
On Span
Programs and
Quantum
Algorithms Álvaro Piedrafita

On span programs and quantum
algorithms

ILLC Dissertation Series DS-2021-XX

For further information about ILLC publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam

Science Park 107
1098 XG Amsterdam

phone: +31-20-525 6051
e-mail: illc@uva.nl

homepage: http://www.illc.uva.nl/

Copyright© by Alvaro Piedra�ta.

Cover design by Guillem Galobardes.
Printed and bound by NBD Biblion.

ISBN: 978-90-619-6149-9.

On span programs and quantum
algorithms

Academisch Proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magni�cus

prof. dr. ir. K.I.J. Maex
ten overstaan van een door het College voor Promoties ingestelde

commissie,
in het openbaar te verdedigen in de Agnietenkapel

op woensdag 10 november 2021, te 16.00 uur

door

Alvaro Piedra�ta Postigo

geboren te Sabadell, Spanje

iv

Promotiecommissie

Promotor: prof. dr. H.M. Buhrman Universiteit van Amsterdam
Co-promotor: dr. S.M. Je�ery Centrum Wiskunde & Informatica

Overige leden: prof. dr. R.M. de Wolf Universiteit van Amsterdam
prof. dr. C.J.M. Schoutens Universiteit van Amsterdam
prof. dr. S. Fehr Universiteit Leiden
dr. S. Kimmel Middlebury College
dr. M.Ozols Universiteit van Amsterdam

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

v

List of publications

This dissertation is based on the following papers (in chronological order).
In each work, all authors contributed equally unless stated otherwise.

[JJK+18] Quantum algorithms for connectivity and related problems

Michael Jarret, Stacey Je�ery, Shelby Kimmel, and Alvaro Piedra�ta,
26th Annual European Symposium on Algorithms (ESA 2018).
Ed. by Yossi Azar, Hannah Bast, and Grzegorz Herman. Vol. 112.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl-Leibniz Zentrum fuer Informatik, 2018,
49:1-49:13.

[CJO+20] Span Programs and Quantum Time Complexity

Arjan Cornelissen, Stacey Je�ery, Maris Ozols, and Alvaro Piedra�ta,
45th International Symposium on Mathematical Foundations of Com-
puter Science (MFCS 2020).
Ed. by Javier Esparza and Daniel Král. Vol. 170. Leibniz Inter-
national Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020, 26:1-26:14.

The author has additionally co-authored the following papers, which are
not included in the dissertation.

[PR17] Reliable Channel-Adapted Error Correction: Bacon-Shor Code
Recovery from Amplitude Damping

Alvaro Piedra�ta and Joseph M. Renes,
Phys. Rev. Lett. 119 (2017), p. 250501.
Joseph M. Renes is the principal author of this paper.

[PP20] An Overview of Quantum Algorithms: From Quantum Supre-

macy to Shor Factorization

Subhasree Patro and Alvaro Piedra�ta,
2020 IEEE International Symposium on Circuits and Systems (IS-
CAS). 2020, pp. 1-5.
Alvaro Piedra�ta is the principal author of this review.

vi

Contents

List of publications v

I The one with the introduction and mathematical
preliminaries 1

1 Introduction 3

2 Preliminaries 11

2.1 Mathematical preliminaries 11
2.1.1 Jordan's Lemma . 12

2.2 Quantum algorithms . 15
2.2.1 Quantum query algorithms 17
2.2.2 Clean quantum algorithms 19
2.2.3 Four useful quantum subroutines 23

2.3 Graph theory . 25
2.3.1 Multigraphs . 25
2.3.2 Laplacians . 27
2.3.3 Electrical networks . 28

II The one where we discuss the theory of span pro-
grams 35

3 Theory of span programs 37

3.1 Overview . 37
3.2 Span programs . 41

3.2.1 Span programs: a �rst de�nition 41

vii

viii CONTENTS

3.2.2 An alternative de�nition of span programs 43
3.2.3 A few algorithms for span programs 49

3.3 Re�ection programs . 52
3.3.1 De�nitions . 53
3.3.2 Operational interpretations 56
3.3.3 Approximate re�ection programs 61
3.3.4 Span programs and re�ection programs 69

3.4 Algorithms for re�ection programs 70
3.4.1 Algorithms for re�ection program decision 70
3.4.2 An algorithm for witness generation 77

3.5 Discussion . 90

4 Span programs and time complexity 93

4.1 Overview . 93
4.2 Accessing an algorithm as input 96
4.3 Time complexity of a span program algorithm 98
4.4 From algorithms to span programs 104

4.4.1 The span program of an algorithm 105
4.5 Time complexity of the algorithm 119

4.5.1 Implementing subspace 120
4.5.2 Re�ection around |0〉 127
4.5.3 Implementation of 2ΠH(x) − I 128
4.5.4 Implementation of 2Πker(A) − I 129
4.5.5 Construction of |w0〉 139
4.5.6 Proof of Theorem 63 142

4.6 Application to variable-time search 143
4.6.1 The OR of span programs 146
4.6.2 Implementation of the OR span program 150
4.6.3 Implementation of variable time quantum search 154

4.7 Discussion and outlook . 161

III The one where we discuss applications of span
programs 163

5 Span programs for graph problems 165

5.1 Overview . 165
5.2 A span program for st-connectivity 169

CONTENTS ix

5.3 E�ective capacitance and st-connectivity 174
5.3.1 Estimating the capacitance of a circuit 176

5.4 Graph connectivity . 178
5.5 Spectral algorithm for deciding connectivity 184

5.5.1 A construction for any G 189
5.5.2 An algorithm for Cayley graphs 194
5.5.3 Estimating the connectivity when G = Kn 200

5.6 Graph connectivity without graph surgery 208
5.7 Witness generation for st-connectivity 215
5.8 Discussion and open problems 220

6 Span programs for boundary problems 225

6.1 Overview . 225
6.2 Boundary problems in graphs 228
6.3 Simplicial complices and homology 230

6.3.1 Simplicial complices 230
6.3.2 Simplicial homology 233
6.3.3 Cellular complices . 237
6.3.4 Sub-complices of a complex 239

6.4 A span program for simplicial homology 239
6.4.1 st-connectivity revisited 241

6.5 A span program for homology of surfaces 242
6.6 Discussion . 251

Bibliography 255

Abstract 261

Nederlandse samenvatting 262

Acknowledgements 263

x CONTENTS

Part I

The one with the introduction

and mathematical preliminaries

1

Chapter 1

Introduction

In March of 2021, László Lovász and Avi Wigderson were awarded the Abel
prize for their contributions to computer science and discrete mathematics.
When my Dad, a geneticist, read this news, he asked me if I knew either of
them. I said �I know of them, and I know people who know them�. �Have
you used any of their work?�, he asked. I laughed. �My thesis is all about
span programs. Avi Wigderson invented span programs with his student in
the nineties�.

It's been almost thirty years and span programs are still being studied,
having proven to be a useful tool in the quantum computing toolbox. To
give a few examples, they have been used to prove the tightness of the gen-
eral adversary lower bound [Rei09], design quantum algorithms for graph
problems [CMB18; BR12; 	Ari16], k−distinctness [Bel12a], and formula eval-
uation [R�12; JK17] and study quantum space complexity [Jef20]. So span
programs are useful, message received, but what exactly are they?

Span programs

Span programs are a way of encoding a function of the form f : X ⊆ [q]n →
{0, 1} for some q, n ∈ N, as a linear algebraic problem.

We begin by associating a subspace Hi,b in some space H to each pair of
indices i, b : i ∈ [n], b ∈ [q]. That is, for each coordinate and each possible
value of the coordinate we have a subspace.

It follows that each input x = (x1, . . . , xn) ∈ [q]n has associated a sub-
space H(x) =

⊕
i∈[n]Hi,xi . To give us some more freedom, we now de�ne

3

4 CHAPTER 1. INTRODUCTION

another space V and a map A : H → V so that every input has associated
also a subspace V(x) = A(H(x)).

Next, we choose a vector |τ〉 in V , independent of the input, which we
call the target. The natural question, now that we have a bunch of subspaces
and a lonely vector called the target is: Given an input x, is the target |τ〉
in the subspace V(x)?

The answer can only be yes or no, and, once we have �xed our choice of
V , |τ〉, the map A and the assignment i, b 7→ Hi,b, it only depends on x ∈ [q]n.
We have just described a function fP : [q]n → {0, 1} that takes value 1 if
and only if the answer to question is: yes, |τ〉 ∈ V(x). We then say that fP
is encoded by the tuple P = (H,V , A, τ), which we name1 the span program
for fP . We will sometimes say that P decides or computes fP , but these are
misnomers.

One way of deciding whether |τ〉 ∈ V(x) is to �nd a vector |w〉 such
that AΠH(x)|w〉 = |τ〉. We call such a vector a positive witness for x in
P , and it only exists if fP (x) = 1. We de�ne the positive witness size of
x in P , denoted as w+(x, P), as the norm squared of the shortest positive
witness. The positive complexity of fP , denoted W+(P) is de�ned as the
largest positive witness size for any 1-input.

If fP (x) = 0, it must be that |τ〉 /∈ V(x), and so |τ〉 must have a compo-
nent in V(x)⊥. In other words, there exists a vector |ω〉 in V(x)⊥ such that
〈w|τ〉 = 1. We call such a vector a negative witness for x in P . For reasons
that will be explained in Chapter 3, the negative witness size for x in P is
de�ned as the minimum of ‖〈ω|A‖2 such that |ω〉 is a negative witness. The
negative complexity of fP , denoted W−(P), is de�ned as the largest negative
witness size for any 0-input.

It is sometimes advantageous to relax our requirements in the de�nition
of fP and accept as �positive� inputs where |τ〉 is simply �close enough� to
V(x). This gives rise to the concept of approximate span programs. This
generalization, �rst introduced in [IJ19] and further re�ned in [Jef20], will
play a central role in this thesis.

Span programs and the Adversary Lower Bound

Span programs were �rst introduced to the �eld of quantum computing by
Reichardt and �palek in [R�12]. In [Rei09; Rei10], Reichardt used span

1Arthurian fanfare goes here. Bells and trumpets, maybe some horses.

5

programs to prove that the general adversary lower bound was a tight lower
bound on the quantum query complexity of any Boolean function.

Prior to [Rei09], it was known that this lower bound technique, introduced
by Ambainis [Amb02] and generalized in [HLS07], gives lower bounds on the
quantum query complexity of a function f as the feasible solutions to a semi-
de�nite program ADV ±(f). What Reichardt did was prove that any feasible
solution of the SDP dual to the ADV ±(f) corresponds to a span program,
and that the solution's objective value equals the geometric mean of the
positive and negative span program complexities, a quantity known as the
span program complexity.

He then showed that for every span program for a Boolean function f ,
there exists a general transformation that compiles it into a quantum algo-
rithm computing f whose query complexity is precisely the span program
complexity. This proves that any feasible solution to the dual of ADV ±(f)
gives an upper bound on the query complexity of f . Therefore, Reichardt
concluded that the optimal solution of the semi-de�nite program ADV ±(f)
tightly characterizes the quantum query complexity of f , since solutions to
the primal SDP give lower bounds, and solutions to the dual SDP give upper
bounds.

In particular, this means that for any Boolean function f there always
exists a span program whose span program complexity equals the query com-
plexity of f . Hence, there always exists a query-optimal quantum algorithm
for f based on the span program framework.

Quantum algorithms for span programs

We have already said that span programs do not compute a function but
rather encode it in linear-algebraic terms. Evaluating the value of a function
given access to the input requires further computation. Classically, one would
have to solve the n × dimV system of linear equations AΠH(x)|w〉 = |τ〉 to
decide this question. This would require a lengthy computation that includes
reading the input since it determines the matrix AΠH(x). The �ip-side is that
evaluating the function produces a positive witness as a byproduct of the
computation if the input happens to be a 1-input.

In contrast, Ref. [R�12; Rei09; IJ19; Jef20] built quantum algorithms
that evaluate a function encoded within a span program P = (H,V , A, |τ〉).
These quantum algorithm do not decide the function by solving a linear
system of equations or �nding a witness. Instead, they uses the elements of

6 CHAPTER 1. INTRODUCTION

the span program to construct a unitary U(x, P) = (2ΠH(x)− I)(2ΠkerA− I)
and a vector |w0〉 = A+|τ〉, or variants thereof. Then, if x is a 0-input, |w0〉
will have some overlap with the 0-phase eigenspace of U(x, P), and if x is a
1-input, it will have no overlap with that space and only small overlap with
the small-phase eigenspaces of U(x, P). The algorithms distinguish these
two cases by performing phase estimation and/or amplitude ampli�cation
on U(x, P) to some precision determined by W+ and W−. Regardless of
which algorithm one uses, the number of calls to U(x, P) will be the span
program complexity

√
W+W−. This is precisely its query complexity since

the only input-dependent element is the re�ection (2ΠH(x)−I), which can be
implemented with one quantum query to x. This is fundamentally di�erent
from solving a linear system of equations, and allows us to obtain quantum
algorithms with better query complexity than any classical algorithm.

For the time complexity, one must analyze the cost of constructing the
re�ections (2ΠkerA−I) and the state |w0〉. Naturally this varies from one span
program to another, and has been largely ignored in the literature. A notable
exception is the span program for st-connectivity, whose time complexity was
studied in [BR12; JK17].

The st-connectivity span program

Chapters 5 and 6 deal extensively with a span program for st-connectivity
presented in [BR12]. In a nutshell, the st-connectivity problem is this: Fix a
graph G, two vertices s and t connected in G, and let x specify a subgraph
G(x). Are s and t still connected in G(x)?

The span program that computes this function is rather simple. As the
spaceH, we take the space generated by the edges of G, i.e.H = span{|u, v〉 :
(u, v) ∈ E(G)}. Assume, for simplicity, that x ∈ {0, 1}|E(G)| and that every
bit of the input corresponds to one edge, which is in G(x) if its bit value
is 1. Then H(x) = span{|u, v〉 : (u, v) ∈ E(G(x))}. The space V is the
space generated by the vertices, i.e. V = span{|v〉 : v ∈ V (G)}, and the
span program map is de�ned as A|u, v〉 = |u〉 − |v〉. Finally, we de�ne the
target as |s〉− |t〉. It is not hard to see that any st-path in G(x) is a positive
witness for x. It is a little bit harder to see that an st-cut over the edges in
G \G(x) is a negative witness. Of course, the optimal witnesses are convex
combinations of paths or cuts. In [BR12; JK17] the authors characterized the
positive witness size of this span program as an electrical quantity on G(x)
known as the e�ective resistance. Prior to our work, only upper bounds for

7

the negative witness size were known in the general case, and a complete
characterization for planar graphs was given in [JK17].

This span program has been used as a primitive to construct quantum
algorithms for a variety of problems, including cycle detection and bipar-
titeness testing [Ari16; CMB18], formula evaluation [R�12; Rei09; JK17],
learning graph evaluation [Bel12b], k-distinctness [Bel12a], and maximum
bipartite matching [BT20]. In [Ari16], the author gave a span-program-based
algorithm for graph connectivity with optimal worst-case query complexity
O(n3/2) using O(log n) space. This problem, �rst studied in the context of
quantum algorithms in [DHH+06], can be solved by a quantum algorithm
that also �nds st-paths in time Θ(n3/2) � instead of the classical Ω(n2) �
and space Θ(n).

Contributions

The topics we have discussed so far exemplify a few of the features of span
programs that make them worthy of study. Namely,

1. Span programs, although related to quantum upper and lower bounds,
are classical objects.

2. Through the general construction that compiles a span program into
a quantum algorithm, span programs are a way to make new quan-
tum algorithms using classical ideas. As we show in Chapter 4, these
algorithms can even be query, time, and space optimal.

3. They can also be used as a theoretical tool, for example in the study
of space lower bounds [Jef20].

4. As classical objects, span programs are amenable to composition and
classical logic.

There is a general feeling in the community that span programs, despite
the features I just mentioned, are a somewhat rigid tool for making quantum
algorithms, limited to decision problems,2 mostly on graphs, and can't say
much about time complexity. In this dissertation we challenge both of these
statements. I aim to show that span programs are a versatile tool to construct

2With the single exception of the span programs for witness size estimation in [IJ19].

8 CHAPTER 1. INTRODUCTION

quantum algorithms, not only for decision problems but also for function
estimation and state generation, and that we can make meaningful time
complexity statements about span program algorithms. If you were to ask
me �what is this thesis about?�, that would be my answer.

This thesis collects the work I have done with my co-authors in the last
four years on the topic of span programs, split into �ve chapters.

Chapter 2. Preliminaries In this dissertation I will assume the reader
to be familiar with the standard concepts in linear algebra and quantum
computing. In Chapter 2 I make concrete what these assumptions are and
discuss other mathematical results and de�nitions that will be used through-
out the thesis, such as Jordan's Lemma, quantum query algorithms, graph
theoretical results and electrical networks.

Chapter 3. Theory of span programs This chapter is split into two
parts. The �rst part is a survey of the previous literature on span programs.
I �rst talk about span programs as presented in [Rei09]. Then I explain how
Ref. [IJ19] generalizes Reichardt's construction and introduces approximate
span programs, and talk about the algorithms given by the authors of those
papers.

In Section 3.3, I introduce a generalization of span programs called re�ec-
tion programs and approximate re�ection programs. This is joint work with
Arjan Cornelissen and Maris Ozols, and is part of a paper in preparation.
The purpose of de�ning re�ection programs is to improve our intuition of
the algorithmic components of a span program and streamline the analysis
of span program algorithms. Then, I construct two algorithms for re�ection
programs that will be of use throughout the dissertation. Although new,
these algorithms don't di�er much from other algorithms already present in
the literature for approximate span programs [IJ19; Jef20] � I could have
simply updated those algorithms to the language of re�ection programs �
but have opted for including them for two reasons. First, they dispense with
a procedure called span program scaling necessary for the analysis in [IJ19;
Jef20]. This is yet another layer of complexity on the subject which these
algorithms remove. Second, they are the basis of the two novel algorithms for
generating positive witnesses in Section 3.4. Witnesses are qualitatively sim-
ilar to certi�cates in that they encode much information about the function
they decide. For example, witnesses for st-connectivity are weighted super-

9

positions of st-paths. Somewhat like the outputs of quantum linear solvers,
they encode the optimal solution of a system A(x)|w〉 = |τ〉 in a quantum
state. This is the �rst time anyone has used span programs to construct
algorithms for state generation. This, together with the proof-of-concept al-
gorithm in Section 5.7, is joint work with Stacey Je�ery and Shelby Kimmel
and is part of a paper in preparation.

Chapter 4. Span programs and time complexity This chapter is
based on [CJO+20] and is joint work with Arjan Cornelissen, Stacey Je�ery,
and Maris Ozols. We study a map taking any quantum query algorithm A
to a span program PA, �rst introduced in [Rei09]. In its original formulation,
the map A 7→ PA only applied to one-sided error algorithms3, and the corre-
sponding query complexity of the span program algorithm for PA was that
of A itself. Ref. [Jef14] showed that the map also extended to bounded (two-
sided) error algorithms, mapping them to approximate span programs that
could then be turned back into algorithms with the same query complexity as
A. In this chapter, we modify the map to allow the span program algorithms
to have the same query and time complexities as A. This has theoretical im-
plications, i.e. every function that admits an optimal query, time, and space
optimal algorithm admits, too, a query, time and space optimal span program
algorithm. But it also has practical ones. Combining our results and a novel
construction for the OR of span programs, we improve a result of Ambainis
[Amb10] on variable-time quantum search. Our construction allows us to
give concrete statements on the time, space, as well as query complexities of
the variable time search algorithm. The chapter also contains results that
are of independent interest such as the analysis of the time complexity of the
algorithms in Chapter 3 and the de�nition of implementing subspaces.

Chapter 5. Span programs for graph problems In Chapter 5 we
give a battery of results showing the versatility of the span program for st-
connectivity �rst introduced in [KW93]. The chapter is largely based on
[JJK+18] and is joint work with Michael Jarret, Stacey Je�ery and Shelby
Kimmel. We characterize the negative witness size of the span program as an
electrical quantity on G known as e�ective capacitance, and give an algorithm
that estimates it. We also give three di�erent span program algorithms for

3One-sided error algorithms decide 1-inputs with certainty and may err on 0-inputs
with probability 1/3 (or vice versa).

10 CHAPTER 1. INTRODUCTION

graph connectivity. All three algorithms we propose are based on the st-
connectivity span program, each modifying it in a di�erent way. For all
three, we analyze the query and time complexity, and �nd them pairwise
incomparable, outperforming the current algorithms [DHH+06; 	Ari16] and
each other for some assumptions but not others. We also give a �rst-of-its-
kind quantum algorithm for subgraphs of a complete graph that estimates a
measure of connectedness called the algebraic connectivity.

Finally, In Section 5.7, I use the algorithm that generates the optimal pos-
itive witness for the st-connectivity span program to give a proof-of-concept
of how one can use this vector to �nd st-paths in a particular graph. The
resulting algorithm outperforms the path �nding algorithm in [DHH+06] in
query as well as space complexity.

Chapter 6. Boundary problems This chapter is joint work with Stacey
Je�ery and Maris Ozols, and is part of a paper in preparation. In the last
chapter of this thesis, I take a broader look at the st-connectivity problem and
frame it as a particular case of a boundary problem on a graph. Imagining
other boundaries I discuss modi�cations of the st-connectivity algorithm that
would solve those other boundary problems and then discuss a generalization
of the st-connectivity problem to higher dimensions. Surprisingly, this takes
us to the realm of topology, simplicial complices and homology, which I
de�ne and explain before presenting a span program for simplicial homology
in general dimensions that generalizes the st-connectivity span program. I
conclude with a discussion of a span program for surface homology, with an
analysis on the positive and negative witness sizes that allows us to formulate
a span-program-based quantum algorithm that decides whether a cycle on a
surface is the boundary of a sub-surface.

To the best of my knowledge, span programs have not been used to study
topological structures beyond graphs before, and there are only a few quan-
tum algorithms that deal with topological problems. In giving a connection
between span programs and simplicial homology, I show that span programs
are a useful tool to approach such problems with the goal to construct quan-
tum algorithms in mind, and I hope to spark future research in this direction.

Chapter 2

Preliminaries

2.1 Mathematical preliminaries

In this thesis, we assume the reader to be familiar with the basics of quantum
computing and linear algebra1.

Linear algebra We will use Dirac notation for vectors. We denote the set
of linear operators from a vector space V to a space W as L(V,W). For an
operator A ∈ L(V,W), we denote the columnspace, rowspace, and kernel of
A by colA, rowA, and kerA respectively.

For any linear operator A, let A =
∑r

i=1 σi|φi〉〈ψi| be a singular value
decomposition. We de�ne the spectral gap of A as the smallest non-zero
singular value of A. We de�ne the pseudo-inverse of A as the operator
A+ :=

∑r
i=1

1
σi
|ψi〉〈φi|.

Let H be a �nite-dimensional inner product vector space. An operator
U ∈ L(H,H) is called unitary if it admits an eigenvalue value decomposition
of the form

U =
r∑
j=1

eiϕj |ϕj〉〈ϕj|,

where ϕj ∈ [−π, π] are known as the eigenphases of U . We de�ne the phase
gap of U as ∆(U) := min{|ϕj| : ϕj eigenphase of U,ϕj 6= 0}.

1Sorry Mom and Dad.

11

12 CHAPTER 2. PRELIMINARIES

We say a unitary Ũ approximates U with error ε if
∥∥∥Ũ − U∥∥∥

∞
≤ ε. That

is, max|ψ〉

∥∥∥(Ũ − U)|ψ〉
∥∥∥ ≤ ε ‖|ψ〉‖.

For a �nite set X, we denote the space C|X| with orthonormal basis {|x〉 :
x ∈ X} by CX , which we call the space generated by X. For any subspace
H ′ ⊆ H, we write ΠH′ ∈ L(H) to denote the projector onto H ′.

Quantum circuits All the algorithms in this thesis are in the circuit
model, and we assume the reader to be familiar with the concepts of quan-
tum states, qubits, unitaries, projective measurements, and with the most
common one and two-qubit gates, namely, the bit-�ip, phase-�ip and bit-
phase-�ip gates X,Z, Y , as well as the Hadamard gate H and the CNOT
gate. When we talk about gate complexity, we will implicitly assume it to
be relative to a particular universal gate set. For simplicity, we assume the
gates X, Y, Z,H,CNOT to be part of the universal gate set. Any unitary in
the universal gate set is said to be elementary. See [NC02] for an in-depth
discussion of these concepts.

Miscellaneous notation For any n ∈ N, we denote the set {1, 2, . . . , n}
by [n], and the set {0, 1, 2, . . . , n} by [n]0. We assume the reader to be
familiar with the asymptotic notationsO(·), o(·), Θ(·) and Õ(·). By f(x, y) =
O(polylog(x, y)), we mean that there exist constants C1, C2 > 0 such that
f(x, y) = O

(
logC1(x) logC2(y)

)
, in the limit x, y →∞.

2.1.1 Jordan's Lemma

In this section, we study the geometry of the eigenspaces of a particular set
of unitaries of great importance for quantum computing and for us. Imagine
that one has two linear spaces A and B which are subspaces of a larger, �nite-
dimensional Hilbert space H. Consider the unitary U = (2ΠA− I)(2ΠB − I)
which is a product of two re�ections around A and B respectively. Jor-
dan's Lemma states that U induces a partition of H into a direct sum of
2-dimensional spaces in which U acts as a rotation operator, and a collec-
tion of 1-dimensional spaces that are either (+1)- or (−1)-eigenspaces of U .
Jordan's Lemma has been at the core of quantum algorithms since Grover's
unstructured search algorithm [Gro96] and is the basis for the analysis of
span program algorithms, quantum random walks (see [San08] for a compre-

2.1. MATHEMATICAL PRELIMINARIES 13

hensive survey), and many other things, some of which we wot not of. The
lemma has been discovered and rediscovered several times, and is sometimes
referred to in the mathematics community as the CS decomposition, but in
the present formulation it was �rst rediscovered in the context of quantum
algorithms by Szegedy in [Sze04] and applied to the study of quantum ran-
dom walks. We state it now without proof, although the interested reader is
encouraged to read the original proof since it is rather short and elegant.

Lemma 1 ([Sze04]). Let A,B be two subspaces of H and let U = (2ΠA −
I)(2ΠB − I) be a unitary with discriminant D = ΠAΠB.

Let D =
∑d

j=1 cosϕj|θj〉〈ψj| be a singular value decomposition with ϕj ∈
[0, π/2] for all j ∈ [d]. Then the vectors |θj〉−e±iϕj |ψj〉 are eigenvectors of U
with eigenvalue e∓i2ϕj respectively. Furthermore, the (+1)-eigenspace of U is
(A∩B)⊕ (A⊥∩B⊥) and the (−1)-eigenspace of U is (A∩B⊥)⊕ (A⊥∩B).

A quick corollary of this lemma which will be of great use later relates
the phase gap of −U with the smallest spectral value of D.

Corollary 2. Let U = (2ΠA − I)(2ΠB − I) and D = ΠAΠB be its discrimi-
nant. Then ∆(−U) = 2 sin−1(σmin(D)).

Proof. Assume without loss of generality that the singular values of D are
ordered such that θi ≥ θj for i < j. Since cos is a decreasing function in the
interval [0, π

2
], it follows that σmin(D) = cos θ1. By Lemma 1, the spectrum of

U outside of its (±1)-eigenspace is {e±2iθj}dj=1, hence the biggest eigenphase
smaller than π in absolute value must be 2θ1. In other words, π − 2θ1 is the
phase gap of −U .

Let α be the complementary angle to θ1, i.e. π/2 = α + θ1. Then
2α = π − 2θ1 = ∆(−U), but cos(θ1) = sin(α), which means σmin(D) =
sin(α) = sin(∆(−U)/2). The �rst result follows from applying the arcsine
function on both sides of the last equality.

That Jordan's Lemma is at the core of so many quantum algorithms
speaks to the power of the family of unitaries composed of the product of two
re�ections. Indeed, we shall see later in Chapter 3 that all Boolean functions
admit an optimal quantum algorithm that consists of phase and amplitude
ampli�cation of a unitary of this form. But the utility of Lemma 1 is not
limited to describing the action of U , it is also useful to better understand
the interrelation of A, B and the eigenspaces of U . The following results will
be of use to us and are all consequences of Jordan's Lemma.

14 CHAPTER 2. PRELIMINARIES

Lemma 3. Let A,B ⊂ H be two subspaces, let U = (2ΠA− I)(2ΠB − I), let
ϕj ∈ (0, π), j ∈ [d], be positive eigenphases of U , let Eϕ := Eϕ+ ⊕Eϕ− be the
2-dimensional spaces spanned by (±ϕ)-eigenvalue eigenvectors of U , and let
E0, Eπ be the (+1) and (−1)-eigenspaces of U respectively. Then,

B = (B ∩ E0)
⊕
j∈[d]

(
B ∩ Eϕj

)
⊕ (B ∩ Eπ) .

Proof. We will prove that the subspaces E0 ∩ B, Eπ and Eϕj are invariant
subspaces for ΠB. Since H = E0 ⊕ Eπ

⊕
j Eϕj and every linear operator

decomposes its image into invariant subspaces, we will have the result.
Let us begin with E0. Proving that E0∩B is an invariant subspace of ΠB

is equivalent to proving that ΠE0ΠB = ΠBΠE0 . Now, remember that ΠE0 is

ΠE0 = ΠA∩B + ΠA⊥∩B⊥ ,

so ΠB trivially commutes with both terms because one of them projects into
a proper subspace of B and the other one projects into a subspace orthogonal
to it. The proof for Eπ is identical and is left for the reader.

All there is left is to prove that ΠEϕj
ΠB = ΠBΠEϕj

for all positive eigen-
phases of U di�erent from π. For the remainder, �x any such eigenphase.
We will give a basis of Eϕj that is composed of a vector in B and a vector in
B⊥.

First, remember that by Jordan's Lemma,

ΠAΠB =
d∑
i

cos
ϕi
2
|θi〉〈ψi|

|ηj〉 = |θj〉 − ei
ϕj
2 |ψj〉

|νj〉 = |θj〉 − e−i
ϕj
2 |ψj〉

where |ηj〉 and |νj〉 are eigenvectors of U with eigenvalues eiϕj and e−iϕj

respectively, and so they form a basis for Eϕj . Consider the vector

|νj〉 − |ηj〉
2

= i sin
ϕj
2
|ψj〉.

By Jordan's Lemma, |ψj〉 ∈ B so we simply need to �nd a vector |ψ⊥j 〉 in Eϕj
that is orthogonal to |ψj〉 and to B. We de�ne the vector

2.2. QUANTUM ALGORITHMS 15

|ψ⊥j 〉 := |θj〉 − cos
ϕj
2
|ψj〉. (2.1)

Observe that from ΠAΠB =
∑d

j=1 cos
(ϕj

2

)
|θj〉〈ψj| follows that 〈θj|ψj〉 =

cos
ϕj
2
, so we have:

〈ψj|ψ⊥j 〉 = 〈ψj|θj〉 − cos
ϕj
2
〈ψj|ψj〉 = 0.

To conclude the proof, we see that this vector is orthogonal to B.

ΠB|ψ⊥j 〉 = ΠB|θj〉 − cos
ϕj
2

ΠB|φj〉 = cos
ϕj
2
|ψj〉 − cos

ϕj
2
|ψj〉 = 0,

where we have used that ΠB|θj〉 = cos
ϕj
2
|ψj〉.

Observe that switching the roles of A and B, and |θj〉 and |ψj〉 in the
proof we obtain the following corollary:

Corollary 4. Let ϕj,∈ (0, π), j ∈ [d] be positive eigenphases of U = (2ΠA−
I)(2ΠB − I), Eϕj := Eϕ+

j
⊕E−ϕ−j , and let E0, Eπ be de�ned as above. Then,

A = (A ∩ E0)
⊕
j∈[d]

(
A ∩ Eϕj

)
⊕ (A ∩ Eπ) ,

and
A⊥ =

(
A⊥ ∩ E0

)⊕
j∈[d]

(
A⊥ ∩ Eϕj

)
⊕
(
A⊥ ∩ Eπ

)
.

Lemma 5 (E�ective spectral gap lemma [LMR+11]). Let |φ〉 be a unit vector
such that ΠB|φ〉 = 0, let Pθ be the projector onto the eigenvectors of U =
(2ΠA − I)(2ΠB − I) with eigenvalues eiω with |ω| < θ for some θ ∈ [0, π),
then if ΠB|φ〉 = 0, we have ‖PθΠA|φ〉‖ ≤ θ/2.

2.2 Quantum algorithms

The Encyclopaedia Britannica de�nes algorithm as follows:

�Algorithm: Systematic procedure that produces � in a �nite number of
steps � the answer to a question or the solution to a problem.�

16 CHAPTER 2. PRELIMINARIES

The term itself comes from the 8th century Muslim mathematician Al-
Khwārizmī2, but the idea is as old as hills. Nowadays, we understand that
these questions or problems are mathematical in nature, as are the steps
taken. Modern computers are machines that implement classical algorithms
� procedures composed entirely of arithmetic operations � and are based
on classical physics.

In contrast, quantum computers implement quantum algorithms � pro-
cedures composed of quantum operations, typically unitaries and measure-
ments � and are based on quantum physics. Quantum algorithms are of
interest both theoretically and practically. As we all know by now, quan-
tum computers can solve certain computational problems much faster than
classical computers. But they also inform us about the absolute limits of
computation, since they rely on quantum mechanics, our best understanding
of nature. In a very real sense, the study of quantum algorithms is �the study
of the power and limitations of the strongest-possible computational devices
that Nature allows us� [deW19].

In order to characterize that power and/or limitations, we need a metric,
a criterion for measuring the performance of an algorithm. And once you
have a metric, you have a notion of complexity. Classical computers often
use total number of operations, but processor time, input queries, and other
metrics are common. In quantum mechanics, a usual metric is the number
of queries to the input of the algorithm. There are many reasons for this.
First, this metric is often times the simplest and most tractable. Second, it
gives us a lower bound on the total number of operations that an algorithm
makes. That is, it tells us about the limitations of the algorithm. Third, there
exist techniques to give lower bounds on the query complexity of computing
Boolean functions which are intimately related to span programs.

Query complexity is not the only measure of complexity that is used in the
quantum computing community, but, for reasons that will become clear in
Section 3.2.3, it is the primary measure of complexity when dealing with span
programs. In Chapter 5, and especially, Chapter 4, we will also care about
the time complexity of algorithms. We understand by the time complexity of
an algorithm the total number of time steps it takes, where each time step
the algorithm makes either a call to the input oracle Ox from Eq. (2.2), or
an elementary gate from a universal gate set. We will often refer to this as

2Whose works also introduced Hindu-Arabic decimal numerals into European mathe-
matics. Lest we forget that we used to be bad at math.

2.2. QUANTUM ALGORITHMS 17

the gate complexity or cost of an algorithm, in a slight abuse of language.
The lion's share of this work will be devoted to algorithms that decide

Boolean functions, as is natural in a work so much centred around span
programs. In Chapter 3, we give algorithms that approximate a quantum
state, which we revisit at the end of Chapter 5, where we also give a query
algorithm that estimates a real function. Let us begin by formalizing the
notion of quantum query algorithms for decision and estimation problems.
We will discuss state generation algorithms later when they appear.

2.2.1 Quantum query algorithms

Let n ∈ N, X ⊆ {0, 1}n. A quantum query algorithm A with input x ∈ X
is a sequence of unitaries U1, . . . , UT acting on C[n]×W , where T ∈ N is the
total number of time steps, [n] := {1, . . . , n} andW is a �nite set that labels
the workspace states, together with an initial state |Ψ0〉 ∈ C[n]×W .

The algorithm A makes queries to an input string x ∈ X by having a
subset of the unitaries be (controlled) calls to an oracle Ox de�ned by its
action on the computational basis of C[n]×W as:

∀i ∈ [n],∀j ∈ W , Ox : |i, j〉 7→ (−1)xi |i, j〉, (2.2)

where the two registers correspond to the input bit index and the workspace,
respectively. The only dependence on x of the unitaries that make up A is
through some of the Ut's being Ox. We denote the set S ⊂ [T] to be the
set that contains all t ∈ S, such that Ut = Ox. Then S = |S| is the query
complexity of A.

In the standard de�nition of a quantum query algorithm, every second
unitary is a query, so S would be the set of odd indices. This is appropriate
when we are only interested in the query complexity of the algorithm, since
we can combine any consecutive non-query unitaries into a single unitary.
However, since we are also interested in the time complexity, we want to
restrict the non-query unitaries to some universal gate set. Thus, we do
not assume that every other unitary is a query, and we explicitly allow for
sequences of non-query unitaries between any two queries, as well as at the
beginning and the end of the algorithm.

We take the initial state to be a computational basis state. We can assume
that U1 and UT are not queries without loss of generality. Indeed, if the �rst
unitary is a query, then it only introduces a global phase and hence it is

18 CHAPTER 2. PRELIMINARIES

redundant. Similarly, we assume that any measurement at the end of the
algorithm is a computational basis measurement, which implies that if UT is
a query, then it is also redundant as it does not in�uence the measurement
probabilities. Finally, we also assume without loss of generality that no two
consecutive time steps are query time steps, as then the resulting operation
on the state space would reduce toO2

x = I, rendering both queries redundant.
For every x ∈ {0, 1}n we de�ne the state of the system at time t ∈ [T]0 :=

{0, . . . , T} on input x as

|Ψt(x)〉 := UtUt−1 · · ·U1|Ψ0〉, (2.3)

where |Ψ0〉 ∈ C[n]×W is the initial state. Note that the right-hand side of
Eq. (2.3) has an implicit dependence on x, since for some indices t, Ut = Ox.

After its �nal step, the state of the system is |ΨT (x)〉. Depending on the
kind of problem that the algorithm solves, we do di�erent things with this
�nal state.

Algorithms for decision problems

We say that an algorithm A decides a (partial) Boolean function f : X ⊆
{0, 1}n → {0, 1}, with error probability ε ∈ [0, 1/2) if, for all x ∈ X, it
outputs f(x) with probability pf(x)(x) ≥ 1− ε.

If A is a quantum algorithm for a decision problem, we can assume that
there is a single-qubit answer register used to indicate the output of the
computation, and the algorithm ends with a measurement of that register
(see Section 2.2.2). If Πb denotes the orthogonal projector onto states with
|b〉 in the answer register for b ∈ {0, 1}, then pb(x) := ‖Πb|ΨT (x)〉‖2 is the
probability that the algorithm outputs b on input x. We say that a quantum
algorithm A decides f with bounded error if it decides f with error proba-
bility ε = 1/3 for all x ∈ X.

The query complexity of a function f , denoted as Q(f), is de�ned as
the smallest query complexity among query algorithms that decide f with
bounded error.

Algorithms for estimation problems

As we have already said at the beginning of this section, part of Chapter 5
will be devoted to algorithms that estimate functions mapping a domain

2.2. QUANTUM ALGORITHMS 19

X ⊆ {0, 1}n into the real numbers. Typical examples include algorithms for
estimating graph properties like e�ective resistance or algebraic connectivity
(more of which later) as well as the phase and amplitude estimation subrou-
tines, assuming an implicit relation between the input oracle and the inputs
to both subroutines. We de�ne quantum query algorithms for estimation
problems in the following way.

Let n ∈ N, X ⊆ {0, 1}n and f : X → R+ be a real function. In the
same spirit as algorithms that decide Boolean functions, let A be a quantum
algorithm acting on C[n]×W that applies the sequence of unitaries U1, . . . , UT ,
of which some are queries to the oracle Ox, to the state |Ψ0〉 ∈ C[n]×W . We
can make the same assumptions as before and assume that the �rst and last
unitaries are not queries, and that the initial state is a computational basis
state. We can also assume that the last m qubits of C[n]×W contain the
output of the computation written as a binary number f̃ . Strictly speaking,
the output of the computation will be an entangled state of the form

|ΨT (x)〉 =
∑
f̃∈D

|Ψf̃ (x)〉|f̃〉,

where D is some domain and |Ψf̃ (x)〉 are unnormalized states. We say that a
quantum algorithm A estimates f to relative accuracy ε with bounded error
if, for any x ∈ X we have∥∥∥∥∥∥

I ⊗ ∑
f̃ :|f̃−f(x)|≤εf(x)

|f̃〉〈f̃ |

 |ΨT (x)〉

∥∥∥∥∥∥
2

≥ 2

3
. (2.4)

In other words, A estimates f if the result f̃ of measuring the outcome
register is such that |f̃ − f(x)| ≤ εf(x) with probability at least 2/3.

2.2.2 Clean quantum algorithms

In addition to the standard assumptions that we outlined above, we will also
make some non-standard assumptions on the structure of quantum query al-
gorithms for decision problems. We refer to the query algorithms that satisfy
both the standard and the non-standard assumptions as clean algorithms. We
�rst de�ne this object and then show that, in fact, we can assume without
loss of generality that every quantum query algorithm is clean incurring at
most a constant overhead in both queries and time.

20 CHAPTER 2. PRELIMINARIES

De�nition 6 (Clean quantum algorithm). Let A be a quantum query algo-
rithm acting on C[n]×W = C[n]×W ′×{0,1} with the last register being the answer
register. Suppose that the time complexity of A is T , the query complexity
is S, and the initial state has |0〉 in the answer register, so it can be expressed
as |Ψ0〉 = |ψ0〉|0〉 for some |ψ0〉 ∈ C[n]×W ′ . De�ne the �nal accepting state as
|ΨT 〉 := |ψ0〉|1〉. A is a clean quantum algorithm if it satis�es the following
properties.

1. Consistency: For all inputs x ∈ {0, 1}n,

〈ΨT |ΨT (x)〉 = p1(x), and 〈ΨT |(I ⊗X)|ΨT (x)〉 = p0(x),

where pb(x) = ‖(I ⊗ |b〉〈b|)|ΨT (x)〉‖2 is the probability that A outputs
b on input x, and X denotes the Pauli matrix implementing the logical
NOT.

2. Commutation: (I ⊗ X) commutes with every unitary Ut of the algo-
rithm, where X acts on the answer register.

3. Query-uniformity: Two consecutive queries are not more than b3T/Sc
time steps apart, and the �rst and last queries are separated by at
most b3T/Sc time steps from the start and the �nish of the algorithm,
respectively.

We proceed by showing that restricting our attention to clean algorithms
only incurs a constant multiplicative overhead in the query and time com-
plexities and constant additive overhead in the space complexity.

We prove this in two steps. First, we show that we can satisfy conditions 1
and 2 by modifying the algorithm in the following sense: we �rst run it once,
then we copy out the answer register, and subsequently, we run it backwards.
This constitutes Lemma 7. After that, we insert some queries and identity
gates into the resulting algorithm, such that we also satisfy condition 3, which
is the objective of Lemma 8.

Lemma 7. Fix f : X ⊆ {0, 1}n → {0, 1}. Let A be a quantum query algo-
rithm with initial state |Ψ0〉 ∈ C[n]×W , unitaries U1, . . . , UT , time complexity
T and query complexity S and suppose that it computes f with error prob-
ability ε > 0. Now, let A′ be a quantum algorithm acting on C[n]×W×{0,1},
with initial state |Ψ′0〉 = |Ψ0〉|0〉 and consisting of the following sequence of
unitaries:

(U †1 ⊗ I) · · · (U †T ⊗ I)(I ⊗ CNOT)(UT ⊗ I) · · · (U1 ⊗ I),

2.2. QUANTUM ALGORITHMS 21

where the CNOT is a controlled-not gate with the answer qubit of A acting
as control qubit and the last qubit of A′ acting as the target. Then A′ ful�lls
conditions 1 and 2 in De�nition 6 with �nal accepting state |Ψ′T ′〉 = |Ψ0〉|1〉,
time complexity T ′ = 2T + 1 = Θ(T), query complexity S ′ = 2S = Θ(S),
uses one more qubit than A and evaluates f with error probability ε.

Proof. Since an X-gate on the target qubit of a CNOT gate commutes with
the CNOT-gate itself, we �nd that all operations in A′ commute with I⊗X,
thus the commutation condition is ful�lled.

Next we check the consistency condition. To that end, we let |ΨT (x)〉 =
|Φ0(x)〉 + |Φ1(x)〉, where |Φb(x)〉 = Πb|ΨT (x)〉 is the projection of |ΨT (x)〉
onto the part of the state with |b〉 in the answer register of A. Then the state
of A′ after T steps on input x is

|Ψ′T (x)〉 = |ΨT (x)〉|0〉 = |Φ0(x)〉|0〉+ |Φ1(x)〉|0〉,

and the state of A′ after T + 1 steps on input x is

|Ψ′T+1(x)〉 = CNOT|Ψ′T (x)〉 = |Φ0(x)〉|0〉+ |Φ1(x)〉|1〉.

Let UA = UT · · ·U1, so that |ΨT (x)〉 = UA|Ψ0〉, and

|Ψ′2T+1(x)〉 = (U †A ⊗ I)|Ψ′T+1(x)〉 = (U †A|Φ0(x)〉)|0〉+ (U †A|Φ1(x)〉)|1〉. (2.5)

Since U †A|Φb(x)〉 = U †AΠb|ΨT (x)〉, for b ∈ {0, 1}, the success probability of A′
is equal to the success probability of A:∥∥(I ⊗ |b〉〈b|)|Ψ′2T+1(x)〉

∥∥2
=
∥∥∥U †AΠb|ΨT (x)〉

∥∥∥2

= ‖Πb|ΨT (x)〉‖2 = pb(x).

Moreover, from Eq. (2.5), we have for all b ∈ {0, 1},

〈Ψ0, b|Ψ′2T+1(x)〉 = 〈Ψ0|U †AΠbUA|Ψ0〉 = ‖ΠbUA|Ψ0〉‖2 = ‖Πb|ΨT (x)〉‖2 = pb(x).

In particular that implies that

〈Ψ′T ′ |Ψ′2T+1(x)〉 = 〈Ψ0, 1|Ψ′2T+1(x)〉 = p1(x) and
〈Ψ′T ′ |(I ⊗X)|Ψ′2T+1(x)〉 = 〈Ψ0, 0|Ψ′2T+1(x)〉 = p0(x).

Hence, A′ satis�es the consistency condition as well.

22 CHAPTER 2. PRELIMINARIES

Lemma 8. Fix f : X ⊆ {0, 1}n → {0, 1}. Let A be a quantum query algo-
rithm with time complexity T and query complexity S that computes f with
error probability ε > 0. Then, there exists an algorithm A′ with time com-
plexity T ′ = Θ(T) and query complexity S ′ ≤ 3S such that two consecutive
queries are no more than b3T ′/S ′c times steps apart. In addition if A ful�lls
conditions 1 and 2 in De�nition 6, then A′ is a clean quantum algorithm
evaluating f with error ε.

Proof. First, if S ∈ {1, 2}, we note that b3T/Sc > T , and hence the third
condition in De�nition 6 is trivially satis�ed without any modi�cations to
A. Hence, we restrict to the case where S ≥ 3. We insert a sequence of
operations IOxIOxI into A between time steps dkT/Se and dkT/Se + 1
where k ∈ [S − 1]. This increases the number of queries to S ′ ≤ 3S and
the number of time steps to T ′ = T + 5(S − 1). The number of time steps
between two consecutive queries is at most⌈

T

S

⌉
+ 2 ≤ T

S
+ 3 =

T ′ − 5(S − 1)

S
+ 3 ≤ 3

T ′

S ′
− 5 +

5

S
+ 3 < 3

T ′

S ′
.

As the left-hand side is an integer, we can just as well take the �oor on the
right-hand side. Similarly, the distance of the �rst query from the start is
at most dT/Se + 1 < 3T ′/S ′, and the number of time steps between the
last query and the end of the algorithm is at most T − d(S − 1)T/Se+ 1 ≤
T/S + 1 < 3T ′/S ′. Thus, we have satis�ed the query-uniformity condition
from De�nition 6.

Furthermore, the second statement follows immediately from the fact
that the unitaries that we are inserting amount to the identity, and hence
if A evaluates f with error probability ε, so does A′. This completes the
proof.

By Lemma 7 and Lemma 8, we can assume without loss of generality that
any quantum algorithm is a clean quantum algorithm, namely, that it does
a computation, copies out the answer, and then reverses the computation.
The overhead of putting an algorithm into this form is only a constant factor
in the query and time complexity, and a single auxiliary qubit in the space
complexity.

For clarity, we emphasize that in a clean quantum algorithm with non-
zero error, while in some sense the algorithm uncomputes everything but the
answer, this uncomputation does not succeed fully � we do not return the

2.2. QUANTUM ALGORITHMS 23

non-answer registers of the algorithm to the �xed state |Ψ0〉. The weight of
the �nal state |ΨT (x)〉 on |Ψ0〉 in the non-answer registers is

|〈Ψ0, 0|ΨT (x)〉|2 + |〈Ψ0, 1|ΨT (x)〉|2 = p0(x)2 + p1(x)2,

which is strictly less than 1 whenever 0 < p0(x) < 1.

2.2.3 Four useful quantum subroutines

In this thesis we will present several algorithms that use in one way or another
the phase estimation and amplitude estimation subroutines. To say that
these subroutines appear in every quantum algorithm would only be a slight
exaggeration and, certainly, the original papers to which we refer, [Kit95;
CEM+98] and [BHM+02] must be among the most cited papers in the �eld
of quantum computing. In addition to the more standard forms of phase and
amplitude estimation, we will occasionally use gapped versions of them, all
of which which we describe below.

Theorem 9 (Phase Estimation [Kit95; CEM+98]). Let U be a unitary with
eigenvectors |θj〉 satisfying U |θj〉 = eiθj |θj〉 and assume θj ∈ [−π, π]. For
any Θ ∈ (0, π) and ε ∈ (0, 1), there exists a quantum algorithm, call it
PE(U,Θ, ε), that makes O

(
1
Θ

log 1
ε

)
calls to U and, on input |θj〉 outputs

a state |θj〉|w〉P such that if θj = 0, then |w〉P = |0〉P and if |θj| ≥ Θ,
|〈0|w〉P |2 ≤ ε. If U acts on s qubits, the algorithm uses O

(
s+ log 1

Θ

)
qubits

and O
((

log 1
θ

+ log 1
ε

)2
)
extra elementary operations.

We will use the following corollary of Theorem 9, which is a slight gener-
alization of an algorithm introduced in [CKS17], also called Gapped Phase
Estimation.

Theorem 10 (Gapped Phase Estimation). Let U be a unitary with eigen-
vectors |θ〉 satisfying U |θ〉 = eiπθ|θ〉 and assume θ ∈ [−1, 1]. Let ϕ ∈ (0, 1),
let ε > 0 and let δ ∈ (0, 1 − ϕ]. Then, there exists a unitary procedure
GPE(ϕ, ε, δ) making O(ϕ−1 log ε−1) queries to U that on input |0〉C |0〉P |θ〉
prepares a state (β0|0〉C |γ0〉P + β1|1〉C |γ1〉P)|θ〉 where |γ0〉 and |γ1〉 are some
unit vectors, β2

0 + β2
1 = 1 and such that

� if |θ| ≤ δ, then |β1| ≤ ε, and

� if δ + ϕ ≤ |θ|, then |β0| ≤ ε.

24 CHAPTER 2. PRELIMINARIES

The registers C and P have 1 and O(log(ϕ−1) log(ε−1)) qubits respectively.

In addition to the queries to U , the algorithm uses O
(

(log 1
ϕ

+ log 1
ε
)2
)
ele-

mentary gates.

Proof. Standard phase estimation [Kit95; CEM+98] (but see, in particular
[CEM+98, Appendix C]) on input |θ〉 with precision ϕ/2 and error ε prepares
a state |θ̃〉P |θ〉 such that upon measuring |θ̃〉P , with probability at least 1−ε,
we measure some θ̄ that is within ϕ/2 of θ, meaning that if |θ| ≤ δ, then
|θ̄| < δ + ϕ/2, and if |θ| ≥ δ + ϕ, then |θ̄| > δ + ϕ/2.

Instead of measuring, assume that we have an extra bit register C. Apply
to registers C,P the unitary that maps |0〉C |θ̄〉P to |0〉C |θ̄〉P if |θ̄| ≤ δ +
ϕ/2, and to |θ̄〉Pi|1〉Ci otherwise. This unitary can be done with O(log2 1

ϕ
)

elementary gates.
Grouping all phase states with phases with |0〉 (resp. |1〉) in the C register

into |γ0〉 (resp. |γ1〉) we have that the state produced will be (β0|0〉C |γ0〉P +
β1|1〉C |γ1〉P)|θ〉, with |β1| ≤ ε whenever |θ| ≤ δ, and |β0| ≤ ε whenever
|θ| ≥ δ + ϕ.

The number of elementary gates used in standard phase estimation with
precision ϕ/2 and error ε isO((log 1/ϕ+log 1/ε)2), in addition toO

(
1
ϕ

log 1
ε

)
calls to U , from which the result follows.

Theorem 11 (Amplitude Estimation [BHM+02]). Let A be a quantum al-
gorithm that, on input x, outputs√

p(x)|0〉|Ψ0(x)〉+
√

1− p(x)|1〉|Ψ1(x)〉.

Then there exists a quantum algorithm that estimates p(x) to precision ε

using O

(
1

ε
√
p(x)

)
calls to A. If s is the number of qubits that A uses, then

the amplitude estimation algorithm uses O

(
s+ log

(
1

ε
√
p(x)

))
qubits and

O

(
log2

(
1

ε
√
p(x)

))
additional elementary gates.

We will make use of the following corollary (see [IJ19] for a proof).

Corollary 12. Let A be a quantum algorithm that outputs the s qubit state√
p(x)|0〉|Ψ0(x)〉 +

√
1− p(x)|1〉|Ψ1(x)〉 on input x such that either p(x) ≤

p0, or p(x) ≥ p1 for p1 > p0. Then there exists a quantum algorithm

2.3. GRAPH THEORY 25

that, with bounded error, decides if p(x) ≤ p0 using O
(√

p1
p1−p0

)
calls to A,

O
(
s+ log

(√
p0

p1−p0

))
qubits and O

(
log2

(√
p0

p1−p0

))
extra gates.

2.3 Graph theory

A graph G is a tuple formed by a set V (G), called the vertex set, and a set
E(G) of pairs of elements in V (G), called the edge set. In more colloquial
terms, graphs are collections of vertices and edges, also known as links. De-
�ned as such, they don't seem much, but graphs play a central role in discrete
mathematics and computer science. That is because they are a natural way
to describe sets and binary relations between elements of such sets. As a
result, classical algorithms for graph problems are plentiful, and there is a
large literature on quantum algorithms for graph problems. Graph theory
is one of the �rst applications of span programs, with one particular span
program standing out, the st-connectivity span program [BR12]. This span
program is at the core of many quantum algorithms for other problems, like
graph bipartiteness [Ari16], or cycle detection [CMB18], to name a few. In
Chapter 5 we will give applications of the st-connectivity span program to
graph connectivity and other problems.

2.3.1 Multigraphs

We will consider graphs which may have multiple edges between a pair of
vertices, also known as multigraphs. Thus, to di�erentiate edges that share
vertices, we associate a unique identifying label `. We refer to each edge in
the graph using its endpoints and the label `, (u, v, `), where the order of u
and v denote the direction of the edge. We will sometimes write ({u, v}, `)
for an undirected edge, the curly brackets denoting the lack of order in the
pair u, v, since, for us, an ordered set is a list. Given the nature of the
span program for st-connectivity, it will be advantageous to treat undirected
graphs as directed ones. We construct the set of directed edges

−→
E (G) of a

graph G by ascribing two directed edges (u, v, `), (v, u, `) ∈
−→
E (G) to each

edge ({u, v}, `) ∈ E(G). In a slight abuse of notation we will sometimes drop
the curly brackets while talking about undirected graphs with the convention
that (u, v, `) = (v, u, `).

26 CHAPTER 2. PRELIMINARIES

Networks A network N := (G, c) consists of an undirected graph G com-
bined with a positive real-valued weight function c : E(G) −→ R+. Since c
is a map on undirected edges, we can easily extend it to a map on directed
edges such that c(u, v, `) = c(v, u, `), and we overload our notation accord-
ingly. We will often assume that some c is implicit for a graph G and denote
its adjacency matrix as:

AG =
∑

(u,v,`)∈E(G)

c(u, v, `)(|u〉〈v|+ |v〉〈u|). (2.6)

Note that AG only depends on the total weight of edges from u to v, and is
independent of the number of edges across which this weight is distributed.

x1

x1

x2

x2

x3

G G(1, 1, 1) G(0, 0, 0)

Figure 2.1: Example of a map from a 5-edge graph to a 3-bit string. The
map L, depicted on the left, associates the edges of G with a bit of x and
a value of that bit. For edges labeled by xi we include the edge in G(x) if
xi = 1, while for edges labeled by xi, we include the edge in G(x) if xi = 0.

