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Abstract

In the present article a study of the finite model theory of Henkin
quantifiers with boolean variables [5], a.k.a. partially ordered connec-
tives [28], is undertaken. The logic of first-order formulae prefixed
by partially ordered connectives, denoted D, is considered on finite
structures. D is characterized as a fragment of second-order exis-
tential logic Σ1

1; the formulae of the relevant fragment do not allow
existentially quantified variables as arguments of predicate variables.
Using this characterization result, D is shown to harbor a strict hier-
archy induced by the arity of predicate variables. Further, D is shown
to capture NP over linearly ordered structures, and not to be closed
under complementation. We conclude with a comparison between the
logics D and Σ1

1 on several metatheoretical properties.

∗The authors gratefully acknowledge Peter van Emde Boas, Lauri Hella, and the ref-
erees for their contributions to earlier versions of the paper. Work was partly done while
participating to the Logic and Algorithms program at Isaac Newton Institute in Cam-
bridge, UK; we wish to express our gratitude for the support we received. This paper is
based on [29, 30].
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1 Introduction

Fagin’s Theorem [11]—characterizing NP in terms of the expressive power of
Σ1

1 over finite models—reveals an intimate connection between finite model
theory and complexity theory. As a methodological consequence it appears
that questions and results regarding a complexity class may bear relevance
to logic and vice versa. For instance, the complexity theorist’s NP = coNP
problem can now be shared by the logician working on the Σ1

1 = Π1
1 problem.1

Indeed, logicians working in finite model theory address this problem. By
and large they go about by mapping out fragments of various logics. A case
in point is Fagin’s study [12] of the monadic fragments of Σ1

1 and Π1
1, showing

that they do not coincide.
The results in [12] aroused a lot of interest in monadic second-order lan-

guages [2, 3, 31], but we are still waiting for methods to separate binary,
existential, second-order logic from 3-ary, existential, second-order logic, see
[7], or even from binary, universal, second-order logic.

The present paper will be concerned with the finite model theory of lan-
guages involving (what we propose to call) restricted Henkin quantifiers, also
known as partially ordered connectives. Henkin quantifiers Hn

k~x~y are objects
of the form  ∀x11 . . . ∀x1k ∃y1

...
. . .

...
...

∀xn1 . . . ∀xnk ∃yn

 (1)

that prefix first-order formulae φ. Here and henceforth, a tuple of variables
as in x11, . . . , xnk is abbreviated by ~x. On suitable structures A, the formula
Hn

k~x~y φ(~x, ~y) is defined to be true iff there are k-ary functions f1, . . . , fn on
the universe of A such that

A |= ∀~x φ(~x, f1(~x1), . . . , fn(~xn)), (2)

where ~xi = xi1, . . . , xik. Partially ordered quantifiers have been widely stud-
ied from model theoretic and complexity theoretic points of view (see, e.g.,
[5, 10, 18, 16, 24, 22, 25, 32]); they have also aroused interest in theoretical
linguistics (cf. [4, 20]).

It is a milestone result in the theory of Henkin quantification that the logic
obtained by applying Henkin quantifiers to first-order formulae, denoted H,
coincides with Σ1

1, cf. [10, 32]. Referring to Fagin’s Theorem, Blass and
Gurevich [5, Theorem 1] observed that NP can be characterized in terms of

1Solving the NP = coNP problem would be worth the effort: if NP 6= coNP, then
P 6= NP.
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H as well. In the same publication the authors study what constraints can
be imposed on the existentially quantified variables in a Henkin quantifier,
such as y1, . . . , yn in (1), without the quantifier losing its power to express
NP-complete problems. It was shown that Henkin quantifiers of the form(

∀x11 . . . ∀x1k ∃α1

∀x21 . . . ∀x2k ∃α2

)
, (3)

where α1 and α2 range over a fixed two-element domain, cannot express NP-
complete problems unless NL = NP. The variables α1 and α2 are called
boolean variables. Because their ranges are restricted to two values, ∃αi

is a ‘restricted quantifier,’ whence the term ‘restricted Henkin quantifier’ to
describe (3). Blass and Gurevich showed further [5, Theorem 3] that allowing
three rows instead of two as in (3), a restricted Henkin quantifier is obtained
that admits of expressing NP-complete problems, actually with only one
universal quantifier at each row.

The model theory for restricted Henkin quantifiers was taken up by Sandu
and Väänänen [28], be it under the name of ‘partially ordered connectives’
and written in the following format: ∀x11 . . . ∀x1k

∨
i1

...
. . .

...
...

∀xn1 . . . ∀xnk

∨
in

 , (4)

denoted Dn
k~x~i. The usage of the symbol

∨
reflects the fact that the variables

ij range over a fixed finite domain. In [28] an Ehrenfeucht-Fräıssé game for
partially ordered connectives is given and it is used to prove non-definability
results. Note that there are first-order formulae φ that can express NP-
complete problems, when prefixed with the partially ordered connective D3

1~x~i,
in virtue of Blass and Gurevich’s results. A case in point is 3-colorability
of graphs. Other publications on Henkin quantifiers and partially ordered
connectives in relation to complexity theory include [16, 19, 22, 23, 27].

