC .
23

Suppose that the sequent Γ ⇒ ∆, π : φ, π : φ is derivable

by a proof tree D of height n > 1. We need to show that there also exists a derivation D′
for

Γ⇒ ∆, π : φ such that D′
is of height at most n. For this purpose, consider the last rule applied

in D. If the labelled formula π : φ is not principal in this rule, then both occurrences of π : φ
also appear in each of the premises of the rule. Thus, by applying the induction hypothesis to the

premises and then the same rule again, we obtain the desired derivationD′
for Γ⇒ ∆, π : φ. On

the other hand, if π : φ is principal in the last rule applied inD, we distinguish cases, depending

on the form ofφ. Ifφ is atomic or if the main operator ofφ is one of the propositional connectives,

then the argument is the same as in the classical setting. Therefore, let us assume that φ is of the

shape φ = □ψ for some formula ψ ∈ LK. In this case, the derivation D must be of the form

D∗

w ⩽ π,Γ⇒ ∆, R(w) : ψ, π : □ψ
R□

Γ⇒ ∆, π : □ψ, π : □ψ

where w ∈ S is a fresh variable not occurring in the end-sequent of D. By applying the height-

preserving invertibility ofR□ and a subsequent height-preserving substitution to the premise of

the indicated application ofR□, we now obtain a derivation of height at mostn−1 for the sequent

w ⩽ π,w ⩽ π,Γ⇒ ∆, R(w) : ψ,R(w) : ψ. Using the induction hypothesis and an application

of R□, this yields the desired derivation D′
of height at most n for Γ⇒ ∆, π : □ψ.

Next, we will prove that the cut rule is admissible in GLinqLA. A definition of this rule was

given in Section 3.2.3. The overall structure of our argument is the same as in the previous chap-

ters. We thus proceed by a main induction on the rank of the cut formula, with a subinduction

on the height of the cut rule application. First, we restate our definition of the degree of a label.

Definition 5.4.7. The degree of a label π is denoted by deg(π) and defined as follows: if π ∈ S
is a singleton variable, then we put deg(π) := 0, and if π /∈ S, then we put deg(π) := 1.

The degree of a formula φ is denoted by deg(φ) and defined to be the number of occurrences of

the logical symbols ⊥, ∧,→, ∨ and □ in φ. The rank of a labelled formula π : φ is defined in the

familiar way, so we put rank(π : φ) := (deg(φ), deg(π)), where deg(φ) is the degree of φ and

deg(π) is the degree of π. Ranks are again compared using a lexicographic ordering. That is, we

write rank(π : φ) < rank(σ : ψ) and say that the rank of π : φ is smaller than the rank of σ : ψ,

if we either have deg(φ) < deg(ψ), or we have both deg(φ) = deg(ψ) and deg(π) < deg(σ).

Lemma 5.4.8. Let π and σ be arbitrary labels and let w ∈ S be a singleton variable. It holds:
(i) If π /∈ S, then rank(w : φ) < rank(π : φ),
(ii) rank(π : φi) < rank(σ : φ1 ⊗ φ2) for i = 1, 2 and ⊗ ∈ {∧,→, ∨},
(iii) rank(π : φ) < rank(σ : □φ).

Proof. The first two statements are proved in the same way as in our treatment of InqB (see

Lemma 3.2.12). The last claim follows directly from the fact that we have deg(φ) < deg(□φ).

As in the previous chapters, the height of a cut rule application is taken to be the sum of the

heights of the two derivations for the premises Γ ⇒ ∆, π : φ and π : φ,Σ ⇒ Θ of this

application.
24

And the rank of a cut rule application is the rank of the associated cut formula π : φ.

23

As before, the rule LC is treated symmetrically. Moreover, the hp-admissibility of the rule C⩽
can be easily estab-

lished by exploiting the closure condition for the order rules and for instances of the geometric rule scheme.

24

Again, by the height of a proof tree, we mean the length of a longest branch in this tree.
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σ : φ, σ ⩽ π, π : φ,Γ⇒ ∆
(glp)

σ ⩽ π, π : φ,Γ⇒ ∆

w ⩽ π,Γ⇒ ∆, w : α
(grp)

Γ⇒ ∆, π : α

u ⩽ R(w), u : φ,Γ⇒ ∆
L □w : □φ,Γ⇒ ∆

u ⩽ R(w),Γ⇒ ∆, u : φ
R □u ⩽ R(w),Γ⇒ ∆, w : □φ

Figure 5.5: Some further admissible rules. In the rule (grp), w must be a fresh variable and

α must be a declarative formula, i.e., α ∈ LK! . In the rule L □, the variable u must be fresh.

Theorem 5.4.9 (Cut-Admissibility). The cut rule is admissible in GLinqLA.

Proof. We proceed by a main induction on the rank of the (labelled) cut formula with a subinduc-

tion on the height of the cut. Most cases are treated in the same way as in our sequent calculus

for InqB (see Theorem 3.2.13). One of the new parts is the case in which the cut formula is of the

form π : □φ and principal on both sides. In this case, the cut rule application must be of the form

D1

w ⩽ π,Γ⇒ ∆, R(w) : φ
R□

Γ⇒ ∆, π : □φ

D2

R(u) : φ, u ⩽ π, π : □φ,Σ⇒ Θ
L□

u ⩽ π, π : □φ,Σ⇒ Θ
(cut)

u ⩽ π,Γ,Σ⇒ ∆,Θ

Using the hp-admissibility of substitution and contraction, this derivation is transformed into

D1

w ⩽ π,Γ⇒ ∆, R(w) : φ
(u/w)

u ⩽ π,Γ⇒ ∆, R(u) : φ

D1

w ⩽ π,Γ⇒ ∆, R(w) : φ
R□

Γ⇒ ∆, π : □φ

D2

R(u) : φ, u ⩽ π, π : □φ,Σ⇒ Θ
(cut)

R(u) : φ, u ⩽ π,Γ,Σ⇒ ∆,Θ
(cut)

u ⩽ π, u ⩽ π,Γ,Γ,Σ⇒ ∆,∆,Θ
C

u ⩽ π,Γ,Σ⇒ ∆,Θ

where the first application of the cut rule is of lower height and the second application is of lower

rank than the original one (the latter assertion follows from part (iii) of Lemma 5.4.8).

Finally, let us sketch some further admissibility results. Figure 5.5 comprises four additional

rules that can be shown to be admissible inGLinqLA. As before, the rule (glp) can be seen as a gen-

eralization of the rule Lp, reflecting the persistency of the support relation: if a formula φ is sup-

ported by a state π and if σ is an enhancement of π, then φ is also supported by σ. The rule (grp),
on the other hand, generalizes the ruleRp and accounts for the truth-conditionality of declarative

formulas: if a declarative α is true at every world w of a state π, then α is also supported by π.

The rules L □ and R □, finally, reflect the truth conditions for □ described above: a formula □φ
is true at a world w, just in case there exists some world u ∈ R(w) such that φ is true at u.

Proposition 5.4.10. Each of the rules depicted in Figure 5.5 is admissible in GLinqLA.

Proof. The admissibility of (glp) is proved in exactly the same way as in the classical setting, by

exploiting the admissibility of the cut rule in GLinqLA (see Proposition 3.2.14). In order to prove

the admissibility of (grp), we proceed by induction on the structure of the declarative formula

α ∈ LK! . Again, most cases are treated in the same way as in the proof of Proposition 3.2.14. The

only difference is that, in the base case, we also need to consider the case in which α is of the

form α = □φ for some arbitrary formula φ ∈ LK. For this purpose, letw ∈ S be a fresh variable

and suppose that w ⩽ π,Γ⇒ ∆, w : □φ is derivable. Then, by the invertibility of the rule R□,
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there must also be a derivationD for the sequent u ⩽ w,w ⩽ π,Γ⇒ ∆, R(u) : φ, where u ∈ S
is again a fresh variable. Using this derivation, we now obtain the following proof tree:

D
u ⩽ w,w ⩽ π,Γ⇒ ∆, R(u) : φ

(w/u)
w ⩽ w,w ⩽ π,Γ⇒ ∆, R(w) : φ

(rf)
w ⩽ π,Γ⇒ ∆, R(w) : φ

R□
Γ⇒ ∆, π : □φ

This concludes the proof. The admissibility of the rules L □ and R □ can easily be established by

deriving the conclusion of the corresponding rule directly from the associated premise.

5.5 Indirect Completeness Proofs

As an interlude, we will now establish the soundness of all calculi GLinqLA and show that, if L is

a standard modal logic determined by some combination A of the geometric axioms presented in

Table 5.1, then the completeness ofGLinqLA can also be established indirectly, by using an appro-

priate Hilbert-style system for InqL. In Section 5.6, we will then use a countermodel construction

in order to provide a general completeness proof, covering each of the systems GLinqLA.

Let us start by proving the soundness of our calculi. First of all, ifw ∈W is a world of a Kripke

model M = ⟨W,R, V ⟩ and if s = {w} is the corresponding singleton state, then we will also

writeR(s) instead ofR(w), whereR(w) refers to the neighbourhood ofw inM . The labels used

in our systems are now interpreted in the obvious way, so we adopt the following definition.

Definition 5.5.1 (Interpretation). Let M = ⟨W,R, V ⟩ be a Kripke model. An interpretation
over M is a function I : S ∪V→ P(W ) such that, for all singleton variables w ∈ S, the state

I(w) ⊆W is a singleton. Given an interpretation I over some Kripke modelM , it is inductively

extended to a function from the set Λ(S,V) of all labels to the set P(W ) in the following way:

(i) I(∅) := ∅,
(ii) I(π · σ) := I(π) ∩ I(σ),

(iii) I(π + σ) := I(π) ∪ I(σ),
(iv) I(R(w)) := R(I(w)).

We will adopt the familiar terminology. In particular, given any interpretation I over some

Kripke model M , we will say that a labelled formula π : φ is satisfied by I , if φ is supported by

the state I(π), i.e., if we have M, I(π) φ. Furthermore, we say that a relational atom π ⩽ σ
is satisfied by I , just in case we have I(π) ⊆ I(σ). A sequent Γ ⇒ ∆ is called valid in a Kripke
modelM , if it satisfies the condition that, for all interpretations I overM , if I satisfies all labelled

formulas and relational atoms in Γ, then there exists a labelled formula π : φ in ∆ such that I
satisfies π : φ. We are now ready to prove the soundness of our calculi: if φ is provable from Γ in

any of the systems GLinqLA, then φ is entailed by Γ in the corresponding inquisitive logic InqL.

Proposition 5.5.2 (Soundness of GLinqLA). Let InqL be a geometric system, let A be a finite set of
geometric axioms determining L, and letGLinqLA be the proof system given by Definition 5.3.3. For
any finiteΓ∪{φ} ⊆ LK, if x : Γ⇒ x : φ is derivable inGLinqLA for some x ∈ V, thenΓ Inq

L φ.25

Proof. Let InqL be an arbitrary geometric inquisitive system, let A be a finite set of geometric

axioms such that L is determined by A, and let GLinqLA be the corresponding sequent calculus

25

Recall that

Inq
L was defined to be the semantic consequence relation associated with the inquisitive Kripke logic

InqL. Thus, we have Γ
Inq
L φ if and only if, for every Kripke model M based on an L-frame and for every state s

overM , it is the case thatM, s Γ impliesM, s φ. For further details, the reader is referred to Definition 5.2.7.
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introduced in Definition 5.3.3. Consider an arbitrary Kripke model M = ⟨W,R, V ⟩ such that

F = ⟨W,R⟩ is an L-frame (thus, in particular, F satisfies each of the geometric axioms in A).
26

We first prove that, if a sequent Γ ⇒ ∆ is derivable in GLinqLA, then Γ ⇒ ∆ is valid in M .