Subgraphs We will be concerned with certain subgraphs of a graph G,
associated with bit strings of length N . We assume that there exists a map
L : E(G)→ {x1, . . . , xN , x̄1, . . . , x̄N} and denote by G(x) the subgraph asso-
ciated with the string x ∈ {0, 1}N . In particular, each edge in G is associated
with a variable xi or its negation xi and is included in G(x) if and only if the
associated variable evaluates to 1. Here xi is the ith bit of x. Observe that
N and |E(G)| need not be the same in general. Precisely how this map L is
chosen depends on the problem of interest, so we will leave the description
implicit, and often assume for simplicity that there is a one-to-one mapping
between the edges and the literals xi.

2.3. GRAPH THEORY 27

2.3.2 Laplacians

Typically, quantum algorithms focus on topological properties of networks,
but networks are much more than �xed topologies, they are often the sub-
strate of dynamic processes. These dynamic processes, in turn, are in�uenced
by the topology of the network and their dynamics described by matrix rep-
resentations. In our discussion of span program algorithms for graph connec-
tivity we will make use of a matrix representation known as the Laplacian
of a graph, and its �rst non-zero eigenvalue, called the algebraic connectiv-
ity or Fiedler value. This matrix representation was introduced to model
the process of di�usion on a graph, but is not limited to the di�usion pro-
cess. For example, Laplacians play important roles in other processes like
synchronization or random walks, to mention a few.

Let dG(u) =
∑

v,`:(u,v,`)∈E(G) c(u, v, `) denote the weighted degree of u in
G, under the implicit weight function c, and de�ne the degree matrix DG as:

DG =
∑

u∈V (G)

dG(u)|u〉〈u| (2.7)

We de�ne the Laplacian of G as:

LG := DG −AG. (2.8)

Di�erent processes will have di�erent matrix representations, the Laplacian
being the right one for the process of di�usion. Matrix representations encode
both dynamical as well as topological properties of graphs, which are accessed
through their eigenvalues and eigenvectors. Observe that the Laplacian is al-
ways positive semi-de�nite, so its eigenvalues are real and non-negative. For
|µ〉 =

∑
u∈V (G)|u〉, it is always the case that LG|µ〉 = 0, so the smallest eigen-

value of LG is 0. Of particular importance is the second smallest eigenvalue
of LG including multiplicity denoted as λ2(G). This value is called the alge-
braic connectivity or the Fiedler value of G, and it is non-zero if and only if
G is connected. For connected networks it governs the speed of di�usion and
its associated eigenvector, called the Fiedler vector is used for community
detection and spectral clustering [Fie89].

A variant of the Laplacian with direct connections to random walks,
isoperimetric problems and expander graphs (and many other things too,
see [Chu97]) is the symmetric normalized Laplacian de�ned as:

Lsym
G = D−1/2

G LGD−1/2
G . (2.9)

28 CHAPTER 2. PRELIMINARIES

Then we let δ(G) denote the second smallest eigenvalue of Lsym
G . One can

check that δ(G) is the spectral gap of the random walk operator P on G
[Chu97], and in the case that G is regular, so that dG(u) = d does not
depend on u, δ(G) = 1

d
λ2(G).

Bounds on the algebraic connectivity In some of the algorithms that
we will design in Chapter 5 for graph connectivity, the complexity of the al-
gorithms will depend on the algebraic connectivity. Computing the algebraic
connectivity, even approximately, is in itself a non-trivial task equivalent to
solving the symmetric eigenvalue problem of the Laplacian matrix. However,
it is possible to give bounds on the algebraic connectivity of a connected
graph that depend only on topological invariants. In particular, we will be
interested in lower bounds. An extensive discussion of bounds for the alge-
braic connectivity is found in [Abr07]. A very simple bound can be obtain in
terms of the diameter of a graph, which is de�ned as the maximum distance
between any two vertices. Then the algebraic connectivity is lower bounded
as:

λ2(G) ≥ 4

diam(G)n
. (2.10)

2.3.3 Electrical networks

Considering the de�nition of graphs and networks, with nodes and weighted
edges, it is natural to attempt to model electrical networks. An electrical
network is in essence a network in which each edge is a conductor of a cer-
tain conductance and through which electrons �ow once an electric potential
di�erence is set between two points. These electrons �ow through the di�er-
ent elements of the circuit in an attempt to avoid each other and minimize
the energy dissipated as much as possible following the well known laws of
Kirchho� and Ohm. Therefore, if we want to import notions of graph theory
to the study of electrical networks we �rst need to de�ne language to model
these �ow and energy exchanges. The �rst concept we generalize is that of
electrical �ow. One can consider a �uid that enters a graph G at a node s,
�ows along the edges of the graph, and exits the graph at a di�erent node
t. The �uid can spread out along some number of the st-paths in G. An
st-�ow is any linear combination of st-paths. More precisely:

2.3. GRAPH THEORY 29

De�nition 13 (Unit st-�ow). Let G be an undirected graph with s, t ∈
V (G), and s and t connected. Then a unit st-�ow on G is a function θ :
−→
E (G)→ R such that:

1. For all (u, v, `) ∈
−→
E (G), θ(u, v, `) = −θ(v, u, `);

2.
∑

v,`:(s,v,`)∈
−→
E (G)

θ(s, v, `) =
∑

v,`:(v,t,`)∈
−→
E (G)

θ(v, t, `) = 1; and

3. for all u ∈ V (G) \ {s, t},
∑

v,`:(u,v,`)∈
−→
E (G)

θ(u, v, `) = 0.

This function models the amount of �uid �owing through each edge. In
our electrical analogy that means the intensity. No �uid is lost and all
that enters through s exits through t. Not every st-�ow models the �ow of
electrons on an electrical network, but every electron �ow is an st-�ow. In
order to model the �ow of electrons we need to de�ne the concept of energy
of the �ow.

De�nition 14 (Unit Flow Energy). Given a graph G with implicit weighting
c and a unit st-�ow θ on G(x), the unit �ow energy of θ on E ′ ⊆ E(G(x)),
is:

JE′(θ) =
1

2

∑
e∈
−→
E′

θ(e)2

c(e)
. (2.11)

In our electrical analogy, this function corresponds exactly to the energy
dissipated in the network by a unit intensity current �owing from s to t and
is sometimes referred to as Watt's Law, Power = Resistance × Intensity2.
The weight function c(e) here plays the role of the inverse of the electrical
resistance of an edge, also known as conductance. As we said, electrons �ow
in a network in an attempt to minimize energy losses. In the spirit of Watt's
law, the minimizing unit �ow de�nes then the e�ective resistance.

De�nition 15 (E�ective resistance). Let G be a graph with implicit weight-
ing c and s, t ∈ V (G). If s and t are connected in G, the e�ective resistance
of G between s and t is Rs,t(G) = minθ JE(G)(θ), where θ runs over all unit
st-unit �ows of G. If s and t are not connected in G, Rs,t(G) =∞.

Intuitively, Rs,t characterizes �how connected� the vertices s and t are in
a network. The more, shorter paths connecting s and t, and the more weight
on those paths, the smaller the e�ective resistance.

30 CHAPTER 2. PRELIMINARIES

Our interest in this analogy lies in the many applications of e�ective re-
sistance. For example, Rs,t(G) ·

(∑
e∈E(G) c(e)

)
is equal to the commute time

between s and t, or the expected time a random walker starting from s takes
to reach t and then return to s [CRR+96]. Also, electrical networks and ef-
fective resistance play an important role in understanding the st-connectivity
span program of Section 5.2.

The resistance is a measure of how well connected two particular nodes
in a graph are. Averaging over all pairs of nodes then gives a global measure
of connectedness. For a connected graph G, we de�ne the average resistance
as:

Ravg(G) :=
1

n(n− 1)

∑
s,t∈V :s 6=t

Rs,t(G). (2.12)

Now that we have a measure of the connectedness of s and t in a graph G,
we next introduce a measure of how disconnected s and t are in a subgraph
G(x) of G. In an electrical network, when a voltage di�erence is applied
to a pair of connected nodes, a �ow through the network appears. When
the nodes are not connected there will be no �ow but electrons (and electron
de�cits) are going to accumulate in the di�erent connected components of the
network, giving rise to di�erent potential energies in each component. This
potential function is the relevant quantity, which we de�ne in the context of
networks as follows.

De�nition 16 (Unit st-potential). Let G be an undirected weighted graph
with s, t ∈ V (G), and s and t connected. For G(x) such that s and t are not
connected, a unit st-potential on G(x) is a function V : V (G) → R+ such
that V(s) = 1 and V(t) = 0 and V(u) = V(v) if (u, v, `) ∈ E(G(x)) for some
`.

Note that this is a di�erent de�nition from the typical potential function.
Usually, if we have a �ow from a vertex s to a vertex t, we de�ne the potential
di�erence between u and v for an edge (u, v, `) to be the amount of �ow across
that edge divided by the weight of the edge. In our de�nition, the potential
di�erence across all edges in E(G(x)) is zero, and we have potential di�erence
across edges that are in E(G) \ E(G(x)).

A unit st-potential is a witness of the disconnectedness of s and t in G(x)
through its missing edges, in the sense that it is a generalization of the notion
of an st-cut, which is simply a unit potential that only takes values 0 and 1.

2.3. GRAPH THEORY 31

Just like �ows have energy, we can de�ne the energy of a unit potential.
Again, this has a tight correspondence with electrical network concepts.

De�nition 17 (Unit Potential Energy). Given a graph G with implicit
weighting c and a unit st-potential V on G(x), the unit potential energy
of V on E ′ ⊆ E(G) is de�ned as:

JE′(V) =
1

2

∑
(u,v,`)∈

−→
E′

(V(u)− V(v))2c(u, v, `). (2.13)

De�nition 18 (E�ective capacitance). LetG be a graph with implicit weight-
ing c and s, t ∈ V (G). If s and t are not connected in G(x), the e�ective
capacitance between s and t of G(x) is Cs,t(G(x)) = minV JE(G)\E(G(x))(V),
where V runs over all unit st-potentials on G(x). If s and t are connected,
Cs,t(G(x)) =∞.

In physics, capacitance is a measure of how well a system stores electric
charge. The simplest capacitor is just two metal plates facing each other at a
certain distance and separated by an insulating layer. Within each connected
component of the circuit, all points have the same voltage. Therefore, each
connected component behaves as a single node with respect to voltage, and
only the total capacitance between components determines the voltage on
those components. Consider a graph G(x) in which a 0-resistance wire is
connected between vertices whenever there is an edge in G(x), and a c(e)-
unit capacitor is connected between vertices whenever there is an edge e ∈
E(G) \ E(G(x)). If s and t are not connected in G(x), it is as though s
and t are on separate �plates� (with some complicated geometry) that can
accumulate charge relative to each other. Then the e�ective capacitance
given in De�nition 18 is precisely the ratio of charge (accumulated on the
plates corresponding to s and t) to voltage (on those plates) that is achieved
when electrical energy is stored in this con�guration.

De�nitions 15 and 18 may seem unwieldy for actually calculating the ef-
fective resistance and e�ective capacitance. Luckily for us, there are simple
and well known ways of computing the combined resistance of a network of
resistors. Any reader with a basic knowledge in physics or electrical engineer-
ing might recall that resistances in series add, while for resistors connected
in parallel it is the inverse resistances that add. Capacitors follow the same
relations with parallel and series switched. Most importantly, these relations

32 CHAPTER 2. PRELIMINARIES

remain valid for the e�ective resistances and capacitances of networks as the
following proposition shows.

Proposition 19. Let two networks (G1, c1) and (G2, c2) each have connected
nodes s and t. Let G(x1) and G(x2) be subgraphs of G1 and G2 respectively.
Then we consider a new graph G by identifying the s nodes and the t nodes of
G1 and G2 (i.e. connecting the graphs in parallel) and de�ne c : E(G)→ R+

by c(e) = c1(e) if e ∈ E(G1) and c(e) = c2(e) if e ∈ E(G2). Similarly, we
set G(x) to be the subgraph of G that includes the corresponding edges e such
that e ∈ E(G1(x1)) or e ∈ E(G2(x2)). Then,

1

Rs,t(G(x))
=

1

Rs,t(G1(x))
+

1

Rs,t(G2(x))
(2.14)

Cs,t(G(x)) = Cs,t(G1(x1)) + Cs,t(G2(x2)) (2.15)

If we create a new graph G by identifying the t node of G1 with the s node of
G2, relabeling this node v 6∈ {s, t} (i.e. connecting the graphs in series) and
de�ne c and G(x) as before, then,

Rs,t(G(x)) = Rs,t(G1(x)) +Rs,t(G2(x)), (2.16)
1

Cs,t(G(x))
=

1

Cs,t(G1(x1))
+

1

Cs,t(G2(x2))
. (2.17)

Proof. We deal �rst with e�ective resistances. In plain English, the statement
says that the e�ective resistance of two graphs connected in parallel follow an
inverse addition law but a direct addition law for e�ective capacitance. Let
(G1, c1) and (G2, c2) be two networks connected in parallel as in the statement
of the Proposition. We begin with the de�nition of e�ective resistance for a
graph of this form.

Rs,t(G(x)) = min
θ

∑
e∈E(G(x))

θ2(e)

c(e)
= min

θ

 ∑
e∈E(G1(x))

θ2(e)

c(e)
+

∑
e∈E(G2(x))

θ2(e)

c(e)

 ,

where θ is an st-�ow in G(x). Observe that this �ow breaks into two non-
unit st-�ows φ1θ1 and φ2θ2 de�ned in G(x1) and G(x2), where θ1, θ2 are unit
st-�ows, and the factors φ1, φ2 are de�ned as:

φ1 :=
∑

u,`:(s,u,`)∈E(G(x1))

θ1(u, v, `), φ2 :=
∑

u,`:(s,u,`)∈E(G(x2))

θ2(u, v, `) = 1− φ1.

2.3. GRAPH THEORY 33

From the de�nition of �ow energy it follows that the energy of φiθi, i = 1, 2
is φ2

i times that of θi. Therefore, the e�ective resistance can be written as:

Rs,t(G(x)) = min
θ1

∑
e∈E(G1(x))

φ2
1

θ2
1(e)

c(e)
+ min

θ2

∑
e∈E(G2(x))

φ2
2

θ2
2(e)

c(e)

= min
φ1,φ2

φ2
1Rs,t(G(x1)) + φ2

2Rs,t(G(x2)). (2.18)

Since φ1 + φ2 = 1, this minimization problem reduces to taking a derivative
and equating to zero. The solution one arrives at is:

1

Rs,t(G(x))
=

1

Rs,t(G1(x))
+

1

Rs,t(G2(x))
. (2.19)

Now, let (G1, c1) and (G2, c2) be two networks connected in series and joined
through a single vertex called v. Then the e�ective resistance of the new
graph is:

Rs,t(G(x)) = min
θ

∑
e∈E(G(x))

θ2(e)

c(e)
= min

θ

 ∑
e∈E(G1(x))

θ2(e)

c(e)
+

∑
e∈E(G2(x))

θ2(e)

c(e)

 .

Notice now that any st-�ow in G(x) is composed of an sv-�ow de�ned in the
vertices of G(x1) and a vt-�ow in the vertices of G(x2) which are independent.
We conclude that the e�ective resistance is simply:

Rs,t(G(x)) = Rs,v(G(x)) +Rv,t(G(x)) = Rs,t(G1(x)) +Rs,t(G2(x)). (2.20)

Let us now concern ourselves with e�ective capacitances of graphs con-
nected in series and in series. Let G be a graph composed of connecting two
graphs G1 and G2 in series joined at a single vertex which we label v. Let
G(x) be a subgraph corresponding to taking G(x1) in G1 and G(x2) in G2

and let s ∈ G1 t ∈ G2. By de�nition, the e�ective capacitance between the
vertices s and t of G(x) is:

Cs,t(G(x)) = min
V
JE(G)\E(G(x))(V) (2.21)

= min
V

1

2

∑
(u,w,`)∈E(G1)\E(G(x1))

(V(u)− V(w))2c(u,w, `)

+
1

2

∑
(u,w,`)∈E(G2)\E(G(x2))

(V(u)− V(w))2c(u,w, `)

 ,

34 CHAPTER 2. PRELIMINARIES

where we have used that E(G) \ E(G(x)) is the disjoint union of E(G1) \
E(G(x1)) and E(G2) \ E(G(x2)). Now consider any unit potential function
V in G(x), and consider its restrictions V|G(x1) and V|G(x2). Observe that
V|G(x1) (s) = 1, and (u,w, `) ∈ E(G(x1)) ⇒ V|G(x1) (u) = V|G(x1) (w). That
is, edges connected in G(x) have the same potential. Since V(v) 6= 0, V|G(x1)

is not a unit sv-potential in G(x1), but V′ :=
(

V|G(x1) − V(v)
)
/(1 − V(v))

is. Similarly, Ṽ = V(v) · V|G(x2) is a unit vt-potential in G(x2). We conclude
that the e�ective capacitance can be written as

Cs,t(G(x)) =

min
V(v)∈[0,1]

(1− V(v))2 min
V′

1

2

∑
(u,w,`)∈E(G1)\E(G(x1))

(V′(u)− V′(w))2c(u,w, `)

+V2(v) min
Ṽ

1

2

∑
(u,w,`)∈E(G2)\E(G(x2))

(V(u)− V(w))2c(u,w, `)

= min

V(v)∈[0,1]
{(1− V(v))2Cst(G(x1)) + V2(v)Cst(G(x2))}. (2.22)

Notice how this equation is equivalent to (2.18), and so its solution has
the same form. We conclude that the capacitance of graphs connected in
series is:

Cs,t(G(x)) =
1

1
Cs,t(G1(x1))

+ 1
Cs,t(G2(x2))

.

At last we turn to the capacitance of networks connected in parallel. It
is trivial to see that in this case the restrictions V|G(x1) and V|G(x2) of any
unit potential in G(x) must be themselves unit potentials, and therefore the
capacity is the sum of minimizing the potential energy over G(x1) and G(x2)
independently.

Part II

The one where we discuss the

theory of span programs

35

Chapter 3

Theory of span programs

3.1 Overview

In this chapter we will introduce, develop and eventually expand the no-
tion of span programs. Span programs are a model of computation �rst
introduced by Karchmer and Wigderson [KW93] for the study of classical
counting branching programs, and imported to the quantum setting by Re-
ichardt and �palek in [R�12; Rei09] for the study of formula evaluation and
the dual adversary lower bound. Since then, they have been applied to the
design of quantum algorithms, lower bounds, and have been reformulated
and generalized.

Span programs, regardless of the chosen formulation, encode a function
f : [q]n → {0, 1} (see Section 2.2) in terms of linear algebra by framing it
as a problem of vectors being contained in input-dependent subspaces of an
inner product space. We sometimes abuse the English language and say that
they compute f . By themselves, span programs are not quantum objects.
They have classical input and classical output, and consist of a collection
of vectors and input-dependent vector spaces. Their connection to quantum
computing comes in two steps.

First, every span program that computes a function f corresponds to
a feasible solution for the semi-de�nite program (SDP) dual to the general
adversary bound SDP for f whose objective value is a quantity known as
the span program complexity, C(P) (see Section 3.2.3 and [Rei09]). The
general adversary bound is a technique for computing lower bounds to the

37

38 CHAPTER 3. THEORY OF SPAN PROGRAMS

quantum query complexity of a function through feasible solutions to an
SDP. Therefore, span programs give upper bounds to the objective value of
the solution that is optimal for both the dual and primal SDP.

Second, every span program deciding a function f can be turned into
a quantum algorithm that computes the same function f , and whose query
complexity is O(C(P)). Furthermore, this process of turning a span program
into a quantum algorithm is constructive and universally applicable (although
not unique, stay tuned). Among other things, this means that the quantum
query complexity of a function f is equal to the minimum complexity of any
span program computing f . This transformation allows us to design quantum
algorithms using classical thought. The goal of this chapter is to de�ne span
programs and understand in detail their geometry and structure in order to
construct such span program algorithms.

What is even more exciting is that span programs encode quite a bit
more than the single output bit of the function they decide. For example, in
[IJ19], Ito and Je�ery build an algorithm that evaluates a positive real-valued
function related to any given span program P called the witness size, and
we show in Section 3.4.2 how one can modify the span program algorithm to
generate certain quantum states as outputs. In Chapter 5 we build on this
idea and make a three-course meal out of the st-connectivity span program.

A �rst de�nition We begin by de�ning a span program in Section 3.2.1
in the manner of [Rei09]. There, span programs are de�ned as tuples formed
by a vector space V over C, a target vector |τ〉 ∈ V and a set of input vectors
{|vi〉}i∈I ⊆ V over an index set I. To every x ∈ [q]n corresponds a subset
I(x) ⊆ I. The program is said to evaluate the function fP : [q]n → {0, 1}
de�ned as

fP (x) =

{
1 if |τ〉 ∈ span {|vj〉 : j ∈ I(x)}
0 otherwise.

The relation between these available vectors and the inputs is found in De�-
nition 20. This formulation, although su�cient to show equivalence between
span programs and dual adversary solutions (see Section 3.2.3) is somewhat
unsatisfying because: 1) it puts the emphasis in the space V (which is not
where the span program algorithms operate), and, 2) it allows for non-binary
alphabets [q], q ∈ N, but at an extra cost of O(log q) in the query complexity
of the associated algorithms.

3.1. OVERVIEW 39

An alternative de�nition An alternative de�nition of span programs
originally proposed by Ito and Je�ery [IJ19] comes in Section 3.2.2. The
main innovations in this de�nition are the introduction of a new space H
that replaces the index set I, and a map A : H → V that replaces the notion
of �available� vectors and simpli�es the analysis. The input x ∈ [q]n does not
de�ne a subset I(x) of the index set but a subspace H(x) ⊆ H of a particular
form (see De�nition 22).

In this notation, a span program is a tuple P = (H,V , A, |τ〉) that encodes
the function {f(x) = 1⇔ ∃ |w〉 ∈ H(x) : A|w〉 = |τ〉}. Any such vector |w〉
is called a positive witness for x and acts as a sort of certi�cate for positivity.
As we just said, the original de�nition of span programs allows for non-binary
alphabets [q] with logarithmic overhead. This de�nition improves on it by
removing that logarithmic factor. Other than this concrete improvement,
this alternative de�nition puts the emphasis on H, where the actual span
program algorithms act, rather than V .

It is using this notation that the authors of [IJ19] de�ne approximate span
programs. Approximate span programs are an extension of the span program
formalism that will play an important role in this thesis, particularly in Chap-
ter 4, so let us explain them up front. Consider the space H(x) and its image
under A, A(H(x)) ⊆ V . Just like a span program P computes the function
{f(x) = 1⇔ |τ〉 ∈ A(H(x))}, we say that P approximately computes a func-
tion {g(x) = 1 ⇔ |τ〉 is approximately in A(H(x))}, for a carefully chosen
notion of closeness (see Section 3.3.3 and De�nitions 36 to 39). The gap
between what is and isn't close enough depends on a parameter λ ∈ [0, 1)
called the approximation factor. Then, we say that P λ-approximates g or
that it is a λ-approximate span program for g.

In this way, a span program decides a family of functions, rather than
just one. In some sense, it makes a span program more powerful because it
decides more functions. This is useful because it makes it easier to �nd a span
program that computes (maybe approximately) any given decision problem.
But approximate span programs are not a more powerful framework than
exact (as in, not approximate) span programs. For every decision problem
there exists a span program that exactly computes it with optimal complex-
ity, it's just that that span program is hard to �nd, and an approximate span
programs might be easier to design.

40 CHAPTER 3. THEORY OF SPAN PROGRAMS

A few algorithms for span programs We wrap up the literature review
with Section 3.2.3, where we discuss the adversary lower bound and its rela-
tion to span programs, and give a quick overview of the algorithms presented
by Reichardt and Ito & Je�ery.

Re�ection programs Next we present a novel reformulation of span pro-
grams, the �rst original contribution of this dissertation, called re�ection
programs. Re�ection programs are a generalization of the span program
formalism that aims to strip down all the parts that are not essential for
constructing an algorithm. We de�ne re�ection programs in Section 3.3,
give geometrical interpretations, and then de�ne λ-approximate re�ection
programs and functions.

It is important to remark that any span program can be repackaged as
a re�ection program for the purposes of turning them into algorithms, but
that does not make the language of span programs unnecessary or obsolete
since the choices of the spaces H, V , the map A, and the target vector |τ〉
are much more intuitive in a span program than in a re�ection program.
This will become apparent in Chapter 5 when we describe in depth the span
program for st-connectivity. Like span programs, re�ection programs lend
themselves well to compositions and transformations. We �nish the section
by explaining how to turn a positively λ-approximating re�ection program
into a negative one, and how to write span programs as re�ection programs.

Algorithms for re�ection programs We proceed in Section 3.4 with
providing an algorithm for positively λ-approximating re�ection programs
which is also applicable to span programs (since these are a special case of
re�ection programs). The algorithm generalizes the span program algorithm
in [IJ19] to re�ection programs and somewhat simpli�es the analysis by fol-
lowing the approach of [Chi21].

Finally, we provide two new algorithms that generate the optimal positive
witness for x in a re�ection program R. In the span programs setting, that
is the smallest vector |wx〉 ∈ H(x) such that A|wx〉 = |τ〉. These are the �rst
span program algorithms of their kind, and the �rst to have quantum output.
In Section 5.7 we will use one of these algorithms on the st-connectivity span
program to �nd an st-path that outperforms all known quantum algorithms
for path-�nding and the classical query lower bound for the problem it solves.

The original contributions in this chapter are contained in Section 3.3

3.2. SPAN PROGRAMS 41

and Section 3.4. Only Section 3.2.2 within Section 3.2 is strictly necessary
to understand these results, but we include the others for context and in the
interest of giving a complete account of how span programs have appeared
in the �eld of quantum computing.

3.2 Span programs

3.2.1 Span programs: a �rst de�nition

We begin by de�ning a span program in the manner of [Rei09]. There, span
programs are de�ned as tuples formed by a vector space V over C, a target
vector |τ〉 ∈ V and a set of input vectors {|vi〉}i∈I ⊆ V over an index set I,
or rather, a subset I(x) ⊆ I that depends on x ∈ [q]n.

De�nition 20 (Span program [Rei09]). Let n, q ∈ N, [q]n. A span program
P over [q]n is a tuple P = (|τ〉,V , I, {|vj〉}j∈I) where |τ〉 ∈ V is called the
target vector, V is a �nite-dimensional inner product space over C and the
vectors in {|vj〉}j∈I are called input vectors. The index set I is the disjoint
union I = Ifree t

⊔
i∈[n],b∈[q] Ii,b for some sets Ifree and Ii,b, and given an input

x = (x1, . . . , xn) ∈ [q]n, the subset I(x) is de�ned as I(x) = Ifree t
⊔
i∈[n] Ii,xi .

We say P computes the total function fP : [q]n → {0, 1} de�ned by

fP (x) =

{
1 if |τ〉 ∈ span {|vj〉 : j ∈ I(x)}
0 otherwise.

(3.1)

The vectors in {|vj〉 : j ∈ I(x)} are called available vectors, and so the
function f reduces to �Is |τ〉 in the span of available vectors?�. Let us look
at the index sets I and I(x) more closely. For every coordinate i ∈ [n] and
possible value b ∈ [q], we have a set of indices Ii,b. We might have some other
indices that are available to all inputs which make the free set Ifree. An input
x = (x1, . . . , xn) makes available the index sets Ii,xi for i ∈ [n], which form
the available index set I(x), meaning that all vectors |vj〉 with indices in the
available set may be used to construct |τ〉.

The intuition that connects span programs to quantum query complexity
is that an input oracle Ox acting as Ox|i, b〉 = |i, b ⊕ xi〉, acts on the space
CI �typically spanned by vectors |i, b〉, i ∈ [n], b ∈ [q]� by �marking� the
vectors corresponding to available indices. Classically, we would say that the

42 CHAPTER 3. THEORY OF SPAN PROGRAMS

available index set is built by querying the input. Quantumly, the intuition
is that Ox gives us access to CI(x) in some way.

The space CI generated by the index set is much more important than
it looks. The algorithms we mention in Section 3.2.3 for span programs in
this formulation operate on CI , rather than V , and the positive and negative
witness sizes that we will de�ne presently are computed in CI . First, let us
de�ne a pair of maps ancillary to those de�nitions.

A : CI → V Π(x) : CI → CI

A|j〉 = |vj〉 Π(x) =
∑

j∈
⊔
i∈[n] Ii,xi
tIfree

|j〉〈j|. (3.2)

The �rst map makes explicit the correspondence between inputs and input
vectors, while the second selects the indices that are available for a given
input x. We de�ne witness sizes as follows:

De�nition 21 (Witness sizes [Rei09]). Consider a span program P over [q]n,
and let fP be the function de�ned in Equation (3.1). For each input x ∈ [q]n,
we de�ne its witness size as follows:

� If fP (x) = 1, there exists a state |w〉 ∈ CI such that AΠ(x)|w〉 = |τ〉.
Such state is called a positive witness. Then,

wsize(P, x) = min{‖|w〉‖2 : AΠ(x)|w〉 = |τ〉}. (3.3)

� If fP (x) = 0, then one can show that there always exists a witness
|w′〉 ∈ V such that 〈w′|τ〉 = 1 but 〈w′|AΠ(x) = 0. Such vector is called
a negative witness. Then,

wsize(P, x) = min{‖A†|w′〉‖2 : 〈w′|τ〉 = 1, 〈w′|AΠ(x) = 0}. (3.4)

The witness size of P , also known as the span program complexity of P , is
de�ned as:

wsize(P) = max
x∈[q]n

wsize(P, x). (3.5)

We de�ne positive and negative witnesses for every input to the total
function fP from Equation (3.1), which is in some sense the natural function

3.2. SPAN PROGRAMS 43

of P . But P can also decide any partial functions of fP , that is, functions f :
X ⊆ [q]n → {0, 1} such that f(x) = fP (x) for all x ∈ X, just by restricting
the inputs to X. These are promise versions of the decision problem on fP ,
which might have smaller witness size. For such a partial function we de�ne
the span program complexity of f with respect to P as:

wsize(f, P) = max
x∈X
{wsize(x, P)} . (3.6)

In [Rei09], Reichardt de�nes the witnesses with costs associated to evalu-
ating di�erent inputs. This can be easily incorporated in this de�nition and
all the following by changing the norm in which the witness size is evaluated
from ‖ · ‖2 to ‖S · ‖2 where S is a matrix of weights diagonal in the compu-
tational basis of CI and constant among all indices j consistent with a given
coordinate i, i.e. all j ∈

⊔
b∈[q] Ii,b. That said, we will forget costs of inputs

and assume that all inputs are uniform in cost for the rest of this thesis.
At this point we want to make a few key observations to motivate the

next de�nition.

1. First, it looks like CI is more important than V and that it supersedes
I itself.

2. Any two legs of the trio 〈input set � input vectors � A : CI → V〉
determines the third.

3. According to these de�nitions, V need not be an inner-product space,
just a vector space. In fact, [Rei09, Lemma 4.12] says that the span
program complexity is invariant under any linear transformations of |τ〉
and {|vi〉}i∈I . Therefore, the norms of |τ〉 and {|vi〉}i∈I do not matter,
only their relation to each other, and the norm of vectors in CI (which
remains invariant under transformations of V), matter.

3.2.2 An alternative de�nition of span programs

We have talked about the caveats of De�nition 20, mainly that the impor-
tance of the input space CI is understated and the importance of V is over-
stated. In that de�nition, the input vectors {|vj〉}j∈I are the ones that are
chosen by the user (along with the target), while the index set is derived
from the input vectors. This can create confusion because it is not in V but
in CI where the witnesses live and their norm is computed. The emphásis

44 CHAPTER 3. THEORY OF SPAN PROGRAMS

is on the wrong sylláble. In this setting, the map A is entirely descriptive,
i.e. it is determined by the choice of input vectors. A better de�nition for
span programs would be one that puts the input space front and center. In
this new de�nition, the map A becomes normative, meaning that the user
chooses the index vectors |j〉 and the map A, and the vectors {|vj〉}j become
determined by these two things.

In this section we follow [IJ19] and rede�ne span programs by introducing
an inner product space H that takes the role of CI and a map A : H → V
that replaces the choice of input states {|vj〉}j∈I . The advantage of this
change of perspective is that it gives us tools to better study the anatomy
of witnesses and de�ne approximate versions of them. This is crucial in
Chapter 4 when we describe span programs for two-sided, bounded-error
algorithms. Additionally, the shift from input vectors to span program map
A has the advantage that linear maps are more structured than sets. This
will become obvious later when we describe algorithms for span programs
and their time complexity, where the span program map A and its kernel
will play a crucial role.

Following [IJ19], we de�ne a span program for evaluating a decision prob-
lem as follows.

De�nition 22 (Span program). A span program P = (H,V , A, |τ〉) on [q]n

consists of:

1. A �nite-dimensional inner-product space H that decomposes as

H = H1 ⊕ · · · ⊕ Hn ⊕Htrue ⊕Hfalse,

where each Hi, i ∈ [n], decomposes further as Hi =
∑

b∈[q]Hi,b.
2. A vector space V .
3. A linear operator A ∈ L(H,V).
4. A target vector |τ〉 ∈ V .

With each string x ∈ {0, 1}n, we associate the subspace

H(x) = H1,x1 ⊕ · · · ⊕ Hn,xn ⊕Htrue.

This de�nition is equivalent to that of Section 3.2.1 except for one thing.
By demanding that Hi =

∑
b∈[q]Hi,b rather than Hi =

⊕
b∈[q]Hi,b we save

a factor of log q in the correspondence between query complexity and span

3.2. SPAN PROGRAMS 45

program complexity, see [Jef14].

Intuitively, a span program encodes the question �Is |τ〉 ∈ A(H(x))?�. To
answer this question in the a�rmative, it is su�cient to provide a preimage
of |τ〉 under A in H(x), called a positive witness. In the negative case, one
would like to �nd an object, called a negative witness, that precludes the
existence of such a positive witness. In the previous de�nition, fP (x) = 1 i�
|τ〉 is a combination of available vectors, and one would expect the positive
witness that certi�es this to be that combination of available vectors, but
it is not. Positive witnesses are de�ned as linear combinations of indices in
j ∈ I(x) whose vectors |vj〉 sum up to |τ〉. Confusing indeed. The present
formulation of span program addresses that confusion. We formally de�ne
witnesses and witness sizes in [IJ19] notation as:

De�nition 23 (Positive and negative witnesses). Fix a span program P =
(H,V , A, |τ〉) and an input x ∈ [q]n. We call a vector |w〉 ∈ H a positive
witness for x if |w〉 ∈ H(x), and A|w〉 = |τ〉. If there exists a positive
witness for x, the positive witness size of x is

w+(x, P) = w+(x) := min
|w〉∈H(x)

{‖|w〉‖2 : A|w〉 = |τ〉},

and w+(x) =∞ otherwise. We say that |ω〉 ∈ V is a negative witness for x if
〈ω|AΠH(x) = 0 and 〈ω|τ〉 = 1. If there exists a negative witness, the negative
witness size of x is

w−(x, P) = w−(x) := min
|ω〉∈V
{‖〈ω|A‖2 : 〈ω|AΠH(x) = 0, 〈ω|τ〉 = 1},

and w−(x) =∞ otherwise.

This de�nition is the analogue of De�nition 20 restated in the new formal-
ism and in greater detail. We de�ne the set of positive and negative inputs
of P , respectively, as:

P1 := {x ∈ [q]n : w+(x) <∞}, P0 := {x ∈ [q]n : w−(x) <∞}.

It can be shown that every string x has either a positive or a negative
witness, but never both, hence P0 ∪ P1 = [q]n and P0 ∩ P1 = ∅. Therefore,
the span program P decides the total function

fP (x) =

{
1 if x ∈ P1

0 if x ∈ P0

.

46 CHAPTER 3. THEORY OF SPAN PROGRAMS

This is the same function as the one de�ned in Equation (3.1). As we dis-
cussed in the previous section, any partial function f : X ⊆ [q]n → {0, 1}
such that f(x) = fP (x) for all x ∈ X is also decided by P .

De�nition 24 (Span program complexity). Let P = (H,V , A, |τ〉) be a span
program on [q]n, and let f : X → {0, 1} be a function decided by P . Let
W−(f, P) := maxx∈f−1(0)w−(x, P) be the negative complexity of P , and let
W+(f, P) := maxx∈f−1(1)w+(x, P) be the positive complexity of P . Then,
the span program complexity of P with respect to f is de�ned as:

C(f, P) =
√
W−(f, P)W+(f, P).

It is not obvious that this quantity is the same as the span program
complexity wsize(f, P) from Equation (3.6). There, the complexity is de�ned
as

wsize(f, P) = max
x∈X
{wsize(f, P)} = max{W−(f, P), W+(f, P)}.

Strictly speaking, wsize(f, P) ≥ C(f, P), but we can modify the span pro-
gram P in either formalism by rescaling the target |τ〉 7→ α|τ〉. This multi-
plies all positive witnesses sizes by α2 and all negative witness sizes by 1/α2.
Choosing α = (W−(f, P)/W+(f, P))1/4 we obtain

wsize(f, P ′) = max{α2W+(f, P), 1/α2W−(f, P)} =
√
W−(f, P)W+(f, P).

This transformation doesn't a�ect the class of functions decided by P , nor
the new span program complexity C(f, P). Hence, choosing the right scaling
of |τ〉 (which we can do because norms in V don't matter) renders both
de�nitions of span program complexity equal. From this point on we will
stick to C(f, P) =

√
W−W+.

The concept of witness is qualitatively similar to that of a certi�cate, in
the sense that its existence is proof that the instance is either positive or
negative, and the bigger the witness that certi�es that, the harder it is to
�nd. This justi�es the notion that the larger the witness sizes, the bigger
the span program complexity is. But why do we de�ne the span program
complexity in this way? Why the square root? Why not W− +W+?

The reason is (and we will come back to this again and again) that the
smallest span program complexity C(f, P) out of all span programs P that
decide f equals the quantum query complexity of f , up to constant factors.
That is because every span program corresponds to a dual adversary solu-
tion (See Section 3.2.3), and for every span program P we can construct

3.2. SPAN PROGRAMS 47

a quantum algorithm with query complexity O(C(f, P)) (and we will, in
Section 3.4).

Approximate span programs As [IJ19] illustrates, it can be advanta-
geous to relax the constraints in De�nition 23 and simply require that the
target be su�ciently close to A(H(x)) for an instance x to be considered
positive, or so close to having a valid negative witness that the input is con-
sidered negative. Since there is no meaningful distance in V , the notion of
closeness has to be de�ned in H. The de�nitions we give of approximate
witnesses come from [Jef20] and improve on the original ones given in [IJ19].
We defer their in-depth discussion to Section 3.3.

De�nition 25 (Approximate positive witness size [Jef20]). For any span
program P on [q]n and x ∈ [q]n, we de�ne the λ-approximate positive witness
size of f as

w̃+(x, f) = min

{
‖|w〉‖2 : A|w〉 = |τ〉,

∥∥ΠH(x)⊥ |w〉
∥∥2 ≤ λ

W−(f, P)

}
.

If the set over which we minimize is empty, we say that w̃+(x, f) =∞.

Any vector yielding a solution to this minimization problem is called
an approximate positive witness, where λ is implicit. Note that if λ = 0 we
recover the usual de�nition of positive witness size, and that if

∥∥ΠH(x)⊥|w〉
∥∥ >

0 for every positive witness |w〉, there exists an exact negative witness.
The approximate negative witnesses are de�ned in a somewhat similar

fashion by relaxing the requirement that the witnesses be orthogonal toH(x).

De�nition 26 (Approximate negative witness size [Jef20]). For any span
program P on [q]n and x ∈ [q]n, we de�ne the λ-approximate negative witness
size as

w̃−(x, P) = min

{
‖〈ω|A‖2 : 〈ω|τ〉 = 1,

∥∥〈ω|AΠH(x)

∥∥2 ≤ λ

W+(f, P)

}
.

If the set over which we minimize is empty, we say that w̃−(x, f) =∞.

Like before, we call a vector solving this minimization an approximate
negative witness. If

∥∥〈ω|AΠH(x)

∥∥ > 0 for all approximate negative witnesses
〈ω|, there exists an exact positive witness.

48 CHAPTER 3. THEORY OF SPAN PROGRAMS

These relaxations of the notions of positive and negative witness give rise
to the concept of approximate span programs, which allow a span program to
decide a broader class of functions, (see De�nition 39). This does not mean
that approximate span programs are a more powerful model of computation.
Every two-outcome function f admits an exact (as in non-approximate) span
program deciding it that can be turned to an algorithm with optimal query
complexity. But extending the range of functions that a span program decides
can (and will) be very useful. We de�ne these things formally in Section 3.3.3.

Minimal witness and normalization The notion of positive and nega-
tive witnesses need not be tied to speci�c inputs x ∈ [q]n. For a given span
program P = (H,V , A, |τ〉), a positive witness is any vector |w〉 ∈ H such
that A|w〉 = |τ〉. Moreover, assuming that a positive witnesses |w〉 exists, it
is a simple exercise to show that the set W of positive witnesses is exactly

W = {|w〉+ |h〉 : |h〉 ∈ kerA}.

Let A+ be the Moore-Penrose pseudo-inverse of A. Then A+|τ〉 is the unique
shortest vector in W and the only one orthogonal to kerA (another simple
exercise). Therefore, all witnesses are actually of the form |w〉 = A+|τ〉+ |h〉
for some |h〉 ∈ kerA. This vector will be crucial in our analysis of span
programs, re�ection programs and the algorithms for them.

De�nition 27 (Minimal witness, [IJ19]). Let P = (H,V , A, |τ〉) be any
span program. We de�ne the minimal positive witness |w0〉 to be the unique
shortest positive witness in P for |τ〉. That is, |w0〉 = A+|τ〉. We de�ne the
minimal witness size to be ‖|w0〉‖2.

A span program is normalized if ‖|w0〉‖2 = 1. It is possible to scale all
positive witnesses by a factor of α by rede�ning the target to be |τ ′〉 = α|τ〉.
This would also scale all negative witnesses by a factor 1/α, which leaves the
span program complexity

√
W+W− invariant. This way we can normalize any

span program by rede�ning |τ ′〉 = |τ〉/‖|w0〉‖2. However, it is also possible
to normalize and scale a span program independently (see [IJ19, Theorem
2.14]). This is necessary for the algorithms presented there but will not play
any role in the algorithms we de�ne in Section 3.4.

Span programs and quantum algorithms Span programs are confus-
ing. They encode a function f in terms of a geometric question �Is |τ〉 in

3.2. SPAN PROGRAMS 49

A(H(x))?�, but their complexity also corresponds to the query complexity of
an algorithm that decides f . Moreover, the smallest complexity corresponds
to the query complexity of f . �That's a lot to process, please explain�.

When we say that we can construct an algorithm for a function f out of
a span program that decides f with complexity O(C(f, P)), we mean that
we can use the parts of P = (H,V , A, |τ〉) to make a quantum algorithm. It
works like this.

Recall that all positive witnesses are of the form |w〉 = |w0〉+|h〉, including
positive witnesses |wx〉 for x ∈ f−1(1), which are of that form and such that
|wx〉 ∈ H(x). In other words, if f(x) = 1, |w0〉 = |wx〉−|h〉 where |wx〉 ∈ H(x)
and |h〉 ∈ kerA. In fact we can show that |w0〉 ∈ H(x) + kerA i� f(x) = 1.
If f(x) = 0, then |w0〉 ∈ H⊥(x) ∩ (kerA)⊥. So the crux of the algorithm is
in distinguishing |w0〉 ∈ H(x) + kerA from |w0〉 ∈ H⊥(x) ∩ (kerA)⊥.

All span program algorithms make queries to a unitary U(x, P) = (2ΠkerA−
I)(2ΠH(x) − I) by running phase estimation and/or amplitude ampli�ca-
tion on U(x, P) with initial state |w0〉 (or some variants thereof) to dis-
tinguish those two cases. The number of calls to U(x, P) being (drumrolls)
O(C(f, P)). Moreover, this unitary can be implemented with a single quan-
tum query to x.

To show that all this is true and works and extends to approximate span
programs, we present an in-depth analysis of the geometrical meaning of wit-
nesses, witness sizes and approximate witnesses in Section 3.3 in the context
of re�ection programs. This will be followed by an algorithm that decides
any approximate re�ection program.

In the next section we explain the connection between span programs and
dual adversary solutions (whatever they are), and why that implies that the
smallest possible span program complexity of a function f equals its query
complexity, up to constant factors. We then give a brief exposition of span
program algorithms in the literature before diving into re�ection programs.

3.2.3 A few algorithms for span programs

As we have started to see, and will become clear in Section 3.3.2, span pro-
grams are a natural way of expressing decision problems in terms of linear
algebra. This model of computation has evolved over time to include non-
Boolean input alphabets and alternative notations. We have already said
that span programs give rise to algorithms and that they correspond to dual
adversary solutions. Let's explain the second claim �rst and then focus our

50 CHAPTER 3. THEORY OF SPAN PROGRAMS

attention to how span programs have been turned into algorithms in the
literature.

The adversary bound ADV ±(f) [Amb02; HLS07] is a semi-de�nite pro-
gram (SDP) whose feasible solutions give lower bounds for the quantum
query complexity of a function f : X ∈ [q]n → {0, 1} over �nite alphabet [q].
Its dual is the SDP:

ADV ±(f) =min max
z∈X

∑
j∈[n]

〈ψj,z|ψj,z〉 (3.7)

s.t.
∑

j:xj 6=yj

〈ψj,x|ψj,y〉 = 1 ∀x ∈ f−1(1), y ∈ f−1(0),

|ψj,z〉 ∈ Cm for some m ∈ N,∀j ∈ [n], z ∈ X ⊆ [q]n.

Each set {|ψj,z〉}j,z satisfying the constraints of Eq. (3.7) is called a dual
adversary solution and exactly corresponds to a span program P that decides
f in what is known as canonical form. Moreover, the objective value of the
dual adversary solution, maxz∈D

∑
j∈[n]〈ψj,z|ψj,z〉, equals the span program

complexity for f , C(f, P). See [Rei09] or [Chi21] for a proof of this fact.
This is a very profound result in and of itself. Yet, the most important

feature of span programs, the one that justi�es our interest, is not that a
span program encodes a decision problem, or a dual adversary solution. The
most important feature of span programs is that they can be used to compile
quantum algorithms for f with query complexity O(C(f, P)).

This was �rst observed by Reichardt [Rei09], who used this fact to show
that the adversary lower bound actually characterizes quantum query com-
plexity. It was already known that feasible solutions to the primal semi-
de�nite program were lower bounds on the query complexity of a Boolean
function f . Using the correspondence between dual adversary solutions, span
programs, and quantum algorithms, and the strong duality of the Adversary
Lower Bound, Reichardt showed that dual adversary solutions were algo-
rithms, and that the optimal solution to the primal and the dual was a tight
lower bound.

Among other things, this means that the quantum query complexity of a
function f is the minimum complexity of any span program computing f .

We show what the span program looks like for functions f with binary
inputs in our second notation. For non-binary alphabets, we refer to the
generalization in [Jef14, Section 7.1]. Let {|ψj,z〉}j,z be a dual adversary

3.2. SPAN PROGRAMS 51

solution that satis�es the constraints of Equation (3.7) with objective value
W , and F0 = f−1(0). We de�ne the span program P = (H,V , A, |τ〉) as:

H = span{|i, b, z〉 : i ∈ [n]× {0, 1} × [m]}, V = CF0

A =
∑
x∈F0
j∈[m]

|x〉〈j, x̄j|〈ψj,x|, |τ〉 =
1

3
√
W

∑
x∈F0

|x〉.

Then, it is shown in [Rei09] that P decides f with span program com-
plexity O(W). Several algorithms are possible now [Rei10], but what they
all have in common is that they make O(W) queries to a unitary Ux =
(2Πx − I)(2Λ − I), for some projectors Πx and Λ. The �rst re�ection,
(2Πx − I), is a re�ection around the subspace of available indices for x,
span{|i, xi〉} ⊗ Cm, and requires only two queries to the input oracle Ox,
while the other re�ection space is related to the Kernel of the map A and is
input independent.

In their endeavour to clarify and generalize span programs, Ito and Je�ery
introduced in [IJ19] a variant algorithm to evaluate approximate span pro-
grams. Their algorithm performs phase estimation of the unitary1 U(x, P) :=
(2ΠkerA − I)(2ΠH(x) − I) with initial state |w0〉, and then estimates the am-
plitude on a 0 phase to distinguish positive from negative inputs. At �rst,
their algorithm only works for normalized span programs and has complexity

Õ
(
W−(f,P)

(1−λ)3/2

√
Ŵ+(f, P)

)
, where Ŵ+(f, P) is the approximate positive wit-

ness complexity of f , and λ is the approximation factor (see Equation (3.16)
and De�nition 39). So they supplement it with a transformation that simul-
taneously normalizes a span program and scales its witnesses to obtain:

Lemma 28 ([IJ19], Corollary 3.7). Let P be a λ-approximating span pro-
gram for f : X ⊆ [q]n → {0, 1}. Then the quantum query complexity of

f is O
(

1
(1−λ)3/2

√
W−(f, P)W̃+(f, P) log 1

1−λ

)
. In particular, if P is an ex-

act span program for f , then the quantum query complexity of f is at most
O
(√

W−W+

)
.

1U(x, P) and Ux are not the same unitary, although they are intimately related.

52 CHAPTER 3. THEORY OF SPAN PROGRAMS

In Section 3.4 we present a generalization of this algorithm for re�ection
programs that bypasses the scaling procedure by baking it into the algorithm.

Using standard algorithmic techniques, Ito and Je�ery were also able to
modify their algorithm for decision problems and turn it into an algorithm
that estimates the positive or negative witness size of an input. We will need
this result later in Section 5.3.1, so we might as well introduce it now. The
algorithm is based on the direct connection between the minimal witness
|w0〉, the 0 phase eigenspace of U(x, P) and the negative witness size that we
will discuss in Section 3.3.2.

Theorem 29 ([IJ19], Theorem 2.8). Let U(x, P) = (2ΠkerA−I)(2ΠH(x)−I).
Fix X ⊆ [q]n and f : X → R≥0. Let P be a span program on [q]n such that for

all x ∈ X, f(x) = w−(x, P) and de�ne W̃+ = W̃+(P) = maxx∈X w̃+(x, P).
Then there exists a quantum algorithm that estimates f to accuracy ε and

that uses Õ
(

1
ε3/2

√
w−(x)W̃+

)
queries.

Similarly, let P be a span program such that for all x ∈ X, f(x) =

w+(x, P), and de�ne W̃− = W̃−(P) = maxx∈X w̃−(x, P). Then there exists a
quantum algorithm that estimates f to accuracy ε and uses

Õ
(

1
ε3/2

√
w+(x)W̃−

)
queries.

3.3 Re�ection programs

In this section we present an abstraction of span programs, called re�ection
programs, that constitutes our �rst original contribution to the �eld. Re�ec-
tion programs are a strict generalization of span programs. They originate
from the authors' desire to strip a span program of its non-algorithmic parts
so that we can build intuition towards constructing an algorithm.

First, we de�ne re�ection programs and witnesses in Section 3.3.1 and
give geometrical and operational interpretations in Section 3.3.2. Then we
de�ne approximate witnesses in Section 3.3.3 and give an intuition on re-
�ection programs approximating functions before deriving some important
characterizations of approximate and exact witnesses.

We top o� the section with a transformation that turns approximate and
exact positive witnesses into negative ones and vice versa, and comment on
the connection between re�ection and span programs.

3.3. REFLECTION PROGRAMS 53

3.3.1 De�nitions

We've already motivated re�ection programs, so let's de�ne them.

De�nition 30 (Re�ection program). Fix X ⊆ [q]n. A re�ection program
R = (H, {H(x)}x∈X ,K, |w0〉) on X consists of:

1. A �nite-dimensional inner-product space H.
2. A subspace H(x) ⊆ H for every x ∈ X.
3. A subspace K ⊆ H.
4. A unit vector |w0〉 ∈ K⊥.

Moreover, we say that R evaluates a function f : X → {0, 1}, if

f(x) = 1⇔ |w0〉 ∈ K +H(x).

At �rst it seems like most elements in this de�nition have changed with
respect to De�nition 22. This is not as dramatic a change as it seems. We
have kept the space H but disposed of the space V , the target |τ〉 and the
map A. That is because we don't need them to make an algorithm. All
the algorithms we will present, and all algorithms in the literature, operate
on H and only ever use re�ections around H(x), kerA and the state |w0〉.
As we will shortly see, the relations between |τ〉, A and the witnesses in
De�nition 23 can be lifted to relations exclusively in H between H(x), kerA,
|w0〉 and appropriately de�ned witnesses.

For this reason we have substituted kerA by K and |τ〉 by |w0〉 in the
de�nitions.

We have also generalized the way in which the spaces H(x) sit inside
H and left this map x 7→ H(x) as a component of the re�ection program
chosen by the user. Of course, this map is also de�ned for span programs in
De�nition 22, but we don't include it as a component to the span program
because it follows from the decomposition of H there. Last but not least,
we now de�ne re�ection programs over domains X ⊆ [q]n, rather than all
[q]n. That is because we have lifted any and all restrictions on how H(x)
sits in H. It might be that we can de�ne these spaces for all x ∈ X without
having to determine what H(x) is for x ∈ [q]n \X. In span programs, H(x)
is constructed in such a way that we can re�ect around it with one quantum
query to x. In re�ection programs we loose the straightforward relation
between query complexity and re�ection program complexity.

54 CHAPTER 3. THEORY OF SPAN PROGRAMS

We have restricted ourselves to subsets X ⊆ [q]n out of laziness but there
is nothing stopping X from being any �nite set. It is even possible that under
certain conditions, X could be an in�nite set2 and our proofs would still
hold. Would that be a way to make quantum algorithms deciding functions
with continuous input and binary output? That is a very interesting open
question.

Just like in the case of span programs, we can give de�nitions for positive
and negative witnesses. These positive and negative witnesses have very
clear geometric interpretations, which lead to a clearer understanding of the
re�ection program algorithm, and thus, the span program algorithm, which
is a special case.

De�nition 31 (Positive and negative re�ection witnesses). Fix an arbitrary
x ∈ X.

1. A positive witness is a vector |wx〉 ∈ H(x), such that |w0〉 − |wx〉 ∈ K.
Such a vector exists if and only if |w0〉 ∈ K +H(x).
We de�ne the positive witness size of x as:

w+(x,R) = min{‖|wx〉‖2 : |wx〉 ∈ H(x), |w0〉 − |w〉 ∈ K}.

2. A negative witness is a vector |ωx〉 ∈ H(x)⊥ ∩ K⊥, with the property
that 〈ωx|w0〉 = 1. Such a vector exists if and only if |w0〉 6∈ K +H(x).
We de�ne the negative witness size of x as:

w−(x,R) = min{‖|ω〉‖2 : |ωx〉 ∈ H(x)⊥ ∩ K⊥, 〈ω|w0〉 = 1}.

As was the case with span programs, R splits X into two parts:

P1 = {x ∈ X : |w0〉 ∈ K +H(x)} P0 = {x ∈ X : |w0〉 /∈ K +H(x)}.

R decides any function f : D ⊆ X → {0, 1} such that f−1(0) ⊆ P0 and
f−1(1) ⊆ P1. We de�ne the positive and negative complexity of R as:

W+(R) = max
x∈P1

w+(x,R) and W−(R) = max
x∈P0

w−(x,R), (3.8)

2My money is on Compact Hausdor�. It's always Compact Hausdor�.

3.3. REFLECTION PROGRAMS 55

Positive instances (f(x) = 1) Negative instances (f(x) = 0)

Figure 3.1: Representation of the subspace generated by H(x) and K, the
space of positive witnesses W , and the relevant vectors |w0〉, |wx〉 and |ωx〉.

and we de�ne the positive and negative re�ection program complexities of f
as:

W+(f,R) = max
x∈f−1(1)

w+(x,R) and W−(f,R) = max
x∈f−1(0)

w−(x,R).

(3.9)

In Figure 3.1 we can see visualizations of positive and negative witnesses.
They seem to suggest that the positive and negative witnesses can be seen
as a vector proportional to the projection of |w0〉 on H(x) and K⊥ ∩ H(x)⊥

respectively. Such claim is not true for the positive witness (as we shall see in
the next section), because representing K and H(x) as 1-dimensional spaces
oversimpli�es the problem. Our intuition of negative witnesses, on the other
hand, turns out to be true, and gives rise to the following characterization of
the negative witnesses and negative witness size.

Claim 1. Let |ωx〉 be a minimal-size negative witness for x ∈ X. Then

|ωx〉 =
ΠK⊥∩H(x)⊥ |w0〉
‖ΠK⊥∩H(x)⊥ |w0〉‖2 and w−(x,R) = ‖ΠK⊥∩H(x)⊥ |w0〉‖−2.