In this paper the logic D—the result of applying (4) to first-order formu-
lae with arbitrary k, n—is characterized as a fragment of Σ1

1. The relevant
fragment only allows universally quantified variables to appear as arguments
of (existentially quantified) relation variables. As this fragment is rather nat-
ural, it may be worthwhile to explore the metatheory of variations of this
particular fragment. Using the aforementioned characterization result, we
show that (a) D can express a property expressible in (k+1)-ary, existential,
second-order logic that cannot be expressed in k-ary, existential, second-order
logic; and that (b) D captures NP on linearly ordered structures. Using a
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game-theoretic argument we further show that (c) D is not closed under
complementation: it can express 2-Colorability but not its complement.
Along the way we prove that the Henkin quantifier H2

1~x is not definable in
D and that D is strictly contained in NP. Finally, we state that D has a 0-1
law.2

The structure of the paper is similar to that of [29, Chapter 4]. Omitted
proofs can be found in that publication.

In Section 2, we introduce the apparatus necessary to get going. In Sec-
tion 3, D is characterized as a fragment of Σ1

1. Using this characterization, we
prove results (a) and (b) in Section 4. In Section 5, an Ehrenfeucht-Fräıssé
game for D is given, and result (c) is established. Section 6 states that D
has a 0-1 law, and summarizes the results obtained.

2 Preliminaries

A vocabulary τ is a finite set of relation symbols, possibly including the
equality symbol. Vocabularies do not contain constant or function symbols.
A finite τ -structure A = 〈A, 〈RA〉R∈τ 〉 consists of a finite set A, referred to
as the universe of A, and interpretations of the relation symbols of τ on
A. Here and henceforth, the domain of every structure is finite and for this
reason we omit mentioning this. The equality symbol ‘=’ is interpreted as the
identity relation. If the only symbol in τ other than ‘=’ is a binary relation
symbol ‘R’, then any τ -structure interpreting ‘R’ as an irreflexive relation,
is called a digraph (directed graph). If G = 〈G,RG〉 is a digraph and RG is
furthermore symmetric, then G is a graph. A class relevant to this paper
is n-Colorability holding of those finite graphs whose chromatic number
is n or less. Conversely, let n-Colorability denote the complement of
n-Colorability with respect to the class of all graphs. The binary relation
symbol ‘>’ is, by convention, interpreted as an irreflexive linear order. That
is, for every structure A whose vocabulary contains ‘>’, the relation >A is
irreflexive, transitive, and connected.

Define an implicit matrix τ -formula γ as a function of type {0, 1}k →
FO(τ), where k is an integer and FO(τ) is first-order logic over τ . Let Dk(τ)
be the logic with formulae of the form Dn

k~x~i γ(~i)(~x), for arbitrary n. The
notions of bound and free variable are canonically extended from first-order
logic so as to apply to the variables~i as well. A sentence is a formula without
free variables. We shall usually omit explicit indication of as many variables

2This result was obtained in collaboration with Lauri Hella; its proof will be published
elsewhere.
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from the formulae as possible without losing readability. In this manner we
may write Dn

kγ instead of Dn
k~x~i γ(~i)(~x). Put D(τ) =

⋃
k Dk(τ).

Let A be a τ -structure and let Γ = Dn
k~x~i γ(~i)(~x) be a D-formula. Then,

A |= Γ (colloquially pronounced as ‘Γ is true on A’) iff there exist functions
f1, . . . , fn : Ak → {0, 1} such that

A |= ∀~x γ(f1(~x1), . . . , fn(~xn))(~x). (5)

Let Σ1
1,k(τ) be the fragment of Σ1

1(τ) whose relation variables have arity k.
If k equals 1, we arrive at monadic, existential, second-order logic: Σ1

1,1(τ) =
MΣ1

1(τ). For the semantics of first-order and second-order logic, we refer the
reader to [8].

Let K be a class of finite τ -structures and let H be a subclass of K. If Φ
and Ψ are τ -sentences for which the satisfaction relation |= is defined, and
for every structure A from K we have that A |= Φ iff A |= Ψ, then Φ and Ψ
are said to be equivalent on K.

Let L(τ) and L′(τ) be logics for which |= is defined. Then, H is char-
acterized on K by an L(τ)-sentence Φ if for every structure A from K it is
the case that A sits in H iff A |= Φ. If some of its formulae characterize the
class H on K, then L(τ) is said to characterize or express H on K. We write
L(τ) ≤K L′(τ) to indicate that for every L(τ)-formula Φ, there is an L′(τ)-
formula Ψ that is equivalent to Φ on K. The symbols =K and <K are defined
from ≤K in the standard way. In case K is the class of all τ -structures, we
omit mentioning it, and suppress the subscript.

Let C be a complexity class [15, 26]. L(τ) is said to capture at least C
over K, if each C-decidable subclass of K can be expressed by L on K. The
expression complexity of L(τ) on K is said to be in C, if for every sentence
Φ in L(τ), the class

{A from K | A |= Φ}

is decidable in C, relative to some natural encoding of A, see [21]. Finally,
L(τ) is said to capture C on K, if L(τ) captures at least C on K and the
expression complexity of L over K is in C. Again, if K is the class of all
τ -structures we may omit mentioning K.

By means of a game-theoretic argument we show that D cannot charac-
terize the class of structures with a universe of even cardinality, Even. The
latter class, however, is definable by an unrestricted Henkin quantifier.