To this end, suppose that there exists a derivation D for Γ ⇒ ∆ in GLinqLA. Using induction

on the structure of D, we show that Γ⇒ ∆ is also valid in M . Most cases can be treated in the

same way as in the classical setting. We only need to consider the case in which the last step in

D is one of the rules for □, an instance of (nb), or an instance of the geometric rule scheme. First,

assume that D ends with an application of the rule R□. In this case, D must be of the form

D′

w ⩽ π,Γ⇒ Σ, R(w) : φ
R□

Γ⇒ Σ, π : □φ

where w ∈ S is a fresh variable not occurring in Γ ⇒ Σ, π : □φ. By induction hypothesis, we

know that the sequent w ⩽ π,Γ ⇒ Σ, R(w) : φ is valid in M . We need to show that this also

holds for the sequent Γ ⇒ Σ, π : □φ. Towards a contradiction, suppose that Γ ⇒ Σ, π : □φ is

not valid in M , i.e., there exists an interpretation I over M such that I satisfies all expressions

in Γ, but I satisfies neither π : □φ nor any expression in Σ. By the semantics of □, this implies

that there exists some world u ∈ W such that u ∈ I(π) and M,R(u) ̸ φ. Let now I∗ be the

interpretation which is just like I , except that the variable w is mapped to the singleton state

{u}, so we put I∗(w) := {u}. Then, clearly, I∗ satisfies w ⩽ π and each of the expressions in

Γ. Therefore, by induction hypothesis, I∗ must also satisfy R(w) : φ or some labelled formula

in Σ. If I∗ satisfies R(w) : φ, then we must have M,R(u) φ by definition of I∗, which is a

contradiction to the fact that M,R(u) ̸ φ. And if I∗ satisfies some element of Σ, then also the

original interpretation I must satisfy this element, which is a contradiction to our assumption

about I . Thus, in either case, we arrive at a contradiction, so Γ⇒ Σ, π : □φ is valid in M .

If the last step in D is an application of L□ or (nb), then the proof is similar. In order to show

the soundness of the geometric rules, let now θ ∈ A be an arbitrary geometric axiom. Without

loss of generality, assume that θ is given to us in the form ∀w⃗(φ→ (∃u1ψ1∨. . .∨∃unψn)), where

each φ,ψ1, . . . , ψn is a conjunction of atomic formulas from the frame language LSF . Moreover,

suppose thatD ends with an application of the corresponding geometric rule, soD is of the form

D1

Ψ◦
1(v1/u1),Φ

◦,Σ⇒ ∆ · · ·
Dn

Ψ◦
n(vn/un),Φ

◦,Σ⇒ ∆
(θ-grs)

Φ◦,Σ⇒ ∆

where each vi is a fresh variable not occurring in the conclusion, Φ◦
is the set of relational atoms

corresponding to the atomic formulas in φ, and Ψ◦
i is the set of relational atoms corresponding

to the atomic formulas in ψi.
27

By induction hypothesis, we know that each of the sequents

Ψ◦
i (vi/ui),Φ

◦,Σ⇒ ∆ is valid in the Kripke model M . We need to prove that this also holds for

Φ◦,Σ⇒ ∆. To this end, let I be an arbitrary interpretation over M and suppose that I satisfies

all expressions in Φ◦
and Σ. Since M is based on a frame F satisfying the geometric axiom θ,

there must be some world wi ∈W such that F satisfies the first-order formula ψi, provided that

the variable ui is interpreted as wi and all free variables in ψi are interpreted in accordance with

I . Let now I∗ be the interpretation which is just like I , except that the variable vi is mapped

to the singleton state {wi}, so we put I∗(vi) := {wi}. Then, clearly, I∗ satisfies all expressions

in Ψ◦
i (vi/ui),Φ

◦,Σ. Hence, by induction hypothesis, there must be some element of ∆ which

is satisfied by I∗ and therefore also by I . Since I was an arbitrary interpretation satisfying all

expressions in Φ◦
and Σ, this shows that the sequent Φ◦,Σ⇒ ∆ is valid in M , as desired.

26

As explained above, F is an L-frame, if F validates every formula in L. Here, L is assumed to be the standard

modal logic determined by A, so this is equivalent to saying that F satisfies each of the geometric axioms in A when

considered as a model of first-order logic. For a more detailed explanation of the relevant notions, see Section 5.2.3.

27

By what was said in Section 5.3, given any set Θ ⊆ LS
F of atomic formulas from the frame language, we write Θ◦

for the result of replacing every atomic formula Ruv in Θ by the corresponding relational atom v ⩽ R(u).
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Axioms:

(IPL) All axioms of the ‘intuitionistic’ system given in Figure 1.5,

(→Dis) □(φ→ ψ)→ (□φ→ □ψ),
(∨Dis) □(φ ∨ ψ)→ (□φ ∨□ψ),
(Split) (α→ (φ ∨ ψ))→ ((α→ φ) ∨ (α→ ψ)), where α ∈ LK! is declarative,

(DN) ¬¬α→ α, where α ∈ LK! is declarative.

The rules of inference of our system are modus ponens (from Γ φ and Γ φ → ψ,

one can infer Γ ψ) as well as necessitation (from φ, one can infer □φ).

Figure 5.6: The Hilbert-style system HinqK.

This concludes the induction. Thus, if Γ⇒ ∆ is derivable in GLinqLA, then Γ⇒ ∆ is valid in

all Kripke models M based on an L-frame. Let now Γ ∪ {φ} ⊆ LK be an arbitrary finite set and

suppose that x : Γ⇒ x : φ is derivable in GLinqLA, where x ∈ V. As we have just seen, this im-

plies that, for every Kripke model M , based on an L-frame, and for all interpretations I over M ,

it is the case that M, I(x) Γ implies M, I(x) φ. But then, clearly, it follows Γ Inq
L φ.

We now want to establish the completeness of GLinqLA for the special case in which A ⊆ LSF
consists of one or more of the geometric axioms presented in Table 5.1. The overall structure of

our argument will be the same as in the previous chapters. Thus, given any standard modal logic

L determined by some combination A of the geometric axioms from Table 5.1, we will first define

a Hilbert-style system HinqLΘ for InqL, where Θ ⊆ {T, 4, 5,B,D} is the set of standard axiom

schemes associated with the geometric axioms in A. Afterwards, we will show that HinqLΘ is

equivalent to the corresponding natural deduction system NinqLΘ introduced in Section 5.2.2,

which allows us to conclude that HinqLΘ is sound and complete with respect to InqL. Finally,

we will use the system HinqLΘ in order to establish the completeness of GLinqLA.

A sound and complete Hilbert-style proof system for the basic logic InqK is depicted in Fig-

ure 5.6. As can be seen, our system is denoted by HinqK and comprises all axioms of the system

from Figure 1.5, together with the distributivity axioms (→Dis) and (∨Dis), the split axiom (Split)
and the double negation axiom (DN). The only rules of inference are modus ponens and necessi-

tation. Observe that, in the axiom schemes (Split) and (DN), α is allowed to range over arbitrary

declarative formulas, and not just over standard formulas. Moreover, the necessitation rule can

only be applied, if the premise of the rule is derived without using hypotheses. We will now ex-

tend HinqK to a proof system HinqLΘ for the inquisitive logic InqL, where L is an arbitrary stan-

dard modal logic generated by some combination Θ of the axiom schemes presented in Table 5.1.

Definition 5.5.3 (The Systems HinqLΘ). Let L be a standard modal logic generated by some

combination Θ ⊆ {T, 4, 5,B,D} of the axiom schemes from Table 5.1.
28

The Hilbert-style system

HinqLΘ is obtained by adding all axioms from Θ to the basic system HinqK given in Figure 5.6.

So, for example, in order to construct a Hilbert-style system for InqKT, we can add all instances

of the scheme □α → α to HinqK. And in order to obtain a Hilbert-style system for InqKD4 we

may add all instances of □α→ □α and □α→ □□α to HinqK. Note that, in each case, α must

be a standard formula, so we require α ∈ LKs . The provability relation associated with the system

28

Recall that a standard modal logic L is generated or axiomatized by Θ, if L is the smallest normal modal logic

containing Θ (see Section 5.2.1). Thus, strictly speaking, Θ should be a set of standard formulas, rather than a set of

axiom schemes. However, for simplicity, we will also identify an axiom scheme with the collection of its instances.
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HinqLΘ is denoted by
H
Θ and inductively defined in the usual way. Thus, we will write Γ H

Θ φ
and say that φ is provable from Γ in HinqLΘ, if one of the following three conditions is satisfied:

(1) φ is an element of Γ or an axiom of HinqLΘ.

(2) There exists some formula ψ ∈ LK such that both Γ H
Θ ψ and Γ H

Θ ψ → φ.

(3) There exists some ψ ∈ LK such that φ = □ψ and
H
Θ ψ.

Using induction on the definition of Γ H
Θ φ, it is easy to prove that the relation

H
Θ is monotonic,

i.e., if we have Γ H
Θ φ and Γ ⊆ ∆, then also ∆ H

Θ φ. We now want to show that each of the

calculi HinqLΘ is equivalent to the corresponding natural deduction system NinqLΘ given by

Definition 5.2.10. To this end, one first has to prove the deduction theorem for HinqLΘ.

Theorem5.5.4 (Deduction Theorem). LetΘ be some combination of the axiom schemes from Table
5.1 and letL be generated byΘ. Then, inHinqLΘ, we haveΓ, φ H

Θ ψ if and only ifΓ H
Θ φ→ ψ.29

The argument is essentially the same as in the classical setting (see the proof of Theorem 1.5.4).

Using the deduction theorem, one can now prove that each of the Hilbert-style calculi HinqLΘ

is equivalent to the corresponding natural deduction system NinqLΘ given by Definition 5.2.10.

Theorem 5.5.5. LetΘ be some combination of the axiom schemes from Table 5.1 and letL be gener-
ated byΘ. It holds Γ H

Θ φ if and only if Γ N
Θ φ, where N

Θ is the provability relation of NinqLΘ.

Proof. For the left-to-right direction, one proceeds by induction on the definition ofΓ H
Θ φ. This

is straightforward, since all axioms depicted in Figure 5.6 are clearly provable in NinqLΘ and

modus ponens and necessitation are also available in NinqLΘ. Moreover, by Definition 5.2.10,

each of the special axioms from Θ is also an axiom of NinqLΘ. For the right-to-left direction, one

can use induction on the structure of a natural deduction proof for Γ N
Θ φ. This is also not diffi-

cult, since most of the natural deduction rules correspond directly to some axiom of HinqLΘ, and

the discharging of hypotheses can be ‘simulated’ using the deduction theorem for HinqLΘ.

As a corollary, it follows that HinqLΘ is sound and complete with respect to InqL. We now

want to use our Hilbert-style systems in order to prove the completeness of GLinqLA for the spe-

cial case in which A ⊆ LSF is some combination of the geometric axioms presented in Table 5.1.

