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You fling the book on the floor, you would hurl it out of the window, even
out of the closed window, through the slats of the Venetian blinds; let them
shred its incongruous quires, let sentences, words, morphemes, phonemes
gush forth, beyond recomposition into discourse; through the panes, and if
they are of unbreakable glass so much the better, hurl the book and reduce it
to photons, undulatory vibrations, polarized spectra; through the wall, let
the book crumble into molecules and atoms passing between atom and atom
of the reinforced concrete, breaking up into electrons, neutrons, neutrinos,
elementary particles more and more minute; through the telephone wires,
let it be reduced to electronic impulses, into flow of information, shaken by
redundancies and noises, and let it be degraded into a swirling entropy.

— Italo Calvino, If on a Winter’s Night a Traveler
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CHAPTER 1

Interactions between quantum
information and many-body physics

The advent of computers has revolutionized the field of physics, in the first place
by enabling the numerical simulation of complex physical models that were out of
reach of theoretical understanding. Besides this, the theory of computation as well
as the closely related field of information theory have had a profound impact on our
understanding of nature, especially with regards to statistical mechanics and thermody-
namics [Jay57, Lan91]. Conversely it has been fruitful to use insights and principles from
physics in understanding the theory of computation [MM11, MM09] for instance in the
use of models from statistical mechanics to understand approximation and learning
algorithms.

Our best theories of small-scale fundamental physics are quantum theories, as
developed from the early 20th century onwards. We have an excellent understanding
of how to formulate such theories and their equations of motion (the Schrödinger
equation). Nevertheless, actual computation of the results of these equations of motion
can be challenging, even more so than for classical physics. This is especially the case for
quantum many-body systems, which are quantum systems consisting of a large number
of local degrees of freedom or particles. For instance, one can think of the electrons in a
solid metal which can ‘move around’ and interact with one another, of the structure of a
large molecule, or of the quantum particles described by the Standard Model. In such
systems the number of parameters needed to describe the system (the wave function)
typically scales exponentially with the number of particles. This poses fundamental
computational problems. While surmountable in some cases by using appropriate
approximations, there are many systems of interest which remain extremely challenging
to simulate. This has led to the proposal of a quantum computer, a computer consisting
of quantum particles and which has as its logical operations local quantum operations.
The initial idea was that such a quantum computer could potentially simulate quantum
systems more efficiently [F+82], while later it was realized that quantum computers may
have unrelated applications and provide algorithmic speed-ups for various problems
(the most famous of which may be Shor’s algorithm for period finding and prime
factorization, and Grover’s algorithm for black-box search [NC02]). Similarly, the fact
that nature appears to be of a quantum nature has motivated the development of a
theory of quantum information [Wat18, Wil13] which has fundamental differences with
the classical theory of information.
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If quantum computers and quantum communication are to be realized at large
scale, will this again revolutionize physics? While there is strong evidence that the
development of quantum computers would tremendously improve our abilities to
simulate quantum systems, there are still many interesting questions to answer in this
regard: which quantum systems can be simulated accurately and efficiently, and what
are good principles for designing quantum simulation algorithms? In some ways, the
theory of quantum information and quantum computation has already had a profound
impact on quantum many-body physics, as it has been very fruitful to study many-
body physics through the lens of quantum information theory, providing both new
techniques and new questions to ask.

In the introduction to this dissertation we identify three broad themes in the inter-
action between quantum information theory and many-body physics:

(i) The structure of many-body ground states

(ii) Understanding unitary quantum dynamics

(iii) The relation between quantum information and quantum gravity.

Each of these comprises a large body of research; in this dissertation we have tried
to add a (minor) new insight to each. The aim of this introduction is to provide in a
pedagogical manner a context for the results in this dissertation and, highlighting the
guiding questions we have tried to answer. As opposed to most of the remainder of
the dissertation, we will be rather informal. Each of the three parts of this dissertation
provides an introduction where we focus further on the relevant objects of study.

We assume that the reader is familiar with the basic theory of quantum computation
and quantum information theory, for instance at the level of standard works such as
[NC02, Wat18] or the lecture notes [DW19, Pre98] A textbook providing an overview of
quantum information theory and many-body physics is [ZCZ+19].

1.1 Many-body ground states

Many quantum mechanical phenomena are determined by their low-energy physics.
In this section we will describe the problem of finding the lowest energy states of a
quantum mechanical system and how tools from quantum computation and quantum
information theory are relevant to this problem. Quantum mechanical systems are
described by Hamiltonians, which describe the interactions between different compo-
nents of the system. Formally speaking, if H is the Hilbert space of quantum states, a
Hamiltonian is a self-adjoint operator H acting on H . The spectrum of H is interpreted
as the energy levels of the system. A minimal assumption is that the spectrum of H is
bounded from below, and in this case the lowest eigenvalue is the ground state energy
of the system. Models of physical systems are typically such that the Hilbert space is
decomposed into local Hilbert spaces. For instance, one can have a lattice spin system,
where we have sites in a lattice Γ, and a local Hilbert space Hx = Cdx at each lattice
site x ∈ Γ. For convenience assuming a finite lattice, the full Hilbert space is then given
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by the tensor product1

H =⊗
x∈Γ

Hx . (1.1)

If the system consists of a large number of subsystems, we speak of a many-body system
and we will call the number of sites in Γ the system size. The Hamiltonian will typically
be k-local for some k, meaning that

H = ∑
X⊂Γ

HX (1.2)

where the sum is over subsets X ⊆ Γ of size at most k where HX = IX c ⊗hX is a Hermitian
operator which acts only on the sites in X . Moreover, physical systems often have
geometrically local Hamiltonians, meaning that sites which are far apart do not interact,
or interact only weakly. This can be formalized by demanding that the HX are zero for
sets X which have diameter larger than some prescribed value, or by demanding that
the size of the local terms ∥HX ∥ decays with the size of the diameter of X .

Let us give two paradigmatic sources of examples.

(i) In quantum chemistry the most important Hamiltonians are those describing
electrons in a molecule. The electrons have 2-local interactions with the nuclei
and with each other. These models have limited geometric locality. In this case,
we have a fermionic system, with degrees of freedom labelled by the orbitals of
the atoms in the molecule.

(ii) Lattice spin systems modelling a condensed matter system. In this case we may
take a regular lattice, and the Hamiltonian has geometric locality. A basic example
is the one-dimensional Ising model

H =−J
∑

n∈Z
Xn Xn+1 +hZn (1.3)

where X and Z are the Pauli matrices and h and J are real parameters.

In this introduction we will focus on lattice spin systems, rather than problems
from quantum chemistry. Such systems are not just important for condensed matter
physics and material science, but can also be used as a discretization for quantum
field theories. For instance, QCD (which models quarks in the standard model) is often
numerically studied by approximating it by a model of lattice fermions [Smi02]. We
order the spectrum of the Hamiltonian H as E0 ≤ E1 ≤ . . .. Then a ground state |ψ〉 is
an eigenvector with minimal eigenvalue H |ψ〉 = E0 |ψ〉, where E0 is the ground state
energy. The ground state energy could be degenerate (but in the following we assume
for convenience that it is unique). The difference ∆= E1 −E0 is the ground state energy
gap. We say that a family of Hamiltonians of increasing system sizes |Γ| is gapped if ∆ is
lower bounded by a constant. From the perspective of statistical physics, the state |ψ〉
describes the system at zero temperature. For low temperature physics, it is therefore
crucial to understand the ground state and the ground state energy gap. For example,
the Ising model (which can be analytically solved) has two parameter regimes with

1Another possibility is that one has indistinguishable particles with bosonic or fermionic statistics, in
which case the notion of locality is different (which we will ignore for the purpose of this introduction).
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different behaviour and a phase transition in between. However, for other Hamiltonians
finding ground states or understanding the phase diagram can be a difficult problem,
analytically as well as numerically. The Hilbert space has exponential dimension in
the system size, so naive linear algebra methods are typically limited to small system
sizes. Many useful classical algorithms have been designed to nevertheless simulate
many-body quantum systems, but numerical simulation of strongly interacting quan-
tum systems remains a highly challenging problem. For instance, there are powerful
methods based on quantum Markov Chain Monte Carlo sampling; however, in strongly
interaction systems the so-called sign problem can make this method unreliable [TW05].
On the other hand, one could use quantum computers for the simulation of quantum
ground state properties. This seems to be a promising direction, both for quantum
chemistry and condensed matter or field theories [CRO+19, Pre18]. However, as we will
see in a moment, finding ground states is not an easy problem, even for a quantum
computer.

1.1.1 Quantum computation and ground states
What can we say in general about ground states of physical (condensed matter) systems,
that is, of geometrically local Hamiltonians? It can be proven that this is a hard ques-
tion in a precise sense. Recall that QMA is, informally speaking, the class of decision
problems for which a quantum computer can efficiently verify positive instances, given
access to a (quantum) witness. In other words, it is the quantum generalization of
the class NP, and QMA-complete problems are widely believed to be hard to solve for
quantum computers. A seminal result in quantum complexity theory is that for general
local Hamiltonians it is QMA-hard to find its ground state energy [KSVV02, KKR06]. To
be more precise, let H be a 2-local Hamiltonian on n sites, and assume that we know
that E0 is either smaller than 0, or E0 =Ω( 1

poly(n) ). Then it is QMA-hard to decide which
of these two is the case. This remains true in various situations where one restricts
the class of Hamiltonians, for instance to nearest-neighbour Hamiltonians on a two-
dimensional lattice of qubits [OT05] as well as various other physically realistic models
[SV09, CGW14]. This result strongly indicates limits to the application of quantum
computers to simulate ground state physics. On the other hand, it does not exclude the
possibility of efficient quantum algorithms for finding ground states for more restricted
classes of physical systems. There are systems which can be solved exactly analytically
(such as the one-dimensional Ising model in Eq. (1.3)), there are systems which can be
solved numerically by a classical computer (such as one-dimensional systems with a
constant gap, as we will see in Section 1.1.2) and, as we saw above, there are systems
which are likely hard for a quantum computer. An important open question is whether
there are classes of interesting and physically relevant quantum systems for which one
can approximate ground state physics more efficiently with a quantum computer than
with a classical computer. There are various ‘generic’ algorithms which find approxima-
tions to the ground state (all of which have limitations, in line with the hardness of the
problem). Here we discuss two of the most well-known approaches.

(i) The most well-established algorithms are based on a version of phase estimation.
Suppose that U is a unitary, and |ψ〉 is an eigenvector with eigenvalue e iφ. Phase
estimation is a quantum algorithm which, given access to an oracle implementing
the unitary U , and an initial state |χ〉 which has nonzero overlap with |ψ〉, allows
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you to estimate φ. One may now, for instance, implement (an approximation
of) the unitary U = e i H in some way on a quantum computer, which will have
an eigenvalue e i E0 , and apply phase estimation to U to find E0 [AL99]. While
a powerful generic algorithm and running in polynomial time in the number
of qubits n, it requires one to have a sufficiently good starting state to have a
reasonable probability of success (for instance, it may be hard to find an initial
state |χ〉 which hasΩ( 1

poly(n) ) overlap with |ψ〉).

(ii) A second, more heuristic approach is the class of variational quantum eigen-
solvers (VQE). Here, one considers a class of ansatz states which can be efficiently
prepared on a quantum computer, for instance a collection of short depth local
circuits with some free continuous parameters in the circuit gates. One then uses
a hybrid quantum-classical algorithm to optimize the parameters in this ansatz
class: one uses the quantum computer to compute energy expectation values and
gradients with respect to the parameters, and a classical algorithm (for instance
gradient descent) to find a (local) minimum in the parameter space. This is a
classical optimization problem, using a quantum computer only for a subroutine
which evaluates energies (and energy gradients), which means that one needs
a relatively small number of qubits and relatively short coherence times. This
provides the main advantage of this approach: it may be relatively amenable to
near-term noisy devices, which are not yet able to perform fully fault-tolerant
quantum computation. The main downside is that it is hard to get (rigorous)
guarantees for good approximations and we do not yet know whether using such
methods will be accurate in practice. First of all, one has to choose an ansatz
class which can indeed approximate the ground state to some accuracy, which
is often not clear, and secondly, the optimization problem may be non-convex
and the minimization algorithms may not converge. Finally, when using noisy
devices, one needs to understand the dependence of the noise on the accuracy of
the approximation. For a review and references, see [CAB+21].

In conclusion, an important question with respect to the use of quantum computers
for ground state finding is to determine which systems are amenable to certain types
of simulations and how we can design useful algorithms. A useful lesson seems to be
that in the design of quantum algorithms (and this is especially true for VQE) we should
try to use physical insights and principles. See [BBMC20] for a good overview of the
prospects for quantum computing in many-body physics.

1.1.2 Tensor networks
Quantum information theory has had a profound impact on classical simulation meth-
ods for ground states as well, especially in the form of tensor network methods. A typical
property of gapped geometrically local Hamiltonians on a lattice is that they satisfy an
area law for the entanglement entropy [ECP10]. Here by an area law we mean that if we
have a domain X in the lattice (where |X | is much smaller than the system size) then the
entanglement entropy H(X )ψ scales approximately as |δX |, the size of the boundary
of X . A closely related fact is that we expect exponentially decaying correlations between
different sites. That is, if Ox and Oy are hermitian operators on sites x and y , then we
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expect

|tr[OxOyψ]− tr[Oxψ] tr[Oyψ]| =O (e−ξd(x,y)) (1.4)

where d(x, y) is the distance between x and y and ξ is the correlation length. This has
motivated the introduction of tensor network states. A good introduction can be found
in [Orú14]. We will sketch the basic concepts. Suppose we have a quantum state |ψ〉 on
a tensor product Hilbert space H =H1 ⊗H2 ⊗ . . .⊗Hn , where Hk =Cdk , then we may
expand |ψ〉 in a product basis

|ψ〉 = ∑
{ik }

ψi1i2...in |i1〉⊗ |i2〉⊗ . . .⊗|in〉 .

The collection of numbers ψi1i2...in defines a tensor. Of course, in general, the size of
this collection is exponential in n. Tensor networks provide a method to parametrize a
relevant subset of tensors in an efficient manner, by ‘breaking up ψ in smaller tensors’.
Given two tensors A and B with coefficients Ai1,i2,...,in and B j1, j2,..., jm we may for instance
contract A and B along the first indices (provided the corresponding dimensions are
equal) to get a tensor with coefficients∑

i1

Ai1,i2,...,in Bi1, j2,..., jm

Now, if we are given a collection of tensors, then we may contract indices along a
graph which is defined by letting the tensors correspond to vertices with a number of
dangling half-edges corresponding to the number of indices the tensor has; we then
indicate which indices are contracted by connecting half-edges to form an edge in the
graph. The resulting tensor has uncontracted indices on all unconnected half-edges.
The dimensions along the contracted edges are called bond dimensions, while the
dimensions along the uncontracted edges are the physical dimensions. See Fig. 1.1 for a
simple illustration. This notation is consistent with the usual diagrammatic notation
for quantum circuits (interpreting the gates as tensors). An equivalent perspective on
this contraction scheme is that one places maximally entangled states along the edges
of the graph and projects the states defined by the local tensors onto these maximally
entangled states. For this reason, such tensor network states are also known as projected
maximally entangled pair states (PEPS). The key idea behind the use of PEPS is that if
you know that the state you are interested in has some restrictions on its entanglement
structure, there may be a natural tensor network ansatz which approximates the state.
An example of a two-dimensional PEPS tensor network is given in Fig. 1.2. In general,
if we have a tensor network state ρ = |ψ〉〈ψ|, and we let A denote a subset of the
dangling half-edges, then it is easy to see that an upper bound to the rank of ρA is
given by D |γA |, where |γA| is the number of bond edges we have to cut in order to
disconnect A from its complement Ac in the tensor network graph, and where D is the
bond dimension. It follows that the entanglement entropy H(ρ)A is upper bounded
by |γA| log(D). From Fig. 1.2 it is clear that on a lattice this upper bound matches an
area law.

Depending on the graph and the bond dimensions, a tensor network representation
can be much more efficient than simply encoding the full state as a tensor. This can be
exploited numerically by performing a variational optimization over this class of tensor
network states to find approximations to the ground state.
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Ai j B j k

i j j k

∑
j Ai j B j k

i k⇒

Ai j B j i

i j j i

tr[AB ] =∑
i , j Ai j B j i

⇒

i1 j j k2 i1

k2

i2

i3

k1

k3

i2

i3

k1

k3

Ai1i2i3 j B j k1k2k3

∑
j Ai1i2i3 j B j k1k2k3

⇒

Figure 1.1: Examples of tensor network contractions, in particular corresponding to matrix
multiplication, the trace of a product of matrices, and in the bottom row, a matrix
product state.

To make this concrete, we will briefly discuss one of the most powerful examples,
which is the class of matrix product states (MPS), which is the one-dimensional version
of PEPS. In this case we consider a one-dimensional chain of N qudits. For convenience
of notation we assume periodic boundary conditions. Fix a local physical dimension d
and a bond dimension D . Then an MPS state is defined by N tensors of size d ×D ×D ,
which we write as A(n)

i j k for n = 1, . . . , N (so i = 0, . . . ,d −1 and j ,k = 0, . . . ,D −1). Denote

by A(n)
i the D ×D matrix with entries {A(n)

i j k } j ,k . Then the associated MPS state is a state

of N qudits, defined by the following product of matrices

|ψ〉 = ∑
{ik }

tr[A(1)
i1

A(2)
i2

. . . A(N )
iN

] |i1i2 . . . iN 〉 .

The associated tensor network graph is illustrated in Fig. 1.1. For MPS, if we let A ⊆ [N ]
be an interval, then the entanglement entropy H(A)ρ for ρ = |ψ〉〈ψ| is upper bounded
by 2log(D) (since we only need to cut two edges to separate A from its complement)
which again is consistent with an area law, since A has a constant size boundary, no
matter the length of the interval! We would like to emphasize that the total number of
parameters in the description of the MPS state |ψ〉 is N dD2, so for fixed D this number
of parameters is linear in the system size rather than exponential. If one increases the
bond dimension D to a size exponential in N one can write any quantum state as an
MPS (but one is usually interested in the regime where D is constant or polynomial in N ).
For one-dimensional spin systems, the space of ground states of gapped Hamiltonians
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A

∂A

Figure 1.2: A PEPS tensor network on a two-dimensional lattice (with open boundary condi-
tions). We see that if we take a subsystem A, we can separate A from Ac by cutting a
number of bonds proportional to the boundary size |∂A|, which matches area law
behaviour of the entanglement entropy.

is well understood. If H is gapped, it is known that the ground state satisfies both an
area law and exponential decay of correlations. One can approximate the ground state
to precision ε by an MPS state with bond dimension D =O (poly(N , 1

ε
)) [Has07], see also

[DB19] for approximations with constant bond dimension which are locally accurate.
Moreover, such an approximation can be found in O (poly(N , 1

ε )) by a classical computer
[LVV15]2. From this we conclude that, while in general the problem of finding ground
states of local Hamiltonians is QMA-hard, when we restrict to one-dimensional gapped
Hamiltonians the problem can be solved in polynomial time on a classical computer.

In higher spatial dimensions PEPS tensor networks (as in Fig. 1.2) can also be used to
approximate ground states of Hamiltonians. Nevertheless, this poses various challenges.
On the theoretical side, there are no rigorous approximation results available and there
are various open questions with regards to which states can be accurately represented
by PEPS [CGRPG19]. Applying numerical techniques is also much more challenging.
To compare with MPS, if we would like to contract an MPS state and, for instance,
compute the value of a particular coefficient of the resulting tensor, we simply have to

2Historically, the development of tensor networks started with the density matrix renormalization
group (DMRG) algorithm [Whi92] which, in hindsight, was an algorithm for finding MPS approximations
to ground states [Sch11]. While yielding excellent results in practice, there is no rigorous proof for the
correctness of DMRG.
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U

W

A

Figure 1.3: A MERA tensor network. The blue tensors are unitaries U , whereas the red tensors
are isometries W . Each layer implements a real-space renormalization by a factor
of two. If we want to cut the tensor network to separate a subsystem A we can do
so by cutting a number of bonds logarithmic in |A|, which allows for a logarithmic
correction to the one-dimensional area law. If the tensor network describes a state
which is translation invariant and scale invariant, all the unitaries may be taken to
be a fixed unitary, and all the isometries may be taken as a fixed isometry.

multiply matrices. For general PEPS the contraction of the tensor network state can
be much more complicated (in general, computing the contracted PEPS tensor from a
collection of N tensors is #P-hard [SWVC07, HHEG20]). Nevertheless, the use of PEPS
tensor network states has become a crucial tool both for theoretical developments in
condensed matter physics (for instance to obtain better understanding of topological
order, see [CPGSV21] for an overview and references) and for numerical computations
in strongly interacting two-dimensional systems.

1.1.3 Entanglement renormalization
When we discussed MPS we focussed on gapped systems. In condensed matter systems
gapless systems typically occur at a phase transition (a critical point) between two dif-
ferent gapped phases. Such systems have polynomially decaying correlation functions,
and in one spatial dimension they have a logarithmic correction to the area law for the
entanglement entropy, that is, the entanglement entropy of an interval A scales with
the logarithm of the size of the interval H(A)ρ ∼ log(|A|). One can still use MPS states
with bond dimension increasing with the system size to accommodate this entropy
scaling [VC06]. Another approach is to use that critical points typically satisfy a form of
scale invariance and their continuum limit is described a conformal field theory (CFT)
[FMS12]. Such systems are described by a fixed point of the renormalization group. The
idea of the multi-scale entanglement renormalization ansatz (MERA) is to implement
the renormalization group by a quantum circuit, which can also be seen as a tensor
network [Vid08, Vid07]. This structure is illustrated in Fig. 1.3. We will introduce MERA
in more detail in Chapter 2.

As we saw there is a well-developed theory for MPS states in one-dimensional sys-
tems. For MERA, this theory is much less developed and our understanding is largely
based on numerical experiments. A second motivation to obtain deeper understanding
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of MERA comes from quantum computing. As we saw in Section 1.1, future applica-
tions of quantum computers to simulation of ground state physics might benefit from
carefully considering physical principles in designing algorithms. Real-space renormal-
ization could be such a foundational principle, again especially for critical systems. As
MERA is a tensor network with a unitary structure it is well suited to use in a quantum
computer for VQE algorithms, an idea which has been advocated in [KS17a]. Thus, there
is s strong twofold motivation for developing theory and design principles for MERA,
leading to one of the guiding questions for Part I of this dissertation:

Can we prove that MERA is an accurate ansatz class for critical quantum systems?

In this dissertation we work out an idea from [EW16, HSW+18]: for free theories one
can analytically construct MERA tensor networks by second quantization of discrete
wavelet transforms. A wavelet transform is a localized analog of the Fourier transform,
and has a similar dyadic recursive structure as MERA. We show that the connection
between MERA and wavelets can be extended to a wide class of free bosonic systems.

Numerically, it can be seen that many properties of the limiting CFT of a critical
lattice system are approximately encoded in a MERA tensor network for the lattice
model. This leads to a second question we explore in Part I:

What is the relation between entanglement renormalization and quantum field
theory?

We show that there is a close relation to the quantum field theory limit of the lattice
models we consider and the continuous wavelet transform, which is itself a continuous
limit of the discrete wavelet transform. We use this correspondence to show that MERA
can be used to approximate correlation functions of these field theories, providing a
new approach to quantum simulation of quantum field theories. While this work is
for a class of free theories (which can therefore be simulated efficiently in any case),
we hope this provides a foundation for further work on understanding entanglement
renormalization for other classes of critical quantum systems. In Part I we start with an
introduction and review of entanglement renormalization in Chapter 2 and we review
relevant aspects of wavelet theory in Chapter 3. Then, in Chapter 4 we come to our first
main result: a construction of fermionic entanglement renormalization circuits and an
analysis of their accuracy for a fermionic quantum field theory. Our second main result
is in Chapter 5, where we work out an analogous construction for bosonic systems.

1.2 Unitary quantum dynamics

In Section 1.1 we discussed the problem of understanding the structure of ground
states in many-body quantum physics, and using quantum and classical computers
to simulate these states. We now move to the topic of understanding the dynamics of
quantum systems. Given a Hamiltonian H on a Hilbert space H , and an initial state |ψ〉,
after time t the system will have evolved (assuming we have a closed system which is
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completely described by H) to a state |ψ(t )〉 = exp(−i H t) |ψ〉 =Ut |ψ〉 where Ut is the
unitary exp(−i H t). Or, if we start with a density matrix ρ, the time evolved density
matrix is given by UtρU∗

t
More generally, if H(t) is time dependent, the state evolves along the Schödinger

equation

∂t |ψ(t )〉 =−i H(t ) |ψ(t )〉 .

with initial condition |ψ(0)〉 = |ψ〉. The solution to the Schödinger equation defines uni-
tary operators Ut such that |ψ(t )〉 =Ut |ψ〉 for any initial state |ψ〉. The above describes
time evolution in the Schrödinger picture, where one keeps track of how the quantum
state changes. Equivalently, one can keep the initial state fixed, and instead evolve
observables. Recall that if O is some self-adjoint operator on H then the expected value
of O in the state ρ is given by tr[ρO]. If we time evolve

tr[ρ(t )O] = tr[UtρU∗
t O] = tr[ρU∗

t OUt ] = tr[ρO(t )]

where we defined the time evolved observable as O(t) = U∗
t OUt . This is called the

Heisenberg picture and for technical reasons this perspective can be more convenient
for infinite dimensional systems (which we encounter in Part II).

1.2.1 Lieb-Robinson bounds
In Section 1.1 we saw that if we consider geometrically local Hamiltonians, the ground
states have certain restrictions (such as an area law). What are the implications of the
geometrically local nature of Hamiltonians to time evolution? Intuitively, if we have
a system with only local interactions, information will travel through the system at
most at some finite speed. This intuition is correct and is quantified by the so-called
Lieb-Robinson bounds [LR72]. We study this question in the Heisenberg picture. Let H
be a geometrically local Hamiltonian on a lattice Γ. Consider an operator OX which has
support on a finite subset of sites X ⊂ Γ (that is, OX is a tensor product of some operator
on X and the identity operator on Γ \ X ). Then, we claim that after time evolution
along H for time t , OX (t) is approximately supported in a ball of some finite radius
around X . Equivalently, OX (t ) approximately commutes with all operators which are
outside this ball. The precise formulation is given by the Lieb-Robinson bounds, which
state that for any OY supported on sites Y ⊆ Γ it holds that

∥[OX (t ),OY ]∥ ≤Ce−α(d(X ,Y )−v t )∥OX ∥∥OY ∥ (1.5)

where α, v and C are constants (which depend on Γ and H and where C may depend
on the size of the sets X and Y ) and d(X ,Y ) is the distance between the sets X and Y .
From Eq. (1.5) we see that when Y has distance from X greater than v t , the commutator
decreases exponentially, so OX (t) is approximately supported on a ball of radius of
the order v t . The constant v is called the Lieb-Robinson velocity and bounds the
information propagation speed.

It may be instructive to compare these results with the situation for a quantum
field theory. There, one assumes a different form of locality which implies a strict
lightcone of influence. That is, v is analogous to the speed of light c, but in a quantum
field theory [OX (t),OY ] = 0 if the distance between X and Y is greater than ct . We
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have presented a simple version of the Lieb-Robinson bounds, but there are many
variations, for instance for interactions which are not strictly local but have (exponential
or polynomial) decay with the interaction distance, see [NSY19] for a general discussion
of Lieb-Robinson bounds. We provide further detail in Section 9.1. The Lieb-Robinson
bounds show that in quantum lattice systems, while there is no fundamental speed
limit, an approximate speed limit nevertheless arises (as it should, as one expects that
the continuum limit of the spin system can be approximated by a quantum field theory).

The Lieb-Robinson bounds are a fundamental result, and have found various appli-
cations, amongst which a rigorous proof for the decay of correlations as in Eq. (1.4) for
gapped systems [HK06].

1.2.2 Quantum simulation of dynamics
The possibility of simulating unitary quantum dynamics given a description of the
Hamiltonian is potentially one of the most important applications of a quantum com-
puter. It was in fact one of the original motivations for Feynman to propose the concept
of quantum computation [F+82]. It is crucial for a good understanding of quantum
many-body systems, and moreover the problem is BQP-complete, and therefore likely
to be hard in general on a classical computer. The difference between classical and
quantum computers is therefore more clearly visible for this problem than for prob-
lems involving ground states: while we do not know of any subexponential classical
algorithms to simulate quantum dynamics, a quantum computer is (almost by def-
inition) well-suited to perform such simulations. In our description of using phase
estimation for ground state finding we needed to implement time evolutions along
some Hamiltonian as well, and therefore these algorithms also benefit from accurate
and fast quantum algorithms for Hamiltonian evolution.

There are two main approaches to simulation of evolution along a local Hamiltonian
on a quantum computer.

(i) The first method is known as Trotterization and was first suggested as a quantum
algorithm in [Llo96]. The basic idea is that if we are given a local Hamiltonian H
as in Eq. (1.2) where the local terms ∥HX ∥ have bounded norm. Suppose that
we can write H = H1 +H2 where H1 and H2 consist of local terms which do not
overlap. For example, for the Ising Hamiltonian in Eq. (1.3) we could take H1

to be the sum over all terms with n even and H2 the sum over all terms with n
odd. By the Baker-Campbell-Hausdorff we have the Suzuki-Trotter expansion

given by e i H t = (e i H1t/N e i H2t/N )N +O ( t 2

N ). If we take N = O ( t 2

ε
) we thus obtain

an O (ε)-approximation to the time evolution. Since H1 and H2 are sums of dis-
joint local terms we can write e i H1t/n and e i H1t/n as a layer of quantum gates. This

yields a quantum circuit of depth N =O ( t 2

ε ) which approximates the unitary time
evolution. There are many refinements and generalizations of this procedure,
in particular for Hamiltonians which need not be geometrically local, and ap-
proaches involving higher order commutators in the Baker-Campbell-Hausdorff
formula leading to better scaling (for instance, a (near) linear scaling in t is desir-
able). See [CST+21] for state of the art results on Trotterization.

(ii) A second approach uses Lieb-Robinson bounds to approximate dynamics for a ge-
ometrically local Hamiltonian [HHKL18, TGS+19]. In this approach one uses that
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if A, B and C are lattice subsystems with A∪B ∪C = Γ, and we write HY , for the re-
strictions of the Hamiltonian to a subset Y ⊆ Γ (that is, it consists of all terms which
have support inside Y ), then we can approximate e−i H t ≈ e−i HA∪B t e i HB t e−i HB∪C t

if we choose the regions such that A and C are separated by a sufficiently large
distance. The approximation error is then bounded by the Lieb-Robinson bounds.
This decomposition can be used in an iterative fashion to decompose e−i H t into a
quantum circuit.

There are also various other approaches, for instance methods based on qubitization
[LC19] and quantum signal processing [LC17].

1.2.3 Quantum cellular automata
A useful model to study locality in quantum dynamics is that of a quantum cellular
automaton (QCA). A QCA of radius R is a unitary which maps any local operator OX

supported on a set X to an operator supported on sites within radius R of X . Straight-
forward examples are local quantum circuits and translations. In one spatial dimension,
QCAs are completely classified [GNVW12]. Using an index which measures an informa-
tion flow it was shown that any such QCA can be written as a composition of a local
circuit and a shift operator. Here the index can be thought of as an obstruction to writing
the QCA as a circuit. As we saw that physical dynamics typically only preserve locality
approximately, it is interesting to generalize the notion of a QCA to a version with ap-
proximate locality. In Part II we introduce this generalization as approximately locality
preserving unitaries (ALPUs). As for QCAs, there is no continuous time evolution, but
rather a single time step. The analog of quantum circuits is formed by time evolutions
along time-dependent Hamiltonians. This leads to the following natural question:

Given a unitary satisfying Lieb-Robinson bounds (i.e. an ALPU), can it be generated
by some time-dependent local Hamiltonian? If not, what are the obstructions?

We show that in one spatial dimension, the index theory of [GNVW12] can be ex-
tended to ALPUs, leading to a similar classification, with Hamiltonian evolutions being
the analog of quantum circuits. In particular, this gives a criterion for when an ALPU
can be written as a Hamiltonian evolution.

As we saw, Hamiltonian evolutions can be approximated to arbitrary accuracy by
quantum circuits. This raises a second fundamental question:

Can any ALPU be approximated to arbitrary accuracy by a QCA?

Since the ALPU consists of a single time step and there is no Hamiltonian, Trotter-
ization is not applicable. The Lieb-Robinson bounds based methods for simulation
are already closer in spirit, but also in that case one fundamentally uses the Hamil-
tonian. However, we are nevertheless able to affirmatively answer this question for
one-dimensional systems.

In Chapter 6 we introduce the theory of QCAs. In Chapter 7 we review elements
of the theory of operator algebras and a result on perturbations of algebras which is
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the key technical ingredient for our results. Next, in Chapter 8 we review the index
theory of [GNVW12] and give a new expression for this index in terms of the mutual
information. Chapter 9 contains our main results: the approximation of ALPUs by QCAs
and an extension of the index theory to ALPUs.

1.3 Quantum information and quantum gravity

A third domain in which there is a lively dialogue between quantum information theory
and many-body physics is in the study of quantum gravity. Quantum gravity poses one
of the deepest open problems in theoretical physics. Of the fundamental physical forces
known to us it is the only one which has not been incorporated in the Standard Model
of particle physics. In almost all practical situations gravity is a very weak force and can
be treated semi-classically. Nevertheless, understanding quantum gravity is required to
understand some of the most fascinating phenomena in the universe, such as the Big
Bang and black holes, both of which involve situations where gravity is a strong force
compared to the length scales at which quantum effects become relevant, and a fully
quantum theory of gravity is necessary. Naive approaches to formulating a theory of
quantum gravity immediately run into problems: quantizations of general relativity are
in general not renormalizable, and hence do not provide a well-defined quantum theory.
The fact that gravity is such a weak force also implies that it is extremely challenging to
study quantum gravity empirically, as one would need access to energy scales which are
far out of reach for current experiments. One particular physical phenomenon where
quantum gravity plays a crucial rol is in black holes. While classically, any observer
passing the black hole horizon will never be able to return, it has been shown that black
holes are radiating objects quantumly, emitting Hawking radiation [Haw75]. However,
it appears that this radiation is completely thermal, containing no information about
the mass that collapsed to form the black hole. This poses a puzzle: the black hole can in
fact completely evaporate, but it seems there is information loss which is incompatible
with global unitary evolution of the universe.

Below we will discuss one specific approach to quantum gravity, which is strongly
motivated by understanding black hole physics.

1.3.1 Entropies in holography
An important observation from the study of black holes and Hawking radiation is that
black holes appear to have an entropy which scales with the surface area of the black
hole (as can be deduced from the temperature of the Hawking radiation) and has later
been confirmed by string theory calculations [Haw76, Bek20, SV96]. This is rather re-
markable: naively one expects that the entropy of matter scales with volume rather
than area. This has led to the proposal that quantum gravity could be of a holographic
nature: if we consider some volume of four-dimensional space-time, the full informa-
tion content of this region can be described by information on the three-dimensional
boundary, or in other words, the four space-time dimensions we observe are really an
emergent phenomenon of a theory which is fundamentally three-dimensional. This
idea has found considerable theoretical support from the discovery of the AdS/CFT
correspondence [Mal99], in which it can be shown that various string theories on a d+1-
dimensional Anti-de Sitter (bulk) space are equivalent to a nongravitational conformal
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A

γA

(a) Illustration of the RT-formula Eq. (1.6)
for a 2-dimensional spatial bulk slice.
Note that one should think of this disk
as a hyperbolic disk, soγA is a geodesic.
The orange shaded region is the en-
tanglement wedge for the boundary re-
gion A.

A

(b) A tensor network toy model for a holo-
graphic state. The physical Hilbert
space is parametrized by the dangling
half-edges at the ‘boundary’, and the
internal nodes can be thought of as
the ‘bulk’. The graph structure can be
taken to be a discretization of a hyper-
bolic space, and minimal cuts in the
graph correspond to minimal surfaces.

field theory (CFT) on a d-dimensional (boundary) space. Here the AdS space is a type
of space which has negative curvature (as opposed to the observed universe) and has
the property that light rays reach its conformal boundary in finite time. A useful way of
thinking about this property is that AdS is gravity ‘confined in a box’ to make the analysis
easier. Intriguingly, in the AdS/CFT correspondence, weak and strong interaction are
reversed: a strongly coupled boundary CFT corresponds to bulk gravity with weak (semi-
classical) gravity. This means that AdS/CFT is not only an example of a well-defined
theory of quantum gravity, but also a powerful tool in the study of certain strongly
coupled quantum field theories. See [AE15] for an introduction and applications of
holography. Quantum information theory has taken a centre stage in understanding
how the bulk space-time arises from the boundary theory. One crucial insight which ties
quantum information theory to holographic quantum gravity is the Ryu-Takayanagi
(RT) formula [RT06a, RT06b]. This formula states that if one takes a state ρ which is dual
to a stationary bulk space-time, and we consider a subregion A of a spatial slice of the
boundary theory (which is the boundary of a bulk spatial slice), then the entanglement
entropy H(A)ρ can be computed (on suitable regularization) as

H(A)ρ = min
Area(γA)

4GN
+ ... (1.6)

where we consider the minimization over the areas of surfaces γA in a spatial slice of
the bulk space-time which separate A from its complement, as in Fig. 1.4a. In this
formula GN is the Newton constant and the corrections to the area term are quantum
corrections which are small for large GN . A further question is what ‘information’ about
the bulk can be reconstructed from ρA. Since the bulk and boundary theories are equiv-
alent, one can reconstruct the bulk state from knowing the full boundary state. If we
restrict to the reduced state ρA it turns out we can ‘reconstruct’ the part of space which
is bounded by the minimal surface in Eq. (1.6). This region is called the entanglement
wedge, and the corresponding reconstruction procedure is called entanglement wedge
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reconstruction. See for instance [CMMN19] for a quantum information perspective on
entanglement wedge reconstruction. These considerations make clear that quantum in-
formation in the boundary theory plays a crucial role in the spatial structure of the bulk
gravity and motivates the slogan ‘space-time emerges from the entanglement structure
of the boundary theory’. In the above discussion of the RT formula, we restricted to
the most straightforward situation where we have a stationary state; generalizations
for general time-dependent states and states with entropic matter in the bulk have
been proposed as well [HRT07, FLM13, EW15]. These generalizations have played an
important role in recent advances in understanding the black hole information paradox.

1.3.2 Holographic toy models and random tensor networks
Holographic theories of quantum gravity may be relatively well-controlled, they are still
complicated strongly-coupled quantum field theories. For this reason, it has been very
helpful in our understanding of quantum information principles in holography to study
simple toy models which mimic holographic theories in important aspects. One exam-
ple are relatively simple models of gravity (such as JT gravity, and its approximation by
the SYK model as a boundary theory) in which more explicit computations are possible.
Other prominent examples of toy models are constructed as tensor networks. Recall
that for a tensor network, if we look at a subsystem A, any edge cut γA in the network
separating A from its complement gives an upper bound on the entropy of log(D)|γA|,
where D is the bond dimension. Thus, we get an upper bound given by the minimal cut
in the tensor network. If this upper bound is (approximately) saturated, one could think
of this as a version of the RT-formula, where one has dangling edges (on which the state
lives) as the ‘boundary’ and internal nodes of the network as the ‘bulk’. This analogy is
illustrated in Fig. 1.4b. There are various methods to construct such tensor networks.
One of the first developments in this regard was the observation that the structure of
MERA bears similarity to the holographic principle [Swi12a]: it models a CFT, and the
circuit extends into an additional ‘scale dimension’. Moreover, the tensor network is
reminiscent of a hyperbolic (AdS) space, and the cut shown in Fig. 1.3 is similar to an RT
surface. Another example is provided by the HaPPY tensor network [PYHP15] which can
be constructed on an arbitrary graph with vertices with fixed degree, and which uses
perfect tensors (tensors which are isometries under any bipartition of the half-edges)
to ensure that for relevant cuts the minimal cut upper bound is saturated. This can
also be used as a toy model for bulk reconstruction: one can construct tensor networks
which also have degrees of freedom in the bulk. This perspective has been helpful in
thing about bulk reconstruction in terms of an error correcting code: a code space of
bulk degrees of freedom is encoded in the boundary Hilbert space, and restricting to
a boundary subregion corresponds to an erasure error on the complement [Har17].
The error correction perspective has been useful for understanding the emergence of
locality in the bulk [ADH15, Har18].

Finally, a very useful and versatile toy model has been the class of random tensor
networks [HNQ+16], which will be the topic of Part III. This is simply a PEPS tensor
network where the tensors are taken to be uniformly random tensors. It can be shown
that, with high probability, these models approximately satisfy the RT formula and
have the desired error correction (bulk reconstruction) properties. It has been argued
that there is a strong correspondence between fixed-area states (which do not take into
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account that there are fluctuations in the size of the minimal surface and have a flat
entanglement spectrum) in holography and random tensor network states [DHM19].
One may wonder:

Can random tensor networks be used as a toy model for holographic quantum
gravity beyond fixed area states?

We study a model where the maximally entangled states in the PEPS construction are
replaced by arbitrary entangled states. This reproduces non-flat entanglement spectra.
Moreover, this is particularly well suited to study interesting recent developments
in the connection between one-shot quantum information theory and holography
[AP20, AP22] which allows for a more general understanding of the RT formula and bulk
reconstruction. To test the usefulness of this model, we study the following fundamental
holographic question:

What happens at a phase transition between two different RT surfaces?

That is, what happens to the RT formula and its generalization when there are
two competing minimal surfaces of approximately the same minimal size. This is an
important question: such a phase transition is the basis for holographic computations
of the Page curve. Also, it is close related to a phase transition between two disjoint
regions, which are either entangled or not (their entanglement wedge is connected
or disconnected). We study this question for random tensor network states with two
competing minimal cuts, and we show that there are corrections to the RT formula and
the entanglement spectrum, confirming and mirroring computations for holographic
systems [PSSY19, MWW20, AP20], using methods from random matrix theory and one-
shot quantum information theory.

In Chapter 10 we introduce aspects of quantum information theory in holographic
quantum gravity, elaborating in Chapter 11 on the use of the replica trick. Then, in Chap-
ter 12 we introduce the random tensor network model formally and discuss the replica
trick for random tensor networks. Chapter 13 and Chapter 14 contain our main re-
sults of Part III: proofs of convergence of the entanglement spectra of random tensor
networks with nontrivial link states in two different regimes.

Notation and conventions

We now introduce some general notations and conventions we will use throughout
the dissertation. Given a Hilbert space H , we write 〈·, ·〉 for the inner product and ∥·∥
for the norm of vectors. We denote by B(H ) the space of bounded operators on H

and the operator norm of an operator A by ∥A∥. We denote Hermitian adjoints by A∗,
and we write A ≤ A′ if the difference A′− A is positive semidefinite. We denote identity
operators by IH and leave out the subscript if the Hilbert space is clear from the context.

For a linear operator A we write ∥A∥p = tr[(A∗A)
p
2 ]

1
p for the Schatten p-norm (mostly

the cases p = 1,2 will be relevant). For the finite dimensional Hilbert space Cn , we



use bra-ket notation and write |0〉 , . . . , |n −1〉 for the standard basis. If |φ〉 is a vector
in bra-ket notation, we use the convention that φ= |φ〉〈φ| is the associated projector
(quantum state if |φ〉 is normalized). For n ∈N, we write [n] := {1, . . . ,n} and for a set X
we write |X | for the number of elements of the set. Apart from these generalities, we will
introduce notation and recall definitions throughout the main body.



Part I

Entanglement renormalization and
wavelets





CHAPTER 2

Introduction to entanglement
renormalization

One of the most promising applications of quantum computers is the simulation
of strongly correlated quantum systems. A problem of special interest is finding the
ground state of some given Hamiltonian. As we saw in Section 1.1 this is generally a
difficult problem, but there is good hope that ground states for physically relevant quan-
tum systems can be found efficiently by a quantum computer. In this light, a closely
related (weaker) question is whether the ground state of a Hamiltonian of interest can
be prepared or approximated by a quantum circuit of low depth. From the perspective
of classical computation, a similar question is whether this ground state can be approx-
imated by a tensor network state in an ansatz class with a relatively small number of
parameters.

In this part of the dissertation, which is based on [WW21c, WSSW22], we will ad-
dress this question for a very specific class of one-dimensional quantum systems (free
fermions and free bosons) and provide a theoretical analysis of one approach to such
quantum circuits (and associated tensor networks) which is known as entanglement
renormalization using wavelets. In the current chapter we provide a brief introduction
to entanglement renormalization and give an informal overview of our results. In Chap-
ter 3 we review basic wavelet theory and provide proofs of various useful results. We
first discuss fermionic entanglement renormalization in Chapter 4. Then, in Chapter 5
we discuss the bosonic version.

2.1 Entanglement renormalization

An important task in the study of quantum many-body systems is finding useful pa-
rameterizations of physically relevant quantum states. In Section 1.1.2 we encountered
one particular approach, which is by using tensor network states, which are defined
by contractions of local tensors according to a network or graph structure. This gives
a natural way to prescribe the entanglement structure of the state, while retaining the
ability to describe interesting states such as low energy states of local Hamiltonians. Ten-
sor networks are particularly useful to implement real-space renormalization inspired
numerical methods for strongly interacting quantum many-body systems. In one spatial
dimension, prominent examples are the density matrix renormalization group [Whi92],
with the associated tensor network class of matrix product states (MPS) we defined
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Scale/
circuit
depth

Space

|0〉 |0〉 |0〉 |0〉

|0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉

Figure 2.1: The structure of an entanglement renormalization circuit. Each layer is a constant
depth quantum circuit that is supposed to implement a real-space renormalization.
Every layer takes as input the output of the previous layer and a product state,
resulting in an entangled quantum state at the bottom. Layers further up in the
figure correspond to structure at larger scales.

in Section 1.1.2 and entanglement renormalization [Vid07], with the corresponding
multiscale entanglement renormalization ansatz (MERA) states [Vid07, Vid08]. The
idea of entanglement renormalization is to perform real-space renormalization (so the
renormalization is spatially local) in a unitary fashion. Intuitively, it can be described as
follows. We start with the ground state |ψ〉 of a Hamiltonian H on a one-dimensional lat-
tice Z, which is a potentially highly entangled state. We apply a local quantum quantum
circuit to |ψ〉 which is such that it maps |ψ〉 7→ |0odd〉⊗ |φeven〉. That is, |ψ〉 is mapped to
a state which is a product state (e.g. the |0〉 state) on the odd sublattice, and to a state |φ〉
on the even sublattice which is still entangled, and can be thought of as the ground state
of a new (renormalized) Hamiltonian. If the model was at a critical point, this could
be the same Hamiltonian. We can interpret this process as ‘disentangling the short
range entanglement’ and |φ〉 contains the remaining long-range entanglement. We may
then apply the same procedure to |φ〉 and iterate this process, each time reducing the
nontrivial degrees of freedom by a factor of two. If the model is critical, we may take each
layer to be identical. Importantly, this process can be applied in two different directions.
Either one can see it (as described above) as taking the state |ψ〉 and disentangling it
layer by layer. Alternatively, we can read the circuit in the other direction, and use it to
prepare the state |ψ〉 starting from a product state on each layer and some appropriate
state at the ‘top’ layer. Typically, given a (critical) Hamiltonian one can not prepare
the ground state exactly in this way, but only approximately, where the approximation
becomes more accurate with increasing circuit depth.

Importantly, this process can be applied in two different directions. Either one
can see it (as describe above) as taking the state |ψ〉 and disentangling it layer by layer.
Alternatively, we can of course read the circuit in the other direction, and use it to prepare
the state |ψ〉 starting from a product state. Typically, given a (critical) Hamiltonian one
can not prepare the ground state exactly in this way, but only approximately, where the
approximation becomes more accurate with increasing circuit depth. We have not yet
specified what the state at the ‘top’ layer of the circuit should be. However, one can show
that for a sufficiently large number of layers (logarithmic in the system size), the choice
of state on the top level does not influence the resulting MERA state by much [KK17].
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Figure 2.2: (a) A single layer in the MERA ansatz. Here u is a unitary, and w an isometry. If the
local degrees of freedom are qubits, this would be a MERA with bond dimension
χ= 4. (b) Every entanglement renormalization circuit can be written as a MERA (the
converse need not be true) by grouping the unitaries in the circuit appropriately as
shown here, see also [KK17].

In general MERA tensor networks, the renormalization layer is often described as the
application of first a unitary to a number of neighbouring sites (which can be thought
of as disentangling the sort range entanglement of these sites) and then applying (the
adjoint of) an isometry to the output of neighbouring unitaries (which can be thought
of as projecting onto the renormalized state). This structure is shown in Fig. 1.3. In
other words, a MERA tensor network state prepares an (approximate) ground state
through a series of layers, each of which consists of isometries followed by local unitary
transformations. The dimension of the input Hilbert space for the isometry is called the
bond dimension. For a scale-invariant theory, each of the layers can be taken identical.
The MERA described here is a so-called binary MERA, other structures (for instance
ternary MERA [EV09a]) are also possible.

The way in which MERA is typically used for computational problems is in vari-
ational algorithms. That is, one takes the MERA states as an ansatz class and then
minimizes the energy 〈ψMERA|H |ψMERA〉 over this class. A crucial aspect of MERA
which allows one to perform this optimization relatively efficiently is that the unitary
structure of the network gives rise to a causal cone, so one can perform the optimization
with respect to local terms in the Hamiltonian on a local patch of the tensor network.
See for instance [EV09a, HVDH21] for gradient descent based numerical methods to
perform this optimization.

Unfortunately our analytic understanding of entanglement renormalization is still
limited (as compared to for instance MPS). Ideally, one would like to know conditions
under which the ground state of a Hamiltonian can be approximated as a MERA state,
and how the approximation accuracy scales with the bond dimension.
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2.1.1 Entanglement renormalization and quantum computing
In our constructions we actually obtain low-depth local quantum circuits implementing
the entanglement renormalization layer, as shown in Fig. 2.1, and for this reason we will
often use the term entanglement renormalization circuits rather than MERA throughout
this part of the dissertation. This is a relevant distinction, as this class of states can be
prepared efficiently on a quantum computer, which makes them a promising ansatz
class for variational optimization on a quantum computer. This latter perspective was
introduced in [KS17a], where the corresponding class was called DMERA. In Fig. 2.2 it is
illustrated how an entanglement renormalization circuit is a special case of MERA, by
blocking together gates in the circuit to form the unitaries and isometries in the usual
binary MERA. One also sees that increasing circuit depth corresponds to exponentially
increasing bond dimension. The main bottleneck in classical algorithms for MERA is
the contraction of the tensor network state to compute for instance expectation values
of observables (which is necessary for all variational algorithms). These contractions
scale polynomially in the bond dimension χ, for instance in practice as O (χ9) for the
binary MERA [EV09a]. While polynomial in χ, this quickly becomes computationally
expensive. If we consider an entanglement renormalization circuit, χ is exponential in
the circuit depth, so the contraction cost using known classical contraction algorithms
increases exponentially with increasing circuit depth. On the other hand, the ansatz
is already given as a quantum circuit, so the computation of expectation values of ob-
servables is efficient on a quantum computer: the number of layers required is typically
logarithmic in the system size, and the circuit depth of a single layer typically scales
polylogarithmically in the desired error. This suggests that one may use a quantum
computer to perform the tensor network contractions, and a classical computer to
perform the optimization over the parameters in the circuit [KS17a], in other words,
to use entanglement renormalization circuits for a VQE as discussed in Section 1.1.
Note that entanglement renormalization circuits are a subclass of general MERA, and
potentially MERA could be more expressive with the same number of parameters. How-
ever, from numerical evidence [HGPC21] it appears that the accuracy of entanglement
renormalization circuits (DMERA) still scales favorably with the number of variational
parameters compared to regular MERA.

A final appealing property of entanglement renormalization circuits is that they are
robust to small errors (a phenomenon we will also encounter in our results). Naively, ap-
plying multiple short-depth circuits would lead to an accumulation of errors. However,
the scale-invariant nature of MERA ensures that errors in ‘deep’ layers will not contribute
too much. This property makes them interesting candidates for noisy intermediate-
scale quantum (NISQ) devices [KS17a, BCSF21, Pre18] which are not capable of fault-
tolerant quantum computation.

2.1.2 Entanglement renormalization and quantum field theory
Entanglement renormalization is especially interesting and useful for critical systems
(i.e. systems at a phase transition, where the energy gap from the ground state to
the first excited state vanishes). In physical systems, at a critical point, it typically
happens that the system becomes scale invariant. Intuitively, this means that the
system is invariant under ‘zooming in and out’ when renormalizing (that is, the state
is a fixed point of the renormalization group). This means that the behaviour of the
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Figure 2.3: Under the MERA superoperator a discretization O of a field operator with scaling
dimension ∆ is an eigenvector with eigenvalue approximately equal to 2−∆.

system at this point is described by a scale-invariant quantum field theory, a conformal
field theory (CFT) [FMS12]. Correspondingly, one can take identical layers in a MERA
description of the state. Interestingly, one can reconstruct various properties of the
CFT that describes the state from the MERA superoperator. The MERA superoperator
is the operation of applying a single layer of entanglement renormalization. From
the field theory perspective this superoperator should correspond to ‘zooming out’
by a factor of two. In a CFT, the fields are conveniently organized by their behaviour
under rescaling transformations, determined by the scaling dimensions. If φ∆ is a field
with with scaling dimension ∆, one expects that under rescaling by a factor 2 the field
transforms as φ(x) 7→ 2−∆φ( x

2 ). It turns out that if one computes at eigenvalues of the
MERA superoperator one approximately recovers some of the scaling of the theory,
as illustrated in Fig. 2.3. It is also possible to recover OPE coefficients [EV13]. This
phenomenon is intuitively plausible, but a thorough theoretical understanding of which
conformal data are captured, and how this depends on the bond dimension, is still
lacking. We will see that in the wavelet construction of entanglement renormalization for
free theories there is a natural connection to the corresponding quantum field theories
and one can exactly reproduce various scaling dimensions (with a clear interpretation).

To provide a broader perspective, we mention that several approaches have been
proposed to extend the notion of quantum circuits and more generally of tensor net-
works to quantum field theories. Roughly speaking there are two distinct routes: one
is to define a variational class of continuum states, whereas the other is to consider a
restricted set of observables and try to approximate correlation functions of these ob-
servables. An example of the former is cMERA [HOVV13], which defines a class of states
that arise from a real-space renormalization procedure. In this case the ‘quantum circuit’
that performs the entanglement renormalization is also continuous. Another example
is cMPS [VC10], which can be interpreted as a path integral [BHJ+12]. Both cMERA and
cMPS have been successfully demonstrated numerically for free theories, and these
classes of states have also been used as a basis for perturbation theory [CMMN19]
and variational algorithms [HCO+10] for 1+1 dimensional quantum field theories. In
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particular, cMPS can be used as a variational ansatz to study interacting field theories
at very high precision, see for instance [VC10, GRV17]. Yet rigorous proofs have largely
been elusive. We will follow the second route, by considering correlation functions
of smeared operators. These operators are discretized at an appropriate scale and an
ordinary (entanglement renormalization) quantum circuit is used to prepare a state
with which to compute their correlation functions.

A final motivation to investigate tensor networks for conformal field theories is
provided by the wish to study holography and the AdS/CFT correspondence, which
we encountered in Section 1.3. It has been remarked that entanglement renormaliza-
tion has a structure reminiscent of this duality [Swi12b], as the circuit reorganizes a
critical one-dimensional system to a two-dimensional structure that is a discretization
of AdS space, although the precise connection to holographic theories is still being
developed [BCC+15, MV18a]. Any MERA tensor network can be extended to a unitary
quantum circuit by extending the isometries to unitaries with an auxiliary input, so that
the MERA is recovered by applying the circuit to an appropriate product state. Such
extensions are not unique. In contrast, the wavelet based constructions naturally yield
unitary quantum circuits that reorganizes the degrees of freedom of the Dirac theory in
one higher dimension, by position and scale, cleanly separating positive and negative
energy modes of the Dirac fermion. Thus it can be seen as a circuit realization of a holo-
graphic mapping for an actual conformal field theory, complementing tensor network
toy models of holographic mappings as proposed in [PYHP15, YHQ16, HNQ+16, NW16].
Of course, the relation to holography should be seen here as merely an analogy, as
actual holographic quantum field theories with an AdS dual gravity theory are strongly
interacting theories rather than free field theories.

2.1.3 Entanglement renormalization and wavelets
Unfortunately our analytic understanding of entanglement renormalization is still
limited (as compared to for instance MPS). Ideally, one would like to know conditions
under which the ground state of a Hamiltonian can be approximated as a MERA state,
and how the approximation accuracy scales with the bond dimension. One direction in
which progress to such analytic understanding has been made, and as will be described
in detail in this part of the dissertation, is in connection to wavelets.

Wavelet transforms decompose a signal as a linear combination of localized wave
packets or ‘wavelets’ at different scales (as compared to the Fourier transform, which
uses plane waves). We will review the wavelet transform in some detail in Chapter 3. For
now we give a brief informal description so we can explain the relation to entanglement
renormalization.

In each step of the discrete wavelet transforms a signal f is decomposed into a high-
frequency component fw (the ‘details’ of the signal) and a low-frequency component fs

(the ‘large scale structure’ of the signal) by applying a high-frequency (wavelet) filter gw

and low-frequency (scaling) filter gs and subsampling the result on the even sublattice.
The wavelet transform then proceeds iteratively on the low-frequency component of
the signal. The original signal can be reconstructed using the filters gw and gs as
well. In fact, if one iterates this reconstruction procedure, one can construct a limiting
continuous function ψ from the filters. This leads to the continuous wavelet transform:

it turns out that shifted and scaled versions of ψ, given by ψ j ,k (x) = 2
j
2ψ(2 j x −k) form
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Figure 2.4: An illustration of the (discrete) wavelet decomposition map W . It decomposes a
signal f into a scaling (low-frequency) signal fs and a wavelet (high-frequency) signal
fw . This can be applied iteratively to the scaling signal; each layer of W ‘zooms out’
by a factor of 2. The transform W can be written as a classical circuit which can be
second quantized to obtain an entanglement renormalization circuit.

an orthonormal basis for the space of square-integrable functions. The fact that these
functions are compactly supported, yet allow for a Fourier-type function decomposition
has led to the nomenclature wavelet function for ψ.

The structure and philosophy of the discrete wavelet transform is very similar to
real-space renormalization, and its original development was partially motivated by
applications in real-space renormalization [Bat99]. In particular, the iterative nature
of the wavelet transform bears a close similarity to entanglement renormalization: in
this case each layer of the circuit disentangles the ‘high frequency’ (short scale) entan-
glement, and then proceeds iteratively with the remaining ‘low frequency’ (long scale)
degrees of freedom, which are now organized on a coarse-grained lattice. Moreover, to
deepen the analogy, the discrete wavelet transform can be written as a ‘circuit’, which
is a ‘classical’ (or single-particle) circuit in the sense that it acts on direct sums of de-
grees of freedom rather than a tensor product. In [EW16, HSW+18] it was shown that
this more than just an analogy: second quantization of an appropriate pair of discrete
wavelet transforms gives rise to fermionic entanglement renormalization circuits for
a critical lattice fermion. In other words, one considers the second quantization of a
single-particle circuit, which is given by a wavelet transform. Through a Jordan-Wigner
transformation this is equivalent to a quantum circuit on a chain of qubits approximat-
ing the ground state of the critical Ising model. These ideas are illustrated in Fig. 2.4.
In fact, the wavelet-based entanglement renormalization circuits from [EW16] have
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recently been implemented on an ion trap quantum computer in [SJ21].

2.2 Summary of contributions

In this part of the dissertation we will outline how second quantization of wavelet trans-
forms gives rise to entanglement renormalization for one-dimensional free fermions
and bosons. Here, a free Hamiltonian is a Hamiltonian which is quadratic in the
(fermionic or bosonic) creation and annihilation operators. In practice, ground states
for one-dimensional systems can be simulated very accurately using MPS methods
(such as DMRG) even at critical points (which are numerically more challenging than
gapped phases). Also, the Hamiltonians of the free systems we study in this part of
the dissertation are actually analytically solvable. Nevertheless, our results provide a
potentially useful perspective on the simulation of many-body quantum systems: as
discussed above using entanglement renormalization circuits as a variational ansatz
can potentially speed up computations for (critical) lattice systems in one dimension for
non-free systems as well. Secondly, entanglement renormalization can also be applied
in higher spatial dimensions [EV09b], in which case classical tensor network methods
quickly become computationally expensive. Understanding in detail the solution for
free systems is a crucial first step to obtain better understanding of these applications.

2.2.1 Informal statement of results
Fermionic entanglement renormalization

In Chapter 4 we investigate entanglement renormalization for a free fermionic system.
From previous work [EW16, HSW+18] it was known that from second quantization
of an appropriate ‘Hilbert pair’ of discrete wavelet transforms one obtains fermionic
entanglement renormalization circuits for a critical lattice fermion.

In Chapter 4, based on [WSSW22], we extend the results of [EW16, HSW+18] by
showing that the continuum limit of the wavelet transform, and the associated wavelet
and scaling functions have a natural interpretation for the continuum limit of the
fermion, a Dirac quantum field theory [FMS12].

To be precise, we consider the free massless Dirac fermion in 1+1 dimensions, with
action

S(Ψ) = 1

2

∫
Ψ†γ0γµ∂µΨdxdt

for a two-component complex fermionic fieldΨ on the line (or on a circle). We take the
algebraic approach to quantum field theories, which allows for a rigorous description
of (free) quantum field theories [Haa12]. To have bounded operators we ‘smear’ the
fields. For a smearing function f we define the bounded operatorΨ( f ) which should
be thought of (informally) as

Ψ( f ) =
∫

f (x)Ψ(x)dx.

From a physical perspective the smearing function is justified by the fact that one can
only probe the system at some finite scale.
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We will now describe a procedure which approximates correlation functions of
smeared operators. Informally, the procedure is that we first discretize the operators at
some scale (i.e., we impose a UV cut-off), and then, in order to obtain the free fermion
ground state, we need to ‘fill the Dirac sea’ up to the relevant scale. So, the circuit,
starting from the Fock vacuum, has to fill all the negative energy modes over the range
of scales that are relevant for the inserted operators, directly analogous to a real-space
renormalization procedure.

We know the negative energy states explicitly in Fourier space, but the non-trivial
problem is that we want to construct a local circuit, while the Fourier basis for the
negative energy solutions is very non-local. In order to obtain a circuit that is compatible
with scale invariance and translation invariance, but is still local, we thus use a wavelet
basis for the space of negative energy solutions. It is not possible to construct a basis that
is both completely local and consists of exactly negative energy solutions, but it turns
out it is approximately possible by using a pair of wavelets that approximately satisfy a
certain phase relation, leading to a so-called Hilbert pair of wavelets. This construction
takes as input two integer parameters K and L, such that the support of the wavelet is of
size 2(K +L), and there is an approximation parameter εwhich measures how accurately
the phase relation is satisfied. The wavelet functions give rise to a ‘classical’ circuit,
which implements the decomposition of a function in the wavelet basis at different
scales. This circuit should be thought of as a circuit on the single-particle level, and the
fermionic quantum circuit is obtained as its second quantization.

Now let {Oi }, i = 1, . . . ,n be a set of smeared operators that are either linear in the
fields or normal-ordered quadratic operators, and which are compactly supported. We
would like to compute correlation functions

G({Oi }) = 〈O1 · · ·On〉. (2.1)

The procedure sketched above discretizes the operators Oi and constructs a quan-
tum circuit that computes an approximation GMERA

L ,ε ({Oi }) of the correlation function,
where L is the number of layers of the circuit, and ε is an error parameter.

The following is a simplified version of our main result. A precise formulation is
given by Theorem 4.7, where we also specify precisely which operators we consider and
give explicit bounds for the approximation error.

We assume that we are given a family of wavelet filters with uniformly bounded
scaling functions, of support N and approximating the Hilbert pair relation to accuracy ε.
The constructed circuits have depth D = ⌈N

2 ⌉ for a single circuit layer, and the bond
dimension of the corresponding MERA tensor network is given by χ= 2D . For simplicity
we consider a two-point function (see Theorem 4.7 for the error scaling with the number
of operator insertions).

Theorem (Informal). Let O1,O2 be Dirac field creation or annihilation operators or
normal-ordered quadratic operators, smeared by a differentiable function with compact
support. Then the approximation error for a MERA state with L layers is bounded by

|〈O1O2〉−〈O1O2〉MERA| =O (N 22−L
3 )+O (ε log N

ε ).

The constants in the O-notation depend the support and smoothness of the Oi .

Our main theorem provides a justification for the numerical success of MERA for
quantum field theories by providing rigorous bounds on the approximation of correla-
tion functions. A Dirac fermion can be decomposed into two Majorana fermions. Our
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construction is compatible with this decomposition, so we also obtain quantum circuits
for Majorana fermions. It remains an open problem to prove analytic bounds on the
decay of ε with N . For the construction of [Sel02] where N = 2(K +L), numerically the
parameter ε is seen to decrease exponentially with min{K ,L}.

As mentioned above, the wavelet construction gives rise to an entanglement renor-
malization circuit rather than an (unstructured) MERA tensor network in a canonical
way. We also show that the scaling dimensions of the fermionic fields (and of a number
of descendents) are captured exactly by the MERA superoperator. Our work therefore
elucidates the relation between entanglement renormalization and quantum field the-
ory, and provides a new perspective on quantum simulation of quantum field theories.

Bosonic entanglement renormalization

In [EW16] it was suggested that wavelet constructions could also be relevant for free
bosonic systems, and in Chapter 5, based on [WW21c], we confirm this suggestion. In or-
der to formulate what this entails, we will work with bosonic quantum circuits. Just as for
free fermionic systems, we will look at second quantizations of single-particle circuits, or
Gaussian circuits. This is also known as linear optics circuits, and means that each local
operation is implemented by time evolution along a quadratic Hamiltonian. This is sub-
class of all bosonic quantum circuits which can be efficiently simulated (upon adding a
single non-Gaussian bosonic quantum gate to the set of allowed operations, however,
bosonic quantum circuits are able of universal quantum computation [KLM01]). In con-
trast to more usual notions of quantum circuits and tensor networks, the Hilbert spaces
are infinite dimensional. In particular, the usual definition of a tensor network with a
finite bond dimension has no immediate analogue. However, finite-depth quantum
circuits such as entanglement renormalization circuits of the form of Fig. 2.1 are still
meaningful even in this infinite-dimensional bosonic setup. The notion of Gaussian
bosonic entanglement renormalization has been introduced and studied in [EV10a], in
which an extensive explanation of the formalism can be found.

In Chapter 5 we show that one can indeed construct a Gaussian bosonic entangle-
ment renormalization scheme for bosonic quadratic one-dimensional Hamiltonians,
using the second quantization of biorthogonal wavelet filters, a generalization of the
usual orthogonal wavelet filters. Interestingly, in the bosonic case our results are not
restricted to the scale-invariant case, but can be used to construct entanglement renor-
malization circuits for arbitrary translation invariant quadratic bosonic Hamiltonians.
Given such a Hamiltonian, we explain how a corresponding (approximate) entangle-
ment renormalization circuit can be found by solving a filter design problem. We also
give a general heuristic for constructing such filters in Section 3.4, similar to the con-
struction of the Daubechies wavelets. This is in contrast to the fermionic case, where
the only known constructions are for massless (critical) fermions. Finally, as in the
fermionic case, the continuum limit of the discrete system is directly related to the
continuous scaling and wavelet functions, associated to the continuous limit of the
discrete wavelet transform. Moreover, for the free massless boson our construction
reproduces various scaling dimensions exactly. If the system is not scale-invariant, we
explain how one can still define versions of the wavelet and scaling functions which are
not scale-invariant.

We prove anr approximation theorem, formally stated as Theorem 5.3, for the cor-
relation functions of the MERA state, given biorthogonal wavelet filters with certain
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properties, similar to the fermionic results of [HSW+18]. In this case we focus on the
discrete setting. In Theorem 5.3, we prove a general result which applies to an arbitrary
quadratic Hamiltonian. In the particular case of the harmonic chain with Hamiltonian

H = 1

2

( ∑
n∈Z

p2
n +m2q2

n + 1

4
(qn −qn+1)2

)
,

specializes as follows. We measure the error in the two-point functions 〈pi p j 〉 and 〈qi q j 〉
(or covariance matrix). We assume that we are given an appropriate wavelet pair (which
we are not guaranteed to exist in general, but for which we provide a numerical con-
struction) which satisfies a certain relation up to error ε, with support N and which
is stable in the sense that the wavelet decomposition map and scaling functions are
uniformly bounded. Then we have the following:

Theorem (Informal). For the harmonic chain with mass m, the approximation error us-
ing the MERA state resulting from L layers of entanglement renormalization is bounded
by

|〈pi p j 〉exact −〈pi p j 〉MERA| =
(
O (N

3
2 2−L

2 )+O (ε log N
ε )

)√
m2 +1,

|〈qi q j 〉exact −〈qi q j 〉MERA| =
(
O (N

3
2 2−L

2 )+O (ε log N
ε )

) 1

m
,

the latter assuming m > 0. In the massless case, the latter bound is replaced by

|〈qi q j 〉exact −〈qi q j 〉MERA| =
(
O(N

3
2 2−L

2 )+O (ε log N
ε

))√|i − j |.
In the massless case, there is an IR divergence and 〈qi q j 〉 is only defined up to a

constant, so we define 〈qi q j 〉 by subtracting the divergence; see Eq. (5.33) in Section 5.3
for details.

The intuition behind the proof of both the fermionic and the bosonic result is that

the contribution of the L -th layer to the correlation function is bounded by O (2−L
2 ),

so we need O (log 1
δ ) layers to get within error δ (even with perfect filters). In principle,

each layer contributes an additive factor of O (ε), due to the error in the filter relation,
so naively this would yield an error bound of size O (L ε), which does not scale in
the desired way for large L . However, deeper layers do not contribute much to the
correlation function, so we effectively have only log( 1

ε
) layers where the inaccuracy of the

phase relation is relevant, leading to an error of size O (ε log( 1
ε

)). If we denote by N the
circuit depth of a single layer, then we find numerically that ε can be made exponentially
small as a function of N , whereas the other wavelet-dependent parameters we have
suppressed above only grow polynomially. Hence, the total required depth of a single
layer of entanglement renormalization for a desired error is polylogarithmic in ε−1.
This shows that our entanglement renormalization circuits prepare the ground state
very efficiently: a circuit of overall depth O (polylog( 1

δ
)) achieves an accuracy δ on

the correlation functions. Overall, we believe that our work, in [WSSW22, WW21c],
together with [EW16, HSW+18], essentially completes our conceptual understanding
of Gaussian entanglement renormalization for free one-dimensional theories as the
second quantization of wavelet decompositions.

2.2.2 Prior work
The only rigorous results and constructions that are known for entanglement renor-
malization and MERA in one-dimensional critical systems rely on wavelet theory. Our
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work adds extensively to this line of research by extending the work of [EW16, HSW+18]
to the continuum and to bosonic systems. The idea to use wavelet theory for renor-
malization is very intuitive and in fact dates from the early phases of wavelet theory
(see for instance [Bat99]). In Refs. [Qi13, Lee17] Haar wavelets were used as a fermionic
holographic mapping, and in Ref. [SB16] Daubechies wavelets were used as a bosonic
holographic mapping. The connection to quantum circuits and entanglement renor-
malization was made in Refs. [EW16, EW18]. For us Ref. [HSW+18] is especially relevant.
In this work a systematic method to construct circuits for lattice fermions was described
based on the discrete wavelet transform of a pair of wavelets with special properties, a
so-called approximate Hilbert pair. It is a well-known that there is both a discrete and a
continuous perspective on wavelet transforms, but from previous work it was unclear
whether and how continuous wavelet theory relates to the quantum field theory limit of
the lattice systems. We show that the extension of the discrete to the continuous wavelet
transform precisely relates the entanglement renormalization circuits in a natural way
to the Dirac fermion. This offers a new perspective on the relation between MERA
and its continuum limit. For instance, it becomes very clear why the entanglement
renormalization superoperator captures some scaling dimensions of the theory exactly
in this construction.

For the bosonic case a natural idea is to simulate bosonic quantum field theories
on a bosonic quantum computer [MPSW15], and wavelets are a very efficient choice
of basis to discretize a quantum field theory for this purpose [BRSS15]. We explain
that for any free 1+1-dimensional bosonic field theory, one can use suitably chosen
biorthogonal wavelets to discretize the theory and use the corresponding wavelet de-
composition to prepare its (approximate) ground state using the bosonic Gaussian
entanglement renormalization circuit. The idea to use wavelets to discretize a field
theory is been suggested before, see for instance [BP13, BRSS15, SMMT20] for some
recent discussions of discretizing bosonic field theories using wavelets. Our approach
however fundamentally differs from these works in that we use biorthogonal wavelets
(as is natural in the bosonic setting), which moreover are specifically designed to target
the Hamiltonian of the field theory (rather than using off-the-shelf wavelets such as the
Daubechies wavelets).



CHAPTER 3

Wavelet theory

Our entanglement circuits will be obtained by second quantization of a wavelet
transformation. In Chapter 4 and Chapter 5 we will explain fermionic and bosonic
second quantization and how it leads to entanglement renormalization. In the current
chapter we review the basic theory of wavelets. We will use orthogonal wavelets for
fermionic circuits and biorthogonal wavelets for bosonic circuits. In Section 3.1 we
explain the definition of an orthogonal wavelet basis, and how a choice of wavelet basis
stratifies a function space into different scales. The difference with Fourier analysis is
that the basis functions are not plain waves but ‘wavelet’ functions, which are spatially
localized wave packets. We also explain how different scales in this decomposition
are related through a filtering procedure. Then, in Section 3.2 we generalize this to
biorthogonal wavelet bases. In Section 3.3 we discuss how to construct (biorthogonal)
wavelet filters which satisfy certain prescribed phase relations, which is crucial to the
entanglement renormalization construction. In particular we define and construct (ap-
proximate) Hilbert pairs of wavelet filters. Next, we explain how (biorthogonal) wavelet
transforms are implemented by a classical linear circuit (which can be interpreted as a
single-particle quantum circuit) in Section 3.5. Finally, in Section 3.6 we will prove vari-
ous technical results on approximations using wavelets which are the core ingredient
for our entanglement renormalization approximation theorems. For a more extensive
introduction to wavelets we refer the reader to, e.g., Chapter 7 in [Mal08]. Most of the
material in this section is a review of wavelet theory. However, the general construction
of circuits for biorthogonal wavelet filters, the construction of biorthogonal wavelet
filters in Section 3.3 and the results of Section 3.6.1 are our own contribution.

Notation

We now introduce some notation and conventions with respect to function spaces and
Fourier analysis that we will use throughout Part I. We define the circle S1 =R/Z as the
interval [0,1] with endpoints identified. We write L2(R), L2(S1), etc. for Hilbert spaces
of square-integrable functions with respect to the Lebesgue measure that assigns unit
measure to unit intervals, and we denote by ℓ2(Z) the Hilbert space of square-integrable
sequences. The Fourier transform of a function φ ∈ L2(R) is denoted by φ̂ ∈ L2(R)
and is given by φ̂(ω) = ∫ ∞

−∞ f (x)e−i xωd x if φ is absolutely integrable. Similarly, the
Fourier transform of a function φ ∈ L2(S1) is denoted by φ̂ ∈ ℓ2(Z) and can be computed
as φ̂(n) = ∫ 1

0 f (x)e−i x2πnd x. Lastly, we define the Fourier transform of a sequence f ∈
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ℓ2(Z) to be the 2π-periodic function f̂ ∈ L2(R/2πZ) given by f̂ (θ) = ∑
n∈Z f [n]e−iθn .1

For H = L2(R), L2(S1), or ℓ2(Z), and λ̂ a bounded function on the Fourier domain,
i.e. an element of L∞(R), L∞(Z) or L∞(S1) respectively, we will denote by m(λ̂) ∈ B(H )
the Fourier multiplier with symbol λ̂, defined by multiplication with λ̂ in the Fourier
domain (equivalently, convolution with the inverse Fourier transform λ in the original
domain). In order for m(λ̂) to be a bounded operator we need that λ̂ is a bounded
function On ℓ2(Z), we define the downsampling operator ↓ by (↓ f )[n] = f [2n]; its
adjoint is the upsampling operator ↑ given by (↑ f )[2n] = f [n] and (↑ f )[2n + 1] = 0
for f ∈ ℓ2(Z). We will also use the Sobolev spaces H K (R) and H K (S1), which consist of
functions that have a square-integrable weak K -th derivative, denoted f (K ). All p-norms
for p ̸= 2 will be denoted by ∥ f ∥p , while we write ∥ f ∥ = ∥ f ∥2 =

√〈 f , f 〉. We write 1 for
the constant function equal to one, and 1X for the indicator function of a set X .

3.1 Wavelet bases

An (orthogonal) wavelet basis is an orthonormal basis for L2(R) consisting of scaled
and translated versions of a single localized function ψ ∈ L2(R), called the (orthogonal)
wavelet function. In this case we define

W j = {ψ j ,k : k ∈Z}, where ψ j ,k (x) = 2
j
2ψ(2 j x −k),

so L2(R) =⊕
j W j . We can therefore interpret of W j as the space of functions at scale j ,

also called the detail space at scale j , where large j corresponds to fine scales and
small j to coarse scales.

In signal processing, wavelet bases are often constructed from an auxiliary func-
tion φ ∈ L2(R), known as the scaling function. We let

V j = span{φ j ,k : k ∈Z}, where φ j ,k (x) = 2
j
2φ(2 j x −k)

and we demand that the V j form a complete filtration of L2(R), i.e.,

{0} ⊆ . . . ⊆V j ⊆V j+1 ⊆ . . . ⊆ L2(R),
⋃

j
V j = L2(R).

One can show that in this case there exists an associated wavelet function ψ which is
such that the wavelets at scale j span exactly the orthogonal complement of V j in V j+1:

V j+1 =W j ⊕V j (3.1)

for all j ∈Z. A sequence of subspaces {V j } j∈Z as above is said to form a multiresolution
analysis, since Eq. (3.1) allows to recursively decompose a signal in some V j scale by
scale. It follows that V j is the space spanned by all ψl ,k for l < j , i.e.

V j =
⊕
l< j

Wl

1Note the choice of factors of 2π in these conventions. These have been chosen so as to be compatible
with the integer shift structure of the wavelet basis.
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(a) (b)

Figure 3.1: (a) Scaling and wavelet function for the Haar wavelet (φ= 1[0,1), ψ= 1[0, 1
2 ) −1[ 1

2 ,1)).
(b) Scaling and wavelet functions for the approximate Hilbert pair with parame-
ters K = L = 2 due to Selesnick (φh , ψh in black; φg , ψg in gray). See Section 3.4
and Table 3.1 for further detail.

and the φ j ,k are an orthonormal basis for V j . Note that for any fixed j

L2(R) =V j ⊕
⊕
l≥ j

Wl .

Thus we can decompose any function f ∈ L2(R) as

f = ∑
k∈Z

skφ j ,k +
∞∑

l= j

∑
k∈Z

wl ,kψl ,k

where

sk = 〈φ j ,k , f 〉 wl ,k = 〈ψl ,k , f 〉.

In conclusion, we can interpret V j as the space of functions up to (but excluding) details
at scale j . Intuitively, the scaling function can be thought of as a ‘bump function’ and
the wavelet function as a ‘wave packet’. This intuition, and the orthogonality between
scaling and wavelet function are well-illustrated by the Haar wavelet (see Fig. 3.1, (a)).
We will use pairs of wavelets that are tailored to target the vacuum of the Dirac theory
(see Section 3.3 below).

Wavelet bases as above can be obtained by deriving them from filters. A real-valued
sequence gs ∈ ℓ2(Z) is called a scaling filter (or low-pass filter) if its Fourier transform
satisfies, for all θ ∈R/2πZ,

|ĝs(θ)|2 +|ĝs(θ+π)|2 = 2 and ĝs(0) =p
2. (3.2)

Under mild technical conditions on gs (see, e.g., [Mal08, Thm 7.2]), which we always
assume to be satisfied, we can define scaling and wavelet functions φ, ψ ∈ L2(R) by

ψ(x) =p
2

∑
n∈Z

gw [n]φ(2x −n),

φ(x) =p
2

∑
n∈Z

gs[n]φ(2x −n)



36 Chapter 3. Wavelet theory

and these functions satisfy the conditions above and hence define a wavelet basis (and
associated multiresolution analysis). The sequence gw ∈ ℓ2(Z) is known as the wavelet
filter (or high-pass filter) and it can be computed via

ĝw (θ) = e−iθ ĝs(θ+π), i.e. gw [n] = (−1)1−n ḡs[1−n]. (3.3)

Thus, the expansion coefficients of the wavelet and scaling function at scale j = 0 in
terms of scaling functions at scale j = 1 are precisely given by the wavelet and scaling
filters, respectively (cf. Eq. (3.1)). This generalizes immediately to arbitrary scales: For
all j ,k ∈Z,

ψ j ,k = ∑
n∈Z

gw [n]φ j+1,2k+n , (3.4)

φ j ,k = ∑
n∈Z

gs[n]φ j+1,2k+n . (3.5)

In Fourier space, these relations read

ψ̂(ω) = 1p
2

ĝw

(ω
2

)
φ̂

(ω
2

)
, (3.6)

φ̂(ω) = 1p
2

ĝs

(ω
2

)
φ̂

(ω
2

)
(3.7)

for all ω ∈ R. The Fourier transform of the scaling function can be expressed as an
infinite product of evaluations of the scaling filter:

φ̂(ω) =
∞∏

k=1

1p
2

ĝs(2−kω) (3.8)

In particular, it is bounded by one, i.e., ∥φ̂∥∞ = 1. It is also useful to note that the wavelet
function averages to zero, i.e.,

∫ ∞
−∞ψ(x)d x = 0.

Throughout this article, we will always work with filters of finite length (the length
of a sequence f ∈ ℓ2(Z) is defined as the minimal number N such that f is supported
on N consecutive sites). Specifically, we will assume that the support of the scaling
filter is {0, . . . , N − 1}. In the signal processing literature, such filters are called finite
impulse response (FIR) filters with N taps. It is clear from Eq. (3.3) that in this case the
wavelet filter is supported in {2−N , . . . ,1}, hence has finite length N as well. If the filters
have finite length then the wavelet and scaling functions are compactly supported on
intervals of width N [Mal08, Prop 7.2].