Proposition 1 There exists a first-order formula φ such that H2
1 φ charac-

terizes Even.
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Proof. A structure A has a universe A with even cardinality iff there
exists a function f : A → A such that for every a ∈ A, f(f(a)) = a and
f(a) 6= a. The latter condition is expressed by the sentence H2

1x1x2y1y2 φ,
where φ := (x1 = x2 → y1 = y2) ∧ (y1 = x2 → y2 = x1) ∧ (x1 6= y1). 2

The reader unfamiliar with Henking quantifiers may find it helpful to
write down the truth condition of the sentence H2

1x1x2y1y2 φ. This condition
asserts the existence of functions f1 and f2 such that

A |= ∀x1∀x2 φ(x1, x2, f1(x1), f2(x2)).

Especially it is instructive to realize that in order for the sentence to be true
on A, f1 and f2 must be one and the same function.

3 Characterizing D as a fragment of Σ1
1

In this section Dk is characterized as a fragment of Σ1
1,k. In Section 3.1,

we provide a translation T from Dk to Σ1
1,k. Using the technical apparatus

from Section 3.1 and the translation T itself, the characterization result is
established in Section 3.2.

3.1 Translating Dk into Σ1
1,k

The translation of Dk into Σ1
1,k hinges on the insight that a function f : A→

{0, 1} can be mimicked by the set X = {~a ∈ Ak | f(~a) = 1}.

Definition 2 Let ~x be a string of k variables and let X be a k-ary relation
variable. Then, 〈X,~x〉 is a proto-literal and the formulae X(~x),¬X(~x) are
the literals based on 〈X,~x〉. Likewise, if L is a set of proto-literals, then the
set of literals based on L is defined as

{X(~x) | 〈X,~x〉 ∈ L} ∪ {¬X(~x) | 〈X,~x〉 ∈ L}.

If Φ is a second-order formula, then

L(Φ) = {〈X, x1, . . . , xk〉 | X(x1, . . . , xk) appears in Φ}

is the set of proto-literals of Φ. Finally, for D = Dn
k~x1 . . . ~xni1 . . . in, let L(D)

be defined as {〈Xj, ~xj〉 | 1 ≤ j ≤ n}.
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Definition 3 Let L = {〈Y1, ~y1〉, . . . , 〈Ym, ~ym〉} be a set of proto-literals, and
let γ : {0, 1}m → FO be an implicit matrix formula. Then, the L-explication
of γ is defined as

TL(γ) =
∧

i1...im∈{0,1}m

(±i1Y1(~y1) ∧ . . . ∧ ±imYm(~ym) → γ(i1, . . . , im)(~y)),

where ±0 = ¬ and ±1 = ¬¬.
The standard translation T maps every Dk(τ)-formula Γ = Dn

k γ to the
Σ1

1,k(τ)-formula T (Γ), where

T (Γ) = ∃X1 . . . ∃Xn∀~x1 . . . ∀~xn TL(Dn
k )(γ) .

It is straightforward to check that the translation T is adequate:

Proposition 4 Every Dk-sentence Γ is equivalent to T (Γ). 2

3.2 The characterization theorem for D

Prefix classes of Σ1
1 have been studied extensively. Recall, for instance, the

language Σ1
1(∃∗∀∗), that is, the fragment of Σ1

1 with formulae of the form

∃X1 . . . ∃Xm∃y1 . . . ∃yl∀x1 . . . ∀xn φ, (6)

where φ is quantifier-free.
In this section D is characterized as a fragment of Σ1

1, denoted Σ1
1♥. The

relevant fragment contains as its subfragment the prefix class Σ1
1(∀∗), also

known as Strict NP.

Definition 5 Let τ be a vocabulary. Let φ be a second-order τ -formula.
Call φ sober if in φ no second-order quantifier appears, and for every relation
variable X, X(x1, . . . , xn) occurring in φ implies that the variables x1, . . . , xn

are free in φ. Let Σ1
1,k♥(τ) be the fragment of Σ1

1,k(τ), containing all formulae
without free relation variables that are of the form

∃X1 . . . ∃Xm∀x1 . . . ∀xn φ, (7)

where φ is a sober formula and X1, . . . , Xm are k-ary. Finally, put Σ1
1♥(τ) =⋃

k Σ1
1,k♥(τ).

Any sober formula is, then, a second-order formula, but only in virtue
of the fact that it contains relation variables. If φ is a sober formula occur-
ring in a Σ1

1,k♥(τ)-formula as in (7), then there are no existentially quan-
tified variables among the arguments of its relation variables. Since every
quantifier-free formula is sober, Σ1

1(∀∗) is a fragment of Σ1
1♥.
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As an example of a Σ1
1♥-formula, consider ∃X1∃X2∃X3∀x1∀x2 (φ ∧ φ′)

that characterizes 3-Colorability, where (φ ∧ φ′) is a sober formula:

φ =

 ∨
i∈{1,2,3}

Xi(x1)

 ∧

 ∧
i∈{1,2,3}

∧
j∈{1,2,3}−{i}

¬(Xi(x1) ∧Xj(x1))


φ′ =

 ∧
i∈{1,2,3}

(Xi(x1) ∧Xi(x2) → ¬R(x1, x2))

 .

Let SL be the set of literals based on a set of proto-literals L. Call S ⊆ SL

a maximally consistent subset of SL, if S does not contain both a literal and
its negation, but adding any literal based on L to S would imply that it
contains both a literal and its negation. Put differently, S is a maximally
consistent subset of SL, if for every 〈X,~x〉 ∈ L, either X(~x) or ¬X(~x) is in
S.

