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Abstract

The polymodal provability logic GLP is a system of propositional modal logic
with infinitely many modalities having provability semantics. It was initially
introduced by Japaridze in his PhD thesis [19]. GLP has significant applica-
tions in proof theory and arithmetic, however, it is well-known that GLP is
Kripke incomplete. GLP is complete with respect to topological semantics [3],
yet the relevant class of spaces is rather involved. Topological completeness of
GLP under the natural class of ordinal spaces requires certain set-theoretic as-
sumptions (the existence of large cardinals), however, it is still open whether
it holds under these assumptions (see [4]). Therefore, it becomes crucial to
search for some simpler models for GLP.

In this thesis, we define the concept of a general topological frame, that is,
a topological space equipped with a distinguished set of admissible sets, akin
to the notion of a general Kripke frame. Then, we describe a natural class of
general topological frames on ordinals, that we call periodic frames. These
frames are based on well-orderings equipped with some natural topologies
introduced by Icard [18]. While GLP is known to be incomplete with respect
to Icard’s spaces, we show that the bimodal fragment of GLP is sound and
complete with respect to the periodic frames. We hope that the results in
this thesis will pave the way to further generalizations of this completeness
to the whole system GLP.
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Chapter 1

Introduction and Preliminary

The polymodal provability logic GLP is a system of propositional modal logic
with infinitely many modalities having provability semantics. It was initially
introduced by Japaridze in his PhD thesis [19]. GLP has found significant
applications in proof theory and arithmetic [5, 6, 7].

However, in any Kripke frame for GLP, all relations but one have to be
discrete, which means that GLP is Kripke incomplete. Therefore, it becomes
crucial to explore alternative models for GLP.

Before the advent of Kripke semantics, topological semantics for modal
logic was independently developed by Tang [26], McKinsey and Tarski [27,
21, 22] in 1930’s and 1940’s. Later, Simmons [24] and Esakia [15] indepen-
dently studied the topological interpretation of provability logic GL, revealing
its correspondence to a natural class of topological spaces known as scattered
spaces, employing the topological d-semantics. Later, we will show that ordi-
nals form natural examples of scattered spaces and a topological completeness
result for GL was obtained independently by Abashidze [1] and Blass [11].

Topological models for GLP have also been explored by Beklemishev,
Bezhanishvili, Icard and Gabelaia [18, 2, 3]. Notably, in [3], it is shown that
GLP is complete with respect to a class of topological spaces known as GLP-
spaces. However, the class of spaces for which the completeness is established
is complicated. Topological completeness of GLP under the natural class
of ordinal spaces turns out to be an even harder question. The existence
of a non-discrete ordinal GLP-space is independent of ZFC, therefore the
completeness of GLP with respect to ordinal GLP-spaces requires certain
set-theoretic assumptions (the existence of large cardinals). It is still open
whether the completeness holds under these assumptions (see [4]). Therefore,
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it becomes crucial to search for some simpler complete class of models for
GLP.

In this thesis, we define the concept of a general topological frame, that is,
a topological space equipped with a distinguished set of admissible sets, akin
to the notion of a general Kripke frame. Then, we describe a natural class
of general topological frames on ordinals that we call periodic frames. These
frames are based on well-orderings equipped with some natural topologies
introduced by Icard [18]. While GLP is known to be incomplete with respect
to Icard’s spaces, we show that the bimodal fragment of GLP is sound and
complete with respect to the periodic frames. In the future, we hope to
generalize the result to the whole system GLP.

This thesis is structured as follows:
In the rest of this chapter, we provide an introduction to the provability

logics GL and GLP and their natural semantics. In Chapter 2, we recall
the topological d-semantics for modal logic and introduce the results for
GL in topological interpretation. Moreover, we define the notion of general
topological frames, which is the new topological model in this thesis. In
Chapter 3, we define four kinds of periodic sets on ordinals. Later, 0-periodic
sets and 1-periodic sets will be used as the admissible sets in our general
topological frames for GL and GLB. In Chapter 4, we build general topological
frames for GL and GLB, in which hereditarily periodic sets are used as the
admissible sets. Such kind of general topological frames will be called periodic
frames and we prove that GLB is sound in all the periodic frames. In Chapter
5, we prove that GLB is complete with respect to the class of periodic frames.
In Chapter 6, we give a conclusion and discuss the future work.

1.1 GL and GLP

1.1.1 Classical Provability Logic GL

The idea of provability logic originates from a short paper by Gödel [16],
where he attempted to formalize the BHK-interpretation and introduced a
modal calculus with informal provability semantics (equivalent to the Lewis
modal system S4).

Formal provability semantics is based on Gödel’s proof predicate
Proofpx, yq, which denotes “y is the code of a proof of the formula hav-
ing a code x” for a classical first order theory containing Peano Arithmetic.
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The provability predicate can then be expressed as Provpxq “ DyProofpx, yq.
Then, if we disregard the distinction between a formula and its Gödel’s num-
ber, ProvpF q can be viewed as a modal formula. However, Gödel showed
in [16] that S4 was not the modal logic of the formal provability predicate
ProvpF q.

Based on the previous work by Hilbert and Bernays [17], Löb [20] dis-
covered the final principle and demonstrated that along with other natural
conditions on the provability predicate, i.e. the axioms and rules in the
modal logic K4, it is sufficient for the proof of Gödel’s second incompleteness
theorem. Nowadays, a formalization of Löb’s Theorem is known as Löb’s
Axiom:

L : lplφÑ φq Ñ lφ

The extension of K4 by L is usually denoted GL after Gödel and Löb. An
arithmetical interpretation f is a mapping that assigns propositional variables
to arbitrary arithmetical sentences, which commutes with boolean operators
and fplψq :“ Provpfpψqq. Löb demonstrated that if φ is a theorem of GL,
then for any arithmetical interpretation f , fpφq is a theorem of PA.

Then, the following question arose: whether GL contains all the provable
schemata of the provability predicate Prov? This question was solved by
Solovay [25].

Theorem 1.1.1 (Solovay, [25]). GL $ φ iff PA $ fpφq, for all arithmetical
interpretations f .

1.1.2 Polymodal Provability Logic GLP

Some other important proof-theoretic notions lead to different types of
modalities and logics. For instance, in 1980, Boolos considered the concept
of ω-provability, which is dual to Gödel’s notion of ω-consistency [12].

Recall that an arithmetical theory T is ω-inconsistent if there exists an
arithmetical formula P pxq such that T proves that φpnq holds for every stan-
dard natural number n, however, T also proves that there is some natural
number n such that φpnq fails, that is, T $ Dx␣φpxq. In this case, T can
still be consistent, because this may not generate a contradiction within T,
and such n is necessarily a non-standard integer in any model of T.

T is ω-consistent if it is not ω-inconsistent. This concept is stronger than
consistency: on the one hand, any inconsistent theory is also ω-inconsistent;
on the other hand, there exist consistent theories which are not ω-consistent.
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A formula φ is called ω-provable in a theory T, if the theory T ` ␣φ is
ω-inconsistent, i.e. if there exists a formula ψpxq s.t. T`␣φ $ ψpnq for all
standard natural numbers n but T ` ␣φ $ Dx␣ψpxq. On the other hand,
ω-provability can also be described as the provability in arithmetic by one
application of the ω-rule, i.e. provability in the theory

T1 :“ T` t@xφpxq : T $ φpnq, for all nu.

That provability by one application of the ω-rule implies ω-provability is
obvious. For the other direction, suppose that φ is ω-provable, then T`␣φ
is ω-inconsistent, i.e., there exists a formula ψpxq such that T $ ␣φÑ ψpnq
for all n but T $ ␣φ Ñ Dx␣ψpxq. Hence, T1 contains @xp␣φ Ñ ψpxqq, i.e.
T1 $ ␣φ Ñ @xψpxq. With T $ ␣φ Ñ Dx␣ψpxq, it follows that T1 $ ␣φ Ñ
K, hence φ is provable by one application of the ω-rule.

In [12], Boolos proved that the logic of ω-provability coincides with GL
using a Solovay-style arithmetical completeness proof. Let us write r0s for
normal provability and r1s for ω-provability. The next natural question was
to find the bimodal logic of r0s and r1s, which was answered by Japaridze
[19]. In fact, Japaridze formulated the polymodal logic GLP with infinitely
many modalities r0s, r1s, r2s, etc, where rns is interpreted as the provability
by n nested applications of the ω-rule.

Definition 1.1.2 (Polymodal provability logic). The language of polymodal
provability logic LP is defined as follows:

φ ::“ p | K | φÑ φ | rnsφ

where p P Prop and n P N. Other connectives Ø,_,^,␣ are defined as
usual. The bimodal fragment of LP with only r0s and r1s is denoted as LB.

An arithmetical interpretation f for LP is a mapping from modal formulas
to arithmetical formulas such that f commutes with boolean operators and
rnsφ is mapped to the formalization of “φ is provable by n nested applications
of the ω-rule.” Similarly, we can define arithmetical interpretations for LB.

Based on our earlier observation, we know that

r0sφÑ r1sφ.

It is also not difficult to prove that the following axiom is valid:

␣r0sφÑ r1s␣r0sφ.
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If φ is not provable then no standard natural number n is the code of a proof
of φ, i.e. ␣Proofpφ, nq is true for each n, hence, by the ω-rule, it follows that
@x␣Proofpφ, xq, which means that ␣r0sφ is ω-provable. Therefore, ␣r0sφÑ
r1s␣r0sφ is valid.

Moreover, the relationship between rns and rn ` 1s is the same as that
between r0s and r1s. Thus, Japaridze introduced the system GLP as follows
[19]:

Definition 1.1.3 (System GLP). The Polymodal Provability Logic GLP is a
system composed of the following axioms and rules:

Axioms: (i) Axioms of GL for each modality rns;
(ii) rmsφÑ rnsφ, for m ď n;
(iii) xmyφÑ rnsxmyφ, for m ă n.
Rules: Modus Ponens,
rns-necessitation: φ $ rnsφ.