3.1.1 Wavelet decomposition and reconstruction
Suppose that we would like to express a given function f ∈ L2(R) in a wavelet basis. As
a first step, we replace f by P j f ∈ V j , where P j : L2(R) → V j denotes the orthogonal
projection onto the space of functions below scale j . This is corresponds to removing
high frequency components (in signal processing) or to a UV cut-off (in physics). We
explain in Lemma 3.3 below how to bound the error ∥ f −P j f ∥ in terms of a Sobolev
norm. To express P j f in terms of the orthonormal basis {φ j ,k }k∈Z of V j , define the
partial isometries

α j : L2(R) → ℓ2(Z), (α j f )[k] = 〈φ j ,k , f 〉 , (3.9)
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where we note that P j = α∗
j α j . We show below that, if f is sufficiently smooth, the

scaling coefficients α j f can be well-approximated by sampling f on a uniform grid
with spacing 2− j (Lemma 3.4).

Next, we iteratively obtain the wavelet coefficients of P j f at all scales n < j . For this
purpose, let

β j : L2(R) → ℓ2(Z), (β j f )[k] = 〈ψ j ,k , f 〉 ,

and define the unitary operator

W : ℓ2(Z) → ℓ2(Z)⊗C2, W f = (↓ m(ĝw ) f )⊕ (↓ m(ĝs) f ), (3.10)

where the downsampling operator is given by (↓ f )[n] = f [2n]. Then, Eqs. (3.4) and (3.5)
imply that

Wα j f =β j−1 f ⊕α j−1 f

for all f ∈ L2(R) and j ∈Z. That is, applying W to the scaling coefficients at some scale j
yields in the first component the wavelet coefficients and in the second component
the scaling coefficients at one scale coarser. Note that, due to the scale invariance of
the wavelet basis, the operator W does not depend explicitly on j . We can iterate this
procedure to obtain a map

W (L ) : ℓ2(Z) → ℓ2(Z)⊗CL+1, W (L ) = (Iℓ2(Z)⊗CL−1 ⊕W ) · · · (Iℓ2(Z) ⊕W )W, (3.11)

which decomposes through successive filtering the scaling coefficients at scale j +1
into the wavelet coefficients at scales j to j −L + 1 and the scaling coefficients at
scale j −L +1. That is:

W (L )α j =β j−1 ⊕W (L−1)α j−1 = ·· · =β j−1 ⊕β j−2 ⊕ . . .⊕β j−L ⊕α j−L ,

or

W (L )α j f =
L−1∑
l=0

β j−l f ⊗|l〉+α j−L f ⊗|L 〉

for all f ∈ L2(R). The unitaries W and W (L ) are known as (L layers of) the (orthogonal)
discrete wavelet transform. W (L ) can be readily implemented by a scale-invariant linear
circuit consisting of convolutions and downsampling circuit elements (see Section 4.2.4
and Fig. 3.2 for a visualization). The wavelet decomposition map W is an orthogonal
map, i.e. W −1 = W T = W ∗ (note that the filters are real valued). The inverse can be
thought of as a reconstruction of the signal from the scaling and wavelet components
and is given by

W T : ℓ2(Z)⊗C2 → ℓ2(Z), W T( fw ⊕ fs) = (m(ĝw ) ↑ fw )+ (m(ĝs) ↑ fs), (3.12)

where the upsampling operator is given by (↑ f )[2n] = f [n] and (↑ f )[2n +1] = 0.
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Figure 3.2: Illustration of the various maps defined in Section 3.1.1 in the case of the Haar
wavelet.

3.1.2 Periodic wavelets
Given a wavelet ψ on R with scaling function φ and filters gs and gw , one can con-
struct a corresponding family of periodic wavelet and scaling functions on the circle S1.
Following [Mal08, Section 7.5], we define for j ≥ 0 and k = 1, . . . ,2 j the functions

ψ
per
j ,k (x) = ∑

m∈Z
ψ j ,k (x +m),

φ
per
j ,k (x) = ∑

m∈Z
φ j ,k (x +m)

in L2(S1), which again form orthogonal sets of functions. If we set

V per
j = span{φper

j ,k : k = 1, . . . ,2 j }, W per
j = span{ψper

j ,k : k = 1, . . . ,2 j }

then we have

C1 =V0 ⊆V1 ⊆ ·· · ⊆ L2(S1),
⋃
j≥0

V j = L2(S1), and V j+1 =W j ⊕V j .

The space V0 is one-dimensional and consists of the constant functions, i.e., φper
0,1 (x) = 1

for x ∈S1). Thus, the wavelet functions {ψper
j ,k } j≥0,k=1,...,2 j together with φper

0,1 = 1 form an

orthonormal basis of L2(S1). Similarly to before, we denote by αper
j ,βper

j : L2(S1) →C2 j

denote the partial isometries that send a function to its expansion coefficients with
respect to the periodized scaling and wavelet basis functions (for fixed j ), and we denote
by P per

j = (αper
j )∗αper

j to be the orthogonal projection onto V j ⊆ L2(S1).
Since the radius of the circle sets a coarsest length scale, the corresponding filters

are now scale-dependent and given by

g per
s, j [n] = ∑

m∈Z
gs[n +2 j m]

g per
w, j [n] = ∑

m∈Z
gw [n +2 j m]

for j ≥ 0 and n = 1, . . . ,2 j . As before, they give rise to unitary maps

W (L ),per : C2L →
L−1⊕
j=0

C2 j ⊕C, W (L ),perα
per
L

=βper
L−1 ⊕ . . .⊕βper

0 ⊕αper
0 (3.13)
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that expand a signal at a certain scale into (all) its wavelet coefficients and the remaining
scaling coefficient (which is the average of f ).

We note that g per
s, j = gs and g per

w, j = gw for sufficiently large j (namely when 2 j is
at least as large as the cardinality of the filters’ supports). This is intuitive since at
sufficiently fine scales the periodicity of the circle is no longer visible.

3.2 Biorthogonal wavelets

In Section 3.1 the wavelet functions ψ were such that ψ j ,k formed an orthogonal basis.
The wavelet decomposition operator W , which consisted of filtering and upsampling a
signal, was an orthogonal map and was such that it could be inverted by upsampling
and filtering by the same filter. These two properties are generalized by biorthogonal
wavelets. In this case we consider a pair of real-valued sequences gs ,hs ∈ ℓ2(Z), as the
scaling (or low-pass) filters. We demand that these filters satisfy the perfect reconstruc-
tion condition on their Fourier transforms, generalizing Eq. (3.2)

ĝs(θ)ĥs(θ)+ ĝs(θ+π)ĥs(θ+π) = 2, (3.14)

and we define the corresponding wavelet (or high-pass) filters by

ĝw (θ) = e−iθĥs(θ+π) and ĥw (θ) = e−iθ ĝs(θ+π). (3.15)

As in the case of the orthogonal discrete wavelet transform these filters can be used to
separate a signal f ∈ ℓ2(Z) into a low-frequency and a high frequency component, and
conversely to reconstruct the original signal from these components. For this, we let

Wg : ℓ2(Z) → ℓ2(Z)⊗C2, Wg f = (↓ m(ĝw ) f )⊕ (↓ m(ĝs) f )

as in Eq. (3.10) and we similarly define Wh using the filters hs and hw in place of gs

and gw , respectively. Iterating these maps we also obtain W (L )
g and W (L )

h . It follows
from Eq. (3.14) that f can be reconstructed from its decomposition Wg f by applying
the transposed operation W T

h , so W −1
g =W T

h . The roles of g and h can be exchanged in
this procedure.

3.2.1 Biorthogonal scaling and wavelet functions

Given biorthogonal wavelet filters g ,h, the associated scaling functions φg ,φh are de-
fined in Fourier space for a = g ,h by

φ̂a(ω) =
∞∏

n=1

âs(2−nω)p
2

(3.16)

and the associated wavelet functions ψg ,ψh by

ψ̂a(ω) = 1p
2

âw

(ω
2

)
φ̂a

(ω
2

)
(3.17)
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generalizing Eq. (3.6) and Eq. (3.7). Both have compact support if the filters are finite;
an example is shown in Fig. 3.5. Again, we can define rescaled and shifted versions

ψa
j ,k (x) = 2− j

2ψa(2− j x −k),

φa
j ,k (x) = 2− j

2φa(2− j x −k).

It then follows that the sets {ψg
j ,k } j ,k∈Z and {ψh

j ,k } j ,k∈Z form a dual basis pair for L2(R),

in the sense that
〈ψg

j ,k ,ψh
j ′,k ′〉 = δ j , j ′δk,k ′ .

Moreover,
〈φg

j ,k ,φh
j ,k ′〉 = δk,k ′ .

If the filters are finite and the scaling functions are square-integrable functions (which
is closely related to the discrete wavelet decomposition being sufficiently stable) the
sets {ψg

j ,k } j ,k∈Z and {ψh
j ,k } j ,k∈Z form a Riesz basis of L2(R) [CDF92]. This means that we

can write any function f ∈ L2(R) as

f =∑
j ,k

〈ψg
j ,k , f 〉ψh

j ,k =∑
j ,k

〈ψh
j ,k , f 〉ψg

j ,k .

By construction of the scaling and wavelet functions, these are such that if

f =∑
n

s[n]φg
0,n

then we can rewrite

f =
L−1∑
l=0

∑
n

w[ j ,k]ψg
j ,k +

∑
k

s̃[k]φg
L ,k (3.18)

where we find the coefficients w [ j ,k] and s̃[k] precisely by applying the discrete wavelet
transformation Wh to the signal s.

3.3 Wavelet pairs with phase relations

In order to obtain entanglement renormalization circuits from wavelet transforms we
will need wavelet filters which satisfy certain relations. For fermionic entanglement
renormalization, we need to find a pair of orthogonal wavelets with wavelet filters gw

and hw which are such that

ĥw (θ) ≈−i sgn(θ)e i θ2 ĝw (θ) (3.19)

for θ ∈ (−π,π) as we will explain in Chapter 4. For definiteness we choose the convention
that sgn(0) = 1, but note that here this choice is inconsequential, as ĥw (0) = ĝw (0) = 0.
Such a pair of wavelets is called an approximate Hilbert pair.

For biorthogonal wavelets, given a 2π-periodic function E(θ) we would like to find
a pair filters gw and hw which are such that they form a biorthogonal pair of wavelet
filters and

ĝw (θ) ≈ E(θ)ĥw (θ). (3.20)

The function E(θ) will have the interpretation of the dispersion relation of a bosonic
Hamiltonian. We will start by discussing in detail the notion of an approximate Hilbert
pair. In Section 3.4 we provide an explicit construction method to find filters which
satisfy Eq. (3.19) and Eq. (3.20).
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3.3.1 Approximate Hilbert pairs
The construction of fermionic entanglement renormalization circuits is based on ap-
proximating the Hilbert transform using wavelets, which is closely related to the phase
relation Eq. (3.19). The Hilbert transform is the unitary operator on L2(R) defined by

�H f (ω) =−i sgn(ω) f̂ (ω).

We will need a pair of wavelet and scaling filters gw , gs and hw , hs (note that this refers
two orthogonal wavelets, and not to a biorthogonal pair of wavelets) such that the
associated wavelet functions ψg and ψh satisfy

ψh =Hψg . (3.21)

Such a pair of wavelets is called a Hilbert pair, and this condition is equivalent to the
filter condition in Eq. (3.19). We can also formulate this as a condition on the scaling
filters, which leads to the following two equivalent conditions to generate a Hilbert
pair [Sel01]

ĥs(θ) =µs(θ)ĝs(θ), (3.22)

ĥw (θ) =µw (θ)ĝw (θ),

where µs and µw are periodic functions in L∞(R/2πZ) defined by

µs(θ) = e−i θ2 , (3.23)

µw (θ) =−i sgn(θ)e i θ2

for |θ| <π. Note that there is a discontinuity at θ =±π (but it suffices to define µs and
µw almost everywhere). In this situation, Eqs. (3.6) and (3.7) implies that the scaling
functions φg and φh will be related by

φ̂h(ω) =λs(ω)φ̂g (ω), (3.24)

where λs ∈ L∞(R) is defined by

λs(ω) =−i sgn(ω)µw (−ω) (3.25)

and we have extended µw to a periodic function in L∞(R). We refer to [Sel01, Sel02] for
further detail. Since the Hilbert transform does not preserve compact support, we can
not hope for exact Hilbert pair wavelets using compactly supported wavelets. However,
an approximate version can be realized. The following definition describes the notion
of approximation that is appropriate in our context.

Definition 3.1. An ε-approximate Hilbert pair consists of a pair of wavelet and scal-
ing filters, gw , gs , hw , hs , with corresponding wavelet functions ψg , ψh and scaling
functions φg , φh , such that

∥ĥs −µs ĝs∥∞ ≤ ε. (3.26)
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That is, the error in the phase relation (3.22) for the scaling filters is bounded by ε.
This condition can be checked numerically. In Section 3.6.1 we will show that this
condition translates into a good approximation of the Hilbert pair relation in Eq. (3.21).
If we periodize an (approximate) Hilbert pair as described in Section 3.1.2, we get
periodic wavelets that are (approximately) related by the Hilbert transform on the circle.

We can also formalize Eq. (3.20). Let ε> 0 and E : (−π,π) →C.

Definition 3.2. An ε-approximate E-dispersion pair consists of a biorthogonal wavelet
and scaling filters, gw , gs , hw , hs , with corresponding wavelet functions ψg , ψh and
scaling functions φg , φh , such that

∥ĥs −E ĝs∥∞ ≤ ε. (3.27)

That is, the error in the dispersion relation (3.20) for the wavelet filters is bounded by ε.

3.4 Construction of filters

We will explain how to construct filter pairs that yield a good approximation of a given
phase relation as in Section 3.3. We start with a construction due to Selesnick [Sel02,
Sel01], who introduced the notion of an approximate Hilbert pair. His construction
depends on two parameters, K and L, where K is the number of vanishing moments
of the wavelets (relevant for the approximation power of the wavelet decomposition
and for the smoothness of the wavelets) and where L is essentially the number of terms
in a Taylor expansion of the relation in Eq. (3.22) at θ = 0. By construction, the filters
are real and have finite length N = 2(K +L), so the wavelet and scaling functions are
compactly supported on intervals of width N . In this construction, we let d [n] be a
so-called maximally flat all-pass filter with delay 1

4 of degree L, given by

d [n] = (−1)n

(
n

L

)
n−1∏
k=1

1
2 −L+k

3
2 +k

for n = 1, . . . ,L. This is such that e−i Lθd̂(−θ)/d̂(θ) ≈ e−i θ2 = µs(θ) for θ ∈ (−π,π) where
the approximation is accurate around θ = 0. The idea is now that in order to get ĥs(θ) =
µs(θ)ĝs(θ), we impose the relation

d̂(θ)ĥs(θ) = e−i Lθd̂(−θ)ĝs(θ)

This is ensured if we make the following ansatz for the filters

ĥs(θ) = e−i Lθd̂(−θ)(1+e iθ)K f̂ (θ)

ĝs(θ) = d̂(θ)(1+e iθ)K f̂ (θ)

where f̂ is the Fourier transform of a finite sequence which needs to be determined.
The parameter K determines the number of vanishing moments of the biorthogonal
wavelets, just as in the Daubechies wavelet construction. We need to solve for f such
that the resulting filters are indeed wavelet filters. The condition in Eq. (3.2) translates
to

ŝ(θ) f̂ (θ) f̂ (−θ)+ ŝ(θ+π) f̂ (θ+π) f̂ (π−θ) = 2
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Figure 3.3: The results of using K = 2, L = 4 in the Selesnick construction: (a) scaling filters gs

and hs , (b) wavelet filters gw and hw , (c) absolute value squared of the Fourier
transforms of the scaling filters |gs(θ)|2 and |hs(θ)|2, (d) absolute value squared
of the Fourier transforms of the wavelet filters |gw (θ)|2 and |hw (θ)|2, (e) scaling
functions φg and φh , and (f) wavelet functions ψg and ψh .

where s(θ) = d̂(θ)d̂(−θ)(2cos(θ2 ))2K . We then try to solve this by letting r̂ (θ) = f̂ (θ) f̂ (−θ)
and take r to be a solution to

ŝ(θ)r̂ (θ)+ ŝ(θ+π)r̂ (θ+π) = 2

which is equivalent to the linear system∑
l

s[2n − l ]r [l ] = δ0[n].

Finally, if possible, we perform a spectral factorization r̂ (θ) = f̂ (θ) f̂ (−θ). A necessary
and sufficient condition for this is that r̂ (θ) ≥ 0 for all θ. Unfortunately, there is no guar-
antee for this (although there is upon a small modification of the procedure [ACGR20]).

Numerically, one can see that Selesnick’s construction described above produces
ε-approximate Hilbert pairs where ε decays exponentially with min{K ,L} [HSW+18]. In
Section 3.6 we will encounter various other relevant parameters for error bounds which
depend on the wavelet filters. It can be seen numerically that these parameters remain
bounded or increase only slowly, as shown in Table 3.1. For a more extensive treatment
of the theory of approximate Hilbert pairs, see [SBK05, YO05, CU09, CU10] and the
more recent work [ACGR20]. See Fig. 3.3 for an illustration of Selesnick’s wavelets with
parameters K = L = 2 and Fig. 3.4 for a numerical evaluation of the approximation
errors.
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Figure 3.4: Approximation errors for ε= maxθ |gw (θ)−|sin(θ2 )|hw (θ)| and maxθ |ψg (θ)− |θ|
4 ψ

h(θ)|
for different values of K and L for approximate Hilbert pairs arising from the Selesnick
construction. For fixed K the error appears to decrease exponentially in L.

K L N ε CUV CIR Cχ C ′
χ Cφ

1 1 4 0.264099 0.619741 2.542073 1.166423 1.142220 1.254999
2 2 8 0.068221 0.622182 1.217454 1.155488 0.295133 2.296890
3 3 12 0.018338 0.624782 1.190944 1.154757 0.079283 2.116091
4 4 16 0.005020 0.626782 1.150151 1.154705 0.021691 1.251461
5 5 20 0.001389 0.628374 1.130260 1.154701 0.005999 2.120782
6 6 24 0.000387 0.629686 1.120354 1.154701 0.001671 2.106891
7 7 28 0.000108 0.630795 1.114293 1.154701 0.000468 1.234832
8 8 32 0.000030 0.631752 1.108135 1.154701 0.000132 2.434899
9 9 36 0.000009 0.632674 1.106718 1.154701 0.000037 1.923738

10 10 40 0.000003 0.638023 1.440101 1.154701 0.000011 5.752427

Table 3.1: Numerical values of various constants for Selesnick’s approximate Hilbert pairs with
parameters K = L. It appears that ε decays exponentially with increasing K = L, while
the other constants from Lemma 3.3, Lemma 3.4, Lemma 3.5 and Lemma 3.8 are
well-behaved.
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A straightforward generalization of this procedure allows us to construct an ε-
approximate E-dispersion pair of biorthogonal filters as in Definition 3.2, that is, such
that Eq. (3.20) holds, for a broad class of functions E (θ). Let us assume that E (θ) = E (−θ),
and E (θ) is real-valued. We would like to construct a biorthogonal filter pair (g ,h) such
that

ĝw (θ) ≈ E(θ)hw (θ) (3.28)

or equivalently
ĥs(θ) ≈ E(θ+π)ĝs(θ) (3.29)

To modify the procedure above, we need an arbitrary rational approximation

E(θ+π) ≈ â(θ)

b̂(θ)
,

where a and b are real finite symmetric sequences on [−L,L]. The approximation only
has to be accurate around θ = 0. We then make the following ansatz for the Fourier
transform of the scaling filters

ĝs(θ) = b̂(k)(1+e iθ)K f̂ (θ),

ĥs(θ) = â(k)(1+e iθ)K f̂ (θ)
(3.30)

where again f̂ (θ) is the Fourier transform of a real finite sequence f [n] that still needs
to be determined and K is the number of vanishing moments. By construction, ĝs(θ)
and ĥs(θ) are small near θ = π, and Eq. (3.29) is satisfied. In order for Eq. (3.30) to
generate biorthogonal wavelet filters, they need to satisfy the condition in Eq. (3.14)
which now translates to

ŝ(θ) f̂ (θ) f̂ (−θ)+ ŝ(θ+π) f̂ (θ+π) f̂ (π−θ) = 2

where ŝ(θ) = â(θ)b̂(θ)(2cos(θ2 ))2K . One can try to solve this in exactly the same way as

before by introducing r̂ (θ) = f̂ (θ) f̂ (−θ), solving∑
l

s[2n − l ]r [l ] = δ0[n]

and, if possible, performing a spectral factorization to obtain f . Unfortunately, we do
not know of a condition on the product âb̂ that guarantees the existence of a solution. If
a solution exists, the resulting filters (g ,h) will have support of size 2N where N = K +2L.

One particularly useful phase relation is when E (θ) = |sin(θ2 )| (which will correspond
to a harmonic massless bosonic chain). In this case, an appropriate choice for a and b
is given by

â(θ) = 1

2
(e i Lθd̂(θ)2 +e−i Lθd̂(−θ)2),

b̂(θ) = d̂(θ)d̂(−θ).
(3.31)

where d [n] is as in the Selesnick construction. Indeed, we find that

â(θ)

b̂(θ)
= 1

2

(
e i Lθ d̂(θ)

d̂(−θ)
+e−i Lθ d̂(−θ)

d̂(θ)

)
≈ 1

2
(e i θ2 +e−i θ2 ) = cos(

θ

2
)
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K L N B ε κ

1 1 6 5.508287 0.319609 1.505577
2 2 12 1.587766 0.060920 1.459265
3 3 18 1.321713 0.016613 1.490601
4 4 24 1.282064 0.004152 1.501892
5 5 30 1.211855 0.001087 1.513364
6 6 36 1.090349 0.000282 1.522019
7 7 42 1.853832 0.000063 1.596999

Table 3.2: Numerical values of various constants for the construction of biorthogonal wavelet
filters in Eq. (3.31) with parameters K = L. Here ε = maxθ |gw (θ)− |sin(θ2 )|hw (θ)|.
The parameters B = max{∥φg∥∞,∥φh∥∞} and κ= max{∥Wg∥,∥Wh∥} are relevant for
Theorem 5.3.

for θ ∈ (−π,π). In Fig. 3.6 we show the goodness of the approximation in Eqs. (3.28)
and (3.29) as a function of K and L. The resulting filters and wavelets for K = 2, L = 4
are shown in Fig. 3.5. We remark that the construction in Eq. (3.31) is not necessarily
optimal. From numerical evidence in Fig. 3.6 it again appears that the accuracy of the
approximation improves exponentially with increasing support. An interesting open
problem is to rigorously prove the existence of approximate solutions to Eq. (3.28) with
(exponentially) improving approximation accuracy as the filter size increases.

3.5 Construction of linear circuits from filters

The construction of entanglement renormalization circuits will be by ‘second quantizing’
a single-particle circuit for the wavelet transforms, as will be explained in Chapter 4
and Chapter 5. We now explain how to explicitly construct a single-particle circuit for a
(biorthogonal) wavelet transform. We emphasize that the type of circuit we construct is
not a quantum circuit but will have the interpretation of being a circuit in the single-
particle picture. By a single-particle nearest neighbour circuit of depth N we mean a
composition AN ◦ . . .◦ A1 for a sequence of maps A1, . . . AN on ℓ2(Z) which are such that

Ai =
⊕

n=even
(ai )n,n+1 =


. . .

(ai )n,n+1 0
0 (ai )n+2,n+3

. . .


for i even, and similarly a sum over odd terms if i is odd. Here each (ai )n,n+1 is a two
by two matrix, acting on sites n and n +1. In other words, each layer of the circuit Ai is
a block diagonal map, and the circuit acts as a linear map with a direct sum structure
rather than a tensor product structure.

Motivated by the fermionic setting it has been extensively discussed in [EW18] how
to construct unitary local circuits from orthogonal wavelet filters (so each Ai is unitary).
The construction for biorthogonal wavelet filters is very similar and the symmetric case
has already been discussed in [EW18], but for completeness we provide it here. Given
a pair of biorthogonal filters (gs , gw ) and (hs ,hw ) (in particular we could have g = h
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in which case we have an orthogonal wavelet filter) of support 2N we will construct a
binary circuit of depth N that implements the wavelet decomposition map. We will
assume that gs and hs are supported on [−N +1, N ], which we can always achieve by a
shift. We let Wg : ℓ2(Z) → ℓ2(C2) denote a single layer of a discrete wavelet transform,
defined as in Eq. (3.10). By putting the scaling and wavelet outputs on the even and odd
sublattice, respectively, we obtain a unitary

W ′ : ℓ2(Z) → ℓ2(Z), W ′
g := ιWg ,

where

ι : ℓ2(Z)⊗C2 → ℓ2(Z)

ι( fw ⊕ fs)[2n] = fw [n],

ι( fw ⊕ fs)[2n +1] = fs[n]

for all fw , fs ∈ ℓ2(Z).
We would like to construct a circuit A = AN ◦ . . .◦ A1 which implements the wavelet

reconstruction map in the sense that A = (W ′
g )T and (AT)−1 = (W ′

h)T, as in Fig. 5.1. By
shift invariance this is equivalent to

Aδ1 = gs

Aδ2 = gw

(AT)−1δ1 = hs

(AT)−1δ2 = hw

(3.32)

as illustrated for g in Fig. 3.7. So, we need construct the matrices ai given the filters g
and h. We will need the perfect reconstruction condition Eq. (3.14) which becomes∑

l
gs[2n + l ]hs[l ] = δ0[n]

upon applying the inverse Fourier transform. In particular, the vectors

(gs[−N +1], gs[−N +2])T and (hs[N −1],hs[N ])T

are orthogonal, and so are

(gs[N −1], gs[N ])T and (hs[−N +1],hs[−N +2])T.

Furthermore we will use that the wavelet filters are derived from the scaling filters as

gw [n] = (−1)(1−n)hs[1−n]

hw [n] = (−1)(1−n)gs[1−n]
(3.33)

which follows directly from Eq. (3.15). First suppose that N = 1. In that case we let

a1 =
(

gs[0] gw [0]
gs[1] gw [1]

)
.

Using the perfect reconstruction condition we may now check that

(aT
1 )−1 =

(
hs[0] hw [0]
hs[1] hw [1]

)
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Figure 3.7: Illustration of Eq. (3.32), which gives the equations the ai have to satisfy in order for
the circuit to implement Wg .

so this satisfies Eq. (3.32). For N > 1 we will construct the Ai recursively. Let

gN =
(

gs[N −1] gs[−N +2]
gs[N ] gs[−N +1]

)
aN = 1√

det(gN )
gN

then it is clear that A−1
N maps gs to a sequence g (N−1)

s on [−N +2, N −1] and AT
N maps hs

to a sequence h(N−1)
s on [−N +2, N −1] using the orthogonality properties derived from

the perfect filter condition. In the non-generic degenerate case that det(gN ) = 0, the
size of the support can only be decreased by 1 and an additional layer is needed. More-
over, since AN is invariant under shifts of 2, it is easy to see that g (N−1)

s and h(N−1)
s

still satisfy the perfect reconstruction property. Finally, if we let α denote the map
defined by αx[n] = (−1)(1−n)x[1−n], then in order to see that A−1

N maps gw to the

wavelet filter g (N−1)
w defined by αh(N−1)

s , it suffices to check that A−1
N α=αAT

N or equiv-
alently A−1

N =αAT
Nα. This follows from the inversion formula for two by two matrices

with determinant 1, i.e., (
a b
c d

)−1

=
(

d −b
−c a

)
.

Now we can recursively apply the same procedure to the filters (g (N−1),h(N−1)) to con-
struct AN−1, . . . , A1. We have now seen that we can construct a nearest-neighbor single-
particle circuit of depth N from a biorthogonal filter pair.

Conversely, given a nearest-neighbor single-particle circuit of depth N , which can
be written as A = AN ◦ . . .◦ A1 where each Ai is invertible, we may define filters g and h
by Eq. (3.32). We can then check that these filters form perfect reconstruction filters,
in the sense that W T

h =W −1
g . If we assume det(ai ) = 1 for i = 1, . . . , N , the wavelet and

scaling filters are related as in Eq. (3.33).

3.6 Wavelet approximations

An important question in wavelet theory is how accurately a function f is approximated
if it is truncated to a finite number of scales. In this section we will state three results
that give quantitative bounds assuming that the wavelets are compactly supported
and bounded. The results are standard, but we provide proofs in Section 3.6.2, in
particular to keep careful track of the constants in the bounds. Using an argument from
Fourier analysis in Lemma 3.10 we show in Lemma 3.3 an approximation result for a
‘UV cut-off’ for a sufficiently smooth f , where we discard all detail at fine scales, or
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alternatively in Lemma 3.4, if we sample f on a grid. Next we show in Lemma 3.5 that
for compactly supported functions we can also discard large scale wavelet components
up to a small error, which should be thought of as an ‘IR cut-off‘. In this section we
restrict to orthogonal wavelets. Under additional assumptions similar results are true
for biorthogonal wavelets. In Section 3.6.1 we explain how the error in the filter relation
for approximate Hilbert pair wavelets impacts other approximation properties.

We know that the shifted and rescaled wavelet functions form an orthonormal basis
for L2(R), so we can write

f = ∑
j∈Z

∑
k∈Z

(β j f )[k]ψ j ,k .

We will be interested in approximating the function f over a finite number of scales,
that is, we will try to approximate f by

f ≈
j1∑

j= j0

∑
k∈Z

(β j f )[k]ψ j ,k .

Recall that j ≫ 0 corresponds to small scale structures in f , and j ≪ 0 to large scale
structure. In this section we will give quantitative bounds which show that one can
approximate f to good precision using a finite number of scales if f is sufficiently
smooth and compactly supported. To be precise, in Lemma 3.3 we show that large j
can be discarded with small error if f is sufficiently smooth (so this bounds the error
incurred by leaving out detail), and in Lemma 3.5 we show that we can truncate in the
other direction if f is compactly supported (bounding the error of leaving out large
scale structure).

We start with the first result (cf. Theorem 7.6 in [SN96]), corresponding to a UV
cut-off. Recall that the Sobolev spaces H K (R) and H K (S1) consist of functions f with
square-integrable weak K -th derivative, denoted f (K ).

Lemma 3.3 (UV cut-off). Assume that the Fourier transform of the scaling filter ĝs(θ) has
a zero of order K at θ =π. Then there exists a constant CUV such that for every f ∈ H K (R)
and j ∈Z, we have that

∥P j f − f ∥ ≤ 2−K j CUV∥ f (K )∥.

Similarly, for every f ∈ H 1(S1) and j ≥ 0, we have that

∥P per
j f − f ∥ ≤ 2−K j CUV∥ f (K )∥.

If the scaling filter is supported in {0, . . . , N −1}, we may take K = 1 and CUV ≤ 2N 2.

Under mild technical conditions the ‘UV cut-off’ from Lemma 3.3 can be well-
approximated by sampling the function on a dyadic grid, as shown in the following
lemma (see for instance Theorem 7.22 in [Mal08]).

Lemma 3.4 (Sampling error). There exists a constant Cφ such that the following holds:
For every f ∈ H 1(R) and f j the sequence defined by ( f j )k := 2− j /2 f (2− j k) for k ∈ Z (we
identify f with its unique representative as a continuous function), we have

∥α j f − f j∥ ≤ 2− j Cφ∥ f ′∥.
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Likewise, for every f ∈ H 1(S1) and f j ∈C2 j
the vector with components

( f j )k := 2− j /2 f (2− j k),

we have

∥αper
j f − f j∥ ≤ 2− j Cφ∥ f ′∥.

If the scaling filter is supported in {0, . . . , N −1}, then these estimates hold with Cφ ≤ 2N 2.

The final lemma of this section (adapted from [Woj97]) bounds the error incurred
by leaving out coarse scale components from compactly supported functions, corre-
sponding to an IR cut-off.

Lemma 3.5 (IR cut-off). Assume that the scaling function φ satisfies√∑
k∈Z

|φ(y −k)|2 ≤CIR

for all y ∈R. Then for every f ∈ L2(R) with compact support,

∥P j f ∥ ≤ 2 j /2
√

D( f )CIR∥ f ∥

where D( f ) is the size of the smallest interval containing the support of f . If φ is bounded
and supported in an interval of width N , we have CIR ≤p

N∥φ∥∞.

3.6.1 Approximate Hilbert pair wavelets
The following lemma is an improved version of [HSW+18, (A7)]. It controls the error
incurred by using approximate instead of exact Hilbert pairs both on the line and on the
circle.

Lemma 3.6. Consider an ε-approximate Hilbert pair. Let W (L )
g and W (L )

h denote the
corresponding wavelet transforms for L layers, defined as in Eqs. (3.10) and (3.11) using
the filters g and h, respectively. Then,

∥Pw
(
W (L )

g −W (L )
h m(µw )

)∥ ≤ εL , (3.34)

∥Ps
(
W (L )

g −W (L )
h m(µw )

)
f ∥ ≤ εL ∥ f ∥+2∥PsW (L )

g f ∥ (∀ f ∈ ℓ2(Z)), (3.35)

where Pw = Iℓ2(Z) ⊗
∑L−1

k=0 |k〉〈k| denotes the projection onto the wavelet coefficients
and Ps = I −Pw the projection onto the scaling coefficients.

Proof. As in Eq. (3.10), denote by Wg ,Wh : ℓ2(Z) → ℓ2(Z)⊗C2 the unitaries correspond-
ing to a single layer of the wavelet transform:

Wg = (↓ m(ĝw ))⊕ (↓ m(ĝs)) and Wh = (↓ m(ĥw ))⊕ (↓ m(ĥs))

One may easily verify the relation

m(µw ) ↓ m(µs) =↓ m(µw ).
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This allows us to rewrite

Whm(µw ) = (↓ m(ĥw ))⊕ (↓ m(ĥs))m(µw )

= (↓ m(µw ĥw ))⊕ (↓ m(µw )m(ĥs))

= (↓ m(µw ĥw ))⊕ (m(µw ) ↓ m(µs ĥs))

= (Iℓ2(Z) ⊕m(µw ))W̃h ,

(3.36)

where we introduced

W̃h := (↓ m(µw ĥw ))⊕ (↓ m(µs ĥs)).

Now consider L layers of the transform. For l = 1, . . . ,L , define W l
g := Iℓ2(Z)⊗Cl−1 ⊕Wg

and similarly W l
h and W̃ l

h , so that W (L )
g = W L

g · · ·W 1
g etc. By using Eq. (3.36), we find

that

W (L )
h m(µw ) =W L

h · · ·W 1
h m(µw ) = (

Iℓ2(Z)⊗CL ⊕m(µw )
)

W̃ L
h · · ·W̃ 1

h

Our assumption (3.26) on the scaling filter error in an approximate Hilbert pair implies
that, for all l ,

∥W l
g −W̃ l

h∥ = ∥Wg −W̃h∥ ≤ max{∥ĝs −µs ĥs∥∞,∥ĝw −µw ĥw∥∞} ≤ ε. (3.37)

Next we write a telescoping sum

W (L )
g −W (L )

h m(µw ) =W L
g · · ·W 1

g − (
Iℓ2(Z)⊗CL ⊕m(µw )

)
W̃ L

h · · ·W̃ 1
h

= (
Iℓ2(Z)⊗CL ⊕m(µw )

)(
W L

g · · ·W 1
g −W̃ L

h · · ·W̃ 1
h

)
+ (

0ℓ2(Z)⊗CL ⊕ (I −m(µw ))
)
W L

g · · ·W 1
g

= (
Iℓ2(Z)⊗CL ⊕m(µw )

) L∑
l=1

W L
g · · ·W l+1

g

(
W l

g −W̃ l
h

)
W̃ l−1

h · · ·W̃ 1
h

+ (
0⊕ (I −m(µw ))

)
W L

g · · ·W 1
g

Using Eq. (3.37) and the fact that ∥W l
g∥ = ∥W̃ l

h∥ = 1 for all l , we can therefore bound

∥Pw
(
W (L )

g −W (L )
h m(µw )

)∥ ≤ L∑
l=1

∥W l
g −W̃ l

h∥ ≤ εL

and, since furthermore ∥m(µw )∥ = 1,

∥Ps
(
W (L )

g −W (L )
h m(µw )

)
f ∥ ≤

L∑
l=1

∥W l
g −W̃ l

h∥∥ f ∥+2∥PsW L
g · · ·W 1

g f ∥

≤ εL ∥ f ∥+2∥PsW (L )
g f ∥.

Thus we have established the desired bounds. ■

A completely similar argument establishes a version for the periodized wavelets:
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Lemma 3.7. Consider an ε-approximate Hilbert pair. Let W (L ),per
g and W (L ),per

h de-
note the periodized wavelet transforms for L layers, defined as in Eq. (3.13) using the
periodizations of the filters g and h, respectively. Then,

∥P per
w

(
W (L ),per

g −W (L )
h m(µper

w,L )
)∥ ≤ εL , (3.38)

and for all f ∈C2L

∥P per
s

(
W (L ),per

g −W (L )
h m(µper

w,L )
)

f ∥ ≤ εL ∥ f ∥+2∥P per
s W (L ),per

g f ∥, (3.39)

where µper
w,L [n] := µ(2−L+1πn) and where P per

w denotes the projection onto the 2L −1

many wavelet coefficients and P per
s = I −P per

w the projection onto the scaling coefficient.

Next, we will show that expanding a function f in the scaling basis for an approxi-
mate Hilbert pair results in approximately the same coefficients as if one were to expand
the function in the scaling basis for an exact Hilbert pair (cf. Eq. (3.24)).

Lemma 3.8. Consider an ε-approximate Hilbert pair. Then there exists a constant Cχ > 0,
depending only on the scaling filters, such that the following holds: For every f ∈ H 1(R),

∥αh
j f −αg

j m(λs, j )∗ f ∥ ≤ 2− j Cχ∥ f ′∥.

where λs, j (ω) :=λs(2− jω). Similarly, for f ∈ H 1(S1) we have that

∥αh,per
j f −αg ,per

j m(λper
s, j )∗ f ∥ ≤ 2− j Cχ∥ f ′∥.

where λper
s, j [n] :=λs, j (2πn). If the scaling filters are supported in {0, . . . , N −1} then these

bounds hold with Cχ ≤ 2N 2.

Proof. By Eqs. (3.2) and (3.23), ĥs−µs ĝs vanishes at θ = 0, so there exists a constant C > 0
such that

1p
2
|ĥs(θ)−µs(θ)ĝs(θ)| ≤C |θ| (3.40)

for all θ ∈ [−π,π]. As a consequence, we can derive the following bound on the Fourier
transform of χ :=φh −m(λs)φg : For all ω ∈ [−π,π],

|χ̂(ω)| = |φ̂h(ω)−λs(ω)φ̂g (ω)| = |
∞∏

k=1

1p
2

ĥs(2−kω)−
∞∏

k=1

1p
2
µs(2−kω)ĝs(2−kω)|

≤
∞∑

k=1

1p
2
|ĥs(2−kω)−µs(2−kω)ĝs(2−kω)| ≤

∞∑
k=1

C |2−kω| ≤C |ω|
(3.41)

using a telescoping series and the fact that ∥ĥs∥∞ = ∥µs ĝs∥∞ =p
2. Moreover, ∥χ̂∥∞ ≤ 2.

Thus, Lemma 3.10 shows that, for all f ∈ H 1(R),

∥αh
j f −αg

j m(λs, j )∗ f ∥2 = ∑
k∈Z

|〈φh
j ,k , f 〉−〈φg

j ,k ,m(λs, j )∗ f 〉|2

= ∑
k∈Z

|〈χ j ,k , f 〉|2

≤ 2−2 j C 2
χ∥ f ′∥2,
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where C 2
χ =C 2 +4/3. The case when f ∈ H 1(S1) works analogously.

Finally, assume that the scaling filters are supported in {0, . . . , N −1}. In this case, we
know from Lemma 3.9 that, for all θ ∈ [−π,π],

1p
2
|ĝs(θ)−1| ≤ N 2

2
|θ| and

1p
2
|ĥs(θ)−1| ≤ N 2

2
|θ|

and hence

1p
2
|ĥs(θ)−µs(θ)ĝs(θ)| ≤ 1p

2
|ĥs(θ)−1|+ 1p

2
|ĝs(θ)−1|+ 1p

2
|1−µs(−θ)|

≤
(

N 2 + 1

2

)
|θ|

for θ ∈ [−π,π]. Thus Eqs. (3.40) and (3.41) hold with C = N 2 +1/2, hence we have Cχ ≤
2N 2. ■

The bounds in Lemma 3.8 hold for any pair of wavelets, not only for approximate
Hilbert pairs. For the latter, not only is the constant C small in practice, but one can
also use the relation between the filters Eq. (3.26) and a slightly adapted version of
Lemma 3.10 to show that in fact Lemma 3.8 holds with

C ′
χ = 3(C +ε).

For the Selesnick approximate Hilbert pairs this leads to significantly smaller constants,
see Table 3.1, but since this does not substantially impact our the scaling of our final
bounds on correlation functions we do not pursue this direction further.

3.6.2 Proofs of wavelet lemmas
In this section we will prove some technical lemmas involving wavelets, amongst which
Lemma 3.3, Lemma 3.4, Lemma 3.5. We first state a simple Lipschitz bound for the
Fourier transforms of wavelet and scaling filters.

Lemma 3.9. Let gs be scaling filter supported in {0, . . . , N −1}. Then the corresponding
wavelet filter gw , defined in Eq. (3.3), is supported in {2−N , . . . ,1} and we have that

|ĝs(θ)−p
2| ≤ N 2

p
2
|θ|,

|ĝw (θ)| ≤ N (N +1)p
2

|θ|.

for all θ ∈ [−π,π].

Proof. By Eq. (3.2), ∥ĝs∥∞ =p
2 and ĝs(0) =p

2. Hence,

∥ĝ ′
s∥∞ ≤

(
N−1∑
n=0

n

)
∥gs∥∞ = N (N −1)

2
∥gs∥∞ ≤ N (N −1)

2
∥ĝs∥∞ ≤ N 2

p
2

,

where we used that ∥ f ∥∞ ≤ 1
2π∥ f̂ ∥1 ≤ ∥ f̂ ∥∞ for any trigonometric polynomial. There-

fore,

|ĝs(θ)−p
2| ≤ |ĝs(θ)− ĝs(0)| ≤ ∥ĝ ′

s∥∞ |θ| ≤ N 2

p
2
|θ|.
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Now consider the corresponding wavelet filter gw which by Eqs. (3.2) and (3.3) satis-
fies ∥ĝw∥∞ = p

2 and ĝw (0) = 0 and is supported in {2− N , . . . ,1}. Then, similarly as
above,

∥ĝ ′
w∥∞ ≤

(
1∑

n=2−N
|n|

)
∥gw∥∞ ≤ N (N +1)

2
∥ĝw∥∞ ≤ N (N +1)p

2
,

so we obtain

|ĝw (θ)| = |ĝw (θ)− ĝw (0)| ≤ ∥ĝ ′
w∥∞ |θ| ≤ N (N +1)p

2
|θ|.

■
In practice, the bounds in Lemma 3.9 can be pessimistic. In principle, as the number

of vanishing moments of the wavelets increases, one expects better dependence of the
bounds on the size of the support. However, we are not aware of better bounds than
those in Lemma 3.9 for approximate Hilbert pair wavelets.

We now proceed to prove the lemmas in Section 3.6. Our main tool is the following
technical lemma.

Lemma 3.10. Let χ ∈ H−K (R) such that χ̂ ∈ L∞(R) and there exists a constant C > 0 such
that |χ̂(ω)| ≤C |ω|K for all |ω| ≤π. Define Cχ := (C 2 +∥χ̂∥2∞/3)1/2. Then, for all f ∈ H K (R)
and j ∈Zwe have that ∑

k∈Z
|〈χ j ,k , f 〉|2 ≤ 2−2K j C 2

χ∥ f (K )∥2,

where χ j ,k (x) := 2
j
2χ(2 j x −k). Similarly, for all f ∈ H K (S1) and j ≥ 0 we have that

2 j∑
k=1

|〈χper
j ,k , f 〉|2 ≤ 2−2K j C 2

χ∥ f (K )∥2,

where χper
j ,k (x) =∑

m∈Zχ j ,k (x +m).

Proof. For f ∈ H K (R), we start with

∑
k∈Z

∣∣〈χ j ,k , f 〉∣∣2 = ∑
k∈Z

∣∣∣∣ 1

2π
〈χ̂ j ,k , f̂ 〉

∣∣∣∣2

= ∑
k∈Z

∣∣∣∣ 1

2π

∫ ∞

−∞
2− j /2e iω2− j k χ̂(2− jω) f̂ (ω)dω

∣∣∣∣2

= ∑
k∈Z

∣∣∣∣ 1

2π

∫ ∞

−∞
2 j /2χ̂(ω) f̂ (2 jω)e iωk dω

∣∣∣∣2

. (3.42)

We can interpret this as the squared norm of the Fourier coefficients of the 2π-periodic
function defined by

F (θ) := ∑
m∈Z

2 j /2χ̂(θ+2πm) f̂ (2 j (θ+2πm)),
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provided the latter is square integrable. To see this and obtain a quantitative upper
bound, we note that, for every θ ∈ [−π,π],

|F (θ)|2 ≤ 2 j
∑

m∈Z

∣∣∣∣ χ̂(θ+2πm)

(θ+2πm)K

∣∣∣∣2 ∑
m∈Z

∣∣∣(θ+2πm)K f̂ (2 j (θ+2πm))
∣∣∣2

= 2−(2K−1) j
∑

m∈Z

∣∣∣∣ χ̂(θ+2πm)

(θ+2πm)K

∣∣∣∣2 ∑
m∈Z

∣∣∣(2 j (θ+2πm))K f̂ (2 j (θ+2πm))
∣∣∣2

(3.43)

by the Cauchy-Schwarz inequality. To bound the left-hand side series, we split off the
term for m = 0 and use the assumptions on χ̂ to bound, for |θ| ≤π,

∑
m∈Z

∣∣∣∣ χ̂(θ+2πm)

(θ+2πm)K

∣∣∣∣2

=
∣∣∣∣ χ̂(θ)

θK

∣∣∣∣2

+ ∑
m ̸=0

∣∣∣∣ χ̂(θ+2πm)

(θ+2πm)K

∣∣∣∣2

≤C 2 + ∑
m ̸=0

|χ̂(θ+2πm)|2
|θ+2πm|2K

≤C 2 +∥χ̂∥2
∞

∞∑
m=1

2

(πm)2K
≤C 2 + ∥χ̂∥2∞

3
=C 2

χ (3.44)

If we plug this into Eq. (3.43) then we obtain

|F (θ)|2 ≤ 2−(2K−1) j C 2
χ

∑
m∈Z

∣∣∣(2 j (θ+2πm))K f̂ (2 j (θ+2πm))
∣∣∣2

and hence

1

2π

∫ π

−π
|F (θ)|2dθ ≤ 2−(2K−1) j

C 2
χ

2π

∫ ∞

−∞

∣∣∣(2 jω)K f̂ (2 jω)
∣∣∣2

dω

= 2−2K j
C 2
χ

2π

∫ ∞

−∞

∣∣ωK f̂ (ω)
∣∣2

dω= 2−2K j C 2
χ∥ f (K )∥2,

which is finite since f ∈ H K (R). This shows that F ∈ L2(R/2πZ). By Parseval’s theorem
we can thus bound Eq. (3.42) by∑

k∈Z

∣∣〈χ j ,k , f 〉∣∣2 ≤ 2−2K j C 2
χ∥ f (K )∥2 ≤ 2−2K j C 2

χ∥ f (K )∥2

as desired.
The proof for f ∈ H K (S1) proceeds similarly. First note that ĝ per(m) = ĝ (2πm) if we

periodize a function g ∈ L2(R) by g per(x) :=∑
n∈Z g (x +n), so

2 j∑
k=1

∣∣∣〈χper
j ,k , f 〉

∣∣∣2 =
2 j∑

k=1

∣∣∣〈χ̂per
j ,k , f̂ 〉

∣∣∣2 =
2 j∑

k=1

∣∣∣∣∣ ∑
m∈Z

2− j /2e i 2πm2− j k χ̂(2− j 2πm) f̂ (m)

∣∣∣∣∣
2

(3.45)

which we recognize as squared norm of the inverse discrete Fourier transform of a
vector v with 2 j components

vl := 2 j /2
∑

m∈Z
χ̂(2πm +2π2− j l ) f̂ (2 j m + l ),
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where it is useful to take l ∈ {−2 j−1 +1, . . . ,2 j−1}. To see that the components of this
vector are well-defined and obtain a quantitative bound, we estimate

|vl |2 = 2 j

∣∣∣∣∣ ∑
m∈Z

χ̂(2πm +2π2− j l ) f̂ (2 j m + l )

∣∣∣∣∣
2

≤ 2 j
∑

m∈Z

∣∣∣∣ χ̂(2πm +2π2− j l )

(2πm +2π2− j l )K

∣∣∣∣2 ∑
m∈Z

∣∣∣(2πm +2π2− j l )K f̂ (2 j m + l )
∣∣∣2

= 2−(2K−1) j
∑

m∈Z

∣∣∣∣ χ̂(2πm +2π2− j l )

(2πm +2π2− j l )K

∣∣∣∣2 ∑
m∈Z

∣∣∣(2π(2 j m + l ))K f̂ (2 j m + l )
∣∣∣2

.

Since |2π2− j l | ≤π, we can upper-bound the left-hand side series as in Eq. (3.44),

|vl |2 ≤ 2−(2K−1) j C 2
χ

∑
m∈Z

∣∣∣(2π(2 j m + l ))K f̂ (2 j m + l )
∣∣∣2

,

and obtain

∥v∥2
2 ≤ 2−(2K−1) j C 2

χ

∑
n∈Z

∣∣(2πn)K f̂ (n)
∣∣2 = 2−(2K−1) j C 2

χ∥ f (K )∥2,

which is finite since f ∈ H K (S1). As before we conclude by using the Plancherel formula
in Eq. (3.45) and plugging in the upper bound.

2 j∑
k=1

∣∣∣〈χper
j ,k , f 〉

∣∣∣2 = 2− j
2 j∑

k=1
|vk |2 ≤ 2−2K j C 2

χ∥ f (K )∥2,

which concludes the proof. ■
We next use Lemma 3.10 to prove Lemma 3.3 and Lemma 3.4, which are wavelet

approximation results for sufficiently smooth functions.

Proof of Lemma 3.3. For f ∈ H K (R) and j ∈Z, we have

∥P j f − f ∥2 = ∑
l> j

∑
k∈Z

|〈ψl ,k , f 〉|2.

because the wavelets form an orthonormal basis. We would like to bound the inner
series by using Lemma 3.10. For this, note that since ĝs is a trigonometric polynomial
with a zero of order K at θ =π, there exists a constant C such that

1p
2
|ĝw (θ)| = 1p

2
|ĝs(θ+π)| ≤C |θ|K . (3.46)

Using Eq. (3.6) and ∥φ̂∥∞ = 1, it follows that

|ψ̂(ω)| = | 1p
2

ĝw (
ω

2
)φ̂(

ω

2
)| ≤ C

2K
|ω|K .

Since moreover ∥ψ̂∥∞ = 1, we can invoke Lemma 3.10 with χ=ψ and obtain that

∥P j f − f ∥2 ≤ ∑
l> j

2−2K lC 2
UV∥ f (K )∥2 ≤ 2−2K j C 2

UV∥ f (K )∥2,
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where C 2
UV =C 2/4K +1/3 ≤C 2 +1/3.

In the same way we find that, for any f ∈ H K (S1) and j ≥ 0,

∥P per
j f − f ∥2 = ∑

l> j

2l∑
k=1

|〈ψper
l ,k , f 〉|2 ≤ 2−2K j C 2

UV∥ f (K )∥2,

again by Lemma 3.10.
For the last assertion, we use Lemma 3.9 to see that, for K = 1, Eq. (3.46) always

holds with C = N (N +1)/2, hence we have CUV ≤ 2N 2. ■
Proof of Lemma 3.4. The trigonometric polynomial ĝs satisfies ĝs(0) =p

2, so there is a
constant C > 0 such that

| 1p
2

ĝs(θ)−1| ≤C |θ| (3.47)

for θ ∈ [−π,π]. Using the infinite product formula (3.8), it follows that, for all |ω| ≤π,

|φ̂(ω)−1| = |
∞∏

k=1

1p
2

ĝs(2−kω)−1| ≤
∞∑

k=1
| 1p

2
ĝs(2−kω)−1| ≤

∞∑
k=1

Cp
2

2−k |ω| = Cp
2
|ω|
(3.48)

using a telescoping sum and the fact that |ĝs | ≤
p

2 (in fact, this holds for all ω ∈R, but
we will not need this). Now recall from Sobolev embedding theory that f̂ ∈ L1(R) for
any f ∈ H 1(R). Thus, the continuous representative of f can be computed by the inverse
Fourier transform, i.e.,

f (x) = 1

2π

∫ ∞

−∞
f̂ (ω)e iωxdω

for all x ∈R. As a consequence,

∥α j f − f j∥2 = ∑
k∈Z

∣∣∣〈φ j ,k , f 〉−2− j /2 f (2− j k)
∣∣∣2 = ∑

k∈Z

∣∣〈χ j ,k , f 〉∣∣2

where χ :=φ−δ0. Now, χ̂= φ̂−1, hence ∥χ̂∥∞ ≤ 2. Together with the bound in Eq. (3.48)
we obtain from Lemma 3.10 that

∥α j f − f j∥2 ≤ 2−2 j Cφ∥ f ′∥2,

where Cφ := C 2 + 4
3 . The proof for H 1(S1) proceeds completely analogously. Finally,

Lemma 3.9 shows that if the scaling filter is supported in {0, . . . , N −1} then Eqs. (3.47)
and (3.48) always hold with C = N 2/2. Thus, Cφ ≤ 2N 2. ■

Finally, we prove Lemma 3.5, which is an approximation result for compactly sup-
ported functions, and which has been adapted from [Woj97].

Proof of Lemma 3.5. Let us denote by S the support of f . Since the scaling functions for
fixed j form an orthonormal basis of V j , and using Cauchy-Schwarz, we find that

∥P j f ∥2 = ∑
k∈Z

|〈φ j ,k , f 〉|2 ≤ ∥ f ∥2
∑
k∈Z

∫
S
|φ j ,k (x)|2 d x = ∥ f ∥2

∫
2 j S

∑
k∈Z

|φ(y −k)|2 d y.

This allows us to conclude that

∥P j f ∥2 ≤ ∥ f ∥22 j C 2
IRD( f ),

which confirms the claim. If φ is bounded and supported on an interval of width N , we
can bound

∑
k∈Z|φ(y −k)|2 ≤ N∥φ∥2∞. ■
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Open questions

An interesting open problem is to determine the existence of a family of approximate
Hilbert pair wavelets where the approximation error decreases sufficiently fast with
the support of the wavelets, as discussed above [Sel02, ACGR20]. Similarly, it would be
desirable to identify conditions under which the procedure outlined in Section 3.4 is
rigorously guaranteed to find good ε-approximate E-dispersion pairs of biorthogonal
filters.





CHAPTER 4

Fermionic entanglement
renormalization

We will first give a brief review of the fermionic formalism in Section 4.1. Then we
describe the precise relation between Hilbert pair wavelets and entanglement renormal-
ization, both on the level of lattice fermions and fermionic field theory. In Section 4.2
we describe the construction of fermionic entanglement circuits and how one can take
a ‘continuum limit’ to compute correlation functions for a quantum field theory. In
Section 4.3 we prove various results about the approximation accuracy of wavelet based
entanglement renormalization, which are the main technical contribution of this chap-
ter. The results in this chapter are an extension of results in [HSW+18] which discussed
the case of lattice fermions. Our main contribution is a careful analysis of the relation to
the corresponding quantum field theory.

4.1 Fermions and second quantization

In this section, we briefly review the second quantization formalism for fermions and
quasi-free (or Gaussian) fermionic many-body states (see, e.g., [BR03] or [CR87] for
further details), and we describe the vacuum state of one-dimensional massless free
fermions on a lattice and in the continuum in terms of this formalism.

4.1.1 The CAR algebra and quasi-free states
If H is a complex Hilbert space (which is the single particle space), then let A∧(H )
be the algebra of canonical anti-commutation relations or CAR algebra on H . It is
the free unital C∗-algebra generated by elements a( f ) for f ∈H such that f 7→ a( f ) is
anti-linear and subject to the relations

{a( f ), a(g )} = 0,

{a( f ), a∗(g )} = 〈 f , g 〉

where {x, y} = x y + y x denotes the anti-commutator.
An important class of states on this algebra are the gauge-invariant quasi-free (or

Gaussian) states. These states have the property that they are invariant under a global
phase f 7→ e iφ f and that all correlation functions are determined by the two-point
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functions. More precisely, for every operator Q on H such that 0 ≤Q ≤ I there exists a
unique gauge-invariant quasi-free state on A∧(H ), denoted ωQ , such that we have the
following version of Wick’s rule:

ωQ (a∗( f1) . . . a∗( fn)a(g1) . . . a(gm)) = δn,m det[〈gi ,Q f j 〉]

Thus, the state is fully specified by its two-point functionsωQ (a∗( f )a(g )) = 〈g ,Q f 〉. The
operator Q is called the symbol of ωQ . The state ωQ is a pure state if and only if Q is a
projection. In this case, Q can be interpreted as a projection onto a Fermi sea of negative
energy modes. We will only be interested in this case, and henceforth we assume that Q
is a projection.

To obtain a Hilbert space realization, we consider the fermionic Fock space

F∧(H ) =
∞⊕

n=0
H ∧n

with the standard representation of A∧(H ), defined by a( f ) 7→ a0( f ) where

a∗
0 ( f )v = f ∧ v.

Let |Ω〉 denote the Fock vacuum vector 1 ∈H ∧0 =C. Then |Ω〉 is the pure state corre-
sponding to symbol Q = 0. Now let Q be an arbitrary orthogonal projection and choose
a complex conjugation (·) (that is, an anti-unitary involution) that commutes with Q.
Then the map a( f ) 7→ aQ ( f ), where

aQ ( f ) = a0
(
(I −Q) f

)+a∗
0

(
Q f

)
, (4.1)

defines a representation of the CAR algebra such that ωQ corresponds to the Fock
vacuum vector |Ω〉.

4.1.2 Second-quantized operators
Next we recall the second quantization of operators on H . If U is a unitary on H

then U defines an automorphism of A∧(H ), known as a Bogoliubov transformation,
through a( f ) 7→ a(U f ). Provided that [U ,Q] is Hilbert-Schmidt, this automorphism can
be implemented by a unitary operator ΓQ (U ) on Fock space, which is unique up to an
overall phase. It is defined by the property that for every f ∈H ,

ΓQ (U )aQ ( f )ΓQ (U )∗ = aQ (U f ).

Now consider a unitary one-parameter subgroup {e i t A} generated by a bounded Hermi-
tian operator A on H . We would like to know when e i t A can be unitarily implemented
in the form

e i t dΓQ (A)aQ ( f )e−i t dΓQ (A) = aQ (e i t A f ) (4.2)

for t ∈R and f ∈H . For this, decompose A into blocks with respect to H±, which we
define as the range of the projections Q+ = I −Q and Q− =Q (corresponding to positive
and negative energy modes), respectively:

A =
(

A++ A+−
A−+ A−−

)
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In [CR87, Lun76] it is shown that, if A is bounded and the off-diagonal parts A+−, A−+
are Hilbert-Schmidt, then there exists a self-adjoint generator dΓQ (A) on F∧(H ) such
that (4.2) holds. We can moreover fix the undetermined additive constant by demanding
that

〈Ω,dΓQ (A)Ω〉 = 0,

which corresponds to normal ordering with respect to the state ωQ .
If A is trace class then dΓQ (A) is bounded and in fact can be defined as an element

of A∧(H ). In general, dΓQ (A) is unbounded, but we still have the bound [CR87, (2.53)]

∥dΓQ (A)Πn∥ ≤ 4(n +2)max{∥A++∥,∥A−−∥,∥A+−∥2,∥A−+∥2}, (4.3)

where Πn denotes the orthogonal projection on the subspace of F∧(H ) spanned by
states of no more than n particles

⊕n
k=0 H ∧k . Combining [CR87, (2.14), (2.24), (2.25),

(2.49)], one can similarly show that

∥(dΓQ (A)−dΓQ ′(A)
)
Πn∥ ≤ 4(n +2)max

δ=±
{∥QδAQδ−Q ′

δAQ ′
δ∥,∥QδAQ−δ−Q ′

δAQ ′
−δ∥2}

(4.4)

for any two projections Q and Q ′. This estimate will be useful in our error analysis in
Section 4.3.2. Finally, if h : H → H is a bounded Hermitian operator, then we may
interpret H = dΓ(h) as a Hamiltonian on the Fock space F∧(H ), and we can describe
its ground states. By the spectral theorem we may write h as a direct sum of h− and h+
where 〈 f ,h− f ≤ 0 and 〈 f ,h− f ≥ 0 for all f ∈H . If h has trivial kernel, the unique ground
state is the Gaussian state with symbol the orthogonal projection Q onto the image of h−
(i.e. in the finite dimensional case Q is the projection onto all eigenspaces with negative
eigenvalue); informally, the ground state has all negative energy modes filled. If h has
nontrivial kernel, this gives rise to a ground state degeneracy (if P is any orthogonal
projector onto a subspace of the kernel of h and Q is the orthogonal projection onto the
image of h−, then the state with symbol Q +P is a ground state).

4.1.3 Massless free fermions
We will discuss two relevant models. The first is that of fermions on a lattice, and the
second one is its continuum limit, the free Dirac fermionic field theory.

We consider a one-dimensional lattice Z, and we let H = ℓ2(Z). As usual, we abbre-
viate an = a[δn] for the annihilation operator of a particle on site n. The Hamiltonian

H =− ∑
n∈Z

a∗
n an+1 +a∗

n+1an . (4.5)

can be thought of as describing particles ‘hopping’ between neighbouring sites. These
particles are massless and the Hamiltonian is gapless. The Hamiltonian H can be
written as dΓ(h) where h : ℓ2(Z) → ℓ2(Z) given by

h f [n] =−( f [n +1]+ f [n −1]) (4.6)

and correspondingly, as discussed in Section 4.1.2, its ground state is given by the quasi-
free state which has as symbol the projection onto the space spanned by all negative
eigenvectors of Eq. (4.6). In physics terminology, this is the state where we have filled the
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‘Dirac sea’ consisting of negative energy solutions to the single particle Hamiltonian. We
can split the lattice into even and odd sites Z=Z1 ⊕Z2 and decompose H = ℓ2(Z)⊗C2

accordingly. We may correspondingly redefine the fermionic operators a1,n = a2n+1

and a2,n = a2n , and finally apply a phase, writing bi ,n = (−1)n ai ,n . Then the Hamiltonian
in Eq. (4.5) is transformed to

H =− ∑
n∈Z

b∗
2,nb1,n −b∗

1,nb2,n+1 +b∗
1,nb2,n −b∗

2,n+1b1,n . (4.7)

This Hamiltonian can be written in Fourier space as

H =
∫ π

−π
dθ

2π

(
b1(θ)
b2(θ)

)∗ (
0 e iθ−1

e−iθ−1 0

)(
b1(θ)
b2(θ)

)
To see what the symbol corresponding to the ground state is, we observe that for each θ
the matrix (

0 e iθ−1
e−iθ−1 0

)
has a negative eigenvalue with eigenvector

1p
2

(
−sgn(θ)i e i

θ
2

1

)
which means that the space of negative energy modes consists of all functions f = f1⊕ f2

in ℓ2(Z)⊗C2 which are such that their Fourier transforms satisfy the phase relation

f̂1(θ) =−sgn(θ)i e i θ2 f̂2(θ),

or in other words, f1 = m(µw ) f2, with µw defined in Eq. (3.23). This implies that the
symbol Q is the projection

Q = 1

2

(
I m(µw )

m(µw )∗ I

)
(4.8)

which projects onto the space of functions f = f1 ⊕ f2 for which f1 = m(µw ) f2.
The continuum limit of this model is given by the free massless Dirac fermion. This

theory has action

S(Ψ) = 1

2

∫
Ψ∗γ0γµ∂µΨdxdt

for a two-component complex fermionic fieldΨ on the line (or on a circle). The fields
have correlation function

〈Ψ∗(x)Ψ(y)〉 = 1

x − y
.

The stress energy tensor is a normal-ordered product of the fields and its derivatives. In
complex coordinates z = x+i t and z = x−i t , the stress-energy tensor has a holomorphic
component Tzz for which one may deduce that

〈Tzz(x)Tzz(y)〉 = 1/2

(x − y)4
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and hence the theory has central charge c = 1. For details from the conformal field
theory point of view, see [FMS12]. To be able to make rigorous statements about this
theory we would like to describe this theory in the algebraic framework. In the algebraic
approach described in Section 4.1.1 the fields Ψ∗(x) are not bounded operators. In
order to have well-behaved operators, one usually ‘smears’ the fields. That is, for some
function f one informally defines

Ψ( f ) =
∫

f (x)Ψ(x)dx.

In this framework, the operator Ψ( f ) will be formally defined by the framework in
Section 4.1.1 as a bounded operator (while Ψ(x) can not be defined as a bounded
operator).

We now describe the vacuum state of this quantum field theory in terms of the
second quantization formalism. It will be convenient to consider the Dirac equation,
derived from the action, in the form

iγµ∂µψ= 0,

with the Dirac matrices γ0 = iσz =
(

i 0
0 −i

)
and γ1 =−σx = (

0 −1−1 0

)
. In other words

∂tψ1 + i∂xψ2 = 0

∂tψ2 − i∂xψ2 = 0

The equation is easily seen to be solved by

ψ1(x, t ) =χ+(x + t )+χ−(x − t )

ψ2(x, t ) = i
(
χ+(x + t )−χ−(x − t )

)
for arbitrary functions χ+ and χ−, which we take to be in L2(R) in order for the solutions
to be normalizable. The energy of such a solution is given by

E =
∫ ∞

−∞

(−ω|χ̂+(ω)|2 +ω|χ̂−(ω)|2) dω.

Thus, the space of negative energy solutions is spanned by solutions for which χ+ has
a Fourier transform with support on the positive half-line (is analytic) and χ− has a
Fourier transform with support on the negative half-line (is anti-analytic).

We obtain a single-particle Hilbert space H = L2(R)⊗C2 corresponding toψ(x, t =0).
Again, the symbol of the vacuum state is given by the projection onto the ‘Dirac sea’ of
negative energy solutions. It can be expressed as

Q = 1

2

(
I H

−H I

)
(4.9)

in terms of the Hilbert transform, which we recall is the unitary operator on L2(R)
defined by

�H f (ω) =−i sgn(ω) f̂ (ω).

Indeed, it follows from H ∗ =−H that Q is an orthogonal projection, and Qψ=ψ ifψ is
the restriction to t = 0 of a negative-energy solution. We further note that the symbol Q
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commutes with the component-wise complex conjugation on H . We thus obtain a
Fock space realization as described above in Section 4.1.1. The smeared Dirac field can
be defined asΨ( f ) := aQ ( f ) for f ∈H .

We will also be interested in free Dirac fermions on the circle S1. In this case, we
take H = L2(S1)⊗C. For periodic boundary conditions, the symbol Qper has the same
form as in (4.9), where we now let

àH per f [n] =−i sgn(n) f̂ [n]

where there is some ambiguity in the sign function for n = 0 (reflecting a ground state
degeneracy). For definiteness, we choose sgn(0) = 1.

For anti-periodic boundary conditions, corresponding to the Dirac equation on the
nontrivial spinor bundle over S1, we define a unitary operator T on H by

T f (x) = e−iπx f (x) (4.10)

for x ∈ (0,1). Then the symbol is given by T ∗QperT .

4.1.4 Self-dual CAR algebra and Majorana fermions
Suppose that H+ ∼=H−, as in the preceding section. Given an anti-unitary involution C
on H such that CQδ =Q−δC for δ=±, we can also define the following operators on
the Fock space F∧(H+) ⊂F∧(H ),

cQ ( f ) = a0(Q+ f )+a∗
0 (CQ− f ) (4.11)

These satisfy the relations of the self-dual CAR algebra, A sd∧ (H ) [Ara71], which is gener-
ated by elements c( f ) for f ∈H such that f 7→ c( f ) is antilinear and

{c( f ),c∗(g )} = 〈 f , g 〉 ,

c∗( f ) = c(C f ).

for f , g ∈ H . The second equation implies that a unitary U on H only defines an
automorphism Γc (U ) of A sd∧ (H ) by c( f ) 7→ c(U f ) if [U ,C ] = 0 commutes with C . We
can also second quantize generators as in Eq. (4.2). That is, if A is a bounded operator
with Hilbert-Schmidt A+−, A−+, and if A∗ =−C AC , we can define its second quantiza-
tion dΓc

Q (A), such that

e i tdΓc
Q (A)cQ ( f )e−i tdΓc

Q (A) = cQ (e i t A f ). (4.12)

We can apply this construction in the situation Section 4.1.3 to obtain a descrip-
tion of massless free Majorana fermions. Define the anti-unitary involution C as the
following charge conjugation operator which exchanges positive and negative energy
modes:

C f =
(
1 0
0 −1

)
f̄ (4.13)

Then it is clear from (4.9) that CQ = (I −Q)C , so the above construction applies. We
denote byΦ( f ) := cQ ( f ) the smeared Majorana field.
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Gaussian unitaries an 7→∑
m Un,m am for U unitary

Hamiltonian H =−∑
n a∗

n an+1 +a∗
n+1an

Wavelet filters g , h orthogonal wavelet filters

Filter relation ĝw (θ) =−i sgn(θ)e i θ2 ĥw (θ) for θ ∈ (−π,π)
Application of wavelet transform b1,n = (−1)n a2n , b2,n = (−1)n a2n+1,

and apply Wh to the b1 fermions
and Wg to the b2 fermions

Disentangling circuit Apply wavelet decomposition, then H on wavelet modes.
Continuum theory Free Dirac fermion
Wavelet functions ψ̂g (ω) =−i sgn(ω)ψ̂h(ω)

Table 4.1: Overview of the construction of MERA from wavelets for fermions as described
in [EW16, HSW+18, WSSW22], to be compared with the corresponding results for
bosonic systems in Table 5.1.

4.2 Entanglement renormalization circuits

In this section we will describe how an appropriate quantization of Hilbert pair wavelets
yields an entanglement renormalization scheme for free fermions. For a discussion of
Gaussian fermionic MERA, see [EV10b], and for fermionic MERA in general, see [CV09].
An overview of fermionic wavelet MERA is provided in Table 4.1.

4.2.1 Entanglement renormalization for lattice fermions
We start by reviewing the construction of entanglement renormalization circuits for
massless free fermions, as worked out in [EW16, HSW+18]. The exposition is based
on [HSW+18].

Recall that the hopping fermion Hamiltonian could be rewritten as Eq. (4.7)

H =− ∑
n∈Z

b∗
1,nb2,n −b∗

2,nb1,n+1 +b∗
2,nb1,n −b∗

1,n+1b2,n ,

and that the ground state symbol was given by Eq. (4.8)

Q = 1

2

(
I m(µw )

m(µw )∗ I

)
=

(
I 0
0 m(µw )∗

)
(I ⊗|+〉〈+|)

(
I 0
0 m(µw )

)
as a projection on the single-particle Hilbert space ℓ2(Z)⊗C2. Recall that m(µw ) is a

Fourier multiplication operator, where θw (θ) =−i sgn(θ)e i θ2 for |θ| <π. This symbol is
straightforward to prepare in Fourier space. For instance, if one would like to prepare the
ground state, one could apply (the second quantization of) the Fourier transform, which
relates the ground state to a product state. However, we are interested in performing
a circuit which is local in real space (recall that entanglement renormalization is a
quantum circuit which implements a real-space renormalization). For this goal it is
natural to replace a Fourier analysis of the ground state symbol by a wavelet analysis.

We now consider an approximate Hilbert pair as in Definition 3.1. As before, we
denote by gw , hw , gs , hs the wavelet and scaling filters, and we let Wg and Wh denote
the corresponding wavelet decomposition maps. Since Wg and Wh are unitary maps
we can apply the fermionic second quantization of Wh to the b1 fermions and Wg to the
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b2 fermions and we write

W =Wh ⊕Wg .

Since we have an approximate Hilbert pair, the filters are such that for θ ∈ (−π,π)

hw ≈ m(µw )gw (4.14)

This will allow us to renormalize the ground state. Suppose we had an exact Hilbert
pair (we will see in detail in Section 4.3 how this derivation is influenced by the er-
ror in Eq. (4.14)). Then the second quantization of W will be such that if we let |Ω〉
denote the ground state of Eq. (4.7) with symbol Q, (so |Ω〉 is the Fock vacuum with
representation aQ as in Eq. (4.1)), then we may consider the state

ΓQ (W ) |Ω〉〈Ω|ΓQ (W ),

which lives on the Fock space with single particle space (ℓ2(Z)⊗C2)⊕(ℓ2(Z)⊗C2), where
the first factor in the direct sum collects the wavelet outputs of Wg ⊕Wh and the second
factor in the direct sum collects the scaling outputs of Wg ⊕Wh . This state will have
symbol W QW ∗. We note that for an exact Hilbert pair we have

(I ⊕m(µw ))Wg =Whm(µw )

as follows from the observations in the proof of Lemma 3.6. Then it is easy to verify,
using that Wg is unitary, that

W QW ∗ =
(
Wh 0

0 Wg m(µw )∗
)

(I ⊗|+〉〈+|)
(
W ∗

h 0
0 m(θw )W ∗

g

)
= (I ⊗|+〉〈+|)⊕Q.

In other words, after applying a layer of the wavelet pair decomposition, the state is
in a product state between the wavelet output and the scaling output, and moreover,
the state on the scaling output is again the ground state of the Hamiltonian Eq. (4.7),
while the state on the wavelet output is a product state. Thus we have implemented a
layer of entanglement renormalization: we have separated the high frequency (wavelet)
and low frequency (scaling modes), and moreover disentangled the high frequency
modes, and done so in a scale invariant way. We can now repeat this construction on the
scaling modes, and the L -layer wavelet decomposition will give rise to an entanglement
renormalization procedure of depth L . If we have a finite number of layers, we obtain
the following approximation of the symbol (where we insert the Fock vacuum state on
the top scaling input):

Definition 4.1 (Approximate symbol for lattice fermion). For any approximate Hilbert
pair, L ∈N, define the approximate symbol for the lattice fermion in Eq. (4.7) as the
following projection on ℓ2(Z)⊗C2:

Q̃ latt
L :=W (L ),∗(

Pw ⊗|+〉〈+|)W (L ), (4.15)

where W (L ) :=W (L )
h ⊕W (L )

g and Pw is the projection onto the wavelet output.



4.2. Entanglement renormalization circuits 69

Note that Pw ⊗|+〉〈+| is the symbol of a state for which correlation functions can be
straightforwardly evaluated. Indeed, we can intuitively think of Pw ⊗|+〉〈+| as the sym-
bol of a ‘Fermi sea’ where on the part of the lattice corresponding to the wavelet output
of the transform we have a have occupied a product mode. Equivalently, after apply-
ing the second quantization of a Hadamard gate and a Jordan-Wigner transformation
this state corresponds to an ‘infinite product state’ where the wavelet qubits are in
state |101010. . .〉 and the scaling qubits in |0000. . .〉.

We may thus conclude that the second quantization of an appropriate discrete
wavelet transform defines an entanglement renormalization map. The relation in
Eq. (4.14) will not be satisfied exactly by a pair of finite filters, but as we saw in Section 3.3
it can be approximated. In [EW16] it was shown that a construction using Daubechies D4
filters already gives a good result, and in [HSW+18] it was shown that any approximate
Hilbert pair leads to a good approximation of the ground state using the approximate
symbol Q latt

L
. This result will be extended in Theorem 4.7 to correlation functions for

the corresponding quantum field theory.

Discrete wavelet transform and single-particle circuits

Let us now recall how discrete wavelet transforms can be written as single-particle (‘first
quantized’ or ‘classical’) linear circuits, using the construction in Section 3.5, and show
that the entanglement renormalization procedure described above indeed gives rise
to an entanglement renormalization circuit. Recall that ‘single-particle’ means that
the state space is a direct sum of local state spaces (such as ℓ2(Z) = ⊕

n∈ZC). Thus
let W : ℓ2(Z) → ℓ2(C2) denote a single layer of a discrete wavelet transform, defined as
in Eq. (3.10). Recall that by putting the scaling and wavelet outputs on the even and odd
sublattice we obtain a unitary

W ′ : ℓ2(Z) → ℓ2(Z), W ′ := ιW,

where

ι : ℓ2(Z)⊗C2 → ℓ2(Z)

ι( fw ⊕ fs)[2n] = fw [n],

ι( fw ⊕ fs)[2n +1] = fs[n]

for all fw , fs ∈ ℓ2(Z). From Section 3.5, and as previously shown in [EW18], we know
that if the scaling filters are real and have length N then W ′ can be decomposed into a
product W ′ =WN /2 · · ·W1, where each Wk : ℓ2(Z) → ℓ2(Z) is a block-diagonal real-valued
unitary of the form

Wk =
{⊕

r odd ur,r+1(θk ) if k odd,⊕
r even ur,r+1(θk ) if k even.

Here, the θk are suitable angles and ur,r+1(θk ) denotes the unitary which acts on the
subspace ℓ2({r,r +1}) ⊆ ℓ2(Z) by the rotation matrix

u(θk ) =
(

cos(θk ) sin(θk )
−sin(θk ) cos(θk )

)
. (4.16)
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Thus, we obtain a decomposition of W g into a single-particle linear circuit composed
of 2-local unitaries (see Fig. 3.7, (a)). In the same way we can implement L layers of the
discrete wavelet transform.

Given an approximate Hilbert pair (or any pair of wavelets) let W :=Wh ⊕Wg , corre-
sponding to performing both discrete wavelet transforms in parallel. If we apply the
preceding construction to both wavelet transforms Wh and Wg we obtain two circuits,
one for W ′

h and one for W ′
g , parametrized by angles θh

k and θg
k for k = 1, . . . , N /2. These

can be assembled into a single single-particle circuit for

W ′ : ℓ2(Z)⊗C2 → ℓ2(Z)⊗C2, W ′ :=W ′
h ⊕W ′

g

As shown in Fig. 4.1, (a), we take each site to carry two degrees of freedom (correspond-
ing to the two components of the Dirac spinor). Instead we could also arrange the
two wavelet transforms on the even and odd sublattices (by conjugating with ι). It is
straightforward to see that the corresponding circuit can be implemented by 2-local
unitaries and swap gates. Thus

Q latt
L =U (L ),∗

MERAPU (L )
MERA, (4.17)

where P := Pw ⊗|0〉〈0| is a symbol on ℓ2(Z)⊗CL+1 ⊗C2 and

U (L )
MERA : ℓ2(Z)⊗C2 → ℓ2(Z)⊗CL+1 ⊗C2

is the single-particle unitary defined by

U (L )
MERA := (Iℓ2(Z)⊗CL−1⊗C2 ⊕UMERA) · · · (Iℓ2(Z)⊗C2 ⊕UMERA)UMERA,

UMERA := (Iℓ2(Z) ⊗h)⊕ (Iℓ2(Z) ⊗ IC2 ))W,

where h is the Hadamard matrix h = 1p
2

(
1 1
1 −1

)
which maps h |0〉 = |+〉. Just like W ,

the unitary UMERA can be implemented by a single-particle circuit of depth N /2+1,
where N is the length of the filters, obtained by composing the circuit for W with an
additional layer of Hadamard unitaries acting on the wavelet outputs (see Fig. 4.1). The
unitary U (L )

MERA consists of L such circuit layers.

Quantum circuits from single-particle circuits

Since we seek to describe a quantum many-body state of fermions, the circuit that
we will construct naturally arises as a quantum circuit that acts on a fermionic Fock
space F∧(ℓ2(Z)). We define a Gaussian fermionic quantum circuit to be the second
quantization Γ(U ) of a single-particle circuit. Note that this is, a priori, different from
the standard notion of a quantum circuit on a Hilbert space which is a tensor product
of local qudit Hilbert spaces. However, in the one-dimensional setting, if one takes a
so-called Jordan-Wigner transformation (see below, at Eq. (4.21))of a Gaussian fermionic
quantum circuit, one obtains a local quantum circuit on a chain of qubits. The resulting
circuits are matchgate circuits [JM08] (which can be defined as the class of circuits
which can be written as the Jordan-Wigner transformation of a one-dimensional nearest
neighbour Gaussian fermionic circuit).

In our case, we can obtain a quantum circuit by second-quantizing the single-
particle circuit U (L )

MERA for the wavelet transforms described above. Thus, Γ(UMERA),
applied to the Fock vacuum, prepares the state with symbol Q latt

MERA, and hence we
have constructed a fermionic entanglement renormalization circuit to approximate the
ground state of a critical lattice fermion.
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Entanglement renormalization for the Ising chain

In [EW16] it has been worked out how, for the particular case of Daubechies D4 wavelets,
one obtains approximate entanglement renormalization circuits for the Ising model. It
is well known that the one-dimensional quantum Ising model, with Hamiltonian

H =−∑
n

Xn Xn+1 +Zn (4.18)

can be solved by relating it to free fermions. The Hamiltonian in Eq. (4.18) acts on a
chain of qubits, and Xn and Zn are Pauli operators which are given by an identity at
every site except n, where they are given by X and Z respectively. In fact, under an ap-
propriate Jordan-Wigner transformation, the Hamiltonian Eq. (4.7) can be transformed
to two independent copies of Eq. (4.18). To this end, recall that we had fermions with
annihilation operators b1,n and b2,n . If we let

c1,2n = b∗
1,n +b1,n

c1,2n+1 = i (b∗
2,n −b2,n)

c2,2n = i (b∗
1,n −b1,n)

c2,2n+1 = b∗
2,n +b2,n

then the ci ,n are Majorana fermions and we can rewrite Eq. (4.7) as H1 −H2 where

H j =− i

2

∑
n∈Z

c j ,nc j ,n+1.

