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Abstract

This article provides a language-theoretic rendering of Herbrand’s theorem. To
each first-order proof is associated a higher-order recursion scheme that abstracts
the computation of Herbrand sets obtained through Gentzen-style multicut elim-
ination. The representation extends previous results in this area by lifting the
prenex restriction on cut formulas and relaxing the cut-elimination strategies.
Features of the new approach are the interpretation of cut as simple composition
and contraction as ‘call with current continuation’.

1 Introduction

Classical logic, in contrast to intuitionistic logic, does not have the existence property.
One may classically prove an existentially quantified statement without necessarily
providing an explicit witness. However, Herbrand’s theorem implies a weaker form of
the existence property for classical logic: if a prenex Σ1-formula ∃x⃗φ(x⃗) is valid then
there is a finite set of tuples of terms {t⃗1, ..., t⃗n}, called a Herbrand set, such that the
disjunction φ(⃗t1) ∨ · · · ∨ φ(⃗tn) is valid.

Herbrand’s theorem can be proved via cut elimination, and supplies a form of
computational content to classical sequent calculi. A direct representation of this com-
putational content was provided in [1] wherein proofs are associated non-deterministic
higher-order recursion schemes, henceforth abbreviated HORS. These so-called Her-
brand schemes behave as abstract representations of non-deterministic programs which
extract witnesses for weak quantifiers from a sequent calculus proof. In particular,
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when the end sequent is prenex Σ1, the scheme associated with a proof provides a
Herbrand set.

The analysis of LK via formal language theory is a fairly recent development [1–3].
The study of computational content of (classical) proofs, on the other hand, goes a
long way back and has received considerable attention and success. There are different
ways to ascribe computational content depending on the logic/theory of interest and
the application in mind. But these all agree on the view that a classical proof not
only serves as a verification tool but contains valuable algorithmic content that can
be exploited.

The first line of work in the general direction of finding computational content
in classical proofs stems from the idea of translating classical logic validities to intu-
itionistic realm and extracting the desired algorithmic content thereof. For a general
overview see [4–6] and for a comprehensive account [7, 8]. Of note are Kreisel’s ‘no-
counterexample’ interpretation, the Gödel–Shoenfield functional interpretation and
variant’s thereof, negative translations, the Friedman A-translation and combinations
of these techniques. Working directly on proofs in classical logic is considered in classi-
cal realizability [9], continuation passing style transformations à la [10], and Hilbert’s
epsilon calculus [11].

In this article, we build on the HORS representation to give a refinement of this
grammar-theoretic approach that respects the structural rules and inherent symme-
try of classical sequent calculi. In particular, the defined Herbrand schemes ascribe
computational meaning to the cut and contraction rules that are not apparent in
Hilbert–Frege or natural deduction calculi, nor in common translations of classical
logic into intuitionistic logic. Specifically, each Gentzen-style sequent calculus proof π
is associated a higher-order grammar H (π) whose non-terminals and production rules
exhibit an algorithm for constructing witness terms for the weak quantifiers in the end-
sequent of π. If the end-sequent of π is Σ1, then the language of the grammar H (π)
presents a set of terms, each of which induces a Herbrand set for the end-sequent.

In an Herbrand scheme, the cut rule is interpreted directly as composition of
the two cut premises, preserving the natural interpretation of cut from intuitionistic
sequent calculus. This is possible due to the interpretation preserving the symmetry
of the two sides of the sequent: the grammar ascribes the same computational mean-
ing to a cut on a formula A as to the cut on ¬A (obtained by first affecting the two
cut formulas by ¬-rules). As a result, the Herbrand scheme for a proof ending with a
cut is, in essence, the union of the Herbrand schemes assigned to the immediate sub-
proofs. The other notable structural rule, contraction, is given an interpretation via
Pierce’s law

(
(A → B) → A

)
→ A. Pierce’s law, equivalent to excluded middle over

intuitionistic logic, has played an important part in call-by-continuation programming
as well as computational interpretations of classical proofs. Its appearance as a com-
putation resolver of contraction, although not surprising, reinforces its value in this
area of research.

The approach of [1], out of which the present work stems, also operates directly on
sequent calculus but fails to fully respect the symmetry of the two sides in a Gentzen-
style sequent (or, following the presentation of [1], the duality between formula and
negation). The deficiency was most apparent in the asymmetric interpretation of the
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cut rule. Depending on which premise of a cut the witness extraction process would
continue, the computation would either arrive at a simple composition of the two
cut premises – in the way described above – or a more complex nested ‘composi-
tion’ involving one premise and two copies of the other. That design choice led to two
shortcomings that the present work overcomes. First, an indirect result of the inter-
pretation of cut is that the Herbrand schemes of [1] were restricted to proofs in which
all cut formulas are in prenex normal form. Thus, to compute a Herbrand set from an
arbitrary proof some initial processing of the proof is necessary before constructing
the Herbrand scheme. Second, the witnesses extracted by the Herbrand scheme were
related to cut-elimination strategies which always favoured a particular cut-premise
for local cut reductions, i.e., strategies which treated cut asymmetrically.

A final refinement over previous work is that in the new representation every com-
putation path generates a Herbrand set in contrast to being subsumed over multiple
computation paths (as is the case in [1]). As a result, the new notion of Herbrand
scheme can be seen as a form of abstract machine for a proof-as-program interpreta-
tion of classical predicate logic: a proof π is a program and the associated Herbrand
scheme H (π) executes the program on a particular ‘environment’.

2 Sequent calculus for FOL

For the present work fix a countable first order signature L comprising predicates and
function symbols each associated a finite natural number representing their arity. We
assume L contains a sufficient stock of function symbols of each arity which includes
a distinguished constant c. Terms in L , henceforth L -terms, are defined as usual
starting from two denumerable sets of variables: free variables FV and bound variables
BV. Symbols α, β, . . . , and x, y, z, . . . range over the two variable classes respectively.
If t is an L -term, FV(t) (resp. BV(t)) denotes the set of free (resp. bound) variables
occurring in t. If BV(t) = ∅ we call t open. Symbols s, t, etc. range over L -terms.
For a bound variable x, s[t/x] denotes the result of replacing all occurrences of x in s
by t. In particular, FV(s[t/x]) = FV(s) ∪ FV(t) if x ∈ BV(s), and FV(s[t/x]) = FV(s)
otherwise.

Formulas are constructed via the grammar:

A ::= P t⃗ | (A ∨A) | ∃xA | ¬A

where P ranges over predicate symbols and t⃗ is a tuple of L -terms whose length is
the arity of P . We say the quantifier ∃x binds x in ∃xA. Note that quantifiers can
bind only bound variables.

Identity is omitted as an explicit predicate symbol as it can be expressed as a binary
predicate with appropriate axioms. The remaining logical connectives are defined by
the usual abbreviations: ∀xA := ¬∃x¬A, A∧B := ¬(¬A∨¬B) and A → B := ¬A∨B.
The subformula relation is the standard one.

A formula is open if every occurrence of a bound variable is within the scope of
a quantifier binding that variable. The free variables of a formula A, denoted FV(A),
is the set of free variables occurring in A. Open formulas are identified up to α-
equivalence, i.e., renaming of bound variables. Given a formula A, open term t and
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bound variable x we denote by A[t/x] the result of replacing all free occurrences of x
in A by t. Due to the separation of variables into free and bound classes, no condition
is required on t and x beyond that t is open.

A formula which does not contain quantifiers is said to be quantifier-free. A
Σ1-formula is any formula with only weak quantifier occurrences where an occur-
rence of a quantifier ∃x in A is weak (strong) if the number of negations on the
path from A to the quantifier occurrence is even (odd). As an example, the formula
A = ∀x∃y((∃z Pxyz) → Qyx) contains one weak quantifier occurrence, marked by ∃y.
The other two quantifier occurrences (∀x and ∃z) are strong.

An important operation on formulas is Skolemisation which, for present purposes,
we take as the validity preserving transformation of arbitrary formulas into Σ1 formulas
by replacing strong quantifiers by function symbols. Let A be a formula in which all
quantifier occurrences bind unique variables. Let SA be the set of variables bound by
strong quantifier occurrences in A. By assumption, each x ∈ SA uniquely identifies
a strong quantifier occurrence ∃xB in A. For each x ∈ SA, let Wx be the set of
variables bound by weak quantifiers on the path from ∃xB to A. To each x ∈ SA is
now associated a fresh function symbol fx of arity |Wx|. The skolemisation of an open
formula A, denoted Ask, is the (open) Σ1 formula obtained by removing all strong
quantifiers in A and replacing every occurrence of a variable x ∈ V by the term
fxy1 · · · yk where (yi)i is some fixed enumeration of Wx.

Following the example A = ∀x∃y((∃z Pxyz) → Qyx) the set of strongly quantified
variables is SA = {x, z}. The associated weak quantifiers are Wx = ∅ and Wz = {y},
inducing function symbols fx of arity 0 and fz of arity 1 respectively. The skolemisation
of A is then the Σ1 formula

Ask = ∃y(Pfxy(fzy) → Qyfx).

The following is immediate.
Proposition 1. An open formula A is valid iff its skolemisation is.

We employ a sequent calculus for classical predicate logic with explicit structural
rules, namely a version of the calculus G1c+ cut of [12] for our chosen syntax. Thus,
a sequent is a pair of finite sequences of open formulas, written Γ ⇒ ∆. For Γ =
A0, . . . , Ak we set Γ¬ = ¬A0, . . . ,¬Ak. We refer to Γ ⇒ ∆ as a Σ1-sequent if Γ

¬,∆ ⊆
Σ1. The length of a sequent Γ ⇒ ∆ is |Γ ⇒ ∆| := |Γ|+ |∆|.

For S = Γ ⇒ ∆ and i < |S| we employ the shorthand Γ ⇒i ∆ for the result of
shifting the i-th formula in the sequent to right-hand side and negating the formula
in the case i < |Γ|. That is,

Γ ⇒i ∆ :=

{
Γ ⇒ ∆′,∆′′, A, if i ≥ |Γ|, ∆ = ∆′A∆′′ and |Γ∆′| = i,

Γ′,Γ′′ ⇒ ∆,¬A, if i < |Γ|, Γ = Γ′AΓ′′ and |Γ′| = i.

The rules of the calculus are listed in Figure 1 with the standard variable condition
applying to ∃L: The variable α, referred to as the eigenvariable of the inference, does
not occur in the conclusion sequent ∃xA,Γ ⇒ ∆. Note the non-standard form of the
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Structural rules

A,A,Γ ⇒ ∆
cL

A,Γ ⇒ ∆

Γ, A,Π ⇒ ∆
eL

A,Γ,Π ⇒ ∆

Γ ⇒ ∆ wL
A,Γ ⇒ ∆

Γ ⇒ ∆, A,A
cR

Γ ⇒ ∆, A

Γ ⇒ ∆, A,Π
eR

Γ ⇒ ∆,Π, A

Γ ⇒ ∆ wR
Γ ⇒ ∆, A

Γ ⇒ ∆, A A,Σ ⇒ Π
cut

Γ,Σ ⇒ ∆,Π

Logical rules

id
P s⃗ ⇒ P s⃗

Γ ⇒ ∆, A
¬L

¬A,Γ ⇒ ∆

Γ ⇒ ∆, Ai ∨R
Γ ⇒ ∆, A0 ∨A1

A[α/x],Γ ⇒ ∆
∃L

∃xA,Γ ⇒ ∆

A,Γ ⇒ ∆
¬R

Γ ⇒ ∆,¬A
A0,Γ ⇒ ∆ A1,Γ ⇒ ∆

∨L
A0 ∨A1,Γ ⇒ ∆

Γ ⇒ ∆, A[t/x]
∃R

Γ ⇒ ∆,∃xA

Fig. 1 Inference rules for G1c+ cut.

exchange rules eL and eR which move a formula occurrence in the premise sequent to
the extreme. These inferences will often be omitted for brevity.

The first and final formula in a sequent are said to be active in the sequent, i.e.,
A and B are the active formulas in A,Γ ⇒ ∆, B. All instances of the logical rules
alter only a single active formula in each premise. The distinguished active formula A
in the two premises of the cut rule is called the cut formula. For every rule instance
one formula in the concluding sequent is denoted as the principal formula with the
exception of cut which has no principal formula. In the case of the logical rules, this
is the distinguished active formula(s), namely, ¬A in ¬L and ¬R, and both active
formulas in id; the principal formula of the non-cut structural rules is the distinguished
formula A. The formula in the premise corresponding to the principal formula (i.e.,
the distinguished active formula in logical rules and distinguished occurrences of A in
structural rules) is called the minor formula.
Definition 1. A proof is a finite tree π of sequents and inferences locally correct
with respect to the inferences in Figure 1 such that leaves are labelled by the zero-
premise inference id. The sequent at the root of π is called the endsequent. Notation
π ⊢ Γ ⇒ ∆ expresses that π is a proof with endsequent Γ ⇒ ∆. The size of a proof
π, in symbols |π|, is the number of vertices in the underlying tree. The subproofs of π
are the proofs that occur as subtrees of π. A subproof of π is immediate if its root is
a successor of the root of π.

A proof in which all cut formulas are quantifier-free is called essentially cut-free.
If there are no applications of cut whatsoever, the proof is cut-free.
Definition 2. A proof π is regular if in every instance of a rule in π except ∃L, all
free variables of any premise sequent(s) are free variables of the conclusion.

Every proof can be transformed into a regular proof by simply substitution closed
terms for the offending free variables.
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Skolemisation can be lifted to proofs in a straightforward way. For each sequent
S = Γ ⇒ ∆, we fix a Σ1 sequent Ssk = Γ′ ⇒ ∆′ such that Γ′¬,∆′ is a sequence
of skolemisations of the formulas in Γ¬,∆. From a proof π ⊢ S a proof πsk ⊢ Ssk

can be given by simply eliminating strong quantifier rule instances (∃L) contributing
toward the endsequent and replacing all occurrences of these eigenvariables by terms
determined by the skolemisation. In particular, |πsk| ≤ |π| and every cut formula of
πsk is a substitution instance of a cut formula of π.

2.1 A remark on prenex normal form

One restriction on the framework introduced in [1] was that all formulas in a proof
were assumed to be in prenex normal form. Here we shall lift this restriction. It is
worth commenting on why this matters.

From the standpoint of provability, the assumption of prenex normal form is with-
out loss of generality. But from a computational point of view the assumption is not
innocent: given a formula A, the proofs of a prenex normal form of A may be con-
siderably different from, and be significantly larger than, proofs of A. The following
example illustrates this point.

Let n be a positive integer and associate binary predicates Ri and constants ai, bi
with each i < n. As an abbreviation we set Cix := (Rixbi ∨ ¬Riaix). Consider the
formula:

Fn := ∃xC0x ∧ · · · ∧ ∃xCn−1x

Taking a prenex normal form of this formula according to a standard procedure yields:

Gn := ∃x0 . . . ∃xn−1(C0x0 ∧ . . . ∧ Cn−1xn−1)

Consider the following cut-free proof of F2:

R0a0b0 ⇒ R0a0b0
⇒ R0a0b0,¬R0a0b0

⇒ C0a0, C0b0
⇒ ∃xC0x,∃xC0x

⇒ ∃xC0x

Ra1b1 ⇒ Ra1b1
⇒ R1a1b1,¬Ra1b1

⇒ C1a1, C1b1
⇒ ∃xC1x, ∃xC1x

⇒ ∃xC1x

⇒ ∃xC0x ∧ ∃xC1x

Here we used a derived right rule for ∧ according to its definition in terms of ¬,∨.
Now compare the previous proof with a cut-free proof of G2, where Dxy abbreviates

6



C0x ∧ C1y and the sequent arrow has been omitted for brevity:

...
R0a0b0, Da0b1, Db0a1, Db0b1
C0a0, Da0b1, Db0a1, Db0b1

...
R1a1b1, Da0b1, Db0a1, Db0b1
C1a1, Da0b1, Db0a1, Db0b1

Da0a1, Da0b1, Db0a1, Db0b1

∃y(C0a0 ∧ C1y),∃y(C0a0 ∧ C1y),∃y(C0b0 ∧ C1y),∃y(C0b0 ∧ C1y)

∃y(C0a0 ∧ C1y),∃y(C0b0 ∧ C1y)

∃x∃y(C0x ∧ C1y),∃x∃y(C0x ∧ C1y)

∃x∃y(C0x ∧ C1y)

The increase in size of the proof is not accidental. The number of contractions
needed on the root formula Gn will grow exponentially with n, and therefore also the
size of its cut-free proofs. By contrast, the size of the cut-free proofs of Fn will be of
linear size in n (n subproofs of constant size containing a single contraction, followed
by n applications of the right ∧-rule). If we wish to view proofs as programs and cut-
elimination as computation, this suggests that restricting to prenex normal form can
lead to significantly less efficient programs.

Furthermore, since both formulas Fn and Gn are Σ1, we obtain Herbrand expan-
sions from their cut-free proofs. From our proof of F2 we can read off the Herbrand
expansion:

(R0a0b0 ∨ ¬R0a0b0) ∧ (R1a1b1 ∨ ¬R1a1b1)

From the corresponding proof of G2 we get:

(R0a0b0 ∧R1a1b1)∨ (R0a0b0 ∧¬R1a1b1)∨ (¬R0a0b0 ∧R1a1b1)∨ (¬R0a0b0 ∧¬R1a1b1)

The latter is the disjunction normal form of the former Herbrand expansion, and it is
not hard to see that the correspondence generalises to Fn and Gn. Therefore, prenex
normal form can also lead to exponential blow-up in the size of Herbrand expansions.

3 Types and terms

In the next section we will define the recursion schemes associated with sequent cal-
culus proofs together with their rewrite rules. First, we set up the basic type theory
as a derivation system of typing judgements, namely expressions of the form t : U .
Derivability of the judgement t : U is expressed by the phrase ‘t has type U ’. When
context is clear this assertion is expressed simply as t : U . Throughout the section we
operate over the fixed first-order vocabulary L .

The type system comprises three ground types and several type constructors split
into three categories: extended terms, formula types and general types. The first group
provides a representation of L -terms and substitutions thereof; formula types denote
the types of evidence of formulas; the general types close the above types under
functions spaces.

7



⊥Σ : Σ

σ : Σ s : ι α ∈ FV
[s/α]σ : Σ

t an L -term σ : Σ
t · σ : ι

Fig. 2 Typing rules for substitution stacks and individuals.

3.1 Extended terms and substitutions

The first category of types comprises just two ground types:

• the type of individuals, ι.
• the type of substitution stacks, Σ.

Formation rules for terms of the above ground types are displayed in Figure 2. We will
shortly introduce further term constructors amongst which one, application, provides
an additional way to construct terms of either type above. However, the specific terms
derivable from the three rules of Figure 2 represent canonical terms of type ι and Σ.
Definition 3. A substitution stack is any term σ for which the judgement σ : Σ is
derivable using only the typing judgements in Figure 2. Likewise, an extended L -
term is any term t for which the judgement t : ι is derivable using only the typing
judgements in Figure 2.

Thus, substitution stacks are finite lists of the form [sn/αn] · · · [s1/α1]⊥Σ where
αi is an eigenvariable and si is an extended L -term for each 1 ≤ i ≤ n, and extended
L -terms are L -terms composed with a substitution stack. The L -terms can thus be
identified with extended L -terms t · ⊥Σ. Given substitution stacks σ and τ , we write
στ as shorthand for the substitution stack

στ := [sn/αn] · · · [s1/α1]τ where σ = [sn/αn] · · · [s1/α1]⊥Σ.

Substitution stacks and extended L -terms denote, respectively, substitutions and
L -terms. We now define this interpretation, starting with generalising the notion of
substitution.
Definition 4. A substitution is a partial function θ : FV → Terms(L ) from free
variables to L -terms. The unique substitution with empty domain is denoted ∅. Appli-
cation of a substitution θ to an L -term t is denoted t[θ] and defined in the expected
way:

α[θ] =

{
θ(α), if α ∈ dom θ,

α, otherwise,

x[θ] = x x ∈ BV

f(t1, . . . , tn)[θ] = f(t1[θ], . . . , tn[θ]).

Two substitutions θ and θ′ can be combined to form a substitution θ+θ′ with domain
dom θ ∪ dom θ′ which applies the substitution θ if on variables in its domain and θ′

otherwise:

(θ + θ′)(α) =

{
θ(α), if α ∈ dom θ,

θ′(α), otherwise.

The operation θ, θ′ 7→ θ + θ′ need not be commutative if dom θ ∩ dom θ′ ̸= ∅.
However, if θ and θ′ have disjoint domains, then θ + θ′ = θ′ + θ. When there is no
cause for confusion, we write [t/α] for the unique substitution with singleton domain
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{α} and codomain {t}. Thus, [t/α] + θ denotes the substitution mapping α to t and
β(̸= α) to θ(β).

We can now define the value of an extended individual term and of a substitution
stack, which is to be an L -term and a substitution respectively.
Definition 5. The value of an extended individual term v and stack σ is the L -term
Val(v) and substitution Val(σ) respectively defined by mutual recursion:

Val(⊥Σ) = ∅
Val([u/α]σ) = [Val(u)/α] + Val(σ)

Val(t · σ) = t[Val(σ)]

Proposition 2. For all L -terms t and substitution stacks σ, τ we have Val(στ) =
Val(σ) + Val(τ).

Proof. By induction on the length of the stack σ.

3.2 Formula types and general types

From a third ground type □, the null type, the formula types are generated via sum,
product and (non-dependent) quantifiers. Closure of the basic and formula types under
arrow forms the general types:

FmlTyp ∋ F,G ::= □ | F +G | F ×G | ∃F | ∀F
Typ ∋ U, V ::= ι | Σ | F | U → V

These types induce further term constructors listed in Figure 3. Every formula type
F has an inhabitant ⊥F and we omit the subscript when this can be determined
from context. The operation F 7→ F⊥ maps each formula type to its type-theoretic
dual : □⊥ = □, (F × G)⊥ = F⊥ + G⊥, (F + G)⊥ = F⊥ × G⊥, (∀F )⊥ = ∃F⊥ and
(∃F )⊥ = ∀F⊥. A type U → V is called a function type with domain U and codomain
V . Terms of function type are referred to as functions. As the only formation rule
for terms of function type is application, there are no functions in the term calculus
induced by the rules in Fig. 2 and 3 alone. Instead, functions will be instantiated by
specific additional constants, called nonterminals, discussed in the next section.

Two of the constructors in Figure 3 deserve special mention:

Choice ∥. The term f ∥ g represents a non-deterministic choice between subterms f
and g, which must be of the same (formula) type. The choice constructor is used in

ε : □
f0 : F0 f1 : F1

jf0f1 : F0 × F1

f : Fi i ∈ {0, 1}
iif : F0 + F1

u : ι f : F

euf : ∃F
u : ι → F
au : ∀F

⊥F : F

f : F g : F

f ∥ g : F
u : F⊥ → F

pu : F
u : U v : U → V

vu : V
Fig. 3 Typing rules for formula and general types. F,G range over formula types and U, V over
general types.
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the interpretation of contraction and in constructing generic inhabitants of pair type
(corresponding to disjunction).
Peirce constant p. Also used in the interpretation of contraction, the constant supplies
evidence for a formula A from a function mapping counter-evidence for A to evidence
for A.