Lemma 6 Let τ be a vocabulary. Let φ be a sober second-order τ -formula
and let L(φ) be the set of proto-literals of φ. Then, φ is equivalent to a
formula of the form

M(φ) =
∧
S

(∧
S → ψS

)
,

where S ranges over the maximally consistent subsets of SL(φ) and the ψS are
FO(τ)-formulae. 2

The formula M(φ), as in the statement of Lemma 6, will be called the
explicit matrix formula of the sober second-order formula φ. As stated by
clause (2) of the following lemma, a certain fragment of the logic Σ1

1,k♥,
determined by the syntactic condition (∗), can be translated to the logic Dk.

Lemma 7 Let τ be a vocabulary. Let φ be a sober τ -formula containing the
k-ary relation variables X1, . . . , Xn, such that

(∗) if Xi(x1, . . . , xk) and Xj(x
′
1, . . . , x

′
k) appear in φ, then i 6= j or xh = x′h,

for every 1 ≤ h ≤ k.

Then, (1) and (2) hold:

(1) There exists an implicit matrix τ -formula γ such that TL(φ)(γ) and φ
are equivalent.

(2) There exists a Dk(τ)-formula that is equivalent to ∃X1 . . . ∃Xn∀~x1 . . . ∀~xn φ.
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Proof. Let φ meet the premise of the lemma and let L(φ) be the set of
proto-literals {〈X1, ~x1〉, . . . , 〈Xn, ~xn〉}.

(1): Since φ is sober, derive from Lemma 6 that φ can be rewritten as an
explicit matrix formula M(φ) =

∧
S(

∧
S → ψS), where the formulae ψS are

first-order. Having seen this, all that is to be done is encoding the explicit
matrix formula M(φ) in an implicit matrix formula γ, so that TL(φ)(γ) and
M(φ) are equivalent. This can be done by putting γ(i1, . . . , in) = ψSi1...in

,
where

Si1...in = {±i1X1(~x1), . . . ,±inXn(~xn)},
for ±1 = ¬¬ and ±0 = ¬. Following Definition 3, TL(φ)(γ) equals∧

i1...in∈{0,1}n

(±i1X1(~x1) ∧ . . . ∧ ±inXn(~xn) → γ(i1, . . . , in)) . (8)

Since every string i1 . . . in ∈ {0, 1}n corresponds thus to a maximally con-
sistent set of proto-literals, and vice versa, (8) is syntactically equivalent to
the explicit matrix formula M(φ). From Lemma 6 it follows that TL(φ)(γ) is
equivalent to φ.

(2): Consider a Σ1
1,k(τ)-formula Ψ = ∃X1 . . . ∃Xn∀~x1 . . . ∀~xn φ. Then, by

clause (1) there exists a matrix formula γ, such that TL(φ)(γ) and φ are equiv-

alent. Consider the formula Γ = Dn
k~x1 . . . ~xn

~i γ and its standard translation
T (Γ):

∃X1 . . . ∃Xn∀~x1 . . . ~xn TL(φ)(γ)

By (∗) it follows that L(Dn
k~x1 . . . ~xn

~i) = L(φ). Hence, T (Γ) is syntactically
equal to Ψ, and T (Γ) is equivalent to Γ in virtue of Proposition 4. 2

Theorem 8 Let τ be a vocabulary including the equality symbol. Then,
Dk(τ) = Σ1

1,k♥(τ), for every integer k. Hence, D(τ) = Σ1
1♥(τ).

Proof. From left to right. This direction follows immediately from the
translation T , as it maps every formula in Dk(τ) to a formula in Σ1

1,k♥(τ).
For the correctness of the translation T , we refer to Proposition 4.

From right to left. This direction follows from the fact that every Σ1
1,k♥(τ)-

formula has an equivalent Σ1
1,k♥(τ)-formula that meets condition (∗) of Lemma

7. This is proved by setting up a translation that roughly goes as follows.
Let Φ be an Σ1

1,k♥(τ)-formula in which the k-ary relation variable X ap-
pears with precisely the following k-tuples of variables: 〈y11, . . . , yk1〉, . . . , 〈y1n, . . . , ykn〉.
That is, if the string X(z1, . . . , zk) appears in Φ, then for some 1 ≤ i ≤ n
and every 1 ≤ j ≤ k, zj = yji. Note that the symbols yji and zj are used as
metavariables.
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Now, for each unique tuple of variables 〈y1i, . . . , yki〉, we replace the string
X(y1i, . . . , yki) by Xi((y1i)i, . . . , (yki)i), where Xi and (y1i)i, . . . , (yki)i are
‘real’ variables. For instance, if the metavariable y2,5 stands for the vari-
able x, then (y2,5)5 stands for the variable x5.

We repeat this procedure for every relation variable X in Φ that has more
than one unique string of variables as argument.

Making use of the equality symbol we ensure that the copies of the vari-
ables and the relation variables are assigned the same semantic objects in
order for the translation to be equivalent to Φ on any structure. The full
proof is given in [29]. 2

We suspect that it is not possible to find a translation from Σ1
1♥ to D

in vocabularies that lack the equality symbol. Settling this issue is left for
future research, however.

The above characterization of D may speed up discovering interesting
properties that it enjoys, for second-order logic happens to be more inten-
sively studied than partially ordered connectives. Now that we have charac-
terized Dk, we can safely conclude that any property expressible in Σ1

1,k♥(τ)
is expressible in Dk(τ) as well. Concrete and interesting examples of this
mode of research are found in the following section.