Thus, we see that the Hamiltonian decouples into two uncoupled Majorana Hamiltoni-
ans. If we take H1, we may now map this to the Ising Hamiltonian in Eq. (4.18) by the
Jordan-Wigner transformation

c1,2n 7→
(∏

r<n
Zr

)
Xn (4.19)

c1,2n+1 7→
(∏

r<n
Zr

)
Yn . (4.20)

Because our single-particle circuit consists of orthogonal maps, it decouples into
two separate circuits acting on the two decoupled Majorana modes. Denote by θg

k
and θh

k the sequence of angles associated to an approximate Hilbert pair, as in Eq. (4.16),

and let θ±k = θ
g
k ±θh

k . Then after application of the Jordan-Wigner transformation we
obtain the following two-qubit gate for the k-th layer in a single layer of entanglement
renormalization:

Uk =


cos(θ−k ) 0 0 −sin(θ−k )

0 cos(θ+k ) −sin(θ+k ) 0
0 sin(θ+k ) cos(θ+k ) 0

sin(θ−k ) 0 0 cos(θ−k )

 (4.21)

This provides a generalization of the circuits in [EW16]. The resulting circuits are entan-
glement renormalization circuits with the structure shown Fig. 2.1 and in this case it is a
(matchgate) circuit in the ‘usual’ sense, acting on qubits rather than fermionic modes.
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4.2.2 Entanglement renormalization for the Dirac fermion
From Section 4.2.1 we have learned that the second quantization of a discrete wavelet
transform for an approximate Hilbert pair corresponds to an entanglement renormaliza-
tion procedure for a critical lattice fermionic Hamiltonian. It is now natural to wonder
whether the second quantization of the wavelet decomposition of L2(R)⊗C2 as defined
in Section 3.1.1 using an (approximate) Hilbert pair of wavelets can be interpreted as
entanglement renormalization of the continuum limit of Eq. (4.7) i.e. the massless
Dirac fermion. This is indeed the case, as we will explain in this section. The way we
approach this problem is by describing a procedure which approximates correlation
functions of smeared operators. Informally, the procedure is that we first discretize the
operators at some scale (i.e., we impose a UV cut-off), and then, in order to obtain the
free fermion vacuum, we need to ‘fill the Dirac sea’ up to the relevant scale. So, the
circuit, starting from the Fock vacuum, has to fill all the negative energy modes over
the range of scales that are relevant for the inserted operators, directly analogous to a
real-space renormalization procedure. The approximate Hilbert pair is exactly such that
it allows one to construct such modes over a range of scales.

To make this more precise let {Oi }, i = 1, . . . ,n be a set of smeared operators that
are either linear in the fields (such asΨ( f ), Ψ∗( f ) for a smearing function), or normal-
ordered quadratic operators (such as smeared components of the stress-energy tensor),
and which are compactly supported. We denote the correlation functions by

G({Oi }) = 〈O1 · · ·On〉. (4.22)

We would like to approximate such correlation functions using an entanglement renor-
malization circuit.

4.2.3 Quantum circuits for correlation functions
We now explain how we the construction of entanglement renormalization circuits can
be used to compute correlation functions for free Dirac and Majorana fermions.

We now explain how the latter can be computed by a fermionic quantum circuit
of MERA type. Loosely speaking, we will do the following, in order to compute some
correlation function G({Oi }):

(i) We discretize the operators using the scaling functions. This gives a set of opera-
tors {OMERA

i } on the lattice. One can also consider this procedure the other way
around: this embeds a discrete theory in the continuous theory by smearing all
operators with appropriate scaling functions.

(ii) We compute the correlation function of the operators {OMERA
i } using the state

obtained by applying the second quantization of U (L )
MERA (illustrated in Fig. 4.1) to

the Fock vacuum.

Let us first discuss the case of the free Dirac fermion on the real line in more detail.
Recall from Eq. (4.9) that the symbol of the vacuum state of the free Dirac fermion on

the real line is given by the following operator on L2(R)⊗C2, which is the single-particle
Hilbert space:

Q = 1

2

(
I H

−H I

)
=

(
I 0
0 H ∗

)(
IL2(R) ⊗|+〉〈+|)(I 0

0 H

)
, (4.23)
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where |+〉 = 1p
2

(|0〉+ |1〉).

To obtain a suitable approximation, consider an approximate Hilbert pair as in
Definition 3.1. As before, we denote by gw , hw , gs , hs the wavelet and scaling filters,
byαg

j andαh
j discretization maps (defined as in Eq. (3.9)) and by W (L )

g and W (L )
h the L -

layer discrete wavelet transforms (defined in Eq. (3.11)). We now approximate Eq. (4.23)
by first truncating to a finite number of scales, using one of the two wavelet transforms,
and then by replacing the Hilbert transform of the one wavelet basis by the other wavelet
basis. Schematically,

IL2(R) ⇝ αh,∗
j W (L ),∗

h PwW (L )
h αh

j , PwW (L )
h αh

j H ⇝ PwW (L )
g α

g
j ,

where Pw = Iℓ2(Z) ⊗
∑L−1

k=0 |k〉〈k| denotes the orthogonal projection onto the wavelet
coefficients.

Definition 4.2 (Approximate symbol for the Dirac fermion). For any approximate Hilbert
pair, j ∈ Z, and L ∈ N, define the approximate symbol as the following projection
on L2(R)⊗C2:

Q̃ j ,L :=α∗
j W (L ),∗(

Pw ⊗|+〉〈+|)W (L )α j , (4.24)

where α j :=αh
j ⊕α

g
j and W (L ) :=W (L )

h ⊕W (L )
g .

In other words, Q̃ j ,L =α∗
j Q latt

L
α j . The symbol Q̃ j ,L should be seen as an approximation

of the true symbol at scales ranging from 2− j+1 to 2− j+L . In Section 4.3 we will derive
that this is indeed a good approximation to the symbol, and bound the error that derives
from taking only a finite number of scales and from the inaccuracy in the Hilbert pair
relation.

The key point is that we can now compute an approximation to the correlation
function G({Oi }) as follows.

Definition 4.3 (MERA correlation functions). Consider an approximate Hilbert pair
with filters g , h. Given a correlation function (4.36), j ∈ Z, and L ≥ 0, we define the
corresponding MERA correlation function by

GMERA
j ,L ({Oi }) := 〈Ω|OMERA

1 · · ·OMERA
n |Ω〉 , (4.25)

where OMERA
i is obtained from Oi by replacing Ψ( f ) by ΨMERA( f ) := aP (U (L )

MERAα j f )

and dΓQ (A) by dΓMERA(A) := dΓP (U (L )
MERAα j Aα∗

j U (L ),∗
MERA). Here, P := Pw ⊗|0〉〈0|.

More precisely, using Eq. (4.1), we find that

ΨMERA( f ) = a0
(
(I −P )U (L )

MERAα j f
)+a∗

0

(
PU (L )

MERAα j f
)
, (4.26)

where a(∗)
0 are the ordinary creation and annihilation operators on Fock space. If f

is a smearing function then in order to find ΨMERA( f ) we first compute α j f either by
expanding the scaling basis or simply by sampling on a (dyadic) grid (Lemma 3.4),
then we apply L layers of the local circuit UMERA (Fig. 4.1), and finally we apply the
projections P and I −P . One can proceed similarly for dΓMERA(A). This shows that the
correlation functions (4.37) can be efficiently calculated in the single-particle picture.
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(a)

u1

u2

u3

h

UMERA

(b)

UMERA

UMERA

UMERA

scaling
components

wavelet
components

Figure 4.1: (a) A single MERA layer UMERA, acting in the single-particle picture as a wavelet de-
composition. The Hadamard unitary h (dis)entangles the modes of the two wavelet
transforms that make up the Hilbert pair. We abbreviate uk := uh

k ⊕ug
k . (b) Illustration

of the unitary U (L )
MERA corresponding to L MERA layers before second quantization.

Each layer is a local circuit of depth N /2+1, as in (a).

Finally, we need to take into account that in concrete computations we have finite
systems. Let us assume that we would like to approximate a correlation function in-
volvingΨ(∗)( fi ) and dΓQ (Ai ), where the smearing functions fi and the kernel of Ai are
compactly supported. In this case, it is easy to see that Eq. (4.25) will involve creation
and annihilation operators that act only on finitely many sites S ⊆ Z (which can be
computed from the supports as well as the parameters j , L , and N ). In this case,
we can replace ℓ2(Z) by ℓ2(S), P by its restriction PS onto HS := ℓ2(S)⊗CL+1 ⊗C2,
and the infinitely wide layers UMERA by finitely many local unitaries. Let us denote
by |PS〉 the corresponding Gaussian state in the fermionic Fock space F∧(HS) and
we denote by Γ0(U (L )

MERA) := ⊕∞
k=0(U (L )

MERA)∧k the second quantizations of the single-

particle unitaries U (L )
MERA. Since second quantization commutes with convolution, this

can be written as a fermionic quantum circuit composed of L many identical layers,
each of depth N /2+1 (which structurally looks like Fig. 4.1, (b)). Thus, we recognize
that |MERAL 〉 := Γ0(U (L )

MERA)∗ |PS〉 is precisely the quantum state prepared by a fermionic
MERA. Moreover, we can compute the MERA correlation functions by

GMERA
j ,L ({Oi }) = 〈MERAL |O′

1 · · ·O′
n |MERAL 〉 , (4.27)

where O′
i is obtained from Oi by replacing

Ψ( f ) 7→Ψ′( f ) := a0(α j f )

dΓQ (A) 7→ dΓ0(α j Aα∗
j )−〈MERAL |dΓ0(α j Aα∗

j )|MERAL 〉 .

Note that 〈MERAL |dΓ0(α j Aα∗
j )|MERAL 〉 is actually finite because we truncated the

range of wavelet scales, so this normal ordering is well-defined (even if the original
operator A was not trace class). Thus, Eq. (4.27) can be interpreted as an ordinary
correlation function in a fermionic MERA. This at last justifies our notation.

4.2.4 Circle, boundary conditions, Majorana fermions
On the circle S1 we proceed similarly, except that there is now a natural largest scale.
We will only discuss the continuous case. For periodic boundary conditions, we use the
following symbol, which intuitively approximates the true symbol at scales above 2−L :
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Definition 4.4 (Approximate symbol Dirac fermion, periodic case). For any approxi-
mate Hilbert pair and L ∈N, define the approximate periodic symbol as the following
projection on L2(S1)⊗C2:

Q̃per
L

:=αper,∗
L

W (L ),per,∗(
Pw ⊗|+〉〈+|+Ps ⊗|L〉〈L|)W (L ),perα

per
L

, (4.28)

where αper
L

:= α
h,per
L

⊕αg ,per
L

and W (L ),per := W (L ),per
h ⊕W (L ),per

g refer to the periodic
versions as defined in Section 3.1.2; Ps projects onto the single scaling coefficient
and |L〉 := 1p

2
(|0〉−i |1〉) to ensure compatibility with our choice for the Hilbert transform

on constant functions. Had we made a different choice for the value of the Hilbert
transform on constant functions this would only change the top level state (it is a well-
known fact that the Dirac fermion with periodic boundary conditions has a two-fold
ground state degeneracy). We also observe that |L〉〈L| = 1

2 (I +σ2) = 1
2 (I +γchir) is the

chiral projector, where γchir = γ0γ1 =σ2. Had we chosen the convention sgn(0) =−1 we
would take the state |R〉 := 1p

2
(|0〉+ i |1〉), and |R〉〈R| = 1

2 (I −γchir).

Given Eq. (4.28), we start with

W (L ),per,∗(
Pw ⊗|+〉〈+|+Ps ⊗|L〉〈L|)W (L ),per =U (L ),per,∗

MERA PperU
(L ),per
MERA ,

for a suitably defined unitary U (L ),per
MERA and Pper = Pw ⊗ |0〉〈0| +Ps ⊗ |L〉〈L|. This is al-

ready a symbol on a finite-dimensional Hilbert space C2L ⊗C2. As before, U (L ),per
MERA is

a product of unitaries, one for each layer, but now these unitaries will depend on the
scale j = 0, . . . ,L −1 (cf. Section 3.1.2). Since taking the periodization of composition
of convolutions is the same as convolving their periodizations, we can obtain the uni-

tary U per, j
MERA for the j -th layer simply by ‘periodizing’ the two-local unitaries UMERA and

analogously construct the circuit. Just like the filters, the MERA layers become identical
for sufficiently large j .

This leads to an approximation of the exact correlation functions Gper({Oi }) for
periodic boundary conditions

GMERA,per
L

({Oi }) := 〈Ω|OMERA
per,1 · · ·OMERA

per,n |Ω〉 ,

where OMERA
per,i is obtained from Oi by replacingΨ( f ) byΨper

MERA( f ) := aPper (U (L ),per
MERA α

per
L

f )

and dΓQ (A) by dΓper
MERA(A) := dΓPper (U

(L ),per
MERA α

per
L

Aαper,∗
L

U (L ),per,∗
MERA ). As before, this can

be interpreted as a correlation function of local operators in a fermionic MERA on a
circle1, and we will show in Theorem 4.7 that this gives an accurate approximation.

For anti-periodic boundary conditions on the circle, recall that the symbol was given
by T ∗QperT (see Eq. (4.10)). This means that we can compute correlation functions for
anti-periodic boundary conditions with the same circuit as for the periodic fermion, but
replacing α j by α j T . We note that the smearing functions f in this case are naturally
anti-periodic (they are sections of a nontrivial bundle), so T f is periodic and our results
apply.

1Given a 2-local circuit for a wavelet transform, as constructed in Section 3.5 it is not hard to see that
taking the corresponding circuit with periodic boundary conditions will give the periodized version of
the wavelet transform.
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Finally we discuss the case of Majorana fermions. For simplicity, we only consider
the case of the line (cf. Section 4.1.4). Suppose that we want to approximate a correlation
function of the form

Gmaj({ fi }) = 〈Ω|Φ( f1) . . .Φ( fn)|Ω〉 , (4.29)

where the smeared Majorana field is given byΦ( f ) = a0((I −Q) f )+a∗
0 (CQ f ) in terms of

the symbol Q of the free Dirac fermion, and the charge conjugation operator C defined
in Eq. (4.13). Consider the self-dual CAR algebra on the range of P ′ = Pw ⊗ IC2 which is a
subspace H ′ of ℓ2(Z)⊗C2 ⊗CL+1 (that is, the subspace corresponding to the wavelet
coefficients) with charge conjugation C ′ given by the anti-unitary operator on H ′ which
acts by x = (

0 1
1 0

)
in the second tensor factor and componentwise complex conjugation

in the standard basis. Similarly to Eq. (4.26), define

ΦMERA
maj ( f ) = a0

(
(P ′−P )U (L )

MERAα j f
)+a∗

0

(
C ′PU (L )

MERAα j f
)
.

We note that the above formula defines a representation of the self-dual CAR alge-
bra A sd∧ (H ′) since, clearly, C ′P = (P ′−P )C ′. As before, we can approximate the correla-
tion function (4.29) by

GMERA,maj
j ,L ({ fi }) = 〈Ω|ΦMERA

maj ( f1) . . .ΦMERA
maj ( fn)|Ω〉 ,

which for compactly supported fi can be computed by an ordinary fermionic MERA.
Note that

C ′U (L )
MERAα j ( f ) =U (L )

MERACα j ( f ) =U (L )
MERAα j (C f )

where, with a slight abuse of notation, also write C for the similarly defined operator
on ℓ2(Z)⊗C2. Thus, we can also implementΓc (U (L )

MER A) as a circuit of Majorana fermions,

mapping the state on A sd∧ (H ′) corresponding to P to the state on A sd∧ (U (L )
MERA(H ′)) with

symbol U (L ),∗
MERAPU (L )

MERA.

4.2.5 Scaling dimensions
For MERA tensor networks, it has been observed that the (local and global) symmetries
of the underlying theory can be approximately implemented in terms of the tensor
network itself [MV18b]. In particular, a single layer of the MERA should always corre-
spond to a rescaling by a factor two, and as in Fig. 2.3, its eigenvalues should be related
to scaling dimensions of the CFT. In the wavelet construction, the relation between a
single MERA layer and rescaling is very explicit.

In fact, we can easily show that the operator corresponding to a fermionic field has
exact scaling dimension 1

2 , as was already observed (but not proven) in [EW16]. For this,
consider (formally) the Dirac fermion field Ψi (x), where δx is a delta function centered
at x and i ∈ {1,2}. Its MERA realization at scale j ∈Z is given by

ΨMERA
i (x) = a∗(α j (δx ⊗|i 〉)) = ∑

k∈Z
φ̄ j ,k (x)a∗(|k〉⊗ |i 〉). (4.30)

Since the scaling functions are compactly supported, the right-hand side expression
is well-defined and we take it as the definition ofΨMERA

i (x). Now note that the scaling
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superoperator for a single MERA layer consists of a conjugation by the second quanti-
zation of UMERA and a contraction with the quasi-free state with symbol Iℓ2(Z) ⊗|+〉〈+|
on the wavelet output. Thus, any creation operator a∗( f ) gets mapped to a∗(PsW f ),
where Ps denotes the projection onto the scaling modes. Using Eq. (4.30), it follows that
the scaling superoperator maps

ΨMERA
1 (x) 7→ ∑

k∈Z
φ̄ j ,k (x)a∗(PsW h |k〉⊗ |1〉) = ∑

k∈Z
φ̄ j ,k (x)a∗((↓ m(ĥs) |k〉)⊗|1〉)

= ∑
k∈Z

φ̄ j ,k (x)
∑

n∈Z
h̄s[k −2n]a∗(|n〉⊗ |1〉) = ∑

n∈Z
φ̄ j−1,n(x)a∗(|n〉⊗ |1〉)

= ∑
n∈Z

2− 1
2 φ̄ j ,n(

x

2
)a∗(|n〉⊗ |1〉) = 2− 1

2 ΨMERA
1 ( x

2 ),

where we used Eqs. (3.5) and (3.10). We can argue similarly for the other compo-
nent, as well as for the adjoints. Thus, we conclude that a single MERA layer coarse-

grainsΨMERA(x) 7→ 2− 1
2ΨMERA( x

2 ). The interpretation is that a single layer of the MERA
corresponds to a rescaling of the fields by a factor two (as it should) and that it exactly
reproduces the correct scaling dimension of 1

2 for the fermionic fields.
If the scaling function is differentiable, we see that by differentiating we get that if

we let ∂xΨ
MERA
i (x) :=∑

k∈Z(∂xφ̄)(2 j x −k)a∗(|k〉⊗ |i 〉) it holds that

∂xΨ
MERA
i (x) 7→ 2− 1

2−1∂xΨ
MERA
i ( x

2 )

which should be interpreted as a descendent, in CFT language, with a scaling dimension
of 3

2 . In fact, if the wavelet function ψg has K vanishing moments (or equivalently, a
factor (1+ e iθ)K in the scaling filters gs [Mal08]), then there exist a vector φg ,l ∈ ℓ2(Z)
for l = 1, . . . ,K with the same support as ψg such that

1

2l
p

2
φg ,l [m] =∑

n
gs[n]φg ,l [2m −n]

even ifφg is not l time differentiable (note thatφg ,l is only defined at integer values), see
Theorem 7.1 in [SN96], and similarly for φh,l . This implies that if the wavelets have K
vanishing moments, the MERA captures K descendents of the fermion fields exactly. At
this point we observe that a wavelet filter leading to K vanishing moments must have
support at least 2K , so one needs (as expected) a larger circuit depth to capture more
descendent scaling dimensions. In general the other scaling dimension of the theory
are only approximately reproduced and it would be interesting to prove quantitative
bounds (for example, using our Theorem 4.7).

4.2.6 Numerical examples
Since the quantum circuits we obtain are the second quantization of a single-particle
circuit we can simulate them classically for high circuit depth (bond dimension). In
Fig. 4.2, (a) and (b) we show approximations to the smeared two-point functions for
the fermionic fields and for the stress-energy tensor for K = L = 1 and K = L = 3 in
the wavelet construction, corresponding to MERA tensor networks with bond dimen-
sions χ = 4 and χ = 64 respectively. Another statistic is the entanglement entropy of
an interval. In order to define this one needs a cut-off, for which we use the wavelet
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Figure 4.2: (a) Correlation function 〈Ψ∗(gx )Ψ(g y )〉 evaluated using our approximate quantum
circuits where the smearing functions gx , g y are Gaussians with standard devia-
tion σ = 0.05 peaked at x and y , respectively; correlation functions 〈T (gx )T (g y )〉
evaluated using our approximation quantum circuits. The stress-energy tensor is
smeared in both space and time; see Section 4.3.2 for details. (c) Subsystem en-
tropies for the corresponding quantum states. The logarithmic fits show that we
obtain excellent agreement with the Cardy formula for central charge c = 1 already
for K +L = 6.

discretization. The Cardy formula [Car86] predicts that for a conformal field theory the
entanglement entropy of an interval scales as SE = c

3 log(L)+ c ′ where c is the central
charge, L is the size of the interval, and c ′ a non-universal constant depending on the
cut-off. In Fig. 4.2, (c) we have plotted the entanglement entropies obtained from our
construction (for the same wavelets). For K = L = 3 the agreement with the Cardy for-
mula for c = 1 is already very accurate. As another numerical illustration of the accuracy
of approximation, one may compute eigenvalues of the entanglement renormalization
superoperator and extract scaling dimensions of the conformal field theory from its
eigenvalues [PEV09]. One way to do so is by applying a Jordan-Wigner transformation to
the circuit for the Majorana fermion to obtain a (matchgate) circuit for the Ising model.
The results are illustrated in Table 4.2.

4.3 Approximation of correlation functions

In this section we prove our main technical result on the approximation of correla-
tion functions of the Dirac fermion. To achieve this we adapt the approach pioneered
in [HSW+18], which proves the accuracy of the construction in Section 4.2.1, to the
continuum setting. In Section 4.3.1 we discuss the approximation of the symbol by a
wavelet construction. The key difference to [HSW+18] is that we consider the symbol in
the continuum setting, and we argue that the discretization maps αg

j and αh
j allow us to

relate the continous and discrete symbols. We determine how the wavelet approxima-
tion results in Section 3.6 can be used to bound the corresponding errors. Moreover,
we extend the results to the periodic case, and we provide a slightly improved scaling
of the error bounds. In Section 4.3.2 we discuss how the approximation of the symbol
leads to approximation of correlation functions. One main difference to [HSW+18] is



4.3. Approximation of correlation functions 79

χ E ∆E/E ∆σ ∆µ

Exact − 4
π 0.125 0.125

K = 1, L = 1 2 -1.2560 0.0135 0.0968 0.1696
K = 1, L = 2 4 -1.2705 0.0021 0.1360 0.1173
K = 2, L = 1 4 -1.2630 0.0081 0.1031 0.1563
K = 1, L = 3 8 -1.2727 0.0005 0.1226 0.1283
K = 2, L = 2 8 -1.2722 0.0008 0.1310 0.1204
K = 3, L = 1 8 -1.2655 0.0061 0.1052 0.1522
K = 1, L = 4 16 -1.2731 0.0001 0.1261 0.1242
K = 2, L = 3 16 -1.2731 0.0001 0.1238 0.1264

Table 4.2: Values of the Majorana fermion energy density E , the relative error in energy density
(E + π

2 )/E and the scaling dimensions ∆σ and ∆µ for the Majorana CFT (or, equiva-
lently, of the Ising CFT). Some other scaling dimensions, in particular those of the
fermion fields themselves, are exactly reproduced because of the structure of the
wavelet transform, as discussed in Section 4.2.5. These values were computed by
first decoupling the circuit obtained from an approximate Hilbert pair of wavelets
for the Dirac fermion into two circuits for Majorana fermions, and then taking a
Jordan-Wigner transform. This yields an entanglement renormalization circuit for
the Ising model, in which the spin and disorder fields σ and µ are local. For details on
this procedure, see [EW16].

that we need to consider the dependence on the smoothness of operators we insert,
which follows naturally from our approximation of the symbol. The result we prove is
also more general than the discrete result [HSW+18] since we also allow normal ordered
quadratic operators (such as smearings of the stress-energy tensor) in the correlators.

4.3.1 Symbol approximations from Hilbert pairs
We will first show that Eq. (4.24) and Eq. (4.28) provide accurate approximations of
free fermion symbols. We will restrict to compactly supported smearing functions f ∈
L2(R)⊗C2; and we denote by D( f ) the size of a minimal interval which contains the
support of f .

Lemma 4.5. The following relation holds: αg
j m(λs, j )∗H = m(µw )αg

j . Similarly, in

the periodic case it holds for all f ∈ L2(S1) with zero mean that αg ,per
j m(λper

s, j )∗H f =
m(µper

w, j )αg ,per
j f .

Proof. We want to show that αg
j (m(λs, j )∗H f ) = m(µw )αg

j ( f ) for f ∈ L2(R). By rescal-
ing f it is easy to see that it suffices to show the result for j = 0. We know that by
Eq. (3.25), H = m(λs)m(µw ), so αg

0 (m(λs)∗H f ) =αg
0 (m(µw ) f ). Next we take a Fourier

transform and observe that

�αg
0 ( f )(θ) = 1

2π

∑
n∈Z

φ̂g (θ+2πn) f̂ (θ+2πn).
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Since µw is 2π-periodic the result follows. In the periodic case it holds that

áαg ,per
j ( f )[n] = ∑

m∈Z
φ̂g ,per[n +2 j m] f̂ [n +2 j m].

which similarly implies the desired result. Note that the ambiguity in our choice of sgn(0)
in the definition of H is not relevant if we assume that f has mean zero. ■

The following result shows that the symbols in Eq. (4.24) and Eq. (4.28) indeed yield
reasonable approximations when restricted to appropriate functions.

Proposition 4.6. Consider an ε-approximate Hilbert pair with scaling filters supported
in {0, . . . , N −1}.

(i) Let f ∈ H 1(R)⊗C2 with compact support. Then, for all j ∈ Z, L ∈ N, and L ′ =
0, . . . ,L ,

∥(Q −Q̃ j ,L
)

f ∥ ≤ 3εL ′∥ f ∥+2( j−L ′)/27
√

N D( f )B∥ f ∥+2− j 5N 2∥ f ′∥,

where B := max{∥φg∥∞,∥φh∥∞}.

(ii) Let f ∈ H 1(S1)⊗C2. Then, for all L ∈N and L ′ = 0, . . . ,L ,

∥(Qper −Q̃per
L

)
f ∥ ≤ 2εL ′∥ f ∥+2−L ′

9N 2∥ f ′∥.

In Theorem 4.7, we will describe how to choose j and L ′ optimally for a given number
of layers L .

Proof. (i) Let

Q j :=
(

I 0
0 H ∗m(λs, j )

)
α∗

j

(
Iℓ2(Z) ⊗|+〉〈+|)α j

(
I 0
0 m(λs, j )∗H

)
=α∗

j

(
I 0
0 m(µw )∗

)(
Iℓ2(Z) ⊗|+〉〈+|)(I 0

0 m(µw )

)
α j ,

(4.31)

where we used Lemma 4.5. Then, using the first formula,

∥(Q −Q j
)

f ∥ ≤ 1

2

(
∥(I −αh,∗

j αh
j ) f1∥+∥(I −m(λs, j )αg ,∗

j α
g
j m(λs, j )∗)H f2∥

+∥(I −m(λs, j )αg ,∗
j αh

j ) f1∥+∥(I −αh,∗
j α

g
j m(λs, j )∗)H f2∥

)
= 1

2

(
∥(I −P h

j ) f1∥+∥(I −P g
j )m(λs, j )∗H f2∥

+∥(I −m(λs, j )αg ,∗
j αh

j ) f1∥+∥(I −αh,∗
j α

g
j m(λs, j )∗)H f2∥

)
≤ 1

2

(
∥(I −P h

j ) f1∥+∥(I −P h
j )H f2∥+∥(I −P g

j )m(λs, j )∗ f1∥
+∥(I −P g

j )m(λs, j )∗H f2∥+∥(αg
j m(λs, j )∗−αh

j ) f1∥
+∥(αg

j m(λs, j )∗−αh
j )H f2∥

)
.
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The norms in the first line can be upper-bounded by using Lemma 3.3 (for the second,
note that ∥(m(λs, j )∗ fi )′∥ = ∥ f ′

i ∥ for i = 1,2). For the norms in the second line we use
Lemma 3.8. Together, we find that

∥(Q −Q j
)

f ∥ ≤ 1

2

(
2− j CUV

(
2∥ f ′

1∥+2∥H f ′
2∥

)+2− j Cχ

(∥ f ′
1∥+∥H f ′

2∥
))

≤ 1

2
2− j (

2CUV +Cχ

)p
2∥ f ′∥ ≤ 2− j 5N 2∥ f ′∥

(4.32)

where we used that the Hilbert transform preserves the norm of the derivative (∥H f ′
2∥ =

∥ f ′
2∥).

Next, we define

Q j ,L :=α∗
j

(
I 0
0 m(µw )∗

)(
W (L ),∗

h PwW (L )
h ⊗|+〉〈+|

)(
I 0
0 m(µw )

)
α j .

Using the second expression in Eq. (4.31), we can then split the remaining error as

∥(Q j −Q̃ j ,L
)

f ∥ ≤ ∥(Q j −Q j ,L ′
)

f ∥+∥(Q j ,L ′ −Q̃ j ,L ′
)

f ∥+∥(Q̃ j ,L ′ −Q̃ j ,L
)

f ∥ (4.33)

The third term in Eq. (4.33) can be estimated using Lemma 3.5:

∥(Q̃ j ,L ′ −Q̃ j ,L
)

f ∥ ≤ ∥α∗
j W (L ′),∗(

Ps ⊗|+〉〈+|)W (L ′)α j f ∥ ≤ ∥P j−L ′ f ∥
≤ 2( j−L ′)/2

√
N D( f )max{∥φg∥∞,∥φh∥∞}(∥ f1∥+∥ f2∥)

≤ 2( j−L ′)/2
p

2
√

N D( f )B∥ f ∥.

For the second term in Eq. (4.33), we use Eq. (3.34) in Lemma 3.6:

∥Q j ,L ′ −Q̃ j ,L ′∥ ≤ ∥Pw (W (L )
h m(µw )−W (L )

g )∥+∥m(µw )∗W (L ),∗
h −W (L ),∗

g ∥ ≤ 2εL ′

Finally, for the first term in Eq. (4.33), we would like to apply Lemma 3.5, but we need to
be careful because m(µw ) does not preserve compact support. So we first use Eq. (3.35)
in Lemma 3.6 to get rid of m(µw ), and then apply Lemma 3.5:

∥(Q j −Q j ,L ′
)

f ∥ = ∥(Ps ⊗|+〉〈+|)W (L ′)
h

(
I 0
0 m(µw )

)
α j f ∥

≤ ∥Ps(W (L ′)
h m(µw )−W (L ′)

g )αg
j f ∥+∥(Ps ⊗ I )W (L ′)α j f ∥

≤ εL ′∥αg
j f2∥+2∥PsW (L ′)

g α
g
j f ∥+∥(Ps ⊗ I )W (L ′)α j f ∥

≤ εL ′∥ f ∥+3
(
∥P g

j−L ′ f2∥+∥P h
j−L ′ f1∥

)
≤ εL ′∥ f ∥+2( j−L ′)/25

√
N D( f )B∥ f ∥.

Thus, we can upper bound Eq. (4.33) by

∥(Q j −Q̃ j ,L
)

f ∥ ≤ 3εL ′∥ f ∥+2( j−L ′)/27
√

N D( f )B∥ f ∥. (4.34)

Combining Eqs. (4.32) and (4.34) we obtain the desired bound.
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(ii) Using φg ,per
0,1 =φh,per

0,1 = 1, it is easy to see that our choice of input to the scaling
layer ensures that

Qper1 = Q̃per
L

1,

so we can assume without loss of generality that f has zero mean or, equivalently,
that P0 f = 0 and we may apply Lemma 4.5. Similarly as before (but without having to
worry about an IR cut-off), we introduce

Qper
L

:=αper,∗
L

(
I 0
0 m(µw )∗

)(
W (L ),per,∗

h PwW (L ),per
h ⊗|+〉〈+|

)(
I 0
0 m(µw )

)
α

per
L

and use a triangle inequality

∥(Qper −Q̃per
L

)
f ∥ ≤ ∥(Qper −Qper

L ′
)

f ∥+∥(Qper
L ′ −Q̃per

L ′
)

f ∥+∥(Q̃per
L ′ −Q̃per

L

)
f ∥.

For the first term, we use Lemmas 3.3 and 3.8 and obtain

∥(Qper −Qper
L ′

)
f ∥ ≤ 2−L ′

5N 2∥ f ′∥,

in complete analogy to Eq. (4.32). For the second term, note that we can ignore the
scaling part in Eq. (4.28) since we assumed that P0 f = 0. Thus, we can use Eq. (3.38) in
Lemma 3.7 and find

∥Qper
L ′ −Q̃per

L ′ ∥ ≤ 2εL ′.

Finally, the third term can be upper bounded by using Lemma 3.3,

∥(Q̃per
L ′ −Q̃per

L

)
f ∥ ≤ ∥(I −P per

L ′ ) f ∥ ≤ 2−L ′p
2CUV∥ f ′∥ ≤ 2−L ′

4N 2∥ f ′∥

(note that here we are comparing different UV cut-offs, in contrast to before). By
combining these bounds we obtain the desired result. ■

If we keep track of all the wavelet constants in the proof of Proposition 4.6 rather than
bounding them in terms of N then the proof shows in fact the bound

∥(Q −Q̃ j ,L
)

f ∥ ≤ 3εL ′∥ f ∥+2( j−L ′)/27
√

D( f )CIR∥ f ∥+2− j 1p
2

(2CUV +Cχ)∥ f ′∥, (4.35)

which will be useful if we want to investigate numerically how fast our error bounds
converge.

We note that the error bounds in Proposition 4.6 are closely related to the quantum
error correcting properties or MERA, see [KK17] which argues that if one encodes
a quantum state by applying an entanglement renormalization circuit to it (so the
information is encoded in the ‘IR degrees of freedom’) this is insensitive to localized
perturbations.
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4.3.2 Approximation bounds for correlation functions
The bounds on the approximate symbol from Proposition 4.6 can be used to estimate
the approximation error for correlation functions. We start with the Dirac fermion
on the line, whose vacuum state is the quasi-free state ωQ with symbol Q defined in
Eq. (4.9). We are interested in correlation functions of the form involving the smeared
Dirac fieldΨ( f ) and normal-ordered quadratic operators. In the Fock representation,
the two-component Dirac field is implemented by the operatorsΨ( f ) := aQ ( f ), defined
as in Eq. (4.1), and the normal-ordered quadratic operators the dΓQ (A) defined in
Section 4.1.2. Thus, we wish to approximate correlation functions of the form

G({Oi }) := 〈Ω|O1 · · ·On |Ω〉 , (4.36)

where each Oi is either a component ofΨ( f ) or its adjointΨ∗( f ), or a normal-ordered
operator dΓQ (A).

We would like to approximate such correlation functions by using the symbol Q̃ j ,L

defined in Eq. (4.24). Thus we fix an approximate Hilbert pair, j ∈ Z, and L > 0, and
consider

G̃ j ,L ({Oi }) := 〈Ω|Õ1 · · ·Õn |Ω〉 , (4.37)

where the Õi are obtained from the Oi by replacingΨ( f ) by Ψ̃( f ) := aQ̃ j ,L
(P j f ) and by

replacing dΓQ (A) by dΓQ̃ j ,L
(P j AP j ).

On the circle, we denote the corresponding correlation functions for periodic bound-
ary conditions by Gper({Oi }) and G̃per

L
({Oi }), respectively. They are defined in terms of

the symbol Qper and its approximation Q̃per
L

defined in Eq. (4.28).
The following theorem is our main technical result. It states that G({Oi }) ≈ G̃ j ,L ({Oi })

under appropriate conditions (and similarly in the periodic case), which shows that
entanglement renormalization circuits can accurately compute correlation functions,
justifying the construction in Section 4.2.3.

Theorem 4.7. Consider an ε-approximate Hilbert pair with scaling filters supported
in {0, . . . , N −1}, scaling functions bounded by B, and ε ∈ (0,1).

(i) Let f1, . . . , fn be compactly supported functions in H 1(R)⊗C2 and let A1, . . . , Am be
Hilbert-Schmidt integral operators with compactly supported kernels in H 1(R2)⊗
M2(C), all with L2-norm at most 1. Let Oi = Ψ( fi ) or Ψ∗( fi ) for i = 1, . . . ,n
and On+i = dΓQ (Ai ) for i = 1, . . . ,m. Then we can find, for every L > 0, a scale j ∈Z
such that

∣∣G({Oi })−G̃ j ,L ({Oi })
∣∣≤ 8mm!(n +m)

(
6ε log2

3C 3D

ε
+C D1/32−L

3

)
.

The constant C := 14(
p

2N B + N 2) depends only on the Hilbert pair, and the
constant D := max{1,d( f , A)D( f , A)} depends only on the smoothness and sup-
port of the smearing functions, where d( f , A) := max{∥ f ′

i ∥,∥∇Ai∥} and D( f , A) :=
max{D( fi ),D(Ai )}; ∇Ai denotes the gradient of the kernel of Ai and D(Ai ) denotes
the side length of the smallest square supporting the kernel.
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(ii) Let f1, . . . , fn be functions in H 1(S1)⊗C2 and let A1, . . . , Am be Hilbert-Schmidt
integral operators with kernels in H 1(S1)⊗ M2(C), all with L2-norm at most 1.
Then we have, for every L > 0, that

∣∣Gper({Oi })−G̃per
L

({Oi })
∣∣≤ 8mm!(n +m)

(
6ε log2

59N 2D

ε
+26N 2D2−L

)
.

The constant D is defined as D := max{1,∥ f ′
i ∥,∥∇Ai∥}, with ∇Ai the gradient of the

kernel of Ai .

Before giving the proof, we comment on some aspects of the theorem. The main idea
behind the theorem and its proof is that the approximation of the correlation functions
is accurate as long as the approximation to the symbol is accurate on the scales at which
the system is probed. Quite intuitively, large support requires us to accurately approxi-
mate large scales, and strong fluctuations (large derivatives) require accuracy at small
scales. The constant D = max{1,d( f , A)D( f , A)} reflects the number of scales needed for
accurate approximation for given smearing functions fi and kernels Ai . Intuitively, D is
invariant under dilatations, reflecting the scale invariance of the theory. On the circleS1,
there is a natural largest scale, allowing for a slightly simpler formulation. While we
state the theorem for the Dirac fermion, Proposition 4.6 readily implies a similar result
for correlation functions of the Majorana fermion (Section 4.1.4).

Our assumptions on the operators Ai imply that they are in fact trace class. Thus,
the operators dΓ(Ai ) and dΓQ (Ai ) can be directly defined in the CAR algebra, so we
could work directly with the state ωQ on the algebra rather than in the Fock space
representation. Such an approach could improve the dependence on m of the bounds,
since one can estimate ∥dΓQ (Ai )∥ = ∥dΓ(Ai )−ωQ (dΓ(Ai ))∥ ≤ 2∥Ai∥1.

While in Theorem 4.7 we order the insertions in G({Oi }) in a particular way, other
orderings are also possible. This follows either from using the commutation relations
(leading to terms depending on Ak fl ) or by directly adjusting the proof (leading to a
change in the dependence on n and m, since in the proof we would insert the particle-
number projectionsΠ2k in different places).

Theorem 4.7 takes an approximate Hilbert pair as input. While, as discussed in
Section 3.4, we are not aware of a rigorous proof for the existence of approximate Hilbert
pair with a superpolynomial scaling between the filter error and the wavelet support,
the Selesnick construction does provide a family of wavelet pairs which numerically
have all the desirable properties. For this reason, we kept careful track of the constants
in our error bounds.

We note that in the proofs of both Proposition 4.6 and Theorem 4.7 we bound the
wavelet parameters CUV, CIR, and Cχ from Lemmas 3.3, 3.5 and 3.8 in terms of the
support N to arrive at simpler expressions. Sharper numerical bounds can be obtained
by using CUV, CIR, and Cχ directly (see Table 3.1 for the Selesnick construction). If one
tracks these constants throughout the proof, using Eq. (4.35) rather than Proposition 4.6,
one sees that C can be taken to be

C = 2(4CUV +Cχ)+20CIR. (4.38)

The precise numerical constants are not very important, but we can use this to illustrate
Theorem 4.7 numerically for two-point functions (using Table 3.1 to evaluate Eq. (4.38)),
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Figure 4.3: The error bound from Theorem 4.7 illustrated for a two-point function. It is obtained
by evaluating Eq. (4.38) using Table 3.1 for an approximate Hilbert pair with parame-
ters K = L. The smearing functions are taken to be translates of a function f with
∥ f ∥ = 1 and optimal trade-off between smoothness and support (that is, D =p

2 in
the formulation of Theorem 4.7).

see Fig. 4.3. We see that, even for relatively small circuit depth, our Theorem 4.7 com-
bined with numerical results of Table 3.1 yields a reasonably small upper bound on the
approximation error.

Proof of Theorem 4.7. (i) We first estimate the error in the correlation functions in terms
of the corresponding symbols for fixed j ∈ Z and L ′ ∈ {0, . . . ,L }. We define Q− := Q,
Q+ := I −Q, Q̃− := Q̃ j ,L , and Q̃+ := P j −Q̃ j ,L (!). For i = 1, . . . ,n,

∥Oi −Õi∥ = ∥aQ ( fi )−aQ̃ j ,L
(P j fi )∥ ≤ ∥(Q+−Q̃+) fi∥+∥(Q−−Q̃−) fi∥,

where we used the definition of the operators Õi described above, Eq. (4.1) and the fact
that Q̃ j ,L P j = P j Q̃ j ,L = Q̃ j ,L . By Proposition 4.6, we have the estimate

∥(Q−−Q̃−) fi∥ ≤ 3εL ′∥ fi∥+2( j−L ′)/27
√

N D( fi )B∥ fi∥+2− j 5N 2∥ f ′
i ∥.

Moreover, using Lemma 3.3,

∥(Q+−Q̃+) fi∥ ≤ ∥P j fi − fi∥+∥(Q−−Q̃−) fi∥ ≤ 2− j 4N 2∥ f ′
i ∥+∥(Q−−Q̃−) fi∥.

Thus we find that

∥Oi −Õi∥ ≤ 6εL ′+2( j−L ′)/214
√

N D( fi )B +2− j 14N 2∥ f ′
i ∥ (4.39)

using ∥ fi∥ ≤ 1. For i = n +1, . . . ,n +m, if we let Πn denote the projection onto the n-
particle subspace of the Fock space then by Eq. (4.4) we have the bound

∥(Oi −Õi
)
Π2k∥ ≤ 4(2k +2)max

δ=±
{∥QδAi Qδ−Q̃δAi Q̃δ∥,∥QδAi Q−δ−Q̃δAi Q̃−δ∥2}

≤ 4(2k +2)max
δ=±

{∥(Qδ−Q̃δ)Ai∥2 +∥Ai (Qδ−Q̃δ)∥2}.
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To estimate ∥(Qδ−Q̃δ)Ai∥2, let {en} be an orthonormal basis of L2(R)⊗C2, so

∥(Qδ−Q̃δ)Ai∥2
2 =

∑
n
∥(Qδ−Q̃δ)Ai en∥2

≤∑
n

((
3εL ′+2( j−L ′)/27

√
N D(Ai )B

)
∥Ai en∥+2− j 9N 2∥(Ai en)′∥

)2

using Proposition 4.6 and Lemma 3.3 (for δ=+) and the fact that, by our assumption
on the support of the kernel of Ai , the support of Ai en is contained in an interval of
size D(Ai ). Since Ai has a kernel hi in H 1(R)⊗M2(C), it holds that (Ai en)′ = (∂x Ai )en ,
where ∂x Ai denotes the integral operator with kernel ∂xhi . Thus, we conclude using
Cauchy-Schwarz

∥(Qδ−Q̃δ)Ai∥2 ≤ 3εL ′∥Ai∥2 +2( j−L ′)/27
√

N D(Ai )B∥Ai∥2 +2− j 9N 2∥∂x Ai∥2.

Since the adjoint of an integral operator has the transposed and conjugated kernel, we
obtain the same bound on ∥Ai (Qδ−Q̃δ)∥2 = ∥(Qδ−Q̃δ)A∗

i ∥2 but with ∥∂y Ai∥ in place
of ∥∂x Ai∥, and hence

∥(Oi −Õi
)
Π2k∥ ≤ 4(2k +2)

(
6εL ′+2( j−L ′)/27

√
N D(Ai )B +2− j 14N 2∥∇Ai∥2

)
(4.40)

using ∥Ai∥2 = ∥hi∥ ≤ 1, and where we have written ∇Ai for the operator which has the
gradient of hi as kernel. To estimate the error in the correlation functions, we use a
telescoping sum

∣∣G({Oi })−G̃ j ,L ({Oi })
∣∣≤ n+m∑

i=1
δi , (4.41)

where

δi = |〈Ω|O1 · · ·Oi−1(Oi −Õi )Õi+1 · · ·Õn+m |Ω〉|.

Now, ∥Oi∥ ≤ 1 for i = 1, . . . ,n by ∥ fi∥ ≤ 1. For i = 1, . . . ,m, we can replace On+i by On+iΠ2(m−i ),
and similarly for Õn+i . Since ∥On+iΠ2(m−i )∥ ≤ 8(m − i +1) by Eq. (4.3) and ∥An+i∥2 ≤ 1,
we find that, for i = 1, . . . ,n,

δi ≤ 8mm!
(
6εL ′+2( j−L ′)/214

√
N D( fi )B +2− j 14N 2∥ f ′

i ∥
)

by Eq. (4.39) and, for i = 1, . . . ,m,

δn+i ≤ 8mm!
(
6εL ′+2( j−L ′)/214

√
N D(Ai )B +2− j 14N 2∥∇Ai∥

)
by Eq. (4.40). If we plug these bounds into Eq. (4.41) we obtain∣∣G({Oi })−G̃ j ,L ({Oi })

∣∣
≤ 8mm!(n +m)

(
6εL ′+2( j−L ′)/214

√
N D( f , A)B +2− j 14N 2d( f , A)

)
,

(4.42)

where we used the definitions of D( f , A) and d( f , A). We have thus obtained a bound
on the approximation error which holds for all j ∈Z and L ′ = 0, . . . ,L .
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We now choose j and L ′ to obtain that vanishes as the number of layers L increases

and ε goes to zero. We first choose j = ⌈L ′
3 + 1

3 log2
d( f ,A)2

D( f ,A) ⌉ and obtain∣∣G({Oi })−G̃ j ,L ({Oi })
∣∣≤ 8mm!(n +m)

(
6εL ′

+14(
p

2N B +N 2)d( f , A)1/3D( f , A)1/32−L ′
3

)
= 8mm!(n +m)

(
6εL ′+C D1/32−L ′

3

)
,

using the definitions of C and D . We now choose L ′ = min{L ,⌈log2(C 3D/ε)⌉}, which is
always nonnegative, and obtain

∣∣G({Oi })−G̃ j ,L ({Oi })
∣∣≤ 8mm!(n +m)

(
6ε

(
log2

C 3D

ε
+1

)
+max{C D1/32−L

3 ,ε}

)
≤ 8mm!(n +m)

(
6ε log2

3C 3D

ε
+C D1/32−L

3

)
,

which proves the desired bound.
(ii) The proof for the circle goes along the same lines using the corresponding bound

from Proposition 4.6 and j = L . Instead of Eqs. (4.39) and (4.40), we find that, for
all L ′ ∈ {0, . . . ,L } and for i = 1, . . . ,n,

∥Oi −Õi∥ ≤ 4εL ′+2−L ′
18N 2∥ f ′

i ∥+2−L 4N 2∥ f ′
i ∥ ≤ 4εL ′+2−L ′

22N 2∥ f ′
i ∥,

while for i = n +1, . . .n +m,

∥(Oi −Õi
)
Π2k∥ ≤ 8(2k +2)

(
6εL ′+2−L ′

26N 2∥∇Ai∥
)

.

Thus we obtain∣∣∣Gper({Oi })−G̃per
j ,L ({Oi })

∣∣∣≤ 8mm!(n +m)
(
6εL ′+26N 2D2−L ′)

in place of Eq. (4.42). Finally, we choose L ′ = min{L ,⌈log2
26N 2D

ε
⌉}, which is always

nonnegative, and arrive at

∣∣Gper({Oi })−G̃per
L

({Oi })
∣∣≤ 8mm!(n +m)

(
6ε log2

59N 2D

ε
+26N 2D2−L

)
.

This is the desired bound. ■
To illustrate Theorem 4.7 and to show that the class of operators considered is an

interesting class, we now describe how to compute correlation functions involving
smeared stress-energy tensors. The stress-energy tensor is a fundamental object in
conformal field theory. Its mode decomposition form two copies of the Virasoro algebra,
encoding the conformal symmetry of the theory [FMS12]. It is convenient to choose a
different basis and write the Dirac action in the form

S(Ψ) = 1

2

∫
Ψ∗

(
∂ 0
0 ∂

)
Ψdxdt

where ∂= ∂x +∂t and ∂= ∂x −∂t . Then, formally, the holomorphic component T = Tzz

of the stress-energy tensor, is the normal ordering of Ψ∗
1∂Ψ1. Solutions of the Dirac
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equation in this basis are of the form χ(x, t ) =χ+(x+t )⊕χ−(x−t ). The unsmeared stress
energy tensor T (x) (which is only a formal expression in the algebraic formalism) is
given by T (x) = dΓQ (Dx) where

Dx

(
f1

f2

)
=

(
δx f ′

1
0

)
where δx is a δ-function centered at x. To smear this operator, consider two smearing
functions hx and ht . The ht should be thought of as a smearing in the time direction
and we use the Dirac equation to interpret this on our Hilbert space corresponding
to t = 0. Thus, we define

D(h)

(
f1

f2

)
=

(
hx(ht ⋆ f1)′

0

)
where ⋆ denotes convolution. We then define the smeared stress-energy tensor by
the normal-ordered second quantization: T (h) = dΓQ (D(h)). If hx and ht are com-
pactly supported functions in H 1(R), then the operator T (h) satisfies the conditions of
Theorem 4.7. In Fig. 4.2, (b) we show the numerical result of computing two-point func-
tions 〈T (h1)T (h2)〉 using our quantum circuits, where the hi are taken to be Gaussian
smearing functions. In agreement with our theorem, we find that the two-point func-
tions are approximated accurately for approximate Hilbert pairs of suitably good quality.
(Strictly speaking, the Gaussians need to be approximated by compactly supported
functions so that Theorem 4.7 applies.)

Discussion and open questions

One question which immediately arises is to extend the wavelet construction to gen-
eral free models (not just the critical model described in the current chapter), such as
massive fermions or bosonic models. In the next chapter we will see that this is straight-
forwardly possible for a general class of models in the bosonic case; in the fermionic
case it is less clear how to do so. One challenge for more general free fermionic models
is how to deal with ground states which are not at half-filling.

In future work we hope to construct entanglement renormalization circuits for more
general classes of conformal field theories. A challenging open problem is to extend the
relation between wavelet analysis and quantum circuits for conformal field theories
to interacting models. It is not at all clear that this is possible, but a natural starting
point could be Wess-Zumino-Witten theories, as many of these can be constructed
algebraically as symmetries on a finite number of free massless fermions [Fuc95]. The
algebraic construction of these theories is closely related to the representation theory of
loop groups [Was98], and one starting point could be to revisit this analysis of the loop
group in terms of wavelet theory. See [OS21a, OS21b] for a related perspective.

Another direction would be to investigate entanglement renormalization from the
perspective of vertex algebras. A recent attempt to discretize vertex algebras to a spin
chain model, with a view towards quantum computer simulation of conformal field
theories can be found in [ZW18]. For MPS tensor networks it has been shown that they
are sufficiently expressive to compute correlation functions for a very general class of
conformal field theories using vertex algebra techniques [KS16, KS17b].
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From a computational point of view it would be interesting to investigate whether
a wavelet circuit can serve as a starting point for perturbation theory, and get faster
convergence of MERA optimization algorithms.





CHAPTER 5

Bosonic entanglement renormalization

In Section 5.1 we will briefly review the bosonic formalism. We will then explain the
relation between entanglement renormalization and biorthogonal wavelet filters. In
particular, in Section 5.2 we derive a relation the filters have to satisfy to disentangle
the ground state of a given Hamiltonian and explain how this gives rise to a circuit. We
also explain how this extends to quantum field theory correlation functions. Finally, we
prove an approximation theorem for correlation functions for bosonic entanglement
renormalization in Section 5.3. In this chapter we will occasionally be slightly less formal
than in Chapter 4, on the one hand for the prosaic reason that [WW21c] was written
with a physics audience in mind, but also in order to make sure that the emphasis is
on concepts rather than formalism. With this motivation in mind we have also chosen
to work out in detail the error bounds for approximation of lattice observables, to
complement the fermionic setting, where we have focussed on the field theory.

5.1 Bosons and second quantization

In this section we will review second quantization for bosons and quasi-free (or Gaus-
sian) many-body states. Further details may be found for instance in [BR03] or [Pet90].
We describe ground states of quadratic bosonic Hamiltonians on a one-dimensional
lattice, and the vacuum state of a free bosonic field theory in this formalism. In the con-
text of quantum information theory the bosonic formalism is also known as continuous
variable quantum information.

5.1.1 The CCR algebra and Gaussian states
If H is a complex Hilbert space (which is the single particle space), let σ( f , g ) = Im〈 f , g 〉
be the canonical symplectic form on the corresponding real vector space. Let A∨(H )
be the algebra of canonical commutation relations or CCR algebra on H which is the
free unital C∗-algebra generated by elements W ( f ) for f ∈H subject to the relations

W ( f )W (g ) = e− i
2σ( f ,g )W (g )W ( f )

W ( f )∗ =W (− f ).

To obtain a Hilbert space realization, we consider the Fock state which is defined by

ω(W ( f )) = e− ∥ f ∥2

2
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and we consider the corresponding GNS representation. This defines a semi-group t 7→
e tB( f ) for t ∈ R≥0, and by Stone’s theorem there must exist a generator B( f ) such
that W (t f ) = e tB( f ). The operators B( f ) will be unbounded and allows us to define
the creation and annihilation operators

a( f ) = 1p
2

(B( f )+ i B(i f ))

a∗( f ) = 1p
2

(B( f )− i B(i f ))

These satisfy the more familiar form of the canonical commutation relations

[a( f ), a∗(g )] = 〈 f , g 〉.

With this interpretation, the GNS Hilbert space from the Fock state is in fact given by

F∨(H ) =
∞⊕

n=0
H ∨n .

with a( f ) and a∗( f ) acting as the usual annihilation and creation operators, acting
as a∗( f )v = f ∨ v . We let |Ω〉 denote the Fock vacuum vector 1 ∈H ∨0.

The most basic example is when H = C with the standard inner product. Inter-
preting this as a real vector space, this is isomorphic to R2 and σ is the standard sym-
plectic form. In this case, we may write q = B(1) and p = B(i ), and a = 1p

2
(q + i p)

and a∗ = 1p
2

(q−i p), corresponding to the usual harmonic oscillator, satisfying [q, p] = i

and the commutation relation [a, a∗] = 1.
An important class of states on this algebra are the gauge-invariant quasi-free (or

Gaussian) states. In continuous-variable terminology, the gauge-invariance condition
corresponds to zero displacement Gaussian states. These states have the property that
all correlation functions are determined by the two-point functions.

More precisely, let γ be a positive symmetric bilinear form defined on H as real
Hilbert space, which is moreover such that γ− iσ is positive semidefinite. Then we may
define a state ωγ which is such that

ωγ(W ( f )) = e− 1
2γ( f , f ).

Then

ωγ(B( f )B(g )) = γ( f , g )+ iσ( f , g ) (5.1)

and in particular

γ( f , g ) = 1

2
(ωγ(B( f )B(g ))+B(g )B( f )).

Both the bilinear form γ and the two-point functions completely determine the state.
We will typically identify γwith a real linear operator on H so the form is given by 〈 f ,γg 〉
and refer to it as the covariance matrix.
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5.1.2 Second-quantized operators
Next we recall the second quantization of operators on H . If S is a symplectic real linear
map on H (now interpreting H as a real vector space), i.e.

σ(S f ,Sg ) =σ( f , g )

for all f , g ∈H , then S gives rise to an automorphism of A∨(H ), known as a Bogoliubov
transformation or Gaussian map, through W ( f ) 7→W (S f ). Gaussian states transform
as ωγ 7→ωS∗γ, where S∗γ= SγST, under this transformation. We will in fact only need
the setting where we write H = H ⊕ i H , with H a real vector space, and where we
let S = A⊕ (AT)−1, which is symplectic for any invertible real linear map A : H → H .

5.1.3 Free bosons
We will discuss two relevant models. The first is that of translation invariant chains of
harmonic oscillators. We let H = ℓ2(Z), and we abbreviate qn = B(δn) and pn = B(iδn).
We then consider quadratic Hamiltonians of the form

H = 1

2

( ∑
n∈Z

p2
n + ∑

n,m∈Z
qnV [n −m]qm

)
, (5.2)

where V ∈ ℓ2(Z,R) is such that V̂ is a positive function (so the Hamiltonian is bounded
from below). The ground state of such a quadratic Hamiltonian is a quasi-free state and
can be written as ωγ with

γ=
(
γq 0
0 γp

)
where we decompose H = ℓ2(Z) = ℓ2(Z,R)⊕ iℓ2(Z,R), and γq and γp have matrix
entries γp

nm = ωγ(pn pm) and γ
q
nm = ωγ(qn qm). Upon taking a Fourier transform we

find that γ̂p and γ̂q are multiplication operators in the Fourier domain γp = m( 1
2 E)

and γq = m( 1
2E ) where E(θ) = V̂ (θ) is the dispersion relation of the Hamiltonian.

A paradigmatic example is the harmonic chain with mass M ,

H = 1

2

( ∑
n∈Z

p2
n +M 2q2

n + 1

4
(qn −qn+1)2

)
, (5.3)

which has dispersion relation E(θ) =
√

M 2 + sin2
(
θ
2

)
. In particular, the massless har-

monic chain is gapless and has dispersion relation E(θ) = |sin(θ2 )|. For details about
quadratic bosonic Hamiltonians and Gaussian states from the perspective of quantum
information and computation, see for instance, [AEPW02, PEDC05, WM07, KLM01].

The second relevant model is the continuum limit of the harmonic chain with
mass M , which yields a free bosonic field theory with mass M . We denote by H the
single-particle space, which is an space of functions on the real line. Let the dispersion
relation be given by E(ω) =

p
ω2 +M 2. In order for the theory to be well-defined we

need to impose some decay bounds on H . We may take H = H− 1
2 ,M (R), which is a

Sobolev space with inner product

〈 f , g 〉− 1
2 ,M := 〈 f̂ ,

1

E
ĝ 〉L2(R).
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Gaussian unitaries qn 7→ An,m qm and pn 7→ Bn,m pm with A−1 = BT

Hamiltonian H = 1
2

(∑
n∈Z p2

n +∑
n,m∈Z qnVn−m qm

)
with dispersion relation E(θ)

Wavelet filters (g ,h) pair of biorthogonal wavelet filters
Filter relation ĝw (θ) = E(θ)ĥw (k)
Application of wavelet transform A =Wg , B =Wh

Apply squeezing to normalize dispersion relation,
then apply the wavelet decomposition.

Continuum theory Free bosonic scalar field (for the harmonic chain)

Wavelet functions ψ̂g (ω) = |ω|
4 ψ̂

h(ω)

Table 5.1: Overview of the construction of MERA from wavelets for bosons as described in the
current chapter, to be compared with the corresponding results for fermionic systems
in Table 4.1.

As we will not prove any rigorous approximation bounds for field theory correlation
functions in this chapter we will further ignore technical subtleties relating to this
construction and choice of Hilbert spaces, such as those occurring for M = 0, and refer
to [GJ12] for technical details on the rigorous construction of bosonic quantum field
theories. Given a real valued f ∈ H we let Φ( f ) = B( f ) and Π( f ) = B(i f ) (which are
unbounded operators on the Fock space F∨(H )). Formally, we may write Φ(x) =Φ(δx)
andΠ(x) =Π(δx) where δx is a δ-function centered at x. The free boson with mass M ,
which is the continuum limit of a harmonic chain with mass M , has Hamiltonian

H = 1

2

∫
Π(x)2 +M 2Φ(x)2 + (

∂Φ(x)
)2dx.

which has E as its dispersion relation. The covariance matrix is given by γp = m( 1
2 E)

and γp = m( 1
2E ) where now E(ω) =

p
ω2 +M 2 (and note that these operators are now

well-defined by our choice of H ). We are particularly interested in the massless case,
which gives rise to a conformal field theory.

5.2 Entanglement renormalization circuits

In this section we investigate how second quantization of an an appropriate biorthog-
onal wavelet transform gives rise to entanglement renormalization circuits for free
bosons. A general discussion of entanglement renormalization for free bosons can be
found in [EV10a], which introduced the notion of free bosonic entanglement renormal-
ization and provides variational algorithms for finding such circuits. Table 5.1 provides
an overview of the bosonic wavelet MERA, also compare Table 4.1.

5.2.1 Entanglement renormalization for lattice bosons
As in the previous chapter, we define a Gaussian circuit to be the second quantization of
single-particle symplectic circuit. Here, as we consider systems in one spatial dimension,
a single-particle (symplectic) circuit, of depth N is a symplectic map S : ℓ2(Z) → ℓ2(Z)
which can be written as S = SN ◦ . . .S1 where each Si is such that acts strictly locally on
nearest neighbour sites, as in Section 3.5 In contrast to the fermionic case, the involved
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Hilbert spaces are infinite dimensional, even when restricting to a finite number of
sites and there is no exact mapping to a finite number of qubits such as the Jordan-
Wigner transformation. On the other hand, these circuits are such that they could be
implemented directly on a continuous-variable based quantum computer, for instance
using linear optics [KLM01].

Given a quadratic Hamiltonian as in Eq. (5.2) we would like to construct a Gaussian
circuit which maps the ground state of Eq. (5.2) to an unentangled state on the odd
sublattice and to the ground state of a new Hamiltonian on the even sublattice. If the
original Hamiltonian was at a critical point we expect this new Hamiltonian to be the
same Hamiltonian, otherwise it will be some new renormalized Hamiltonian.

If we were to perform renormalization in Fourier space this would be straightforward,
by just ‘squeezing’ each Fourier mode separately. However, again we are interested in a
procedure that is local in real space, and we will use a wavelet transform.

Consider a biorthogonal pair of wavelet filters (gs , gw ) and (hs ,hw ) as in Section 3.2,
with the corresponding discrete wavelet transforms Wg and Wh . Since the filters which
implement Wg and Wh are real, it is possible to consider the wavelet decomposition
maps as Wg ,Wh : ℓ2(Z,R) → ℓ2(Z,R), and we will do so throughout this chapter. Then,
as W −1

g = W T
h the map W = Wg ⊕Wh defines a symplectic map on ℓ2(Z) for any pair

of biorthogonal wavelet filters. Reinterpreting this map as mapping the scaling and
wavelet output to the even and odd sublattice (i.e. by considering the map W ′

g ⊕W ′
h

as in Section 3.5) we see that its second quantization will have the structure of a layer
of entanglement renormalization, and it has the right interpretation as it ‘splits’ the
high and low frequency modes. However, just as in the fermionic case, we need to
choose the filters such that W actually disentangles the state, and the wavelet output
is unentangled. We consider a general Hamiltonian as in Eq. (5.2) with dispersion
relation E . We normalize the dispersion relation such that E(π) = 1, which can be
implemented by the symplectic (squeezing) map (

p
E(π)I )⊕ (1/

p
E(π)I ) (note that this

map can be seen as a product of maps acting on single sites). Then the condition for the
wavelet output to be disentangled is that the Fourier transforms of the filters satisfy

ĝw (θ) = E(θ)ĥw (θ). (5.4)

Intuitively, what happens is that W separates the bosonic modes in high frequency and
low frequency modes, and Eq. (5.4) makes sure that the high frequency modes are not
entangled to the low frequency modes in the ground state. To derive Eq. (5.4) recall
that the ground state of the Hamiltonian in Eq. (5.2) is determined by its covariance
matrix γ= γq ⊕γp , which are such that

γq = m(
1

2E
)

γp = m(
1

2
E).

(5.5)

The covariance matrix of an unentangled (uncorrelated) product state (i.e. the Fock
vacuum) is 1

2 I . Under a map of the form A⊕ (
AT)−1 the covariance matrix transforms as

γq 7→ Aγq AT

γp 7→ (
AT)−1

γp A−1.



96 Chapter 5. Bosonic entanglement renormalization

Again, we normalize such that E(π) = 1, by the squeezing map (
p

E(π)I )⊕ (1/
p

E(π)I ).
Suppose we have biorthogonal filters (gs , gw ) and (hs ,hw ) satisfying Eq. (5.4), then W =
Wg ⊕Wh disentangles the ground state. To see that this is indeed true, we compute
the result of applying the wavelet decomposition map to the ground state covariance
matrix γ = γq ⊕γp given in terms of the dispersion relation by Eq. (5.5). For this, we
remark that from ĝw (θ) = E(θ)ĥw (θ) it follows that ĥs(θ) = E(θ+π)ĝs(θ). Then,

E(θ)ĥw (θ) f̂ (2θ) = ĝw (θ) f̂ (2θ),

E(θ)ĥs(θ) f (2θ) = ĝs(θ)E (1)(2k) f (2θ),

where E (1) is the renormalized dispersion relation on the scaling output defined By

E (1)(θ) = E
(
θ
2

)
E

(
θ
2 +π

)
, (5.6)

This shows that m(E)W T
h =W T

g ◦ (m(E (1))⊕ I ) and hence

Whγ
pW T

h =WhW T
g (γp,(1) ⊕ 1

2
I ) = γp,(1) ⊕ 1

2
I

γp,(1) = m(
1

2
E (1)).

Similarly, it holds that

Wgγ
qW T

g = γq,(1) ⊕ 1

2
I

γq,(1) = m(
1

2E (1)
).

We thus see that W has unentangled the high-frequency modes to a product state, and
the low frequency modes are renormalized to a Gaussian state with a new dispersion
relation E (1) given by Eq. (5.6).

We can now recursively apply the same construction to the scaling output, as in
Fig. 2.1, now with the renormalized dispersion relation. To introduce some notation, we
let E (l ) be the dispersion relation after l layers of renormalization, recursively defined
by (cf. Eq. (5.6), note that we first normalize the dispersion relation by a factor E (l )(π))

E (l+1)(θ) = E (l )(θ2 )

E (l )(π)

E (l )(θ2 +π)

E (l )(π)
. (5.7)

The normalization by E (l )(π) could also be absorbed in the filters, but we would like
the filters to be such that ĝs(0) = ĥs(0) = p

2, as is standard in the signal processing
literature and convenient for the analysis. Then at the l -th layer we need filters g (l ), h(l )

satisfying ĝ (l )
w (θ) = E (l )(θ)

E (l )(π)
ĥ(l )

w (θ) (cf. Eq. (5.4)), and we let

Rg (l ) =Wg (l )

√
E (l )(π),

Rh(l ) =Wh(l )
1√

E (l )(π)
.

(5.8)

Finally, we define the L -layer renormalization map as R(L ) = R(L )
g ⊕R(L )

h , where

R(L )
a = (Ra(L−1) ⊕ I⊕(L−1))◦ . . .◦ (Ra(1) ⊕ I )◦Ra(0)
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for a = g ,h. Then, R(L ) maps the state with dispersion relation ω to a product state
with covariance matrix 1

2 I on the L high frequency levels, and a state with dispersion
relation E (L ) on the remaining low frequency level. While we motivated the procedure
from the perspective of disentangling a given entangled state, the resulting transforma-
tion can also be used in the opposite direction, to prepare the ground state by applying
the circuit to a product state, thus realizing the state as a bosonic MERA state.

Finally we note that if the wavelet filters have compact support (i.e. they are FIR
filters) of size 2N , then by Section 3.5 W (reinterpreted as W ′) gives rise to a Gaussian
circuit of depth N that maps the low-frequency modes to the odd sublattice and the
high-frequency modes to the even sublattice as shown in Fig. 5.1. We conclude that this
is exactly the structure of an entanglement renormalization circuit. The converse to this
construction is also true: any Gaussian entanglement renormalization circuit which is
of the form A⊕ (AT)−1 gives rise to a biorthogonal pair of wavelets, as follows from the
discussion in Section 3.5.

In general, Eq. (5.4) can not be satisfied exactly for compactly supported wavelet
filters (in particular if E(θ) is not a ratio of trigonometric polynomials). In this case
we may still approximate this relation, just as for the approximate Hilbert pairs in the
fermionic case. Suppose we are given a family of filter pairs (g (l )

s , g (l )
w ) and (h(l )

s ,h(l )
w )

for l = 1, . . . ,L , where the l -th pair represents the l-th layer such that

∣∣ĝ (l )
w (θ)− E (l )(θ)

E (l )(π)
ĥ(l )

w (θ)
∣∣≤ ε ∀l = 1, . . . ,L , (5.9)

so they approximately reproduce the dispersion relation at each layer (up to normaliza-
tion). Then we define

Definition 5.1 (Approximate covariance matrix lattice boson). For any family of pairs of
biorthogonal wavelet filters (g (l )

s , g (l )
w ) and (h(l )

s ,h(l )
w ), for l = 1, . . . ,L , define the approxi-

mate covariance matrix γ(L )
MERA as the following operator on ℓ2(Z):

γ(L )
MERA = γq,(L )

MERA ⊕γ
p,(L )
MERA (5.10)

where

γ
q,(L )
MERA := 1

2
R(L ),T

h R(L )
h ,

γ
p,(L )
MERA := 1

2
R(L ),T

g R(L )
g ,

and R(L )
h and R(L )

g are defined as in Eq. (5.8).

This definition raises two interesting questions:

(i) Do there exist filters which approximately satisfy Eq. (5.9)? We have provided a
partial answer to this question by giving a general heuristic procedure for con-
structing such filters in Section 3.4.

(ii) Secondly, one can wonder whether a good approximation of the dispersion re-
lation at the level of a single layer as in Eq. (5.9) will indeed give rise to a good
approximation of the ground state. We answer this question in the affirmative in
Section 5.3, given certain conditions on the wavelet filters.
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W

squeezing

a1

a2

a3

Figure 5.1: Decomposition of a single layer of the entanglement renormalization map R(1) as a
circuit. The wavelet transform W = Wg ⊕Wh is decomposed as a circuit with two-

local gates ai , and follows the bottom layer which squeezes by E(π)
1
2 ⊕E(π)−

1
2 to

normalize the dispersion relation. This figure can be interpreted both as a linear
circuit implementing a symplectic transformation, and as its second quantization,
which is a bosonic Gaussian circuit.

Finally, we make the observation that if we are only interested in an approxima-
tion, and the theory flows to either a critical theory or a trivial theory under renor-
malization, then we only need a small number of ‘transition layers’ and can pick fixed
filters (g (l )

s , g (l )
w ) and (h(l )

s ,h(l )
w ) for sufficiently large l .

Entanglement renormalization for the harmonic chain

For the massless harmonic chain, Eq. (5.6) amounts to E(θ) 7→ |sin(θ4 )cos(θ4 )| = 1
2 sin(θ2 ),

so the dispersion relation is invariant under the renormalization step if we include the
subsequent normalization. Hence the state on the scaling output of the entanglement
renormalization will be the same after any number of layers. This implies that we can
keep iterating the same entanglement renormalization layer with identical filters at
each layer, giving a scale-invariant bosonic entanglement renormalization procedure
for the massless harmonic chain.

In the massive case, the mass renormalizes as

M 7→ 2
√

M 2 +M 4. (5.11)

This is a relevant perturbation to the massless chain [EV10a], and with increasing
number of layers the dispersion relation becomes flat; correspondingly we can let the
filters at the deeper layers approach orthogonal wavelet filters.

5.2.2 Entanglement renormalization for the free bosonic field

In Chapter 4 we saw that the continuous wavelet basis corresponding to an approximate
Hilbert pair had a natural interpretation as an entanglement renormalization scheme
for the Dirac fermionic field theory. We recall that the key point was that the scaling
functions are a natural UV cut-off that is compatible with the entanglement renormal-
ization circuits. In this section we will argue that there is a similar natural connection in
the bosonic case.
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Entanglement renormalization for the massless bosonic field

We first suppose that the biorthogonal wavelet filters are exactly related by the dispersion
relation of the massless harmonic chain, that is,

ĝw (θ) =
∣∣∣∣sin

(θ
2

)∣∣∣∣ĥw (θ). (5.12)

We claim that, in this case, the scaling functions defined in Eq. (3.16) are related as

φ̂g (ω) = |ω|
2|sin(ω2 )| φ̂

h(ω). (5.13)

To verify this claim, we note that as a consequence of Eq. (5.12) and the relation in
Eq. (3.15) we have ĥs(θ) = |cos(θ2 )|ĝs(θ). Next, from Eq. (3.16) it follows that the scaling
functions are related as φ̂h(ω) = γ(ω)φ̂g (ω), where

γ(ω) =
∞∏

n=1
|cos(2−n−1ω)|.

This expression implies that γ(ω) has to satisfy γ(ω) = |cos(ω4 )|γ(ω2 ), and we can easily

verify that γ(ω) = 2|sin(ω2 )|
|ω| , which has the right normalization γ(0) = 1. This proves

Eq. (5.13), which in turn, using Eqs. (3.17) and (5.12), also implies that

ψ̂g (ω) = 1p
2

ĝw

(ω
2

)
φ̂g

(ω
2

)
= 1p

2

∣∣∣sin
(ω

4

)∣∣∣ĥw

(ω
2

) |ω|
4|sin(ω4 )| φ̂

h
(ω

2

)
= |ω|

4
ψ̂h(ω). (5.14)

Equation (5.14) shows that the wavelet functions are related precisely by the linear
dispersion relation of the massless free boson. This shows that if we take a discrete
(biorthogonal) wavelet transform, with dispersion relation for a bosonic lattice model
(in this case the massless harmonic chain), then the associated continuous wavelet
transform is closely related to the continuum limit of the lattice model (in this case the
massless free boson).

We now assume that we have filters which (approximately) satisfy Eq. (5.12). We
would like to compute correlation functions of smeared fields Φ( f ) and Π( f ) for real
valued single particle functions f . Analogous to the fermionic case we will do the
following, in order to compute some correlation function:

(i) We discretize the operators using the scaling functions at some appropriate scale,
or equivalently, we embed the discrete theory into the continuous one using the
scaling functions.

(ii) We compute the correlation function of the discretized operators using the state
prepared by the (discrete) entanglement renormalization circuit.
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Let us denote by αh
j ,αg

j : L2(R,R) → ℓ2(Z,R) the discretization maps (αh
j f )[k] = 〈ψh

j ,k , f 〉
and (αg

j f )[k] = 〈ψg
j ,k , f 〉. Then in the above procedure the discretization procedure is

given by
Φ( f ) 7→∑

n
αh

j ( f )[n]qn =∑
n
〈φh

l ,n , f 〉qn ,

Π( f ) 7→∑
n
α

g
j ( f )[n]pn =∑

n
〈φg

l ,n , f 〉pn .
(5.15)

(the inner product here is the usual L2(R) inner product). Using L layers of entangle-
ment renormalization gives the following approximate covariance:

Definition 5.2 (Approximate covariance massless bosonic field). For any pair of filters
(gs , gw ) and (hs ,hw ) which approximately satisfy Eq. (5.12), j ∈Z, and L ∈N, define the
approximate covariance matrix by γ(L )

MERA as the following bilinear form:

γ
( j ,L )
MERA = γq,( j ,L )

MERA ⊕γp,( j ,L )
MERA (5.16)

where

γ
q,( j ,L )
MERA ( f1, f2) := 1

2
〈R(L )

h αh
j f1,R(L )

h αh
j f2〉,

γ
p,( j ,L )
MERA ( f1, f2) := 1

2
〈R(L )

g α
g
j f1,R(L )

g α
g
j f2〉

for any real-valued functions f1, f2.

To confirm that this a reasonable approximation, consider the case where we have
smeared fieldsΦ( f ) with f of the form f =∑

n s[n]φg
l ,n andΠ( f̃ ) with f̃ of the form

f̃ =∑
n

s̃[n]φh
l ,n ,

and with Eq. (5.12) satisfied exactly. Because the wavelet functions are precisely related
by the correct dispersion relation, in order to compute correlation functions, it suffices
to express the functions f and f̃ in the wavelet bases {ψh

l ′,n′} and {ψg
l ′,n′}. To see this

it suffices to look at two-point functions, and suppose that we want to compute the
correlation 〈Π( f1)Π( f2)〉, where fi =∑

n si [n]φh
l ,n . We rewrite fi =∑

l ,n wi [l ,n]ψh
l ,n and

we note that m( 1
2E )ψh =ψg and hence 2l m( 1

2E )ψh
l ,n =ψg

l ,n , so∑
l ,n

2−l w1[l ,n]w2[l ,n] = 〈∑
l ,n

w1[l ,n]ψh
l ,n ,

∑
l ′,n′

2−l ′w2[l ′,n′]ψg
l ′,n′〉

= 〈∑
l ,n

w1[l ,n]ψh
l ,n ,

∑
l ′,n′

w2[l ′,n′]m(
1

2E
)ψh

l ′,n′〉

= 〈 f1,m(
1

2E
) f2〉

which is indeed the correct correlation function. A similar computation holds for
correlation functions involving the field Φ. By Eq. (3.18) the wi [l ,n] are computed
from si [n] precisely by applying the discrete wavelet transform, and the factor of 2−l

derives from our normalization of the dispersion relation (the ‘squeezing layer’ in
Fig. 5.1). In other words, the correlation functions will be given precisely by applying
the entanglement renormalization circuit to the operators

∑
n s[n]qn and

∑
n s̃[n]pn .

In this chapter we do not prove that Eq. (5.16) provides an accurate approximation,
but it should be relatively straightforward to adapt the arguments in Theorem 4.7 and
Theorem 5.3.
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Scaling dimensions

As an application, we can consider the entanglement renormalization superoperator,
which coarse-grains operators by conjugating with a single layer of the renormalization
circuit. Recall that for critical lattice models, entanglement renormalization superoper-
ator has been proposed to approximately encode the conformal data of the continuum
limit of the theory [EV13] and Fig. 2.3. We will now verify that, similar to the fermionic
case, the entanglement renormalization superoperator reproduces exactly the scaling
dimensions of the Φ and Π fields in the massless case, as well as the scaling dimension
of a number of descendants (equal to the number of vanishing moments of the wavelet
filters), similar as for the fermionic wavelet MERA as we saw in Chapter 4. In this case
we consider the operatorsΦMERA(x) =∑

nφ
h(x −n)qn andΠMERA(x) =∑

nφ
g (x −n)pn

for any x ∈ R, which are the discretizations of the operators Φ(x) and Π(x). It can be
easily seen that the entanglement renormalization superoperator maps these operators

ΦMERA(x) 7→∑
n,l

p
2hs[l ]φh(x −2n − l )qn

=∑
n
φh

(x

2
−n

)
qn =ΦMERA

(x

2

)
where we use that for the scaling function Eq. (3.16) it holds that [Mal08]

1p
2
φh(

x

2
) =∑

n
hs[n]φh(x −n). (5.17)

Similarly one finds ΠMERA(x) 7→ 1
2ΠMERA( x

2 ). This corresponds, as expected, to scaling
dimensions 0 and 1. As in Section 4.2.5 if the wavelets have K vanishing moments, the
superoperator reproduces K descendents exactly.

The massive bosonic field

Since in the bosonic case the construction is not limited to a critical model, we may
approach the free massive boson with mass M in a similar manner. In this case, we
suppose we have two families of filters (g (l )

s , g (l )
w ) and (h(l )

s ,h(l )
w ), now with l ∈ Z and

such that
√

(M (l ))2 +1 ĝ (l )
w (θ) ≈

√
(M (l ))2 + sin2(θ2 ) ĥ(l )

w (θ) where M (0) = m and M (l ) is
the mass after l layers of renormalization, as defined by Eq. (5.11). If these filters are
chosen in a way that they converge to a fixed orthonormal filter as l goes to infinity, and
to a fixed pair of biorthogonal filters as in the massless case for l to −∞, it makes sense
to define a new type of scaling and wavelet functions which are different at each level l
as a generalization of of the scaling and wavelet functions:

φ̂a
l (ω) =

∞∏
j=1

â(l+ j )(2− jω)p
2

ψ̂a
l (ω) = 1p

2
â(l+1)

(ω
2

)
φ̂a

l+1

(ω
2

) (5.18)

for a = g ,h as a generalization of of the scaling and wavelet functions defined in

Eq. (3.16) and Eq. (3.17). Again, the wavelet functions ψa
l ,n(x) = 2− l

2ψl (2−l x −n) for
filters a = g ,h form a dual basis (provided they exist). The behaviour for l →±∞ is
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consistent with the fact that the mass term is a relevant perturbation of the conformal
field theory and the theory flows from a critical massless boson to a trivial theory. As
before, we can now discretize the theory using the scaling functions at some given scale
and use the discrete circuit to compute correlation functions.

5.2.3 Numerical examples
In Section 3.4 we have provided a construction of filters approximately satisfying Eq. (5.4)
for the massless harmonic chain. This construction depends on two integer parame-
ters K and L, where K controls the number of vanishing moments of the filters and L
controls the accuracy of the approximation of the dispersion relation. This corresponds
to a circuit depth of N = K +2L for a single layer. In Fig. 5.2 we illustrate our approxima-
tion result by numerically computing correlation functions of the massless harmonic
chain using these filters [WW21b] (using that we can easily simulate the circuits in the
single-particle picture).

5.3 Approximation of correlation functions

In this section we formulate and prove a general approximation result for translation-
invariant quadratic Hamiltonians of the form in Eq. (5.2). Our proof strategy is inspired
by the techniques in [HSW+18], with the technical complications that the wavelet
transforms are not unitary and are allowed to vary layer by layer.

Recall that if gs ,hs ∈ ℓ2(Z,R) are a pair of scaling filters that satisfy the perfect
reconstruction condition in Eq. (3.14), then we can define corresponding wavelet fil-
ters gw ,hw ∈ ℓ2(Z) and single-layer decomposition maps Wg ,Wh : ℓ2(Z,R) → ℓ2(Z,R)
such that W T

h Wg =W T
g Wh = I .

Now suppose that we are given a sequence of filters g (l )
s ,h(l )

s as above. Here, l ∈N
for convenience of notation. In practice, one is usually interested in a finite number of
layers; in this case we may choose the sequence of filters to eventually become constant.
For a = g ,h and L ∈N, we define the L -layer decomposition maps

W (L )
a : ℓ2(Z,R) → ℓ2(Z,R)⊗(1+L ),

W (L )
a := (

Wa(L−1) ⊕ I⊕(L−1))◦ . . .◦ (
Wa(1) ⊕ I

)◦Wa(0) ,

and write W (L ) =W (L )
h ⊕W (L )

g . We assume that the family is stable in the sense that the
corresponding (generalized) scaling functions φa

l defined in Eq. (5.18) exist, are square
integrable, and bounded in L∞-norm. We can also define the wavelet decomposition
maps starting at layer L ′ ≥ 0, that is,

W (L ′,L )
a : ℓ2(Z,R) → ℓ2(Z,R)⊗(1+L−L ′),

W (L ′,L )
a := (

Wa(L ) ⊕ I⊕(L−L ′−1))◦ . . .◦ (
Wa(L ′+1) ⊕ I

)◦Wa(L ′) .