The above constructors are not associated reduction rules and should be viewed
as constructors of a programming language that are ‘interpreted’ by the Herbrand
scheme.

The Peirce constructor is essentially a witness of Peirce’s axiom:

((A → B) → A) → A,

or rather its particular instance (¬A → A) → A, where F and F⊥ represent A and ¬A
respectively. In this system the behaviour of the Peirce constant will be similar to the
‘call-with-current-continuation’ operator which has featured in various computational
interpretations of classical theories, for example Krivine’s classical realizability [9].
Its specific purpose in the present work is to provide computational reading of the
contraction rule. The correlation to Peirce’s axiom is made apparent by the ‘formulas
as types’ encoding below.
Definition 6. Each L -formula A is associated two formula types, denoted [A] and
⟨A⟩, called respectively the type of evidence for A and counter-evidence for A:

[P s⃗] = □ [A ∨B] = [A] + [B] [∃xA] = ∃[A] [¬A] = ⟨A⟩
⟨P s⃗⟩ = □ ⟨A ∨B⟩ = ⟨A⟩ × ⟨B⟩ ⟨∃xA⟩ = ∀⟨A⟩ ⟨¬A⟩ = [A]

A term s is said to have Σ1-type if s : [A] for some Σ1 formula A.
Of note is that atomic formulas are uniformly mapped to the null type inde-

pendently of the predicate and term structure. As such there is no type-theoretic
distinction between evidence and counter-evidence of such formulas. More generally,
evidence and counter-evidence are type-theoretic duals:
Proposition 3. For all formulas A, [A] = ⟨A⟩⊥.
Proposition 4. The evidence type of every Σ1 formula is inhabited by a term not
involving ⊥F for F a formula type.

Proof. By induction, noting that given an inhabitant i : [A] we have e(c · ⊥Σ)i :
[∃xA].

The ‘formulas as types’ encoding described above is extended to sequents as
functions between evidence types.
Definition 7. The type interpretation of a sequent Γ ⇒ ∆, in symbols [Γ ⇒ ∆], is
defined as follows where Γ = A1, . . . , Am and ∆ = B1, . . . , Bn:

[Γ ⇒ ∆] := [A1] → · · · → [Am] → ⟨B1⟩ → · · · → ⟨Bn−1⟩ → [Bn].

Thus, an inhabitant of [Γ ⇒ ∆, B] is a function mapping evidence for each formula
in Γ and count-evidence for each formula in ∆ to evidence for B. This interpretation
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is a natural extension of the usual type-theoretic interpretation of an intuitionistic
sequent Γ ⇒ B as a function mapping justification for formulas in Γ to justifica-
tion for B. The distinctive feature of classical sequent calculus is the permission of
contraction to the right side of the sequent arrow. The type-theoretic interpretation
presents right contraction as a transformation from [Γ ⇒ ∆, B,B] = · · · → ⟨B⟩ → [B]
to [Γ ⇒ ∆, B] = · · · → [B], made possible by the Peirce constant.

Note, [Γ ⇒ ∆] yields the same type as [∅ ⇒ Γ¬,∆]. Applying the interpretation
to the abbreviation Γ ⇒i ∆, with Γ and ∆ as in the definition above, we obtain for
i < m and j < |∆|:

[Γ ⇒i ∆] =

{
· · · → [Ai−1] → [Ai+1] → · · · → ⟨Bn⟩ → ⟨Ai⟩, i < m,

· · · → ⟨Bj−1⟩ → ⟨Bj+1⟩ → · · · → ⟨Bn⟩ → [Bj ], j = i−m.

4 Herbrand schemes

In this section we describe the recursion schemes associated with sequent calculus
proofs. We assume some familiarity with higher-order recursion schemes. For back-
ground on recursion schemes see [13]. We will use a variant of recursion schemes
involving pattern matching as in [1].

In the present setting, we define a higher-order recursion scheme generally to be a
structure S = (N ,T ,V ,R,S) consisting of the following data:

• A set N of typed non-terminal symbols,
• A set T of typed terminal symbols,
• A set V of typed variables,
• A set R of rewrite, or production, rules,
• A distinguished start symbol S ∈ N .

Let T be the set of well-typed terms in N ∪T ∪V . Formally, a rewrite rule in R is a
pair (t, s) ∈ T ×T were s and t are of the same type. An instance of the rule (t0, t1) is
a pair (t0[σ], t1[σ]) where σ is a type-preserving substitution from variables to T . We
say that t0 one-step rewrites to t1, denoted t0 −→1 t1, if (t0, t1) is an instance of a
rewrite rule in R. We write t0 −→ t1 and say that t0 rewrites to t1 if the pair (t0, t1)
is in the reflexive, transitive closure of the one-step rewrite relation. The language
L (S ) of a recursion scheme S with start symbol S is the set of terms t containing
no variables or non-terminals such that S −→ t.

Of course, not every recursion scheme in the sense above corresponds to a reason-
able model of computation. At the very least one should require the set of rewrite
rules to be recursive as well as certain constraints on the form of the first term in the
pair (t, s) ∈ R. Indeed, frequently the rewrites of a higher-order recursion scheme are
required to be of the shape:

Fx0 · · ·xn−1 −→ t

where F is a non-terminal, x0, . . . , xn−1 are pairwise distinct variables of appropriate
type and t is a term containing no variables other than the xi.

The more general definition allows for context sensitive rewrites. While the
recursion schemes that we associate with proofs require more general rewrites than
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immediately above, these will be constrained in comparison to the definition above. In
particular, the only context sensitivity utilised in Herbrand schemes rewrites is pattern
matching. Rewrites in the recursion schemes that follow will have the general form

Ft0 · · · tn−1 −→ t

where ti = fixi,0 · · ·xi,ki
is a term constructor with ki the associated arity, and all

the xi,j are pairwise distinct. Thus, some rewrite rules will depend not only on the
outermost non-terminal but also the shape of its arguments.

Note that we also permit the sets of non-terminals and terminals to be infinite. This
is just a technical convenience; rather than assigning separate sets of non-terminals
and terminals to each proof, it will be simpler to have fixed sets of non-terminals
and terminals with fixed rewrite rules. Essentially, there is a single infinite ‘universal’
recursion scheme H with no start symbol, and each individual scheme H (π) is speci-
fied by a start symbol and its rewrite rule. In practice, the recursion scheme associated
with a proof will always be equivalent to one using only finitely many non-terminals,
terminals and variables.

The remainder of this section defines the Herbrand scheme H (π̂) associated to a
proof π̂ ⊢ Γ ⇒ A where A is Σ1. The terminals of H (π̂) comprise all symbols in the
type system introduced in Section 3.

The non-terminals of H (π̂) comprise the following symbols:

• A start symbol Sπ̂ : [A].
• A proof non-terminal Fπ

i : Σ → [Λ ⇒i Π] for each subproof π ⊢ Λ ⇒ Π of π̂ and
i < |Λ ⇒ Π|. These non-terminals compute evidence for the i-th formula occurrence
in Λ ⇒ Π from counter-evidence for the remaining formula occurrences in the
sequent.

• Extractor non-terminals EB : [B] → [B] for each B that is a subformula of A or the
negation of a subformula of A. These non-terminals extract witnesses for the weak
quantifiers in B from arbitrary evidence by recursively eliminating Peirce constants.

• Helper non-terminals used to express function composition and combinators and to
simulate specific cases of λ-abstraction.

The remainder of this section presents the rewrite rules for the above non-terminals,
starting with the helper functions.

4.1 Helper functions

Each of these non-terminals is assigned a single (deterministic) production rule that
simulates a particular aspect of λ-abstraction over the underlying type system: com-
position, exchange, redundancy and substitution formation. By omitting abstraction
as a formal constructor, we avoid the need to accommodate β-reduction alongside pro-
duction rules and to reason about arbitrary λ-abstractions that cannot be simulated
by the recursion scheme. Indeed, the particular λ-abstractions expressed by these non-
terminals are all sub-linear in the sense that they express abstractions λx t with at
most one occurrence of x in t.
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For all types U, V,W and V⃗ = V1, . . . , Vn, the following non-terminals are included
in H (π) with associated production rule:

◦ : (V → W ) → (U → V ) → U → W

(x ◦ y)z := ◦xyz −→ x(yz)

An : (U → V⃗ → W ) → V⃗ → U → W

An wx⃗z −→ wzx⃗ where |x⃗| = n

K : U → V → U

Kxy −→ x

Sbsα : Σ → ι → Σ for each α ∈ FV

Sbsα xy −→ [y/α]x

Despite foregoing λ-abstraction at the formal level, it nonetheless provides a convenient
notation for expressing terms constructed from the helper non-terminals. Thus, in the
sequel we will more often use the language of λ-calculus than the above non-terminals.
Except where stated otherwise, such notation will be strictly confined to constructions
that are expressible via the above symbols and other terms/non-terminals.

The three main examples of this notation are presented in Figures 2, 1 and 3 (cL,
∃L and Peirce reductions respectively), the expanded form of which are:

λv.Fσvx⃗ expands to A|x⃗|(Fσ)x⃗

λv.F([v/α]σ])x⃗ expands to (A|x⃗|Fx⃗) ◦ (Sbsασ)
λv.Fσw⃗x⃗(z(Gσw⃗vx⃗y⃗))y⃗ expands to (A|y⃗|(Fσw⃗x⃗)y⃗) ◦ (z ◦ (A|x⃗y⃗|(Gσw⃗)x⃗y⃗))

The above abbreviations do not utilise the non-terminal K. This non-terminal is
useful in defining generic inhabitants of each formula type. For every formula B we
introduce a term CB : [B], called the generic evidence for B defined as follows:

CB := ε, B atomic CB∨C := i0CB

∥∥ i1CC C∃yB := e(c · ⊥)CB

C¬¬B := CB C¬B∨C := jC¬BC¬C C¬∃yB := a
(
KC¬A[c/y]

)
We chose to use the same notation style for C as non-terminals (upper-case sans-
serif) to emphasise that CB will contain occurrences of the non-terminal K if B has
strong quantifier occurrences. Intuitively, the term CB describes the simplest strategy
to provide evidence for the formula B.

4.2 Extractors

Each Σ1-formula B has associated an extractor non-terminal EB : [B] → [B]. These
non-terminals follow a simple behaviour, recursively eliminating instances of the Peirce
operator from their argument and commuting with all other term builders. When
encountering a Peirce term the extractor simply evaluates the guarded function on
generic evidence for the appropriate type. Their only role is with the start symbol of
the Herbrand scheme for which they extract terms suitable for a Herbrand disjunction
from arbitrary evidence (or counter-evidence) for a formula. These extractors have the
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following rewrite rules.

EBε −→ ε EB⊥[B] −→ ⊥[B]

EB0∨B1
(iix) −→ ii(EBi

x) EB(x ∥ y) −→ EBx ∥ EBy

E¬B0∨B1(jxy) −→ j(E¬B0x)(E¬B1y) EB(pz) −→ EB(zC¬B)

E∃xB(exy) −→ ex(EBy) E¬¬Bx −→ EBx

The above rewrites rely on pattern-matching to determine which rewrite rule is
applicable.
Proposition 5. For every Σ1 formula B, EBCB −→ CB.

4.3 Start symbol

The start symbol Sπ̂ of H (π̂) is associated a single rewrite rule:

Sπ̂ −→ EA

(
Fπ̂
n⊥CA1 · · ·CAn

)
where, recall, the endsequent of π̂ is Γ ⇒ A (with A ∈ Σ1) and Γ = A1, . . . , An.

Inference Principal rewrite Non-principal rewrite

id
P s⃗ ⇒ P s⃗

Fπ∗σx −→ ε

π0
A,Γ ⇒ ∆ ¬R
Γ ⇒ ∆,¬A

Fπ∗σx⃗ −→ Fπ0∗ σx⃗ Fπi σx⃗z −→ Fπ0
i+1σzx⃗

π0
Γ ⇒ ∆, A ¬L¬A,Γ ⇒ ∆

Fπ∗σx⃗ −→ Fπ0∗ σx⃗ Fπi σzx⃗ −→ Fπ0
i−1σx⃗z

π0
Γ ⇒ ∆, Aj ∨R

Γ ⇒ ∆, A0 ∨A1

Fπ∗σx⃗ −→ ij
(
Fπ0∗ σx⃗

)
Fπi σx⃗

(
jz0z1

)
−→ Fπ0

i σx⃗zj

π0
A0,Γ ⇒ ∆

π1
A1,Γ ⇒ ∆ ∨L

A0 ∨A1,Γ ⇒ ∆
Fπ∗σx⃗ −→ j(Fπ0∗ σx⃗)(Fπ1∗ σx⃗) Fπi σx⃗

(
ijz

)
−→ F

πj

i σx⃗z

π0
Γ ⇒ ∆, A[t/x]

∃R
Γ ⇒ ∆,∃xA

Fπ∗σx⃗ −→ e(t · σ)(Fπ0∗ σx⃗) Fπi σx⃗(az) −→ Fπ0
i σx⃗(z(t · σ))

π0
A[α/x],Γ ⇒ ∆

∃L∃xA,Γ ⇒ ∆
Fπ∗σx⃗ −→ a

(
λw.Fπ0∗

(
[w/α]σ

)
x⃗
)

Fπi σ(ez0z1)x⃗ −→ Fπ0
i ([z0/α]σ)z1x⃗

Table 1 Production rules for Fπ
i derived from logical inferences. In all cases x⃗ is a sequence of variables

of length |Γ∆| typed appropriately. Subscript ∗ denotes the index(es) of the principal formula(s) of π (in
the context of Fπ

∗ ) and the index of the corresponding minor formula (in Fπ0
∗ etc.).
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4.4 Proof non-terminals

Finally, and most importantly, for each proof π with end sequent Λ ⇒ Π and each
index i < |Λ ⇒ Π| there is a non-terminal Fπ

i : Σ → [Λ ⇒i Π]. These non-terminals
are each associated re-write rules according to the final inference of π and particular
structure of certain arguments. These are listed in Figures 1, 2 and 3 and have two
essential forms:

Inference productions. A single production rule for Fπ
i determined completely by the

final inference in π and the immediate subproofs. These production rules are listed in
Figures 1 and 2. Only one such inference production is associated to each proof non-
terminal whose general shape is determined by whether the i-th formula of Λ ⇒ Π
is principal. The inference production for Fπ

i maps this non-terminal to a term built
from terminals and non-terminals Fπ

j where π0 is an immediate subproof of π. In some
cases, this term will include constant and helper non-terminals. The production rule
for Fπ

i depends on pattern-matching only if the final inference is a logical inference
and the i is not the index of the principal formula.

Inference Principal rewrite Non-principal rewrite

π0
Γ ⇒ ∆, A,A

cR
Γ ⇒ ∆, A

Fπ∗σx⃗ −→ p
(
Fπ0∗ σx⃗

) ∥∥ p
(
Fπ0

∗′ σx⃗
)

Fπi σx⃗z −→ Fπ0
i σx⃗zz

π0
A,A,Γ ⇒ ∆

cL
A,Γ ⇒ ∆

Fπ∗σx⃗ −→ p
(
F̂π0∗ σx⃗

) ∥∥ p
(
F̂π0

∗′ σx⃗
)

Fπi σzx⃗ −→ Fπ0
i+1σzzx⃗

π0
Γ ⇒ ∆, A,Π

eR
Γ ⇒ ∆,Π, A

Fπ∗σx⃗y⃗ −→ Fπ0∗ σx⃗y⃗ Fπi σx⃗z −→

{
Fπ0
i σx⃗y⃗, if i < |Γ∆|,

Fπ0
i+1σx⃗y⃗, if i ≥ |Γ∆|.

π0
Π, A,Γ ⇒ ∆

eL
A,Π,Γ ⇒ ∆

Fπ∗σy⃗x⃗ −→ Fπ0∗ σy⃗x⃗ Fπi σzy⃗x⃗ −→

{
Fπ0
i−1σy⃗zz⃗, if 0 < i ≤ |Π|,

Fπ0
i σy⃗zx⃗, if i > |Π|.

π0
Γ ⇒ ∆ wR

Γ ⇒ ∆, A
Fπ∗σx⃗ −→ ⊥[A] Fπi σx⃗y −→ Fπ0

i σx⃗

π0
Γ ⇒ ∆ wL

A,Γ ⇒ ∆
Fπ∗σx⃗ −→ ⊥⟨A⟩ Fπi σyx⃗ −→ Fπ0

i−1σx⃗

π0
Γ ⇒ ∆, C

π1
C,Λ ⇒ Π

cut
Γ,Λ ⇒ ∆,Π

Fπi σx⃗0y⃗x⃗1 −→


Fπ0
i σx⃗(Fπ1∗ σy⃗), if i < |Γ|,

Fπ0
j σx⃗(Fπ1∗ σy⃗), if i = |ΓΛ|+ j < |ΓΛ∆|,

Fπ1
j+1σ(F

π0∗ σx⃗)y⃗, if i = |Γ|+ j < |ΓΛ|,
Fπ1
j+1σ(F

π0∗ σx⃗)y⃗, if i = |ΓΛ∆|+ j.

Table 2 Production rules for Fπ
i derived from structural inferences. Subscript ∗ denotes the index of

the principal formula of π and the corresponding minor formula/cut formula in the premise(s). In the
case of the contraction rules, indices of the two minor formulas are denoted ∗ and ∗′ respectively. In the
principal rewrite for cL, F̂π0

i σx⃗ abbreviates λv.Fπ0
i σvx⃗ := A|x⃗|(Fπ0

i σ)x⃗.
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Fπ
i σw⃗x⃗(pz)y⃗ −→ p

(
λv.Fπ

i σw⃗x⃗(z(Fπ
i+kσw⃗vx⃗y⃗))y⃗

)
for i = |w⃗| and k = |x⃗|

Fπ
i+kσw⃗(pz)x⃗y⃗ −→ p

(
λv.Fπ

i+kσw⃗(z(Fπ
i σw⃗x⃗vy⃗))x⃗y⃗

)
for i = |w⃗| and k = |x⃗| > 0

Fπ
i σw⃗(x ∥ y)z⃗ −→ Fπ

i σw⃗xz⃗
∥∥ Fπ

i σw⃗yz⃗

Fπ
i σx⃗⊥y⃗ −→ ⊥

Table 3 Production rules associated to Peirce and choice constructors and
‘undefined’ inputs.

Internal productions. These are production rules associated every proof non-terminal
Fπ
i and applicable whenever at least one argument is ⊥ or guarded by either the Peirce

or choice constant px or x ∥ y. These productions are listed in Figure 3. Each rewrite
‘consumes’ the matched term constructor and ‘reduces’ the term Fπ

i to one involving
the same non-terminal Fπ

i and, in the case of the Peirce reduction, a non-terminal Fπ
j

for j ̸= i.

Concerning the production rules observe:
Proposition 6. All non-terminals of H (π) with the exception of proof non-terminals
are deterministic. If two or more productions are applicable to a term Fπ0

i σu⃗ : [A]
(where u⃗ is terminal), i.e. there are terms s ̸= t such that Fπ0

i σu⃗ : [A] −→1 s and
Fπ0
i σu⃗ : [A] −→1 t, then some argument ui has the form pv or v0 ∥ v1.
In the remainder of the section we discuss the production rules in more detail with

some examples. Further examples are given in Section 6 where two Herbrand schemes
associated to proofs are examined in detail.

4.4.1 Undefined input

Each such non-terminal proof has the following distinguished rewrite rules, in order
to handle ‘undefined’ inputs.

Fπ
i x⃗⊥C y⃗ −→ ⊥⟨A⟩ Fπ

j x⃗⊥C y⃗ −→ ⊥[B]

In the above rewrites i is an index corresponding to a left formula occurrence A, j is an
index corresponding to a right formula occurrence B, and the formula corresponding
to the position of the argument ⊥C is either a left or right occurrence of C. The
notation ⊥C is to be understood as ⊥[C] or ⊥⟨C⟩ as appropriate. Since the distinction
between ⊥[A] and ⊥⟨A⟩ will not affect the evaluation of terms, we may abuse notation
writing the more informal ⊥A. This term should always be read as a term of type [A]
or ⟨A⟩, which should be clear from context.

4.4.2 Axiom

Consider an instance of a weakened axiom:

id
P s⃗ ⇒ P s⃗ wL+ wR

A,P s⃗ ⇒ P s⃗,B
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Let π denote the proof above and π0 the trivial subproof comprising the axiom only.
For i ∈ {0, 1} there is a proof non-terminal Fπ0

i of type Σ → □ → □ (since ⟨P s⃗⟩ =
[P s⃗] = □). The rewrite in each case is simply Fπ0

i σx −→ ε.
Turning to the weakened axiom π, let l be the length of the root sequent. For each

i < l there is a proof non-terminal Fπ
i which is a function from substitution stacks to

the type interpretation of A,P s⃗ ⇒i P s⃗,B. This takes one of three forms depending
on the value of i:

Fπ
i : Σ →


□ → □ → ⟨B⟩ → ⟨A⟩, if i = 0,

[A] → □ → ⟨B⟩ → □, if i = 1, 2,

[A] → □ → □ → [B], if i = 3.

The rewrite for Fπ
i is constant in each case:

Fπ
i σx⃗ −→


⊥⟨A⟩, if i = 0,

ε, if i = 1, 2,

⊥[B], if i = 3.

In all the above rewrites σ is a variable of type Σ and x⃗ = x0x1x2 is a sequence of
variables of appropriate type dependent on the value of i.

4.4.3 Negation

The first non-trivial logical inference we consider is the right ¬-rule. (The rules for the
left rule are entirely analogous.) Consider a proof π:

π0

A,Γ ⇒ ∆
¬R

Γ ⇒ ∆,¬A

Let the length of Γ and ∆ be m and n respectively. The principal rewrite for this
inference is:

Fπ
m+nσx⃗y⃗ −→ Fπ0

0 σx⃗y⃗

where the i-th variable in x⃗ has the type of evidence for the i-th formula in the sequence
Γ∆¬. In Figure 1 the two indices m + n and 0 are abbreviated as ∗ as they refer to
the principal/minor formula of the inference.

The non-principal rewrites associated to this inference are the following where
z : ⟨¬A⟩ and x⃗ is typed appropriately for the formulas in Γ∆¬ minus the i-th formula:

Fπ0
i σx⃗z −→ Fπ1

i σzx⃗.
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4.4.4 Disjunction

Suppose π is a proof of the form:

π0

Γ ⇒ ∆, Aj ∨R
Γ ⇒ ∆, A0 ∨A1

where j ∈ {0, 1}. Henceforth we adopt the convention in Fig. 1 of using ∗ to refer
to the index of the principal and minor formula (in this example, ∗ = |Γ∆| in both
cases). As principal rewrite we have:

Fπ
∗σx⃗ −→ ij(F

π0
∗ σx⃗)

As above, x⃗ is a sequence of variables of length |Γ∆¬| with corresponding type. The
principal rule is required to produce evidence for the formula in focus, the disjunction
A0 ∨ A1. From the immediate subproof we extract evidence for the disjunct Aj via
the term Fπ0

∗ σx⃗ which is combined with the constructor ij to obtain evidence for the
disjunction.