To this end, we first show that each of the axioms from Figure 5.6 is provable in GLinqK.

Lemma 5.5.6. Let φ be an instance of one of the axiom schemes depicted in Figure 5.6. Then, φ is
provable in GLinqK, i.e., for any x ∈ V, there exists a derivation for⇒ x : φ in GLinqK.

Proof. For the axioms from Figure 1.5, the proof is straightforward. Thus, we only need to show

the provability of the two distribution axioms, the split axiom and the double negation axiom.

For the axiom schemes (→Dis) and (DN), we may construct the following derivations:

By Lemma 5.4.1 (ii)

. . . , R(w) : φ⇒ R(w) : ψ,R(w) : φ

By Lemma 5.4.1 (ii)

. . . , R(w) : ψ,R(w) : φ⇒ R(w) : ψ
L→

. . . , R(w) ⩽ R(w), R(w) : φ→ ψ,R(w) : φ,w ⩽ y, w ⩽ z, y : □(φ→ ψ), z : □φ⇒ R(w) : ψ
(rf)

R(w) : φ→ ψ,R(w) : φ,w ⩽ y, w ⩽ z, z ⩽ y, y ⩽ x, y : □(φ→ ψ), z : □φ⇒ R(w) : ψ
L□

R(w) : φ,w ⩽ y, w ⩽ z, z ⩽ y, y ⩽ x, y : □(φ→ ψ), z : □φ⇒ R(w) : ψ
L□

w ⩽ y, w ⩽ z, z ⩽ y, y ⩽ x, y : □(φ→ ψ), z : □φ⇒ R(w) : ψ
(tr)

w ⩽ z, z ⩽ y, y ⩽ x, y : □(φ→ ψ), z : □φ⇒ R(w) : ψ
R□

z ⩽ y, y ⩽ x, y : □(φ→ ψ), z : □φ⇒ z : □ψ
R→

y ⩽ x, y : □(φ→ ψ)⇒ y : □φ→ □ψ
R→⇒ x : □(φ→ ψ)→ (□φ→ □ψ)

29

The reader might wonder whether this statement is in fact true, since textbook sources sometimes claim that the

deduction theorem fails for modal proof systems containing the necessitation rule. However, as shown by Hakli and

Negri (2012), this is actually a misconception: if necessitation is restricted to cases in which the premise does not

depend on assumptions (as in our proof systems), then the usual version of the deduction theorem can be obtained.
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⇒ x : φ ⇒ x : φ→ ψ
(mp)⇒ x : ψ

⇒ x : φ
(nec)⇒ x : □φ

Figure 5.7: Modus ponens and necessitation. In either case, we require x ∈ V.

By Lemma 5.4.2 (i)

z ⩽ ∅, . . .⇒ w : α, z : ⊥
By Lemma 5.4.1 (i)

w ⩽ z, . . . , z : α⇒ w : α, z : ⊥
(sg)

z ⩽ w,w ⩽ y, y ⩽ x, y : ¬¬α, z : α⇒ w : α, z : ⊥
R→

w ⩽ y, y ⩽ x, y : ¬¬α⇒ w : α,w : ¬α
Ax⊥

. . . , w : ⊥ ⇒ w : α
L→

w ⩽ y, y ⩽ x, y : ¬¬α⇒ w : α
(grp)

y ⩽ x, y : ¬¬α⇒ y : α
R→⇒ x : ¬¬α→ α

Note that, in the derivation for (DN), we use the admissible rule (grp) from Figure 5.5. This is legit-

imate, since α ∈ LK! is assumed to be declarative. The axiom (∨Dis) can be derived as follows:
30

D
. . . , R(w) : φ ∨ ψ ⇒ . . . , w : □φ,w : □ψ

Ax⊥

. . . , w : ⊥ ⇒ . . . , w : □φ
L→

. . . , w ⩽ z,R(w) : φ ∨ ψ, z : ¬□φ, z : ¬□ψ ⇒ w : ⊥, w : □φ
Ax⊥

. . . , w : ⊥ ⇒ w : ⊥
L→

w ⩽ y, w ⩽ z, z ⩽ y, y ⩽ x,R(w) : φ ∨ ψ, y : □(φ ∨ ψ), z : ¬□φ, z : ¬□ψ ⇒ w : ⊥
L∧

w ⩽ y, w ⩽ z, z ⩽ y, y ⩽ x,R(w) : φ ∨ ψ, y : □(φ ∨ ψ), z : ¬□φ ∧ ¬□ψ ⇒ w : ⊥
L□

w ⩽ y, w ⩽ z, z ⩽ y, y ⩽ x, y : □(φ ∨ ψ), z : ¬□φ ∧ ¬□ψ ⇒ w : ⊥
(tr)

w ⩽ z, z ⩽ y, y ⩽ x, y : □(φ ∨ ψ), z : ¬□φ ∧ ¬□ψ ⇒ w : ⊥
R⊥

z ⩽ y, y ⩽ x, y : □(φ ∨ ψ), z : ¬□φ ∧ ¬□ψ ⇒ z : ⊥
R→

y ⩽ x, y : □(φ ∨ ψ)⇒ y : ¬(¬□φ ∧ ¬□ψ)
R→⇒ x : □(φ ∨ ψ)→ ¬(¬□φ ∧ ¬□ψ)

where the subderivation D is of the form

By Lemma 5.4.1 (i)

. . . , R(u) ⩽ R(w), R(w) : φ⇒ . . . , R(u) : φ
(nb)

. . . , u ⩽ w,R(w) : φ⇒ . . . , R(u) : φ

By Lemma 5.4.1 (i)

. . . , R(v) ⩽ R(w), R(w) : ψ ⇒ . . . , R(v) : ψ
(nb)

. . . , v ⩽ w,R(w) : ψ ⇒ . . . , R(v) : ψ
L∨

. . . , v ⩽ w, u ⩽ w,R(w) : φ ∨ ψ ⇒ . . . , R(u) : φ,R(v) : ψ
R□

. . . , u ⩽ w,R(w) : φ ∨ ψ ⇒ . . . , R(u) : φ,w : □ψ
R□

. . . , R(w) : φ ∨ ψ ⇒ . . . , w : □φ,w : □ψ

The split axiom (Split), finally, can be derived in the same way as in the proof of Lemma 3.3.5.

Next, we need to show that modus ponens and necessitation are admissible in GLinqK.

Lemma 5.5.7. The rules (mp) and (nec), depicted in Figure 5.7, are admissible in GLinqK.

Proof. The admissibility of (mp) is proved in the usual way, by using the admissibility of the cut

rule. For further details, the reader is referred to the proof of Lemma 3.3.6. In order to show the ad-

missibility of (nec), assume that⇒ x : φ is derivable in GLinqK, where x ∈ V. For any singleton

variable w ∈ S, this yields a derivation for w ⩽ x⇒ R(w) : φ by the admissibility of substitu-

tion and weakening. But then, by an application ofR□, we obtain a derivation for⇒ x : □φ.

We now want to prove the completeness of GLinqLA for the special case in which A consists

of one or more of the geometric axioms given in Table 5.1. To this end, we first show that every

formula provable in the corresponding Hilbert-style system for InqL is also provable inGLinqLA.

30

Recall that ∨ was defined by φ ∨ ψ := ¬(¬φ ∧ ¬ψ).
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Theorem 5.5.8. LetL be determined by some combinationA of the geometric axioms from Table 5.1
and let Θ ⊆ {T, 4, 5,B,D} be the corresponding set of standard axiom schemes.31 If we have H

Θ φ
in the Hilbert-style system HinqLΘ, then⇒ x : φ is derivable in GLinqLA for any x ∈ V.

Proof. The statement is proved by induction on a Hilbert-style proof for
H
Θ φ. By Lemma 5.5.6

and 5.5.7, we already know that all axioms of the basic system HinqK are derivable in GLinqLA
and that modus ponens and necessitation are admissible in GLinqLA. Hence, it suffices to show

that each of the special schemes in {T, 4, 5,B,D} is derivable in terms of the corresponding

sequent rule depicted in Figure 5.3. For T, 4 and B, we may construct the following derivations:
32

By Lemma 5.4.1 (i)

w ⩽ R(w), R(w) : α,w ⩽ y, y ⩽ x, y : □α⇒ w : α
(T)

R(w) : α,w ⩽ y, y ⩽ x, y : □α⇒ w : α
L□

w ⩽ y, y ⩽ x, y : □α⇒ w : α
(grp)

y ⩽ x, y : □α⇒ y : α
R→⇒ x : □α→ α

By Lemma 5.4.1 (i)

v ⩽ R(w), R(w) : α, v ⩽ R(u), u ⩽ R(w), w ⩽ y, y ⩽ x, y : □α⇒ v : α
(4)

R(w) : α, v ⩽ R(u), u ⩽ R(w), w ⩽ y, y ⩽ x, y : □α⇒ v : α
L□

v ⩽ R(u), u ⩽ R(w), w ⩽ y, y ⩽ x, y : □α⇒ v : α
(grp)

u ⩽ R(w), w ⩽ y, y ⩽ x, y : □α⇒ R(u) : α
R□

w ⩽ y, y ⩽ x, y : □α⇒ R(w) : □α
R□

y ⩽ x, y : □α⇒ y : □□α
R→⇒ x : □α→ □□α

By Lemma 5.4.1 (i)

. . . , w ⩽ y, y ⩽ x, y : α, z : □¬α⇒ u : ⊥, w : α
Ax⊥

. . . , w : ⊥ ⇒ u : ⊥
L→

w ⩽ R(u), u ⩽ R(w), R(u) : ¬α, u ⩽ z, z ⩽ R(w), w ⩽ y, y ⩽ x, y : α, z : □¬α⇒ u : ⊥
(B)

u ⩽ R(w), R(u) : ¬α, u ⩽ z, z ⩽ R(w), w ⩽ y, y ⩽ x, y : α, z : □¬α⇒ u : ⊥
(tr)

R(u) : ¬α, u ⩽ z, z ⩽ R(w), w ⩽ y, y ⩽ x, y : α, z : □¬α⇒ u : ⊥
L□

u ⩽ z, z ⩽ R(w), w ⩽ y, y ⩽ x, y : α, z : □¬α⇒ u : ⊥
R⊥

z ⩽ R(w), w ⩽ y, y ⩽ x, y : α, z : □¬α⇒ z : ⊥
R→

w ⩽ y, y ⩽ x, y : α⇒ R(w) : ¬□¬α
R□

y ⩽ x, y : α⇒ y : □¬□¬α
R→⇒ x : α→ □¬□¬α

Note that, in each case, the application of the admissible rule (grp) is indeed correct, sinceα ∈ LKs
is assumed to be a standard formula (and therefore also a declarative formula). For the axiom

schemes 5 and D, similar derivations can be found. The details are left to the reader.

Corollary 5.5.9. Let L be determined by some combination A of the geometric axioms from Ta-
ble 5.1. Then,GLinqLA is sound and complete with respect to InqL, i.e., for any finite Γ∪{φ} ⊆ LK,
we have Γ Inq

L φ if and only if x : Γ⇒ x : φ is derivable in GLinqLA for any x ∈ V.