4 Applications of the characterization

In this section, two results are obtained using the characterization of D.
In Section 4.1, it is shown that for every k there is a vocabulary σ such
that Dk(σ) < Dk+1(σ). In Section 4.2 it is shown that on linearly ordered
structures, D = Σ1

1.

4.1 Strict hierarchy result

Ajtai [1] showed that for every k, there is a vocabulary σ such that Σ1
1,k(σ)

is strictly contained in Σ1
1,k+1(σ). We will use Ajtai’s result to show that for

every k there is a σ such that Dk(σ) < Dk+1(σ), making use of Theorem 8.
Put differently, D contains a strict, arity induced hierarchy, even over finite
structures.

Theorem 9 Let k ≥ 2 be an integer and let σ be a vocabulary with at least
one k-ary relation symbol P and the linear order symbol >. Then, over
σ-structures, Dk−1(σ) < Dk(σ).
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Proof. From [1] the following can be derived3: Let Πk be the subclass of
σ-structures A such that

A is in Πk iff ‖PA‖ is even.

Then, Πk is not expressible in Σ1
1,k−1(σ), but it is expressible in Σ1

1,k(σ).
To separate Dk from Dk−1, we show that Πk is expressible by a formula

of Dk(σ). This suffices, since

Dk−1 = Σ1
1,k−1♥ ≤ Σ1

1,k−1

and Σ1
1,k−1 cannot express Πk.

We show that Dk(σ) can express Πk, by giving a Σ1
1,k♥(σ)-formula Υk

that expresses Πk. Intuitively, Υk lifts the linear order > (which is a relation
among the objects of the universe) to a linear order ψk among k-tuples of
objects of the universe. With respect to this lifted linear order, Υk expresses
that there exists a subset Q of k-tuples of objects from the universe of the
σ-structure A such that:

(1) Q is a subset of PA.

(2) The ψk-minimal k-tuple that is in PA is also in Q, and the ψk-maximal
k-tuple that is in PA is not in Q.

(3) If two k-tuples are in PA and there is no k-tuple between them (in the
ordering constituted by ψk) that is in PA, then exactly one of these
k-tuples is in Q.

We define

Υk = ∃Q∀~x∀~y (φ1 ∧ φ2 ∧ φ3) ,

where φi is the formula that was informally described in clause (i) above
and ~x and ~y are strings of k variables. In the light of these descriptions, the
following specifications should be self-explanatory:

φ1 = Q(~x) → P (~x)

φ2 = (MIN P (~x) → Q(~x)) ∧ (MAX P (~x) → ¬Q(~x))

φ3 = NEXTP (~x, ~y) → ¬(Q(~x) ↔ Q(~y)),

3The result essentially uses hypergraphs, that is, structures interpreting relation symbols
of arity ≥ 3. As a consequence, the result does not imply that Σ1

1,2(τ) is strictly weaker
than Σ1

1,3(τ), where τ a vocabulary that contains only unary and binary predicates, cf.
[7].
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where

MIN P (~x) = ∀~z (P (~z) → (ψk(~x, ~z) ∨ ~z = ~x))

MAX P (~x) = ∀~z (P (~z) → (ψk(~z, ~x) ∨ ~z = ~x))

NEXTP (~x, ~y) = P (~x) ∧ P (~y) ∧ ψk(~x, ~y) ∧
∀~z (P (~z) → (ψk(~z, ~x) ∨ ψk(~y, ~z) ∨ ~z = ~x ∨ ~y = ~z))

and the k-dimensional lift of the linear order > is inductively defined as

ψ1(x, y) = x < y

ψi(x1, . . . , xi, y1, . . . , yi) = xi < yi ∨ (xi = yi ∧ ψi−1(x1, . . . , xi−1, y1, . . . , yi−1)).

The result follows, since Υk is a Σ1
1,k♥(σ)-formula. 2

4.2 On linearly ordered structures D = Σ1
1

In this section, it is shown that on linearly ordered structures, D = Σ1
1. This

can be compared to a result we prove in Section 5, namely that on graphs,
D < Σ1

1. For the purposes of the present section, we introduce the logic V
with sentences of the form

Φ =

(
∀x1 . . . ∀xk ∃z
∀y1 . . . ∀yk

∨
i ∈ {0, 1}

)
γ(i)(~x, ~y, z) , (9)

such that A |= Φ iff there exists a function f : Ak → A and a function
g : Ak → {0, 1} where

A |= ∀~x∀~y γ(g(~y))(~x, ~y, f(~x)) . (10)

It was shown by Krynicki [22] that V coincides with Σ1
1, without restrictions

on the vocabulary.

Theorem 10 On linearly ordered structures, D = Σ1
1.

Proof. Trivially, D ≤ Σ1
1 on arbitrary structures. For the converse di-

rection, in virtue of the result from [22], it suffices to show that for every Φ
of the form (9) there is a D-sentence Γ equivalent to Φ on linearly ordered
structures. Observe that Φ is equivalent to

∃f∃X∀~x∀~y (X(~x) → γ(1)(~x, ~y, f(~x)) ∧ ¬X(~x) → γ(0)(~x, ~y, f(~x))),

where X is a k-ary relation variable and f is a k-ary function variable. In the
remainder of the proof we show that the function variable f can be mimicked

12



by means of a 2(k+1)-ary relation variable Z. More precisely, we provide a
Σ1

1♥-sentence Ψ with second-order quantifiers ∃Z and ∃X that is equivalent
to Φ. The sentence Ψ will employ the k-dimensional lift ψk of the linear order
>, from the proof of Theorem 9. The 2k-ary predicate SUC is defined using
ψk and contains all 2k-tuples 〈~a,~b〉 such that ~b is the immediate ψk-successor
of ~a.