As non-principal rewrites we have the following.

Fπ
i σx⃗(jz0z1) −→ Fπ0

i σx⃗zj

This rewrite is producing evidence for the i-th formula in the sequent (with i ̸= ∗).
As input, the non-terminal has counter-evidence for the other formulas, including
counter-evidence for the principal disjunction. From the immediate subproof evidence
for the required formula can be obtained if we can provide counter-evidence for the
specific disjunct Aj . This will be available provided the counter-evidence for A0 ∨A1

is in ‘canonical’ form jt0t1. Thus, the non-principal rewrite for ∨R is a example of a
pattern matching rule as it can only be applied when the final argument of Fπ

i is of the
specific form jt0t1 (for any terms t0 and t1) whence the rule discards the constructor
and one of t0 or t1. In particular, the rewrite above cannot be applied if the final
argument (corresponding to the principal disjunction) is an instance of choice t0 ∥ t1,
the Peirce guard pt or a non-terminal such as Fπ̂

j τ s⃗ for some proof π̂.
Via disjunction and negation the familiar rule for conjunction can be derived:

π0

Aj ,Γ ⇒ ∆
∧L

π : A0 ∧A1,Γ ⇒ ∆
:=

π0

Aj ,Γ ⇒ ∆
¬R

π1 : Γ ⇒ ∆,¬Aj ∨R
π2 : Γ ⇒ ∆,¬A0 ∨ ¬A1 ¬L
π : A0 ∧A1,Γ ⇒ ∆

Following the rewrite rules for the three inferences give rise to a derived rewrite rules
for conjunction-left identical to the rewrites for disjunction:

Fπ
∗σx⃗ −→ ij

(
Fπ0
∗ σx⃗

)
Fπ
i σ(jz0z1)x⃗ −→ Fπ0

i σzj x⃗
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for principal and non-principal rewrites respectively.

4.4.5 Existential

We begin with the left rule:
π0

A[α/x],Γ ⇒ ∆
∃L

∃xA,Γ ⇒ ∆

Utilising the abbreviations, the principal rewrite associated with this rule is:

Fπ
∗σx⃗ −→ a

(
λw.Fπ0

∗
(
[w/α]σ

)
x⃗
)

Observe that the type of λw.Fπ0
∗
(
[w/α]σ

)
x⃗ is ι → ⟨A⟩, so the right-hand term above

is well-typed.
The non-principal rewrite for ∃L utilise pattern-matching, separating evidence for

∃xA into a concrete witness for the quantifier (passed to the substitution stack) and
evidence for the immediate subformula (used to continue the computation):

Fπ
i σ(etz)x⃗ −→ Fπ0

i ([t/α]σ)zx⃗

The right rule for existential quantification provides the only rewrites which
interact with the substitution stack. Suppose π is given as:

π0

Γ ⇒ ∆, A[t/x]
∃R

Γ ⇒ ∆,∃xA
with rewrites

{
Fπ
∗σx⃗ −→ e(t · σ)(Fπ0

∗ σx⃗)

Fπ
i σx⃗(az) −→ Fπ0

i σx⃗(z(t · σ))

This is again a pattern matching rule where we require that z : ι → ⟨A⟩. Note that the
rule is type-preserving as az : ⟨∃xA⟩. In the principal case, the rewrite returns partial
evidence for the existential quantifier in the form of the literal witness t guarded by the
maintained substitution stack, and a further computation (Fπ0

∗ · · ·) for evidence for the
immediate subformula. The point of the substitution stack is to possibly instantiate
values for the free variables in t. If t contains a free variable, say α, which is associated
to a strong quantifier in a cut formula (further down the proof than π), then the rewrite
for the corresponding instance of ∃L will have inserted into the stack σ a substitution
of the form [u/α] which, by the principal rewrite above, is recorded alongside the term
t. In the non-principal rewrite, the function for which z is a placeholder is expecting
input of type ι and is correspondingly fed the witness (t) an the current substitution
(σ). The rewrites for this pair of inference rules will be revisited in the examination
of the cut rule, below.

Using ∃L and negation inferences, derived rules for universal quantification are
available in the obvious way. The reader can check that the derived principal and
non-principal production rules for these inferences are identical to those above.
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4.4.6 Cut

Suppose we are given a proof ending with an application of cut:

π0

Γ ⇒ ∆, C
π0

C,Λ ⇒ Π
cut

π : ΓΛ ⇒ ∆,Π

To describe the rewrite rules for the non-terminals corresponding to this proof it will
be easiest to adopt some notational conventions. For each index i corresponding to
a formula occurrence among Γ,Λ,∆,Π in the conclusion let i′ be the index of the
corresponding formula occurrence in the left or right premise depending on whether
the formula occurrence is in Γ,∆ or Λ,Π. In the former case we say that i is a left index,
in the latter case we say it is a right index. Let ∗ denote the index of the cut formula
occurrence in the context of either premise. The rewrite rule can now be written as:

Fπ
i σw⃗x⃗y⃗z⃗ −→

{
Fπ0

i′ σw⃗y⃗(F
π1
∗ σx⃗z⃗) i a left index

Fπ1

i′ σ(F
π0
∗ σw⃗y⃗)x⃗z⃗ i a right index

where w⃗, x⃗, y⃗, z⃗ are sequences of variables typed in correspondence with Γ, Λ, ∆, Π,
excluding the i-th formula in the sequence.

It is most appropriate to examine the rewrite for cut in case of reductive cut
elimination. Thus, consider the case above in which the cut formula is existentially
quantified, C = ∃xD, and is principal in each of the two subproofs:

π0 =


π̂0

Γ ⇒ ∆, D[t/x]
∃R

Γ ⇒ ∆,∃xD

π̂1

D[α/x],Γ ⇒ ∆
∃L

∃xD,Γ ⇒ ∆

 = π1

cut
Γ,Λ ⇒ ∆,Π

The rewrites for the three inferences combine in the following way. For i a left index:

Fπ
i σw⃗x⃗y⃗z⃗ −→ Fπ0

i′ σw⃗y⃗(F
π1
∗ σx⃗z⃗)

−→ Fπ0

i′ σw⃗y⃗
(
a
(
λw.Fπ̂1

∗
(
[w/α]σ

)
x⃗z⃗

))
reducing Fπ1

0

−→ Fπ̂0

i′ σw⃗y⃗
((
λw.Fπ̂1

∗
(
[w/α]σ

)
x⃗z⃗

)
(t · σ)

)
reducing Fπ0

i′

−→ Fπ̂0

i′ σw⃗y⃗
(
Fπ̂1
∗
(
[t · σ/α]σ

)
x⃗z⃗

)
reducing λw

For i a right index we derive instead:

Fπ
i σw⃗x⃗y⃗z⃗ −→ Fπ1

i′ σ(F
π0
∗ σw⃗y⃗)x⃗z⃗

−→ Fπ1

i′ σ
(
e(t · σ)

(
Fπ̂0
∗ σw⃗y⃗

))
x⃗z⃗ reducing Fπ0

∗

−→ Fπ̂1

i′ ([t · σ/α]σ)
(
Fπ̂0
∗ σw⃗y⃗

)
x⃗z⃗ reducing Fπ1

i′
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In the next section we observe that the final terms of the two derivations above induce
equivalent languages as the ‘reduced’ cut:

π0

Γ ⇒ ∆, D[t/x]
π̂1[t/α]

D[t/x],Γ ⇒ ∆
cut

Γ,Λ ⇒ ∆,Π

4.4.7 Contraction

We give an example of the contraction inference combined with a cut:

...
5 : A ⇒ C0, C1 ∨R

4 : A ⇒ C0, C0 ∨ C1
eR

3 : A ⇒ C0 ∨ C1, C0 ∨R
2 : A ⇒ C0 ∨ C1, C0 ∨ C1

cR
1 : A ⇒ C0 ∨ C1

...
7 : C0 ⇒ B

...
8 : C1 ⇒ B ∨L

6 : C0 ∨ C1 ⇒ B
cut

0 : A ⇒ B

Subproofs of the above proof are referred to via the numeral labels, so F4
i refers to Fπ

i

where π is the subproof above with endsequent labelled 4. Let i = 0 be the single left
index for the concluding cut and y : ⟨B⟩. The following derivation obtains.

F0
iσy −→ F1

iσ
(
F6
0σy

)
−→ F2

iσ
(
F6
0σy

)(
F6
0σy

)
reducing F1

i

−→ F2
iσ

(
F6
0σy

)(
j(F7

0σy)(F
8
0σy)

)
reducing F6

0

−→ F3
iσ

(
F6
0σy

)(
F7
0σy

)
reducing F2

i

−→ F4
iσ

(
F7
0σy

)(
j(F7

0σy)(F
8
0σy)

)
reducing F3

i and F6
0

−→ F5
iσ

(
F7
0σy

)(
F8
0σy

)
reducing F4

i

For i = 1 being the right index and x : [A]:

F0
iσx −→ F6

1σ
(
F1
1σx

)
−→ F6

1σ
(
p
(
F2
1σx

)
∥ p

(
F2
2σx

))
reducing F1

m

−→ F6
1σ

(
p
(
F2
1σx

)) ∥∥ F6
1σ

(
p
(
F2
2σx

))
choice reduction

−→ p
(
λv.F6

1σ
(
F2
1σx

(
F6
0σv

))) ∥∥ p
(
λv.F6

1σ
(
F2
2σx

(
F6
0σv

)))
Peirce reduction

Formally, the above terms cannot be further reduced as the above abstractions are
expressed via composition. Viewing the λv as a formal construct it is possible simulate
a continuation of the reduction. Note, the non-terminals F6

1, F
2
1 and F2

2 rely on pattern-
matching, though F6

0 can be reduced:

−→ p
(
λv.F6

1σ
(
F2
1σx

(
j(F7

0σv)(F
8
0σv)

))) ∥∥ · · · reducing F6
0
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−→ p
(
λv.F6

1σ
(
F4
2σx

(
F7
0σv

))) ∥∥ · · · reducing F2
1 & F2

2

−→ p
(
λv.F6

1σ
(
i1
(
F5
2σx

(
F7
0σv

)))) ∥∥ · · · reducing F4
2 & . . .

−→ p
(
λv.F8

1σ
(
F5
2σx

(
F7
0σv

))) ∥∥ p
(
λv.F7

1σ
(
F5
1σx

(
F8
0σv

)))
reducing F6

1 & . . .

The final term is what is computed from nested cuts:

...
A ⇒ C0, C1

...
C0 ⇒ B

cut
A ⇒ B,C1

...
C1 ⇒ B

cut
A ⇒ B,B

cR
A ⇒ B

The connection between Herbrand schemes and cut elimination is not accidental and
is the main focus of the second part of this article.

5 Languages

We can now show how to read off Herbrand expansions for Σ1-formulas from terms in
the language of a Herbrand scheme.

5.1 Final terms and expansions

Definition 8. The final terms are the terms of (any) Σ1 formula type that contain
neither the Peirce constructor p nor any non-terminals.

Notice that the final terms are those generated by the grammar where F ranges
over formula types:

µ ::= ε | ⊥F | iiµ | jµµ | etµ | (µ ∥ µ)
where t ranges over extended L -terms. For every final term µ there is a Σ1 formula
A with µ : [A]. We employ symbols µ and ν (with adornments) as meta-variables for
final terms. Inspection of the production rules for the extractor non-terminals yields
Proposition 7. If π is a proof of a Σ1 sequent then L (π) comprises final terms only.
Definition 9. Let A ∈ Σ1 and µ : [A] a final term. The µ-expansion of A is the
quantifier-free formula A{µ} defined by

P s⃗{ε} = P s⃗ (A0 ∨A1){iiµ} = Ai{µ}
¬P s⃗{ε} = ¬P s⃗ ¬(A0 ∨A1){jµ0µ1} = ¬A0{µ0} ∧ ¬A1{µ1}
A{⊥} = ⊥ (∃xA){esµ} = (A{µ})[Val(s)/x]

(¬¬A){µ} = A{µ} A{µ0 ∥ µ1} = A{µ0} ∨A{µ1}

An expansion of a Σ1 sequent Γ ⇒ A is any final term µ : [A]. If Γ ⇒ A{µ} is valid,
we call µ a valid expansion of the sequent.
Theorem 1. Let π be an (essentially) cut-free proof of a Σ1 sequent Γ ⇒ A. Then
L (π) is non-empty and every µ ∈ L (π) is a valid expansion of Γ ⇒ A.

Proof. By induction on π.
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5.2 Language subsumption and equivalence

We will make frequent use of the concepts of language subsumption and equivalence,
which we introduce now. We begin with final terms.
Definition 10. For extended terms s, t : ι we define s ∼ t iff Val(s) = Val(t). The
subsumption relation ⊑ on final terms is the smallest reflexive and transitive relation
satisfying the following clauses for all final terms µ, ν, ξ : F .

1. ⊥F ⊑ µ.
2. If s ∼ t : ι and µ ⊑ ν, then esµ ⊑ etν.
3. If µ ⊑ ν then iiµ ⊑ iiν, jµξ ⊑ jνξ and jξµ ⊑ jξν.
4. If µ ⊑ ν then µ ∥ ξ ⊑ ν ∥ ξ.
5. µ ⊑ µ ∥ ⊥F and µ ∥ ν ⊑ ν ∥ µ.
6. (µ ∥ ν) ∥ ξ ⊑ µ ∥ (ν ∥ ξ).

A simple induction confirms that ⊑ preserves type: if µ ⊑ ν then µ and ν are terms
of the same type. The following observation is immediate.
Proposition 8. If µ ⊑ ν : [A] are final terms then A{µ} → A{ν} is a tautology. In
particular, if µ is a valid expansion for a sequent Γ ⇒ A then so is ν.

The next definition extends the subsumption relation to arbitrary terms. In the
following, by a context c(·) we mean some term c of Σ1-type with a distinguished
variable z of arbitrary type U , and we write c(t) for the substitution c[t/z] under
where t : U .
Definition 11. Given arbitrary terms s, t : U of some type, we say that t subsumes
s if, for every context c(·) and every final term µ such that c(s) −→ µ, there is a final
term ν such that c(t) −→ ν and µ ⊑ ν. We write s ⊑ t if t subsumes s. We write s ≡ t,
and say that s, t are equivalent, if t ⊑ s and s ⊑ t.

The next proposition confirms that the two definitions above agree on final terms.
Proposition 9. For final terms µ, ν, µ ⊑ ν (in the sense of defn 10) iff ν subsumes
µ (in the sense of defn 11).

Proof. The right to left direction is immediate by choosing the trivial context. For
the other direction we suppose µ ⊑ ν (per definition 10) and show, by induction on
the length of reduction sequences, that if c(µ) −→ µ′, then c(ν) −→ ν′ for some
µ′ ⊑ ν′.

Equivalence and subsumption provide a means to compare the language of Her-
brand schemes. By showing, for instance, that Sπ is subsumed by Sρ it follows that
every Herbrand expansion computed from π is implicit in some expansion computed
from ρ. In the following we describe a reduction on proofs via a form of cut elimina-
tion and establish that if π can be reduced to ρ then Sρ ⊑ Sπ. Applying Theorem 1
will lead to the observation that if π can be reduced to an essentially cut-free proof
then L (π) contains a valid expansion of the endsequent.

The following observations will become useful:
Proposition 10. t · σ ≡ t[Val(σ)] · ⊥ for every extended term t · σ.

Proof. Proposition 9 and the definition of value.

Proposition 11. If t −→ s then s ⊑ t.
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Proof. Immediate.

Proposition 12. If t −→ s via a production in which a proof non-terminal is not
principal then s ≡ t.

Proof. It suffices to show t ⊑ s. Let c(·) be a context and suppose c(t) −→ µ. By
induction on the length of this reduction it can be shown that c(s) −→ µ.

Proposition 13. Let A be a formula and σ a substitution for the free variables of A.
Then CA ≡ CA[σ].

Proof. Obvious by inspection of the rewrite rules.

We will use Proposition 13 without further mention, in practice identifying the
non-terminals CA and CA[σ].

5.3 Substitutions, regular terms and regular stacks

Definition 12. The bound variables of a substitution stack σ and extended individual
term t · σ is the set BV(σ) and BV(t · σ) respectively, given by

BV(⊥) = ∅ BV([u/α]σ) = BV(σ) ∪ {α} BV(t · σ) = BV(σ)

The free variables of an individual term t is the set FV(t) of free variables occurring
in t. For a substitution stack σ and extended individual term t · σ, the free variables
are defined by mutual recursion:

FV(⊥) = ∅ FV([u/α]σ) = FV(u) ∪ FV(σ) FV(t · σ) = (FV(t) \ BV(σ)) ∪ FV(σ).

Definition 13. An extended term t is regular if every extended individual subterm
s of t is such that FV(s) = ∅. A substitution stack σ is regular if every extended
individual subterm of σ is regular.

The next two observations about regular substitution stacks hold by inspection.
Proposition 14. If σ is a regular substitution stack then FV(σ) = ∅.
Proposition 15. Let π be a regular proof and suppose Sπ −→ t. Then every
substitution stack appearing in t is regular.

Our main task in this subsection is to establish a connection between regular
substitution stacks and actual substitutions performed on regular derivations:
Proposition 16. Let π be any regular proof and σ a regular substitution stack. Then

Fπ
i σ ≡ F

π[Val(σ)]
i ⊥.

Proof. See Appendix A.1.
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6 Extracting computational content from proofs:
examples

In this section we use Herbrand schemes to analyse the computational content of
three concrete proofs. The first is a proof of the “Drinker paradox”. The second is a
proof of the infinite pigeonhole principle from suitable Π1-assumptions, and the third
is a proof of the finite pigeonhole principle proved by a cut on the infinite pigeonhole
principle. The key feature of our Herbrand schemes that we want to illustrate with
these examples is compositionality. While Herbrand schemes are designed to extract
Herbrand disjunctions from proofs of Σ1-sequents, they do more than that. We shall
see that, using the rewrite rules for proof non-terminals we can extract meaningful
programs or encapsulated “modules” from arbitrary proofs, regardless of the shape of
the end sequent. Once the computational content of a proof π has been made explicit,
it can then be used and re-used for Herbrand extraction from proofs obtained by cuts
on π.

Intuitively, and borrowing some ideas from game semantics, the programs that we
extract from Herbrand schemes can be thought of as representing strategies in a game
played between two players, Prover and Refuter. Prover tries to provide evidence for
formulas on the right-hand side of the end sequent, and counter-evidence to formulas
on the left. Refuter acts dually, trying to provide evidence for formulas on the left-
hand side, and counter-evidence to formulas on the right. More precisely, a proof of
a sequent Γ ⇒ ∆ translate, through the Herbrand scheme, to a procedure generating
evidence for each A ∈ ∆ from evidence for Γ and counter-evidence for ∆ \ {A}, and
counter-evidence to each B ∈ ∆ from evidence for Γ\{B} and counter-evidence for ∆.

An application of the cut rule with premises Γ0 ⇒ ∆0, A and A,Γ1 ⇒ ∆1 can
be interpreted as composing strategies from the two games. In the game for these
premises, Prover has a strategy to evidence the formula A (the left premise) and a
strategy to counter-evidence A (the right premise), given (counter-)evidence for the
formulas in Γ0 and Γ1 (∆0 and ∆1) respectively. Dually, Refuter has a strategy to
evidence A in the second in the first game, and counter-evidence A in the first. Prover’s
strategy for the conclusion to the cut – the sequent Γ0Γ1 ⇒ ∆0∆1 – is a composition
of the two strategies: To evidence a D ∈ ∆1, we assume Prover is provided evidence
for each formula in Γ0 ∪Γ1 and counter-evidence for each formula in ∆0 ∪ (∆1 \ {D}).
Prover utilises her strategy for the left premise of the cut to obtain evidence for the
formula A and feeds this into the other strategy to extract evidence for D. Evidencing
D ∈ ∆0 is symmetric: Prover obtains counter-evidence for A from the strategy for the
right premise of the cut and combines this with her strategy for the left premise.

To simplify notation a bit, in the following we will write ε̃ as a common abbreviation
for terms of quantifier-free formula type. For example, consider the following proof:

Pc ⇒ Pc ¬R
⇒ ¬Pc, Pc

∨R∗
⇒ Pc ∨ ¬Pc, Pc ∨ ¬Pc

cR
⇒ Pc ∨ ¬Pc ∃R

⇒ ∃x(Pc ∨ ¬Px)
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id
7. Dα ⇒ Dα.....

∨R,∨R,¬R
6. ⇒ ¬Da ∨Dα,¬Dα ∨Dβ ∀R(β)

5. ⇒ ¬Da ∨Dα, ∀y(¬Dα ∨Dy)
∃R

4. ⇒ ¬Da ∨Dα, ∃x∀y(¬Dx ∨Dy)
∀R(α)

3. ⇒ ∀y(¬Da ∨Dy), ∃x∀y(¬Dx ∨Dy)
∃R

2. ⇒ ∃x∀y(¬Dx ∨Dy), ∃x∀y(¬Dx ∨Dy)
cR

1. ⇒ ∃x∀y(¬Dx ∨Dy)

id
D(fa) ⇒ D(fa)

...
⇒ ¬Da ∨D(fa),¬D(fa) ∨D(f(fa))

∃R
⇒ ¬Da ∨D(fa), ∃x(¬Dx ∨D(fx))

∃R
⇒ ∃x(¬Dx ∨D(fx)), ∃x(¬Dx ∨D(fx))

cR
⇒ ∃x(¬Dx ∨D(fx))

Fig. 4 Sequent calculus proof of the Drinker paradox (left) and its skolemised form (right).

From its Herbrand scheme we can extract the term ec(i0ε ∥ i1ε), which we simplify
to ecε̃.

6.1 The drinker paradox

The following classical validity provides a simple yet instructive example:

∃x∀y(¬Dx ∨Dy) (1)

This formula is often referred to as the Drinker paradox from the interpretation ‘there
is some person such that, if they drink, then everybody drinks’. The skolemised form
is ∃x(¬Dx ∨D(fx)). Figure 4 presents cut-free sequent calculus proofs of (1) and its
skolemisation. The language of skolemised proof is the single final term e(a · ⊥)(i1ϵ) ∥
e((fa) · ⊥)(i0ϵ). We leave the verification to reader and instead analyse the behaviour
of the Herbrand scheme for the unskolemised formula.

Abbreviate ∃x∀y(¬Dx ∨Dy) as A, ∀y(¬Dγ ∨Dy) as B, ∃y¬(¬Dγ ∨Dy) as B⊥

and ¬(¬Dγ ∨Dy) as C, and let π denote the proof of A in Figure 4. The associated
Herbrand scheme rewrites as:

F0
0σ −→ p(F1

0σ) ∥ p(F1
1σ) (2)

The computation stops as no further preoduction rule is applicable. To continue the
computation the Peirce constructor p must be removed and the non-terminals F1

0 and
F1
1 be supplied an argument corresponding to the copy of the formula A not in focus.

