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Abstract. Computational social choice is an interdisciplinary field of
study at the interface of social choice theory and computer science, pro-
moting an exchange of ideas in both directions. On the one hand, it
is concerned with the application of techniques developed in computer
science, such as complexity analysis or algorithm design, to the study
of social choice mechanisms, such as voting procedures or fair division
algorithms. On the other hand, computational social choice is concerned
with importing concepts from social choice theory into computing. For
instance, the study of preference aggregation mechanisms is also very
relevant to multiagent systems. In this short paper we give a general
introduction to computational social choice, by proposing a taxonomy
of the issues addressed by this discipline, together with some illustrative
examples and an (incomplete) bibliography.

1 Introduction: What is Computational Social Choice?

Social choice theory is concerned with the design and analysis of methods for
collective decision making. For a few years now, computer science and artificial
intelligence (AI) have been taking more and more of an interest in social choice.
There are two main reasons for that, leading to two different lines of research.
The first of these is concerned with importing notions and methods from AI for
solving questions originally stemming from social choice. The point of depar-
ture for this line of research is the fact that most of the work in social choice
theory has concentrated on establishing abstract results regarding the existence
(or otherwise) of procedures meeting certain requirements, but computational
issues have rarely been considered. For instance, while it may not be possible
to design a voting protocol that makes it impossible for a voter to cheat in one
way or another, it may well be the case that cheating successfully turns out to
be a computationally intractable problem, which may therefore be deemed an
acceptable risk. This is where AI (and operations research, and more generally
computer science) comes into play. Besides the complexity-theoretic analysis of
voting protocols, other typical examples for work in computational social choice
include the formal specification and verification of social procedures (such as fair
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division algorithms) using mathematical logic, and the application of techniques
developed in AI and logic to the compact representation of preferences in com-
binatorial domains (such as negotiation over indivisible resources or voting for
committees).

The second line of research within computational social choice goes the other
way round. It is concerned with importing concepts and procedures from social
choice theory for solving questions that arise in computer science and AI applica-
tion domains. This is, for instance, the case for managing societies of autonomous
software agents, which calls for negotiation and voting procedures. Another ex-
ample is the application of techniques from social choice to developing page
ranking systems for Internet search engines.

All of these are examples for a wider trend towards interdisciplinary research
involving all of decision theory, game theory, social choice, and welfare economics
on the one hand, and computer science, artificial intelligence, multiagent systems,
operations research, and computational logic on the other. In particular, the
mutually beneficial impact of research in game theory and computer science is
already widely recognised and has lead to significant advances in areas such as
combinatorial auctions, mechanism design, negotiation in multiagent systems,
and applications in electronic commerce.

The purpose of this paper is to highlight some further areas of successful
interdisciplinary research, focussing on the interplay of social choice theory with
computer science, and to propose a taxonomy of the issues tackled by this new
discipline of computational social choice. There are two distinct lines along which
we could classify the topics addressed by computational social choice:

(a) the nature of the social choice problem dealt with; and
(b) the type of formal or computational technique studied.

These two dimensions are independent to some extent. We first give a (non-
exhaustive) list of topics falling under (a):

preference aggregation — Aggregating preferences means mapping a collec-
tion P = 〈P1, . . . , Pn〉 of preference relations (or profiles) of individual agents
into a collective preference relation P ∗ (which implies circumventing Arrow’s
impossibility theorem [6] by relaxing one of its applicability conditions).
Sometimes we are only concerned with determining a socially preferred
alternative, or a subset of socially preferred alternatives rather than a full
collective preference relation: a social choice function maps a collective
profile P into a single alternative, while a social choice correspondence maps
a collective profile P into an nonempty subset of alternatives. This first
topic is less specific than the following ones, which mostly also deal with
some sort of preference aggregation, but each in a much more specific context.

voting theory — Voting is one of the most popular ways of reaching common
decisions. Researchers in social choice theory have studied extensively the
properties of various families of voting rules, but have typically neglected
computational issues. A whole panorama of voting rules has been proposed



in the literature [15]. We shall only mention a few examples here. A
positional scoring rule computes a score (a number) for each candidate
from each individual preference profile and selects the candidate with the
maximum sum of scores. The plurality rule, for instance, gives score 1
to the most preferred candidate of each voter and 0 to all others. The
Borda rule assigns scores from m (the number of candidates) down to 1 to
the candidates according to the preference profile of each voter. Another
important concept is that of a Condorcet winner, i.e. a candidate preferred
to any other candidate by a strict majority of voters. It is well-known that
there are profiles for which no Condorcet winner exists. Obviously, when
there exists a Condorcet winner then it is unique. A Condorcet-consistent
rule is a voting rule electing the Condorcet winner whenever there is one.