Proof. The soundness ofGLinqLA has been established in Proposition 5.5.2. For the completeness

part, let Γ∪{φ} ⊆ LK be an arbitrary finite set of formulas and assume that it holds Γ Inq
L φ. By

Theorem 5.2.11, this yields Γ N
Θ φ, where Θ is the set of standard axiom schemes corresponding

to the geometric axioms in A, and
N
Θ is the provability relation associated with the natural

31

So, for example, if A contains the geometric axiom expressing reflexivity, then Θ includes all instances of □α→ α,

and if A contains the geometric axiom corresponding to transitivity, then Θ includes all instances of □α→ □□α.

32

In the derivation for axiom scheme B, we use the fact that □ was defined by □φ := ¬□¬φ.
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deduction system NinqLΘ. But then, by Theorem 5.5.5, we also have Γ H
Θ φ in the Hilbert-style

system HinqLΘ. Using the deduction theorem for HinqLΘ (see Theorem 5.5.4), one readily sees

that this implies
H
Θ

∧
Γ→ φ, where

∧
Γ is the conjunction of the elements of Γ. Therefore, by

Theorem 5.5.8, the sequent⇒ x :
∧
Γ→ φ is derivable in GLinqLA for any x ∈ V. Now, by the

invertibility of the rulesR→ andL∧, it follows that y ⩽ x, y : Γ⇒ y : φ is derivable inGLinqLA,

where y ∈ V is a fresh variable. But then, by performing the substitution (x/y) and a subsequent

application of (rf), we obtain the desired derivation for x : Γ⇒ x : φ in GLinqLA.

5.6 Completeness via Countermodels

In the previous section, we have seen a restricted completeness proof, covering a limited class of

the proof systems GLinqLA. We now want to give a general completeness proof, applicable to

each of our labelled sequent calculi. More precisely, given any inquisitive logic InqL such that

L is determined by some finite set of geometric axioms A ⊆ LSF , we will show that GLinqLA is

sound and complete with respect to InqL. Consequently, the strategy described in Section 5.3

is in fact adequate in order to generate cut-free labelled sequent calculi for the full class of ge-

ometric extensions of the basic system InqK. This generalizes a famous result by Negri (2005),

who provides a general method for the construction of cut-free labelled sequent calculi for all

geometric extensions of the standard modal logic K (see also Negri and Von Plato 1998; Negri

2003; Dyckhoff and Negri 2012). Our argument is based on the construction of an infinite proof

search tree and the extraction of a countermodel from an open branch of this tree.
33

Throughout this section, let InqL be an arbitrary geometric inquisitive system, let A ⊆ LSF
be an arbitrary finite set of geometric axioms determining L, and let GLinqLA be the sequent

calculus for InqL given by Definition 5.3.3. We start by introducing some basic terminology.

Definition 5.6.1 (Proof Search Tree, Branch). Let φ ∈ LK be a formula. A proof search tree for φ
is a possibly infinite tree of sequents T, constructed from a root node of the form⇒ x : φ with

x ∈ V, by root-first applications of the proof rules of GLinqLA. By a branch in a proof search

tree T, we mean any sequence β of consecutive sequents in T such that the first sequent in β is

the root node⇒ x : φ of T, and β is either infinite or it ends with one of the leaf nodes of T.

In what follows, proof search trees are assumed to be upward growing, so the root node is

always written at the bottom and leaves are written at the top of the tree. Given a proof search

tree T and a branch β in T, we say that β is closed, if β is finite and the topmost sequent in β is an

instance of one of the axioms of GLinqLA. If a branch is not closed, it is said to be open. The tree T
is called closed, if every branch in T is closed, and it is said to be open otherwise. For any branch

β of the form Γ0 ⇒ ∆0,Γ1 ⇒ ∆1,Γ2 ⇒ ∆2, . . ., we also define the sets Γ↓
β and ∆↓

β by putting

Γ↓
β :=

⋃
i≥0

Γi and ∆↓
β :=

⋃
i≥0

∆i,

so Γ↓
β is the union of all the antecedents of sequents in β, and ∆↓

β is the union of all the succedents
of sequents in β. Note that, if β is infinite, then each of the sets Γ↓

β and ∆↓
β can be infinite as well.

Finally, for any finite branch β, we will also write Γ
top
β ⇒ ∆

top
β for the topmost sequent in β.

We now want to use a countermodel construction in order to establish the completeness of

the calculus GLinqLA. The basic idea of our argument can be summarized as follows: first, we

will describe a procedure that allows to construct proof search trees for formulas in a systematic

way. More precisely, given any formula φ ∈ LK as input, our algorithm starts to construct a

proof search tree T for φ by successively applying the rules of GLinqLA root-first in all possible

33

A similar strategy was also used by Negri (2009; 2014) in order to prove the completeness of her labelled sequent

calculi for geometric extensions of K and for intermediate logics characterized by geometric frame conditions.
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ways. If φ is valid in InqL, then the search terminates and our algorithm outputs a derivation

for⇒ x : φ. Otherwise, the search goes on forever and T becomes infinite. By Kőnig’s lemma,

T will have at least one infinite branch, which is then used to extract a countermodel for φ.

In order for this strategy to work, we have to make sure that our proof search algorithm

is exhaustive, i.e., if the input formula φ is provable in GLinqLA, then the procedure should

actually be able to find a derivation for⇒ x : φ after a finite number of steps. In other words, if

the search tree produced by our algorithm has an infinite branch, then this branch should always

be saturated, in the sense that every rule applicable to the branch is in fact applied at some stage.

To make sure that this condition is met, we must consider some difficulties that might arise

during the search procedure. One problem is associated with the ‘cumulative’ rules of our system,

i.e., those rules in which the principal formulas and the principal atoms are always copied in the

premises of the rule. This includes all order rules of GLinqLA, but also the logical rules Lp, L⊥,

L→ and L□. The problem is that these rules allow us to create repetitions of rule applications

that are essentially identical, which might cause our algorithm to get stuck in an infinite loop.

For example, naive applications of the rule L□ might produce an infinite loop of the form

R(w) : φ,R(w) : φ,R(w) : φ,w ⩽ π, π : □φ,Γ⇒ ∆
L□

R(w) : φ,R(w) : φ,w ⩽ π, π : □φ,Γ⇒ ∆
L□

R(w) : φ,w ⩽ π, π : □φ,Γ⇒ ∆
L□

w ⩽ π, π : □φ,Γ⇒ ∆

Clearly, such a loop is undesirable, since the repeated applications of L□ do not yield any new

formulas and prevent the other rules of our system from being applied to the branch. In order

to resolve this issue, we have to employ a loop-checking mechanism that prevents our algorithm

from performing redundant applications of rules. In particular, whenever our algorithm wants

to perform a root-first application of a ‘cumulative’ rule to a sequent in a branch β, it first checks

whether the result of this application is already contained in β. If this is the case, then the appli-

cation is taken to be redundant and our algorithm does not apply the rule. Otherwise, the rule ap-

plication is carried out in the usual way. So, for example, before performing an application ofL□
with principal expressions w ⩽ π and π : □φ in a branch β, we always check whether R(w) : φ
does already occur in Γ↓

β . If so, we refrain from applying the rule. Otherwise, the application is

allowed and will be performed by our algorithm. Similarly, before performing an application of

L→ with principal expressions π ⩽ σ and σ : φ→ ψ, we need to check whether (π : φ) ∈ ∆↓
β

or (π : ψ) ∈ Γ↓
β . The rule is now only applied, if neither of these two conditions is satisfied.

Another problem arises from the fact that applications of order rules can create new labels,

which can then be used for further applications of order rules, and so on. This might cause our

algorithm to produce infinite sequences of rule applications, creating increasingly more complex

labels. For instance, using only the rule (in), we might produce an infinite loop of the form

π ⩽ στστ, π ⩽ στσ, π ⩽ στ, π ⩽ σ, π ⩽ τ,Γ⇒ ∆
(in)

π ⩽ στσ, π ⩽ στ, π ⩽ σ, π ⩽ τ,Γ⇒ ∆
(in)

π ⩽ στ, π ⩽ σ, π ⩽ τ,Γ⇒ ∆
(in)

π ⩽ σ, π ⩽ τ,Γ⇒ ∆

In order to avoid loops of this kind, we have to make sure that, at any point in the procedure, only

a finite number of order rule applications can be performed. The basic idea is to assign a weight
to each possible instance of an order rule and to divide the construction of the proof search tree

into different stages: at stage 0, only order rule applications of weight at most 0 are performed;

at stage 1, only order rule applications of weight at most 1 are performed, and so forth.
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Algorithm 1 The Procedure ProofSearch

Input: A formula φ ∈ LK
.

Output: If φ is provable, the program outputs a derivation for⇒ x : φ. Otherwise, it runs forever.

1 n← 0;

2 Initialize T as the tree consisting only of the root node⇒ x : φ, for some x ∈ V;

3 while true do
4 T← ExtendTree(T, n);
5 if T is closed then return T;

6 n← n+ 1;

7 end

Let us make this idea more precise. First, recall that any label π is essentially a finite string of

symbols, built up from the constant ∅ and a countable set of variables S∪V by means of a finite

number of function symbols. As is well known, any such string can be encoded by a natural num-
ber, in such a way that the code number of each string is effectively computable and any string

can be reconstructed from its code number in a unique way. A concrete way of doing this is the

well-known Gödel numbering, i.e., the encoding used by Gödel in the proof of his famous incom-
pleteness theorems (cf. Gödel 1931; Smith 2013, pp. 136–139). We thus obtain the following fact.

Fact 5.6.2. There exists a function # : Λ(S,V) → N, assigning to each label π ∈ Λ(S,V) some
natural number#(π) ∈ N, such that each of the following three conditions is satisfied:
(i) # is injective, i.e., distinct labels are assigned distinct numbers under#.
(ii) # is computable, i.e., there exists an effective procedure that computes#(π), for any label π.
(iii) Given any number n ∈ N, one can compute the set of all labels π with#(π) ≤ n.

In what follows, we will assume a fixed numbering function # : Λ(S,V)→ N satisfying each

of the conditions mentioned in Fact 5.6.2. Note that we do not care about the exact specification

of this function—all that matters is that such a function can be defined. Given any label π, we

also call #(π) the weight of π. The set of all labels of weight at most n will be denoted by Λn
, so

we put Λn := {π | #(π) ≤ n}. Recall that, for any natural number n, the set Λn
is computable

by the last condition mentioned in Fact 5.6.2. Now, let us say that a label π is dominant in an

application of an order rule, if π has an occurrence in the conclusion of this application which

does not belong to the context of the rule. For instance, in an application of the rule (in) with

premise π ⩽ στ, π ⩽ σ, π ⩽ τ,Γ ⇒ ∆ and conclusion π ⩽ σ, π ⩽ τ,Γ ⇒ ∆, each of

the labels π, σ and τ would be dominant. For order rules that do not have principal atoms in the

conclusion—such as, e.g., the rules (rf), (il) or (ur)—we assume that the dominant labels are simply

the labels from which the active expressions of this rule are constructed. So, for example, in an

application of (il) with premise πσ ⩽ π,Γ⇒ ∆ and conclusion Γ⇒ ∆, both of the labels π and

σ are dominant (but πσ is not dominant). The weight of an order rule application is now defined to

be the maximum of the weights of the dominant labels of this application. Thus, for instance, the

weight of the aforementioned application of (il) would be the number n = max{#(π),#(σ)}.
We are now able to avoid the problem sketched above, by bounding the weight of legitimate

order rule applications at each stage of the search procedure: at stage 0, we only allow order

rule applications of weight at most 0; at stage 1, we only allow order rule applications of weight

at most 1, and so on. Clearly, by the injectivity of #, there are only finitely many order rule

applications at each stage, but every possible application will be reached at some point.