We can, however, analyse the continuing computation by providing generic, archetypal
inputs of the appropriate type. We get the following rewrites:

F1
0σ(a(λw.etv) ⊒ ea(a(λu.ε̃)) (3)

F1
1σ(a(λw.etv) ⊒ et(a)(a(λu.ε̃)) (4)

Here we let t = t(w) be a metavariable for a term with a displayed occurrence of the
variable w. The ‘equations’ (2)–(4) can be seen together as describing the behaviour
of the program F0

0, or with the game semantic view, as a strategy for Prover to provide
evidence for the end sequent. First, Prover splits the game into two parallel copies
played concurrently with the aim of winning in at least one copy ((2)). In the ‘left’
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copy of the game ((3)), Prover simply provides a candidate witness a. In the ‘right’
copy ((4)), the proposed witness is instead t(a), using as input the proposed counter-
evidence of Refuter which is essentially the function w 7→ t(w). Clearly the strategy
is sound, since a loss for Prover in the ‘left’ copy of the game means that the literal
Dt(a) is false, which means ∀y(¬Dt(a) ∨Dy) is true and so the witness provided in
the ‘right’ copy of the game succeeds.

If desired, one could capture this computational interpretation more concisely
by introducing an explicit functional programming style pattern matching syntax,
allowing expressions of the form:

match[z] : (case[u0] : t0 ∥ . . . ∥ case[uk−1] : tk−1)

The computational content of the proof could then be summed up by the term:

p
(
λz.match[z] : case[a(λw.et(w)v)] :

(
ea(aλu.ε̃) ∥ et(a)(aλu.ε̃)

))
We have opted not to include this syntax officially as it is not needed to extract
Herbrand disjunctions, but it can be useful as a meta-level notation to describe the
computational analysis of proofs concisely. The main point is that we can extract
meaningful computational content from arbitrary proofs, which is re-usable and can
be applied via applications (cuts). In the special case of proofs for Σ1 end sequents,
we obtain Herbrand disjunctions.

6.2 Infinite pigeonhole principle

The second example is a version of the infinite pigeonhole principle: Given an infinite
binary string, two indices are labelled by the same bit.

The formal language L comprises two binary relation symbols, = and≤, a constant
symbol 0, two unary function symbols s and f and one binary function symbol m. In
the sequel, we employ the following abbreviations of formulas

• I0xy := x ≤ y ∧ fy = 0, expressing that y is an index not earlier than x labelled 0.
• I1xy := x ≤ y ∧ fy = s0, expressing that y is an index not earlier than x labelled 1.

Let Γ consists of sufficient Π1-formulas to enable the leaf sequent in the derivation in
Figure 5 is provable. In particular, we assume that Γ contains the formula ∀x(fx =
0 ∨ fx = s0). The intension of m is as the binary max-function on natural numbers
and Γ contains Π1-axioms matching that interpretation. To explore the computational
content of this proof we consider how its proof non-terminal rewrites:

(1) F1
0σ −→ p(F2

0σ) ∥ p(F2
1σ)

The computation stops after this first rewrite since the rewrite rules for F2
0 and F2

1 need
to pattern match on the input. To understand the computational behaviour of these
non-terminals we feed them generic, archetypal input terms built out of variables,
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...
8. Γ ⇒ I0α0(mα0α1), I1α1(mα0α1) ∃R

7. Γ ⇒ I0α0(mα0α1), ∃y I1α1y ∃R
6. Γ ⇒ ∃y I0α0y,∃y I1α1y ∀R
5. Γ ⇒ ∃y I0α0y,∀x∃y I1xy ∀R
4. Γ ⇒ ∀x∃y I0xy,∀x∃y I1xy ∨R

3. Γ ⇒ ∀x∃y I0xy,∀x∃y I0xy ∨ ∀x∃y I1xy ∨R
2. Γ ⇒ ∀x∃y I0xy ∨ ∀x∃y I1xy,∀x∃y I0xy ∨ ∀x∃y I1xy cR

1. Γ ⇒ ∀x∃y I0xy ∨ ∀x∃y I1xy
Fig. 5 Sequent proof πiph of the infinite pigeonhole principle.

constructors and destructors. For F2
0 we have:

(2) F2
0σ(j(ex0w0)(ex1w1)) ⊒ i0a(λz.e(m(z, x1))ε̃)

For F2
1:

(3) F2
1σ(j(ex0w0)(ex1w1)) ⊒ i1a(λz.e(m(x0, z))ε̃)

The equations (1) − (3) provide us with a computational analysis of the proof of
the infinite pigeon-hole principle, which serves as a re-usable “module”. With the
pattern-matching notation introduced earlier, we can write our “program” concisely
as:

p
(
λz.match[z] : case[j(ex0w0)(ex1w1)] :

(
i0a(λz.e(m(z, x1))ε̃)∥i1a(λz.e(m(x0, z))ε̃)

))
Viewed as a strategy for Prover, it runs as follows. The aim for Prover is to provide
evidence for the right formula of the end sequent, which should consist of either a
choice of the left disjunct or right disjunct together with a function from individuals to
individuals. If the left disjunct is chosen then the function h provided should map each
number n to a larger or equal one which f maps to 0. If the right disjunct is chosen,
f should always map h(n) to 1. Prover’s strategy is to first ask Refuter for counter-
evidence to the same formula, which is expected to consist of a counter-example x0

to the left disjunct and a counter-example x1 to the right disjunct. In the rewrites (2)
and (3) the term j(ex0w0)(ex1w1) describes the generic form expected from Refuter’s
response. Now Prover plays two strategies in two parallel copies of the game: in one
copy she chooses the left disjunct and offers the witnessing function λz.m(z, x1). In
the other copy of the game, she chooses the right disjunct and witnessing function
λz.m(x0, z). Since the assumptions in Γ entail that f is bounded by 1, if x0 is a counter-
example to the left disjunct then f maps every greater or equal number to 1, and
hence the function λz.m(x0, z) witnesses the formula ∀x∃yI1(x, y). Similarly, if x1 is
a counter-example to the right disjunct then λz.m(z, x1) witnesses ∀x∃yI0(x, y).

It may be instructive to compare this analysis to the witness extraction for the
Skolemised version of the infinite pigeonhole principle. The prenex normal form is:

∀x0∃y0∀x1∃y1(I0x0y0 ∨ I1x1y1)
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...
Γ ⇒ I1c1(c0)(mc0(c1(c0)))) , I0c0(mc0(c1(c0))) ∨R

Γ ⇒ I1c1(c0)(mc0(c1(c0)))) , I0c0(mc0(c1(c0))) ∨ I1c1(mc0(c1(c0)))c0) ∃R
Γ ⇒ I1c1(c0)(mc0(c1(c0)))) , ∃y1(I0c0(mc0(c1(c0))) ∨ I1c1(mc0(c1(c0)))y1) ∃R

Γ ⇒ I1c1(c0)(mc0(c1(c0)))) , ∃y0∃y1(I0c0y0 ∨ I1c1(y0)y1) ∨R
Γ ⇒ I0c0c0 ∨ I1c1(c0)(mc0(c1(c0)))) , ∃y0∃y1(I0c0y0 ∨ I1c1(y0)y1) ∃R

Γ ⇒ ∃y1(I0c0c0 ∨ I1c1(c0)y1) ,∃y0∃y1(I0c0y0 ∨ I1c1(y0)y1) ∃R
Γ ⇒ ∃y0∃y1(I0c0y0 ∨ I1c1(y0)y1) , ∃y0∃y1(I0c0y0 ∨ I1c1(y0)y1)

cR
Γ ⇒ ∃y0∃y1(I0c0y0 ∨ I1c1(y0)y1)

Fig. 6 Skolemized infinite pigeonhole principle.

If we Skolemise the universal quantifiers we get the valid formula:

∃y0∃y1(I0c0y0 ∨ I1c1(y0)y1)

A proof is displayed in Figure 6. From this proof we obtain the substitutions y0 7→
c0, y1 7→ mc0(c1(c0)) and y0mc0(c1(c0)), y1 7→ c0. From the Herbrand scheme of the
proof we can derive a corresponding final term with the value:

ec0(e(mc0(c1(c0)))ε̃) ∥ e(mc0(c1(c0)))(ec0ε̃)

As a reduction of the infinite pigeonhole principle to a propositional validity, this is
perfectly fine. As a computational interpretation however, it is not what we would
want. It doesn’t tell us anything about how the infinite pigeonhole principle can be
used for reasoning in other contexts, i.e. how it can be applied. By contrast, we shall
see in the following section how the analysis of πiph can be imported into another
example, where we extract a Herbrand disjunction for the finite pigeonhole principle
via a cut on πiph.

6.3 Finite pigeonhole principle

In the final example we consider a proof involving a cut on the infinite pigeonhole
principle πiph. This example demonstrates how the implicit strategy of the previous
example plays out in practice.

The Herbrand scheme associated with this proof can be rewritten in more than
one way; the rewrite rules for Herbrand schemes are not confluent. We focus on one
rewriting strategy, which yields a final term which is equivalent to:

e(m00)(e(m0(s(m00)))ε̃)

∥ e(m00)(e(m(s(m0(s(m00))))(s(m00)))ε̃),

∥ e(m(s(m00))0)(e(m0(s(m(s(m00))0)))ε̃)

∥ e(m(s(m00))0)(e(m(s(m0(s(m(s(m00))0))))(s(m(s(m00))0)))ε̃)

This term represents four possible substitutions for the bound variables x and y in
∃x∃y Dxy: (0, 1), (0, 2), (1, 2) and (1, 3). We omit the details of the computation. What
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πiph

...
17. ∆, I00β0, I0(sβ0)γ0 ⇒ Dβ0γ0 ∃R
16. ∆, I00β0, I0(sβ0)γ0 ⇒ ∃y Dβ0y ∃R
15. ∆, I00β0, I0(sβ0)γ0 ⇒ ∃x∃y Dxy

∃L
14. ∆, I00β0, ∃y I0(sβ0)y ⇒ ∃x∃y Dxy

∃R
13. ∆, I00β0,∀x∃y I0xy ⇒ ∃x∃y Dxy ∃L
12. ∆, ∃y I00y,∀x∃y I0xy ⇒ ∃x∃y Dxy ∃R

11. ∆,∀x∃y I0xy,∀x∃y I0xy ⇒ ∃x∃y Dxy
cL

10. ∆,∀x∃y I0xy ⇒ ∃x∃y Dxy

...
25. ∆, I00β1, I1(sβ1)γ1 ⇒ Dβ1γ1

24. ∆, I00β1, I1(sβ1), γ1 ⇒ ∃y Dβ1y

23. ∆, I10β1, I1(sβ1)γ1 ⇒ ∃x∃y Dxy

22. ∆, I10β1, ∃y I1(sβ1)y ⇒ ∃x∃y Dxy

21. ∆, I10β1, ∀x∃y I1xy ⇒ ∃x∃y Dxy

20. ∆, ∃y I10y,∀x∃y I1xy ⇒ ∃x∃y Dxy

19. ∆,∀x∃y I1xy,∀x∃y I1xy ⇒ ∃x∃yDxy

18. ∆,∀x∃y I1xy ⇒ ∃x∃y Dxy ∨L
9. ∆, ∀x∃y I0xy ∨ ∀x∃y I1xy ⇒ ∃x∃yDxy

cut
0. Γ,∆ ⇒ ∃x∃yD(x, y)

Fig. 7 Sequent proof πph of the pigeonhole principle from the infinite pigeonhole principle. Dxy
abbreviates x < y ∧ fx = fy, and ∆ consists of sufficient Π1-formulas for the leaves to be provable.
Sequents in the right-hand subproof (lines 18–25) are subject to the identical rule applications as the
left-hand (lines 10–17).

is interesting is how the strategy extracted from the proof of the infinite pigeonhole
principle occurs in the witness extraction. What happens can be explained informally
as follows. Recall that the strategy told Prover to create two parallel games, expecting
an input from Refuter of the form j(ex0w0)(ex1w1). In response to a given input of this
shape, Prover plays the following moves in each copy of the game: the function w 7→
mwx1 in the “left” game, and the function w 7→ mx0w in the “right” game (ignoring
the “wrapping” of these functions in constructors and destructors to simplify).

Starting the computation from the Herbrand scheme associated with the proof
πph above, and employing the same abbreviations of notation and ignoring the side-
formulas Γ, ∆, we have:

Sπph
−→ E(F0

0⊥)

−→ E(F9
1⊥(F1

0⊥))

So the strategy obtained from the previous proof of the infinite pigeonhole principle is
now fed as an input via the cut. The strategy will now instead be played by Refuter, in
response to moves made by Prover as she tries to provide witnesses for the existential
quantifiers in ∃x∃y Dxy.

Skipping ahead a bit, consider how we can extract witnesses for these quantifiers
in the central subproof beginning on line 10. Prover is trying to find values for the
eigenvariables β0, γ0 which are then given as witnesses to the existential quantifiers.
She can find the value of β0 as follows: First, she proposes 0 as a counterexample
to A0, and applies the function λw. mwx1) obtained from Refuter’s response to 0 to
arrive at a value for β0. This function uses a counterexample x1 to A1 as a parameter.
The rightmost subproof proposes two such counterexamples: One is simply 0, in which
case we get the value m00 (i.e., 0) for β0. The other counter-example proposed is sβ1,
the successor of β1, where the value of β1 found by applying the function λw.mx0w to
0. This function in turn uses a counterexample x0 to A0 as a parameter. But Prover
has already proposed such a counterexample, namely 0. So in this case we obtain
s(m00), namely 1, as a counterexample to A1, and when Prover applies the function
λw.mwx1) with this parameter the result is m0(s(m00)), expressing 1. So in this way
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Prover arrives at the two possible values 0 and 1 for β0. (In reality, if one goes through
the details of the computation, this informally described “passing of values” will be
controlled by the rewrite rules for the Peirce operator.)

Now to find the value of γ0 Prover first proposes the term sβ0 as another coun-
terexample to A0. It has just been established that β0 denotes either 0 or 1, and so
sβ0 denotes 1 or 2. Again, Refuter responds with the function λw.mwx1, and the
parameter x1 is either 0 or sβ1 where the value of β1 is found by applying the func-
tion λw.mx0w to the counterexample to A0 already proposed by Prover, namely sβ0

(which therefore also becomes the current value of the parameter x0). In the case
where β0 denotes 0 we thus get:

γ0 := (λw.mwx1)(sβ0)

:= m(sβ0)x1 β-reduction

:= m1x1 using β0 7→ 0

:= m10 or m1(sβ1) x1 is 0 or sβ1

:= m10 or m1(s(λw.mx0w)(sβ0)) using inferred value of β1

:= m10 or m1(s(mx0(sβ0))) β-reduction

:= m10 or m1(s(m(sβ0)(sβ0))) x0 is now sβ0!

:= m10 or m1(s(m11)) using β0 7→ 0

:= 1 or 2

Here, t := s means informally that t evaluates to s through the values chosen for
variables according to Prover’s strategy. This process of evaluation results in the pair
of substitutions (0, 1) and (0, 2) for (x, y). Repeating the same argument under the
assumption β0 7→ 1 provides the two remaining substitutions (1, 2) and (1, 3). The
same substitutions are derived from the rightmost subproof in a similar way.

Essentially the same proof was analysed in [1], yielding the set of substitutions:

{(0, 1), (0, 2), (1, 2), (1, 3), (2, 3)}

Here, we arrived at the set:

{(0, 1), (0, 2), (1, 2), (1, 3)}

So, we have derived a smaller Herbrand set here. This is not surprising, in fact it illus-
trates a distinguishing feature of our current approach. The Herbrand schemes in [1]
gather Herbrand sets obtained from different cut-elimination strategies into one large
set. By comparison, the current approach is more fine-grained and follows different cut-
elimination strategies more closely, so that we can derive terms representing exactly
the Herbrand set obtained by some particular cut-free normal form. In this sense
our approach aligns closer to a view of classical sequent proofs as non-deterministic
programs, which is related to non-confluence of cut-elimination for classical proofs
[14, 15].
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7 Multicut analysis

In this section we introduce the multicut rule, which will form the basis of the approach
to cut-elimination we will follow.

7.1 Multicut instances

It will be convenient to regard a formula occurrence in a sequent formally as a pair
(S, i) where S is a sequent and i is an index indicating the i-th formula occurrence in
the sequent. We write p(S, i) = 0 if (S, i) is a left formula occurrence and p(S, i) = 1
if (S, i) is a right formula occurrence. Given a formula occurrence (S, i) we write S[i]
for the i-th formula in the sequent S. So we can think of formula occurrences as
“addresses” of formulas appearing in sequents, and the operation S[−] retrieves the
actual formula from its address. The length l(S) of a sequent S = Γ ⇒ ∆ is |Γ|+ |∆|.
Definition 14. A quasi-instance of multicut is a pair (S,▽) where S is a non-empty
finite multi-set of sequents and▽ is a symmetric binary relation over the set of formula
occurrences from sequents in S. Given sequents S,U we write S ▽ U if there are i, j
such that (S, i)▽(U, j). The (undirected) graph with vertices S and edges {S, S′} such
that S▽S′ is called the cut graph of the multicut quasi-instance, and denoted G(S,▽).

A multicut quasi-instance (S,▽) is called an instance of multicut if the following
constraints are satisfied:

• The cut graph G(S,▽) is a tree, i.e. connected and acyclic.
• For each formula occurrence (S, i) there is at most one formula occurrence (U, j)
such that (S, i)▽ (U, j).

• For each pair of sequents S,U , there is at most one formula occurrence (S, i) and
at most one formula occurrence (U, j) such that (S, i)▽ (U, j).

• If (S, i)▽ (U, j) then:

– S[i] = U [j], and
– p(S, i) = 1− p(U, j).

If there is some (U, j) with (S, i)▽ (U, j) then we call (U, j) the cut companion of
(S, i). A formula occurrence (S, i) is said to be a cut formula occurrence of a multicut
if it has a cut companion and a side formula occurrence otherwise.

If (S,▽) is a multicut instance, we say that the inference with sequents S as
premises and the associated cut relation ▽, written in short-hand as:

(S,▽)

U

where U is some sequent, is valid, if there is a one-to-one map f from formula occur-
rences (U, i) for i < l(U) to side formula occurrences in the multicut instance. We
often speak rather informally of the formula occurrence corresponding to (U, i) in the
multicut, by which we mean f(U, i) for some map f which we usually leave implicit.
Definition 15. We say that a formula occurrence (S, i) directly depends on a formula
occurrence (U, j), written (U, j) ≺ (S, i), if there is some k < l(S) with k ̸= i and
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(U, j) ▽ (S, k). We say that (S, i) depends on (U, j) if (U, j) ≺+ (S, i), where ≺+

denotes the transitive closure of ≺.
Intuitively, (S, i) directly depends on (U, j) if an output for the latter is needed as

input for the calculation of an output for the former. As a direct consequence of the
definition of a multicut instance, the dependency relation is well-founded.

An alternative formulation of dependency may help to clarify it. Given a multicut
instance (S,▽) and two distinct sequents S,U ∈ S, there must be a unique sequence
of formula occurrences:

(S, i0)▽ (V1, jn) ̸= (V1, in)▽ . . .▽ (Vn−1, in−1) ̸= (Vn−1, jn−1)▽ (U, in)

We write link(S,U) for the index i0 and, conversely, link(U, S) for the index in.
Proposition 17. Given two formula occurrences (S, i) and (U, j) with S ̸= U , we
have (S, i) ≺+ (U, j) if and only if i = link(S,U) and j ̸= link(U, S).

Proof. See Appendix A.2.

An extended multicut instance (S,▽, π) is an instance of multicut together with an
assignment π of a multicut-free (but not necessarily cut-free) proof πS to each sequent
S ∈ S. Given an extended multicut instance we define the canonical input term I(S, i)
and the canonical output term O(S, i) associated with a formula occurrence (S, i) by
well-founded induction on ≺:

• If (S, i) is a left side formula occurrence of the multicut, then I(S, i) = C[S[i].
• If (S, i) is a right side formula occurrence of the multicut, then I(S, i) = C⟨S[i]⟩.
• If (S, i) has cut companion (U, j) then I(S, i) = O(U, j).
• O(S, i) = FπS

i ⊥I(S, 0) . . . I(S, i− 1)I(S, i+ 1) . . . I(S, l(S)− 1)

Note that this definition is indeed by well-founded induction, as each term I(S, j) for
j ̸= i is either a constant non-terminal or given recursively as O(U, k) for (U, k)▽(S, j)
and hence (U, k) ≺ (S, i). We extend the notation πS for S ∈ S by writing also πS0

for
the subtree of πS generated by S0, if S0 is a premise of S in πS .

7.2 Multicut guarded proofs

Definition 16. Let π be any regular proof. The end piece of π is the smallest sub-tree
πep of π containing the end sequent and closed under premises of all rules except cut
and multicut. Given a sequent S in πep, define πep|S to be the part of πep containing
all sequents from the end sequent of π up to and including S. We say that π is multicut
guarded if each leaf of πep is either an axiom or the conclusion of a multicut rule.
Proposition 18. For every constant non-terminal CA where A is a Σ1-formula, there
is a final term t with CA −→ t.

Proof. Obvious.

Definition 17. Let π be a multicut guarded regular proof of a Σ1-sequent. For each
sequent S belonging to πep, and each index i < l(S), we define the target term T (S, i, π)
by well-founded induction on the descendant relation in the tree πep. For the base
case, where S is a leaf in πep, there are two possible cases: either S is an axiom, or S
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is the conclusion of a multicut. If S is an axiom then it consists of two occurrences of
the same formula, which is quantifier free. We set T (S, i, π) = ε for i ∈ {0, 1}.

The remaining case is where S is the conclusion of a multicut. We can define
an extended multicut instance (S,▽, π′) by letting S consist of the premises of the
multicut, with the relation ▽ given as specified by the multicut, and letting π′ assign
to each premise U the corresponding generated sub-proof of π. We define T (S, i, π) =
O(S′, i′), where (S′, i′) is the side formula occurrence of the multicut corresponding
to (S, i).

Now suppose S has at least one premise belonging to πep. Then S is the conclusion
of a logical rule or a structural rule other than cut. Let S0, S1 be the left and right
premise of S, with S0 denoting the unique premise if the rule used was unary. We
define T (S, i, π) by a case distinction on the rule used:

Weakening: Put T (S, ∗, π) = ⊥A for the principal index, where the principal formula
is A. For other indices we put T (S, i, π) = T (S′, i′, π) where (S′, i′) is the formula
occurrence associated with (S, i) via the weakening inference.
Contraction: Put T (S, ∗, π) = T (S0, ∗, π) ∥ T (S0, ∗+ 1, π) for the principal index. For
a non-principal index put T (S, i, π) = T (S0, i

′, π) where i′ is the corresponding index
in the premise.
Exchange: Assume the exchanged formulas have indices i, j, put T (S, i, π) =
T(S0, j, π), T (S, j, π) = T (S0, i, π) and T (S, k, π) = T (S0, k, π) for k /∈ {i, j}.
Right ∃-rule: For the principal index put T (S, ∗, π) = e(t · ⊥)(T (S0, ∗, π)) where t is
the witness used in the rule application. For a non-principal index put T (S, i, π) =
T (S0, i, π).
Right ∨-rule: For the principal index put T (S, ∗, π) = ij(T (S0, ∗, π)) where j is 0
or 1 depending on whether the minor formula is the left or right disjunct. For a
non-principal index put T (S, ∗, π) = T (S0, ∗, π).
Left ∨-rule: For the principal index put T (S, ∗.π) = j(T (S0, ∗, π))(T (S1, ∗, π)). For a
non-principal index put T (S.i, π) = T (S0, i, π) ∥ T (S1, i, π).