resource allocation and fair division — Resource allocation of indivisible
goods aims at assigning items from a finite set R to the members of a set
of agents N , given their preferences over all possible bundles of goods. In
centralised allocation problems the assignment is determined by a central
authority to which the agents have given their preferences beforehand.
In distributed allocation problems agents negotiate, communicate their
interests, and exchange or trade goods in several rounds, possibly in a
multilateral manner. An overview of issues in resource allocation may be
found in [20]. We can distinguish two types of criteria when assessing the
quality of a resource allocation, namely efficiency and fairness. The most
fundamental efficiency criterion is Pareto efficiency: an allocation should
be such that there is not alternative allocation that would be better for
some agents without being worse for any of the others. An example for a
fairness condition is envy-freeness: an allocation is envy-free iff no agent
would rather obtain the bundle held by one of the others.

coalition formation — In many occasions, agents do not compete but
instead cooperate, for instance to fullfill more efficiently a given task.
Suppose for instance that agent x is rewarded 10 when he performs a given
task alone, while agent y gets 20. Now if they form a team, the gain is
up to 50 (think for instance of two musicians, playing either solo or in a
duet). Coalition formation studies typically two questions: what and how
coalitions will form for a given problem, and how should then the surplus
be divided among the members of the coalition (after they have solved
their optimisation problem). Central here is the notion of stability: an agent
should have no incentive to leave the coalition. These questions are studied
in the field of cooperative game theory [72], and different solution concepts
have been introduced. For instance, the strongest of these, known as the
core, requires that no other coalition could make its members better off.

judgement aggregation and belief merging — The field of judgement
aggregation aims at studying how a group of individuals should aggregate
their members’ individual judgements on some interconnected propositions



into corresponding collective judgements on these propositions. Such aggre-
gation problems occur in many different collective decision-making bodies
(especially committees and expert panels).1 Belief merging is a closely
related problem that is concerned with investigating ways to aggregate a
number of individual belief bases into a collective one (connections between
both problems are discussed by Eckert and Pigozzi [42, 78]).

ranking systems — The so-called “ranking systems” setting is a variation of
classical social choice theory where the set of agents and the set of alterna-
tives coincide. The most well-known family of such systems are page ranking
systems in the context of search engines (and more generally, reputation sys-
tems) [5, 92].

As concerns the second dimension of our proposed taxonomy of topics in compu-
tational social choice, namely the classification according to the technical issues
addressed rather than the nature of the social choice problem itself, here is now
an (equally incomplete) list of issues:

– computationally hard aggregation rules;
– social choice in combinatorial domains;
– computational aspects of strategy-proofness and manipulation;
– distributed resource allocation and negotiation;
– communication requirements in social choice;
– logic-based analysis of social procedures.

The rest of the paper is organised according to this second dimension. For each
of the items above we give some description of typical problems considered in
the literature, together with some pointers to the bibliography.

2 Computationally Hard Aggregation Rules

Many aggregation and voting rules among those that are practically used are
computable in linear or quadratic time in the number of candidates (and almost
always linear in the number of voters). Therefore, when the number of candidates
is small (which is typically the case for political elections where a single person
has to be elected), computing the outcome of a voting rule does not require
any sophisticated algorithms. However, there are also a few voting rules that
are computationally complex. The following ones have been considered from the
computational point of view.

Kemeny — Kemeny’s aggregation rule consists of aggregating n individual
profiles into a collective profile (called Kemeny consensus) being closest to
the n profiles, with respect to a distance which, roughly speaking, is the

1 An introduction to judgement aggregation, together with a bibliography, may be
found on the website http://personal.lse.ac.uk/LIST/doctrinalparadox.htm.



sum, for all agents, of the numbers of pairs of alternatives on which the
aggregated profile disagrees with the agent’s profile. This aggregation rule
can be turned into a voting rule: a Kemeny winner is a candidate ranked
first in one of the Kemeny consensus. Computing a Kemeny consensus
is NP-hard [10], and deciding whether a given candidate is a Kemeny
winner is ∆P

2 (O(log n))-complete [52]. Its practical computation has also
been addressed [36, 24], while other work has focussed on approximating
Kemeny’s rule in polynomial time [3] .