For L ′ = 0 we recover W (L )
a as defined earlier. We assume that the wavelet decompo-

sition maps are bounded. Finally, we shall assume that the filters have finite support.
Then the same is true for the scaling functions. In the case that the filters are indepen-
dent of l , the above notion of stability is equivalent to the familiar notion from wavelet
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Figure 5.2: Approximation of correlation functions for the massless harmonic chain by the
MERA. We used the filter construction of Section 3.4 and L = 20 layers of renor-
malization. The former depends on parameters K and L which are explained in the
main text. We show the correlation functions 〈p0pn〉 and 〈p0pn〉, as well as their
approximation errors ∆p

0n := |〈p0pn〉exact − 〈p0pn〉MERA| and ∆̃
q
0n := |〈q0qn〉exact −

〈q0qn〉MERA|.
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theory. For finitely supported filters there exists an easy criterion to determine this,
see [CDF92].

Recall that for the entanglement renormalization circuit we also insert a squeezing
operation between each wavelet decomposition layer, defining Ra(l ) , R(L )

a and RL

for a = g ,h as in Eq. (5.8). Our approximation to the covariance matrix is then given by

γ
q,(L )
MERA = 1

2
R(L ),T

h R(L )
h ,

γ
p,(L )
MERA = 1

2
R(L ),T

g R(L )
g .

(5.19)

Suppose the filter pairs g (l ), h(l ) form an ε-approximate E (l )-dispersion pair at each
level, that is

|ĝ (l )
w (θ)− E (l )(θ)

E (l )(π)
ĥ(l )

w (θ)| = |ĝ (l )
w (θ)− ˆ̃g (l )

w (θ)| ≤ ε, (5.20)

where we have introduced the filter

ˆ̃g (l )
w (θ) := E (l )(θ)

E (l )(π)
ĥ(l )

w (θ). (5.21)

This filter, together with ˆ̃h(l )
w (θ) := E (l )(π)/E (l )(θ)× ĝ (l )

w (θ), forms a pair of biorthogonal
wavelet filters, with corresponding scaling filters g̃ (l )

s , h̃(l )
s that satisfy Eq. (3.14). However,

these filters are almost never finitely supported. By construction, the pair g̃ (l ),h(l )

satisfies the dispersion relation Eq. (5.4) exactly.
We now state an approximation theorem for general dispersion relations, which

is the main result of this chapter. We measure the approximation error in terms of
quantities

∆
p
nm := |γp

nm − (γp,(L )
MERA)nm |,

∆
q
nm := |γq

nm − (γq,(L )
MERA)nm |.

(5.22)

If E(0) = 0, then it is also interesting we have to regulate the covariance matrix γq .
Since E(0) = 0, the value of γq

nm is not unambiguously defined, and if one computes
〈 f1,γ f2〉 one has to restrict at least one of the test functions to a subspace of functions
fi for which f̂i (0) = 0 (so fi sums to zero). With this in mind we define

γ̃
q
nm := γq

nm −γq
nn (5.23)

which equals γ̃q
nm = 〈δn ,γq (δm −δn)〉 and consider

∆̃
q
nm := |γ̃q

nm − (γ̃q,(L )
MERA)nm |. (5.24)

Theorem 5.3. Consider a translation-invariant Hamiltonian of the form of Eq. (5.2), with
dispersion relation E(θ) such that E (l )(π) ≤ 1 and E (l )(θ) ≤Ω for l = 1, . . . ,L for Ω ≥ 1.
Suppose we have a sequence of filters such that Eq. (5.20) holds for ε ≤ 1, with finite
support of size at most N and scaling functions that are uniformly bounded by ∥φa

l ∥∞ ≤ B
for a = g ,h and l = 1, . . . ,L . Assume moreover that the wavelet decomposition maps are

uniformly bounded by ∥W (l ′,l )
a ∥ ≤ κ for all a = g ,h, g̃ and 1 ≤ l ≤ l ′ ≤ L , where D ≥ 1.
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Then the approximation error of the covariance matrices can be bounded as follows:

∆
p
nm ≤ κ2

(
C 2−L

2 +3εκ log2
C

ε

)
,

∆
q
nm ≤ 2κ2

(
C 2−L

2 +3εκ log2
C

ε

)
∥γqδ0∥,

∆̃
q
nm ≤ 2κ2

(
C 2−L

2 +3εκ log2
C

ε

)
∥γq (δn −δm)∥,

where C := 4B 2N
3
2Ω.

To interpret the error bounds, we note that

∥γqδ0∥2 =
∫ π

−π
dθ

E(θ)2
, (5.25)

∥γq (δn −δm)∥2 =
∫ π

−π

sin2( 1
2 (n −m)k)

E(θ)2
dθ. (5.26)

We will first bound the error that arises from only taking a finite number of layers.
Let p(L )

s denote the projection onto the first tensor factor of ℓ2(Z,R)⊗(L+1) and p(L )
w =

I−p(L )
s the projection onto the remaining tensor factors. Thus, p(L )

s W (L )
a f is the scaling

component of the decomposed signal and p(L )
w W (L )

a its wavelet component. The fol-
lowing lemma is a straightforward adaptation of Lemma 3.5 and Lemma 1 in [HSW+18],
which confirms the intuition that for finitely supported signals, lower-frequency wavelet
modes contribute less.

Lemma 5.4. Suppose we have sequence of filters as above, with finite support of size at
most N and scaling functions that are uniformly bounded by ∥φa

l ∥∞ ≤ B for a = g ,h and
l = 1, . . . ,L . Then,

∥p(L )
s W (L )

a δn∥ ≤ 2−L−1
2 B 2N

3
2 (5.27)

where δn is the unit signal concentrated at n.

Proof. Let b denote the filters dual to a (i.e., b = h if a = g , and vice versa). We note
that p(L )

s W (L )
a δn[m] = 〈φb

0,n ,φa
L ,m〉, where φa

L ,m(x) := 2−L /2φa
L

(2−L x −m) are the
translated and shifted scaling functions. This follows from the fact that

〈φb
0,n ,φa

0,m〉 = δnm

and by applying inductively the fact that by definition of the scaling functions φa
l+1,m =∑

n a(l+1)
s (2m −n)φa

l ,n . Now we can proceed as in the proof of Lemma 3.5 and estimate

∥p(L )
s W (L )

a δn∥2 =∑
m

∣∣∫ ∞

−∞
dxφb

0 (x −n)2−L
2 φa

L (2−L x −m)
∣∣2

=∑
m

∣∣∫ x0+n+N−1

x0+n
dxφb

0 (x −n)2−L
2 φa

L (2−L x −m)
∣∣2

≤∑
m
∥φb

0∥2
∫ x0+n+N−1

x0+n
dx |2−L

2 φa
L (2−L x −m)|2

= 2−L ∥φb
0∥2

∑
m

∫ x0+n+N−1

x0+n
dx |φa

L (2−L x −m)|2

≤ 2−L+1N 2∥φb
0∥2∥φa

L ∥2
∞,
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where in the second line we use that φb is compactly supported on [x0, x0 + N − 1]
for some x0, in the third inequality we use Cauchy-Schwarz, and for the final inequal-
ity we use that at most 2N terms in the sum have nonzero overlap. Finally we may
estimate ∥φb

0∥2 ≤ N B 2 and ∥φa
L
∥2∞ ≤ B 2, which yields Eq. (5.27). ■

The following lemma bounds the approximation error for L layers as a function of an
intermediate layer L ′ that will later be chosen appropriately.

Lemma 5.5. Suppose we have a sequence of filters such that Eq. (5.20) holds, with finite
support of size at most N and scaling functions that are uniformly bounded by ∥φa

l ∥∞ ≤ B
for a = g ,h and l = 1, . . . ,L . Assume moreover that the wavelet decomposition maps are

uniformly bounded by ∥W (l ′,l )
a ∥ ≤ κ for all a = g ,h, g̃ and 1 ≤ l ≤ l ′ ≤ L , where D ≥ 1.

Finally, let L ′ ∈ {1, . . . ,L }. Then we have the following bounds:

(i) For all f ∈ ℓ2(Z,R) and n ∈N,

|〈δn |γq −γq,(L )
MERA| f 〉| ≤ 2κ2

(
εL ′κ+2−L ′−1

2 B 2N
3
2 max{2∥γp,(L )∥,1}

)
∥γq f ∥.

(5.28)

(ii) Assuming E (l )(π) ≤ 1 for all l = 0, . . . ,L −1, we have the following bound for all
n ∈N:

∥(γp −γp,(L )
MERA)δn∥ ≤ κ2

(
εL ′κ+2−L ′−1

2 B 2N
3
2 max{2∥γp,(L ′)∥,1}

)
. (5.29)

Here, we recall that γq (θ) = m( 1
2E ) and γp,(l )(θ) = m( 1

2 E (l )).

To interpret these bounds, we note that ∥γp,(L )∥ = maxk
E (L )(θ)

2 , which is typically O (1).
As a remark, for the critical harmonic chain we that E (l )(π) = 1

2 , in which case it is not

hard to see that the scaling of Eq. (5.29) can be improved to 2− 3
2 L ′

.

Proof of Lemma 5.5. (i) To prove Eq. (5.28), we first observe that by definition of g̃ it
holds that

Rh(l ) E (l )(θ) = (E (l+1) ⊕ I )Rg̃ (l )

and hence

R(L )
h γp = (γp,(L ) ⊕ 1

2
I )R(L )

g̃ , (5.30)

where γ̂p,(L )(θ) = 1
2 E (L )(θ) denotes the covariance matrix defined using the renormal-

ized dispersion relation. We use this, together with the fact that 4γpγq = I on the domain
of γq to write

γq −γq,(L )
MERA f = (I −γq,(L )

MERA4γp )γq f

= (W (L ′),T
h W (L ′)

g −R(L ),T
h R(L )

h 2γp )γq f

= (W (L ′),T
h W (L ′)

g −R(L ),T
h (2γp,(L ) ⊕ I )R(L )

g̃ )γq f

= (W (L ′),T
h W (L ′)

g −W (L ),T
h (2γp,(L ) ⊕ I )W (L )

g̃ )γq f .
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for f in the domain of γq . Thus,

|〈δn |γq −γq,(L )
MERA| f 〉| ≤ |〈δn |W (L ′),T

h p(L ′)
s W (L ′)

g |γq f 〉|
+ |〈δn |W (L ′),T

h p(L ′)
w

(
W (L ′)

g −W (L ′)
g̃

)|γq f 〉|
+ |〈δn |(W (L ),T

h (2γp,(L ) ⊕ I )W (L )
g̃ −W (L ′),T

h p(L ′)
w W (L ′)

g̃ )|γq f 〉|.
(5.31)

We will bound the three terms separately, starting with the second term. By our as-
sumption on the filters (Eq. (5.20)), ∥Wg (l ) −Wg̃ (l )∥ ≤ 2ε. Hence, using a telescoping
sum,

∥W (L ′)
g −W (L ′)

g̃ ∥ ≤
L ′−1∑

l=0
∥W (l+1,L ′)

g ∥∥Wg (l ) −Wg̃ (l )∥∥W (l )
g̃ ∥ ≤ 2εL ′κ2, (5.32)

so we obtain the estimate

|〈δn |W (L ′),T
h p(L ′)

w

(
W (L ′)

g −W (L ′)
g̃

)|γq f 〉| ≤ ∥W (L ′)
h ∥∥W (L ′)

g −W (L ′)
g̃ ∥∥γq f ∥

≤ 2εL ′κ3∥γq f ∥.

The first term in Eq. (5.31) can be bounded directly using Lemma 5.4,

|〈δn |W (L ′),T
h p(L ′)

s W (L ′)
g |γq f 〉| ≤ ∥p(L ′)

s W (L ′)
h δn∥∥W (L ′)

g γq f ∥ ≤ 2−L ′−1
2 B 2N

3
2κ∥γq f ∥,

and the third term may be similarly bounded as

|〈δn |(W (L ),T
h (2γp,(L ) ⊕ I )W (L )

g̃ −W (L ′),T
h p(L ′)

w W (L ′)
g̃ )|γq f 〉|

= |〈δn |(W (L ′),T
h (W (L ′,L ),T

h ⊕ I⊕L ′
)(2γp,(L ) ⊕ I⊕(L−L ′) ⊕0⊕L ′

)W (L )
g̃ |γq f 〉|

= |〈δn |(W (L ′),T
h p(L ′)

s (W (L ′,L ),T
h ⊕0⊕L ′

)(2γp,(L ) ⊕ I⊕L )W (L )
g̃ |γq f 〉|

≤ ∥p(L ′)
s W (L ′)

h δn∥∥W (L ′,L )
h ∥∥2γp,(L ) ⊕ I⊕L ∥∥W (L )

g̃ ∥∥γq f ∥
≤ 2−L ′−1

2 B 2N
3
2κ2 max{2∥γp,(L )∥,1}∥γq f ∥.

By combining the three estimates we obtain Eq. (5.28).
(ii) To prove Eq. (5.29) we use Eqs. (5.19) and (5.30) to write

γp −γp,(L )
MERA = γp − 1

2
R(L ),T

g R(L )
g = γp R(L ′),T

h R(L ′)
g − 1

2
R(L ),T

g R(L )
g

= R(L ′),T
g̃ (γp,(L ′) ⊕ 1

2
I )R(L ′)

g − 1

2
R(L ),T

g R(L )
g .

Therefore,

∥(γp −γp,(L )
MERA)δn∥ ≤ ∥R(L ′),T

g̃ γp,(L ′)p(L ′)
s R(L ′)

g δn∥

+ 1

2
∥(R(L ′),T

g̃ −R(L ′),T
g )p(L ′)

w R(L ′)
g δn∥

+ 1

2
∥(R(L ′),T

g p(L ′)
w R(L ′)

g −R(L ),T
g R(L )

g )δn∥
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As before we bound the three terms separately, starting with the second term. Since for

each l we have E (l )(π) ≤ 1, we may estimate ∥R(L ′)
g ∥ ≤ ∥W (L ′)

g ∥ ≤ D and, by a telescoping

sum as in Eq. (5.32), ∥R(L ′)
g̃ −R(L ′)

g ∥ ≤ 2εL ′κ2. Thus:

1

2
∥(R(L ′),T

g̃ −R(L ′),T
g )p(L ′)

w R(L ′)
g δn∥ ≤ 1

2
∥(R(L ′),T

g̃ −R(L ′),T
g )∥∥R(L ′)

g ∥ ≤ εL ′κ3.

For the remaining terms, we note that E (l )(π) ≤ 1 also implies that ∥p(L ′)
s R(L ′)

g δn∥ ≤
∥p(L ′)

s W (L ′)
g δn∥ ≤ 2−L ′−1

2 B 2N
3
2 using Lemma 5.4. We can thus bound the first term by

∥R(L ′),T
g̃ γp,(L ′)p(L ′)

s R(L ′)
g δn∥ ≤ ∥R(L ′),T

g̃ ∥∥γp,(L ′)∥∥p(L ′)
s R(L ′)

g δn∥
≤ 2−L ′−1

2 B 2N
3
2κ∥γp,(L ′)∥,

and similarly the third term, where we find

1

2
∥(R(L ),T

g R(L )
g −R(L ′),T

g p(L ′)
w R(L ′)

g )δn∥ = 1

2
∥R(L ),T

g R(L ′,L )
g p(L ′)

s R(L ′)
g δn∥

≤ 1

2
∥R(L ),T

g ∥∥R(L ′,L )
g ∥∥p(L ′)

s R(L ′)
g δn∥

≤ 1

2
2−L ′−1

2 B 2N
3
2κ2.

By combining the three estimates we obtain Eq. (5.29). ■
We finally prove our general approximation theorem.

Proof of Theorem 5.3. Choosing L ′ = min{⌊2log2
C
ε
⌋,L }, we see that

εL ′κ+2−L ′−1
2 B 2N

3
2 max{2∥γp,(L ′)∥,1} ≤ εL ′κ+2−L ′−1

2 B 2N
3
2Ω

≤ 2εκ log2
C

ε
+max{C 2−L

2 ,ε}

≤ 3εκ log2
C

ε
+C 2−L

2 ,

where we have used that C
ε
≥ 2. Now the result follows from Eq. (5.29) and Eq. (5.28)

in Lemma 5.5, choosing f = δm or f = δm −δn in the latter (and using that ∥γqδm∥ =
∥γqδ0∥). ■

Finally, let us specialize to the case of the harmonic chain with mass M (as in the
informal statement of our result in Section 2.2.1. The numerical values from Theorem 5.3
using the filter construction in Section 3.4 are illustrated in Fig. 5.3. The correlation
functions are related to the covariance matrices as follows:

〈pi p j 〉 = γp
i j ,

〈qi q j 〉 = γq
i j ,

the latter assuming m > 0. If m = 0 then the latter has a divergence, so we instead define

〈qi q j 〉 := γq
i j −γ

q
i i = γ̃

q
i j , (5.33)
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Figure 5.3: The error bound from Theorem 5.3 (Theorem 4.7) illustrated for a two-point function
〈pi p j 〉. It is obtained by evaluating the bound in Theorem 5.3 using Table 3.2 for an
aappropriate biorthogonal filter pair with parameters K = L. This is only an upper
bound to the error, see Fig. 5.2 for an example of the actual approximation error.

where γ̃q is the regulated covariance matrix defined in Eq. (5.23). Accordingly, we
would like to bound the quantities ∆p

i j as well as ∆q
i j (in the massive case) or ∆̃q

i j (in
the massless case), which are defined in Eqs. (5.22) and (5.24). This is exactly achieved
by Theorem 5.3. We first normalize the dispersion relation of the harmonic chain E(θ)
by a factor

p
M 2 +1 to ωnorm, so that ωnorm(π) = 1. There ω(l )

norm(θ) ≤ 1 and we may
apply Theorem 5.3 with Ω = 1. We write γ for the original covariance matrix of the
harmonic chain and γnorm for the covariance matrix where the dispersion relation has
been normalized, that is, γp

norm = 1p
M 2+1

γp and γq
norm =

p
M 2 +1γq . Then,

1

M 2 +1
∥γq

normδ0∥2 = ∥γqδ0∥2 =
∫ π

−π
dθ

E(θ)2
=

∫ π

−π
dθ

M 2 + sin2
(
θ
2

) ≤ 2π

M 2
,

so applying Theorem 5.3 using the covariance matrix γnorm and restoring the fac-
tor

p
M 2 +1 yields the results for ∆p

i j and ∆q
i j . In the massless case we can use Eq. (5.26)

and estimate

∥γq (δi −δ j )∥2 =
∫ π

−π

sin2( |i− j |θ
2 )

sin2(θ2 )
dθ

≤ 2

(∫ 2
|i− j |

0

π2|i − j |2
4

dθ+
∫ π

2
|i− j |

π2

θ2
dθ

)
≤ 2π2|i − j |,

since |sin(θ2 )| ≥ |θ|
π

and |sin( nθ
2 )| ≤ min{ n|θ|

2 ,1} on the interval (−π,π), yielding the esti-

mate for ∆̃q
i j .
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Discussion and open questions

In this chapter we have explained how Gaussian entanglement renormalization circuits
can be naturally contructed from the second quantizations of biorthogonal wavelet
transforms. Moreover, as observed in Section 5.2.1 any Gaussian entanglement renor-
malization circuit of the form A⊕ (AT)−1 (so it does not mix the p and q modes) gives
rise to a biorthogonal wavelet filter. There are a certain technical aspects that would be
interesting to study in more detail. For example, if the system is not scale invariant then
our notion of wavelet functions goes beyond the standard framework of wavelet theory,
and one would have to identify suitable conditions on the filters that ensure that the
wavelet and scaling functions as defined in Eq. (5.18) are well-behaved functions and
that standard wavelet theory generalizes. Relatedly, one could extend the analysis of
Chapter 4 to prove approximation bounds for correlation functions of smeared bosonic
field.

The idea that wavelet theory should be a natural tool to discretize a field theory in
order to perform renormalization has a long history [Bat99]. This approach differs from
other works such as [BP13, BRSS15, SMMT20] which investigate the use of wavelets to
discretize quantum field theories, in that we use biorthogonal wavelets, which moreover
are specifically designed to target the Hamiltonian of the field theory. There is also a dif-
ferent approach to entanglement renormalization for quantum field theories, known as
cMERA [HOVV13, FRV17]. This takes a different perspective by formulating a variational
class of states directly in the continuum, rather than considering a discretization. In
both cases, the correlation functions of the theory are accurately reproduced up to some
cut-off. The precise relation between MERA and cMERA is not very well understood, for
instance it is not clear that discretizing a cMERA state could yield a MERA. Intriguingly,
cMERA is formally strongly reminiscent of the continuous wavelet transform (CWT).
The continuous wavelet transform [Mal08] can be defined for a much broader class
of wavelet functions ψ, and if ψ is a biorthogonal wavelet the CWT can be discretized
to a discrete wavelet transform. Reformulating cMERA as the second quantization of
a CWT would therefore give a clear relationship between MERA and cMERA for free
bosonic systems. A starting point could be the cMERA in [ZGV19], which reproduces
some scaling dimensions exactly. However, the CWT appears to break some of the
symplectic properties of the discrete biorthogonal wavelet transform and it remains an
open problem to make this connection more explicit.
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Index theory for approximately local
dynamics





CHAPTER 6

Introduction to quantum cellular
automata

While quantum dynamics of closed systems are always unitary, systems of inter-
est often possess an additional property: information propagates at finite speeds. In
quantum field theories or local quantum circuits, information is strictly constrained
to spread within a region called the light cone, or causal cone. Systems with strict
causal cones are called quantum cellular automata (QCA) [Mar86, SW04]; or sometimes
locality-preserving unitaries. However, the effective theories governing real physical
systems are often only constrained by an approximate causal cone, see Fig. 6.2. For
instance, nontrivial time evolution by a fixed local lattice Hamiltonian never satisfies
a strict causal cone, but it does exhibit an approximate causal cone, given by the Lieb-
Robinson bounds [LR72]. We can ask general questions about this class of dynamics, e.g.
when can the evolution be generated by some local Hamiltonian, or when can one evo-
lution be continuously deformed into another? These fundamental questions also have
application in the study of topological phases in many-body physics [PFM+16, HFH18].

In this part of the dissertation, we will generalize a well-known classification of
QCAs on spin chains to approximately local dynamics. In the current chapter we will
review some basic notions of the theory of QCAs, and provide motivation and context
for our results. In Chapter 7 we introduce the operator algebra formalism and present a
theorem on stability of subalgebras due to Christensen which is a key ingredient for our
results. In Chapter 8 we review in detail the GNVW index and provide some additional
properties and alternative definition. Chapter 9 contains the main contribution: a
generalization of the GNVW index to approximately local dynamics. These chapters
closely follow [RWW20].

6.1 Quantum cellular automata

We start by giving a (slightly informal) definition of a QCA (which we will make com-
pletely formal in Definition 8.1). The idea is that a QCA is a quantum operation which is
both unitary and local. To formalize this we consider a lattice Γ and at each site n ∈Z
we have a local Hilbert space Cdn . We let An =Mdn×dn the algebra of dn by dn complex
matrices. This is the algebra of observables at site n. If Γ is a finite lattice we let

AΓ := ⊗
n∈Γ

An
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which is the full algebra of observables on the lattice Γ. If Γ is an infinite lattice it may
not be immediately clear how to define an ‘infinite tensor product’. The appropriate
algebra of observables on all of Γ will be the quasi-local algebra. For now we will ignore
this technical subtlety and for the purpose of this introduction we simply use a finite
lattice. We will also write

AX := ⊗
n∈X

An

for any (finite) subset X ⊆ Γ, which is the algebra of all observables supported in X . The
algebra AX is a subalgebra of AΓ, simply by tensoring with identity operators.

We will define a QCA α in the Heisenberg picture, that is, we need to define how it
acts on observables. Recall that in the Heisenberg picture, if x is some operator, and u
is a unitary, the operator is mapped to u∗xu, where u∗ is the Hermitian adjoint (and
hence inverse) of u. If Γ is a finite lattice with some distance measure d , then α is a QCA
if there exists a unitary u ∈AΓ such that

α(x) = u∗xu

and if this unitary preserves locality in the sense that if x is an operator that is supported
on a set of sites X ⊂ Γ, then α(x) is supported on the set of sites within distance R
of X . Here R is a fixed value, and we say that α has radius R. This definition is illus-
trated in Fig. 6.1. Another way to say that α(x) = u∗xu is by demanding that α is a
∗-automorphism of the algebra of observables (see Chapter 7, this is equivalent for
finite systems, but will be the correct formal definition for infinite systems).

Let us give some concrete examples. First of all, any local quantum circuit will give
rise to a QCA. Here a local quantum circuit is a unitary of the form

u = un ◦ . . .◦u2 ◦u1

where

uk = ∏
X⊂Γ

uk,X

and where uk,X is supported on X , and the subsets X range over a collection of disjoint
bounded subsets (which may be different for each k). An obvious example are one-
dimensional ‘brick-layer’ circuits.

A second fairly obvious example consists of automorphisms which simply permute
the sites. For this example, consider the case where all local dimensions dn are equal.
Then, any permutation of Γ which maps every site n ∈ Γ to a site within distance R
of n defines a QCA. Such QCAs are known as shifts. A one-dimensional example is the
translation shift, which corresponds to a unitary u which shifts every site to the right by
one. These two examples are illustrated in Fig. 6.1.

The composition of two QCAs with radius R1 and radius R2 is again a QCA with
radius R1 +R2, so in particular any composition of a circuit and a shift is also a QCA.
Can we find any other examples of QCAs? Perhaps surprisingly this is not very easy, and
such examples do not exist when the lattice has dimension one or two.

There is an extensive literature on QCAs. They have found application in computa-
tional theory (as QCAs are capable of universal computation) and in many body physics,
for which we will describe a few applications in this introduction See [Far20, Arr19] for
recent reviews on the theory of QCAs.
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(a)

(b)

x

α(x)
R

α

β σ

Figure 6.1: (a) Illustration of a QCA α with radius R = 2 mapping an operator x supported on
three sites to an operator α(x) supported on seven sites. (b) A local circuit QCA β

(left) and a translation QCA σ (right).

6.1.1 Index theory of one-dimensional QCAs
If the lattice has is one-dimensional (i.e. given by the integers Z, or by a periodic chain),
there is a beautiful classification of QCAs, which is based on an index theory provided
by [GNVW12] (the GNVW index), based on ideas in [Kit06]. The intuition behind this
index is that it measures the ‘flow of information’ in the QCA α. Roughly, it is defined by
taking a cut along the chain and letting

ind(α) = number of qubits moving to the right over the cut

− number of qubits moving to the left over the cut

Of course this is a very informal definition (we will provide details in Chapter 8). If α is
the translation QCA with local dimension d it is clear that from the above ‘definition’
that we should have ind(α) = log(d). On the other hand, it seems reasonable that if α is
a quantum circuit it moves the same amount of information to the left as to the right,
and we have ind(α) = 0. The index turns out to have various useful properties. For
instance, it is additive under composition: ind(α◦β) = ind(α)+ ind(β). It takes discrete
values in the set Z[{log(pi )}] where {pi } is the set of prime factors occurring in the local
dimensions dn . Finally, it can be shown that ind(α) = 0 if and only if α can be written as
a circuit. This allowed [GNVW12] to classify one-dimensional QCAs: any such QCA can
be written as a composition of a circuit and a tensor product of shifts.

6.1.2 QCAs in higher dimensions
In this dissertation we will focus on one-dimensional local dynamics. Higher dimen-
sional lattices give rise to some very interesting open questions, and for this reason we
give a brief overview of what is known about the structure of QCAs in higher dimensions.

One way to understand the GNVW index is by the notion of a boundary algebra. To
define this notion we consider the algebra AX on some set of sites X , and a QCA α or
radius R. The interior of X is the set of sites which are distance more than R away from
the complement of X . Then if we look at α(AX ) this certainly contains all operators
which have support on the interior of X . The full algebra α(AX ) is generated by the
algebra of operators on the interior of X , and a boundary algebra. If we have a one-
dimensional QCA, and we take X to be a sufficiently large interval, we find that the
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boundary algebra consist of two commuting simple algebras, one supported on the left
hand boundary of the interval and one supported on the right hand boundary of the
interval. The GNVW index can now be computed as the logarithm of the ratio of the
dimensions of these two algebras.

One can also study such boundary algebras in higher lattice dimensions. For a
two-dimensional lattice it turns out that for a sufficiently large simply connected region
its boundary algebra has a very specific structure. In this case, the boundary region
is an annulus, and in [FH20] it was shown that the boundary algebra factorizes into
a number of simple algebras Ai for i = 1, . . . ,n, where Ai has strictly local support,
and the algebra Ai has overlapping support only with A j for j = i ±1 mod n. This
structure allowed [FH20, Haa21] to prove that any two-dimensional QCA can be written,
similarly to the one-dimensional case, as a composition of a circuit and a tensor product
of shifts. An example of an application is given in [CX22], where the classification of
two-dimensional QCAs is used to classify two-dimensional fermion-to-qubit mappings.

However, in [HFH18] it has been shown that (under assumption of a widely believed
conjecture) the situation in three spatial dimensions is different. That is, there exist
three-dimensional QCAs which can not be written as a composition of shifts and circuits.
Similar examples where constructed in [FHH20, SCD+22]. The idea in the construc-
tion of these examples is that the QCA disentangles a three-dimensional model with
topological order. Then, one can show that the QCA is not a composition of a shift
and a circuit, conditional on the conjecture that the three-dimensional model with
topological order can not be described by a Hamiltonian which can be written as a sum
of commuting local projectors. It is also known that the set of QCAs in a fixed dimension,
modulo circuits and shifts, forms an abelian group under composition [FHH22]. As
observed above, this group is trivial in one and two dimensions, but likely nontrivial in
higher dimensions. For three spatial dimensions it has been conjectured that this group
is given by the categorical Witt group of modular tensor categories [Haa21, SCD+22].
Thus, there is a close connection between QCAs and certain aspects of topological order.
Another approach to the classification problem is to study Clifford quantum cellular
automata, which are QCAs which map Pauli operators to Pauli operators. For this class,
modulo Clifford circuits and shifts, the group of Clifford QCAs is still trivial in one and
two spatial dimensions, and nontrivial in three dimensions [Haa21].

6.1.3 Physical applications of QCAs
Locality is an important feature of quantum many-body physics, and in this light the
notion of a QCA is very natural. Maybe the most fundamental appearance of locality
is the fact that quantum field theories have strict causal cones (i.e. light cones). That
is, if we consider a strictly local operator x on domain D in a spatial slice, then if we
look at the time-evolved operator, it will be supported strictly in the light cone of D.
This strict locality property is reminiscent of the definition of a QCA. A quantum field
theory has both continuous space and time components. A natural thought is to use
QCAs as a potential discretization (with space and time both discrete) which preserve
the strict locality of the quantum field theory. For example [DP17, ABF20, BDPT18] and
the review [Far20]. This perspective could be useful for simulation of quantum field
theories on a quantum computer.

Another active line of research is the use of QCAs to study quantum hydrodynamics.
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Here one starts from a QCA and iterates this QCA. Such models can be easier to solve
than (integrable) spin chains, but still have interesting dynamics. For instance, one can
study hydrodynamics and operator growth [ADM19, GHKV18, GNP21] in such models.

To mention a few other recent applications, QCAs have also been studied to con-
struct symmetry-protected phases [SNBV+19] and have been investigated from the per-
spective of tensor networks and matrix product operators [CPGSV17, ŞSBC18, GSSC20,
PC20]. Finally, they have been used to classify topological phases of many-body local-
ized dynamics [PFM+16, ZL20], which we will briefly explain in Section 6.2.1. Also, as
we saw above, three-dimensional QCAs are closely related to topological order.

6.2 Lieb-Robinson bounds and approximate locality

While in some contexts it is natural that quantum dynamics are strictly local (such as
quantum field theory or in computational applications), for many realistic physical
systems dynamics is only approximately local. The most iconic example is a lattice of
spins where the dynamics is governed by a (quasi-)local Hamiltonian, in which case the
so-called Lieb-Robinson bounds show that the dynamics induced by the Hamiltonian
are approximately local. To formulate the Lieb-Robinson bounds, we again assume we
have a lattice Γ (for instance Zn), and we assume that we have a local Hilbert space Cdn

at each site n ∈ Γ. Moreover, we assume that the systems has a Hamiltonian

H = ∑
X⊆Γ

HX

where each term HX is supported on X . For instance, we could take a nearest neighbour
Hamiltonian, where the subsets X are pairs of neighbouring sites, or we could more
generally restrict X to local sets of some fixed bounded size k, so the interactions are
k-local and spatially local. In this case it is well known that if we let u(t ) = e i H t and if we
let xn be an operator supported at site n, and x(t ) = u(t )xu(t )∗, then it holds that

∥[xn(t ), ym]∥ ≤Ceα(d(n,m)−v t )∥xn∥∥ym∥ (6.1)

where ym is any operator supported on site m, d(n,m) is the distance between sites n
and m and C ,α and v are positive constants. These estimates are known as the Lieb-
Robinson bounds, and the optimal possible v is the Lieb-Robinson velocity. The inter-
pretation of Eq. (6.1) is that information spreads at most at linear speed (given by v)
in the system. Indeed, at time t , xn(t) commutes up to an exponentially suppressed
term with all operators supported at sites which are farther away than v t from n. Or
in other words, xn(t) approximately has support in a ball of radius proportional to v t
around site n. We introduce the Lieb-Robinson bounds more formally in Chapter 9. The
key point is that in any discrete quantum many-body system one expects approximate
locality rather than strict locality; hence for the application of theory of QCAs to many
realistic physical systems it will be crucial to determine whether such results generalize
to approximately local dynamics. In Chapter 9 we will generalize the notion of a QCA to
an approximately locality preserving unitary (ALPU). Informally speaking, an ALPU is
an automorphism α (i.e. conjugation by a unitary) which is such that it satisfies bounds
of the type in Eq. (6.1), so for x supported on X it holds that

∥[α(x), y]∥ ≤ f (d(X ,Y ))∥x∥∥y∥
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x

α(x)

α

α[t ]

Figure 6.2: Illustration of an automorphism α with an approximate lightcone (an ALPU). Given
such an α, does there exist a continuous dynamics α[t ] with α[0] = I and α[1] =α
which remains approximately local at all times?

for any operator y supported on a set Y , where d(X ,Y ) is the distance between these
sets, and f is some fixed decaying function that determines how fast the tails decay (this
could for instance be an exponentially decaying function or an inversely polynomially
decaying function).

6.2.1 Floquet many-body localization and index theory
We will now provide an example of an ALPU which is not given as time evolution
along a local Hamiltonian and where the GNVW index can be applied to understand
quantum phases. This type of quantum systems are systems with dynamical many-
body localization for Floquet systems in two dimensions [PFM+16]. The intuitive idea
is that on the two-dimensional lattice, under certain localization assumptions, time
evolution of a subsystem with boundary defines an associated evolution on the one-
dimensional boundary, and this evolution will be an ALPU in general, not necessarily
given by a Hamiltonian evolution. The GNVW index of this boundary automorphism
then captures whether the boundary has chiral transport, which is related to whether
the two-dimensional system has vortex-like behavior.

Below we sketch the setup described by [PFM+16]. See [HR17, DDP18, FPPV19,
ZL20] for extensions. We consider a (time-dependent) local Hamiltonian H on a two-
dimensional lattice, and we let U be the unitary obtained by time evolution for some
fixed time T . The system exhibits many-body localization (MBL) if U can be written as a
product of commuting unitaries which are all approximately local, i.e. when there exists
a complete set of approximately local integrals of motion. More precisely, one says U is
MBL in the sense of [PFM+16] when it can be written

U =∏
X

uX (6.2)

where uX is approximately supported in a set X of some bounded size and [uX ,uX ′] = 0
for all X , X ′. What “approximately supported” means here depends on one’s definition
of many-body localization. A reasonable definition may be

∥[uX , y]∥ ≤Ce−γr ∥y∥
for any operator y which is supported on sites at least distance r away from X , and C > 0
and γ> 0 some constants. That is, the uX satisfy Lieb-Robinson type bounds. To define
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the invariant we let D denote the upper half plane (or in fact any simply connected
infinite subset of the lattice) and we let UD denote time evolution for time T using only
the terms in the Hamiltonian strictly supported inside D . Also, we use (6.2) to define

U ′
D = ∏

X⊆D
UX .

Then we let V = U−1
D U ′

D , so that the map a 7→ V aV −1 approximately preserves the
algebra supported on a thick boundary strip ∂D of D . More precisely, the Lieb-Robinson
bounds and (6.2) together show that for an operator a on a single site in ∂D, V aV ∗ is
approximately supported within ∂D .

The key point is that while the original dynamics is generated by a two-dimensional
lattice Hamiltonian, the induced dynamics on the boundary strip need not be gener-
ated by a Hamiltonian on the boundary strip. In [PFM+16], one implicitly assumes
that a small deformation of V actually defines a QCA on ∂D. Given this assumption,
that MBL dynamics define a QCA on ∂D, one could then apply the index theory of
one-dimensional QCAs to obtain a classification of MBL Floquet evolutions in 2D. The
intuition is that if the Floquet dynamics has a ‘vortex-like’ behavior, the induced bound-
ary dynamics will have a nonzero information flow, which is then captured by the GNVW
index. To make this application of the GNVW index theory completely rigorous, it is re-
quired to study the robustness of the GNVW index, and see to what extent it generalizes
to ALPUs.

6.2.2 Approximating approximately local dynamics by strictly local dy-
namics

It is well known that for Hamiltonian evolutions there is a close relationship between
the approximately local time evolution and an approximation by strictly local quantum
circuits. As explained in Section 1.2, given time evolution along a local (possibly time-
dependent) Hamiltonian for time T , we can approximate the induced dynamics with
a local quantum circuit. The most straightforward method is by Trotterization of the
Hamiltonian. By increasing the depth of the circuit (i.e. decreasing the size of the time
step in the Trotterization) one increases the accuracy of the approximation to arbitrary
precision. A local quantum circuit is a QCA, and increased depth corresponds to a
larger radius for the QCA. A key question, which we will address for one-dimensional
systems, is whether one can generalize ‘Trotterization’ for more general approximately
local dynamics. That is, given an ALPU, is there a sequence of QCAs of increasing radius
which approximates the ALPU to arbitrary precision, and if so, what is the scaling of
the radius with the precision of the approximation? An answer to this question will
have to use methods which are fundamentally different from Trotterization, as this
relies heavily on the fact that we have a Hamiltonian along which we evolve, and we
can ‘break up’ this evolution in many small steps. In contrast, for an ALPU we are only
given a single time step and there is no obvious way to approximate it by a QCA. There
also exist methods for Hamiltonian simulation which are based more directly on the
Lieb-Robinson bounds [HHKL18, TGS+19], as mentioned in Section 1.2. Nevertheless,
these are still based on the existence of a Hamiltonian and the possibility of restricting
this Hamiltonian to a local region; therefore it is not clear how to apply such methods
directly to an ALPU.
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(a) (b)

L R

L′ R ′ R ′

R

L′

L

Figure 6.3: Illustration of (6.3). For the translation on a qudit with local dimension d in (a) we
have I (L′ : R)φ = 2log(d) and I (L : R ′)φ = 0, so the index equals d . For a circuit, one
can show that applying a local unitary as in (b) gives I (L′ : R)φ = I (L : R ′)φ, so the
index is zero.

6.3 Summary of contributions

6.3.1 Informal statement of results
A first result of this part of the dissertation is that we observe that one can re-formulate
the definition of the index as follows: one divides the chain into a left half L and right
half R, and one considers the Choi state φLR,L′R ′ of the automorphism α. Then the
mutual information difference

ind(α) = I (L′ : R)φ− I (L : R ′)φ
2

, (6.3)

is precisely the index of [GNVW12], but also well-defined for ALPUs with appropriately
decaying tails! This formula is illustrated in Fig. 6.3. In addition, the mutual information
enjoys much better continuity than the related expression for the index in Eq. (45)
of [GNVW12], which (in hindsight) can be understood as a difference of Rényi-2 en-
tropies. We show that the expression in Eq. (6.3) generalizes to the approximately local
setting.

Our first main result consists of Theorems 9.16 and 9.18, summarized as

Approximation Theorem (informal). Suppose thatα is an ALPU in one dimension. Then
there exists a sequence of QCAs α j of increasing radius such that α j (x) converges to α(x)
for any local operator x, and that ind(α j ) stabilizes for large j . We define

ind(α) = lim
j→∞

ind(α j ).

If α has O ( 1
r 1+δ )-tails for δ> 0, the index defined in (6.3) is finite and equal to ind(α). The

exact index may also be computed locally through a rounding procedure.

To be precise, the error bounds are such that if α has tails like O ( f (r )), and α j has
radius j , then for an operator x supported on an interval of n sites,

∥α j (x)−α(x)∥ =O ( f ( j )(
n

j
+1)∥x∥).
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The key technical ingredient we use is a stability result for inclusions of possibly infinite
algebras which we state as Theorem 7.6, an extension of results from [Chr77a, Chr80].
This result deals with the situation where A and B are algebras of observables and A

is “nearly” included in B, meaning that for each x ∈A there is an element y ∈B such
that ∥x − y∥ ≤ ε∥x∥ for some small ε. Then (under some technical but very general
assumptions on the algebras), there exists a unitary u ∈ B(H ) close to the identity in
the sense that ∥u − I∥ = O (ε) with error independent of dim(H ), such that uA u∗ is
strictly contained in B. Loosely speaking, we construct the QCAs α j by “localizing”
the images α(An) of the algebra An at each site n, by rotating α(An) into an algebra
supported within some radius of site n. The main technical effort in the construction is
to ensure the rotations are compatible and the errors do not accumulate.

The index defines equivalence classes of ALPUs. These are characterized in our
second main result, Theorem 9.25, sketched below:

Classification Theorem (informal). Suppose α and β are ALPUs with f (r )-tails in one
dimension. Then the following are equivalent conditions:

(i) ind(α) = ind(β).

(ii) α=βγ where ind(γ) = 0.

(iii) There exists a “blended” ALPU which (up to small error) matches α on the left of
the chain and matches β on the right.

(iv) There exists a strongly continuous path from α to β through the space of ALPUs
with g (r )-tails for some g (r ) = o(1). If such a path exists, then it can be generated
by evolving a time-dependent quasi-local Hamiltonian for unit time.

In particular, (iv) provides a converse to the Lieb-Robinson bounds in one dimension:
an automorphism can be generated by evolution along a time-dependent Hamiltonian
with certain locality bounds if and only if it has index zero. Thus we see that the index
theory of [GNVW12] completely generalizes to ALPUs and does not “collapse,” with as
only essential difference that the role of quantum circuits is replaced by time evolutions
along time-dependent geometrically local Hamiltonians.

As an application, it follows immediately that the translation operator cannot be
implemented by a finite time evolution of any (time-dependent) Hamiltonian satisfying
Lieb-Robinson bounds. Moreover, there cannot exist a quasi-local “momentum density”
that generates a lattice translation and also satisfies Lieb-Robinson bounds with o(1)-
tails at all times. To show that it is necessary to impose some bound on the decay of the
ALPU tails in our constructions, we give an example of a strongly continuous path of
automorphisms generated by a Hamiltonian with 1

r -decaying interactions that connects
the identity map to a translation on a chain of qubits, showing that at this point the
index theory does indeed collapse.

6.3.2 Prior work
To generalize the GNVW index to ALPUs, a natural concern is the sensitivity of the
index to small perturbations of the QCA. However, the dependence of the sensitivity
on the local Hilbert space dimension and the radius of the QCA is not immediately
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clear from the considerations in [GNVW12], which yield a relatively weak continuity
estimate. Without stronger bounds, it would have been possible that the homotopy
classes established in [GNVW12] could collapse when considering ALPUs: two QCAs
with different GNVW index might still be connected by a strongly continuous path
through the space of ALPUs with some prescribed tails. Another concern was whether
the generalized index would take values in the same discrete set as the GNVW index.

These questions are recognized in existing literature. In fact, one of the main open
questions in the original work [GNVW12] was how to extend the index theory to some
class of automorphisms with only approximate locality. Later work asked specifically
whether ALPUs could be approximated by QCAs [Has13]. In the review [Far20] such
questions were raised again, highlighting their relevance for the application of index the-
ory to actual physical systems. Other recent work [FH20] also suggested the extension
to ALPUs as an avenue for research, proposing that one approach might involve Ulam
stability results for operator algebras. This is precisely the approach taken in this work.
The stability results we use [Chr77a, Chr80] and augment were developed throughout
the 1970s and 80s for studying how operator algebras behave under perturbation. In-
triguingly, related questions about perturbations were tackled under a different guise
in [CRSV17] (cf. their Theorem 3.6), in the context of quantum device certification.

Regarding the converse to the Lieb-Robinson bounds, see [WW20] for interesting
work which develops a related converse with different assumptions. They show that if
you already know α is generated by a k-local Hamiltonian satisfying a Lieb-Robinson-
like condition, then the evolution can also be generated by a geometrically local k-local
Hamiltonian. Their condition can be checked at infinitesimal times. In contrast, we do
not assume the ALPU is generated by any k-local Hamiltonian.

Finally, our reformulation of the GNVW index in terms of the mutual information
is similar to an expression which has been derived in [DDP18] in the context of two-
dimensional Floquet phases. This expression has also been rederived, shortly after the
appearance of our work [RWW20], in [GPC21].



CHAPTER 7

Operator algebras and stability of
subalgebras

For infinite dimensional quantum mechanical systems it is often more convenient
to work with operator algebras (algebras of observables) rather than Hilbert spaces,
and use the Heisenberg rather than Schrödinger picture of quantum mechanics. A
standard reference for operator algebras and their relation to quantum physics is [BR12];
see [Naa13] for an accessible introduction. We review C∗-algebras and von Neumann
algebras, focusing especially on facts used in subsequent proofs. Then we turn to
methods for “perturbations” (e.g. small rotations) of operator algebras in Section 7.1.

7.0.1 C∗-algebras
The notion of an operator algebra is formalized by a C∗-algebra, which is a complex
algebra A with a norm ∥·∥ and an anti-linear involution x 7→ x∗, satisfying

• A is complete in ∥·∥,

• ∥x y∥ ≤ ∥x∥∥y∥,

• ∥x∗x∥ = ∥x∥2.

We will only use algebras with an identity element I . An important example is the
C∗-algebra B(H ) of operators on some Hilbert space H , where we take the operator
norm as the norm, and the adjoint as the ∗-operation. In finite dimensions this reduces
to the algebra Md×d of complex d ×d matrices with the spectral norm and Hermitian
conjugate. A C∗-algebra A is called approximately finite-dimensional (AF) if it contains
a directed collection of finite-dimensional subalgebras whose union is dense in A . If
A ⊆B are C∗-algebras we define the commutant of A in B to be the set

A ′ = {x ∈B such that [x,A ] = 0},

which is again a C∗-algebra. We denote by U (A ) the set of elements u ∈ A that are
unitary, meaning that uu∗ = u∗u = I .

A ∗-homomorphism α : A →B between C∗-algebras is an algebra homomorphism
which also preserves the ∗-operation, α(x∗) = α(x)∗. Such a ∗-homomorphism is
automatically continuous and indeed contractive, i.e., ∥α(x)∥ ≤ ∥x∥. The latter can also
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be written as ∥α∥ ≤ 1, where we define the notation ∥β∥ = sup∥x∥≤1∥β(x)∥ for any linear
map β between C∗-algebras. A (∗-)automorphism is a bijective ∗-homomorphism. The
inverse of an automorphism is again a ∗-homomorphism, and any automorphism is
automatically unital and isometric. We write I for the identity automorphism. Finally,
a state on a C∗-algebra A is given by a linear functional ω : A → C which is positive
(meaning that ω(x∗x) ≥ 0 for all x ∈A ) and normalized (meaning that ω(I ) = 1).

It turns out that any C∗-algebra can be realized as a subalgebra of B(H ), the algebra
of bounded operators on some Hilbert space H . This is proven by the following result
known as the Gelfand-Naimark-Segal (GNS) construction or representation:

Theorem 7.1 (Gelfand-Naimark-Segal). Given a state ω on A , there exists a Hilbert
space H , a ∗-homomorphism π : A → B(H ), and a cyclic vector φ (meaning π(A )φ is
dense in H ) such that

ω(x) = 〈φ,π(x)φ〉
Moreover, if (H ′,π′,φ′) is another triple as above then there exists a unique unitary
u : H →H ′ such that φ′ = uφ and π′(x) = uπ(x)u∗ for all x ∈A .

If ω is such that ω(x∗x) = 0 implies x = 0, then the GNS representation is faithful
(meaning that πω is injective). In that case, one way to construct the Hilbert space in
Theorem 7.1 is by letting 〈x, y〉 =ω(x∗y) define an inner product on A and letting H

be the completion of A with respect to this inner product. Then A acts on H by left
multiplication, which defines the ∗-homomorphism π : A → B(H ). The identity I ∈A

gives rise to a cyclic vector φ ∈H .

7.0.2 Von Neumann algebras
A special class of C∗-algebras are von Neumann algebras. A C∗-algebra A ⊆ B(H ) is a
von Neumann algebra if it is equal to its double commutant in B(H ),

A =A ′′.

In fact, for any subset S ⊆ B(H ), the double commutant S′′ is always a von Neumann
algebra, called the von Neumann algebra generated by S. It is the smallest von Neumann
algebra that contains S. There are various relevant topologies on B(H ). The strong
operator topology is such that a net xi converges to some operator x if and only if
it holds that xi v → xv for each vector v ∈ H . The weak operator topology is such
that a net xi converges to some operator x if and only if 〈w, xi v〉 → 〈w, xv〉 for each
pair v, w ∈H . The weak operator topology is weaker than the strong operator topology,
and both are weaker than the topology induced by the norm. Sometimes also the
weak-∗ topology is relevant, induced by interpreting B(H ) as the dual space of the
trace class operators on H . The weak operator topology is weaker than the weak-∗
topology, but the two coincide on norm-bounded subsets of B(H ). On convex subsets
the weak operator closure and strong operator closure coincide. The von Neumann
bicommutant theorem states that for unital ∗-subalgebra A ⊆ B(H ), A ′′ is the weak
operator closure of A , so A is a von Neumann algebra if and only if A is weak operator
closed. Any ∗-automorphism of a von Neumann algebra is continuous with respect to
the weak-∗ topology. Moreover, norm balls are compact in the weak operator topology
(Theorem 5.1.3 in [KR97], a consequence of the Banach-Alaoglu theorem).
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A useful fact in the study of von Neumann algebras is the Kaplansky density theorem,
which states that for any self-adjoint subalgebra A ⊆ B(H ) the unit ball of the strong
operator closure of A equals the strong operator closure of the unit ball of A . We refer
to [BR12, §2.4] for more details. Another useful fact is that the norm is lower semi-
continuous in the weak operator topology, i.e., if a net xi converges to x in the weak
operator topology then ∥x∥ ≤ liminfi∥xi∥.

In infinite dimensions, working with a von Neumann algebra often confers advan-
tages over more general C∗-algebras. For instance, the output of the Borel functional
calculus (taking functions of operators) on a C∗-algebra A ⊆ B(H ) produces operators
that sometimes lie outside A , but they always lie in the weak operator closure A ′′. A von
Neumann algebra therefore allows one to use spectral projections and other technical
tools.

A von Neumann algebra A ⊆ B(H ) is called a factor if it has trivial center, in other
words A ′∩A =CI . In particular, A = B(H ) is a factor (a so-called type I factor). Any
finite dimensional factor is of this form (for a finite dimensional Hilbert space), but
there also exist infinite dimensional factors not of the form B(H ) (so-called type II
and type III factors). A von Neumann algebra A is called hyperfinite (or approximately
finite-dimensional) if it contains a directed collection of finite-dimensional subalgebras
whose union is dense in the weak operator topology (equivalently, the weak-∗ topology).
Equivalently, A is hyperfinite when there exists an AF C∗-subalgebra A0 ⊆ A such
that A ′′

0 =A .
Finally, if M ⊆ B(H) and N ⊆ B(K ) are von Neumann algebras, we use M ⊗N ⊆

B(H ⊗K ) to denote the von Neumann algebra tensor product, given by the weak
operator closure of the algebraic tensor product of M and N in B(H ⊗K ).

7.0.3 The quasi-local algebra
We will apply the formalism of operator algebras in the setting of lattice spin systems.
If we have a system of a finite number of spins Cd1 ⊗·· ·⊗Cdn , the corresponding op-
erator algebra is simply the full matrix algebra Md1×d1 ⊗ ·· · ⊗Mdn×dn . However, for
infinitely many spins the tensor product structure becomes ambiguous. If the spins
form a lattice the physically appropriate choice of C∗-algebra is the quasi-local algebra.
Consider a lattice Γ, and associate a finite-dimensional matrix algebra An =Mdn×dn to
each element n of the lattice. We assume that there is a uniform upper bound on the
dimensions dn . For any finite subset X ⊆ Γ we can define the algebra AX =⊗

n∈X An .
These algebras naturally form a local net, meaning that for any two subsets X ⊆ X ′ we
have a natural inclusion AX ⊆AX ′ (by tensoring with the identity on X ′ \ X ), and for any
two disjoint subsets X ∩X ′ =; we have that [AX ,AX ′] = 0 (we embed the two algebras
into any AX ′′ such that X ∪X ′ ⊆ X ′′). This allows us to define the algebra of all strictly
local operators as

A strict
Γ = ⋃

X⊆Γ finite
AX .

This is a ∗-algebra which inherits a norm from the AX , but it is not complete for this
norm. We define the quasi-local algebra AΓ to be the norm completion of A strict

Γ .
Thus, AΓ is a C∗-algebra. For infinite subsets X ⊆ Γ, we define AX correspondingly
as a norm-complete C∗-subalgebra of AΓ. Then we have inclusions AX ⊆AΓ for any
subset X ⊆ Γ. If x ∈AX , we say x is supported on X .



126 Chapter 7. Operator algebras and stability of subalgebras

The quasi-local algebra has a natural state τ, called the tracial state, which can be
thought of as the generalization of the maximally mixed state to an infinite lattice. It is
defined on x ∈AX for finite X ⊆Λ by

τ(x) = 1

dX
tr(x),

where dX =∏
n∈X dn , and can be extended to the full algebra.

We consider the GNS representation π : AΓ→ B(H ) from Theorem 7.1 of the quasi-
local algebra using the tracial state τ, and we let

A vN
Γ =π(AΓ)′′ ⊆ B(H ), (7.1)

denote the von Neumann algebra generated by the GNS representation of the quasi-
local algebra. The right-hand side is also the weak operator closure of the image π(AΓ).
It turns out A vN

Γ is a proper subalgebra of B(H ), which remains true even for Γ finite;
in our case that Γ is infinite, A vN

Γ is the (unique up to unique isomorphism) hyperfinite
type II1 factor. This algebra is extensively studied, but for our purpose we will only
need to observe that this factor is hyperfinite (as follows directly from its construction).
If X ⊆ Γ we denote A vN

X = π(AX )′′. Each A vN
X is hyperfinite and has the property

that (A vN
X )′∩A vN

Γ =A vN
Γ\X . Since the tracial state is faithful, we may think of each AX as

a subalgebra of A vN
X . Moreover, it holds that A vN

X ∩AZ =AX for any X ⊆Z.1

The reason for introducing A vN
Γ is purely to be able to use technical tools, espe-

cially Theorem 7.6, from the study of von Neumann algebras. Our main results are all
formulated in terms of the quasi-local algebra.

We observe that an automorphism α of AΓ extends naturally to the associated von
Neumann algebra in (7.1), as follows. If τ is the tracial state on the quasi-local algebra AΓ,
then for any automorphism of AΓ this state is left invariant, i.e., τ◦α= τ. (One way to
see this is by using that τ is the unique state for which τ(x y) = τ(y x) for all x, y ∈AΓ.)
By the uniqueness of the GNS construction this implies that α can be implemented
by a unitary u on H , in the sense that π(α(x)) = uπ(x)u∗. Therefore, α extends to an
automorphism of the hyperfinite von Neumann algebra A vN

Γ , which we denote by the
same symbol α if there is no danger of confusion. Note that this extension is necessarily
unique.

We will mostly consider the situation where Γ=Z is the discrete line. If

X = {m ∈Z such that m ≤ n}

1Since A vN
X = (A vN

Z\X )′∩A vN
Z

, it suffices to show that (A vN
Z\X )′∩AZ =AX . We will argue that (A vN

Z\X )′∩
AZ ⊆AX , since the other inclusion is immediate. To this end, let x ∈ (A vN

Z\X )′∩AZ. Since x ∈AZ, we can
choose a sequence xi ∈AXi converging to x in norm and such that each Xi is a finite set. On the other
hand, x ∈ (A vN

Z\X )′ implies that, for any y ∈AZ\X it holds that

∥[y, xi ]∥ = ∥[y, xi −x]∥ ≤ 2∥y∥∥x −xi∥. (7.2)

Now let x̃i =
∫

U (AXi ∩(Z\X )) uxi u∗ du, similarly as in Eq. (7.4). Then x̃i ∈AXi∩X ⊆AX , since it is an element

of AXi that commutes with AXi∩(Z\X ) =AXi \X . On the other hand, Eq. (7.2) implies (cf. Eqs. (7.5) and (7.6))
that

∥x̃i −xi∥ ≤
∫

U (AXi ∩(Z\X ))
∥uxi u∗−xi∥du ≤

∫
U (AXi ∩(Z\X ))

∥[u, xi ]∥du ≤ 2∥x −xi∥.

Therefore ∥x̃i −x∥ ≤ 3∥x −xi∥→ 0 and since each x̃i ∈AX , we conclude that x ∈AX .
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we will write A≤n := AX and similarly if X = {m ∈ Z such that m ≥ n} we will write
A≥n :=AX . We use the same notation to describe subalgebras A vN≤n ,A vN≥n of A vN

Z
.

7.1 Near inclusions and stability properties

We now define our notion of near inclusions of algebras and discuss related stability
properties. The notion of a near inclusion follows e.g. [Chr80].

Definition 7.2 (Near inclusion). For a C∗-algebra B ⊆ B(H ) and an operator a ∈ B(H ),

we write a
ε∈ B when there exists b ∈ B such that ∥a −b∥ ≤ ε∥a∥. Likewise for two

C∗-algebras A ,B ⊆ B(H ), we write A
ε⊆B and say there is a near inclusion whenever

it holds that a
ε∈B for all a ∈A .

We note that if B is a von Neumann algebra, we have a
ε∈B if and only if

inf
b∈B

∥a −b∥ ≤ ε∥a∥.

That is, the infimum is attained by some b ∈B. Indeed, let bi be a sequence in B such
that limi∥a −bi∥ ≤ ε∥a∥. In particular, ∥bi∥ is bounded. Since (any multiple of) the
closed unit ball in B(H ) is compact in the weak operator topology (e.g., Theorem 5.1.4
in [KR97]), the sequence bi has a limit point b ∈ B in the weak operator topology.
Because the norm is lower semi-continuous in the weak operator topology,

∥a −b∥ ≤ lim
i
∥a −bi∥ ≤ ε∥a∥,

which concludes the argument.
When B ⊆ B(H ) is a C∗-algebra and x ∈ B(H ) is an operator that is nearly con-

tained in its commutant, say x
ε∈B′, then it is easy to see that, for any b ∈B,

∥[x,b]∥ ≤ 2ε∥x∥∥b∥. (7.3)

Indeed x
ε∈ B′ means there exists y ∈ B′ such that ∥x − y∥ ≤ ε∥x∥. Then we have for

any b ∈B that

∥[x,b]∥ = ∥[x − y,b]∥ ≤ 2∥x − y∥∥b∥ ≤ 2ε∥x∥∥b∥.

We will be interested in the converse of this statement, which is rather less clear.
To gain some intuition, we consider the finite-dimensional setting. Suppose that

we have a tensor product of finite-dimensional Hilbert spaces H =H A ⊗HB , and let
B = I ⊗B(HB ) ⊆ B(H ) be the algebra of operators supported on the second tensor
factor. Then we can define a projection onto the commutant of B by twirling using
Haar probability measure on the group U (B) of unitaries on B:

EB′ : B(H ) →B′, EB′(x) =
∫

U (B)
uxu∗ du. (7.4)

In fact, the commutant is simply A =B′ = B(H A)⊗ IB , and the projection can equiva-
lently be written in terms of the normalized partial trace, EB′(x) = 1

dB
trB(x), where dB =

dimHB . The projection exhibits the desirable property that if

∥[x,b]∥ ≤ ε∥x∥∥b∥ (7.5)
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for all b ∈B, then

∥x −EB′(x)∥ ≤
∫

U (B)
∥x −uxu∗∥du =

∫
U (B)

∥[x,u]∥du ≤ ε∥x∥. (7.6)

This shows that, in the finite-dimensional setting, the commutator bound (7.5) implies

that x
ε∈B′.

In infinite dimensions, where no Haar integral is available, we need a different way to
define the projection. One way to do so is using the so-called “property P.” If B ⊆ B(H )
is a von Neumann algebra, it has property P if for any x ∈ B(H ), there exists some y ∈B′

such that y is also in the weak operator closure (equivalently, the weak-∗ closure) of
the convex hull of {uxu∗ : u ∈U (B)}. Note that in the finite-dimensional setting this
is immediate from the definition in terms of the Haar integral. We can also generalize
the notion of twirling by a (non-commutative) conditional expectation EA onto a von
Neumann algebra A ⊆ B(H ). This is defined to be contractive completely positive
linear map EA : B(H ) →A ⊆ B(H ) which is such that for x ∈ B(H ) and a, a′ ∈A we
have EA (a) = a and EA (axa′) = aEA (x)a′. A von Neumann algebra A ⊆ B(H ) is called
injective if there exists such a conditional expectation [Bla06, IV.2.1.4].

For von Neumann algebras acting on separable Hilbert spaces, these properties are
equivalent to each other and to hyperfiniteness as defined earlier:

Theorem 7.3. Let B ⊆ B(H ) be a von Neumann algebra with H separable. Then the
following are equivalent:

(i) B is hyperfinite.

(ii) B′ is hyperfinite.

(iii) B has property P.

(iv) B′ is injective.

If H is not assumed to be separable, it is still true that (i) implies (iii) and (iii) implies (iv).
Moreover, B has property P if and only if B′ has property P, and the same is true for
injectivity.

For a comprehensive account of the theory and classification of von Neumann algebras
see [Tak03, Bla06]. Theorem 7.3 is proved in Proposition 4.1 of [NSW13] in the case
that B is a factor. The general case follows similarly by combination of well-known
results, as we sketch for convenience.

Proof. The implications (i)⇒(iii) and (iii)⇒(iv) are explained in [Bla06, IV.2.2.20], as
is the fact that B has property P if and only if B′ has property P. Moreover, [Bla06,
IV.2.2.7] asserts that B is injective if and only if B′ is injective. Now assume that H is
separable or, equivalently, B has a separable predual. In this case, injectivity implies
hyperfiniteness [Bla06, IV.2.6.1], so it follows that (iv)⇒(ii). Since B′′ =B, (i)⇒(ii) also
yields (ii)⇒(i), so that (i)–(iv) are all equivalent. ■

When B is hyperfinite and x ∈ B(H ) is such that ∥[x,b]∥ ≤ ε∥x∥∥b∥ for all b ∈ B,

then x
ε∈ B′, providing a converse to the discussion above Eq. (7.3). Indeed, since B

has property P by (i)⇒(iii), there exists some y ∈B′ in the weak operator closure of the
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convex hull of {uxu∗ : u ∈U (B)}. Using lower semicontinuity of the norm with respect
to the weak operator topology, we find

∥x − y∥ ≤ sup
u∈U (B)

∥x −uxu∗∥ = sup
u∈U (B)

∥[x,u]∥ ≤ ε∥x∥,

which shows that x
ε∈B′. Moreover, suppose that x ∈M , B ⊆M for a von Neumann

algebra M ⊆ B(H ), then we have that x
ε∈B′∩M . Indeed, in this case {uxu∗ : u ∈U (B)}

is contained in M , and the same is true for the weak operator closure of its convex
hull. Since y was constructed as an element of the latter, it follows that y ∈B′∩M and

hence x
ε∈B′∩M .

In turn, the above implies that any conditional expectation EB′ : B(H ) →B′ (and
such conditional expectations exist due to (iii)⇒ (iv)) satisfies

∥EB′(x)−x∥ ≤ ∥EB′(x)−EB′(y)∥+∥y −x∥ ≤ 2ε∥x∥,

using that EB′(y) = y and that conditional expectations are contractions. When B

is a factor, a different proof strategy shows that the constant 2 can be omitted; see
Proposition 4.1 in [NSW13].

As an easy consequence we obtain:

Lemma 7.4 (Near inclusions and commutators [Chr77b, Theorem 2.3]). Let A ,B ⊆
B(H ) be two C∗-algebras. If A

ε⊆B′ is a near inclusion, then

∥[a,b]∥ ≤ 2ε∥a∥∥b∥.

holds for all a ∈A and b ∈B.
Conversely, if B is a hyperfinite von Neumann algebra and

∥[a,b]∥ ≤ ε∥a∥∥b∥

holds for all a ∈A and b ∈B, then we have a near inclusion A
ε⊆B′. If moreover A ,B ⊆

M for some von Neumann algebra M ⊆ B(H ), then A
ε⊆B′∩M .

Proof. The first claim follows from Eq. (7.3), since A
ε⊆ B′ means that a

ε∈ B′ for ev-
ery a ∈A . For the converse claim, the discussion above the lemma shows that for ev-

ery a ∈A we have a
ε∈B′, hence A

ε⊆B′; moreover, if a ∈M , B ⊆M then a
ε∈B′∩M ,

and hence A
ε⊆B′∩M . ■

As a straightforward consequence of Lemma 7.4, we in turn obtain the following:

Lemma 7.5 (Near inclusion of commutants). Let C ,D ⊆ B(H ) be von Neumann algebras

with C hyperfinite. If C
ε⊆ D, then D′ 2ε⊆ C ′. If moreover C ⊆ M for a von Neumann

algebra M ⊆ B(H ), then D′∩M
2ε⊆ C ′∩M .

Proof. It suffices to prove the second statement, since it reduces to the first if we

choose M = B(H ). Since C
ε⊆ D = (D′)′, the first claim in Lemma 7.4 (with A = C

and B =D′) shows that

∥[a,b]∥ ≤ 2ε∥a∥∥b∥ = 2ε∥a∥∥b∥
for all a ∈ C and b ∈ D′. Since C is hyperfinite, we can now use the converse in

Lemma 7.4 (with A =D′∩M and B =C ⊆M ) to conclude that D′∩M
2ε⊆ C ′∩M . ■
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We now come to a central and nontrivial result. For hyperfinite von Neumann

algebras, if A
ε⊆B for sufficiently small ε, there exists a unitary close to the identity that

rotates A into B.

Theorem 7.6 (Near inclusions of subalgebras). For hyperfinite von Neumann algebras

A ,B ⊆ B(H ) with A
ε⊆ B for some ε ≤ 1

64 , there exists a unitary u ∈ (A ∪B)′′ such
that u∗A u ⊆B and we have:

(i) ∥I −u∥ ≤ 12ε.

(ii) If z ∈ B(H ) satisfies ∥[z,c]∥ ≤ δ∥z∥∥c∥ for all c ∈A ∪B, then ∥u∗zu−z∥ ≤ 10δ∥z∥.

Moreover, if A0 ⊆A is an AF C∗-algebra such that A ′′
0 =A , then u can be chosen such

that also:

(iii) If z ∈ B(H ) satisfies z
δ∈A0 and z

δ∈B, then ∥u∗zu − z∥ ≤ 16δ∥z∥.

This theorem extends Theorem 4.1 of Christensen [Chr80]. The first item re-states
his result, and we develop the remaining claims. A self-contained proof appears in Sec-
tion 7.2. Similar stability theorems exist for various other classes of C∗-algebras [Chr80,
CSS+12]. The stability of subalgebra inclusions is closely related to what is often (es-
pecially in the context of groups) referred to as Ulam stability [Ula60, BOT13]. There,
one is given a map that “almost” satisfies the homomorphism properties, and one
asks whether the map can be slightly deformed into a true homomorphism. See for
instance [Joh88, Par04] for Ulam stability results on C∗-algebras. The proof of Theo-
rem 7.6 implicitly involves one such Ulam stability property: a completely positive
map on a hyperfinite von Neumann algebra that is almost a homomorphism is then
deformed to a true homomorphism; see e.g. [Joh88] more generally.

Using related methods, we also obtain the following useful lemma. Here, we control
the global error between two homomorphisms using the sum of errors on their local
restrictions.

Lemma 7.7. Consider two injective weak-∗ continuous unital ∗-homomorphisms

α1,α2 : A →B

between von Neumann algebras A ⊆ B(H ) and B ⊆ B(K ), with hyperfinite von Neu-
mann subalgebras A1, . . . ,An ⊆A that pairwise commute, i.e., [Ai ,A j ] = 0 for i ̸= j , and
generate A in the sense that (∪n

i=1Ai )′′ =A . Define

ε=
n∑

i=1
∥(α1 −α2)|Ai ∥.

Then if ε< 1,

∥α1 −α2∥ ≤ 2
p

2ε
(
1+ (1−ε2)

1
2

)− 1
2 ≤ 2

p
2ε,

where we note that the expression in the middle is 2ε+O (ε2).
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The proof appears in Section 7.2. We find the difference between the homomor-
phisms α1 and α2 is controlled by the sum of their local differences. It appears possible
that in general, a tighter bound ∥α1 −α2∥ ≤ ε+O (ε2) may be correct. An easy example
demonstrates the bound is optimal to within a constant factor. Let A =A1 ⊗·· ·⊗ An

for matrix algebras Ai , and let α1(x) = x and α2(x) = u∗xu for u = u1 ⊗·· ·⊗un , choos-
ing any ui ∈ U (Ai ) with spectrum {1,e i εn }, so that ∥ui − I∥ = ε

n +O (ε2) and hence we
find ∥u − I∥ = ε+O (ε2). Note that by e.g. Theorem 26 of [JKP09], the map on opera-
tors x 7→ v xv∗−x for unitary v has norm given by the diameter of the smallest closed
disk containing the spectrum of v . For ui and u, that diameter is given by ε

n +O (ε2)
and ε+O (ε2), respectively. Then ∥(α1−α2)|Ai ∥ = ε

n +O (( εn )2), while ∥α1−α2∥ = ε+O (ε2).

7.2 Proof of Theorem 7.6

In this section, we prove Theorem 7.6 about near inclusions of von Neumann alge-
bras. The result is an extension of Theorem 4.1 of Christensen [Chr80], but we give a
self-contained proof. We follow closely the exposition in [Chr80, Chr77a]. Note that
in [Chr80] it is assumed that injective von Neumann algebras have a property called D1.
However, whether this is true is unknown, see comments in [PTWW14]. We slightly
adapt the arguments of [Chr80] to avoid this issue.

We start by two lemmas which bound commutators [x, f (y)] in terms of commuta-
tors [x, y], assuming that y is near the identity, which are relevant to our extension of
the result in [Chr80].

In this appendix we bound commutators [x, f (y)] in terms of commutators [x, y],
assuming that y is near the identity.

Lemma 7.8 (Commutators with powers). Let A be a C∗-algebra and let y ∈ A be a
normal element with ∥I − y∥ ≤ ε< 1. Then, for any s ∈ [−1,1] and x, y ∈A , we have

∥[x, y s]∥ ≤ |s|
(1−ε)1−s

∥[x, y]∥.

For fractional powers, y s is defined using the functional calculus, with branch cut on
the negative imaginary axis (away from the spectrum because ∥y − I∥ < 1).

Proof. We assume that s ̸∈ {0,1} since otherwise the claim holds trivially. Let z = I − y .
The function t 7→ (1− t )s is holomorphic on the open unit disk, so we may expand

y s = (I − z)s =
∞∑

n=0
cn zn .

The exact form of the coefficients cn here is unimportant, but note sgn(cn) =−sgn(s)
for n ≥ 1 by our assumption that s ̸∈ {0,1}.

∥[x, y s]∥ = ∥[x, (I − z)s]∥ ≤
∞∑

n=1
|cn |∥[x, zn]∥ ≤−sgn(s)

∞∑
n=1

cn n ∥z∥n−1∥[x, z]∥

=−sgn(s)
d

d w
(1−w)s

∣∣∣
w=∥z∥∥[x, y]∥ = |s|

(1−∥z∥)1−s
∥[x, y]∥ ≤ |s|

(1−ε)1−s
∥[x, y]∥

as desired. ■
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Lemma 7.9 (Commutators with polar decompositions). Let A be a C∗-algebra and
y ∈A an element with ∥y − I∥ ≤ ε≤ 1

8 . Let y = u|y | be its polar decomposition, with |y | =
(y∗y)

1
2 . Then, for any x ∈A ,

∥[x,u]∥ < 3∥[x, y]∥+2∥[x, y∗]∥.

More generally for any ε<p
2−1, an estimate of the above form holds for some choice

of constants on the right-hand side depending only on ε.

Proof. Note ∥y − I∥ ≤ ε < 1 implies that y is invertible, hence the unitary u in the

polar decomposition is uniquely given by u = y |y |−1 = y(y∗y)−
1
2 . Moreover, we must

have ∥y∥ ≤ 1+ε and ∥y∗y − I∥ ≤ (2+ε)ε, which also implies that

∥(y∗y)−
1
2 ∥ ≤ (1− (2+ε)ε)−

1
2 ,

since ε<p
2−1. We obtain

∥[x,u]∥ = ∥[x, y(y∗y)−
1
2 ]∥ ≤ ∥y∥∥[x, (y∗y)−

1
2 ∥+∥(y∗y)−

1
2 ∥∥[x, y]∥

≤ (1+ε)∥[x, (y∗y)−
1
2 ∥+ 1(

1−2ε−ε2
) 1

2

∥[x, y]∥

≤ 1+ε
2(1−2ε−ε2)

3
2

∥[x, y∗y]∥+ 1(
1−2ε−ε2

) 1
2

∥[x, y]∥

≤ (1+ε)2

2(1−2ε−ε2)
3
2

(∥[x, y∗]∥+∥[x, y]∥)+ 1(
1−2ε−ε2

) 1
2

∥[x, y]∥

= (1+ε)2 +2(1−2ε−ε2)

2(1−2ε−ε2)
3
2

∥[x, y]∥+ (1+ε)2

2(1−2ε−ε2)
3
2

∥[x, y∗]∥.

Here we use the above comments to bound the relevant norms, as well as Lemma 7.8
for s =−1

2 . Using ε≤ 1
8 this implies the desired bounds. ■

We continue with Proposition 7.10, which generalizes Proposition 4.2 of Chris-
tensen [Chr77a]. There Christensen considers two subalgebras A ,B ⊆ B(H ) that are
isomorphic via an isomorphismΦ : A →B. Note thatΦ is defined only on A , and not
on B(H ). Roughly speaking, the theorem says that if the isomorphism nearly fixes A , it
is inner and implemented by a unitary near the identity. Our Proposition 7.10 below
extends this result to the case of multiple commuting subalgebras Ai . Our generaliza-
tion will be useful for Lemma 7.7. We also extend Christensen’s result with the following
observation: for elements of B(H ) that nearly commute with A and B, the distance
these elements are moved by the inner automorphism is controlled by the size of their
commutator with A and B.

Proposition 7.10 (Making homomorphisms inner). Consider C∗-algebras Ai ,Bi ⊆
B(H ) for i = 1, . . . ,n, such that each A ′′

i is hyperfinite and [Ai ,A j ] = [Bi ,B j ] = 0 for i ̸=
j . Consider unital ∗-homomorphismsΦi : Ai →Bi , with ∥Φi (ai )−ai∥ ≤ γi∥ai∥ for all
ai ∈Ai and i = 1, . . . ,n. Denote A = (∪n

i=1Ai )′′, B = (∪n
i=1Bi )′′, and ε=∑n

i=1γi . If ε< 1,
then there exists a unitary u ∈ (A ∪B)′′ such that Φi (ai ) = u∗ai u for all i and ai ∈Ai ,
with

∥I −u∥ ≤p
2ε(1+ (1−ε2)

1
2 )−

1
2 ≤p

2ε,
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where we note that the expression in the middle is in fact ε+O (ε2).
Moreover, for ε≤ 1

8 , u can be chosen such that for any z ∈ B(H ), if ∥[z,c]∥ ≤ δ∥z∥∥c∥
for all c ∈A ∪B, then ∥u∗zu − z∥ ≤ 10δ∥z∥.

Note c ∈ A ∪B refers to the union of sets, i.e. c ∈ A or c ∈ B. The proof extends the
proof of Proposition 4.2 in [Chr77a].

Proof of Proposition 7.10. We will define an element y ∈ (A ∪B)′′ whose polar decom-
position yields the desired unitary u. We construct the element y to satisfy the proper-
ties ∥I − y∥ ≤∑n

i=1γi and yΦi (ui ) = ui y for all ui ∈U (Ai ) and i = 1, . . . ,n.2

By Proposition 7.11 further below, each homomorphism Φi : Ai → Bi can be ex-
tended to a ∗-isomorphismΦ′

i : A ′′
i →Φi (Ai )′′ ⊆B′′

i . Moreover, ∥Φ′
i (ai )−ai∥ ≤ γi∥ai∥.

Without loss of generality, we may assume Ai is a hyperfinite von Neumann algebra
andΦi is a weak-∗ continuous unital homomorphism (this can always be achieved by
replacing Ai by A ′′

i , Bi by B′′
i ,Φi byΦ′

i ; the latter is weak-∗ continuous because it is a
∗-isomorphism of von Neumann algebras).

Consider B(H ⊕H ) with pairwise commuting subalgebras

Ci =
{(

ai 0
0 Φi (ai )

)
: ai ∈Ai

}
⊆ B(H ⊕H ).

Since Φi is weak-∗ continuous, the map ai 7→ ai ⊕Φi (ai ) is a weak-∗-continuous unital
∗-homomorphism. Therefore, Ci , which is its image, is a von Neumann algebra is
isomorphic to Ai and hence hyperfinite.

Therefore, by Theorem 7.3 Ci has property P and for

x0 =
(
0 I
0 0

)
∈ B(H ⊕H )

there exists an element x1 ∈C ′
i that is also in the weak operator closure of the convex

hull of {c∗1 x0c1 : c1 ∈U (C1)}. Note that unitaries c1 ∈U (C1) are of the form(
u1 0
0 Φ1(u1)

)
for u1 ∈U (A1), so elements c∗1 x0c1 are of the form(

u∗
1 0

0 Φ1(u∗
1 )

)(
0 I
0 0

)(
u1 0
0 Φ1(u1)

)
=

(
0 u∗

1Φ1(u1)
0 0

)
.

Hence x1 is of the form

x1 =
(
0 y1

0 0

)
(7.7)

2In finite dimension, one can define the element y using

y =
∫

U (A1)
du1 · · ·

∫
U (An )

dun u∗
n · · ·u∗

1Φ1(u1) · · ·Φn(un),

using the Haar measure of the unitary groups U (Ai ). This y is easily seen to satisfy the aforementioned
properties.
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for some y1 ∈ (A1 ∪B1)′′. By direct calculation, x1 ∈C ′
1 implies y1Φ(u1) = u1 y1 for any

unitary u1 ∈A1, and hence

y1Φ1(a1) = a1 y1

for any a1 ∈A1.
If n = 1, we take y1 = y . Otherwise, we repeat the above construction but with x1

taking the place of x0, and applying property P of C2. We obtain x2 ∈ C ′
2 and associ-

ated y2, with y2Φ2(a2) = a2 y2 for all a2 ∈A2. Also note x2 ∈C ′
1, so y2Φ1(a1) = a1 y2 for

all a1 ∈U (A1). We continue in this way, until we obtain y := yn , with the property

yΦi (ai ) = ai y (7.8)

for all ai ∈Ai and i = 1, . . . ,n.
By construction, y1 is in the weak operator closure of the convex hull of the set

{u∗
1Φ1(u1) : u1 ∈U (A1)},

and likewise y2 is in the weak operator closure of the convex hull of

{u∗
2 y1Φ2(u2) : u2 ∈U (A2)},

and so on. Then y is in the weak operator closure of the convex hull of

S := {u∗
n . . .u∗

1Φ1(u1) . . .Φn(un) : u1 ∈U (A1), . . . ,un ∈U (An)}. (7.9)

Elements of this form are near the identity,

∥I −u∗
n . . .u∗

1Φ1(u1) . . .Φn(un)∥ ≤ ∥I −u∗
n . . .u∗

2Φ2(u2) . . .Φn(un)∥+∥Φ1(u1)−u1∥

≤
n∑

i=1
∥Φi (ui )−ui∥,

and thus, by convexity and lower semicontinuity of the norm in the weak operator
topology,

∥I − y∥ ≤
n∑

i=1
γi = ε.

Define u = y |y |−1 as the unitary in the polar decomposition of y . By the above estimate,
it generally follows (Lemma 2.7 of [Chr75]) that

∥u − I∥ ≤p
2ε(1+ (1−ε2)

1
2 )−

1
2 ≤p

2ε.

We now show

u∗ai u =Φi (ai )

for all ai ∈Ai and i = 1, . . . ,n. To see this, first note that (7.8) implies

y∗y =Φi (ui )∗y∗yΦ(ui )
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for any ui ∈U (Ai ), so that [Φi (ui ), y∗y] = 0. Then, since any ai ∈Ai can be written as a
linear combination of unitary elements, [Φi (ai ), y∗y] = 0, hence [Φi (ai ), |y |−1] = 0 and

u∗ai u = |y |−1 y∗ai y |y |−1 = |y |−1 y∗yΦi (ai )|y |−1 = |y |−1 y∗y |y |−1Φi (ai ) =Φ(ai )

where we first used (7.8) and then that [Φi (ai ), |y |−1] = 0.
Finally, we show the last claim of the theorem. Consider any z ∈ B(H ) with the

property that ∥[z,c]∥ ≤ δ∥z∥∥c∥ for all c ∈ A ∪B. Then, ∥[z, s]∥ ≤ 2δ∥z∥ for any s ∈ S,
since any element of S is a product of a unitary in U (A ) and a unitary in U (B), and
likewise ∥[z, s∗]∥ ≤ 2δ∥z∥. We find that

∥[z, y]∥ ≤ 2δ∥z∥,

using that y is in the weak operator closure of the convex hull of S as defined in (7.9). To
see this, let yi be a net of elements in the convex hull of S that converges to y in the weak
operator topology. Since the elements in S have norm at most one, by convexity it holds
that ∥yi∥ ≤ 1 as well and hence ∥[z, yi ]∥ ≤ 2δ∥z∥. The norm is lower semicontinuous in
the weak operator topology which implies that ∥[z, y]∥ ≤ liminfi∥[z, yi ]∥ ≤ 2δ∥z∥. The
above reasoning holds for y∗ as well. Then we can apply Lemma 7.9, where we use
that ∥I − y∥ ≤ ε≤ 1

8 . We find

∥u∗zu − z∥ = ∥[z,u]∥ ≤ 3∥[z, y]∥+2∥[z, y∗]∥ ≤ 10δ∥z∥
as desired. ■

The above proof is completed by the technical proposition below. The proof follows
from the proof of Theorem 5.4 in [Chr77a].