We are now ready to describe the construction of our proof search tree. The overall structure

of the procedure is presented in Algorithm 1. As can be seen, given any formula φ ∈ LK as

input, our algorithm first assigns the value 0 to a variable n and initializes T as the proof search

tree consisting only of the root node⇒ x : φ, where x ∈ V is some state variable. Afterwards,
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Algorithm 2 The Procedure ExtendTree (Excerpt)

Input: A finite proof search tree T and a natural number n.

Output: An extension of T.

% Perform all root-first applications of Lp with loop-checking:

1 while T has an open branch β such that Γtop
β contains w ⩽ π and π : p with (w : p) /∈ Γ↓

β do
2 Extend T by writing the sequent w : p,Γ

top
β ⇒ ∆

top
β above Γ

top
β ⇒ ∆

top
β ;

3 end
% Perform all root-first applications of Rp:

4 while T has an open branch β such that∆top
β is of the form ∆, π : p for π /∈ S do

5 Choose a fresh w ∈ S and extend T by writing w ⩽ π,Γ
top
β ⇒ ∆, w : p above Γ

top
β ⇒ ∆

top
β ;

6 end
% Perform all root-first applications of L→ with loop-checking:

7 while T has an open β s. t. Γtop
β contains π ⩽ σ, σ : φ→ ψ with (π : φ) /∈ ∆↓

β , (π : ψ) /∈ Γ↓
β do

8 Extend T by writing both Γ
top
β ⇒ ∆

top
β , π : φ and π : ψ,Γ

top
β ⇒ ∆

top
β above Γ

top
β ⇒ ∆

top
β ;

9 end
% Perform all root-first applications of R→:

10 while T has an open branch β such that ∆top
β is of the form ∆, π : φ→ ψ do

11 Choose a fresh x ∈ V and write x ⩽ π, x : φ,Γ
top
β ⇒ ∆, x : ψ above Γ

top
β ⇒ ∆

top
β ;

12 end
% Perform all root-first applications of L□ with loop-checking:

13 while T has an open branch β such that Γtop
β contains w ⩽ π, π : □φ with (R(w) : φ) /∈ Γ↓

β do
14 Extend T by writing R(w) : φ,Γ

top
β ⇒ ∆

top
β above Γ

top
β ⇒ ∆

top
β ;

15 end
% Perform all root-first applications of R□:

16 while T has an open branch β such that ∆top
β is of the form ∆, π : □φ do

17 Choose a freshw ∈ S and extendT by writingw ⩽ π,Γ
top
β ⇒ ∆, R(w) : φ aboveΓ

top
β ⇒ ∆

top
β ;

18 end
% Perform all root-first applications of (in) having weight at most n:

19 while T has an open β s. t. Γtop
β contains π ⩽ σ, π ⩽ τ with π, σ, τ ∈ Λn and (π ⩽ στ) /∈ Γ↓

β do
20 Extend T by writing π ⩽ στ,Γ

top
β ⇒ ∆

top
β above Γ

top
β ⇒ ∆

top
β ;

21 end
% Perform all root-first applications of (cd) having weight at most n:

22 while T has an open β s. t. Γtop
β containsw ⩽ π+σ withw, π+σ ∈ Λn, (w ⩽ π), (w ⩽ σ) /∈ Γ↓

β do
23 Extend T by writing both w ⩽ π,Γ

top
β ⇒ ∆

top
β and w ⩽ σ,Γ

top
β ⇒ ∆

top
β above Γ

top
β ⇒ ∆

top
β ;

24 end
% Perform all root-first applications of (ul) having weight at most n:

25 for each open branch β in T and for all π, σ ∈ Λn with (π ⩽ π + σ) /∈ Γ↓
β do

26 Extend T by writing π ⩽ π + σ,Γ
top
β ⇒ ∆

top
β above Γ

top
β ⇒ ∆

top
β ;

27 end
% Add similar loops for the other rules . . .

28 return T

the algorithm enters a (possibly infinite) while-loop. At each iteration of the loop, the procedure

calls a subroutine ExtendTree, which will be described in detail below. Roughly speaking, this

subroutine updates the tree T, by performing all non-redundant applications of logical rules,

all weight-n applications of order rules and all possible applications of the geometric rules of

GLinqLA. Once the subroutine is finished, our program checks whether the updated tree T is

closed. If this is the case, then T is a derivation for⇒ x : φ, so the algorithm halts and outputs

T. Otherwise, n is incremented and we proceed with the next iteration of the loop.

Let us now turn to the description of the subroutine ExtendTree. An excerpt from the pseu-

docode for this subroutine is provided in Algorithm 2. Given any finite proof search tree T and

any natural number n as input, the procedure ExtendTree executes the following steps:
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(1) First, we perform all non-redundant applications of Lp to the open branches of T. That is,

our algorithm selects an arbitrary open branch β in T such that the topmost sequent of β
is of the form w ⩽ π, π : p,Γ ⇒ ∆ with (w : p) /∈ Γ↓

β , and it then extends this branch

by writing w : p, w ⩽ π, π : p,Γ ⇒ ∆ above the topmost sequent of β. Afterwards, we

proceed with the next branch inT until no further applications ofLp are possible. This cor-

responds to the while-loop in lines 1–3 of Algorithm 2. Note that, due to the loop-checking

mechanism, this step must terminate after a finite number of iterations of the loop.

(2) Once this is done, we perform all possible applications of Rp. Thus, while T contains an

open branch β such that the topmost sequent of β is of the form Γ ⇒ ∆, π : p with

π /∈ S, we select a fresh variable w ∈ S not occurring in the tree and extend T by writing

w ⩽ π,Γ⇒ ∆, w : p above the topmost sequent of β. This corresponds to the while-loop

in lines 4–6 of Algorithm 2. Observe that, since w is a singleton label, the new formula

w : p cannot be used in further applications ofRp, so this step must terminate as well.
34

In

the subsequent steps, we execute similar while-loops for the rules L⊥ andR⊥. The details

are essentially the same as in the first two steps and therefore left to the reader.

(3) Next, we perform all possible applications of L∧ and R∧. That is, while T has an open

branch β with topmost sequent of the form π : φ ∧ ψ,Γ ⇒ ∆, we extend the branch

by writing π : φ, π : ψ,Γ ⇒ ∆ on top of β. Similarly, while T has an open branch β
with topmost sequent of the form Γ ⇒ ∆, π : φ ∧ ψ, we split the branch and write both

Γ⇒ ∆, π : φ andΓ⇒ ∆, π : ψ on top of β. The rulesL∨ andR∨ are treated analogously.

(4) Afterwards, all possible applications of the rules L→, R→, L□ and R□ are performed.

The corresponding while-loops are displayed in lines 7–18 of Algorithm 2. Note that, for

L→ andL□, we use our loop-checking mechanism, so this step is guaranteed to terminate.

(5) In the subsequent steps, we perform all order rule applications of weight at most n. Let us

consider a few representative cases. In order to perform all weight-n applications of the

rule (in), we execute the loop in lines 19–21 of Algorithm 2. That is, while T has an open

branch β with topmost sequent of the form π ⩽ σ, π ⩽ τ,Γ ⇒ ∆ such that each of the

labels π, σ and τ has weight at most n and π ⩽ στ does not already occur in Γ↓
β , we extend

this branch by writing π ⩽ στ, π ⩽ σ, π ⩽ τ,Γ⇒ ∆ on top of β. The rules (tr), (dis), (un)
and (nb) are treated similarly. For order rules involving a branching—that is, for (sg) and

(cd)—we perform a loop-checking for each of the two premises. The corresponding while-

loop for (cd) is displayed in lines 22–24. For order rules without principal atoms, we simply

iterate over all weight-n instances of the rule. For example, in order to close the tree under

weight-n applications of (ul), we just add all relational atoms of the form π ⩽ π + σ with

π, σ ∈ Λn
to each open branch β. This corresponds to the for-loop in lines 25–27 of our al-

gorithm. The rules (il), (ir), (ur) and (rf) are treated in the same way. Clearly, since every or-

der rule can only have finitely many instances of weight at mostn, this step must terminate.

(6) Finally, we perform all possible applications of the geometric rules of GLinqLA. To this

end, we select an arbitrary geometric axiom θ ∈ A and consider the corresponding rule

Ψ◦
1(v1/u1),Φ

◦,Γ⇒ ∆ · · · Ψ◦
m(vm/um),Φ◦,Γ⇒ ∆

(θ-grs)
Φ◦,Γ⇒ ∆

For each open branch β in T, our algorithm first determines all subsets Θβ
1 , . . . ,Θ

β
k ⊆ Γ

top
β

in the topmost sequent that are instantiations of the set of principal atoms Φ◦
.
35

Note that

we do not require these subsets to be disjoint, so some formula occurrences inΓ
top
β may also

34

Recall that, in the rule Rp, the principal formula must be of the form π : p for some non-singleton label π /∈ S.

35

By an instantiation ofΦ◦
, we mean any set of relational atoms obtained fromΦ◦

by uniform substitution of variables.
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be contained in more than one of the sets Θβ
i . For every open branch β in T and for each

of the subsets Θβ
i ⊆ Γ

top
β , our algorithm now performs the corresponding root-first appli-

cation of (θ-grs) to the respective branch β, in such a way that the k applications of (θ-grs)
in β are executed all at once and all branches of T are expanded at the same time. Thus,

if the topmost sequent of a branch β contains k instantiations of Φ◦
, then this will cause

the branch β to be split into mk
new branches. After that, our algorithm selects the next

geometric axiom in A and proceeds in the same way. Because A is finite and since every

geometric rule (θ-grs) is applied only a finite number of times, this step clearly terminates.

Once this is finished, our algorithm returns the updated tree T to the program in Algorithm 1.

This concludes the description of the procedure ExtendTree. Note that, by what was said above,

this procedure must be terminating, i.e., given any tree T and any natural number n as input,

ExtendTree will in fact halt and return an updated version of T after a finite number of steps.

Let us now consider the tree T constructed by Algorithm 1 for some input formula φ. Clearly,

if T becomes closed at some stage of the construction, our algorithm will halt and output T,

which is now a derivation for⇒ x : φ. Otherwise, Algorithm 1 will run forever and T becomes

infinitely large. In this case, T must contain an infinite branch β, and such a branch will always

be saturated, in the sense that every rule applicable to the branch is in fact applied at some stage

(this follows directly from the specification of ExtendTree and the iterated executions of this

subroutine during the construction of T). In other words, an infinite branch in T will always be

closed under all possible applications of the rules of GLinqLA, so we obtain the following facts.