Definition 1.1.4 (System GLB). If we restrict GLP to the bimodal fragment
LB, then we get the following system GLB:

Axioms: (i) Axioms of GL for r0s and r1s;
(ii) r0sφÑ r1sφ;
(iii) x0yφÑ r1sx0yφ.
Rules: Modus Ponens,
r0s-necessitation and r1s-necessitation: φ $ r0sφ and φ $ r1sφ.

With a non-trivial variation of Solovay-style completeness proof, the fol-
lowing theorem is proved by Japaridze.

Theorem 1.1.5 (Japaridze, [19]). GLP $ φ iff PA $ fpφq, for all the arith-
metical in terpretations f of GLP.

1.1.3 Kripke Incompleteness

It is well-known that the logic GL is sound and complete with respect to
the class of converse well-founded strict partial ordered Kripke frames [23].
Moreover, GL has the finite model property, hence GL is also complete with
respect to the class of finite, transitive, irreflexive trees.

However, even GLB is Kripke incomplete. More specifically, there is no
non-trivial Kripke frame for GLB [13].
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Proposition 1.1.6. Consider a Kripke frame with two relations F “

xW,R0, R1y, if R1 is non-empty then it is impossible that all the axioms
of GLB are valid in F .

Proof. Suppose that R1 is non-empty, then there are a, b such that aR1b.
First, r0sφÑ r1sφ is valid if and only if for any x, y, xR1y implies xR0y.

Hence we have aR0b.
Second, x0yφ Ñ r1sx0yφ is valid if and only if for any x, y, z, xR0y and

xR1z implies zR0y. Hence, with aR1b and aR0b, it is followed that bR1b.
However, if GLB is valid in F, R1 should be a converse well-founded re-

lation, which contradicts with bR1b. Hence, if R1 is non-empty then F can’t
be a Kripke frame of GLB. ■

Corollary 1.1.7. GLB is Kripke incomplete. Moreover, GLP is also Kripke
incomplete.
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Chapter 2

Topological Models for GL and
GLP

2.1 Topological d-semantics

Since GLP is Kripke incomplete, we need to find some other semantical tool
for its investigation, such as topological semantics.

Usually, when interpreting modal logic in topological spaces, the diamond
operator3 is translated as topological closure. However, this translation only
works when the logic contains the reflexivity axiom T, because every set is a
subset of its closure. For logics such as GL and GLP, instead of the closure
operator, 3 can be translated as the topological derivative operator.

Definition 2.1.1 (Derived Set). Let xX, τy be a topological space, A a subset
of X. Topological derivative dτ pAq of A is the set of all the limit points of
A:

x P dτ pAq ðñ @U P τpx P U ñ Dy ‰ x y P U X Aq.

iτ pAq :“ Azdτ pAq is the set of isolated points of A and cτ pAq :“ A Y dτ pAq
is the closure of A.

Definition 2.1.2 (Topological d-semantics). A topological model M “

pX, τ, νq is a tuple where pX, τq is a topological space and ν : PropÑ PpXq is
a valuation. Then, the satisfaction relation between a point w of a topological
model M and a formula φ is defined inductively as follows:
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M, w * K
M, w ( p ðñ w P νppq
M, w ( ␣φ ðñ M, w * φ
M, w ( φ_ ψ ðñ M, w ( φ or M, w ( ψ
M, w ( 3φ ðñ @U P τpx P U ñ Dy P Uztxu : M, y ( φq
M, w ( lφ ðñ DU P τpx P U ñ @y P Uztxu : M, y ( φq

In other terms, rr3φss “ dτ rrφss. A formula φ is valid in a model M if it
is true in all the points w PM and φ is valid in a topological space pX, τq if
it is valid in all the model M “ pX, τ, νq based on pX, τq.

Topological d-semantics for modal logic was independently suggested by
Simmons [24] and Esakia [15]. They proved that under this interpretation,
GL corresponds to a natural class of topological spaces.

Definition 2.1.3. A topological space pX, τq is scattered if every nonempty
subspace A Ď X has an isolated point, i.e. iτ pAq ‰ H.

Theorem 2.1.4 (Esakia,[15]). GL $ φ if and only if φ is valid in all the
scattered spaces.

2.2 Ordinal Topological Spaces

Natural examples of scattered topological spaces come from orderings, es-
pecially ordinals. First, we introduce an equivalent characterization of scat-
tered spaces in terms of the following transfinite Cantor-Bendixson sequence
of subsets of X:

• d0τ pXq “ X;

• dα`1
τ pXq “ dτ pd

α
τ pXqq;

• dατ pXq “
Ş

βăα d
β
τ pXq if α is a limit ordinal.

For a scattered space, dα`1
τ pXq Ď dατ pXq always holds, and it is a strict

inclusion unless dατ pXq “ H.

Theorem 2.2.1 (Cantor). pX, τq is a scattered space iff dατ pXq “ H for
some ordinal α.
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Definition 2.2.2 (Cantor-Bendixson rank). For a scattered space X, the
Cantor-Bendixson rank of X is the least α such that dατ pXq “ H, denoted
by ρτ pXq. The Cantor-Bendixson rank function ρτ : X Ñ On is defined by

ρτ pxq :“ mintα : x R dα`1
τ pXqu.

Hence, ρτ is a map from X onto ρτ pXq “ tα : α ă ρτ pXqu.

Definition 2.2.3 (Order topology). For an ordinal α, the order topology τă

on α is the topology generated by all intervals pβ1, β2q such that β1, β2 P
α Y t˘8u and β1 ă β2.

Proposition 2.2.4. On any ordinal α, the order topology τă is scattered.

Proof. For any subset X Ď α, there exists a least element x in X. Hence,
it is easy to see that x R dτ pXq, i.e. x is an isolated point in X. So, by
Definition 2.1.3, the order topology is scattered. ■

Hence, it is very natural to consider ordinal spaces as models for the
provability logic GL.

Every ordinal α has a unique representation, called the Cantor Normal
Form, as a finite sum of ordinal powers of ω, i.e. any non-zero ordinal can
be written as

α “ ωβn ¨ kn ` ¨ ¨ ¨ ` ω
β0 ¨ k0,

where n ě 0, α ě βn ą ¨ ¨ ¨ ą β0, and k0, ¨ ¨ ¨ , kn are non-zero natural num-
bers. The ordinal βn is the degree and β0 is the rank of α.

Definition 2.2.5. Let ℓ : ΩÑ Ω be defined by

ℓp0q “ 0; ℓpαq “ β if α “ γ ` ωβ, for some γ, β.

That is to say, when α ‰ 0, ℓpαq is the rank of α defined on the Cantor
Normal Form. Hence, ℓ is called the rank function.

Proposition 2.2.6 ([3]). Let Ω be an ordinal equipped with its order topol-
ogy. Then, the Cantor-Bendixson rank function ρτă

coincides with the rank
function ℓ.

Definition 2.2.7 (d-map). A map f : X Ñ Y between topological spaces is
called a d-map if f is continuous, open and pointwise discrete, i.e. f´1pyq is
a discrete subspace of X for each y P Y .
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d-maps are well-known to satisfy the following proposition (see [9] or [3]).

Proposition 2.2.8. Suppose that f : X Ñ Y is a d-map between topological
spaces, then we have the following properties:

• f´1pdY pAqq “ dXpf
´1pAqq, for any A Ď Y ;

• f´1 : pPpY q, dY q Ñ pPpXq, dXq is a homomorphism of modal algebras;

• If f is onto, then LogpXq Ď LogpY q.

Theorem 2.1.4 was improved independently by Abashidze [1] and Blass
[11] as follows. The following proof is from [10].

Theorem 2.2.9 (Abashidze, Blass). Consider an ordinal Ω ě ωω equipped
with the order topology. Then LogpΩq “ GL.

Proof. First, any Kripke frame F “ xW,Ry of GL can also be viewed as a
topological space, i.e. we can also consider F as the set W equipped with
the upset topology w.r.t. the relation R.

Since GL is complete with respect to finite transitive irreflexive trees, we
aim to prove that if T is a finite transitive irreflexive tree of depth n, then
there exists an onto d-map f : ωn ` 1 ↠ T . Then, by Proposition 2.2.8, it
implies that LogpΩq “ GL when Ω ě ωω.

We prove it by induction on the depth n:

• If n “ 0, the tree T contains only one irreflexive point a, so the result
is trivial.

• Suppose n ą 0 and the result holds for all the k ă n. Denote the root
as a and all the immediate successors of a as a1, a2, . . . , al. Let Ti be
the subtree of T generated by ai for i P r1, ls. Since the depth of T
is n, the depth ni of each subtree Ti will be smaller than n. WLOG,
we assume that n1 ě n2 ě . . . ě nl. By the Induction Hypothesis, for
each i P r1, ls, there exists an onto d-map fi : ω

ni ` 1 ↠ Ti.

When we view the tree T as a topological space, it can be thought of
as the disjoint union of tau and all the subtrees T1, . . . , Tl. Moreover, if
U Ď T is an open set, then either U “ T or U “

Ťl
i“1 Ui where Ui is an

open set of the subtree Ti for each i. On the other hand, we decompose
ωn ` 1 into a similar structure: we write ωn ` 1 as the disjoint union

12



Ţ8

j“1Xj Y tω
nu, where Xj is isomorphic to the ordinal ωni ` 1 if j ” i

mod l and ni ą 0, and Xi is a singleton if ni “ 0. Since all the ni are
smaller than n and we also know that at least one of them is equal to
n´ 1, so the structure of

Ţ8

i“1Xi is the same as ωn.

Now we construct the d-map from ωn ` 1 to T : First, set fpωnq “ a.
Second, for each i P ω, suppose that i “ l ¨ k ` j where j ă l. Then,
define f |Xi

: Xi Ñ Tj as the copy of the d-map fj : ωnj ` 1 ↠ Tj.
Combining them, we have the construction of f : ωn` 1Ñ T . It is not
hard to check that f is an onto d-map. (For more details, the readers
can check [10, Lemma 3.4])

■

2.3 General Topological Frames

In this section, we introduce the concept of a general topological frame, which
is inspired by the notion of a general Kripke frame. First, recall the following
definition.