Proposition 7.11. Let A ⊆ B(H ) be C∗-algebra and letΦ : A → B(H ) be a unital
∗-homomorphism with ∥Φ(a)−a∥ ≤ ε∥a∥ for all a ∈A and some ε< 1, thenΦ can be
extended to a ∗-isomorphismΦ′ : A ′′ →Φ(A )′′ with ∥Φ(a)−a∥ ≤ ε∥a∥ for all a ∈A ′′.

Proof. To extendΦ, consider B(H ⊕H ) with subalgebra

C =
{(

a 0
0 Φ(a)

)
: a ∈A

}
⊆ B(H ⊕H ).

We first show that for any a ∈A ′′, there exists unique b ∈Φ(A)′′ such that

c =
(

a 0
0 b

)
∈C ′′.

For a ∈A ′′, by Kaplansky’s density theorem, there exists a net {ai } in A converging in
the strong and hence in the weak operator topology to a, with ∥ai∥ ≤ ∥a∥. Then we
have ∥Φ(ai )−ai∥ ≤ ε∥a∥, and ∥Φ(ai )∥ ≤ (1+ε)∥a∥, so we can define a net

ci =
(

ai 0
0 Φ(ai )

)
within a ball of finite radius in B(H ). Since such balls are compact in the weak operator
topology, ci must have a convergent subnet, which then converges to some

c =
(

a 0
0 b

)
∈C ′′,



136 Chapter 7. Operator algebras and stability of subalgebras

as claimed. To see the uniqueness of b given a, suppose otherwise that there exist
corresponding b1,b2 ∈Φ(A)′′ with (a,b1), (a,b2) ∈C ′′, so that z = b1 −b2 ∈Φ(A )′′ with

c =
(
0 0
0 z

)
∈C ′′.

By Kaplansky’s density theorem, there exists a net {ci } in C converging strongly to c
with ∥ci∥ ≤ ∥c∥ = ∥z∥. Write ci = (ai ,Φ(ai )) for ai ∈A . Then ∥ai∥ ≤ ∥z∥, {ai } converges
strongly to zero, and {Φ(ai )} converges strongly to z, soΦ(ai )−ai converges strongly to z
and hence also weakly. By the lower semicontinuity of the norm for the weak operator
topology, ∥z∥ ≤ liminfi∥Φ(ai )−ai∥ ≤ ε∥z∥, so that ∥z∥ = 0 and b1 = b2, demonstrating
uniqueness.

A similar argument shows that for any b ∈Φ(A )′′, there exists unique a ∈A ′′ such
that

c =
(

a 0
0 b

)
∈C ′′.

The above maps a 7→ b and b 7→ a define a bijection Φ′ : A ′′ → Φ(A )′′. The linearity,
multiplicativity, and ∗-property ofΦ′ follow from the above uniqueness. ThusΦ′ is a ∗-
isomorphism. Finally, we show ∥Φ′(a)−a∥ ≤ ∥a∥ε for all a ∈A ′′. By Kaplansky’s density
theorem, there exists a net {ai } strongly converging to a for ai ∈A with ∥ai∥ ≤ ∥a∥. By
the above constructions, there exists a subnet such that Φ(ai ) converges in the weak
operator topology to Φ′(a). Then, again by the lower semicontinuity of the norm, we
find that ∥Φ′(a)−a∥ ≤ liminfi∥Φ(ai )−ai∥ ≤ ε∥a∥, as desired. ■

Now we turn to Theorem 7.6. In Theorem 4.1 of [Chr80], Christensen proves that if a
subalgebra A is approximately contained in another subalgebra B then there exists a
unitary near the identity that rotates A into B. Our Theorem 7.6 extends his result with
the following observations. First, elements of B(H ) already close to both A and B are
not moved much by the automorphism. Second, elements that nearly commute with
both A and B are are not moved much either. Thus the automorphism “does no more
than it needs.”

For convenience, we recall the notion of near inclusions in Definition 7.2. We

write a
ε∈B when there exists b ∈B such that

∥a −b∥ ≤ ε∥a∥,

and we write A
ε⊆ B when a

ε∈ B for all a ∈ A . Also recall the notion of hyperfinite
von Neumann algebras, reviewed in Section 7.0.2. Then we are equipped to state
Theorem 7.6, repeated below.

Theorem 7.6 (Near inclusions of subalgebras). For hyperfinite von Neumann algebras

A ,B ⊆ B(H ) with A
ε⊆ B for some ε ≤ 1

64 , there exists a unitary u ∈ (A ∪B)′′ such
that u∗A u ⊆B and we have:

(i) ∥I −u∥ ≤ 12ε.

(ii) If z ∈ B(H ) satisfies ∥[z,c]∥ ≤ δ∥z∥∥c∥ for all c ∈A ∪B, then ∥u∗zu−z∥ ≤ 10δ∥z∥.
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Moreover, if A0 ⊆A is an AF C∗-algebra such that A ′′
0 =A , then u can be chosen such

that also:

(iii) If z ∈ B(H ) satisfies z
δ∈A0 and z

δ∈B, then ∥u∗zu − z∥ ≤ 16δ∥z∥.

The first item re-states Theorem 4.1 of Christensen [Chr80], or specifically part (b) of
his Corollary 4.2 (noting that hyperfinite algebras are injective). The remaining items
constitute our extension.

Now we proceed with the proof of Theorem 7.6, closely following and elaborating
on some technical details and then extending the proof of Theorem 4.1 in [Chr80].

Proof of Theorem 7.6. By Theorem 7.3, since B is hyperfinite, it is injective and hence
there exists a conditional expectation

EB : B(H ) →B ⊆ B(H ).

This map is completely positive and unital, and thus it has a Stinespring dilation [Sti55].
That is, there exists a Hilbert space K , a unital ∗-homomorphism π : B(H ) → B(K ),
and an isometry v : H →K such that

EB(x) = v∗π(x)v ∀x ∈ B(H ). (7.10)

Let p = v v∗ ∈ B(K ) be the projection onto the image of v . Then p ∈ π(B)′, since EB

restricted to B is an isomorphism.34

Next we show that p nearly commutes with π(A ) as well. For any a ∈ A , we

choose b ∈B with ∥a −b∥ ≤ ε∥a∥, using A
ε⊆B. Then,

∥[π(a), p]∥ = 1

2
∥[π(a −b),2p − I ]∥ ≤ ∥π(a −b)∥∥2p − I∥ ≤ ε∥a∥, (7.11)

noting that for any projection, ∥2p − I∥ = 1.
Note that although A itself is hyperfinite, π(A )′′ is not immediately guaranteed hy-

perfinite, becauseπ is not guaranteed weak-∗ continuous. On the other hand, since A is
hyperfinite, there exists an AF C∗-algebra A0 ⊆A such that A ′′

0 =A , as in the theorem
statement. Then π(A0) is also AF, and π(A0)′′ is hyperfinite.

Because π(A0)′′ hyperfinite, it satisfies property P, so there exists p̃ in the weak
operator closure of the convex hull of {upu∗ : u ∈U (π(A0)′′)} such that p̃ ∈π(A0)′. By

3In more detail, to see p ∈ π(B)′, first note π(B) → B(K ), π(b) 7→ pπ(b)p is a ∗-homomorphism.
Then note the following general fact: for any algebra A ⊂ B(H ) and projection p ∈ B(H ), if the map
f (a) = pap is a ∗-homomorphism, then p ∈A ′. To see this, note for any a ∈A , f (a∗a) = f (a∗) f (a) =
pa∗pap and f (a∗a) = pa∗ap = pa∗(p + p⊥)ap = pa∗pap + pa∗p⊥ap, so the difference yields 0 =
pa∗p⊥ap = (p⊥ap)∗(p⊥ap), so p⊥ap = 0. The same is true for a∗, so pap⊥ = 0 also. Then [p, a] =
(p +p⊥)[p, a](p +p⊥) = pap⊥−p⊥ap = 0.

4It may be helpful to understand the Stinespring dilation explicitly in finite dimensions where H =
H A⊗HB and B = I A⊗B(HB ), with commutant B′ =A = B(H A)⊗IB . Then the conditional expectation
is the normalized partial trace EB(x) = 1

dA
trA (x). For a minimal Stinespring dilation we can take the

Hilbert space K = H 1
A ⊗H 2

A ⊗H 3
A ⊗HB , where the H i

A are three copies of the Hilbert space H A . We
define π : B(H ) → B(K ) by identifying operators on H with operators on H 1

A ⊗HB . Finally, we take
the isometry v as adding a maximally entangled state on H 1

A ⊗H 2
A . Note that the projection p onto the

image of v commutes with π(B) = I A1 A2 A3 ⊗B(HB ).
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convexity of the norm and lower semicontinuity of the norm with respect to the weak
operator topology,

∥p̃ −p∥ ≤ sup
u∈U (π(A0)′′)

∥p̃ −upu∗∥ = sup
u∈U (π(A0)′′)

∥[u, p]∥ ≤ ε.

The final inequality follows from Eq. (7.11) in the following way. First we observe
that ∥[u, p]∥ ≤ ε for any u ∈ π(U (A )). By the lower semicontinuity of the norm in the
weak operator topology, this estimate extends directly to the weak operator closure
of π(U (A )). Accordingly, it suffices to show that any u ∈ U (π(A0)′′) is contained in
the weak operator closure of π(U (A )). This can be seen as follows. By Theorem 5.2.5
in [KR97] there exists self-adjoint y ∈ π(A0)′′ such that u = e i y . By a version of the
Kaplansky density theorem, there exists a net {yn} of self-adjoint elements yn ∈π(A0)
converging strongly to y , with ∥yn∥ ≤ ∥y∥. Then {e i yn } is a net of elements in π(U (A0)),
since we can always write yn = π(xn) with self-adjoint xn ∈ A0, hence e i yn = e iπ(xn ) =
π(e i xn ) and e i xn is unitary. On the other hand, by Proposition 5.3.2 in [KR97], {e i yn }
converges strongly to e i y = u. We conclude that u is in the strong (and hence in the
weak) operator closure of π(U (A0)), hence in particular of π(U (A )). Note that, by
construction, ∥p̃∥ ≤ ∥p∥ = 1.

Next we would like to project p̃ onto (π(B(H ))∪ {p})′′, the von Neumann alge-
bra generated by π(B(H )) and the projection p inside B(K ).5 By Corollary 1.3.2
in [Arv69], (π(B(H ))∪ {p})′ is isomorphic to B′. Because the commutant of an in-
jective von Neumann algebra is injective, and B is injective, B′ is also injective, hence
also (π(B(H ))∪ {p})′ and (π(B(H ))∪ {p})′′. Thus we can use a conditional expectation
to define

x = E(π(B(H ))∪{p})′′(p̃) ∈ (π(B(H ))∪ {p})′′, ∥x −p∥ ≤ ε,

where the norm bound follows from ∥p̃ −p∥ ≤ ε, because the conditional expectation
is a contraction. Moreover, it holds that x ∈ π(A0)′. To see this, compute [x, z] = 0
for z ∈ π(A0), using that p̃ ∈ π(A0)′ and π(A0) ⊆ (π(B(H ))∪ {p})′′, and the general
property of conditional expectations that EZ (z1 y z2) = z1EZ (y)z2 for z1, z2 ∈Z .

The next steps follow Lemma 3.3 of [Chr77a]. Note that because x is self-adjoint,we
have ∥x−p∥ ≤ ε, and ∥x∥ ≤ 1 (as conditional expectations are contractions), its spectrum
is in [−ε,ε]∪ [1−ε,1]. Define the projection q ∈ π(A0)′ as the spectral projection of x
corresponding to the part of the spectrum in [1−ε,1]. Then, ∥q−x∥ ≤ ε and ∥q−p∥ ≤ 2ε.

Using the projection p ∈π(B)′ and the nearby projection q ∈π(A0)′, define

y = qp +q⊥p⊥,

where p⊥ = (I −p) denotes the projection onto the orthogonal complement. Then

∥y − I∥ = ∥(2q − I )(p −q)∥ ≤ ∥p −q∥ ≤ 2ε. (7.12)

In particular, y is invertible. Now consider the unitary w = y |y |−1 from the polar de-
composition y = w |y |. Because y is near the identity, w must be as well. Namely, by
Lemma 2.7 of [Chr75], we find

∥w − I∥ ≤ 2
p

2ε. (7.13)

5In the finite-dimensional setting of Footnote 4, where again K = H 1
A ⊗H 2

A ⊗H 3
A ⊗HB , we have

(π(B(H ))∪ {p})′ = B(H 3
A) and hence (π(B(H ))∪ {p})′′ = B(H 1

A ⊗H 2
A ⊗HB ).
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Since y∗y = pqp + p⊥q⊥p⊥, we have [p, y∗y] = 0 and hence [p, |y |−1] = 0. More-
over, y p = q y , so

w pw∗ = y |y |−1p|y |−1 y∗ = y p|y |−1|y |−1 y∗ = q y |y |−1|y |−1 y∗ = q. (7.14)

With the unitary w ∈ (p∪π(B(H )))′′, we can finally define the homomorphism to which
we soon apply Proposition 7.10. Let

Φ : A0 →B ⊆ B(H ), Φ(a) = v∗w∗π(a)w v.

This is a unital ∗-homomorphism, since it clearly preserves the ∗-operation and we
have for all a1, a2 ∈A0 that

Φ(a1)Φ(a2) = v∗w∗π(a1)w pw∗π(a2)w v = v∗w∗π(a1)qπ(a2)w v

= v∗w∗π(a1a2)qw v = v∗w∗π(a1a2)w pv =Φ(a1a2),

using (7.14), q ∈ π(A0)′, p = v v∗, and that v is an isometry. To see that its image lies
in B, note that w∗π(a)w ∈ (p ∪π(B(H )))′′ and recall the original construction of the
Stinespring dilation in (7.10). Moreover, for any a ∈A0, by assumption there exists b ∈B

with ∥b −a∥ ≤ ε∥a∥, so that

∥Φ(a)−a∥ ≤ ∥Φ(a)−b∥+∥b −a∥
= ∥v∗(

w∗π(a)w −π(b)
)
v∥+∥b −a∥

≤ ∥w∗π(a)w −π(b)∥+∥b −a∥
≤ ∥w∗π(a)w −π(a)∥+2∥b −a∥
= ∥[π(a), w]∥+2∥b −a∥ (7.15)

= ∥[π(a), w − I ]∥+2∥b −a∥
≤ 2∥w − I∥∥a∥+2∥b −a∥ ≤ 8ε∥a∥.

using b = EB(b) = v∗π(b)v in the second step and (7.13) in the last step.
We can thus apply Proposition 7.10 (for n = 1) to obtain a unitary u ∈ (A ∪B)′′

which is such that ∥u − I∥ ≤ p
2 · 8ε ≤ 12ε such that u∗au = Φ(a) ∈ B for all a ∈ A0,

and we extend the map Φ : A → B by Φ(a) = u∗au for a ∈ A = A ′′
0 . Moreover, by

Proposition 7.10, we are already ensured the desired property of Theorem 7.6 that
if z ∈ B(H ) satisfies ∥[z,c]∥ ≤ δ∥z∥∥c∥ for all c ∈A ∪B, then ∥uzu∗− z∥ ≤ 10δ∥z∥.

Finally, we need to show the additional property that for any z ∈ B(H ) with z
δ∈A0

and z
δ∈B, we have ∥u∗zu − z∥ ≤ 16δ∥z∥. First take a ∈A0 with ∥z −a∥ ≤ δ∥z∥. Then,

∥u∗zu − z∥ = ∥u∗(z −a)u − (z −a)+u∗au −a∥ ≤ 2δ∥z∥+∥Φ(a)−a∥.

Now take b ∈B with ∥z −b∥ ≤ δ∥z∥, hence also ∥a −b∥ ≤ 2δ∥z∥. Then we can bound
just like in (7.15) to obtain (note that a ∈A0)

∥Φ(a)−a∥ ≤ ∥[π(a), w]∥+2∥a −b∥
≤ ∥[π(a), w]∥+4δ∥z∥
≤ 3∥[π(a), y]∥+2∥[π(a), y∗]∥+4δ∥z∥,
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where we used Lemma 7.9 in the last line, noting that ∥y − I∥ ≤ 2ε ≤ 1
8 by Eq. (7.12)

and our assumption on ε. To bound the commutators’ norms, recall that p ∈ π(B)′

and q ∈π(A0)′. Hence,

∥[π(a), y]∥ = ∥[π(a), qp +q⊥p⊥]∥ = ∥(2q − I )[π(a), p]∥
≤ ∥[π(a), p]∥ = ∥[π(a −b), p]∥ = 1

2
∥[π(a −b),2p − I ]∥ ≤ ∥a −b∥ ≤ 2δ∥z∥,

and likewise for [π(b), y∗]. Therefore, ∥Φ(a)−a∥ ≤ 14δ∥z∥, and hence

∥u∗zu − z∥ ≤ 16δ∥z∥

as desired. ■
As another application of Proposition 7.10, Lemma 7.7 controls the distance between

homomorphisms using the distance between their local restrictions. We repeat the
statement for convenience.

Lemma 7.7. Consider two injective weak-∗ continuous unital ∗-homomorphisms

α1,α2 : A →B

between von Neumann algebras A ⊆ B(H ) and B ⊆ B(K ), with hyperfinite von Neu-
mann subalgebras A1, . . . ,An ⊆A that pairwise commute, i.e., [Ai ,A j ] = 0 for i ̸= j , and
generate A in the sense that (∪n

i=1Ai )′′ =A . Define

ε=
n∑

i=1
∥(α1 −α2)|Ai ∥.

Then if ε< 1,

∥α1 −α2∥ ≤ 2
p

2ε
(
1+ (1−ε2)

1
2

)− 1
2 ≤ 2

p
2ε,

where we note that the expression in the middle is 2ε+O (ε2).

Proof. Since we assume theαi to be weak-∗ continuous,α1(Ai ) andα2(Ai ) are von Neu-
mann algebras which are isomorphic to Ai (and in particular are hyperfinite). Define
∗-isomorphisms Φi between α1(Ai ) and α2(Ai ), given by α1(ai ) 7→α2(ai ) for ai ∈Ai .
Then we apply Proposition 7.10 (with α1(Ai ) as Ai , α2(Ai ) as Bi , and where we
letγi = ∥(α1−α2)|Ai ∥) to find a unitary u ∈B such thatα2(ai ) = u∗α1(ai )u for all ai ∈Ai

for i = 1, . . .n with

∥I −u∥ ≤p
2ε

(
1+ (1−ε2)

1
2

)− 1
2

.

This implies that α2(a) = u∗α1(a)u for all a ∈A , and hence

∥α1 −α2∥ ≤ 2
p

2ε
(
1+ (1−ε2)

1
2

)− 1
2

.

■
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Finally, we mention another result about simultaneous near inclusions. If sev-
eral mutually commuting subalgebras Ai each nearly include into B, then so does
the algebra they generate. We use this lemma to prove Lemma 9.3 which shows that
Lieb-Robinson type bounds for single site operators imply Lieb-Robinson bounds for
operators supported on arbitrary sets.

Lemma 7.12 (Simultaneous near inclusions). Let Ai ⊆ B(H ) for i = 1, ...,n and let B ⊆
B(H ) be von Neumann algebras, where the Ai are hyperfinite and [Ai ,A j ] = 0 for i ̸= j .

If Ai
εi⊆B for each i , then for ε :=∑n

i=1εi we have

B′ 2ε⊆ (∪i Ai )′. (7.16)

If additionally Ai ⊆M for some von Neumann algebra M ⊆ B(H ) for i = 1, . . . ,n, then

B′∩M
2ε⊆ (∪i Ai )′∩M . (7.17)

Finally, if B′ is hyperfinite then

(∪i Ai )′′
4ε⊆ B.

Proof. First we show B′ nearly includes into (∪i Ai )′. By hyperfiniteness (and therefore
property P) of A1, for each b′

0 ∈B′ there exists b′
1 ∈A ′

1 in the weak operator closure of the
convex hull of {u∗

1 b′
0u1 : u1 ∈U (A1)}. Then by property P of A2, there exists b′

2 ∈A ′
2 in

the weak operator closure of the convex hull of {u∗
2 b′

1u2 : u ∈U (A2)}. Note that b′
2 ∈A ′

1
still, using [A1,A2] = 0. We continue in this way until we find b′

n in the weak operator
closure of the convex hull of6

{u∗
n · · ·u∗

1 b′
0u1 · · ·un : u1 ∈U (A1), . . . ,un ∈U (An)}.

Note ∥[ui ,b′
0]∥ ≤ 2εi∥b′

0∥, by Ai
εi⊆B and Lemma 7.4. Thus, elements in the above set

are near b′
0, since by a telescoping sum

∥b′
0 −u∗

n · · ·u∗
1 b′

0u1 · · ·un∥ ≤
n∑

i=1
∥u∗

n · · ·u∗
i+1b′

0ui+1 · · ·un −u∗
n · · ·u∗

i b′
0ui · · ·un∥

=
n∑

i=1
∥b′

0 −u∗
i b′

0ui∥ =
n∑

i=1
∥[ui ,b′

0]∥ ≤ 2ε∥b′
0∥

and hence, using the convexity of the norm and its lower semicontinuity with respect to
the weak operator topology,

∥b′
0 −b′

n∥ ≤ 2ε∥b′
0∥.

By construction, b′
n ∈ A ′

i for each i , so b′
n ∈ (∪i Ai )′. The above construction held for

any b′
0 ∈ B′, so Eq. (7.16) follows. Note that if we assume that each Ai ⊆ M and we

take b′
0 ∈B′∩M , then also b′

n ∈M , which shows Eq. (7.17). Finally, by Lemma 7.5 and

the assumption that B′ is hyperfinite we conclude that (∪i Ai )′′
4ε⊆ B. ■

6In the finite-dimensional case, we could immediately define

b′
n =

∫
U (A1)

du1 · · ·
∫

U (An )
dun u∗

n · · ·u∗
1 b′

0u1 · · ·un

using the Haar integral, rather than make use of property P.





CHAPTER 8

Index theory for quantum cellular
automata

In this section we first give a careful definition of QCAs. Next, we will discuss the
index theory of one-dimensional QCAs, following [GNVW12]. We prove some useful
properties on the robustness of this index, and we provide an alternative expression
for the index in terms of the mutual information. We start by giving a formal definition
of the notion of a QCA in Definition 8.1. In Section 8.1 we review the definition and
some of the most important properties of the GNVW index as proven in [GNVW12]. In
Section 8.2 we prove new results about the GNVW index: in Section 8.2.1 we provide
an alternative formula for the index in terms of a difference of mutual informations. In
Section 8.2.2 we prove some results about QCAs in one dimension which are locally
close to each other. These results are interesting in their own right, but will also be
crucial when extending the index to ALPUs.

We define a QCA as an automorphism of the quasi-local algebra, with a notion of
strict locality. To this end, consider a spin system on a lattice Γ with some metric d and
the associated quasi-local algebra AΓ. If X ⊆ Γwe will denote by

B(X ,r ) = {n ∈ Γ such that d(n, X ) ≤ r }

the set of sites within distance r of X .

Definition 8.1 (QCA). A quantum cellular automaton (QCA) with radius R is an auto-
morphism α : AΓ→AΓ such that if x is an operator supported on a finite subset X ⊆ Γ,
then α(x) is supported on B(X ,R). We call R the radius of the QCA.

In this dissertation we will only be concerned with QCAs on a one-dimensional
lattice, which we simply take to be Γ=Z. In Chapter 9 we will generalize this notion to
an approximately local version (an approximately locality preserving unitary, or ALPU).

8.1 One-dimensional QCAs and the GNVW index

One-dimensional QCAs have a beautifully simple structure theory, which we will now
review. The material in this section is based on [GNVW12], which we recommend for a
more extensive discussion. The same material is also covered in the review [Far20].
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Suppose that α is a nearest-neighbour QCA, which we may assume without loss of
generality after blocking sites. Let

Bn =A{2n,2n+1}

Cn =A{2n−1,2n}
(8.1)

be algebras on pairs of adjacent sites; with Bn and Cn corresponding to pairs staggered
by one. In particular, α(Bn) ⊆Cn ⊗Cn+1. Define

Ln =α(Bn)∩Cn

Rn =α(Bn)∩Cn+1.
(8.2)

See Fig. 8.1 as a mnemonic. These are manifestly algebras, but naively they might be
trivial. Instead, it turns out that they provide factorizations of Cn and Bn . Using the
notation M ⊗N := (M ∪N )′′ for finite-dimensional mutually commuting subalge-
bras M ,N ⊂AZ, one has the following result.

Theorem 8.2 (Factorization [GNVW12]).

Cn :=A{2n−1,2n} =Ln ⊗Rn−1 (8.3)

Bn :=A{2n,2n+1} =α−1(Ln)⊗α−1(Rn). (8.4)

Thus α−1(Ln) is the part of Bn that α sends to the left, and α−1(Rn) is the part of Bn

that α sends to the right. Likewise, Cn is composed of a part Ln that was sent leftward
from Bn , and a part Rn−1 that was sent rightward from Bn−1.

Proof. Recall from Eq. (7.4) that in general, for a finite-dimensional subalgebra M ⊂AZ,
we have the conditional expectation EM ′(x) = ∫

U (M ) uxu∗ du. We first show

Ln :=α(Bn)∩Cn = EC ′
n+1

(α(Bn)) (8.5)

Rn−1 :=α(Bn−1)∩Cn = EC ′
n−1

(α(Bn−1)). (8.6)

Clearly, Ln ⊆ EC ′
n+1

(α(Bn)). To show the reverse inclusion, let y = EC ′
n+1

(α(x)) for
some x ∈Bn , i.e.

y = EC ′
n+1

(α(x)) =
∫

U (Cn+1)
uα(x)u∗ du.

From this expression, we see [y,α(Bn−1)] = 0 because we have [α(x),α(Bn−1)] = 0
and [Cn+1,α(Bn−1)] = 0 (the latter because α(Bn−1) ⊆Cn−1 ⊗Cn). On the other hand,
it follows from α(Bn) ⊆ Cn ⊗Cn+1 that y ∈ Cn . Moreover, α−1 is again a nearest
neighbour QCA, so we have α−1(Cn) ⊂ Bn−1 ⊗Bn , so we find that y ∈ α(Bn−1 ⊗Bn).
Then [y,α(Bn−1)] = 0 implies y ∈ α(Bn). We conclude Eq. (8.5) holds; a similar argu-
ment shows Eq. (8.6).

Finally we demonstrate Cn ⊆ Ln ⊗Rn−1, which then becomes an equality. For
any c ∈ Cn , we can express α−1(c) ∈ Bn−1 ⊗Bn as α−1(c) = ∑

i ai bi for some ele-
ments ai ∈Bn−1,bi ∈Bn . Then

c = EC ′
n−1
EC ′

n+1
(c) =∑

i
EC ′

n−1
EC ′

n+1
(α(ai )α(bi ))

=∑
i
EC ′

n−1
(α(ai ))EC ′

n+1
(α(bi )) ∈Ln ⊗Rn−1,
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Ln

RnRn−1

Ln+1

Cn Cn+1

α−1(Ln)

α−1(Rn)

Bn

2n 2n +12n −2 2n −1 2n +2 2n +3

Figure 8.1: The factorization Theorem 8.2 decomposes every two-site algebra into a left-moving
and right-moving part.

as desired. The final equality follows from α(ai ) ∈Cn−1⊗Cn and α(bi ) ∈Cn ⊗Cn+1, and
the final inclusion is manifest from Eqs. (8.5) and (8.6). Thus we have proved Eq. (8.3).

Noting again that α−1 is a nearest neighbour QCA, similar logic applied to α−1 yields
Eq. (8.4). Specifically, Eqs. (8.5) and (8.6) are replaced by

α−1(Ln) =Bn ∩α−1(Cn) = EB′
n−1

(α−1(Cn))),

α−1(Rn) =Bn ∩α−1(Cn+1) = EB′
n+1

(α−1(Cn+1))),

which follow using the inclusions α−1(Cn) ⊆ Bn−1 ⊗Bn , α−1(Cn+1) ⊆ Bn ⊗Bn+1, as
well as α(Bn) ⊆Cn ⊗Cn+1, and one then uses this to prove the nontrivial inclusion

Bn ⊆α−1(Ln))⊗α−1(Rn).

■
For later use in Section 9.2, below we note Theorem 8.2 also holds for weaker as-

sumptions, by an identical argument.

Remark 8.3. Although in Theorem 8.2 we assumed the automorphism α was a QCA, the
only locality properties of α required to achieve Cn =Ln ⊗Rn−1 were

α(Bn−1) ⊆Cn−1 ⊗Cn , α(Bn) ⊆Cn ⊗Cn+1, α−1(Cn) ⊆Bn−1 ⊗Bn .

Similarly, to achieve Bn =α−1(Ln)⊗α−1(Rn) we need only

α−1(Cn) ⊆Bn−1 ⊗Bn , α−1(Cn+1) ⊆Bn ⊗Bn+1, α(Bn) ⊆Cn ⊗Cn+1.

Based on Theorem 8.2 we can show that the ratio of dim(Ln) and dim(A2n) is
independent of n, motivating the following definition:

Definition 8.4 (Index of QCA). Suppose α is a one-dimensional nearest neighbour QCA.
Let Ln and Rn be defined as in (8.2), then the index of α is given by

ind(α) := 1

2

(
log(dim(Ln))− log(dim(A2n))

)
(8.7)

= 1

2

(
log(dim(A2n+1))− log(dim(Rn))

)
.
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The value of ind(α) is independent of the choice of n [GNVW12]. We choose to take
the logarithm of the original definition. The index of a QCA with radius R > 1 may be
defined by blocking sites such that the resulting QCA is nearest neighbour, and one can
show that the index is independent of the choice of blocking. This index can be thought
of as a ‘flux’, measuring the difference between how much quantum information is
flowing to the right vs. left. From the definition it is clear it cannot take arbitrary values,
but is restricted to integer linear combinations Z[{log(pi )}] where the pi are all prime
factors of local Hilbert space dimensions dn .

The index can be used to characterize all one-dimensional QCAs. In order to do
so, we introduce two types of QCAs: circuits and shifts. We will say a QCA α is a block
partitioned unitary if it can be written as

α(x) =
(∏

j
u∗

j

)
x

(∏
j

u j

)

where the u j are a family of local unitaries, the u j having disjoint and finite support. We
will say α is a circuit (in [GNVW12] a similar notion is called locally implementable) if it
can be written as a composition of block partitioned unitaries where each local unitary
is supported on a uniformly bounded finite set. In one dimension any circuit QCA of
radius R can be written as a composition of at most two block partitioned unitaries
where each local unitary is supported on at most 2R contiguous sites. We denote by σk

d
the translation QCA which has local Hilbert space dimension d and which translates
any operator by k sites, mapping σk

d (An) =An−k . Here k can be negative. We will say a

QCA is a shift if it is a tensor product of translations of the form σk
d .

Theorem 8.5 (Properties of GNVW index [GNVW12]). Letα, β be one-dimensional QCAs.
Then:

(i) ind(α⊗β) = ind(α)+ ind(β)

(ii) If α and β are defined on the same quasi-local algebra (i.e., with the same local
dimensions), ind(αβ) = ind(α)+ ind(β).

(iii) α is a circuit if and only if ind(α) = 0.

(iv) ind(σk
d ) = k log(d).

(v) Every one-dimensional QCA is a composition of a shift and a circuit.1

(vi) If α and β are defined on the same quasi-local algebra the following are equivalent:

(a) ind(α) = ind(β).

(b) There exists a circuit γ such that α=βγ.

(c) There exists a strongly continuous path from α to β through the space of QCAs
with a uniform bound on the radius.

1Strictly speaking this only makes sense if all the local dimensions are equal. We can always achieve
this by taking a tensor product with the identity automorphism on a quasi-local algebra with appropriate
local dimensions.
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(d) There exists a blending of α and β, meaning a QCA γ which is identical to α
on a region extending to left infinity and equal to β on a region extending to
right infinity.

The “classification” of one-dimensional QCAs refers to the set of QCAs modulo an equiv-
alence relation, given either by circuits (b), continuous deformations (c), or blending (d).
These equivalence classes are identical and characterized by the index, as expressed
in (vi). If α and β are not defined on the same quasi-local algebra (i.e. have different
local dimensions), analogous statements to (b), (c), (d) hold after separately tensoring α
and β with appropriate identity automorphisms, i.e. adding extra tensor factors on
which they act trivially, such that α and β then have the same local dimensions. The
notion of equivalence between QCAs that further allows extra tensor factors is called
‘stable equivalence,’ discussed in [FH20]. We will prove generalizations of all these
properties for ALPUs.

As observed in [GNVW12], the tensor product property together with the normaliza-
tion on shifts and circuits completely determines the index.

Lemma 8.6. Suppose I assigns a real number I (α) to any one-dimensional QCA α such
that

(i) I (α⊗β) = I (α)+ I (β) for all one-dimensional QCAs α and β.

(ii) I takes the same values as ind on circuits and on σk
d .

Then I (α) = ind(α) for any one-dimensional QCA α.

Proof. Let α be any one-dimensional QCA and let β be a shift with I (β) = ind(β) =
− ind(α), using (ii). Then I (α⊗β) = I (α)+ I (β) = I (α)− ind(α) by (i). On the other hand,
ind(α⊗β) = 0 so it is a circuit. Again by property (ii) this implies that I (α⊗β) = 0,
showing that I (α) = ind(α). ■

8.2 The GNVW index revisited

We will now discuss some new results regarding the GNVW index for QCAs. First,
in Section 8.2.1 we provide an alternative formula for the index in terms of a difference
of mutual informations. In Section 8.2.2 we prove some results about QCAs which are
locally close to each other. These results are interesting in their own right, but will also
be crucial when extending the index to ALPUs.

8.2.1 An entropic definition of the GNVW index
Here we provide a new formula for the index in terms of the mutual information, which
can also be defined for infinite C∗-algebras. This reformulation is not strictly necessary
to develop an index theory for ALPUs, but it does allow us to give a clean expression for
the index of an ALPU.

We consider two copies of the quasi-local algebra AZ. Then the tensor product
algebra AZ⊗AZ is uniquely defined as a C∗-algebra since AZ is nuclear (so there is no
ambiguity in the norm completion of the tensor product). We choose a transposition on
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L R

L′ R ′
α

Figure 8.2: Illustration of (8.11). The index measures the difference in information flows, left to
right minus right to left, as ind(α) = 1

2

(
I (L′ : R)φ− I (L : R ′)φ

)
.

each local algebra, which gives rise to a transposition x 7→ xT on AZ. Let τ be the tracial
state on AZ. Then we define the maximally entangled state ω by

ω(x ⊗ y) = τ(x yT ) (8.8)

for x ⊗ y ∈AZ⊗AZ. It is not hard to see that if we restrict to a finite number of sites, ω
indeed restricts to the usual maximally entangled state. Then we define

φ= (α† ⊗ I )(ω).

where I is the identity channel, and α† is the adjoint channel. In other words, φ is the
Choi state of α.

Split the algebra AZ at any point n in the chain, letting

AL :=A≤n

AR :=A>n .
(8.9)

and similarly split the copy as AL′ and AR ′ . For a QCA with radius r , we will also consider

AL1 =An−r+1,...,n , AL2 =A≤n−r ,

AR1 =An+1,...,n+r , AR2 =A≥n+r+1.
(8.10)

We will define the index in terms of a difference of mutual informations of the Choi
state. Ifφ,ψ are states on a C∗-algebra we may define the relative entropy D(φ,ψ) [OP04].
The mutual information of a state φ on AA ⊗AB can then defined using the relative en-
tropy as I (A : B)φ = D(φ,φ|AA ⊗φ|AB ). On finite dimensional subsystems this definition
coincides with the usual one. The only property we need is that relative entropies, and
hence mutual informations, on the full algebra can be computed as limits:

Proposition 8.7 (Proposition 5.23 in [OP04]). Let A be a C∗-algebra and let {Ai }i be an
increasing net of C∗-subalgebras so that ∪i Ai is dense in A . Then for any two states φ, ψ
on A the net D(φi ,ψi ) converges to D(φ,ψ) where φi =φ|Ai , ψi =ψ|Ai .

Proposition 8.8. For any choice of n in Eq. (8.9) the index of a one-dimensional QCA α
is given by

ind(α) = 1

2

(
I (L′ : R)φ− I (L : R ′)φ

)
. (8.11)

For a QCA with radius r , this can also be computed locally as

ind(α) = 1

2

(
I (L′

1 : R1)φ− I (L1 : R ′
1)φ

)
. (8.12)
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Here, the mutual information terms are computed with respect to the corresponding
subalgebras of AZ⊗AZ (with primed systems corresponding to subalgebras of the second
factor).

Proof. Denote by I (α) the expression in (8.11). First we will argue that

I (L′ : R)φ = I (L′
1 : R1)

I (L : R ′)φ = I (L1 : R ′
1).

One sees this by verifying that

φL′R =φL′
1R1

⊗τL′
2R2

φLR ′ =φL1R1 ⊗τL2R ′
2

where the τ denote tracial (i.e maximally mixed) states. Next, to see that I (α) = ind(α)
we will apply Lemma 8.6. From the definition it is clear that I (α⊗β) = I (α)+ I (β), so it
suffices to compute I (α) for a circuit and a shift. For a shift α=σk

d it is clear from the
definition that for positive k

I (L′ : R)φ = 2k log(d)

I (L : R ′)φ = 0

and for negative k

I (L′ : R)φ = 0

I (L : R ′)φ = 2k log(d).

Finally, for a circuit α, notice that we can ignore any unitaries that act only on L or R
as they keep the mutual information invariant. In this way, we may also reduce to the
finite subsystem L1R1L′

1R ′
1. In order to see that I (α) = 0 we thus only need to check that

I (L′
1 : R1)φ = I (L1 : R ′

1)φ

where |φ〉 =U ⊗ I |ω〉 for some unitary U acting on L1R1 and where |ω〉 is a maximally
entangled state between L1R1 and L′

1R ′
1. In that case |φ〉 is a maximally entangled state

between L1R1 and L2R2 and

H(L′
1)φ = H(L1)φ

H(R ′
1)φ = H(R1)φ

H(L′
1R1)φ = H(L1R ′

1)φ.

The first two equalities hold because φ is maximally entangled, and the third equality
holds because φ is pure. Thus we see that

I (L′
1 : R1)φ = H(L′

1)φ+H(R1)φ−H(L′
1R1)φ

= H(L1)φ+H(R ′
1)φ−H(L1R ′

1)φ
= I (L1 : R ′

1)φ. ■
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The expression of the index in (8.11) is intuitive: I (L′ : R)φ and I (L : R ′)φ measure
the flow of information to the right and left respectively. Notice that depending on the
choice of cut I (L′ : R)φ and I (L : R ′)φ can vary individually, but the total flux as defined
by (8.11) is invariant. One reason this expression for the index is useful is that, contrary
to the original definition, it is plausibly well-defined for automorphisms which are not
strictly local (or for channels which are not automorphisms). In Theorem 9.18 we will
show that taking the limit of the finite subalgebras in (8.10) with increasing radius gives
a well-defined and finite limit for any ALPU with appropriately decaying tails, and hence
using Proposition 8.7 we conclude that both mutual information terms in (8.11) are
finite and (8.11) gives a finite, quantized answer also for an ALPU.

In [GNVW12], a similar numerical expression for the index is provided in terms of
overlaps of algebras (their Eq. 45). In fact, their formula (or rather its logarithm) can be
interpreted as (8.11) but with the entropies replaced by Rényi-2 entropies,

ind(α) = 1

2

(
I2(L′ : R)φ− I2(L : R ′)φ

)
,

where I2(A : B)ρ := H2(A)ρ+H2(B)ρ−H2(AB)ρ . While the values of the individual mutual
information terms depend on the choice of Rényi-2 or von Neumann entropy, for QCAs,
the difference of mutual informations used to define the index does not depend on this
choice, and in the proof of Proposition 8.8 one can simply replace the entropies H by
Rényi entropies H2. However, the mutual information has better continuity properties
with respect to the dimension of the local Hilbert spaces compared to the Rényi-2
mutual information (compare the following with the continuity bound in Lemma 12
of [GNVW12]):

Theorem 8.9 (Continuity of mutual information [AF04, Win16, Wil13]). Suppose ρ,σ
are states on H A ⊗HB , and 1

2∥ρAB −σAB∥1 ≤ ε< 1. Then∣∣I (A : B)ρ− I (A : B)σ
∣∣≤ 3ε log(dA)+2(1+ε)h

( ε

1+ε
)
≤ 3ε log(dA)+ε log 1

ε

where dA = dim(H A) and h(x) =−x log(x)− (1−x) log(1−x) is the binary entropy.

This continuity is important for the extension to ALPUs, where we need to compute
the approximation to the index on a sequence of increasing finite subalgebras. In that
case, the indices defined using the Rényi-2 and von Neumann entropies give different
answers when restricted to the finite subalgebras. A final remark is that (8.12) can also
be rewritten as an entropy difference

ind(α) = 1

2

(
I (L′

1 : R1)φ− I (L1 : R ′
1)φ

)
= 1

2

(
H(L1R ′

1)φ−H(L′
1R1)φ

)
. (8.13)

However, the extension of this expression to infinite-dimensional setting is less clear,
because both terms diverge.

8.2.2 Robustness of the GNVW index
Because the index can be computed locally, it appears that two QCAs with different index
should be easy to distinguish locally. We make this quantitative in Proposition 8.11: two
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QCAs which look locally similar must have equal index. We begin with a cruder but
more general estimate, describing how the mutual information of the Choi state varies
continuously with respect to the automorphism that defines it. This estimate applies to
general automorphisms which may not be QCAs, proving useful in the argument for
Theorem 9.18.

Let α be an automorphism of AZ. Even when α is not a QCA, we can mimic the
local definition of the index in (8.12) using finite disjoint regions L,R. We denote this
quantity ĩndL,R (α) to emphasize α may not be a QCA nor even an ALPU,

ĩndL,R (α) = 1

2

(
I (L′ : R)φ− I (L : R ′)φ

)
, (8.14)

where the mutual information terms are computed with respect to the correspond-
ing subalgebras of AZ ⊗AZ. (As above, primed systems refer to the second copy
of AZ.) Clearly, Eq. (8.14) only depends on the restriction of the Choi state to AX ⊗AX ′ ,
where X = L∪R, i.e. on the state φ̃X X ′ :=φ|AX ⊗AX ′ , which is given by

φ̃X X ′(x) =ω ((α⊗ I )(x))

for all x ∈AX ⊗AX ′ . Then we have the following continuity estimate.

Lemma 8.10. For two automorphisms α1 and α2 of AZ with maximum local dimension
d, the quantity ĩndL,R in (8.14) obeys∣∣ĩndL,R (α1)− ĩndL,R (α2)

∣∣=O
(
ε|X | log(d)+ε log 1

ε

)
,

where ε= ∥(α1 −α2)|AX ∥. The same continuity estimate with respect to α1 and α2 holds
for the individual terms in (8.14).

Proof. First we compare the restricted Choi states φ̃X X ′,1 and φ̃X X ′,2 of α1 and α2, re-
spectively. For any x ∈AX ⊗AX ′ with ∥x∥ = 1,∣∣φ̃X X ′,1(x)− φ̃X X ′,2(x)

∣∣
1 =

∣∣ω((α1 ⊗ I −α2 ⊗ I )(x))
∣∣≤ ∥(α1 ⊗ I −α2 ⊗ I )|AX ⊗AX ′∥.

Thus the trace distance between the two Choi states is bounded by

∥φ̃X X ′,1 − φ̃X X ′,2∥1 ≤ ∥(α1 ⊗ I −α2 ⊗ I )|AX ⊗AX ′∥ ≤ 2ε+O (ε2)

using Lemma 7.7 for the last inequality (with A1 =AX⊗I , A2 = I⊗AX ′ and A =AX⊗AX ′

finite-dimensional and B =A vN
Z

). The conclusion follows from the continuity of mutual
information in Theorem 8.9 with respect to the state, noting the region X has associated
Hilbert space of dimension at most d |X |. ■

If α1 and α2 are one-dimensional QCAs of radius r , then because the index takes
discrete values, there exists ε0 such that if ε≤ ε0

r log(d) then ind(α1) = ind(α2). However,
we can do better and eliminate the dependence on the local dimension, as a simple
application of Theorem 7.6. By blocking sites, we may assume without loss of generality
that the QCA is nearest neighbour.
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Proposition 8.11 (Robustness of GNVW index for QCAs). Suppose α1 and α2 are two
nearest-neighbour QCAs defined on the same quasi-local algebra AZ such that

∥(α1 −α2)|A{2n,2n+1}∥ ≤ ε

for some n with ε≤ 1
192 . Then ind(α1) = ind(α2).

Moreover, the algebras L (1)
n and L (2)

n defined by (8.2) using α1 and α2 respectively
are isomorphic, with the isomorphism implemented by a unitary u ∈A{2n−1,2n} which
satisfies ∥u − I∥ ≤ 36ε.

Note that when working with a coarse-grained QCA, where each site is composed of
many smaller sites, the hypotheses like ∥(α1 −α2)|A{2n,2n+1}∥ ≤ ε constraining error on
coarse-grained sites may always be replaced by hypotheses constraining the sum of
errors on fine-grained sites, using Lemma 7.7. (In other words, upper bounds for errors
on small regions control errors on larger regions.)

Proof. By the structure theory for QCAs in Theorem 8.2 there exist algebras L (i )
n , R(i )

n−1
for i = 1,2 defined as in (8.2) that satisfy

A{2n−1,2n} =L (i )
n ⊗R(i )

n−1

To prove that ind(α1) = ind(α2), by (8.7) it suffices to show that L (1)
n and L (2)

n are
isomorphic. To see the isomorphism, take x ∈L (1)

n with ∥x∥ = 1 and let y =α2(α−1
1 (x)).

Then

∥x − y∥ = ∥α1(α−1
1 (x))−α2(α−1

1 (x))∥ ≤ ε

using the assumption ∥(α1 −α2)|A{2n,2n+1}∥ ≤ ε and noting that α−1
1 (x) ∈A{2n,2n+1} since

we assume x ∈L (1)
n . Using the conditional expectation from (7.4), define

z = EA ′
{2n+1,2n+2}

(y) =
∫

U (A{2n+1,2n+2})
uyu∗ du

such that z ∈L (2)
n by the characterization of Ln in (8.5). Note

∥[a, y]∥ = ∥[a, y −x]∥ ≤ 2ε∥a∥

for all a ∈A{2n+1,2n+2}, so by its definition z satisfies ∥y − z∥ ≤ 2ε, so we can bound

∥x − z∥ ≤ ∥x − y∥+∥y − z∥ ≤ 3ε.

We conclude L (1)
n

3ε⊆ L (2)
n , and by a symmetric argument we see L (2)

n
3ε⊆ L (1)

n . By The-
orem 7.6, noting that 3ε ≤ 1

64 , we obtain that L (1)
n and L (2)

n are isomorphic, and the
isomorphism is implemented by a unitary u ∈A{2n−1,2n} with ∥u − I∥ ≤ 36ε. ■

For later use in Section 9.2, below we build on Remark 8.3 to note that Proposi-
tion 8.11 also holds for weaker assumptions, by an identical argument.
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Remark 8.12. Although in Proposition 8.11 we assumed the automorphisms α1 and α2

were QCAs, the only locality properties required to achieve the isomorphism between
the algebras L (1)

n and L (2)
n are the properties listed in Remark 8.3 as those required

to achieve A{2n−1,2n} = L (i )
n ⊗R(i )

n−1 for i = 1,2. More explicitly, we only require the
inclusions

αi (A{2n−2,2n−1}) ⊆A{2n−3,...,2n}, αi (A{2n,2n+1}) ⊆A{2n−1,...,2n+2},

as well as the inclusion α−1
i (A{2n−1,2n}) ⊆A{2n−2,...,2n+1} for i = 1,2.

This also allows us to confirm the intuition that a one-dimensional QCA which
is locally close to the identity can be implemented locally with unitaries close to the
identity.

Proposition 8.13. Suppose α is a one-dimensional QCA with radius R and suppose that
for ε≤ 1

192 we have ∥α(x)−x∥ ≤ ε∥x∥ for any x ∈AZ supported on at most 2R sites. Then
α can be implemented as a composition of two block partitioned unitaries u = ∏

n un

and v =∏
n vn , i.e.

α(x) = v∗u∗xuv

with each of the unitaries un , vn acting on 2R adjacent sites and satisfying

∥un − I∥ =O (ε), ∥vn − I∥ =O (ε).

Proof. By blocking sites in groups of R sites, we may assume without loss of generality
that α is nearest neighbour. Let α1 = I and α2 = α in Proposition 8.11. Clearly, we
have L (1)

n =A2n and R(1)
n−1 =A2n−1. Proposition 8.11 provides a unitary vn ∈A{2n−1,2n}

such that vnL (2)
n v∗

n = A2n with ∥vn − I∥ = O (ε). It follows that vnR(2)
n−1v∗

n = A2n−1.
We let v = ∏

vn and let α̃ = vα(x)v∗. Then α̃(A{2n,2n+1}) = A{2n,2n+1}. Moreover, for
all x ∈A{2n,2n+1}, we estimate

∥α̃(x)−x∥ ≤ ∥vα(x)v∗−α(x)∥+∥α(x)−x∥
≤ 2∥vn ⊗ vn+1 − I∥∥x∥+ε∥x∥
≤ 2(∥vn − I∥+∥vn+1 − I∥)∥x∥+ε∥x∥
=O (ε)∥x∥.

Then Proposition 7.10 shows that α̃|A{2n,2n+1} can be implemented by a unitary un

on A{2n,2n+1} with ∥un − I∥ =O (ε). ■





CHAPTER 9

Index theory for approximately locality
preserving unitaries

One of the reasons to study QCAs is that many physical quantum dynamics preserve
locality in some form. However, the locality in Definition 8.1 is very stringent, and one
the most important classes of automorphisms violates strict locality, while preserving
a form of approximate locality: evolution by a geometrically local Hamiltonian. The
locality of these evolutions is expressed by so-called Lieb-Robinson bounds [LR72].
In Section 9.1 we discuss the Lieb-Robinson bounds and explain how they lead us to
define ALPUs as a natural generalization of QCAs. The main results are in Section 9.2
where we show that any ALPU can be approximated by a sequence of QCAs and that
this allows us to extend the index theory of Chapter 8.

9.1 Lieb-Robinson bounds and approximate locality

We will state a fairly general form of the Lieb-Robinson bounds which also holds for
Hamiltonians which are not strictly local, but have a sufficiently fast decay, following
e.g. [NSY19] or [Has10]. Suppose that Γ is a lattice with a metric d . Then a monotonically
decreasing function F : R≥0 →R≥0 is called reproducing (implying fast decay) if there
exists a constant C > 0 such that for all n,m ∈ Γ,∑

l
F (d(n, l ))F (d(l ,m)) ≤C F (d(n,m)),

sup
y

∑
x

F (d(x, y)) <∞.

These conditions are related to a convolution and integral, respectively. For Γ=ZD with
the Euclidean distance, the function F (r ) = (1+ r )−(D+ε) is reproducing for any ε > 0.
Note the reproducing property is not strictly a measure of fast decay: an exponential
decay alone is not reproducing, despite having faster decay than the previous power
law, because it fails the first inequality. Meanwhile, F (r ) = (1+r )−(D+ε)e−ar for any a > 0
is again reproducing ([NSY19], Appendix 8.2).

Now we consider the automorphism α on the quasi-local algebra AΓ which is gener-
ated by time evolution for some fixed time T by a Hamiltonian

H = ∑
n∈Γ

Hn + ∑
X⊆Γ

HX .
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The terms Hn act only on site n, and the terms HX act on the sites in X . Then, if the
interaction terms HX have sufficient decay, we have the following bounds on the decay
ofα(x) = e i H t xe−i H t .1 We state them without the dependence on the time t , which only
affects the constant C below, and which is irrelevant for our purposes:

Theorem 9.1 (Lieb-Robinson [NSY19]). For α(x) = e i H t xe−i H t as above, if F is reproduc-
ing and

sup
n,m∈Γ

∑
X⊆Γ

s.t. n,m∈X

∥HX ∥
F (d(n,m))

≤∞ (9.1)

then there exists a constant C > 0 such that for all X ,Y ⊆ Γ and for all x ∈AX , y ∈AY we
have

∥[α(x), y]∥ ≤C∥x∥∥y∥ ∑
n∈X

∑
m∈Y

F (d(n,m)). (9.2)

Here, the Hamiltonian is also allowed to be time-dependent, as long as (9.1) holds
uniformly. See [NSY19] for a proof and extensive discussion.

We are particularly interested in the one-dimensional case, where Γ = Z and the
metric d(x, y) = |x − y | for x, y ∈Z. In that setting we consider the case where X is an
interval (a finite or infinite sequence of consecutive sites) and Y has bounded distance
away from X . A consequence of the Lieb-Robinson bounds in (9.2) is that certain
algebras form near inclusions.

Lemma 9.2. Suppose α is an automorphism of AZ and suppose there exists a monotoni-
cally decreasing function F : Z≥0 →R≥0 such that for all X ,Y ⊆ Γ,

∥[α(x), y]∥ ≤ ∥x∥∥y∥ ∑
n∈X

∑
m∈Y

F (|n −m|). (9.3)

and suppose
∑∞

n=1
∑∞

m=1 F (n +m) <∞. Then for any (finite or infinite) interval X ⊆Z,
we have

α(AX )
f (r )⊆ AB(X ,r ),

where

f (r ) = 4
∞∑

n,m=0
F (n +m + r +1).

Proof. We first prove the near inclusion for finite X . By Lemma 7.4, it suffices to show
that for any x ∈AX and any y ∈AB(X ,r )c we have

∥[α(x), y]∥ ≤ f (r )∥x∥∥y∥

as in that case A vN
B(X ,r ) =AB(X ,r ). By Eq. (9.3), we know that

∥[α(x), y]∥ ≤ ∥x∥∥y∥ ∑
n∈X

∑
m∈B(X ,r )c

F (|n −m|)

1In fact, one generally needs these bounds to prove that the time evolution defines a dynamics on the
quasi-local algebra, i.e. that time-evolved quasi-local operators are still quasi-local [NSY19].
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Let

Xk = {n ∈ X such that d(n, X c ) = k},

Yl = {m ∈ X c such that d(m, X ) = r + l },

using the notation d(n, X ) = minx∈X |n − x|. Since X is an interval the size of each of
these sets is upper bounded by 2. We can therefore estimate∑

n∈X

∑
m∈B(X ,r )c

F (|n −m|) ≤ ∑
k≥1

∑
l≥1

∑
n∈Xk

∑
m∈Yl

F (k + l + r −1)

≤ 4
∑
k≥1

∑
l≥1

F (k + l + r −1)

= f (r ).

We conclude that α(AX )
f (r )⊆ AB(X ,r ) for any finite interval X .

If X is infinite and x ∈AX , we can take a sequence xi such that limi xi = x in norm
and each xi is supported on a finite interval inside X . By what we showed above, for
each i there exists some yi ∈AB(X ,r ) such that ∥α(xi )− yi∥ ≤ f (r )∥x∥. Then

inf
y∈AB(X ,r )

∥α(x)− y∥ ≤ liminf
i

∥α(x)− yi∥

≤ liminf
i

(∥α(x)−α(xi )∥+∥α(xi )− yi∥
)

≤ f (r )∥x∥. ■

For instance, if F (r ) = 1
r 4 , then f (r ) = O ( 1

r 2 ); if F (r ) = e−ar 1
r 2 for a > 0, then we

have f (r ) = O (e−ar ). As a side note, we observe that one can use Lemma 7.12 on
simultaneous near inclusions to show that (in any dimension) Lieb-Robinson type
bounds for single-site operators imply bounds for operators on arbitrary sets (which
has already been remarked upon in a more restricted setting in [WW20]):

Lemma 9.3. Suppose α is an automorphism of the quasi-local algebra AΓ and suppose
there exists a function G : Γ×Γ→R≥0 such that for any n,m ∈ Γ, x ∈An and y ∈Am

∥[α(x), y]∥ ≤ ∥x∥∥y∥G(n,m).

Then for any finite sets X ,Y ⊆ Γ and x ∈AX , y ∈AY ,

∥[α(x), y]∥ ≤ 128∥x∥∥y∥ ∑
n∈X

∑
m∈Y

G(n,m).

Proof. By assumption and Lemma 7.4 with M =A vN
Γ we have

α(An)
G(n,m)⊆ A ′

m ∩A vN
Γ = A vN

Γ\{m}

for all m,n ∈ Γ. Applying Lemma 7.12 we find that

α(AX )
4
∑

n∈X G(n,m)⊆ A vN
Γ\{m}

for all m ∈ Γ. Lemma 7.5 with M =A vN
Γ shows that

Am
8
∑

n∈X G(n,m)⊆ α(AX )′∩A vN
Γ =α(A ′

X ∩A vN
Γ ) = α(A vN

Γ\X ).
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Again applying Lemma 7.12 and Lemma 7.5 as above yields

α(AX )
64

∑
n∈X ,m∈Y G(n,m)

⊆ A vN
Γ\Y

which implies the desired commutator bound by Lemma 7.4. ■
Following [Has13] we would like to generalize the notion of a QCA to the case where

the automorphism does not preserve strict locality, but only approximate locality. Such
an automorphism is often called quasi-local. There are various choices of definition that
require different decays or dependence on support size; see for instance [NSY19]. For
our purpose, the definition should at least include Hamiltonian evolutions satisfying
Lieb-Robinson bounds. We will restrict to the one-dimensional case, where Theorem 9.1
and Lemma 9.2 inspire the following definition:

Definition 9.4 (ALPU in one dimension). An automorphismα of the quasi-local algebra
AZ is called an approximately locality-preserving unitary (ALPU) if for all (possibly
infinite) intervals X ⊆Z and for all r ≥ 0 we have

α(AX )
f (r )⊆ AB(X ,r )

for some positive function f (r ) with limr→∞ f (r ) = 0. Here we use the notation in
Definition 7.2.

We say α has f (r )-tails when it satisfies the above, or O (g (r ))-tails if f (r ) =O (g (r )).
We will always assume, without loss of generality, that f (r ) is non-increasing.

Note that by definition, if α has f (r )-tails, it also has h(r )-tails for any function h(r )
with h(r ) ≥ f (r ) for all r , i.e., f (r ) only serves as an upper bound on the spread of α.
Furthermore, note that any ALPU has o(1)-tails, by definition.

It suffices to check the conditions in Definition 9.4 either for all finite or for all
infinite intervals (see Lemmas 9.8 and 9.9 below). If the above conditions on α are
satisfied for all intervals X of some fixed size (and arbitrary r ≥ 0), but f (r ) decays
exponentially, then in fact α is an ALPU with O ( f (r ))-tails by Lemma 9.3. We note an
equivalent definition of ALPUs when passing to von Neumann algebras in Remark 9.7.

Remark 9.5. In [Has13] what we call an ALPU is simply called a locality-preserving
unitary (LPU). Moreover, there it is said that an automorphism is a locally generated
unitary (LGU) if it arises from time evolution by some time-dependent Hamiltonian.
We have chosen the more explicit term ALPU instead of LPU, since in the literature the
latter has also been used as a synonym for QCA (e.g. [ŞSBC18]).

We note that to call such automorphisms “unitary” is perhaps slightly misleading:
there need not be a unitary u ∈AZ such that α(x) = u∗xu (but there will be a unique
unitary implementing α on the GNS Hilbert space with respect to the tracial state, as
discussed in Section 7.0.3).

Example. Lemma 9.2 states that for the class of local Hamiltonians in Theorem 9.1 (Lieb-
Robinson), the automorphismα(x) = e i H t xe−i H t is an ALPU at fixed t . It turns out that if
the Hamiltonian has exponentially decaying tails in the sense that the local Hamiltonian
terms decay as ∥HX ∥ =O (e−k|X |) decays exponentially with the size of the support X ,
then for any k ′ < k we may take f (r ) =O (e−k ′r ) and α has O (e−k ′r )-tails [NSY19, Has10].
Such evolutions composed with translations are also ALPUs.
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To use Theorem 7.6, we would like to work in the von Neumann algebra A vN
Z

. How-
ever, in the definition of an ALPU we consider an automorphism of AZ, not A vN

Z
. We

therefore prove some results allowing us to translate between the tails for automor-
phisms of AZ versus A vN

Z
.

Lemma 9.6.

(i) Suppose α is an automorphism of A vN
Z

and α(AX )
ε⊆ A vN

Y for some X ,Y ⊆ Z

and ε≥ 0. Then α(A vN
X )

ε⊆A vN
Y . In particular, any ALPU with f (r )-tails extends to

an automorphism α of A vN
X such that α(A vN

X )
f (r )⊆ A vN

B(X ,r ) for any interval X and
any r ≥ 0.

(ii) Suppose α is an automorphism of A vN
Z

such that α(A vN
X )

ε⊆A vN
B(X ,r ) for any inter-

val X and some fixed r,ε≥ 0. Then α−1(A vN
X )

4ε⊆ A vN
B(X ,r ) for any interval X .

(iii) Supposeα is an automorphism of A vN
Z

such thatα(AX )
f (r )⊆ A vN

B(X ,r ) for any interval
X and any r ≥ 0, where f (r ) is a function with limr→∞ f (r ) = 0. Then α restricts to
an ALPU with f (r )-tails.

(iv) If α is an ALPU with f (r )-tails, then α−1 is an ALPU with 4 f (r )-tails.

Proof. (i) Let x ∈ A vN
X . Using the Kaplansky density theorem, choose a net xi ∈ AX

with ∥xi∥ ≤ ∥x∥, converging to x in the weak operator topology, hence also in the weak-∗
topology (since these topologies are the same on bounded subsets). Becauseα is weak-∗
continuous, α(xi ) converges to α(x) in the weak-∗ and hence also in the weak operator

topology. Meanwhile, by our assumption that α(AX )
ε⊆A vN

Y , there exist yi ∈A vN
Y such

that ∥α(xi )− yi∥ ≤ ε∥x∥. In particular, ∥yi∥ ≤ (1+ε)∥x∥. Hence the net yi is bounded in
norm. Since norm balls are compact in the weak operator topology, this implies there
must be a converging subnet, which we also denote by yi . Denoting the limit of yi by y ,
then y ∈A vN

Y , and by lower semi-continuity of the norm in the weak operator topology,

∥y −α(x)∥ ≤ liminf
i

∥yi −α(xi )∥ ≤ ε∥x∥.

This shows that α(x)
ε∈A vN

Y , proving (i).
(ii) Note that Z\B(X ,r ) is a disjoint union of at most two intervals Y1 and Y2, and we

have B(Yi ,r ) ⊆Z\ X for i = 1,2, so α(A vN
Yi

)
ε⊆A vN

Z\X . Then applying (7.17) in Lemma 7.12

to these two near inclusions with M =A vN
Z

,

A vN
X = (A vN

Z\X )′∩A vN
Z

4ε⊆
(
α(A vN

Y1
)∪α(A vN

Y2
)
)′∩A vN

Z = (α(A vN
Y1

))′∩ (α(A vN
Y2

))′∩A vN
Z

= α((A vN
Y1

)′∩A vN
Z )∩α((A vN

Y2
)′∩A vN

Z )

= α((A vN
Y1

)′∩ (A vN
Y2

)′∩A vN
Z )

= α(A vN
Z\Y1

∩A vN
Z\Y2

) =α(A vN
B(X ,r ))

and the conclusion follows by applying α−1.
(iii) We need to show that if x ∈AZ, then α(x) ∈AZ. First consider x strictly local, on

some finite interval X . Then by assumption there is a sequence yr ∈A vN
B(X ,r ) =AB(X ,r )
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such that ∥α(x)− yr ∥ ≤ f (r )∥x∥. Hence, yr is a sequence of strictly local operators
converging in norm toα(x) and henceα(x) ∈AZ. If x ∈AZ is not strictly local, let xi be a
sequence of strictly local operators converging in norm to x. Then α(xi ) ∈AZ and α(xi )
converges in norm to α(x). Similarly, α−1 maps AZ into AZ (using that (ii) implies
locality bounds for α−1) and hence we conclude that α restricts to an automorphism of
AZ.

This implies the desired result, as then

α(AX )
f (r )⊆ A vN

B(X ,r ) ∩AZ =AB(X ,r )

using the general fact that A vN
Y ∩AZ =AY for any Y ⊆Z.

(iv) By (i), α extends to an automorphism of A vN
Z

with f (r )-tails, by (ii) the inverse
of this extension has 4 f (r )-tails, and by (iii) the restriction of the latter is an ALPU
with 4 f (r )-tails. ■

Recall that any automorphism α of the quasi-local algebra AZ extends uniquely to
an automorphism of the von Neumann algebra A vN

Z
, which we denote by the same

symbol α. Then Lemma 9.6(i) and (iii) together allow an equivalent definition of ALPUs
with f (r )-tails using the von Neumann algebra, rather than using the quasi-local algebra
as in Definition 9.4. We summarize below.

Remark 9.7. Any automorphism α : AZ→AZ with f (r )-tails, i.e., which is such that for
all intervals X and r ≥ 0 we have

α(AX )
f (r )⊆ AB(X ,r ),

uniquely extends to an automorphism α : A vN
Z

→A vN
Z

that has the same tails, i.e. that

satisfies α(A vN
X )

f (r )⊆ A vN
B(X ,r ). Conversely, any α : A vN

Z
→ A vN

Z
satisfying the latter (for

all X and r ) restricts to an ALPU α : AZ→AZ with f (r )-tails. Hence we may identify an
ALPUαwith its extension to A vN

Z
and refer to the latter also as an “ALPU with f (r )-tails.”

We can use Lemma 9.6 to show that in Definition 9.4 we may in fact restrict to either
only finite intervals or only half-infinite intervals, as shown by the following lemmas.

Lemma 9.8. Suppose α is an automorphism of AZ such that α(AX )
f (r )⊆ AB(X ,r ) for any

finite interval X ⊆Z and any r ≥ 0, where f (r ) is a positive function with limr→∞ f (r ) = 0.
Then α is an ALPU with f (r )-tails.

Proof. As explained earlier, we can extend α to an automorphism of A vN
Z

(denoted
again by α). Let X ⊆Z be an infinite interval, r > 0, and 0 ̸= x ∈AX . We first show that
for any δ> 0,

α(x)
(1+δ) f (r )∈ AB(X ,r ). (9.4)

By definition of AZ, we can approximate x with a sequence xi → x converging in norm,
with xi ∈ AXi , where each Xi ⊆ X is a finite interval. Then α(xi ) → α(x) converges in
norm as well, and

inf
y∈AB(X ,r )

∥y −α(x)∥ ≤ liminf
i

(
inf

y∈AB(X ,r )

∥y −α(xi )∥+∥α(x)−α(xi )∥
)

≤ liminf
i

(
f (r )∥xi∥+∥α(x)−α(xi )∥

)
= f (r )∥x∥,
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so for any δ′ > 0 there exists some y ∈AB(X ,r ) such that ∥y −α(x)∥ ≤ f (x)∥x∥+δ′. If we
apply this with δ′ = f (x)δ∥x∥ then Eq. (9.4) follows. Next, we claim that

α(x)
f (r )∈ A vN

B(X ,r ). (9.5)

Indeed, by Eq. (9.4) we can for any n > 0 take some yn ∈AB(X ,r ) such that

∥α(x)− yn∥ ≤ (1+ 1

n
) f (r ).

In particular, yn is a bounded sequence in A vN
B(X ,r ). Since norm balls are compact in the

weak operator topology, there is a subsequence yni converging to some y ∈A vN
B(X ,r ), and

∥α(x)− y∥ ≤ liminf
i

∥α(x)− yni ∥ ≤ liminf
i

(
1+ 1

ni

)
f (r ) = f (r ).

Thus we have proved Eq. (9.5). As a consequence, we have for any interval X ⊆Z and
any r ≥ 0,

α(AX )
f (r )⊆ A vN

B(X ,r ).

Now the lemma follows from Lemma 9.6(iii). ■

Lemma 9.9. Suppose α is an automorphism of A vN
Z

such that α(A≤n)
f (r )⊆ A vN≤n+r and

α(A≥n)
f (r )⊆ A vN≥n−r for any n ∈ Z and r ≥ 0, where f (r ) is a positive function with

limr→∞ f (r ) = 0. Then α restricts to an ALPU with 8 f (r )-tails.

Proof. By (iii) of Lemma 9.6 we only need to show that for any finite interval

X = {n,n +1, . . . ,n +m}

it holds that

α(AX )
8 f (r )⊆ A vN

B(X ,r ).

Now, by (i) of Lemma 9.6 we have

α(A vN
≤n+m)

f (r )⊆ A vN
≤n+m+r ,

α(A vN
≥n )

f (r )⊆ A vN
≥n−r ,

hence we obtain by taking commutants and applying Lemma 7.5 with M =A vN
Z

that

A vN
≥n+m+r+1

2 f (r )⊆ α(A vN
≤n+m)′∩A vN

Z =α(A vN
≥n+m+1) ⊆α(A vN

Z\X ),

A vN
≤n−r−1

2 f (r )⊆ α(A vN
≥n )′∩A vN

Z =α(A vN
≤n−1) ⊆α(A vN

Z\X ).

By Eq. (7.17) of Lemma 7.12 it follows that

α(AX ) =α(A vN
X ) =α(A vN

Z\X )′∩A vN
Z

8 f (r )⊆ (
A vN

≥n+m+r+1 ∪A vN
≤n−r−1

)′∩A vN
Z =A vN

B(X ,r ).

■
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If we consider an ALPU, we may coarse-grain the lattice by grouping together (or
‘blocking’) sites. This yields again an ALPU, but with faster decaying tails. In particular,
for any fixed ε > 0, we can always coarse-grain by sufficiently large blocks of sites so

that on the coarse-grained lattice, α(AX )
ε⊆AB(X ,1) for any interval X . This motivates

the following definition:

Definition 9.10 (ε-nearest neighbour automorphism in one dimension). An automor-
phism α of AZ is called ε-nearest neighbour for some ε≥ 0 if for any (finite or infinite)
interval X ⊆Zwe have

α(AX )
ε⊆AB(X ,1). (9.6)

If α is an automorphism of A vN
Z

we instead require the weaker condition that

α(AX )
ε⊆A vN

B(X ,1) (9.7)

for all intervals X ⊆ Z. Note that the condition in Eq. (9.7) is equivalent to the condi-

tion α(A vN
X )

ε⊆A vN
B(X ,1) by Lemma 9.6(i).

If an automorphism of A vN
Z

extends an automorphism of AZ, as will usually be
the case for us, then Eqs. (9.6) and (9.7) are equivalent, since A vN

B(X ,1) ∩AZ =AB(X ,1) for
any X ⊆Z. As such, Definition 9.10 is unambiguous.

9.2 Index theory of one-dimensional ALPUs

In this section we develop the index theory of ALPUs in one dimension. Just like in the
rest of the paper, all ALPUs will be one-dimensional.

For a general ALPU α, we show in Theorems 9.16 and 9.18 that there always exist
an approximation of α by a sequence of QCAs β j . We can use the limit of the indices of
the latter (which become stationary for large j ) as the definition of the index of α. If α
has O (r−(1+δ)-tails for some δ> 0, we further show that this index can be computed as a
difference of mutual informations,

ind(α) = 1

2

(
I (L′ : R)φ− I (L : R ′)φ

)
, (9.8)

with both terms being finite, just like we saw in Eq. (8.11) for QCAs. The local computa-
tion of the index in (8.12) does not yield the exact index for ALPUs. However, the exact
index can still be computed locally; we show that on sufficiently large regions, the local
index computation gives the exact answer when rounded to the nearest value in the
fixed set of discrete index values.

In the remainder of the section, we discuss the properties of this index. We find
that once circuits are replaced by evolutions by time-dependent Hamiltonians, the
results of [GNVW12] stated in Theorem 8.5 generalize in a natural way. Our results are
summarized in Theorem 9.25.



9.2. Index theory of one-dimensional ALPUs 163

9.2.1 Approximating an ALPU by a QCA
We sketch the general strategy for approximating an ALPU α by a QCA. We first develop
a method for deforming α into an ALPU αn that behaves as a QCA with a strict causal
cone in the proximity of the site n, exhibited by Proposition 9.14 and Fig. 9.2. In Propo-
sition 9.15 we then we stitch the different αn together into a QCA β using the structure
theory for one-dimensional QCAs, obtaining a QCA approximation to α. If we apply this
result to increasingly coarse-grained lattices, in Theorem 9.16 we obtain a sequence of
QCAs of increasing radius that approximate α with increasing accuracy.

To achieve Proposition 9.14 localizing an ALPU α on a local patch, we compose α
with a sequence of unitary rotations. Some individual rotation steps are described
by Lemma 9.11 and Lemma 9.13, with proof illustrated in Fig. 9.1. Each step uses

Theorem 7.6 to rotate nearby subalgebras, e.g. rotating an algebraα(AX )
ε⊆AY to obtain

an exact inclusion. We start with these two lemmas. Lemma 9.11, Lemma 9.13 and
Proposition 9.14 are each divided into two parts, (i) and (ii). In each case, part (i) is
valid for ε-nearest neighbour automorphisms (which need not be ALPUs), while part (ii)
gives a more refined statement when assuming an ALPU as input. For the majority
of the further development in this paper, in fact only the parts (i) will be necessary,
and so the first-time reader may wish to skip part (ii) of these results, as well as the
supporting Lemma 9.12. Those parts will only be necessary for later results about
blending, following Definition 9.23.

Lemma 9.11.

(i) There exist universal constants C0,ε0 > 0 such that if α is an ε-nearest neighbour
automorphism of A vN

Z
with ε≤ ε0 and

α(A vN
≥n ) ⊆A vN

≥n−1

for some site n ∈ Z, then there exists an automorphism of A vN
Z

, which is of the
form α̃(x) = u∗α(x)u for some unitary u ∈A vN

≥n−1 with ∥u − I∥ ≤C0ε and

α̃(A vN
≤n−1) ⊆A vN

≤n , (9.9)

α̃(A vN
≥n ) ⊆A vN

≥n−1. (9.10)

(ii) If additionally α is an ALPU with f (r )-tails, we can take u such that α̃ is an ALPU
with O ( f (r −1))-tails and such that we have, for r →∞,

∥(α− α̃)|A vN
≤n−r−1

∥ =O ( f (r )), (9.11)

∥(α− α̃)|A vN≥n+r
∥ =O ( f (r −1)) (9.12)

and, for all x ∈A≥n+r+1,

∥u∗xu −x∥ =O ( f (r )∥x∥). (9.13)

Proof. (i) Note α−1 is 4ε-nearest neighbour by (ii) of Lemma 9.6. Thus

α−1(A vN
≥n+1)

4ε⊆ A vN
≥n
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and then A vN
≥n+1

4ε⊆ α(A vN≥n ). By Theorem 7.6 with A0 = A≥n+1, A = A ′′
0 = A vN

≥n+1 and
with B = α(A vN≥n ), provided that ε ≤ 1

256 , there exists a unitary u ∈ (A vN
≥n+1 ∪α(A vN≥n ))′′

such that

uA vN
≥n+1u∗ ⊆α(A vN

≥n )

and ∥u − I∥ ≤ 48ε. Because α(A vN≥n ) ⊆A vN
≥n−1, we also have u ∈A vN

≥n−1. We define a new
automorphism α̃(x) = u∗α(x)u that satisfies α̃(A vN≥n ) ⊇A vN

≥n+1, and then satisfies (9.9)
by taking commutants. Moreover,

α̃(A vN
≥n ) = u∗α(A vN

≥n )u ⊆ u∗A vN
≥n−1u =A vN

≥n−1

using the assumption α(A vN≥n ) ⊆ A vN
≥n−1 and the fact u ∈ A vN

≥n−1. Then α̃ also satis-
fies (9.10).

(ii) Now we further assume α is an ALPU with f (r )-tails and show (9.11). By our use
of Theorem 7.6 to construct u ∈ (A vN

≥n+1 ∪α(A vN≥n ))′′, we know that for x ∈A vN
Z

,

∥[x, y]∥ ≤ δ∥x∥∥y∥ ∀y ∈A vN
≥n+1 ∪α(A vN

≥n ) =⇒ ∥u∗xu −x∥ =O (δ∥x∥).

For r ≥ 0 and x ∈α(A vN
≤n−r−1), the above condition is satisfied for δ= 2 f (r +1) because

we have x
f (r+1)∈ A vN≤n (using Lemma 7.4) and x ∈α(A vN≥n )′, so

∥(α− α̃)|A vN
≤n−r−1

∥ =O ( f (r +1))

and Eq. (9.11) follows.
Our application of Theorem 7.6 also implies that for x ∈A vN

Z
,

x
δ∈A≥n+1 and x

δ∈α(A vN
≥n ) =⇒ ∥u∗xu −x∥ =O (δ∥x∥). (9.14)

For r ≥ 1 and x ∈α(A≥n+r ), those conditions are satisfied for δ= f (r −1) because we

have x
f (r−1)∈ A≥n+1 and x ∈α(A vN≥n ), so

∥(α− α̃)|A≥n+r ∥ =O ( f (r −1))

and hence Eq. (9.12) follows.
Next, we prove Eq. (9.13). Recall that by Lemma 9.6(iv), α−1 is also an ALPU,

with O ( f (r ))-tails. Therefore, for any r ≥ 0 and x ∈A≥n+r+1 we have α−1(x)
f (r+1)∈ A≥n ,

hence x
f (r+1)∈ α(A vN≥n ), and now Eq. (9.14) shows that ∥u∗xu −x∥ =O ( f (r +1)∥x∥) and

Eq. (9.13) follows.
Finally we show that α̃ is an ALPU with O ( f (r − 1))-tails. To this end we apply

Lemma 9.12 below and the fact that

∥uxu∗−x∥ =O ( f (r −1)∥x∥)

holds for the following x and all r ≥ 0: for x ∈A≤n−r−2 since u ∈A vN
≥n−1, for x ∈A≥n+r+1

by Eq. (9.13), for x ∈α(A≤n−r−1) by Eq. (9.11) and for x ∈α(A≥n+r ) by Eq. (9.12). ■
The following lemma is used in the proof above (and in similar proofs below) that

the construction gives rise to an ALPU when the input is an ALPU.



9.2. Index theory of one-dimensional ALPUs 165

(a)

(b)

u

u

nn −1

n n +3

=

=

α̃

α̃

Figure 9.1: (a) Illustration of the construction in Lemma 9.11. The dashed lines indicate causal
cones. (b) Analogous illustration of Lemma 9.13.

Lemma 9.12. Suppose that α is an ALPU with f (r )-tails and α̃ is an automorphism
of A vN

Z
of the form α̃(x) = u∗α(x)u for some u ∈A vN

Z
and all x ∈A vN

Z
, which satisfies

α̃(A≤n−1) ⊆A vN
≤n ,

α̃(A≥n) ⊆A vN
≥n−1

(9.15)

for some site n ∈Z. If for any r ≥ 0 and x ∈A≤n−r−2 ∪A≥n+r+1 ∪α(A≤n−r−1)∪α(A≥n+r )
we have

∥u∗xu −x∥ ≤ g (r )∥x∥,

where g (r ) is non-increasing with limr→∞ g (r ) = 0, then α̃ is an ALPU with O ( f (r )+g (r ))-
tails.

Proof. We abbreviate h(r ) = f (r )+ g (r ). By Lemma 9.9, it suffices to show

α̃(A≤m)
O (h(r ))⊆ A vN

≤m+r and α̃(A≥m)
O (h(r ))⊆ A vN

≥m−r

for all m ∈Z and r ≥ 0. We only prove the former, since the proof of the latter proceeds
analogously. We distinguish two cases:

• m < n: Then m = n −k −1 for some k ≥ 0. By assumption, α̃(A≤n−k−1) ⊆A vN≤n , so
it remains to show

α̃(A≤n−k−1)
O (h(r ))⊆ A vN

≤n−k−1+r .

for 0 ≤ r ≤ k. This holds since, by assumption, ∥u∗xu − x∥ ≤ g (k)∥x∥ for all x ∈
α(A≤n−k−1), and hence ∥(α̃−α)|A≤n−k−1∥ ≤ g (k) ≤ g (r ) for any 0 ≤ r ≤ k.

• m ≥ n: Then m = n +k for some k ≥ 0. To prove that

α̃(A≤n+k )
O (h(r ))⊆ A vN

≤n+k+r

by Lemma 7.4 it suffices to show that for all x ∈A≤n+k and for all y ∈A vN
≥n+k+r+1,

∥[α̃(x), y]∥ =O (h(r ))∥x∥∥y∥.
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By assumption

∥uyu∗− y∥ = ∥u∗yu − y∥ ≤ g (k + r )∥y∥ ≤ g (r )∥y∥

for all y ∈A≥n+k+r+1 and thus for all A vN
≥n+k+r+1, and hence we indeed have that

∥[α̃(x), y]∥ = ∥[α(x),uyu∗]∥ ≤ ∥[α(x), y]∥+∥[α(x),uyu∗− y]∥ =O(h(r ))∥x∥∥y∥,

using that ∥[α(x), y]∥ ≤ 2 f (r )∥x∥∥y∥ by Lemma 7.4, since α is an ALPU with f (r )-
tails. ■

Lemma 9.13.

(i) There exist universal constants C ′
0,ε′0 > 0 such that if α is an ε-nearest neighbour

automorphism of A vN
Z

with ε≤ ε′0 and

α(A vN
≤n ) ⊆A vN

≤n+1

for some site n ∈Z, then there exists an automorphism of A vN
Z

of the form α̃(x) =
α(uxu∗) for some unitary u ∈A vN

≥n+1 with ∥u − I∥ ≤C ′
0ε and

α̃(A vN
≥n+3) ⊆A vN

≥n+2, (9.16)

α̃(A vN
≤n ) ⊆A vN

≤n+1. (9.17)

In fact, it holds that α|A vN≤n
= α̃|A vN≤n

.