Proof. Let |ω〉 ∈ H(x)⊥ ∩ K⊥ be a negative witness. Since 1 = 〈ω|w0〉 =
〈ω|ΠH(x)⊥∩K⊥ |w0〉, any component of ω that is not parallel to ΠH(x)⊥∩K⊥|w0〉
does not contribute to making 〈ω|w0〉 = 1. We conclude that the optimal
negative witness must be parallel to ΠH(x)⊥∩K⊥|w0〉. Its norm is then deter-
mined by the condition 〈ω|w0〉 = 1.

56 CHAPTER 3. THEORY OF SPAN PROGRAMS

3.3.2 Operational interpretations

Together with the geometric interpretation of witnesses, we also give an op-
erational interpretation based on what we call the re�ection program unitary.
This is a unitary operator similar to the span program unitary in [IJ19]. Let
R be a re�ection program over X ⊆ [q]n. For every x ∈ X, we de�ne:

U(x,R) =
(
2ΠH(x) − I

)
(2ΠK − I) . (3.10)

Any unitary U(x,R) has a eigenvalue decomposition:

U(x,R) =
d∑
j=1

e±iϕj |ϕj〉〈ϕj|,

for some d and some states |ϕj〉. By Jordan's Lemma (Lemma 1), a unitary
operator that is a product of two re�ections naturally splits H into three
di�erent parts:

1. The (+1)-eigenspace, or 0-phase space:

E0 = (K ∩H(x))⊕ (K⊥ ∩H(x)⊥).

2. The (−1)-eigenspace, or π-phase space:

Eπ = (K ∩H(x)⊥)⊕ (K⊥ ∩H(x)).

3. Everything else, which we refer to as the remaining space: Erem :=
span{|ϕ〉 : U(x,R)|ϕ〉 = eiϕ|ϕ〉, ϕ 6= 0, π}.

Also from Jordan's lemma follows that Erem can be completely decomposed
into two-dimensional subspaces, on which U(x,R) acts as a rotation operator.
For every eigenphase ϕ ∈ (0, π), then all these two-dimensional subspaces are
of the form Eϕ := Eϕ+ ⊕ E−ϕ− as de�ned in Section 2.1.1, and the angle of
rotation in these subspaces is ϕ. We refer the reader to Lemmas 1 and 3 for
further detail on the de�nitions of these eigenvectors and spaces.

We let Φ be the random variable whose probability distribution is given
by the outcome distribution of the phase estimation algorithm of Theorem 9,
if we were to run it with U(x,R) on |w0〉, with in�nite precision. In other
words,

P(Φ = ϕ) =
∥∥ΠEϕ |w0〉

∥∥2
. (3.11)

3.3. REFLECTION PROGRAMS 57

Let x ∈ f−1(0), by Claim 1 we readily �nd:

w−(x,R)−1 =
∥∥ΠK⊥∩H(x)⊥|w0〉

∥∥2
= ‖ΠE0|w0〉‖2 = P (Φ = 0) .

The operational interpretation of w+(x,R) will require a bit more work
and will depend critically on the results of Lemma 3 and Corollary 4, which
imply that H(x) and K decompose nicely into the (+1) and (−1)-eigenspaces
of U(x,R) and the 2-D spaces Eϕj . For convenience, we restate them now
without proof and rewritten in the language of re�ection programs.

Lemma 32. Let ϕj > 0, j ∈ [d] for some d, be the positive eigenphases of
U(x,R) in (0, π), Eϕ := Eϕ+ ⊕ Eϕ− be the 2-dimensional spaces spanned by
(±ϕ)-eigenphase eigenvectors of U(x,R), and let E0, Eπ be the 0-phase and
π-phase eigenspaces of U(x,R). Then,

H(x) = (H(x) ∩ E0)
d⊕
j=1

(
H(x) ∩ Eϕj

)
⊕ (H(x) ∩ Eπ)

Corollary 33. Let ϕj > 0, j ∈ [d] for some d, be the positive eigenphases of
U(x,R) in (0, π), Eϕ := Eϕ+ ⊕ Eϕ− be the 2-dimensional spaces spanned by
(±ϕ)-eigenphase eigenvectors of U(x,R), and let E0, Eπ be the 0-phase and
π-phase eigenspaces of U(x,R). Then,

K = (K ∩ E0)
d⊕
j=1

(
K ∩ Eϕj

)
⊕ (K ∩ Eπ) ,

and

K⊥ =
(
K⊥ ∩ E0

) d⊕
j=1

(
K⊥ ∩ Eϕj

)
⊕
(
K⊥ ∩ Eπ

)
.

With these, we are ready to give an operational characterization of the
positive witness both in terms of the eigenphases of U(x,R), and in geomet-
rical terms.

Lemma 34. Let R be a re�ection program on X ⊆ [q]n, and x a positive
instance of R, that is, |w0〉 ∈ K + H(x). Let Φ be the random variable
distributed according to Equation (3.11). Then,

w+(x,R) = E

[
1

sin2
(

Φ
2

)] .

58 CHAPTER 3. THEORY OF SPAN PROGRAMS

Proof. By Lemma 32 we have that H(x) decomposes nicely into its intersec-
tion with the rotation spaces and the (±1)-eigenspaces of U(x,R). Hence, we
break the optimization problem in the de�nition of w+(x,R) in the following
way:

w+(x,R) = min{‖|w〉‖2 : |w〉 ∈ H(x), |w0〉 − |w〉 ∈ K}
= min{‖|w〉‖2 : |w〉 ∈ H(x),ΠK⊥ |w〉 = |w0〉}

= min

‖|u〉+ |v〉+ |w〉‖2 :

|u〉 ∈ H(x) ∩ E0,
|v〉 ∈ H(x) ∩ Eπ,
|w〉 ∈ H(x) ∩ Erem,
ΠK⊥(|u〉+ |w〉+ |v〉) = |w0〉

.

(3.12)

Observe now that the last condition can be written as:

ΠK⊥(|u〉+ |w〉+ |v〉) = (ΠE0 + ΠErem
+ ΠEπ) |w0〉.

Observe, too, that on the one hand E0 ∩ H(x) = K ∩ H(x), so ΠK⊥|u〉 = 0,
and since |w0〉 ∈ K ⊕ H(x) = (K⊥ ∩ H(x)⊥)⊥ and |w0〉 ∈ K⊥, then |w0〉 is
perpendicular to both subspaces in E0 and ΠE0|w0〉 = 0. On the other hand
we have that |v〉 ∈ Eπ ∩ H(x) = K⊥ ∩ H(x) so |v〉 ∈ K⊥ and ΠK⊥|v〉 = |v〉.
All things considered, we have that this last condition reduces to:

ΠK⊥|w〉+ |v〉 = (ΠErem
+ ΠEπ) |w0〉.

On the right-hand side we have two vectors, ΠErem
|w0〉 and ΠEπ |w0〉 which

are clearly orthogonal to each other because one is in Erem and the other is
in Eπ. On the left hand we have also two vectors, |v〉 and ΠK⊥|w〉, and, by
de�nition, |v〉 ∈ Eπ. If we could show that the other vector is in Erem, then
we could split this constraint into two independent ones relating to |v〉 and
|w〉 respectively. Again, Corollary 33 comes to our aid by asserting that Erem

is an invariant subspace of ΠK⊥ , meaning that ΠK⊥|w〉 ∈ ΠErem
.

Let us summarize what we have done up to this point. We have split
the minimization problem in the de�nition of the positive witness into two
independent minimization problems of the form

w+(x,R) = min{‖|w〉‖2 : |w〉 ∈ H(x) ∩ Erem,ΠK⊥|w〉 = ΠErem
|w0〉}

+ min{‖|v〉‖2 : |v〉 ∈ H(x) ∩ Eπ, |v〉 = ΠEπ |w0〉}.

3.3. REFLECTION PROGRAMS 59

Observe that in fact Erem is the direct sum of spacesEϕj , and by Lemma 32
we haveH(x)∩Erem =

⊕d
j=1(H(x)∩Eϕj). That, in turn, means that the �rst

term in the right-hand side of the last equation splits into several independent
minimization problems, leading us to the expression

w+(x,R) =
∑
j

min{‖|w〉‖2 : |w〉 ∈ H(x) ∩ Eϕj ,ΠK⊥|w〉 = ΠEϕj
|w0〉}

+ ‖ΠEπ |w0〉‖2 .

Figure 3.2: How fortunate that Jordan's Lemma gives us two-dimensional
subspaces to draw neatly and accurately.

Let us now �x a single eigenphase of U(x,R), ϕ ∈ (0, π). By Jordan's
Lemma the space Eϕ is a two dimensional space spanned by the left- and
right-singular vectors of ΠKΠH(x) with singular value cos ϕ

2
, |θ〉 ∈ K∩Eϕ and

|ψ〉 ∈ H(x)∩Eϕ, which form an angle of ϕ
2
. Figure 3.3.2 depicts an accurate

representation of what is going on in that subspace.
Notice how ΠEϕ |w0〉 is still orthogonal to K, and the only solution to

the minimization problem is the vector denoted as ΠEϕ |wx〉 in the image.
To conclude with the proof we note that ΠK⊥ΠEϕ|wx〉 = ΠK⊥∩EϕΠEϕ|wx〉,
and since K ∩ Eϕ and H(x) ∩ Eϕ form an angle of ϕ/2 and ΠEϕ|wx〉 ∈

H(x) ∩ Eϕ, then
∥∥ΠEϕ |wx〉

∥∥2
=
‖ΠEϕ |w0〉‖2

sin2 ϕ
2

(the picture helps), so we arrive

60 CHAPTER 3. THEORY OF SPAN PROGRAMS

at the expression

w+(x,R) =
d∑
j=1

∥∥∥ΠEϕj
|w0〉

∥∥∥2

sin2 ϕj
2

+ ‖ΠEπ |w0〉‖2

=
∑
ϕ

P(Φ = ϕ)

sin2
(
ϕ
2

) = E

[
1

sin2
(

Φ
2

)] ,
where the sum is over all eigenphases ϕ of U(x,R).

From this operational interpretation of the positive witness size, we can
now deduce an upper bound on the probability of measuring a small phase
were we to perform the phase estimation procedure of Theorem 9 to U(x,R)
with initial state |w0〉 and in�nite precision. Take any δ ∈ (0, π), then by
Markov's inequality we have:

P(Φ ≤ δ) = P

(
1

sin2
(

Φ
2

) ≥ 1

sin2
(
δ
2

)) ≤ sin2

(
δ

2

)
E

[
1

sin2
(

Φ
2

)]

= sin2

(
δ

2

)
w+(x,R) ≤ δ2w+(x,R)

4
.

Of course, this is not a realistic process. A more realistic setting would be
to perform the phase estimation on U(x,R) with precision δ and accuracy ε
to |w0〉. If we now measured the phase register, the probability of observing
a phase ≤ δ would be upper bounded by P(Φ ≤ δ) + ε. Together with the
fact that for negative instances, the probability of measuring a phase ≤ δ
would be at least P(Φ = 0) = w−(x,R)−1 we could obtain an algorithm for
re�ection programs. We will not work out the details here since this analysis
does not account for approximate witnesses.

Using similar ideas it is possible to derive other identities such as

P(Φ = π) =
∥∥ΠK⊥∩H(x)|w0〉

∥∥2 and E
[
sin2

(
Φ

2

)]
=
∥∥ΠH(x)|w0〉

∥∥2
.

These identities don't mean anything algorithmically speaking because
the random variable Φ cannot be measured exactly, there is no such thing
as in�nite precision phase estimation. However, they illustrate the relation
between the decomposition of |w0〉 into eigenvectors of U(x,R), and how
|w0〉 sits in H geometrically. The algorithms that we will give in Section 3.4
exploit this connection.

3.3. REFLECTION PROGRAMS 61

3.3.3 Approximate re�ection programs

Geometrically speaking, the trait that distinguishes positive from negative
instances in a re�ection program is the fact that |w0〉 has a component in
K⊥ ∩H(x)⊥ in the latter case. The length of that component is then related
to the negative witness size and the probability of measuring zero if we do
phase estimation on U(x,R). This has the advantage of creating a clean
partition on X that we could exploit to make a quantum algorithm that
decides it. The �ip-side is that, just like exact span programs, the algorithm
decides only that one partition. If you want a di�erent one, you need to get
a di�erent re�ection program.

A natural way of extending the notion of re�ection programs to accom-
modate more decision problems to each re�ection program is to substitute
the requirement that |w0〉 ∈ K + H(x) by a closeness condition. We al-
ready started doing this in De�nition 22, but didn't go into detail. Partly,
that is because a full exposition of approximate span programs is found in
[IJ19; Jef20], and partly because we wanted to defer the discussion on ap-
proximation until after we had de�ned re�ection programs. Remember from
Section 3.2.2 that positive and negative witnesses can be de�ned indepen-
dently of the input x. For example, we could say that any vector |w〉 such
that ΠK⊥|w〉 = |w0〉 is a positive witness. However, we don't want to lose
track of H(x) since it is integral to the geometrical understanding of |w0〉
that we have built. It's �ne to lift the restriction that a witness |w〉 is in
H(x), but we should at least keep track of how far from H(x) it is.

In that spirit, let ε ≥ 0. Any vector |w̃〉 such that ΠK⊥ |w̃〉 = |w0〉 and∥∥ΠH(x)⊥|w̃〉
∥∥2 ≤ ε is called an ε-approximate positive witnesses for x in R.

The component of any approximate positive witness |w̃〉 in H(x)⊥ is called
the error of |w̃〉. The smallest possible error for an approximate positive
witness given an x is called the positive error, formally de�ned as:

De�nition 35 (Positive error). For any re�ection program R on X and any
x ∈ X, we de�ne the positive error of x as

e+(x,R) = min
{∥∥ΠH(x)⊥ |w̃〉

∥∥2
: |w̃〉 − |w0〉 ∈ K

}
.

In the original de�nition of approximate witnesses found in [IJ19], the
approximate witness size was the minimum norm squared over the set of ap-
proximate positive witnesses with error exactly e+(x,R). This last condition
turns out to be unnecessarily restrictive. The point of de�ning approximate

62 CHAPTER 3. THEORY OF SPAN PROGRAMS

witness sizes is to bound them (and hope that they mean something use-
ful). Requiring every witness to have error exactly e+(x,R) to give an upper
bound is very harsh, and also unnecessary as proven in [Jef20].

Therefore, we de�ne approximate positive witnesses size with respect to
an error ε.

De�nition 36 (Approximate positive witness size). For any re�ection pro-
gram R on X and x ∈ X, we de�ne the ε-approximate positive witness size
for x as:

w̃+(x,R, ε) = min
{
‖|w̃〉‖2 : |w̃〉 − |w0〉 ∈ K,

∥∥ΠH(x)⊥|w̃〉
∥∥2 ≤ ε

}
. (3.13)

If the set over which we minimize is empty, we say that w̃+(x,R, ε) =∞.

Note that if ε = 0 we recover the usual de�nition of positive witness
size, and the set is not empty if and only if e+(x,R) ≤ ε. Note also
that if

∥∥ΠH(x)⊥|w̃〉
∥∥ > 0 for all approximate positive witnesses then |w0〉 ∈

K⊥ ∩H(x)⊥ and there exists an exact negative witness.

The approximate negative witnesses are de�ned in a somewhat similar
fashion by relaxing the requirement that the witnesses be orthogonal toH(x).
We call a vector |ω̃〉 an ε-approximate negative witness for x in R if 〈ω̃|w0〉 =

1, |ω̃〉 ∈ K⊥, and
∥∥ΠH(x)|ω̃〉

∥∥2 ≤ ε. The component of an approximate
negative witness in H(x) is its error, and just like in the positive case, we
de�ne the negative error as follows:

De�nition 37 (Negative error). For any re�ection program R on X and
any x ∈ X, we de�ne the negative error of x as

e−(x,R) = min
|ω̃〉

{∥∥ΠH(x)|ω̃〉
∥∥2

: 〈ω̃|w0〉 = 1, |ω̃〉 ∈ K⊥
}
.

The ε-approximate negative witness size of x is de�ned as:

De�nition 38 (Approximate negative witness size). For any re�ection pro-
gram R on X and x ∈ X, we de�ne the ε-approximate negative witness size
of x in R as:

w̃−(x,R, ε) = min
{
‖|ω̃〉‖2 : 〈ω̃|w0〉 = 1, |ω̃〉 ∈ K⊥,

∥∥ΠH(x)|ω̃〉
∥∥2 ≤ ε

}
.

(3.14)
If the set over which we minimize is empty, we say that w̃−(x,R, ε) =∞.

3.3. REFLECTION PROGRAMS 63

If
∥∥ΠH(x)⊥|ω〉

∥∥ > 0 for all approximate negative witnesses, there exists
an exact positive witness. The set is not empty if and only if e−(x,R) ≤ ε.

Finally, we de�ne the functions that are computed by R in the following
manner:

De�nition 39 (Functions approximated by R). Let R be a re�ection pro-
gram on X and f : X → {0, 1} be a decision problem. Let W+(f,R),
W−(f,R) be the positive and negative complexities for f de�ned in Eq. (3.9).
For any λ ∈ [0, 1) we say that R positively λ-approximates f if, W+(f,R) <
∞, and for all x ∈ f−1(0), w+(x,R) ≥ 1

λ
W+(f,R). We say that R negatively

λ-approximates f if, W−(f,R) < ∞, and for all x ∈ f−1(1), w−(x,R) ≥
1
λ
W−(f,R).

This is maximally confusing. We de�ned approximate witnesses with
respect to an error parameter ε, and now we de�ne approximate functions
with respect to a di�erent parameter λ, and no mention of approximate
witnesses! We spent a lot of time suggesting that a re�ection program should
allow inputs x ∈ P0 to be counted as positive input for f if they had witnesses
with small enough error, but this de�nition counts an input x ∈ P0 as positive
for f if the negative witness size is large enough. Very confusing indeed.

Our immediate goal now is to show that these two notions are the same.
First, we try to motivate why De�nition 39 is a good de�nition. Then we
shall relate the minimal positive and negative errors to the witness sizes.
Last we shall see that, if we choose an error ε ≤ λ/W−(f,R), the existence
of ε-approximate positive witness sizes for every x ∈ f−1(1) implies that R
λ-approximates f . Of course, there is an analogous statement for negative
witnesses, and so on. We'll come back to this later.

We have said before that the witness sizes are inversely proportional to the
ease with which a quantum algorithm can decide a function. Let us attempt
to formalize this notion by de�ning a function that orders the elements of
the input set x. Fix a re�ection program R and let V : X → R be such that

V(x,R) =
1

w+(x,R)
− 1

w−(x,R)
.

We call this function the value of an instance. This function characterizes
how easy an instance is to decide. Notice how one of these numbers is always
zero, since having a �nite positive (resp. negative) witness size necessarily

64 CHAPTER 3. THEORY OF SPAN PROGRAMS

implies having an in�nite negative (positive) witness size. An instance x with
very high positive value is a positive instance with very small witness size,
while an instance with very high negative value is a negative instance with
small negative witness size, both �easy� instances. Conversely instances with
value close to zero are hard to identify because they have large witnesses.
The hardest instances are those closest to zero, hence, we expect that the
gap between those tells us something about the di�culty of telling positive
from negative instances. Indeed, the gap is simply

δ := min
V(x)≥0

V(x,R)− max
V(x)≤0

V(x,R)

=
1

maxf(x)=1 w+(x,R)
+

1

maxf(x)=0 w−(x,R)
,

And so, if W+ ≈ W−, its inverse δ−1 = W+W−
W++W−

= O(
√
W+W−) re�ects the

complexity of the re�ection program.

y2 y1 x1 x2 x2

0

δ

V

Figure 3.3: The value function orders positive and negative instances on a
line.

By de�nition, the Value function characterizes the function f(x) = 1 ⇔
|w0〉 ∈ K +H(x) by splitting all inputs into two groups; those with positive
value and those with negative value. Those above the threshold V = 0 and
those below. But, if there was any way to compute the value function, we
could just as easily change the function it characterizes by setting a di�erent
threshold and saying that the re�ection program R also computes the func-
tion gγ(x) = 1⇔ V(x) ≥ γ for some γ ∈ R.

From the de�nition of the Value function and De�nition 39, it follows

that the functions gγ are λ-approximated by R for any λ ≥
max

x∈g−1
γ (0)

V(x)

min
x∈g−1

γ (1)
V(x)

.

3.3. REFLECTION PROGRAMS 65

Conversely, any function that is positively λ-approximated by R is a
threshold function gγ with the threshold somewhere in the interval(

λ

W+(f,R)
,

1

W+(f,R)

)
.

For a threshold γ = 0, the funcion g0 decides the partition P0, P1, and we
have already seen that the inverse of the Value gap re�ects well its complexity.
Why should that be di�erent for functions gγ for γ 6= 0?

Following the example of Figure 3.4, let us imagine that we choose γ
such that it lies between the values of x1 and x2, and let λ be the number
such that V(x1) = λV(x2). The attentive reader might have noticed that we
just de�ned λ to be the approximation factor. Indeed, we are committing
an abuse of notation here, but only for the purpose of foreshadowing, since
we will shortly prove that both notions of λ are related. Then all instances
with value higher (lower) than γ become positive (negative) instances for gγ;
x1, x2 now become the closest to the threshold, and their value gap should
re�ect the complexity of deciding gγ(x). Since the positive and negative set
has changed, let us rede�ne the positive and negative complexities as

W−(gγ,R) =

{
max

x∈g−1
γ (0)

V(x)

}
and W+(gγ,R) =

{
min

x∈g−1
γ (1)

V(x)

}
.

The value gap between positive and negative instances now becomes
δ = V(x2) − V(x1) = (1 − λ)V(x2) = (1−λ)

W+(gγ ,R)
= 1−λ√

λ
√
W+(gγ ,R)W−(gγ ,R)

, and

its inverse scales as
√
W−W+

1−λ .

y2 y1 x1 x2 x2

γ

δ

V
0

Figure 3.4: X can be partitioned in many ways as long as the order induced
by V is respected.

66 CHAPTER 3. THEORY OF SPAN PROGRAMS

In Section 3.4, we give an algorithm that decides λ-approximate re�ection

programs making Õ
(√

W̃−W+

(1−λ)3/2

)
queries to a unitary Ux similar to U(x,R)

for some quantities W̃−, W+ related to the witness sizes. We conjecture that
the exponent in (1− λ) can be brought down to 1. More formally, we have:

Conjecture 40. Let R be a re�ection program that positively λ-approximates
a function f . Then there exists an algorithm that decides f with query com-

plexity O
(

1
1−λ

√
W−(f,R)W̃+(f,R)

)
.

The notion of the value function allows us to de�ne a whole class of
partitions of X that are possibly decidable by R, and also gives an opera-
tional interpretation to the approximation parameter. We hope this helps
the reader understand why functions approximated by R are de�ned so. Let
us now move on to relating approximate witness with exact witnesses.

The following theorems characterize the positive and negative errors in
terms of the negative and positive witness sizes. In simpler terms, they
justify why we de�ned approximate witnesses in terms of witness errors.
These results were already known for span programs and can be found in
[IJ19]. The proofs for these results in the re�ection program framework are
essentially the same as those for span programs, so we will not repeat them
here.

Theorem 41. Let R be a re�ection program, x ∈ X ⊆ [q]n and let |w̃〉
be an approximate positive witness for x such that ‖ΠH(x)⊥ |w̃〉‖ is minimal.

Then
ΠH(x)⊥ |w̃〉

‖ΠH(x)⊥ |w̃〉‖
2 is an optimal exact negative witness and

∥∥ΠH(x)⊥|w̃〉
∥∥2

=

e+(x,R) = 1/w−(x,R).

So the minimal positive error of an instance x is the negative witness size
of that instance. By de�nition, any ε-approximating positive witness for x
proves that e+(x,R) ≤ ε. This theorem shows that ε also gives us a lower
bound for w−(x,R). Exactly what we need in De�nition 39.

Theorem 42. Let R be a re�ection program, x ∈ X ⊆ [q]n and let |ω̃〉 be an
approximate negative witness for x such that ‖ΠH(x)|ω̃〉‖ is minimal. Then

|w〉 =
ΠH(x)|ω̃〉

‖ΠH(x)|ω̃〉‖2
is an optimal exact positive witness and

∥∥ΠH(x)|ω̃〉
∥∥2

=

e−(x,R) = 1/w+(x,R).

3.3. REFLECTION PROGRAMS 67

Imagine that we have a function f : X → {0, 1} with negative witness
size W−(f,R) = maxx∈f−1(0)w−(x,R) < ∞. In particular, this means that
f−1(0) ⊆ P0. Fix ε = λ

W−(f,R)
. If we knew there exist ε-approximate positive

witnesses for all x ∈ f−1(1), then we would have e+(x,R) ≤ ε = λ
W−(f,R)

,
which by Theorem 41, means that 1

w−(x,R)
≤ ε = λ

W−(f,R)
. This is precisely

the de�nition of a function negatively λ-approximated byR. Let us rephrase.

This means that if there exists an f : X → {0, 1} such that w̃+(x,R, ε) <
∞ for all x ∈ f−1(1) with ε = λ

W−(f,R)
, then R negatively λ-approximates

f . An analogous statement follows from swapping positives and negatives in
that argument.

So far, these two ways of looking at approximate re�ection programs have
successfully accounted for approximation factors, as well as approximated
functions, witnesses and errors, but the approximate positive and negative
witness sizes have been missing from the picture altogether. We do not give
an operational interpretation for approximate witness sizes, but approximate
negative witness, along with their witness sizes, will appear in the analysis
of re�ection program algorithms of Section 3.4.

Re�ection program manipulations

In the last couple of sections we have given equal attention to positive and
negative witnesses, errors, witness sizes et cetera. From this point on, how-
ever, we will focus on algorithms for positively λ-approximating re�ection
programs and ignore negatively approximating ones. The reason for that is
two-fold. On the one hand, positively λ-approximating span programs (and
their associated re�ection programs) are all we will need in the following
chapters. On the other hand, there exists a simple transformation that turns
a negatively λ-approximating re�ection program for a function f into a pos-
itively λ-approximating span program for f̄ = 1− f . We formally prove this
in the following theorem.

Theorem 43. Let R = (H, {H(x)}x∈X ,K, |w0〉) be a re�ection program over
X ⊆ [q]n that negatively λ-approximates a function f . De�ne the negation
of R as R = (H′, {H′(x)}x∈X ,K′, |w′0〉), where

� H′ = H,

� H′(x) = H(x)⊥,

68 CHAPTER 3. THEORY OF SPAN PROGRAMS

� K′ = (K ⊕ span{|w0〉})⊥,

� |w′0〉 = |w0〉.

Then, R positively λ-approximates f̄ = 1−f , for every x ∈ f−1(0), w+(x,R) =
w−(x,R) and w−(x,R) = w+(x,R); and for every x ∈ f−1(1), w̃−(x,R) =
w̃+(x,R).

Proof. Suppose that x ∈ X is a positive instance of R. Then, we �nd that
|w0〉 ∈ K + H(x), and hence that we can write |w0〉 = |wx〉 + |k〉, with
|wx〉 ∈ H(x) = H′(x)⊥ and |k〉 ∈ K. Reordering this we have |wx〉 =
|w0〉− |k〉 ∈ K⊕ span{|w0〉} = K′⊥. It immediately follows that 〈wx|w0〉 = 1
and |wx〉 ∈ K′⊥∩H′(x)⊥ and hence we �nd that |wx〉 is a negative witness for
R. Since the manipulation is symmetric, we see that every negative witness
for R is a positive witness for R. We conclude that w−(x,R) = w+(x,R).
For the other equality, we notice that the negation of the negation of R is R
itself. Therefore, the same proof shows that w+(x,R) = w−(x,R).

Now we show that in fact R positively λ approximates f . By De�ni-
tion 39, if x ∈ f−1(0), then w+(x,R) = +∞. By the equivalence established
before, this means that x ∈ f−1

(1) ⇒ w−(x,R) = +∞. If, on the contrary,
x ∈ f−1(1), then

w−(x,R) ≥1

λ
W−(f,R) =

1

λ
max

x:f(x)=0
w−(x,R) =

1

λ
max

x:f(x)=1
w+(x,R)

=
1

λ
W+(f,R).

Since w−(x,R) = w+(x,R), we conclude that R positively λ-approximates
f .

Notice we only claim that this negation transformation works for approx-
imate re�ection programs, not approximate span programs. In [Rei09] there
is a procedure that negates exact span programs. We suspect that said trans-
formation could be generalized to work with approximate span programs, but
not without friction. The literature that deals with approximate span pro-
grams (mainly, [IJ19]) has a di�erent approach. There, there is no need for
span program negation since parallel analysis are provided for positive and
negatively approximating span programs.

The issue here is that we are not guaranteed that if we take a span
program P , compile it into a re�ection program R and then negate it, the

3.3. REFLECTION PROGRAMS 69

result will still correspond to a span program. But, so what? The point of
negation is that it allows us to give one algorithm that is useful to decide
functions positively and negatively λ-approximated by R. Our pipeline is
rather simple:

3.3.4 Span programs and re�ection programs

The attentive reader may have noticed that we have spent much more time
and ink de�ning and analyzing re�ection programs than we have with span
programs. This is particularly striking since there will be almost no mention
of re�ection programs in the following chapters. The reason for this imbal-
ance is simple. Everything we have shown for re�ection programs directly
applies to span programs except negation, which doesn't need to. That is
the essence of the next lemma.

Lemma 44. Let P = (H,V , A, |τ〉) be a span program over [q]n and λ ∈
[0, 1). Then the re�ection program R = (H, {H(x)}x∈[q]n , kerA,A+|τ〉) is
such that for every x ∈ [q]n:

1. |wx〉 is a positive λ-approximate witness for P if and only if it is also
a positive λ-approximate witness for R.

2. 〈ωx| is a negative λ-approximate witness for P if and only if (〈ωx|A)†

is a negative λ-approximate witness for R.

Proof. The proof follows easily from the de�nitions and properties of wit-
nesses in span programs and re�ection programs.

It is also possible to derive a span program from a re�ection program,
as long as the rule for x 7→ H(x) has the direct sum property that H(x) =⊕

i∈[n]Hi,xi . The crux is in de�ning the map A simply out of |w0〉 and K,
but since we will not make use of this anywhere in this thesis we omit the
details.

70 CHAPTER 3. THEORY OF SPAN PROGRAMS

3.4 Algorithms for re�ection programs

Section 3.3 dealt extensively with re�ection programs, giving operational in-
terpretations of witnesses, errors, and witness sizes. It also established the
equivalence between positive and negatively approximating re�ection pro-
grams, and the mapping from span to re�ection programs.

It is now time to use all of the things we have de�ned and extensively
discussed and build novel quantum algorithms out of them. We begin with
an algorithm for re�ection program decision. Later, in Section 3.4.2, we
will modify slightly the algorithm for span program decision to obtain two
algorithms capable of constructing a positive witness out of a span program.

3.4.1 Algorithms for re�ection program decision

In this section we will describe an algorithm that decides a re�ection program
even when this is not normalized. The algorithm consists of phase estimation
on the product of two re�ections very similar to the span program unitary
U(x,R) of Section 3.2.3. In fact, the algorithm is a generalization of the
span program algorithms from [Rei10; Chi21].

We will begin with some notation. Let R = (H, {H(x)}x∈X ,K, |w0〉) be a
positively λ-approximating re�ection program for a function f : X → {0, 1},
and de�ne its positive and negative witness complexities as

W+ =W+(f,R) = max
x∈f−1(1)

w+(x,R), (3.15)

Ŵ− =Ŵ−(f,R) = max
y∈f−1(0)

w̃− (y,R, e−(x,R)) , (3.16)

where the positive witness sizes w+(x,R) are de�ned in De�nition 31 and
approximate negative witnesses are in Equation (3.14). We have chosen to
use the wide hat notation to remark that this is the min. error approximate
witness size. In the next chapter we will use a slightly di�erent notion of
approximate witness size, for which we reserve the wide tilde notation.3

In order to stress the di�erence between positive and negative instances
in the analysis, we will refer to the former with the letter x and to the latter
with the letter y.

3It is rather unfortunate that the wide hat in [Jef20] denotes precisely what we will
denote with a wide tilde. We do so to stay consistent with the notation in [CJO+20].

3.4. ALGORITHMS FOR REFLECTION PROGRAMS 71

Let |0̂〉 be a vector orthogonal to H and de�ne the state:

|Ψ0〉 =
1√

1 + ‖|w0〉‖2
W+

(
|0̂〉+

|w0〉√
W+

)
=

1
√
µ

0

(
|0̂〉+

|w0〉√
W+

)
.

De�ne also the projectors:

Πx = ΠH(x) + |0̂〉〈0̂|, (3.17)
Λ = ΠK + |Ψ0〉〈Ψ0|. (3.18)

Our algorithm will use a variant of the re�ection program unitary de�ned
as:

Ux := (2Πx − I)(2Λ− I). (3.19)

We denote the orthogonal projector onto the (eiϕ)-eigenspaces of Ux with
eigenphase ϕ ∈ [−θ, θ] as P x

θ .
Observe that the state |Ψ0〉 is independent of the input x, and so is the

state |0̂〉 and the projector Λ. Only the projector Πx depends on the input,
and we will show later in Theorem 53 that the cost of the re�ection 2Πx−I is
the same as the cost of 2ΠH(x)− I. For re�ection programs that come from a
span program, the cost of that last re�ection is simply 2 queries to the oracle
([IJ19, Lemma 3.1]). For general re�ection programs the query complexity
will depend on the correspondence x 7→ H(x), which is left to the user. We
will go into more detail about the construction of these states and re�ections
in Section 4.3 for the particular case of span programs. Until then, we state
the results in terms of calls to the unitary Ux.

Theorem 45. Let R be a re�ection program that positively λ-approximates
a function f with λ ∈ [0, 1). Then there exists an algorithm that evaluates

f with bounded error and makes O
(√

W+Ŵ−
(1−λ)3/2

log 1
1−λ

)
queries to Ux, where

W+, Ŵ− are de�ned in Eq. (3.15), and Eq. (3.16).

Proof. The algorithm will run phase estimation with precision C1(
√

1−λ)

W+Ŵ−
on

the unitary Ux with initial state |0̂〉, followed by C2(1− λ)−1 rounds of am-

plitude ampli�cation on top of phase estimation for a total of Õ
(√

W+Ŵ−
(1−λ)3/2

)
applications of Ux, where C1, C2 are some constants.

72 CHAPTER 3. THEORY OF SPAN PROGRAMS

For the analysis of the algorithm, let us start by assuming that x ∈ f−1(1),
and let |wx〉 be the exact minimal witness for x. De�ne the vectors:

|Ψx〉 :=
1√

1 + w+(x)
W+

(
|0̂〉+

1√
W+

|wx〉
)

=
1
√
µ
x

(
|0̂〉+

1√
W+

|wx〉
)
.

(3.20)
Observe now that Πx|Ψx〉 = |Ψx〉 because |wx〉 ∈ H(x). If we manage to

show that |Ψx〉 is a 1-eigenvector of Λ too, then we would have that it is in
fact a 1-eigenvector of Ux. By de�nition, every positive witness is of the form
|wx〉 = |w0〉+ |w⊥x 〉, where |w⊥x 〉 ∈ K. It follows that

|Ψx〉 =
1
√
µ
x

(
|0̂〉+

|w0〉√
W+

+
|w⊥x 〉√
W+

)
,

and

Λ|Ψx〉 =ΠK|Ψx〉+ |Ψ0〉〈Ψ0|Ψx〉

=
1
√
µ
x

(
|w⊥x 〉√
W+

+ |Ψ0〉〈Ψ0|
(
|0̂〉+

|w0〉√
W+

))
=

1
√
µ
x

(
|w⊥x 〉√
W+

+ |Ψ0〉〈Ψ0|
√
µ0|Ψ0〉

)
=

1
√
µ
x

(
|w⊥x 〉√
W+

+ |0̂〉+
|w0〉√
W+

)
=|Ψx〉. (3.21)

This proves that for every x such that f(x) = 1, P x
0 |Ψx〉 = |Ψx〉 because it

is a 0-phase eigenvector of Ux. Since we chose |wx〉 to be the optimal positive
witness, it follows that ‖〈Ψx|0̂〉‖2 = 1/µx ≥ 1

2
. We conclude that for every

x ∈ X such that f(x) = 1, ∥∥P x
0 |0̂〉

∥∥2
=

1

µx
≥ 1

2
. (3.22)

Notice how this does not depend on the precision we choose for phase
estimation. That will be determined by the negative instances.

Speaking of which, let us focus now on the negative instances y ∈ f−1(0).
We have already established that for positive instances, the amplitude of |0̂〉
in the 0-phase eigenspace of Ux is at least 1/2. In order to have a function-
ing algorithm we will now show that for negative inputs, the state |0̂〉 has
small overlap with the eigenspaces of Uy with eigenphases small enough to

3.4. ALGORITHMS FOR REFLECTION PROGRAMS 73

be confused with the 0-phase space by phase estimation. The main technical
ingredient will be the e�ective spectral gap Lemma 5, which we restate here
for convenience.

Lemma (E�ective spectral gap lemma). Let |φ〉 be a unit vector such that
Λ|φ〉 = 0, let P x

θ be the projector onto the eigenvectors of Ux = (2Πx−I)(2Λ−
I) with eigenvalues eiγ with |γ| ≤ θ for some θ ≥ 0. Then ‖PθΠx|φ〉‖2 ≤ θ2/4.

Let y be such that f(y) = 0, and let |ω̃y〉 be an optimal min. error negative
witness. Consider the state

|φy〉 =
|0̂〉 −

√
W+|ω̃y〉√

1 +W+w̃−(y)
=

1
√
νy

(
|0̂〉 −

√
W+|ω̃y〉

)
. (3.23)

Remember that we have de�ned Λ as Λ = ΠK + |Ψ0〉〈Ψ0|. We will prove
that |φy〉 is in the kernel of both terms. For the second one, we have

〈φy|Ψ0〉 =
1

√
µ0νy

(
〈0̂| −

√
W+〈ω̃y|

)(
|0̂〉+

1√
W+

|w0〉
)

=
1

√
µ0νy

(1− 〈ω̃y|w0〉) = 0, (3.24)

where we have used that |ω̃y〉 is a negative witness in the last equality. This
proves that |Ψ0〉〈Ψ0|φy〉 = 0.

Remember, too, that the new state |0̂〉 is perpendicular to K, and by
De�nition 38, every approximate negative witness is in K⊥, so ΠK|φy〉 = 0.
Therefore, we conclude that Λ|φy〉 = 0.

Let us assume for now that no exact negative witness exists for y. We'll
deal with those later. By Theorem 42 we have that |wy〉 = Πy |ω̃y〉

e−(y)
is an

optimal exact positive witness. So we can de�ne the state:

|Ψy〉 =
|0̂〉+ 1√

W+

|wy〉√
1 + w+(y)

W+

=
1
√
µy

(
|0̂〉+

1√
W+

|wy〉
)
. (3.25)

From equations (3.23) and (3.25) it follows that we can rewrite |0̂〉 and
|wy〉 as:

|0̂〉 =
√
νyΠy|φy〉+

√
W+Πy|ω̃y〉 and |wy〉 =

√
W+

(√
µy|Ψy〉 − |0̂〉

)
,

and so P y
θ |0̂〉 can be expressed as:

74 CHAPTER 3. THEORY OF SPAN PROGRAMS

P y
θ |0̂〉 =

√
νyP

y
θ Πy|φy〉+W+e−(y)P y

θ

(√
µy|Ψy〉 − |0̂〉

)
.

Grouping terms and recalling that e−(y) = 1/w+(y) we have:(
1 +

W+

w+(y)

)
P y
θ |0̂〉 =

√
νyP

y
θ Πy|φy〉+

W+

w+(y)
P y
θ

√
µy|Ψy〉.

Luckily, |Ψy〉 is a 1-eigenvector of Uy for the same reasons |Ψx〉 was one
for Ux when x ∈ f−1(1), and from the E�ective Spectral Gap Lemma we
have that P y

0 Πy|φy〉 = 0, which means that the two vectors in the r.h.s of the
previous equation are actually orthogonal. We arrive at:

∥∥P y
θ |0̂〉

∥∥2
=

νy(
1 + W+

w+(y)

)2 ‖P
y
θ Πy|φy〉‖2 +

µy
W 2

+

w+(y)2(
1 + W+

w+(y)

)2 ‖P
y
θ |Ψy〉‖2

=
νy(

1 + W+

w+(y)

)2 ‖P
y
θ Πy|φy〉‖2 +

1

µy
≤
(

1 +W+Ŵ−

) θ2

4
+

1

µy
.

(3.26)

What about y for which we have exact negative witnesses? As it turns
out, that case is easier. If a negative witness |ωy〉 exists, then there is no
exact positive witness, |φy〉 can be de�ned using the exact negative witness
but |Ψy〉 cannot be de�ned, and Πy|ωy〉 = 0. It follows that

|0̂〉 =
√
νyΠy|φy〉,

and so, by the E�ective Spectral Gap Lemma, we arrive at:

∥∥P y
θ |0̂〉

∥∥2
= νy ‖P y

θ Πy|φy〉‖2 ≤
(

1 +W+Ŵ−

) θ2

4
.

Now, let Ux =
∑m

j=1 e
iφj |ψj〉〈ψj| be an eigendecomposition of Ux, and let

|0̂〉 =
∑m

j=1 αj|ψj〉 be a decomposition of |0̂〉 in the eigenbasis of Ux. The
phase estimation procedure of Theorem 9 on Ux with precision θ, accuracy
ε applied to |0̂〉 produces a state |0̂′〉 := PE(Ux, θ, ε)|0̂〉 =

∑m
j=1 αj|ψj〉|wj〉P

such that, if φj = 0, |wj〉P = |0〉P , and if |φj| ≥ θ, then |〈0|wj〉P |2 ≤ ε.

3.4. ALGORITHMS FOR REFLECTION PROGRAMS 75

For x ∈ f−1(1), we showed that ‖P x
0 |0̂〉‖2 =

∑
j:ϕj=0 |α|2 ≥

1
2
, and so

∥∥|0〉〈0|P |0̂′〉∥∥2
=

∥∥∥∥∥
m∑
j=1

αj|0〉〈0|P |wj〉P |ψj〉

∥∥∥∥∥
2

≥
m∑

j:ϕj=0

|αj|2 = ‖P x
0 |0̂〉‖2 ≥ 1

2
=: p0. (3.27)

Meanwhile, for y ∈ f−1(0) we have:

‖|0〉〈0|P |0̂′〉‖2 =

∥∥∥∥∥∥
m∑

j:|φj |≤θ

αj|0〉〈0|P |wj〉P |ψj〉

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
m∑

j:|φj |>θ

αj|0〉〈0|P |wj〉P |ψj〉

∥∥∥∥∥∥
2

≤
m∑

j:|φj |≤θ

|αj|2 +
m∑

j:|φj |>θ

|αj|2|〈0|wj〉|2 ≤ ‖P y
θ |0̂〉‖

2 + ε

≤(1 +W+Ŵ−)
θ2

4
+

1

µy
+ ε. (3.28)

Remember that 1
µy

= 0 if y has an exact negative witness, and that 1
µy
≤

1
1+ 1

λ

because R positively λ-approximates f . Therefore, for all y ∈ f−1(0),

choosing a precision θ = 1
2

√
1−λ

1+W+Ŵ−
and accuracy ε = 1−λ

16
we have:

‖|0〉〈0|P |0̂′〉‖2 ≤ 1− λ
16

+
1

1 + 1
λ

+
1− λ

16
=: p1. (3.29)

A simple calculation yields p0 − p1 ≥ 1−λ
8
, so by Corollary 12, we can distin-

guish these two cases with O
(√

p0
p0−p1

)
calls to PE(Ux, θ, ε). Since each call

to Phase Estimation uses O
(

1
θ

log 1
ε

)
= O

(√
W+Ŵ−

1−λ log 1
1−λ

)
calls to Ux, we

conclude that the f can be decided with O
(

1
(1−λ)3/2

√
W+Ŵ− log 1

1−λ

)
calls

to Ux.

Observe that it is not necessary that the state |w0〉 in the re�ection pro-
gram be normalized. This construction bypasses completely the need for nor-
malization in [IJ19]. We also note that the exponent 3/2 in the λ-dependent

76 CHAPTER 3. THEORY OF SPAN PROGRAMS

factor of the algorithm complexity can be reduced to 1 if we know the true
spectral gap of Ux. The �ipside is that the complexity will depend on the
spectral gap instead of the span program complexity.

According to the discussion that follows Theorem 42, it is enough to �nd
an approximate negative witness with error ε = λ/W+ for every x ∈ f−1(0)
to know for certain that f is λ-approximated by R. Theorem 45 requires
us to �nd min. error witnesses � a strictly harder task � which can be too
restrictive, as will be the case in Chapter 4. As a corollary to Theorem 45 we
show how we can use ε-approximate negative witnesses with error ε = λ/W+

instead of ε = e−(x,R). The trade-o� is that the range of the approximation
factor is reduced to λ ∈ [0, 1/2). We use a relaxed version of the approximate
witness size de�ned as:

W̃− = W̃−(f,R) = max
y∈f−1(0)

w̃−

(
y,R, λ

W+

)
. (3.30)

We use the following corollary in Chapter 4.

Corollary 46. Let R be a re�ection program that positively λ-approximates
a function f with λ ∈ [0, 1/2). Then there exists an algorithm that evaluates

f with bounded error and makes O
(√

W+W̃−
(1−2λ)3/2

log 1
1−2λ

)
queries to Ux, where

W+, W̃− are de�ned in Eq. (3.15), and Eq. (3.30).

Proof. The proof follows parallel to that of Theorem 45. Let |ω̃y〉 be an ε-
approximate negative witness for y ∈ f−1(1) with error ε ≤ λ/W+. De�ne
the state:

|φy〉 =
|0̂〉+

√
W+|ω̃y〉√

1 +W+w̃−(y)
=

1
√
νy

(
|0̂〉+

√
W+|ω̃y〉

)
.

As before, Λ|φy〉 = 0 because |ω̃y〉 is a negative witness. Now, |0̂〉 =√
νyΠy|φy〉+

√
W+Πy|ω̃y〉, so we give the following upper bound on the norm

of P y
θ |0̂〉: ∥∥P y

θ |0̂〉
∥∥2

=νy ‖P y
θ Πy|φy〉‖2 +W+ ‖P y

θ Πy|ω̃y〉‖2

≤νy
θ2

4
+W+ ‖P y

θ Πy|ω̃y〉‖2

≤
(

1 +W+W̃−

) θ2

4
+W+

λ

W+

, (3.31)

3.4. ALGORITHMS FOR REFLECTION PROGRAMS 77

where in the �rst inequality we have used Lemma 5, and in the second we
have used that |ω̃y〉 is a λ

W+
-approximate negative witness. Following the

proof of Theorem 45 we see that substituting this into Equation (3.28) we
obtain that for any y ∈ f−1(0),

‖|0〉〈0|P |0̂′〉‖2 ≤ (1 +W+W̃−)
θ2

4
+ λ+ ε. (3.32)

Hence, as long as λ < 1/2, we can choose precision θ = 1
2

√
1−2λ

1+W+W̃−
and

accuracy ε = 1−2λ
8

to obtain:

‖|0〉〈0|P |0̂′〉‖2 ≤ 1

2
− 1− 2λ

8
=: p1.

Meanwhile, for x ∈ f−1(1), it is still true that∥∥|0〉〈0|P |0̂′〉∥∥2 ≥ 1

2
=: p0.

Using Corollary 12 we conclude that we can distinguish these two cases

with bounded error using O
(

1
(1−2λ)3/2

√
W+W̃− log 1

1−2λ

)
calls to Ux.

3.4.2 An algorithm for witness generation

A long time ago, in the ancient and obscure depths of Section 3.2.2, we
referred to witnesses, positive and negative, as qualitatively analogous to
certi�cates, partial assignments of (x1, . . . , xn) that are su�cient to decide f .
The existence of witnesses certi�es that the target has this or that geometric
property, and their norm gives us an intuitive idea of how hard an instance
is to decide (recently formalized in [ACK20]). Something that often confuses
those who encounter span programs for the �rst time is that, for all the talk
about witness and how they act as �certi�cates� of sorts, the algorithms for
span programs do not try to �nd these witnesses. In �ction, and particularly
in �lm, this is called a McGu�n. An artifact that moves the plot forward
but does not play a role in the resolution. The sta� of Ra.4 The actual
algorithm goes along di�erent lines. If positive witnesses exist, they are at
least this big, and so the span program unitary has this feature. If negative

4Famous McGu�n in �Raiders of the Lost Ark� - Steven Spielberg, 1981.

78 CHAPTER 3. THEORY OF SPAN PROGRAMS

witnesses exist, they are at least that big, and so the span program unitary
has that other feature.

Re�ection programs, (and span programs as a special case) encode much
more information than just the one bit output of the function f they decide.
In [IJ19], the authors give two algorithms that can estimate the witness size
of an input. This is useful when the witness size is a quantity of interest, as
is the case for the st-connectivity span program, see Chapter 5. But what
if the witnesses themselves are objects of interest? Can we use the elements
of a re�ection program to design an algorithm that makes calls to an input-
dependent unitary Ux and outputs an optimal witness |wx〉? This is precisely
the problem of witness generation.

Problem. Fix a re�ection program R = (H, {H(x)}x∈X ,K, |w0〉), encoding
a function f : X ⊂ [q]n → {0, 1}. The witness generation problem is the
following: given an input x ∈ f−1(1), �nd a quantum procedure that outputs
a normalized version of the state

|wx〉 = argmin{‖|w〉‖2 : ΠK⊥ |w〉 = |w0〉, |w〉 ∈ H(x)}.

We end this chapter by providing a novel algorithm for this problem. The
algorithm is a modi�cation of the algorithm for decision problems analyzed
in the previous section.

As before, given a re�ection program R = (H, {H(x)}x∈X ,K, |w0〉), let
|0̂〉 be a vector orthogonal to H, α > 0, and de�ne the state

|Ψα
0 〉 =

1√
1 + ‖|w0〉‖2

α2

(
|0̂〉+

|w0〉
α

)
=

1
√
µ

0

(
|0̂〉+

|w0〉
α

)
. (3.33)

De�ne also the projectors

Πx = ΠH(x) + |0̂〉〈0̂|, (3.34)
Λα = ΠK + |Ψα

0 〉〈Ψα
0 |. (3.35)

If the re�ection program corresponds to a span program P = (H,V , A, |τ〉),
where K = kerA and |w0〉 = A+|τ〉, then Λα = Πker(Ãα), where

Ãα =
1

α
|τ〉〈0̂| − A.

3.4. ALGORITHMS FOR REFLECTION PROGRAMS 79

In order to construct the positive witness |wx〉, we will need an estimation
of ‖|wx〉‖ with multiplicative error ε = O(1). This is the purpose of the
following lemma.

Lemma 47. Let R be a re�ection program deciding a function f and let
x be a positive input. Let |wx〉 be an optimal positive witness for x in R,
w+(x) = ‖|wx〉‖2 be the exact positive witness size of x for R, and w̃−(x) be
the min. error negative witness size for x in R. Then there exists a procedure

that with bounded error outputs a number α2
∗ ∈

(
w+(x)

2
, 2w+(x)

)
and makes

O
(√

w+(x)w̃−(x) log(w+(x)) log logW+

)
controlled calls to Ux,α = (2Πx −

I)(2Λα − I), where W+ is an upper bound for w+(x) and α > 0 can change
from one call to the next.

The result of this lemma is rather similar to that of Theorem 29 from
[IJ19]. The di�erences are that this lemma is proven for re�ection programs
and we restrict ourselves to error O(1), and that the complexity is slightly
improved. In the interest of clarity, we will prove Lemma 47 after we prove
Theorem 48.

Theorem 48. Let R be a re�ection program deciding a function f and let
x be a positive input. Let |wx〉 be an optimal positive witness for x in R,
w+(x) = ‖|wx〉‖2 be the exact positive witness size of x for R, and w̃−(x)
be the min. error negative witness size for x in R. Then there exists a
procedure that succeeds with probability ≥ 2/9 and for any ε > 0 prepares

a state |w̃〉 such that
∥∥∥|w̃〉 − |wx〉

‖|wx〉‖

∥∥∥2

= O(ε) using Õ
(√

w+(x)w̃−(x)
)

+

O
(√

w+(x)w̃−(x)
√
ε

)
controlled calls to Ux,α = (2Πx− I)(2Λα− I), where α > 0

can change from one call to the next.

Proof. The proof follows from two observations on the proof of Theorem 45.
First, observe that the states |Ψx〉 are a combination of |0̂〉 and the state

we are interested in, |wx〉, and these two can be separated because |0̂〉 is
perpendicular to H. Hence, if we could approximate |Ψx〉, we could distill
|wx〉 from it.

Second, we will show that the post-measurement state after we perform
PE(Ux,α, θ, ε) on |0̂〉 and project onto |0〉〈0|P is close to |Ψx〉. The param-
eter α allows us to control both the probability of obtaining |0〉P in this
measurement and the weight of |wx〉 within |Ψx〉.

80 CHAPTER 3. THEORY OF SPAN PROGRAMS

Let x be such that f(x) = 1 and let |ωx〉 be the optimal min. error negative
witness for x in R. With a slight abuse of notation, de�ne the vector

|φx〉 =
|0̂〉 − α|ωx〉√
1 + α2w̃−(x)

, (3.36)

where α is left implicit. It is no coincidence that we use the same notation
as in Eq. (3.23). Indeed, if we chose α =

√
W+ we would recover the same

states we use there. Now, following the same proof we used in Theorem 45,
we can see that Λα|φx〉 = 0. We will use this later to apply the e�ective
spectral gap lemma to |φx〉. How about the other projector? Observe that
Πx|0̂〉 = |0̂〉, so

Πx|φx〉 =
|0̂〉 − αΠx|ωx〉√

1 + α2w̃−(x)
.

Again, we de�ne the quantity νx = 1 + α2w̃−(x) to simplify the expres-
sions. Then, isolating |0̂〉 from the equation above we obtain

|0̂〉 =
√
νxΠx|φx〉+ αΠx|ωx〉.

Recall that the last term of this equation has already appeared in Theo-
rem 42 as Πx|ωx〉 = ΠH(x)|ωx〉 = |wx〉e−(x) = |wx〉

w+(x)
, where |wx〉 is an optimal

exact positive witness for x. All in all, we have that |0̂〉 can be expressed as

|0̂〉 =
√
νxΠx|φx〉+

α

w+(x)
|wx〉. (3.37)

Now, let us de�ne yet another state related to |0̂〉 and the optimal positive
witness |wx〉,

|Ψx〉 =
|0̂〉+ 1

α
|wx〉√

1 + w+(x)
α2

. (3.38)

As was the case for vectors |Ψx〉 in the proof of Theorem 45, this vector
is in the 1-eigenspace of Ux,α. We can rearrange terms to express |wx〉 as

|wx〉 = α
(√

µx|Ψx〉 − |0̂〉
)
, (3.39)

where µx = 1+ w+(x)
α2 . Putting together equations (3.37) and (3.39) we arrive

at

3.4. ALGORITHMS FOR REFLECTION PROGRAMS 81

|0̂〉 =

√
νx

1 + α2

w+(x)

Πx|φx〉+

α2

w+(x)

√
µx

1 + α2

w+(x)

|Ψx〉

=

√
νx

1 + α2

w+(x)

Πx|φx〉+
1
√
µx
|Ψx〉. (3.40)

So far, we have only rewritten |0̂〉 in a way that is advantageous for us,
but we have not done anything to this state. Remember that the goal is to
process |0̂〉 to extract |wx〉 from all this. The �rst step in our processing will
be to apply the Phase Estimation procedure of Theorem 9 with unitary Ux,α
to the state |0̂〉 with precision θ and accuracy ε. Then, we project onto the
|0〉P state in the phase register created by the phase estimation.

More formally, let Ux,α =
∑m

j=1 e
iϕj |ψj〉〈ψj| be an eigendecomposition of

Ux,α, and let |0̂〉 =
∑m

j=1 βj|ψj〉5 be a decomposition of |0̂〉 in the eigenbasis of
Ux,α. The phase estimation procedure of Theorem 9 on Ux,α with precision
θ, accuracy ε applied to |0̂〉 produces a state |0̂′〉 := PE(Ux,α, θ, ε)|0̂〉 =∑m

j=1 βj|ψj〉|wj〉P such that, if ϕj = 0, |wj〉P = |0〉P , and if |ϕj| ≥ θ, then
|〈0|wj〉P |2 ≤ ε. Therefore, we have two alternative decompositions of |0̂〉:

|0̂〉 =
m∑
j=1

βj|ψj〉 =
∑
j:ϕj 6=0

βj|ψj〉+
∑
j:ϕj=0

βj|ψj〉

|0̂〉 =

√
νx

1 + α2

w+(x)

Πx|Φx〉+
1
√
µx
|Ψx〉.