Slater — Slater’s rule aggregates n individual profiles P1, . . . , Pn into a
collective profile (called Slater ranking) minimising the distance to the
majority graph MP induced by P (MP is the graph whose vertices are
the candidates and that contains the edge x → y if and only if a strict
majority of voters prefers x to y). Slater’s rule is NP-hard, even under the
restriction that pairwise ties cannot occur [3, 4, 23]. The computation of
Slater rankings has been addressed by Charon and Hudry [19, 56] as well as
Conitzer [23], who gives an efficient preprocessing technique for computing
Slater rankings by partitioning the set of candidates into sets of “similar”
candidates.

Dodgson — In this voting rule, proposed in 1876 by Dodgson (better known
as Lewis Carroll), the election is won by the candidate(s) who is (are)
“closest” to being a Condorcet winner: each candidate is given a score that
is the smallest number of exchanges of adjacent preferences in the voters’
preference orders needed to make the candidate a Condorcet winner with re-
spect to the resulting preference orders. Whatever candidate (or candidates,
in the case of a tie) has the lowest score is the winner. This problem was
shown to be NP-hard by Bartholdi et al. [10], and ∆P

2 (O(log n))-complete
by Hemaspaandra et al. [50].

Young — The principle of Young’s voting rule is similar to Dodgson’s, but
here the score of a candidate x is the smallest number of voters whose
removal makes x a Condorcet winner. Deciding whether x is a winner
according to this rule is ∆P

2 (O(log n))-complete as well [84].

Banks — A Banks winner for a collection of profiles P is the top vertex of
any maximal (with respect to inclusion) transitive subtournament of the
majority graph MP . The problem of deciding whether some fixed vertex v
is a Banks winner for P is NP-complete [93, 55].

See also [54] for a partial overview of complexity results for preference aggrega-
tion problems.



3 Social Choice in Combinatorial Domains

As long as the set of alternatives is small in size, preferences can be represented
explicitly. That is, we can simply list all alternatives together with their utility
or their rank in the preference order. Unfortunately, in many problem domains
the set of alternatives has a combinatorial structure. A combinatorial domain is
a Cartesian product of finite value domains for each one of a set of variables:
an alternative in such a domain is a tuple of values. Clearly, the size of such
domains grows exponentially with the set of variables and becomes quickly very
large, which makes explicit representations and straightforward elicitation and
optimisation no longer reasonable. Logical or graphical compact representation
languages aim at representing preference structures, the size of which would be
prohibitive if represented expicitly, in as little space as possible. The literature
on preference elicitation and representation for combinatorial domains has been
growing fast, and due to the lack of space we omit giving references here. See for
instance [34] for an (incomplete) overview of logic-based preference representa-
tion languages, together with results about expressivity and spatial efficiency.

When the set of alternatives has a combinatorial structure, aggregation is
a computationally hard problem. Moreover, since in that case preferences are
often described in a compact representation language, aggregation should ideally
operate directly on this language, without generating the individual nor the
aggregated preferences explicitly. In what follows, we give some examples for the
issues at stake for different types of problem in social choice.

voting — When the set of candidates has a combinatorial structure, even sim-
ple voting rules such as plurality and Borda become hard. The compu-
tational complexity of some voting procedures when applied to compactly
represented preferences has been investigated in [61]; although that paper
does not address the question of how the outcome can be computed within a
reasonable amount of time. One approach would be to decompose the vote
into local votes on individual variables (or small sets of variables), and then
to gather the results. However, “multiple election paradoxes” [16] show that
this can lead to suboptimal choices. Suppose, for instance, 100 voters have
to decide whether or not to build a swimming pool (S), and whether or not
to build a tennis court (T ). 49 voters prefer a swimming pool and no tennis
court (ST̄ ), 49 voters prefer a tennis court and no swimming pool (S̄T ) and 2
voters prefer to have both (ST ). Voting separately on each of the issues gives
the outcome ST , although it received only 2 votes out of 100. The problem
is that there is a preferential dependence between S and T . A simple idea
then would be to exploit preferential independencies between variables. The
question is to what extent we may use these independencies to decompose the
computation of the outcome into smaller problems. Unfortunately, several
well-known voting rules (such as plurality or Borda) cannot be decomposed,
even when the preferential structure is common to all voters. Most of them
fail to be decomposable even when all variables are mutually independent
for all voters [63].