For a proof π of a Σ1-sequent S of the form Γ ⇒ A with a single formula on the
right we abbreviate T (S, i, π) by T (π), where i the index of the right-most formula.
Note that target terms are always final terms.
Definition 18. The guarded version of a regular proof π is the proof π′ obtained by
replacing every bottom-most cut in π by a multicut with the same premises. We say
that the proof π reduces to the proof π∗ via multicut reductions if its guarded version
does.
Proposition 19. Let π be a proof with Σ1 end sequent S of the form Γ ⇒ A, and let
π′ be its guarded version. Then:

Sπ ⊒ T (π′)

Definition 19. A proof is said to be essential-cut-free if every cut formula in a cut
or multicut appearing in the proof is quantifier free.

Note that any essential-cut-free proof is multicut guarded.
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7.3 Multicut reductions

In this section we introduce reduction rules for multicuts, and show how these can
be simulated using rewrite rules for Herbrand schemes. In the following we assume
an extended multicut instance (S,▽, π) which reduces to an e-m-i (S∗,▽∗, π∗) by one
of several possible reductions which fall in one of two categories: external reductions
in which a the multicut is permuted with the rule at the root of one of the premise
derivations, and internal reductions in which the derivation below the multicut is
unchanged, modulo structural rules, and one or more of the premises are reduced in
size.

7.3.1 External reductions

If the principal formula(s) of a premise of a multicut are not cut-formulas, then a
multicut reduction is applicable which permutes the multicut with the final rule of
that premise.

Axiom

If a premise to the multicut is an axiom and neither occurrences of the principal
formula is a cut formula, then the multicut contains exactly one sequent and may be
discharged as an axiom:

id
A ⇒ A▽
A ⇒ A

⇒ id
A ⇒ A

Proposition 20. If π reduces to π∗ under the above reduction then π∗ ⊑ π.

Proof. Immediate.

Disjunction (right)

This external reduction permutes the multicut with an application of ∨R:

· · ·

...
Σ ⇒ Π, Aj ∨R

Σ ⇒ Π, A0 ∨A1 ▽
Γ ⇒ ∆, A0 ∨A1

⇒
· · ·

...
Σ ⇒ Π, Aj ▽∗

Γ ⇒ ∆, Aj ∨R
Γ ⇒ ∆, A0 ∨A1

We first properly define the above reduction as transformation on e-m-is (S,▽, π) 7→
(S∗,▽∗, π∗). Suppose the permuted side formula occurrence is (P0, p) where P0[p] =
A0 ∨ A1 (and the formula occurrence is on the right) and the premise of P0 in πP0

is
P1 with P1[p] = Aj . We define the permuted multicut instance (S∗,▽∗, π∗) as follows:

• Replace P0 by P1, and keep all other sequents from S.
• Define π∗

P1
to be the subproof of πP0

generated by P1.
• Define ▽∗ to be the smallest symmetric relation satisfying:

– If (S, i)▽ (P0, j) then (S, i)▽∗ (P1, j).
– If (S, i)▽ (U, j), S ̸= P0 and U ̸= P0, then (S, i)▽∗ (U, j).
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This definition corresponds to the reduction rule on a proof ending with a multicut:

(S,▽, π)

Γ ⇒ ∆, A0 ∨A1

⇒
(S∗,▽∗, π∗)

Γ ⇒ ∆, Aj ∨R
Γ ⇒ ∆, A0 ∨A1

where the displayed formula occurrence A0∨A1 corresponds to the formula occurrence
(P0, p) in the multicut.
Proposition 21. For any formula occurrence (S, i), we have:

1. If S = P0 and i ̸= p then O(P0, i) ⊒ O∗(P1, i).
2. O(P0, p) ⊒ ij(O

∗(P1, p)).
3. If S ̸= P0 then O(S, i) ⊒ O∗(S, i).

Proof. Left to the reader.

Disjunction (left)

As ∨L is a branching rule, the external reduction for this inference duplicates the
multicut over the two premises:

· · ·

...
Σ, A0 ⇒ Π

...
Σ, A1 ⇒ Π

∨L
Σ, A0 ∨A1 ⇒ Π

▽
Γ, A0 ∨A1 ⇒ ∆

⇒ · · ·
...

Σ, A0 ⇒ Π
▽∗

Γ, A0 ⇒ ∆

· · ·
...

Σ, A1 ⇒ Π
▽∗

Γ, A1 ⇒ ∆
∨L

Γ, A0 ∨A1 ⇒ ∆

Suppose the permuted side formula occurrence is (P0, p) where P0[p] = A0 ∨A1 (and
the formula occurrence is on the left) and the premises of P0 in πP0

is P1 with P1[p] =
A0 and P2 with P2[p] = A1. We define the left permuted multicut instance (S∗L,▽∗

L, π
∗
L)

as follows:

• Replace P0 by P1, and keep all other sequents from S.
• Define (π∗

L)P1 to be the subproof of πP0 generated by P1.
• Define ▽∗

L to be the smallest symmetric relation satisfying:

– If (S, i)▽ (P0, j) then (S, i)▽∗
L (P1, j).

– If (S, i)▽ (U, j), S ̸= P0 and U ̸= P0, then (S, i)▽∗
L (U, j).

Similarly we define the right permuted multicut instance (S∗R,▽∗
R, π

∗
R) as follows:

• Replace P0 by P2, and keep all other sequents from S.
• Define (π∗

R)P2
to be the subproof of πP0

generated by P2.
• Define ▽∗

R to be the smallest symmetric relation satisfying:

– If (S, i)▽ (P0, j) then (S, i)▽∗
R (P1, j).

– If (S, i)▽ (U, j), S ̸= P0 and U ̸= P0, then (S, i)▽∗
R (U, j).
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This definition corresponds to a reduction rule for a proof ending with a multicut:

(S,▽, π)

Γ, A0 ∨A1 ⇒ ∆
⇒

(S∗L,▽∗
L, π

∗
L)

Γ, A0 ⇒ ∆

(S∗R,▽∗
R, π

∗
R)

Γ, A1 ⇒ ∆
∨L

Γ, A0 ∨A1 ⇒ ∆

where the displayed formula occurrence A0∨A1 corresponds to the formula occurrence
(P0, p) in the multicut.
Proposition 22. For any formula occurrence (S, i) of the multicut, we have:

1. O(P0, p) ⊒ jj(O∗
L(P1, p), O

∗
R(P2, p)).

2. If i ̸= p then: O(P0, i) ⊒ O∗
L(P1, i) | O∗

R(P2, i)
3. If S ̸= P0 and (S, i) is a side formula occurrence then O(S, i) ⊒ O∗

L(S, i)∥O∗
R(S, i).

Here, the terms O∗
L(S, i) and O∗

R(S, i) refer to the output terms in the left and right
reduced multicut respectively.

Proof. See Appendix A.4.1.

Existential (right)

The case of ∃R is similar to ∨R. The external reduction for this rule is:

· · ·

...
Σ ⇒ Π, A[t/x]

∃R
Σ ⇒ Π,∃xA

▽
Γ ⇒ ∆,∃xA

⇒
· · ·

...
Σ ⇒ Π, A[t/x]

▽∗
Γ ⇒ ∆, A[t/x]

∃R
Γ ⇒ ∆,∃xA

We first define the permutation of an extended multicut instance (S,▽, π). Suppose
the permuted side formula occurrence is (P0, p) where P0[p] = ∃xA (and the formula
occurrence is on the right) and the premise of P0 in πP0 is P1 with P1[p] = A[t/x]. We
define the permuted multicut instance (S∗,▽∗, π∗) as follows:

• Replace P0 by P1, and keep all other sequents from S.
• Define π∗

P1
to be the subproof of πP0

generated by P1.
• Define ▽∗ to be the smallest symmetric relation satisfying:

– If (S, i)▽ (P0, j) then (S, i)▽∗ (P1, j).
– If (S, i)▽ (U, j), S ̸= P0 and U ̸= P0, then (S, i)▽∗ (U, j).

This definition corresponds to a reduction rule for a proof ending with a multicut:

(S,▽, π)

Γ ⇒ ∃xA,∆
⇒

(S∗,▽∗, π∗)

Γ ⇒ A[t/x],∆
∃R

Γ ⇒ ∃xA,∆

where the displayed formula occurrence ∃xA corresponds to the formula occurrence
(P0, p) in the multicut.
Proposition 23. For any formula occurrence (S, i), we have:
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1. If S = P0 and i ̸= p then O(P0, i) ⊒ O∗(P1, i).
2. O(P0, p) ⊒ e(t · ⊥, O∗(P1, p)).
3. If S ̸= P0 then O(S, i) ⊒ O∗(S, i).

Proof. See Appendix A.4.2.

Existential (left)

If a premise of the multicut ends in ∃L then the principal formula is necessarily a cut
formula because the conclusion is a Σ1-sequent. Hence, there is no external reduction
for the case of ∃L.

Negation

The case of negation is straightforward and left to the reader.

Contraction

The final rule of a premise is contraction and the contracted formula is a side formula
of the multicut. In the case of right-contraction, this induces the following multicut
reduction:

· · ·

...
Σ ⇒ Π, A,A

cR
Σ ⇒ Π, A

▽
Γ ⇒ ∆, A

⇒ · · ·
...

Σ ⇒ Π, A,A
▽∗

Γ ⇒ ∆, A,A
cR

Γ ⇒ ∆, A

The left contraction rule is handled in the same manner. Suppose the permuted side
formula occurrence is (P0, p) where P0[p] = A and the premise of P0 in πP0 is P1

with P1[p] = P1[p+1] = A. We define the permuted multicut instance (S∗,▽∗, π∗) as
follows:

• Replace P0 by P1, and keep all other sequents from S.
• Define π∗

P1
to be the subproof of πP0

generated by P1.
• Define ▽∗ to be the smallest symmetric relation satisfying:

– If (S, i)▽ (P0, j) and j < p then (S, i)▽∗ (P1, j).
– If (S, i)▽ (P0, j) and j > p then (S, i)▽∗ (P1, j + 1).
– If (S, i)▽ (U, j), S ̸= P0 and U ̸= P0, then (S, i)▽∗ (U, j).

This definition corresponds to a reduction rule for a proof ending with a multicut:

(S,▽, π)

Γ ⇒ ∆, A
⇒

(S∗,▽∗, π∗)

Γ ⇒ ∆, A,A
cR

Γ ⇒ ∆, A

Where the displayed formula occurrence A corresponds to the formula occurrence
(P0, p) in the multicut.
Proposition 24. For any formula occurrence (S, i) we have:

1. If S = P0 and i < p then O(P0, j) ⊒ O∗(P1, j).
2. If S = P0 and i > p then O(P0, j) ⊒ O∗(P1, j + 1).
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3. E(O(P0, p)) ⊒ E(O∗(P1, p)) ∥ E(O∗(P1, p+ 1)).
4. If S ̸= P0 then O(S, i) ⊒ O∗(S, i).

Proof. See Appendix A.4.3.

Weakening and exchange

The multicut reductions for the two remaining inferences are much simpler, so we will
leave the precise definition of the reductions as easy exercises and merely sketch the
reductions. In each case we can state and prove suitable propositions describing how
the reductions can be simulated by rewrite rules for the associated Herbrand schemes.
The arguments follow the same structure as the cases we’ve already seen, but are much
simpler.

The final rule of a premise is weakening and the introduced formula is a side formula
of the multicut. In the case of right-weakening, this induces the following multicut
reduction:

· · ·

...
Σ ⇒ Π wR

Σ ⇒ Π, A
▽

Γ ⇒ ∆, A

⇒ · · ·
...

Σ ⇒ Π▽∗
Γ ⇒ ∆ wR

Γ ⇒ ∆, A

The case of weakening of the left is handled in the same manner.
Exchange is handled in the same way. For the right exchange rule, where both

exchanged formula occurrences are side formulas, the multicut reduction takes the
following form:

· · ·

...
Σ ⇒ Π, B,A

eR
Σ ⇒ Π, A,B

▽
Γ ⇒ ∆, A,B

⇒ · · ·
...

Σ ⇒ Π, B,A
▽

Γ ⇒ ∆, A,B

Note that there is no need to introduce an instance of the exchange rule below the
multicut, as we can simply re-arrange the map f connecting side formulas of the
conclusion to side formulas in the multicut to make the multicut application in the
reduced proof valid. The cases where one or both exchanged formulas are cut formulas
is similar, but there we also need to suitable re-arrange the cut relation.

7.3.2 Internal reductions

In the external reductions, a rule of inference from one of the premise derivations
was permuted with the multicut. This occurred because the principal formula(s) of
the rule were not cut formulas. The internal reductions, which we now present, treat
the case that the principal formula of the root inference of one or more premises is a
cut formula. The result of the reduction is that the rule in the premise(s) is removed
without inducing any change to the generated cut-free proof.
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Axiom

If a premise of the multicut is an axiom and both principal formulas are cut formulas,
then the multicut can be transformed by the following reduction:

· · ·
id

A ⇒ A

...
A,Σ ⇒ Π · · ·

▽
Γ ⇒ ∆

⇒ · · ·
...

A,Σ ⇒ Π · · ·
▽∗

Γ ⇒ ∆

Suppose the extended multicut instance to be reduced is (S,▽, π), and suppose R ∈ S
is an axiom, where (R, 0) and (R, 1) are the two occurrences of the principal formula of
the axiom. Suppose at least one of these two occurrences is a cut formula occurrence,
say 1, and let Q be the unique sequent such that (Q, q) ▽ (R, 1) for some q < l(Q).
We define the reduced extended multicut instance (S∗,▽∗, π∗) as follows:

• Remove R from S to form S∗.
• Let π∗ be the restriction of π to S∗.
• Define ▽∗ to be the smallest symmetric relation such that:

– If (S, i)▽ (U, j) and {S,U} ∩ {R,Q} = ∅, then (S, i)▽∗ (U, j).
– If (S, i)▽ (Q, j) where S ̸= R then (S, i)▽∗ (Q, j).
– If (S, i)▽ (R, 0) where S ̸= Q then (S, i)▽∗ (Q, q).

Proposition 25. Let (S, i) be any side formula occurrence with S ∈ S.

1. If S = Q then O(Q, i) ⊒ O∗(Q, i).
2. If S /∈ {Q,R} then O(S, i) ⊒ O∗(S, i).

Proof. Left to the reader.

Weakening

If a cut formula has been introduced by weakening, the associated multicut reduc-
tion simply removes the application of weakening and all parts of the multicut that
depended on the weakened cut formula. In the case of wL, this reduction can be
visualised as:

· · ·
...

Σ ⇒ Π, A

...
Σ′ ⇒ Π′

wL
A,Σ′ ⇒ Π′

▽
Γ ⇒ ∆

⇒ · · ·

...
Σ′ ⇒ Π′

▽∗
Γ′ ⇒ ∆′

(wL+ wR)∗
Γ ⇒ ∆

where Γ′ ⇒ ∆′ is the subsequent of Γ ⇒ ∆ obtained by removing the side formula
occurrences emanating from the premise Σ ⇒ Π, A and other premises connected to
the cut formula A.

More precisely, given an extended multicut instance (S,▽, π) in which the sequent
P is the conclusion of a (left or right) weakening on a cut formula occurrence (P, p).
Say that a premise S is affected if S ̸= P and the unique ▽-path from S to P ends
with the cut on (P, p), and unaffected otherwise. We define the reduced multicut
(S∗,▽∗, π∗) as follows:
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• Let S∗ consist of the unaffected premises of S together with the premise P ′ of P in
πP .

• Let π∗ assign the generated subproof of πP to P ′, and πS to each unaffected premise
S.

• Let ▽∗ be the smallest symmetric relation such that:

– If U, V are both unaffected and (U, i)▽ (V, j) then (U, i)▽∗ (V, j).
– If U is unaffected and (U, i)▽ (P, j) then (U, i)▽∗ (P ′, j′), where (P ′, j′) is the

formula occurrence corresponding to (P, j) via the weakening inference.

This definition corresponds to a cut reduction:

(S,▽, π)

Γ ⇒ ∆
⇒

(S∗,▽∗, π∗)

Γ′ ⇒ ∆′
(wL+ wR)∗

Γ ⇒ ∆

where Γ′,∆′ are those side formula occurrences belonging to unaffected premises of
the original multicut, together with the side formulas occurring in the conclusion of
the weakening inference.
Proposition 26. Let (S,▽, π) be a multicut as above and let (S, i) be a side formula
occurrence in one of the premises.

1. If S is unaffected then O(S, i) ⊒ O∗(S, i).
2. If S = P then O(P, i) ⊒ O∗(P ′, i′), where i′ is the index associated with i via the

weakening inference.
3. If S is affected then O(S, i) ⊒ ⊥S[i].

Proof. See Appendix A.5.1.

Contraction

If a cut formula has been contracted, the associated multicut reduction removes the
application of contraction and duplicates all necessary premises of the multicut. In the
case of cR, this reduction can be visualised as:

· · ·

...
Σ ⇒ Π, A,A

cR
Σ ⇒ Π, A

...
A,Σ′ ⇒ Π′

▽
Γ,Γ′ ⇒ ∆,∆′

⇒ · · ·

...
Σ ⇒ Π, A,A

...
A,Σ′ ⇒ Π′

...
A,Σ′ ⇒ Π′

▽∗
Γ,Γ′,Γ′ ⇒ ∆,∆′,∆′

c∗
Γ,∆′ ⇒ ∆,∆′

Suppose the extended multicut instance to be reduced is (S,▽, π), and suppose R0 ∈ S
is the conclusion of a contraction in πR with with premise R1, where (R0, p) is the
principal formula occurrence of the contraction. Let Q be the unique sequent such that
(Q, q)▽ (R0, p) for some q < l(Q). Say that a sequent S ∈ S, S ̸= R0, is affected by
the reduction if the unique path from S to R0 in G(S,▽) contains Q, and unaffected
otherwise. We define the reduced extended multicut instance (S∗,▽∗, π∗) as follows:

• We let the premise R1 replace R0. Set π
∗
R1

to be the subproof of πR0
generated by

R1.
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• For each affected S ∈ S we include two sequents SL, SR ∈ S∗ with l(SL) = l(SR) =
l(S) and SL[i] = SR[i] = S[i] for each i < l(S). We put π∗

SL
= πS and let π∗

SR
a

copy of πS with suitably renamed eigenvariables.
• For each unaffected S ∈ S, we put S ∈ S∗ and π∗

S = πS .
• Define ▽∗ to be the smallest symmetric relation for which the following conditions
hold:

– We have (QL, q)▽∗ (R1, p) and (QR, q)▽∗ (R1, p+ 1).
– If (S, i)▽ (R0, j) for j ̸= p then (S, i)▽∗ (R1, j) if j < p and (S, i)▽∗ (R1, j + 1)
if j > p. (Note we must have S ̸= Q and that S is unaffected.)

– If (S, i)▽ (U, j) and both S and U are unaffected then (S, i)▽∗ (U, j).
– If (S, i)▽(U, j) and both S and U are affected then (SL, i)▽∗(UL, j) and (SR, i)▽∗

(UR, j).

This definition corresponds to a reduction rule for a proof ending with a multicut:

(S,▽, π)

Γ,Γ′ ⇒ ∆,∆′ ⇒
(S∗,▽∗, π∗)

Γ,Γ′,Γ′ ⇒ ∆,∆′,∆′
c∗

Γ,Γ′ ⇒ ∆,∆′

where Γ′,∆′ are the formula occurrences of the conclusion corresponding to formula
occurrences in affected premises of the multicut. Given S ∈ S we write O(S, i) and
I(S, i) for the canonical output and input terms for (S, i) with respect to (S,▽, π),
and call these the prior canonical output/input terms. Similarly for (S, i) ∈ S∗ we
write O∗(S, i) and I∗(S, i) for the canonical output/input terms for (S, i) with respect
to (S∗,▽∗, π∗) and call these the posterior canonical output/input terms.
Proposition 27. Let (S,▽, π) and (S∗,▽∗, π∗) be as above, let (S, i) be a side formula
occurrence with S ∈ S.

• If S ̸= R0 is affected by the reduction then

E(O(S, i)) ⊒ E(O∗(SL, i)) ∥ E(O∗(SR, i))

• If S = R0 we have O(R0, i) ⊒ O∗(R1, i) if i < p, and O(R0, i) ⊒ O∗(R1, i + 1) if
i > p.

• In all other cases we have E(O(S, i)) ⊒ E(O∗(S, i)).

Proof. See Appendix A.5.2.

Existential

An existentially quantified cut-formula induces the following multicut reduction:

· · ·

...
Σ ⇒ Π, A[t/x]

∃R
Σ ⇒ Π,∃xA

...
A[α/x],Σ′ ⇒ Π′

∃L
∃xA,Σ′ ⇒ Π′

▽
Γ ⇒ ∆

⇒
· · ·

...
Σ ⇒ Π, A[t/x]

.....
[t/x]

A[t/x],Σ′ ⇒ Π′
▽∗

Γ ⇒ ∆
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We first define the reduction. Suppose the extended multicut instance to be reduced
is (S,▽, π), and suppose the principal formula occurrences are (L0, l) and (R0, r),
where (L0, l) is a left formula occurrence, (R0, r) is a right formula occurrence, and
L[l] = R[r] = ∃xA. Suppose the premise of R0 is R1 with R1[r] = A[t/x] and suppose
the premise of L0 is L1 with L1[l] = A[α/x]. We define the reduced extended multicut
instance (S∗,▽∗, π∗) as follows:

• Replace R0 by R1 and L0 by L1. We set π∗
R1

to be the subproof of πR0
generated

by R1, and π∗
L1

is obtained by uniformly substituting t for α in the subproof of L0

generated by L1.
• All other sequences in S are carried over as they are to S∗.
• The relation▽∗ is defined as the smallest symmetric relation satisfying the following
conditions:

– (L1, l)▽ (R1, r).
– (S, i)▽∗ (U, j) for all formula occurrences (S, i)▽ (U, j) with S,U /∈ {L0, R0}.
– If (S, i)▽ (L0, j) and S ̸= R0 then (S, i)▽∗ (L1, j).
– If (S, i)▽ (R0, j) and S ̸= L0 then (S, i)▽∗ (R1, j).

This definition corresponds to a reduction rule for a proof ending with a multicut:

(S,▽, π)

Γ ⇒ ∆
⇒ (S∗,▽∗, π∗)

Γ ⇒ ∆

Proposition 28. Let (S, i) be any side formula occurrence with S ∈ S.

1. If S = L0 then O(L0, i) ⊒ O∗(L1, i).
2. If S = R0 then O(R0, i) ⊒ O∗R1, i).
3. If S /∈ {L0, R0} then O(S, i) ⊒ O∗(S, i).