Definition 2.3.1. A polytopological space is a tuple xX, tτi : i P Iuy where
τi is a topology in X for each i P I. A polytopological space is a tuple
xX, tτi : i P Iu, νy where xX, tτi : i P Iuy forms a polytopological space and
ν : Prop Ñ PpXq is a valuation function. In polytopological models, the
satisfaction relation for polymodal formulas is defined in the same way as
the topological d-semantics in Definition 2.1.2.

Proposition 2.3.2 ([2]). If a polytopological space xX, tτn : n P ωuy is a
model of GLP, it should satisfy the following conditions:

(i) xX, τny is a scattered topological space for each n P ω;

(ii) τn Ď τn`1;

(iii) For each U Ď X, dτnpUq is τn`1-open.

Proof. By Definition 1.1.3, we know the following properties for a model of
GLP:

• We have axioms of GL for each modality rns, hence, xX, τny should form
a scattered topological space for each n P ω.
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• We have the axioms of the form rmsφÑ rnsφ form ď n. In topological
d-semantics, it is easy to see that rnsφÑ rn`1sφmeans that τn Ď τn`1.

• We have the axioms of the form xmyφ Ñ rnsxmyφ for m ă n. In
topological d-semantics, xnyφÑ rn` 1sxnyφ means that the truth set
of xnyφ should be τn`1-open. Therefore, for each U Ď X, dτnpUq is
τn`1-open.

■

Polytopological spaces satisfying conditions piq´piiiq in Proposition 2.3.2
are called GLP-spaces [3].

In [3], it is proved that GLP is complete w.r.t. the class of all GLP-spaces.
However, if we consider ordinal GLP-space, the situation becomes much more
complicated, the existence of a non-discrete ordinal GLP-space is independent
of ZFC. Roughly speaking, since τn`1 will be a refined topology w.r.t. τn
such that dτnpAq is τn`1-open, in order to make sure that τn`1 is non-discrete,
we will need the existence of some large cardinals. The question if GLP is
complete w.r.t. ordinal GLP-spaces under some natural set-theoretic assump-
tions is still open.

Now, we define the notion of general topological frame, which is inspired
by the notion of general Kripke frame. First, we recall the definition of a
general Kripke frame.

Definition 2.3.3 (General Kripke frame). A general Kripke frame is a tuple
xF, tRi : i P Iu,Ay such that xF, tRi : i P Iuy forms a Kripke frame and
A Ď PpF q, which is closed under finite union, finite intersection, complement
and R´1

i for any i P I. For a model xF, tRi : i P Iu,A, νy based on the
general Kripke frame xF, tRi : i P Iu,Ay, the valuation function ν should be
a mapping from Prop to A.

For a setW , a function f : PpW q Ñ PpW q and A Ď PpW q, if A is closed
under finite union, finite intersection, complement and f , xA, fy is called a
modal boolean algebra.

So, that is to say, a general Kripke frame is simply a Kripke frame with
a modal boolean algebra over the frame. The subset of F containing in A is
called admissible set. Only the elements in A are possible to be defined by a
formula in a class of models based on xF,R,Ay.

Inspired by the notion of general Kripke frame, we define general topo-
logical frames. That is to say, we aim to add a modal boolean algebra A to
a topological (or polytopological) space.

14



Definition 2.3.4 (General topological frame). A general topological frame
is a tuple xX, tτi : i P Iu,Ay where xX, tτi : i P Iuy is a polytopological
space and A Ď PpXq, which is closed under finite union, finite intersection,
complement and dτi for any i P I. A general topological model is a tuple
xX, tτi : i P Iu,A, νy where xX, tτi : i P Iu,Ay forms a general topological
frame and ν : PropÑ A.

For a general topological frame xX, tτi : i P Iu,Ay and a subset Y Ď X,
we define a corresponding subframe: xY, tτi|Y : i P Iu,A|Y y, where τi|Y is the
subspace topology and A|Y is the restriction of the elements in A to Y . In
convenient, we will continue to denote it as xY, tτi : i P Iu,Ay where there is
no ambiguity.

Definition 2.3.5. Suppose that xX, τx,AXy and xY, τY ,AY y are two general
topological frames. A map f : X Ñ Y between general topological frames is
called a d-map if the following conditions hold:

• For any V P AY , f
´1pV q P AX ;

• f is continuous, open and pointwise discrete.

Proposition 2.3.6. Suppose that f : X Ñ Y is a d-map between general
topological frames, then we have the following properties:

• f´1pdY pUqq “ dXpf
´1pUqq, for any U Ď Y ;

• f´1 : xAY , dY y Ñ xAX , dXy is a homomorphism of modal algebras;

• If f is onto, then LogpXq Ď LogpY q.

In the proof of Proposition 2.3.2, we show that, in the frames of GLP,
the axiom xnyφ Ñ rn ` 1sxnyφ corresponds to the frame condition that
dτnpUq is τn`1-open for each U Ď X. That is because the truth set of xnyφ
should be τn`1-open. However, if we consider a general topological frame,
the truth set of a formula can only be an element in A. Hence, we have
the following proposition, which is exactly our motivation to introduce the
notion of general topological frame.

Proposition 2.3.7. If a general topological frame xX, tτn : n P ωu,Ay
satisfies the following conditions, then all the axioms of GLP are valid in
xX, tτn : n P ωu,Ay:
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(i) xX, τny is a scattered topological space for each n P ω;

(ii) τn Ď τn`1;

(iii) For each U P A, dτnpUq is τn`1-open.

The difference between Proposition 2.3.2 and 2.3.7 will bring about a
change in our study of GLP on ordinals. Now, the third condition is loosened,
therefore, it is easier to find a general topological frame for GLP such that
all the topologies τn are non-discrete.

In next chapter, we will define a suitable modal boolean algebra and begin
to build general topological frames for GLB.
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Chapter 3

Periodic Sets of Ordinals

In this chapter, we define the notions of periodic set, ultimately periodic
set and hereditarily periodic set in ordinal spaces. Some of the notations
and propositions about periodic sets is from [14], in which periodicity of
transfinite words was considered.

In next chapter, hereditarily periodic sets will be used as the admissible
sets in our general topological frames. In the proof of Theorem 2.2.9, we build
onto d-maps from ordinals to finite transitive irreflexive trees. Moreover, in
next chapter, we will prove that the preimages of any subset in these d-maps
are hereditarily periodic sets. In fact, this is the reason why we are interested
in periodic sets and aim to build modal algebras by hereditarily periodic sets.

3.1 Periodic Sets

First, we define periodic sets on ordinals. Suppose that A is a subset of an
ordinal Ω.

It is well-known that Euclidean division for ordinals is well-defined. That
is, let α, β be two ordinals, then there exists a unique pair of ordinals pτ, µq
such that µ ă β and α “ β ¨ τ ` µ.

With this, given an ordinal π, we can define an equivalence relation „π

on all ordinals.

Definition 3.1.1. For an ordinal π, we define an equivalence relation „π

on α: α1 „π α2 if there exist three ordinals τ1, τ2 and µ ă π such that
α1 “ π ¨ τ1 ` µ and α2 “ π ¨ τ2 ` µ.
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Definition 3.1.2 (Periodic Set). Let Ωbe an ordinal, a subset A Ď Ω is
periodic in Ω if there exists π such that 0 ă π ă ωℓpΩq and for any ordinals
γ1, γ2 ă Ω, if γ1 „π γ2 and γ1 P A then γ2 P A. Such a π is called a period
for the periodic set A in Ω.

So a subset A of Ω is periodic, if it is closed under the equivalence relation
„π in Ω. Notice that we require that 0 ă π ă ωℓpΩq, so ℓpΩq should be greater
than 0, i.e. if A is a periodic set in Ω, Ω should be a limit ordinal.

Proposition 3.1.3. Suppose that A is a periodic set in Ω and π is a period
for A, then for any natural number n ą 0, π ¨ n is also a period for A.
Moreover, for any ordinal β, if π ¨ β ă ωℓpΩq then π ¨ β is also a period for A.

Proof. First, if π ă ωℓpΩq then π ¨ n ă ωℓpΩq is also true. Second, it is easy to
see that for all ordinals i, j ă Ω, if i „π¨n j holds then i „π j also holds. So
if A is closed under the equivalence relation „π, it is also closed under „π¨n.
Hence, π ¨ n is also a period for periodic set A in Ω.

For π ¨ β, it is also easy to check that A is closed under „π¨β. Hence, if
we have known that π ¨ β ă ωℓpΩq, then π ¨ β is also a period for A in Ω. ■

On the other hand, a subset A of ordinal Ω can also be viewed as a string
of length Ω. That is, it is a mapping from Ω to 2 “ t0, 1u such that for any
ordinal i ă Ω, Apiq “ 1 if and only if i P A. For short, we also denote Apiq
as Ai.

In this way, we have the following alternative definition of periodic set.

Definition 3.1.4. A string A of length Ω is periodic if and only if there exists
0 ă π ă ωℓpΩq such that for all ordinals i, j ă Ω, if i „π j then Ai “ Aj.

It is easy to see that this definition is equivalent to Definition 3.1.2.
If A is a subset of Ω1 and B is a subset of Ω2, then we can define the

concatenation AB of two strings A and B, which is a mapping from the
ordinal Ω1 ` Ω2 to 2 defined by

pABqi “

#

Ai if i ă Ω1;

Bj if i “ Ω1 ` j and j ă Ω2.

Given a string A of length Ω, we denote by Aτ the string concatenated
with itself by τ times, i.e. Aτ is a string of length Ω ¨ τ defined by

Aτ
Ω¨γ`i “ Ai
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where γ ă τ and i ă Ω.
Then we have the following proposition, which can be viewed as an equiv-

alence definition of periodic set.

Proposition 3.1.5. Give a subset A of Ω, which can also be viewed as a
string of length Ω. Then the following conditions are equivalent:

i) A is a periodic set in Ω.

ii) there exists a string B of length π with 0 ă π ă ωℓpΩq such that A “ Bτ

for an infinite ordinal τ .

Proof. If i) holds, then there exists a period π for A and a limit ordinal τ such
that Ω “ π ¨ τ . Let B be the string of length π such that Bi “ Ai for ordinal
i ă π. By the definition of periodic set, we know that Aπ¨γ`i “ Ai “ Bi.
Hence, A is exactly Bτ .