(ii) If additionally α is an ALPU with f (r )-tails, we can take u such that α̃ is an ALPU
with O ( f (r −1))-tails and such that for r →∞,

∥(α− α̃)|A vN
≥n+r+3

∥ =O ( f (r )). (9.18)

Proof. (i) This follows by application of Lemma 9.11 to β=α−1. Here we use that if α
is an ε-nearest neighbour automorphism of A vN

Z
, then β is a 4ε-nearest neighbour

automorphism by Lemma 9.6(ii). Now, α(A vN≤n ) ⊆A vN
≤n+1 implies that A vN≤n ⊆β(A vN

≤n+1)
and hence β(A vN

≥n+2) ⊆ A vN
≥n+1. Let ε′0 := ε0/4 and C ′

0 = 4C0 for C0,ε0 > 0 the constants
from Lemma 9.11. Thus we may apply Lemma 9.11 to β (with n +2 in place of n) to find
an automorphism β̃ of A vN

Z
that is of the form β̃(x) = u∗β(x)u for a unitary u ∈A vN

≥n+1
with ∥u − I∥ ≤ 4C0ε=C ′

0ε and which satisfies

β̃(A vN
≤n+1) ⊆A vN

≤n+2,

β̃(A vN
≥n+2) ⊆A vN

≥n+1.

We then see that α̃= β̃−1 is given by α̃(x) =α(uxu∗) and satisfies the desired properties
in (i). In particular, note that u ∈A vN

≥n+1 immediately implies that α|A vN≤n
= α̃|A vN≤n

.
(ii) If α is an ALPU with f (r )-tails, then by Lemma 9.6(iv) β is an ALPU with O ( f (r ))-

tails. Hence by part (ii) of Lemma 9.11, β̃ is an ALPU with O ( f (r −1))-tails and thus the
same is true for α̃, again by Lemma 9.6(iv). Eq. (9.18) follows since by Eq. (9.13) we have

∥uxu∗−x∥ = ∥u∗xu −x∥ =O ( f (r )∥x∥)

for all x ∈A≥n+r+3. ■
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=
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=

=

α

α(1)

α(2)

α(3)

α(1)

α(2)

α(3)

α(4)

2n

2n −1 2n

2n −1 2n 2n +2

Figure 9.2: Illustration of the construction of α(i ) for i = 1,2,3,4 in the proof of Proposition 9.14.
Each row depicts an equation, and the solid strips on the left depict applications of
unitary operators supported on those regions. The second, third, and fourth row use
Lemma 9.11, Lemma 9.13, and Lemma 9.11 again respectively. Dashed lines indicate
causal cones.

We iteratively apply Lemma 9.11 and Lemma 9.13 to show that for an ε-nearest
neighbour automorphism, for any small patch, one can find a nearby O (ε)-nearest
neighbour automorphism that is strictly local on that patch. Below we work with a
patch near site 2n, and the modified automorphism is denoted αn .

Proposition 9.14.

(i) There exist universal constants C1,ε1 > 0 such that for any ε-nearest neighbour
automorphism α of A vN

Z
with ε≤ ε1 and for any site n ∈ Z, there exists an auto-

morphism αn of A vN
Z

such that for k ∈ {0,1,2,3},

αn(A vN
≤2n+2k−1) ⊆A vN

≤2n+2k ,

αn(A vN
≥2n+2k ) ⊆A vN

≥2n+2k−1,

∥αn −α∥ ≤C1ε.

In particular, denoting Bm =A{2m,2m+1} and Cm =A{2m−1,2m} as in Eq. (8.1), we
have

αn(Bm) ⊆Cm ⊗Cm+1 for m ∈ {n,n +1,n +2},

α−1
n (Cm) ⊆Bm−1 ⊗Bm for m ∈ {n +1,n +2}.

(ii) Moreover, if α is an ALPU with f (r )-tails, we may take αn to be an ALPU with
O ( f (r −7))-tails and such that, for r →∞,

∥(α−αn)|A vN
≤2n−r−1

∥ =O ( f (r −1)), (9.19)

∥(α−αn)|A vN
≥2n+r+6

∥ =O ( f (r −7)). (9.20)
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Proof. (i) We define a sequence of automorphisms α(i )
n , i = 1, . . . ,8 to obtain αn :=α(8)

n

with the desired properties. To begin,

α(A vN
≥2n)

ε⊆A vN
≥2n−1

so by Theorem 7.6, where we let A0 = α(A≥2n), A = A ′′
0 = α(A vN

≥2n) and B = A vN
≥2n−1,

there exists u1 ∈ (α(A vN
≥2n)∪A vN

≥2n−1)′′ such that

u∗
1α(A vN

≥2n)u1 ⊆A vN
≥2n−1

with ∥u∗
1 − I∥ ≤ 12ε. We define α(1)

n (x) = u∗
1α(x)u1, which by construction satisfies

α(1)
n (A vN

≥2n) ⊆A vN
≥2n−1,

∥α−α(1)
n ∥ =O (ε).

Then α(1)
n is an O (ε)-nearest neighbour automorphism by the above, and we are in

a situation where we can apply Lemma 9.11 (but replacing n with 2n) to obtain an
automorphism α(2)

n (x) = u∗
2α

(1)
n (x)u2 for unitary u2 ∈A vN

≥2n−1, such that

α(2)
n (A vN

≤2n−1) ⊆A vN
≤2n ,

α(2)
n (A vN

≥2n) ⊆A vN
≥2n−1,

∥α(1)
n −α(2)

n ∥ =O (ε).

Then α(2)
n is again an O (ε)-nearest neighbour automorphism, and hence we can apply

Lemma 9.13 (but replacing n with 2n −1) to obtain a new automorphism α(3)
n defined

by α(3)
n (x) =α(2)

n (u3xu∗
3 ) for unitary u3 ∈A vN

≥2n , such that

α(3)
n (A vN

≥2n+2) ⊆A vN
≥2n+1,

∥α(3)
n −α(2)

n ∥ =O (ε).

Since u3 ∈A vN
≥2n ,α(3)

n also satisfies the locality properties listed forα(2)
n above. See Fig. 9.2

for an illustration of the construction.
We continue to apply Lemma 9.11 and Lemma 9.13 alternatingly. Explicitly, we

apply Lemma 9.11 (with n → 2n +2) to define α(4)
n , as illustrated in the figure, and then

Lemma 9.13 (with n → 2n+1) to defineα(5)
n , followed by Lemma 9.11 (with n → 2n+4) to

define α(6)
n and Lemma 9.13 (with n → 2n +3) to define α(7)

n . Finally we use Lemma 9.11
(with n → 2n +6) to obtain α(8)

n . We take αn := α(8)
n ; then αn has the desired locality

properties in the proposition statement. We must assume ε is sufficiently small to meet
the conditions of these lemmas at each step, determining the universal constant ε1 in
the proposition statement.

(ii) Now we further assume α is an ALPU with f (r )-tails, to demonstrate Eqs. (9.19)
and (9.20) and prove that αn is an ALPU.

We first show thatα(2)
n is an ALPU with O ( f (r −1)) tails, using Lemma 9.12 (where we

take n 7→ 2n). Note that α(2)
n (x) = v∗α(x)v for v = u1u2, and α(2)

n satisfies the necessary
locality properties in Eq. (9.15) (unlike α(1)

n !), so in order to apply the lemma we only
need to show that

∥v∗xv −x∥ =O ( f (r −1))∥x∥, (9.21)
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for all r ≥ 0 and x ∈ A≤2n−r−2 ∪A≥2n+r+1 ∪α(A≤2n−r−1)∪α(A≥2n+r ). To this end, re-
call that for u1 we applied Theorem 7.6 using A0 = α(A≥2n), A = A ′′

0 = α(A vN
≥2n) and

with B =A vN
≥2n−1, and in the construction of u2 ∈A vN

≥2n−1 in Lemma 9.11 (with n 7→ 2n)

we applied Theorem 7.6 with A0 =A≥2n+1, A =A ′′
0 =A vN

≥2n+1 and B =α(1)
n (A vN

≥2n).

First consider x ∈A≤2n−r−2. As α(A vN
≥2n)

f (r+1)⊆ A vN
≥2n−r−1, we have

∥[x, y]∥ = 2 f (r +1)∥x∥∥y∥

for all y ∈ α(A vN
≥2n) by Lemma 7.4. Since moreover [x, y] = 0 for all y ∈ A vN

≥2n−1, Theo-
rem 7.6(ii) shows that ∥u∗

1 xu1 − x∥ = O ( f (r +1)∥x∥). In addition, we have u∗
2 xu2 = x

since u2 ∈A vN
≥2n−1. Together we find that

∥v∗xv −x∥ =O ( f (r +1)∥x∥).

Next consider x ∈A≥2n+r+1. By Lemma 9.6, α−1 is an ALPU with O ( f (r ))-tails, so we
have

α−1(x)
O ( f (r+1))∈ A≥2n (9.22)

and hence x
O ( f (r+1))∈ α(A≥2n). Since moreover x ∈ A vN

≥2n−1, Theorem 7.6(iii) shows

that ∥u∗
1 xu1 − x∥ = O ( f (r + 1)∥x∥). Since (α(1)

n )−1(x) = α−1(u1xu∗
1 ), the latter along

with Eq. (9.22) in turn implies that x
O ( f (r+1))∈ α(1)

n (A≥2n). Also, x ∈ A≥2n+1, hence we
obtain ∥u∗

2 xu2 − x∥ = O ( f (r + 1)), again by Theorem 7.6(iii). Together we find that
∥v∗xv −x∥ =O ( f (r +1)∥x∥).

Now consider x ∈ α(A≤2n−r−1), i.e., x = α(z) for some z ∈ A≤2n−r−1. Then x com-

mutes with α(A vN
≥2n). Moreover, x

f (r−1)∈ A≤2n−2, hence ∥[x, y]∥ ≤ 2 f (r −1)∥x∥∥y∥ for
all y ∈ A vN

≥2n−1. Thus we obtain ∥u∗
1 xu1 − x∥ = O ( f (r −1)∥x∥) by Theorem 7.6(ii). The

preceding in turn implies that for all y ∈A vN
≥2n+1,

∥[α(1)
n (z), y]∥ = ∥[u∗

1 xu1, y]∥ ≤ 2∥u∗
1 xu1 −x∥∥y∥+∥[x, y]∥ =O ( f (r −1)∥x∥∥y∥).

Also, α(1)
n (z) commutes with α(1)

n (A vN
≥2n). Therefore, again by Theorem 7.6(ii) we see that

∥v∗xv −u∗
1 xu1∥ = ∥u∗

2α
(1)
n (z)u2 −α(1)

n (z)∥ =O ( f (r −1)∥x∥).

We conclude that ∥v∗xv −x∥ =O ( f (r −1)∥x∥).
Finally, let x ∈ α(A≥2n+r ), i.e., x = α(z) for some z ∈ A≥2n+r . Then x ∈ α(A≥2n)

and x
f (r+1)∈ A vN

≥2n−1. So, by Theorem 7.6(iii) we find that

∥u∗
1 xu1 −x∥ =O ( f (r +1)∥x∥).

Using the latter, as well as ∥α(1)
n (z)−α(z)∥ = ∥u∗

1 xu1−x∥ and α(z)
f (r−1)∈ A≥2n+1, we find

that α(1)
n (z)

O ( f (r−1))∈ A≥2n+1. Moreover, α(1)
n (z) ∈ α(1)

n (A vN
≥2n), so by Theorem 7.6(iii) we

obtain that

∥v∗xv −u∗
1 xu1∥ = ∥u∗

2α
(1)
n (z)u2 −α(1)

n (z)∥ =O ( f (r −1)∥x∥),
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and hence ∥v∗xv −x∥ =O ( f (r −1)∥x∥). Altogether we have verified that Eq. (9.21) holds
for all r ≥ 0 and x ∈A≤2n−r−2 ∪A≥2n+r+1 ∪α(A≤2n−r−1)∪α(A≥2n+r ). We may therefore
apply Lemma 9.12 and conclude that α(2)

n is an ALPU with O ( f (r −1))-tails.
For i = 3, . . . ,8, we simply observe that by our applications of Lemma 9.11 and

Lemma 9.13, the automorphisms α(i )
n are guaranteed to be APLUs with O ( f (r +1− i ))-

tails.
To see that Eq. (9.19) holds, note that Eq. (9.21) implies that

∥α(2)
n (x)−α(x)∥ =O ( f (r −1)∥x∥)

for all x ∈ A≤2n−r−1. Moreover, αn(x) = α(2)
n (x) for such x, since αn = α(8)

n is obtained
fromα(2)

n by conjugating the input with unitaries in A vN
≥2n (leaving x unchanged) and the

output by unitaries in A vN
≥2n+1 (leaving α(2)

n (x) ∈A vN
≤2n unchanged). Thus Eq. (9.19) fol-

lows.
Finally, Eq. (9.20) follows since the α(i )

n for i = 3, . . . ,8 satisfy analogs of Eqs. (9.12)
and (9.18) and we have ∥α(2)

n (x)−α(x)∥ ≤ O ( f (r −1)∥x∥) for all x ∈ A≥2n+r , again by
Eq. (9.21). ■
Proposition 9.15 (QCA approximation of ε-nearest neighbour automorphism). There
exists a universal constant ε2 > 0 such that if α is an ε-nearest neighbour automorphism
of AZ with ε≤ ε2, then there exists a QCA β with radius 2 such that

∥(α−β)|AX ∥ =O (ε|X |)

for all regions X with |X | sites.

Proof. Recall that α can be extended to a ε-nearest neighbour automorphism of A vN
Z

by Lemma 9.6, which we will denote by the same symbol. Let C1 and ε1 be the constants
from Proposition 9.14, and take ε2 := min{ε1

2 , 1
384C1}. As usual, we write Bn =A{2n,2n+1}

and Cn = A{2n−1,2n}. Now apply part (i) of Proposition 9.14 to find a collection of
automorphisms αm for each m ∈Z, which satisfy the locality properties

αm(Bn) ⊆Cn ⊗Cn+1

for n ∈ {m,m +1,m +2} as well as α−1
m (Cn) ⊆Bn−1 ⊗Bn for n ∈ {m +1,m +2}. Then by

Theorem 8.2 and the subsequent Remark 8.3, we can define

L (m)
n =αm(Bn)∩Cn ,

R(m)
n−1 =αm(Bn−1)∩Cn

such that, for m ∈ {n −1,n −2},

Cn =L (m)
n ⊗R(m)

n−1. (9.23)

Moreover, again by Theorem 8.2 and Remark 8.3, we have

Bn =α−1
n−1(L (n−1)

n )⊗α−1
n−1(R(n−1)

n ), (9.24)

which we will use below.
Note that ∥αn−1 −αn−2∥ ≤ ∥αn−1 −α∥+ ∥αn−2 −α∥ ≤ 2C1ε ≤ 1

192 . Because αn−1

andαn−2 are nearby ALPUs with locality properties satisfying Remark 8.12, we can apply
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the argument from Proposition 8.11 to αn−1 and αn−2, finding that L (n−2)
n and L (n−1)

n

are related by a unitary un ∈Cn , i.e. unL (n−1)
n u∗

n =L (n−2)
n , with ∥un − I∥ =O (ε). Finally

we define

βn : Bn →Cn ⊗Cn+1, βn(x) = unαn−1(x)u∗
n .

Each βn is an injective homomorphism and by (9.24) we obtain

βn(Bn) = un
(
L (n−1)

n ⊗R(n−1)
n

)
u∗

n =L (n−2)
n ⊗R(n−1)

n , (9.25)

where the second equality holds because un ∈Cn and R(n−1)
n ⊆Cn+1 commute. From

Eq. (9.25) we conclude that βn(Bn) and βm(Bm) commute for n ̸= m. Hence we can de-
fine a global injective homomorphism β that acts as βn on each Bn . By (9.23) and (9.25),
this homomorphism is surjective. Indeed,

βn−1(Bn−1)⊗βn(Bn) ⊇R(n−2)
n−1 ⊗L (n−2)

n =Cn

for all n. Thus the map β is an automorphism. By construction it is clear that this
automorphism is a QCA with radius 2. For any single site operator x we have that x ∈Bn

for some n, so

∥β(x)−α(x)∥ ≤ 2∥un − I∥+∥α−αn−1∥
≤O (ε).

We showed ∥(β−α)|An∥ = O (ε) for all single sites n, and the desired result holds by
Lemma 7.7. ■

By Proposition 9.15 and coarse-graining, we obtain the main result of this section,
which shows that any ALPU in one dimensions can be approximated by a sequence of
QCAs.

Theorem 9.16 (QCA approximations). If α is a one-dimensional ALPU with f (r )-tails,
then there exists a sequence of QCAs {β j }∞j=1 of radius 2 j , such that for any finite X ⊂Z,

∥(α−β j )|AX ∥ =O
(

f ( j )min
{
|X |,

⌈
diam(X )

j

⌉})
. (9.26)

Moreover, there is a constant C f > 0, depending only on f (r ), such that the following
holds for all j and finite X ⊂Z:

∥(α−β j )|AX ∥ ≤C f f ( j )min
{
|X |,

⌈
diam(X )

j

⌉}
. (9.27)

In particular, the β j converge strongly to α, meaning that lim j→∞∥α(x)−β j (x)∥ = 0 for
all x ∈AZ.

Proof. By blocking j sites we obtain an ε j -nearest neighbour QCA on the coarse-grained
lattice where ε j = f ( j ). For j > j0 sufficiently large, we can apply Proposition 9.15 to
obtain a QCA β j of radius 2 on the coarse-grained lattice satisfying

∥(α−β)|AX ∥ =O ( f ( j )m)



172 Chapter 9. Index theory for approximately locality preserving unitaries

for all regions X composed of m coarse-grained sites. If we now consider β j as a QCA
of radius 2 j on the original lattice (before coarse-graining), we arrive at (9.26). To
obtain (9.27), for smaller j ≤ j0, we may choose some arbitrary QCA β j and we may use
that ∥α−β j∥ ≤ 2 at the expense of incurring a tails-dependent constant C f > 0.

We now show that the sequence of QCAs β j converges strongly to α. For x ∈ AZ

arbitrary, let xn be a sequence of strictly local operators, where xn is supported on n
contiguous sites, such that limn→∞ xn = x converges in norm. Then,

limsup
j→∞

∥α(x)−β j (x)∥ ≤ limsup
j→∞

(
∥α(x)−α(xn)∥+∥α(xn)−β j (xn)∥+∥β j (xn)−β j (x)∥

)
≤ 2∥x −xn∥+ limsup

j→∞
∥α(xn)−β j (xn)∥ = 2∥x −xn∥.

The second inequality holds sinceα and theβ j are∗-homomorphisms; the final equality
follows by (9.27). Since the above holds for all n, we conclude that

lim
j→∞

∥α(x)−β j (x)∥ = 0.

■

9.2.2 Definition of the index for ALPUs
We now use the QCA approximations developed in the preceding to define an index for
general ALPUs. In addition, we give two alternative ways of computing the index for
ALPUs with appropriately decaying tails, and we prove that the index is stable also for
ALPUs.

Definition 9.17 (Index for ALPUs). Letα be a one-dimensional ALPU with f (r )-tails and
let β j be a sequence of QCAs of radius at most 2 j such that for any finite subset X ⊂Z,

∥(α−β j )|AX ∥ ≤C f f ( j )
⌈

diam(X )
j

⌉
, (9.28)

where C f > 0 is the constant from Theorem 9.16. We define the index of α by

ind(α) := lim
j→∞

ind(β j ). (9.29)

Note that by Theorem 9.16 such a sequence β j always exists. The following theorem
shows that the index is a well-defined, finite quantity.

Theorem 9.18 (Index for ALPUs). Let α be a one-dimensional ALPU with f (r )-tails and
let β j be a sequence of QCAs as in Definition 9.17. Then the following hold:

(i) There exists j0, depending only on f (r ), such that ind(β j ) is constant for j ≥ j0.
Accordingly, the limit (9.29) exists and is inZ[{log(pi )}], where the pi are the finitely
many prime factors of the local Hilbert space dimensions dn , and Z[·] denotes
integer linear combinations. Moreover, this limit does not depend on the choice of
sequence β j . Thus, ind(α) is well-defined by (9.29).
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(ii) There is a constant r1, depending only on f (r ), with the following property: Let α′

be another one-dimensional ALPU with f (r )-tails. Then, for any interval X with
diameter |X | ≥ r1,

∥(α−α′)|AX ∥ ≤
1

384
=⇒ ind(α) = ind(α′).

In particular, the index is completely determined by α|AX for any such X .

(iii) If f (r ) = o( 1
r ) then there exist a constant r2, depending only on f (r ) and the local

Hilbert space dimensions dn , such that the index may also be computed locally as
in (8.12),

ind(α) = roundZ[{log(pi )}]
1

2

(
I (L′

1 : R1)φ− I (L1 : R ′
1)φ

)
,

where φ denotes the Choi state, the intervals L1,R1,L′
1,R ′

1 must be of size at least r2,
and the notation means that we round to the nearest value in Z[{log(pi )}].

(iv) If f (r ) =O ( 1
r 1+δ ) for some δ> 0, then the index can also be computed as in (9.8), by

ind(α) = 1

2

(
I (L′ : R)φ− I (L : R ′)φ

)
,

where both I (L′ : R)φ and I (L : R ′)φ are finite.

In both calculations (iii) and (iv) of the index, the cut defining the regions L,R may be
chosen anywhere on the chain.

Proof. Throughout this proof, the implicit constants in the O notation are allowed to
depend on the tails f (r ).

(i) and (ii): To see that ind(β j ) stabilizes at large j and hence the limit (9.29) exists,
consider β j and β j+1. After coarse-graining by blocking 2( j +1) sites, both β j and β j+1

are nearest neighbour. Moreover, on any subset X j that consists of two neighbouring
coarse-grained sites,

∥(β j −β j+1)|AX j
∥ ≤ ∥(β j −α)|AX j

∥+∥(α−β j+1)|AX j
∥ =O ( f ( j )) (9.30)

by Eq. (9.28). Since f (r ) = o(1) this implies that ∥(β j −β j+1)|AX j
∥ approaches zero

as j → ∞. By Proposition 8.11 this implies that ind(β j ) = ind(β j+1) for sufficiently
large j ≥ j0, where the constant j0 can be taken as the minimum j such that the right-
hand side of Eq. (9.30) remains below 1

192 . Thus we conclude that the limit (9.29) exists
and equals ind(β j ) for j ≥ j0. Moreover, ind(α) ∈Z[{log(pi )}], since the same is true for
the index of the QCAs β j .

To conclude the proof of (i), we still need to argue that the index is well-defined. We
will demonstrate this together with (ii). Consider an ALPUα′ that also has f (r )-tails, and
let β′

j be a corresponding sequence of QCAs as in Definition 9.17. Note that ind(β j ) and

ind(β′
j ) stabilize for j ≥ j0, with the same constant j0. We claim that ind(β j ) = ind(β′

j )

for some (and hence for all) j ≥ j0. To see this, we consider β j and β′
j as nearest-

neighbour QCAs on a coarse-grained lattice obtained by blocking 2 j sites. Then by
Proposition 8.11, it is sufficient to show ∥(β j −β′

j )|AY ∥ ≤ 1
192 for a region Y consisting of
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two neighbouring coarse-grained sites. Note Y then consists of 4 j sites on the original
lattice. Now,

∥(β j −β′
j )|AY ∥ ≤ ∥(β j −α)|AY ∥+∥(α−α′)|AY ∥+∥(α′−β′

j )|AY ∥
≤O ( f ( j ))+∥(α−α′)|AY ∥.

Since f (r ) = o(1), we can find j1 ≥ j0 large enough such that the O ( f ( j )) term is
smaller than 1

384 . Take r1 := 8 j1 to ensure that any interval X with r1 sites contains two
neighbouring sites of the coarse-grained lattice, so that ∥(α−α′)|AY ∥ ≤ 1

384 by assump-
tion. Then, ∥(β j1 −β′

j1
)|AY ∥ ≤ 1

192 , and Proposition 8.11 implies that ind(β j ) = ind(β′
j )

for j = j1 and hence for all j ≥ j0. This implies that the index is well-defined (takeα=α′),
concluding the proof of (i), and it also establishes (ii).

(iii) Let L j = {−2 j +1, . . . ,0} and R j = {1, . . . ,2 j }. Since β j is a QCA of radius 2 j , by
Proposition 8.8 we can compute

ind(β j ) = 1

2

(
I (L′

j : R j )φ j − I (L j : R ′
j )φ j

)
(9.31)

where φ j = (β†
j ⊗ I )(ω), with ω a maximally entangled state on AZ⊗AZ. We let

ĩnd j (α) := ĩndL j ,R j (α) = 1

2

(
I (L′

j : R j )φ− I (L j : R ′
j )φ

)
(9.32)

as in (8.14), where φ = (α† ⊗ I )(ω). By Eq. (9.28), ∥(α−β j )|AX j
∥ = O ( f ( j )), where we

let X j = L j ∪R j . Thus Lemma 8.10 shows that∣∣ind(β j )− ĩnd j (α)
∣∣=O

(
j f ( j ) log(d)+ f ( j ) log 1

f ( j )

)
(9.33)

where d = maxn dn is the maximum of the local Hilbert space dimensions associated
to AZ. Assuming that f ( j ) = o( 1

j ) the above approaches zero as j →∞. Because the
sequence ind(β j ) stabilizes to ind(α) by definition in (9.29), this implies that

lim
j→∞

ĩnd j (α) = ind(α). (9.34)

Since ind(α) takes values in the nowhere dense set Z[{log(pi )}], rounding ĩnd j (α) must
yield ind(α) for sufficiently large j , proving (iii).

(iv) Even though the quantities in Eqs. (9.31) and (9.32) converge with j , we have not
yet shown that the individual mutual information terms converge. We will show this
next, assuming that f (r ) =O ( 1

r 1+δ ) for some δ> 0. We consider the subsequence {β2k }.
Then, by Eq. (9.28)

∥(β2k −α)|AX
2k+1

∥ =O ( f (2k )), (9.35)

and thus

∥(β2k −β2k+1 )|AX
2k+1

∥ =O ( f (2k )).

Hence by Lemma 8.10, noting that I (L′
2k+1 : R2k+1 )φ2k = I (L′

2k : R2k )φ2k since β2k has

radius 2k+1, as similarly observed in the proof of Proposition 8.8, this implies

|I (L′
2k : R2k )φ2k − I (L′

2k+1 : R2k+1 )φ2k+1 | =O
(
2k f (2k ) log(d)+ f (2k ) log 1

f (2k )

)
=O (2−δk ).
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Thus I (L′
2k : R2k )φ2k is a Cauchy sequence and hence converges. Moreover, using

Lemma 8.10, Eq. (9.35) also implies that

|I (L′
2k : R2k )φ− I (L′

2k : R2k )φ2k | =O
(
2k f (2k ) log(d)+ f (2k ) log 1

f (2k )

)
=O (2−δk ).

Thus I (L′
2k : R2k )φ also converges, with the same limit as I (L′

2k : R2k )φ2k . Then using
Proposition 8.7, this implies that

I (L′ : R)φ = lim
k→∞

I (L′
2k : R2k )φ = lim

k→∞
I (L′

2k : R2k )φ2k

is finite. A similar argument shows that I (L : R ′)φ is finite and can be computed as

I (L′ : R)φ = lim
k→∞

I (L2k : R ′
2k )φ = lim

k→∞
I (L2k : R ′

2k )φ2k .

It follows that

ind(α) = 1

2

(
I (L′ : R)φ− I (L : R ′)φ

)
,

as a consequence either of Eq. (9.34) or of Eq. (9.29).
In parts (iii) and (iv) we took the cut between L and R to be at n = 0, but the index

may be calculated using regions translated anywhere along the chain, which follows
from the same fact for the QCAs β j . ■

The proof of Theorem 9.18 also shows that in part (iv), the two mutual information
quantities can be computed as limits of corresponding mutual information quantities
for finite intervals.

9.2.3 Properties of the index for ALPUs
In this section we will show that the index for ALPUs defined in Theorem 9.18 inherits
essentially all properties of the GNVW index for QCAs stated in Theorem 8.5.

We first use Theorem 9.16 to construct a path between any ALPU α with ind(α) = 0
and the identity automorphism I , using a one-parameter family of ALPUs β[t ] for
time t ∈ [0,1], with β[0] = I and β[1] =α. The path will be strongly continuous, in the
sense that for all x ∈AZ, t0 ∈ [0,1],

lim
t→t0

∥α[t ](x)−α[t0](x)∥ = 0. (9.36)

Theorem 9.19 (Continuous deformations). If α is a one-dimensional ALPU with f (r )-
tails with ind(α) = 0, then there exists a strongly continuous path α[t ] starting at α[0] =
I and α[1] = α such that α[t ] has g (r )-tails for all t , for some g (r ) = O ( f (Cr )) and
some universal constant C > 0. Moreover, this path may be given by a time evolution
using a time-dependent Hamiltonian H(t) evolving for unit time. For every t < 1 there
exists l such that the Hamiltonian H(t ) has only terms HX on (nonoverlapping) sets X of
diameter at most 16l , and it holds that ∥HX (t )∥ =O ( f (l ) log(l )).
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vk0,1

vk0,2
α[t ]

Figure 9.3: Illustration of the construction of α[t ] in Theorem 9.19. The evolution consists
of successive evolutions by different time-independent Hamiltonians, depicted as
successive layers, with interaction terms increasing in diameter but decreasing in
strength.

The above H(t ) is constructed as piecewise-constant for t ∈ [0,1). The idea of the proof
is that we continuously interpolate between consecutive QCAs β2 j as constructed in
Theorem 9.16. For large j we need to use a Hamiltonian with a correspondingly large
support to interpolate between β2 j and β2 j+1 , but on the other hand β2 j and β2 j+1 are
locally close, so the interaction strength is small. As we increase j , we “speed up” the
interpolation, so we get to α in unit time. In particular, the Hamiltonian is piecewise
constant on time intervals that decrease in size as t goes to 1, and the support of the
Hamiltonian increases as t goes to 1. This procedure is illustrated in Fig. 9.3 and leads
to the given bound on the terms HX (t ) of the Hamiltonian. For f (r ) =O ((logr )−1) the
norms ∥HX (t )∥ are uniformly bounded as t → 1; more generally for f (r ) = o(1) the terms
may diverge in norm as t → 1, but nonetheless the path H(t) is strongly continuous
on the interval [0,1]. Of course, the path α(t ) and associated Hamiltonian H(t ) are not
unique; we just provide one particular construction.

Proof. We apply Theorem 9.16 to obtain a sequence of QCA approximations β j with

radius 2 j with error ∥(α−β j )|AX ∥ =O ( f ( j )
⌈diam(X )

j

⌉
) as j →∞. Therefore

∥(β2 j −β j )|AX ∥ ≤ ∥(α−β j )|AX ∥+∥(α−β2 j )|AX ∥ =O ( f ( j )
⌈diam(X )

j

⌉
),

having used that f is non-increasing, and hence

∥(β2 jβ
−1
j − I )|AX ∥ ≤ ∥(β2 j −β j )|AB(X ,2 j )∥ =O ( f ( j )

⌈diam(X )
j

⌉
)

We can therefore define QCAs

γk =β2k+1β
−1
2k

which have at most radius Rk = 2k+3 and satisfy ∥(γk − I )|AX ∥ =O ( f (2k )) for on X ⊂Z
with diam(X ) ≤ 2Rk = 2k+4. For sufficiently large k ≥ k0, ind(β2k ) = ind(α) = 0, and
hence ind(γk ) = 0.

By Theorem 8.2 and Theorem 8.5, any index-0 QCA of radius R can be decomposed
as a two-layer circuit with unitaries on blocks of diameter 2R. If the QCA is ε-near the
identity when restricted to intervals of size 2R, the individual unitaries in the circuit
are O (ε)-near the identity by Proposition 8.13. Therefore γk may be implemented by a
two-layer unitary circuit for k ≥ k0. We proceed to describe this circuit as a Hamiltonian
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evolution, with a different time-independent Hamiltonian generating each layer, in the
straightforward way. To be precise, from Proposition 8.13 we obtain that

γk (x) = (v (k,2))∗(v (k,1))∗xv (k,1)v (k,2)

where for each layer a ∈ {1,2}

v (k,a) =∏
n

v (k,a)
n

and where the {v (k,a)
n }n are unitary gates acting on disjoint regions with a diameter

of 2Rk = 2k+4. Moreover, each gate satisfies ∥v (k,a)
n − I∥ =O ( f (2k )). Each gate is gener-

ated by a Hamiltonian H (k,a)
n =−i log(v (k,a)

n ), defined using the principal logarithm, with
bounded norm ∥H (k,a)

n ∥ =O ( f (2k )). Let H (k,a) =∑
n H (k,a)

n denote the total Hamiltonian
generating the a-th layer. Then we can define a Hamiltonian evolution γk [t ] for t ∈ [0,1]
with γk [0] = I , γk [1] = γk :

γk [t ](x) = e2i H (k,1)t (x)e−2i H (k,1)t

for t ∈ [0, 1
2 ] and

γk [t ](x) = e2i H (k,2)(t− 1
2 )e i H (k,1)

(x)e−i H (k,1)
e−2i H (k,2)(t− 1

2 )

for t ∈ ( 1
2 ,1]. Note that the gates implementing γk [t ] are all of the form (v (k,a)

n )s for
some s ∈ [0,1]. From this it is clear that γk [t ] defines a strongly continuous path and the
evolution is gentle in the sense that γk [t ] never strays far from I :

∥(γk [t ]− I )|AX ∥ =O ( f (2k )).

for diam(X ) ≤ 2Rk . By construction, γk [t ] is a QCA with radius at most 3Rk for every
time t ∈ [0,1].

We let αk+1[t ] := γk [t ]β2k , which is a strongly continuous path with αk+1[0] = β2k

and αk+1[1] =β2k+1 . For all t ∈ [0,1]

∥(αk+1[t ]−α)|AX ∥ ≤ ∥(γk − I )|AB(X ,2k+1)
∥+∥(α−β2k )|AX ∥ =O ( f (2k )) (9.37)

for diam(X ) ≤ Rk . Moreover αk+1[t ] is a QCA with radius 3Rk +2k+1 ≤ 4Rk .
We defined αk [t ] only for k > k0. Let αk0 [t ] be the Hamiltonian evolution imple-

menting the index-0 QCA β2k0 for t ∈ [0,1], in the same way we defined γk [t ]. Let

T =
∞∑

k=0

1

1+k2
, tk =

k−1∑
l=0

1

T (1+ l 2)
.

We define α[t ] by gluing together the αk [t ], “speeding up” αk0+k by a factor T (k2 +1) in
order to make this a unit time evolution:

α[t ] =αk0+k

[
t − tk

T (k2 +1)

]
if t ∈ (tk , tk+1)

for t ∈ [0,1) and α[1] = α. The construction of the path α[t ] is illustrated in Fig. 9.3.
Going throughγk0+k faster by a factor T (k2+1) is equivalent to rescaling the Hamiltonian
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by T (k2 +1), and is still strongly continuous. Hence α[t ] is strongly continuous for at
any t ∈ [0,1). The strong continuity at t = 1 follows from the fact that the sequence β2k

converges strongly to α. Indeed, let x ∈ AX for finite X . Then consider k such that
diam(X ) ≤ Rk0+k , then we see that for l ≥ k0+k ∥αl+1[s](x)−α(x)∥ =O ( f (2l )) for s ∈ [0,1].
Hence, ∥α[t ](x)−α(x)∥ goes to zero as t → 1. As in the proof of Theorem 9.16 we see
that the same holds for general x ∈ AZ. Moreover, we see that at each point in time
the Hamiltonian will have terms HX with support of diameter 16l = 2k+4 for some k
with ∥HX ∥ =O ( f (2k )k2) =O ( f (l ) log(l )).

Finally, we need to show that α[t ] has uniform tail bounds for t ∈ (0,1). (We already
have tail bounds at the initial and final time.) Let X ⊆Z be an arbitrary (finite or infinite)
interval. Take some r > 4Rk0 = r0. There will be some k such that 4Rk ≤ r < 4Rk+1,
and there will be some l and s ∈ [0,1] such that α[t ] =αl+1[s]. If k ≥ l , by construction
we have an inclusion α[t ](AX ) ⊆ AB(X ,4Rl ) ⊆ AB(X ,r ). On the other hand, suppose
that k < l . Write X = X1 ∪ X2 where X1 is the (possibly empty set) of elements with
distance from the boundary larger than 4Rl . Then αl+1[s](AX1 ) ⊂AX . Moreover, since
the set X2 consists of at most two intervals of size 4Rl we have, using Lemma 7.7 and
(9.37) that ∥(α−αl+1[s])|AX2

∥ =O ( f (2l )). Since α has f (r )-tails,

α(AX2 )
O ( f (r ))⊆ AB(X ,r ),

and since r < 4Rl = 2l+5 we see that

αl+1[s](AX2 )
O ( f (r )+ f (2l ))⊆ AB(X ,r )

αl+1[s](AX2 )
O ( f ( r

32 ))
⊆ AB(X ,r ).

Lemma 7.12 allows us to conclude that

α[t ](AX ) =αl+1[s](AX )
O ( f ( r

32 ))
⊆ AB(X ,r ).

■
Remark 9.20. If α has O ( 1

r 1+a )-tails for a > 0, then for 0 < b < a and with reproducing

function F (r ) = 1
(1+r )1+b the Hamiltonian constructed in Theorem 9.19 satisfies the

hypotheses in Theorem 9.1 (Lieb-Robinson). However, notice that the locality estimates
you get from applying the Lieb-Robinson bounds to these bounds are weaker than the
original locality bounds on α[t ].

Remark 9.21. The Hamiltonian evolution constructed in Theorem 9.19 cannot always
be approximated by a 2-local quantum circuit of constant depth. Likewise, even QCAs
of radius r may have circuit complexity exponential in r when using 2-local gates.

Remark 9.22. Finally, we observe that in Theorem 9.19 if we have exponential tails, which
decay as f (r ) = O (e−ar ), one obtains that α[t ] has O (e−aCr )-tails. This is not entirely
optimal, and for exponential tails one can slightly change the proof, by considering the
sequenceβk rather thanβ2k and correspondingly γk =βk+1β

−1
k instead of γk =β2k+1β−1

2k .
The same arguments as in the proof of Theorem 9.19 then lead to a path α[t ] where α[t ]
has O ( f (r +C )) =O (e−ar )-tails, which is implemented by a Hamiltonian H(t). In this
case the Hamiltonian is such that for every t , there exists k such that H(t) has only
terms HX on (nonoverlapping) sets X of diameter at most k, with ∥HX (t )∥ =O (k2e−ak ).
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Next we discuss blending. We need a slightly weaker notion than for QCAs.

Definition 9.23. Two ALPUs α1 and α2 in one dimension can be blended (at the origin)
if there exists an ALPU β on some A vN

Z
such that

lim
r→∞∥(β−α1)|A≤−r ∥ = 0,

lim
r→∞∥(β−α2)|A≥r ∥ = 0.

Proposition 9.24. Two ALPUs α1,α2 can be blended if and only if ind(α1) = ind(α2).

When ind(α1) = ind(α2) and both ALPUs have f (r )-tails, the approximation requirement
of the blending as defined in Definition 9.23 can be refined as in (9.40) as discussed in
the proof. The blending proceeds similarly to the construction in Proposition 9.15.

Proof. First we assumeα1 andα2 can be blended and show ind(α1) = ind(α2). Consider
a blended ALPU β as in Definition 9.23. By Theorem 9.18(ii), one may compute ind(β)
locally on either half of the blended chain. Both calculations must yield the same
index, which does not depend on where it is locally calculated. By (ii) of Theorem 9.18,
the index computed locally at the sufficiently far left must be ind(α1), and the index
computed at the far right must be ind(α2). Thus, ind(α1) = ind(α2).

Next we show that if ind(α1) = ind(α2), then α1 and α2 can be blended. We assume
both ALPUs are defined on the same AZ (i.e., the local dimensions are the same) and
address the general case afterward. Both ALPUs extend to automorphisms of A vN

Z
as

in Remark 9.7. Coarse-grain the lattice until both α1 and α2 are ε-nearest neighbour
ALPUs, with ε smaller than a universal constant determined by the remainder of the
proof. Then we can apply Proposition 9.14 (if ε≤ ε1) separately toα1 andα2 at site n = 0.
Denote the ALPUs resulting from Proposition 9.14 as α̃1 and α̃2, respectively. Then by
construction ∥α̃i −αi∥ ≤C1ε for i = 1,2. Moreover by Theorem 9.18(ii), we can take ε
small enough that ind(αi ) = ind(α̃i ) for i = 1,2, hence ind(α̃1) = ind(α̃2).

As usual, we write Bn = A{2n,2n+1} and Cn = A{2n−1,2n}. Then by their construc-
tion, α̃i for i = 1,2 both satisfy the locality properties α̃i (Bn) ⊆Cn ⊗Cn+1 for n = 0,1,2,
as well as α̃−1

i (Cn) ⊆ Bn−1 ⊗Bn for n = 1,2. Then by Theorem 8.2 and subsequent
Remark 8.3, for each i = 0,1 and n = 1,2 we can define

L (i )
n = α̃i (Bn)∩Cn ,

R(i )
n−1 = α̃i (Bn−1)∩Cn

such that

Cn =L (i )
n ⊗R(i )

n−1 (9.38)

and, for n = 1,

Bn = α̃−1
i (L (i )

n )⊗ α̃−1
i (R(i )

n ). (9.39)

Following the structure theory of QCAs in Theorem 8.2, one can for each i = 1,2 find
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a QCA βi of radius 2 such that βi |A{0,...,5} = α̃i |A{0,...,5} .
2 By the latter condition, Theo-

rem 9.18, (ii) implies (if we have sufficiently coarse-grained in our initial step) that
ind(α̃i ) = ind(βi ). Recalling that ind(α̃1) = ind(α̃2), we then have ind(β1) = ind(β2), so
from Eq. (8.7) we conclude that R(1)

0 and R(2)
0 have the same dimension and hence are

isomorphic finite-dimensional subalgebras of C1. Hence there exists a unitary u ∈C1

such that uR(1)
0 u∗ =R(2)

0 .
Now we are in position to define the blended ALPU β. For x ∈ A≤1 we define β

as β(x) = uα̃1(x)u∗. We let β|A≥2 = α̃2|A≥2 . Then

β(A≤1) = (A≤0 ∪R(2)
0 )′′

and

β(A≥2) = (L (2)
1 ∪A≥3)′′

commute by construction, so β is a well-defined injective unital ∗-homomorphism.
Moreover C1 =L (2)

1 ⊗R(2)
0 from (9.38), so β is surjective, hence a well-defined ALPU. By

construction of α̃1 and α̃2 using Proposition 9.14, for r →∞,

∥(β−α1)|A≤−r−1∥ =O ( f (r −1)),

∥(β−α2)|A≥r+6∥ =O ( f (r −7)).
(9.40)

Above we assumed both α1 and α2 were defined on the same AZ (i.e., that both chains
use algebras An of the same dimensions). If α1 and α2 have different local dimensions,
then in the region where we blend them above, we can first pad them with extra tensor
factors so that they have identical local dimensions within that region. ■

The following theorem extends all properties in Theorem 8.5 for QCAs to ALPUs, re-
placing the role of circuits by Hamiltonian evolutions, and allowing strongly continuous
paths through the space of ALPUs with uniform tail bounds.

Theorem 9.25 (Properties of index for ALPUs). Suppose α and β are ALPUs in one
dimension. Then:

(i) ind(α⊗β) = ind(α)+ ind(β).

(ii) If α and β are defined on the same algebra, ind(αβ) = ind(α)+ ind(β).

(iii) The following are equivalent:

(a) ind(α) = ind(β).

(b) α and β may be blended.

2Indeed, βi can be constructed as follows. First we define βi |A{0,...,5} = α̃i |A{0,...,5} and then we define
the action of βi on the remainder of AZ as follows. We focus on defining βi for A≤−1; the definition for
A≥6 is directly analogous. An easy argument shows that L (i )

0 := α̃i (B0)∩C0 is a factor and moreover

Eq. (9.39) also holds for n = 0. Then Eq. (9.38) will also hold for n = 0 if we define R(i )
−1 alternatively as the

complementary factor to L (i )
0 ⊂C0. For each n ≤−1, choose an arbitrary factorization Cn =L (i )

n ⊗R(i )
n−1

with L (i )
n

∼=L (i )
1 and R(i )

n−1
∼=R(i )

−1
∼=R(i )

0
∼=R(i )

1 (using that, by assumption, all local dimensions are the

same). For each n ≤−1, choose an arbitrary factorization Bn = L̃ (i )
n ⊗ R̃(i )

n into factors isomorphic to
those used for B1 in Eq. (9.39) for n = 1. Then we have L̃ (i )

n
∼=L (i )

n and R̃(i )
n

∼=R(i )
n , so we can define βi

to act as βi (L̃ (i )
n ) =L (i )

n and βi (R̃(i )
n ) =R(i )

n for n ≤−1. This completes the definition of βi for A≤−1.
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(c) There exists an index-0 ALPU γ such that α=βγ.

(d) There exists g (r ) = o(1) and a strongly continuous pathα[t ] through the space
of ALPUs with g (r )-tails such that α[0] =α and α[1] =β.

In (d), if α and β have f (r )-tails, we may take g (r ) = O ( f (Cr )) for a universal
constant C . If they have O (e−ar )-tails, we may take g (r ) = O (e−ar ). In general,
the path in (d) may be implemented by composing α (or β) with a Hamiltonian
evolution with time-dependent Hamiltonian H(t ), with interactions bounded as
in Theorem 9.19 and Remark 9.22.

In (c), if α and β do not have the same local dimensions, the statement only holds after
separately tensoring α and β with appropriate identity automorphisms, such that α
and β then have the same local dimensions. The analogous modification is needed
for (d).

Proof. If α and β are ALPUs with approximating sequences αn and βn as in Theo-
rems 9.16 and 9.18, then αn ⊗βn and α2nβn approximate α⊗β and αβ respectively.
Then (i) and (ii) follow from the corresponding property for QCAs (Theorem 8.5). For (iii)
the equivalence (a) ⇔ (b) is stated by Proposition 9.24. The equivalence (a) ⇔ (c) fol-
lows from ind(βα−1) = ind(β)− ind(α), using property (ii). The implication (a) ⇒ (d)
follows from Theorem 9.19 applied to βα−1. The comment about exponential tails
follows from the remark after Theorem 9.19. Next we show (d) ⇒ (a), i.e. that the index
must remain constant along a strongly continuous path. Because all ALPUs in the path
are assumed to have g (r )-tails for some fixed g (r ), by Theorem 9.18(ii) there exists a
finite interval X such that any two ALPUs γ and γ′ with ∥(γ−γ′)|AX ∥ sufficiently small
must have ind(γ) = ind(γ′). By the strong continuity (9.36) of the path, the index must
then be constant along the path. ■
In the terminology of [Has13], Theorem 9.25 shows that an (A)LPU is an LGU (locally
generated unitary) if and only if it has index zero. We can also interpret Theorem 9.25
as a converse to the Lieb-Robinson bounds in one dimension. Again, recall that Lieb-
Robinson bounds demonstrate that local Hamiltonian evolution exhibits an approx-
imate causal cone, quantified by the bound. Conversely, we ask whether evolutions
that satisfy Lieb-Robinson-type bounds (i.e. ALPUs) can be generated by some time-
dependent Hamiltonian. We find the following converse, emphasized below.

Corollary 9.26 (Converse to Lieb-Robinson bounds). Suppose α is an ALPU in one
dimension with f (r )-tails. If (and only if) ind(α) = 0, α can be implemented by a
strongly continuous path α[t ] generated by some time-dependent Hamiltonian H(t),
such that α[0] = I , α[1] = α, and α[t ] has g (r )-tails for all t , for some g (r ) = o(1). If α
has f (r )-tails, we may take g (r ) = O ( f (Cr )) for a universal constant C . If the ALPU α

has O (e−ar )-tails, we may take g (r ) = O (e−ar ). The Hamiltonian H(t) can be taken to
have interactions bounded as in Theorem 9.19 and Remark 9.22.

More generally, every ALPU in one dimension is a composition of a shift and a Hamil-
tonian evolution as above.

Proof. The equivalence follows immediately from (iii) in Theorem 9.25. The final state-
ment follows by letting σ be a shift with ind(σ) = ind(α), then ind(ασ−1) = 0 by (ii) in
Theorem 9.25 so there exists a Hamiltonian evolution γ such that γ=ασ−1 and hence
we have α= γσ. ■
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The use of time-dependent rather than time-independent Hamiltonians is necessary,
as [ZFFM20] shows that there exist QCAs with index 0 that cannot be implemented by
any time-independent local Hamiltonian.

9.2.4 Finite chains
We developed the above structure theory of ALPUs on the infinite one-dimensional
lattice. The statements are easily be adapted to the case of a finite one-dimensional
chain with non-periodic (“open”) boundary conditions. The statements as well as the
proofs essentially hold unchanged, but we make some clarifying remarks. In summary,
the theorems only become nontrivial when the length |Γ| of the chain is taken larger than
some finite threshold, but this threshold depends only on the tails and local dimensions
of the ALPU. Meanwhile, the index is always zero.

We work with the algebra AΓ, where Γ is now a finite interval Γ⊂Z. By non-periodic
boundary conditions, we mean that Γ is considered as an interval rather than a circle,
i.e. Γ inherits the metric from Z, and the sites at either end of the interval are not
considered neighbours. We again consider ALPUs on AΓ with f (r ) tails, where f (r ) is
only meaningful for r < |Γ|. In our arguments, A≤n becomes the finite-dimensional
algebra corresponding to all sites left of n +1, and so on.

With this modification, Lemma 9.11 holds as stated, and the proof is identical.
Importantly, all unspecified constants appearing as O (·) in e.g. (9.11) are independent
of the chain length |Γ|.

We then arrive at Theorem 9.16 for finite one-dimensional lattices, describing QCA
approximations to ALPUs. Given ALPU α with f (r ) tails, the theorem describes an
increasing sequence of QCA approximations β j of radius j . For finite Γ, we restrict
attention to j ≤ |Γ|, so that the notion of a QCA of radius j remains meaningful. Re-
call the QCA approximations β j were only guaranteed to have the listed properties in
Theorem 9.18 for j > j0, with j0 chosen such that f ( j0) is smaller than some universal
constant independent of |Γ|. Then we only need |Γ| > j0 for Theorem 9.18 to yield non-
trivial QCA approximations, and this threshold size is determined only by the tails f (r ).
Finally, the assumption f (r ) = o( 1

r ) used for the latter claims of Theorem 9.18 may
expressed more explicitly as the assumption that f ( j0) j0 is smaller than some constant
depending only on the local dimensions dn of AΓ. This assumption then increases
the minimum length |Γ| for the theorem to become nontrivial, but with the minimum
depending only on the tails and local dimensions, rather the details of α.

While Theorem 9.18 holds as written for finite Γ, it also reduces to a special case:
the index is always zero. Calculating the index as the entropy difference in (8.13), we
see the entropies correspond to complementary regions of a pure state, yielding zero.
In fact, the trivial index was inevitable. On the infinite lattice, ALPUs with nonzero
index implement shifts, and these shifts have no analog on the finite interval with
non-periodic boundary conditions.

We can therefore apply Theorem 9.19 about Hamiltonian evolutions to every ALPU
on finite Γ⊂Z. As above, the theorem becomes nontrivial lattices of a certain size, using
the same threshold discussed above. We then obtain a local Hamiltonian evolution
generating the ALPU, with locality as specified by Theorem 9.19.

While finite chains with non-periodic boundary conditions descend as a special
case from the infinite lattice, the case of periodic boundary conditions (i.e. Γ inherits the
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metric of a circle) appears more difficult. Many of the tools we develop appear useful
there, but the key Lemma 9.11 has no obvious analog. Therefore we cannot offer a
rigorous index theory of ALPUs on finite chains with periodic boundary conditions. The
question is nonetheless important, and perhaps crucial for a generalization to higher
dimensions. We leave the question to future work.

9.2.5 Translations cannot be implemented by local Hamiltonians
In this section, we discuss how our result answers the following natural question: do
local ‘momentum densities’ on the one-dimensional lattice exist? In quantum many-
body systems, local conserved quantities dramatically influence dynamics. For instance,
under local Hamiltonian evolution, energy itself is a local conserved quantity, and after
the system has locally equilibrated, the dynamics are often governed by energy diffusion.
More generally, when a system admits more local conserved quantities in addition
to energy, the near-equilibrium dynamics are often governed by the hydrodynamics
of these quantities [LMMR14, DNBD19, BMEK17]. For translation-invariant systems,
one expects momentum is also a local conserved quantity. For instance, in scalar
quantum field theory, the i ’th component of the total momentum operator may be
expressed as P i = ∫

π(x)∂iφ(x)dx which is manifestly local, with local momentum
density π(x)∂iφ(x).

The long-wavelength, low-energy regime of a lattice system like a spin chain is often
described by a field theory, and a local momentum density is well-defined under this
approximation. However, we might also ask for a local momentum operator P =∑

x px

on the spin chain that generates translations, yielding U = e i P as the one-site translation
operator. If P were constructed with local terms px , and if P commuted with some
translation-invariant Hamiltonian, this exactly conserved momentum density might
play an important role in dynamics.

The existence of such a local P is precisely the question of whether the shift QCA can
be generated by a local “Hamiltonian,” referring now to P as a Hamiltonian. We show
such a local Hamiltonian cannot exist. In particular, on the infinite one-dimensional
chain, it is impossible to implement the translation operator by time evolution us-
ing any time-dependent Hamiltonian satisfying Lieb-Robinson bounds, if the Lieb-
Robinson bounds lead to an ALPU with o(1)-tails. This follows immediately from
Theorem 9.25(iii)(d). For instance, we have:

Corollary 9.27 (No-go for local momentum densities). If P is a local Hamiltonian

P = ∑
X⊆Z

PX

on an infinite one-dimensional spin chain which has decaying interactions such that for
all n ∈Z, ∑

X⊆Z
s.t. n∈X

∥PX ∥ =O
(
diam(X )−(2+ε))

for some ε> 0, then e i P cannot be the unitary lattice translation operator that translates
by one site.
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Recall our notation that e.g. PX is a term local to region X ⊂ Z on the lattice Z. The
no-go result is also robust: Theorem 9.18 constrains how well e i P can approximate
the translation operator locally. (Note that while [GNVW12] already demonstrated that
finite-depth circuits cannot achieve translations, their statements about circuits cannot
be easily re-cast as claims about Hamiltonian evolution, at least not without further
robustness results such as those developed here.)

Given that the translation operator cannot be generated by a finite-depth circuits,
our analogous for claim for sufficiently local Hamiltonians might seem in intuitive.
However the claim is not obvious, as demonstrated by the following example: if we allow
evolution generated by Hamiltonians with 1

r -decaying interaction terms (which then
violate Lieb-Robinson bounds), we can implement a translation. The example involves
a chain of qubits; we only sketch the construction but the details are easily verified. A
Jordan-Wigner transformation maps the chain of qubits to a chain of fermions (or for-
mally, it maps the quasi-local algebra to the CAR-algebra). Let c†

n and cn be the fermionic
creation and annihilation operators at site n ∈Z. The Jordan-Wigner transform of the
translation automorphism T is again the translation automorphism, T (cn) = cn−1. Tak-
ing a Fourier transform we see that

T (ĉk ) = e i k ĉk

Hence time evolution for time t = 1 using Hamiltonian

H =
∫ π

−π
kĉ†

k ĉk dk

implements T . In real space

H = ∑
n,m∈Z

hn−mc†
ncm

where the coefficients hr (of which the precise form is not important) have magnitude 1
r .

Of course, we can also take the inverse Jordan-Wigner transform of this Hamiltonian to
obtain a Hamiltonian on the spin chain

H̃ = ∑
n,m

hn−mσn,m

where σn,m is a Pauli operator supported on sites min{n,m}, . . . ,max{n,m}. In this way
we can construct a Hamiltonian not satisfying Lieb-Robinson bounds which does imple-
ment T . This shows that our demand that the ALPUs have o(1)-tails in our construction
of the index is not arbitrary; the classification by index collapses once we allow evo-
lutions such as those generated by H̃ above with 1

r -decaying interactions. In fact, by

Theorem 9.25 we conclude that e−i H̃ t cannot have o(1)-tails.
For the case of a single-particle Hamiltonian (i.e. a quantum walk), the obstruction

to generating the translation operator with a local Hamiltonian hinges on the non-trivial
winding of the dispersion relation [GNVW12]. It has been observed that for quadratic
fermion Hamiltonians, every such Hamiltonian that implements the translation opera-
tor will need to have a discontinuity in its dispersion relation (in our example at k =±π)
and hence at least 1

r -tails in real space [ZFFM20, WW20]. These single-particle and free
fermion results do not permit obvious generalization to the broader many-body case;
our results allow us to draw conclusions for all local many-body Hamiltonians satisfying
Lieb-Robinson bounds.
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Discussion and open questions

In this chapter we have defined and studied the index for approximately locality-
preserving unitaries (ALPUs) on spin chains. Various open questions remain, and
at this point we will speculate on a few of these.

(i) Our results are restricted to the infinitely extended chain, or an open finite chain
as in Section 9.2.4. One could also investigate what happens with a finite periodic
chain with an ε-nearest neighbour automorphism for small ε. It appears that our
proof technique relies on the fact that the chain is infinite (or open), so probably
a different strategy is needed for finite periodic chains.

(ii) An obvious question of interest is the generalization to higher dimensions. The
index theory generalizes to higher dimensions, but is not known to provide a
complete classification in dimensions larger than two [FH20] as discussed in
Section 6.1. Although the classification is less well understood, one could still
hope that for any ALPU α there exists a sequence of QCAs α j approximating α
as in Theorem 9.16. Our constructions of approximating QCAs for an ALPU
rely rather heavily on the structure theory (i.e., the GNVW index theory) of one-
dimensional QCAs. Hence, it is not immediately clear how to generalize to higher
dimensions. In fact, we have not even given a definition of what an ALPU is in
higher dimensions, where some choices exist. For two-dimensional QCAs the
notion of a boundary algebra allows one to classify all two-dimensional QCAs (in
which any QCA is a composition of a circuit and a generalized shift). Potentially,
this structure theory, as developed in [FH20, Haa21] can be used in a similar
fashion to construct the α j . This could involve proving stability results for the
notion of a “visibly simple algebra” as introduced in [FH20]. A direct physical
application of this would be a rigorous understanding of the index discussed in
Section 6.2.1.

(iii) A basic open question is a generalization of Proposition 8.13, that is, to show that
it is also true in spatial dimension greater than one that if α is a QCA which is
sufficiently close to the identity, it is a circuit.

(iv) Another direction to generalize in is to channels which preserve locality but which
are not unitary (i.e. an automorphism), see [PC20] for definitions and a recent
discussion. In other words, what happens if the dynamics is slightly noisy? Is the
index robust under small amounts of noise? One could hope to show that any
locality preserving channel which is almost unitary can be approximated by a
QCA.

(v) There is also a notion of fermionic QCAs, with a corresponding GNVW index. It
should be possible to use similar arguments to extend the index to fermionic
ALPUs.

Some of these open questions are closely related. For instance, it is easy to see that
for any ALPU one can approximate by a strictly locality preserving channel (which is
then not necessarily unitary). Thus, a solution for Item (iv) immediately provides a
solution for approximating ALPUs by QCAs and could also be helpful for (i). Secondly, a
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natural approach to two-dimensional systems could be a localizing in a radial direction,
and approximation results for the periodic chain could be useful here. A final comment
is that one method to show that on a finite chain ε-nearest neighbour automorphisms
are close to QCAs would be by adapting the proof of Theorem 8.2. For this, consider an
automorphism α, then, in the notation of Theorem 8.2, one could define a quantum
channel

Φ : Bn →Cn , Φ(x) = ECn (α(x))

and let Ψ =Φ†Φ where Φ† is the adjoint channel of Φ. If α were a nearest neighbour
QCA, by the proof of Theorem 8.2 we would find thatΨ is a conditional expectation onto
the subalgebra Ln . On the other hand, if α is an ε-nearest neighbour automorphism
we find that Ψ is a unital channel which is almost idempotent. It is a known fact that
unital idempotent channels are always equivalent to a conditional expectation onto a
subalgebra, so if we were able to show thatΨ is actually close to a strictly idempotent
unital channel we could use this to establish, as in Theorem 8.2, a factorization result
and construct a nearby strict QCA. Thus, in this approach the challenge would be
to extend stability results and show that if a unital channel Ψ is almost idempotent
(which means that ∥Ψ2(x)−Ψ(x)∥ ≤ ε∥x∥), this implies that there exists a nearby unital
idempotent channel Ψ̃with ∥Ψ(x)− Ψ̃(x)∥ ≤ f (ε)∥x∥ for some function f . This could
also provide alternative proofs for the results in this chapter which would not rely on
infinite dimensional algebras.
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Entanglement in random tensor
networks





CHAPTER 10

Introduction to quantum information in
quantum gravity

Since the discovery of the AdS/CFT correspondence and holography there has been
a fruitful interaction between quantum gravity and quantum information. In this part of
the dissertation we contribute to this interaction. We start by giving a brief introduction
to the role of quantum information theory in quantum gravity. One of the basic results
is the computation of CFT entanglement entropies by areas of minimal surfaces. In
Chapter 11 we introduce a basic tool for computing entropies in quantum field theories
and in holography: the replica trick. We review recent work which computes the entan-
glement entropy in situations where there are multiple relevant minimal surfaces. The
material in the current introduction and in Chapter 11 gives a very brisk review of holo-
graphic quantum gravity and the computation of entropies and is not mathematically
rigorous, but serves to explain the relevance of the precise computations in Chapter 12,
Chapter 13 and Chapter 14. The results and exposition follow based on [CPWW].

In Chapter 12 we introduce the toy model we will study in this part of the dissertation:
random tensor network states. We explain how a similar replica trick can be used to
compute entanglement entropies for this model as well. We introduce a generalization
of the random tensor network model, allowing arbitrary link states, which we will see
reproduces holographic theories more realistically.

Our main contributions can be found in Chapter 13 and Chapter 14, where we
show that random tensor network states reproduce the entropy computations reviewed
in Chapter 11. In this case we can make these computations completely rigorous.
The methods are related to the theory of free probability and to one-shot quantum
information theory.

10.1 The black hole information paradox

Black holes provide one of the main motivations for studying quantum gravity. What
happens to an object when it disappears into a black hole? In classical general relativity
one can more or less avoid answering this question, since the object can never be
retrieved from the black hole. A famous calculation by Hawking shows that an analysis
of quantum field theory near the black hole horizon implies that the black hole is a
radiating object (sending out Hawking radiation) at some nonzero temperature [Haw75].
This calculation can be performed without knowledge of a complete theory of quantum
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gravity, since the gravitational force at the black hole horizon is still sufficiently weak
to treat semiclassically. Mysteriously, this radiation appears to be completely thermal,
in the sense that it contains no information about what has formed the black hole. By
emitting Hawking radiation the black hole loses mass, and in the end the black hole will
completely evaporate. This poses serious conceptual difficulties. If one believes that
any quantum theory of a closed system must be unitary (that is, reversible), this is in
conflict with black hole evaporation as described above: the process of matter falling
into the black hole, and returning as Hawking radiation, appears to be irreversible, and
there seems to be a loss of information. This forms the basis for what is known as the
black hole information paradox. Another perspective on information in the process
of black hole evaporation is the Page curve. This is the conjectured development of
the entanglement entropy between the emitted radiation and the black hole interior.
Initially, while the black hole is emitting Hawking radiation, as this radiation is purely
thermal (so one can roughly think of the state of the radiation as maximally mixed), the
entanglement entropy increases (and one can think of the radiation as being maximally
entangled with the black hole interior). However, if we have unitary evolution, after
evaporation of the black hole the entanglement entropy must be zero, so if one assumes
unitarity there will be a point at which the entanglement entropy between the black
hole and the radiation starts to decrease. The point at which this happens is essentially
when the number of degrees of freedom of the radiation system becomes larger than
the number of degrees of freedom in the black hole interior, see Fig. 10.1a. At this point,
we generally still do not need a theory of quantum gravity near the black hole horizon,
which is still sufficiently far from the singularity for semiclassical quantum gravity to
apply; this makes the expected decrease of entropy puzzling. A sharp version of the
black hole information paradox was formulated as the AMPS paradox in [AMPS13].
The black hole information paradox has been the starting point for a large body of
research on widely differing potential resolutions [Pre92, HM04, HP07, ST08, AMPS13,
HH13, PR13, PR14]. See [Har16] for a review of quantum information and black hole
physics, and quantitative statements of the black hole information paradox. Below we
will discuss one specific approach based on insights from holographic quantum gravity.

An important insight is that the entropy of a black hole is proportional to the area of
its horizon. To be precise, the thermodynamic entropy is give, in c =ħ= 1 units, by

HBH = A

4GN
(10.1)

where A is the area of the black hole horizon. Initially, this expression for the entropy was
based on analogies to thermodynamics and from the computation of the temperature
of the Hawking radiation. Later, it was also shown that if one counts the number of mi-
crostates corresponding to a black hole in certain string theories one recovers Eq. (10.1)
[SV96], providing strong evidence that Eq. (10.1) can really be seen as the number of
microstates corresponding to a macroscopic black hole of a prescribed area.

10.1.1 Random unitary model for black hole evaporation
To make sense of the black hole information paradox we will consider very basic toy
models for black hole evaporation which show qualitatively similar behavior based on
random unitaries [Pag93b, HP07]. We start with a toy model which reproduces the Page
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(a) A sketch of the Page curve.
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B ′ R
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R B ′

U

(b) A random unitary model which reproduces the Page
curve, and the set-up for an old black hole in the
Hayden-Preskill model.

Figure 10.1: The entanglement entropy of a radiating black hole develops along the Page curve:
initially, the entanglement entropy of the black hole equals the number of radiation
qubits logdR , but at some point the total number of degrees of freedom of the black
hole, given by Eq. (10.1) is smaller, and gives an upper bound on the entanglement
entropy.

curve. If we assume unitary time evolution, and we assume that the emitted Hawking
radiation is approximately maximally mixed, then during the evaporation process the
entanglement entropy between the radiation and the black hole interior has to grow
linearly. However, during the evaporation process, the black hole shrinks, and therefore
the total entropy of the black hole (which is proportional to its horizon area) decreases.
At some point (the Page time), the black hole entropy will be smaller than the linearly
increasing entropy of the radiation system. This is an upper bound on the entanglement
entropy as well (as it is an upper bound on the system size). The Page curve is the
conjecture that the actual entanglement entropy between the radiation and the black
hole interior is given by the maximal possible entanglement entropy: it is the minimum
between the (increasing) size of the radiation entropy and the (decreasing) size of the
black hole entropy.

A very basic model reproducing this behavior is the following. Let B be a finite-
dimensional quantum system with Hilbert space HB of dimension dB and consider a
fixed initial state |0〉. Then we ‘model’ the black hole evaporation process by applying a
Haar-random unitary U to the initial state, and splitting up the system B = B ′R , where R
is a system of dimension dR , representing the emitted radiation and B ′ is a system of
dimension dB ′ representing the remainder of the black hole. The result is a Haar-
random state |ψ〉 =U |0〉 (corresponding to a uniformly random unit vector in HB ), see
Fig. 10.1b. It is a well-known result that such a state has, with high probability, almost
maximal entanglement [Pag93a, HLW06]. That is, with high probability

H(R)ψ ≈ min{logdR , logdB ′} (10.2)

which corresponds to the Page curve: the entropy grows linearly with the number of
quanta of Hawking radiation which are emitted, up to the point where the black hole
entropy is too small.

Let us also consider a slightly more elaborate model, proposed by [HP07]. Here
we investigate the following question: suppose we have an already existing black hole,
and we throw in some object, when can we recover the object from the radiation? First
we must explain what we mean by ‘recovering’. Suppose we have an observer Alice,
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who has a quantum system system A of dimension dA. We let |φ+
AE 〉 be a maximally

entangled state between Alice and a reference system E of the same dimension. Then,
after disposing the A system into the black hole, and collecting radiation R, we say
that we can recover A if R is again maximally entangled with E . This is a standard
notion of recoverability in quantum information theory. It implies that we can now
apply a channel to the radiation to get back the original state φAE , which would recover
any initial state of the A system, preserving correlations with a reference system E An
approximately maximally entangled state suffices for approximate recovery. Let us
apply this to set up a toy model for black hole evaporation. Let B denote the system
of the original black hole. We consider two different scenarios. The first scenario is
where we have a ‘young’ black hole; in this case the B system is initially in a state |0〉.
The second situation models an ‘old’ black hole, where we have already collected a
large amount of Hawking radiation in a system F , which we assume to be maximally
entangled with B , see Fig. 10.1b. So, the initial state is given by |φ+

AE 〉⊗ |0B 〉 for a young
black hole or |φ+

AE 〉⊗ |φ+
BF 〉 for an old black hole. Then one can show, using decoupling

techniques from quantum information theory that for a young black hole, and has
to wait until just after the Page time before you can (with high probability) recover A.
On the other hand, for an old black hole, one can recover A from the total radiation
system RF almost immediately after A falls into the black hole! That is, one only needs
O (1) qubits of radiation R to recover. For this reason, [HP07] called old black holes
‘information mirrors’.

We may say that after the Page time the black hole interior is partially encoded in the
radiation system. This conflicts with usual notions of locality for quantum field theory.
However, the actual process of recovery can be very complicated; in fact, this may be so
complicated that for all practical purposes recovery is not possible. See [HH13, KTP20]
for arguments that the decoding process (after the Page time) may have exponential
complexity, and that for this reason observers with polynomial computational resources
will not be able to observe potential breakdowns of locality.

While clearly a very crude model, we would like to comment on why using random
unitaries makes sense as a toy model for a black hole. It has been argued that black
holes should have highly chaotic dynamics [SS08, SS14, MSS16]. The intuition for this
is roughly as follows: if matter falls into a stationary black hole, there is a perturbation
of the black hole which is damped exponentially. After a very short time, the black hole
is again in a stationary state, and the black hole has equilibrated. This fast equilibration
should mean that the black hole is highly chaotic (in some sense, maximally chaotic,
as argued in [MSS16]), and the scrambling time of the black hole as a quantum system
should correspond to the equilibration time as computed gravitationally. For times
longer than the scrambling time we can therefore model the black hole dynamics by
a random unitary, as chaotic quantum dynamics behave similar to random dynamics,
and one can actually use random matrix theory to understand black hole dynamics
[CGAH+17].

The random unitary toy models should be seen as an indication of what will happen
to quantum information provided we assume the black hole dynamics are unitary. They
do not provide sufficient detail to ‘solve’ the black hole information paradox: they do not
propose a mechanism to correct the entropy computations for the Hawking radiation.
In this dissertation we will study a more sophisticated random matrix theory model for
quantum gravity, and we will make extensive use of similar decoupling results. We will
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investigate what happens in this model at the Page transition, where logdR ≈ logdB ′

in Eq. (10.2). We will do so in the context of holographic quantum gravity.

10.2 Quantum information in holography

More than twenty years after its discovery, the AdS/CFT correspondence [Mal99] re-
mains arguably the only known example of a theory of quantum gravity; indeed it is
unique in being a nonperturbatively defined theory for which we have strong evidence
for the existence of a semiclassical limit consisting of Einstein gravity coupled to quan-
tum field theory. Holography states that there is an equivalence between two theories:
on the one hand a quantum gravity theory on a asymptotically Ant-de Sitter space (the
bulk), and on the other hand a conformal field theory on its conformal boundary. This
phenomenon is also known as holography [Hoo93, Sus95] and is inspired by the fact
that the black hole entropy scales with the area as we saw in Eq. (10.1). The strongest
statement of the AdS/CFT correspondence is the conjecture that there is an equiva-
lence of partition functions. Suppose that there exist bulk fields φ (amongst which the
gravitational metric), then we let

ZAdS[φ0] =
∫
φ|∂M=φ0

Dφe−SAdS(φ)

be the path integral over the bulk fields, where SAdS(φ) is the (quantum) gravity action,
and we have set boundary conditions at the conformal boundary ∂M . On the other
hand, we may consider the CFT partition function

ZCFT[φ0] =
∫

Dψe−SCFT(ψ)−∫
∂M φ0(x)O(x)

where we perform the path integral over the CFT fields, and we have added opera-
tors O using the (classical) fields φ0 as sources. Then one statement of the AdS/CFT
correspondence is that these partition functions coincide:

ZAdS[φ0] = ZCFT[φ0].

This allows one to relate various quantities in the gravitational and CFT theories, a
correspondence known as the AdS/CFT dictionary. Known examples of holographic
duality are typically such that the bulk theory is a string theory and the boundary theory
is a supersymmetric model. The boundary CFT has a central charge c , which effectively
counts the number of degrees of freedom of the theory. For example, for the most well-
known example of N = 4 supersymmetric Yang-Mills theory with SU (N ) gauge fields,
which is dual to a type IIB string theory, we have c = N 2. It turns out that correspond-
ingly on the gravitational side GN ∼ c−1. This means that weakly interacting gravity
corresponds to large c, or large N . In this limit we may approximate the gravitational
path integral

ZAdS[φ0] ∼ e−I (φ) + . . . (10.3)

by its saddle point, corresponding to the classical solution φ of the gravitational equa-
tions of motion with boundary conditionsφ0, and where I (φ) is the action of the classical
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limit of the gravitational theory (for instance, this is a supergravity action in the case of
type IIB string theory). The vacuum state of the CFT is dual to empty AdS space. As we
turn on sources in the boundary, we find states which are dual to other semiclassical
geometries. Below we will assume that we are in the semiclassical regime (with c ≫ 1)
and we consider states ρ in the CFT which are dual to semiclassical geometries in the
bulk.

10.2.1 Computing entropies
A crucial feature of the AdS/CFT correspondence is that the emergence of a (classical)
space-time is closely related to the entanglement structure of the boundary theory.
One of the ways to see this is by computing entanglement entropies for the boundary
theory. An extensive introduction to entanglement entropies in holography can be
found in [RT17]. We first consider the case where we have a (pure) CFT state ρ which
is dual to a static space-time (so the space-time looks like R×Σ for some fixed spatial
manifold Σ). We then consider the boundary CFT on the conformal boundary ∂Σ, and
we let A be a subregion. What is the entanglement entropy H(ρA)? At this point we
comment that strictly speaking it is not very clear what the ‘reduced density matrix’ ρA

should be: in a quantum field theory we do not have a factorization of Hilbert spaces
with respect to a spatial region and its complement. Also, the entropy of the A-system
will be infinite. We implicitly place a UV cut-off on the theory and throughout this
chapter and Chapter 11 pretend that we have finite dimensional Hilbert spaces, a useful
and not too harmful fiction.

To give a prescription for H(ρA), consider the set C (A) of all co-dimension 1 sur-
faces γA in Σwhich are homologous to A; in particular this means that ∂γA = ∂A. Then,
the Ryu-Takayanagi (RT) formula [RT06a, LM13] states that

H(ρA) = min
γA∈C (A)

|γA|
4GN

+O (1) (10.4)

where |γA| is the area of the surface γA, and the corrections are of constant order with
respect to GN . The expression in Eq. (10.4) has suppressed the dependence on the cut-
off. Formally, both H (ρA) and |γA| are infinite, and we regulated ρA by a UV cut-off, and
we may similarly regulate the area of the surface by cutting off γA some distance from the
boundary. This can be done such that the regulated expressions match. The RT formula
is strongly reminiscent of the area formula for the black hole entropy in Eq. (10.1).

Various generalizations exist. One can allow for non-stationary space-times; in this
case, we consider a subsystem A of a spatial slice of the boundary, and we consider
the set X (A) of all co-dimension 2 surfaces γA which are homologous to A (but now
not restricted to a fixed spatial slice) and which are an extremal point of the area func-
tional. Then the Hubeny-Rangamani-Takayanagi (HRT) formula [HRT07] extends the
RT-formula by expressing the entropy as

H(ρA) = min
γA∈X (A)

|γA|
4GN

+O (1). (10.5)

Another possibility is to allow the bulk space to have ‘entropy’ itself, for instance in the
form of matter or a black hole, in which case the dual boundary state need not be pure.
For this, given an extremal surface γA on a spatial slice, let ΓA be the bulk region region
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enclosed by γA and A. This is known as the entanglement wedge. We denote by Sbulk(ΓA)
the entropy of the bulk state reduced to ΓA. It has been conjectured [EW15] that we can
now compute the entropy of ρA by the quantum extremal surface formula:

H(ρA) = min
γA∈X (A)

{ |γA|
4GN

+Sbulk(ΓA)

}
+O (1). (10.6)

GivenγA, let HQES(γA) = |γA |
4GN

+Sbulk(ΓA) The quantum extremal surface formula is highly
relevant for the black hole information paradox, as was shown in [Pen20, AEMM19]. To
see this, consider a state ρ which is dual to a black hole. We collect the Hawking radiation
R at the boundary system, and we would like to reproduce the Page curve by computing
the entropy of the radiation H (ρR ). One can show that there are two potential quantum
extremal surfaces [Pen20]. One candidate is the empty surface. In this case ΓA is the
complete spatial slice, and HQES(γA) equals the entropy of the black hole, which equals
the entropy of the Hawking radiation collected and grows linearly. The other option
is a surface γA just inside the black hole horizon. For this surface, HQES(γA) is given
by (approximately) the black hole horizon area. Taking the minimum of these two
options we indeed find the Page curve. This idea has lead to a better understanding of
the black hole information paradox. In this derivation, the assumption in the paradox
which is broken is a locality assumption: after the Page time the black hole interior
is partially encoded in the radiation. Here, the derivation of the Page curve relies
on Eq. (10.6), which is still of a conjectural nature. However, Eq. (10.6) can be verified
in certain restricted situations [PSSY19, AHM+20], and is closely related to so-called
replica wormholes (which we will discuss in Chapter 11). The surprising feature of
this approach to the black hole information paradox is that is that the encoding of the
black hole interior in the radiation can be realized with an essentially semiclassical
computation. A review of these recent developments can be found in [AHM+21].

An interesting subtlety in the quantum extremal surface formula is the precise
conditions that ρ has to satisfy. We demanded that ρ should be dual to a classical
geometry (in order for the notion of a minimal surface to make sense). However, if
the Sbulk(ΓA) term becomes relevant in the minimization problem we also need the
bulk matter to be sufficiently well-behaved, as was pointed out in [AP20], where the
application of one-shot quantum information theory was introduced to understand the
conditions under which the quantum extremal surface is valid.

10.2.2 Recovery and entanglement wedge reconstruction
An extension of the entropy computations by means of minimal surfaces is subregion-
subregion duality, or entanglement wedge reconstruction. Informally speaking, this
states that the reduced state ρA on a boundary subsystem A is dual to the entanglement
wedge ΓA, which is the bulk region bounded by A and the minimal surface γA for A.
What does it mean for ΓA to be ‘dual’ to ρA? The idea is that if we act with a local
operator in ΓA, this is equivalent to acting with a local operator on A. However, we
should be careful: if we act with an operator which actually deforms the geometry, or
creates a superposition of different geometries this becomes ambiguous. For this reason
we consider a code subspace S of bulk states, which all have the same bulk geometry,
with some low-energy excitations. Then, each of these states is dual to a boundary
state. As in our discussion of the black hole information paradox, let φSE be a maximally
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entangled state between the code subspace S and a reference system E . Then, the
state φ is dual to a state ρ which is a maximally entangled state between E and the
boundary, from which we can completely recover the bulk state φSE . If we restrict to a
boundary subsystem A, so we have the reduced state ρAE , what can we still recover? The
answer turns out to be φΓAE , the reduced bulk state on the entanglement wedge. This
can be framed in the language of error correcting codes: we have quantum information
encoded in the bulk theory, and the information which is encoded in the entanglement
wedge ΓA is protected against erasure error on the complement of A. See [CHP+19] for
an information-theoretic perspective on entanglement wedge reconstruction. A good
introduction, with an emphasis on the relation to notions on locality in the bulk, can be
found in [Har18]. Finally we comment that for entanglement wedge reconstruction the
role of one-shot information theory has also been investigated in [AP20, AP22].

10.2.3 Holography from random tensor networks
A careful study of quantum information principles in holography is complicated by the
fact that one has to deal with complicated strongly interacting field theories. It has been
useful to construct toy models which are not themselves realistic models of quantum
gravity, but nevertheless capture certain structural aspects of holography. One of the
most powerful such models are random tensor network states, which are the topic of this
part of the dissertation. Random tensors and tensor networks also arise in a number
of other fields of physics, including quantum information, where they have been used
to explore generic entanglement properties of quantum states [HLW06, CNŻ10, Aub12,
ASY12, AN12, CGGPG13, CNŻ13, CN16, AS17, Has17, NW20, WW21a, MB21, LPG21]
and condensed matter physics, e.g. in the study of random circuits and measurements
[VPYL19, LPWV20, NRSR21, MVS21, YLFC21, LC21, LVFL21].

A random tensor network can be seen as a PEPS state where the choice of tensors
is random. The most basic version of a random tensor network is characterized by a
choice of bond dimension D and a graph G = (V ,E ), where the vertices V =Vb ⊔V∂ of G
are partitioned into “bulk” vertices Vb and “boundary” vertices V∂. To each edge e ∈ E ,
we associate a maximally entangled state

1p
D

D∑
i=1

|i i 〉 (10.7)

on two D-dimensional Hilbert spaces, one of which is associated to each endpoint of e;
each vertex v ∈V is therefore associated with a Hilbert space Hv of dimension Ddeg(v).
Finally, we project each bulk vertex y ∈ Vb into a Haar random state |ψy〉 ∈ H y . The
resulting ‘random tensor network state’ lives in the Hilbert space H∂ =⊗x∈V∂Hx associ-
ated to the boundary vertices x ∈V∂, as shown in Fig. 10.2.

To characterize the typical entanglement structure of random tensor network states,
we can compute the von Neumann entropy H(ρA) of the reduced density matrix ρA on
a subset A ⊂V∂ of the boundary vertices. In the limit where the bond dimension D is
very large, this entropy can be shown to converge with high probability to log(D)|γA|,
where γA is the set of edges crossing the minimal cut (for the moment, assumed to be the
unique such cut) in the graph separating A from its boundary complement V∂ \ A (see
Fig. 10.5a). This formula is closely analogous to the holographic RT formula. Similarly,
if we allow entropy in the bulk, one can show that an analog of the quantum extremal
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(a) The skeleton of a random tensor network.
We take the green-colored vertices to be
the boundary vertices V∂ and the remain-
ing, orange-colored vertices to be the bulk
vertices Vb . The structure is reminiscent of
a (hyperbolic) AdS spatial slice.

|ψ〉

1p
D

∑D
i=1 |i i 〉

(b) A close-up picture of a random tensor network.
We first associate each vertex v ∈V with a Hilbert
space Hv of dimension Ddeg(v) (here, deg(v) = 3).
Then maximally entangled states are distributed
according to the graph’s edges, after which the
state at each bulk vertex v ∈Vb is projected onto
a Haar random state |ψ〉 ∈Hv .