Lemma 5.6.3 (Closure under Logical Rules). Let β be an infinite branch in the tree constructed by
Algorithm 1. Then, β is closed under root-first applications of the logical rules, so we have:
(i) If it holds (w ⩽ π) ∈ Γ↓

β and (π : p) ∈ Γ↓
β , then also (w : p) ∈ Γ↓

β . And if (π : p) ∈ ∆↓
β ,

then there exists a variable w ∈ S such that both (w ⩽ π) ∈ Γ↓
β and (w : p) ∈ ∆↓

β .
(ii) If it holds (w ⩽ π) ∈ Γ↓

β and (π : ⊥) ∈ Γ↓
β , then also (w : ⊥) ∈ Γ↓

β . And if (π : ⊥) ∈ ∆↓
β ,

then there exists a variable w ∈ S such that both (w ⩽ π) ∈ Γ↓
β and (w : ⊥) ∈ ∆↓

β .
(iii) If we have (π : φ∧ψ) ∈ Γ↓

β , then both (π : φ) ∈ Γ↓
β and (π : ψ) ∈ Γ↓

β . And if (π : φ∧ψ) ∈
∆↓

β , then at least one of (π : φ) ∈ ∆↓
β and (π : ψ) ∈ ∆↓

β is the case.
(iv) If we have (π : φ ∨ ψ) ∈ Γ↓

β , then at least one of (π : φ) ∈ Γ↓
β and (π : ψ) ∈ Γ↓

β is the case.
And if (π : φ ∨ ψ) ∈ ∆↓

β , then both (π : φ) ∈ ∆↓
β and (π : ψ) ∈ ∆↓

β .
(v) If (π ⩽ σ) ∈ Γ↓

β and (σ : φ → ψ) ∈ Γ↓
β , then (π : φ) ∈ ∆↓

β or (π : ψ) ∈ Γ↓
β . And if

(π : φ→ ψ) ∈ ∆↓
β , then there is an x ∈ V with (x ⩽ π), (x : φ) ∈ Γ↓

β and (x : ψ) ∈ ∆↓
β .

(vi) If (w ⩽ π) ∈ Γ↓
β and (π : □φ) ∈ Γ↓

β , then also (R(w) : φ) ∈ Γ↓
β . And if (π : □φ) ∈ ∆↓

β ,
then there exists a variable w ∈ S such that both (w ⩽ π) ∈ Γ↓

β and (R(w) : φ) ∈ ∆↓
β .

Proof. We only prove statement (vi), the other parts are similar. First, suppose that we have both

(w ⩽ π) ∈ Γ↓
β and (π : □φ) ∈ Γ↓

β . Then, at some point in the execution of Algorithm 1, some

initial segment of β must end with a sequent of the form w ⩽ π, π : □φ,Γ⇒ ∆. Hence, during

the next execution of the subroutine ExtendTree, our algorithm will perform the corresponding

root-first application of L□ to this initial segment, so it follows (R(w) : φ) ∈ Γ↓
β , as desired.

Now, assume that (π : □φ) ∈ ∆↓
β . Then, at some stage, an initial segment of β must end with

a sequent of the form Γ ⇒ ∆, π : □φ. Thus, during the next execution of ExtendTree, the

procedure will perform the corresponding root-first application of R□ to this initial segment, so

there must be some variable w ∈ S such that (w ⩽ π) ∈ Γ↓
β and (R(w) : φ) ∈ ∆↓

β .

Lemma 5.6.4 (Closure under Order Rules). Let β be an infinite branch in the tree constructed by
Algorithm 1. Then, β is closed under root-first applications of the order rules, so we have:
(i) All atoms of the form π ⩽ π and π1π2 ⩽ πi and πi ⩽ π1 + π2 are in Γ↓

β , for i = 1, 2.
(ii) If we have both (π ⩽ σ) ∈ Γ↓

β and (σ ⩽ τ) ∈ Γ↓
β , then (π ⩽ τ) ∈ Γ↓

β .
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(iii) If (π ⩽ σ + τ) ∈ Γ↓
β , then also (π ⩽ πσ + πτ) ∈ Γ↓

β .
(iv) If we have both (π ⩽ σ) ∈ Γ↓

β and (π ⩽ τ) ∈ Γ↓
β , then (π ⩽ στ) ∈ Γ↓

β .
(v) If both (π ⩽ σ) ∈ Γ↓

β and (τ ⩽ σ) ∈ Γ↓
β , then (π + τ ⩽ σ) ∈ Γ↓

β .
(vi) If (π ⩽ w) ∈ Γ↓

β , then (π ⩽ ∅) ∈ Γ↓
β or (w ⩽ π) ∈ Γ↓

β .
(vii) If (w ⩽ π + σ) ∈ Γ↓

β , then (w ⩽ π) ∈ Γ↓
β or (w ⩽ σ) ∈ Γ↓

β .
(viii) If (w ⩽ u) ∈ Γ↓

β , then also (R(w) ⩽ R(u)) ∈ Γ↓
β .

Proof. We only prove part (viii). Suppose (w ⩽ u) ∈ Γ↓
β . Then, clearly, there must be some n ≥ 0

such that, starting from the n-th iteration of the while-loop in Algorithm 1, the topmost sequent

of the current initial segment of β always contains w ⩽ u in the antecedent. Let now k be given

by k := max{n,#(w),#(u)}. Then, during the k-th execution of ExtendTree, our algorithm

performs the corresponding root-first application of (nb), so it follows (R(w) ⩽ R(u)) ∈ Γ↓
β .

It is also possible to prove similar closure properties for the geometric rules of GLinqLA. The

details are left to the reader. We now want to use a countermodel construction in order to prove

the completeness of GLinqLA with respect to InqL. In order to understand the basic idea, let T be

the tree constructed by Algorithm 1 for some input formulaφ. We will show that, ifT contains an

infinite branch β, then this branch can be used to construct a Kripke modelMβ and an interpreta-

tion function Iβ overMβ such that all expressions in Γ↓
β are satisfied under Iβ and all expressions

in ∆↓
β are not satisfied under Iβ . As a consequence, it then follows that the labelled formula x : φ,

occurring in the root of T, is not satisfied under Iβ , so Mβ is the desired countermodel for φ.

A small technical difficulty arises from the fact that Γ↓
β could also contain relational atoms of

the form w ⩽ u, for some singleton variables w, u ∈ S. In order for these atoms to be satisfied

in our model, we have to make sure that the singleton states denoted by w and u are identified
in Mβ . For this purpose, we first define an equivalence relation ∼β on S in the following way.

Definition 5.6.5 (The Relation ∼β). Let β be a branch in some proof search tree. The binary

relation ∼β on S is defined by w ∼β u :⇔ (w ⩽ u) ∈ Γ↓
β , for all singleton variables w, u ∈ S.

Lemma 5.6.6. If β is an infinite branch in the tree constructed by Algorithm 1, then ∼β is an
equivalence relation on S, so ∼β is reflexive, symmetric and transitive.

Proof. The reflexivity and transitivity of∼β follows immediately from parts (i) and (ii) of Lemma

5.6.4. Thus, it suffices to show that ∼β is symmetric. For this purpose, let w, u ∈ S be arbitrary

and suppose thatw ∼β u, so we have (w ⩽ u) ∈ Γ↓
β . By Lemma 5.6.4 (vi), this implies (w ⩽ ∅) ∈

Γ↓
β or (u ⩽ w) ∈ Γ↓

β . Because β is infinite, we cannot have (w ⩽ ∅) ∈ Γ↓
β , as this would mean

that β contains an instance of Ax ∅
. Hence, it follows (u ⩽ w) ∈ Γ↓

β and therefore u ∼β w.

In what follows, we will write [w]β for the equivalence class of a variable w ∈ S with respect

to ∼β . Using the equivalence relation ∼β , we are now able to define the desired Kripke model

Mβ and the interpretation Iβ for each infinite branch in the tree constructed by our algorithm.

Definition 5.6.7 (The Kripke Model Mβ). Let β be an infinite branch in the tree constructed by

Algorithm 1. We define Mβ to be the Kripke model Mβ = ⟨Wβ, Rβ, Vβ⟩ given by:

(i) Wβ := {[w]β | w ∈ S}, so Wβ is the set of all equivalence classes of the relation ∼β ,

(ii) ([w]β, [u]β) ∈ Rβ :⇔ there are w′ ∈ [w]β and u′ ∈ [u]β such that (u′ ⩽ R(w′)) ∈ Γ↓
β ,

(iii) Vβ([w]β, p) = 1 :⇔ there exists some u ∈ [w]β such that (u : p) ∈ Γ↓
β .

Definition 5.6.8 (The Interpretation Iβ). Let β be an infinite branch in the tree constructed by

Algorithm 1. For all w ∈ S and x ∈ V, we define an interpretation Iβ over Mβ as follows:

(i) Iβ(w) := {[w]β}, so Iβ(w) is the singleton containing only [w]β ,

(ii) Iβ(x) := {[w]β ∈Wβ | there exists u ∈ [w]β such that (u ⩽ x) ∈ Γ↓
β}.
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We assume that Iβ is extended to arbitrary labels in the usual way (see Definition 5.5.1). More-

over, in the following, we will also write Fβ for the Kripke frame given by Fβ := ⟨Wβ, Rβ⟩. One

can now prove that, for every label π, the state Iβ(π) simply amounts to the set of all equivalence

classes [w]β for which w ⩽ π occurs in Γ↓
β . This is expressed by the following lemma.

Lemma 5.6.9. Let β be an infinite branch in the tree constructed by Algorithm 1. For every singleton
variable w ∈ S and for every label π, we have: [w]β ∈ Iβ(π) if and only if (w ⩽ π) ∈ Γ↓

β .

Proof. Let w ∈ S be arbitrary. We proceed by induction on the structure of the label π.

Case 1: Let π = u for some u ∈ S. Using the definitions of Iβ and ∼β , one readily sees that

we have the following equivalences: [w]β ∈ Iβ(u) iff [w]β = [u]β iff w ∼β u iff (w ⩽ u) ∈ Γ↓
β .

Case 2: Let π = x for some variable x ∈ V. For the left-to-right direction, suppose that it holds

[w]β ∈ Iβ(x). Then, by definition of Iβ , there exists some u ∈ [w]β such that (u ⩽ x) ∈ Γ↓
β .

Since u ∈ [w]β , we also have (w ⩽ u) ∈ Γ↓
β by definition of ∼β . Now, from (w ⩽ u) ∈ Γ↓

β and

(u ⩽ x) ∈ Γ↓
β , we may conclude (w ⩽ x) ∈ Γ↓

β by Lemma 5.6.4 (ii). The converse direction is

straightforward, since (w ⩽ x) ∈ Γ↓
β directly implies [w]β ∈ Iβ(x) by definition of Iβ .

Case 3: Let π = ∅. By Definition 5.5.1, we have Iβ(∅) = ∅ and so [w]β /∈ Iβ(∅). And since β is

infinite, we also have (w ⩽ ∅) /∈ Γ↓
β , because otherwise β would contain an instance of Ax ∅

.

Case 4: Let π = στ . For the left-to-right direction, suppose that it holds [w]β ∈ Iβ(στ). Since

we have Iβ(στ) = Iβ(σ)∩ Iβ(τ) by Definition 5.5.1, this yields [w]β ∈ Iβ(σ) and [w]β ∈ Iβ(τ).
Therefore, by induction hypothesis, we must have (w ⩽ σ) ∈ Γ↓

β and (w ⩽ τ) ∈ Γ↓
β , so it

follows (w ⩽ στ) ∈ Γ↓
β by Lemma 5.6.4 (iv). For the converse direction, assume that it holds

(w ⩽ στ) ∈ Γ↓
β . By Lemma 5.6.4 (i), we also have (στ ⩽ σ) ∈ Γ↓

β and (στ ⩽ τ) ∈ Γ↓
β , so this

implies (w ⩽ σ) ∈ Γ↓
β and (w ⩽ τ) ∈ Γ↓

β by Lemma 5.6.4 (ii). Now, by induction hypothesis, we

may conclude [w]β ∈ Iβ(σ) and [w]β ∈ Iβ(τ). But then, because Iβ(στ) = Iβ(σ) ∩ Iβ(τ), we

also have [w]β ∈ Iβ(στ), as desired. If π is of the form π = σ + τ , then the argument is similar.