Intuitively, in Ψ the relation variable Z will be defined so that on an
arbitrary linearly ordered structure A,

(1) Z is a linear order among (k + 1)-tuples of the universe of A; and

(2) for all ~a,~b ∈ Ak, if ψk(~a,~b), then for all a′, b′ ∈ A, Z(~a, a′,~b, b′).

Thus, per k-tuple ~a one can associate an ~a-interval of Ak+1-objects, such
that for two k-tuples ~a and ~b, if ψk(~a,~b) then every object in the ~a-interval

precedes every tuple in the ~b-interval in the ordering imposed by Z.
Let ~a ∈ Ak and let a′ ∈ A. If for all a′′ ∈ A it is the case that Z(~a, a′,~a, a′′),

then a′ is called the Z-minimal object of ~a. In the same vein, call a′ the Z-
maximal object of ~a, if for all a′′ ∈ A we have that Z(~a, a′′,~a, a′).

Although Z is a relation, it will be used to the effect of a k-ary function
fZ by letting fZ(~a) be the Z-minimal object of ~a. But—for reasons that will
become clear in due course—if ~a is the ψk-minimal tuple, then fZ(~a) is the
Z-maximal object of ~a.

For instance, consider the following ordering Z of {1, 2, 3}2, observing the
1-, 2-, and 3-interval:

〈1, 2〉 Z 〈1, 3〉 Z 〈1, 1〉︸ ︷︷ ︸
1-interval

Z 〈2, 2〉 Z 〈2, 1〉 Z 〈2, 3〉︸ ︷︷ ︸
2-interval

Z 〈3, 1〉 Z 〈3, 3〉 Z 〈3, 1〉︸ ︷︷ ︸
3-interval

.

Then, Z gives rise to the function fZ , such that

fZ(1) = 1

fZ(2) = 2

fZ(3) = 1.

In the implementation of Z, the Z-minimal object of ~a will be recognized
as the object a′ such that there exists a tuple ~b and an object b′ where
SUC (~b,~a) and Z(~b, b′,~a, a′). If ~a is the ψk-minimal tuple, then it cannot be

recognized in this manner, since there is no ~b such that SUC (~b,~a). It is for
this reason that if ~a is the ψk-minimal tuple, then fZ(~a) is the Z-maximal
object of ~a. The Z-maximal object of ~a is recognized as the object a′ such
that there exists ~b and b′ such that SUC (~a,~b) and Z(~a, a′,~b, b′).

13



Let Ψ be the following sentence:

∃Z∃X∀~x∀~y∀~z∀u∀u′∀u′′ “Z is a linear order of (k+1)-tuples” ∧
ψk(~x, ~y) → Z(~x, u, ~y, u′) ∧
(X(~x) → δ(1)) ∧ (¬X(~x) → δ(0)),

where “Z is a linear order of (k+1)-tuples” abbreviates the conjunction of

¬Z(~x, u, ~x, u)

Z(~x, u, ~y, u′) ∨ (x1 = y1 ∧ . . . ∧ xk = yk ∧ u = u′) ∨ Z(~y, u′, ~x, u)

Z(~x, u, ~y, u′) ∧ Z(~y, u′, ~z, u′′) → Z(~x, u, ~z, u′′)

and δ(i), for i ∈ {0, 1}, abbreviates the conjunction of

¬MIN (~y) ∧ SUC (~z, u′′, ~y, u′) ∧ Z(~z, u′′, ~y, u′) → γ(i)(~x, ~y, u′)

MIN (~y) ∧ SUC (~y, u′, ~z, u′′) ∧ Z(~y, u′, ~z, u′′) → γ(i)(~x, ~y, u′).

In δ(i), MIN is the predicate that holds only of the ψk-minimal tuple. It is
left to the reader to check that Ψ is indeed equivalent to Φ.

To prove that there is a D-sentence that is equivalent to Φ on linearly
ordered structures, it suffices—in virtue of Theorem 8—to show that Ψ is a
Σ1

1♥-formula. To this end observe that one can define ψk, SUC , and MIN
using only the binary relation symbol >. So in particular it follows that these
predicates can be defined without the help of relation variables. Finally, ob-
serve that each argument of the relation variables Z and X is quantified by
one of the universal quantifiers in the block ∀~x∀~y∀~z∀u∀u′∀u′′. 2

By Theorem 10, D captures NP on linearly ordered structures, adopting
the terminology from descriptive complexity theory.4 Combining Theorems
9 and 10, it can be noted that if σ is a vocabulary containing a linear or-
der symbol and a further predicate symbol of each arity, then the sequence
〈Dk(σ) : k < ω〉 of logics, evaluated on linearly ordered structures, ap-
proaches Σ1

1 as a limit, in the sense that for any Σ1
1-sentence there is an

equivalent Dk(σ)-sentence, for some k < ω.