Conversely, if ii) holds, then the length π for B is a period for A in Ω,
because Aπ¨γ`i “ Bi for any ordinal γ ă τ and only they are equivalent
modulo π. ■

We denote the set of all periodic sets in Ω as PpΩq.

3.2 Ultimately Periodic Sets

Next, we define ultimately periodic sets on ordinals.

Definition 3.2.1 (Ultimately Periodic Set). A is ultimately periodic in Ω if
there exist a bound κ ă Ω and a periodic set A1 in Ω such that AX pκ,Ωq “
A1 X pκ,Ωq. In other words, A is equal to a periodic set except for an initial
segment, the period π of A1 is also called the period of the ultimately periodic
set A.

Proposition 3.2.2. If A is ultimately periodic in Ω, then there exists a
period π of the form ωβ ¨ n and the bound in Definition 3.2.1 can be chosen
as an ordinal κ such that ℓpκq ě β.

Proof. Suppose that π is a period of A with bound κ, so there exists a string
A1 of length κ, a string B of length π and an ordinal τ such that A “ A1pBτ q

and Ω “ κ` π ¨ τ . We divide it to two cases:
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• If ℓ2pΩq ą 0, i.e. ℓpℓpΩqq ą 0, then ℓpΩq is a limit ordinal. We also
know that π ă ωℓpΩq.

In this case, π ¨ ω ă ωℓpΩq is also true and there exists τ 1 such that
κ ` pπ ¨ ωq ¨ τ 1 “ Ω. So, π ¨ ω can also be a period for A, because
A “ A1ppBωqτ

1

q. Then, the period π ¨ω will be of the form ωβ for some
ordinal β. And for the bound, if ℓpκq ă β, we can use κ`pπ ¨ωq as the
bound instead of κ, then it is obvious ℓpκ` pπ ¨ ωqq “ β.

• If ℓ2pΩq “ 0, then ℓpΩq is a successor ordinal, assume that ℓpΩq “ β`1.
Consider two subcases as follows:

– If π ă ωβ, then π ¨ ω ď ωβ ă ωℓpΩq. In this case, similarly, π ¨ ω
can also be a period of A and A can be represented as A1ppBωqτ

1

q

for some ordinal τ 1. Hence, there exists a period of the form ωβ1

and κ ` pπ ¨ ωq can be used as the bound instead of κ, hence it
satisfies all the conditions.

– If π ě ωβ, since we also know that π ă ωβ`1, we can assume that
π “ ωβ ¨ n` γ for a natural number n and an ordinal γ ă ωβ.

In this case, first, we can assume that κ is large enough such
that Ω “ κ ` π ¨ ω. Second, the string B can be viewed as the
concatenation B1B2 in which the length of B1 is ωβ ¨ n and the
length of B2 is γ. So A “ A1ppB1B2q

ωq, however, we can also
represent A as pA1B1qppB2B1q

ωq, which means that we use κ`ωβ ¨n
as the bound and ωβ ¨ n as the period, hence it satisfies all the
conditions.

In all, we have proved that if A is ultimately periodic in Ω, then there exists
a period π of the form ωβ ¨ n with a bound κ such that ℓpκq ą β. ■

Corollary 3.2.3. If A is ultimately periodic in Ω and ℓ2pΩq ą 0, then there
exists a prime ordinal ωβ as the period and the bound can be chosen as an
ordinal κ such that ℓpκq ě β.

Proof. In the proof of Proposition 3.2.2, we have seen that when ℓ2pΩq ą 0,
the period can be of the form ωβ, which is exactly the statement of this
corollary. ■

We denote the set of all ultimately periodic sets in Ω as UpΩq. And we
prove that UpΩq forms a boolean algebra, i.e. UpΩq is closed under finite
union, finite intersection, complement.
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Proposition 3.2.4. For any ordinal Ω, UpΩq is closed under finite union,
finite intersection, complement and the derived set operator.

Proof. We prove it case by case:

• Finite union: If A1, A2 P UpΩq, then there exist κ1, κ2 as their bounds
and π1, π2 as their periods in Ω. By Proposition 3.2.2, we can assume
that π1 “ ωβ1 ¨ n1, π2 “ ωβ2 ¨ n2. Now we aim to find a common period
for A1 and A2:

– If β1 “ β2, then by Proposition 3.1.3, ωβ1 ¨lcmpn1, n2q is a common
period.

– If β1 ą β2, then ωβ1 is also a period for A2, which implies that
ωβ1 ¨ n1 is a common period.

– If β1 ă β2, similarly, ωβ2 ¨ n2 is a common period.

Denote the common period as π, and let κ be the maximum of κ1 and
κ2. We will now prove that A1YA2 is ultimately periodic with respect
to A, with a bound κ and a period π. Suppose x „π y and x, y ą κ. If
x P A1YA2, then x P A1 or x P A2. Without loss of generality, assume
x P A1. Since π is a period for A1, it follows that y P A1, and therefore
y P A1 Y A2. Hence, π is a period for A1 Y A2 with bound κ.

• Finite intersection: The argument is similar to that of finite union.

• Complement: This is trivial.

■

Remark 3.2.5. We can see that finite sets and cofinite sets are ultimately
periodic in Ω. Further, since UpΩq is closed under finite union and finite
intersection, if A P UpΩq and B Ď Ω is finite then AzB and AY B are both
ultimately periodic in Ω.

3.3 Hereditarily Periodic Sets

In this section, we define hereditarily periodic set on ordinals, which will be
used as the admissible sets in our general topological frames. For β ă Ω, let
A|β “ A X β. A|β can also be viewed as a string of length β, which is an
initial segment of A.

21



Definition 3.3.1 (Hereditarily periodic set, or 0-periodic set). A is heredi-
tarily periodic in Ω, if for any limit ordinal β ď Ω, A|β is ultimately periodic
in β.

The hereditary periodic set will also be called 0-periodic set. We denote
the set of all 0-periodic sets in Ω as H0pΩq.

Proposition 3.3.2. H0pΩq forms a Boolean algebra, that is, H0pΩq is closed
under finite union, finite intersection and complement.

Proof. By Definition 3.3.1, A P H0pΩq iff A|β P UpΛq for any limit ordinal
β ď Ω. Since all the Upβq are closed under these operators, it is evident that
H0pΩq is also closed under these operators. ■

Remark 3.3.3. It is also easy to check that finite sets and cofinite sets are
hereditarily periodic periodic in Ω. Hence, similar to Remark 3.2.5, if A P
UpΩq and B Ď Ω is finite then AzB and AYB are both hereditarily periodic
in Ω.

Moreover, in the next chapter, we will prove that xΩ, τ0,H0pΩqy forms a
general topological frame for GL, which will be called 0-periodic frame for
GL. And we will show the completeness of GL with respect to the class of all
the 0-periodic frames.

However, in order to achieve not only soundness but also completeness for
GLB, we need to extend H0pΩq to the set of all the 1-periodic sets, which will
be denoted as H1pΩq. In the next chapter, we will define 1-periodic frames
for GLB.

Definition 3.3.4 (1-periodic set). For an ordinal Ω, consider the rank func-
tion ℓ : ΩÑ Ω. We define H1pΩq as the Boolean algebra generated by H0pΩq
and all the sets of the form ℓ´1pAq for A P H0pΩq. In other words, H1pΩq is
the least set satisfying the following conditions:

• H0pΩq Ď H1pΩq;

• For any A P H0pΩq, ℓ
´1pAq P H1pΩq;

• For any A,B P H1pΩq, A P H1pΩq, AYB P H1pΩq and AXB P H1pΩq.

If A P H1pΩq, then we say that A is 1-periodic in Ω.

Proposition 3.3.5. Any 1-periodic set A P H1pΩq can be represented as
Ťk

i“1pℓ
´1pAiq XBiq where Ai, Bi P H0pΩq for i P r1, ks.

22



Proof. Since H1pΩq is the boolean algebra generated by H0pΩq and all the
sets of the form ℓ´1pAq for A P H0pΩq, we assume that A can be represented
as

Ťk
i“1

Şl
j“1Aij where each Aij is of the form A1, A1, ℓ´1pA1q or ℓ´1pA1q for

some A1 P H0pΩq.
However, H0pΩq is closed under complement and ℓ´1pA1q “ ℓ´1pA1q,

hence, each Aij must be of the form A1 or ℓ´1pA1q for some A1 P H0pΩq. More-
over, we know that H0pΩq is closed under intersection and ℓ´1pA1qXℓ

´1pA2q “

ℓ´1pA1 X A2q, therefore, the intersection
Şl

j“1Aij can be simplified as

ℓ´1pAiq XBi for some Ai.Bi P H0pΩq. ■

We claim following lemma, which will be useful for the completeness proof
in chapter 5.

Lemma 3.3.6. Consider two ordinals λ and λ1, we have the following state-
ments: (1) If A P H1pλ` 1q, then tλ ¨ µ` β|µ ă λ1, β P Au P H1pλ ¨ λ

1 ` 1q;
(2) If A P H1pλ

1 ` 1q, then tλ ¨ µ|ℓpµq ą 0, µ P Au P H1pλ ¨ λ
1 ` 1q.

Proof. (1) Denote tλ ¨ µ` β|µ ă λ1, β P Au as fpAq. It is easy to see that
fpAYBq “ fpAq Y fpBq and fpAXBq “ fpAq X fpBq, hence we only
need to prove that fpAq P H1pλ ¨ λ

1 ` 1q and fpℓ´1pAqq P H1pλ ¨ λ
1 ` 1q

for any A P H0pλ`1q, because H1pλ`1q and H1pλ ¨λ
1`1q form boolean

algebras.

Fix A P H0pλ`1q, first, we aim to show that tλ ¨µ`β|µ ă λ1, β P Au P
H1pλ ¨ λ

1 ` 1q. In fact, it is easy to see that tλ ¨ µ` β|µ ă λ1, β P Au P
H0pλ ¨λ

1`1q. The reason is that if we view A and fpAq as strings, then
fpAq “ Aλ1

, so it is easy to verify that Aλ1

is hereditarily periodic.