Now, remember that Ux,α|Ψx〉 = |Ψx〉 and that ‖P x
0 Πx|Φx〉‖ = 0 (just apply

the e�ective spectral gap with θ = 0). This means that the two decomposi-
tions match term by term. That is

∑
j:ϕj 6=0

βj|ψj〉 =

√
νx

1 + α2

w+(x)

Πx|Φx〉 and
∑
j:ϕj=0

αj|ψj〉 =
1
√
µx
|Ψx〉.

5We have switched to betas for the amplitudes of the phase spaces here because α is
now a free parameter.

82 CHAPTER 3. THEORY OF SPAN PROGRAMS

Applying PE(Ux,α, θ, ε) to |0̂〉 produces a state |0̂′〉 = PE(Ux,α, θ, ε)|0̂〉 of the
form:

|0̂′〉 =
m∑
j=1

βj|ψj〉|wj〉P =
∑
j:ϕj 6=0

βj|ψj〉|wj〉P +
∑
j:ϕj=0

βj|ψj〉|0〉P

=
∑
j:ϕj 6=0

βj|ψj〉|wj〉P +
1
√
µx
|Ψx〉|0〉P .

Here we have used that phase estimation correctly identi�es 0-phases. We
use the other property of the Phase Estimation Algorithm when we project
into the |0〉P state in the phase register.

|0〉〈0|P |0̂′〉 =

 1
√
µx
|Ψx〉+

m∑
j:|ϕj |≤θ
ϕj 6=0

βj|ψj〉〈0|wj〉P +
m∑

j:|ϕj |>θ

βj|ψj〉〈0|wj〉P

 |0〉P
=:

(
1
√
µx
|Ψx〉+ |η〉+ |ξ〉

)
|0〉P . (3.41)

Here, the state |ξ〉 has norm ‖|ξ〉‖2 ≤ ε because we are performing phase
estimation with precision θ and accuracy ε. We use the E�ective Spectral
Gap Lemma to bound the norm of |η〉 as:

‖|η〉‖2 ≤
m∑

j:|ϕj |≤θ
ϕ 6=0

|βj|2 =

∥∥∥∥∥
√
νx

1 + α2

w+(x)

P x
θ Πx|φx〉

∥∥∥∥∥
2

≤
(
1 + α2w̃−(x)

) θ2

4
.

The probability that we obtain |0〉P when we measure the phase register
is:

1

µx
≤
∥∥|0〉〈0|P |0̂′〉∥∥2

=

∥∥∥∥ 1
√
µx
|Ψx〉+ |η〉+ |ξ〉

∥∥∥∥2

≤
(
1 + α2w̃−(x)

) θ2

4
+

1

µx
+ε.

(3.42)
At this point, we choose the precision of phase estimation to be θ =√

4ε
1+α2w̃−(x)

. Altogether, the probability of obtaining |0〉P is:

3.4. ALGORITHMS FOR REFLECTION PROGRAMS 83

1

µx
≤
∥∥|0〉〈0|P |0̂′〉∥∥2 ≤ 1

µx
+ 2ε, (3.43)

and the post-measurement state will be:

|0〉〈0|P |0̂′〉∥∥|0〉〈0|P |0̂′〉∥∥ =
1

√
µx
∥∥|0〉〈0|P |0̂′〉∥∥ |Ψx〉|0〉P +

|η〉+ |ξ〉∥∥|0〉〈0|P |0̂′〉∥∥ |0〉P . (3.44)

In particular, the amplitude on the state |Ψx〉 will be at least 1√
1+2εµx

and
the amplitude on the garbage state |η〉+ |ξ〉 will be at most

√
µx2ε. We see

now that our choice of α will a�ect us in two ways. First, it determines the
probability of obtaining |0〉P if we measure the phase register after phase es-
timation. Second, it determines the �quality� of the output state if we obtain
|0〉P if we measure the phase register after phase estimation.

Let Dα denote the 2-step procedure consisting of:

1. Apply PE(Ux,α, θ, ε) to |0̂〉 with θ =
√

4ε
1+α2w̃−(x)

.

2. measure the phase register in the computational basis.

We say that D succeeds if the outcome of the measurement is |0〉P . The
probability of success and the post-measurement outcome is what we just
computed.

The optimal choice would be to pick α =
√
w+(x), because then the

success probability would be ∼ 1/2 and the output state would be ε close
to |Ψx〉. Since we do not know

√
w+(x) we will use Lemma 47 to obtain an

estimate α2
∗ ∈

(
w+(x)

2
, 2w+(x)

)
.

At last, we few, we merry few, are ready to �nish the proof. Running D on

PE(Ux,α∗ , θ, ε) with precision θ = O
(√

ε
α2
∗w̃−(x)

)
= O

(√
ε

w+(x)w̃−(x)

)
and

accuracy ε will succeed with probability psucc ≥ 1/3 (because α2
∗ ≥

w+(x)
2

),
and produce a state |ψ〉 such that ‖|ψ〉 − |Ψx〉‖2 ≤ O(ε).

Since α2
∗ ≤ 2w+(x), with a further probability of 1/3 − ε, this state |ψ〉

can collapse onto a state |w̃〉 such that
∥∥∥|w̃〉 − |wx〉

‖|wx〉‖

∥∥∥2

≤ O(ε) by projecting

84 CHAPTER 3. THEORY OF SPAN PROGRAMS

onto the space perpendicular to |0̂〉.

The total cost of producing |w̃〉 is the cost of runningDα on PE(Ux,α∗ , θ, ε),

which is O
(√

w+(x)w̃−(x)
ε

)
.

In the last theorem, we used Lemma 47 to obtain an estimate α2
∗ ∈(

w+(x)
2
, 2w+(x)

)
. We now give the proof of that statement.

Proof of Lemma 47. The proof follows parallel to the proof of Theorem 48.
Recall that we de�ned Dα to be the 2-step procedure consisting of:

1. Apply PE(Ux,α, θ, ε) to |0̂〉 with θ =
√

4ε
1+α2w̃−(x)

.

2. measure the phase register in the computational basis.

We say that D succeeds if the outcome of the measurement is |0〉P . The
probability of success and the post-measurement outcome are in equations
(3.43) and (3.44).

Thankfully, the success probability is extremely well behaved with regards
to α and ε. Assume a constant but su�ciently small accuracy, say ε = 1

200
.

Then, the success probability of Dα is:

1

1 + w+(x)
α2

≤ psucc(Dα) ≤ 1

1 + w+(x)
α2

+
1

100
.

Now, consider the three following ranges of α.

If α2 ≤ w+(x)

4
, then psucc(Dα) ∈

[
0,

1

5
+

1

100

]
=

[
0,

21

100

]
, (3.45)

If α2 ∈
[
w+(x)

4
,
w+(x)

2

]
, then psucc(Dα) ∈

[
19

100
,
1

3
+

1

100

]
⊆
[

19

100
,

35

100

]
.

(3.46)

If α2 ∈
[
w+(x)

2
, w+(x)

]
, then psucc(Dα) ∈

[
1

3
,

51

100

]
⊆
[

32

100
,

51

100

]
. (3.47)

Let Decide(Dα) be an algorithm that with high probability returns 1
if psucc(Dα) ≥ 32

100
, returns 0 if psucc(Dα) ≤ 21

100
, and returns any bit if

psucc(Dα) ∈ (21
100
, 32

100
). We will later construct a quantum algorithm that

3.4. ALGORITHMS FOR REFLECTION PROGRAMS 85

does exactly this. Let us for now assume that the algorithm outputs a cor-
rect answer every time it is called.

Let W+ be an upper bound for w+(x) for all x ∈ f−1(1).

Algorithm 49.

1. Set α = 1.

2. For i = 1, . . . , blog(W+)c:

(a) If Decide(Dα) = 1, return 2α2
i .

(b) Else, set α2
i+1 = 2α2

i .

3. return 1.

First, of all, notice that w+(x) ≥ ‖|w0〉‖2 = 1, since we assume |w0〉 to
be normalized. This is not necessary, but it is convenient. Assume that
in the �rst iteration, Decide(Dα) returns 0. Otherwise, we would already
have α2 ≥ w+(x)/4 and so the output of the algorithm is correct. Notice
that in the iteration i = blog(w+(x))c the algorithm will terminate with
high probability since αblog(w+(x))c = 2blogw+(x)c ∈

[
w+(x)

2
, w+(x)

]
, and so

Decide(Dα) should output 1 by (3.47).
Let i∗ be the �rst time Decide(Dα) outputs 1. That can be because

psucc(Dαi∗) ≥
32
100

or because we got lucky and psucc(Dαi∗) ∈ (21
100
, 32

100
). In

either case, we know that psucc(Dαi∗) >
19
100

, and so α2
i∗ >

w+(x)
4

by (3.45).
Similarly, in the previous iteration the output of Decide(Dαi∗−1

) was 0.
That means that psucc(Dαi∗−1

) < 32
100

, and so α2
i∗−1 <

w+(x)
2

by (3.47).
Since α2

i∗ = 2α2
i∗−1, we obtain

α2
i2∗
∈
(
w+(x)

4
, w+(x)

)
. (3.48)

Hence, the algorithm returns a value α2
∗ = 2α2

i2∗
in the range

(
w+(x)

2
, 2w+(x)

)
if every step succeeds. Let us now de�ne Decide(Dα) exactly and show that
this happens with high probability.

Consider the procedure Dα, with ε = 1/200, but instead of measuring
in the last step, we apply the unitary that maps |0〉P 7→ |0〉, and maps all
phases di�erent from |0〉P to |1〉. This would create a state of the form

86 CHAPTER 3. THEORY OF SPAN PROGRAMS

√
p(α)|0〉|ψgood〉+

√
1− p(α)|1〉|ψbad〉,

where p(α) is precisely psucc(Dα). Then, we can apply the Amplitude Dis-
crimination Algorithm from Corollary 12 to distinguish the case psucc(Dα) ≥
32/100 = p1 from the case psucc(Dα) ≤ 21/100 =: p0 using O

(√
p0

p1−p0

)
= O(1)

calls to PE(Ux,α, θ, ε). This algorithm succeeds with probability 3/4, which
is not enough, so we repeat it log log(WC

+) times for some constant C and
take the majority. We call this procedure Decide(Dα). The success proba-
bility of one run of Decide(Dα) is 1− 1

C logW+
. Since Algorithm 49 makes at

most logw+(x) calls to Decide(Dα), the total success probability is(
1− 1

C logW+

)logw+(x)

= 1− Ω

(
logw+(x)

logW+

)
. (3.49)

Thus, the cost of obtaining an estimate α2
∗ ∈

(
w+(x)

2
, 2w+(x)

)
with bounded

error is O(logw+(x)) times the cost of Decide(Dα), which is log logW+ times
the cost of PE

(
Ux,α, θ, ε = 1

200

)
with θ =

√
4ε

1+α2w̃−(x)
and 1 ≤ α2 ≤ w+(x).

We conclude that the total number of calls to Ux,α is

O
(√

w+(x)w̃−(x) log(w+(x)) log logW+

)
.

The error dependence of Theorem 48 can be exponentially improved if we
have a lower bound for the phase gap of Ux,α. We have already discussed in
Section 3.2.3 how Ito and Je�ery give an algorithm for span programs that

estimates the witness size with query complexity Õ
(√

w+(x) maxx w̃−(x)

ε3/2

)
(see

Theorem 29). Observe how this is not exactly the same complexity we achieve
in Lemma 47. What we did not mention is that they also give an algorithm

that estimates the witness sizes w±(x, P) with complexity Õ
(

1
ε

√
w±(x)

∆(U(x,R))

)
,

where ∆(U(x, P)) is the smallest non-zero phase of the span program unitary
U(x, P).

In the last theorem of the chapter, we modify the proof of Theorem 48 to
give a second algorithm that approximately constructs the optimal positive
witness. The algorithm makes use of the true phase gap of the span program

3.4. ALGORITHMS FOR REFLECTION PROGRAMS 87

unitary to achieve an exponentially better dependency in the approximation
error ε, but has di�erent dependence on other parameters. Before that, we
prove a lemma that relates the phase gaps of Ux,α and U(x,R).

Lemma 50. Let R = (H, {H(x)}x∈X ,K, |w0〉) be a re�ection program, and
let x be a positive input for R. De�ne U(x,R) = (2ΠK − I) (2ΠH(x)− I) and
Ux,α = (2Πx − I)(2Λα − I). Then, for any α > 0, ∆(Ux,α) ≥ ∆(U(x,R)).

Proof. In this lemma, we deal with two di�erent unitaries which do not act
on the same space. Indeed, U(x,R) acts on the H space of R, while Ux,α
acts on a slightly larger space H′ := H⊕ span{|0̂〉}. Therefore, we have to be
very careful when using perpendicular spaces. For that reason, we reserve the
overline and ⊥ notations for perpendicularity in H′ and H respectively. In
equations, let A ⊆ H′ be a subspace, then ΠA := IH′−ΠA and ΠA⊥ = IH−ΠA.

It is an immediate consequence of Jordan's Lemma proven in Corollary 2
that the phase gap ∆(U) of a unitary U = (2ΠA − I)(2ΠB − I) is related to
the smallest non-zero singular value of its discriminant D = ΠAΠB, σmin(D)
through the equality

sin

(
∆(−U)

2

)
= σmin(D). (3.50)

Alternatively, we can write this last equation as sin
(

∆(U)
2

)
= σmin(D̃′),

where D̃′ = ΠAΠB. Now, choosing A and B such that Λα = ΠA, and
Πx = ΠB, we have that

sin

(
∆(Ux,α)

2

)
= σmin

(
D̃′
)
,

where D̃′ := ΛαΠx. Let us look more closely at this operator D̃′. Let |Ψα
0 〉

be the vector de�ne in Equation (3.33).

D̃′ =Λ
α
Πx = (IH′ − Λα) Πx =

(
IH′ − ΠK − Π|Ψα0 〉

)
Πx

=ΠKΠx − Π|Ψα0 〉Πx =
(
IH′ − Π|Ψα0 〉

)
ΠKΠx = Π|Ψα0 〉ΠKΠx. (3.51)

In the last line we used that |0̂〉 and |w0〉 are orthogonal to K, and so |Ψα
0 〉 ∈

K. Let us denote the last product of projectors as D̃ := ΠKΠx, and consider

88 CHAPTER 3. THEORY OF SPAN PROGRAMS

the state

|ψx〉 =
|0̂〉+ 1

α
|wx〉√

1 + ‖|w0〉‖2
α

,

where |wx〉 is an optimal positive witness for x in R. Our goal now will be
to relate the spectral gap of D̃, i.e. its smallest non-zero singular value, with
that of D̃′. Observe that

D̃|ψx〉 =ΠKΠx

(
|0̂〉+ |wx〉

α

)
√
µ0

=
|0̂〉+ ΠK|wx〉

α√
µ0

(3.52)

=
|0̂〉+ |w0〉

α√
µ0

= |Ψα
0 〉. (3.53)

This equality relies on the fact that |wx〉 is an exact positive witness, and
so |wx〉 ∈ H(x) and ΠK|wx〉 = ΠK⊥|wx〉 = |w0〉. Most importantly, it shows
that |Ψα

0 〉 is in the image of D̃.
This is almost identical to [IJ19, Theorem 3.11], so we follow the proof

there.
Since |Ψα

0 〉 is in the image of D̃, we can �nd an orthogonal basis of D̃
of the form {|φ0〉 = |Ψα

0 〉, |φ1〉, . . . , |φr−1〉}, and we can write D̃ as D̃ =∑r−1
i=0 |φi〉〈vi| for |vi〉 = D̃†|φi〉. Then, D̃′ = Π|Ψα0 〉D̃ =

∑r−1
i=1 |φi〉〈vi|, and so

col D̃′ = span
{
|φ〉 ∈ col D̃ : 〈φ|Ψα

0 〉 = 0
}
. Hence, the spectral gap of D̃′ is

σmin(D̃′) = min
|u〉∈colD̃′

∥∥∥〈u|D̃′∥∥∥
‖|u〉‖

= min
|u〉∈colD̃:〈u|Ψα0 〉=0

∥∥∥〈u|Π|Ψα0 〉D̃∥∥∥
‖|u〉‖

= min
|u〉∈colD̃:〈u|Ψα0 〉=0

∥∥∥〈u|D̃∥∥∥
‖|u〉‖

≥ min
|u〉∈colD̃

∥∥∥〈u|D̃∥∥∥
‖|u〉‖

= σmin(D̃).

Finally, we relate D̃ back to U(x,R). Notice that H′ is only slightly
bigger than H, and that ΠK = ΠK⊥ + |0̂〉〈0̂|. Together with the fact that Πx

is de�ned as Πx = ΠH(x) + |0̂〉〈0̂| we have that

D̃ = ΠK⊥ΠH(x) + |0̂〉〈0̂|,

3.4. ALGORITHMS FOR REFLECTION PROGRAMS 89

hence σmin(D̃) = σmin(ΠK⊥ΠH(x)). From this and Equation (3.50) follows the
result ∆(Ux,α) ≥ ∆(U(x,R)).

Without further ado, the algorithm.

Theorem 51. Let R be a re�ection program deciding a function f and let
x be a positive input. Let |wx〉 be an optimal positive witness for x in R,
w+(x) = ‖|wx〉‖2 be the exact positive witness size of x for R. Let U(x,R) =
(2ΠK − I) (2ΠH(x) − I) and assume that its phase gap ∆(U(x,R)) is known.
Then there exists a procedure that succeeds with probability ≥ 2/9 and pre-

pares a state |w̃〉 such that
∥∥∥|w̃〉 − |wx〉

‖|wx〉‖

∥∥∥2

= O(ε) using O
(

logw+(x) log logW+

∆(U(x,R))

)
+

O
(

log 1
ε

∆(U(x,R))

)
controlled calls to Ux,α, where W+ is an upper bound on w+(x),

and α > 0 can change.

Proof. The proof proceeds parallel to that of Theorem 48 up until Eq. (3.54).
Nonetheless, let us remind the reader of the setup. We start with a unitary
Ux,α = (2Πx− I)(2Λα− I), and a state |0̂〉, and apply the procedure D6 that
now performs PE(Ux,α, θ, ε) with precision θ = ∆(U(x,R)) and accuracy
ε to the state |0̂〉, and then measures the phase register. If the procedure
succeeds and we obtain |0〉P , the unnormalized output is:

|0〉〈0|P |0̂′〉 =

 1
√
µx
|Ψx〉+

m∑
j:|ϕj |≤θ
ϕj 6=0

βj|ψj〉〈0|wj〉P +
m∑

j:|ϕj |>θ

βj|ψj〉〈0|wj〉P

 |0〉P
=:

(
1
√
µx
|Ψx〉+ |η〉+ |ξ〉

)
|0〉P . (3.54)

The di�erence being that, this time, |η〉 = 0 because by Lemma 50, ∆(Ux,α) ≥
∆(U(x,R)) and so |0̂〉 is not supported in eigenspaces of Ux,α with non-zero
eigenphase ≤ θ = ∆(U(x,R)). The state |ξ〉 still has norm ‖|ξ〉‖2 ≤ ε by
Theorem 9. We conclude that the success probability of D is

1

µx
≤
∥∥|0〉〈0|P |0̂′〉∥∥2 ≤ 1

µx
+ ε, (3.55)

6Since the precision of phase estimation does not depend on α, we dispense with it.

90 CHAPTER 3. THEORY OF SPAN PROGRAMS

where µx = 1 + w+(x)
α2 . The post-measurement state is

|0〉〈0|P |0̂′〉∥∥|0〉〈0|P |0̂′〉∥∥ =
1

√
µx
∥∥|0〉〈0|P |0̂′〉∥∥ |Ψx〉+

1∥∥|0〉〈0|P |0̂′〉∥∥ |ξ〉. (3.56)

Observe that the success probability is almost identical to that of Equa-
tion (3.43), and the post measurement state is similar to that of Equation
(3.44). The only di�erences are that now we have reached this point doing
phase estimation to precision ∆(U(x,R)) instead of

√
ε

w+(x)w̃−(x)
, and that

the garbage state is slightly di�erent.
Therefore, we can recycle the machinery detailed in Lemma 47, in partic-

ular Algorithm 49 and Decide(D). As was the case there, the optimal choice
of α is α =

√
w+(x), and an estimate α∗ ∈

[√
w+(x)/2,

√
2w+(x)

]
can be

obtained with O (logw+(x)) calls to Decide(D), which makes O(log logW+)
calls to phase estimation on Ux,α with precision θ = O (∆(U(x,R))) and
accuracy ε = 1/100.

Once we have that estimate, we runD, which will succeed with probability
≥ 1/3 and generate a state |ψ〉 that can, with probability 2/3, be further

projected onto a state |w〉 such that
∥∥∥|w〉 − |wx〉

‖|wx〉‖

∥∥∥2

≤ ε.

The total cost of these operations is O
(

logw+(x) log logW+

∆(U(x,R))

)
+O

(
log 1

ε

∆(U(x,R))

)
.

3.5 Discussion

This chapter takes the reader on a journey through the theory of span pro-
grams, from its �rst application to quantum computing to the newest under-
standing of the topic. We do not claim, however, that this is the only way
other people think about span programs, or the only notation they use, far
from it.

Still, we hope it has become clear, as the formulation has progressed,
that span programs are a good match to bridge the gap between decision
problems and quantum algorithms. They allow us to encode and understand
these functions in geometrical and in linear algebraic terms. Moreover, the
algorithms that we compile out of them are all cut from the same cloth of
amplitude ampli�cation, phase estimation and products of re�ections. Con-
sidering that all functions admit a query optimal span program, it follows

3.5. DISCUSSION 91

that phase estimation, amplitude ampli�cation, and products of re�ections,
arranged in some very regular and predictable way are sort of universal sub-
routines.

By this we mean that they su�ce to construct query-optimal algorithms.
The informal truism that all quantum query algorithms are clever combina-
tions of the same three or four pieces is essentially, well, true. In the next
chapter we will see if and when the truism extends to time complexity (it
does, sometimes).

Re�ection programs, our �rst innovation in this chapter, serve the same
conceptual role as span programs. They bring a cleaner notation that sim-
pli�es the proofs of the algorithms in Section 3.4, but at the end of the day,
the proofs could be adapted to the span program notation of [IJ19].

The real raison d'être of re�ection programs, however, is that they give
us greater insight of the inner workings of a span program. In particular,
they make the geometrical and operational interpretations of Sections 3.3.1
and 3.3.2 possible. The original goal was to build an increased intuition
that would allow us to solve Conjecture 40. The fact that we state it as a
conjecture says it all about the author's success in that regard, but is not
the end of the story. As we write these lines, our colleague and co-author
Arjan Cornelissen claims to have found a way to decide a λ-approximating

re�ection program with Õ
(√

W−W̃+/(1− λ)

)
calls to Ux. To the best of

the author's knowledge, who has been privy to that manuscript, that proof
is correct.

The algorithm that we give in Section 3.4.1 decides a function f that is
λ-approximated by a re�ection program for any λ ∈ (0, 1). The complexity
of the algorithm, depending on the positive and min. error negative witness
sizes. That means that in order to apply this algorithm, the user must
bound the min. error witness size, i.e. �nd a min. error witness. This can
be di�cult. Still, we built the algorithm because we felt it was necessary to
give an algorithm for approximate re�ection programs, even if it is not much
di�erent from the current algorithms for approximate span programs. More
importantly, the algorithms for witness generation are built on the back of
this decision algorithm.

In the next chapter, we will construct a span program out of a query
algorithm and show that it λ-approximates the same function the algorithm

92 CHAPTER 3. THEORY OF SPAN PROGRAMS

decides. We will do this by �nding ε-approximate witnesses with ε ≤ λ
W+

.
But we will not then go and �nd min. error witnesses. This means that we
will need to use the algorithm in Corollary 46 instead of that in Theorem 45.

Alas, this is the current state of a�airs. We can have an algorithm that
decides a function λ-approximated by a re�ection program R for every λ ∈
[0, 1) but requires us to bound the min. error negative witness size of f for
R. Or we can have an algorithm that decides a function λ-approximated
by a re�ection program R and only requires us to bound the ε-approximate
negative witness size of f for R with ε = λ/W+, but works only for λ ∈
[0, 1/2). It remains an open problem how to construct an algorithm that
works for every λ ∈ (0, 1) and whose complexity does not require the user to
�nd min. error witnesses.

We closed this chapter with two algorithms for state generation that are
of independent interest. In Chapter 5, we will discuss a possible application
of state generation to �nding short-ish paths. Another possible direction of
future research is to understand if these algorithms can be used to reason
about the state generation problem.

The connection between span programs and adversary bounds is only
completely mapped for two-outcome functions. It is an open question whether
our formalism can be used to better understand the generalized adversary
bound and function evaluation through the non-binary span programs in-
troduced in [BT20]. We have discussed how span programs correspond to
dual solutions to the general adversary bound. Much less is known about
span programs and dual solutions to the positive adversary bound (a weaker
version of the former). It is a well established fact that this positive adver-
sary bound is strictly weaker than the general bound in some cases. Span
programs could be an alternative way to understand what goes wrong and
when.

Chapter 4

Span programs and time

complexity

4.1 Overview

This chapter is based on joint work with Arjan Cornelissen, Stacey Je�ery,
and Maris Ozols [CJO+20]. We make progress in understanding the rela-
tionship between span programs and quantum time complexity by showing
that for any decision problem, it is possible to design an almost time-optimal
quantum algorithm (i.e., optimal up to polylogarithmic factors) using the
span program framework. We do this by giving a construction that maps
any quantum algorithm to a span program. The problem of mapping an
arbitrary quantum algorithm to a span program has been considered pre-
viously. In [Rei09], Reichardt showed how to convert any quantum query
algorithm with one-sided error to a span program whose complexity matches
the algorithm's query complexity. This was extended to the standard case of
(two-sided) bounded error quantum query algorithms in [Jef20].

We modify their construction to take any quantum algorithm with time
complexity T and query complexity S, and map it to a span program with
complexity O(S), such that the unitary U associated with the span program
can be implemented in time T/S, up to polylog(T) factors, meaning that the
algorithm compiled from the span program has time complexity Õ(T).

The major theoretical implication of this result is that for any decision
problem, one can �nd a quantum algorithm that is optimal in not only space
and query complexity, but also time complexity, using the span program

93

94 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

framework. Moreover, using our construction we prove that these three �a-
vors of optimality can be achieved simultaneously. Thus, we can de�nitively
say that span programs are quantum algorithms.

Algorithms as inputs This construction takes an algorithm and uses it to
de�ne the elements H,V , A, |τ〉 that form a span program. We discuss what
we mean by this in Section 4.2, where the access to an algorithm is de�ned
through three distinct oracles. The span program algorithm then uses these
oracles as subroutines to decide a function.

Time complexity of implementing a re�ection program The algo-
rithms in Section 3.4 for re�ection programs have their complexities speci�ed
in terms of queries to unitaries Ux,α. In Section 4.3, we give an account of
the di�erent subroutines necessary to implement the re�ection program algo-
rithms from Chapter 3. In this chapter we will only make use of the algorithm
in Corollary 46, and only to evaluate span programs, which are a special case
of re�ection programs. Therefore, re�ection programs will not feature in this
chapter anywhere after Section 4.3.

Implementing subspaces As we said, we will de�ne a construction map-
ping any algorithm to a span program. In the analysis of the time complexity
of the span program's algorithm, we identify an input-dependent subspace
of the state space which we are guaranteed to stay within throughout the
execution of the span program algorithm. This allows us to drastically de-
crease the implementation cost of some of its subroutines. We refer to this
subspace as the implementing subspace, and we believe that this technique
can be used to analyze the time complexity of a wider variety of algorithms
than those considered in this text.

Span programs for bounded error algorithms As we said before, the
problem of mapping an arbitrary quantum algorithm to a span program
has been considered previously in [Rei09] and extended in [Jef20], where an
explicit mapping from algorithms to span programs was shown to map query
complexity to span program complexity. We extend these results to time
complexity in Sections 4.4, and 4.5, showing that a quantum algorithm with
time complexity T and query complexity S can be mapped to a span program

4.1. OVERVIEW 95

that, if compiled back into an algorithm, can be implemented in time Õ(T),
and O(S) queries.

It is natural to ask if our result, and in particular our construction map-
ping quantum algorithms to span programs, is of practical relevance since
normally quantum algorithms themselves are the end goal in designing span
programs. One reason that it can be useful to convert a quantum algorithm
into a span program is that span programs compose very nicely [Rei09] �
more so than quantum algorithms. It can thus be desirable to convert sev-
eral quantum algorithms to span programs, compose them, and then convert
the result back to a quantum algorithm.

Variable-time search To illustrate this, we improve a result of Ambai-
nis [Amb10] for variable-time quantum search in Section 4.6. Given n bounded-
error query algorithms evaluating Boolean functions f1, . . . , fn with costs
C1, . . . , Cn, respectively, Ambainis provides a way to evaluate the function
f =

∨n
i=1 fi with cost O(

√∑n
i=1C

2
i). We left the notion of cost purposefully

ambiguous here, as Ambainis's construction allows for de�ning any notion
of cost associated with providing uniform access to the algorithms, i.e., the
ability to apply the gate that is executed at any given time step in any of
the algorithms. The resulting algorithm depends on the notion of cost se-
lected, and from Ambainis's construction, it is not apparent how one would
obtain the claimed scaling in multiple notions of cost simultaneously. More-
over, Ambainis's construction assumes that all instance-independent gates,
i.e., all operations that are not part of the original algorithms, have cost zero,
which means that a proper analysis of the time complexity of the resulting
algorithm evaluating f is lacking.

Our result improves on Ambainis's result in the following manner. If
the n original algorithms have query complexity S1, . . . , Sn, time complexity
T1, . . . , Tn, and we have e�cient uniform access to them, then we can evaluate
f with bounded error with Õ(

√∑n
i=1 S

2
i) queries and Õ(

√∑n
i=1 T

2
i) gates.

Moreover, the number of auxiliary qubits introduced is at most polylogarith-
mic in Tmax = maxi∈[n] Ti and n. Thus, we achieve the desired scaling in the
query and time complexities simultaneously, while also counting all instance-
independent gates in our analysis of the time complexity of the resulting
algorithm.

We achieve this result by converting the original algorithms into span pro-
grams, which we subsequently compose using techniques from [Rei09]. We

96 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

turn the resulting composed span program back into an algorithm, reusing
some ideas from [Amb10], and using our technique of implementing sub-
spaces.

Perhaps the most interesting future direction suggested by our work is
to �nd new algorithm composition results by turning algorithms into span
programs, taking advantage of the relative ease of span program composition,
and then converting the result back into an algorithm.

4.2 Accessing an algorithm as input

Throughout the rest of the chapter, we will consider algorithms that, among
other things, take other algorithms as input. This section concerns how we
model this through several oracles. The model is essentially a generalization
of the one used in [Amb10].

Let m ∈ N and let A = {A(1), . . . ,A(m)} be a set of quantum query
algorithms. For every j ∈ [m], let T (j) be the time complexity of A(j), let
S(j) ⊆ [T (j)] be the set of time steps at which A(j) performs queries to the
input, let U (j)

1 , . . . , U
(j)

T (j) be the sequence of unitaries inA(j), and suppose that
A(j) evaluates a function fj : X(j) ⊆ {0, 1}n(j) → {0, 1} with bounded error.
For convenience we de�ne Tmax = maxj∈[m] T

(j) and nmax = maxj∈[m] n
(j),

and we assume that all unitaries U (j)
t act on some space C[nmax]×W , where

the �rst register is large enough to hold the input bit label for any of the
Boolean functions fj.

We de�ne three di�erent oracles associated with A. First, the algorithm
oracle, sometimes referred to as Select, acts on C[m]×[Tmax]×[nmax]×W as

∀j ∈ [m], t ∈ [T (j)] \ S(j), |ψ〉 ∈ C[nmax]×W , OA : |j〉|t〉|ψ〉 7→ |j〉|t〉U (j)
t |ψ〉.

Second, the query time step oracle, which allows us to determine whether
a given algorithm A(j) performs a query at a given time step t, acts on
C[m]×[Tmax] as

∀j ∈ [m], t ∈ [T (j)], OS : |j〉|t〉 7→

{
−|j〉|t〉, if t ∈ S(j),

|j〉|t〉, otherwise.

Finally, given a list of inputs x = (x(1), . . . , x(m)), where x(j) ∈ {0, 1}n(j)
is

4.2. ACCESSING AN ALGORITHM AS INPUT 97

the input to function fj, the input oracle to x acts on C[m]×[nmax] as

∀j ∈ [m], Ox =
m∑
j=1

|j〉〈j| ⊗ Ox(j) , where ∀i ∈ [nj], Ox(j) : |i〉 7→ (−1)x
(j)
i |i〉.

On computational basis states that are not speci�ed above, the behavior of
the three oracles can be arbitrary.

By saying that we have uniform access to the set of algorithms A, we
mean that we have access to these three oracles OA, OS and Ox. Moreover,
if the time complexity of implementing the oracles OA and OS is polyloga-
rithmic in Tmax = maxj∈[m] T

(j) and m, then we say that we have e�cient
uniform access to A.

Note that ifm = 1, then the �rst register in all above oracles only contains
one dimension and hence can be omitted. In that case, we drop all the
superscripts and Ox reduces to the regular input oracle Ox that we de�ned
in Equation (2.2).

These oracles fully capture the set A and provide an interface for the
higher-level algorithms to execute the algorithms in A as subroutines. From
a computer science point of view, one can think about these oracles as black
boxes provided the user. To use our results for a particular set of algorithms
A, one has to provide implementations of these three oracles. The machinery
we develop in the remainder of this text then takes care of the rest of the
construction, and our analysis provides the number of calls made to these
oracles, alongside with the number of extra gates used.

A natural question to ask is how di�cult it is in general to implement
these oracles. If the algorithms from A are very unstructured, then it is
in general very time-consuming to implement these oracles. In that case,
one could implement OA and OS by querying a quantum read-only random
access memory (commonly referred to as QRAM) storing the algorithms
A(j) as lists of gates. A similar model, called quantum random access stored-
program machines was recently formalized in [WY20].

However, quantum query algorithms that we encounter in practice can
usually be described very succinctly, and we have some e�cient constructive
procedure to calculate what gate has to be applied in the jth algorithm at
the tth time step and at what time steps the algorithms perform a query.
These procedures can be used to implement the oracles OA and OS e�ciently
and provide us with e�cient uniform access. For the query oracle, one can
usually provide an e�cient implementation of Ox as well if the individual

98 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

Ox(j) 's are similar to each other (think, for example, an oracle for the AND
of sti-connectivity span programs on the same graph G could be made out of
the oracle for G). All of these constructions are always instance-dependent,
though, and hence we cannot elaborate on them further without losing gen-
erality.

We conclude this section by remarking that this �nal argument is more
generally applicable to oracular algorithms. The results about query com-
plexity are in general most interesting and applicable in a setting where the
oracles themselves can be substituted by e�cient algorithms. The same goes
for the uniform access model we consider here.

4.3 Time complexity of a span program algo-

rithm

We now turn our attention to the time complexity of the algorithms for
re�ection program evaluation discussed in Theorem 45, and Corollary 46. We
will only apply the contents of this section to span program algorithms (hence
the title), but we prove the more general case of re�ection programs for the
sake of completeness. We have established already that the algorithm consists
of phase estimation and amplitude ampli�cation that calls on a particular
unitary Ux. Since the number of calls to Ux is known, the complexity of the
algorithm (typically time complexity), which we will sometimes call the cost,
will be determined by the complexity of Ux. In this section we break down
this unitary into di�erent subroutines dependent on R which we treat as
black-boxes, and express the cost of the algorithm in terms of the number of
calls we perform to those black-boxes, see Theorem 53. As such, this theorem
is not a true analysis of the time complexity of a span program algorithm
but a meta-analysis.1

Admittedly, the proof of the theorem amounts to little more than book-
keeping, but it is important for two reasons. First, it gives us an account of
the resources to analyze once we settle on a particular re�ection program; in
other words, it makes re�ection program algorithms modular and simpli�es
our lives. Second, it introduces the notion of implementing subspaces, which
are of relevance beyond the setting of re�ection programs.

1The indiscriminate use of greek pre�xes is a risky business. In some countries it can
get you a seat in parliament.

4.3. TIME COMPLEXITY OF A SPAN PROGRAM ALGORITHM 99

Before we analyze the time complexity, though, we �rst introduce the
concept of an implementing subspace. This subspace depends on the particu-
lar input x ∈ {0, 1}n, and has the property that it is often much smaller than
the ambient Hilbert space H. Most importantly the state vector remains in
this subspace throughout the execution of the re�ection program algorithm.
Therefore, all operations in the re�ection program algorithm need only be
de�ned in this subspace to ensure successful computation of the span pro-
gram. We restrict ourselves to Boolean alphabets because it simpli�es the
proof here, but the statements also hold for non-Boolean alphabets.

De�nition 52 (Implementing subspace). Let R = (H, {H(x)}x∈X ,K, |w0〉)
be a re�ection program that positively λ-approximates a function f : X ⊆
{0, 1}n → {0, 1} with λ ∈ [0, 1). Let x ∈ X and let Hx be a subspace of H
such that:

1. Πker(A)Hx ⊆ Hx.
2. ΠH(x)Hx ⊆ Hx.
3. |0〉 ∈ Hx, where |0〉 is the all-zeros computational basis state.
4. |w0〉 ∈ Hx.

Then we refer to Hx as an implementing subspace of R for x.

For any x ∈ X, a valid implementing subspaceHx ofR for x isH itself. In
that case we can always implement 2|0〉〈0| − IH in complexity O(log dimH),
by simply checking that every qubit is in the state |0〉. However, for algo-
rithms with large space complexity, such as the element distinctness algo-
rithm [Amb07], this is very costly, especially if we have to do it many times.
In some cases, as in our main theorem in Section 4.4, we can show that the
span program give there has an implementing subspace in which implement-
ing 2|0〉〈0| − I is easy, thus circumventing an undesired log dimH overhead
in the time complexity of the span program algorithm.

The notion of an implementing subspace is not exclusive to re�ection or
span program algorithms. Indeed, any algorithm with high space complexity
would run into the same problem if it contains a re�ection around any state
(i.e., a one-dimensional subspace), even a computational basis state. This
includes most quantum walk based algorithms. However, even algorithms
with low space complexity could bene�t from this technique.

Now, we can state the main result of this section.

100 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

Theorem 53. Fix λ ∈ [0, 1/2). Suppose R = (H, {H(x)}x∈X ,K, |w0〉)
is a re�ection program that positively λ-approximates a function f : X ⊆
{0, 1}n → {0, 1}. For all x ∈ X, let Hx be an implementing subspace for R.
Suppose that we have access to the following subroutines and their controlled
versions:

1. A subroutine RK that acts on Hx as 2ΠK − I.
2. A subroutine C|w0〉 that leavesHx invariant and maps |0〉 to |w0〉/ ‖|w0〉‖.
3. A subroutine RH(x) that acts on Hx as 2ΠH(x) − I.
4. A subroutine R|0〉 that acts on Hx as 2|0〉〈0| − I.

Then we can decide f with bounded error using a number of calls to the

previous subroutines of order O
(√

W+W̃−
(1−2λ)3/2

log 1
1−2λ

)
, where W+, W̃− are de-

�ned in Eq. (3.15), and Eq. (3.30). The number of extra gates and auxiliary

qubits used is O
(

polylog(W+W̃−,
1

1−λ)
)
. Finally, it su�ces to merely use

upper bounds on W+, W̃− and λ, if one substitutes these upper bounds in the
relevant complexities.

The purpose of Theorem 53 is to enumerate the fundamental instance-
dependent operations that have to be given by the user to compile a particular
re�ection program algorithm. In other words, if one wants to compile a time-
e�cient algorithm from a re�ection program, it su�ces to give time-e�cient
implementations of the four subroutines listed in Theorem 53.

The remainder of this section is dedicated to proving Theorem 53. The
proof follows easily from four lemmas which we prove �rst, followed by the
proof of the theorem itself. Due to the structure of the algorithm, we need
to extend the space H to H′ = H ⊕ span{|0̂〉}. We also assume in the
remainder of the section that we can re�ect through the state |0̂〉 in O(1)
gates and with only O(1) auxiliary qubits. One way to implement this is
to make the state space of the system equal to H ⊗ C2, identifying H with
H⊗ |0〉 and de�ne |0̂〉 = |0, 1〉. Now, we leave it to the reader to check that
the unitary IH⊗ (2|1〉〈1| − I2) acts as (2|0̂〉〈0̂| − IH′) on H′. Moreover, these
unitaries can be implemented with O(1) gates and extra qubits.

The �rst lemma deals with the preparation of states of a certain kind.

Lemma 54. Let α0, α1,∈ C be such that |α0|2 + |α1|2 = 1, and let |w0〉 be
the minimal witness for the re�ection program R = (H, {H(x)}x∈X ,K, |w0〉).

4.3. TIME COMPLEXITY OF A SPAN PROGRAM ALGORITHM 101

For all x ∈ X, let Hx be an implementing subspace. We de�ne

|η〉 = α0
|w0〉
‖|w0〉‖

+ α1|0̂〉.

Assume that we have access to controlled versions of the following subrou-
tines:

1. A subroutine C|w0〉 that leavesHx invariant and maps |0〉 to |w0〉/ ‖|w0〉‖.
2. A subroutine R|0〉 that acts on Hx as 2|0〉〈0| − I.

Let H′x = Hx ⊕ span{|0̂〉}. Then we can implement a circuit C|η〉 that leaves
H′x invariant and maps |0〉 to |η〉, with one call to C|w0〉, two calls to R|0〉,
and O(1) extra gates and auxiliary qubits.

Proof. Recall that we can encode |0̂〉 as |0̂〉 = |0, 1〉, and identify every |h〉 ∈
H with |h〉 ⊗ |0〉. Our mapping C|η〉 is supposed to map |0〉 ∈ H ⊆ H′ to
|η〉 ∈ H′, so it is supposed to implement |0, 0〉 7→ |η〉.

First of all, we check if the �rst register is in state |0〉 by preparing an
auxiliary qubit in the state |+〉, and then controlled on this auxiliary qubit
calling the routine R|0〉. If the �rst register was in the state |0〉, then we
remain in |+〉, and if not we get a |−〉 in this qubit. Using a single Hadamard
gate, we can now store in the auxiliary qubit whether the �rst register is in
the |0〉-state.

Next, controlled on the �rst register being in the |0〉-state, we apply the
mapping |0〉 7→ α0|0〉+α1|1〉 to the second register. This can be implemented
using O(1) gates, namely by implementing a controlled rotation in the plane
span{|0〉, |1〉}.

Now, we uncompute the �rst part of our computation, i.e., we uncompute
the auxiliary qubit that stored whether the �rst register was in state |0〉. This
again takes one controlled call to R|0〉 and O(1) extra gates. Observe that
the total mapping has now only modi�ed the second register when the �rst
register was in the state |0〉. But as |0〉⊗C{0,1} = span{|0, 0〉, |0̂〉} ⊆ H′x, the
mapping that we have implemented up to now leaves H′x invariant.

Finally, controlled on the second register being in the state |0〉, we call
the circuit C|w0〉 on the �rst register. Checking whether the second register is
in state |0〉 can be done in O(1) gates, and this takes one controlled call to
C|w0〉. Moreover, as C|w0〉 leaves Hx invariant, we �nd that C|w0〉 ⊗ |0〉〈0| also
leaves Hx ⊗ |0〉 ⊆ H′x invariant. This completes the proof.

102 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

The following lemma constructs the re�ection around Λ = ΠK+ |Ψ0〉〈Ψ0|,
where |Ψ0〉 = 1√

1+
‖|w0〉‖2
W+

(
|0̂〉+ |w0〉√

W+

)
, using the ability to re�ect around K,

|0〉 and generate |w0〉.

Lemma 55. Let R = (H, {H(x)}x∈X ,K, |w0〉) be a re�ection program, and
for all x ∈ X, let Hx be an implementing subspace. Suppose that we have
access to the following subroutines and their controlled versions:

1. A subroutine RK that acts on Hx as 2ΠK − I.
2. A subroutine C|w0〉 that leavesHx invariant and implements the mapping
|0〉 7→ |w0〉/ ‖|w0〉‖.

3. A subroutine R|0〉 that acts on Hx as 2|0〉〈0| − I.

Let H′x = Hx ⊕ span{|0̂〉}. Then we can implement the circuit RΛ that acts
on H′x as 2Λ − I, using O(1) controlled calls to the subroutines, extra gates
and auxiliary qubits.

Proof. First, recall that since |Ψ0〉 is orthogonal to K, and Λ = ΠK+|Ψ0〉〈Ψ0|,
we can implement the re�ection through Λ up to a global phase as a product
of the re�ection through K on the one hand, and |Ψ0〉 on the other.

Recall that we identify H with H ⊗ |0〉, and |0̂〉 with |0, 1〉. Thus, in
order to implement the re�ection around K on H′x, we apply RK on the
�rst register, controlled on the second register being in the state |0〉, and
we add a minus if the second register is in the state |1〉. I.e., we apply the
operation RK ⊗ |0〉〈0| − IH ⊗ |1〉〈1|. As RK leaves Hx invariant, we easily
check that this operation leaves H′x invariant. Moreover, we can recognize
whether the second register is in state |0〉 using O(1) gates, so implementing
this operation takes only O(1) gates and one call to RK.

Moreover, recall from Lemma 54 that we can implement the mapping
C = C|Ψ0〉 with O(1) calls to the subroutines C|w0〉 and R|0〉, extra gates, and
auxiliary qubits. Moreover, observe thatR|0〉⊗|0〉〈0|−IH⊗|1〉〈1| implements
2|0〉〈0| − I on H′x. As

2|Ψ0〉〈Ψ0| − I = C (2|0〉〈0| − I) C†,

we can re�ect through the state |Ψ0〉 with O(1) calls to the subroutines, extra
gates and auxiliary qubits.

Thus, implementing the operations 2|Ψ0〉〈Ψ0| − I and 2ΠK − I consecu-
tively allows for implementing the re�ection around Λ. As both individual

4.3. TIME COMPLEXITY OF A SPAN PROGRAM ALGORITHM 103

re�ections leave H′x invariant, so does their product, and the total number of
calls to the subroutines, extra gates and auxiliary qubits are all O(1). Note
that for the controlled implementation of the re�ection through Λ, we need
to add an extra Z-gate to the control qubit to account for the global phase
we neglected here. This completes the proof.

Now that we know how to implement the re�ection around Λ, we proceed
with analyzing the cost of re�ecting around H′(x) = H(x)⊕ span{|0̂〉}. This
is the objective of the following lemma.

Lemma 56. Let R be a re�ection program, and for all x ∈ X, let Hx

be an implementing subspace. Suppose that we have controlled access to a
subroutine RH(x) that on Hx acts as 2ΠH(x) − I. Then we can implement a

circuit RH′(x) that on H′x = Hx ⊕ span{|0̂〉} acts as 2ΠH′(x) − I, with one
controlled call to RH(x) and O(1) extra qubits and gates.

Proof. From Theorem 45 we �nd that Πx = ΠH(x) + |0̂〉〈0̂| i.e. Πx is the
projector into H′(x) = H(x) ⊕ span{|0̂〉}. Since |0̂〉 is orthogonal to H(x),
the re�ection through H′(x) up to a global phase is merely the product of
the re�ections through H(x) and span{|0̂〉}. Furthermore, the controlled
implementation of 2Πx − I has to have another Z-gate on the control qubit
to account for the global phase that we neglect here.

Since we identify |0̂〉 with |0, 1〉, we can implement the re�ection through
span{|0̂〉} in H′x in time O(1), by simply implementing the operation IH ⊗
(2|1〉〈1| − I) in O(1) gates.

Similarly, we can apply the re�ection throughH(x) onH′x with one call to
RH(x) controlled on the second register being |0〉. This can be done with O(1)
extra gates and auxiliary qubits, and one controlled call to RH(x), completing
the proof.

Now we are ready to give the proof of the main theorem of this section.

Proof of Theorem 53. Remember that the algorithm in Corollary 46 per-
forms phase estimation and amplitude ampli�cation on Ux = (2Πx−I)(2Λ−
I).

By Lemmas 56 and 55, we can implement circuits that perform these two
re�ections onH′x with O(1) calls to the subroutines, extra gates and auxiliary
qubits. Thus, we conclude that we can implement Ux with essentially the

104 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

same cost, and remark that we can thus also implement a controlled-U oper-
ation, where we have to add another Z-gate to the control qubit to account
for the global phase in Ux.

Finally, recall that the total number of calls to controlled-U , and hence
to the subroutines, in the algorithm in Corollary 46 is of order

O

√
W+W̃−

(1− 2λ)3/2
log

1

1− 2λ

 .

Moreover, as the algorithm compiled from the re�ection program implements
phase estimation up to precision Θ = 1−2λ√

W+W̃−
with error probability at most

ε = O(1 − 2λ), and amplitude estimation up to precision Θ′ = 1
1−2λ

, the
number of extra gates and auxiliary qubits used by these algorithms are of
order

O
(

polylog

(
1

Θ′
,

1

Θ
log

1

ε

))
= O

polylog

√
W+W̃−

(1− 2λ)3/2

 .

As a last remark we observe that if we only know upper bounds to W+, W̃−
and λ, we are merely running the phase estimation and amplitude estimation
routines with a better accuracy than strictly necessary, which does not impact
negatively on the success probability of the algorithm. This completes the
proof.

Recall that a span program P = (H,V , A, |τ〉) is a particular kind of
re�ection program where the assignment x 7→ H(x) is predetermined by the
structure of H, K = kerA, and |w0〉 = A+|τ〉. In the remainder of this
chapter we will use Theorem 53 only in the context of span programs.

4.4 From algorithms to span programs

Let A be a clean quantum algorithm that evaluates a function f : X ⊆
{0, 1}n → {0, 1} with error probability 0 ≤ ε < 1/2, as in De�nition 6. Based
on this algorithm, one can construct a span program that approximates the
same function and whose complexity is equal to the query complexity of A,
up to a multiplicative constant. This construction was �rst introduced by

4.4. FROM ALGORITHMS TO SPAN PROGRAMS 105

Reichardt [Rei09] in the case where the algorithm has one-sided error, and
extended to the case of bounded (two-sided) error in [Jef20].

Our contribution is to extend this construction so that it not only pre-
serves the query complexity of A but also the time complexity. Starting with
a quantum algorithm A whose query complexity is S and time complexity is
T , we construct a corresponding span program PA that accounts for individ-
ual gates of A. If the span program is compiled back to a quantum algorithm,
the resulting algorithm still solves the same problem, its query complexity is
Õ(S) and its time complexity remains O(T). This requires modi�cations to
the span program construction, but more importantly, an additional highly
non-trivial analysis of the time complexity of the span program implementa-
tion.

4.4.1 The span program of an algorithm

Recall from Section 2.2.1 that we can assume without loss of generality that
there are no two consecutive queries in the algorithmA, and that the �rst and
last unitaries are not queries. We label the time steps where the algorithm
queries the input by

S = {q1, . . . , qS} ⊆ [T], (4.1)

where T is the total time complexity and S denotes the total number of
queries. For convenience, we also de�ne q0 = 0, qS+1 = T + 1. We denote the
`-th block of contiguous non-query time steps by B` := {q`−1+1, . . . , q`−1} =
{t : q`−1 < t < q`} ⊆ [T], with ` ∈ [S + 1]. See Figure 4.1 for an overview of
this notation.

Time step

Type

Label

0 1 2 3 4 5 6 7 · · ·

· · ·

T−1T−2 T+1T

q0 q1 q2 qS qS+1B1 B2 BS+1

Figure 4.1: Synopsis of the notation. The cells denote time steps of the
algorithm A where time progresses to the right. They are indexed from 1 to
T . The hatched cells denote time steps in which a query to the input x is
performed. In all other time steps t a unitary Ut independent of x is applied.

Recall that W is a �nite set that labels the basis of the workspace of A.

106 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

for all i ∈ [n], b ∈ {0, 1}, we de�ne the following spaces:

Hi,b = span{|t, b, i, j〉 : t+ 1 ∈ S, j ∈ W},
Htrue = span{|t, 0, i, j〉 : t+ 1 ∈ [T + 1] \ S, i ∈ [n], j ∈ W}, (4.2)
Hfalse = {0}.

As usual, the spaces H(x) and H are de�ned from these as:

∀x ∈ {0, 1}n, H(x) =

(n⊕
i=1

Hi,xi

)
⊕Htrue, and (4.3)

H =

(⊕
i∈[n]
b∈{0,1}

Hi,b

)
⊕Htrue ⊕Hfalse. (4.4)

For better intuition, we provide a graphical depiction of H, Htrue, H(x) and
Hi,b in Figure 4.2.

0 2 3 5 7 8

0

1

1

0

1

4

0

1

6
q1 q2 q3 T

t

b

0

1

H

Htrue

1

0

1
2
3
4

1 2 3
j

i
=

1
2
3
4

1 2 3
j

i
=

1
2
3
4

1 2 3
j

i
=

H(x)

Figure 4.2: Graphical depiction of the relevant spaces when T = 8, S =
{2, 5, 7}, n = 4, |W| = 3 and x = 0110. The total space H is a direct sum
of all blocks on the left, where the block at position (t, b) ∈ [T]0 × {0, 1}
denotes the subspace spanned by all computational basis states of the form
|t, b, ·, ·〉. Every block is of one of three types, white, 0 or 1, shown on the
right. The subspace Htrue is the direct sum of all white blocks. Each block
further decomposes as a direct sum over computational basis states |i, j〉,
i ∈ [n], j ∈ W . The gray cells of all blocks together span the space H(x).
Finally, for a given i ∈ [n], the subspaces Hi,0 and Hi,1 consist of the i-th
row within all 0 and 1 blocks, respectively.

4.4. FROM ALGORITHMS TO SPAN PROGRAMS 107

Let [T]0 := {0, . . . , T}. We de�ne the target space V and the target vector
|τ〉 ∈ V as follows:

V = span{|t, i, j〉 : t ∈ [T]0, i ∈ [n], j ∈ W}, |τ〉 = |0〉|Ψ0〉 − |T 〉|ΨT 〉, (4.5)

where |Ψ0〉 is the initial state of A (see Eq. (2.3)) and |ΨT 〉 is the �nal
accepting state (see De�nition 6).

Recall that S denotes the total number of queries and ε is the error
probability of A. Let

a =

√
ε

2S + 1
and M = max

`∈[S+1]

√
|B`|, (4.6)

where B` ⊆ [T] is the `-th contiguous block of non-query gates (see Fig-
ure 4.1). By De�nition 6 and Lemma 7, we can assume that M ≤

√
3T/S.

For all computational basis vectors |t, b, i, j〉 in H, we de�ne the action of the
span program operator A ∈ L(H,V) as follows:

A|t, b, i, j〉 =

a|T, i, j〉 if t = T,

M(|t, i, j〉 − |t+ 1〉Ut+1|i, j〉) if ∃` ∈ [S + 1] : t+ 1 ∈ B`,
|t, i, j〉 − (−1)b|t+ 1, i, j〉 if ∃` ∈ [S] : t+ 1 = q`.

(4.7)
The weights a and M are the main di�erence between our construction and
that of [Jef20], and will enable the implementation of the span program
algorithm described in Section 4.5 to be both time and query e�cient. The
unitary Ut+1 is the (t+1)-th unitary of algorithmA as de�ned in Section 2.2.1.

De�nition 57 (Span program of an algorithm). The span program of a
quantum algorithm A is PA = (H,V , A, |τ〉), where H is de�ned in Eq. (4.2)
and (4.4), V and |τ〉 in Eq. (4.5), and A in Eq. (4.7).

We spend the remainder of this section proving various properties of span
programs of this type. We start by analyzing the positive and negative
witness sizes W+(P) and W−(P), and the approximation factor λ.

Theorem 58. Let A be a clean quantum algorithm for f with error proba-
bility 0 ≤ ε < 1/5, making S queries, and let PA be the span program for A
from De�nition 57. Then PA positively 5ε-approximates f with complexities
W+(PA) = O(S) and W̃−(PA) = O(S).

108 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

Theorem 58 follows directly from Lemma 59, and Lemma 60 below. The
proofs are similar to those of [Jef20], which are themselves similar to [Rei09],
with the di�erence that the operator A of our span program now has slightly
modi�ed weights, see Eq. (4.7).

Lemma 59. Let A be a clean quantum algorithm with query complexity S,
time complexity T and error probability 0 ≤ ε < 1/2. Let PA be the span
program for A from De�nition 57. Then,

W+(PA) ≤ 3(2S + 1) = O(S).

Proof. Let Z = [n]×W , so the state space of the algorithm A is CZ . Recall
from Eq. (2.3) that |Ψt(x)〉 ∈ CZ denotes the state of A on input x at time
t, i.e., immediately after the application of Ut. We will construct a positive
witness for every positive input x ∈ f−1(1) and upper bound its norm.