fair division — In fair division problems for indivisible resources, the set of
alternatives is the set of allocations, the number of which grows exponen-
tially with the number of resources. The need for compact representation
arises from the following dilemma, formulated by several social choice
theorists: either (a) allow agents to express any possible preference relation
on the set of all subsets of items, and end up with an exponentially large
representation (such as in [53]); or (b) severely restrict the set of expressible
preferences, typically by assuming additive seperability between items, and
then design procedures where agents express preferences between single
items, thus giving up the possibility of expressing, say, complementarities
and substitutabilities. This latter approach is the path followed by Brams
et al. [14] and Demko and Hill [37], for instance. Compact representation
and complexity issues for fair division have received little attention until
now, apart for recent work by Lipton et al. [65], who study approxima-
tion schemes for envy-freeness, and Bouveret et al. [12, 13], who study the
complexity of fair division problems with compactly represented preferences.

judgement aggregation and belief merging — Here the set of alternatives
is the set of all possible truth assignments to a given set of propositional vari-
ables (in belief merging) or to a given set of propositional formulae (in judge-
ment aggregation). The common point of logic-based merging approaches is
that the set of alternatives corresponds to a set of propositional worlds; the
logic-based representation of an agent’s preferences (or beliefs) then induces
a cardinal function (using ranks or distances) on worlds and aggregates these
cardinal preferences. Relevant references that explicitly mention some social
choice-theoretic issues include [59, 67, 22, 66]. Konieczny et al. [58] specifi-
cally address complexity issues for distance-based belief merging operators.
As for judgement aggregation, computational issues seem to have been ne-
glected do far. However, some authors [70, 38] give necessary and sufficient
conditions for collective rationality, expressed in terms of minimal inconsis-
tent subsets, which can be seen a first step towards addressing computational
issues of judgement aggregation.

4 Computational Aspects of Strategy-proofness

Manipulating a voting rule consists, for a given voter or coalition of voters, in
expressing an insincere preference profile so as to give more chance to a preferred
candidate to be elected. Gibbard and Satterthwaite’s theorem [48, 88] states that
if the number of candidates is at least 3, then any nondictatorial voting procedure
is manipulable for some profiles. However, by applying very specific restrictions
on the class of allowed preferences, this theorem does not hold any more [68].
More formally, manipulation by a voter is defined as follows: given a collection
of profiles of n voters P = 〈P1, . . . , Pn〉, let c be the elected candidate w.r.t.
a given voting rule applied on P . We say that a voter j can manipulate the
voting rule if there exists a profile P ′

j such that the voting rule applied on



〈P1, . . . , Pj−1, P
′
j , Pj+1, . . . , Pn〉 elects a candidate c′ 6= c and that j ranks c′

higher than c. Note that other manipulation schemes have also been studied,
in particular manipulation made by the chairman [11], and manipulation by
coalition of voters [75].

Let us show an example of manipulation by a voter. Consider three candidates
c1, c2, c3 and 5 voters, among which 2 voters have the preference profile c1 � c2 �
c3, 2 other voters have the profile c2 � c1 � c3, and that the last voter has the
profile c3 � c1 � c2. If the plurality rule is used here, the last voter will have an
interest to report an insincere preference profile with c1 on the top, as his truly
preferred candidate c3 has no chance of winning.

In the general case, since it is theoretically impossible to make manipulation
impossible, one can try to make it less efficient or more difficult. Making it less
efficient can consist of making as little as possible of the others’ votes known to
the would-be manipulating voter – which may be difficult in some contexts—this
situtation arises in real world elections, as opinion polls often fail to accurately
reflect voters real intentions. Making manipulation more difficult to compute
is a way followed recently by several authors [9, 8, 26, 25, 28], who address the
computational complexity of manipulation for several voting rules. For instance,
Single Transferable Vote is NP-hard to manipulate by single agents [8]. The
line of argument is that if finding a successful manipulation is extremely hard
computationally, then the voters will give up trying to manipulate and express
sincere preferences. Note that, for once, the higher the complexity, the better.