Case 5: Let π = R(u) for some variable u ∈ S. For the left-to-right direction, suppose [w]β ∈
Iβ(R(u)). Since we have Iβ(R(u)) = Rβ([u]β) by definition of Iβ , this yields ([u]β, [w]β) ∈ Rβ .

Hence, by definition ofRβ , there are some u′ ∈ [u]β andw′ ∈ [w]β such that (w′ ⩽ R(u′)) ∈ Γ↓
β .

Because u′ ∈ [u]β and w′ ∈ [w]β , we must have (u′ ⩽ u) ∈ Γ↓
β and (w ⩽ w′) ∈ Γ↓

β by definition

of ∼β . From (w ⩽ w′) ∈ Γ↓
β and (w′ ⩽ R(u′)) ∈ Γ↓

β , it follows (w ⩽ R(u′)) ∈ Γ↓
β by

Lemma 5.6.4 (ii). And since (u′ ⩽ u) ∈ Γ↓
β , we also have (R(u′) ⩽ R(u)) ∈ Γ↓

β by Lemma 5.6.4

(viii). Now, from (w ⩽ R(u′)) ∈ Γ↓
β and (R(u′) ⩽ R(u)) ∈ Γ↓

β , we may conclude (w ⩽ R(u)) ∈
Γ↓
β by Lemma 5.6.4 (ii). The right-to-left direction is trivial, since (w ⩽ R(u)) ∈ Γ↓

β directly

implies ([u]β, [w]β) ∈ Rβ and therefore [w]β ∈ Iβ(R(u)) by definition of Rβ and Iβ .

Next, we can show that our interpretation does in fact have the desired properties. That is, all

expressions in Γ↓
β are satisfied under Iβ and all expressions in ∆↓

β are not satisfied under Iβ .

Lemma 5.6.10. Let β be an infinite branch in the proof search tree constructed by Algorithm 1. For
every relational atom (π ⩽ σ) ∈ Γ↓

β , it is the case that Iβ(π) ⊆ Iβ(σ).

Proof. Let (π ⩽ σ) ∈ Γ↓
β be arbitrary. Moreover, let w ∈ S be an arbitrary variable and suppose

[w]β ∈ Iβ(π). By Lemma 5.6.9, this yields (w ⩽ π) ∈ Γ↓
β . Now, because (w ⩽ π) ∈ Γ↓

β and (π ⩽
σ) ∈ Γ↓

β , it follows (w ⩽ σ) ∈ Γ↓
β by Lemma 5.6.4 (ii). But then, using Lemma 5.6.9 again, we

may conclude [w]β ∈ Iβ(σ). Since [w]β ∈ Iβ(π) was arbitrary, this shows Iβ(π) ⊆ Iβ(σ).

Lemma 5.6.11. Let β be an infinite branch in the tree constructed by Algorithm 1. For every labelled
formula π : φ, if (π : φ) ∈ Γ↓

β , thenMβ, Iβ(π) φ, and if (π : φ) ∈ ∆↓
β , thenMβ, Iβ(π) ̸ φ.

Proof. Let β be an arbitrary infinite branch in the tree constructed by Algorithm 1 for some input.

Moreover, let π be an arbitrary label. We proceed by induction on the structure of φ.
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Case 1: Letφ = p be atomic. For the first part, assume (π : p) ∈ Γ↓
β . Letw ∈ S be arbitrary and

suppose [w]β ∈ Iβ(π). By Lemma 5.6.9, this implies (w ⩽ π) ∈ Γ↓
β . Now, as we have both (w ⩽

π) ∈ Γ↓
β and (π : p) ∈ Γ↓

β , it follows (w : p) ∈ Γ↓
β by Lemma 5.6.3 (i). But then, by definition of

Vβ , we also have Vβ([w]β, p) = 1. Thus, as [w]β ∈ Iβ(π) was arbitrary, it holds Mβ, Iβ(π) p
by Definition 5.1.3. For the second part, assume that (π : p) ∈ ∆↓

β . Then, by Lemma 5.6.3 (i),

there exists some w ∈ S such that (w ⩽ π) ∈ Γ↓
β and (w : p) ∈ ∆↓

β . From (w ⩽ π) ∈ Γ↓
β , it

follows [w]β ∈ Iβ(π) by Lemma 5.6.9. Towards a contradiction, suppose Vβ([w]β, p) = 1. Then,

by definition of Vβ , there exists some u ∈ [w]β such that (u : p) ∈ Γ↓
β . Thus, u satisfies (w ⩽

u) ∈ Γ↓
β and (u : p) ∈ Γ↓

β , so it holds (w : p) ∈ Γ↓
β by Lemma 5.6.3 (i). But now we have both (w :

p) ∈ Γ↓
β and (w : p) ∈ ∆↓

β , so β must contain an instance of Ax , which is a contradiction to the

assumption that β in infinite. Therefore, we have Vβ([w]β, p) = 0. But then, since [w]β ∈ Iβ(π),
it followsMβ, Iβ(π) ̸ p by Definition 5.1.3. The case φ = ⊥ is easy and can be treated similarly.

Case 2: Let φ = ψ ∧ χ. For the first part, suppose that (π : ψ ∧ χ) ∈ Γ↓
β . By Lemma 5.6.3

(iii), this yields (π : ψ) ∈ Γ↓
β and (π : χ) ∈ Γ↓

β . Hence, by induction hypothesis, we must have

Mβ, Iβ(π) ψ and Mβ, Iβ(π) χ, so it follows Mβ, Iβ(π) ψ ∧ χ by Definition 5.1.3. For

the second part, assume (π : ψ ∧ χ) ∈ ∆↓
β . Then, by Lemma 5.6.3 (iii), we have (π : ψ) ∈ ∆↓

β

or (π : χ) ∈ ∆↓
β , which implies Mβ, Iβ(π) ̸ ψ or Mβ, Iβ(π) ̸ χ by induction hypothesis.

Therefore, we may conclude Mβ, Iβ(π) ̸ ψ ∧ χ. The case φ = ψ ∨ χ is treated similarly.

Case 3: Let φ = ψ → χ. For the first part, suppose (π : ψ → χ) ∈ Γ↓
β . Towards a contra-

diction, assume Mβ, Iβ(π) ̸ ψ → χ, i.e., there exists a state s ⊆ Iβ(π) such that Mβ, s ψ
and Mβ, s ̸ χ. Then, by Lemma 5.1.12, there exists a finite substate t ⊆ s ⊆ Iβ(π) such that

Mβ, t ̸ χ. By persistency, t must also satisfy Mβ, t ψ. Moreover, because t is finite, we

can write t in the form t = {[w1]β, . . . , [wn]β} for some w1, . . . , wn ∈ S. Hence, t can be

represented by the label σ given by σ := w1 + . . . + wn, so we have Iβ(σ) = t. But then,

from Mβ, t ψ and Mβ, t ̸ χ, it follows Mβ, Iβ(σ) ψ and Mβ, Iβ(σ) ̸ χ. Now, since

we have Iβ(σ) ⊆ Iβ(π) and Iβ(σ) = {[w1]β, . . . , [wn]β}, we must have [wi]β ∈ Iβ(π) for all

1 ≤ i ≤ n. Thus, by Lemma 5.6.9, it holds (wi ⩽ π) ∈ Γ↓
β for all 1 ≤ i ≤ n, so we may conclude

(σ ⩽ π) ∈ Γ↓
β by Lemma 5.6.4 (v). But then, as we have (σ ⩽ π) ∈ Γ↓

β and (π : ψ → χ) ∈ Γ↓
β ,

it follows (σ : ψ) ∈ ∆↓
β or (σ : χ) ∈ Γ↓

β by Lemma 5.6.3 (v). By induction hypothesis, this

yields Mβ, Iβ(σ) ̸ ψ or Mβ, Iβ(σ) χ, which is a contradiction to the fact that we have both

Mβ, Iβ(σ) ψ and Mβ, Iβ(σ) ̸ χ. Therefore, we must have Mβ, Iβ(π) ψ → χ, as desired.

For the second part, assume (π : ψ → χ) ∈ ∆↓
β . Then, by Lemma 5.6.4 (v), there is an x ∈ V

with (x ⩽ π) ∈ Γ↓
β , (x : ψ) ∈ Γ↓

β and (x : χ) ∈ ∆↓
β . By induction hypothesis and Lemma 5.6.10,

this yields Iβ(x) ⊆ Iβ(π), Mβ, Iβ(x) ψ and Mβ, Iβ(x) ̸ χ. Hence, Mβ, Iβ(π) ̸ ψ → χ.

Case 4: Letφ = □ψ. For the first part, assume (π : □ψ) ∈ Γ↓
β . Moreover, suppose for a contra-

diction that Mβ, Iβ(π) ̸ □ψ, i.e., there exists some [w]β ∈ Iβ(π) such that Mβ, Rβ([w]β) ̸ ψ.

Since [w]β ∈ Iβ(π), we must have (w ⩽ π) ∈ Γ↓
β by Lemma 5.6.9. But then, because (w ⩽ π) ∈

Γ↓
β and (π : □ψ) ∈ Γ↓

β , we may conclude (R(w) : ψ) ∈ Γ↓
β by Lemma 5.6.3 (vi). Thus, by induc-

tion hypothesis, we haveMβ, Iβ(R(w)) ψ and soMβ, Rβ([w]β) ψ, which is a contradiction

to the assumption that Mβ, Rβ([w]β) ̸ ψ. Therefore, we must have Mβ, Iβ(π) □ψ. For the

second part, assume (π : □ψ) ∈ ∆↓
β . Then, by Lemma 5.6.3 (vi), there exists some w ∈ S such

that (w ⩽ π) ∈ Γ↓
β and (R(w) : ψ) ∈ ∆↓

β . By induction hypothesis and Lemma 5.6.9, this implies

[w]β ∈ Iβ(π) and Mβ, Rβ([w]β) ̸ ψ, so it follows Mβ, Iβ(π) ̸ □ψ by Definition 5.1.3.

Finally, we need to prove that our countermodel Mβ does in fact have the frame properties

expressed by the geometric axioms inA. In other words, we have to show thatFβ is anL-frame.
36

36

Recall that, by an L-frame, we mean any Kripke frame F that validates all formulas in the standard modal logic L.

Here, L is assumed to be determined by A, so this simply means that F satisfies each of the geometric axioms in A.
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Lemma 5.6.12. Let β be an infinite branch in the proof search tree constructed by Algorithm 1. The
Kripke frame Fβ , defined by Fβ := ⟨Wβ, Rβ⟩, is an L-frame.