Keeping Eq. (4.7) in mind, for every t ∈ [T]0 we de�ne

|Ψ̂t(x)〉 =

1
a
|0〉|ΨT (x)〉 if t = T,

1
M
|0〉|Ψt(x)〉 if ∃` ∈ [S + 1] : t+ 1 ∈ B`,

Lx|Ψt(x)〉 if ∃` ∈ [S] : t+ 1 = q`,

where Lx ∈ L(CZ ,C2⊗CZ) is de�ned on the computational basis vectors as
follows:

∀i ∈ [n], j ∈ W , Lx|i, j〉 = |xi, i, j〉.

For all t ∈ [T]0, we easily verify that |t〉|Ψ̂t(x)〉 ∈ H(x) by referring to
Eq. (4.2) and Eq. (4.4). Next, we de�ne

|wx〉 =
T−1∑
t=0

|t〉|Ψ̂t(x)〉+
1

a
|T 〉|0〉 (|ΨT (x)〉 − |ΨT 〉) ,

where |ΨT 〉 is the �nal accepting state from De�nition 6. Since |T, 0, z〉 ∈
H(x) for all z ∈ Z, we �nd by linearity that |wx〉 ∈ H(x). By splitting the
time steps into query and non-query steps we �nd that

|wx〉 =
1

a
|T 〉|0〉 (|ΨT (x)〉 − |ΨT 〉) +

S+1∑
`=1

q`−2∑
t=q`−1

|t〉 1

M
|0〉|Ψt(x)〉

+
S∑
`=1

|q` − 1〉Lx|Ψq`−1(x)〉.

4.4. FROM ALGORITHMS TO SPAN PROGRAMS 109

Applying A we get

A|wx〉 = |T 〉|ΨT (x)〉 − |T 〉|ΨT 〉

+
S+1∑
`=1

q`−2∑
t=q`−1

M

[
|t〉 1

M
|Ψt(x)〉 − |t+ 1〉 1

M
Ut+1|Ψt(x)〉

]

+
S∑
`=1

[
|q` − 1〉|Ψq`−1(x)〉 − |q`〉Ox|Ψq`−1(x)〉

]
= |T 〉|ΨT (x)〉 − |T 〉|ΨT 〉+

S+1∑
`=1

q`−2∑
t=q`−1

[|t〉|Ψt(x)〉 − |t+ 1〉|Ψt+1(x)〉]

+
S∑
`=1

[|q` − 1〉|Ψq`−1(x)〉 − |q`〉|Ψq`(x)〉]

= |T 〉|ΨT (x)〉 − |T 〉|ΨT 〉+
T−1∑
t=0

[|t〉|Ψt(x)〉 − |t+ 1〉|Ψt+1(x)〉]

= |0〉|Ψ0〉 − |T 〉|ΨT 〉 = |τ〉,

where most terms cancel since the �nal sum is telescopic. In particular, we
�nd that |wx〉 is indeed a positive witness for x. We can use its size to bound
the size of the minimum positive witness for x:

w+(x, PA) = min{‖|w〉‖2 : |w〉 ∈ H(x), A|w〉 = |τ〉}

≤ ‖|wx〉‖2 =
T−1∑
t=0

∥∥∥|Ψ̂t(x)〉
∥∥∥2

+
‖|ΨT (x)〉 − |ΨT 〉‖2

a2

=
S∑
`=1

‖|Ψq`−1(x)〉‖2 +
S+1∑
`=1

q`−2∑
t=q`−1

1

M2
‖|Ψt(x)〉‖2 +

‖|ΨT (x)〉 − |ΨT 〉‖2

a2

≤S + (S + 1) +
1

a2
· 2ε ≤ 2S + 1 +

2S + 1

ε
· 2ε = 3(2S + 1),

where we used M2 ≥ |B`| = q`− q`−1− 1 from Eq. (4.6) to bound the second
term. To bound the third term, we used a =

√
ε/(2S + 1) from Eq. (4.6)

and the inequality

‖|ΨT (x)〉 − |ΨT 〉‖2 = 2(1− Re〈ΨT (x)|ΨT 〉) = 2(1− p1(x)) ≤ 2ε

110 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

which holds for any x ∈ f−1(1) (see Lemma 7 and De�nition 6). Thus,

W+(PA) = max
x∈f−1(1)

w+(x, PA) ≤ 3(2S + 1).

Lemma 60. Let A be a clean quantum algorithm with query complexity S,
time complexity T and error probability 0 ≤ ε < 1

5
. Let PA be the span

program for A from De�nition 57. Then, for all x ∈ f−1(0), there exists an

approximate negative witness |ω̃x〉 such that
∥∥〈ω̃x|AΠH(x)

∥∥2 ≤ 5ε/(3(2S+1))

and ‖〈ω̃x|A‖2 ≤ 2(4S + 1). Thus:

1. PA positively λ-approximates f for λ = 5ε.

2. The approximate negative witness complexity of PA is W̃−(PA) = O(S).

Proof. Given a negative input x, we de�ne an approximate negative witness
and bound the negative error and minimum approximate negative witness
size using this witness. To that end, let x ∈ f−1(0). De�ne

〈ω̃x| =
1

1− 〈ΨT (x)|ΨT 〉

T∑
t=0

〈t|〈Ψt(x)|.

Note that this is well-de�ned as x is a negative instance, hence, by De�nition 6
and Lemma 7 we have |〈ΨT (x)|ΨT 〉| ≤ ε < 1. Recalling from Eq. (4.5) that
|τ〉 = |0〉|Ψ0〉 − |T 〉|ΨT 〉, observe that

〈ω̃x|τ〉 =
〈Ψ0|Ψ0〉 − 〈ΨT (x)|ΨT 〉

1− 〈ΨT (x)|ΨT 〉
= 1. (4.8)

Next, let |t, b, i, j〉 be a computational basis vector in H(x) and let A be the
operator de�ned in Eq. (4.7). If t+ 1 = q` for some ` ∈ [S], then b = xi and

〈ω̃x|A|t, b, i, j〉 = 〈ω̃x|
[
|t, i, j〉 − (−1)xi |t+ 1, i, j〉

]
=

1

1− 〈ΨT (x)|ΨT 〉
[
〈Ψt(x)|i, j〉 − (−1)xi〈Ψt+1(x)|i, j〉

]
=

1

1− 〈ΨT (x)|ΨT 〉
[
〈Ψt(x)|i, j〉 − 〈Ψt(x)|O†x(−1)xi|i, j〉

]
= 0.

4.4. FROM ALGORITHMS TO SPAN PROGRAMS 111

On the other hand, if t+ 1 ∈ B` for some ` ∈ [S + 1], then b = 0 and

〈ω̃x|A|t, b, i, j〉 = M〈ω̃x|
[
|t, i, j〉 − |t+ 1〉Ut+1|i, j〉

]
=

M

1− 〈ΨT (x)|ΨT 〉
[
〈Ψt(x)|i, j〉 − 〈Ψt+1(x)|Ut+1|i, j〉

]
=

M

1− 〈ΨT (x)|ΨT 〉

[
〈Ψt(x)| − 〈Ψt(x)|U †t+1Ut+1

]
|i, j〉 = 0.

Finally, if t = T , then 〈ω̃x|A|T, 0, i, j〉 = a〈ω̃x|T, i, j〉 = a〈ΨT (x)|i,j〉
1−〈ΨT (x)|ΨT 〉

, where a
is de�ned in Eq. (4.6). This might not evaluate to 0, potentially contributing
to the negative witness error of 〈ω̃x| for x. Using 〈ΨT (x)|ΨT 〉 = p1(x) ≤ ε <
1/5 (see De�nition 6 and Lemma 7) we �nd that

∥∥〈ω̃x|AΠH(x)

∥∥2
=

∑
i∈[n],j∈W

|〈ω̃x|A|T, 0, i, j〉|2 =
a2 ‖|ΨT (x)〉‖2

|1− 〈ΨT (x)|ΨT 〉|2

=
a2

(1− p1(x))2 ≤
a2

(1− ε)2 ≤
ε

(2S + 1)
(
1− 1

5

)2

<
25
15
ε

2S + 1
=

5ε

3(2S + 1)
≤ 5ε

W+(P)
,

where in the last inequality we used Lemma 59. We �nd that P positively
λ-approximates f with λ = 5ε, completing the proof of the �rst claim. To
prove the second claim, recall from Eq. (4.8) that 〈ω̃x|τ〉 = 1. Hence, for any
x ∈ f−1(0), using that Z = [n]×W we have:

w̃−(x, P) = min
|ω̃〉∈V

{
‖〈ω̃|A‖2 : 〈ω̃|τ〉 = 1,

∥∥〈ω̃|AΠH(x)

∥∥2 ≤ λ

W+(P)

}
≤ ‖〈ω̃x|A‖2 =

∑
`∈[S],z∈Z
b∈{0,1}

∣∣〈ω̃x|[|q` − 1, z〉 − (−1)b|q`, z〉
]∣∣2 +

∑
z∈Z

|〈ω̃x|a|T, z〉|2

+
∑

`∈[S+1],z∈Z
t∈{q`−1,...,q`−2}

∣∣〈ω̃x|M(|t, z〉 − |t+ 1〉Ut+1|z〉
)∣∣2

112 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

≤ 1

|1− 〈ΨT (x)|ΨT 〉|2

 ∑
`∈[S],z∈Z

2 |〈Ψq`−1(x)|z〉|2 + 2 |〈Ψq`(x)|z〉|2

+
∑

`∈[S+1],z∈Z
t∈{q`−1,...,q`−2}

M2 |{〈Ψt(x)| − 〈Ψt+1(x)|Ut+1} |z〉|2 +
∑
z∈Z

a2 |〈ΨT (x)|z〉|2

=

1

|1− 〈ΨT (x)|ΨT 〉|2

∑
`∈[S]

2 ‖〈Ψq`−1(x)|‖2 + 2 ‖〈Ψq`(x)|‖2 + a2 ‖〈ΨT (x)|‖2

=

4S + a2

|1− 〈ΨT (x)|ΨT 〉|2
≤ 4S + a2

(1− ε)2 ≤
4S + a2(
1− 1

5

)2

≤
[
4S +

ε

2S + 1

]
· 25

16
≤ 2(4S + 1) = O(S).

Together, Lemma 59 and Lemma 60 prove Theorem 58, which in turn
implies an upper bound on the query complexity of implementing the span
program PA.

Witness anatomy of the span program of an algorithm

We conclude this section by characterizing the kernel of the span program
operator A in Lemma 61, and subsequently �nding the minimal witness size
in Lemma 62. These will prove relevant in the analysis of the time complex-
ity of the algorithm compiled from PA, to which we turn our attention in
Section 4.5.

The span program map A written in Eq. (4.7) is a complicated object,
obscured by the parameters a and M and with three di�erent �regimes�.
Before we completely characterize it in Lemma 61, let us study a simpli�ed
version of A which will give us a better grasp of the problem at hand.

With H de�ned in Eq. (4.4), de�ne a stripped down version of A in
Eq. (4.7) acting on |tbz〉 ∈ H as

A|t, b, z〉 =

{
|t, z〉 − |t+ 1〉Ut+1|z〉 if t+ 1 /∈ S
|t, z〉 − |t+ 1〉(−1)b|z〉 if t+ 1 ∈ S.

(4.9)

4.4. FROM ALGORITHMS TO SPAN PROGRAMS 113

No queries The �rst case we will study is that of an algorithm without
queries, i.e. S = ∅. Let |h〉 =

∑
t∈[T−1]0

|t〉|0〉|ϕt〉 for some unnormalized
states |ϕt〉. Then

A|h〉 =
∑

t∈[T−1]0

(|t〉|ϕt〉 − |t+ 1〉Ut+1|ϕt〉)

= |0〉|ϕ0〉+
∑

t∈[T−1]

|t〉 (|ϕt〉 − Ut|ϕt−1〉)− |T 〉|ϕT 〉.

We can cancel most terms of the sum by de�ning |ϕt〉 = Ut|ϕt−1〉, but
the �rst and last term can only cancel if |ϕ0〉 = |ϕT 〉 = 0. It is very easy to
see that for this A, ker(A) = 0. That is, the best we can hope for in terms
of cancellations when we have no queries is a telescopic sum where the �rst
and last term survive.

One query When we have exactly one query, the dimension of ker(A) is
still 0 but we have much to learn from trying to �nd |h〉 such that A|h〉 = 0.
Let us assume that we have one query at time step t = q. And let the vector
|h〉 be de�ned as

|h〉 =
∑
t<q−1

|t〉|0〉|ϕt〉+
∑

b∈{0,1}

|q − 1〉|b〉|ϕ(b)
q−1〉+

∑
t>q−1

|t〉|0〉|ϕt〉.

Now, choosing |ϕt〉 = Ut|ϕt−1〉 we have that A|h〉 is going to create two
telescopic sums with a term A

(∑
b∈{0,1}|q − 1〉|b〉|ϕ(b)

q−1〉
)
in between. More

importantly, we can choose |ϕ(0)
q−1〉 in such a way that we cancel either the

endpoint of the �rst telescopic sum or the �rst term of the second telescopic
sum. Regardless of what we do, we are left with at least one endpoint of
one telescopic sum standing. We conclude that ker(A) = 0. Nevertheless,
we have learned that a query allows us to cancel an endpoint to a telescopic
sum.

Two queries What happens if we go to two queries? As a toy model let us
assume that the algorithm has exactly T time steps, the �rst and last being
queries. That is, let us assume that A = Ox, U2, . . . , UT−1,Ox. For every |ϕ〉

114 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

in the workspace, let us de�ne the vector

|h〉 = |0〉1
2

(|0〉 − |1〉) |ϕ〉+
∑

t∈[T−2]

|t〉|0〉|ϕt〉+ |T − 1〉1
2

(|0〉+ |1〉) |ϕT−1〉,

(4.10)
where we de�ne |ϕt〉 = Ut|ϕt−1〉 for t ∈ [T − 1] and |ϕ0〉 = |ϕ〉. We claim
that this vector is in the kernel of A. Indeed,

A|h〉 = |0〉1
2

(|ϕ〉 − |ϕ〉)− |1〉1
2

(|ϕ〉 − (−1)|ϕ〉) + A

 ∑
t∈[T−2]

|t〉|ϕt〉

+ |T − 1〉1

2
(|ϕT−1〉+ |ϕT−1〉)− |T 〉

1

2
(|ϕT−1〉+ (−1)|ϕT−1〉)

= 0.

In fact, it is straightforward to prove that all vectors in the kernel of A are
of this form. What allows us to cancel all terms is that A creates a telescopic
sum in the block between the queries whose starting point is annihilated by
the t = 0 term of |h〉 and whose endpoint is annihilated by the t = T − 1
term in |h〉. If an algorithm has more than one block (more than 2 queries),
the same analysis can be done for each separate block. What we have found
is that for every block between queries and every vector |ϕ〉 ∈ W we have
exactly one vector in ker(A) with the same form as that of equation (4.10).
We are now �nally ready to tackle the original problem of understanding
ker(A) in its full complexity.

Before we do that, we will de�ne notation to denote the product of a
subsequence of unitaries of A. Let t1 ≤ t2, then we de�ne

Ut2;t1 := Ut2Ut2−1 · · ·Ut1 , and U †t1;t2 := U †t1U
†
t1+1 · · ·U

†
t2 . (4.11)

If t2 < t1, then we de�ne Ut2;t1 := I, and U †t1;t2 .

Lemma 61. Let A be a clean quantum query algorithm with error probability
0 ≤ ε < 1. Let PA = (H,V , A, |τ〉) be the span program for A. Let Z =
[n]×W. For ` ∈ {2, . . . , S}, we de�ne the linear map Φ` from CZ to H as

Φ`|ψ〉 =|q`−1 − 1〉 |−〉√
2
|ψ〉+

1

M

q`−2∑
t=q`−1

|t〉|0〉Ut;q`−1+1|ψ〉 (4.12)

+|q` − 1〉 |+〉√
2
Uq`−1;q`−1+1|ψ〉, (4.13)

4.4. FROM ALGORITHMS TO SPAN PROGRAMS 115

where |±〉 = (|0〉 ± |1〉)/
√

2 and M was de�ned in Eq. (4.6). We also de�ne
the linear map ΦS+1 from CZ to H as

ΦS+1|ψ〉 = |qS − 1〉 |−〉√
2
|ψ〉+

1

M

T−1∑
t=qS

|t〉|0〉Ut;qS+1|ψ〉+
1

a
|T 〉|0〉UT ;qS+1|ψ〉.

(4.14)

Then

ker(A) =
S+1⊕
`=2

Φ`

(
CZ
)
.

Proof. By direct calculation we can check that all vectors in the image of
the linear maps Φ` are elements in the kernel of A. Thus, it remains to show
that any vector in the kernel of A can be written as a linear combination of
vectors in the image of the Φ`'s. To that end, let |Ψ〉 ∈ ker(A) ⊆ H. We �rst
of all split this state in several disjointly supported parts, i.e.,

|Ψ〉 =
1

M

q1−2∑
t=0

|t〉|0〉|ψ1,t〉+ |q1 − 1〉|+〉√
2
|ψ1,q1−1〉

+
S∑
`=2

|q`−1 − 1〉 |−〉√
2
|ψ`,q`−1−1〉+

1

M

q`−2∑
t=q`−1

|t〉|0〉|ψ`,t〉+ |q` − 1〉 |+〉√
2
|ψ`,q`−1〉

+ |qS − 1〉 |−〉√

2
|ψS+1,qS−1〉+

1

M

T−1∑
t=qS

|t〉|0〉|ψS+1,t〉+
1

a
|T 〉|0〉|ψS+1,T 〉,

where all the amplitudes are absorbed in the unnormalized |ψ`,t〉-vectors.
Now, we apply A to this vector to obtain

A|Ψ〉 =

q1−2∑
t=0

(|t〉|ψ1,t〉 − |t+ 1〉Ut+1|ψ1,t〉) + |q1 − 1〉|ψ1,q1−1〉

+
S∑
`=2

−|q`−1〉|ψ`,q`−1−1〉+

q`−2∑
t=q`−1

(|t〉|ψ`,t〉 − |t+ 1〉Ut+1|ψ`,t〉) + |q` − 1〉|ψ`,q`−1〉

− |qS〉|ψS+1,qS−1〉+

T−1∑
t=qS

(|t〉|ψS+1,t〉 − |t+ 1〉Ut+1|ψS+1,t〉) + |T 〉|ψS+1,T 〉

116 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

= |0〉|ψ1,0〉+

q1−1∑
t=1

|t〉(|ψ1,t〉 − Ut|ψ1,t−1〉)

+
S∑
`=2

|q`−1〉(|ψ`, q`−1〉 − |ψ`,q`−1−1〉) +

q`−1∑
t=q`−1+1

|t〉(|ψ`,t〉 − Ut|ψ`,t−1〉)

+ |qS〉(|ψS+1,qS〉 − |ψS+1,qS−1〉) +

T∑
t=qS+1

|t〉(|ψS+1,t〉 − Ut|ψS+1,t−1〉).

As |Ψ〉 ∈ ker(A), the above expression has to equal 0. We learn by inspection
that this happens if and only if the following conditions are satis�ed:

|ψ1,0〉 = 0

|ψ1,t〉 = Ut|ψ1,t−1〉 ∀t ∈ {1, . . . , q1 − 1},
|ψ`,q`−1

〉 = |ψ`,q`−1−1〉 ∀` ∈ {2, . . . , S + 1},
|ψ`,t〉 = Ut|ψ`,t−1〉 ∀` ∈ {1, . . . , S}, t ∈ {q`−1 + 1, . . . , q` − 1},

|ψS+1,t〉 = Ut|ψS+1,t−1〉 ∀t ∈ {qS + 1, . . . , T}.

Using the abbreviation |ψ`〉 = |ψ`,q`−1−1〉 for ` ∈ {2, . . . , S + 1}, these condi-
tions simplify to:

|ψ1,t〉 = 0 ∀t ∈ {0, . . . , q1 − 1},
|ψ`,q`−1

〉 = |ψ`,q`−1−1〉 = |ψ`〉 ∀` ∈ {2, . . . , S + 1},
|ψ`,t〉 = Ut;q`−1+1|ψ`,q`−1

〉 ∀` ∈ [S], t ∈ {q`−1 + 1, . . . , q` − 1},
= Ut;q`−1+1|ψ`〉

|ψS+1,t〉 = Ut;qS+1|ψS+1,qS〉 ∀t ∈ {qS + 1, . . . , T},
= Ut;qS+1|ψS+1〉.

Using these constraints, we can rewrite |Ψ〉 as

|Ψ〉 =
S∑
`=2

|q`−1 − 1〉 |−〉√
2
|ψ`〉+

1

M

q`−2∑
t=q`−1

|t〉|0〉Ut;q`−1+1|ψ`〉

+|q` − 1〉 |+〉√
2
Uq`−1;q`−1+1|ψ`〉

)
+ |qS − 1〉|−〉√

2
|ψS+1〉

4.4. FROM ALGORITHMS TO SPAN PROGRAMS 117

+
1

M

T−1∑
t=qS

|t〉|0〉Ut;qS+1|ψS+1〉+
1

a
|T 〉|0〉UT ;qS+1|ψS+1〉

=
S+1∑
`=2

Φ`(|ψ`〉),

Finally, we give a closed form for the minimal positive witness |w0〉 =
A+|τ〉. Remember that the two traits that completely characterize this vector
are that A|w0〉 = |τ〉 and that |w0〉 ⊥ ker(A).

Lemma 62. Let A be a clean quantum query algorithm with error probability
0 ≤ ε < 1. Let PA be the span program for A from De�nition 57. Then the
minimal witness |w0〉 = A+|τ〉 is

|w0〉 =
1

M

q1−2∑
t=0

|t〉|0〉Ut;1|Ψ0〉+ |q1 − 1〉
(

1

2
|0〉+

1

2
|1〉
)
Uq1−1;1|Ψ0〉

+
1

Ca2 + 1

[
|qS − 1〉

(
1

2
|0〉 − 1

2
|1〉
)
U †qS+1;T |ΨT 〉

+
1

M

T−1∑
t=qS

|t〉|0〉U †t+1;T |ΨT 〉

]
− Ca

Ca2 + 1
|T 〉|0〉|ΨT 〉,

where C = T−qS
M2 + 1

2
and a and M are de�ned in Eq. (4.6). In addition, the

squared norm of |w0〉 is N = q1−1
M2 + 1

2
+ C

Ca2+1
.

Proof. We �rst prove that |w0〉 is orthogonal to all vectors in the kernel of A.
By Lemma 61, it su�ces to take |ψ〉 ∈ C[n]×W arbitrarily and check that for
all ` ∈ {2, . . . , S+1}, 〈ψ|Φ†`|w0〉 = 0. Observe that |w0〉 does not have support
in states with time t ∈ {q1, . . . qS − 2}, hence, for all ` ∈ {3, . . . , S − 1}, we
easily obtain that the vectors |w0〉 and Φ`|ψ〉 are orthogonal. For ` = 2, we
�nd that the supports only overlap at t = q1− 1 with the term |q1− 1〉 |−〉√

2
|ψ〉

of Φ1|ψ〉, so

〈ψ|Φ†1|w0〉 =
1

4
〈ψ|Uq1−1;1|Ψ0〉 −

1

4
〈ψ|Uq1−1;1|Ψ0〉 = 0.

A similar computation shows that |w0〉 and ΦS|ψ〉 are orthogonal, as their
supports only overlap at t = qS−1 with the term |qS−1〉 |+〉√

2
UqS−1 . . . UqS−1+1|ψ〉

118 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

of ΦS|ψ〉. Finally,

〈ψ|Φ†S+1|w0〉 =
1

Ca2 + 1

[
1

4
〈ψ|U †qS+1;T |ΨT 〉+

1

4
〈ψ|U †qS+1;T |ΨT 〉

+
1

M2

T−1∑
t=qS

〈ψ|U †qS+1;T |ΨT 〉

]
− C

Ca2 + 1
〈ψ|U †qS+1;T |ΨT 〉

=

(
1

Ca2 + 1
·
[

1

2
+
T − qS
M2

]
− C

Ca2 + 1

)
〈ψ|U †qS+1;T |ΨT 〉

=

[
C

Ca2 + 1
− C

Ca2 + 1

]
〈ψ|U †qS+1;T |ΨT 〉 = 0.

Thus |w0〉 is orthogonal to the kernel of A. It is also mapped to |τ〉 by A, as

A|w0〉 =

q1−2∑
t=0

(|t〉Ut;1|Ψ0〉 − |t+ 1〉Ut+1;1|Ψ0〉)

+

(
1

2
+

1

2

)
|q1 − 1〉Uq1−1;1|Ψ0〉 −

(
1

2
− 1

2

)
|q1〉Uq1−1;1|Ψ0〉

+
1

Ca2 + 1

[(
1

2
− 1

2

)
|qS − 1〉U †qS+1;T |ΨT 〉

−
(

1

2
+

1

2

)
|qS〉U †qS+1;T |ΨT 〉

+
T−1∑
t=qS

(
|t〉U †t+1;T |ΨT 〉 − |t+ 1〉U †t+2;T |ΨT 〉

)]
− Ca2

Ca2 + 1
|T 〉|ΨT 〉

= |0〉|Ψ0〉 −
1

Ca2 + 1
|T 〉|ΨT 〉 −

Ca2

Ca2 + 1
|T 〉|ΨT 〉 = |τ〉.

This proves that |w0〉 is the minimal witness of A. We conclude the proof by
computing its squared norm N = ‖|w0〉‖2,

N =

q1−2∑
t=0

1

M2
+

1

4
+

1

4
+

1

(Ca2 + 1)2

[
1

4
+

1

4
+

T−1∑
t=qS

1

M2

]
+

C2a2

(Ca2 + 1)2

=
q1 − 1

M2
+

1

2
+

C

(Ca2 + 1)2
+

C2a2

(Ca2 + 1)2
=
q1 − 1

M2
+

1

2
+

C

Ca2 + 1
.

4.5. TIME COMPLEXITY OF THE ALGORITHM 119

4.5 Time complexity of the algorithm

Now we analyze the time complexity of implementing PA. Remember that
in Section 4.3 we broke down the span program algorithm into its essential
subroutines, namely, the re�ections around ker(A), H(x), |0〉 and the circuit
that generates |w0〉. The bulk of this section (and bear with us, it is a
hefty one) will be devoted to constructing said subroutines and characterizing
their time complexity. All this will then be combined to prove the following
theorem.

Theorem 63. Let A be a clean quantum query algorithm that acts on k
qubits, has query complexity S, time complexity T , and evaluates a function
f : X ⊆ {0, 1}n → {0, 1} with bounded error as in De�nition 6. Let PA
be the span program for this algorithm, as in De�nition 57. Then we can
implement the algorithm compiled from PA with:

1. O(S) calls to Ox.
2. O(T) calls to OA and OS , as de�ned in Section 4.2.
3. O(Tpolylog(T)) additional gates.
4. O(polylog(T)) auxiliary qubits.

As we just said, the proof leans on the structure of Theorem 53. We �rst
de�ne a suitable implementing subspace in Section 4.5.1, and then continue
with providing e�cient implementations of the four subroutines that are
required to use Theorem 53. In fact, we provide generalizations of all four
subroutines (the re�ections around ker(A), H(x), |0〉 and the circuit C|w0〉 :
|0〉 7→ |w0〉) to the case where we have several algorithms and we want to
run each subroutine in coherent superposition for all algorithms. We call this
concurrent access, and de�ne it formally as:

De�nition 64. Let C(1), . . . , C(n) be quantum subroutines, all acting on the
same Hilbert spaceH. We say that a subroutine C provides concurrent access
to {C(j)}nj=1 if it performs the following action on C[n] ⊗H:

C =
n∑
j=1

|j〉〈j| ⊗ C(j).

This is not strictly necessary for the theorem above, but will be a necessity
in the �nal section of the chapter, where we make an algorithm that computes
the OR of several functions out of algorithms computing each one.

120 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

4.5.1 Implementing subspace

The necessity for the introduction of implementing subspaces stems from
the need to re�ect around the state |0〉|0〉|Ψ0〉. Doing this in principle
is very simple because we can assume that |Ψ0〉 = |ψ0〉|0〉 where |ψ0〉 ∈
C⊗(log(n)+log(|W|)). However, in general, the time complexity of this re�ection
is Θ(log(n)+log(|W|)), since it is necessary to check that every qubit is in the
|0〉 state.2 That would make such a re�ection very costly for algorithms with
high space complexity, such as the element distinctness algorithm of [Amb07].
Speci�cally, if the time complexity of A is polynomially related to the num-
ber of qubits used in A, then we �nd that log(n) + log(|W|) = Θ(poly(T)).
In this section, we explain how we circumvent this polynomial dependence
using implementing subspaces.

Our construction relies on the fact that at intermediate steps the state of
an algorithm compiled from PA is not completely arbitrary but is guaranteed
to live within an implementing subspace. In other words, of all states in the
workspace of A, any given run will only visit a simple, one-dimensional path
in the workspace. Moreover, all such states are labeled by the time register.
So, given a time step t ∈ [T]0 and an input x ∈ X, we can deduce what the
corresponding state in algorithm A must be at that time step, and hence we
can deduce the state in the last register of H.

For the implementing subspace that we will describe below, we will show
that for every x ∈ X, when t = 0, the algorithm compiled from PA only
visits superpositions of states of the form |t, b, i, j, a〉 = |0, 0, ψ0, a〉, where
|ψ0〉|0〉 = |Ψ0〉 is the initial state of the algorithm and the last index a = 0, 1
represents the single qubit answer register. Therefore, In order to re�ect
around the all-zeroes state, we need not check all registers. It is enough to
check that the time and the answer registers are at zero. Furthermore, while
the implementing subspace depends on the input, this property is indepen-
dent of it, and so we do not need to know the exact implementing subspace
to run the algorithm, just that it exists.

Unfortunately, we are not able to provide an exact implementing sub-

2This detail has been neglected in previous work. For example, e�cient implementation
of such a re�ection is not discussed in [Amb10]. While this is not inconsistent with the
stated results, since the result only claims to count oracle calls to Ox and OA, this is not
true of subsequent work that uses the results of [Amb10]. We suspect that an argument
like ours could also be made in previous work, but feel it is su�ciently non-trivial that it
should not be taken for granted.

4.5. TIME COMPLEXITY OF THE ALGORITHM 121

space. Instead, we will use an approximate implementing subspace, i.e., we
de�ne a subspace Hx ⊆ H and we prove that all operations map states in Hx

to states that have high overlap with Hx. The way we handle the propaga-
tion of errors is similar to standard approximation arguments: if the overlap
with H⊥x after one approximate operation is at most δ, then the combined
error after N such approximation operations is at most O(Nδ). Hence, if
we make sure that δ < o(1/N), then the total cumulative �lost amplitude� is
o(1), and the in�uence on the �nal success probability of the algorithm is at
most o(1) as well.

Now, we work towards the formal de�nition of Hx for a clean quantum
algorithm A as de�ned in Def. 6. Remember that in a clean quantum al-
gorithm, the last bit of the workspace is the answer register, and the initial
state is |Ψ0〉 = |ψ0, 0〉. For each x ∈ X and t ∈ {0, . . . , T − 1}, we de�ne the
following vectors:

|Ψ(0)
t (x)〉 = Ut · · ·U1|ψ0, 0〉 = Ut;1|ψ0, 0〉,

|Ψ(1)
t (x)〉 = Ut · · ·U1|ψ0, 1〉 = Ut;1|ψ0, 1〉,

which we name the t-step push-forwards of |Ψ0〉 = |ψ0, 0〉 and |ΨT 〉 = |ψ0, 1〉
respectively. These are just fancy, shorthand names for the result of running
the t steps of the algorithm on |ψ0, 0〉 or |ψ0, 1〉.

Alternatively, we could run the algorithm in reverse using |ψ0, 0〉 or |ψ0, 1〉
as initial states. Thus, we de�ne the t-step pullbacks of |ψ0, 0〉 and |ψ0, 1〉 as

|Ψ̃(0)
t (x)〉 = U †t+1 · · ·U

†
T |ψ0, 0〉 = U †t+1;T |ψ0, 0〉,

|Ψ̃(1)
t (x)〉 = U †t+1 · · ·U

†
T |ψ0, 1〉 = U †t+1;T |ψ0, 1〉.

The reason we bother de�ning these pull-backs and push-forwards is that
they are part of the minimal witness |w0〉 and need to be considered in
order to build an e�cient re�ection around the state |0〉|ψ0, 0〉. Moreover,
these vectors are intimately related by the fact that A is a clean quantum
algorithm. Indeed we have

Claim 2. For any clean quantum algorithm A, all x ∈ {0, 1}n, and all
t ∈ [T]0:

〈Ψ(0)
t (x)|Ψ̃(1)

t (x)〉 = 〈Ψ(1)
t (x)|Ψ̃(0)

t (x)〉 = p1(x),

〈Ψ(0)
t (x)|Ψ̃(0)

t (x)〉 = 〈Ψ(1)
t (x)|Ψ̃(1)

t (x)〉 = p0(x),

〈Ψ(0)
t (x)|Ψ(1)

t (x)〉 = 〈Ψ̃(0)
t (x)|Ψ̃(1)

t (x)〉 = 0.

122 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

Proof. The �rst statement follows from De�nition 6. Since |ΨT 〉 = |ψ0, 1〉

p1(x) = 〈Ψ(0)
T (x)|ΨT 〉 = 〈Ψ(0)

t (x)|U †t+1;T |ψ0, 1〉 = 〈Ψ(0)
t (x)|Ψ̃(1)

t (x)〉.

The proofs of the other statements are very similar and are left to the reader.

Now, we want to de�ne an implementing subspace Hx such that it is left
invariant by Πker(A) and ΠH(x), and contains |0〉|ψ0, 0〉, and |w0〉. Therefore,
our implementing subspace had better respect the structure of |w0〉 and the
vectors of ker(A) that we have studied before. It is reasonable, looking at
those vectors, to treat each block separately. Therefore, we propose the
following spaces. All the arguments of the vector sums below should be
enclosed in a span{}, but we omit those for ease of notation. For the �rst
block ` = 1, we de�ne

H(b)
x,1 =

q1−2⊕
t=0

|t〉|0〉|Ψ(b)
t (x)〉 ⊕ |q1 − 1〉|+〉|Ψ(b)

q1−1(x)〉. (4.15)

Observe that this contains the initial vector |0, 0〉|ψ0, 0〉 if b = 0.
For ` = S + 1, we de�ne

H(b)
x,S+1 = |qS − 1〉|−〉|Ψ̃(f(x)⊕b)

qS
(x)〉 ⊕

T⊕
t=qS

|t〉|0〉|Ψ̃(f(x)⊕b)
t (x)〉. (4.16)

Observe that this contains the target state of the algorithm with the correct
time label |T 〉|0〉|ΨT 〉 = |T, 0〉|ψ0, 1〉 if b = 1.

For the other blocks, i.e. ` = 2, . . . , S, let θ = arccos pf(x)(x). For all
b ∈ {0, 1}, we de�ne the (b-)implementing subspace of block ` as

H(b)
x,` =

|q`−1 − 1〉|−〉

sin (`−1)θ
S

sin θ
|Ψ̃(f(x)+b)

q`−1
(x)〉+

sin
(
θ − (`−1)θ

S

)
sin θ

|Ψ(b)
q`−1

(x)〉

⊕

q`−2⊕
t=q`−1

|t〉|0〉

sin (`−1)θ
S

sin θ
|Ψ̃(f(x)+b)

t (x)〉+
sin
(
θ − (`−1)θ

S

)
sin θ

|Ψ(b)
t (x)〉

⊕|q` − 1〉|+〉

sin (`−1)θ
S

sin θ
|Ψ̃f(x)+b

q`−1 (x)〉+
sin
(
θ − (`−1)θ

S

)
sin θ

|Ψ(b)
q`−1(x)〉

 .

4.5. TIME COMPLEXITY OF THE ALGORITHM 123

Alright, there is a lot to unpack here. Let's see what we have done. First
observe that the �rst two registers are consistent with the form of the vectors
in ker(A), that is, the edges of the block have a |+〉 or |−〉 in the second
register, while the non-query time-steps have a |0〉 in the second register. In
the third register we have a superposition of pull-backs and push-forwards
that depends on the index of the block ` and are always consistent with
the value in the time register. As ` grows, the vector in the implementing
subspace approaches the pullbacks. Finally, in the last block, the vectors in
the implementing subspace are merely pullbacks from |ψ0, b〉. The reasons
behind this choice are rather technical and all relate to the need to satisfy
all four constraints of an implementing subspace at the same time, while still
making it easy to re�ect around the state |t〉|0〉|ψ0, 0〉.

Finally, we de�ne the implementing subspace as:

De�nition 65 (Implementing subspace for A). Let A be a clean quantum
query algorithm that decides a function f : X → {0, 1}, let PA be the
span program for this algorithm, as in De�nition 57. Then we de�ne the
implementing subspace of A as:

Hx =

{⊕S+1
`=1 H

(0)
x,`, if f(x) = 1,⊕S+1

`=1 H
(0)
x,` ⊕H

(1)
x,`, if f(x) = 0.

Now we prove that this is an approximate implementing subspace.

Lemma 66. For all x ∈ X, we have

1. Πker(A)Hx ⊆ Hx,

2. |w0〉 ∈ Hx,

3. |0〉|0〉|ψ0, 0〉 ∈ Hx,

4. For all |h〉 ∈ Hx, we have ‖ΠH⊥x (2ΠH(x) − I)|h〉‖ ≤ O
(√

ε
S

)
.

Proof. First of all, observe that the state |0〉|0〉|ψ0, 0〉 is in H(0)
x . We also

easily obtain that the initial state |w0〉 from Lemma 62 is in H(0)
x,1⊕H

(f(x)⊕1)
x,S+1

by inspection.
Next, we show that the projection onto the kernel of A also leaves the

implementing subspace invariant. To that end, we observe that by Lemma 61,

124 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

ker(A) =
⊕S+1

`=2 Im(Φ`) for some maps Φ` de�ned in the lemma. Se can write
the projection onto the kernel as:

Πker(A) =
S∑
`=2

Φ`Φ
†
`

1 + |B`|
M2

+
ΦS+1Φ†S+1

1
2

+ |BS+1|
M2 + 1

a2

.

We will show that each term in the summation leaves Hx invariant. The last
term follows using the exact same proof strategy. Hence, let ` ∈ {2, . . . , S},
b ∈ {0, 1} and |h〉 ∈ H(b)

x,`. We can disregard any part of |h〉 that is not
supported on the image of Φ`, as it will be mapped to 0 by Φ†`. Hence, we
assume |h〉 to be of the form

|h〉 = αq`−1−1|q`−1 − 1〉|−〉

sin (`−1)θ
S

sin θ
|Ψ̃(f(x)+b)

q`−1
(x)〉+

sin
(
θ − (`−1)θ

S

)
sin θ

|Ψ(b)
q`−1

(x)〉

+

q`−2∑
t=q`−1

αt|t〉|0〉

sin (`−1)θ
S

sin θ
|Ψ̃(f(x)+b)

t (x)〉+
sin
(
θ − (`−1)θ

S

)
sin θ

|Ψ(b)
t (x)〉

+ αq`−1|q` − 1〉|+〉

sin (`−1)θ
S

sin θ
|Ψ̃f(x)+b

q`−1 (x)〉+
sin
(
θ − (`−1)θ

S

)
sin θ

|Ψ(b)
q`−1(x)〉

 .
In this state, the last part is determined by the fact that |h〉 ∈ H(b)

x,`. The

spaces H(b)
x,` have been de�ned so as to �t Im(Φ`) perfectly, and so this does

not restrict the form of h further. The free parameters are the weights αi.
We observe that Φ†` maps this to[

1√
2
αq`−1−1 +

1

M

q`−2∑
t=q`

αt +
1√
2
αq`−1

]
·

sin (`−1)θ
S

sin θ
|Ψ̃(f(x)+b)

q`−1
(x)〉+

sin
(
θ − (`−1)θ

S

)
sin θ

|Ψ(b)
q`−1

(x)〉

 .
As the image of Φ` applied to the above expression is contained in H(b)

x ,
we deduce that

(
2Πker(A) − I

)
|h〉 ∈ H(b)

x,`. By linearity, it then follows that(
2Πker(A) − I

)
|h〉 ∈ Hx for any |h〉 ∈ Hx.

4.5. TIME COMPLEXITY OF THE ALGORITHM 125

Finally, we argue how re�ecting through H(x) leaves the implementing
subspace approximately invariant. Observe that for all blocks, 2ΠH(x) − I
acts as the identify on all states with time-step t 6= q` − 1, q`−1 − 1. That
leaves us with states of the form |q`1 − 1〉|−〉|·〉 and |q`− 1〉|+〉|·〉.Let us deal
with the second case �rst. Let |Ψ(b)

q`−1(x)〉 =
∑

i∈[n],j∈W αi,j|i, j〉 and write
|+〉 = (|xi〉+ |xi〉)/

√
2. Then(

2ΠH(x) − I
)
|q` − 1〉|+〉|Ψ(b)

q`−1(x)〉 =
(
2ΠH(x) − I

)
|q` − 1〉|+〉

∑
i∈[n],
j∈W

αi,j|i, j〉

= |q` − 1〉
∑
i∈[n],
j∈W

(|xi〉 − |xi〉)√
2

αi,j|i, j〉 = |q` − 1〉
∑
i∈[n],
j∈W

(−1)xi |−〉αi,j|i, j〉

= |q` − 1〉|−〉(Ox ⊗ I)|Ψ(b)
q`−1(x)〉 = |q` − 1〉|−〉|Ψ(b)

q`
(x)〉.

Since Ox = O†x, following the exact same reasoning we have(
2ΠH(x) − I

)
|q` − 1〉|+〉|Ψ̃(b)

q`−1(x)〉 = |q` − 1〉|−〉|Ψ̃(b)
q`

(x)〉.

The case where |h〉 = |q`1 − 1〉|−〉|·〉 follows immediately from the proof
because the re�ection

(
2ΠH(x) − I

)
is its own inverse.

A problem arises here because states of the form |q`−1〉|+〉|·〉 are in H(b)
x,`,

but states of the form |q` − 1〉|−〉|·〉 are in the next block's implementing
subspace H(b)

x,`+1. This would be alright except that consecutive blocks put
slightly di�erent weights on the push-forwards and the pull-backs. Therefore,
or task now is to show that the re�ection around H(x) takes a vector in H(b)

x,`

and maps it to a vector close to H(b)
x,`+1. Without loss of generality, we restrict

our attention to vectors of the form

|h〉 = |q` − 1〉|+〉

sin (`−1)θ
S

sin θ
|Ψ̃(f(x)+b)

q`−1 (x)〉+
sin
(
θ − (`−1)θ

S

)
sin θ

|Ψ(b)
q`−1(x)〉

with ` ∈ [S] and b ∈ {0, 1}, or the corresponding form with |−〉 and ` ∈
{2, . . . , S + 1}. It follows that(

2ΠH(x) − I
)
|h〉

= |q` − 1〉|−〉

sin (`−1)θ
S

sin θ
|Ψ̃(f(x)+b)

q`
(x)〉+

sin
(
θ − (`−1)θ

S

)
sin θ

|Ψ(b)
q`

(x)〉

126 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

This vector is not in H(b)
x,`+1, but the following vector |h′〉 is:

|h′〉 = |q` − 1〉|−〉

sin (`)θ
S

sin θ
|Ψ̃(f(x)+b)

q`
(x)〉+

sin
(
θ − (`)θ

S

)
sin θ

|Ψ(b)
q`

(x)〉

 .
It follows that

∥∥ΠH⊥x
(2ΠH(x) − I)|h〉

∥∥ ≤ ∥∥(2ΠH(x) − I)|h〉 − |h′〉
∥∥ .

It is this last norm what we shall bound. See that the last registers are both
in a superposition of two states that are not orthogonal. For the purposes
of taking the norm, we would like to express these vectors as sums of two
orthogonal vectors. De�ne

|ψ⊥〉 =
|Ψ̃(f(x)+b)

q` (x)〉 − cos θ|Ψ(b)
q` (x)〉

sin θ
.

It is imminent that |ψ⊥〉 and |Ψ(b)
q` (x)〉 are orthogonal, as

〈Ψq`(x)|ψ⊥〉 =
pf(x)(x)

sin θ
− cos θ

sin θ
= 0,

where we recall that we de�ned θ = arccos pf(x)(x). Moreover, we �nd that

sin(aθ)

sin θ
|Ψ̃(f(x)+b)

q`
(x)〉+

sin (θ − aθ)
sin θ

|Ψ(b)
q`

(x)〉

= sin(aθ)|ψ⊥〉+

[
sin (θ − aθ)

sin θ
+

sin(aθ)

sin θ
cos θ

]
|Ψ(b)

q`
(x)〉

= sin(aθ)|ψ⊥〉+ cos(aθ)|Ψ(b)
q`

(x)〉.

Using this relation with a = `−1
S
, and a = `

S
we can now compute the norm

4.5. TIME COMPLEXITY OF THE ALGORITHM 127

of ΠH⊥x
(2ΠH(x) − I)|h〉,∥∥ΠH⊥x

(2ΠH(x) − I)|h〉
∥∥2 ≤

∥∥(2ΠH(x) − I)|h〉 − |h′〉
∥∥2

≤

∥∥∥∥∥∥sin `θ
S
− sin (`−1)θ

S

sin θ
|Ψ̃(f(x)+b)

q`
(x)〉+

sin
(
θ − `θ

S

)
− sin

(
θ − (`−1)θ

S

)
sin θ

|Ψ(b)
q`

(x)〉

∥∥∥∥∥∥
2

=

∥∥∥∥(sin
`θ

S
− sin

(`− 1)θ

S

)
|ψ⊥〉+

(
cos

`θ

S
− cos

(`− 1)θ

S

)
|Ψ(b)

q`
(x)〉

∥∥∥∥2

=

(
sin

`θ

S
− sin

(`− 1)θ

S

)2

+

(
cos

`θ

S
− cos

(`− 1)θ

S

)2

≤ 2

(
θ

S

)2

=
2arccos2pf(x)(x)

S2
≤ 2arccos2(1− ε)

S2
≤ 2

S2

(
2ε+O(ε2)

)
= O

(ε

S2

)
,

where in the fourth line we used that sin and cos are both 1-Lipschitz, and
so the Mean Value Theorem applies. The same bound can be obtained when
|h〉 is of the slightly di�erent form with |−〉. Hence, we conclude that

sup
|h〉∈Hx

∥∥ΠH⊥x
(
2ΠH(x) − I

)
|h〉
∥∥ ≤ max

b∈{0,1}
sup
|h〉∈H(b)

x

∥∥∥(I − ΠH(b)
x

) (
2ΠH(x) − I

)
|h〉
∥∥∥

= O
(√

ε

S

)
.

4.5.2 Re�ection around |0〉
The implementing subspace is a rather complicated object, and de�ning it
and proving its �tness has been quite the hurdle. Now we shall reap the
bene�ts of all that e�ort with the implementation of the �rst of the sub-
routines of Theorem 53, the re�ection around a simple computational state
|0〉|0〉|Ψ0〉 ∈ H restricted to Hx. Let us see how to easily implement this
unitary.

Lemma 67. Let A be a clean quantum query algorithm with query complexity
S, and time complexity T . Let PA = (H,V , A, |τ〉) be the span program for
this algorithm, as in De�nition 57. Let |0〉 := |0〉|0〉|ψ0, 0〉We can implement
a map G that, when restricted to Hx, acts as R|0〉 = (2|0〉〈0| − I) with O(1)
auxiliary qubits and O (polylog(T)) gates.

128 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

Proof. As in De�nition 6, we assume the basis states of the workspace are
labeled by W = W ′ × {0, 1}, so the last qubit is the answer register. The
basis states of the overall space H are |t〉|b〉|i, j, a〉, where i ∈ [n], j ∈ W ′,
and a ∈ {0, 1} is the content of the answer register. The map G re�ects
around states with t = 0, and a = 0:

G|t〉|b〉|i, j, a〉 =

{
|t〉|b〉|i, j, a〉 if t = a = 0,
−|t〉|b〉|i, j, a〉 else.

To implement this re�ection, we simply compute a bit b�ag in a new register
such that b�ag = 0 if and only if t = 0, and a = 0. Then we can apply a
Z-gate on this register, and then uncompute. Since t ∈ [T]0, a ∈ {0, 1}, this
can be done in time O(log T).

By de�nition, the only vectors in Hx, with a time register t = 0 are
|0〉|0〉|ψ0, 0〉, and, if f(x) = 0, |0〉|0〉|ψ0, 1〉. It follows thatG acts as 2|0〉〈0|−I
on Hx.

4.5.3 Implementation of 2ΠH(x) − I

The second subroutine we deal with is the re�ection around H(x). We give
a simple construction that perfectly implements this re�ection on the whole
of H. The is made very simple given the structure of H as all we need to do
to know if a state |t, b, i, j〉 is in H(x) is check if t + 1 ∈ S using a query to
OS and, if so, check if b = xi, which we do with a single query to the oracle
Ox. We give a detailed construction that also extends to the concurrent case
(see De�nition 64) in the lemma below.

Lemma 68. Let A be a clean quantum query algorithm with query complexity
S, time complexity T , and error probability ε. Let PA = (H,V , A, |τ〉) be the
span program for this algorithm, as in De�nition 57. Then the re�ection
2ΠH(x) − I can be implemented with O(1) calls to Ox and OS and auxiliary
qubits, and O(polylog(T)) extra gates.

Similarly, let {A(j)}nj=1 be a set of clean quantum query algorithms. For

all j ∈ [n], let Sj and Tj denote the query and time complexity of A(j).
Let P (j) be the span program of A(j). Then we can implement concurrent
access (see Def. 64) to {2ΠH(j)(x(j))−I}nj=1 with O(1) calls to Ox and OS and
auxiliary qubits, and O(polylog(Tmax)) extra gates.

4.5. TIME COMPLEXITY OF THE ALGORITHM 129

Proof. First, we consider the case where we just have one algorithm, A. For
all x ∈ {0, 1}n, recall that

H(x) =
n⊕
i=1

Hi,xi ⊕Htrue = span{|t, xi, i, j〉 : t+ 1 ∈ S, i ∈ [n], j ∈ W}

⊕ span{|t, 0, i, j〉 : t+ 1 ∈ [T + 1] \ S, i ∈ [n], j ∈ W}.

From this, and the de�nition of H, it readily follows that the orthogonal
complement of H(x) is given by

H(x)⊥ = span{|t, 1− xi, i, j〉 : t+ 1 ∈ S, i ∈ [n], j ∈ W}.

In order to re�ect around H(x), all we have to do is put a minus phase if we
are in H(x)⊥. To that end, call the oracle OS once to distinguish whether
the time step in the �rst register is a state |t〉 for which t + 1 ∈ S (e.g.
by �rst increasing the �rst register, performing the call and then decreasing
again). Store this bit in an auxiliary �ag register. Next, conditioned on the
�ag qubit being 1, perform one query to Ox to get a phase (−1)xi . Finally,
apply −Z to the second register, also controlled on the �ag qubit, where Z
is the Pauli-Z gate. Then if the second register is in the state |1 − xi〉, the
overall phase will be −(−1)xi+1−xi = (−1), and if it is in the state |xi〉, the
overall phase will be (+1), as desired. Finally, we need to uncompute the
�ag qubit, which again takes one call to OS . All the other operations can be
implemented in a number of elementary gates that is polylogarithmic in T .

If we instead have multiple algorithms {A(j)}nj=1, then all that changes is
the size of the time register. It is now of size Tmax = maxj∈[n] Tj, and hence
the arithmetic operations on it now require O(polylog(Tmax)) gates. This
completes the proof.

4.5.4 Implementation of 2Πker(A) − I
In this section, we prove Lemma 69, i.e., we provide an implementation of
the routine that re�ects around the kernel of the span program operator A
as de�ned in Eq. (4.7). In addition, we also elaborate on how one would
obtain concurrent access to these routines when considering multiple such
span program operators, because we need that in the proof of Theorem 78.
The result is summarized in the following lemma.

130 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

Lemma 69. Let A be a clean quantum query algorithm with query complexity
S and time complexity T . Let PA = (H,V , A, |τ〉) be the span program for
this algorithm, as in De�nition 57. Then, the re�ection 2Πker(A) − I can be
implemented to error δ > 0 with O(T/S) calls to OA and OS , O(polylog(T))
auxiliary qubits and a number of extra gates that satis�es

O
(
T

S
polylog

(
T,

1

δ

))
.

Similarly, let {A(j)}nj=1 be a set of clean quantum query algorithms. For

all j ∈ [n], let Sj and Tj be the query and time complexity of A(j), respec-
tively. Let P (j) = (H(j),V(j), A(j), |τ (j)〉) be the span program of A(j). We can
provide concurrent access to {2Πker(A(j)) − I}nj=1 up to precision δ > 0 with
O(maxj∈[n] Tj/Sj) calls to OA and OS , O(polylog(Tmax)) auxiliary qubits and
a number of extra gates that satis�es

O
(

max
j∈[n]

Tj
Sj

polylog

(
Tmax,

1

δ

))
.

The main idea of the proof is to use the characterization of the kernel of
A given in Lemma 61, and to map this space isometrically to another space
around which we can re�ect more easily. The formal proof of Lemma 69 is
given at the end of this section.

First, we implement a subroutine that we will use throughout this section.

De�nition 70. Let A be a clean quantum algorithm with time complexity
T and query complexity S and let PA = (H,V , A, |τ〉) be its span program.
For all α ∈ [0, 1] and t ∈ [T − 1]0, the non-trivial action of the maps St,α is
described as follows. For |ψ〉 ∈ C[n]×W , if t+ 1 ∈ S,

St,α :

{
|t〉|−〉|ψ〉 7→ α|t〉|−〉|ψ〉+

√
1− α2|t+ 1〉|0〉|ψ〉

|t+ 1〉|0〉|ψ〉 7→ −
√

1− α2|t〉|−〉|ψ〉+ α|t+ 1〉|0〉|ψ〉 (4.17)

If t+ 2 ∈ S,

St,α :

{
|t〉|0〉|ψ〉 7→ α|t〉|0〉|ψ〉+

√
1− α2|t+ 1〉|+〉Ut+1|ψ〉

|t+ 1〉|+〉|ψ〉 7→ −
√

1− α2|t〉|0〉U †t+1|ψ〉+ α|t+ 1〉|+〉|ψ〉
(4.18)

Otherwise,

St,α :

{
|t〉|0〉|ψ〉 7→ α|t〉|0〉|ψ〉+

√
1− α2|t+ 1〉|0〉Ut+1|ψ〉

|t+ 1〉|0〉|ψ〉 7→ −
√

1− α2|t〉|0〉U †t+1|ψ〉+ α|t+ 1〉|0〉|ψ〉. (4.19)

4.5. TIME COMPLEXITY OF THE ALGORITHM 131

In all three cases we have St,α : |t′〉|φ〉 7→ |t′〉|φ〉 for t′ /∈ {t, t + 1}. We refer
to these maps as splitting maps.

Note that for all choices of t and α, St,α leaves Hx invariant. We leave
this to the reader to check. In the lemma below, we elaborate on how we can
implement this splitting map e�ciently.

Lemma 71. Let A be a clean quantum algorithm with time complexity T
and query complexity S, and let PA = (H,V , A, |τ〉) be its span program. Let
t ∈ [T − 1]0 and α ∈ [0, 1]. We can implement St,a with two controlled calls
to (the inverse of) OA and O(polylog(T)) additional gates.

Furthermore, if we have a binary description of t and α in auxiliary regis-
ters, where the description of α is δ-precise, we can implement St,α up to error
δ > 0 with two controlled calls to (the inverse of) OA and O(polylog(T, 1/δ))
additional gates.

Proof. First of all, we check which of the three cases in De�nition 70 applies.
This we can do with one call to OS and polylogarithmically many extra gates
in T . Each of these three cases we treat separately and consecutively. We
only give the explicit description of the last case here, as the others come
down to the same circuit with some minor adjustments.

We implement the bottom mapping in Def. 70 in three steps.

1. First, controlled on the �rst register being in time t + 1, we call the
inverse of OA. This will map |t〉|0〉|ψ〉 to itself, and it will map |t +
1〉|0〉|ψ〉 to |t+1〉|0〉U †t+1|ψ〉. This takes 1 call toOA, andO(polylog(T))
other gates.

2. Next, we apply the following mapping to the �rst register:

|t〉 7→ α|t〉+
√

1− α2|t+1〉 and |t+1〉 7→ −
√

1− α2|t〉+α|t+1〉

Since this is a two-level rotation, we can implement it withO(polylog(T))
single qubit gates and CNOTs.

3. Finally, we apply OA, controlled on the �rst register being in time t+1.
Just as in step 1, this takes 1 call to OA and O(polylog(T)) additional
gates.

One can easily check that this implements the third mapping in Def. 70.

132 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

Furthermore, if we have a binary description of t and α stored in an extra
register, we can implement the desired mapping in a similar number of gates.
While we cannot hardcode t in steps 1 and 3, we can control on its value.
Similarly, in step 2, as α is not hardcoded, we have to substitute the rotation
with O(polylog(1/δ)) rotations controlled on the qubits storing α. All of the
necessary computations are e�ciently implementable classically, and hence
only add (additive) polylogarithmic overhead in the error parameter to the
time complexity.