Proof. See Appendix A.5.3.

Disjunction

If a disjunction is cut-formula and principal in both it’s occurring premises, the
following reduction is applicable:

· · ·

...
Σ ⇒ Π, A ∨R

Σ ⇒ Π, A ∨B

...
A,Σ′ ⇒ Π′

...
B,Σ′ ⇒ Π′

∨L
A ∨B,Σ′ ⇒ Π′

▽
Γ ⇒ ∆

⇒ · · ·

...
Σ ⇒ Π, A

...
A,Σ′ ⇒ Π′

▽∗
Γ ⇒ ∆

We first define the reduction of an extended multicut instance (S,▽, π). Suppose
(L0, l) is the reduced principal cut formula occurrence in which l is a left index, where
L0[l] = A∨B, and suppose the premises of L0 in πL0 are L1 and L2 with L1[l] = A and
L2[l] = B. Suppose (R0, r)▽ (L0, l) is the reduced principal cut formula occurrence in
which r is a right index, and suppose the premise of R0 in πR0 is R1 with R1[r] = A (the
other case is similar). We define the reduced extended multicut instance (S∗,▽∗, π∗)
as follows:
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• Replace L0 by L1 and R0 by R1, and keep all other sequents from S. Set π∗
L1

to be
the subproof of πL0 generated by L1 and set π∗

R1
to be the subproof generated by

πR0 .
• Define ▽∗ to be the smallest symmetric relation satisfying:

– (L1, l)▽∗ (R1, r).
– If (S, i)▽ (L0, j) and S /∈ {L0, R0} then (S, i)▽∗ (L1, j).
– If (S, i)▽ (R0, j) and S /∈ {L0, R0} then (S, i)▽∗ (R1, j).
– If (S, i)▽ (U, k) and S,U /∈ {L0, R0} then (S, i)▽∗ (U, k).

This definition corresponds to the following reduction rule for a proof ending with
a multicut:

(S,▽, π)

Γ ⇒ ∆
⇒ (S∗,▽∗, π∗)

Γ ⇒ ∆
Proposition 29. For each side formula occurrence (S, i), we have:

1. If S = L0 then O(L0, i) ⊒ O∗(L1, i).
2. If S = R0 then O(R0, i) ⊒ O∗(R1, i).
3. If S /∈ {L0, R0} then O(S, i) ⊒ O∗(S, i).

Proof. See Appendix A.5.4.

Negation

The case of negation induces the following multicut reduction.

· · ·

...
Σ, A ⇒ Π

¬R
Σ ⇒ Π,¬A

...
Σ′ ⇒ Π′, A

¬L
¬A,Σ′ ⇒ Π′

▽
Γ ⇒ ∆

⇒ · · ·

...
Σ′ ⇒ Π′, A

...
Σ, A ⇒ Π

▽∗
Γ ⇒ ∆

We leave the formal presentation and verification to the reader.

Cut

The case that a premise of the multicut ends with application of (binary) cut induces
a reduction which absorbs the cut.

· · ·

...
Σ0 ⇒ Π0, C

...
C,Σ1 ⇒ Π1

cut
Σ0Σ1 ⇒ Π0Π1 ▽

Γ ⇒ ∆

⇒ · · ·
...

Σ0 ⇒ Π1, C

...
C,Σ1 ⇒ Π1 ▽∗

Γ ⇒ ∆

Suppose (S,▽, π) is an extended multicut instance, and P0 is a sequent which is the
conclusion of a binary cut rule application in πP0 , with premises P1, P2, where (P1, p1)
is the right-hand occurrence of the cut formula and (P2, p2) is the left-hand occurrence
of the cut formula. Let f denote the map sending each given formula occurrence (P0, i)
to the corresponding formula occurrence in either the premise P1 or P2.

We define the reduced extended multicut instance (S∗,▽∗, π∗) as follows:
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• Replace P0 by P1 and P2, keeping all other sequents in S.
• Define π∗

P1
and π∗

P2
to be the sub-proofs of πP0 generated by P1, P2 respectively.

• Define ▽∗ to be the smallest symmetric relation such that:

– (P1, p1)▽ (P2, p2),
– If (S, i)▽ (U, j) and S ̸= P0, U ̸= P0 then (S, i)▽∗ (U, j).
– If (S, i)▽ (P0, j), then (S, i)▽∗ f(P0, j).

Proposition 30. 1. For all i < l(P0), O(P0, i) ⊒ O∗(f(P0, i)).
2. For every formula occurrence (S, i) with S ̸= P0, we have O(S, i) ⊒ O∗(S, i).

Proof. Left to the reader.

8 Extracting Herbrand expansions

The main result of this article relates Herbrand schemes to cut elimination. Specifically,
we prove the language of a Herbrand scheme covers all Herbrand expansions that can
be extracted from a proof of a Σ1-sequent by the cut reductions rules of the previous
section:
Theorem 2. Let π be a regular proof of a Σ1-sequent of the form Γ ⇒ A and suppose
π reduces to an essential-cut-free proof π′ (via multicut reduction). Then Sπ −→ t for
some term t ≡ T (π′).

Theorem 2 is an immediate consequence of proposition 19 and
Proposition 31. Suppose π is a multicut guarded regular proof of a Σ1-sequent.
Suppose π∗ is obtained from π by applying any of the multicut reduction or permutation
rules. Then π∗ is also a multicut guarded regular proof. Furthermore, for any sequent
S appearing in πep, S is in π∗

ep also, and for all i < |S| we have T (S, i, π) ⊒ T (S, i, π∗).

Proof. It can be seen by inspection of the multicut reduction and permutation rules
that they all preserve the property of being a regular multicut guarded proof. We omit
the details.

The second item of the proposition is proved by induction on the difference h(πep)−
h(πep|S). The only non-trivial part of the induction is for the base case, where S is
a leaf in πep and is therefore either an axiom or the conclusion of a multicut. In the
former case, T (S, i, π) = T (S, i, π∗) for each i < l(S). In the latter case, we have an
extended multicut instance (S,▽, π) where S consists of the premises of S, and we
overload the notation to let π denote the assignment to each premise of the multicut
the corresponding generated subproof of the proof π. We make a case distinction on
what sort of cut reduction was applied to the multicut to obtain π∗, ignoring the
trivial case in which some other multicut was reduced.

Internal existential, disjunction or negation reduction

Suppose the side formula occurrence corresponding to (S, i) in the multicut is (S′, i′).
Then Proposition 28 and Proposition 29 immediately give us:

T (S, i, π) = O(S′, i′) ⊒ O∗(S′, i′) = T (S, i, π∗)

as required.
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External existential reduction

As the end-sequent is Σ1, this case only concerns the ∃R-rule. Let the permuted premise
of the multicut be U0, its premise in π be U1 and the principal formula of the ∃-rule is
U0[p] = ∃xA, minor formula U1[p] = A[t/x], then let (S, i) be the formula occurrence
corresponding to the formula occurrence (U0, p) in the multicut, and let S′ be the new
premise of S in π∗ Then we have:

T (S, i) = E(O(U0, p))

⊒ E(e(t · ⊥, O∗(U1, p))) Proposition 23

⊒ e(t · ⊥,E(O∗(U1, p))

= e(t · ⊥, T (S′, i, π∗))

= T (S, i, π∗)

as required. For j ̸= i, if the formula occurrence corresponding to (S, j) in the multicut
is (U0, k) then k ̸= p and we get:

T (S, j) = E(O(U0, k))

⊒ E(O∗(U1, k)) Proposition 23

= T (S′, j, π∗)

= T (S, j, π∗)

If the formula occurrence corresponding to (S, j) in the multicut is (V, k) for V ̸= U0

then we have:
T (S, j) = E(O(V, k))

⊒ E(O∗(V, k)) Proposition 23

= T (S′, j, π∗)

= T (S, j, π∗)

as required.

Internal weakening reduction

By inspection of the reduction rule for weakening of a cut formula, it easy to verify
that for the conclusion S of the multicut in π, if π reduces to π∗ by such a reduction
then T (S, i, π∗) = ⊥A if (S, i) is a formula occurrence associated with an occurrence
in an affected premise (where S[i] = A), and otherwise T (S, i, π∗) = O∗(S′, i′) where
(S′, i′) is the formula occurrence associated with (S, i) via the reduced multicut. In
both cases we get T (S, i, π) = O(S′′, i′′) ⊒ T (S, i, π∗) by Proposition 26, where (S′′, i′′)
is the premise associated with (S, i) via the multicut inference in π.

Internal contraction reduction

Let (R0, p) be the principal formula of the reduced contraction and R1 the premise of
R0 in π, let S′ be the new conclusion of the reduced multicut. For each index i < l(S),
let i′ be the index of the corresponding formula occurrence in S′ if (S, i) is not copied
by a contraction leading up to S′, and let i′0, i

′
1 be the two indices corresponding to the
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two copies of (S, i) otherwise. Then, if (S, i) corresponds to an unaffected side formula
occurrence (U, j) of the multicut with U ̸= R0 we get:

T (S, i, π) = E(O(U, j))

⊒ E(O∗(U, j)) Proposition 27

= T (S′, i′, π∗)

= T (S, i, π∗)

If (S, i) corresponds to a side formula occurrence (R0, j) with j > p then:

T (S, i, π) = E(O(R0, j))

⊒ E(O∗(R1, j + 1)) Proposition 27

= T (S′, i′, π∗)

= T (S, i, π∗)

The case with j < p is similar. Finally if (S, i) corresponds to an affected side formula
occurrence (U, j) then:

T (S, i, π) = E(O(U, j))

⊒ E(O∗(UL, j)) ∥ E(O∗(UR, j)) Proposition 27

= T (S′, i′0, π
∗) ∥ T (S′, i′1, π

∗)

= T (S, i, π∗)

as required.

External disjunction reduction

Suppose π∗ was obtained from π by a left ∨-permutation. Let (P, p) be the principal
formula occurrence in π, P [p] = A ∨ B, where P is a premise of the multicut, let
PL, PR be the premises of P and let (S, i) be the formula occurrence corresponding to
(P, p) in the conclusion so S[i] = A ∨B also. Let S′

L, S
′
R be the new premises of S in

π∗
ep. We have:

T (S, i, π) = E(O(P, p))

⊒ E(j(O∗(PL, p), O
∗(PR, p))) Proposition 22

⊒ j(E(O∗(PL, p)),E(O
∗(PR, p)))

= j(T (S′
L, i, π

∗), T (S′
R, i, π

∗))

= T (S′, i, π∗)
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For j ̸= i, let (U, k) be the formula occurrence corresponding to (S, j) in the multicut.
If U = P then we have:

T (S, j, π) = E(O(P, k))

⊒ E(O∗
L(PL, k) ∥O∗

R(PR, k)) Proposition 22

⊒ E(O∗
L(PL, k)) ∥ E(O∗

R(PR, k))

= T (S′
L, j, π

∗) ∥ T (S′
R, j, π

∗)

= T (S, j, π∗)

If U ̸= P then:

T (S, j, π) = E(O(U, k))

⊒ E(O∗
L(U, k) ∥O∗

R(U, k)) Proposition 22

⊒ E(O∗
L(U, k)) ∥ E(O∗

R(U, k))

= T (S′
L, j, π

∗) ∥ T (S′
R, j, π

∗)

= T (S, j, π∗)

as required.
The remaining cases are trivial.

To obtain Herbrand’s theorem, it remains to establish weak normalisation of the
multicut reductions.
Theorem 3. Let π be a proof of a Σ1-end-sequent. Then π reduces to an essential
cut-free proof.

We show that there is a terminating multicut reduction strategy by reducing to the
case of propositional linear logic and appealing to a result on limits of fair multicut
strategies in that context by Saurin [16]:
Theorem ([16, Theorem 44]). For a proof in classical propositional logic, every fair
multicut reduction sequence terminates.

Saurin’s cut-elimination argument interprets a propositional proof as a non-
wellfounded proof in linear logic and shows that such proofs are closed under
fair multicut elimination. The resultant proof will be well-founded (i.e., finite) by
the assumption on the vocabulary of the end-sequent (i.e., that it is sequent in
propositional logic).

Proof of Theorem 3. Let π ⊢ Γ ⇒ ∆ be a proof of a Σ1 sequent. Stripping π of all
first-order content we envisage π as a proof πP in classical propositional logic of a
sequent ΓP ⇒ ∆P via a translation that removes all terms for formulas:

(P t⃗)P = P (A ∨B)P = AP ∨BP (∃xA)P = AP ∨ ⊥ (¬A)P = ¬AP

That is, πP is the proof in classical propositional logic in which every formula occur-
rence A in π has been replaced by AP and instances of ∃L and ∃R are changed
appropriately. The special interpretation of ∃xA is to ensure that applications of ∃L
and ∃R are recorded in πP with a corresponding principal formula.
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It is clear that every multicut reduction π ⇒ π∗ corresponds to a multicut reduction
πP ⇒∗ π∗

P where π∗
P = (π∗)P is the result of applying the above translation to π∗.

Indeed, for most reductions, we have πP ⇒ π∗
P , but the special treatment of quantifiers

induces two multicut reduction steps.
All that remains is to observe that if π ⇒ π0 ⇒ · · · is a fair multicut reduction

sequence, then the simulating reduction πP ⇒∗ (π0)P ⇒∗ · · · can be chosen to be
fair. Saurin’s theorem implies that the reduction sequence necessarily terminates in a
cut-free proof.

Corollary (Herbrand’s Theorem). Let π be a proof of a Σ1-sequent Γ ⇒ A and let
H (π) be its Herbrand scheme with start symbol Sπ. Then Sπ −→ t for some final
term t which is a valid Herbrand expansion of the end sequent.

Proof. From Theorems 1, 2 and 3.

9 Conclusion

We have associated a higher-order recursion scheme to any sequent calculus proof
for classical first-order logic that can compute Herbrand expansions for Σ1-formulas.
The framework builds on [1] offering several conceptual advantages. Primarily, cut
is given a symmetric interpretation in contrast the to ‘nested’ composition in [1].
The introduction of explicit constructors and destructors for the logical connectives,
and the ‘call-with-current-continuation’-like Peirce operator for handling contraction,
lifts the Herbrand scheme representation to arbitrary sequent calculus proofs. From a
game-theoretic perspective, Herbrand schemes are extracting strategies that evidence
formulas in the end sequent.

The main merit of the model is perhaps in giving a refined representation of Her-
brand schemes amenable for treating extensions of FOL, in particular, with Martin-Löf
style inductive definitions. With the restriction of prenex formulas lifted, one can
now investigate the computational content ascribed by Herbrand schemes to inductive
proofs in a classical setting. The latter is the main motivation behind the present work
and is currently under investigation. The game theoretic interpretation also extends
naturally to this setting where terms/programs represent strategies in an infinite game.
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Appendix A Omitted proofs

A.1 Language equivalence is preserved through substitution

We restate proposition 16:
Proposition. Let π be any regular proof and σ a regular substitution stack. Then

Fπ
i σ ≡ F

π[Val(σ)]
i ⊥.

The proof proceeds by induction on the height of the proof π. Assuming that the
induction hypothesis holds for all proofs smaller than π, we show by a subsidiary
induction that, given a context C[z0, . . . , zn] where each zi has type of Fπ

i σ.

Left-to-right If a term of the form C[Fπ
0σ, . . . ,F

π
nσ] rewrites to a final term t in k

steps then there is a final term t′ such that C[F
π[Val(σ)]
0 ⊥, . . . ,F

π[Val(σ)]
n ⊥] −→ t′ and

Exp(t) = Exp(t′).

Right-to-left If a term of the form C[F
π[Val(σ)]
0 ⊥, . . . ,F

π[Val(σ)]
n ⊥] rewrites to a final

term t in k steps then there is a final term t′ such that C[Fπ
0σ, . . . ,F

π
nσ] −→ t′ and

Exp(t) = Exp(t′).

For the induction step of this subsidiary induction, we focus on the most interesting
cases of the first rewrite in a rewriting sequence of length k+ 1. We focus on the left-
to-right direction since the converse is similar. To simplify notation we tacitly assume
at most one of z0, . . . , zn occur in C. For most parts of the argument this assumption
can be made without loss of generality as the individual non-terminals Fπ

0 , . . . , F
π
n can

be treated pointwise in all but the case of the Peirce rewrite which can, in principle,
rewrite an occurrence of the non-terminal Fπ

i to a term containing Fπ
j for some j ̸= i.

Thus, in the following we work under the assumption that C = C[zi] and leave the
full formulation for the reader to verify.

If the applied rewrite is to a non-terminal occurrence in C then the result follows
directly from the induction hypothesis provided this was not a Peirce rewrite. Thus we
are left to consider the case of an inference-induced rewrite applied to the non-terminal
Fπ
i directly, or a Peirce rewrite applied to either Fπ

i or a non-terminal occurrence in
C. We treat these in turn.

Reduction is left ∃-rule
Then π ends with an application of ∃L. Let π0 be the immediate subproof of π. First,
suppose i = 0 is the index of the principal formula of the end sequent. Then the
applied rewrite is:

Fπ
i σu⃗ −→ a(λxι.Fπ0

i ([x/α]σ)u⃗)

and a parallel reduction is available for F
π[Val(σ)]
i :

F
π[Val(σ)]
i ⊥u⃗ −→ a(λxι.F

π0[Val(σ)]
i ([x/α]⊥)u⃗)
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The induction hypothesis on π0 gives for every regular t : ι:

Fπ0
i ([t/α]σ)u⃗ ≡ F

π0[Val([t/α]σ)]
i ⊥u⃗

= F
π0[Val(σ)][Val(t)/α]
i ⊥u⃗ as FV(t) = FV(σ) = ∅.

≡ F
π0[Val(σ)]
i ([t/α]⊥)u⃗

If i ̸= 0 is not the index of the principal formula, then the rule application uses pattern
matching so that u⃗ = etv, w⃗ for terms t, v where w⃗ = u⃗>0. The rewrite applied to the
term is then:

Fπ
i σ(etv)w⃗ −→ Fπ0

i ([t/α]σ)vw⃗

Correspondingly, we have:

F
π[Val(σ)]
i ⊥(etv)w⃗ −→ F

π0[Val(σ)]
i ([t/α]⊥)vw⃗

The induction hypothesis on π0 similarly yields:

Fπ0
i ([t/α]σ)vw⃗ ≡ F

π0[Val([t/α]σ)]
i ⊥vw⃗

= F
π0[Val(σ)][Val(t)/α]
i ⊥vw⃗

≡ F
π0[Val(σ)]
i ([t/α]⊥)vu⃗

from which the desired conclusion follows.

Reduction is right ∃-rule
Then π ends with an application of ∃R. Let π0 be the immediate subproof of π. If i is
the index of the principal formula of the endsequent, then the corresponding rewrite is

Fπ
i σu⃗ −→ e

(
t · σ

)(
Fπ0
i σu⃗

)
where t is the term discharged from the minor formula. In response to the rewrite, we
have:

F
π[Val(σ)]
i ⊥u⃗ −→ e

(
t[Val(σ)] · ⊥

)(
F
π0[Val(σ)]
i ⊥u⃗

)
≡ e(t · σ)

(
F
π0[Val(σ)]
i ⊥u⃗

)
Proposition 10

≡ e(t · σ)
(
Fπ0
i σu⃗

)
IH

as required.
Next suppose i is not the index of the principal formula. Then u⃗ = v⃗(aw) where v⃗

has length |u⃗| − 1 and the rewrite applied to this term has the form:

Fπ
i σv⃗(aw) −→ Fπ0

i σv⃗
(
w(t · σ)

)
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Respond with the rewrite:

F
π[Val(σ)]
i ⊥v⃗(aw) −→ F

π0[Val(σ)]
i ⊥v⃗(w(t[Val(σ)] · ⊥))

≡ Fπ0
i σv⃗(w(t · σ))

by the same reasoning as above.

Other inference-induced rewrite

These are straightforward.

Rewrite is a Peirce reduction

The rewrite is on some subterm of C[Fπ
i σ/z] of the form C ′ = Fπ′

j ρv⃗(ps)w⃗. To simplify
notation we assume that j is the index of the final formula occurrence in the end
sequent of π′. It suffices to consider Fπ

i σ as a subterm of C ′ as otherwise the applied
rewrite occurs wholly within the context C and the desired equivalence follows directly
from the induction hypothesis. This leaves two cases to consider depending on whether
Fπ′

j ρ is one of the substituted occurrences of Fπ
i σ. If so then u⃗ has the form v⃗(ps)w⃗ for

appropriate v⃗, w⃗ and s, and the applied rewrite is:

Fπ
i σv⃗(ps)w⃗ −→ p

(
λy.Fπ

i σv⃗
(
s
(
Fπ
kσv⃗w⃗y

))
w⃗
)

where k is the index of the argument ps, namely k = |v⃗|. In the term C[F
π[Val(σ)]
i ⊥/z]

we respond with the rewrite:

F
π[Val(σ)]
i ⊥v⃗(ps)w⃗ −→ p

(
λy.F

π[Val(σ)]
i ⊥v⃗

(
s
(
F
π[Val(σ)]
k ⊥v⃗w⃗y

))
w⃗
)

The induction hypothesis with the appropriate choice of context completes this part
of the argument.

This leaves the case where Fπ
i σ is a subterm of s, i.e., the Peirce rewrite applies

to the term C ′ above wherein s = s0[F
π
i σu⃗/z

′] for some term s0. Then the applied
rewrite is of the form:

Fπ′

j ρv⃗
(
p
(
s0[F

π
i σ/z

′]
)
w⃗ −→ p

(
λy.Fπ′

j ρv⃗
((
s0
[
Fπ
i σ/z

′])(Fπ′

k ρv⃗w⃗y
))
w⃗
)

and we can respond with the analogous rewrite:

Fπ′

j ρv⃗
(
p
(
s0
[
F
π[Val(σ)]
i ⊥/z′

]))
w⃗ −→ p

(
λy.Fπ′

j ρv⃗
((
s0
[
F
π[Val(σ)]
i ⊥/z′

])(
Fπ′

k ρv⃗w⃗y
))
w⃗
)

and an application of the subsidiary induction hypothesis.

Other rewrites

These are rewrites for extractor, helper or generic evidence non-terminals, or the
choice-rewrite, and are straightforward.
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A.2 Multicut link index

Proposition 17:
Proposition. Given two formula occurrences (S, i) and (U, j) with S ̸= U , we have
(S, i) ≺+ (U, j) if and only if i = link(S,U) and j ̸= link(U, S).

The proof proceeds by induction on the length of the unique path from S to U . For
the base case we have S ▽ U , where link(S,U) and link(U, S) are the unique indices
for which (S, link(S,U))▽ (U, link(U, S)). It follows directly from the definition of the
direct dependency relation that (S, i) ≺ (U, j) iff i = link(S,U) and j ̸= link(U, S).

For the induction step, suppose the unique path from S to U has length k+1, and
suppose this path contains the unique path from V to U of length k where S ▽ V .
Suppose (S, i) ≺+ (U, j). Then there must be some index k such that (S, i) ≺ (V, k)
and (V, k) ≺+ (U, j). By the induction hypothesis this means that link(V,U) = k
and link(U, V ) ̸= j. Note that link(U, V ) = link(U, S), so link(U, S) ̸= j. Furthermore,
by the base case of the induction we have link(S, V ) = i and link(V, S) ̸= k. But
link(S, V ) = link(S,U) so link(S,U) = i as required.