4Barnaby Martin made us aware of the fact that Σ1
1(∀∗) captures NP on the class of

structures that interpret, amongst others, the symbols <, +, and ×. Theorem 10 does not
follow from this fact, since in order to define the numeric predicates + and ×, one needs
existentially quantified variables as arguments of relation variables. For a short discussion
of these matters, the reader is referred to [21, pp. 117–8].
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5 Ehrenfeucht-Fräıssé game for D

Ehrenfeucht-Fräıssé games or model comparison games are usually employed
to prove that some property is not definable in a certain logic. These games
were first introduced for first-order logic in [9, 13].

Let the quantifier rank of a first-order formula be its maximum number
of nested quantifiers. Let m be an integer. If A and B are τ -structures,
~aA = 〈aA

1 , . . . , a
A
r 〉 ∈ Ar, and ~bB = 〈bB1 , . . . , bBr 〉 ∈ Br, then the m-round

Ehrenfeucht-Fräıssé game on the structures A and B, denoted by

EFFO
m (〈A,~aA〉, 〈B,~bB〉) ,

is an m-round game proceeding as specified below. There are two play-
ers, Spoiler and Duplicator. During the ith round, Spoiler first chooses a
structure A (or B) and an element called ci (or di) from the domain of
the chosen structure. Duplicator replies by choosing an element di (or ci)
from the domain of the other structure B (or A). Duplicator wins the play
〈〈c1, d1〉, . . . , 〈cm, dm〉〉, if the relation

{〈aA
i , b

B
i 〉 | 1 ≤ i ≤ r} ∪ {〈ci, di〉 | 1 ≤ i ≤ m} (11)

is a partial isomorphism between A and B; otherwise, Spoiler wins the play.
If against any sequence of moves by Spoiler, Duplicator is able to make
her moves so as to win the resulting play, Duplicator is said to have a
winning strategy in EFFO

m (〈A,~aA〉, 〈B,~bB〉). The notion of winning strat-
egy for Spoiler is defined analogously. By the Gale-Stewart Theorem [14],
Ehrenfeucht-Fräıssé games are determined; that is, precisely one of the play-
ers has a winning strategy. The usefulness of these games is established in
the following seminal result.

Theorem 11 ([9, 13]) For every integer m, the following are equivalent:

• 〈A,~aA〉 and 〈B,~bB〉 satisfy the same first-order formulae ϕ(x1, . . . , xr)
of quantifier rank at most m.

• Duplicator has a winning strategy in EFFO
m (〈A,~aA〉, 〈B,~bB〉). 2

Readers unfamiliar with these games may find it helpful to consult [8], and
[12, 21] for similar games for MΣ1

1.
The notion of quantifier rank is extended to implicit matrix formulae as

follows: qr(γ) = max{qr(γ(~i)) | ~i ∈ {0, 1}k}, for γ of type {0, 1}k → FO.
The model comparison game for D has two phases: a watercoloring phase

and a first-order phase. Let A and B be τ -structures and let m be an integer.

15



Then, them-round, watercolor D-Ehrenfeucht-Fräıssé game on the structures
A and B, denoted as

EFD
m,n,k(A,B) ,

is an (m+1)-round game proceeding as follows: First we have the watercol-
oring phase. Spoiler picks out for every 1 ≤ i ≤ n a subset Ai from Ak.
Duplicator picks out a subset Bi of Bk, for every 1 ≤ i ≤ n. Next, Spoiler
chooses a tuple ~bBi ∈ Bk, for every 1 ≤ i ≤ n, and Duplicator replies by
choosing a tuple ~aA

i ∈ Ak. If for every 1 ≤ i ≤ n the selected tuples satisfy

~aA
i ∈ Ai iff ~bBi ∈ Bi, then the game proceeds to the first-order phase as

EFFO
m (〈A,~aA〉, 〈B,~bB〉); otherwise, Duplicator loses right away.

It is interesting to note that in the first-order Ehrenfeucht-Fräıssé game
that is started up after the watercolor phase, the actual colorings are imma-
terial. The watercolors fade away quickly, so to say.

Proposition 12 Let A and B be τ -structures, and let k, n be integers. Let
Γ = Dn

k γ be any Dk-sentence with qr(γ) ≤ m. Then, the first assertion
implies the second:

• Duplicator has a winning strategy in EFD
m,n,k(A,B).

• A |= Γ implies B |= Γ.

Hence, if the first assertion holds for arbitrary k, n, the second assertion holds
for every D-formula Γ, where qr(Γ) ≤ m.

Proof. The game is a simple adaptation of the one presented in [28]. 2

Fagin [12] showed that the monadic fragments of Σ1
1 and Π1

1 do not coin-
cide, as the latter harbors Connected but the former does not. Thus we
say that MΣ1

1 is not closed under complementation.
Using the model comparison games for D, it can be shown that D is

not closed under complementation either. This result may be interesting,
because D = Σ1

1♥ is a fragment of Σ1
1 that is not bounded by the arity of the

relation variables, and has a non-empty intersection with k-ary, existential,
second-order logic, for arbitrary k (cf. Theorem 9). Clearly, these properties
are not enjoyed by MΣ1

1.
For any two τ -structures A and B with non-intersecting universes, let

A∪B denote the τ -structure with universe A∪B and RA∪B = RA ∪RB, for
any R ∈ τ .