Next, we de�ne what we call the left and right block oracles, OL and OR.
These will be necessary further on because our construction requires us to
be able to tell, given a state with time label t, what are the closest query
time-steps to its left and to its right, and, if t + 1 is a query, whether we
should count the state as pertaining to Hx,` or Hx,`+1. Remember that all
the way back at the beginning of Section 4.4.1, we denoted the blocks of
contiguous non-query time steps by B` = {q`−1 − 1, . . . , q` − 1}. Query time
steps act as the separators between contiguous blocks. When t is the index
of a non-query, it belongs to a unique query block, and so the left-endpoint of
its query block, q`−1, is uniquely de�ned, as is the right-endpoint, q`. Thus,
we can de�ne operations OL and OR that, for any such t, compute these
values, or, rather, for technical reasons, given |t〉 such that t + 1 ∈ B`, OL
and OR return q`−1 − 1 and q` − 1 respectively.

When t+ 1 is the index of a query, there is ambiguity, because it is con-
tiguous to two blocks � it is the left-endpoint of one, and the right-endpoint
of another. We use an auxiliary qubit to resolve this ambiguity: for a state
|t〉|+〉, we interpret t+1 = q` as the right-endpoint of a block, so OL and OR
return q`−1 − 1 and q` − 1 respectively; and for a state |t〉|−〉, we interpret
t + 1 = q` as the left-endpoint of a block, so OL and OR return q` − 1 and
q`+1 − 1 respectively. In other words, we reinterpret blocks as starting with
a query and �nishing immediately before the next one. Notice how this is
consistent with the form of the vectors in Hx and ker(A). The precise actions
of OL and OR are de�ned as follows.

De�nition 72. Let A be a clean quantum algorithm as in De�nition 6,and
let PA = (H,V , A, |τ〉) be its span program. We de�ne the left and right
block oracles as unitaries on H⊗ C{−1,...,T}, acting as

OL :

|t〉|0〉|0〉 7→ |t〉|0〉|q`−1 − 1〉, if t+ 1 ∈ B`,
|t〉|+〉|0〉 7→ |t〉|+〉|q`−1 − 1〉, if t+ 1 = q`,
|t〉|−〉|0〉 7→ |t〉|−〉|q`−1 − 1〉, if t+ 1 = q`−1,

4.5. TIME COMPLEXITY OF THE ALGORITHM 133

and

OR :

|t〉|0〉|0〉 7→ |t〉|0〉|q` − 1〉, if t+ 1 ∈ B`,
|t〉|+〉|0〉 7→ |t〉|+〉|q` − 1〉, if t+ 1 = q`,
|t〉|−〉|0〉 7→ |t〉|−〉|q` − 1〉, if t+ 1 = q`−1.

Now, we show how to implement these block oracles e�ciently.

Lemma 73. Let A be a clean quantum algorithm with query complexity S
and time complexity T , and let PA = (H,V , A, |τ〉) be its span program. Then
we can implement OL and OR with O(T/S) queries to OS , O(polylog(T))
ancillary qubits and a number of additional gates that scales as

O
(
T

S
polylog(T)

)
.

Similarly, suppose {A(j)}nj=1 is a set of clean quantum algorithms. Let

j ∈ [n] and let Sj and Tj be the query and time complexity of A(j), respec-

tively. Similarly, let O(j)
L and O(j)

R be the left and right block oracles of A(j),

respectively. We can provide concurrent access to {O(j)
L }nj=1 and {O(j)

R }nj=1

with O(maxj∈[n] Tj/Sj) queries to OS , O(polylog(Tmax)) ancillary qubits and
a number of additional gates that scales as

O
(

max
j∈[n]

Tj
Sj

polylog(Tmax)

)
.

Proof. We �rst focus on the case where we have just one algorithm and leave
the case where we have multiple algorithms for the �nal paragraph. We only
show how to implement OL, as the implementation of OR is similar. First of
all, we check if t+ 1 ∈ S using one call to OS and O(polylog(T)) other gates
and store the result in an auxiliary qubit. If this �ag qubit is |1〉, we apply
a Hadamard to the second register. If the second register is now 1, we copy
the time t to the last register. Observe that if the input was |t〉|−〉|0〉, where
t+ 1 = q`−1 then we are done (up to reapplying the Hadamard to the second
register and uncomputing the �ag qubit). The only interesting case now is
when the second bit is 0, so we apply all the following operations controlled
on this bit being 0.

In this last case, what we would like to do is write in a new register
the index of the last query before our timestep t. For that purpose we
initialize a new counter register having dlog(3T/S)e + 1 qubits, in the state
|0〉, and iteratively decrement the time register until we reach a time step

134 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

that is one less than a query time step, and after that the counter register
is incremented. This means that after these iterations, we have the correct
query time step stored in the time register, while the counter will contain
a function of t, q`−1, and b3T/Sc. This task can be done by repeating the
following operation b3T/Sc times. First, we check whether the time register
is one less than a query time step and if it is we increment the counter register.
This can be done using 2 queries to OS and a number of extra gates that is
polylogarithmic in T . After that, we decrement the time register controlled
on the counter being in the |0〉 state. This also takes a number of gates that
is polylogarithmic in T . We can now copy the time into the last register,
and then uncompute all of these iterations, returning the time register to the
state |t〉 and the counter to the state |0〉.

At last, we undo the computations we did in the beginning, i.e., we apply
the controlled Hadamard again and reset the �ag that indicated whether
t + 1 ∈ S using one more query to OS and O(polylog(T)) extra gates. We
easily check that the total cost of this construction matches the claim in the
statement of the lemma.

Finally, in order to provide concurrent access to {O(j)
L }nj=1, we can simply

run the loop in the second paragraph for maxj∈[n]b3Tj/Sjc iterations. The
size of the time register now has to be Tmax and so the arithmetic operations
on this register take a number of gates that is polylogarithmic in Tmax. This
completes the proof.

Next, we de�ne a mapping that generates the vectors of the kernel of A.

De�nition 74. Let A be a clean quantum algorithm with time complexity
T and query complexity S, and let PA = (H,V , A, |τ〉) be its span program.
De�ne C as a unitary onH, which, for all ` ∈ {2, . . . , S+1} and |ψ〉 ∈ C[n]×W ,
acts as

C : |q`−1 − 1〉|−〉|ψ〉 7→ Φ`|ψ〉
‖Φ`|ψ〉‖

,

and otherwise, C acts arbitrarily but leaves Hx invariant.

These maps, or rather, their inverses, are the key to the re�ection around
ker(A). Indeed, C† maps every element in ker(A) onto a state of the form
|q`−1 − 1〉|−〉|ψ〉, so if we can implement this map and re�ect around these
simpler states, we can re�ect around ker(A). Let us now see how to imple-
ment C.

4.5. TIME COMPLEXITY OF THE ALGORITHM 135

Lemma 75. Let A be a clean quantum algorithm with time complexity T
and query complexity S, and let PA = (H,V , A, |τ〉) be its span program. We
can implement a mapping C that satis�es the conditions in De�nition 74,
up to error δ > 0 in operator norm with O(T/S) queries to OA and OS ,
O(polylog(T)) ancillary qubits, and with a number of additional gates that
scales as

O
(
T

S
polylog

(
T,

1

δ

))
.

Similarly, let {A(j)}nj=1 be a set of clean quantum algorithms. For all j ∈
[n], let Sj and Tj denote the query and time complexity of A(j), respectively.
Let C(j) be the routine de�ned in Def. 74 for A(j). We can provide concurrent
access to {C(j)}nj=1 up to error δ > 0 in operator norm with O(maxj∈[n] Tj/Sj)
queries to OA and OS , with O(polylog(Tmax)) ancillary qubits, and with a
number of additional gates that scales as

O
(

max
j∈[n]

Tj
Sj

polylog

(
Tmax,

1

δ

))
.

Proof. While the behavior of C is only fully speci�ed on states with t such
that t + 1 ∈ S in the �rst register, more generally, we must ensure that C
leaves Hx invariant, which leads to a more involved construction. We �rst
consider the case where we have just one algorithm A, and leave the case
where we have multiple algorithms for the �nal paragraph of this proof.

First of all, we call OL and OR and store the results in some auxiliary
registers. According to Lemma 73, this takes O(T/S) calls to OS and
O(T/S · polylog(T)) additional gates.

Next, we distinguish between three cases. First, if the application of OL
amounts to |−1〉 in the last register, then necessarily t belongs to the block
before the �rst query, in which case we simply do nothing, i.e., we act as the
identity. Second, if the result of OR is T , then we started out in a state in
which the time step t was higher than the last query, which requires separate
treatment. The third case is when neither of these happened. These cases
can be distinguished with O(polylog(T)) gates, and they can be handled
separately and consecutively. We only explain how we handle the �nal case,
as the �rst one is trivial and the other is similar to the third.

Hence, we assume that the auxiliary registers are in the states |q`−1 − 1〉
and |q`−1〉 for some ` ∈ {2, . . . , S}. Now, we repeat the following procedure
b3T/Se times. In the ith iteration, where i = 0, 1, . . . , b3T/Sc, we perform
the following steps.

136 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

1. First, we initialize an auxiliary qubit and set it to |1〉 if and only if
q`−1 + i < q`. This takes time O(polylog(T)). Steps 2 � 4 we do
controlled on the auxiliary qubit being |1〉.

2. From the auxiliary registers, we calculate

αi =

1

√
2·
√

1+
|B`|
M2

, if i = 0,

1

M ·
√

1
2

+
|B`|−(i−1)

M2

, otherwise,

and store it in a binary representation in another auxiliary register.
This calculation can be done up to precision Θ(δS/T) in a number of
gates polylogarithmic in T and 1/δ using standard classical methods.

3. Next, we apply the splitting map Sq`−1+i−1,αi , where q`−1 + i − 1 and
αi are stored in separate registers, with αi up to error Θ(δS/T), which
by Lemma 71 incurs 2 controlled calls to (the inverse of) OA and a
number of extra gates that is polylogarithmic in T and 1/δ.

4. We uncompute the parameter αi from step 2.
5. We uncompute the check that q`−1 + i < q`.

These steps have the e�ect of applying

Sq`−2,α|B`|
Sq`−3,α|B`|−1

. . .Sq`−1,α1Sq`−1−1,α0 ,

where each factor is implemented up to error Θ(Sδ/T). As there are at most
O(T/S) factors, the total error is at most δ.

First of all, remember that by construction, St,α leaves Hx and invariant.
Moreover, observe that the only values of t for which we execute St,α are the
values {q`−1 − 1, . . . , q` − 2}. By De�nition 70, for any α:

� Sq`−1−1,α only acts non-trivially on span{|q`−1−1〉|−〉, |q`−1〉|0〉}⊗C[n]×W ,
which it also leaves invariant (since q`−1 ∈ S);

� Sq`−2,α only acts non-trivially on span{|q`−2〉|0〉, |q`−1〉|+〉}⊗C[n]×W ,
which it also leaves invariant (since q` ∈ S);

� for all t ∈ {q`−1, . . . , q`−3}, St,α only acts non-trivially on span{|t〉|0〉, |t+
1〉|0〉} ⊗ C[n]×W , which it also leaves invariant (since t+ 1, t+ 2 6∈ S).

This means that we only act non-trivially on the vectors |q`−1 − 1〉|−〉|ψ〉,
|q`− 1〉|+〉|ψ〉 and |t〉|0〉|ψ〉 where t+ 1 ∈ B` and |ψ〉 ∈ C[n]×W , and we leave
invariant the space

(span{|q`−1 − 1〉|−〉} ⊕ span{|t〉|0〉 : t+ 1 ∈ B`} ⊕ span{|q` − 1〉|+〉})⊗C[n]×W .
(4.20)

4.5. TIME COMPLEXITY OF THE ALGORITHM 137

In particular, we leave invariant the subspaces H(b)
x,` for b = 0, 1. This implies

that the time register always contains a value t such that t + 1 is within
the query block bounded by q`−1 from the left, and q` from the right, or a
value. As we shall see shortly, we have generated a superposition of vectors
with time step in the B` plus a vector with time step q`−1 that has a |−〉
in the second register and a vector in the time step q` having |+〉 in the
second register. The auxiliary qubits generated by OL and OR containing
the boundaries of the current block are no longer necessary so we uncompute
them by simply calling their inverses of OL and OR.

Clearly this mapping leaves Hx invariant since St,α leaves Hx invariant,
and all other operations do not matter as they are uncomputed.

Moreover, we claim that this circuit implements a mapping C that satis�es
the conditions from De�nition 74. As we are considering the case that the
block B` is neither the �rst nor the last block, suppose that we start with
the state |q` − 1〉|−〉|ψ〉, for some |ψ〉 ∈ C[n]×W . Now, in the �rst iteration
(i = 0) we apply Sq`−1−1,α0 , to arrive at the state

1√
1 + |B`|

M2

[
1√
2
|q` − 1〉|−〉|ψ〉+

√
1

2
+
|B`|
M2
|q`〉|0〉|ψ〉

]
.

We easily check by induction that after the ith iteration with 1 ≤ i <
q` − q`−1, we are in the state

1√
1 + |B`|

M2

1√
2
|q`−1 − 1〉|−〉|ψ〉+

1

M

q`−1+i−1∑
t=q`−1

|t〉|0〉Ut;q`−1+1|ψ〉

+

√
1

2
+
|B`| − i
M2

|q`−1 + i〉|0〉Uq`−1+i;q`−1+1|ψ〉

 ,
which implies that after the iteration where i = |B`|, we are in the desired
state. Whenever i ≥ q` − q`−1, we don't do anything due to the condition
that is checked in step 1. Hence, this circuit indeed implements a mapping
C that satis�es the conditions outlined in De�nition 74.

We observe that there are O(T/S) iterations, each of which uses O(1)
calls to OA and O(polylog(T, 1/δ)) extra gates. In addition we do O(T/S)
calls to OS and O(T/S · polylog(T)) extra gates when we call OL and OR
and their inverses.

In order to implement concurrent access to {C(j)}nj=1, we can run the loop
a total of maxj∈[n]b3Tj/Sjc iterations. The time register now has to be of size

138 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

Tmax = maxj∈[n] Tj, and hence the arithmetic operations on this register now
take O(polylog(Tmax)) gates. We can now calculate the coe�cients αi with
precision O(δminj∈[n] Sj/Tj). Now all the maps C(j) are implemented up to
precision δ, which implies that the concurrent access is also implemented up
to precision δ. This completes the proof.

We have �nally all the coupons necessary to prove Lemma 69, let us now
redeem them.

Proof of Lemma 69. We �rst focus on the case where we have just one algo-
rithm A. Using the characterization of the kernel of A in Lemma 61, we see
that

C : span{|q`−1 − 1〉|−〉 : ` ∈ [S + 1] \ {1}}︸ ︷︷ ︸
X

⊗ C[n]×W 7→ ker(A)

isometrically. Hence, we obtain that

2Πker(A) − I = C [(2ΠX − I)⊗ I] C†.

As we can implement the re�ection aroundX usingO(log(T)) extra gates and
a single controlled query toOS , the cost of re�ecting around ker(A) essentially
becomes twice the cost of implementing C, which is given in Lemma 75.

If we have multiple algorithms A(j), we can use the exact same idea, but
now we should use concurrent access to the C(j)'s and a concurrent re�ection
around the spaces X(j)'s. The cost of implementing concurrent access to
{C(j)}nj=1 is analyzed in Lemma 75, and the concurrent re�ection around the
X(j)'s can be implemented with O(polylog(Tmax)) gates and one controlled
call to OS . This completes the proof.

As a �nal remark, we would like to point out that this is not the only
possible construction of the re�ection around the kernel of A. One could
alternatively employ a more general method of constructing a block-encoding
of A and using phase estimation to separate the vectors in the kernel of A
from those that are orthogonal to it. Implementing this construction carefully
yields the same time and query complexity, but requires a spectral analysis
of A, which is possible but turns out to be quite involved.

4.5. TIME COMPLEXITY OF THE ALGORITHM 139

4.5.5 Construction of |w0〉

The goal of this section is to prove Lemma 76, i.e., we provide an imple-
mentation of the circuit that constructs the minimal positive witness that
is analytically calculated in Lemma 62. Additionally, we also elaborate on
how one would do this concurrently, because we need this is in the proof of
Theorem 78.

Lemma 76. Let A be a clean quantum query algorithm with query complexity
S, time complexity T , and error probability ε. Let PA = (H,V , A, |τ〉) be the
span program for this algorithm, as in De�nition 57. We can implement a
unitary C|w0〉 that maps the all-zeroes state |0〉|0〉|Ψ0〉 to |w0〉/ ‖|w0〉‖ up to
error δ > 0 in the operator norm with O(T/S) calls to OA and OS , O(1)
auxiliary qubits and a number of gates that satis�es

O
(
T

S
polylog

(
T,

1

δ

))
.

Similarly, let {A(j)}nj=1 be a set of clean quantum query algorithms. For

all j ∈ [n], let Sj and Tj denote the query and time complexity of A(j),
respectively, and let εj be the error probability. Let P (j) be the span program

of A(j), and let |w(j)
0 〉 be the minimal positive witness of P (j). Then we can

implement concurrent access C to {C|w(j)
0 〉
}nj=1 up to error δ > 0 in operator

norm with O(T/S) calls to OA and OS , O(1) auxiliary qubits and a number
of gates that satis�es

O
(

max
j∈[n]

Tj
Sj

polylog

(
Tmax,

1

δ

))
.

We �rst name the three parts that form |w0〉. From the form of |w0〉 in
Lemma 62 we have

|w0〉
‖|w0〉‖

=
|ψ〉√
N

+
|χ〉√
N

+
|φ〉√
N
,

140 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

where

|ψ〉 =
1

M

q1−2∑
t=0

|t〉|0〉Ut;1|Ψ0〉+ |q1 − 1〉
(

1

2
|0〉+

1

2
|1〉
)
Uq1−1;1|Ψ0〉,

|χ〉 =
1

Ca2 + 1

[
|qS − 1〉

(
1

2
|0〉 − 1

2
|1〉
)
U †qS+1;T |ΨT 〉

+
1

M

T−1∑
t=qS+1

|t〉|0〉U †t+1;T |ΨT 〉

]
,

|φ〉 = − Ca

Ca2 + 1
|T 〉|0〉|ΨT 〉,

and C = T−qS
M2 + 1

2
and a and M are de�ned in Eq. (4.6). We can easily

calculate the norms of the respective vectors, which results in

‖|ψ〉‖2 =
q1 − 1

M2
+

1

2
, ‖|χ〉‖2 =

C

(Ca2 + 1)2
, and ‖|φ〉‖2 =

C2a2

(Ca2 + 1)2
.

Of these three states, observe that the �rst two have a structure similar to
the vectors in ker(A), while the third one is very simple. By assumption
on the state |ΨT 〉, the state |φ〉/ ‖|φ〉‖ can be generated in O(1) gates. For
the generation of the other two we will reuse the techniques in the previous
section for mapping simple states to states in ker(A). This is the focus of
the following lemma.

Lemma 77. We can implement routines C|ψ〉 and C|χ〉 that map |0〉|0〉|Ψ0〉 to
|ψ〉/ ‖|ψ〉‖ and |T − 1〉|0〉U †T |ΨT 〉 to |χ〉/ ‖|χ〉‖ respectively up to error δ > 0
in operator norm, with O(T/S) calls to OA, O(1) auxiliary qubits and a
number of gates that satis�es

O
(
T

S
polylog

(
T,

1

δ

))
.

Moreover, both circuits leave Hx invariant, and their inverses leave all the
states orthogonal to |ψ〉 (resp. |χ〉) invariant.

Similarly, we can provide concurrent access to {C(j)
|ψ〉}nj=1 and {C(j)

|χ〉}nj=1 up

to precision δ > 0 with a number of calls to OA and OS of O(maxj∈[n] Tj/Sj),
O(1) auxiliary qubits and a number of extra gates that scales as

O
(

max
j∈[n]

Tj
Sj

polylog

(
Tmax,

1

δ

))
.

4.5. TIME COMPLEXITY OF THE ALGORITHM 141

Proof. Note that |ψ〉 and |χ〉 are very similar to the states in the kernel of A
that span the image of the Φ`'s. Therefore, C|ψ〉 and C|χ〉 are very similar to
the circuit C de�ned in De�nition 74. We can use the exact same techniques
as we used in implementing C in Lemma 75 to implement C|ψ〉 and C|χ〉. The
cost of implementing these routines carries over from the proof of Lemma 75.
This completes the proof.

Proof of Lemma 76. We �rst restrict ourselves to the case where we just have
one algorithm, A, and we postpone the treatment of the case where we have
a set of algorithms to the �nal paragraph of this proof.

First of all, for α = ‖|ψ〉‖
‖|w0〉‖ , we implement a circuit C1 whose action is

C1 :

{
|0〉|0〉|Ψ0〉 7→ α|0〉|0〉|Ψ0〉+

√
1− α2|T 〉|0〉|ΨT 〉

|T 〉|0〉|ΨT 〉 7→ −
√

1− α2|0〉|0〉|Ψ0〉+ α|T 〉|0〉|ΨT 〉

This circuit can be implemented in a similar way as we implemented the
splitting map in Lemma 71. Conditioned on the �rst register being in state
|T 〉, one �rst applies the map |ΨT 〉 = |ψ0, 1〉 7→ |Ψ0〉 = |ψ0, 0〉 to the last
register, which amounts to applying a controlled X operation targeted to the
answer register. Then, one applies a rotation on a two-dimensional subspace
of the state space of the �rst register spanned by span{|0〉, |T 〉}, which can
be implemented with O(polylog(T)) gates as it is a register on log(T) qubits.
Finally, one applies the mapping |Ψ0〉 7→ |ΨT 〉, again controlled on the �rst
register being in state |T 〉. Counting the auxiliary qubits and gates reveals
that we can do this with O(1) auxiliary qubits and O(polylog(T)) gates.

Next, one applies the mapping S†T−1,β, with β = ‖|χ〉‖ / ‖|χ〉+ |φ〉‖. The
combined mapping now acts as

S†T−1,βC1 : |0〉|0〉|Ψ0〉 7→
‖|ψ〉‖√
N
|0〉|0〉|Ψ0〉+

‖|χ〉‖√
N
|T − 1〉|0〉U †T |ΨT 〉 (4.21)

+
‖|φ〉‖√
N
|T 〉|0〉|ΨT 〉. (4.22)

Thus, all that is left is mapping the �rst term to |ψ〉 and the second to
|χ〉 using the circuits that we already have for them, meaning that

C|w0〉 = C|ψ〉C|χ〉S†T1,βC1 : |0〉|0〉|Ψ0〉 7→
|w0〉√
N
.

142 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

Moreover, all the four subroutines can be implemented with O(T/S) calls to
OA, polylogarithmically in T many auxiliary qubits, and a number of gates
that satis�es

O
(
T

S
polylog(T)

)
.

If we have multiple algorithms {A(j)}nj=1, we simply run the concurrent
versions of C|ψ〉 and C|χ〉, and we supply a concurrent version of C1 which
we build using the same techniques as in Lemma 75. With this, we can
successfully implement concurrent access C to {C|w(j)

0 〉
}nj=1 with the desired

complexities. Since all the individual C|w(j)
0 〉

's are implemented up to error δ,
so is their concurrent access routine.

4.5.6 Proof of Theorem 63

Having proven how to construct circuits that approximate the subroutines of
Theorem 53, we are ready to prove Theorem 63, which we restate below for
convenience.

Theorem. Let A be a clean quantum query algorithm that acts on k qubits,
has query complexity S, time complexity T , and evaluates a function f :
X ⊆ {0, 1}n → {0, 1} with bounded error. Let PA be the span program for
this algorithm, as in De�nition 57. Then we can implement the algorithm
compiled from PA with:

1. O(S) calls to Ox.
2. O(T) calls to OA and OS , as de�ned in Section 4.2.
3. O(Tpolylog(T)) additional gates.
4. O(polylog(T)) auxiliary qubits.

Proof. From Theorem 58, we know that PA positively 5ε-approximates f
with complexity C(PA) = O(S). We can assume that the approximation
factor 5ε is bounded away from 1 (i.e. 1 − 5ε = O(1)) because A is a
clean quantum algorithm and so ε ≤ 1/3. Otherwise, we can decrease the
error of A using standard error-reduction techniques while only incurring a
multiplicative cost to the overall time complexity. Hence, we deduce from
Theorem 53 that we can implement the algorithm compiled from PA with a
number of calls to the subroutines Rker(A), C|w0〉, RH(x) and R|0〉 that goes
like

O
(

C(PA)

(1− λ)3/2
log

1

1− λ

)
= O(S).

4.6. APPLICATION TO VARIABLE-TIME SEARCH 143

For Rker(A) and C|w0〉 we choose error parameter δ = Θ(S−1), which implies
that log(1/δ) = O(log(S)). Given their respective query, space and time
complexities in Lemmas 69, 76, 68, and 67, we can implement the span pro-
gram algorithm with O(S) calls to Ox, O(T) calls OA and OS , O(polylog(T))
extra qubits, and O (Tpolylog(T)) extra gates.

We proceed by analyzing the error introduced by our approximate im-
plementation of the subroutines. First, an error is introduced due to the
re�ection RH(x) not leaving Hx exactly invariant. Observe that whenever we
call RH(x), we are moving a part of the state outside of Hx that has ampli-
tude at most 2

√
2ε/S. So, there exists a state in Hx that is 2

√
2ε/S-close

to the state that we used in the analysis of the algorithm in 53, and we map
to a state that is in turn 2

√
2ε/S-close to this state. Hence, the total error

introduced per call of RH(x) is 4
√

2ε/S. Thus, the total error introduced is
O(
√
ε) = O(1).

Additional error is introduced by the approximate implementations of
R|w0〉 and Rker(A) in the step where we approximate the amplitudes of par-
ticular superpositions. Both are implemented up to error δ = O(S−1) in
the operator norm, which means that the total cumulative error is at most
O(S · δ) = O(1) as well.

All things included, running the algorithm of Theorem 53 with the sub-
routines of Lemmas 69, 76, 68, and 67 instead of the exact subroutines pro-
duces a state that is O(1) away from the ideal �nal state of the algorithm
in the 2-norm. This might not be enough to guarantee that the total proba-
bility of error stays below 1/3. In that case, we choose an error δ = O(S−1)
with su�ciently small constant and use standard error-reduction techniques
on the algorithm A for a constant number of rounds if necessary to make
sure that he probability of erroneously deciding f is ε′ ≤ 1/3.

4.6 Application to variable-time search

One reason for converting quantum algorithms to span programs is that span
programs compose very nicely (see [Rei09] for a number of examples). We
illustrate this by describing a construction that, given n span programs for n
functions {fj : {0, 1}mj → {0, 1}}nj=1, outputs a span program for the logical
OR of their output: f(x(1), . . . , x(n)) =

∨n
j=1 fj(x

(j)). In short, we show that
given query-, time- and space-e�cient quantum implementations for each
fj, the resulting span program can also be implemented query-, time- and

144 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

space-e�ciently. The full theorem statement is provided below. Note that
throughout this section for the sake of simplicity we write fj as functions on
{0, 1}mj even though the results also hold for partial Boolean functions with
arbitrary domains Xj ⊆ {0, 1}mj .

Theorem 78 (Variable-time quantum search). Let A = {A(j)}nj=1 be a �nite

set of quantum algorithms, where A(j) acts on kj ≤ kmax qubits and decides
fj : {0, 1}mj → {0, 1} with bounded error with query complexity Sj and time
complexity Tj ≤ Tmax. Suppose that we have uniform access to the algorithms
in A through the oracles OA, OS and Ox, as elaborated upon in Section 4.2,
and that the Sj's and Tj's are known. Then we can implement a quantum
algorithm that decides f =

∨n
j=1 fj with bounded error, with the following

properties:

1. The number of calls to Ox is O
(√∑n

j=1 S
2
j · log

(∑n
j=1 S

2
j

))
.

2. The number of calls to OA and OS is O
(√∑n

j=1 T
2
j · log

(∑n
j=1 S

2
j

))
.

3. The number of extra gates is O
(√∑n

j=1 T
2
j · polylog(Tmax, n)

)
.

4. The number of auxiliary qubits is O
(

polylog(Tmax, n) + k
o(1)
max

)
.

If we additionally require that the error probabilities of the A(j)'s are all
o(1/

∑n
j=1 S

2
j), then the log(

∑n
j=1 S

2
j) factors and the k

o(1)
max term can be dropped.

We can also drop the term k
o(1)
max if Tj = k

1+Ω(1)
j for all j ∈ [n].

A similar result was reached by Ambainis in [Amb10]. Let us discuss how
our result compares to that of Ambainis.

First, we assume the uniform access model described in Section 4.2. This
is a slight generalization of the model considered by Ambainis, as explained in
[Amb10, Appendix A], because we di�erentiate between query and non-query
time steps in the algorithms A(j), whereas Ambainis does not. Therefore,
Ambainis only considers the algorithm oracle OA and includes the queries to
x as part of this oracle, whereas we also assume to have explicit access to the
oracles OS and Ox.

One can obtain some of our results using Ambainis's construction and
subsequently converting the resulting algorithm back to our setting. For
instance, if one counts every query in the original algorithms as having unit
cost, then Ambainis's construction yields an algorithm that evaluates f =

4.6. APPLICATION TO VARIABLE-TIME SEARCH 145

∨n
j=1 fj with O(

√∑n
j=1 S

2
j) queries to Ox. This is a logarithmic factor better

than our result, but the number of calls to OA and OS is unclear, and the
time and space complexities are not analyzed.

Alternatively, if one assigns a unit cost to every gate in the original al-
gorithms, then the algorithm that follows from Ambainis's construction per-
forms O(

√∑n
j=1 T

2
j) calls to OA, OS and Ox. Similarly as before, this is a

logarithmic factor better in the scaling of the query complexity to OA, but
worse in the query complexity to Ox and again the time and space complex-
ities are not analyzed.

Our improvement over Ambainis's work consists of the following elements.
First, we show that one can attain both desired scalings in the number of
calls to Ox, OS and OA simultaneously, up to a single logarithmic factor.
Second, our construction is also e�cient with respect to the time and space
complexities, as we show that we only su�er from polylogarithmic overhead
in the number of extra gates and auxiliary qubits.

There are, however, some aspects to Ambainis's work that we did not
reproduce. Ambainis proved a version of his theorem for the search problem:
�nd j such that fj(x(j)) = 1, whereas we only consider a decision version.
By a standard reduction from the search version to the decision version, we
also recover the analogous search result, but with an extra factor of log(n)
overhead in the query and time complexities.

Ambainis also gives a result for the case where the costs of the original
algorithms are unknown. It would be interesting to �gure out whether our
results can be similarly modi�ed in the case where we do not know {Tj}nj=1

and/or {Sj}nj=1, but it is not immediately clear to us how one would go about
this. We leave this for future research.

From Theorem 78 we easily deduce that if we have e�cient uniform access
to a set of algorithms, i.e., the oracles OA and OS can be implemented in
time logarithmic in Tmax and n, then the algorithm compiled from P has
query complexity Õ(

√∑n
j=1 S

2
j) and time complexity Õ(

√∑n
j=1 T

2
j).

The remainder of this section is dedicated to proving Theorem 78. In
Section 4.6.1 we describe how we can merge n span programs P (1), . . . , P (n)

evaluating functions f1, . . . , fn, respectively, into one span program P evalu-
ating the OR of these functions, f1∨ · · · ∨ fn. Subsequently, in Section 4.6.2,
we relate the implementation of the algorithm compiled from P to the im-
plementation of the algorithms compiled from the individual P (j)'s. Finally,

146 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

in Section 4.6.3, we specialize the span programs P (j) to be span programs
of algorithms as de�ned in Section 4.4.1, and we relate the implementation
of the required subroutines to the constructions in Section 4.5, completing
the proof of Theorem 78.

4.6.1 The OR of span programs

Fix λ ∈ (0, 1/n). For j ∈ [n], let P (j) = (H(j),V(j), A(j), |τ (j)〉) be a span
program on {0, 1}mj that positively λ-approximates fj : {0, 1}mj → {0, 1}.3

Let W (j)
+ and W (j)

− be some upper bounds on W+(P (j)) and W̃−(P (j)) respec-
tively, and assume that every x ∈ f−1

j (0) has an approximate negative witness

|ω̃(j)〉 ∈ V(j) with
∥∥〈ω̃(j)|A(j)ΠH(j)(x)

∥∥2 ≤ λ/W
(j)
+ and

∥∥〈ω̃(j)|A(j)
∥∥2 ≤ W

(j)
− .

Let Cj =

√
W

(j)
+ W

(j)
− .

Assume, by applying an appropriate basis change, that |τ (j)〉 = |0〉 for
every j ∈ [n]. For each j, extend |τ (j)〉 = |0〉 to an orthonormal basis
{|0〉, |j, 1〉, . . . , |j, dim(V(j))− 1〉} for V(j) so that, aside from the single over-
lapping dimension |0〉, the subspaces V(j) are orthogonal to one another. Let
V(j)

= span{|j, 1〉, . . . , |j, dim(V(j))− 1〉}, so that V(j) = span{|0〉} ⊕ V(j)
.

Let f : {0, 1}m1+···+mn → {0, 1} be the function de�ned by f(x(1), . . . , x(n)) =∨n
j=1 fj(x

(j)). We can de�ne a span program P on {0, 1}m1+···+mn that decides
f as follows:

∀j ∈ [n], ` ∈ [mj], b ∈ {0, 1}, Hj,`,b = span{|j〉} ⊗ H(j)
`,b ,

Htrue =
n⊕
j=1

H(j)
true, Hfalse = span{|0, 0〉}

V = span{|0〉} ⊕
n⊕
j=1

V(j)
, A =

n∑
j=1

√
W

(j)
+ 〈j| ⊗ A(j), |τ〉 = |0〉. (4.23)

Above, we are indexing into an input x ∈ {0, 1}m1+···+mn by using a pair of
indices, j ∈ [n] and ` ∈ [mj], in the obvious way. From this de�nition of P ,

3We require λ to be quite small here. One way to achieve this from an arbitrary span
program is to convert it to an algorithm, reduce the error to O(1/n) at the expense of a
O(log n) multiplicative factor, and then convert that back to a span program using the
construction in Section 4.4. Furthermore, we can just as well use partial functions here,
but we don't for notational simplicity.

4.6. APPLICATION TO VARIABLE-TIME SEARCH 147

we get:

H(x) =
⊕
j∈[n]

span{|j〉} ⊗ H(j)(x(j)),

where ∀j ∈ [n], H(j)(x(j)) =
⊕
`∈[mj]

H(j)

`,x
(j)
`

. (4.24)

De�nition 79. Let {P (j)}nj=1 be a set of span programs, where P (j) =

(H(j),V(j), A(j), |τ (j)〉). Then we let P = (H,V , A, |τ〉) be the OR span pro-
gram of these span programs, where H, V , A and |τ〉 are de�ned in equations
(4.23), (4.24).

We proceed by proving various properties of the newly-de�ned OR span
program. First, we prove that it indeed evaluates f in the following theorem.

Theorem 80. The span program P positively nλ-approximates f with com-

plexity C(P) ≤
√∑n

j=1 C
2
j .

The proof will follow from Lemmas 81 and 82. First, we show that if
f(x) = 1, P accepts x, and give an upper bound on the positive witness
complexity.

Lemma 81. If f(x) = 1, then the span program P accepts x, with positive
witness complexity w+(x) ≤ 1. Thus W+(P) ≤ 1.

Proof. If f(x) = 1, then there exists j ∈ [n] such that fj(x(j)) = 1, so let
|w(j)〉 ∈ H(j)(x(j)) be a positive witness for x(j) in P (j) with

∥∥|w(j)〉
∥∥2 ≤

W
(j)
+ . Then let |w〉 = 1√

W
(j)
+

|j〉|w(j)〉 ∈ V . Then A|w〉 = A(j)|w(j)〉 = |0〉.

Furthermore, since H(x) =
⊕n

j=1 span{|j〉} ⊗ H(j)(x(j)) by Eq. (4.24), and
|w(j)〉 ∈ H(j)(x(j)), we have |w〉 ∈ H(x), so |w〉 is a positive witness for x.
Since

∥∥|w(j)〉
∥∥2 ≤ W

(j)
+ , |w〉 has complexity ‖|w〉‖2 ≤ 1.

We complete the proof of Theorem 80 by exhibiting approximate negative
witnesses.

Lemma 82. If f(x) = 0, then there is an approximate negative witness |ω̃〉
with

∥∥〈ω̃|AΠH(x)

∥∥2 ≤ nλ/W+(P) and ‖〈ω̃|A‖2 ≤
∑n

j=1C
2
j , so P positively

nλ-approximates f , and W̃−(P) ≤
∑n

j=1 C
2
j .

148 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

Proof. If f(x) = 0, then it must be the case that for all j ∈ [n], fj(x(j)) = 0,
so for each j, let |ω̃(j)〉 be an approximate negative witness for x(j) in P (j)

with
∥∥〈ω̃(j)|A(j)ΠH(j)(x(j))

∥∥2 ≤ λ/W
(j)
+ , and

∥∥〈ω̃(j)|A(j)
∥∥2 ≤ W

(j)
− . For each

j, we can write 〈ω̃(j)| = 〈0| + 〈ω(j)| for some |ω(j)〉 ∈ V(j)
. We de�ne 〈ω̃| =

〈0| +
∑n

j=1〈ω(j)|. Then 〈ω̃|τ〉 = 〈ω̃|0〉 = 1. Furthermore, for each j, since

the column space of A(j) is in V(j) = span{|0〉} ⊕ V(j)
, we have 〈ω̃|A(j) =

(〈0| + 〈ω(j)|)A(j) = 〈ω̃(j)|A(j). Since H(x) =
⊕n

j=1 span{|j〉} ⊗ H(j)(x(j)) by
Eq. (4.24),

∥∥〈ω̃|AΠH(x)

∥∥2
=

∥∥∥∥∥
n∑
j=1

√
W

(j)
+ 〈j| ⊗ (〈ω̃(j)|A(j)ΠH(j)(x(j)))

∥∥∥∥∥
2

≤
n∑
j=1

W
(j)
+

λ

W
(j)
+

= nλ,

so P positively nλ-approximates f . Finally, we conclude W̃−(P) ≤
∑n

j=1C
2
j

by observing:

‖〈ω̃|A‖2 =
n∑
j=1

W
(j)
+

∥∥〈ω̃(j)|A(j)
∥∥2 ≤

n∑
j=1

W
(j)
+ W

(j)
− =

n∑
j=1

C2
j .

We conclude this section by characterizing the minimal positive witness
|w0〉 and the kernel of A in the following two lemmas.

Lemma 83. The minimal positive witness of P is given by

|w0〉 =
1

‖α‖2

n∑
j=1

αj|j〉 ⊗
|w(j)

0 〉∥∥∥|w(j)
0 〉
∥∥∥ , where αj =

√
W

(j)
+∥∥∥|w(j)

0 〉
∥∥∥

and |w(j)
0 〉 are the minimal witnesses of P (j). Moreover, the minimal witness

size is N = 1/ ‖α‖2.

Proof. Observe that for every choice of βj's that sum to 1, we have

A

 n∑
j=1

βj√
W

(j)
+

|j〉 ⊗ |w(j)
0 〉

 =
n∑
j=1

βjA
(j)|w(j)

0 〉 =
n∑
j=1

βj|τ〉 = |τ〉,

4.6. APPLICATION TO VARIABLE-TIME SEARCH 149

and that the minimal positive witness has to be of this form. Moreover, for
all such choices of βj, we have

‖α‖ ·

∥∥∥∥∥∥
n∑
j=1

βj√
W

(j)
+

|j〉 ⊗ |w(j)
0 〉

∥∥∥∥∥∥ =

√√√√ n∑
k=1

α2
k ·

√√√√√ n∑
j=1

|βj|2
∥∥∥|w(j)

0 〉
∥∥∥2

W
(j)
+

≥
n∑
j=1

αj ·
βj
αj

=
n∑
j=1

βj = 1,

where we used the Cauchy-Schwarz inequality. Thus, we �nd that for all
choices of βj, ∥∥∥∥∥∥

n∑
j=1

βj√
W

(j)
+

|j〉 ⊗ |w(j)
0 〉

∥∥∥∥∥∥
2

≥ 1

‖α‖2 ,

and the tightness of this inequality is shown by picking βj = α2
j/ ‖α‖

2. Thus,
the minimal witness is

|w0〉 =
1

‖α‖2

n∑
j=1

αj|j〉 ⊗
|w(j)

0 〉∥∥∥|w(j)
0 〉
∥∥∥ ,

completing the proof.

The kernel of A is not just the union of kernels of each A(j) because
just as we can combine the minimal witnesses |w(j)

0 〉 to map to |0〉, we can
make a combination that maps to 0. The following lemma characterizes
such combinations of individual minimal witnesses and �nds that they are
orthogonal to the minimal witness for P .

Lemma 84. Let K = span{|j〉|w(j)
0 〉 : j ∈ [n]} ∩ span{|w0〉}⊥. The kernel of

A is given by

ker(A) = span{|0, 0〉} ⊕K ⊕
n⊕
j=1

span{|j〉} ⊗ ker(A(j))

Proof. First, observe that
⊕n

j=1 span{|j〉}⊗ker(A(j)) ⊆ ker(A), since for any

|hj〉 ∈ ker(A(j)), A|j〉|hj〉 =

√
W

(j)
+ A(j)|hj〉 = 0. Similarly, observe that |0, 0〉

vanishes under A, so it is part of the kernel of A as well.

150 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

Thus, suppose |h〉 =
∑n

j=1|j〉|hj〉 ∈ H is in ker(A), and for all j ∈ [n],
|hj〉 ∈ row(A(j)). For all k ∈ [n], we have

0 = ΠVk

[
A

n∑
j=1

|j〉|hj〉

]
= ΠVk

[
n∑
j=1

√
W

(j)
+ A(j)|hj〉

]
= ΠVkA

(k)|hk〉,

where we use the fact that ΠVkA
(j) = 0 whenever j 6= k. Thus, we have that

for all k ∈ [n], A(k)|hk〉 ∈ span{|0〉}. Since we also have that |hk〉 ∈ row(A(k)),
it must be the case that |hk〉 ∈ span{|w(k)

0 〉}, so let |hk〉 = βk|w(k)
0 〉. Then,

we have:

0 =
n∑
j=1

βjA
(j)|w(j)

0 〉 =
n∑
j=1

βj

√
W

(j)
+ |0〉 =

 n∑
j=1

βjαj ·
〈w(j)

0 |w
(j)
0 〉∥∥∥|w(j)

0 〉
∥∥∥
 |0〉

= N〈w0|h〉|0〉

Hence, |h〉 =
∑n

j=1 αj|j〉|w
(j)
0 〉 ∈ kerA if it is orthogonal to |w0〉, which

completes the proof.

4.6.2 Implementation of the OR span program

Now that we have formally de�ned the OR span program in De�nition 79, we
proceed by analyzing the implementation cost of the algorithm compiled from
it. To that end, we �rst of all assume that all of the spaces H(j) correspond to
m qubits, i.e., H(j) = C2m for all j ∈ [n]. This is not much of a restriction, as
we can always simply pad the smaller H(j)'s with extra qubits that we don't
touch until our space is as big as the largest state space of the individual
span programs.

The main idea of this section will be to use Theorem 53, and give im-
plementations to the required subroutines in terms of the individual span
programs P (j). This sometimes requires running several subroutines associ-
ated with the individual P (j)'s in superposition. This is what we de�ned at
the beginning of Section 4.5 as concurrent access. We repeat the de�nition
here for convenience

De�nition (Concurrent access). Let C(1), . . . , C(n) be quantum subroutines,
all acting on the same Hilbert space H. We say that a subroutine C provides

4.6. APPLICATION TO VARIABLE-TIME SEARCH 151

concurrent access to {C(j)}nj=1 if it performs the following action on C[n]⊗H:

C =
n∑
j=1

|j〉〈j| ⊗ C(j).

Next, we present the main theorem relating the cost of implementing the
span program compiled from P to the cost of implementing the subroutines
that are associated with the individual P (j)'s.

Lemma 85. Let λ ∈ [0, 1/n) and let {P (j)}nj=1 be a set of span programs pos-

itively λ-approximating some functions fj. For all j ∈ [n], let |w(j)
0 〉 be a min-

imal positive witness for P (j) and let W
(j)
+ ≥ W+(P (j)) and W

(j)
− ≥ W̃−(P (j))

be upper bounds on the positive and negative complexities. Furthermore, for
each j ∈ [n] and x(j) ∈ {0, 1}mj , let Hx(j) be an implementing subspace of
P (j) for x(j). Let P be the span program described in Eq. (4.23) and suppose
that we have concurrent access to the following four sets of subroutines (as
de�ned in Def. 64):

1. A circuitRA, providing concurrent access to the subroutines {Rker(A(j))}nj=1,
where Rker(A(j)) acts on Hx(j) as 2Πker(A(j)) − I.

2. A circuit C, providing concurrent access to the subroutines {C|w(j)
0 〉
}nj=1,

where C|w(j)
0 〉

leaves Hx(j) invariant and maps |0〉 to |w(j)
0 〉/‖|w

(j)
0 〉‖.

3. A circuitRH, providing concurrent access to the subroutines {RH(x(j))}nj=1,
where RH(x(j)) acts on Hx(j) as 2ΠH(x(j)) − I.

4. A circuit R0, providing concurrent access to the subroutines {R(j)
|0〉}nj=1,

where R(j)
|0〉 acts on Hx(j) as 2|0〉〈0| − I.

5. A circuit Cα that prepares the superposition

Cα : |0〉 7→ 1

‖α‖

n∑
j=1

αj|j〉 where αj =

√
W

(j)
+∥∥∥|w(j)

0 〉
∥∥∥ .

Then, we can implement the span program algorithm for P with a number of
calls to the aforementioned circuits that satis�es

O

√∑n

j=1C
2
j

(1− nλ)3/2
log

1

1− nλ

 where Cj =

√
W

(j)
+ W

(j)
− ,

152 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

and a number of extra gates and auxiliary qubits that satis�es

O

polylog

√√√√ n∑
j=1

C2
j , 1/(1− nλ), n

 .

Proof. We apply Theorem 53 to P . As P is positively λ′-approximating with
λ′ = nλ < 1, the �rst requirement is satis�ed.

Next, we de�ne the implementing subspace that we use. We take Hx to
be

Hx = span{|0, 0〉} ⊕
n⊕
j=1

span{|j〉} ⊗ Hx(j) ,

i.e., we have one orthogonal direction that contains all scalar multiples of
the all-zeros state, and all the implementing subspaces associated with the
individual P (j)'s labeled by j. We refer to the �rst and second registers as
the label register and data register, respectively.

Now, we turn our attention to the implementation of the four subroutines
listed in Theorem 53. First, we implement the re�ection through the |0〉-
state, R|0〉. Observe that the all-zeros state in Hx is the state |0, 0〉. But the
only state in Hx that has zero in the label register is exactly the all-zeros
state. Hence, we can simply re�ect through |0〉 on the �rst register, which
has only O(log(n)) qubits. Thus, we can implement R|0〉 in O(log(n)) gates.

Next, we turn our attention to the implementation of C|w0〉. From Lemma 83
we �nd that

|w0〉
‖|w0〉‖

=
1

‖α‖

n∑
j=1

αj|j〉 ⊗
|w(j)

0 〉∥∥∥|w(j)
0 〉
∥∥∥ .

This allows for de�ning C|w0〉 as the following procedure.

1. First, we prepare an auxiliary qubit in the state |1〉 whenever the data
register is in the state |0〉, and |0〉 otherwise. This requires one con-
trolled call to R0 together with O(1) auxiliary gates.

2. Next, conditioned on this auxiliary qubit, we apply Cα to the label
register.

3. Now, we uncompute the auxiliary qubit with the gates from step 1
applied in reverse. This uncomputation succeeds with certainty as the
all-zeros states in all the Hx(j) 's are the same, and hence permuting
the labels e�ectively permutes between di�erent all-zeros states in the
Hx(j) 's.

4.6. APPLICATION TO VARIABLE-TIME SEARCH 153

4. Finally, we call C.

We observe that the �rst three steps perform some unitary on all the n + 1
states that have the all-zeros state in the data register. As all these states
are part of Hx, they leave Hx invariant. Similarly, the fourth step leaves Hx

invariant as all of the individual subroutines that make up C leave their re-
spective implementing subspace Hx(j) invariant. Hence, the entire procedure
C|w0〉 leaves Hx invariant.

Furthermore, observe that if we start in the state |0, 0〉, the mapping that
is implemented is the following

|0, 0〉 steps 1−37→ 1

‖α‖

n∑
j=1

αj|j, 0〉
C7→ 1

‖α‖

n∑
j=1

αj|j〉 ⊗
|w(j)

0 〉∥∥∥|w(j)
0 〉
∥∥∥ .

Thus, we conclude that we can implement C|w0〉 using O(1) calls to R0, Cα
and C and O(1) extra gates and auxiliary qubits.

We proceed by providing an implementation of the re�ection through the
kernel of A. To that end, remember from Lemma 84 that

ker(A) = span{|0, 0〉} ⊕

span{|w0〉}⊥ ∩ span{|j〉|w(j)
0 〉 : j ∈ [n]}︸ ︷︷ ︸
W0

n⊕
j=1

span{|j〉} ⊗ ker(A(j)).

As span{|w0〉} ⊆ W0, we observe that

2Πker(A) − I = (2|0, 0〉〈0, 0| − I)

(
2|w0〉〈w0|
‖|w0〉‖2 − I

)
(2ΠW0 − I)

·

(
n∑
j=1

|j〉〈j| ⊗
(
2Πker(A(j)) − I

))
.

The �rst factor is simply R|0〉 on Hx. Similarly, the last factor is exactly the
action of the concurrent re�ection RA on Hx. The second factor can easily
be implemented by the sequence C|w0〉R|0〉C

†
|w0〉. So, it remains to implement

154 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

the third factor, which we can achieve by observing that on Hx we have

2ΠW0 − I =
n∑
j=1

|j〉〈j| ⊗

2|w(j)
0 〉〈w

(j)
0 |∥∥∥|w(j)

0 〉
∥∥∥2 − I

 =
n∑
j=1

|j〉〈j| ⊗
(
C|w(j)

0 〉
R(j)
|0〉C

†
|w(j)

0 〉

)
=CR0C†.

Thus, we have
Rker(A) = R|0〉C|w0〉R|0〉C

†
|w0〉CR0C†RA.

As all the individual factors leaveHx invariant, so does their product. Hence,
we can implement Rker(A) with O(1) calls to the subroutines mentioned in
the statement of the lemma.

It remains to implement the routine RH(x). To that end, observe that

2ΠH(x) − I =
n∑
j=1

|j〉〈j| ⊗
(
2ΠH(j)(x(j)) − I

)
,

which implies that we can simply implement the re�ection through H(x)
with one call to RH.

We have implemented all routines in the statement of Theorem 53 with
O(1) calls to the routines listed in the statement of this lemma. That means
that the total number of calls to these routines is equal up to constants to
the expression in Theorem 53, which reduces to

O

√
W+(P)W̃−(P)

(1− nλ)3/2
log

1

1− 2nλ

 = O

√∑n

j=1C
2
j

(1− nλ)3/2
log

1

1− nλ

 .

Moreover, it follows directly from the statement of Theorem 53 that the total
number of extra gates is O(polylog(

√∑n
j=1C

2
j , 1/(1−nλ))). This completes

the proof.

4.6.3 Implementation of variable time quantum search

In this section, we prove Theorem 78. The core idea is to �rst convert the
algorithms into span programs using the construction from Section 4.4, next
merge them into an OR span program as in De�nition 79, and �nally convert
that back into a quantum algorithm using Lemma 85.

4.6. APPLICATION TO VARIABLE-TIME SEARCH 155

There is one caveat though. If we naively use the span programs of the
algorithms A(j) from De�nition 57 with the upper bounds on the positive
witness sizes that follow from Lemma 59, then we might end up with a min-
imal witness |w0〉 with completely arbitrary coe�cients αj (see Lemma 83),
making it too time-consuming to implement Cα. We circumvent this using
a technique that was already present in Ambainis's original paper [Amb10],
which we name the binning technique. The next two lemmas formalize this
idea.

Lemma 86. Let 0 < γmin = γ1 ≤ · · · ≤ γn = γmax. Then, we can ef-
�ciently �nd a sequence of integers 0 = j0 ≤ · · · ≤ jk = n such that
k ≤ dlog(γmax/γmin)e · dlog(n)e and the following two properties hold:

1. For all ` ∈ [k], j` − j`−1 is a power of 2.

2. For all ` ∈ [k] and j ∈ [j`−1 + 1, j`],

γj`
2
≤ γj ≤ γj` .

Proof. We let k′ = dlog(γmax/γmin)e. Then, with every j ∈ [n], we associate
the unique integer mj such that γj ∈ [γmin · 2mj−1, γmin · 2mj). As

γmin · 20 ≤ γmin ≤ γj ≤ γmax = γmin · 2log(γmax/γmin) ≤ γmin · 2k
′
,

we �nd that mj ≤ k′, and hence mj ∈ [k′]. Moreover, as the γj's are non-
decreasing, so are the mj's. Now, for every ` ∈ [k′], we de�ne j′` = max{j ∈
[n] : mj = `} and we let j′0 = 0. We �nd that for all ` ∈ [k′] and j ∈
[j′`−1 + 1, j′`],

γj′`
2
≤ γmin · 2`

2
= γmin · 2`−1 ≤ γj ≤ γj′` ,

and hence the second condition is veri�ed.
Now, for every ` ∈ [k′], we write j′`−j′`−1 in terms of its binary expansion,

i.e., we write
j′` − j′`−1 = 2p`,1 + · · ·+ 2p`,k` ,

where p`,1 > · · · > p`,k` . As j′` − j′`−1 ≤ n, we have that k` ≤ dlog(n)e.
Finally, we let

(j`)
k
`=1 = (j′0, j

′
0 + 2p1,1 , . . . , j′0 + 2p1,1 + · · ·+ 2p1,k1−1 , j′1, . . . , j

′
k′)

156 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

The di�erence between two consecutive terms is always a power of two by
construction, and the length satis�es

k =
k′∑
`=1

k` ≤ k′ · dlog(n)e ≤ dlog(γmax/γmin)e · dlog(n)e,

completing the proof.

The above lemma is nothing more than a statement about how we can
put a sequence of positive reals into several bins. We now use it to modify
the upper boundsW (j)

+ , so as to make the cost of implementing Cα scale more
favorably.

Lemma 87. Let A = {A(j)}nj=1 be a �nite set of quantum algorithms, where

A(j) has query complexity 1 ≤ Sj ≤ Smax. Let P (j) be the span program of

A(j). Then, we can de�ne positive reals {W (j)
+ }nj=1 such that W+(P (j)) ≤

W
(j)
+ ≤ 12(2Sj + 1), and a sequence of integers 0 = j0 ≤ · · · ≤ jk = n with

k ≤ d1
2

log(6Smax)e · dlog(n)e, such that for every ` ∈ [k], j`− j`−1 is a power
of 2 and for every j ∈ [j`−1 + 1, j`],

αj =

√
W

(j)
+∥∥∥|w(j)

0 〉
∥∥∥ =

√
W

(j`)
+∥∥∥|w(j`)

0 〉
∥∥∥ = αj` .

With this choice of upper bounds {W (j)
+ }nj=1, we can implement the circuit

Cα, as de�ned in Lemma 85, with O(log(Smax) log2(n)) gates and O(log(n))
auxiliary qubits.

Proof. For all j ∈ [n], let

γj =

√
3(2Sj + 1)∥∥∥|w(j)

0 〉
∥∥∥ .

Assume without loss of generality that the algorithms A(j) are ordered such
that 0 < γmin = γ1 ≤ · · · ≤ γn = γmax. From Lemma 62 we deduce that
1/
√

2 ≤
∥∥∥|w(j)

0 〉
∥∥∥ ≤ √3, and hence

γmax

γmin

≤
√

3(2Smax + 1)

9
·
√

6 ≤
√

6Smax.

4.6. APPLICATION TO VARIABLE-TIME SEARCH 157

According to Lemma 86, we can now �nd a sequence 0 = j1 ≤ · · · ≤ jk = n
with k ≤ d1

2
log(6Smax)e · dlog(n)e, such that for all ` ∈ [k] we have that

j` − j`−1 is a power of two and for all j ∈ [j`−1 + 1, j`], we have

γj`
2
≤ γj ≤ γj` .

Given such a j, we de�ne W (j)
+ = γ2

j`
·
∥∥∥|w(j)

0 〉
∥∥∥2

. Then we �nd

W
(j)
+ = γ2

j`
·
∥∥∥|w(j)

0 〉
∥∥∥2

≤ 4γ2
j ·
∥∥∥|w(j)

0 〉
∥∥∥2

= 12(2Sj + 1),

and according to Lemma 59,

W+(P (j)) ≤ 3(2Sj + 1) = γ2
j

∥∥∥|w(j)
0 〉
∥∥∥2

≤ γ2
j`
·
∥∥∥|w(j)

0 〉
∥∥∥2

= W
(j)
+ .