Moreover, Conitzer and Sandholm [28] have shown that adding a pre-round
to the voting process, consisting in eliminating half of the candidates by applying
a binary cup rule, considerably increases the hardness of manipulation Unfortu-
nately, applying a binary cup as a pre-round may eliminate highly ranked can-
didates, thus dropping interesting properties of the voting rule used afterwards.
As an attempt to overcome this drawback, Elkind and Lipmaa [43] introduced
a principle called hybridization generalizing the method of [28]. A hybridized
voting rule Hyb(Xk, Y ) consists of k steps of rule X, followed by rule Y . They
study the impact of hybridization on the complexity of manipulation in various
cases (including hybridizing a voting rule with itself).

As recently noted by Conitzer and Sandholm [32], computational hardness
concepts such as NP- hardness or PSPACE-hardness are worst case settings.
Thus, they only ensure that there exist cases in which manipulation gets hard to
compute. In fact, these authors showed that under some mild assumptions, there
are no voting rules that are hard to manipulate on average. To obtain this result,
the authors first exhibit an algorithm which can be used by individual voters
to compute an insincere profile, and then show that this algorithm succeeds in
manipulating the vote on a large fraction of the instances.

We end up this Section by briefly mentioning the existence of complexity
results for manipulation by the chairman [11, 51] and bribery in elections [47].



5 Distributed Resource Allocation and Negotiation

In recent years, concepts from social choice theory have become more and more
salient in computer science research, in particular on topics such as distributed
systems, multiagent systems, grid computing, and electronic commerce. Many
of the issues addressed in these areas can be modelled in terms of negotiation
between autonomous agents. In the case of grid computing, for instance, access
to scarce computing resources may be allocated dynamically and in response to
specific needs. Naturally, game theory provides the foundations for investigating
the strategic aspects of such scenarios, while preference aggregation mechanisms
originating in social choice theory may be used to identify socially desirable
outcomes of negotiation.

As discussed already in the introduction, we can distinguish two types of
criteria when assessing an allocation of resources: criteria pertaining to the ef-
ficiency of an allocation and those relating to fairness considerations. Both of
these can often be described in terms of a social welfare ordering or a collective
utility function [69]. In what follows, we give a few examples of efficiency and
fairness criteria:

Pareto efficiency — An allocation Pareto dominates another allocation,
if no agents are worse and some are better off in the former. A Pareto
efficient allocation is an allocation that is not Pareto dominated by any
other allocation. This is the weakest possible efficiency requirement.

utilitarianism — The utilitarian social welfare of an allocation is the sum of
the individual utilities experienced by the members of society. Asking for
maximal utilitarian social welfare is a very strong efficiency requirement; it
licenses reallocations that benefit average utility.

egalitarianism — The egalitarian social welfare of an allocation is given
by the individual utility of the poorest agent in the system. Aiming at
maximising this value is an example for a basic fairness requirement. A
refinement of this idea is the leximin ordering which, informally, works by
comparing first the utilities of the least satisfied agents, and when these
coincide, compares the utilities of the next least satisfied agents, and so on.

envy-freeness — An agent is said to be envious when it would rather get the
bundle of resources allocated to one of the other agents. An allocation is envy-
free when no agent is envious. If an envy-free allocation is not attainable, it
may also be of interest to reduce envy as much as possible (which may, for
instance, be measured in terms of the number of envious agents).

Efficiency and fairness criteria are often not compatible. For instance, for a given
profile of agent preferences, there may be no allocation that is both Pareto ef-
ficient and envy-free. Some work in computational social choice has addressed
the computational complexity of checking whether allocations meeting a cer-
tain combination of the above criteria exist for a given resource allocation sce-



nario [13]. Complexity results pertaining to efficiency criteria alone have been
known for somewhat longer already. Checking whether there exists an alloca-
tion such that utilitarian social welfare will exceed a given limit is known to be
NP-complete, for instance [85].