Conversely, suppose link(S,U) = i and link(U, S) ̸= j. Then link(U, V ) ̸= j since
link(U, V ) = link(U, S). By the induction hypothesis we get (V, link(V,U)) ≺+ (U, j).
Clearly we must have link(V,U) ̸= link(V, S), so:

(S, i) = (S, link(S,U)) = (S, link(S, V )) ≺ (V, link(V,U))

by the base case of the induction. So we get

(S, i) ≺ (V, link(V,U)) ≺+ (U, j)

hence (S, i) ≺+ (U, j) as required.

A.3 Language subsumption for the guarded version

Proposition 19:
Proposition. Let π be a proof with Σ1 end sequent S of the form Γ ⇒ A, and let π′

be its guarded version. Then:
Sπ ⊒ T (π′)

We prove the proposition by well-founded leaf-to-root induction in the end piece
of π: for any formula occurrence (S, i) in the end piece of π, and for any regular
substitution stack σ such that every eigenvariable that occurs in σ occurs in S, we have

FπS
i σC⃗ ⊒ T (S, i, π[Val(σ)])

where πS is the generated subproof of π at the sequent S and C⃗ consists of one
term C¬B for each left formula occurrence B and one term CB for each right formula
occurrence B.
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Consider the case where πS ends with an application of a right ∃-rule:

π1

Γ ⇒ Θ, B[t/y]

π0 : Γ ⇒ Θ,∃yB

Let S1 denote the premise. We have the following non-principal rewrite:

Fπ0
i σC⃗C¬∃yB −→ Fπ0

i σC⃗a(λw.C¬Bw)

−→ Fπ1
i σC⃗((λw.C¬Bw)(t · σ))

−→ Fπ1
i σC⃗C¬B(t · σ)

−→ Fπ1
i σC⃗C¬B

= Fπ1
i σC⃗C¬B

The induction hypothesis gives:

Fπ1
i σC⃗C¬B ⊒ T (S1, i, π[Val(σ)] = T (S, i, π[Val(σ)]))

as required. The principal rewrite is simpler.
For a left ∃-rule:

π1

B[α/y],Γ ⇒ Θ

π0 : ∃yB,Γ ⇒ Θ

Let S1 denote the premise. Since α cannot occur in the sequent S, by our assumption
on the substitution stack σ we have α /∈ FV(σ) ∪ BV(σ). We have the non-principal
rewrite:

Fπ0
i σC∃yBC⃗ −→ Fπ0

i σe(c,CB)C⃗

−→ Fπ1
i [c/α]σCBC⃗

Note that the substitution stack [c/α]σ is still regular provided that σ is, and every
variable that occurs in it also occurs in the sequent S1. Applying the induction
hypothesis we get:

Fπ1
i [c/α]σCBC⃗ −→ T (S1, i, π[Val([c/α]σ)])

= T (S1, i, π[Val(σ)][c/α]) α /∈ FV(σ) ∪ BV(σ)

= T (S, i, π[Val(σ)])

as required. The principal rewrite is simpler.
The remaining cases are left to the reader. To finish the proof of the proposition,

apply the claim that we proved by induction to the root sequent with substitution
stack ⊥.
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A.4 Correctness of external multicut reductions

A.4.1 Disjunction case

Let (S,▽, π) ⇒ (S∗,▽∗, π∗) result via the external reduction for disjunction on
page 37. We prove Proposition 22:
Proposition. For any formula occurrence (S, i) of the multicut, we have:

1. O(P0, p) ⊒ jj(O∗
L(P1, p), O

∗
R(P2, p)).

2. If i ̸= p then: O(P0, i) ⊒ O∗
L(P1, i) | O∗

R(P2, i)
3. If S ̸= P0 and (S, i) is a side formula occurrence then O(S, i) ⊒ O∗

L(S, i)∥O∗
R(S, i).

Here, the terms O∗
L(S, i) and O∗

R(S, i) refer to the output terms in the left and right
reduced multicut respectively.

Say that a formula occurrence (S, i) depends on P0 if S = P0 or (P0, k) ≺+ (S, i)
for some k.
Claim 1. If S does not depend on P0 then O(S, i) ⊒ O∗

L(S, i) and O(S, i) ⊒ O∗
R(S, i).

Proof. By well-founded induction on ≺. Suppose O(S, i) = FπS
i ⊥u⃗. Each term u⃗ is

either of the form CD or C¬D for some formula D, or of the form O(U, k) for some
(U, k). In the latter case the formula occurrence (U, k) also does not depend on P0, for if
it were dependent on P0 we would have either P0 = U or (P0, k

′) ≺+ (U, k) for some k′.
But (U, k) ≺ (S, i), so in either case we get (P0, k

′) ≺+ (S, i) for some k′, contradicting
our assumption that (S, i) does not depend on P0. Hence we can apply the induction
hypothesis to (U, k) and get O(U, k) ⊒ O∗

L(U, k) as well as O(U, k) ⊒ O∗
R(U, k).

Let u⃗∗
L be the result of replacing each term of the form O(U, k) in u⃗ by O∗

L(U, k).
Then we get:

O(S, i) = FπS
i ⊥u⃗

⊒ FπS
i ⊥u⃗∗

L

= O∗
L(S, i)

Similarly we get O(S, i) ⊒ O∗
R(S, i).

We now prove all three items of the proposition by simultaneous well-founded
induction on ≺.

Item (1) is a straightforward application of the principal rewrite rule for a proof
ending with a left ∨-rule together with Claim 1. Item (2) follows by applying the non-
principal rewrite rule for a proof ending with a left ∨-rule, observing that the input
term I(P0, p) for the principal index p is CA∨B since the principal formula is a side
formula of the multicut. So writing O(P0, i) = F

πP0
i ⊥u⃗CA∨B v⃗ we can rewrite the term

as follows:
F
πP0
i ⊥u⃗CA∨B v⃗

−→ F
πP0
i ⊥u⃗(i0CA ∥ i1CB)v⃗

−→ F
πP0
i ⊥u⃗(i0CA)v⃗ ∥ F

πP0
i ⊥u⃗(i1CB)v⃗

−→ F
πP1
i ⊥u⃗CAv⃗ ∥ F

πP2
i ⊥u⃗CB v⃗

The desired conclusion now follows by applying Claim 1 to the arguments u⃗, v⃗; note
that if one of these arguments are of the form O(U, k) for some formula occurrence
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(U, k), then this formula occurrence does not depend on P0 by the constraints on a
multicut.

For item (3), we note that any side formula occurrence (U, i) depends on P0: if
U = P0 this is immediate, and for U ̸= P0 it suffices to note that the ▽-path from U
to P0 has the form: (U, j)▽ (V0, k0) ̸= (V0, k

′
0)▽ . . .▽ (Vn, kn) ̸= (Vn, k

′
n)▽ (P0,m)

Since (U, i) is a side formula occurrence we get i ̸= j, so (P0,m) ≺+ (U, i). With this
in mind, we prove by a subsidiary induction on the length of the ▽-path from U to
P0 that, if (U, i) depends on P0 and U ̸= P0, then O(U, i) ⊒ O∗

L(U, i) ∥O∗
R(U, i). Item

(3) follows from this stronger claim.
The base case of the induction is given by (U, j)▽ (P0, k) for some j, k where that

j ̸= i since (S, i) is assumed to depend on P0. Furthermore k ̸= p since (P0, p) is a
side formula occurrence. The term O(U, i) is of the form FπU

i ⊥u⃗(O(P0, j))v⃗, and we
can rewrite:

FπU
i ⊥u⃗(O(P0, j))v⃗

−→ FπU
i ⊥u⃗(O∗

L(P1, j) ∥O∗
R(P2, j))v⃗ Item (2) of IH

−→ FπU
i ⊥u⃗(O∗

L(P1, j))v⃗ ∥ FπU
i ⊥u⃗(O∗

R(P2, j))v⃗

Note that if a term in u⃗, v⃗ is of the form O(U ′, i′) for some formula occurrence (U ′, i′),
then this formula occurrence does not depend on P0 by the constraints on multicuts.
With this in mind we can apply Claim 1 to get:

FπU
i ⊥u⃗(O∗

L(P1, j))v⃗ ∥ FπU
i ⊥u⃗(O∗

R(P2, j))v⃗ −→ O∗
L(U, i) ∥O∗

R(U, i)

Hence:
O(U, j) ⊒ O∗

L(U, i) ∥O∗
R(U, i)

as required.
For the induction step, suppose the ▽-path from U to P0 has length n+ 1. Then

since (U, i) depends on P0 there is some j ̸= i and some formula occurrence (U ′, j′)
with (U, j)▽ (U ′, j′), where (U ′, j′) depends on P0 and the length of the ▽-path from
U ′ to P0 has length n. So (U, i) is of the form FπU

i ⊥u⃗(O(U ′, j′))v⃗. We can now rewrite:

FπU
i ⊥u⃗(O(U ′, j′))v⃗ ⊒ FπU

i ⊥u⃗(O∗
L(U

′, j′) ∥O∗
R(U

′, j′))v⃗ IH on n

⊒ FπU
i ⊥u⃗(O∗

L(U
′, j′))v⃗ ∥ FπU

i ⊥u⃗(O∗
R(U

′, j′))v⃗

If a term in u⃗, v⃗ is of the form O(V,m) for some formula occurrence (V,m), then
this formula occurrence does not depend on P0 by the constraints on multicuts, since
(U ′, j′) does depend on P0. With this in mind we can apply Claim 1 to get O(U, i) ⊒
O∗

L(U, i) ∥O∗
R(U, i) as required.

A.4.2 Existential case

Let (S,▽, π) ⇒ (S∗,▽∗, π∗) arise from the external existential reduction on page 37.
We prove Proposition 23:
Proposition. For any formula occurrence (S, i), we have:
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1. If S = P0 and i ̸= p then O(P0, i) ⊒ O∗(P1, i).
2. O(P0, p) ⊒ e(t · ⊥, O∗(P1, p)).
3. If S ̸= P0 then O(S, i) ⊒ O∗(S, i).

We prove the three items by simultaneous well-founded induction on ≺.
For item (1), note that since (P0, p) is a right side formula occurrence we have

I(P0, p) = C¬∃xA. So we can write O(P0, i) = F
πP0
i ⊥u⃗C¬∃Av⃗. For each index j /∈ {i, p},

I(P0, j) is either CP0[j], or C¬P0[j], or of the form O(U, k) for some (U, k) ▽ (P0, j).
Then U ̸= P0 so item (3) of the induction hypothesis gives O(U, k) ⊒ O∗(U, k). Let
u⃗∗, v⃗∗ be the result of replacing each input term O(U, k) by O∗(U, k). We have:

O(P0, i) = F
πP0
i ⊥u⃗C¬∃xAv⃗

⊒ F
πP1
i ⊥u⃗C¬Av⃗

⊒ F
πP1
i ⊥u⃗∗C¬Av⃗

∗

= O∗(P1, i)

as required.
For item (2), write O(P0, p) = F

πP0
p ⊥u⃗. For each index i ̸= p, I(P0, i) is either

CP0[i], or C¬P0[i], or of the form O(U, k) for some (U, k) ▽ (P0, i). In the latter case
U ̸= P0 so item (3) of the induction hypothesis gives O(U, k) ⊒ O∗(U, k). Let u⃗∗ be
the result of replacing each input term O(U, k) by O∗(U, k). We have:

O(P0, p) = F
πP0
p ⊥u⃗

⊒ F
πP0
p ⊥u⃗∗

⊒ e(t · ⊥,F
πP1
p ⊥u⃗∗)

= e(t · ⊥, O∗(P1, p)

as required.
The proof of item (3) is straightforward.

A.4.3 Contraction case

Let (S,▽, π) ⇒ (S∗,▽∗, π∗) result via the external contraction reduction on page 38:
We prove Proposition 24:
Proposition. For any formula occurrence (S, i) we have:

1. If S = P0 and i < p then O(P0, j) ⊒ O∗(P1, j).
2. If S = P0 and i > p then O(P0, j) ⊒ O∗(P1, j + 1).
3. E(O(P0, p)) ⊒ E(O∗(P1, p)) ∥ E(O∗(P1, p+ 1)).
4. If S ̸= P0 then O(S, i) ⊒ O∗(S, i).

We prove all four items by a simultaneous well-founded induction on ≺.
For item (1), note that since (P0, p) is a side formula occurrence we have I(P0, p) =

CA or C¬A. Let’s assume that (P0, p) is a left formula occurrence so that I(P0, p) = CA;
the other case is proved in the same way. We may write O(P0, i) = F

πP0
i ⊥u⃗CAv⃗. For

each index j /∈ {i, p}, either I(P0, j) is CP0[j], or C¬P0[j], or it is of the form O(U, k)
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for some (U, k)▽ (P0, j). In the latter case we get O(U, k) ⊒ O∗(U, k) by item (4) of
the induction hypothesis. Let u⃗∗, v⃗∗ be the result of replacing input terms O(U, k) by
O∗(U, k). We get:

O(P0, i) = F
πP0
i ⊥u⃗CAv⃗

⊒ F
πP1
i ⊥u⃗CACAv⃗

⊒ F
πP1
i ⊥u⃗∗CACAv⃗

∗

= O∗(P1, i)

as required. Item (2) is similar so we omit it.
For item (3), we write O(P0, p) = F

πP0
p ⊥u⃗v⃗ where u⃗ are the input terms for indices

below p. For each index j ̸= p, either I(P0, j) is CP0[j], or C¬P0[j], or it is of the form
O(U, k) for some (U, k) ▽ (P0, j). In the latter case we get O(U, k) ⊒ O∗(U, k) by
item (4) of the induction hypothesis. Let u⃗∗, v⃗∗ be the result of replacing input terms
O(U, k) by O∗(U, k). We get:

E(O(P0, p)) = E(F
πP0
p ⊥u⃗v⃗)

⊒ E(F
πP0
p ⊥u⃗∗v⃗∗)

⊒ E(p(λxF
πP1
p ⊥u⃗∗xv⃗∗)) ∥ E(p(λxFπP1

p+1⊥u⃗∗xv⃗∗))

⊒ E(F
πP1
p ⊥u⃗∗CAv⃗

∗) ∥ E(p(FπP1
p+1⊥u⃗∗CAv⃗

∗))

= E(O∗(P1, p)) ∥ E(O∗(P1, p+ 1))

as required.
For item (4), write O(S, i) = FπS

i ⊥u⃗. For each index j ̸= i, I(S, j) is either CS[i],
or C¬S[i], or it is O(U, k) for some (U, k) ▽ (S, j). If U ̸= P0 then item (4) of the
induction hypothesis gives O(U, k) ⊒ O∗(U, k). If U = P0, then k ̸= p since (P0, p)
was a side formula occurrence. If k < p then item (1) of the induction hypothesis gives
O(P0, k) ⊒ O∗(P1, k), and if k > p then item (1) of the induction hypothesis gives
O(P0, k) ⊒ O∗(P1, k + 1). Let u⃗∗ be the result of replacing each input term O(U, k)
for U ̸= P0 by O∗(U, k), each input term O(P0, k) with k < p by O∗(P1, k) and each
input term O(P0, k) with k > p by O∗(P1, k + 1). We get:

O(S, i) = FπS
i ⊥u⃗

⊒ FπS
i ⊥u⃗∗

= O∗(S, i)

as required.

A.5 Correctness of internal multicut reductions

A.5.1 Weakening case

We restate proposition 26.
Proposition. Let (S,▽, π) ⇒ (S∗,▽∗, π∗) be the multicut reduction via an internal
weakening reduction as on page 41. Let (S, i) be a side formula occurrence in one of
the premises.
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1. If S is unaffected then O(S, i) ⊒ O∗(S, i).
2. If S = P then O(P, i) ⊒ O∗(P ′, i′), where i′ is the index associated with i via the

weakening inference.
3. If S is affected then O(S, i) ⊒ ⊥S[i].

Items (1) and (2) are fairly straightforward to prove. Item (3) is proved by an
induction on the length of the unique ▽-path from S to P . More precisely, we prove
the following stronger statement by such an induction: for any formula occurrence
(S, i) for which S is affected, if i is not the index of the formula occurrence in S that
is linked to the formula occurrence (P, p) via the unique ▽-path from S to P , then
O(S, i) ⊒ ⊥S[i].

For the base step of this induction we have (S, j) ▽ (P, p) for some j ̸= i, which
means that O(S, i) is of the form:

FπS
i ⊥u⃗(FπP

p ⊥v⃗)w⃗

But since FπP
p ⊥w⃗ −→ ⊥P [p] by the rewrite rules for weakening (recalling that (P, p)

was the principal formula occurrence of the weakening inference), we can apply the
rewrite rule:

FπS
i ⊥u⃗(⊥P [p])w⃗ −→ ⊥S[i]

to get O(S, i) −→ ⊥S[i], hence O(S, i) ⊒ ⊥S[i] as required.
For the induction step, suppose the length of the ▽-path from S to P is n + 1.

Then there is some U and indices j, k such that (S, j) ▽ (U, k) such that the length
of the ▽-path from U to P is n. By assumption i ̸= j, and furthermore k cannot be
the index of the cut formula occurrence that is linked to (P, p) via the ▽-path from
U to P , since that would contradict (S, j)▽ (U, k). So our induction hypothesis gives
O(U, k) ⊒ ⊥U [k]. Since O(S, i) is of the form FπS

i ⊥u⃗(O(U, k))v⃗ (because i ̸= j), we get:

O(S, i) = FπS
i ⊥u⃗(O(U, k))v⃗

⊒ FπS
i ⊥u⃗⊥U [k]v⃗

⊒ ⊥S[i]

as required.

A.5.2 Contraction case

We prove proposition 27:
Proposition. Let (S,▽, π) and (S∗,▽∗, π∗) be an instance of the internal contraction
reduction (p. 42), let (S, i) be a side formula occurrence with S ∈ S.

• If S ̸= R0 is affected by the reduction then

E(O(S, i)) ⊒ E(O∗(SL, i)) ∥ E(O∗(SR, i))

• If S = R0 we have O(R0, i) ⊒ O∗(R1, i) if i < p, and O(R0, i) ⊒ O∗(R1, i + 1) if
i > p.
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• In all other cases we have E(O(S, i)) ⊒ E(O∗(S, i)).

We shall need to prove a number of claims. The first claim will help us with the
case distinctions we have to make:
Claim 2. If S ∈ S is affected by the reduction, then there is some cut formula
occurrence (S, i) such that (R0, p) ≺+ (S, j) for each j < l(S) with j ̸= i.

Proof of Claim 2. If S is affected by the reduction we get link(R0, S) = link(R0, Q) =
p. The claim now follows from Proposition 17.

With Claim 2, we see that for an arbitrary side formula occurrence (S, i) appearing
in the multicut to be reduced, there are the following cases: (1) S = R0 and i ̸= p,
(2) S = Q and i ̸= q, (3) S /∈ {R0, Q} and S is unaffected by the reduction, and (4)
S /∈ {R0, Q} and S is affected by the reduction, in which case we have (R0, p) ≺+ (S, i)
by the Claim. However, this case distinction is only valid for side formula occurrences,
and since we want to proceed by well-founded induction on the relation ≺ we need
to say something about how the prior output term O(S, i) relates to posterior output
terms for any formula occurrence (S, i), including cut formula occurrences. The most
fundamental case distinction is: either (R0, p) ≺+ (S, i), or not. The latter case splits
into precisely the following three different subcases: (a) S = R0, (b) S ̸= R0 and S
is unaffected by the reduction, or (c) S ̸= R0 and S is affected by the reduction. For
the first case (a), the case where i = p needs special attention and is treated later in
Claim 4. Cases (b,c) and the remaining sub-case of (a) where i ̸= p are handled by
the following claim.
Claim 3. Let (S, i) be any formula occurrence, and suppose it is not the case that
(R0, p) ≺+ (S, i). By Proposition 17 this is equivalent to saying that either S = R0,
or link(R0, S) ̸= p, or link(S,R0) = i. Then the following statements hold:

1. If S = R0 and i ̸= p, we have O(R0, i) ⊒ O∗(R1, i) if i < p, and O(R0, i) ⊒
O∗(R1, i+ 1) if i > p.

2. If S ̸= R0 is not affected by the reduction then O(S, i) ⊒ O∗(S, i).
3. If S ̸= R0 is affected by the reduction then O(S, i) ⊒ O∗(SL, i) and O(S, i) ⊒

O∗(SR, i).

Proof. We prove all three statements by a simultaneous well-founded induction on the
dependency relation ≺.

For item (1), suppose S = R0 and i ̸= p, and suppose the induction hypothesis
holds for all formula occurrences (U, j) with (U, j) ≺+ (R0, i). We assume i < p
since the other case is similar. Let O(R0, i) = F

πR0
i ⊥u⃗v⃗(O(Q, q))w⃗, where u⃗ are the

inputs for indices below i and v⃗ the inputs for indices between i and p. For each index
k < l(R0), k /∈ {i, p}, the corresponding input term is either the constant CR0[k], or
C¬R0[k], or a canonical output term O(U, j) where (U, j) ≺ (R0, i) and U is unaffected
by the reduction. By item (2) of the induction hypothesis, which is currently assumed
for all formula occurrences ≺-smaller than (R0, i), we get O(U, j) ⊒ O∗(U, j) for each
such formula occurrence. Let u⃗∗, v⃗∗, w⃗∗ be the result of replacing each input term
O(U, j) by O∗(U, j). Since it is not the case that (R0, p) ≺+ (Q, q), item (3) of the
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induction hypothesis gives O(Q, q) ⊒ O∗(QL, q) and O(Q, q) ⊒ O∗(QR, q). So we get:

O(R0, i) = F
πR0
i ⊥u⃗v⃗(O(Q, q))w⃗

⊒ F
πR1
i u⃗v⃗(O(Q, q))(O(Q, q))w⃗

⊒ F
πR1
i u⃗∗v⃗∗(O∗(QL, q))(O

∗(QR, q))w⃗
∗ IH

= O∗(R0, i)

as required.
For item (2), suppose S ̸= R0 and S is unaffected by the reduction. We write

O(S, i) = FπS
i ⊥u⃗v⃗ where u⃗ are the input terms for indices below i. For each index

k ̸= i, the input term is either CS[k], or C¬S[k], or O(U, j) for some (U, j)▽(S, k).There
are two possibilities: either U = R0, or U ̸= R0 and U is also unaffected by the
reduction. In the former case we must have j ̸= p since otherwise we would have
(S, i) = (Q, q) and therefore S would be affected by the reduction. Note that we have
(R0, j) ≺ (S, i) since k ̸= i. The induction hypothesis is currently assumed for all
formula occurrences ≺-smaller than (S, i), hence item (1) of the induction hypothesis
gives O(R0, j) ⊒ O∗(R0, j) if j < p and O(R0, j) ⊒ O∗(R0, j+1) if j > p. In the latter
case (i.e. U ̸= R0), we again have (U, j) ≺ (S, i) since k ̸= i, hence item (2) of the
induction hypothesis (currently assumed for all formula occurrences ≺-smaller than
(S, i)) gives O(U, j) ⊒ O∗(U, j). Let u⃗∗, v⃗∗ be the result of replacing each input term
O(R0, j) for j < p by O∗(R0, j), each input term O(R0, j) for j > p by O∗(R0, j + 1)
and each input term O(U, j) for U ̸= R0 by O∗(U, j). Then we get:

O(S, i) = FπS
i ⊥u⃗v⃗

⊒ FπS
i ⊥u⃗∗v⃗∗

= O∗(S, i)

as required.
For item (3), suppose S ̸= R0 is affected by the reduction. We write O(S, i) =

FπS
i ⊥u⃗v⃗ where u⃗ are the input terms for indices below i. For each index k ̸= i, the

input term I(S, k) is either CS[k], or C¬S[k], or O(U, j) for some (U, j)▽ (S, k). In the
latter case it must be that U ̸= R0 and U is also affected by the reduction. For suppose
U = R0; then we must have j ̸= p since otherwise we would have (R0, p) ≺ (S, i)
contradicting our assumption. But since we assumed S was affected by the reduction,
its unique path to R0 in the cut-connectedness graph of the multicut must contain Q,
which means that in fact S = Q, k = q and j = p, contradiction. So we have U ̸= R0,
and U is affected by the reduction since S is. Since k ̸= i we get (U, j) ≺ (S, i), and
the induction hypothesis is currently assumed for all formula occurrences ≺-smaller
than (S, i). So item (3) of the induction hypothesis gives O(U, j) ⊒ O∗(UL, j) and
O(U, j) ⊒ O∗(UR, j). Let u⃗∗

L, v⃗
∗
L be the result of replacing each input term O(R0, j)

for j < p by O∗(R0, j), each input term O(R0, j) for j > p by O∗(R0, j + 1) and each
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input term O(U, j) for U ̸= R0 by O∗(UL, j). Then we get:

O(S, i) = FπS
i ⊥u⃗v⃗

⊒ F
πSL
i ⊥u⃗∗

Lv⃗
∗
L

= O∗(SL, i)

A similar argument shows that O(S, i) ⊒ O∗(SR, i).