Proof. It suffices to show that Fβ satisfies each of the geometric axioms in A when considered

as a model of first-order logic. To make things precise, let us recall some notation. Given any

first-order formula θ ∈ LSF and any variable assignment g : S→ Wβ , we write Fβ g θ, if Fβ

satisfies θ with respect to g in first-order logic. And if Σ ⊆ LSF is a set of atomic formulas, we

write Σ◦
for the result of replacing each Ruv in Σ by the relational atom v ⩽ R(u).

Let now θ ∈ A be an arbitrary geometric axiom and assume that θ is given to us in the form

∀w⃗(φ→ (∃u1ψ1 ∨ . . .∨ ∃unψn)), where w⃗ = w1 · · ·wk is some vector of variables from S and

eachφ,ψ1, . . . , ψn is a conjunction of atomic formulas fromLSF . We writeΦ for the multiset of all

atoms in φ and Ψi for the multiset of all atoms in ψi. Let g : S→Wβ be an arbitrary variable as-

signment and supposeFβ g φ. By definition ofWβ , there must be some variablesw∗
1, . . . , w

∗
k ∈

S such that g(wi) = [w∗
i ]β for all 1 ≤ i ≤ k. Moreover, from Fβ g φ, it follows Fβ g Φ.

Using the definition of Rβ and Lemma 5.6.4 (viii), one readily sees that this yields Φ∗ ⊆ Γ↓
β ,

where Φ∗
is the multiset of relational atoms given by Φ∗ := Φ◦(w∗

1, . . . , w
∗
k/w1, . . . , wk). Now,

since β is infinite, it must be closed under root-first applications of the geometric rule (θ-grs).
Therefore, for some multisetΨ∗

i := Ψ◦
i (w

∗
1, . . . , w

∗
k/w1, . . . , wk), we must haveΨ∗

i (vi/ui) ⊆ Γ↓
β ,

where vi ∈ S is the eigenvariable used in the corresponding application of (θ-grs). Let now g∗

be the variable assignment which is just like g, except that ui is mapped to [vi]β , so we have

g∗(ui) := [vi]β . Using the fact that Ψ∗
i (vi/ui) ⊆ Γ↓

β and the definition of Rβ , it is now straight-

forward to verify that we have Fβ g∗ Ψi, so it holds Fβ g∗ ψi. But then, by definition of g∗,

we must also have Fβ g ∃uiψi and therefore Fβ g ∃u1ψ1 ∨ . . . ∨ ∃unψn. Because g was an

arbitrary assignment such that Fβ g φ, this shows that Fβ satisfies θ, as desired.

We are now ready to give a general completeness proof, covering each of the proof systems

GLinqLA. As a consequence of this, it follows that our generic method described in Section 5.3 is

in fact adequate in order to generate cut-free labelled sequent calculi for all geometric extensions

of the basic inquisitive system InqK. This can be seen as the main result of this chapter and

generalizes the corresponding result for standard modal logic established by Negri (2005).

Theorem 5.6.13 (Soundness and Completeness). Let InqL be an arbitrary geometric system, let
A ⊆ LSF be a finite set of geometric axioms determiningL, and letGLinqLA be the proof system given
by Definition 5.3.3. Then,GLinqLA is sound and complete with respect to InqL, i.e., for any finite Γ∪
{φ} ⊆ LK, we have: Γ Inq

L φ if and only if x : Γ⇒ x : φ is derivable inGLinqLA, for any x ∈ V.

Proof. The soundness ofGLinqLA has been established in Proposition 5.5.2. For the completeness

part, let Γ∪{φ} ⊆ LK be an arbitrary finite set of formulas and assume that the sequent x : Γ⇒
x : φ is not derivable in GLinqLA. Suppose for a contradiction that⇒ x :

∧
Γ→ φ is derivable

in GLinqLA, where

∧
Γ stands for the conjunction of the elements of Γ. By the invertibility of

the rules R→ and L∧, this implies that y ⩽ x, y : Γ⇒ y : φ is derivable, where y ∈ V is a fresh

variable. But then, by performing the substitution (x/y) and a subsequent application of (rf), we

also obtain a derivation for x : Γ⇒ x : φ, which is a contradiction to our assumption. Therefore,

the sequent⇒ x :
∧
Γ→ φ is not derivable in GLinqLA. Let now T be the proof search tree con-

structed by Algorithm 1 for the input

∧
Γ→ φ, so the root node of T has the form⇒ x :

∧
Γ→

φ for some x ∈ V. By what was said above, this sequent is not derivable inGLinqLA, soTmust be

infinite. Hence, by Kőnig’s lemma, T must have an infinite branch β. Let now Mβ be the Kripke

model and let Iβ be the interpretation defined above. Then, by Lemma 5.6.11, none of the labelled

formulas in ∆↓
β is satisfied under Iβ , so it follows Mβ, Iβ(x) ̸

∧
Γ → φ. Therefore, by the se-

mantics of→ and∧, there exists a state s ⊆ Iβ(x) such thatMβ, s ψ for allψ ∈ Γ andMβ, s ̸
φ. Thus, because Mβ is based on an L-frame by Lemma 5.6.12, we may conclude Γ ̸ Inq

L φ.
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In this thesis, we developed and investigated various proof systems for propositional inquisitive

logic. After giving a short introduction to inquisitive semantics, we presented a very elegant nat-

ural deduction system for InqB, established a normalization theorem for this system and derived

a restricted version of the subformula property from it. Our system was based on an extended

natural deduction formalism in which not only formulas, but also rules can act as assumptions

that may be discharged in the course of a derivation. Afterwards, we provided a G3-style labelled

sequent calculus GLinqB for basic inquisitive logic. In this calculus, labels were used in order to

incorporate the support semantics of inquisitive logic directly into the syntax of the proof system.

Special attention was paid to a thorough investigation of the structural properties of our calculus.

In particular, we proved that GLinqB enjoys cut-admissibility, height-preserving admissibility of

weakening and contraction, and height-preserving invertibility of all rules. The completeness of

our system was established proof-theoretically, by using a suitable Hilbert-style axiomatization

of InqB. We also sketched a possible proof search strategy for GLinqB and established a normal

form result for the labels used in our system. In the second part of the thesis, we constructed cut-

free labelled sequent calculi for various extensions and modifications of basic inquisitive logic.

First, we considered an intuitionistic variant of InqB introduced by Ciardelli et al. (2020). Our se-

quent calculus for this variant was obtained from the system GLinqB in a modular way and was

shown to preserve the structural properties of the latter. Finally, we considered various systems

of inquisitive Kripke logic. We provided a general method that allows to construct a cut-free

labelled sequent calculus GLinqLA for every inquisitive Kripke logic InqL determined by some

finite set of geometric implications A. This generalizes a famous result for standard modal logic

established by Negri (2005). Our completeness proof was based on the construction of an infinite

proof search tree and the extraction of a countermodel from an open branch of this tree.

We conclude this thesis by outlining some directions for future work. As pointed out in Chap-

ter 2, our natural deduction system NinqB+
only satisfies a weak form of the subformula prop-

erty, so it is not an analytic proof system in a strict sense. It would therefore be desirable to

have a natural deduction system for InqB that allows for an unrestricted subformula property

(at least to the extent to which classical natural deduction does). First investigations suggest

that such a system might possibly be obtained by extending NinqB+
with non-primitive rules of

arbitrary level, i.e., we should maybe allow the non-primitive rules of our system to discharge

other non-primitive rules in a proof tree. A solution of this kind could most likely also be adapted

to other non-classical logics such as, e.g., Kreisel-Putnam logic or Gödel-Dummett logic. To the

best of our knowledge, higher-level natural deduction systems have not been used so far in order

to obtain normalization theorems for logics that otherwise would not have an analytic natural

deduction system, so this seems to be a very promising subject for further research.

Regarding our labelled sequent calculi, it would also be of great importance to develop effec-

tive proof search procedures, i.e., algorithms that, given any formula φ as input, either output a

124
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derivation for a sequent of the form⇒ x : φ, or a finite countermodel for φ. In Section 3.4, we

have already discussed some of the problems encountered in trying to construct such an algo-

rithm for the system GLinqB. The main difficulty arises from the complex syntax of the labels

used in our system, which makes it hard to define a suitable saturation condition for branches

in a proof search tree. Our normal form result for labels (see Proposition 3.4.4) might play an

important role here, since it allows to reduce the complexity of labels in a uniform way.

Finally, it would also be interesting to extend the labelled sequent calculi presented in this the-

sis to other systems of inquisitive logic such as, e.g., the classical antecedent fragment of first-order

inquisitive logic (see Grilletti 2021) or extensions of InqB with properly inquisitive modalities (see

Ciardelli 2016b, Chapter 7). We expect this to be relatively easy. In addition, it would be desirable

to construct other sequent-style proof systems for inquisitive logic such as, e.g., display calculi

and nested sequent calculi (see Belnap 1982; Brünnler 2006). Concerning display calculi, a first

step in this direction has already been taken by Frittella et al. (2016) and Greco et al. (2017), who

provide a so-called multi-type display calculus for inquisitive logic (see also Frittella et al. 2014).

As far as we know, nested sequent calculi for inquisitive logic have not been studied so far.
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Viganò, Luca (2000). Labelled Non-Classical Logics. Boston and Dordrecht: Kluwer.

Von Plato, Jan (2008). “Gentzen’s Proof of Normalization for Natural Deduction”. In: The Bulletin
of Symbolic Logic 14.2, pp. 240–257.

Von Plato, Jan (2012). “Gentzen’s Proof Systems: Byproducts in a Work of Genius”. In:The Bulletin
of Symbolic Logic 18.3, pp. 313–367.

Yang, Fan (2014). On Extensions and Variants of Dependence Logic: A Study of Intuitionistic Con-
nectives in the Team Semantics Setting. PhD thesis. University of Helsinki.

Yang, Fan and Väänänen, Jouko (2016). “Propositional Logics of Dependence”. In: Annals of Pure
and Applied Logic 167, pp. 557–589.

http://dx.doi.org/10.15496/publikation-68454
http://dx.doi.org/10.15496/publikation-68454
http://dx.doi.org/10.15496/publikation-68454

	Introduction
	Preliminaries
	Information States and Inquisitive Propositions
	Propositional Inquisitive Logic
	Truth-Conditionality
	Properties of InqB
	Standard Axiomatizations of InqB

	Natural Deduction for InqB
	The Natural Deduction System NinqB+
	Soundness and Completeness
	Cut Segments and Conversions
	Normalization
	Properties of Normal Deductions

	Labelled Sequents for InqB
	The Sequent Calculus GLinqB
	Properties of GLinqB
	Generalized Initial Sequents
	Basic Admissibility and Invertibility Results
	Admissibility of the Cut Rule
	Further Admissibility Results

	Soundness and Completeness
	Towards a Proof Search Procedure for Inquisitive Logic

	Intuitionistic Inquisitive Logic
	An Intuitionistic Variant of Inquisitive Logic
	Standard Axiomatizations of InqI
	The Sequent Calculus GLinqI
	Basic Properties of GLinqI
	Soundness and Completeness

	Inquisitive Kripke Logic
	Kripke Modalities in Inquisitive Logic
	Extensions of InqK
	Some Basic Notions
	Extensions of InqK Based on Normal Modal Logics
	Geometric Extensions of InqK

	Sequent Calculi for Geometric Extensions of InqK
	Basic Properties
	Indirect Completeness Proofs
	Completeness via Countermodels

	Conclusion
	Bibliography