Another line of work has been concerned with procedures for finding good
allocations. At one end of the spectrum, combinatorial auctions are mechanisms
for finding an allocation that maximises the revenue of the seller, where this
revenue is the sum of the prices the other agents are willing to pay for the bun-
dles allocated to them. Combinatorial auctions have received a lot of attention
in recent years [35]; they are a very specific, purely utilitarian class of allocation
procedures, in which considerations such as equity and fairness are not rele-
vant. In this context, preference structures are valuation functions (positive and
monotonic utility functions). Combinatorial auctions are also centralised alloca-
tion mechanisms. In distributed approaches to resource allocation, on the other
hand, allocations emerge as a consequence of individual agents locally agree-
ing on a sequence of deals to exchange some of the items they currently have
in their possession [87, 45]. In the context of distributed resource allocation, an
interesting question is under what circumstances convergence to a socially opti-
mal allocation can be guaranteed given certain known facts regarding the criteria
used by individual agents to decide whether or not to implement a particular
deal. Notions of social optimality considered in this field range from utilitarian-
ism [87], over Pareto optimality and egalitarianism [45], to envy-freeness [21].

As another example for issues in distributed resource allocation and negoti-
ation, we mention some work on establishing the complexity inherent to various
allocation procedures. Dunne et al. [41] have analysed the computational com-
plexity of decision problems arising in the context of distributed negotiation.
For instance, checking whether a given allocation with superior utilitarian social
welfare can be reached by means of a sequence of deals over single resources
that are rational (in the sense of it being possible to arrange side payments
such that both trading partners benefit) is NP-hard (in fact, this result has later
been strengthened to a PSPACE-completeness result [40]). A related line of work
has been concerned with the communication complexity of distributed negoti-
ation mechanisms, analysing upper and lower bounds on the number of deals
implemented until an optimal allocation is reached [39, 44].

For a much more thorough survey of research in multiagent resource alloca-
tion the reader is referred to [20].

6 Communication Requirements in Social Choice

One area where the interplay between social choice and (theoretical) computer
science has been striking in recent years is that of the analysis of social choice
problems in terms of their communication complexity. In most (if not all) social
choice problems, there are some (potentially hard) communication requirements.
Even if the procedure is centralised, the center needs at some point to elicit
the preferences of the agents involved in the process in order to compute the



outcome. Although it is sometimes possible to carefully design protocols that
will make this task easier, general results (lower bounds) suggest that it is very
often not realistic to rely on that. This in turn is a main motivation to study the
problem of social choice under incomplete knowledge. We now briefly present a
non-exhaustive overview of recent research on these aspects.

The design of protocols that elicit the agents’ preferences is a key problem.
Take the case of a combinatorial auction involving |R| items: fully revealing an
agent’s preferences would require 2|R| − 1 bundles to be valued, and that for
each of the bidder agents. Now put yourself into the shoes of that auctioneer:
you would of course wonder whether you are really obliged to ask that many
“value queries”. Maybe a sequential approach would ease the process by avoiding
unnecessary queries? The key point consists in finding the relevant preferences to
elicit from the agents: whose preferences are to be elicited about which outcomes?
As an example from voting theory, assume that we have 4 candidates A,B,C, D
and 9 voters, 4 of which vote C � D � A � B, 2 of which vote A � B � D � C
and 2 of which vote B � A � C � D, the last vote being still unknown. If the
plurality rule is chosen then the outcome is already known (the winner is C) and
there is no need to elicit the last voter’s profile. If the Borda rule is used then
the partial scores are A : 14, B : 10, C : 14, D : 10; therefore the outcome is
not determined. However, we do not need to know the totality of the last vote,
but we only need to know whether the last voter prefers A to C or C to A. Can
you always design such a clever protocol? Communication complexity may be
helpful in answering that question.

Communication complexity [60] is concerned with the problem of determining
the amount of information that needs to be exchanged between agents in order to
compute a given function f , when the input of that function is distributed among
those agents. The computational resources needed to do so are irrelevant here.
More technically, the communication complexity is defined as the worst-case of
the best protocol that you may find to compute that function. For unstructured
problems, it is unlikely that you can do better than the naive upper bound
which will consist, for each agent, of revealing his entire input. In some cases
however, the combinatorial structure of the problem can be exploited so that
the communication burden can be alleviated. Communication complexity offers
a bag of techniques that can used to derive lower bounds on communication
requirements. Perhaps the most popular of these techniques is the fooling set. A
fooling set consists of a set of input vectors that would each give the same result
to the function, but such that you could somehow mix any pair of vectors and
get a different value. A central result says that exhibiting a fooling set of size m
guarantees a lower bound of log m on the communication complexity.