Figure 10.2: The basic structure of a random tensor network.

surface prescription is valid, and prove subregion-subregion duality for random tensor
networks.

In quantum field theories it is often convenient to study the k-th Rényi entropies

Hk (ρA) = 1

1−k
logtr[ρk

A].

For integer k > 1, these are more amenable to direct computation than the von Neu-
mann entropy, and one can often extract the von Neumann entropy by analytic continu-
ation to k = 1.

The computation of Rényi entropies in random tensor network models is in fact
closely analogous to holographic computations. In both cases, the idea is to use the
replica trick – essentially this is the observation that tr[ρk

A] = tr[τρ⊗k
A ] where τ is an

operator which permutes the k copies of ρA cyclically. In the holographic computation,
this can be written as a path integral, on k copies of the theory, glued together in an
appropriate way. By the holographic dictionary this path integral can then be computed
by the action of a bulk geometry with certain boundary conditions [LM13]. We will re-
view this in Chapter 11. For random tensor networks, one finds that tr[ρk

A] concentrates
around its expectation, and that this can be computed as the partition function of a
classical spin model on the bulk vertices, with boundary conditions dictated by the
choice of boundary subsystem [HNQ+16]. This computation will be explained in detail
in Chapter 12.

10.2.4 A single random tensor and non-crossing partitions
For now, let us review some well-known results for the easiest version of this computa-
tion, which is the case of a single random tensor. Consider a tensor |ψ〉 of size dA ×d Ā.
We have two boundary systems, A of dimension dA and Ā of dimension d Ā. There are
two edges, and the edge with minimal dimension is a ‘minimal’ cut. We are especially
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interested in the case where dA and d Ā are of the same order of magnitude. In this case
there are two competing ‘minimal cuts’. This can be thought of as the point of the ‘phase
transition’ in the Page curve in Eq. (10.2). This situation leads to O (1) corrections to the
entropy which is of order min{logdA, logd Ā}.

We introduce some notation for permutations π ∈ Sk , the symmetric group on k
elements. Given π ∈ Sk , let C (π) be the cycle type of the permutation, i.e. the collection
of lengths of the disjoint cycles in π. Then |C (π)| is the number of cycles of π. For
π1,π2 ∈ Sk we let d(π1,π2) = k −|C (π−1

1 π2)|, which gives a metric on Sk (see Chapter 13
for details). We let τ = (12. . .k) be the full cycle. The replica trick allows one to show
that if we let ρ denote the associated random tensor network state (which, in this case,
simply is a normalized version of ψ), then

E tr
[
ρk

A

]
= ∑
π∈Sk

d d(τ,π)
A d d(π,id)

Ā

We will derive a generalization of this expression for general random tensor networks in
Chapter 12. A first observation is that if dA ≪ d Ā, there is a single dominant contribution,
given by π= τ. Similarly, if dA ≫ d Ā, the dominant contribution arises from π= id.

We now would like to investigate the regime where dA = D and d Ā =αD, where D
is large and α goes to some constant. We need a property of permutations: for any
permutation π, d(τ,π)+d(π, id) ≥ k−1. The permutations for which we have equality in
this expression correspond to non-crossing partitions NC (k) (again, see Chapter 13 for
details). These are permutations which can be ‘drawn’ in the the plane without crossing.
This means that

E tr
[
ρk

A

]
= D−(k−1)

∑
π∈NC (k)

α|C (π)|−k +O (D−k )

For large D we may ignore the O (D−k ) contributions, and use this to show that the spec-
trum of DρA converges to a Marchenko-Pastur contribution MP(α) (see Chapter 13 for
details). In particular, this allows one to compute O (1) corrections to the log(D) leading
contribution to the entropy. For instance, one can show that, with high probability for
large D

H(ρA) ≈ log(D)− 1

2α
.

One of our goals will be to generalize this result to a wide class of random tensor
networks.

10.3 Summary of contributions

In Section 10.2.1 we saw that the quantum extremal surface prescription for holographic
entropies leads to a derivation of the Page curve. In particular, at the Page time there is
a ‘phase transition’ in which surface is the quantum extremal surface. A similar phase
transition occurs when we consider a boundary region A consisting of two disjoint
subregions A1 and A2. Then, upon varying the size or location of A1 and A2 there can
be a change in whether the entanglement wedge for A is connected, or is the disjoint
union of the entanglement wedges for A1 and A2 separately, see Fig. 10.4. In both cases,
we would like to understand what happens at this transition point.



10.3. Summary of contributions 199

A Ā

(a) A random tensor network
with a single bulk vertex and
two boundary vertices.

γR

γB

R

(b) A tensor network interpretation of the quantum extremal
surface formula. The boundary subsystem consists of the
radiation system R which is entangled with a black hole.
The minimal cut is either a cut γB around the black hole
horizon, or a cut γR at the purifying system (corresponding
to the total entropy of the radiation).

Figure 10.3: The most basic example of a random tensor network with a single tensor corre-
sponds to the model in Fig. 10.1b. Tensor network models provide intuition for the
quantum extremal surface formula.

A1

A2

ΓA

ΓA

γA

γA

A1

A2

ΓA

γA

γA

Figure 10.4: If the boundary subsystem A consists of two connected components A1 and A2

there are two possibilities for the RT-surfaces. Either the RT surface γA for A is the
union of the RT surfaces for A1 and A2, in which case the entanglement wedge is
disconnected, or this is not the case and the entanglement wedge ΓA is connected.
In the first case, there is essentially no entanglement between A1 and A2, whereas
in the second case there is entanglement between A1 and A2.
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While there is a strong analogy between random tensor networks and holographic
CFT states, from the replica trick computations one finds that holographic CFT states
and random tensor network states have Rényi entropies which behave quite differently
when k ̸= 1. For random tensor network states the Rényi entropies are approximately
independent of k in the large D limit. This means that their entanglement spectrum is
close to ‘flat’, or, in other words, that the boundary state ρA is approximately maximally
mixed within a certain subspace.

On the other hand, CFT states that are dual to semiclassical spacetime geometries
have Rényi entropies that vary non-trivially with k, as we will see in Chapter 11. It
has recently been argued that fixed-area states in AdS/CFT do have flat spectra, and
more generally have an entanglement structure that closely matches random tensor
network states [AR19, DHM19, BPSW19, MWW20, DQW21]. Such states have a well-
defined semiclassical geometry associated to a fixed spatial slice; however, thanks to the
uncertainty principle, they cannot describe a single semiclassical spacetime geometry
[BPSW19].

In the random tensor network model, the flatness of the spectrum can be traced to
the maximally-entangled states used as ‘link states’ (see Eq. (10.7) and Fig. 10.2b) on the
edges of the graph, which themselves have flat entanglement spectra. To take results
about random tensor networks beyond the fixed-area state regime, it is natural – see,
e.g., discussion in [HNQ+16, BPSW19] – to replace the maximally entangled link states
by general states

|φe〉 =
D∑

i=1

√
λi |i i 〉 . (10.8)

If one considers a random tensor network with non-trivial link states, where we
simply replace each maximally entangled state by some fixed other state, it is perhaps
not very surprising to see that if there is a single minimal cut for a subsystem A then the
resulting density matrix ρA will have an entanglement spectrum that converges to that
of |γA| copies of the link state along the minimal cut as D →∞; indeed this was already
suggested in [HNQ+16].

A more interesting question, and the main focus of this work, is the case where
there are two minimal cuts, as in Fig. 10.5b. This situation is motivated by questions in
holography: it can be used to study the phase transition at the point where there are
two competing minimal surfaces [MWW20]. Moreover, as we saw in Section 10.2.1 this
situation is relevant to understand the Page transition in the black hole evaporation
process. For a single random tensor we sketched how the replica trick can be used to
compute O (1) corrections to the entanglement entropy. We would like to be able to
understand such corrections for random tensor network states with non-trivial link
states.

For our first result, we consider the situation where the ratios λi /λ j of different
eigenvalues remain bounded in the D →∞ limit; we refer to this as the bounded spectral
variation limit. Formally, we consider a family of link states with increasing bond
dimension D as in Eq. (10.8). For each D , the link state has an associated distribution

µ(D)
e = 1

D

D∑
i=1

δDλi .
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γA

A

ΓA

(a) The boundary domain A has a unique minimal
cut ΓA . The set of edges crossing this minimal
cut is denoted by γA .

γA,1

γA,1

γA,2

γA,2

A

A

ΓA,1

ΓA,1

ΓA,2\ΓA,1

(b) The boundary domain A has two minimal
cuts ΓA,i with cut-sets γA,i . In the notation of
Section 12.1.2, the red region is ΓA,1 = V1, the
blue region is ΓA,2 \ΓA,1 =V2 and the green re-
gion is V \ΓA,2 =V3. Note that ΓA,1 has two con-
nected components, while ΓA,2 is connected.

Figure 10.5: Tensor networks with one and two minimal cuts, compare with the competing
surfaces in Fig. 10.4.

We then require that the moments

m(D)
k = Dk−1

D∑
i=1

λk
i

of the distributions µe converge to a finite limit as D →∞ for all positive integer k. This
means, in particular, that we must have λi =O(1/D) for almost all eigenvalues λi .

If we let γA denote a minimal cut (more precisely, the set of edges crossing a minimal
cut) for a boundary domain A, then we may similarly define the associated distribution

µ(D)
γA

= 1

D |γA |
∑

i1,...,i|γA |
δD |γA |λi1 ···λi|γA |

,

and assume that it converges weakly to a some distribution µγA . Now consider the
spectrum of the reduced state ρA, and denote its eigenvalues in non-increasing order
by λA,i . Consider the empirical distribution of eigenvalues

µ(D)
A = 1

D |γA |
D |γA |∑
i=1

δD |γA |λA,i
.

In the case where there are two non-intersecting minimal cuts γA,1 and γA,2, we have
weak convergence µ(D) ⇒ µA, where the limiting distribution µA will be given by a
free product of distributions MP(1)⊠µγA,1 ⊠µγA,2 , a notion from the theory of free
probability. Here, MP(1) is the Marchenko-Pastur distribution of parameter 1. The
situation is summarized by our first main result, which we state more precisely as
Theorem 13.4:
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Theorem (Informal). Consider a family of link states in the bounded spectral variation
limit. If the tensor network has a unique minimal cut γA for a boundary subsystem
A, then µ(D)

A converges weakly, in probability, to µγA . If there are exactly two minimal

cuts γA,1 and γA,2, then µ(D)
A converges weakly, in probability, to MP(1)⊠µγA,1⊠µγA,2 .

We also briefly discuss the closely related problem of computing the entanglement
negativity spectrum in the same regime.

In Chapter 14, we investigate a different regime, in which link states are allowed
to have unbounded spectral variation in the large D limit. This is the more relevant
regime for holography, where fluctuations in the area of a surface (in Planck units) grow
sublinearly but without bound in the semiclassical limit.

When the spectral variation is unbounded, one has to be careful about how to
define the notion of a “minimal cut.” A sensible way to formalize this is by using one-
shot entropies: we say that a cut is minimal if the rank of the state along the cut is
smaller than the inverse of the largest element in the entanglement spectrum along
any other cut. This condition, while intuitive, is a little too restrictive, and one can use
smooth entropies to get a weaker, but still meaningful, condition. In Theorem 14.6,
we give a general condition for what it means for a cut to be “minimal,” and show that
the spectrum of a reduced density matrix ρA will be close to the spectrum along the
minimal cut.

Finally, one can also consider a further generalization of the random tensor network
model, where the link state

⊗
e φe is replaced by a general state. This can be used to

model holographic states with bulk entropy. We show a version of subregion-subregion
duality, and relate this to the quantum information processing task of split transfer.



CHAPTER 11

The replica trick in quantum gravity

In this chapter, we give a heuristic description of certain Euclidean gravity path inte-
grals in holography. This section serves as a motivation for the random tensor network
models we study, and shows how the holographic computations closely mirror random
tensor network computations, but is not needed to understand the random tensor
network results. In this chapter we will depart with our convention that logarithms are
to base 2 and use natural logarithms (as this is standard in the physics literature).

11.1 The replica trick and Euclidean path integrals

How can one compute entropies in quantum field theories? If one would like to compute
the von Neumann entropy, one would have to ‘compute the logarithm of the density
matrix’, but it is not clear how to translate this into a field theory computation. The
standard way to avoid this is by combining two basic observations. The first observation
is that if ρ is a density matrix, we can compute its Rényi entropies

Hk (ρ) = 1

1−k
logtr

[
ρk

]
.

In principle, this formula is a legitimate definition for all k ∈ (0,1)∪ (1,∞), and its
limit for k → 1 corresponds to the von Neumann entropy H(ρ). Moreover, for a finite-
dimensional Hilbert space Hk (ρ) is analytic in k. If we just know the integer values, and
the analytic continuation is unique (for instance because the function does not grow
too fast and using Carlson’s theorem), then we may use this to deduce H (ρ). The second
basic observation is that for integer k,

tr
[
ρk

]
= tr

[
R(τ)ρ⊗k

]
(11.1)

where R(τ) is the operator which sends |i1〉⊗ . . .⊗ |ik−1〉⊗ |ik〉 7→ |ik〉⊗ |i1〉 . . .⊗ |ik−1〉,
that is, it cyclically permutes the k copies of ρ. This is particularly useful because this
allows us to compute Rényi entropies using path integrals for quantum field theories.
We consider a pure quantum field theory state |ρ〉 on a space M which is prepared by a
Euclidean path integral on M × (−∞,0]. Correspondingly, 〈ρ| is prepared by the time-
reflected path integral on M × [0,∞). If we letΦ(x,τ) denote the fields of the theory, S
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↑ τ

τ= 0

Φ(x,τ)

φ(x)

(a) A pure state prepared by a Eu-
clidean path integral.

↑ τ

Ā A

(b) Path integral representation of the reduced density
matrix on a subsystem A.

Figure 11.1: Quantum field theory state prepared by a path integral.

the Euclidean action, then |ρ〉 is the state which computes expectation values through
the path integral

tr[ρφ] =
∫

M×(−∞,0]
DΦΦ(x,0)=φ(x)e

−S(Φ)

Let A be some subregion of M . Then the reduced density matrix on A is given by
taking |ρ〉 and 〈ρ|, gluing together (and integrating over the fields on Ā, the complement
of A). We now use the observation in Eq. (11.1), and take k copies of this path integral,
and glue the boundaries at the A system cyclically, integrating over the fields. This is
illustrated in Fig. 11.2. We conclude that tr[ρk

A] is computed by a path integral ZA,k on a
manifold MA,k , allowing us to compute Hk (ρA). Of course, this is formally infinite. First
of all, the path integral is not normalized, so one has to ‘normalize’ that path integral
appropriately by normalizing by Z1 which can be thought of as tr[ρ]. Then

Hk (ρA) = log
ZA,k

Z k
1

. (11.2)

Moreover, to get a finite result one has to impose a UV cut-off of size ε. There will be
divergences in ε, and the ‘interesting’ part (that is, the part which is independent of
the regularization scheme) will be the divergences of order log(ε−1) and potentially a
constant part.

If the quantum field theory is a CFT, this is especially pleasant. By the operator-state
correspondence all states may be prepared as Euclidean path integrals. If the theory is
1+1-dimensional, one may use the conformal symmetry to show that in general (after
regularization with an UV cut-off of size ε) the Rényi entropy of an interval A of length
|A| is given by

Hk (ρA) =
(
1+ 1

k

)
c

6
log

|A|
ε

where c is the central charge of the CFT, leading to the Cardy-Calabrese formula for the
entanglement entropy as k → 1

H(ρA) = c

3
log

|A|
ε

.

This result matches the RT formula in AdS3 /CFT2, as this corresponds (upon correct
choice of units and regularization) to the length of a geodesic which is ankered to the
boundary at the endpoints ∂A of the interval A.
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A

A

A

(a) For the replica trick the path integral is glued
cyclically along A to obtain MA,k . The space
MA,k is a k-fold cover of M , branching at the
boundary ∂A. In this case k = 3.

A
τ

id

γA,k

(b) The holographic version of the replica trick.
The boundary manifold is glued as MA,k ,
and the bulk manifold is glued along a cyclic
permutation τ adjacent to A, and along the
identity permutation along a region adja-
cent to the complement Ā. These two re-
gions are separated by a brane γA,k .

Figure 11.2: The path integral replica trick to compute tr[ρk
A].

11.1.1 The holographic replica trick
What happens if the quantum field theory is a holographic CFT? Recall that we have
a correspondence between the path integral of the CFT on the one hand, and the
bulk quantum gravity path integral on the other hand, which we may approximate
by its semiclassical saddle. We will use this to sketch a derivation of the RT formula.
The original argument is due to [LM13], we follow the closely related approach of
[Don16, DHM19]. We consider a state |ρ〉 which is dual to a semiclassical geometry, and
we fix a boundary subsystem A. Then, the k-th Rényi entropy is given by Eq. (11.2), and
we use holographic duality to compute the value of these path integrals. For sufficiently
large effective central charge we may approximate by a saddle-point approximation,
using the semiclassical gravitational action I to obtain

ZA,k ≈ e−I (B A,k )

where B A,k is a (Riemannian) manifold which has MA,k as its conformal boundary and
is a solution to the gravitational equations of motion. We note that MA,k has a Zk

symmetry, by shifting the k replicas. Let us assume that the saddle point B A,k also
satisfies this replica symmetry. Then we may consider the orbifold B̂ A,k = B A,k /Zk ,
which then satisfies

I (B A,k ) = kI (B̂ A,k ).

This yields

Hk (ρA) ≈ k

k −1

(
I (B̂ A,k )− I (B1)

)
.

The bulk solution B̂ A,k will have two domains, one where the replicas in B A,k are glued
cyclically (adjacent to A) and a complementary region (adjacent to the complement
of A) as shown in Fig. 11.2b. Let γA,k be the surface where these two regions meet.
We may write the action as I (B̂ A,k ) = Iaway(B̂ A,k )+ Ibrane(B̂ A,k ), where Iaway(B̂ A,k ) is the
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action away from γA,k , and where Ibrane(B̂ A,k ) corresponds to a conical deficit at γA,k

of size 2π(k−1)
k . This conical deficit arises from the orbifold construction, and can be

interpreted as a ‘cosmic brane’ in the action with tension k−1
4GN k . The term Iaway(B̂ A,k )

cancels against I (B1) and we are left with

I (B̂ A,k )− I (B1) = k −1

4GN k
|γA,k |

where |γA,k | is the area of the brane. This may be analytically continued to non-integer
values k, and

Hk (ρA) ≈ |γA,k |
4GN

(11.3)

where γA,k is the brane in the saddle-point solution. In particular, continuation to k = 1
yields the RT formula

Hk (ρA) ≈ |γA|
4GN

. (11.4)

where one can show that the equations of motion for the brane impose that γA is now
the minimal area surface homologous to A.

What can we say about the spectrum of ρA? This spectrum can be recovered from
the Rényi entropies. In Eq. (11.3), we see that |γA,k | depends on k but is otherwise fixed
as we let GN go to zero in the classical limit. It was argued in [BPSW19] that this behavior
implies that we can approximate the spectrum to be such that for λ in the spectrum,
the value of − logλ lies in an interval

[H(ρA)−O (G
−1

2
N ), H(ρA)+O (G

−1
2

N )],

which can be rephrased as the interval

[H(ρA)−O (
√

H(ρA)), H(ρA)+O (
√

H(ρA))].

This situation can be made more precise in the language of one-shot information
theory and smooth entropies, and we will do so in the random tensor network setting
in Chapter 14. This shows that the large c limit in a holographic CFT is similar to
considering the many-copy limit in quantum information theory, where one also finds
that for a fixed state ρ0, one can approximate the spectrum of ρ⊗n

0 such that for λ in the
spectrum, − logλ lies in the interval

[nH(ρ0)−O (
p

n),nH(ρ0)+O (
p

n)].

11.1.2 Fixed area states
A useful variation on the derivation of the RT formula is to consider fixed-area states
[DHM19]. We consider the ‘area operator’ γ̂A for a subsystem A, which measures the
area of a minimal surface. The operator γ̂A actually has fluctuations, and we may write

|ρ〉 =
∫

dα |ψα〉
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where ψα is an eigenvector of Â with eigenvalue α, so |ρ〉 is a superposition of fixed area
states. The state |ψα〉 is a fixed area state, and can be thought of as prepared by a bulk
path integral where we have restricted to bulk geometries for which |γA| =α. The same
derivation as above now leads to

Hk (ρA) ≈ α

4GN
.

since the area of the minimal surface is fixed to be α. Thus, in this case, all Rényi
entropies are (to good approximation) equal which implies that the state has flat entan-
glement spectrum (i.e. all nonzero eigenvalues of ρA are approximately equal).

11.2 States at a minimal surface phase transition

Consider now a CFT state ρ on the boundary, which is prepared by a Euclidean path
integral. We would like to investigate what happens if the minimal surface for A is not
unique, but there are two surfaces of the same order of magnitude, as in Fig. 10.4. In
order to study the entanglement spectrum of a reduced state ρA, we will again use the
replica trick. In the case where there was a unique minimal surface, we saw how the
replica trick lead to the derivation of the RT formula. Let us denote the two competing
minimal surfaces in the bulk by γA,1 and γA,2. In [MWW20], it was shown how the
entanglement entropy should behave at this phase transition between the two minimal
surfaces. A similar computation was performed in [AP20] for the setting with two
competing minimal surfaces and bulk matter. We will briefly sketch their argument,
referring the interested reader to [AP20] for more details.

11.2.1 Fixed area states with two minimal surfaces
We begin by considering bipartite fixed-area states ρAB , which are states prepared by
a gravitational Euclidean path integral, and in which we have fixed the size of the two
competing surfaces γA,1 and γA,2. In this case, saddle points of the path integral have
to satisfy the equations of motion everywhere except at the surfaces γA,i , where there
could be conical singularities. The two surfaces divide the bulk into 3 regions: a1, a2

and a3.
The saddle points are states with smooth geometries in the regions where the copies

of regions ai are glued to each other – the k copies of region a1 are glued cyclically, while
the copies of region a3 are glued without permutation. On the middle region a2, we are
free to glue along an arbitrary permutation π. This breaks the replica symmetry.

Let us label such a saddle solution by B A,π, and let us write φi for the conical sin-
gularity angle at γA,i . It turns out that these saddle points lead to an action of the
form

I (B A,π) = kIaway(B A,π)+ (kφ1 −2π|C (π)|) |γA,1|
8πGN

+ (kφ2 −2π|C (τ−1π)|) |γA,2|
8πGN

,

where g is the saddle corresponding to a single copy of the state, Iaway[g ] is the action
away from the surfaces, φi is the angle of the conical singularity at γA,i , |γA,i | is the area
of the surface γA,i , |C (π)| is the number of cycles of π, and τ is the full cycle (12. . .k). In
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particular, for k = 1 we have

I (B A,π) = Iaway(B A,π)+ (φ2 −2π)
|γA,1|
8πGN

+ (φ2 −2π)
|γA,2|
8πGN

,

so when we look at the normalized path integral, and sum over all permutations

ZA,k

(ZA,1)k
≈ ∑
π∈Sk

e
(|C (π)|−k)

|γA,1|
4GN

+(|C (τ−1π)|−k)
|γA,2|
4GN

= ∑
π∈Sk

e
−d(id,π)

|γA,1|
4GN

−d(π,τ)
|γA,2|
4GN .

This is very similar to the situation in Section 10.2.4. As in that case, in this expression
not all permutations will be relevant. The areas γA,i are of the same order of magnitude,
and are divergent. As a result, only the permutations for which d(id,π)+d(π,τ) are
minimal will contribute, as all other permutations are suppressed by at least a factor
of the area of γA,i in the action. The relevant permutations are again the non-crossing
permutations NC (k). We conclude that

ZA,k

(ZA,1)k
≈ ∑
π∈NC (k)

e
(|C (π)|−k)

|γA,1|
4GN

+(|C (τ−1π)|−k)
|γA,2|
4GN . (11.5)

This computation is in one-to-one correspondence with the computation in for a
single random tensor we discussed in Section 10.2.4, as also observed in [PSSY19]. It also
corresponds more generally to a random tensor network computation with two minimal
cuts, as will be clear from the computations in Chapter 12. One can also add bulk matter
in this path integral computation, which will again be in correspondence to a similar
computation in a random tensor network [AP20]. From the moment computation in
Eq. (11.5) and applying the results for the entanglement of a single random tensor,
we observe that for two fixed surfaces of exactly equal size, the (appropriately scaled)
entanglement spectrum is a Marchenko-Pastur distribution, giving an O (1) correction
to the entanglement entropy, agreeing with the gravitational replica trick computation
in [MWW20].

11.2.2 General states at the minimal surface phase transition
We now relax the fixed-area restriction, and study similar calculations performed in
[DHM19], [MWW20], and [AP20]. Denote by ZA,k (α1,α2) the path integral where we
have fixed the areas of γA,i to be αi . Then, following section 2.3 in [DHM19], the full
path integral is given by

ZA,k =
∫

dα1dα2 Zk (α1,α2).

Again, we consider the semiclassical limit, so we take our saddle-point approximation
of Zk (α1,α2) in Eq. (11.5), and we also take a saddle-point approximation for the integral
over α1 and α2. This saddle point will be at the values for αi where the deficit angles are
given by φi = 2π

n (since then the saddle point geometry is smooth), which leads to

ZA,k

(ZA,1)k
≈ ∑
π∈NC (k)

e
(|C (π)|−k)

|γ(k)
A,1|

4GN
+(|C (τ−1π)|−k)

|γ(k)
A,2|

4GN (11.6)
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where γ(k)
A,i are now minimal surfaces, with a dependence on k. Analytic continuation to

k = 1 yields the usual surface prescription. In particular, if there are two surfaces that
are of almost equal area, the contribution of the larger term is exponentially suppressed
for any O (1) or larger difference in areas.

To zoom in on the region where the two surfaces are nearly equal, we write the
state as a superposition of fixed area states. We may discretize the area size α1 and α2

over poly( 1
GN

) values and approximate the state as a (finite) sum

|ψ〉AB = ∑
α1,α2

√
p(α1,α2) |ψα1,α2〉

where |ψα1,α2〉 is the state where the areas are fixed as |γA,i | =αi and p is a probability
distribution over the possible areas. Then a straightforward calculation of the reduced
density matrix ρA yields a state of the form:

ρA = ∑
α1,α2

p(α1,α2)ρA,α1,α2 +
∑

α1 ̸=α′
1,α2 ̸=α′

2

√
p(α1,α2)p(α′

1,α′
2) trB

[
|ψα1,α2〉〈ψα′

1,α′
2
|
]

,

= ∑
α1,α2

p(α1,α2)ρA,α1,α2 +OD A,

where OD A are the off-diagonal elements of ρA. One can argue that the states ρA,α1,α2

are all mutually orthogonal by entanglement wedge reconstruction – the area operator
can be reconstructed on A, and hence, each ρA,α1,α2 is perfectly distinguishable from
each other. Then the entropy of the diagonal part of the state is easily computed as

H

( ∑
α1,α2

p(α1,α2)ρA,α1,α2

)
= ∑
α1,α2

p(α1,α2)H(ρA,α1,α2 )− ∑
α1,α2

p(α1,α2) log p(α1,α2).

(11.7)
The second term is the so-called entropy of mixing, and it is a standard argument that
this term is suppressed relative to the first term [MWW20] as O (lnGN ) or smaller. The
entropies appearing in the first term can be computed using the methods in the previous
subsection.

Returning to the off-diagonal terms OD A, [MWW20] argued that such terms should
be subleading in the analytic continuation due to the relevant surfaces breaking replica
symmetry. At the same time, [AP20] argued that such terms should be subleading due to
reasons similar to those for the orthogonality of the diagonal elements: complementary
entanglement wedge reconstruction implies one may reconstruct the bulk area operator
on B , and hence, such states are perfectly distinguishable on B . Therefore, the partial
trace over B vanishes for α1 ̸=α′

1, α2 ̸=α′
2.

At any rate, one reaches the conclusion:

H(ρA) = ∑
α1,α2

p(α1,α2)
min{α1,α2}

4GN
+O (lnGN ), (11.8)

In this computation the O (1) corrections due to the Marchenko-Pastur distribution
along each pair of minimal cuts of equal size (or equivalently, the degeneracy in the
contributions to the saddle point approximation) is irrelevant, as the entropy of mixing
already leads to O (lnGN ) deviations.
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i

(a) Path integral which
prepares |ψi 〉.

i i

j j

i j

i j

Z2 Z1 Z1

Z2

Z2

Z1

m2

m2

m1

(b) Replica trick for JT gravity. On the left side two diagrams that show
up when computing matrix elements of ψ⊗2

Rad, on the right a diagram

contributing a factor Z 2
2 Z1m2

2m1 to tr[ψ5
Rad].

Figure 11.3: Path integrals and the replica trick for JT gravity. See [PSSY19] for a detailed expla-
nation of the diagrammatic notation.

11.2.3 Replica wormholes and JT gravity
One of the most basic models of quantum gravity is JT gravity, a 1+1-dimensional model
of gravity; see [Sár17] for a review. JT gravity is also a useful model for the near-horizon
dynamics of extremal black holes in any dimension. In this case, the dual theory should
be 0+1-dimensional. In other words, it should be regular quantum mechanics rather
than a quantum field theory. Indeed, in [SSS19], it was shown that JT gravity theory is
dual to a random matrix model, where the Hamiltonian is a random self-adjoint matrix
according to some distribution, providing another strong connection between quantum
gravity and random matrix theory. It also appears that such gravitational systems may
be dual to an ensemble of boundary theories [BW20], rather than a single one. Whether
this is fundamental, a special feature of 1+1-dimensional models, or due to averaging
over microscopic features of the gravity theory, is a line of active research [SSSY21].

We now sketch a variation on a calculation in [PSSY19], providing proof-of-principle
that the free probability techniques we introduce in Chapter 13 provide an elegant
framework to understand such results. We refer the interested reader to [PSSY19] for
more in-depth motivation and detailed computations.

We consider JT gravity with an end of the world (EOW) brane containing a large
number n of internal states. This model has action

I = IJT +µ
∫

brane
ds,

where the action of a manifold M with metric g , induced boundary metric h, extrinsic
curvature K , and dilaton φ is given by

IJT[M , g ] =− S0

2π

[
1

2

∫
M

p
g R +

∫
∂M

p
hK

]
−

[
1

2

∫
M

p
gφ(R +2)+

∫
∂M

p
hφK

]
.

The details of this action are not very important for us; we just note that we will take
the S0 parameter to be large, and that this suppresses contributions where the mani-
fold M has genus γ> 0 in the Euclidean path integral.

Such systems are of interest when studying a simple version of an evaporating black
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hole. Let

|ψ〉 = 1p
n

n∑
i=1

|ψB ,i 〉 |iRad〉

where |ψB ,i 〉 is the state of the black hole with the EOW brane in state i , and |iRad〉 is
a reference state, which can be thought of as the radiation system. Notice that the
entanglement spectrum of this state is flat. We generalize this to

|ψ〉 =
n∑

i=1

p
pi |ψB ,i 〉 |iRad〉 ,

where the entanglement between the black hole and the radiation has some nontrivial
spectrum, which we will assume to be close to uniform, so that pi

n is bounded by a
constant for all i . In Chapter 13, we will formalize this assumption as having bounded
spectral variation. We let

mk =
n∑

i=1
nk−1pk

i

be the (appropriately scaled) moments of the spectrum of the entanglement spectrum
of the EOW brane. Moreover, we write the path integral on a disc geometry with k
boundary components and k EOW branes as e−S0 Zk . Then following the arguments
of [PSSY19], one can compute the k-th moment of the radiation system for large n
and large eS0 (large n enforces a planar limit with only non-crossing partitions, while
large eS0 ensures that only genus γ= 0 geometries contribute), as illustrated in Fig. 11.3b.
The contributions of path integral configurations connecting different replicas are called
replica wormholes. This diagrammatic computation shows that

tr[ψk
Rad] = ∑

π∈NC (k)
mπ

Zπ−1τ

Z k
1

n−d(π,id)e−S0d(π,τ). (11.9)

In this expression, we use the notation Zσ = ∏
l∈C (σ) Zl , where C (σ) is the cycle type

of σ, and l ∈C (σ) are the lengths of the cycles of σ, and similarly for mσ. This expres-
sion implies that if n ≫ eS0 , the dominant contribution in Eq. (11.9) has π= τ. On the
other hand, if n ≪ eS0 , the dominant contribution in Eq. (11.9) is given by π= id. This
corresponds to the situation where there is a unique minimal surface (more precisely,
a unique quantum extremal surface). We are interested in the regime at the phase
transition, which is analogous to the Page time of an evaporating black hole, so we
assume ne−S0 → 1. The coefficients mσ correspond to the weight of the σ configuration,
as determined by the number and length of the cycles in σ, and the probability distribu-
tion of eigenstates pi . In the case of the flat entanglement spectrum, this number equals
the number of closed loops between the connected components. This will also be the
case for the non-trivial entanglement spectrum, but each loop will have a different
weight that depend on the pi ’s.

The mk are the (scaled) moments of a probability distribution. While the explicit
expression itself is not important for our purposes, the Zl can be written as the l-
th moments of a probability distribution [PSSY19]. Hence, Eq. (11.9) is a product of
moments, summed over all non-crossing partitions of length k. As a result, we can
express tr[ψk

Rad] in the planar limit by way of free probability theory.
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More precisely, we may define moment-generating functions for EOW, JT, and Rad:

MJT(z) =
∞∑

k=1

Zk

Z k
1

zk ,

MEOW(z) =
∞∑

k=1
mk zk ,

MRad =
∞∑

k=1
eS0(k−1) tr[ψk

Rad]zk .

Given a moment generating function M(z), which is a formal power series, denote by
M−1(z) the power series which is its formal inverse and let

S(z) = 1+ z

z
M−1(z)

be the S-transform, and we use this to define the S-transforms SJT, SEOW and SRad. We
will see in Theorem 13.2 that the relation between the moments in Eq. (11.9) implies
that these are related as

SRad(z) = 1

1+ z
SJT(z)SEOW(z). (11.10)

In Section 13.1 we will explain how this means that the spectrum of ψRad can be de-
scribed using notions from free probability theory.

A recursion relation for the resolvent

Given a moment generating function M(z), we may also define the resolvent function
R(z) by

R(z) = 1

z

(
1+M

(
1

z

))
.

To relate to previous results, we consider the case where the entanglement with the
radiation is maximally entangled. In this case, SEOW(z) = 1 and SRad(z) = 1

1+z SJT(z). By
definition of the S-transform and setting z → MRad(z), this implies

1

1+MRad(z)
SJT(MRad(z)) = 1+MRad(z)

MRad(z)
z,

which we may rewrite as (again using the definition of the S-transform):

MRad(z) = MJT[z(1+MRad(z))].

In terms of the resolvent this becomes

R(z) = 1

z
+ 1

z
MR

(
1

z

)
= 1

z
+ 1

z
MJT(R(z))

= 1

z
+

∞∑
k=1

Zk

Z k
1

R(z)k

z
,

which is a recursion relation previously derived in [PSSY19] by a diagrammatic argument.
More generally, we can interpret Eq. (11.10) as a (complicated) recursion relation that
directly generalizes the above recursion relation.
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Random tensor network states

In this chapter we set the stage for our results and introduce the random tensor
network model in detail. We start by introducing conventions and notation. Then in
Section 12.1 we introduce random tensor network models with nontrivial link states and
discuss the replica trick for such states. In Section 12.2 we give a further generalization,
of random tensor networks with general background states.

Notation and conventions

Recall that we denote by ∥a∥p the ℓp -norm of a vector a, defined by ∥a∥p
p = ∑

i |ai |p .
If a and b are vectors of different dimension, we extend the shorter vector by zeros and
still write ∥p −q∥p for their distance. For example, if a ∈Cd1 and b ∈Cd2 with d2 > d1,

we write ∥a −b∥1 = ∑d1
i=1|ai −bi | +∑d2

i=d1+1|bi |. If H is a Hilbert space, we introduce
the notation P (H ) for the set of positive semidefinite operators on H . In this chapter
often refer to positive semidefinite operators as ‘density operators’ or ‘states’, without
requiring them to be normalized to unit trace. We write P=(H ) for the set of ρ ∈P (H )
with unit trace, tr[ρ] = 1, and we denote by P≤(H ) the set of subnormalized states,
that is, ρ ∈ P (H ) with tr[ρ] ≤ 1. Also, we recall that we use the convention that for a
vector |φ〉 we denote the corresponding pure state by φ, so φ= |φ〉〈φ|. Given a positive
semidefinite operator ρ, we denote by spec(ρ) the vector containing its spectrum in
non-increasing order, and we write spec+(ρ) for the nonzero part of the spectrum. It is
a well-known fact that

∥spec(ρ)− spec(σ)∥1 = ∥spec+(ρ)− spec+(σ)∥1 ≤ ∥ρ−σ∥1 (12.1)

(in the second expression we use the convention for the distance of vectors of pos-
sibly different dimension introduced above). If A is a quantum system with Hilbert
space H A, we write P (A) =P (H A), P=(A) =P=(H A), and P≤(A) =P≤(H A), and we
use subscripts, e.g. ρA ∈P (A), to indicate which system and Hilbert space a quantum
state is associated with. Finally, we adopt the standard notation that if µn is some
sequence of finite measures, we write µn ⇒µ if µn converges weakly (or in distribution)
to a finite measure µ, meaning that for any bounded continuous function f ∈Cb(R),∫

f (x)dµn(x) →
∫

f (x)dµ(x). (12.2)
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If µn is a sequence of random finite measures on R, we say that the sequence µn con-
verges weakly, in probability, to a finite measure µ, if, for any bounded continuous
function f ∈Cb(R), it holds that for every ε> 0

lim
n→∞P

(
|
∫

f (x)dµn(x)−
∫

f (x)dµ(x)| ≥ ε
)
= 0,

in other words, Eq. (12.2) converges in probability. In this and later chapter, all loga-
rithms are again to base 2.

12.1 Random tensor network states

We first review the random tensor network model, closely following [HNQ+16, DQW21].
Let G = (V ,E) be a connected undirected graph, and let V = V∂ ⊔Vb be a partition
of the vertices into a set of boundary vertices V∂ and bulk vertices Vb . If A ⊆ V∂, we
write Ā = V∂ \ A. We assign a bond dimension De to each edge, and we will consider
families of states with increasing bond dimensions; for example, we may take equal
bond dimension De = D for all edges and let D increase. For each vertex x ∈V , let ∂{x}
denote the set of edges e = (x y) ∈ E connecting x to some y ∈ V . We define Hilbert
spaces He,x =CDe for each e ∈ ∂{x}, and we let Hx :=⊗

e∈∂{x} He,x . We call the pair (e, x)
a half-edge. Moreover, for an edge e = (x y) ∈ E we write He = He,x ⊗He,y . Let Dx =
dim(Hx ). For a subset A ⊆V , we write H A =⊗

x∈A Hx , and similarly, for a subset S ⊆ E
we write HS =⊗

e∈S He . Similarly, for a set T of half-edges we write HT =⊗
(e,x)∈T He,x .

At each edge e = (x y) ∈ E we place a link state φe ∈P=(He )

|φe〉 =
De∑
i=1

√
λe,i |i i 〉 ∈He =He,x ⊗He,y . (12.3)

Then,φe,x =φe,y =∑D
i=1λe,i |i 〉〈i | is the reduced density matrix of the link state on either

of the two subsystems. We refer to the vector spec(φe,x) = spec(φe,y ), which is ordered
in non-increasing fashion, as the entanglement spectrum of φe . Let φ ∈P=(V ) be the
link state given by

|φ〉 =⊗
e∈E

|φe〉 . (12.4)

At every bulk vertex x ∈ Vb , we place a random vector |ψx〉 ∈ Hx , where the entries
of |ψx〉 are independent standard (circularly-symmetric) complex Gaussian random
variables: each entry of the tensor can be written as 1p

2
(x + i y) where x and y are

independent real Gaussian random variables of mean 0 and unit variance. We note
that, in the model of [HNQ+16], the tensors |ψx〉 were not chosen as random Gaussian
vectors, but as uniformly random vectors on the unit sphere. However, for our choice of
Gaussian |ψx〉, the norm ∥|ψx〉∥ is independent of the normalized vector |ψx〉/∥|ψx〉∥,
and |ψx〉/∥|ψx〉∥ will be a uniformly random vectors on the unit sphere. Therefore,
these two models only differ by their normalization. We write |ψ〉 = ⊗

x∈Vb
|ψx〉. The

resulting random tensor network state ρ ∈P (V∂) is defined by

|ρ〉 = (IV∂ ⊗〈ψ|) |φ〉 . (12.5)



12.1. Random tensor network states 215

The random tensor network state is obtained by projecting the link states onto random
vectors, so that the final state lives in the boundary Hilbert space. We can make this
manifest by using the cyclicity of the trace to write the density matrix:

ρ = (
IV∂ ⊗〈ψ|)φ(

IV∂ ⊗|ψ〉)= trVb

[(
IV∂ ⊗ψ

)
φ

]
. (12.6)

Note that this state need not be normalized, but we chose the standard deviation of
the |ψx〉 such that ρ is normalized on average, given that the link state φ is normalized:

E tr[ρ] = tr[φ]. (12.7)

In Section 12.2.1, we prove the stronger statement that ρ is normalized with high prob-
ability for appropriately connected tensor networks and large bond dimension. Note
also, that in Eq. (12.3), we have chosen states which have a Schmidt decomposition in a
fixed basis (the standard basis). Since we project onto uniformly random tensors, we
can choose to do so without loss of generality.

12.1.1 The replica trick for random tensor networks
We now consider a boundary subset A ⊆ V∂ and use the replica trick to study the
Rényi entropies of the reduced density matrix ρA. The replica trick for random tensor
network models was first studied in [HNQ+16], and it is the key tool we apply throughout
this work. Let H be a Hilbert space. The Rényi entropies of a (normalized) density
matrix ρ ∈P=(H ) are defined by

Hk (ρ) = 1

1−k
log(tr[ρk ])

for k ∈ (0,1)∪ (1,∞). For k = 0,1,∞, there are well-defined limits, given by

H0(ρ) := log(rank(ρ))

H1(ρ) :=− tr[ρ log(ρ)]

H∞ :=− log(∥ρ∥∞).

(12.8)

In particular, we see that H(ρ) = H1(ρ) is the von Neumann entropy. For reduced
density matrices we also write H(A)ρ := H(ρA) and Hk (A)ρ := Hk (ρA). If ρ ∈P≤(H ) is
subnormalized, we let

Hk (ρ) = 1

1−k
log

tr
[
ρk

]
tr[ρ]

. (12.9)

Denote by R the representation of Sk on H ⊗k which permutes the k copies of H

according to the action of Sk . We will write Rx(π) when H =Hx and RA(π) if H =H A

for A ⊆V . We let τ denote the standard k-cycle in Sk , i.e.,

τ= (12. . .k).

The key idea of the replica trick is the observation that the k-th moment of ρ ∈P (H )
can be written as

tr
[
ρk

]
= tr

[
R(τ)ρ⊗k

]
. (12.10)
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Recall the notion of the cycle type of a permutation π: if π can be written as as a product
of m disjoint cycles of lengths l1, . . . , lm , then π has cycle type C (π) = {l1, . . . , lm}. Then,
for an arbitrary π ∈ Sk ,

tr
[

R(π)ρ⊗k
]
= ∏

l∈C (π)
tr

[
ρl

]
.

Note that this is the generalization of the well-known swap trick for two copies of a
state ρ. The other crucial ingredient is a property of the Gaussian random vectors:

E
[
ψ⊗k

x

]
= ∑
π∈Sk

Rx(π). (12.11)

Using Eq. (12.6), we may then compute

E tr
[
ρk

A

]
= E tr

[
RA(τ)ρ⊗k

A

]
= E tr

[(
RA(τ)⊗RV∂\A(id)

)
ρ⊗k

]
= E tr

[(
RA(τ)⊗RV∂\A(id)

)(
IV∂ ⊗ψ

)⊗k
φ⊗k

]
= tr

[
(RA(τ)⊗RV \A(id))E

[
(IV∂ ⊗ψ)⊗k

]
φ⊗k

]
.

(12.12)

To further simplify this expression, we define the following set:

SA,σ = {
{πx}x∈V :πx ∈ Sk , where πx =σ for x ∈ A and πx = id for x ∈ Ā

}
, (12.13)

for any σ ∈ Sk and A ⊆V∂. An element of SA,σ assigns a permutation to each vertex in V
subject to a ‘boundary condition.’ Now, using Eq. (12.11), we find that

E tr
[
ρk

A

]
= ∑

{πx }∈SA,τ

tr

[⊗
x∈V

Rx(πx)φ⊗k

]
.

Finally, we observe that for e = (x y)

tr
[

R(πx)⊗R(πy )φ⊗k
]
= ∏

l∈C (π−1
x πy )

tr
[
φl

e,x

]
,

where we recall that φe,x is the reduced density matrix of the link state on edge e = (x y).
Thus, we conclude that

E tr
[
ρk

A

]
= ∑

{πx }∈SA,τ

∏
e=(x y)∈E

∏
l∈C (π−1

x πy )

tr
[
φl

e,x

]
. (12.14)

We can interpret the expectation as the partition function of a classical spin model

E tr
[
ρk

A

]
= ∑

{πx }∈SA,τ

2−∑
e=(x y)∈E Je (πx ,πy ), (12.15)

where the site variables in the spin model are permutations πx ∈ Sk , the interaction at
the edges between sites is given by

Je (πx ,πy ) =− ∑
l∈C (π−1

x πy )

log(tr
[
φl

e,x

]
) = ∑

l∈C (π−1
x πy )

(l −1)Hl (φe,x),

with Hl the l-th Rényi entropy, and the model as boundary conditions such that the
permutation must be τ on A and id on Ā. Similarly, we may place an arbitrary permuta-
tion π on A instead of τ, which yields (by exactly the same reasoning)

E tr
[

R(π)ρ⊗k
]
= ∑

{πx }∈SA,π

∏
e=(x y)∈E

∏
l∈C (π−1

x πy )

tr
[
φl

e,x

]
. (12.16)
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12.1.2 Maximally entangled link states and minimal cuts
We will now discuss the special case where all the link states are maximally entangled
states of dimension D, which has been studied extensively in [HNQ+16]. We will gen-
eralize the results we discuss here to a wider class of link states in Chapter 13. In this
case, the entanglement spectra of the link states are flat: for e ∈ E , we have λe,i = 1

D
for i = 1, . . . ,D . In particular, for all l ∈Nwe have Hl (φe ) = log(D) and hence

Je (πx ,πy ) = log(D)
∑

l∈C (π−1
x πy )

(l −1).

This leads to the so-called Cayley distance on Sk :

d(πx ,πy ) = ∑
l∈C (π−1

x πy )

(l −1) = k −|C (π−1
x πy )|,

where |C (π)| is the number of cycles in π. Moreover, d(πx ,πy ) is a metric and equals the
minimal number of transpositions needed to transform πx into πy . We say that π ∈ Sk

is on a geodesic between π1 and π2 if d(π1,π)+d(π,π2) = d(π1,π2) (recall that d is a
metric). We can rewrite the spin model in terms of this distance:

E tr
[
ρk

A

]
= ∑

{πx }∈SA,σ

2− log(D)
∑

e=(x y)∈E d(πx ,πy ). (12.17)

The physically inclined reader may observe that the logarithm of the bond dimension
has the role of an inverse temperature, and for large D, the dominant contribution to
the partition function will be the ground state of the spin model, subject to the relevant
boundary conditions.

To describe the dominant contribution to the sum in Eq. (12.17) for large D, we
need the minimal cuts for A in G . A cut for A is a subset of the vertices ΓA ⊂ V such
that ΓA ∩V∂ = A. Throughout this work, we will denote the set of all cuts for A by C (A).
We will use the convention of denoting cuts (i.e. subsets of vertices) by capital Greek
letters. Given a cut ΓA ∈C (A), we will denote the set of edges crossing the cut, that is,
edges connecting a vertex in ΓA with a vertex in V \ΓA, by lowercase Greek letters γA

(and by an abuse of language, also refer to this set as a ‘cut’). A minimal cut for A is a
cut such that the number of edges |γA| is minimal. We write m(A) = |γA| for a minimal
cut γA ∈C (A). If ΓA ∈C (A), we write Γc

A =V \ΓA. Note that Γc
A is a cut for Ā =V∂ \ A.

In the simplest case, there is a unique minimal cut γA. For this case, one can show
that the dominant configuration is the one in which πx = τ for x ∈ ΓA and πx = id
for x ∈ V \ΓA, see [HLW06], or Proposition 13.3. That is, there are two domains in
the spin model corresponding to τ and id, and the minimization of the domain wall
corresponds to the minimal cut in the graph.

We will also be interested in the case of exactly two non-intersecting minimal
cuts ΓA,1 and ΓA,2. In this case, we have that ΓA,1 ⊂ ΓA,2, or ΓA,1 ⊂ ΓA,2. After rela-
beling, we may assume that the first is the case, and define the following three domains
in the graph: V =V1⊔V2⊔V3 given by V1 = ΓA,1, V2 = ΓA,2 \ΓA,1 and V \ΓA,2. If there are
exactly two minimal cuts, then multiple dominant configurations contribute equally to
the partition function Eq. (12.17). These dominant configurations can be constructed
as follows: for each π on a geodesic between τ and id, set πx = τ for x ∈ V1, πx = π

for x ∈ V2 and πx = id for x ∈ V3. That these are the dominant configurations follows
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immediately from the fact that d(τ,π)+d(π, id) ≥ d(τ, id), with equality if and only if π
is on a geodesic between τ and id.

To understand this degeneracy, we use the following fact [NS06]: the set of permu-
tations π on a geodesic between τ and id is in a one-to-one correspondence with the
set of non-crossing partitions NC (k) of [k]. See Section 13.1 for a definition and prop-
erties of the non-crossing partitions. Thus, the degeneracy for the the k-th moment
is |NC (k)| =Ck where

Ck = 1

k +1

(
k

2k

)

is the k-th Catalan number. These are the moments of the Marchenko-Pastur distribu-
tion MP(t )

MP (t ) = max(1− t ,0)δ0 +νt

dνt (x) =
√

4t − (x −1− t )2

2πx
1(x−1−t )2≤4t dx.

(12.18)

This allows one to show the folklore result (which we prove and extend to more general
link states in Theorem 13.4) that upon an appropriate rescaling, the empirical distribu-
tion of the spectrum of ρA converges to a Marchenko-Pastur distribution. This is in line
with the case of a single random tensor, which precisely yields a Wishart matrix (see
Section 13.1.1 for a brief introduction to these objects). In the first case, where there is a
unique minimal cut, the entanglement spectrum of ρA is flat, while, as we have seen, in
the second case, the degeneracy gives rise to a nontrivial spectrum in the right scaling
limit.

12.2 Random tensor networks with general background
states

In Eq. (12.15), we computed the result of the replica trick for the k-th moment for a
random tensor network state. We will also consider the more general setting where the
link state is replaced by some arbitrary state φV . In this case there need not be a graph
structure, and the Hilbert space at each vertex x ∈V can be some arbitrary Hilbert space,
rather than a tensor product of Hilbert spaces labelled by half-edges. In this case, we
will refer to φV as a “background state” instead of a “link state” (as the interpretation of
links along the edges does not necessarily make sense in this situation). That is, where
before we had a link state

|φ〉 =⊗
e∈E

|φe〉 ,

we will now consider some arbitrary possibly mixed and subnormalized φV ∈P≤(V ) in
the tensor network construction. We can generalize Eq. (12.6) to also apply for general
background states to obtain a state ρ ∈P (V∂) given by

ρ = trVb

[(
IV∂ ⊗ψ

)
φV

]
(12.19)
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|φ〉
〈ψx1 |
〈ψx2 |
〈ψx3 |
〈ψx4 |

Vb

V∂

R

Figure 12.1: The structure of a (purified) random tensor network with a general background
state.

where |ψ〉 is a tensor product of random states at the bulk vertices. If φ is pure, then so
is ρ. If φ is not pure, we can consider a purification φV R ∈P≤(V R) and consider R as an
additional boundary system; this leads to a random tensor network state ρV∂R which is
a purification of ρV∂ . This set-up is illustrated in Fig. 12.1. While formally very similar,
the resulting state is no longer a PEPS tensor network state in general.

There are multiple reasons to also allow general background states. The first reason is
of a technical nature: they are useful for estimates based on smooth entropies, which we
discuss in Chapter 14. In this application, the link state is still pure, but no longer a tensor
product along the edges. A second motivation for considering general background states
is that they can be used as a toy model for holographic systems where there is “bulk
entropy” present. Finally, these states are closely related to protocols for the quantum
information processing task of split transfer [DH10]. We comment on this connection
in Chapter 14.

Even for a general background state, a version of the replica trick still applies. Con-
sider a boundary subsystem A ⊆V∂ with corresponding boundary state ρA. Then, the
computation in Eq. (12.12) is still valid, and we find

E tr[ρk
A] = ∑

{πx }∈SA,τ

trV

[⊗
x∈V

Rx(πx)φ⊗k
V

]
(12.20)

where τ= (12. . .k). However, Eq. (12.20) no longer has the interpretation of a spin model
with local interactions.

For general background states, we will only need the replica trick for k = 2. Since S2

has only two elements, each configuration of permutations is completely characterized
by the domain ∆A = {x ∈ V such that πx = τ}. Because of the boundary conditions
in SA,τ, the collection of these sets coincides with C (A), and hence

E tr[ρ2
A] = ∑

∆A∈C (A)
tr[φ2

∆A
] = ∑

∆A∈C (A)
tr[φ]2−H2(∆A)φ . (12.21)

Another useful fact is that by Eq. (12.11),

EρV∂ =φV∂ . (12.22)

We remark that if one only uses the k = 2 replica trick, one could also use tensors
which are drawn from a projective 2-design, a distribution which produces tensors
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with the same first and second moments as uniformly random tensors of unit norm
[KR05, GAE07]. An example of a projective 2-design is the set of uniformly random
stabilizer states. For tensors |ψx〉 drawn from a projective 2-design of dimension Dx , it
holds that

Eψ⊗2
x = 1

Dx(Dx −1)
I + 1

Dx(Dx −1)
Rx(τ),

and hence

E tr[ρ2
A] = Dx

Dx +1

∑
∆A∈C (A)

tr[φ2
∆A

],

which is close to Eq. (12.21) for large Dx . Thus, it is not hard to see that all random
tensor network results which only use the k = 2 replica trick are also valid for states with
tensors drawn from projective 2-designs. This was already observed in [HNQ+16] and
random tensor networks with random stabilizer tensors were further studied in [NW20].
The results of Chapter 14 only use the k = 2 replica trick, and thus will extend to states
with tensors drawn from projective 2-designs. This will not be true for the results in
Chapter 13, which requires usage of the replica trick for all k ∈N.

12.2.1 Normalization of random tensor network states
One immediate consequence of the replica trick for k = 2 is that the random tensor
network state ρ will be approximately normalized with high probability, so long as a
mild condition on the background state is satisfied: the bulk needs to be connected,
with sufficiently entangled edges. Let

η= max
∆⊆Vb ,∆ ̸=;

tr[φ2
∆] = max

∆⊆Vb ,∆ ̸=;
tr[φ]2−H2(∆)φ . (12.23)

If the the state has enough correlations along each cut (or more precisely, if H2(∆)φ is
large for each ∆), then η is small. Concretely, if we consider a random tensor network
state with maximally entangled link states of bond dimension D , we will have η≤ 1

D . We
then have

Lemma 12.1. For any background state φ ∈ P≤(V ), with associated ρ ∈ ¶(V∂) as in
Eq. (12.19), it holds that for any ε> 0

P
(|tr[ρ]− tr[φ]| ≥ ε)≤ 2|Vb | η

ε2

where η is defined in Eq. (12.23).

Proof. This follows from a special case of Eq. (12.21). In this case, the empty cut con-
tributes tr[φ]2, so we find

Var(tr[ρ]) = E|tr[ρ]− tr[φ]|2 = E|tr[ρ]2 − tr[φ]2| ≤ 2Vb max
∆⊆Vb ,∆ ̸=;

tr[φ2
∆],

where we have used the normalization of ρ in expectation E tr[ρ] = tr[φ], as in Eq. (12.7).
The result follows by an application of Chebyshev’s inequality. ■
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We can improve this result by taking advantage of the fact that our random projectors
are random Gaussian vectors, allowing us to use Gaussian concentration of measure
rather than the Chebyshev’s inequality. For instance, using a concentration bound for
Gaussian polynomials (see for instance [AS17], Corollary 5.49) one can show that for
any ε≥ (

p
2e)2Vbη:

P
(|tr[ρ]− tr[φ]| ≥ ε)≤ exp

(
−|Vb |

2e
ε

1
|Vb |η

− 1
|Vb |

)
,

where η is defined as in Eq. (12.23). We will not need this refinement.





CHAPTER 13

Link states with bounded spectral
variation

In this chapter, we study random tensor network states with link states that have
bounded spectral variation, meaning that there is an effective bond dimension D such
that the Schmidt coefficients of the link state are of the order 1

D .
We start by providing background material on random matrix theory and free proba-

bility, which is a key tool in the study of products of random matrices. In Section 13.2,
we will precisely define the notion of bounded spectral variation and generalize the
results in Section 12.1.2 for random tensor network states with maximally entangled
link states to this wider class of link states. This leads to the main result of this chapter,
Theorem 13.4, which shows that the asymptotic entanglement spectrum can be ex-
pressed in terms of a free product of distributions. We will see that the results are similar
to the quantum gravity set-up described in Section 11.2.3. Finally, in Section 13.3, we
investigate the entanglement negativity for random tensor network states with link
states of bounded spectral variation.

13.1 Random matrices and free probability

13.1.1 Random matrix theory and Wishart matrices
We start by reviewing relevant concepts from probability and random matrix theory
that are relevant for our analyses. This material can be found in any introduction to
random matrix theory, e.g. [AGZ10, BS10, PB20].

A fundamental question in random matrix theory is as follows: given a family of n×n
matrices with entries selected according to some distribution, what is the asymptotic
distribution of the eigenvalues as n →∞? This question has been extensively studied,
and in many cases has an elegant and concise answer. We discuss a basic example
which is closely related to our purposes: Wishart matrices. Consider a n ×m matrix X
whose entries are drawn i.i.d. from a Gaussian distribution with mean zero and unit
variance. The sample covariance matrix of X is the n ×n matrix defined as

Yn,m = 1

m
X X T . (13.1)

Such random matrices are called (real) Wishart matrices, and can be thought of as a
sample second moment matrix (where one has m realizations of an n-dimensional
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random variable). One can also consider complex Wishart matrices: in this case the
entries of the n×m matrix X are complex i.i.d. standard (circularly symmetric) complex
Gaussian random variables. We then let Yn,m = 1

m X X †. We would like to understand
the spectrum of Yn,m , and to that end, we consider the empirical distribution of the
eigenvalues. This empirical distribution is itself random, depending on the particular
realization of Yn,m . To characterize the convergence, we recall that if {µn}n∈N is a se-
quence of random finite measures on R, we say that the sequence µn converges weakly,
in probability, to a finite measure µ, if, for any bounded continuous function f ∈Cb(R),
it holds that for every ε> 0

lim
n→∞P

(
|
∫

f (x)dµn(x)−
∫

f (x)dµ(x)| ≥ ε
)
= 0.

The asymptotic distribution of the eigenvalues of Wishart matrices is known to obey
the Marchenko-Pastur law (see, for instance, Theorem 3.6 and Theorem 3.7 in [BS10]):

Theorem 13.1. Consider (real or complex) Wishart matrices Yn,m and let

µn,m = 1

n

∑
λ∈spec(Yn,m )

δλ

be the empirical distribution of its eigenvalue spectrum. Suppose that the ratio of di-
mensions n/m converges to a constant t > 0 as n →∞. Then µn,m converges weakly, in
probability, to the Marchenko-Pastur distribution MP(t ) with parameter t > 0, as defined
in Eq. (12.18).

Generalizations to this result are possible. For example, one still has convergence if
the entries of X are chosen according to non-Gaussian distributions with mean zero
and unit variance. Also, one can prove weak convergence, almost surely (rather than
just in probability); see [BS10].

If Yn,m = 1
m X X † is a complex Wishart matrix, X can also be interpreted as as a

uniformly random pure quantum state onCn⊗Cm , and Yn,m , up to normalization, as the
reduced density matrix on Cn [HLW06]. Note that 1

n Yn,m is normalized in expectation
in the sense that E 1

n Yn,m = 1. So, complex Wishart matrices can be used as a model for
the reduced state of a random bipartite quantum state, and this allows one to quantify
the ‘typical entanglement’ of a random state. Equivalently, in the tensor network setting,
the matrix 1p

n
X can be thought of as a random tensor network state with a single bulk

vertex, two boundary vertices, and maximally entangled link states. We can then can
interpret 1

n Yn,m as the reduced density matrix on one of the boundary vertices. We will
provide a generalization of Theorem 13.1 for the entanglement spectrum of random
tensor network states in Theorem 13.4.

13.1.2 Free probability
The topic of probability distributions in random matrix theory is closely related to free
probability and, in particular, to the notion of the free product. We provide a brief
introduction here; the material in this section is very standard, and we only review a
few relevant aspects. For an extensive treatment, see, for instance, Chapter 5 in [AGZ10]
or the books [NS06, MS17, PB20]. As we will see later, the free product will allow us to
concisely formulate replica trick results involving multiple minimal cuts.
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A non-commutative probability space is a pair (A ,ω), where A is a C∗-algebra andω
is a state on A . An element a ∈A is called a non-commutative random variable. The
key example to have in mind is the space of n ×n random matrices, where the matrix
entries are distributed according to some probability distribution, and ω(a) = E 1

n tr[a]
defines a tracial state. If a ∈ A , the distribution (or law) µa of a is defined as a map
on polynomials, which evaluates on a polynomial p as µa(p) = ω(p(a)). If a is self-
adjoint, it has real spectrum and we can extend the domain of µa to all bounded
continuous functions f ∈ Cb(R), by using the functional calculus to define f (a) and
by letting µa( f ) = ω( f (a)). In this case we can identify µa with a distribution such
that, for f ∈ Cb(R), we have µa( f ) = ∫

f (x)dµa(x). In particular, if a is an n ×n self-
adjoint random matrix, then µa( f ) = 1

nE
∑
λ∈spec(a) f (λ), and we may identify µa with

the empirical measure of the eigenvalues of a. If A is a commutative algebra, these
notions reduce to the usual notions of probability theory, where ω is the expectation.

We call a set of n non-commutative random variables {ai } on a non-commutative
probability space (A ,ω) freely independent or just free if, for any set of k ≥ 2 polynomi-
als {p j }, the variables satisfy

ω(p1(ai1 ) . . . pk (aik )) = 0

whenever ω(pm(aim )) = 0 for all 1 ≤ m ≤ k and no two adjacent indices im and im+1

for 1 ≤ m ≤ k −1 are equal. One can see that two freely independent variables a1, a2

satisfy:

0 =ω((a1 −ω(a1))(a2 −ω(a2))) =ω(a1a2)−ω(a1)ω(a2), (13.2)

which, in the commutative case with random variables x1, x2, is the classical bivariate
independence condition E[x1x2] = E[x1]E[x2]. While the definition of free indepen-
dence is stronger than independence (commuting independent random variables are
generically not free), the role of free independence is analogous to the role of classical
independence for commuting random variables: it allows one to, in principle, compute
the joint mixed moments of the variables.

We will be interested in the multiplicative free convolution or free product (there also
exists an additive convolution or just free convolution) of distributions. Suppose a,b are
non-commutative self-adjoint free random variables on (A ,ω) with distributions µa

and µb . Then we denote the distribution of ab by µab =µa⊠µb . Note that, generally, ab
need not be self-adjoint. However, if ω is tracial (as in the random matrix case) and a
is positive, the distribution of ab coincides with that of

p
ab

p
a which is self-adjoint,

and we can identify µab with a distribution on R. If µa and µb are compactly supported
distributions, then so is µa⊠µb .

As a concrete example of the freeness and the free product, let Xn and Yn be two
families of random n×n positive diagonal matrices with uniformly bounded norm, such
that their spectrum converges weakly to probability distributions µ and ν respectively.
Let Un be a family of Haar random unitary n×n matrices. Then as n goes to infinity, Xn

and Y ′
n =UnYnU †

n will be freely independent (so they are asymptotically free), and we
would like to study their product. The product of positive matrices need not be self-
adjoint, so we consider Zn =p

XnY ′
n
p

Xn which is a positive matrix. One may then show
that the distribution of the spectrum of Zn weakly converges in probability to µ⊠ν. See
Corollary 5.4.11 in [AGZ10] for a precise statement and proof.

The free product may be analyzed using generating functions. If we are given a
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(non-commutative) random variable a with distribution µa , let

ma,k =
∫

xk dµa(x)

be the k-th moment of µa . Then the moment generating function is the formal power
series

Mµa (z) =
∞∑

k=1
ma,k zk . (13.3)

We define the S-transform to be the formal power series

Sµa (z) = 1+ z

z
M−1

a (z),

where M−1
a (z) is the power series corresponding to the formal inverse of Mµ(z) under

composition, which is well-defined as long as ma,1 ̸= 0. For compactly supported
distributions, the moment generating function, and hence the S-transform, uniquely
determines the distribution.

If a and b are non-commutative self-adjoint free random variables, then

Sµa⊠µb (z) = Sµab (z) = Sµa (z)Sµb (z). (13.4)

This also provides a completely combinatorial interpretation of the free product, with-
out reference to the associated non-commutative probability spaces. That is, given
compactly supported distributions µ and ν, we can define µ⊠ν by Eq. (13.4): it is
the compactly supported distribution with moments prescribed by Sµa⊠µb (z), which
determines Mµa⊠µb (z). The free product is commutative and associative.

Example. As an example, we compute the S-transform of the Marchenko-Pastur distri-
bution µ∼ MP(1). The distribution function is given by

dµ(x) = 1

2π

√
4x−1 −1dx.

The moments can be computed directly:

mk =
k−1∑
i=0

1

i +1

(
k

i

)(
k −1

i

)
(13.5)

After some work, one can show that the moments above lead to a closed-form moment
generating function

M(z) = 2z −1−p
1−4z

2z
.

One may then invert the expression and obtain the S-transform

S(z) = 1

1+ z
.

Similarly, for the Marchenko-Pastur distribution MP (t) with parameter t , which has
distribution as given in Eq. (12.18), we find that

S(z) = 1

t + z
.

See, for instance, [BBCC11].
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13.1.3 Non-crossing partitions
Given the set k ∈N, let NC (k) denote the set of non-crossing partitions of [k]. A non-
crossing partition of [k] is a partition [k] = X1⊔ . . .⊔Xm which is such that, if for some α
we have i < j ∈ Xα, then there are no k, l ∈ Xβ for β ̸=α with k < i < l < j or i < k < j < l .
To any non-crossing partition, we associate a permutation π ∈ Sk by mapping each
subset {i1, . . . , il } to the cycle (i1, . . . , il ) with i1 < . . . < il . In a slight abuse of notation, we
will write π ∈ NC (k). For any π ∈ Sk , and for a sequence of numbers fk for k = 1,2, . . .,
we write

fπ =
∏

l∈C (π)
fl (13.6)

where C (π) is the cycle type of π. We will need the following result, which is a straight-
forward consequence of the combinatorics of the S-transform.

Theorem 13.2. Consider compactly supported probability distributions µ,ν,ρ. Suppose
that the moments of ρ are given by

mρ

k = ∑
π∈NC (k)

mµ
πmν

π−1τk

where τk = (12. . .k) is the full cycle. Then

ρ = MP(1)⊠µ⊠ν.

Proof. We let F be the transformation that sends a formal power series f (z) to the
power series 1

z f −1(z). This is such that for some distribution µ, the S-transform is

given by Sµ(z) = (1+ z)F (Mµ)(z). Moreover, given two power series f (z) = ∑
k fk zk

and g (z) =∑
k gk zk , define a convolution operation⊛ by

( f ⊛ g )(z) =∑
k

( ∑
π∈NC (k)

fπgπ−1τk

)
zk

where τk is the full cycle in Sk . Then Theorem 18.14 in [NS06] states that for any two f
and g with f1 ̸= 0 ̸= g1, it holds that

F ( f ⊛ g )(z) =F ( f )(z)F (g )(z).

Then the S-transform of ρ can be written:

Sρ(z) = (1+ z)F (Mρ)(z) = (1+ z)F (Mµ)(z)F (Mν)(z)

= 1

1+ z
Sµ(z)Sν(z).

This implies the desired result, as the S-transform of MP(1) is given by 1
1+z , and the

S-transform uniquely determines a compactly supported distribution. ■
We remark briefly that free independence can equivalently be formulated in terms

of the vanishing of free cumulants, which are themselves defined in terms of sums over
non-crossing partitions. We refer the interested reader to any of the previously cited
references for a more in-depth discussion on the role of non-crossing partitions in free
probability. For our purposes, the fact that non-crossing partitions are intimately related
to free independence will allows us to later phrase random tensor network results in
terms of free probability.
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13.2 Entanglement spectrum of random tensor network
states

We now return to studying random tensor network states. Consider a family of link
states in P=(V ) with states φe along the edges e ∈ E as in Eq. (12.3), and assume that
along each edge, the bond dimensions scale with a parameter D , so De =Θ(D). Our key
assumption is that the link states have bounded spectral variation – we formalize this
condition by demanding that the empirical distribution of the rescaled entanglement
spectrum of the link states

µ(D)
e :=

De∑
i=1

1

De
δDeλe,i (13.7)

has all moments converging to the moments me,k of a compactly supported probability
distribution µe , as D goes to infinity. We assume that the link states are normalized,
so me,1 = 1. This condition implies that all elements of the entanglement spectrum of
the link state are of order D−1.

For a minimal cut γA, let µ(D)
γA

be the distribution for the spectrum of the tensor
product of the link states in γA:

µ(D)
γA

= ⊗
e∈γA

µ(D)
e = 1

DγA

∑
{ie }
δDγA

∏
e∈γA

λe,ie

where ie = 1, . . . ,De and DγA =∏
e∈γA De . We define the tensor product of distributions

as follows: if X1 and X2 are independent real valued random variables with distribu-
tions µXi , then µX1 ⊗µX2 is defined as the distribution of the product X1X2. The distri-
bution µ(D)

γA
has k-th moment given by m(D)

γA ,k =∏
e∈γA m(D)

e,k , and we can see that m(D)
γA ,k

converges to mγA ,k , the moments of the distribution

µγA := ⊗
e∈γA

µe .

Let spec(ρA) = {λA,i } (recall that spec(ρA) is ordered in non-increasing order). Let γA

be a cut for A. By a standard argument, the number of nonzero eigenvalues of ρA (that
is, rank(ρA)) is upper bounded by DγA . If γA is the unique minimal cut, then we define

µ(D)
A := 1

DγA

DγA∑
i=1

δDγAλA,i . (13.8)

If there are multiple minimal cuts, it is ambiguous which γA, and hence, which DγA ,
we should pick; we choose the cut for which DγA is minimal in Eq. (13.8), and we will

denote this minimal cut by γA,1. The moments of µ(D)
A are given by

m(D)
A,k :=

∫
zk dµA(z) = Dk−1

γA

DγA∑
i=1

(λA,i )k .

Note that the distribution µ(D)
A is random, and correspondingly, the moments m(D)

A,k are

random variables. In contrast, the moments m(D)
e,k and m(D)

γA ,k are numbers depending

only on the bond dimension.
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The theorem we want to prove will follow straightforwardly from a key intermediate
result: as D goes to infinity, all the moments of the boundary distribution µ(D)

A converge
to the moments of µγA . We use the notation in Eq. (13.6) to write expressions like

mγA ,π =
∏

l∈C (π)
mγA ,l

for a permutation π ∈ Sk . We will then apply the method of moments to show that
convergence of moments implies convergence in distribution. As a remark on notation,
in the error bounds in both the current section and Chapter 14, when we use O-notation,
the constants may depend on the graph underlying the tensor network (typically our
bounds scale as 2|Vb |, where Vb is the set of bulk vertices).

Proposition 13.3. If there exists a unique minimal cut γA for A, then

lim
D→∞

Em(D)
A,k = mγA ,k . (13.9)

If there exist exactly two minimal cuts γA,1 and γA,2, which do not intersect (meaning

that γA,1 ∩γA,2 =;) and for which
DγA,1
DγA,2

converges to a constant t ≤ 1, then

lim
D→∞

Em(D)
A,k = ∑

π∈NC (k)
t d(π,id)mγA,1,τ−1πmγA,2,π. (13.10)

Moreover, in both cases the variance goes to zero as D goes to infinity: for every k

E

[(
m(D)

A,k −E
[

m(D)
A,k

])2
]
=O

(
1

D

)
.

Proof. We first provide a sketch of the proof. It proceeds via the following steps:

(i) Write the expectation of the moments of µ(D)
A as the partition function for a classi-

cal spin model, as in Section 12.1.1.

(ii) Show that the contributions from terms of the form given in the statement of the
proposition dominate the partition function by carefully tracking the powers of D ,
and showing that all other contributions are suppressed polynomially in D .

(iii) Show that the variance of the moments vanishes in the limit D →∞ by direct
computation.

We begin with Step 1. First, we observe that the k-th moment of µ(D)
A is given

by m(D)
A,k = Dk−1

γA
tr

[
ρk

A

]
. Consider the expression in Eq. (12.16) for the replica trick with

permutation π on A:

Zk,π := E tr
[

RA(π)ρ⊗k
A

]
= ∑

{πx }∈SA,π

∏
e=(x y)∈E

∏
l∈C (π−1

x πy )

tr
[
φl

e,x

]
. (13.11)

Recall that the set SA,π, as defined in Eq. (12.13), consists of assignments of permuta-
tions to each x ∈ V , subject to πx = π for x ∈ A and πx = id for x ∈ Ā. As in Eq. (12.14),
if π= τ, then we indeed have Zk,τ = E tr

[
ρk

A

]
, so

Em(D)
A,k = Dk−1

γA
Zk,τ. (13.12)
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On the other hand, if we let k = 2n and π= τ̃= (12. . .n)(n +1n +2. . .2n), then we see
that Zk,π = E

[
tr

[
ρn

A

]2
]

, and hence

E

[(
m(D)

A,n

)2
]
= D2n−2

γA
Zk,τ̃. (13.13)

Recall that m(D)
e,l = D l−1

e tr
[
φl

e,x

]
, and write

Zk,π =
∑

{πx }∈SA,π

Zk ({πx})

where

Zk ({πx}) := ∏
e=(x y)∈E

∏
l∈C (π−1

x πy )

tr
[
φl

e,x

]
= ∏

e=(x y)∈E
D

|C (π−1
x πy )|−k

e

∏
l∈C (π−1

x πy )

m(D)
e,l

= ∏
e=(x y)∈E

D
−d(πx ,πy )
e m(D)

e,π−1
x πy

.

(13.14)

This accomplishes Step 1: we have recast the problem of computing moments into
a question of computing a partition function for a classical spin model with fixed
boundary conditions.

For Step 2, we want to show that the dominant contribution(s) to Zk,π as D goes
to infinity are those given in the statement of the proposition. This will simply be a
matter of checking powers of D , and using the triangle inequality property of the Cayley
distance. If ΓA is the unique minimal cut, then we let πmin

x =π for x ∈ ΓA and πmin
x = id

for x ∈V \ΓA, and we have

Zk ({πmin
x }) = D−d(π,id)

γA

∏
e∈γA

m(D)
e,π = D−d(π,id)

γA
m(D)
γA ,π. (13.15)

If there are exactly two minimal cuts ΓA,1 ⊂ ΓA,2, we partition V = V1 ⊔V2 ⊔V3 into
three sets of vertices, with V1 = ΓA,1, V2 = ΓA,2 ∩Γc

A,1 and V3 = Γc
A,2. Now consider the

permutations σ ∈ Sk that are on a geodesic between π and id (recall that this implies
that d(π,σ)+d(σ, id) = d(π, id)), and consider the configuration given by

πσx =π for x ∈V1,

πσx =σ for x ∈V2,

πσx = id for x ∈V3.

By hypothesis, γA,1 and γA,2 do not intersect, and hence, the edges in each cut are
distinct. Then this configuration has weight

Zk ({πσx }) = ∏
e1∈γA,1

D−d(π,σ)
e1

∏
l1∈C (π−1σ)

m(D)
e1,l1

∏
e2∈γA,2

D−d(σ,id)
e2

∏
l2∈C (σ)

m(D)
e,l

= D−d(π,id)
γA,1

(DγA,1
DγA,2

)d(σ,id) ∏
e1∈γA,1

m(D)
e1,π−1σ

∏
e2∈γA,2

m(D)
e2,σ

= D−d(π,id)
γA,1

(DγA,1
DγA,2

)d(σ,id)
m(D)
γA,1,π−1σ

m(D)
γA,2,σ,

(13.16)
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where DγA ,1/DγA ,2 converges to t , by assumption. Now, to show that these configura-
tions yield the dominant contributions, we will need to use that De =Θ(D), so let us
write D

De
=C (D)

e =Θ(1). Then for general configurations labeled by πx , we may rewrite
Eq. (13.14) as

Zk ({πx}) = ∏
e=(x y)∈E

D−d(πx ,πy )(C (D)
e )d(πx ,πy )m(D)

e,π−1
x πy

.

The configurations we claimed to be dominant satisfy Zk ({π}) =Θ(D−m(A)d(π,id)), where
we recall that m(A) is the size of a minimal cut for A. Now we will show that all other
configurations satisfy Zk ({π}) =O (D−m(A)d(π,id)−1). To this end, consider some arbitrary
configuration {πx} ∈ SA,π. Let P be a maximal set of edge-disjoint paths in G from A
to Ā. It is a well-known fact that such a set has size m(A), by the max-flow min-cut
theorem. Let

C (D)
k :=

(
max

e∈E ,l=1,...,k
(C (D)

e )l−1
)(

max
e∈E ,π∈Sk

m(D)
e,π

)
.

Then we may bound

Zk ({πx}) ≤ (C (D)
k )|E | ∏

e=(x y)∈E
D−d(πx ,πy ) ≤ (C (D)

k )|E | ∏
p∈P

D−∑
e=(x y)∈p d(πx ,πy ). (13.17)

The first inequality is clear from the definition of C (D)
k , and in the second inequality, we

simply restrict to a subset of the edges we sum over. Note that C (D)
k =O (1). Then, by the

triangle inequality for the Cayley distance d , it holds that∑
e=(x y)∈p

d(πx ,πy ) ≥ d(π, id)

with equality if and only if the only edges (x y) for which πx ̸=πy are on a path in P , and
each of the paths is a geodesic. Then we conclude

Zk ({πx}) ≤C (D)
k

∏
p∈P

D−d(π,id) =C (D)
k D−m(A)d(π,id),

and we see that the weight of every configuration can be bounded by the product of
a O (1) number and a polynomial in D .

Now, as promised, we show that if {πx} is not one of the minimal configurations
described above, we actually have

Zk ({πx}) =O (D−m(A)d(π,id)−1). (13.18)

To see this, we rewrite the triangle inequality for the Cayley distance as:∏
e=(x y)∈E

D−d(πx ,πy ) ≤ ∏
p∈P

D−∑
e=(x y)∈p d(πx ,πy ) ≤ D−m(A)d(π,id) (13.19)

with equality if and only if the πx are on a geodesic path in P . We now show that this is
satisfied only for the configurations we claimed to be minimal. Assume that {πx} ∈SA,π

is such that the inequalities in Eq. (13.19) are equalities and let

∆n = {x ∈V such that d(πx ,π) ≤ n}.
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Then ∆n ∈ C (A) for 0 ≤ n < d(π, id), and we denote by δn the associated set of edges
crossing the cut. Each edge (x y) ∈ δn must be such that πx ̸= πy , so it must be on a
path in P , and because the permutations are geodesics along the paths, they must
be on different paths. Hence |δn | ≤ |P | = m(A), implying each ∆n is a minimal cut.
This immediately implies the claim if there is a unique minimal cut, since we must
have ∆d(π,id)−1 = ∆0 = ΓA. If there are exactly two minimal cuts, then we must have
that πx = π for x ∈ V1, πx = id for x ∈ V3, and there must be some l such that for
all x ∈V2 we have d(π,πx ) = l and d(πx , id) = d(π, id)− l . Then in order to have equality
in Eq. (13.19), we must have that for all x ∈ V2, πx equals some fixed permutation σ,
because the assumption of having exactly two cuts implies that V2 is connected, and we
must have d(πx ,πy ) = 0 for all (x y) ∈ E with x, y ∈V2. This proves Eq. (13.18).

In conclusion, if there is a unique minimal cut, then by Eq. (13.15) and Eq. (13.18),
we find

Zk,π = D−d(π,id)
γA

m(D)
γA ,π+O (D−m(A)d(π,id)−1), (13.20)

and if there are exactly two (non-intersecting) cuts, then by Eq. (13.16) and Eq. (13.18),
we find

Zk,π =
∑

σ,d(π,σ)+d(σ,id)=d(π,id)
D−d(π,id)
γA,1

(DγA,1
DγA,2

)d(σ,id)
m(D)
γA,1,π−1σ

m(D)
γA,2,σ

+ O (D−m(A)d(π,id)−1).

(13.21)

Finally, we set π= τ for the full cycle τ and we use Eq. (13.12). For a unique minimal
cut γA, by Eq. (13.20)

EmγA ,k = Dk−1
γA

Zk,τ

= m(D)
γA ,π+O (Dk−1

γA
D−m(A)(k−1)−1)

= m(D)
γA ,k +O

(
1

D

)
.

(13.22)

using d(τ, id) = k −1 and DγA = Θ(Dm(A)). This proves Eq. (13.9) as m(D)
γA ,k converges

to mγA ,k .
For two non-intersecting minimal cuts, we saw that the dominant contribution is

due to configurations {πσx } for σ on a geodesic between τ and id. Then applying the
observation that σ is on such a geodesic if and only if σ is a non-crossing partition
similarly yields that by Eq. (13.21)

EmγA ,k = Dk−1
γA

Zk,τ

= Dk−1
γA

∑
σ∈NC (k)

(DγA,1
DγA,2

)d(σ,id)
m(D)
γA,1,π−1σ

m(D)
γA,2,σ+O (Dk−1

γA
D−m(A)(k−1)−1)

= ∑
σ∈NC (k)

(DγA,1
DγA,2

)d(σ,id)
m(D)
γA,1,τ−1σ

m(D)
γA,2,σ+O

(
1

D

)
.