Then, we aim to show that fpℓ´1pAqq “ tλ¨µ`β|µ ă λ1, β ă λ and β P
ℓ´1pAqu P H1pλ ¨λ

1` 1q. Consider 0, fpℓ´1p0qq contains all the ordinals
γ P λ ¨ λ1 ` 1 such that ℓpγq “ 0 or γ is a multiple of λ. Hence, it is
easy to see that fpℓ´1p0qq P H1pλ ¨ λ

1 ` 1q.

Now, we can assume that 0 R A, otherwise, we divide the heredi-
tarily periodic set A as t0u Y pAzt0uq, then fpℓ´1pAqq “ fpℓ´1p0q Y
ℓ´1pAzt0uqq “ fpℓ´1p0qq Y fpℓ´1pAzt0uqq and we only need to prove
that fpℓ´1pAzt0uqq P H1pλ ¨ λ

1 ` 1q.

Since 0 R A, any ordinal in fpℓ´1pAqq must be in the form of λ ¨ µ` β
with β ‰ 0 and β ă λ, then ℓpλ ¨ µ ` βq “ ℓpβq P A. On the other
hand, it is easy to see that any ordinal γ ď λ ¨ λ1 ` 1 with ℓpγq P A
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must be in the form of λ ¨µ`β for some µ ă λ1 and β P ℓ´1pAq, β ă λ.
So fpℓ´1pAqq P H1pλ ¨ λ

1 ` 1q.

(2) First, tλ ¨ µ|ℓpµq ą 0, µ P Au “ tλ ¨ µ|µ P A X ℓ´1ppλ1 ` 1qzt0uqu and
A X ℓ´1ppλ1 ` 1qzt0uq P H1pλ

1 ` 1q. Hence, more generally, we can try
to show that if A P H1pλ

1 ` 1q then tλ ¨ µ|µ P Au P H1pλ ¨ λ
1 ` 1q and

this is obvious.
■
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Chapter 4

General Topological Frames

In this chapter, we begin to build general topological frames for GL and GLB,
which will be called periodic frames.

Recall the frame condition for GLP (Proposition 2.3.7): if xΩ, τ0, τ1,Ay
forms a general topological frame for GLB, we have the following conditions
for τ1:

• τ0 Ď τ1;

• For any X P A, d0pXq P τ1.

Hence, the least choice of τ1 is the topology generated by τ0 and
td0pXq|X P Au. In this chapter, H0pΩq and H1pΩq will be used as the set of
admissible sets in the general topological frame for GL and GLB respectively,
which will be called periodic frames. We find that the topology τ1 will coin-
cide with the topology θ2 introduced by Icard [18]. Last, we will show the
soundness of GL and GLB in the corresponding periodic frames. In the next
chapter, we will prove that GLB is also complete w.r.t. the class of periodic
frames.

4.1 General Topological Frames for GL

In this section, we aim to prove that xΩ, τ0,H0pΩqy forms a general topological
frame, where τ0 is the order topology and H0pΩq is the set of all 0-periodic
sets in Ω.

Proposition 4.1.1. For any ordinal Ω, UpΩq is closed under the derived set
operator w.r.t. τ0.
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Proof. Suppose π “ ωβ ¨ n is a period for A, and κ is a bound such that
ℓpκq ě β. If A is bounded, then there is no element in a period, and thus
d0pAq is also bounded, making it obviously ultimately periodic.

If A is unbounded, then any period is non-empty. Hence, for any ordinal
γ ą κ with ℓpγq ą β, we have γ P d0pAq. We consider the following subcases:

• If ℓpΩq ą β ` 1, we can prove that ωβ`1 is a period for d0pAq with a
bound κ`ωβ`1. For x, y ě κ`ωβ`1, if x „ωβ`1 y, we have the following
subcases:

– If ℓpxq ě β ` 1, then y must also satisfy ℓpyq ě β ` 1, so both x
and y belong to d0pAq.

– If ℓpxq ď β, then there exist µx, µy such that x P pκ`π ¨µx, κ`π ¨
pµx`1qs and y P pκ`π ¨µy, κ`π ¨ pµy`1qs. In this case, it is easy
to see that x P d0pAq if and only if y P d0pAq, as the topological
structure of these two subsets is the same.

• If ℓpΩq “ β ` 1, then there exists a bound κ1 such that Ω “ κ1 ` π ¨ ω.
We can prove that π is a period for d0pAq with a bound κ1. This is
because if x „π y and x, y ą κ1, then there exist µx, µy such that
x P pκ1 ` π ¨ µx, κ

1 ` π ¨ pµx ` 1qs and y P pκ1 ` π ¨ µy, κ
1 ` π ¨ pµy ` 1qs.

It is easy to see that x P d0pAq if and only if y P d0pAq.

■

Proposition 4.1.2. For any ordinal Ω, H0pΩq is closed under finite union,
finite intersection, complement and the derived set operator. Moreover,
xΩ, τ0,H0pΩqy forms a general topological frame for GL.

Proof. By Definition 3.3.1, A P H0pΩq iff A|β P Upβq for any limit ordinal
β ď Ω. Since all the Upβq are closed under these operators, it is evident
that H0pΩq is also closed under these operators. So, by Definition 2.3.4,
xΩ, τ0,H0pΩqy forms a general topological frame.

In Proposition 2.2.4, we have shown that xΩ, τ0y is a scattered space, i.e.
GL is valid in xΩ, τ0y. Moreover, it is obvious that GL is also valid in the
general topological frame xΩ, τ0,H0pΩqy, because any valuation based on the
general topological frame xΩ, τ0,H0pΩqy is also a suitable valuation based on
xΩ, τ0y. ■
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Therefore, xΩ, τ0,H0pΩqy forms a general topological frame for GL , we
call it periodic frame for GL (or 0-periodic frame). Algebraically, this means
that xH0pΩq, d0y forms a modal boolean algebra for GL. We call this algebra
as periodic ordinal algebra.

Proposition 4.1.3. For any finite transitive irreflexive tree T “ xW,Ry of
depth n, there exists an onto d-map f : xωn ` 1, τ0,H0pω

n ` 1qy Ñ xW,Ry.

Proof. In Theorem 2.2.9, we have constructed the onto d-map from xωn `

1, τ0y to xW,Ry. In order to show that it is also a d-map between general
topological frames, by Definition 2.3.5, we only need to prove that for any
A Ď W , f´1pAq P H0pω

n ` 1q.
When we view xW,Ry as a general topological frame, it is xW,σ,PpW qy

where σ is the topology generated by all the R-upsets. Hence, we only need
to show that for any x P W , f´1ptxuq P H0pω

n ` 1q. Prove it by induction
on the depth n:

• If n ą 0, the tree T contains only one irreflexive point a, so the result
is trivial.

• Suppose that for any k ă n and a finite transitive irreflexive tree T 1 “

xW 1, R1y of depth k, the result holds for the onto d-map f 1 : ωk`1 ↠ T 1.
That is, for any x P W 1, f´1

k ptxuq P H0pω
k ` 1q.

Now, we prove it for the case n. In the proof of Theorem 2.2.9, T “
Ůl

i“1 TiYtau and ω
n`1 is written as the disjoint union

Ţ8

j“1XjYtω
nu

and the d-map from ωn`1 to T is constructed as: (i) fpωnq “ a; (ii) For
each i P ω, suppose that i ” j mod k for j ă l. Then f |Xi

: Xi Ñ Tj
is specified as the map fj : ω

nj ` 1 ↠ Tj.

In order to prove f´1ptxuq P H0pω
n`1q, we divide it into two subcases:

– If x “ a, then it is obvious that f´1ptxuq “ tωnu. Therefore, it
forms a hereditarily periodic set in ωn ` 1.

– If x P Tj for j P r1, ls and the depth of Tj is nj. By the induction
hypothesis, we know that f´1

j ptxuq P H0pω
nj`1q. In the construc-

tion of f , we know that f |Xi
: Xi Ñ Tj is specified as the d-map

fj : ωnj ` 1 ↠ Tj. Therefore, for each i P ω, f´1pxq X Xi is a
hereditarily periodic set in ωn ` 1. In all, f´1pxq is the union of
them, which is also a hereditarily periodic set in ωn ` 1.

27



In all, we prove that, the onto d-map we constructed in the proof of Theorem
2.2.9 is also an onto d-map from xωn ` 1, τ0,H0pω

n ` 1qy to xW,Ry. ■

By Proposition 2.3.6, we have the following corollary.

Corollary 4.1.4. For any finite Kripke model xW,Ry of GL, there exists an
ordinal Ω ă ωω and an embedding from xPpW q, dσy to xH0pΩq, d0y. In other
words, any finite algebra of GL, which is generated from a finite Kripke model
of GL, can be embedded in a periodic ordinal algebra.

4.2 General Topological Frames for GLB

In this section, we aim to find a suitable τ1 and show that xΩ, τ0, τ1,H1pΩqy
forms a general topological frame for GLB, which will be called periodic frame
for GLB.

As we have discussed, if xΩ, τ0, τ1,Ay is a general polytopological space
of GLB, then the least choice of τ1 is the topology generated by τ0 and
td0pXq|X P Au. Hence, let τ1 be defined as the topology generated by
τ0 and td0pXq|X P H1pΩqu.

Fortunately, we find that τ1 coincides with the topology θ2 introduced by
Icard [18]. In [18], Icard introduced a topological model for the variable-free
fragment of GLP (Icard’s space). This model is the ordinal ϵ0 equipped with
a sequence of topologies θ0, θ1, . . . where θ0 is the topology whose open sets
are downward closed subsets of ϵ0 and the topology θn is generated by θ0 and
all sets Un

β for β ă ϵ0, with

Un
β :“ tγ ă ϵ0 : ℓ

n
pγq ą βu.

He showed that the variable-free fragment of GLP is sound and complete
w.r.t. Icard’s space under the natural interpretation of modalities as the
derived set operations of the corresponding topologies. In fact, Icard’s space
can be considered as a general topological frame for GLP where the algebra
of admissible sets consists precisely of those sets definable by variable-free
GLP-formulas. However, it is well-known that GLP is incomplete w.r.t. this
general topological frame.