Theorem 13 2-Colorability cannot be expressed in D. Hence, D is not
closed under complementation.
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Proof. For contradiction, suppose 2-Colorability were characterizable
in D. So there would be a sentence in D that characterizes 2-Colorability,
say Γ. This sentence Γ would have a partially ordered connective with di-
mensions k, n prefixing an implicit matrix τ -formula of quantifier rank m.
Now if we are able to find structures A and B such that (i) A is not 2-
colorable but B is 2-colorable, and (ii) Duplicator has a winning strategy in
EFD

m,n,k(A,B), we may reason as follows: Since Γ is supposed to characterize

2-Colorability, we derive from (i) that A |= Γ and B 6|= Γ. But from (ii)
and A |= Γ it follows by Proposition 12, that B |= Γ. A contradiction. So if
such structures A and B are found for all m, k, n, we may conclude that no
sentence Γ exists in D that expresses 2-Colorability.

It remains to be shown that for arbitrarym, k, n, there indeed exist graphs
A and B meeting (i) and (ii). To this end, fix integers m, k, n and consider
the graphs C and D, where

C = {c1, . . . , cN}
RC = the symmetric closure of {〈ci, ci+1〉 | 1 ≤ i ≤ N − 1} ∪ {〈cN , c1〉}
D = {d1, . . . , dN+1}
RD = the symmetric closure of {〈di, di+1〉 | 1 ≤ i ≤ N} ∪ {〈dN+1, d1〉}

and N = 2m+k·n. So C and D are cycles of even and odd length, respectively.
A cycle is 2-colorable iff it is of even length, hence D is not 2-colorable,
whereas C is. Obviously, the structure C ∪D is not 2-colorable either.

Let us proceed to show that Duplicator has a winning strategy in
EFD

m,n,k(C ∪ D,C). Suppose Spoiler selects, for every 1 ≤ i ≤ n, a set

Xi ⊆ (C ∪D)k. Let Duplicator respond with Xi restricted to C, that is, with
Yi = Xi∩Ck, for every 1 ≤ i ≤ n. Suppose Spoiler selects the tuple ~cCi ∈ Ck,
for every 1 ≤ i ≤ n. Let Duplicator respond by simply copying these tuples
on (C ∪D)k, that is, setting ~cC∪D

i = ~cCi . The game advances to the first-order
phase, since obviously ~ci ∈ Xi iff ~ci ∈ Yi. A standard argument (cf. [8, p.
23]) suffices to show that Duplicator has a winning strategy in

EFFO
m (〈C ∪D,~cC∪D

1 , . . . ,~cC∪D
n 〉, 〈C,~cC1 , . . . ,~cCn〉).

As noted in Section 1, D characterizes the class of 3-colorable graphs. In
the same way it characterizes 2-Colorability. It was just shown that the
complement of this class is not expressible in D. Therefore, D is not closed
under complementation. 2

In the proof of Theorem 13, the universe of C has an even cardinality but
that of D does not have. Thus:
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Corollary 14 The class Even is not characterizable in D. 2

By contrast, in Proposition 1 it was shown that Even is characterizable by
a sentence of the form H2

1 φ. So already the simplest Henkin quantifier not
definable in first-order logic, fails to be definable in D as well. Since Even
is obviously characterizable in binary Σ1

1 and Σ1
1 = H, the following result

ensues:

Corollary 15 On graphs, D < Σ1
1. 2

6 Discussion

It is interesting to compare partially ordered connectives with Henkin quan-
tifiers by comparing the properties of the logics D and H. Since the latter is
equivalent to Σ1

1, we might just as well compare D with Σ1
1.

To increase the value of the comparison, we cite a result from an unpub-
lished manuscript by Lauri Hella and the present authors, concerning 0-1
laws. It is well-known that first-order logic has a 0-1 law, but Σ1

1 does not
have one. In fact, Σ1

1’s capability to express Even is a witness of this fact.
If a logic has a 0-1 law, it is said to be unable to count. For a textbook
treatment of 0-1 laws consult [8].

Theorem 16 D has a 0-1 law.

Proof. The result follows as a corollary to (a simple extension of) a result
from [6], and the observation that for every D-formula Γ, if Γ holds on A

then, Γ holds on every substructure of A.5 2

The following table gives an overview of the finite model theory of D in
comparison to Σ1

1.

Σ1
1 D

Able to express NP-c. properties yes yes, [5]
Captures NP yes, [12] no, Cor. 15
Captures NP over lin. o. structures yes yes, Th. 10
Closed under complementation iff NP = coNP no, Th. 13
0-1 law no yes

5This argument was pointed out to us by Lauri Hella, whom we gratefully acknowledge.
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Considering this table it is seen that D exhibits an interesting mix of
‘strong’ and ‘weak’ properties, relative to Σ1

1. D is strong, because it can
express NP-complete properties and captures NP over linearly ordered struc-
tures. On the other hand, D does not capture NP over arbitrary structures
and it has a 0-1 law.

First and foremost, our results apply to the logic D. But of course they
apply to Σ1

1♥ as well. As we pointed out earlier, Σ1
1♥ loosens the restrictions

defining Σ1
1(∀∗) (i.e., strict NP), by moving from quantifier-free to sober

formulae. We consider it worthwhile to explore what are the properties of
other sober prefix classes of Σ1

1. That is, to compare the properties of Σ1
1(r)

and its sober counterpart, where Σ1
1(r) contains all formulae of the form

∃X1 . . . ∃XmQ1x1 . . . Qnxn φ,

where Q1, . . . , Qn is a string accepted by the regular expression r. For in-
stance, it would be very interesting to see whether for every class Σ1

1(r) it is
the case that it can define NP-complete problems iff its ‘soberized’ counter-
part can. Such results would put the results from [17] in a broader perspec-
tive.
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