(13.23)

Since m(D)
γA,2,σ→ mγA,2,σ and DγA,1 /DγA,2 → t , this proves Eq. (13.10).

This accomplishes Step 2: we have shown that the configurations {πmin
x } (in case

of a unique minimal cut for A) and {πσx } (in case there are exactly minimal cuts for A)
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dominate in the computation of the expectation of the k-th moment of µA in terms of
powers of D .

We complete the proof by showing that the variance of mA,k vanishes as D →∞.
We use the observation in Eq. (13.13), applying the analysis of Z2k,π to the case where
we take π= τ̃= (12. . .k)(k +1k +2. . .2k). If there is a unique minimal cut, then using
Eq. (13.20) and the fact that d(τ̃, id) = 2k −2, we find

E

[(
m(D)

A,k

)2
]
= D2k−2

γA
Z2k,τ̃ =

∏
l∈C (τ̃)

m(D)
γA ,l +O (D2k−2

γA
D−m(A)(2k−2)−1)

= (m(D)
γA ,k )2 +O

(
1

D

)
.

By Eq. (13.22) we know that (Em(D)
A,k )2 = (m(D)

γA ,k +O ( 1
D ))2, and we conclude that the

variance obeys

E

[(
m(D)

A,k −E
[

m(D)
A,k

])2
]
= E

[
(m(D)

A,k )2
]
−

(
Em(D)

A,k

)2 =O

(
1

D

)
.

For the case with exactly two minimal cuts, a similar argument holds. Here, the key
observation is thatσ is on a geodesic between τ̃ and id if and only ifσ=σ1σ2 whereσ1 is
on a geodesic between (12. . .k) and id and σ2 is on a geodesic between (k+1k+2. . .2k).
Using Eq. (13.21), this implies that we can bound E(m(D)

A,k )2 = D2k−2
γA

Z2k,τ̃ as

∑
σ1,σ2∈NC (k)

(DγA,1
DγA,2

)d(σ1,id)+d(σ2,id)
m(D)
γA,1,τ−1σ1

m(D)
γA,1,τ−1σ2

m(D)
γA,2,σ1

m(D)
γA,2,σ2

+O

(
1

D

)

=
( ∑
σ∈NC (k)

(DγA,1
DγA,2

)d(σ,id)
m(D)
γA,1,τ−1σ

m(D)
γA,2,σ

)2

+O

(
1

D

)
.

By Eq. (13.23), we see that this coincides with (Em(D)
A,k )2, up to O ( 1

D ), and hence Eq. (13.11)
holds. ■

We now have the ingredients to prove that the entanglement spectrum of random
tensor networks with link states with bounded spectral variation can be written in a
simple fashion. We will use the method of moments to translate the above result on
convergence of moments to convergence in distribution. The basic statement is that,
given certain conditions on the distributions in question, if the moments of a sequence
of distribution µn converge to those of µ, then µn ⇒µ – see for instance Theorem 30.8
in [Bil08].

The method of moments is valid, so long as a distributionµ is completely determined
by its moments. This occurs if the k-th moment mµ,k is bounded as

mµ,k ≤ AB k k ! (13.24)

for constants A,B for all k. If the distributions have compact support, as in Proposi-
tion 13.3, then this condition is satisfied.1

1A basic example of a distribution which does not have compact support, but is nevertheless
uniquely determined by its moments is a standard Gaussian distribution. On the other hand, a stan-
dard example of distributions that are not determined by their moments are the densities on R≥0 with

dµ1(x) =p
2πx−1e−(log x)2/2dx and dµ2(x) = (1+ sin(2π log x))dµ1(x), for which it can be verified that the

n-th moments of both distributions are equal to e−n2/2, while the distributions are clearly not identical.
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Now that we have established the convergence of moments in Proposition 13.3,
we have our main result of the (conditional) convergence in distribution. As in Propo-
sition 13.3 we consider a family of random tensor network state with link states with
bounded spectral variation with increasing D , as defined in the beginning of this section.

Theorem 13.4. If there exists a unique minimal cut γA for A, then µ(D)
A ⇒µγA , in prob-

ability, as D →∞. If there exist exactly two minimal cuts γA,1 and γA,2, which do not

intersect and for which limD→∞
DγA,1
DγA,2

= t ≤ 1, then µ(D)
A ⇒ MP(1)⊠µγA,1⊠µγA,2 (t), in

probability, where µγA,2 (t ) = (1− t )δ0 + tµγA,2

Proof. It is straightforward to see that the k-th moment ofµγA,2 (t ) is given by t k−1mγA,2,k ,
and then the result follows immediately from Proposition 13.3, Theorem 13.2, and the
method of moments. Because we assumed that for any minimal cut γA for A, the
limiting distributions µγA are compactly supported, they are uniquely determined
by their moments. Hence, the method of moments is valid, and the convergence of
moments implies convergence in distribution. ■
Remark 13.5. In Theorem 13.4 we assumed that the two cuts where non-intersecting.
What happens if there are still only exactly two minimal cuts, but γA,1∩γA,2 is nonempty?
This extension is straightforward. Let γ(a)

A := γA,1∩γA,2 and let γ(b)
A,i = γA,i \γ(a)

A for i = 1,2.
In line with previous notation, letµ

γ(a)
A

andµ
γ(b)

A,i
denote the corresponding limiting distri-

butions of the entanglement spectra along these sets, with moments m
γ(a)

A ,k and m
γ(b)

A,i ,k .

The only step in the proof of Proposition 13.3 where we used that the cuts were non-
intersecting is when we computed the value of Zk ({πx}) for the optimal configuration. If
the cuts do intersect, and we consider the configuration with πx = τ for x ∈ V1 with τ

the complete cycle, πx =σ for x ∈V2 andσ ∈ NC (k), and πx = id for x ∈V3, then a quick
calculation shows

Zk ({πx}) → D−d(π,id)
γA,1

(DγA ,1/DγA ,2)d(σ,id)
∏

e∈γ(a)
A

me,k

∏
e1∈γ(b)

A,1

me1,π−1σ

∏
e2∈γ(b)

A,2

me2,σ.

Apart from this modification, the proof of Proposition 13.3 is still valid, leading to

Zk,τ = m
γ(a)

A ,k

∑
σ∈NC (k)

t d(σ,id)m
γ(b)

A,1,τ−1σ
m
γ(b)

A,2,σ.

If, in Theorem 13.4, we do not assume that the cuts are nonintersecting, then the
partition function above leads to a limiting distribution given by

µ
γ(a)

A
⊗

(
MP (1)⊠µ

γ(b)
A,1
⊠µ

γ(b)
A,2

(t )

)
.

13.3 Nontrivial link states and entanglement negativity

As another application of the theory of free probability, we will compute the entan-
glement negativity spectrum for random tensor network states with link states with
bounded spectra. In [DQW21], it was shown how to compute the entanglement negativ-
ity spectrum for a random tensor network state with maximally entangled link states
using a replica trick. Using the methods from the previous section, we can analyze
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the negativity for entangled link states with bounded spectral variation. We remark
that similar computations have recently been performed in [DMW21] in the context
of replica wormholes, and our assumption on the link states is a generalization of the
“pairwise connected regime” in [DMW21]. Another work investigating nontrivial entan-
glement negativity spectra in random tensor networks is [KFNR21], where they focus
on the effect of having multiple minimal cuts in the network. As our analysis will be a
straightforward combination of the arguments in [DQW21] and Section 13.2, we will
be rather concise; the main message of this section is to show that the language of free
probability applies to other random tensor network computations as well.

We first recall how negativity functions as an entanglement measure for mixed
states. Let T be the superoperator which maps an operator X 7→ XT, and I the identity
superoperator. For ρAB ∈P (AB),

ρ
TB
AB := (IA ⊗TB )(ρAB )

is the partial transpose of ρAB on the B system. The logarithmic or entanglement
negativity is given by

EN (ρAB ) = log
∥ρTB

AB∥1

tr[ρ]
.

It is a measure for the entanglement of the mixed state ρAB : if EN (ρAB ) > 0 the state must
be entangled. We call spec(|ρTB

AB |) the entanglement negativity spectrum. In analogy to
the Rényi entropies, we can generalize the logarithmic negativity to a one-parameter
family of negativities. The k-th Rényi negativity is given by

Nk (ρAB ) = tr
[

(ρTB
AB )k

]
.

If we let N (even)
m (ρAB ) = N2m(ρAB ), then the logarithmic negativity is obtained an analytic

continuation in the Rényi index m → 1
2 of log(N (even)

m (ρAB )). More precisely, in the
expression

log
∑

λ∈spec(ρ
TB
AB )

|λ|α,

we may take α→ 1
2 to obtain EN (ρAB )+ logtr[ρ].

In the context of random tensor networks, we partition the boundary in three re-
gions: V∂ = A⊔B⊔C , and we would like to compute the Rényi negativities of the reduced
state ρAB . We will then use this to determine the entanglement negativity spectrum,
and compute the entanglement negativity. The idea is that the k-th Rényi negativity
can be computed using a replica trick, by placing the full cycle τk = (12. . .k) ∈ Sk on A
and τ−1

k = (k k +1. . .1) on B :

Nk (ρAB ) = tr
[
ρ⊗k

AB

(
RA(τ)⊗RB (τ−1)

)]
= tr

[
ρ⊗k

ABC

(
RA(τ)⊗RB (τ−1)⊗RC (id)

)]
.

Let us first discuss the case with maximally entangled link states, following [DQW21].
The same arguments as in Section 12.1.2 show that one can compute the expectation
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id
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(a) Illustration of the case where γC = γA ∪γB ,
where the dominant configuration is given
by τk on ΓA , τ−1

k on ΓB and id on ΓC .
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C

C

A

τk

τ−1
k

π1

id

idV1

γC
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γA

γB

(b) Illustration of the case where γC ̸= γA ∪γB ,
where the dominant configuration is given
by τk on ΓA , τ−1

k on ΓB and id on ΓC and
some non-crossing pairing π1 on the do-
main V1.

Figure 13.1: Tensor networks with one and two minimal cuts. The relevant ground state config-
uration domains are denoted by ΓA .

of Nk (ρAB ) for a random tensor network state using a spin model, now with boundary
conditions of τk on A, τ−1

k on B and id on C . We will assume that the minimal cutsΓA, ΓB

and ΓC are unique. Note that the minimal cut for AB is given by ΓAB = Γc
C . From the

theory of multi-commodity flows, it is known that there exist sets of edge-disjoint
paths P = P AB ∪P AC ∪PBC , where P AB consists of paths from A to B , and similarly for
sets of paths P AC and PBC , and which are such that

|P AB |+ |P AC | = |γA|, |P AB |+ |PBC | = |γB |, |P AC |+ |PBC | = |γC |.
This can be used to show (in analogous fashion to the proof of Proposition 13.3)
that, if k = 2n is even, any spin model configuration contributing to ENk (ρAB ) is of
order O (D−(n−1)(|γA |+|γB |)−n|γC |). If k = 2n +1 is odd, any spin model configuration con-
tributing to ENk (ρAB ) is of order of magnitude O (D−n(|γA |+|γB |+|γC |)).

In order to determine what happens as D →∞, we need to determine the dominant
configurations. Let r be the number of connected components of V \ (ΓA ∪ΓB ∪ΓC ).
There are two distinct cases. The first is when the the minimal cut for AB (which is the
complement of the minimal cut for C ) is the union of the minimal cuts for A and B ,
so ΓAB = ΓA∪ΓB and hence γAB = γA∪γB . Then the minimal cuts naturally partition the
bulk vertices into three cuts ΓA, ΓB and ΓC , and we have r = 0. In this case, the dominant
configurations in the spin model are those where the vertices in ΓA are assigned τk ,
those in ΓB are assigned τ−1

k and those in ΓC are assigned id. This is illustrated in
Fig. 13.1a.

The second case is when ΓA ∪ΓB ⊊ ΓAB and hence γAB ̸= γA ∪γB . Now, we have
again the domains ΓA, ΓB and ΓC , but upon removing these vertices, there may also
be connected components V1, . . . ,Vr which are not connected to A, B or C . Here, the
minimal configurations are those for which, again, the vertices in ΓA are assigned τk ,
those in ΓB are assigned τ−1

k and those in ΓC are assigned id, and where in each compo-
nent Vi the vertices are assigned a permutation πi which is such that it satisfies three
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conditions: it must be on a geodesic between τk and τ−1
k , on a geodesic between τk

and id and on a geodesic between τ−1
k and id. If k = 2n is even, such permutations are

given by non-crossing pairings: permutations corresponding to non-crossing partitions
in which each cycle has length 2. The set of non-crossing pairings on 2n elements is
in bijection with the set of non-crossing partitions on n elements, so the number of
non-crossing pairings on 2n elements is given by |NC (n)| = Cn . One way to obtain
this correspondence is as follows. If π is a non-crossing pairing, τ2nπ will map even
numbers to even numbers, and restricting to the even numbers and relabeling 2i 7→ i
yields a non-crossing partitionσ ∈ NC (n). Moreover, restricting to the odd numbers and
relabeling 2i +1 7→ i yields the non-crossing partition σ−1τ ∈ NC (n). This leads to C r

n
dominant contributions to EN2n(ρAB ) which are of size D−(n−1)(|γA |+|γB |)−n|γC | since we
can choose a non-crossing pairing πi for each component. Such a configuration is
illustrated in Fig. 13.1b.

For odd k = 2n + 1, we similarly have permutations which correspond to a non-
crossing partition. These permutations have a single fixed point and all other cycles
with length 2. This leads to ((2n +1)Cn)r dominant contributions to EN2n(ρAB ), of size
D−(n−1)(|γA |+|γB |)−n|γC |. We also note that rank(ρTB

AB ) ≤ D |γA |+|γA |. If spec(ρTB
AB ) = {si }, then

we define the measure

µ(D)
AB = 1

D |γA |+|γB |
D |γA |+|γB |∑

i=1
δ

D
1
2 (|γA |+|γB |+|γC |)si

. (13.25)

This has moments given by

m(D)
AB ,k =

∫
xk dµ(D)

AB (x) = D (
k
2 −1)(|γA |+|γB |)+k

2 |γC |Nk (ρAB ).

If we take the expectation of the moments, we again need to distinguish the two cases.
If |γA|+ |γB | = |γC |, we see that the powers of D cancel for the dominant configurations,
so m(D)

AB ,k → 1 for all k. On the other hand, for |γA|+ |γB | > |γC |, we see that for D →∞
with odd k, we have Em(D)

AB ,k → 0. For even k, we recover the degeneracy of the dominant
configurations, leading to

lim
D→∞

m(D)
AB ,k =


1 if |γA|+ |γB | = |γC |,
0 if k odd and |γA|+ |γB | > |γC |,
C r

k/2 if k even and |γA|+ |γB | > |γC |,
(13.26)

where r is the number of connected components of V \ (ΓA ∪ΓB ∪ΓC ). In fact, one
can show that, as in Proposition 13.3, the variance goes to zero as well, and hence the
method of moments allows one to conclude that µ(D)

AB converges weakly, in probability,
to

µAB =


σ⊗r if r > 0,
1
2δ1 + 1

2δ−1 if r = 0 and |γA|+ |γB | > |γC |,
δ1 if r = 0 and |γA|+ |γB | = |γC |,

(13.27)

where σ is the semi-circle distribution with density

dσ(x) = 1

2π

√
4−x21|x|≤2 d x
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Alternatively, one may study the empirical distribution of the squared entanglement
negativity spectrum

ν(D)
AB = 1

D |γA |+|γB |
∑

i
δD |γA |+|γB |+|γC |s2

i
. (13.28)

This distribution has k-th moment given by m(D)
AB ,2k , and on comparison with the limiting

moments in Eq. (13.26), one can conclude that ν(D)
AB ⇒ νAB , in probability, where

νAB = MP (1)⊗r . (13.29)

The logarithmic negativity can be computed using the distribution µ(D)
AB or ν(D)

AB as

EN (ρAB ) = log
∫
|λ|dµ(D)

AB (λ)+ logD

2
(|γA|+ |γB |− |γC |)− logtr

[
ρ
]

(13.30)

= log
∫ p

λdν(D)
AB (λ)+ logD

2
(|γA|+ |γB |− |γC |)− logtr

[
ρ
]
. (13.31)

The convergence of ν(D)
AB to νAB implies2 that EN (ρAB )− logD

2 (|γA|+|γB |−|γC |) converges
in probability to

log
∫ p

λdνAB (λ) = r log
8

3π
.

See Appendix D of [DQW21] for details and proofs.
A straightforward combination of the arguments in Section 13.2 and [DQW21]

shows that the same configurations are the dominant contributions for link states
with bounded spectral variation as in Section 13.2. To determine the limiting distribu-
tion in this case, we can generalize Eq. (13.27) in the same fashion as in Section 13.2. We
assume the minimal cuts ΓA, ΓB and ΓC are unique. We also assume that γA ∩γB =;,
and in the case where γC = γAB ̸= γA ∪γB (so |γA|+ |γB | > |γC |), all pairwise intersec-
tions between γA, γB and γC are empty. This excludes the case where |γA|+ |γB | > |γC |,
but r = 0. We let γA,i and γB ,i denote the components of γA and γB which are connected
to Vi , and we let µ(D)

γA,i
and µ(D)

γB ,i
denote the distribution of the link state spectrum along

these sets, with associated k-th moments m(D)
γA,i ,k , m(D)

γB ,i ,k , which we assume to converge

to the moments mγA,i ,k , mγB ,i ,k of compactly supported distributions µγA,i and µγB ,i . For
convenience, we assume De = D for all edges e ∈ E .

We can now compute the dominant contributions to ENk (ρAB ). If γC = γA ∪γB ,
then there is a unique dominant configuration, which contributes D−(k−1)|γC |mγC ,k .
If |γA|+|γB | > |γC | and k = 2n is even, consider the configuration which assigns πi to Vi ,
where each πi is a non-crossing pairing. For each edge e ∈ γC , we have m(D)

e,πi
= (m(D)

e,2 )n ,
so this configuration contributes

D−(n−1)(|γA |+|γB |)−n|γC |
(
m(D)
γC ,2

)n r∏
i=1

(
m(D)
γA,i ,τ−1

2nπi
m(D)
γB ,i ,τ2nπi

)
.

2The function f (λ) = p
λ is not in Cb(R), but the method of moments actually shows a stronger

convergence, allowing test functions to have polynomial growth.
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Recalling the construction of the equivalence between NC (n) and non-crossing pairings
on 2n elements, we see that

m(D)
γB ,i ,τ2nπi

= m(D)
γB ,i ,σi

m(D)
γB ,i ,σ−1

i τn

for some unique σi ∈ NC (n). Similarly, one may verify

m(D)
γA,i ,τ−1

2nπi
= m(D)

γA,i ,σi
m(D)
γA,i ,σ−1

i τn
.

This implies that the contribution of all dominant configurations is given by(
m(D)
γC ,2

)n r∏
i=1

( ∑
σ∈NC (n)

m(D)
γA,i ,σm(D)

γB ,i ,σm(D)
γA,i ,σ−1τn

m(D)
γB ,i ,σ−1τn

)
As in the maximally entangled case, upon rescaling, the odd moments vanish as D →∞.
In conclusion, the resulting asymptotic moments are given by

lim
D→∞

Em(D)
AB ,k =


mγC ,k if |γA|+ |γB | = |γC |,
0 if k odd and |γA|+ |γB | > |γC |,
mk if k even and |γA|+ |γB | > |γC |

(13.32)

with

m2n = mn
γC ,2

r∏
i=1

( ∑
σ∈NC (n)

mγA,i ,σmγB ,i ,σmγA,i ,σ−1τn
mγB ,i ,σ−1τn

)
.

As before, one can also show, in similar fashion to the proof of Proposition 13.3, that
the variance of the moments goes to zero as D →∞. For the case |γA|+ |γB | > |γC |, we
consider ν(D)

AB similar to Eq. (13.28), but with an additional rescaling by mγC ,2:

ν(D)
AB = 1

D |γA |+|γB |
∑

i
δD |γA |+|γB |+|γC |m−1

γC ,2s2
i
.

This has moments, which compute N (even)
k (ρAB ), converging to

lim
D→∞

E

∫
xk dν(D)

AB (x) =
r∏

i=1

( ∑
σ∈NC (n)

mγA,i ,σmγB ,i ,σmγA,i ,σ−1τn
mγB ,i ,σ−1τn

)
.

Thus, by the method of moments and Theorem 13.2, it holds that ν(D)
AB converges weakly,

in probability, to

νAB =
{⊗r

i=1νi if r > 0,

µγC if r = 0,
(13.33)

where νi is given by

νi = (µγA,i ⊗µγB ,i )⊠2⊠MP(1).

This reduces to Eq. (13.29) if the link states are maximally entangled. We can use this to
compute the logarithmic negativity, as we did previously. For r > 0,

EN (ρAB ) = log
∫ p

λdν(D)
AB (λ)+ logD

2
(|γA|+ |γB |− |γC |)+ 1

2
logmγC ,2 − logtr

[
ρ
]
,
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from which we find that EN (ρAB )− logD
2 (|γA|+ |γB |− |γC |) converges in probability to

log
∫ p

λdνAB (λ)+ 1

2
logmγC ,2 .

For the case |γA|+ |γB | = |γC |, it is more elegant to use the limiting distribution of µ(D)
AB ,

as defined in Eq. (13.25). By the method of moments and Eq. (13.32), µ(D)
AB ⇒ µγC , in

probability. We may then compute the entanglement negativity as

EN (ρAB ) = log
∫
|λ|dµ(D)

AB (λ)+ logD

2
(|γA|+ |γB |− |γC |)− logtr

[
ρ
]
,

and hence EN (ρAB )− logD
2 (|γA|+|γB |−|γC |) converges in probability to log

∫ |λ|dµAB (λ).

Discussion and open questions

In this chapter we restricted to link states with bounded spectral variation. In the next
chapter we will investigate more general link states. Another restriction we made is
that we only considered the case with at most two minimal cuts. It would be inter-
esting, already in the maximally entangled case, to characterize the convergence of
appropriately scaled empirical distributions for any possible collection of minimal cuts.
In this case, the same arguments would allow one to show that one can again use the
replica trick to compute the moments of the reduced density matrix. The dominant
configurations of permutations will be given by configurations which are constants on
the connected components of the graph upon removing the minimal cuts. However,
in this case the combinatorial problem of counting the relevant permutations will be
more complicated.

Another avenue of investigation is to study more fine-grained properties of the
spectrum. For instance, in the context of random matrix theory one typically also
studies the behaviour of the largest and smallest eigenvalues of the random matrix.



CHAPTER 14

Link states with unbounded spectral
variation

We will now consider a different regime, where the link states have unbounded
spectral variation. Our methods in this chapter are distinct from the previous one, and
the two chapters can be considered separately.

14.1 One-shot entropies

We begin by introducing one of our main tools for studying entanglement spectra in
random tensor network states: one-shot entropies. In quantum information theory,
the rates of certain important protocols, such as compression or state merging can be
expressed as entropic quantities. One-shot entropies are the appropriate analogs for
settings where one would like to analyze a task for a single or finite number of copies
of the relevant state. Asymptotic rates in terms of ordinary von Neumann entropies
are then recovered in the limit of infinitely many independent copies. For an extensive
introduction to this point of view, see [Tom15]; here we provide the basic definitions
and introduce the relevant concepts.

A random tensor network built from link states that are maximally entangled (or
more generally have bounded spectral variation) effectively can be analyzed using
asymptotic tools. Indeed, if we have a maximally entangled state of exponentially large
dimension D = 2n , then this is equal to the n-th tensor power of a qubit maximally
entangled state, so we are effectively in a asymptotic situation. However, if we allow for
link states with unbounded spectral variation or even completely general background
states, as in Section 12.2, then it is more natural to use tools from one-shot quantum
information theory.

We take the Rényi entropies as a starting point, which we defined in Eq. (12.9) for
subnormalized states. Let H be some Hilbert space and for ρ ∈P≤(H ) we define the
(unconditional) min-entropy and the max-entropy by

Hmin(ρ) =− log∥ρ∥∞
Hmax(ρ) = log

(
tr[

p
ρ]2)

which coincide with the Rényi entropies H∞(ρ) and H 1
2

(ρ) for ρ ∈ P=(H ). As usual,

if ρA is the reduced density matrix on a system A, we may write Hmin(A)ρ = Hmin(ρA)
and Hmax(A)ρ = Hmax(ρA).
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Often, when applied to study quantum information processing tasks, it is useful to
allow a small error. This leads to the introduction of smooth entropies. To this end we
define the trace distance between ρ,σ ∈P≤(H ) to be

T (ρ,σ) = 1

2
∥ρ−σ∥1 + 1

2
|tr

[
ρ−σ]|,

where the last term, which is absent in usual definitions of the trace distance, accounts
for subnormalized states. It is easy to see that T (ρ,σ) ≤ ∥ρ−σ∥1 ≤ 2T (ρ,σ). We define
the smooth min- and max-entropies of ρ ∈P≤(H ) as

Hε
min(ρ) = sup

ρε∈P≤(H ),T (ρε,ρ)≤ε
Hmin(ρε)

Hε
max(ρ) = sup

ρε∈P≤(H ),T (ρε,ρ)≤ε
Hmax(ρε).

The smooth entropies are such that one recovers the usual von Neumann entropies in
the limit of many independent copies. Indeed, the following asymptotic equipartition
property holds:

lim
n→∞

1

n
Hε

min(ρ⊗n) = H(ρ) = lim
n→∞

1

n
Hε

max(ρ⊗n)

for any 0 < ε< 1. Variations on this definition are possible. For instance, one can choose
a different distance measure, which will yield different entropies. However, for the
usual choices, the differences go to zero as ε goes to zero, so the particular choice is
often immaterial. One useful distance measure is the purified distance, which is given
for ρ,σ ∈P≤(H ) by

P (ρ,σ) =
√

1−F∗(ρ,σ)2

where F∗(ρ,σ) is the generalized fidelity between ρ and σ, which is defined by

F∗(ρ,σ) = F (ρ,σ)+
√

(1− tr
[
ρ
]
)(1− tr[σ])

in terms of the ordinary fidelity F (ρ,σ) = ∥pρpσ∥1. The Fuchs-van de Graaff inequali-
ties relate the trace distance and purified distance:

T (ρ,σ) ≤ P (ρ,σ) ≤√
2T (ρ,σ) (14.1)

for ρ,σ ∈P≤(H ).
There are also conditional versions of the Rényi entropies. Consider a bipartite

quantum state ρAB ∈P=(AB). For the von Neumann entropy, the conditional entropy
can simply be defined as H(A|B)ρ = H(AB)ρ −H(B)ρ. However, it turns out that this
is not a good definition in the Rényi case. There are various ways to define a Rényi
conditional entropy Hk (A|B); we use a version based on the so-called sandwiched Rényi
relative entropy. For k = 2, this gives a quantum conditional collision entropy, which will
be useful for defining minimal cuts and which is defined as follows. For ρAB ∈P≤(AB),
let

H2(A|B)ρ|ρ :=− logtr

[(
(I ⊗ρB )−

1
4ρAB (I ⊗ρB )−

1
4

)2
]
+ logtr

[
ρ
]
. (14.2)
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Finally, there are also conditional versions of the min- and max-entropy. If ρAB ∈P≤(AB)
and σB ∈P≤(B), we define

Hmin(A|B)ρ|σ =− inf{λ : ρAB ≤ 2λI A ⊗σB }

Hmax(A|B)ρ|σ = log∥ρAB (I ⊗σB )∥2
1

and we let

Hmin(A|B)ρ = sup
σ∈P≤(B)

Hmin(A|B)ρ|σ

Hmax(A|B)ρ = sup
σ∈P≤(B)

Hmax(A|B)ρ|σ.

There is a duality between max- and min-entropies. If ρ ∈P≤(ABC ) is a pure state,
it holds that

Hmin(A|B)ρ =−Hmax(A|C )ρ. (14.3)

We will use the fact that for a normalized state ρAB ∈P=(AB) (Corollary 5.10 in [Tom15])

Hmin(A|B)ρ|ρ ≤ Hmin(A|B)ρ ≤ H2(A|B)ρ|ρ. (14.4)

14.2 Recovery isometries

Recall that we study random tensor network states with link states, which are pure states
which are a tensor product of edge statesφ=⊗

e∈E φe ∈P=(V ) for some graph G = (V ,E ),
and in Section 12.2 we considered more general background states φV ∈P≤(V ), where
we no longer have a tensor product structure along the edges of some graph, and
applying the replica trick does not yield a local spin model for the moments of the
tensor network state. This situation is of independent interest, but will also be useful
as an intermediate step when applying bounds based on one-shot entropies to link
states. In Chapter 13, we studied link states for which the entanglement spectrum of
the edge states φe had bounded variation, and we used the replica trick to compute the
moments of the spectrum of ρA for a boundary subsystem A. For general background
states we saw that the replica trick for k = 2 extends as in Eq. (12.21). What are the
minimal cuts in this setting? Based on Eq. (12.21) a first guess would be that ΓA ∈C (A)
would be a minimal cut (i.e. correspond to the dominant term in the replica trick) if
for all other cuts ∆A ∈ C (A) we would have H2(ΓA)φ ≪ H2(∆A)φ. If the state is a link
state, this corresponds to adding weights to the edges of the graph corresponding to
the Rényi-2 entropies along the edges, and computing a weighted minimal cut. Indeed,
this would yield an accurate approximation of tr[ρ2

A] and hence of H2(ρA). However, if
the spectrum of ρA is not close to a flat spectrum, this does not imply that spec+(ρA)
is close to spec+(φΓA ). We would like to show that for link states with unbounded
spectral variation, and an appropriate minimal cut condition for ΓA ∈ C (A), it is still
true that spec+(ρA) is close to spec+(φΓA ).

We will adapt the k = 2 replica trick for general background states to get a bound
on the difference in trace norm between spec+(ρA) and spec+(φΓA ) in terms of condi-
tional Rényi-2 entropies,1 as defined in Eq. (14.2). In Section 14.2.1, we will use this to
formulate a condition for cut minimality in terms of smooth entropies for link states.

1Note that while H(A|B)φ = H(AB)φ−H(B)φ, in general H2(A|B)φ|φ ̸= H2(AB)φ−H2(B)φ.
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The main result of this subsection is a tensor network version of one-shot decou-
pling. Let φV ∈P≤(V ). We allow φV to be a general state, which need not be pure and
also need not be a product state along the edges of some graph. Let R be a purifying
system and φV R ∈P≤(V R) be a purification of φV . Then we can construct the random
tensor network state ρV∂R where the boundary systems are given by V∂∪R, which is a
purification of the random tensor network state ρV∂ as in Eq. (12.19) by

φV∂R = trVb [(IV∂R ⊗ψ)φ] (14.5)

where ψ is a tensor product of random tensors. We briefly recall our notation for bound-
ary subsystems and cuts: for a boundary subsystem A ⊆ V∂, we denote its boundary
complement by Ā = V∂ \ A, and for a cut ΓA ∈ C (A), we let Γc

A = V \ΓA, which is a cut
for Ā. The purifying system R can be thought of as an additional boundary system in
the tensor network construction.

In Theorem 14.4, we will assume that we have a cut ΓA ∈ C (A) which is such that
for all cuts ∆A ∈C (A) for which ∆A ⊊ ΓA we have H2(ΓA \∆A|Γc

AR)φ|φ≫ 1, and similarly
for all cuts ∆A ∈C (A) for which ΓA ⊊∆A we have H2(∆A \ΓA|ΓAR)φ|φ≫ 1. We sow that
this condition implies that with high probability there exist isometries VA : H A →HΓA

and VĀ : H Ā →HΓc
A

such that

(VA ⊗VĀ ⊗ IR ) |ρ〉 ≈ |φ〉 . (14.6)

The approximation accuracy will be measured in trace norm. In particular, this implies
that spec+(ρA) ≈ spec+(φΓA ). If the state φ is a link state, spec+(φΓA ) is precisely the
entanglement spectrum along the cut γA. The isometries VA and VĀ are recovery isome-
tries, which allow us to ‘recover’ ΓA from the A system, and similarly we can recover Γc

A
from Ā.

The result is closely related to quantum error correction. One way to interpret this
is is as follows: consider a subspace HS of HV and let R be a reference system of
dimension dim(HS), and φV R a maximally entangled state between S and R. Then
Eq. (14.6) can be interpreted as saying that if we encode the subspace S by projecting
onto random tensors, the information in ΓA is protected, after encoding, against an
erasure error on Ā. This idea is also discussed in [PYHP15] for perfect tensor network
models, and in [HNQ+16] for random tensor networks with maximally entangled link
states. In holography, the notion of local recovery isometries and their error correction
interpretation goes under the name of entanglement wedge reconstruction or subregion-
subregion duality. See [AR19, AP22] for a detailed discussion of entanglement wedge
reconstruction in holographic systems with bulk entropy, relating to one-shot entropies.
We provide more details in Section 14.3.

Our approach to showing Eq. (14.6) is that we start by projecting only on the random
tensors in ΓA, and not on the random tensors in Γc

A. This yields a random tensor network
state σ on AΓc

AR.
We then show that, by a version of one-shot decoupling, the reduced state on σΓc

AR

has not changed much from φΓc
AR . By Uhlmann’s theorem, this implies that there exists

an isometry VA such that (VA ⊗ IΓc
AR ) |σ〉 ≈ |φ〉. Combining this with a similar result

for Γc
A we obtain Eq. (14.6), as will be made precise in Theorem 14.4.

In our construction of σ, we can relabel the vertices in the graph, and think of the
vertices in ΓA \ A as the bulk vertices Vb , the boundary subsystem A as the complete
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boundary V∂, and relabel all other subsystems as the reference system R. Then we
prove the following result, which is closely related to the one-shot decoupling results in
[DBWR14].

Proposition 14.1. Consider a random tensor network state ρV∂R as in Eq. (14.5) with a
(purified) background state φV R ∈P≤(V R). Let A =V∂ and let ΓA =V and suppose that
for any cut ∆A ∈C (A) other than ΓA

H2(ΓA \∆A|R)φ|φ ≥ K

then

E∥ρR −φR∥1 ≤ 2
|Vb |

2
√

tr[φ]2− 1
2 K .

Note that, since ΓA = Vb ∪ A, the sets ΓA \∆A for ∆A ∈ C (A) \ {ΓA} are exactly the
non-empty subsets of Vb . The formulation in terms of ∆A ∈C (A) will be natural when
we apply this result in Theorem 14.4.

Proof. We closely follow the strategy in [DBWR14, DH10]. We first note a basic fact
(Lemma 3.7 in [DBWR14]): for any operator X and ω a subnormalized density matrix, it
holds that

∥X ∥1 ≤ ∥ω− 1
4 Xω− 1

4 ∥2. (14.7)

The proof is an application of the Cauchy-Schwarz inequality. We use (14.7) withω=φR

and Jensen’s inequality to see that

E∥ρR −φR∥1 ≤
√
E tr[(ρ̃R − φ̃R )2]

where ρ̃V∂R = (I⊗φR )−
1
4ρV∂R (I⊗φR )−

1
4 and φ̃V R = (I⊗φR )−

1
4φV R (I⊗φR )−

1
4 . By Eq. (12.22)

we have Eρ̃R = φ̃R , and the replica trick in Eq. (12.21) yields

E tr[(ρ̃R − φ̃R )2] = E tr[ρ̃2
R ]− tr[φ̃2

R ]

= ∑
∆A∈C (A),∆A⊊ΓA

tr[φ̃2
(ΓA\∆A)R ]

= ∑
∆A∈C (A),∆A⊊ΓA

tr[φ]2−H2(ΓA\∆A |R)φ|φ

using the definition of φ̃ and Eq. (14.2) and hence(
E∥ρR −φR∥1

)2 ≤ 2|Vb | tr[φ]2−K .

■
Suppose that in the set-up of Proposition 14.1, we would have equality ρR = φR .

Then, by Uhlmann’s theorem, their purifications ρAR and φΓAR are related by some
isometry VA from A to ΓA. The following lemma is useful to extend to the case where
the reduced states are close in trace distance.

Lemma 14.2. Suppose ρAB ∈ P (AB) and σAC ∈ P≤(AC ) are pure states on bipartite
Hilbert spaces H A ⊗HB and H A ⊗HC respectively. Then

min
V

∥(I A ⊗V )ρAB (I A ⊗V †)−σAC∥1 ≤ 2
√

2∥ρA −σA∥1 +2∥ρA −σA∥2
1.

where the minimum is over all isometries V : HB →HC .
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Proof. Uhlmann’s theorem states that if ρAB ∈P (AB) and σAC ∈P (AC ) are pure quan-
tum states with dim(HB ) ≤ dim(HC ), then there exists an isometry V : HB →HC such
that

P (ρA,σA) = P ((I A ⊗V )ρAB (I A ⊗V †),σAC ) = P (ρA,σA)

and, in particular, the isometry is the solution to an optimization problem:

P (ρA,σA) = min
V

P ((I A ⊗V )ρAB (I A ⊗V †),σAC ).

Moreover, if both ρ and σ are subnormalized, by Eq. (14.1), we can bound

min
V

∥(I A ⊗V )ρAB (I A ⊗V †)−σAC∥1 ≤ min
V

2P ((I A ⊗V )ρAB (I A ⊗V †),σAC )

= 2P (ρA,σA) ≤ 2
√

2∥ρA −σA∥1.

From this it follows that if σ is subnormalized and ρ has tr[ρ] > 1,

min
V

∥(I A ⊗V )ρAB (I A ⊗V †)−σAC∥1 ≤ 2
√

2tr[ρ]∥ρA −σA∥1.

Since tr[ρ] ≤ tr[σ]+∥ρ−σ∥1 and tr[σ] ≤ 1 we conclude that

min
V

∥(I A ⊗V )ρAB (I A ⊗V †)−σAC∥1 ≤ 2
√

2∥ρA −σA∥1 +2∥ρA −σA∥2
1.

for arbitrary ρ and subnormalized σ. ■
Finally, we will need a basic lemma relating tensor network states with differing

background states:

Lemma 14.3. Suppose we consider random tensor network states ρV∂R and ρ̃V∂R with
(purified) background states φV R , φ̃V R ∈P≤(V R) and projecting onto the same random
tensors. Then

E∥ρV∂R − ρ̃V∂R∥1 ≤ ∥φV R − φ̃V R∥1.

Proof. Let φ− φ̃ = ∆+−∆− where both ∆+ and ∆− are positive semidefinite and are
such that ∥φ− φ̃∥1 = tr[∆++∆−]. Then we can also consider the random tensor network
states σ+ and σ− which take ∆+ and ∆− as background states, and by the linearity of
Eq. (14.5) in the background state we have ρ− ρ̃ =σ+−σ−. By Eq. (12.22), Eσ± =∆±. We
then estimate

E∥ρ− ρ̃∥1 = E∥σ+−σ−∥1 ≤ E(∥σ+∥1 +∥σ−∥1)

= E tr[σ++σ−] = tr[∆++∆−] = ∥φ− φ̃∥1.

where we have used that σ+ and σ− are positive semidefinite and hence ∥σ±∥1 = tr[σ±].
■

With all our tools assembled, we are ready to prove the main result of this subsection.
We again let φV R ∈ P≤(V R) be a background state with R be a purifying system, and
we let ρV∂R be the associated random tensor network state as constructed in Eq. (14.5).
Let ΓA be an arbitrary cut for the boundary region A. In Theorem 14.4, we provide a
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criterion to determine whether ΓA is a minimal cut in terms of conditional entropies.
Informally speaking, the following result shows that if ΓA is a minimal cut in this sense,
we can recover the subsystem ΓA from the boundary subsystem A, while we can re-
cover Γc

A from the boundary subsystem Ā. For general φ, Theorem 14.4 is closely related
to the task of split transfer, see Section 14.3 for a discussion. The following result closely
follows Proposition 18 of [DH10].

Theorem 14.4 (Recovery isometries). Let φV R ∈P≤(V R) and let ρV∂R be the associated
random tensor network state as in Eq. (14.5). Let ΓA ∈C (A) and suppose that

H2(ΓA \∆A|Γc
AR)φ|φ ≥ K1 (14.8)

for all cuts ∆A ∈C (A) such that ∆A ⊊ ΓA and

H2(∆A \ΓA|ΓAR)φ|φ ≥ K2 (14.9)

for all cuts ∆A ∈C (A) such that ΓA ⊊∆A. Then

E min
VA ,VĀ

∥(VA ⊗VĀ ⊗ IR )ρV∂R (V †
A ⊗V †

Ā
⊗ IR )−φV R∥1 =O (tr[φ]

1
4 (2− 1

4 K1 +2− 1
4 K2 )). (14.10)

where the minimum is over isometries VA : H A →HΓA and VĀ : H Ā →HΓc
A

.

Proof. Let σAΓc
AR be the state where we have contracted along the tensors in ΓA but

not along those in Γc
A, and similarly let τĀΓAR be the state where we have contracted

along the tensors in Γc
A but not along those in ΓA. We first use Proposition 14.1 to show

that σΓc
AR ≈ φΓc

AR and τΓAR ≈ φΓAR . Indeed, for σ we simply apply Proposition 14.1
with Vb ∩ΓA as the set of bulk vertices, A as the set of boundary vertices and Γc

AR as the
reference system. This gives

E∥σΓc
AR −φΓc

AR∥1 =O (
√

tr[φ]2− 1
2 K1 ).

A similar application of Proposition 14.1, with Vb ∩Γc
A as the set of bulk vertices, Ā as

the set of boundary vertices and ΓAR as the reference system, shows

E∥τΓAR −φΓAR∥1 =O (
√

tr[φ]2− 1
2 K2 ).

We note that for any isometries VA : H A →HΓA and VĀ : H Ā →HΓc
A

∥(VA ⊗VĀ ⊗ IR )ρ(V †
A ⊗V †

Ā
⊗ IR )−φV R∥1 ≤ ∥(IΓA ⊗VĀ ⊗ IR )τ(IΓA ⊗V †

Ā
⊗ IR )−φV R∥1

+∥τ− (VA ⊗ I ĀR )ρ(V †
A ⊗ I ĀR )∥1,

where we have added and subtracted (IΓA ⊗VĀ ⊗ IR )τ(IΓA ⊗V †
Ā
⊗ IR ), applied the triangle

inequality and then used the invariance of the trace norm under isometries in the
second term. We use this to estimate

E min
VA ,VĀ

∥(VA ⊗VĀ ⊗ IR )ρ(V †
A ⊗V †

Ā
⊗ IR )−φV R∥1

≤ E
(
min

VĀ

∥(IΓA ⊗VĀ ⊗ IR )τ(IΓA ⊗V †
Ā
⊗ IR )−φV R∥1

+ min
VA

∥τ− (VA ⊗ I ĀR )ρ(V †
A ⊗ I ĀR )∥1

)
,

(14.11)
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where the minimum is over isometries VA : H A → HΓA and VĀ : H Ā → HΓc
A

. For the
first term of Eq. (14.11), we apply Lemma 14.2 to get

min
VĀ

∥(IΓA ⊗VĀ ⊗ IR )τ(IΓA ⊗V †
Ā
⊗ IR )−φV R∥1 ≤ 2

√
2∥τΓAR −φΓAR∥1 +∥τΓAR −φΓAR∥2

1

≤ 2
p

2
(√

∥τΓAR −φΓAR∥1 +∥τΓAR −φΓAR∥1

)
and by Jensen’s inequality

Emin
VĀ

∥(IΓA ⊗VĀ ⊗ IR )τ(IΓA ⊗V †
Ā
⊗ IR )−φV R∥1

≤ 2
p

2
(√

E∥τΓAR −φΓAR∥1 +E∥τΓAR −φΓAR∥1

)
=O (tr[φ]

1
4 2− 1

4 K2 )

(14.12)

For the second term of Eq. (14.11), we can think of τ and (VA ⊗ I ĀR )ρ(V †
A ⊗ I ĀR ) as the

random tensor network states withφ and (VA⊗ IΓc
AR )σ(V †

A ⊗ IΓc
AR ) as link states, applying

random tensors in Γc
A. Then, denoting by EΓc

A
the expectation value over all random

tensors in Γc
A, by Lemma 14.3

EΓc
A
∥τ− (VA ⊗ I ĀR )ρ(V †

A ⊗ I ĀR )∥1 =O (∥φV R − (VA ⊗ I ĀR )σ(V †
A ⊗ I ĀR )∥1).

We thus estimate

Emin
VA

∥τ− (VA ⊗ I ĀR )ρ(V †
A ⊗ I ĀR )∥1 =O (EΓA min

VA
∥φV R − (VA ⊗ I ĀR )σ(V †

A ⊗ I ĀR )∥1)

for which we may argue exactly as in Eq. (14.12) and using Lemma 14.2 that

EΓA min
VA

∥φV R − (VA ⊗ IΓc
AR )σ(V †

A ⊗ IΓc
AR )∥1 =O (tr[φ]

1
4 2− 1

4 K1 ).

We conclude that

E min
VA ,VĀ

∥(VA ⊗VĀ ⊗ IR )ρ(V †
A ⊗V †

Ā
⊗ IR )−φV R∥1 =O (tr[φ]

1
4 (2− 1

4 K1 +2− 1
4 K2 )).

■
We hence find that the closeness of the boundary and background state can be

bounded via conditional Rényi-2 entropies of cuts. In particular, for large K1,K2, the
recovery isometries can recover states to good accuracy, and E∥spec+(ρA)−spec+(φΓA )∥
is small. However, this result is not yet completely satisfying. Indeed, the conditional
Rényi-2 entropy is not a ‘robust’ quantity, in the sense that a small deformation of φ
can drastically change the values of the conditional Rényi-2 entropies in Eq. (14.8) and
Eq. (14.9). For this reason, we would like a condition with smoothed entropies. We first
note that one can actually show that for the condition in Eq. (14.8), we can bound

H2(ΓA \∆A|Γc
AR)φ|φ ≥ Hmin(ΓA \∆A|Γc

AR)φ (14.13)

and similarly for Eq. (14.9),

H2(∆A \ΓA|ΓAR)φ|φ ≥ Hmin(∆A \ΓA|ΓAR)φ (14.14)
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To make the condition ‘robust’, we would like to replace these by smoothed entropies
and express a condition in terms of Hε

min(ΓA \∆A|Γc
AR)φ and Hε

min(∆A \ΓA|ΓAR)φ. This
will require simultaneous smoothing: finding a state φεV R ∈P≤(V R) which is close to φ,
such that

Hmin(ΓA \∆A|Γc
AR)φε ≥ Hε

min(ΓA \∆A|Γc
AR)φ

or

Hmin(∆A \ΓA|ΓAR)φε ≥ Hε
min(∆A \ΓA|ΓAR)φ

for all relevant cuts ∆A. If we have a general background state, it is not known how this
can be done [DF13, Dut11]. However, if the background state is actually a link state,
we can bound the smooth conditional entropies in terms of non-conditional smooth
one-shot entropies, for which we can perform the simultaneous smoothing.

14.2.1 Approximation of the boundary spectrum
The primary result in this subsection is Theorem 14.6, which states that if the back-
ground state is actually a link state as in Eq. (12.4), then the spectrum of the boundary
state is well-approximated by the spectrum of the minimal cut link state in expectation,
where the approximation accuracy is controlled by smooth one-shot entropies. It is a
straightforward application of Theorem 14.4. For a link state the, (unsmoothed) condi-
tion in Eq. (14.13) and Eq. (14.13) boils down to the difference between the min-entropy
along δA and the max-entropy along γA. In fact, we show a slightly stronger statement
that we can ignore the intersection γA ∩δA.

We will now introduce notation in order to state Theorem 14.6. Let ∆A and ΓA be
cuts with cut-sets δA and γA. We want to quantify the sense in which the cut along γA

is ‘smaller’ than the one along δA, by showing that the smooth max-entropy along the
edge set γA \ (δA ∩γA) is smaller than the smooth min-entropy along δA \ (δA ∩γA). We
ignore the intersection of γA and δA intersect. To this end, we fix a cut ΓA, and we define
for any cut ∆A ∈C (A) for which ∆A ⊊ ΓA, the sets of half-edges

C∆A
ΓA

= {(e, x) : e = (x y), x ∈ ΓA \∆A, y ∈ Γc
A}

D∆A
ΓA

= {(e, x) : e = (x y), x ∈ ΓA \∆A, y ∈∆A},

and similarly for any cut ∆A ∈C (A) for which ΓA ⊊∆A

C∆A
ΓA

= {(e, x) : e = (x y), x ∈∆A \ΓA, y ∈ ΓA}

D∆A
ΓA

= {(e, x) : e = (x y), x ∈∆A \ΓA, y ∈∆c
A}.

We let

C (ΓA) = {∆A ∈C (A), ∆A ⊊ ΓA}∪ {∆A ∈C (A), ΓA ⊊∆A}

The sets C∆A
ΓA

and D∆A
ΓA

are sets of half-edges along γA and δA respectively (leaving out
the intersection γA ∩δA). This is illustrated in Fig. 14.1. Then we let

hε
ΓA

(∆A) := Hε
min(D∆A

ΓA
)φ−Hε

max(C∆A
ΓA

)φ.

We now define the condition for ΓA to be a generalized minimal cut:
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C∆A
ΓA

D∆A
ΓA

∆A

A

γA

(a) Illustration of the sets of half-edges C∆A
ΓA

and

D∆A
ΓA

given a cut ∆A ⊊ ΓA .

C∆A
ΓA

D̃∆A
ΓA

A

γA

∆A

(b) Illustration of the sets of half-edges used in
the proof of Theorem 14.6.

Figure 14.1: Tensor networks with one and two minimal cuts. The relevant ground state config-
uration domains are denoted by ΓA .

Definition 14.5 (Generalized minimal cut). A cut ΓA is a (ε,K )-minimal cut if

hε
ΓA

(∆A) ≥ K

for all ∆A ∈C (ΓA).

The utility of such a condition is that it controls the degree to which the spectrum of
the corresponding cut link state φΓA is close to the boundary state ρA:

Theorem 14.6. Consider a random tensor network state ρ constructed with a general
link state φ ∈P=(V ) as in Eq. (12.4). Let A be a boundary region of the network, ρA the
corresponding boundary state, and ΓA an (ε,K )-minimal cut. Then the spectra of ρA and
the link state φΓA on A are related as:

E∥spec+(ρA)− spec+(φΓA )∥1 =O (2− 1
4 K +p

ε).

In order to prove Theorem 14.6, we start by collecting some results relevant for the
simultaneous smoothing of the link state. For general states, joint smoothing is an open
problem [DF13, Dut11], however, if we use a link state we can straightforwardly do so,
in similar fashion to joint smoothing of classical states [DF13]. A useful basic fact is that
if we consider a basis in which a state φ is diagonal, then the optimizers for both the
smooth min- and max-entropies may be taken to be diagonal in the same basis [Ren08].
To be precise, if φ=∑d

i=1λi |i 〉〈i | is a density matrix which is diagonal in the basis {|i 〉},
then Hε

min(φ) = Hmin(φε) where

φε =∑
i

min{λi ,2−Hε
min(φ)} |i 〉〈i |

and T (φ,φε) = ε. Similarly, Hε
max(φ) = Hmax(φ̃ε) where

φ̃ε =∑
i
λ̃i |i 〉〈i |

where λ̃i ≤λi and T (φ,φε) = ε.
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Lemma 14.7. For a link state φ ∈P=(V ) as in Eq. (12.4), there exists a pure φε ∈P≤(V ),
which is such that

T (φ,φε) ≤
√

2|V |+1ε

and

Hmin(φε∆) ≥ Hε
min(φ∆)

for any vertex subset ∆⊆V .

Proof. We may assume without loss of generality that φ=⊗
e∈E φe is such that each φe

has Schmidt decomposition in the standard basis,

|φe〉 =
De∑
i=1

√
λe,i |i i 〉

This means we may write

|φ〉 =∑
I

√
λI |I 〉

where I runs over all possible basis elements along each edge I = {ie }e∈E and

λI =
∏
e∈E

λe,ie |I 〉 =⊗
e∈E

|ie ie〉 .

If we pick some subset ∆ ⊆ V and we let the corresponding edge cut set be δ, and
write E1 and E2 for the sets of vertices connecting only vertices with∆ or∆c respectively,
then we may write |φ〉 = |φδ〉⊗ |φE1〉⊗ |φE2〉 and the reduced state on the vertices in ∆
will be given by

φ∆ =φE1 ⊗
⊗

e=(x y)∈δ
x∈∆

φe,x .

An optimal smoothing for the min-entropy then is given by

φε,∆
∆ =φE1 ⊗ φ̃

where

φ̃ := ∑
{ie }e∈δ

min{
∏
e∈δ

λe,ie ,2−Hε
min(φ∆)}

⊗
e∈E

|ie〉〈ie | .

In particular, this is the reduced state of the pure state φε,∆ defined by

|φε,∆〉 = |φE1〉⊗ |φE1〉⊗ |φε,∆
δ

〉

where

|φε,∆
δ

〉 = ∑
{ie }e∈δ

min{
∏
e∈δ

√
λe,ie ,2− 1

2 Hε
min }

⊗
e∈E

|ie ie〉
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and which has P (φ,φε,∆) ≤p
2ε, since by the Fuchs-van de Graaff inequalities Eq. (14.1)

P (φ,φε,∆) = P (φ∆,φε,∆
∆ ) ≤

√
2T (φ∆,φε,∆

∆ ) ≤p
2ε.

In particular, we note that this state is of the form

|φε,∆〉 =∑
I

√
λε,∆

I |I 〉

for some nonnegative numbers 0 ≤λε,∆
I ≤λI . We let

|φε〉 =∑
I

min
∆⊆V

√
λε,∆

I |I 〉 .

We now want to bound P (φ,φε). To this end we observe that the fidelity can be bounded
as

1−F (φ,φε) =∑
I

√
λI (

√
λI −min

∆⊆V

√
λε,∆

I )

≤∑
I

√
λI

∑
∆⊆V

(
√
λI −

√
λε,∆

I )

= ∑
∆⊆V

1−F (φ,φε,∆)

and trivially for any ∆

1+F (φ,φε) ≤ 1+F (φ,φε,∆).

Thus, using that F (φ,φε) = F∗(φ,φε) since φ is normalized

P (φ,φε) =
√

1−F (φ,φε)2 =√
(1−F (φ,φε))(1+F (φ,φε))

≤
√

(
∑
∆⊆V

1−F (φ,φε,∆))((1+F (φ,φε))

≤
√

(
∑
∆⊆V

1−F (φ,φε,∆))((1+F (φ,φε,∆))

≤
√ ∑
∆⊆V

(1−F (φ,φε,∆)2)

≤
√

2|V |+1ε

since 1−F (φ,φε,∆)2 = P (φ,φε,∆)2 ≤ 2ε. Thus, by the Fuchs-van de Graaff inequalities
Eq. (14.1)

T (φ,φε) ≤ P (φ,φε) ≤
√

2|V |+1ε.

Moreover, in the basis {|I 〉} the state |φε〉has elementwise smaller coefficients than |φε,∆〉,
so we see that the reduced state φε∆ is elementwise smaller than φε,∆

∆ . This implies, by

the Perron-Frobenius theorem, that the largest eigenvalue of φε,∆
∆ is larger than the

largest eigenvalue of φε∆, and hence Hmin(φε∆) ≥ Hmin(φε,∆
∆ ) = Hε

min(φ∆). ■
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We will also use a similar result to obtain simultaneously smoothed max-entropies
and min-entropies for classical states along a single cut.

Lemma 14.8. Let E be a finite set, and let E1 and E2 label quantum systems with Hilbert
spaces HEi = ⊗

e∈E He,i for i = 1,2. For S ⊆ E, let HSi = ⊗
e∈S He,i . Now suppose

that φ ∈P=(E1E2) is a product state

φ=⊗
e∈E

φe

where each φe is a pure state on He,1 ⊗He,2. Then there exists φε ∈P≤(E1E2) which is
such that

T (φ,φε) ≤ 2
√

2|E |ε

and

Hmax(φεSi
) ≤ Hε

max(φSi ) and Hmin(φεSi
) ≥ Hε

min(φSi )

for all subsets S ⊆ E and i = 1,2.

Proof. The proof is similar to that of Lemma 14.7. We write out φ in the product basis,
using the Schmidt decomposition of each |φe〉

φ= ∑
I={ie }e∈E

√
λI |I1I2〉

where |Ii 〉 =⊗
e∈E |ie,i 〉. The reduced state φE1 is given by

φE1 =
∑

I={ie }e∈E

λI |I1〉〈I1| .

Choose a subset S ⊆ E and and consider the following states in P≤(E1)

φε,S1,min = ∑
I={ie }e∈E

λε,S,min
I |I1〉〈I1|

φε,S1,max = ∑
I={ie }e∈E

λε,S,max
I |I1〉〈I1|

which can be chosen such that

0 ≤λε,S,min
I ≤λI , T (φε,S1,min,φE1 ) ≤ ε and Hmin(φε,S1,min

S1
) = Hε

min(φS1 .

Similarly

0 ≤λε,S,max
I ≤λI , T (φε,S1,max,φE1 ) ≤ ε and Hmax(φε,S1,max

S1
) = Hε

max(φS1 ).

Then we let φε,S1 ∈P≤(E1) be given by

φε,S1 = ∑
I={ie }e∈E

min{λε,S,min
I ,λε,S,max

I } |I1〉〈I1| .
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Then it is easy to see that T (φε,S1 ,φE1 ) ≤ 2ε and Hmin(φε,S
S1

) ≥ Hε
min(φS1 ) and Hmax(φε,S

S1
) ≤

Hε
min(φS1 ). Now let φε ∈P≤(E1E2) be given by

φε = ∑
I={ie }e∈E

min
S⊆E

{
√
λε,S

I } |I1I2〉

so

φεE1
= ∑

I={ie }e∈E

min
S⊆E

{λε,S
I } |I1〉〈I1| .

Then, since φεE1
≤ φε,S

E1
we see that Hmin(φεS1

) ≥ Hmin(φε,S
S1

) ≥ Hε
min(φS1 ) and similarly

that Hmax(φεS1
) ≤ Hmax(φε,S

S1
) ≤ Hε

max(φS1 ), and

T (φεE1
,φE1 ) =∑

I
|min

S⊆E
{λε,S

I }−λI | ≤
∑

I

∑
S⊆E

|λε,S
I −λI |

≤ ∑
S⊆E

T (φε,S ,φ) ≤ 2|E |+1ε.

It is easy to see this implies that T (φεE1
,φE1 ) ≤ 2

p
2|E |ε. By symmetry under exchang-

ing E1 and E2, for any S ⊆ E , we must have Hε
min/max(φS1 ) = Hε

min/max(φS2 ) as well
as Hmin/max(φεS1

) = Hmin/max(φεS2
), so φε satisfies all required conditions. ■

The last ingredient we will need for the main result of this section is a relation
between the Rényi-2 conditional entropy and the min and max-entropies:

Lemma 14.9. Let φ=φA ⊗φBC ∈P≤(ABC ). Then

H2(AB |C )φ|φ ≥ Hmin(A)φ−Hmax(B)φ+ logtr[φ].

Proof. We prove the result for normalized φ ∈P=(ABC ), and then the result for subnor-
malized φ ∈P≤(ABC ) follows by applying to φ̃= φ

tr[φ] . By the product structure of φ, it is
clear that

H2(AB |C )φ|φ = H2(A)φ+H2(B |C )φ|φ.

Note that H2(A)φ ≥ Hmin(A)φ by the standard monotonicity property of Rényi entropies
in the Rényi index. For the second term, let R be a purifying system and φBC R be a
purification of φ. Then

H2(B |C )φ|φ ≥ Hmin(B |C )φ =−Hmax(B |R)φ ≥−Hmax(B)φ

using Eq. (14.4), Eq. (14.3) and the purity of φBC R , and in the last inequality, a data
processing inequality (Theorem 6.19 in [Tom15]). ■

We now prove Theorem 14.6:

Proof of Theorem 14.6. Let φ̃ be a (subnormalized) pure background state. By Theo-
rem 14.4 and the fact that φ̃V is pure (i.e. R =;):

E∥spec+(ρA)− spec+(φ̃ΓA )∥1 ≤ E min
VA ,VĀ

∥(VA ⊗VĀ ⊗ IR )ρ(V †
A ⊗V †

Ā
⊗ IR )− φ̃∥1

=O (tr[φ̃]
1
4 (2− 1

4 K1 +2− 1
4 K2 )),
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where for any ∆A with ΓA ⊊∆A, we define

K1 = min
∆A∈C (A),∆A⊊ΓA

H2(ΓA \∆A|Γc
A)φ̃|φ̃

K2 = min
∆A∈C (A),ΓA⊊∆A

H2(∆A \ΓA|ΓA)φ̃|φ̃.

So, we need to compute K1 and K2. Let E1 be the set of edges (x y) for which x, y ∈ ΓA,
and let E2 be the set of edges (x y) for which x, y ∈ Γc

A, so E = E1 ⊔E2 ⊔γA. Then the
Hilbert space HV factorizes as HE1 ⊗HE2 ⊗HγA . Let us assume that the state φ̃ is
a pure state such that it is a product state with respect to this factorization (we need
this condition, rather than a product state over all edges, to accommodate for the
smoothing), so

|φ̃〉 = |φ̃E1〉⊗ |φ̃E2〉⊗ |φ̃γA〉 .

Then for ∆A ⊊ ΓA, let

D̃∆A
ΓA

= {(e, x) : e = (x y), x ∈ ΓA \∆A, y ∈ ΓA}.

Then, the collection of all half-edges (e, x) for which x ∈ ΓA \∆A equals the union C∆A
ΓA

⊔
D̃∆A
ΓA

, and hence, by Lemma 14.9, with A = D̃∆A
ΓA

, B =C∆A
ΓA

and C = Γc
A, and the product

structure of φ̃, we obtain

H2(ΓA \∆A|Γc
A)φ̃|φ̃ ≥ Hmin(D̃∆A

ΓA
)φ̃E1

−Hmax(C∆A
ΓA

)φ̃γA
+ log(tr[φ̃]).

Thus,

K1 ≥ min
∆A∈C (A),∆A⊊ΓA

Hmin(D̃∆A
ΓA

)φ̃E1
−Hmax(C∆A

ΓA
)φ̃γA

+ logtr[φ̃]. (14.15)

A similar argument bounds K2 as

K2 ≥ min
∆A∈C (A),ΓA⊊∆A

Hmin(D̃∆A
ΓA

)φ̃E2
−Hmax(C∆A

ΓA
)φ̃γA

+ logtr[φ̃]. (14.16)

where

D̃∆A
ΓA

= {(e, x) : e = (x y), x ∈∆A \ΓA, y ∈ Γc
A}.

In particular, it is easy to see that this gives the desired result for ε= 0 if we take φ̃=φ.
Let us now discuss smoothing the link state. We start with a state which is a product

along the edges E , and hence it can be written as |φ〉 = |φE1〉⊗ |φE2〉⊗ |φγA〉. We now
apply Lemma 14.7 to φEi to obtain a pure state φεEi

such that T (φEi ,φεEi
) ≤O (

p
ε) and

for each cut ∆A ⊊ ΓA

Hmin(D̃∆A
ΓA

)φεE1
≥ Hε

min(D̃∆A
ΓA

)φ = Hε
min(D∆A

ΓA
)φ

and a similar result for ΓA ⊊∆A and φεE2
. For φγA we use Lemma 14.8 with E1 and E2

the half-edges on either side of the cut to obtain a pure state φεγA
∈ P≤(γA) which is
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such that T (φγA ,φεγA
) =O (

p
ε) and which satisfies for any cut ∆A for which ∆A ⊊ ΓA or

ΓA ⊊∆A

Hmax(φε
C
∆A
ΓA

) ≤ Hε
max(φ

C
∆A
ΓA

)

= Hε
max(C∆A

ΓA
)φ.

We then let

φε =φεE1
⊗φεE2

⊗φεγA

be the smoothed (pure) state. Let ρεV∂ be the random tensor network state with back-

ground state φε. By the ε= 0 result for φ̃=φε,

E∥spec+(ρεA)− spec+(φεΓA
)∥1 =O (tr[φε]

1
4 (2− 1

4 K1 +2− 1
4 K2 )) =O (2− 1

4 K ′
1 +2− 1

4 K ′
2 )

where from Eq. (14.15) we get

K ′
1 = K1 − logtr[φε] ≥ min

∆A∈C (A),∆A⊊ΓA
Hmin(D̃∆A

ΓA
)φεE1

−Hmax(C∆A
ΓA

)φεγA

≥ min
∆A∈C (A),∆A⊊ΓA

Hε
min(D̃∆A )φ−Hε

max(C∆A
ΓA

)φ ≥ K

and K2 may be similarly bounded by using (14.16). We conclude, using Lemma 14.3,
that

E∥spec+(ρA)− spec+(φΓA )∥1 ≤ E∥spec+(ρεA)− spec+(φεΓA
)∥1

+E∥ρV∂ −ρεV∂∥+∥φΓA −φεΓA
∥1

=O (2− 1
4 K )+O (

p
ε)+O (

p
ε)

as desired. ■

14.3 Random tensor network states and split transfer

Our results involving general background states are closely related to the quantum-
information-theoretic task of split transfer introduced in [DH10], which can be under-
stood as a variant of quantum state merging. The standard setup is as follows: two
parties, Alice and Bob, share a state φABC1...Cm , with Alice controlling system A, Bob
controlling system B , the systems C1, . . . ,Cm being m “helpers”. Let R be a reference
system and φABRC1...Cm a purification of φ. Initially, the state is shared not only by Alice
and Bob, but also with all the helper systems Ci . The goal of split transfer is to try to
redistribute the state to Alice, Bob, and R , using local quantum operations and classical
communication (LOCC) between Alice, Bob and the helper systems, and possibly with
the assistance of additional maximally entangled states.

To be a little more detailed, a split transfer protocol consists of

(i) A partitioning of the set of the helper systems: TA ⊔TB = {C1, . . . ,Cm}.

(ii) For each Ci ∈ TA a number K A,i of shared maximally entangled qubits between
Alice and Ci , and for each Ci ∈ TB , a number KB ,i of shared maximally entangled
qubits between Bob and Ci .
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(iii) An LOCC operation between Alice, Bob and the helper systems, which is such
that after applying the protocol Alice and Bob share a state ψABRC1...Cm , which is
close to φABRC1...Cm and such that now Alice possesses systems A and TA, whereas
Bob controls B and TB . Moreover, after applying the protocol they may be in
possession of a number L A,i or LB ,i of (approximately) maximally entangled
qubits between Ci , and respectively A or B .

In this case we say that the split transfer protocol has entanglement costs K A,i −L A,i for
all Ci ∈ TA and KB ,i −LB ,i for all Ci ∈ TB . A precise definition can be found as Definition
14 in [DH10].

Intuitively, the helper systems need to transfer their correlations with R to Alice
and Bob, but without touching R. For instance, a very naive protocol could be that
the helpers simply teleport their full system to either Alice or Bob, consuming EPR
pairs. We can construct a potentially much more efficient protocol by way of random
measurements. The precise procedure is detailed in Proposition 16 of [DH10]. Roughly
speaking, such a protocol functions because random measurements have the effect
of decoupling the helper systems from R. The helpers perform simultaneous random
measurements on their systems, and send the results of their measurements to Alice and
Bob. Then, Alice and Bob can use their share of the global state and their portions of the
maximally-entangled states to perform a decoding operation conditioned on the results
of the random measurements. The state they receive will be a purification of ψABC1...Cm ,
which will then be equivalent to the original ψABRC1...Cm up to local isometries. The way
we set up the split transfer protocol above was in a one-shot fashion: we get a single
copy of φ and need to determine the optimal entanglement cost for the protocol.

One can also consider asymptotic versions (where one has many copies available
and one cares about the optimal rate). An example application is the entanglement of
assistance. Suppose that Alice, Bob and the helper systems Ci get many copies of a pure
state φ. At what rate can they distill maximally entangled pairs between Alice and Bob,
if Alice and Bob are allowed to perform LOCC operations with all the helper systems? In
this case, the answer is that the rate is given by

min
TA

S(ATA)φ,

that is, by minimizing the entanglement entropy over all bipartitions. This rate is
reminiscent of the importance of minimal cuts in a random tensor network. This
connection was already explored in [HNQ+16].

To see in some detail how the task of split transfer relates to random tensor networks,
we consider three boundary regions, A and B , under the control of Alice and Bob, and
the purifying system R . Each of the “assisting” parties represents a bulk vertex. We would
like to know whether there exists a protocol in which the assisting parties are allowed to
perform local operations and classical communication (LOCC) such that the state φV R

is redistributed into a state ρABR held by Alice and Bob that can be transformed by local
isometries, acting only on A and B , to a state close toφV R . The protocol given in [DH10]
consists of simultaneous random measurements by each of the helpers. This precisely
corresponds to the random projections performed in constructing the random tensor
network state with this background state!

In this light we can interpret Theorem 14.4 as a result on split transfer. Let us assume
that φ ∈P=(ABRC1 . . .Cn), and let us denote as usual by ρABR the associated random
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tensor network state and choose a partitioning TA ⊔TB of the assisting (bulk) parties.
Since H2(A|B)φ|φ ≥ Hmin(A|B)φ, Theorem 14.4 directly yields

Theorem. Suppose that

Hmin(S A|BRTB )φ ≥ K1 (14.17)

for all non-empty subsets S A ⊆ TA and

Hmin(SB |ARTA)φ ≥ K2 (14.18)

for all non-empty subsets SB ⊆ TB . Then

E min
VA ,VB

∥(VA ⊗VB ⊗ IR )ρ(V †
A ⊗V †

B ⊗ IR )−φABRC1...Cn∥1 =O ((2− 1
4 K1 +2− 1

4 K2 ). (14.19)

where the minimum is over isometries VA : H A →H ATA and VB : HB →HBTB .

This result shows that if K1 and K2 are sufficiently large, then after measurement in a
random basis, the state possessed by Alice and Bob can, with high probability, be used to
approximately reconstruct φ by acting with local isometries on the systems of Alice and
Bob. If for the initial stateφ the conditions in Eq. (14.17) and Eq. (14.17) are not satisfied,
we can use another state where we have added an appropriate number of maximally
entangled Bell pairs between the assisting parties, and this can be used to determine the
entanglement costs.2 An interesting open question in this context is whether one can
generalize this result using smooth entropies in Eq. (14.17) and Eq. (14.17). The problem
is that for a general state φ, one would need to perform simultaneous smoothing for all
the relevant subsystems, which is an open problem.

There is an alternative approach, in which it is straightforwardly possible to use
smooth entropies [DH10]. In this approach, one merges each party in TA one by one,
and similarly for TB . That is, we choose some ordering TA = {1, . . . ,m} = [m] and we
apply a sequence of state merging protocols where we merge the state in m steps,
where a single step merges A∪TA \ [i −1] into A∪TA \ [i ]. In this case it is not hard to
see that, if we allow some error the entanglement cost is determined by the smooth
conditional entropies Hε

min({i +1}|BR[i ]TB )φ. We perform a similar protocol for B and
the assisting TB systems.

14.3.1 Split transfer and recovery in holography
Split transfer is closely related to subregion-subregion duality, or entanglement wedge re-
construction, in holography. Suppose we have an AdS semiclassical stationary geometry
which is dual to some boundary CFT state ρ. We fix a time-reversal invariant spatial slice
and partition the boundary into A and Ā. Let γA be the minimal surface for A. Then we
denote by ΓA the entanglement wedge of A, the region which is enclosed by A and γA.
The claim of entanglement wedge reconstruction is that if we act with some low-energy
local bulk operator in the entanglement wedge, we can reconstruct the action of this
operator on the boundary system A.

2In fact, the protocol in [DH10] is slightly more general than what we describe; rather than measuring
a random state one could also measure a random projection of rank greater than 1. This can be used to
obtain EPR pairs between the helpers and and Alice and Bob to get nonzero L A,i and LB ,i .
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One way to make this more precise is by considering a code subspace of bulk states S
(which should be thought of as a subspace of states given by acting with low-energy
operators on a fixed semiclassical space-time). We may then take a reference system R
of the same dimension as S, and consider a maximally entangled state φ between R
and S. The AdS/CFT correspondence now provides an encoding of the bulk into the
boundary, yielding a boundary state ρA ĀR . In this set-up, the claim of entanglement
wedge reconstruction is that we can act with an isometry on A to recoverφΓAR (and ΓA is
actually the maximal such region). If the entanglement wedge for Ā is the complement
of ΓA, then it is clear that this requirement is closely related to split transfer (if we only
consider A and ΓA the corresponding task is state merging). These ideas and the precise
relation to quantum information theory have been developed in a large number of
works, amongst which [HNQ+16, Har17, AP20, AP22].

In particular, in [AP20, AP22] the idea that one-shot quantum information is relevant
to entanglement wedge reconstruction has been advanced. This makes sense, as the
natural setting in holography is a single-shot setting. While the limit of large effective
central charge, and hence small GN , is reminiscent of a many-copy limit, there are
situations of interest (for instance in relation to the black hole information paradox)
where the reference system is actually large, or in other words, we consider a situation
with large bulk entropy. In this case, where we assume we have a bulk state φ, the RT
formula in Eq. (10.4) gets adapted to be the quantum extremal surface formula:

H(ρA) = minextγA {
|γA|
4GN

+H(ΓA)φ}

where we minimize over extremal surfaces γA, and we minimize the joint contribution of
the area of γA and the bulk entropy contained in the associated entanglement wedge ΓA.
We note that this formula has a natural tensor network interpretation: consider a tensor
network state where the background state is given by φ=φV (b)R ⊗φV (l ) , where φV (b)R is
a general background state (which accounts for bulk entropy) and φV (l ) is a link state on
a graph G = (V ,E ). Let us take maximally entangled link states with dimension D . Then,
for some cut ΓA with edge set γA, we have

H(φΓA ) = log(D)|γA|+H(φ(b)
ΓA

)

and we may hope that minimization over this quantity along the cuts gives a good
approximation to the entropy. Whether this is indeed valid, depends on the structure of
the background state φ. A proposal put forth in [AP20] is that the surface γA with entan-
glement wedge ΓA gives the max-entanglement wedge if ΓA is the largest region which is
such that for any other surface δA homologous to A, with ∆A the region enclosed by A
and δA, and where ∆A is contained in ΓA, it holds that

Hε
min(ΓA \∆A|Γc

AR) ≫ |γA|− |δA|
4GN

.

In this case, ΓA should be the largest region which can be (approximately) reconstructed
from A. Again, one can think of a random tensor network where the background state is
a tensor product of a bulk state and a maximally entangled link state of dimension D
with log(D) =Θ(G−1

N ) along the discretization of the space. Then this condition is (apart
from the simultaneous smoothing problem) equivalent to Eq. (14.13). If ΓA is the max-
entanglement wedge for A, and its complement Γc

A is the max-entanglement wedge



for Ā, then the holographic encoding of the bulk state into the boundary can be seen
as a version of one-shot split transfer (if we restrict to just ΓA and A, it is a version of
one-shot quantum state merging, as discussed in [AP20]). See [AP20] for a detailed
discussion of this proposal for holographic systems.

Discussion and open questions

In this chapter we explained how one can use one-shot entropies for random tensor
networks. We did not yet discuss the case where there are two competing minimal
cuts in this framework. This should be possible, and we hope to address this question
in forthcoming work [CPWW]. This would lead to an entropy computation similar
to Eq. (11.8). Another important, but substantially harder open question, is the joint
smoothing problem. This is relevant to random tensor network states with general
background states, but would in general be highly relevant to multiparty quantum
information tasks.
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Abstract

In this dissertation we study the fascinating interaction between quantum information
theory and many-body physics. Many-body physics broadly are physical systems which
are made up of a large number of subsystems. While the laws and principles of quantum
mechanics are well known and can be formulated in compact equations, understanding
many-body physics and the emergent phenomena related to it gives rise to a whole new
set of challenges. In this dissertation we contribute to this field by showing how in three
different domains perspectives from quantum information theory and computation
can be useful in the study of many-body physics.

In Part I we investigate quantum systems in one spatial dimension. We show that the
ground state, the lowest energy state, of a class of free systems can be prepared efficiently
on a quantum computer using a certain circuit structure. Free quantum systems can
be simulated efficiently by classical computers; so the possibility of preparing such
ground states on a quantum computer is well-known. However, we show that this is
possible using a method which implements an important physical principle: real-space
renormalization. This method is known as entanglement renormalization. There is
an associated tensor network ansatz, the multiscale entanglement renormalization
ansatz (MERA). We show that entanglement renormalization in free systems is closely
related to the theory of wavelets. Wavelets allow a decomposition of functions into
a basis set of functions, similar to Fourier analysis. However, in the case of wavelets,
the basis functions are not plane waves but localized ‘wave packets’. Quantization of
appropriately chosen wavelets yields an entanglement renormalization scheme. We
explain how to find such wavelets, and we show that if one has wavelets with the right
properties one can obtain accurate MERA approximation. We show that this has a
natural continuum limit, which is related to free quantum field theories.

In Part II we study a different aspect of many-body quantum mechanics. Whereas in
the first part we focussed on finding ground states, here we are interested in the dynam-
ics of one-dimensional quantum systems. This means that we have a system with a state
changing over time. Closed systems have unitary time evolution. Moreover, in physical
systems with local interactions, one finds that time evolution also conserves a certain
amount of locality. Based on these two general principles we dynamics which consist
of a single time step which are both unitary and (approximately) locality preserving,
which we call approximately locality preserving unitary (ALPU). If one imposes strict
locality this is known as a quantum cellular automaton. In one spatial dimension these
have been classified by an index which measures an information flow. We show that
this classification extends to approximately local dynamics, using tools from the theory
of operator algebras. We prove that a one-dimensional ALPU can be connected by a
continuous path of ALPUs to the identity if and only if the ALPU has no net information
flow to the left or the right.

Finally, Part III is inspired by the interaction between quantum information theory
and gravity. Developing a theory of quantum gravity which can describe our universe
is one the great outstanding challenges of theoretical physical. An important physical
phenomenon where such a theory would be relevant are black holes. Based on general
physical principles, it appears that black holes have an entropy (that is, a number of
degrees of freedom) corresponding to their area. This has lead to the development of
holographic quantum gravity, where a d +1-dimensional gravitational theory is dual to
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a d-dimensional non-gravitational quantum theory, which lives on the boundary of the
gravitational spacetime. We study a simple toy model for this phenomenon: while it is
certainly not describing a theory of quantum gravity, it shows in a surprisingly accurate
way certain mechanisms which are crucial in holographic gravity. The model is a tensor
network model where we choose uniformly random tensors. We generalize this model
by adapting the usual PEPS model to use different link states and we deduce properties
of the entanglement spectrum. These results closely mirror conjectured properties of
holographic systems.
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Samenvatting

Quantuminformatie in systemen met veel deeltjes
In dit proefschrift bestuderen we de fascinerende interactie tussen quantuminformati-
etheorie en veel-deeltjes-fysica. Veel-deeltjes-fysica is een verzamelnaam voor fysische
systemen die bestaan uit een groot aantal subsystemen. Hoewel de wetten van de
quantummechanica in principe goed begrepen zijn en compact geformuleerd kunnen
worden, brengt het begrijpen van systemen die uit een groot aantal quantumdeelt-
jes bestaan een geheel nieuwe verzameling aan uitdagingen met zich mee. In dit
proefschrift bestuderen we, op drie uiteenlopende onderdelen, hoe perspectieven uit
quantuminformatietheorie een rol kunnen spelen bij een beter begrip van dit soort
systemen.

In Deel I kijken we naar eendimensionale systemen. We tonen aan dat de grondtoes-
tand van een klasse vrije systemen op een quantumcomputer kan worden geprepareerd
middels een circuit met een bepaalde structuur. Het is weinig verbazend dat dit mogelijk
is; vrije quantumsystemen zijn eveneens te simuleren op een klassieke computer. We
laten echter zien dat dit mogelijk is op een manier die een belangrijk fysisch principe
implementeert: renormalizatie. Deze methode heet verstrengelingsrenormalizatie. We
tonen aan dat verstrengelingsrenormalizatie in vrije systemen nauw verband houdt met
de theorie van wavelets. Wavelets bieden een manier om een functie te ontbinden als
een som van gelocaliseerde golffuncties. We demonstreren dat dit tevens leidt tot een
natuurlijke interpretatie van de continue limiet van het model, een quantumveldenthe-
orie.

In Deel II van het proefschrift bekijken we een ander aspect van de quantumme-
chanica. Waar we ons in het eerste deel richten op het probleem van het beschrijven
van grondtoestanden, bestuderen we hier de dynamica van eendimensionale quan-
tumsystemen. Hiermee bedoelen we hoe het systeem in de loop van de tijd verandert.
Ten eerste geldt dat in een gesloten system de tijdsevolutie van een quantumsysteem
unitair is. Ten tweede geldt dat in fysieke systemen waar de interacties lokaal zijn dat
de tijdsevolutie ook een bepaalde mate van lokaliteit bewaart. Op basis van deze twee
gegevens bestuderen we dynamica die in een enkele tijdsstap plaatsvindt en die zowel
unitair is, als bij benadering lokaal. We generalizeren eerder werk met betrekking to
strikt lokale dynamica en classificeren zulk dynamica in eendimensionale systemen.

In Deel III, het laatste deel van het proefschrift, bestuderen we een aspect van de
interactie tussen quantuminformatie en zwaartekracht. Het blijkt dat zwarte gaten,
als quantummechanische objecten, kunnen worden beschreven op het oppervlak dat
het zwarte gat begrenst. Dit is aanleiding geweest voor het ontwikkelen van holo-
grafische quantumzwaartekracht, waarin een universum met een theorie van quan-
tumzwaartekracht equivalent is aan een reguliere quantumtheorie (zonder zwaartekracht)
op de rand (en dus in een dimensie lager) van de ruimte leeft. Wij bestuderen een
model dat bedoeld is als een speelgoedmodel voor dit fenomeen: hoewel het geenszins
een realistich model voor zwaartekracht laat het op een accurate manier bepaalde
mechanismes zien die cruciaal zijn in holographische zwaartekracht. Het model is
een tensornetwerk (een bepaalde manier om quantumtoestanden te construeren) met
uniform willekeurige tensoren. We laten zien dat onze generalizatie van dit model infor-
matietheoretische aspecten van holografische quantumzwaartekracht reproduceert.
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