Moreover, we have for all such j that

αj =

√
W

(j)
+∥∥∥|w(j)

0 〉
∥∥∥ = γj` =

√
W

(j`)
+∥∥∥|w(j`)

0 〉
∥∥∥ = αj` .

Thus, it remains to show that we can implement Cα inO(log(Smax) log(n))
gates. To that end, we �rst of all de�ne the mapping S that acts as the
identity on |0〉|0〉|0〉 and that given a j ∈ [j`−1 + 1, j`] implements

S : |j〉|0〉|0〉 7→ |0〉|`〉|j − j`−1 − 1〉,

where the registers are of size dlog(n + 1)e, dlog(k + 1)e and dlog(n + 1)e,
respectively. Moreover, as the values of the j`'s are known beforehand, this
can be implemented with O(k) arithmetic circuits that all have O(log(n))
gates, so the number of gates needed to implement S is O(log(Smax) log2(n)).

We de�ne the subspace

X = span{|0〉|0〉|0〉} ⊕ span{|0〉|`〉|j − j`−1 − 1〉 : j ∈ [j`−1 + 1, j`]}.

Observe that S maps any state |j〉|0〉|0〉 into X , and moreover that S† will
set the �nal two registers to |0〉 when it is applied to any state in X . Hence,
as long as we stay in X , we can always uncompute the �nal two registers.

Now, we implement Cα as follows, where we treat the �nal two registers
as ancilla registers.

158 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

1. We apply S. This maps our state into X , and will leave |0〉|0〉|0〉 unal-
tered.

2. Controlled on the last register being in the state |0〉, we apply on the
second register the map

C : |0〉 7→ 1

‖α‖

k∑
`=1

α`
√
j` − j`−1|`〉.

This leaves X invariant as |0〉|`〉|0〉 ∈ X for every ` ∈ [k]0. As this is
a map on O(log(k)) qubits, it can be implemented with a number of
gates of order O(k) = O(log(Smax) log(n)).

3. Next, controlled on the second register being in state |`〉, we perform
the map I ⊗ H⊗ log(j`−j`−1) to the �nal register. This only a�ects the
basis states in X and implements

|0〉|`〉|0〉 7→ |0〉|`〉 1√
j` − j`−1

j`−j`−1−1∑
m=0

|m〉.

This circuit can be built using k times at most log(n) controlled H, plus
some arithmetic circuits on log(k) qubits to set the controls. Hence, the
number of gates needed to implement this step is O(k log(n)+log(k)) =
O(log(Smax) log2(n)).

4. We implement S†. Since steps 2 and 3 left X invariant, we can now
uncompute the �nal two registers.

The total time complexity of Cα hence now becomes the sum of the time
complexities of the above steps, which is O(log(Smax) log2(n)), and it maps

|0〉|0〉|0〉 7→ |0〉 1

‖α‖

k∑
`=1

α`
√
j` − j`−1|`〉|0〉 7→ |0〉

1

‖α‖

k∑
`=1

α`|`〉
j`−j`−1−1∑

m=0

|m〉

7→ 1

‖α‖

n∑
j=1

α`|j〉|0〉|0〉.

This completes the proof.

Now that we can implement Cα in a number of gates that scales poly-
logarithmically in both Smax and n, we turn our attention to the proof of
Theorem 78.

4.6. APPLICATION TO VARIABLE-TIME SEARCH 159

Proof of Theorem 78. First of all, we consider the case where the n algo-
rithms {A(j)}nj=1 are clean quantum algorithms with error probabilities sat-
isfying εj < 1/(80n) and εj = o(1/

∑n
j=1 S

2
j). In the �nal paragraph of this

proof, we will lift this restriction.
We modify the algorithms A(1), . . . ,A(n) slightly. Similar to the proof of

Lemma 8, we insert a sequence Ox, I,Ox into all A(j)'s at a spacing B de�ned
by

B =

⌈√∑n
j=1 T

2
j∑n

j=0 S
2
j

⌉
.

We denote the algorithm that we obtain after this modi�cation by A(j)
, and

its query and time complexity by Sj and T j, respectively. Using a similar
analysis as in the proof of Lemma 8, we obtain

Sj = Θ

(
Sj +

Tj
B

)
, T j = Θ(Tj), and

T j

Sj
= O(B).

Next, we turn these algorithms {A(j)}nj=1 into span programs {P (j)}nj=1

using De�nition 57. According to Lemma 87, we can de�ne the upper bounds
{W (j)

+ }nj=1 such that

W+(P (j)) ≤ W
(j)
+ ≤ 12(2Sj + 1) = O(Sj),

and such that we can implement Cα in a number of gates and auxiliary
qubits that scales polylogarithmically in Smax and n. In addition, for all
j ∈ [n] we can take W (j)

− = O(Sj) by virtue of Lemma 60, which implies that
Cj = O(Sj). From Lemma 60 we have a negative witness |ω̃〉 that satis�es

∥∥〈ω̃|A(j)ΠH(j)(x)

∥∥2 ≤ 5εj

3(2Sj + 1)
≤ 20εj

W
(j)
+

,

which implies that all P (j)'s are positive λ-approximating with λ ≤ 20εj <
1/(4n).

We have now shown that we satisfy the requirements for constructing the
OR span program P , as de�ned in De�nition 79. According to Theorem 80,

160 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

the complexity of this span program is now upper bounded by

C(P) ≤

√√√√ n∑
j=1

C2
j = O

√√√√ n∑
j=1

S
2

j

 = O

√√√√ n∑
j=1

[
S2
j +

T 2
j

B2

]
= O

(
n∑
j=1

S2
j +

1

B2

n∑
j=1

T 2
j

)
= O

(
n∑
j=1

S2
j +

∑n
j=1 S

2
j∑n

j=1 T
2
j

·
n∑
j=1

T 2
j

)

= O

(
n∑
j=1

S2
j

)
.

According to Lemma 85, implementing the algorithm compiled from P
takes a number of calls to the subroutines RA, C, RH and R0 that satis�es

O

√∑n

j=1C
2
j

(1− nλ)3/2
· log

1

1− nλ

 = O

√√√√ n∑
j=1

S2
j

 ,

and a number of extra gates and auxiliary qubits that satis�es

O

polylog

√√√√ n∑
j=1

C2
j ,

1

1− 2nλ

 = O (polylog(Smax, n)) .

According to Lemmas 69, 76, and 68, we can construct RA, C and RH
with O(1) calls to Ox, a number of calls to OA, OS that satis�es

O
(

max
j∈[n]

T j

Sj

)
= O (B) ,

a number of auxiliary gates that satis�es

O
(

max
j∈[n]

T j

Sj
· polylog(T j)

)
= O (B · polylog(Tmax)) ,

and a number of auxiliary qubits that is polylogarithmic in Tmax. If we ensure
that the answer register is located on the same qubit for all the algorithms
A(j)'s, we can implement R0 with O(polylog(Tmax)) gates. This implies that
the total number of calls to OA and OS is

O

√√√√ n∑
j=1

S2
j ·B

 = O

√√√√ n∑
j=1

S2
j ·

√∑n
j=1 T

2
j∑n

j=1 S
2
j

 = O

√√√√ n∑
j=1

T 2
j

 ,

4.7. DISCUSSION AND OUTLOOK 161

and the total number of auxiliary gates is

O

√√√√ n∑
j=1

S2
j ·B · polylog(Tmax, n)

 = O

√√√√ n∑
j=1

T 2
j · polylog(Tmax, n)

 .

This completes the proof of the claimed complexities.
It remains to check that the success probability of our algorithm compiled

from P is su�ciently high. We have O(
√
εj)-precise implementations of

Rker(A(j)) andR
(j)
|0〉 w.r.t. operator norm. Thus, our resulting implementations

of Rker(A) and R0 are accurate in the operator norm up to error

max
j∈[n]

4
√

2εj = o

 1√∑n
j=1 S

2
j

 .

Similarly, the subroutines C|w(j)
0 〉

only approximately stay within Hx(j) .
Thus,

sup
|h〉∈Hx
‖|h〉‖=1

∥∥ΠH⊥x C|w0〉|h〉
∥∥ ≤ max

j∈[n]
2
√

2εj = o

 1√∑n
j=1 S

2
j

 .

As we call these two subroutines a total of
√∑n

j=1 S
2
j times, these errors in-

�uence the �nal success probability at most by o(1), using a similar argument
as in the proof of Theorem 63. Thus, our implementation of the algorithm
compiled from P succeeds with bounded error.

Finally, we remove the restriction that we imposed on the algorithms
{A(j)}nj=1 at the beginning of this proof. We can always reduce the error
probability of our algorithms to o(1/

∑n
j=1 S

2
j) using standard techniques.

This conversion incurs a multiplicative factor ofO(log(
∑n

j=1 S
2
j)) in the query

and time complexities, and in the worst case an additive term of ko(1)
max in the

number of auxiliary qubits. Accounting for them in the relevant complexities
completes the proof.

4.7 Discussion and outlook

In this chapter, we reach two main results. First, we prove in Section 4.5.6
that every quantum query algorithm can be converted into a span program

162 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

and back into a quantum algorithm while keeping the query and time com-
plexity una�ected up to polylogarithmic factors. This implies that span
programs fully capture both query and time complexity up to polylogarith-
mic factors, which strengthens the motivation for considering span programs
as an important formalism from which to derive quantum algorithms.

Our second result, in Section 4.6, is an improvement on Ambainis's vari-
able time search result � we can obtain a better-than-Grover speed-up in
both query and time complexity simultaneously, where the query complexity
is measured in the number of calls to Ox providing access to the input x and
the time complexity is measured in the number of calls to OA, and OS pro-
viding access to the descriptions of the algorithms, plus the other auxiliary
gates, which are not counted in Ambainis's paper. Our construction goes
via a composition of span programs. Even though the analysis of the time
complexity of the algorithm compiled from this composed span program is
quite involved, the actual composition is rather simple. This exempli�es the
power of the span program framework.

This section leaves several open ends for further research as well. First,
we do not re-derive all of the results that Ambainis obtains in his work. For
instance, we do not consider the case where the query and time complexities
of the original algorithms are not known in advance, so it would be interesting
to investigate whether we could match Ambainis's result in this setting as
well. This would probably require somewhat modifying the input model that
we describe in Section 4.2.

Similarly, we handle the decision version of the search problem whereas
Ambainis handles the full search version. It would be interesting to see if one
can recover the full search algorithm as well. One possible direction would be
to investigate whether one could use span programs with non-binary outputs
for that, as described for instance in [BT20].

The most interesting direction of further research that we foresee, though,
is whether the relative ease with which span programs can be composed
can be exploited to obtain more composition results. The variable time
search result composes a set of arbitrary functions with the OR function
and obtains a better-than-Grover speed-up in the query and time complexity
of the resulting algorithm. A natural next step would be to investigate if
similar types of speed-ups can be obtained when one composes some arbitrary
functions with threshold functions.

Part III

The one where we discuss

applications of span programs

163

Chapter 5

Span programs for graph

problems

5.1 Overview

At the end of the introductory section of Chapter 3 we promised the reader
a three-course meal out of the st-connectivity span program, and by Turing,
we shall give it to you.

While span program algorithms are universal for quantum query algo-
rithms, it can also be fruitful to analyse the unitaries used in these algorithms
in ways that are di�erent from how they appear in the standard span program
algorithm. For example, Ref. [IJ19] presents an algorithm to estimate span
program witness sizes, and we have already presented algorithms for witness
generation in Section 3.4. We take a similar approach in this chapter, de-
riving new algorithms based on unitaries from the span program algorithm
for st-connectivity, deriving new span programs for graph connectivity based
on the st-connectivity span program, and applying the algorithm for witness
generation to the st-connectivity span program. The chapter contains the
results of [JJK+18], as well as an application of the witness generation algo-
rithm in Section 3.4.2 to st-path �nding, and a new span program for graph
connectivity. This is joint work with Stacey Je�ery and Shelby Kimmel.

Span program for st-connectivity In Section 5.2 we begin with de-
scribing in detail a span program for the st-connectivity problem, slightly
generalizing that of [BR12]. In a nutshell, in the st-connectivity problem a

165

166 CHAPTER 5. SPAN PROGRAMS FOR GRAPH PROBLEMS

parent graph G and two connected vertices s and t are �xed, and one is asked
to decide whether s and t are still connected in a subgraph G(x) of G, with x
in some domain X ⊆ {0, 1}N for some N ∈ N. In [BR12], the authors gave a
tight characterization of the positive witness size as the e�ective resistance.
Diverse upper bounds on the negative witness size have followed since [JK17;
Bel12b], but no tight, general characterization was known.

Characterization of the negative witness In Section 5.3, we bring the
story to its conclusion by showing that the negative witness size of the st-
connectivity span program is exactly characterized by the e�ective capaci-
tance of the input graph (Theorem 90). At a high-level, this well-studied
electrical network quantity is a measure of the charge that the network could
store between the component containing s and the component containing t
if put under a unit potential di�erence. The more, shorter paths between
these two components in the graph G \ G(x), the greater the capacitance.
This characterization tells us that quantum algorithms can quickly decide
st-connectivity on graphs that are promised to have either small e�ective
resistance or small e�ective capacitance. In Section 5.3.1, we apply this char-
acterization to give a new quantum algorithm for estimating the capacitance
of an input graph G(x).

An algorithm for graph connectivity Next, we use this tighter analysis
of the negative witness to analyse a new algorithm for graph connectivity.
This problem was �rst studied in the context of quantum algorithms by Dürr,
Høyer, Heiligman and Mhalla [DHH+06], who gave an optimal Õ(n3/2) upper
bound on the time complexity. A span-program-based quantum algorithm
with optimal query complexity was later presented by 	Arin, ² [Ari16], whose
algorithm also uses only O(log n) space.

Since a graph is connected if and only if every pair of vertices {u, v} are
connected, we propose an algorithm that uses the technique of [NT95; JK17]
to convert the conjunction of

(
n
2

)
st-connectivity span programs into a single

st-connectivity span program: take n(n − 1)/2 copies of G(x), one for each
pair of distinct vertices {u, v} with u < v, and call u the source and v the sink
of this graph. Connect these graphs in series, in any order, by identifying
the sink of one to the source of the next. Call the source of the �rst graph
s, and the sink of the last graph t. See Fig. 5.1 for an example when G
is a triangle. In this way we have created a graph (which we denote G(x))

5.1. OVERVIEW 167

that is st-connected if and only if G(x) is connected. In other words, for any
x ∈ {0, 1}E(G), connG(x) = st-connG(x).

G G
s t

Figure 5.1: The graph G is st-connected if and only of G is connected.

By analysing the e�ective resistance and capacitance of G, we show that
when G has no multi-edges, connG can be solved in query complexity
O(n

√
R/κ) (Theorem 98), where R is an upper bound on the average resis-

tance if G(x) is connected and κ is a lower bound on the number of compo-
nents if G(x) is not connected. For the case when G has multi-edges, we get
an upper bound of O(n3/4

√
Rdmax(G)/κ1/4) on the query complexity, where

dmax(G) is the maximum degree of any vertex in the graph.
In the worst case, when R = n and κ = 2, our algorithm achieves the

optimal query upper bound of Õ(n3/2) when the parent graph has no multi-
edges. Like the algorithm of Ref. [Ari16], our algorithm uses only O(log n)
space. It is also the �rst connectivity algorithm that applies to the case where
G is not necessarily the complete graph, although the other algorithms can
likely be adapted to the more general case.

The algorithm of 	Arin, ² can be seen as similar to ours, except that rather
than connecting copies of G(x) for each {u, v} pair, his algorithm only con-
siders pairs {1, v} for v 6= 1. In contrast, our algorithm is symmetric in the
vertex set, which makes a detailed analysis more natural.

Spectral algorithms for graph connectivity In Section 5.5, we present
an alternative approach to deciding graph connectivity. It is based on phase
estimation of a particular unitary that is also used in the st-connectivity span
program, but applied to a di�erent initial state.

We �rst show that the quantum query complexity of deciding connG,X is
O(
√
ndmax(G)/(κλ)), when we're promised that if G(x) is connected, the sec-

ond smallest eigenvalue of the Laplacian of G(x), λ2(G(x)), is at least λ, and
otherwise, G(x) has at least κ > 1 connected components (Corollary 104).
Unlike the previous algorithm, this one is not optimal in the worst case, but
it can be better than our �rst algorithm under some conditions. We compare

168 CHAPTER 5. SPAN PROGRAMS FOR GRAPH PROBLEMS

the two and discuss what these conditions are in Section 5.8. In addition to
calls to the span program unitary, this algorithm requires an initial state of
a particular form, and while this state is independent of the input, it may
generally not be time e�cient to produce such a state. In Sections 5.5.1 and
5.5.2 we analyse the time complexity of our algorithm in two contexts, one
that works for every graph G but may be signi�cantly suboptimal and one
specialized to Cayley graphs.

Spectral algorithm for estimating the algebraic connectivity In
Section 5.5.3 we give an algorithm to estimate the algebraic connectivity
of G(x), λ2(G(x)), when G is a complete graph. The algebraic connectiv-
ity is closely related to the inverse of the mixing time, which is known to
be small for many interesting families of graphs such as expander graphs.
We give a protocol in Theorem 120 that with probability at least 2/3 out-
puts an estimate of λ2(G(x)) up to multiplicative error ε in time complexity

Õ
(

1
ε

n√
λ2(G(x))

)
.

A span program for Connectivity without surgery In Section 5.6
we modify the target of the st-connectivity span program to obtain a span
program Ps for connG,X for every vertex s and derive a quantum algo-
rithm that decides connG,X with bounded error and with query complexity

O
(√

RC n2

(n−nmax)2

)
, where R is a known upper bound on Ravg(G(x)) for

all connected G(x), and for all disconnected G(x), C is an upper bound for
the largest out-degree of any component of G(x) and nmax upper bounds the
size of the largest component of G(x). Unlike our �rst algorithm for graph
connectivity, this span program does not require us to concatenate copies
of G in a long chain, it is not symmetric with respect to the vertices, and
unlike that span program, the span program algorithm associated to Ps is
not worst-case optimal. However, this span program has the advantage that
its query and time complexities are easy to analyse and become well-behaved
if there is not a component that dominates in size all the others when G(x)
is not connected, allowing it to outperform our other two algorithms in some
cases (see Section 5.8).

Application of witness generation to shortest-path �nding In Chap-
ter 3 we gave two algorithms that generate an ε-close approximation of the

5.2. A SPAN PROGRAM FOR ST -CONNECTIVITY 169

optimal positive witness for any span program. In Section 5.7, we apply
the �rst witness generation algorithm to the st-connectivity span program
of a particular graph encoding the function ORm ◦ ANDd. We use the wit-
ness generated to obtain an st-path in any connected subgraph G(x) using
O(
√
md) queries and logarithmic space, which is quadratically better than

the classical Θ (md) query lower bound and outperforms the path-�nding
algorithm in [DHH+06] in both query and space complexity. Our proof-of-
concept algorithm is, we hope, a �rst step towards a quantum algorithm for
path �nding with small (logarithmic) space, which remains an open problem.

Finally, in Section 5.8 we discuss our results, compare our algorithms and
talk about the open problems that emerge from them.

5.2 A span program for st-connectivity

An important example of a span program is the one for st-connectivity, �rst
introduced in [KW93], and used in [BR12] to give a new quantum algorithm
for st-connectivity.

We state this decision problem and span program below, somewhat gen-
eralized to include weighted (multi-)graphs, and to allow the input to be
speci�ed as a subgraph of some parent graph G that is not necessarily the
complete graph. Unless stated otherwise, we assume graphs can have more
than one edge between two vertices. We assume G has some implicit weight-
ing function c. Weighted graphs, also known as networks, are described in
Section 2.3.1.

We allow a string x ∈ {0, 1}N to specify a subgraph G(x) of G in the
fairly general way described in Section 2.3.1, Subgraphs. In particular, for
i ∈ [N], let

−→
E i,1 ⊆

−→
E (G) denote the set of (directed) edges associated with

the literal xi, and
−→
E i,0 the set of edges associated with the literal xi. Note

that if (u, v, `) ∈
−→
E i,b then we must also have (v, u, `) ∈

−→
E i,b, since G(x) is an

undirected graph. Subgraphs of a weighted graph are also weighted graphs.
For a parent graph G and a family of subgraphs G(x), x ∈ X = {0, 1}N ,

let s, t denote two connected vertices in G. The st-connectivity problem is
the function f : X → {0, 1} de�ned as f(x) = 1 i� s and t are connected in
G(x). We denote this problem as st-connG,X .

Then we refer to the following span program as PG:

170 CHAPTER 5. SPAN PROGRAMS FOR GRAPH PROBLEMS

De�nition 88 (st-connectivity span program). Let G = (V (G), E(G)) be
an undirected weighted multigraph and x ∈ {0, 1}N specify a subgraph G(x)
as above. For all i ∈ [N], b ∈ {0, 1} we de�ne the spaces

Hi,b = span{|u, v, `〉 : (u, v, `) ∈
−→
E i,b}; V = span{|v〉 : v ∈ V (G)} (5.1)

And we de�ne the span program map and target as

A =
∑

(u,v,`)∈
−→
E (G)

√
c(u, v, `)(|u〉 − |v〉)〈u, v, `|; |τ〉 = |s〉 − |t〉. (5.2)

We call PG = (H,V , A, |τ〉) the span program for st-connectivity over G.

Let us now provide some intuition for the inner workings of PG. Pick any
particular input x, assume G(x) is connected and let (s = u1, . . . , ud = t)
denote a path in G(x) from s to t of length d. Assume, for simplicity, that
all weights are 1. Then, the following state is a positive witness.

|w〉 =
d−1∑
i=1

|ui, ui+1〉 (5.3)

That is because:

A|w〉 =
d−1∑
i=1

(|ui〉 − |ui+1〉) = |u1〉 − |ud〉 = |s〉 − |t〉.

We conclude that every st-path in G(x) is a witness for |τ〉. In fact, it is
possible to see that any witness is a linear combination of st-paths, possibly
plus a few cycles, more on that later. This characterization, achieved through
the correspondence between witnesses and st-�ows, is the object of the next
lemma. The proof follows closely that of Appendix A in [JK17], albeit with
a little modi�cation that will facilitate the discussion later.

Lemma 89 ([JK17]). Let PG be the st-connectivity span program from Def-
inition 88. Then for any x ∈ {0, 1}N , w+(x, PG) = 1

2
Rs,t(G(x)).

Proof. Let us assume that s and t are connected in G(x) and let θ be a unit
st-�ow on G(x) as in De�nition 13. De�ne the state

|w〉 =
∑

(u,v,`)∈
−→
E (G(x))

1

2

θ(u, v, `)√
c(u, v, `)

|u, v, `〉. (5.4)

5.2. A SPAN PROGRAM FOR ST -CONNECTIVITY 171

Then, the state is obviously in H(x) and the image of |w〉 under A is:

A|w〉 =
1

2

∑
(u,v,`)∈

−→
E (G(x))

θ(u, v, `)(|u〉 − |v〉). (5.5)

Since θ is an st-�ow, θ(u, v, `) = −θ(v, u, `), so

A|w〉 =
∑

(u,v,`)∈
−→
E (G(x))

θ(u, v, `)|u〉. (5.6)

Now, let |u〉 ∈ V (G) \ {s, t}. From the de�nition of an st-�ow we have:

〈u|A|w〉 =
∑

v:(u,v,`)∈
−→
E (G(x))

θ(u, v, `) = 0.

But also,

〈s|A|w〉 =
∑

v:(s,v,`)∈
−→
E (G(x))

θ(s, v, `) = 1,

〈t|A|w〉 =
∑

v:(t,v,`)∈
−→
E (G(x))

θ(t, v, `) = −1.

Thus, we conclude that A|w〉 = |s〉 − |t〉, hence |w〉 is a positive witness for
x, and the witness size of |w〉 is an upper bound on the positive witness size
of PG for x. That is,

w+(x, PG) ≤
∑

(u,v,`)∈
−→
E (G(x))

1

4

θ2(u, v, `)

c(u, v, `)
=

1

2
J−→
E (G(x))

(θ). (5.7)

In particular, if we take θ to be the minimal energy st-�ow on G(x), then we
have w+(x, PG) ≤ Rs,t(G(x))/2.

Now let us prove the opposite inequality. We shall see that given an
optimal positive witness |wx〉 we can de�ne a unit st-�ow whose energy is
twice the witness size. Let θ :

−→
E (G)→ R be de�ned as

∀(u, v, `) ∈
−→
E (G), θ(u, v, `) := 2

√
c(u, v, `)〈u, v, `|wx〉.

172 CHAPTER 5. SPAN PROGRAMS FOR GRAPH PROBLEMS

Since the vectors {|u, v, `〉 : (u, v, `) ∈
−→
E (G)} form a basis of H, we have:

w+(x, PG) = ‖|wx〉‖2 =
∑

(u,v,`)∈
−→
E (G(x))

|〈u, v, `|wx〉|2 =
∑

(u,v,`)∈
−→
E (G(x))

1

4

θ2(u, v, `)

c(u, v, `)

=
1

2
J−→
E (G(x))

(θ) ≥ 1

2
Rs,t(G(x)).

Here we have used that |wx〉 is a positive witness to limit the sum to edges
over G(x). All that is left is proving that θ is a unit st-�ow over G(x).
Observe that

|wx〉 =
∑

(u,v,`)∈
−→
E (G(x))

1

2

θ(u, v, `)√
c(u, v, `)

|u, v, `〉,

and so A|wx〉 = |τ〉 can be written as:

|τ〉 =A|wx〉 =
1

2

∑
(u,v,`)∈

−→
E (G(x))

θ(u, v, `)√
c(u, v, `)

|u〉 − θ(u, v, `)√
c(u, v, `)

|v〉

=
1

2

∑
(u,v,`)∈

−→
E (G(x))

θ(u, v, `)− θ(v, u, `)√
c(u, v, `)

|u〉. (5.8)

Next, we prove that θ(u, v, `) = −θ(v, u, `). Consider the positive witness
|wx〉 as written in the basis of edges of G, |wx〉 =

∑
〈u, v, `|wx〉|u, v, `〉, then

|w̃x〉 = −
∑
〈v, u, `|wx〉|u, v, `〉 is too a positive witness, and with the same

norm as |wx〉 because A|u, v, `〉 = −A|v, u, `〉. Therefore |wx〉+|w̃x〉
2

is a positive
witness as well. By the triangle inequality,∥∥∥∥ |wx〉+ |w̃x〉

2

∥∥∥∥ ≤ 1

2
‖|wx〉‖+

1

2
‖|w̃x〉‖ =

√
w+(x, PG),

with equality if and only if |wx〉 and |w̃x〉 are parallel. By the optimality of
|wx〉 we conclude that that must be the case, which implies that 〈u, v, `|wx〉 =

−〈v, u, `|wx〉 and θ(u, v, `) = −θ(v, u, `) for all (u, v, `) ∈
−→
E (G).

Coming back to Eq. (5.8), from the anti-symmetry of θ we get:

A|wx〉 =
∑

(u,v,`)∈
−→
E (G(x))

θ(u, v, `)|u〉,

and so taking the inner product with |s〉, |t〉 and |u〉 for u ∈ V (G) \ {s, t} we
obtain:

5.2. A SPAN PROGRAM FOR ST -CONNECTIVITY 173

〈u|A|w〉 =
∑

v,`:(u,v,`)∈
−→
E (G(x))

θ(u, v, `) = 0,

〈s|A|w〉 =
∑

v,`:(s,v,`)∈
−→
E (G(x))

θ(s, v, `) = 1,

〈t|A|w〉 =
∑

v,`:(t,v,`)∈
−→
E (G(x))

θ(t, v, `) = −1.

We conclude that θ is a unit st-�ow, and Rs,t(G(x))

2
≤
J−→
E (G)

(θ)

2
= w+(x, PG).

Je�ery and Kimmel prove in [JK17] a little bit more than this because
they give an st-�ow for any witness, not necessarily optimal. Observe that
we could apply our arguments not only to the optimal positive witness for
any given x but to the minimal witness. Remember that the minimal witness
is de�ned in Section 3.2.2 as the smallest |w〉 ∈ H such that A|w〉 = |τ〉, a
vector which we denoted as |w0〉 = A+|τ〉.

Therefore, Lemma 89 actually characterizes |w0〉 as:

|w0〉 =
∑

(u,v,`)∈
−→
E (G)

1

2

θ(u, v, `)√
c(u, v, `)

|u, v, `〉, (5.9)

where θ is the minimal energy st-�ow in
−→
E (G), and ‖|w0〉‖2 = 1

2
Rs,t(G).

Now, let |ϕ〉 ∈ H be such that A|ϕ〉 = 0, that is, |ϕ〉 ∈ ker(A). De�ne
θ :
−→
E (G) → R as θ(u, v, `) =

√
c(u, v, `) (〈u, v, `|ϕ〉 − 〈v, u, `|ϕ〉). Notice

that we immediately obtain θ(u, v, `) = −θ(v, u, `). Then

A|ϕ〉 =
∑

(u,v,`)∈
−→
E (G)

√
c(u, v, `) (|u〉〈u, v, `|ϕ〉 − |v〉〈u, v, `|ϕ〉)

=
∑

u∈V (G)

∑
v,`:(u,v,`)∈

−→
E (G)

√
c(u, v, `) (|u〉〈u, v, `|ϕ〉 − |u〉〈v, u, `|ϕ〉)

=
∑

u∈V (G)

∑
v,`:(u,v,`)∈

−→
E (G)

θ(u, v, `)|u〉 = 0. (5.10)

174 CHAPTER 5. SPAN PROGRAMS FOR GRAPH PROBLEMS

We conclude that for every u ∈ V (G) we have∑
v,`:(u,v,`)∈

−→
E (G)

θ(u, v, `) = 0.

This is what is known as a circulation over G, which is like a �ow but
without source or sink. It is easy to verify that every circulation is a convex
combination of cycles on G, and that every circulation de�nes a vector in
ker(A). It is just as easy to verify that every cycle in G is a vector in ker(A),
just as every st path is an st-witness. Hence, we have characterized ker(A)
as the cycle space of G, i.e. the space spanned by the cycles in G. All that
is left is to characterize the negative witnesses. That is the purpose of the
next section.

5.3 E�ective capacitance and st-connectivity

In this section, we will prove the following theorem:

Theorem 90. Let PG be the span program in De�nition (88) and Cs,t(G(x))
be the capacitance between s and t in G(x) from De�nition 18. Then, for
any x ∈ {0, 1}N , w−(x, PG) = 2Cs,t(G(x)).

Previously, the negative witness size of PG was characterized by the size
of a cut [R�12] or, in planar graphs, the e�ective resistance of a graph related
to the planar dual of G(x) [JK17].

We will prove Theorem 90 shortly, but �rst, we mention the following
corollary:

Corollary 91. Let G be a multigraph with s, t ∈ V (G). Then for any
choice of (non-negative, real-valued) implicit weight function, the bounded
error quantum query complexity of evaluating st-connG,X is

O

√ max
x∈X

st-connG,X(x)=1

Rs,t(G(x))× max
x∈X

st-connG,X(x)=0

Cs,t(G(x))

 . (5.11)

Proof. The positive and negative witness sizes are exactly characterized in
Theorem 90 and Lemma 89. The result follows from Theorem 45.

5.3. EFFECTIVE CAPACITANCE AND ST -CONNECTIVITY 175

We emphasize that Corollary 91 holds for Rs,t and Cs,t de�ned with re-
spect to any weight function, some of which may give a signi�cantly better
complexity for solving this problem. We are now ready to prove Theorem 90,
the main result of this section.

Proof of Theorem 90. First, we prove that any unit st-potential on G(x) as
de�ned in De�nition 16 can be transformed into a negative witness for x in
PG with witness size equal to twice the unit potential energy of that potential.
This shows that w−(x, PG) ≤ 2Cs,t(G(x)).

Given a unit st-potential V : V (G) → R on G(x), we consider 〈ωV| =∑
v∈V (G) V(v)〈v|. Then because V(s) = 1 and V(t) = 0, we have 〈ωV|τ〉 = 1.

Secondly,

〈ωV|AΠH(x) =
∑

u′∈V (G)

V(u′)〈u′|
∑

(u,v,`)∈
−→
E (G(x))

√
c(u, v, `)(|u〉 − |v〉)〈u, v, `|

=
∑

(u,v,`)∈
−→
E (G(x))

√
c(u, v, `)(V(u)− V(v))〈u, v, `| = 0, (5.12)

where we've used the de�nition of unit st-potential, which states that V(u)−
V(v) = 0 when (u, v, `) ∈ E(G(x)). Thus 〈ωV| is a valid negative witness for
input x.

We have

w−(x, PG) ≤ min
V
‖〈ωV|A‖2

= min
V

∥∥∥∥∥∥
∑

(u,v,`)∈
−→
E (G)

√
c(u, v, `)(V(u)− V(v))〈u, v, `|

∥∥∥∥∥∥
2

= 2 min
V

∑
(u,v,`)∈E(G)

(V(u)− V(v))2c(u, v, `) = 2Cs,t(G(x)), (5.13)

where the minimization is over unit st-potentials on G(x).
Next, we show that any negative witness 〈ω| for PG on input x can be

transformed into a unit st-potential Vω on G(x), with negative witness size
equal to twice the unit potential energy of Vω. This shows that w−(x, PG) ≥
2Cs,t(G(x)).

Let 〈ω| be a negative witness for input x, de�ne the potential Vω(v) :=
〈ω|(|v〉 − |t〉) for v ∈ V (G). Then Vω(s) = 〈ω|(|s〉 − |t〉) = 〈ω|τ〉 = 1, and

176 CHAPTER 5. SPAN PROGRAMS FOR GRAPH PROBLEMS

Vω(t) = 〈ω|(|t〉 − |t〉) = 0. Also for (u, v, `) ∈ E(G(x)), we have

Vω(u)− Vω(v) = 〈ω|(|u〉 − |t〉)− 〈ω|(|v〉 − |t〉) = 〈ω|(|u〉 − |v〉)
= 〈ω|A|(u, v, `)〉 = 〈ω|AΠH(x)|(u, v, `)〉 = 0, (5.14)

because 〈ω|AΠH(x) = 0. Thus, Vω is an st-unit potential for G(x).
Then

w−(x, PG) = min
〈ω|
‖〈ω|A‖2 = min

〈ω|

∑
(u,v,`)∈

−→
E (G)

(〈ω|(|u〉 − |v〉))2c(u, v, `)

=2 min
〈ω|

∑
(u,v,`)∈E(G)

(Vω(u)− Vω(v))2c(u, v, `) ≥ 2Cs,t(G(x)),

(5.15)

where the minimization is over negative witnesses. Since we have both
w−(x, PG) ≥ 2Cs,t(G(x)) and w−(x, PG) ≤ 2Cs,t(G(x)), we conclude that
w−(x, PG) = 2Cs,t(G(x)).

5.3.1 Estimating the capacitance of a circuit

The second use of this characterization of w−(x, PG) will be an algorithm for
estimating the capacitance of a graph. The algorithm is a particular case
of an algorithm described in [IJ19] for arbitrary span programs, adapted for
the st-connectivity span program. The general algorithm is based on the
direct connection between the minimal witness |w0〉, the 0-phase eigenspace
of U(x, PG) and the negative witness size that we discussed in Section 3.3.2.
We restate here the statement for convenience.

Theorem 92 ([IJ19]). Fix X ⊆ [q]N and f : X → R≥0. Let P = (H,V , A, |τ〉)
be a span program on [q]N such that for all x ∈ X, f(x) = w−(x, P) and de-

�ne Ŵ+ = Ŵ+(P) = maxx∈X w̃+(x, P, e−(x, P)). Then there exists a quan-

tum algorithm that estimates f to accuracy ε and uses Õ
(

1
ε3/2

√
w−(x)Ŵ+

)
calls to U(x, P) = (2Πker(A) − I)(2ΠH(x) − I) and elementary gates.

By Theorem 90, w−(x, PG) = 2Cs,t(G(x)), so we can apply Theorem 92 to
estimate Cs,t(G(x)). By Theorem 92, the complexity of doing this depends
on Cs,t(G(x)) and Ŵ+(PG) = maxx w̃+(x, PG). We will prove the following
theorem:

5.3. EFFECTIVE CAPACITANCE AND ST -CONNECTIVITY 177

Theorem 93. Let PG be the st-connectivity span program from De�nition
88. Then, we have Ŵ+(PG) = O(maxp JE(G)(p)), where the maximum runs
over all unit st-�ows p that are paths from s to t and J is the energy of the
�ow from De�nition 14.

Note that when the weights are all 1, maxp JE(G)(p) is just the length of
the longest self-avoiding st-path in G. Combining Theorem 92, Theorem 90,
and Theorem 93, we have:

Corollary 94. Given a network (G, c), with s, t ∈ V (G) and access to
an oracle Ox, the bounded error quantum query complexity of estimating
Cs,t(G(x)) to accuracy ε is Õ(ε−3/2

√
Cs,t(G(x)) maxp JE(G)(p)) where the

maximum runs over all unit st-�ows p that are paths from s to t.

Similarly, we can give a time upper bound for this problem:

Corollary 95. Let U be the cost of implementing the map

|u〉|0〉 7→
∑

v,`:(u,v,`)∈
−→
E (G)

√
c(u, v, `)

dG(u)
|u, v, `〉.

Then the quantum time complexity of estimating Cs,t(G(x)) to accuracy ε is

Õ
(

1

ε3/2
1

δ(G)1/2

√
Cs,t(G(x)) max

p
JE(G)(p)U

)
,

where δ(G) is the spectral gap of the symmetric Laplacian Lsym
G de�ned in

Section 2.3.2.

Proof. The algorithm in Theorem 92 requires a number of calls to a unitary
U(x, PG) of order Õ(ε−3/2

√
Cs,t(G(x)) maxp JE(G)(p)) and a similar number

of other elementary operations ([IJ19]). By [JK17] (generalizing [BR12]), for
any G, U(x, PG) can be implemented in cost 1√

δ(G)
U.

To prove Theorem 93, we �rst relate unit st-�ows on G to approximate
positive witnesses. Intuitively, an approximate positive witness is an st-�ow
on G that has energy as small as possible on edges in E(G)\E(G(x)). Thus,
we can upper bound the approximate positive witness size by the highest
possible energy of any st-�ow on G, which is always achieved by a �ow that
is an st-path.

178 CHAPTER 5. SPAN PROGRAMS FOR GRAPH PROBLEMS

Claim 3. Let PG be the span program of De�nition 88. Then the positive
error of x in PG is

e+(x, PG) =
1

2
min
θ
{JE(G)\E(G(x))(θ)}, (5.16)

where θ runs over unit st-�ows on G. The min. error approximate positive
witness size is

w̃+(x, PG) =
1

2
min
θ
JE(G)(θ) (5.17)

where θ runs over unit st-�ows on G such that JE(G)\E(G(x))(θ) = e+(x, PG).

Proof. The proof follows from the de�nition of min. error approximate pos-
itive witness size and the fact, proven in [JK17, Lemma 11], that every
positive witness |w〉 corresponds to a unit st-�ow θ over E(G) such that
‖|w〉‖2 = 1

2
JE(G)(θ). It follows then that the negative error is half the en-

ergy of some �ow through E(G) \ E(G(x)) and the min. error positive wit-
ness size is half the energy of a �ow over G that minimizes its energy over
E(G) \ E(G(x)).

We are now ready to prove Theorem 93.

Proof of Theorem 93. From Claim 3, we have that the min. error approxi-
mate positive witness corresponds to a particular unit st-�ow over G. Since
the unit st-�ow over G with maximum energy is a path from s to t, �
because splitting the �ow reduces the energy � the result follows.

5.4 Graph connectivity

Let connG,X be the problem of deciding, given x ∈ X, whether G(x) is
connected. That is:

connG,X =
∧

{u,v}:u,v∈V (G)

uv-connG,X . (5.18)

Using the technique of converting logical and into st-connectivity prob-
lems in series [NT95; JK17], we note that the above problem is equivalent
to n(n− 1)/2 st-connectivity problems in series, one for each pair of distinct
vertices in V (G). (The approach in Ref. [Ari16] is similar, but only looks

5.4. GRAPH CONNECTIVITY 179

at n − 1 instances � the pairs s and v for each v ∈ V (G). Our approach is
symmetrized over the vertices and thus makes a tight analysis simpler.)

More precisely, we de�ne a graph G such that:

V (G) = V (G)× {{u, v} : u 6= v ∈ V (G)}
E(G) = E(G)× {{u, v} : u 6= v ∈ V (G)} (5.19)

where × denotes the Cartesian product, and {u, v} is an extra label denoting
that that edge or vertex is in the {u, v}th copy of the graph G present as a
subgraph in G. Choose any labeling of the vertices from 1 to n (with slight
abuse of notation, we use u both for the original vertex name and the label).
We then label the vertex (1, {1, 2}) as s and the vertex (n, {n − 1, n}) as t.
Next identify vertices (v, {u, v}) and (u, {u, v + 1}) if u < v and v < n, and
identify vertices (v, {u, v}) and (u+ 1, {u+ 1, u+ 2}) if v = n and u < n− 1.
See Fig. 5.2 for an example of this construction.

3

21 s t

{1, 2} {1, 3} {2, 3}

G G

Figure 5.2: Example of how G is formed from a graph G. We have labeled
the subgraphs of G according to the st-connectivity problems the subgraphs
represent.

Finally, we de�ne G(x) to be the subgraph of G with edges

E(G(x)) = E(G(x))× {{u, v} : u 6= v ∈ V (G)}. (5.20)

We can see that any st-path in G(x) must go through each of the copies of
G(x), meaning it must include, for each {u, v}, a uv-path through the copy
of G(x) labeled {u, v}. Thus, there is an st-path in G(x) if and only if G(x)
is connected.

We consider the span program PG, where c(e) = 1 for all e ∈ E(G).
We will use PG to solve st-connectivity on G(x). To analyse the resulting
algorithm, we need to upper bound the negative and positive witness sizes
w−(x, PG) = 2Cs,t(G(x)) and w+(x, PG) = 1

2
Rs,t(G(x)).

180 CHAPTER 5. SPAN PROGRAMS FOR GRAPH PROBLEMS

Lemma 96. For any x such that G(x) is connected, let Ravg(G(x)) be the

average resistance from Eq. (2.12). Then w+(x, PG) = n(n−1)
2

Ravg(G(x)).

Proof. Using the rule that resistances in series add from Proposition 19, we
have:

Rs,t(G(x)) =
1

2

∑
u,v∈V (G)

Ru,v(G(x)) = n(n− 1)Ravg(G(x)). (5.21)

This is equal to 2w+(x, PG).

Now we bound Cs,t(G(x)), to prove the following:

Lemma 97. Fix κ > 1, and suppose G(x) has κ connected components.
Then if G is a subgraph of a complete graph (that is, G has at most one edge
between any pair of vertices), we have w−(x, PG) = O(1/κ). Otherwise, we
have w−(x, PG) = O(dmax(G)/

√
nκ).

Proof. Using the rule for capacitors in series from Proposition 19, and ac-
counting for double counting pairs of vertices, we have

1

Cs,t(G(x))
=

1

2

∑
s′,t′∈V (G)
s′ 6=t′

1

Cs′,t′(G(x))
. (5.22)

To put an upper bound on Cs,t(G(x)), we can put an upper bound on
each term Cs′,t′(G(x)). To upper bound Cs′,t′(G(x)), consider the following
unit s′t′-potential for G(x). Set V(v) = 1 for all v in the same connected
component as s′ in G(x), set V(v) = 0 for all v in the same connected
component as t′ in G(x), and set V(v) = ν for all other vertices in G. We
now �nd the minimum unit potential energy of this s′t′-potential (minimizing
over ν). This will be an upper bound on Cs′,t′(G(x)) by De�nition 18, since
it is not necessarily the optimal choice to set all vertices not connected to s′

or t′ to have the same unit potential value.
We use Proposition 19 and the fact that our choice of unit s′t′-potential

e�ectively creates a graph with three vertices: one vertex corresponds to the
connected component of G(x) containing s′ (let ns′ be the number of vertices
in this component), one vertex corresponds to the connected component of
G(x) containing t′ (let nt′ be the number of vertices in this component),
and one vertex corresponds to all the other vertices in the graph (let a be a

5.4. GRAPH CONNECTIVITY 181

Figure 5.3: Our choice of unit s′t′-potential e�ectively creates a graph with
three vertices.

vertex in these components, and na = n−ns′−nt′ be the remaining number of
vertices). Since these components are disconnected in G(x) but connected in
G, for any pair of vertices u and v, let Du be the number of edges of G coming
out of the component of G(x) containing u, and let Duv be the number of
edges in G \G(x) between the components containing u and v. Since all the
weights have been chosen to be c(e) = 1, Duv is exactly the capacitance of the
subgraph of G(x) that contains only the component of u and the component
of v. See Figure 5.4 for a sketch of what is going on. Using the rules for
calculating capacitance in series and parallel in Proposition 19, we have

Cs′,t′(G(x)) ≤ Ds′t′ +

(
1

Ds′ −Ds′t′
+

1

Dt′ −Ds′t′

)−1

=
Ds′Dt′ −D2

s′t′

Ds′ +Dt′ − 2Ds′t′
.

(5.23)

Here, the inequality comes from the fact that our unit potential need not be
optimal. Let us denote s′ and t′ being disconnected in G(x) by s′ 6∼ t′. Using
Eq. (5.22), we have

1

Cs,t(G(x))
≥ 1

2

∑
s′,t′∈V (G)
s′ 6∼t′

Ds′ +Dt′ − 2Ds′t′

Ds′Dt′ −D2
s′t′

. (5.24)

Now the expression on the right-hand side of Eq. (5.24) depends only on
which connected components s′ and t′ are in, so instead of summing over the
vertices of G, we can instead sum over the κ connected components of G(x).
Let ni be the number of vertices in the ith connected component. Then,

182 CHAPTER 5. SPAN PROGRAMS FOR GRAPH PROBLEMS

continuing from Eq. (5.24) we have:

1

Cs,t(G(x))
≥ 1

2

∑
i,j∈[κ]:i 6=j

ninj
Di +Dj − 2Dij

DiDj −D2
ij

=
1

2

∑
i,j∈[κ]:i 6=j

ninj
(Di −Dij) + (Dj −Dij)

DiDj −D2
ij

=
1

2

2
∑

i,j∈[κ]:i 6=j

ninj
(Di −Dij)

DiDj −D2
ij

 =
∑

i,j∈[κ]:i 6=j

ninj
Dj −Dij

DiDj −D2
ij

.

(5.25)

First, consider the case when G is a complete graph. In that case, Di −Dij,
the number of edges leaving component i and going to a component other
than i or j, is exactly ni(n− ni − nj), whereas the number of edges leaving
component i is Di = ni(n − ni). Finally, Dij = ninj is the number of edges
going from the ith component to the jth component. Thus, continuing from
Eq. (5.25), we have:

1

Cs,t(G(x))
≥

∑
i,j∈[κ]:i 6=j

ninj
ni(n− ni − nj)

ni(n− ni)nj(n− nj)− n2
in

2
j

=
∑

i,j∈[κ]:i 6=j

ni(n− ni − nj)
(n− ni)(n− nj)− ninj

=
∑

i,j∈[κ]:i 6=j

ni(n− ni − nj)
n2 − nni − nnj

=
∑

i,j∈[κ]:i 6=j

ni
n

= κ− 1. (5.26)

Note that this upper bound on Cs,t(G(x)) applies to any subgraph of a com-
plete graph, since adding edges can only increase the capacitance. Thus, we
have completed the �rst part of the proof.

We now continue with the more general case, where G can have multi-
edges. Let d = dmax(G). Continuing from Eq. (5.25), and using the fact that

5.4. GRAPH CONNECTIVITY 183

for any component, we have:

1

Cs,t(G(x))
≥ 1

2

∑
i,j∈[κ]:i 6=j

ninj
Di +Dj − 2Dij

DiDj −D2
ij

=
1

2

∑
i,j∈[κ]:i 6=j

ninj
(
√
Di −

√
Dj)

2 + 2
√
DiDj − 2Dij

DiDj −D2
ij

≥
∑

i,j∈[κ]:i 6=j

ninj

√
DiDj −Dij

DiDj −D2
ij

≥
∑

i,j∈[κ]:i 6=j

ninj

√
DiDj −D2

ij

DiDj −D2
ij

≥
∑

i,j∈[κ]:i 6=j

ninj
1√
DiDj

≥
∑

i,j∈[κ]:i 6=j

√
ninj

d
≥ 1

d

√∑
i∈[κ]

∑
j 6=i

ninj

=
1

d

√∑
i∈[κ]

ni(n− ni). (5.27)

Above we used the fact that for any component, Di ≤ dni. The sum
∑

i∈[κ] n
2
i

is maximized when the ni are as far as possible from uniform. In this case,
we have ni ≥ 1 for all i, so

∑
i∈[κ] n

2
i ≤ (κ − 1) + (n − (κ − 1))2. Thus,

continuing, we have

1

Cs,t(G(x))
≥ 1

d

√
n
∑
i∈[κ]

ni −
∑
i∈[κ]

n2
i

≥ 1

d

√
n2 − (κ− 1)− n2 − (κ− 1)2 + 2n(κ− 1)

=
1

d

√
(2n− κ)(κ− 1) ≥ 1

d

√
nκ. (5.28)

The result follows by Theorem 90, which says that w−(x, PG) = 2Cs,t(G(x)).

Combining Lemmas 96 and 97 and Theorem 45, we have the following:

Theorem 98. For any family of graphs G such that G has no multiedges, and
X ⊆ {0, 1}E(G) such that for all x ∈ X, if G(x) is connected, Ravg(G(x)) ≤
R, and if G(x) is not connected, it has at least κ components, the bounded

error quantum query complexity of connG,X is O
(
n
√
R/κ

)
.

184 CHAPTER 5. SPAN PROGRAMS FOR GRAPH PROBLEMS

For any family of connected graphs G and X ⊆ {0, 1}E(G) such that for all
x ∈ X, if G(x) is connected, Ravg(G(x)) ≤ R, and if G(x) is not connected,
it has at least κ components, the bounded error quantum query complexity of

connG,X is O
(
n3/4

√
Rdmax(G)/κ1/4

)
.

Similarly, we can show:

Corollary 99. Let U be the cost of implementing the map

|u〉|0〉 7→
∑

v,`:(u,v,`)∈
−→
E (G)

1√
dG(u)

|u, v, `〉.

If G has no multiedge, the quantum time complexity of connG,X is

O(n
√
R/(δ(G)κ)U).

For any family of connected graphs G and X ⊆ {0, 1}E(G) such that for all
x ∈ X, if G(x) is connected, Ravg(G(x)) ≤ R, and if G(x) is not connected,
it has at least κ components, the quantum time complexity of connG,X is

O
(
n3/4

√
Rdmax(G)κ−1/4δ(G)−1/2U

)
.

Proof. By the previous theorem, the span program algorithm of Theorem 45
makesO

(
n3/4

√
Rdmax(G)/κ1/4

)
calls to a unitary U(x, PG). By [JK17] (gen-

eralizing [BR12]), for any G, U(x, PG) can be implemented in cost U/
√
δ(G).

5.5 Spectral algorithm for deciding connectiv-

ity

In this section, we will give alternative quantum algorithms for deciding
connectivity. We begin by relating the span program for st-connectivity of
De�nition 88 to the Laplacian of a graph de�ned in Section 2.3.2. Equipped
with this understanding, we present an algorithmic template, outlined in
Algorithm 102, that produces spectral algorithms for graph connectivity.
The template requires the instantiation of an input-independent initial state
whose construction depends greatly on the parent graph G, in particular
its structure and Laplacian spectrum. We want to remark that, by design,

5.5. SPECTRAL ALGORITHM FOR DECIDING CONNECTIVITY 185

these algorithms will work better the more we know about the spectrum of
LG and the more well-behaved this is. Hence, the moniker spectral. Let us
demonstrate what we mean by this.

Let PG = (H,V , A, |τ〉) be the span program for st-connectivity de�ned
in Eq. (88). Note that only |τ〉 depends on s and t. our construction will
make use of all parts of PG except |τ〉. We let A(x) = AΠH(x) and consider
the product of A(x) and A(x)T .

A(x)A(x)T =
∑

(u,v,`)∈
−→
E (G(x))

c(u, v, `)(|u〉〈u| − |u〉〈v| − |v〉〈u|+ |v〉〈v|)

=
∑
u∈[n]

2dG(u)|u〉〈u| − 2AG(x) = 2(DG(x) −AG(x))

= 2LG(x), (5.29)

where, LG(x) is the Laplacian of G(x) (see Section 2.3.2). By a similar com-
putation to the one above, we have AAT = 2LG, where G is the parent
graph, upon which A depends. Recall that for any G, the eigenvalues of LG
lie in [0, dmax], with |µ〉 = 1√

n

∑
v|v〉 as a 0-eigenvalue. In our case, since G

is assumed to be connected, |µ〉 is the only 0-eigenvector of LG, so row(LG)
is the orthogonal complement of |µ〉. For any x, LG(x) also has |µ〉 as a 0-
eigenvalue, and if G(x) is connected, this is the only 0-eigenvalue. In general,
the dimension of the 0-eigenspace of LG(x) is the number of components of
G(x). Thus, Eq. (5.29) implies the following:

1. The multiset of nonzero eigenvalues of LG are exactly half of the squared
singular values of A, and in particular, since no eigenvalue of LG can
be larger than the maximum degree of G, σmax(A) ≤

√
2dmax(G).

2. The multiset of nonzero eigenvalues of LG(x) are exactly half the squared
singular values of A(x), and in particular, if G(x) is connected, then
σmin(A(x)) =

√
2λ2(G(x)), where λ2(G(x)) is the second smallest eigen-

value of LG(x), which is non-zero if and only if G(x) is connected.

3. The support of LG is col(A), which is the orthogonal complement of
the uniform vector |µ〉 = 1√

n

∑
v|v〉.

For a particular span program P , and input x, we de�ne the associated
unitary

U(x, P) = (2Πker(A) − I)(2ΠH(x) − I). (5.30)

186 CHAPTER 5. SPAN PROGRAMS FOR GRAPH PROBLEMS

This unitary is a close relative to the one used in Theorem 45 to decide
a span program. Our algorithm will be based on the following connection
between the connectivity of G(x) and the presence of a 0-phase eigenvector
of U(x, P) in row(A) = ker(A)⊥. On the one hand, we have:

Lemma 100. G(x) has κ > 1 components if and only if dim(row(A) ∩
H(x)⊥) = κ − 1, i.e. there exists a (κ − 1)-dimensional subspace of row(A)
that is �xed by U(x, P).

Proof. (⇒). Let G(x) be a subgraph of G with κ components. It is a well
known fact that the number of components of a graph is equal to the number
of 0-eigenvectors of its Laplacian, and that the uniform vector |µ〉 is always
a zero eigenvector of LG(x). Let |ξi〉, i ∈ [κ − 1] be an orthonormal set of
0-eigenvectors of LG(x) orthogonal to |µ〉. Since the eigenvectors of LG(x) are
the left-singular vectors of A(x) it follows that 〈ξi|A(x) = 〈ξi|AΠH(x) = 0.
De�ne the vectors

|ψi〉 := A†|ξi〉.
We have just seen that ΠH(x)|ψi〉 = 0, and since all |ξi〉 are orthogonal to
|µ〉, it follows that for all i ∈ [κ− 1], |ξi〉 ∈ col(A) because the columnspace
of A is span{|µ〉⊥} since G is connected. Finally, we observe that the set
{A†|ξi〉} must be linearly independent because A† is linear and full rank in
its rowspace, which is row(A†) = col(A). We conclude that the dimension of
row(A) ∩H(x)⊥ is at least κ− 1.

(⇐). Let {|ψi〉 : i ∈ [κ− 1]} be an orthonormal basis of row(A)∩H(x)⊥.
Consider the Laplacian of G(x), A(x)AT (x) = 2LG(x). Then, for i ∈ [κ − 1]
the vectors

|ξi〉 := (A+)†|ψi〉
are 0-eigenvectors of LG(x). Indeed, since |ψi〉 ∈ H(x)⊥ ∩ row(A) we have

〈ξi|LG(x) = 〈ψi|A+AΠH(x)A
T (x) = 〈ψi|Πrow(A)ΠH(x)A

T (x) = 0.

And since all the |ψi〉 are orthonormal vectors in the rowspace of (A+)† it
follows that the |ξi〉 are κ− 1 linearly independent vectors of ker(LG(x)). In
addition, the uniform vector |µ〉 is always a 0-eigenvector of LG(x) orthogonal
to the |ξi〉's, meaning that the number of components of G(x) is at least κ.
This completes the proof.