Now, we show that τ1 coincides with topology θ2. Later, by extending
the family of admissible sets, we will define the general topological frames
for which GLB will be sound and complete.
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Proposition 4.2.1. In an ordinal space Ω, topology τ1 generated by the
order topology τ0 with td0pXq|X P H1pΩqu is equal to topology θ2 generated
by τ0 with all the sets of the form Uβ “ tγ : ℓpγq ą βu.

Proof. For the direction θ2 Ď τ1, we show that for any β, there exists X P

H1pΩq such that d0pXq “ Uβ. In fact, we can find a X P H0pΩq satisfying
d0pXq “ Uβ: let X :“ t0u Y tα|ℓpαq ě βu, then we prove the following
statements:

• First, we prove that X P H0pΩq. If so, we also have X P H1pΩq.

For any limit ordinal γ ď Ω, we should prove that X|γ P Upγq:

– If ℓpγq ą β, then X|γ exactly contains all the ordinals α ă γ such
that 0 ” α mod ωβ. Hence, X|γ is a periodic set with period ωβ

satisfying ωβ ă ωℓpγq.

– If ℓpγq ď β, then we can find a bound κ such that for any ordinal
α P pκ, γq, ℓpαq ă β. Then, X X pκ, γq “ H. Therefore, X|γ P
Upγq.

• Second, we prove that d0pXq “ Uβ. For an ordinal α, we consider two
cases:

– ℓpαq ď β, then there exist µ such that α P pωβ ¨µ, ωβ ¨pµ`1qs. Then
pωβ ¨µ, ωβ ¨ pµ` 1qs is a τ0-open set and pωβ ¨µ, ωβ ¨ pµ` 1qsXX “

tωβ ¨ pµ` 1qu. Hence, d0ppω
β ¨ µ, ωβ ¨ pµ` 1qs XXq “ H. So α is

not a limit point for X.

– ℓpαq ą β, then X|α is unbounded, because for any x ă α, we have
x` ωβ ă α. Hence, α is a limit point of the set X|α.

Hence, d0pXq “ Uβ.

So, we prove that X P H1pΩq and d0pXq “ Uβ. Hence, θ2 Ď τ1.
For the other direction τ1 Ď θ2, we aim to show that for any X P H1pΩq,

d0pXq P θ2. By Proposition 3.3.5, we can assume that X “
Ťk

i“1pℓ
´1pAiq X

Biq where Ai, Bi P H0pΩq for i P r1, ks, so d0pXq “
Ťk

i“1 d0pℓ
´1pAiq X Biq.

Hence, we only need to show that for any γ P d0pℓ
´1pAiq X Biq, there exists

an open set U P τ I1 such that γ P U Ď d0pℓ
´1pAiq X Biq. We divide it to two

cases:
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• Suppose that ℓ2pγq “ 0, in [18], it is prove that such a γ is an isolated
point in θ2. Hence tγu is an open set in θ2 and γ P tγu Ď d0pXq.

• Suppose that ℓ2pγq ą 0, then ℓpγq is a limit ordinal. Since Bi P H0pΩq,
so Bi|γ is ultimately periodic in γ with a period π ă ωℓpγq and a bound
κ. By Corollary 3.2.3, we can assume that π “ ωβ with β ă ℓpγq and
ℓpκq ě β.

Since γ P d0pℓ
´1pAiq X Biq, ℓ

´1pAiq X Bi is unbounded in γ. Consider
an ordinal α P ℓ´1pAiq X Bi such that α ą κ, α P Bi, ℓpαq P Ai and
ℓpαq ă ℓpγq, then it is easy to see that tδ : δ ą κ, ℓpδq “ ℓpαq, δ ” α
mod πu Ď ℓ´1pAiq X Bi. Finally, this means that Uℓpαq X pκ,Ωq Ď
d0pℓ

´1pAiq XBiq, which is an open set in τ I1 .

Hence, we prove that for any X P H1pΩq and any γ P d0pXq, there exists
an θ2-open neighbourhood of γ which contains in d0pXq. Therefore, d0pXq
is θ2-open, which shows that τ1 Ď θ2.

In all, we prove that τ1 “ θ2. ■

Since τ1 “ θ2, we consider τ0 Y tUβ : β ă Ωu as a basis for τ1.
The following proposition from [4, Lemma 13.1] will be very useful later.

Proposition 4.2.2. For any ordinal Ω, the following statements hold:

(1) ℓ : xΩ, τ1y Ñ xΩ, τ0y is a d-map;

(2) ℓ2 is the rank function of τ1.

Now, we aim to show that xΩ, τ0, τ1,H1pΩqy forms a general topological
frames, that is, we need to prove that H1pΩq is closed under d0 and d1.

Proposition 4.2.3. H1pΩq is closed under the derived set operator w.r.t. τ0.

Proof. For A P H1pΩq, by Definition 3.3.5, we can assume that A “
Ťk

i“1pℓ
´1pAiq X Biq where Ai, Bi P H0pΩq for i P r1, ks. It is easy to see

that d0p
Ťk

i“1pℓ
´1pAiq X Biqq “

Ťk
i“1 d0pℓ

´1pAiq X Biq. Hence, we only need
to show that for any A,B P H0pΩq, we have d0pℓ

´1pAqXBq P H1pΩq. We aim
to show that for any limit ordinal γ ď Ω, if B is ultimately periodic with
respect to γ (i.e. BXγ is ultimately periodic in γ), then so is d0pℓ

´1pAqXBq.
With respect to γ, suppose that there exists a bound κ and a period

π :“ ωνpn ` 1q, that is to say, B X γ can be viewed as a string B0B
α
1 as
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Definition 3.1.4 such that κ “ |B0|, π “ |B1| and γ “ κ ` π ¨ α. Hence,
by the additivity of d0, it is sufficient to show that d0pB0 X ℓ´1pAqq and
d0pB

α
1 X ℓ

´1pAqq are both ultimately periodic in γ.
B0 X ℓ´1pAq is bounded in γ, therefore, so is d0pB0 X ℓ´1pAqq. Hence, it

is ultimately periodic in γ.
For d0pB

α
1 X ℓ

´1pAqq, consider the set E :“ tπ ¨β : β ă αu. These are the
coordinates of the first occurrences of each period B1 in the string. Then, we
split Bα

1 into Bα
1 XE and Bα

1 zE. By periodicity, if 0 P B1 then B
α
1 XE “ E,

otherwise Bα
1 X E “ H. Using the additivity of d0 again, we now deal with

d0pB
α
1 X E X ℓ

´1pAqq and d0ppB
α
1 zEq X ℓ

´1pAqq separately.
For d0pB

α
1 XEXℓ

´1pAqq, there are two cases: if 0 R B1, then B
α
1 XE “ H,

so d0pB
α
1 X E X ℓ´1pAqq “ H; if 0 P B1, then d0pB

α
1 X E X ℓ´1pAqq “

d0pE X ℓ
´1pAqq, which is obviously ultimately periodic.

For d0ppB
α
1 zEq X ℓ´1pAqq, we observe that the ranks of points in Bα

1 zE
are the same as of the corresponding points in B1zt0u. Hence, d0ppB

α
1 zEq X

ℓ´1pAqq “ d0pppB1zt0uq X ℓ´1pAqqαq. Therefore, it is obviously ultimately
periodic.

■

Proposition 4.2.4. H1pΩq is closed under the derived set operator w.r.t. τ1.

Proof. For A P H1pΩq, by Definition 3.3.5, we can assume that A “
Ťk

i“1pℓ
´1pAiq X Biq where Ai, Bi P H0pΩq for i P r1, ks. It is easy to see

that d1p
Ťk

i“1pℓ
´1pAiq X Biqq “

Ťk
i“1 d1pℓ

´1pAiq X Biq. Hence, we only need
to show that for any A,B P H0pΩq, we have d1pℓ

´1pAq XBq P H1pΩq.
In fact, we aim to show that d1pℓ

´1pAq X Bq “ d1pℓ
´1pAqq X d1pBq. It is

obvious that d1pℓ
´1pAq X Bq Ď d1pℓ

´1pAqq X d1pBq, hence we only need to
show the other direction.

Assume that α P d1pℓ
´1pAqq X d1pBq, then ℓ

2pαq ą 0. Since B P H0pΩq,
we have B|α P Upαq. Then, for B|α, there exists a period π “ ωβ and a
bound κ such that ℓpκq ě β. For any κ ă x, y ă α, if ℓpxq, ℓpyq ě β, then
x „π y. Hence, either Uβ X pκ, αq Ď B or Uβ X pκ, αq X B “ H. However, if
Uβ Xpκ, αqXB “ H then Uβ Xpκ, αs is an τ1-open neighbourhood of α such
that UβXpκ, αsXB|α “ H, which is contradict to the assumption a P d1pBq.
Hence, we must have Uβ X pκ, αq Ď B.

Then we know that Uβ X pκ, αs is an τ1-open neighbourhood of α such
that Uβ X pκ, αq Ď B. In this case, it is obvious that α P d1pℓ

´1pAqq ñ α P
d1pℓ

´1pAq X Uβ X pκ, αqq ñ α P d1pℓ
´1pAq XBq.
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Now, we have d1pℓ
´1pAq X Bq “ d1pℓ

´1pAqq X d1pBq. By Proposition
4.2.2, we know that ℓ is a d-map from xΩ, τ1y to xΩ, τ0y. Combining with
Proposition 2.2.8, we have d1pℓ

´1pAqq “ ℓ´1pd0pAqq. Therefore, d1pℓ
´1pAq X

Bq “ d1pℓ
´1pAqq X d1pBq “ ℓ´1pd0pAqq X d1pBq. Since A,B P H0pΩq and

H0pΩq is closed under d0 and d1, we have d0pAq P H0pΩq and d1pBq P H0pΩq.
Hence, we prove that d1pℓ

´1pAq X Bq P H1pΩq, i.e., H1pΩq is closed under
d1. ■

Hence, xΩ, τ0, τ1,H1pΩqy forms a general topological frames. We call such
frames periodic frames or 1-periodic frames.

Proposition 4.2.5. For any ordinal Ω, GLB is sound w.r.t. the general
topological frame xΩ, τ0, τ1,H1pΩqy.

Proof. First, in [18], it is proved that both xΩ, τ0y and xΩ, τ1y are scattered
spaces. Second, τ0 Ď τ1.