Now we proceed with the remaining sub-case of (a) that was left out in the previous
claim.
Claim 4. O(R0, p) ⊒ p(λx t) ∥ p(λx s) for some terms t, s such that O∗(R1, p) =
t[I∗(R1, p+ 1)/x] and O∗(R1, p+ 1) = s[I∗(R1, p)/x].

Proof. Write O(R0, p) = F
πR0
p ⊥u⃗v⃗ where u⃗ are the input terms for indices below p. For

each index k ̸= p, k < l(R0), the input term is either CR0[k] or C¬R0[k] or O(U, j) for
some (U, j)▽ (R0, k). In the latter case U is unaffected by the reduction since k ̸= p,
so item (2) of Claim 3 gives O(U, j) ⊒ O∗(U, j). Let u⃗∗v⃗∗ be the result of replacing
each input term O(U, j) by O∗(U, j). Then we get:

O(R0, p) = F
πR0
p ⊥u⃗v⃗

⊒ p(λxF
πR1
p ⊥u⃗xv⃗) ∥ p(λxFπR1

p+1⊥u⃗xv⃗)

⊒ p(λxF
πR1
p ⊥u⃗∗xv⃗∗) ∥ p(λxFπR1

p+1⊥u⃗∗xv⃗∗)

We set t = F
πR1
p ⊥u⃗∗xv⃗∗ and s = F

πR1
p+1⊥u⃗∗xv⃗∗. Clearly then O∗(R1, p) = t[I∗(R1, p+

1)/x] and O∗(R1, p+ 1) = s[I∗(R1, p)/x].

We now proceed with the remaining case of a formula occurrence (S, i) such that
(R0, p) ≺+ (S, i). This case will be handled using a subsidiary induction on the length
of the path from S to Q, where as before we let (Q, q) denote the unique formula
occurrence such that (Q, q)▽ (R0, p). The base case is thus S = Q and i ̸= q, which
we treat in a separate claim.
Claim 5. For i < l(Q) with i ̸= q, there are terms t, s such that O(Q, i) ⊒ p(λx t) ∥
p(λx s) for some terms t, s, such that:

O∗(QL, i) = t[I∗(QR, i)/x] and O∗(QR, i) = s[I∗(QL, i)/x].

Proof. We assume i < q since the other case is treated the same way. The term O(Q, i)
is then of the form:

F
πQ

i ⊥u⃗v⃗O(R0, p)w⃗

where u⃗ are the canonical input terms for formula occurrences (Q, j) with j < i, v⃗
are the canonical input terms for formula occurrences (Q, j) with i < j < q and w⃗
are the canonical input terms for formula occurrences (Q, j) with j > q. Note that
given an input term I(Q, j) for j /∈ {q, i}, there are two possibilities for (Q, j): it is
a side formula occurrence and, in that case, I(Q, j) = CQ[j] = I∗(QL, j) = I∗(QR, j)
or I(Q, j) = C¬Q[j] = I∗(QL, j) = I∗(QR, j), or (Q, j) is a cut formula occurrence
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and I(Q, j) = O(U, k) for some (U, k)▽ (Q, j). Note that, in this case, U is affected
by the reduction but it is not the case that (R0, p) ≺+ (U, k) (specifically, we have
(R0, p) ≺ (Q, i) ▽ (U, k) ). So by Claim 3, we get O(U, k) ⊒ O∗(UL, k) = I∗(QL, j)
and O(U, k) ⊒ O∗(UR, k) = I∗(QR, j). Hence it follows that in each case, I(Q, j) ⊒
I∗(QL, j) and I(Q, j) ⊒ I∗(QR, j). Let u⃗

∗
L, v⃗

∗
L, w⃗

∗
L denote the result of replacing each

input term I(Q, j) among u⃗, v⃗, w⃗ by I∗(QL, j), and similarly let u⃗∗
R, v⃗

∗
R, w⃗

∗
R denote the

result of replacing each input term I(Q, j) among u⃗, v⃗, w⃗ by I∗(QR, j).
By Claim 4, O(R0, p) ⊒ p(λx t0) ∥ p(λx s0) for some terms t0, s0 such that

O∗(R1, p) = t0[I
∗(R1, p+ 1)/x] and O∗(R1, p+ 1) = s0[I

∗(R1, p)/x]. So we get:

O(Q, i) = F
πQ

i ⊥u⃗v⃗O(R0, p)w⃗

⊒ F
πQ

i ⊥u⃗v⃗
(
p(λx t0) ∥ p(λx s0)

)
w⃗

⊒ p
(
λz F

πQ

i ⊥u⃗v⃗
(
t0[F

πQ
q ⊥u⃗zv⃗w⃗/x]

) ∥∥ p
(
λz s0[F

πQ
q ⊥u⃗zv⃗w⃗/x]

)
w⃗
)

⊒ p
(
λz F

πQ

i ⊥u⃗v⃗
(
t0[F

πQ
q ⊥u⃗zv⃗w⃗/x]

)
w⃗
) ∥∥ p

(
λz F

πQ

i ⊥u⃗v⃗
(
s0[F

πQ
q ⊥u⃗zv⃗w⃗/x]

)
w⃗
)

⊒ p
(
λz F

πQL
i ⊥u⃗∗

Lv⃗
∗
L

(
t0[F

πQR
q ⊥u⃗∗

Rzv⃗
∗
Rw⃗

∗
R/x]

)
w⃗∗

L

)∥∥ p
(
λz F

πQR
i ⊥u⃗∗

Rv⃗
∗
R

(
s0[F

πQL
q ⊥u⃗∗

Lzv⃗
∗
Lw⃗

∗
L/x]

)
w⃗∗

R

)
Now set

t := F
πQL
i ⊥u⃗∗

Lv⃗
∗
L(t0[F

πQR
q ⊥u⃗∗

Rzv⃗
∗
Rw⃗

∗
R/x])w⃗

∗
L

s := F
πQR
i ⊥u⃗∗

Rv⃗
∗
R(s0[F

πQL
q ⊥u⃗∗

Lzv⃗
∗
Lw⃗

∗
L/x])w⃗

∗
R

We then have:

t[I∗(QR, i)/z] = F
πQL
i ⊥u⃗∗

Lv⃗
∗
L(t0[F

πQR
q ⊥u⃗∗

R(I
∗(QR, i))v⃗

∗
Rw⃗

∗
R/x])

= F
πQL
i ⊥u⃗∗

Lv⃗
∗
L(t0[O

∗(QR, q)/x])

= F
πQL
i ⊥u⃗∗

Lv⃗
∗
L(t0[I

∗(R1, p+ 1)/x])

= F
πQL
i ⊥u⃗∗

Lv⃗
∗
L(O

∗(R1, p))

= F
πQL
i ⊥u⃗∗

Lv⃗
∗
L(I

∗(QL, q))

= O∗(QL, q)

Similarly, we get s[I∗(QL, i)/z] = O∗(QR, q).

Claim 6. If (R0, p) ≺+ (S, i) then O(S, i) ⊒ p(λx t)∥p(λx s) for some terms t, s, such
that:

O∗(SL, i) = t[I∗(SR, i)/x] and O∗(SR, i) = s[I∗(SL, i)/x].

Proof. By induction on the length of the path from S to Q. For the base case we have
S = Q, and this is established by Claim 5.

For the induction step, suppose the length of the path from S to Q is n+1. Then
there is some U on this path such that the length of the path from U to Q is n,
and formula occurrences (U, k) and (S, j) such that (U, k)▽ (S, j). Since (R0, p) ≺+

(S, i), by Proposition 17 we must have i ̸= link(S,R0) = j and (R0, p) ≺+ (U, k)
(since k = link(U, S) hence k ̸= link(U,R0)). By the induction hypothesis, there are
terms t0, s0 such that O(U, k) ⊒ p(λx t0) ∥ p(λx s0), O∗(UL, k) = t0[I

∗(UR, k)/x] and
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O∗(UR, k) = s0[I
∗(UL, k)/x]. We assume i < j since the other case is similar, and

write O(S, i) = FπS
i u⃗v⃗(O(U, k))w⃗ where u⃗ are the input terms for indices below i. We

define the tuples of terms u⃗∗
L, v⃗

∗
L, w⃗

∗
L and u⃗∗

R, v⃗
∗
R, w⃗

∗
R, by appeal to Claim 3, as in the

proof of Claim 5. We have:

O(S, i) = FπS
i u⃗v⃗(O(U, j))w⃗

⊒ FπS
i u⃗v⃗(p(λx t0) ∥ p(λx s0))w⃗

⊒ p
(
λz FπS

i u⃗v⃗(t0[F
πS
j u⃗zv⃗w⃗/x]

)
∥ p

(
λz s0[F

πS
j u⃗zv⃗w⃗/x])w⃗

)
⊒ p

(
λz FπS

i u⃗v⃗(t0[F
πS
j u⃗zv⃗w⃗/x])w⃗

)
∥ p

(
λz FπS

i u⃗v⃗(s0[F
πS
j u⃗zv⃗w⃗/x])w⃗

)
⊒ p

(
λz F

πSL
i u⃗∗

Lv⃗
∗
L(t0[F

πSR
j u⃗∗

Rzv⃗
∗
Rw⃗

∗
R/x])w⃗L

)
∥

p
(
λz F

πSR
i u⃗∗

Rv⃗
∗
R(s0[F

πSL
j u⃗∗

Lzv⃗
∗
Lw⃗

∗
L/x])w⃗

∗
R

)
Set

t := F
πSL
i u⃗∗

Lv⃗
∗
L(t0[F

πSR
j u⃗∗

Rzv⃗
∗
Rw⃗

∗
R/x])w⃗L

s := F
πSR
i u⃗∗

Rv⃗
∗
R(s0[F

πSL
j u⃗∗

Lzv⃗
∗
Lw⃗

∗
L/x])w⃗

∗
R

We have:

t[I∗(SR, i)/z] = F
πSL
i u⃗∗

Lv⃗
∗
L(t0[F

πSR
j u⃗∗

R(I
∗(SR, i))v⃗

∗
Rw⃗

∗
R/x])w⃗L

= F
πSL
i u⃗∗

Lv⃗
∗
L(t0[O

∗(SR, j)/x])w⃗L

= F
πSL
i u⃗∗

Lv⃗
∗
L(t0[I

∗(UR, k)/x])w⃗L

= F
πSL
i u⃗∗

Lv⃗
∗
L(O

∗(UL, k))w⃗L

= F
πSL
i u⃗∗

Lv⃗
∗
L(I

∗(SL, j))w⃗L

= O∗(SL, i)

Similarly, we have s[I∗(SL, i)/z] = O∗(SR, i).

We can now prove the proposition. Suppose (S, i) is a side formula occurrence of
the original multicut. If S is unaffected by the reduction then O(S, i) ⊒ O∗(S, i) by
Claim 3, hence E(O(S, i)) ⊒ E(O∗(S, i)). The case where S = R0 is handled by Claim
3. If S is affected by the reduction and S ̸= R0, then it follows from Claim 2 that there
is some cut formula occurrence (S, j) such that (R0, p) ≺+ (S, k) for all k ̸= j. But
i ̸= j since (S, i) was a side formula occurrence, hence (R0, p) ≺+ (S, i). It therefore
follows from Claim 6 that O(S, i) ⊒ p(λx.(t∥ s)) for some terms t, s such that we have
O∗(SL, i) = t[I∗(SL, i)/x] and O∗(SR, i) = s[I∗(SR, i)/x]. But since (S, i) was a side
formula occurrence, I∗(SL, i) = I∗(SR, i) = CS[i] or I

∗(SL, i) = I∗(SR, i) = C¬S[i]. So
we get:

E(O(S, i)) ⊒ E(pt ∥ ps)
⊒ E(pt)

∥∥ E(ps)

⊒ E(t[CS[i]/x]) ∥ E(s[CS[i]/x])

= E(t[I∗(SL, i)/x]) ∥ E(s[I∗(SR, i)/x])

= E(O∗(SL, i)) ∥ E(O∗(SR, i))
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if I∗(SL, i) = I∗(SR, i) = CS[i]. The case where I∗(SL, i) = I∗(SR, i) = C¬S[i] is
identical. This completes the proof.

A.5.3 Existential case

Let (S,▽, π) ⇒ (S∗,▽∗, π∗) result from the internal reduction for the existential
quantifier, per page 43. We prove Proposition 28:
Proposition. Let (S, i) be any side formula occurrence with S ∈ S.

1. If S = L0 then O(L0, i) ⊒ O∗(L1, i).
2. If S = R0 then O(R0, i) ⊒ O∗R1, i).
3. If S /∈ {L0, R0} then O(S, i) ⊒ O∗(S, i).

Let (S, i) be any formula occurrence, either a side formula or a cut formula. We
prove the following items by a simultaneous well-founded induction on the dependency
relation ≺:

1. If S = L0 and i ̸= l then O(L0, i) ⊒ O∗(L1, i).
2. If S = R0 and i ̸= r then O(R0, i) ⊒ O∗(R1, i).
3. If S /∈ {L0, R0} then O(S, i) ⊒ O∗(S, i).

The proposition follows immediately from these statements.
For item (1), we write O(L0, i) = F

πL0
i ⊥u⃗(F

πR0
r ⊥w⃗)v⃗ where u⃗ are the inputs for

indices below l. The input for each index j ̸= l is either of the form CL0[j], or C¬L0[j],
or of the form O(U, k) where (L0, j) ▽ (U, k). In the latter case, U /∈ {L0, R0} and
item (3) of the induction hypothesis gives O(U, k) ⊒ O∗(U, k). Similarly, in the term
F
πR0
r ⊥w⃗, each input for an index j ̸= r is either of the form CR0[j], or C¬R0[j], or of the

form O(U, k) for some (U, k)▽ (R0, r). In the latter case we have U /∈ {L0, R0} and
item (3) of the induction hypothesis gives O(U, k) ⊒ O∗(U, k). Let u⃗∗, v⃗∗, w⃗∗ be the
result of replacing each of these terms of the form O(U, k) by O∗(U, k). We then have:

O(L0, i) = F
πL0
i ⊥u⃗(F

πR0
r ⊥w⃗)v⃗

⊒ F
πL0
i ⊥u⃗(e(t · ⊥,F

πR1
r ⊥w⃗)v⃗

⊒ F
πL1
i ⊥[t · ⊥/α]u⃗(F

πR1
r ⊥w⃗)v⃗

≡ F
πL1

[t/α]
i ⊥u⃗(F

πR1
r ⊥w⃗)v⃗ Proposition 16, Val(t · ⊥) = t

⊒ F
πL1

[t/α]
i ⊥u⃗∗(F

πR1
r ⊥w⃗∗)v⃗∗

= O∗(L1, i)

as required.
For item (2), we write O(R0, i) = F

πR0
i ⊥u⃗(F

πL0

l ⊥w⃗)v⃗ where u⃗ are the inputs for
indices below r. The input for each index j ̸= r is either of the form CL0[j], or C¬L0[j],
or of the form O(U, k) where (R0, j) ▽ (U, k). In the latter case, U /∈ {L0, R0} and
item (3) of the induction hypothesis gives O(U, k) ⊒ O∗(U, k). Similarly, in the term
F
πL0

l ⊥w⃗, each input for an index j ̸= l is either of the form CR0[j], or C¬R0[j], or of the
form O(U, k) for some (U, k) ▽ (L0, l). In the latter case we have U /∈ {L0, R0} and
item (3) of the induction hypothesis gives O(U, k) ⊒ O∗(U, k). Let u⃗∗, v⃗∗, w⃗∗ be the
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result of replacing each of these terms of the form O(U, k) by O∗(U, k). We then have:

O(R0, i) = F
πR0
i ⊥u⃗(F

πL0

l ⊥w⃗)v⃗

⊒ F
πR0
i ⊥u⃗(a(λx.F

πL1

l ⊥[x/α]w⃗))v⃗

⊒ F
πR1
i ⊥u⃗(F

πL1

l ⊥[t · ⊥/α]w⃗)v⃗

≡ F
πR1
i ⊥u⃗(F

πL1
[t/α]

l ⊥w⃗)v⃗

⊒ F
πR1
i ⊥u⃗∗(F

πL1
[t/α]

l ⊥w⃗∗)v⃗∗

= O∗(R1, i)

as required.
For item (3), suppose S /∈ {L0, R0} and write O(S, i) = FπS

i ⊥u⃗. Each input for and
index j ̸= i is either CS[j], or C¬S[j], or of the form O(U, k) for some (U, k) ▽ (S, i).
In the latter case, there are three possibilities. If U /∈ {L0, R0} then item (3) of the
induction hypothesis gives O(U, k) ⊒ O∗(U, k). If U = L0 then we must have k ̸= l
since otherwise we would have (U, k)▽ (S, j), hence (S, j) = (R0, r), contradicting our
assumption that S /∈ {L0, R0}. Item (1) of the induction hypothesis gives O(L0, j) ⊒
O∗(L1, j). Similarly, if U = R0 then we must have k ̸= r and item (2) of the induction
hypothesis gives O(R0, k) ⊒ O∗(R1, k). Let u⃗∗ be the result of replacing each input
term (U, k) for U /∈ {L0, R0} by O∗(U, k), each input term of the form (L0, k) by
O∗(L1, k) and each input term of the form (R0, k) by O∗(R1, k). Then we have:

O(S, i) = FπS
i ⊥u⃗

⊒ FπS
i ⊥u⃗∗

= O∗(S, i)

as required.

A.5.4 Disjunction case

Let (S,▽, π) ⇒ (S∗,▽∗, π∗) result from the internal existential reduction on page 44.
We prove Proposition 29:
Proposition. For each side formula occurrence (S, i), we have:

1. If S = L0 then O(L0, i) ⊒ O∗(L1, i).
2. If S = R0 then O(R0, i) ⊒ O∗(R1, i).
3. If S /∈ {L0, R0} then O(S, i) ⊒ O∗(S, i).

We prove the following items by simultaneous well-founded induction on the
relation ≺, for any given formula occurrence (S, i):

1. If S = L0 and i ̸= l then O(L0, i) ⊒ O∗(L1, i).
2. If S = R0 and i ̸= r then O(R0, i) ⊒ O∗(R1, i).
3. If S /∈ {L0, R0} then O(S, i) ⊒ O∗(S, i).

For item (1), writeO(L0, i) = F
πL0
i ⊥u⃗(F

πR0
r ⊥w⃗)v⃗. For each index j /∈ {l, i}, I(L0, j)

is either of the form CL0[j], or C¬L0[j], or of the form O(U, k) for some (U, k)▽ (L0, j).
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In the latter case U /∈ {L0, R0} so item (3) of the induction hypothesis gives O(U, k) ⊒
O∗(U, k). Similarly, for each index j ̸= r, I(R0, j) is either of the form CR0[j], or C¬R0[j],
or of the form O(U, k) for some (U, k) ▽ (R0, j). In the latter case U /∈ {L0, R0} so
item (3) of the induction hypothesis gives O(U, k) ⊒ O∗(U, k). Let u⃗∗, v⃗∗, w⃗∗ be the
result of replacing each input term of the form O(U, k) by O∗(U, k). We have:

O(L0, i) = F
πL0
i ⊥u⃗(F

πR0
r ⊥w⃗)v⃗

⊒ F
πL0
i ⊥u⃗(i0(F

πR1
r ⊥w⃗))v⃗

⊒ F
πL1
i ⊥u⃗(F

πR1
r ⊥w⃗)v⃗

⊒ F
πL1
i ⊥u⃗∗(F

πR1
r ⊥w⃗∗)v⃗∗

= O∗(L1, i)

as required.
For item (2), write O(R0, i) = F

πR0
i ⊥u⃗(F

πL0

l ⊥w⃗)v⃗. For each index j /∈ {r, i},
I(R0, j) is either of the form CR0[j], or C¬R0[j], or of the form O(U, k) for some
(U, k)▽(R0, j). In the latter case U /∈ {L0, R0} so item (3) of the induction hypothesis
gives O(U, k) ⊒ O∗(U, k). Similarly, for each index j ̸= l, I(L0, j) is either of the form
CL0[j], or C¬L0[j], or of the form O(U, k) for some (U, k)▽ (L0, j). In the latter case
U /∈ {L0, R0} so item (3) of the induction hypothesis gives O(U, k) ⊒ O∗(U, k). Let
u⃗∗, v⃗∗, w⃗∗ be the result of replacing each input term of the form O(U, k) by O∗(U, k).
We have:

O(R0, i) = F
πR0
i ⊥u⃗(F

πL0

l ⊥w⃗)v⃗

⊒ F
πR0
i ⊥u⃗(j(F

πL1

l ⊥w⃗,F
πL2

l ⊥w⃗))v⃗

⊒ F
πR1
i ⊥u⃗(F

πL1

l ⊥w⃗)v⃗

⊒ F
πR1
i ⊥u⃗∗(F

πL1

l ⊥w⃗∗)v⃗∗

= O∗(R1, i)

as required.
The argument for item (3) is exactly as in the case of ∃-reduction so we omit it.
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