voting — As a first example, we present rather informally the argument
advanced by Conitzer and Sandholm [30] that allows to conclude that the
communication complexity of the Condorcet voting rule is Ω(nm), where
n is the number of voters and m the number of candidates. In this case,
the function f that players have to compute is interpreted as the voting
rule that will return the winning candidate, given the vote vector of all



the voters. Assume C is the set of candidates. The idea is to construct a
set of vote vectors such that the first voter would prefer any candidate of
some set Si ⊆ C to a, and a to any other candidate (Si � a � Si), while
the following would prefer (Si � a � Si), and so on. Finally, the last voter
would prefer a against any other candidate. As one can easily see, a is
indeed preferred to any other candidate in that set (by a single vote). There
is an exponential number (in nm) of possible such vectors to be constructed.
Now this set would indeed be “fooling” iff, for any pair of such vectors, it
would be possible to mix the votes of the vectors and obtain a different
Condorcet winner. Consider any pair of vote vectors. By construction, there
must be a candidate, say b, that is ranked below a by a given voter in
one vector of the pair, while being ranked above in the other vector. By
replacing that latter vote in the first vote, you would make b preferred by
a single vote. This set is indeed a fooling set, whose size allows to derive
the lower bound on communication complexity stated above. Conitzer and
Sandholm [30] have analysed the communication complexity of several other
voting rules, and Segal [90] studies a particular subclass of social choice rules.

coalition formation — As a further example of the use of the fooling
set technique, we mention the work of Procaccia and Rosenschein [82]
who analyse the communication complexity of coalition formation. More
precisely, they analyse the communication complexity of computing the
expected payoff of an arbitrary player (not for all the players) before
joining a coalition: here again, maybe only limited communication could
be sufficient for that player to compute its payoff. This is done in the
context of the coalition model proposed by Shehory and Kraus [91],
where each agent only knows the resources it initially holds and its own
utility function. Procaccia and Rosenschein prove communication results
regarding various solution concepts (core, equal excess, Shapley value, etc.).
Most of these results show that when the number of agents (n) is not too
large, this problem does not involve prohibitive communication costs (Ω(n)).

resource allocation — Let us return to the canonical example of combi-
natorial auctions discussed before. Here the distributed inputs are the
agents’ valuations over possible bundles, and the function would return
the optimal allocation. Can we do better than those 2|R| − 1 queries then?
In general, the answer is no, in the sense that at least one agent has to
reveal its full valuation. Nisan and Segal [71] have shown this, and the
communication requirement remains exponential when all valuations are
submodular. Only when the valuations of the agents exhibit very specific
structures does it become possible to improve on that bound. We refer
the reader to the review chapter by Segal [89] for further details on that topic.

In many situations then, the communication complexity will be too heavy a
burden to be supported by the agents. For combinatorial auctions, Segal even



claims that “the communication bottleneck appears to be more severe than the
computational one” [89]. One consequence is that the central authority who has
to compute the function will often have to deal with incomplete preferences
(note however that this is not the only reason: it may simply be the case that
the agents’ preferences are intrinsically incomplete, for instance). Technically,
incomplete knowledge about an agent’s preferences comes down to partial pref-
erences (i.e. partial preorders on the set of alternatives).2 This in turn raises
further interesting questions as to how difficult it is to compute an outcome
given incomplete preferences. For instance, the computational complexity of vote
elicitation has been investigated by Conitzer and Sandholm [27].

A second way of coping incomplete preferences consists of “living” with in-
completeness and to consider all complete extensions of the initial incomplete
preference profile. More formally, if R = 〈R1, . . . , Rn〉 is an n-tuple of incom-
plete preference relations, then define Ext(R) = Ext(R1)×. . .×Ext(Rn), where
Ext(Ri) is the set of all complete extensions Ri. For a given social choice func-
tion f , one can then define f(R) = {f(R′

1, . . . , R
′
n) | (R′

1, . . . , R
′
n) ∈ Ext(R)}.