Last, for any A P H1pΩq, we have proved that d0pAq P τ1. H0pΩq Ď H1pΩq,
so, for A P H0pΩq, d0pAq P τ1 is also true.

In all, by Proposition 2.3.7, all the axioms of GLB are valid in
xΩ, τ0, τ1,H1pΩqy.

■
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Chapter 5

Completeness for GLB

In this chapter, our goal is to prove that GLB is complete with respect to the
class of 1-periodic frames.

5.1 JB-Frame

For the topological completeness proof, we need to discuss a subsystem of
GLB introduced in [8] and denoted JB. This logic is defined by weakening
axiom (ii) of GLB to the following axioms (iv) and (v) both of which are
theorems of GLP:

(iv) r0sφÑ r1sr0sφ;

(v) r0sφÑ r0sr1sφ.

The logic JB corresponds to a simple class of frames, which is established
using standard methods [8, Theorem 1]. u

Lemma 5.1.1. JB is sound and complete w.r.t the class of (finite) frames
xW,R0, R1y such that, for all x, y, z P W ,

1 R0 and R1 are transitive and dually well-founded binary relations;

2 If xR1y, then xR0z iff yR0z;

3 xR0y and yR1z imply xR0z.
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Let R˚
0 denote the transitive closure of R0YR1 and let E0, E1 denote the

reflexive, symmetric, transitive closure of R˚
0 and R1, respectively. It is clear

that E1 refines E0. We call each Ei equivalence class a i-sheet. By condition
2, all points in a 1-sheet are R0 incomparable. However, R0 naturally defines
an ordering on 1-sheets as follows: if α and β are 1-sheets, then αR0β iff
Dx P αDy P βxR0y. By the standard techniques, one can improve the Lemma
to show the completeness, in which the set of 1-sheets contained in each
0-sheet is a tree under R0, and if αR0β then xR0y for all x P α, y P β.
Any structure satisfying these conditions automatically becomes a JB-frame,
which we refer to as a ”tree-like JB-frame” (JB-tree for short).

As shown in [8], GLB is reducible to JB in the following sense. First,
assume that φ is a formula in the language LB containing both r0s and r1s.
Denote the set of all subformulas of φ of the form r0sψ as tr0sψiuiPI . Then,
let

Mpφq :“
ľ

iPI

pr0sψi Ñ r1sψiq.

When φ doesn’t contain both r0s and r1s, we define Mpφq as J. Also, let
M`pφq :“Mpφq ^ r0sMpφq ^ r1sMpφq.

Proposition 5.1.2 ([8]). GLB $ φ iff JB $M`pφq Ñ φ.

Consider a JB-tree T “ xT,R0, R1y. A node w P T is called a 0-root if
there is no predecessor of w with respect to R˚

0 , and it is called a 1-root if
there is no predecessor of w with respect to R1.

Definition 5.1.3. We view T as a polytopological space T “ xT, σ0, σ1y by
considering all Ri-upsets to be σi-open. Given a general topological space
A “ xΩ, τ0, τ1,H1pΩqy and a map f : Ω Ñ T we will say that f is a JB-
morphism if:

(j1) For any subset X Ď T , f´1pXq P H1pΩq;

(j2) f : xΩ, τ1y Ñ xT, σ1y is a d-map;

(j3) f : xΩ, τ0y Ñ xT, σ0y is an open map;

(j4) For each 1-root w P T , the sets f´1pR˚
0pwqq and f

´1pR˚
0pwq Y twuq are

open in τ0;

(j5) For each 1-root w P T , the set f´1pwq is a τ0-discrete subspace of A.
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A JB-morphism f : Ω Ñ T can be thought of as a map which is a weak
kind of d-map from xΩ, τiy to xT, σiy for i P t0, 1u.

The definition of JB-morphism is a generalization of the definition in [3],
denoted as J2-morphism there. The difference is that their J2-morphism is
a kind of morphism from a topological space to a JB-tree, but we generalize
it for general topological frames. Hence, we add the condition pj1q, pj2q ´
pj5q, which have existed in the definition of J2-morphism in [3]. Then, the
following theorem is a version of Theorem 6.6 in [3].

Theorem 5.1.4. Let A “ xΩ, τ0, τ1,H1pΩqy be a general topological frame
for GLB, T a JB-tree, f : ΩÑ T a JB-morphism and φ a LB-formula. Then
A |ù φ iff T |ùM`pφq Ñ φ.

The proof of this theorem will be the same as the proof for Theorem 6.6
in [3].

Our aim is to prove the following lemma.

Lemma 5.1.5 (Main). For each finite JB-tree xT,R0, R1y, there exists an or-
dinal Ω and an onto JB-morphism f : xr1,Ωs, τ0, τ1,H1pΩ`1qy↠ xT,R0, R1y,
where Ω ă ωωω

.

Using this lemma, it is easy to see that the logic GLB is complete w.r.t.
the class of 1-periodic frames.

Remark 5.1.6. It is worth noting that in Lemma 5.1.5, we analyze the general
topological frames based on sets of the form r1,Ωs instead of r0,Ωs. Here, it
should be understood as the subframe, i.e., we restrict the topologies τ0 and
τ1, as well as the admissible sets H1pΩ ` 1q, to r1,Ωs. For convenience, we
still denote it as xr1,Ωs, τ0, τ1,H1pΩ` 1qy.

On the other hand, it is easy to see that a 1-periodic frame
xr0,Ωs, τ0, τ1,H1pΩ` 1qy is isomorphic to the subframe xr1,Ωs, τ0, τ1,H1pΩ`
1qy.

Moreover, this topological completeness theorem can also be stated in a
stronger uniform way.

Theorem 5.1.7. Let Ω “ xωωω
, τ0, τ1,H1pω

ωω
qy. Then LogpΩq “ GLB.

5.2 Some operations on Ordinal Spaces

In this part, we introduce two operations on ordinal spaces: sum and lifting.
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Definition 5.2.1 (Sum). Suppose that we have a finite number of ordinals
λ1, . . . , λk and d-maps fi : xr1, λis, τ0, τ1,H1pλi ` 1qy Ñ xTi, R0, R1y where
xTi, R0, R1y is a JB-tree for each i P r1, ks. Define λ “ λ1 ` . . . ` λk, and
the sum space is xr1, λs, τ0, τ1,H1pλ ` 1qy. Moreover, we define the sum of
these JB-morphisms fi, denoting as

Ůk
i“1 fi : xr1, λs, τ0, τ1,H1pλ ` 1qy Ñ

Ůk
i“1xTi, R0, R1y, as follows:

k
ğ

i“1

fipβq :“ fipβ
1
q, if β “ λ1 ` . . .` λi´1 ` β

1, β1
P r1, λis.

The following proposition regarding the sum operation is straightforward.

Proposition 5.2.2. The sum space xr1, λs, τ0, τ1,H1pλ ` 1qy is isomorphic
to the topological sum

Ůk
i“1r1, λi ` 1s. Moreover, the sum of JB-morphisms

Ůk
i“1 fi is a JB-morphism.

Next, we introduce the lifting operation, similar to [3, Lemma 8.6], which
allows us to construct a d-map from an ordinal equipped with the topology
τ1 to a tree-like Kripke model.

Definition 5.2.3 (Lifting Space). For an ordinal space xr0, λs, τ0y, the ordi-
nal space xr1, ωλs, τ1y is called the lifting space of xr0, λs, τ0y.

Lemma 5.2.4. The rank function ℓ : xr1, ωλs, τ1,H1pω
λ ` 1qy Ñ

xr0, λs, τ0,H0pλ` 1qy is a d-map.

Proof. In Proposition 4.2.2, we have shown that ℓ is a d-map from xr1, ωλs, τ1y
to xr0, λs, τ0y. Therefore, we only need to show that for any A P H0pλ ` 1q,
l´1pAq P H1pω

λ ` 1q. This follows directly from Definition 3.3.4. ■

5.3 Proof of main lemma

For each finite JB-tree xT,R0, R1y with a root a, we aim to specify an ordinal
λ ă ωωω

such that there exists a JB-morphism f : xr1, λs, τ0, τ1,H1pλ`1qy↠
xT,R0, R1y with f

´1paq “ tλu. We refer to such a JB-morphism as suitable.
We divide the proof into the following lemmas.

We prove the claim by induction on the R0-depth of T , which is denoted
as ht0pT q.
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Lemma 5.3.1 (The Base Step). Suppose ht0pT q “ 0. Then there exists an
ordinal λ ă ωωω

and a suitable JB-morphism from r1, λs to T .

Proof. If ht0pT q “ 0, then T contains only one 1-sheet, i.e. it is a tree w.r.t.
relation R1.

We construct the model in two steps:

• Consider the tree xT,R1y, which contains only one relation. By The-
orem 2.2.9 and Proposition 4.1.3, we know that there exists an or-
dinal λ0 ă ωω and a mapping f0 : r0, λ0s Ñ T such that f0 :
xr0, λ0s, τ0,H0pλ0 ` 1qy Ñ xT,R1y is a d-map.

• By Lemma 5.2.4, we have the lifting space xr1, ωλ0s, τ1,H1pω
λ0 ` 1qy

such that the rank function ℓ : xr1, ωλ0s, τ0, τ1,H1pω
λ0 ` 1qy ↠

xr0, λ0s, τ0,H0pλ0 ` 1qy is a d-map.

Combining the two steps, we obtain a d-map f0 ˝ ℓ : xr1, ω
λ0s, τ1,H1pω

λ0`

1qy Ñ xT,R1y denoted as f . We now prove that f is also a JB-morphism
from xr1, ωλ0s, τ0, τ1,H1pω

λ0 ` 1qy to xT,R0, R1y:

(j1) We need to prove that for any point w P T , f´1ptwuq P H0pω
λ0 ` 1q.

Since f “ f0 ˝ ℓ, we have f´1ptwuq “ ℓ´1pf´1
0 ptwuqq. Since f0 is

the function constructed in the proof of Theorem 2.2.9, we know that
f´1
0 ptwuq P H0pλ0 ` 1q. By Definition 3.3.4, if A P H0pλ0 ` 1q, then
ℓ´1pAq P H1pω

λ0`1q. Therefore, f´1ptwuq is a 1-periodic set in ωλ0`1.

(j2) Since f is a d-map from xωλ0 ` 1, τ1y to xT,R1y, the condition (j2) is
satisfied.

(j3) In this case, R0 “ H, so any subset of T is a σ0-open set. Hence, it is
evident that f : xωλ0 ` 1, τ0y Ñ xT,R0y is an open map.

(j4) Since R0 “ H, so R˚
0 “ R1. T contains only one 1-sheet, i.e. the root

a of T . Hence, we only need to check that f´1pT ztauq and f´1pT q
are open in τ0. f´1ptauq “ ℓ´1pf´1

0 ptauqq “ ℓ´1ptλ0uq “ tωλ0u, so
f´1pT ztauq “ tα|α ă ωλ0u and f´1pT q “ tα|α ď ωλ0u, which are both
τ0-open.

(j5) We have checked that f´1ptauq “ tωλ0u, so it is obviously a τ0-discrete
subspace.
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Therefore, we conclude that f is a JB-morphism from
xr1, ωλ0s, τ0, τ1,H1pω

λ0 ` 1qy to xT,R0, R1y. Obviously, ωλ0 ă ωωω
. ■

Lemma 5.3.2 (The Induction Step). Suppose that ht0pT q “ m ą 0. Then
there exists an ordinal λ ă ωωω

and a suitable JB-morphism from r1, λs to T .

Proof. If ht0pT q “ m ą 0. Let a1, ¨ ¨ ¨ , ak be the immediate R0-successors
of a, which are 1-roots. Denote Ti “ taiu Y R˚

0paiq for i P r1, ks, and T0 “
tau Y R1paq. Note that T “

Ťk
i“0 Ti. Furthermore, for each i P r1, ks the

subframe Ti of T is a JB-tree of R0-depth less than m. By the induction
hypothesis, for each i P r1, ks, there exists an ordinal λi ă ωωω

and a JB-
morphism gi : xr1, λis, τ0, τ1,H1pλi ` 1qy Ñ xTi, R0, R1y.

Let λ :“ λ1 ` ¨ ¨ ¨ ` λk and let g : xr1, λs, τ0, τ1,H1pλ ` 1qy Ñ

x
Ůk

i“1 Ti, R0, R1y be the sum of gi, i.e. g “
Ůk

i“1 gi. We denote
Ůk

i“1 Ti
as S. By Proposition 5.2.2, we know that g is a JB-morphism.

Next, consider the 1-sheet xT0, R0, R1y. Using the construction from the
Base Step (Lemma 5.3.1), there exists an ordinal λ0 ă ωωω

and a suitable
JB-morphism g0 : xr1, λ0s, τ0, τ1,H1pλ0 ` 1qy Ñ xT0, R0, R1y.

Now, we aim to construct a function f : xr1, λ ¨λ0s, τ0, τ1,H1pλ ¨λ0`1qy Ñ
xT,R0, R1y. First, divide r1, λ¨λ0s into two disjoint parts: X0 :“ tλ¨µ`ν|µ ă
λ0, ν P r1, λsu and X1 :“ tλ ¨µ|µ ď λ0^ ℓpµq ą 0u. Then, define f as follows:

fpαq :“

#

gpνq, if α P X0 is of the form λ ¨ µ` ν;

g0pµq, if α P X1 is of the form λ ¨ µ.

Last, we prove that f is a suitable JB-morphism from xr1, λ ¨
λ0s, τ0, τ1,H1pλ ¨ λ0 ` 1qy to xT,R0, R1y:

(j1) We need to prove that for any point w P T , f´1ptwuq P H1pλ ¨ λ0 ` 1q.
We divide it to two cases:

– Suppose that w P Ti for some i P r1, ks. We have known that
gi is a JB-morphism, hence g´1

i ptwuq P H1pλi ` 1q. It follows
that g´1ptwuq P H1pλ ` 1q. In the product space, f´1ptwuq is
tλ ¨ µ ` β|µ ă λ0, β P g´1ptwuqu. By Lemma 3.3.6, it is a 1-
periodic set in r1, λ ¨ λ0s.

– Suppose that w P T0. We have known that g0 is a JB-morphism,
hence g´1

0 ptwuq P H1pλ0 ` 1q. In the product space, f´1ptwuq is
tλ ¨ µ|ℓpµq ą 0, µ P g´1

0 ptwuqu. By Lemma 3.3.6, it is a 1-periodic
set in r1, λ ¨ λ0s.
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(j2) We need to prove that f is a d-map from xr1, λ ¨ λ0s, τ1y to xT,R1y.

We divide T into two parts: S “
Ůk

i“1 Ti and T0, since T0 is a 1-sheet,
xT,R1y can be viewed as the disjoint union of xS,R1y and xT0, R1y.
On the other hand, xr1, λ ¨ λ0s, τ1y can also be divided into two parts:
X0 :“ tλ ¨µ` ν|µ ă λ0, ν P r1, λsu and X1 :“ tλ ¨µ|µ ď λ0^ ℓpµq ą 0u.
We know that X0 “ f´1pSq and X1 “ f´1pT0q.

Hence, in order to prove that f is a d-map, we only need to show that
f |X0 : X0 Ñ S and f |X1 : X1 Ñ T0 are both d-maps. Since g0 is a d-
map, it is easy to see that f |X1 is also d-map. For f |X0 , in fact, X0 can
be represented as the topological product r1, λs ˆ tµ|ℓpmuq “ 0, µ ă
λ0u. g : λ` 1Ñ S is a d-map, so it follows that f |X0 is also a d-map.

In all, we show that f is a d-map.

(j3) In order to prove that f is an open map from xr1, λ ¨λ0s, τ0y to xT,R0y,
we need to show that for any open interval pβ1, β2q in r1, λ ¨ λ0s,
fppβ1, β2qq is R0-upset. We divide it to two cases:

– If there exists an limit ordinal µ such that λ ¨ µ P pβ1, β2q, then
it is easy to see that there exists and ordinal µ1 ă µ such that
rλ ¨ µ1, λ ¨ pµ1` 1q Ď pβ1, β2q and fprλ ¨ µ

1, λ ¨ pµ1` 1qq “ S. Hence,
fppβ1, β2qq forms a R0-upset.

– If there is no limit ordinal µ such that λ ¨ µ P pβ1, β2q, then
fppβ1, β2qq Ď S. In this case, we know that the restriction of
f in any interval rλ ¨ δ ` 1, λ ¨ pδ ` 1qs is an open map. Hence, it
is obvious that fppβ1, β2qq is R0-upset.

Hence, f is still an open map.

(j4) There are two kinds of 1-root in T , it is either the root a of T or a
1-root in Ti for some i P r1, ks:

– For the root a, f´1ptauq “ tλ ¨λ0u, so f
´1pR˚

0paqq “ f´1pT ztauq “
r1, λ ¨ λ0q and f

´1pR˚
0paq Y tauq “ f´1pT q “ r1, λ ¨ λ0s, which are

both τ0-open.

– For a 1-root w P Ti, since gi is JB-morphism, we have known that
g´1
i pR

˚
0pwqq and g´1

i pR
˚
0pwq Y twuq are τ0-open in r1, λis, then it

is easy to see that g´1pR˚
0pwqq and g

´1pR˚
0pwq Y twuq are τ0-open

in r1, λs. Therefore, f´1pR˚
0pwqq “ tα : α “ λ ¨ µ ` ν, for ν P
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g´1pR˚
0pwqqu and f

´1pR˚
0pwq Y twuq “ tα : α “ λ ¨ µ ` ν, for ν P

R˚
0pwqYtwuu, which are both τ0-open, because they are the union

of τ0-open sets.

(j5) Similar to (j4), there are two cases:

– For the root a, f´1ptauq “ tλ¨λ0u, hence, it is obviously τ0-discrete
subspace.

– For a 1-root w P Ti, since gi is JB-morphism, we have known that
g´1
i pwq is τ0-discrete subspace of r1, λis, then it is obvious that
g´1pwq is τ0-discrete subspace of r1, λs. Therefore, f´1pwq “ tα :
α “ λ ¨ µ ` ν, for ν P g´1pwqu, which is a τ0-discrete subspace of
r1, λ ¨ λ0s.

Hence, we find that f is a JB-morphism from xr1, λ¨λ0s, τ0, τ1,H1pλ¨λ0`1qy
to xT,R0, R1y. Since λi ă ωωω

for each i P r1, ks and λ “ λ1 ` . . . ` λk, so
λ ă ωωω

. Also, λ0 ă ωωω
, hence λ ¨ λ0 ă ωωω

still holds. ■

Combining Lemma 5.3.1 and 5.3.2, we finally prove the main
lemma. Since all the periodic frames we used are subframes of Ω “

xωωω
, τ0, τ1,H1pω

ωω
qy, thus it is sufficient to show the Theorem 5.1.7.
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Chapter 6

Conclusion

In this thesis, we define the concept of a general topological frame, that is, a
topological space equipped with a distinguished set of admissible sets, akin
to the notion of a general Kripke frame. Then, we describe a natural class of
general topological frames on ordinals, which we call periodic frames. These
frames are based on well-orderings equipped with some natural topologies
introduced by Icard [18]. While GLP is known to be incomplete w.r.t. Icard’s
spaces, we demonstrate that the bimodal fragment of GLP is sound and
complete with respect to the periodic frames. More specifically, we present a
result in the form of the Abashidze-Blass theorem: for any ordinal Ω ě ωωω

,
the periodic frame xΩ, τ0, τ1,H1pΩqy is sound and complete with respect to
GLB.

In the future, our aim is to generalize this work to GLP. That is, we
intend to generalize the concept of periodic frames and find a natural class
of general topological frames which is sound and complete with respect to
GLP. More precisely, we need to generalize the concept of 1-periodic set to
n-periodic set for each n P ω, and we conjecture that with all the natural
topologies introduced by Icard, we can define suitable periodic frames with
an underlining set ϵ0, which is sound and complete with respect to the whole
system GLP. Additionally, we hope that our semantic tools will be useful in
the application of GLP in proof theory and arithmetic.
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