In particular, if f is a voting rule, an element of
⋃

f(R) is a “possible winner”,
whereas an element of

⋂
f(R) is a “necessary winner”. For instance, in the vot-

ing example presented at the beginning of this section, for the incomplete profile
R consisting of the first 8 votes (with no information on the 9th vote), if f is the
plurality rule then C is a necessary winner (and there is no other possible win-
ner); if f is the Borda rule then A and C are the two possible winners (and there
is no necessary winner). Because the cardinality of Ext(R) grows exponentially
with the number of alternatives, computing possible and necessary winners is
generally hard. Some recent work has addressed the computation of possible and
necessary winners for several families of voting rules [57, 64, 80]. The problem of
strategy-proofness (see also Sect. 4) has been investigated in [79].

Diminishing the amount of information to be transmitted is also of the ut-
most importance when one considers privacy issues in social choice. The work
of Brandt and colleagues (see e.g. [17, 18]), in particular, is very representative
of this line of research. One example for a significant result is the fact that
social choice functions that are non-dictatorial, Pareto-optimal, and monotonic
cannot be implemented by distributed protocols guaranteeing unconditional full
privacy (that is, privacy which does not rely either on trusted third parties or
computational intractability to protect the agents’ preferences).

7 Logic-based Analysis of Social Procedures

A final area of applications of tools familiar from computer science to problems
in social choice theory is the use of mathematical logic for the specification
and verification, or more generally analysis, of social procedures. In the same
way as computer scientists have long been using logic to formally specify the
2 Note that this interpretation of incomplete preferences is epistemic: this has noth-

ing to do with intrinsic or ethical incompleteness where it does not make sense to
compare some alternatives to some others, or it is unethical to do so.



behaviour of computer systems, so as to allow for the automatic verification
of certain desirable properties of such systems, suitable logics may be used to
specify social procedures such as voting protocols or fair division algorithms.
Rohit Parikh [74] has coined the term social software for this line of research
and argued that (extensions of) dynamic logic [49] may be particularly suited
for formalising such social procedures.

In what follows, we briefly discuss three lines of work that are being pursued
under the broad heading of social software. This is not an exhaustive list, but it
does give a good taste of what kinds of questions are being investigated.

logics for social software — Modal logic is typically the overall framework
in which this kind of research is carried out. The most important kind of
modal logic for social software is dynamic logic (the logic of programs).
Parikh [73] and Pauly [76], amongst others, have proposed various exten-
sions of dynamic logic to account for concepts such as strategies (as in
game theory). Another important familiy of modal logics are epistemic
logics, which are relevant to social software as they allow us to model
the knowledge of the different agents participating ina social mechanism.
Dynamic epistemic logic [7] is being applied to study updates of the states
of knowledge of these agents. Pauly and Wooldridge [77] also explore the
use of logic in context if economic mechanism design. Finally, Agotnes
et al. [2] have recently proposed a logic for modelling social welfare functions.

specification and verification of social procedures — Once suitable
logics have been developed, the central aim of social software is to put
these logics to use for the analysis of social procedures. Probably the
first such example is Parikh’s specification of a cake-cutting algorithm
using his game logic based on dynamic logic [73]. Recently, a variant of
propositional dynmaic logic has also been used to model some of the results
on convergence to a socially optimal allocation by means of distributed
negotiation mentioned in Section 5 [46].

coalition formation — Pauly [76] introduces a modal logic (coalition logic) to
specifically allow reasoning about actions that are undertaken by coalitions
of agents (typically more than two agents here, as opposed to the game logic
of Parikh [73], which justifies this new modal logic). The logic includes a
new modality (effectivity), which represents the fact that a group of agents
can bring about a given action. The satisfiability problem of the logic lies in
PSPACE, which confirms that considering that actions can be brought about
by groups of agents increases the complexity of related reasoning problems.

8 Conclusion

In this paper we have given a short (and hence incomplete) survey of some
research issues where social choice and computer science can interact. Due to



space considerations, many interesting lines of research have only been mentioned
in passing or even been omitted altogether. Two such cases are the large body
of work on computational aspects of coalition formation [29, 31, 86, 1], and the
method of automated mechanism design [33]. In conclusion, computational social
choice has by now become a very active area of research, with many important
new results being published every year. So while this short survey can only offer
a glimpse at current research and is bound to become out of date rather soon, we
nevertheless hope to have been able to convey a sense of the types of questions
that are being investigated in this exciting new field.
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