On the other hand, we show a lower bound for the �rst non-zero eigen-
phase of U(x, P) when G(x) is connected.

5.5. SPECTRAL ALGORITHM FOR DECIDING CONNECTIVITY 187

Lemma 101. Let PG be the st-connectivity span program from Eq. (88).
Then ∆(U(x, P)) ≥ 2

√
λ2(G(x))/dmax(G).

Proof. By [IJ19, Theorem 3.10], for every span program we have ∆(U(x, P)) ≥
2σmin(A(x))/σmax(A). Plugging in the values that we have derived for the
st-connectivity span program yields the result.

Thus, by Lemma 100, in order to determine if G(x) is connected, it is
su�cient to detect the presence of any 0-phase eigenvector of U(x, P) on
row(A). Let {|ψi〉}n−1

i=1 be any basis for row(A), not necessarily orthogonal,
and suppose we have access to an operation that generates a normalized
version of the state

|ψinit〉 =
n−1∑
i=1

|i〉|ψi〉.

Such a basis is independent of the input, so we can certainly generate this
state with 0 queries. We will later discuss the construction of such basis
states for di�erent graphs G. Let us, for now, not specify them.

Algorithm 102. Assume there is a known constant λ such that if G(x)
is connected, then λ2(G(x)) ≥ λ. Let {|ψi〉}i be some states that span the
rowspace of A, whose choice determines the cost of the amplitude estimation
step.

1. Prepare |ψinit〉 =
∑n−1

i=1
1√
n−1
|i〉|ψi〉.

2. Perform the phase estimation of U(x, P) (see Theorem 9) on the second
register, to precision

√
λ/dmax(G)/2, and accuracy ε.

3. Use amplitude estimation (see Corollary 12) to determine if the ampli-
tude on |0〉 in the phase register is 0, in which case, output �connected�,
or > 0, in which case, output �not connected.�

The algorithm works in the following manner. First, suppose that there
is a non-trivial κ − 1-dimensional subspace B = span{|φj〉 : j ∈ [k − 1]}
spanned by an orthonormal basis of 0-phase eigenvectors of U(x, P) such
that B ⊆ row(A), and let ΠB be the orthonormal projector onto their span.
In other words, suppose that G(x) is not connected. By Theorem 9, for each
i, the phase estimation step will map |i〉 (ΠB|ψi〉) to |i〉|0〉 (ΠB|ψi〉). Thus,
the squared amplitude on |0〉 in the phase register will be at least:

188 CHAPTER 5. SPAN PROGRAMS FOR GRAPH PROBLEMS

ε :=
‖(I ⊗ ΠB)|ψinit〉‖2

‖|ψinit〉‖2 =
1

‖|ψinit〉‖2

n−1∑
i=1

‖ΠB|ψi〉‖2 > 0. (5.31)

On the other hand, suppose G(x) is connected. Then, by Lemmas 100
and 101, all phases will be at least ∆(U(x, P)) ≥

√
λ2(G(x))/dmax(G)/2,

and there is no 0-phase eigenvector in row(A), hence the phase register will
have squared overlap at most ε with |0〉 if we choose precision ∆(U(x, P))/2
for the phase estimation step.

Setting a phase estimation error of ε = ε/2, we just need to distinguish
between a squared amplitude of ≥ ε and a squared amplitude of ≤ ε/2 on
|0〉 in the phase register. Using Corollary 12, we can distinguish these two
cases in 1√

ε
calls to steps 1 and 2. Observe that we do not need the initial

state to be an entangled state built from a basis of ker(A)⊥, but it is in
our advantage to choose it this way since we are guaranteed to �nd (κ − 1)
0-phase eigenvectors of U(x, P) in ker(A)⊥ if G(x) is not connected.

By Theorem 9, Step 2 can be implemented using
√

dmax(G)
λ

log 1
ε
calls to

U(x, P). Let U be the cost of implementing, for any u ∈ V , the map

|u, 0〉 7→
∑

v,`:(u,v,`)∈
−→
E (G)

√
c(u, v, `)

dG(u)
|u, v, `〉, (5.32)

which corresponds to one step of a quantum walk on G. Then, by Theorem 13
in [JK17], U(x, P) can be implemented in time O(U/

√
δ(G)), where δ(G) is

the spectral gap of a random walk over G. We thus get the following:

Theorem 103. Fix λ > 0. Let Init denote the cost of generating the ini-
tial state |ψinit〉, and U the cost of the quantum walk step in Eq. (5.32).
Let ε be as in Eq. (5.31) for any notion of cost. Then for any family
of connected graphs G and X ⊆ {0, 1}E(G) such that for all x ∈ X, ei-
ther λ2(G(x)) ≥ λ or G(x) is not connected, connG,X can be decided by

a quantum algorithm with query complexity O
(

1√
ε

(√
dmax(G)

λ
log 1

ε

))
and

cost O
(

1√
ε

(
Init +

√
dmax(G)
λδ(G)

U log 1
ε

))
.

In the next two sections, we will discuss particular implementations of
this algorithm and bound their respective time complexities. That is, we will

5.5. SPECTRAL ALGORITHM FOR DECIDING CONNECTIVITY 189

give two di�erent initial states and study the parameters Init and ε. If we
only care about query complexity, we already have the following.

Corollary 104. Fix any λ > 0 and κ > 1. For any family of connected
graphs G on n vertices and X ⊆ {0, 1}E(G) such that for all x ∈ X, either
λ2(G(x)) ≥ λ or G(x) has at least κ connected components, the bounded error

quantum query complexity of connG,X is O
(√

ndmax(G)
κλ

)
.

Proof. First, observe that by [IJ19, Lemma 3.1], U(x, P) can be implemented
with 2 queries.

Next, let {|ψi〉}n−1
i=1 be any orthonormal basis for row(A). Then in Init = 0

queries, we can generate the state

|ψinit〉 =
1√
n− 1

n−1∑
i=1

|i〉|ψi〉.

Then if there are κ − 1 orthonormal 0-phase vectors of U(x, P) in row(A),
|φ1〉, . . . , |φκ−1〉, setting Π =

∑κ−1
j=1 |φj〉〈φj|, we have

ε = ‖(I ⊗ Π)|ψinit〉‖2 =
1

n− 1

κ−1∑
j=1

n−1∑
i=1

|〈φj|ψi〉|2 =
κ− 1

n− 1
.

Then the result follows.

5.5.1 A construction for any G

In this section we will give a general construction of an initial state that,
while not having optimal scaling, works for any graph G.

Let |µ〉 = 1√
n

∑
u∈V (G)|u〉, and for j ∈ [n−1] let |ĵ〉 = 1√

n

∑
u∈[n] e

2πiju/n|u〉.
Then it is easily checked that |1̂〉, . . . , |n̂− 1〉 form an orthonormal basis of
the columnspace of A for a connected graph G. Let |ψj〉 = AT |ĵ〉. Then
{|ψ1〉, . . . , |ψn−1〉} is a basis for row(A), but it is not necessarily orthogo-
nal unless the |ĵ〉's themselves form an eigenbasis of LG, (as in the case of
Cayley graphs, discussed in Section 5.5.2), and in general, the |ψj〉 are not

190 CHAPTER 5. SPAN PROGRAMS FOR GRAPH PROBLEMS

normalized. We have

|ψj〉 = AT |ĵ〉 =
∑

(u,v,`)∈
−→
E (G)

√
c(u, v, `)|u, v, `〉(〈u|ĵ〉 − 〈v|ĵ〉)

=
∑

(u,v,`)∈
−→
E (G)

√
c(u, v, `)

(
1√
n
e2πiju/n − 1√

n
e2πijv/n

)
|u, v, `〉, (5.33)

from which we compute

‖|ψj〉‖2 =
∥∥∥AT |ĵ〉∥∥∥2

=
1

n

∑
(u,v,`)∈

−→
E (G)

c(u, v, `)
∣∣e2πiju/n − e2πijv/n

∣∣2
=

1

n

∑
(u,v,`)∈

−→
E (G)

c(u, v, `)2

(
1− cos

2πj(v − u)

n

)
. (5.34)

For any graph, we can use as initial state a normalization of
∑n−1

j=1 |j〉|ψj〉.
From Eq. (5.34), we have, using Lagrange's identity:

n−1∑
j=1

‖|ψj〉‖2 =
2

n

∑
(u,v,`)∈

−→
E (G)

c(u, v, `)
n−1∑
j=1

(
1− cos

2πj(v − u)

n

)

=
2

n

∑
(u,v,`)∈

−→
E (G)

c(u, v, `)

n− 1−

1

2

sin
(

(n− 1
2
)2π(v−u)

n

)
sin
(
π(v−u)

n

) − 1

=

2

n

∑
(u,v,`)∈

−→
E (G)

c(u, v, `)

n− sin
(
−π(v−u)

n

)
2 sin

(
π(v−u)

n

)

=
2

n

(
n+

1

2

)∑
u∈V

∑
v,`:(u,v,`)∈

−→
E (G)

c(u, v, `)

= 2

(
1 +

1

2n

)∑
u∈V

dG(u) = 2

(
1 +

1

2n

)
ndavg(G), (5.35)

where davg = davg(G) is the average weighted degree in G.
De�ne the initial state as the unit vector:

|ψinit〉 =

∑n−1
j=1 |j〉AT |ĵ〉√

2(1 + 1
2n

)ndavg

. (5.36)

5.5. SPECTRAL ALGORITHM FOR DECIDING CONNECTIVITY 191

Then we lower bound ε in the case where G(x) is not connected as follows:

Lemma 105. Let |ψinit〉 be as in Eq. (5.36), and suppose G(x) has κ > 1
connected components. Let Π be the projector onto a (κ − 1)-dimensional
subspace of row(A) that is in the 0-phase space of U(x, P). Then

ε = ‖(I ⊗ Π)|ψinit〉‖2 ≥ (κ− 1)λ2(G)

(1 + 1
2n

)ndavg

.

Proof. By Lemma 100, there exist orthonormal vectors |φ1〉, . . . , |φκ−1〉 ∈
row(A) that are �xed by U(x, P). Let Π =

∑κ−1
i=1 |φi〉〈φi|. We have:

‖(I ⊗ Π)|ψinit〉‖2 =

∑κ−1
i=1

∑n−1
j=1 |〈φi|ψj〉|2

2(1 + 1
2n

)ndavg

=

∑κ−1
i=1

∑n−1
j=1 |〈φi|AT |ĵ〉|2

2(1 + 1
2n

)ndavg

=

∑κ−1
i=1 ‖A|φi〉‖

2

2(1 + 1
2n

)ndavg

. (5.37)

Since |φi〉 ∈ row(A) for each i, ‖A|φi〉‖2 ≥ σmin(A)2. Thus

‖(I ⊗ Π)|ψinit〉‖2 ≥ (κ− 1)σmin(A)2

2(1 + 1
2n

)ndavg

=
(κ− 1)2λ2(G)

2(1 + 1
2n

)ndavg

. (5.38)

Here we used the fact that G is assumed to be connected, the second small-
est eigenvalue of 2LG is the smallest non-zero eigenvalue, so λ2(2LG) =
λ2(AAT) = σmin(A)2.

We remark that although this initial state lends itself well to analysis,
it might be a particularly bad choice of an initial state, because it ensures
lower weight on lower eigenvalue eigenstates of G, which may have high
overlap with the 0-eigenvalue eigenstates of G(x).

We next describe how we can construct the initial state.

Lemma 106. Let S be the cost of generating the stationary state of G

|π〉 :=
∑
u∈V

√
dG(u)

davgn
|u〉. (5.39)

Let U be the cost of implementing a step of the quantum walk on G as in
Eq. (5.32), and let ε ∈ (0, 1). Then the cost of implementing a map that,
with probability at lest 1− ε, succeeds in mapping |0〉 7→ |ψinit〉 is

Init = O
(

(S + U + log n) log
1

ε

)
.

192 CHAPTER 5. SPAN PROGRAMS FOR GRAPH PROBLEMS

Proof. We have:

|ψj〉 = AT |ĵ〉 =
∑

(u,v,`)∈
−→
E (G)

√
c(u, v, `)

1√
n

(e2πiju/n − e2πijv/n)|u, v, `〉

=
1√
n

∑
u∈V

e2πiju/n|u〉
∑
v,`:

(u,v,`)∈
−→
E (G)

√
c(u, v, `)|v, `〉

− 1√
n

∑
u∈V

|u〉
∑
v,`:

(u,v,`)∈
−→
E (G)

e2πijv/n
√
c(u, v, `)|v, `〉. (5.40)

We �rst note that we can generate the state |π〉 in cost S from which we can
generate, for any j ∈ [n],

|π〉 7→
∑
u∈V

e2πiju/n

√
dG(u)

ndavg

|u〉

using a generalized Zj
n gate, which performs the map |u〉 7→ e2πiuj/n|u〉 with

complexity O(log n). From this, with one step of the quantum walk, we can
get

|αj〉 =
1√
ndavg

∑
u∈V

e2πiju/n|u〉

 ∑
v,`:(u,v,`)∈

−→
E (G)

√
c(u, v, `)|v, `〉

 (5.41)

in cost U. The total cost of constructing |αj〉 is O(S + U + log n).
Similarly, applying �rst one step of the quantum walk to |π〉 and then a

generalized Zj
n gate on the second register, we get

|βj〉 =
1√
ndavg

∑
u∈V

|u〉

 ∑
v,`:(u,v,`)∈

−→
E (G)

e2πijv/n
√
c(u, v, `)|v, `〉

 , (5.42)

for total cost O(U + S +log n). One can now see that |αj〉− |βj〉 = 1√
davg
|ψj〉.

To construct |ψinit〉, generate the state:

1√
2(n− 1)

|0〉
n−1∑
j=1

|j〉|αj〉 −
1√

2(n− 1)
|1〉

n−1∑
j=1

|j〉|βj〉.

5.5. SPECTRAL ALGORITHM FOR DECIDING CONNECTIVITY 193

This costs O(S+U+log n). Next, apply a Hadamard gate to the �rst register
to get:

1

2
√
n− 1

|0〉
n−1∑
j=1

|j〉(|αj〉 − |βj〉) +
1

2
√
n− 1

|1〉
n−1∑
j=1

|j〉(|αj〉+ |βj〉)

=
1

2
√

(n− 1)davg

|0〉
n−1∑
j=1

|j〉|ψj〉+
1

2
√
n− 1

|1〉
n−1∑
j=1

|j〉(|αj〉+ |βj〉). (5.43)

By Eq. (5.35), we have
∥∥∥∑n−1

j=1 |j〉|ψj〉
∥∥∥ =

√
2(1 + 1/(2n))ndavg, so the am-

plitude on the |0〉 part of the state is at least 1√
2
. Thus, we can measure the

�rst register, and post select on measuring |0〉 to obtain |ψinit〉. With log 1
ε

repetitions, we succeed with probability 1− ε.

We can now give an upper bound on the complexity of deciding connec-
tivity for any family of parent graphs G, in terms of the costs of constructing
|ψinit〉 and its overlap with the space B ⊆ row(A). We �rst note that it is
reasonable to assume that these costs should be low in many natural cases.
The cost U is the cost of implementing a step of a quantum walk on G, and
note that G is input-independent, so as long as it is su�ciently structured,
this shouldn't be a particularly large cost. For example, if for any vertex in
G, we can e�ciently query its degree, and its ith neighbor for any i, then
U = O(log n). Note that this is not the same as assuming we can e�ciently
query the ith neighbor of a vertex in G(x), which is not an operation that
we can easily implement in the edge-query input model. Similarly, we might
hope that S is also O(log n) in many cases of interest. Indeed, whenever G is
d-regular, it is simply the cost of generating the uniform superposition over
all vertices.

Theorem 107. Fix any λ > 0 and κ > 1. For any family of connected
graphs G on n vertices and X ⊆ {0, 1}E(G) such that for all x ∈ X, either
λ2(G(x)) ≥ λ, or G(x) has at least κ connected components, connG,X can
be solved in bounded error in time

Õ

(√
ndavg(G)

κλ2(G)

(
S +

√
dmax(G)

λδ(G)
U

))
.

Proof. By Lemma 106, the complexity of generating |ψinit〉 is Init = O(S+U+

log n), and by Lemma 105, the initial state has overlap at least ε = Ω
(
κλ2(G)
ndavg

)

194 CHAPTER 5. SPAN PROGRAMS FOR GRAPH PROBLEMS

with any unit vector in kerA(x) ∩ row(A). Plugging these values into the
expression in Theorem 103 gives (neglecting polylogarithmic factors)

O

(
1√
ε

(
Init +

√
dmax(G)

λδ(G)
U log

1

ε

))
= Õ

(√
ndavg

κλ2(G)

(
S +

√
dmax(G)

λδ(G)
U

))
.

5.5.2 An algorithm for Cayley graphs

When the parent graph G is a Cayley graph for a �nite Abelian group, we can
use the extra structure to construct an orthonormal basis of row(A). Cayley
graphs are graphs that encode the algebraic structures of groups. They
are named after the British mathematician Arthur Cayley (1821-1895), who
pioneered the study of groups as abstract objects satisfying binary relations.

De�nition 108 (Cayley graphs). Let Γ be a �nite abelian group, and let
S be a symmetric subset of Γ, i.e. s ∈ S ⇔ −s ∈ S, not containing the
identity element. The Cayley graph Cay(Γ, S) is the graph that has vertex
set V (Cay(Γ, S)) = Γ and edge set E(Cay(Γ, S)) = {{a, b} : a− b ∈ S}.

Cayley graphs are of special interest to us because of their extensive re-
lation to expander graphs [Chu97; HLW06] and the fact that it is possible to
compute many graph properties using the algebraic properties of the under-
lying group. In particular, we will be interested in computing the eigenvalues
and eigenvectors of the Laplacian.

Lemma 109 ([Bol13]). Let Γ be a �nite abelian group Γ = Z/(m1) × · · · ×
Z/(mk). Let G = Cay(Γ, S) be a Cayley graph, with n = |Γ| and d = |S|.
For every element g ∈ Γ, let χg : Γ → C be the character function de�ned
as χg(s) = ωg1s1m1

. . . ωgkskmk
, where ωm = e2πi/m for every integer m. Then, for

every g ∈ Γ, the vector

|ĝ〉 =
1√
n

∑
h∈Γ

χg(h)|h〉. (5.44)

is an eigenvector of the Laplacian of G with eigenvalue λg = d−
∑

s∈S χg(s).

For g 6= 0, these are also the left-singular vectors of A because LG = AAT .
Most importantly, the vectors AT |ĝ〉 for g 6= 0 are proportional to the right-

5.5. SPECTRAL ALGORITHM FOR DECIDING CONNECTIVITY 195

singular vectors of A and form an orthogonal basis of row(A). We de�ne

|ψg〉 = AT |ĝ〉 =
∑
u∈Γ

∑
v:v−u∈S

∑
h∈Γ

χg(h)√
n
|u, v〉(〈u| − 〈v|)|h〉

=
∑
u∈Γ

∑
v:v−u∈S

1√
n

(χg(u)− χg(v))|u, v〉 (5.45)

=
∑
u∈Γ

χg(u)√
n

∑
s∈S

(1− χg(s))|u, u+ s〉. (5.46)

We have ‖|ψg〉‖2 =
∥∥AT |ĝ〉∥∥2

= 2λg, where λg is the eigenvalue of LG
associated with |ĝ〉. Now we de�ne the initial state as:

|ψinit〉 =
1√
n− 1

∑
g∈Γ\{0}

1√
2λg
|g〉|ψg〉. (5.47)

We �rst lower bound the overlap of the initial state with the 0-phase space
of U(x, P) when G(x) is not connected.

Lemma 110. Suppose G(x) has at least κ > 1 components. Let |ψinit〉 be
as in Eq. (5.47), and let B = span{|φi〉 : i ∈ [κ − 1]} be spanned by the
orthonormal 0-phase vectors of U(x, P) in row(A). Let Π =

∑κ−1
i=1 |φi〉〈φi|.

Then

‖(I ⊗ Π)|ψinit〉‖2 ≥ κ− 1

n− 1
.

Proof. Let |ψg〉 = |ψg〉/
√

2λg. Then {|ψg〉}g 6=0 is an orthonormal basis for
row(A). We have

‖(I ⊗ Π)|ψinit〉‖2 =
1

n− 1

κ−1∑
i=1

∑
g∈Γ\{0}

|〈φi|ψg〉|2 =
1

n− 1

κ−1∑
i=1

1 =
κ− 1

n− 1
.

(5.48)

Next, we give an upper bound on the time complexity of constructing the
initial state. We will use the following fact:

Claim 4 (See, for example, [Bol13]). Let G be any connected graph, with
non-zero eigenvalues λ2, . . . , λn. Then

Ravg(G) =
1

n− 1

n∑
i=2

1

λi
.

196 CHAPTER 5. SPAN PROGRAMS FOR GRAPH PROBLEMS

Lemma 111. Let U be the cost of implementing a step of the quantum walk
on Cay(Γ, S). Let Λ be the cost of implementing, for g ∈ Γ, |g〉|0〉 7→ |g〉|λg〉.
Then the cost of generating the state |ψinit〉 from Eq. (5.47) with success
probability 1− ε is

O

((√
Ravg(G)d (U + log n) + Λ

√
d

λ2(G)

)
log

1

ε

)
.

Proof. The proof is similar to that of Lemma 106. Using a Fourier transform
over Γ, we can generate the state

|g〉 7→ 1√
n

∑
u∈Γ

χg(u)|u〉 (5.49)

for any g ∈ Γ in time O(log n). We can then generate
∑

s∈S
1√
d
|s〉 in time U

because {|s〉 : s ∈ S} are the neighbors of the identity of Γ by de�nition of
Cay(Γ, S). Now, perform the addition over Γ map

1√
n

∑
u∈Γ

χg(u)|u〉
∑
s∈S

1√
d
|s〉 7→ 1√

dn

∑
u∈Γ

χg(u)|u〉
∑
s∈S

|u+ s〉 =: |αg〉 (5.50)

for a total complexity of O(log n+ U) to generate |αg〉.
Alternatively, we can use the generalized Zg

Γ gate, which maps |s〉 to
χg(s)|s〉 in time O(log n) to get

1√
nd

∑
u∈Γ

χg(u)|u〉
∑
s∈S

|s〉 7→ 1√
nd

∑
u∈Γ

χg(u)|u〉
∑
s∈S

χg(s)|s〉

7→ 1√
nd

∑
u∈Γ

χg(u)|u〉
∑
s∈S

χg(s)|u+ s〉 =: |βg〉

(5.51)

for a total complexity of O(log n+ U) to generate |βg〉. Observe that |αg〉 −
|βg〉 = 1√

d
|ψg〉.

Now to construct |ψinit〉, we �rst construct
∑

g∈Γ\{0}
1√
λg
|g〉 as follows.

We �rst generate: ∑
g∈Γ\{0}

1√
n− 1

|g〉|λg〉, (5.52)

5.5. SPECTRAL ALGORITHM FOR DECIDING CONNECTIVITY 197

in cost Λ. Next, we map this to:∑
g∈Γ\{0}

1√
n− 1

|g〉|λg〉

(√
λ2(G)

λg
|0〉+

√
1− λ2(G)

λg
|1〉

)
. (5.53)

We can perform this map because, for all g ∈ Γ \ {0}, λ2(G) ≤ λg. We un-
compute |λg〉, and then do amplitude ampli�cation on |0〉 in the last register
to get the desired state. The squared amplitude on |0〉 is:∥∥∥∥∥∥

∑
g∈Γ\{0}

1√
n− 1

√
λ2(G)

λg
|g〉

∥∥∥∥∥∥
2

=
λ2(G)

n− 1

∑
g∈Γ\{0}

1

λg
= λ2(G)Ravg(G). (5.54)

So we can generate the normalized state
1√

(n− 1)Ravg(G)

∑
g∈Γ\{0}

1√
λg
|g〉 (5.55)

with constant success probability in time complexity O(Λ/
√
λ2(G)Ravg(G)).

Thus far, we have shown how to map |g〉 to |αg〉 and |βg〉, and how to generate
a superposition over |g〉 with the right weights. Now we combine the two to
obtain:

1√
2(n− 1)Ravg

|0〉 ∑
g∈Γ\{0}

1√
λg
|g〉|αg〉 − |1〉

∑
g∈Γ\{0}

1√
λg
|g〉|βg〉

 , (5.56)

and we follow up by applying a Hadamard gate to the �rst qubit to get

1

2
√

(n− 1)Ravg

|0〉 ∑
g∈Γ\{0}

1√
λg
|g〉(|αg〉 − |βg〉)

+|1〉
∑

g∈Γ\{0}

1√
λg
|g〉(|αg〉+ |βg〉)

=

1

2
√

(n− 1)Ravgd

|0〉 ∑
g∈Γ\{0}

1√
λg
|g〉|ψg〉

+|1〉
∑

g∈Γ\{0}

1√
λg
|g〉(|αg〉+ |βg〉)

 . (5.57)

198 CHAPTER 5. SPAN PROGRAMS FOR GRAPH PROBLEMS

The total cost to make one copy of this state with constant success probability
is O(U +log n+ Λ/

√
λ2(G)Ravg). We can then get |ψinit〉 by doing amplitude

ampli�cation on the |0〉 part of this state. The amplitude on the |0〉 part of
the state is given by∥∥∥∥∥∥ 1

2
√

(n− 1)Ravgd

∑
g∈Γ\{0}

1√
λg
|g〉|ψg〉

∥∥∥∥∥∥ =
1

2
√
Ravgd

,

so using O
(√

Ravg(G)d
)
rounds of amplitude ampli�cation is su�cient to

generate |ψinit〉 with constant probability, for a total cost of (neglecting con-
stants): √

Ravg(G)d

(
U + log n+

Λ√
λ2(G)Ravg(G)

)

=
√
Ravg(G)d (U + log n) + Λ

√
d

λ2(G)
. (5.58)

We can amplify this to success probability 1 − ε at the cost of a log(1/ε)
multiplicative factor.

As a quick corollary to these lemmas we have the following:

Theorem 112. Fix any λ > 0 and κ > 1. For any family of connected graphs
G on n vertices such that each G is a degree-d Cayley graph over an Abelian
group, and X ⊆ {0, 1}E(G) such that for all x ∈ X, either λ2(G(x)) ≥ λ or
G(x) has at least κ connected components, connG,X can be solved in bounded
error at cost

Õ

(√
nd

κλ2(G)

(√
d

λ
U + Λ

))
.

Proof. Combining Lemma 111 and Lemma 110 with Theorem 103, we get
complexity:

Õ

(√
n

κ

(√
dRavg(G)U +

√
d

λ2(G)
Λ +

√
d

λδ(G)
U

))
. (5.59)

Since G is d-regular, we have δ(G) = λ2(G)/d. By Claim 4, we can see that
Ravg(G) ≤ 1

λ2(G)
. The claim follows.

5.5. SPECTRAL ALGORITHM FOR DECIDING CONNECTIVITY 199

We now look at speci�c examples where it is particularly e�cient to
compute λg, as well as prepare a step of the walk

∑
s∈S|s〉. We �rst consider

the complete graph on n vertices, in which Γ = Zn, and S = Γ \ {0}.

Corollary 113. Fix any λ > 0, and integer κ > 1 and let G be the complete
graph. Let X ⊆ E(G) be such that for all x ∈ X, either λ2(G(x)) ≥ λ, or
G(x) has at least κ components. Then connG,X can be solved in bounded
error in time

Õ
(

n√
κλ

)
.

Proof. It is easily veri�ed that forG a complete graph, LG = (n−1)I−(J−I),
where J is the all-ones matrix, so the eigenvalues consist of a single 0, and
n with multiplicity n − 1 � that is, all non-zero eigenvalues are n. Thus,
the mapping |g〉 7→ |g〉|λg〉 = |g〉|n〉 can be implemented trivially in O(log n)
complexity.

Next, we can generate the state
∑

s∈S
1√
d
|s〉 =

∑n−1
s=1

1√
n−1
|s〉 in complex-

ity S = O(log n). Then the result follows from Theorem 112.

Next, we consider the Boolean hypercube, in which Γ = Zd2, so n = 2d,
and S = {ei}di=1, where ei is 0 everywhere except the ith entry, which is 1.

Corollary 114. Fix any λ > 0, and integer κ > 1 and let G be the Boolean
hypercube on n = 2d vertices. Let X ⊆ E(G) be such that for all x ∈ X,
either λ2(G(x)) ≥ λ, or G(x) has at least κ components. Then connG,X can
be solved in bounded error in time

Õ

(√
n

κλ

)
.

Proof. The eigenvalues of the Boolean hypercube are well known to be λg =
2|g|, for g ∈ Zd2, where |g| denotes the Hamming weight of g. Thus, the
map |g〉 7→ |g〉|λg〉 can be implemented in cost O(log n). Finally, the state∑

s∈S|s〉 =
∑d

i=1|ei〉 can be generated in time O(log n). Then by Theo-
rem 112, the time complexity is (neglecting polylog factors):√

nd

κλ
= Õ

(√
n

κλ

)
. (5.60)

200 CHAPTER 5. SPAN PROGRAMS FOR GRAPH PROBLEMS

5.5.3 Estimating the connectivity when G = Kn

For the remainder of this section, let G be the complete graph on n vertices,
Kn. In that case, we give an algorithm for estimating λ2(G(x))when G(x)
is connected, in addition to the one that decides if G(x) is connected. The
idea is the following. Let us assume that we know G(x) is connected, and
let ∆(U(x, P)) denote the smallest eigenphase of U(x, P), which we want
to estimate. First, we relate ∆(U(x, P)) to λ2(G(x)) when G = Kn in
Lemma 115. The algorithm that we outline now will estimate ∆(U(x, P)).

Assume, for simplicity, that we run the phase estimation algorithm to
precision θ and no error on a state |ϕ〉. If the amplitude on |0〉 in the phase
register is non-zero, that means that |ϕ〉 has support on eigenvectors with
eigenphase |θj| ≤ θ, which can only happen if such eigenvectors exist. We
conclude that ∆(U(x, P)) ≤ θ.

If, on the other hand, the amplitude on |0〉 in the phase register is zero,
that means simply that |ϕ〉 has no overlap with eigenvectors of U(x, P) with
phases smaller than θ. What it does not mean is that all eigenphases are
above θ. For that, we would need to show that |ϕ〉 has some overlap with
the ∆(U(x, P))-phase eigenvectors of U(x, P). This is exactly what we do
in Lemma 5, where we show that there is a vector in row(A) that is in
the ±∆(U(x, P))-phase eigenspace of U(x, P). Therefore, we can choose as
initial state of the phase estimation procedure the state

|ψinit〉 =
1√
n− 1

n−1∑
i=1

|i〉|ψi〉

where {|ψi〉} are an orthonormal basis of row(A). With such state, we can
determine an interval for ∆(U(x, P)) by performing consecutive runs of phase
estimation with di�erent precision. Naturally, the actual algorithm will re-
quire amplitude ampli�cation after every phase estimation run to really dis-
tinguish zero from non-zero amplitudes, and on top of that, we will have to
deal with the error of phase estimation. We begin by formally proving the
connection between ∆(U(x, P)) and λ2(G(x)) and then formally present the
algorithm for estimating ∆(U(x, P)) and analyse its correctness and com-
plexity.

Connection between λ2(G(x)) and ∆(U(x, P))

We use Jordan's Lemma, which we restate for convenience.

5.5. SPECTRAL ALGORITHM FOR DECIDING CONNECTIVITY 201

Lemma. Let A,B be two subspaces of H and let U = (2ΠA − I)(2ΠB − I)
be a unitary with discriminant D = ΠAΠB. Let D =

∑d
j=1 cosϕj|θj〉〈ψj|

be a singular value decomposition with ϕj ∈ [0, π/2] for all j. Then the
vectors |θj〉 − e±iϕj |ψj〉 are eigenvectors of U with eigenvalue e±i2ϕj respec-
tively. Furthermore, the (+1)-eigenspace of U is (A ∩ B) ⊕ (A⊥ ∩ B⊥) and
the (−1)-eigenspace of U is (A ∩B⊥)⊕ (A⊥ ∩B).

We derive several consequences of this lemma, and specialize them to our
particular setting.

Lemma 115. Let G be a complete graph on n vertices, and x ∈ {0, 1}N
de�ne a subgraph G(x). Then λ2(G(x)) = n sin2(∆(U(x, P))/2).

Proof. It is well known that for connected graphs the uniform vector |µ〉 =
1√
n

∑
u∈[n]|u〉 is the only 0-eigenvector of LG. Moreover, for the complete

graph we have

LG = (n− 1)I − (J − I) = nI − J = nI − n|µ〉〈µ| = n
n−1∑
i=1

|bi〉〈bi|,

where {|bi〉}n−1
i=1 is any orthonormal basis for span{|µ〉}⊥, which is col(A).

Since 2LG = AAT , the eigenvectors of LG are left-singular vectors for A and
the singular values of A are

√
2n. This implies that the following is a singular

value decomposition of A:

A =
n−1∑
i=1

√
2n|bi〉〈ψi|,

for some orthonormal basis for row(A), {|ψi〉}n−1
i=1 of right-singular vectors of

A. Thus

A+ =
n−1∑
i=1

1√
2n
|ψi〉〈bi|.

Next, note that since LG|µ〉 = 0 for any G, and 2LG(x) = A(x)A(x)T , we
have A(x)T |µ〉 = 0, so the columnspace of A(x) is in span{|µ〉}⊥, and in
particular, if G(x) is connected, it is exactly span{|µ〉}⊥. The basis {|bi〉}n−1

i=1

can be chosen to be any basis of |µ〉⊥, so let's choose it to be the left singular
basis of A(x). That is, there exist |φi〉 and σi such that the following is a
singular value decomposition of A(x).

202 CHAPTER 5. SPAN PROGRAMS FOR GRAPH PROBLEMS

A(x) =
n−1∑
i=1

σi|bi〉〈φi|

Consider the discriminant of U(x, P), D = Πker(A)ΠH(x). Since A(x) =
AΠH(x), and A+A = Piker(A) we have

D = A+A(x) =
n−1∑
i=1

σi√
2n
|ψi〉〈φi|.

Since 2LG(x) = A(x)A(x)T , the σi are just the square roots of twice the
nonzero eigenvalues λ2, . . . , λn of LG(x), so the singular values of D are{√

2λ2

2n
, . . . ,

√
2λn
2n

}
.

We conclude that σmin(D) =
√

λ2(G(x))
n

, which, combined with Corollary 2
gives λ2(G(x)) = n sin2(∆(U(x, P))/2).

Another consequence of Lemma 1, proven in Lemma 3, is that there is
a vector in row(A) in the span of the ±∆(U(x, P))-phase eigenvectors of
U(x, P).

Claim 5. Let U = (2Πker(A) − I)(2ΠH(x) − I), and let cos θj be the singular
values of D = Πker(A)ΠH(x). Then for every j ∈ rank(D) there exists a
a vector |uj〉 in row(A) such that |uj〉 ∈ E|2θj |. In particular, if |∆±〉 are
±∆(U(x, P))-phase eigenvectors of U(x, P), then there exists a vector |u〉 in
row(A) such that |u〉 ∈ E|∆| = span{|∆+〉, |∆−〉}.

Algorithm for estimating ∆(U(x, P))

We will actually estimate the value τ = ∆(U(x, P))/π, getting an estimate
in [0, 1], which we will then transform into an estimate of λ2(G(x)). At every
iteration, c will denote a lower bound for τ and C will denote the current
upper bound. At the beginning of the algorithm we have c = 0, C = 1, and
every iteration will result in updating either C or c in such a manner that the
new interval for τ is reduce by a fraction of 2/3. Let {|ψi〉}n−1

i=1 be a basis of
row(A), and let ε be the precision with which we want to estimate λ2(G(x)).
The algorithm is described as follows.

5.5. SPECTRAL ALGORITHM FOR DECIDING CONNECTIVITY 203

Algorithm 116. To begin, let c = 0 and C = 1.

1. Set ϕ = C−c
3
, ε = 1√

2n
, δ = c+ ϕ.

2. For j = 1, . . . , 4 log(n/ε):

(a) Prepare |ψinit〉
∑n−1

i=1
1√
n−1
|i〉|ψi〉|0〉C |0〉P .

(b) Perform the gapped phase estimation algorithm GPE(ϕ, ε, δ) of
Theorem 10 applying U(x, P) on the second register.

(c) Use amplitude estimation (see Theorem 11) to distinguish between
the case when the amplitude on |0〉C is ≥ 1√

n
, in which case output

�aj = 0�, and the case where the ampltiude is ≤ 1√
2n
, in which

case, output �aj = 1�.

3. Compute the majority ã = Maj(a1, . . . , a4 log(n/ε)). If the result is 0,
set C = δ+ϕ. If the result is 1, set c = δ. If C − c ≤ 2εc, then output

n sin2
(
π(C+c)

4

)
. Otherwise, return to Step 1.

Analysis of the algorithm We say an iteration of the algorithm succeeds
if ã = Maj

(
a1, . . . , a4 log(n/ε)

)
correctly indicates whether the amplitude on

|0〉C is ≥ 1√
n
or ≤ 1√

2n
. This happens with probability Ω(1−(ε/n)4). Since we

will shortly see that the algorithm runs for at most Õ

(
n

ε
√
λ2(G(x))

)
≤ Õ

(
n2

ε

)
steps, the probability that every iteration succeeds is at least(

1− (ε/n)4
)(n/ε)2

= 1−O(ε/n)4(n/ε)2 = 1−O(ε/n)2. (5.61)

It is therefore reasonable to assume that every iteration succeeds, since this
happens with high probability. We �rst prove that if every iteration succeeds,
throughout the algorithm we have τ = ∆(U(x, P))/π ∈ [c, C].

Lemma 117. Let τ = ∆(U(x, P))/π. For any ϕ and δ, if τ ≥ δ+ϕ, applying
GPE(ϕ, ε, δ) to |ψinit〉 results in a state with amplitude at most 1√

2n
on |0〉C

in register C; and if τ ≤ δ, this results in a state with amplitude at least 1√
n

on |0〉C in register C. Thus, if every iteration succeeds, at every iteration,
we have τ ∈ [c, C].

204 CHAPTER 5. SPAN PROGRAMS FOR GRAPH PROBLEMS

Proof. First, suppose τ ≥ δ + ϕ. By Lemma 100, when G(x) is connected
there is no vector in row(A) in the 1-eigenspace of U(x, P), so the 1-eigenspace
of U(x, P) is contained in ker(A)∩H(x) ⊆ kerA. Thus each of the |uj〉 from
Claim 5 is in the span of eiπθ-eigenvectors of U(x, P) with |θ| ≥ δ+ϕ. Thus,
applying GPE(ϕ, ε, δ) will map each |uj〉R|0〉C |0〉P to a state β0|0〉C |γ0〉PR +
β1|1〉C |γ1〉PR such that |β0| ≤ ε. Then, by linearity, the total amplitude on
|0〉C in register C will be at most ε = 1√

2n
.

On the other hand, suppose τ ≤ δ. By Claim 5, there exists a vec-
tor |u1〉 ∈ row(A) such that |u1〉 is in the span of the e±iπτ -eigenvectors of
U(x, P). ApplyingGPE(ϕ, ε, δ) will map |u1〉R|0〉C |0〉P to a state β0|0〉C |γ0〉PR+
β1|1〉C |γ1〉PR such that |β1| ≤ ε, so |β0| ≥

√
1− ε2. Let |u2〉, . . . , |un−1〉 be

any orthonormal set such that |u1〉, . . . , |un−1〉 is an orthonormal basis for
row(A). Then there exists some (unknown) orthonormal set {|j̃〉}n−1

j=1 such
that

|ψinit〉 =
1√
n− 1

n−1∑
j=1

|j̃〉|uj〉|0〉C |0〉P . (5.62)

So after applying GPE(ϕ, ε, δ) to |ψinit〉, the amplitude on |0〉C in register C

will be at least
√

1−ε2
n−1
≥ 1√

n
. This proves the �rst part of the statement.

By Corollary 12, we can distinguish the case when the amplitude on |0〉C
is at least 1√

n
or at most 1√

2n
with bounded error using O

(√
p0

p0−p1

)
= O(

√
n)

calls to GPE(ϕ, 1√
2n
, δ) where p0 := 1

n
and p1 := 1

2n
. Thus, by repeating

the procedure 4 log(n/ε) times and taking the majority, we succeed at every
iteration with high probability.

We now prove by induction that we always have τ ∈ [c, C], as long as
every iteration succeeds. At the beginning of the �rst iteration, we have
[c, C] = [0, 1]. Since ∆(U(x, P)) ∈ [0, π], τ ∈ [0, 1]. Next, suppose in some
arbitrary iteration, we have τ ∈ [c, C]. If τ ≥ δ + ϕ, then there will be
amplitude at most 1√

2n
on |0〉C , and assuming the iteration succeeds, we will

have ã = 1. In that case, we will set c = δ ≤ δ + ϕ ≤ τ , so we will still have
τ ∈ [c, C]. If τ ≤ δ, then there will be amplitude at least 1√

n
on |0〉C , and

assuming the iteration succeeds, we will have ã = 0. In that case, we will set
C = δ + ϕ ≥ δ ≥ τ , so we will still have τ ∈ [c, C].

We �nally consider what happens if δ ≤ τ ≤ δ + ϕ. In that case, there is
no guarantee on the output of amplitude estimation; it can either output 0
or 1. However, we can still use the result to update our bounds for τ . If we
get ã = 1, and set c = δ, we have δ ≤ τ , so τ ∈ [c, C]. If we get ã = 0, and

5.5. SPECTRAL ALGORITHM FOR DECIDING CONNECTIVITY 205

set C = δ + ϕ, we have δ + ϕ ≥ τ , so τ ∈ [c, C].

Next, we analyse the running time of Algorithm 116.

Theorem 118. With probability 1−O((ε/n)2), Algorithm 116 will terminate

after time Õ
(

n

ε
√
λ2(G(x))

)
.

Proof. With probability 1−O((ε/n)2), each of the �rst (n/ε)2 ≥ Õ
(

n

ε
√
λ2(G(x))

)
iterations of the algorithm will succeed, so we assume this to be the case.
We �rst bound the number of (successful) iterations before the algorithm ter-
minates. Fig. 5.4 shows the interval [c, C], which represents the algorithm's

c δ δ + ϕ C

Figure 5.4: The interval [c, C]

current state of knowledge of where τ = ∆(U(x, P))/π lies. The values δ and
δ + ϕ are at 1/3 and 2/3 of the interval, respectively. it is not di�cult to
convince ourselves that at every iteration, the interval [c, C] will be 2/3 the
size it had in the previous iteration. Hence, since the interval initially has
length 1, after k iterations, we will have an interval of size

(
2
3

)k. The execu-
tion terminates when the interval becomes su�ciently small. Speci�cally, let
T be the smallest integer such that T ≥ log 2

τε

log 3
2

, and let [c, C] be the interval

after T steps, so C − c = (2/3)T ≤ τε/2. Suppose (2/3)T = C − c ≥ 2εc, so
τ ≥ 4c. This implies that C ≥ 4c, so C/c ≥ 4. We will argue that this is a
contradiction.

First, suppose c = 0. That means that

τ ≤ C = (2/3)T ≤ τε/2 ≤ τ/2,

which is a contradiction, since τ > 0. Thus, we must have c > 0. Consider
the �rst setting of c and C such that c 6= 0. Since the previous value of c
was 0, we set the new value as c = δ = 0 + ϕ = (C − 0)/3 = C/3, so the
ratio C/c satis�es C/c = 3. This ratio can only decrease, because subsequent
steps either decrease C, or increase c. Thus, after T steps, C/c ≤ 3. Thus,
C − c ≥ 2εc leads to a contradiction, so we can conclude that after T steps,
C − c ≤ 2εc, so the algorithm terminates in at most T steps.

206 CHAPTER 5. SPAN PROGRAMS FOR GRAPH PROBLEMS

We can now analyse the total running time by adding up the cost of all
iterations. Step 1 of the algorithm is de�ning the variables ϕ = C−c

4
, δ = c+ϕ

and ε = 1√
2n
, which will contribute negligibly to the complexity.

Step 2(a) begins by constructing the initial state

|ψinit〉 =
n−1∑
i=1

1√
n− 1

|i〉|ψi〉|0〉P |0〉C ,

where {|ψi〉}n−1
i=1 is a basis of row(A). Because G = Kn can be seen as a

particularly simple kind of Cayley graph with group Γ = Z/nZ and S =
Γ \ {0}, we can use the construction of Section 5.5.2 to generate |ψinit〉. In
fact, combining the remarks in the proof of Corollary 113 with Lemma 111 it
follows that this state can be constructed in time O(log n log n

ε
) with success

probability 1− (ε/n)4.
Step 2(b) consists of applying the unitary procedure GPE(ϕ, ε, δ) de-

scribed in Theorem 10 on the last three registers with ϕ, ε = 1√
2n
, δ de�ned

in Step 1. By Theorem 10, this makes O(ϕ−1 log ε−1) = O(ϕ−1 log n) calls to
U(x, P).

Step 2(c) then uses amplitude estimation, repeating Steps 2(a) and 2(b)
O(
√
n) times, by Corollary 12. Let ϕ(i) denote the value of ϕ at the ith

iteration of the algorithm. Neglecting polylog(n/ε) factors, the running time
of the ith iteration is

Qi :=

√
n

ϕ(i)
. (5.63)

During the ith iteration, we begin with C − c = (2/3)i−1, and so ϕ(i) =
1
3
(2/3)i−1. Thus, we can compute the total complexity of the algorithm as

(neglecting polylogarithmic factors):

T∑
i=1

Qi =
√
n

T∑
i=1

3(3/2)i−1 = 3
√
n

(
3
2

)T − 1

3/2− 1
= Õ

(√
n(3/2)

log(2/(τε))
log(3/2)

)
=Õ

(√
n

τε

)
.

By Lemma 115, we have λ2(G(x))/n = sin2(∆(U(x, P))/2) ≤ ∆(U(x, P))2/4,
so Filling in τ = ∆(U(x, P))/π ≥

√
λ2(G(x))/(2n), we get a total query

complexity of Õ
(

n

ε
√
λ2(G(x))

)
.

5.5. SPECTRAL ALGORITHM FOR DECIDING CONNECTIVITY 207

Finally, we prove that the algorithm outputs an estimate that is within
π23
4
ε multiplicative error of λ2(G(x)).

Theorem 119 (Correctness). With probability at least 1 −O(ε/n)2), Algo-

rithm 116 outputs an estimate λ̃ such that
∣∣∣λ2(G(x))− λ̃

∣∣∣ ≤ π23
4
ελ2(G(x)).

Proof. We will assume that all iterations succeed, which happens with proba-
bility at least Ω(1−(ε/n)2). Then the algorithm outputs λ̃ := n sin2

(
π(C+c)

4

)
for some c and C such that c ≤ τ ≤ C, and C − c ≤ 2εc ≤ 2ετ . Using
τ = ∆(U(x, P))/π and λ2(G(x)) = n sin2 (∆(U(x, P))/2), we have:∣∣∣λ2(G(x))− λ̃

∣∣∣ =
∣∣n sin2 (πτ/2)− n sin2 (π(C + c)/4)

∣∣ . (5.64)

From c ≤ τ ≤ C and C − c ≤ 2ετ , we have∣∣∣∣π(C + c)

4
− πτ

2

∣∣∣∣ ≤ πετ

2
. (5.65)

Let δ = π(C + c)/4− πτ/2, so π(C + c)/4 = πτ/2 + δ. Then we have:∣∣sin2(πτ/2)− sin2(πτ/2 + δ)
∣∣ =

∣∣∣1−cos(πτ)
2

− 1−cos(πτ+2δ)
2

∣∣∣
= 1

2
|cos(πτ + 2δ)− cos(πτ)| = |sin(πτ + δ) sin(−δ)|
≤ |δ(πτ + δ)| ≤ π2τ 2 ε

2

(
1 + ε

2

)
≤ 3ε

4
π2τ 2 (5.66)

where we used |δ| ≤ πετ/2. Then, plugging this into Eq. (5.64), we have:∣∣∣λ2(G(x))− λ̃
∣∣∣ ≤ 3ε

4
nπ2τ 2

=
3ε

4
nπ2 ∆(U(x, P))2

π2
≤ 3ε

4
nπ2 sin2

(
∆(U(x, P))

2

)
= π2 3ε

4
λ2(G(x)), (5.67)

using the fact that x2

π2 ≤ sin2(x/2) when x ∈ [−π, π].

We have proven the following theorem.

Theorem 120. Let G be the complete graph on n vertices. There exists a
quantum algorithm that, on input x, with probability at least 2/3, outputs

an estimate λ̃ such that
∣∣∣λ̃− λ2(G(x))

∣∣∣ ≤ ελ2(G(x)), where λ2(G(x)) is the

algebraic connectivity of G(x), in time Õ
(

1
ε

n√
λ2(G(x))

)
.

208 CHAPTER 5. SPAN PROGRAMS FOR GRAPH PROBLEMS

5.6 Graph connectivity without graph surgery

In this chapter we have given two algorithms for graph connectivity based
on the st-connectivity span program. The �rst one, outlined in Section 5.4,
directly transforms graph connectivity into an instance of st-connectivity on
a bigger graph G. The advantage in this case is that the algorithm for st-
connectivity is at the ready and all we need to do is bound the witness sizes,
which we can do accurately given the symmetry of the graph G.

This approach has worst-case optimal query complexity, but has the prob-
lem that the time complexity scales as δ(G)−1/2, where δ(G) is the spectral
gap of G. It inverse is the relaxation time of the graph G, which is within
a logarithmic factor of the mixing time. Unfortunately, because G is a long
chain of ∼ n2 copies of G, this graph mixes rather slowly. It would be perhaps
possible to modify G, adding a few parallel edges orthogonal to H(x) that
bypass the chain and make it e�ciently walk-able, but that analysis remains
highly non-trivial.

Our second approach circumvents this di�culty by working directly on G,
but at the cost of having to construct a new algorithm that is not worst-case
optimal in query complexity. In the end, both the time and query complex-
ities of this algorithm are non-comparable to those of the �rst one.

In this section, we will give a span program for graph connectivity that
uses the span program algorithms in Section 3.4 and [JK17] o� the shelf,
while operating directly on G. We will compare all three algorithms in more
detail in Section 5.8. We organize the section as follows. First, we will
de�ne a span program for graph connectivity in Def. 121. That is followed
by a study on its positive and negative witnesses in Lemmas 122, and 123.
Then we will show how we can eliminate the dependence on the choice of
a particular vertex that acts as a seed for our span program. This leads us
to Theorem 124, which states the query complexity of our algorithm. We
�nish the section with an analysis of the time complexity of our algorithm,
resulting in Theorem 126.

De�nition 121. Let G be a graph on n vertices, H,V , A,H(x) be the spaces
and map of the standard st-connectivity span program in De�nition 88. Take
a vertex s ∈ V (G) and de�ne the state

|τs〉 =
∑

t∈V (G),t6=s

|s〉 − |t〉
n− 1

. (5.68)

5.6. GRAPH CONNECTIVITY WITHOUT GRAPH SURGERY 209

We de�ne the span program for graph connectivity with source s as Ps =
(H,V , A, |τs〉).

Then, we claim that this span program exactly decides connG,X . We
prove this by �nding explicit positive witnesses for every connected subgraph
G(x), and negative witnesses for every disconnected subgraph G(x).

Lemma 122. Let Ps be the span program in De�nition 121, and let G(x) be
a connected subgraph of G. Then

w+(x, Ps) ≤
1

2

∑
t:t6=s

Rs,t(G(x))

n− 1
.

Proof. For all t ∈ V (G) such that t 6= s let Pst = (H,V , A, |s〉 − |t〉) be the
st-connectivity span program, and let |wt〉 be the optimal positive witness
for x in Pst. In particular, that means that A|wt〉 = |s〉 − |t〉.

By Lemma 89, we know that

‖|wt〉‖2 =
1

2
Rst(G(x)),

Observe that we can combine all the di�erent vectors |wt〉 to create the
witness for |τ〉

|wx〉 =
∑
t:t6=s

|wt〉
n− 1

.

Clearly, A|wx〉 = |τ〉. Let us now bound its squared norm.

‖|wx〉‖2 =
1

(n− 1)2

(∑
t:t6=s

‖|wt〉‖2 +
∑
t,t′ 6=s

2|〈wt|wt′〉|

)
≤

(∑
t:t6=s ‖|wt〉‖

)2

(n− 1)2

(5.69)

=

(∑
t:t6=s

√
Rst(G(x))√
2(n− 1)

)2

≤
∑
t:t6=s

Rst(G(x))

2(n− 1)
, (5.70)

where we have used Cauchy-Schwarz in the �rst inequality and Jensen's in-
equality in the second one, given that the quadratic function is convex.

210 CHAPTER 5. SPAN PROGRAMS FOR GRAPH PROBLEMS

In the electrical network analogy, this approach to graph connectivity
would correspond to a network in which s is a unit source of �ow and each one
of the (n−1) other vertices is a sink draining 1

n−1
units of �ow. Alternatively,

it is a network in which the net �ow must be a combination of st-�ows, each
with intensity 1/(n− 1). The graph is connected i� such a �ow exists.

This combination of small-intensity �ows could potentially have a rather
small resistance due to the fact that the resistance scales quadratically with
the amount of �ow. For instance, if G(x) were a star graph with s at its
center, then all �ows would be orthogonal and the bound in Eq. (5.70) could
be improved to

‖|wx〉‖2 =
∑
t:t6=s

Rst(G(x))

2(n− 1)2
,

instead of
∑

t:t6=s
Rst(G(x))

2(n−1)
.

Unfortunately, the di�erent st-�ows will generally have some overlap,
meaning that ‖|wx〉‖2 will be somewhere between the average over t 6= s of
Rst(G(x)), and 1/(n− 1) times that.

Yet, the bound is necessarily not tight because optimal �ows going to
two di�erent vertices must di�er somewhere. This means that the use of
Cauchy-Schwarz is always not tight. In addition, Jensen's inequality is only
tight when there is only one term in the sum.

Another reason why the bound might not be tight is that we do no not
claim the witness we give is the optimal one, although we suspect it.

Nonetheless, in the worst-case scenario of a chain graph of length n with
s at one end, the optimal witness is ∼ n/3, while

∑
t:t6=s

Rst(G(x))
2(n−1)

∼ n/2,
meaning that the bound in Eq. (5.70) is not too far from being tight in the
worst case.

Now, we shall provide negative witnesses when G(x) is not connected.

Lemma 123. Let Ps be the span program in De�nition 121, and let G(x) be
a disconnected subgraph of G, then

w−(x, Ps) ≤
n2

(n− ns)2
Cs,

where ns is the size of the component Hs ⊂ V (G) containing s and Cs is the
size of the cut Hs, H

c
s in G.

Proof. We simply need to �nd a witness of disconnectedness. Let Hs ⊂ V (G)
be the component of G(x) that contains s, and |Hs| = ns. Some of the

5.6. GRAPH CONNECTIVITY WITHOUT GRAPH SURGERY 211

intuition we built in the characterization of the st-connectivity span program
still applies. Speci�cally, any negative witness needs to be constant on the
components of G(x).

Consider the following state:

〈w| =
∑
t∈Hs

〈t|.

Then, 〈w|τ〉 = 1− ns−1
n−1

= n−ns
n−1

. Since 〈w| is constant over all the connected
component and zero elsewhere we have 〈w|AΠH(x) = 0. Therefore, the vector
〈ωx| = 〈w|

〈w|τ〉 is exactly a negative witness for x in Ps.
We readily see that

‖〈w|A‖2 =
∑

(u,v,`)∈
−→
E (G)

u∈Hs,v∈Hc
s

2c(u, v, `) =: 2Cs (5.71)

There are a few ways of understanding this magnitude Cs. We can see this
as the weighted size of the cut in G that separates Hs from its complement
Hc
s . Since Hs is a component in G(x), this cut is over edges in G \G(x). In

[Chu97], the set of edges between a subset S ∈ V (G) and its complement
Sc is called its edge boundary and is denoted as ∂(S) and so Cs = |∂(Hs)|,
where the size is taken with respect to the weight function c(e). Another
way of understanding Cs is as the (weighted) out-degree of Hs. Putting all
together, we have that the negative witness size is bounded as

w−(x, Ps) ≤ ‖〈ωx|A‖2 =

(
n− 1

n− ns

)2

2Cs. (5.72)

When all the weights are 1, this takes the form w−(x, Ps) ≤ (n−1)2

n−ns 2dmax.

Observe that the upper bound on w+(x, Ps) can be made independent
of our choice of s at little cost. That is because Es

(∑
t:t6=s

Rst(G(x))
n−1

)
=

Ravg(G(x)), so by Markov's inequality we have that sampling s uniformly at
random from the vertex set we have

P (w+(x, Ps) ≥ 10Ravg(G(x))) ≤ E(w+(x, Ps))

10Ravg(G(x))
≤ 1

10
.

Hence, we can proceed forward with the span program algorithm as if
w+(x, Ps) ≤ Ravg(G(x)), which is true with probability at least 9/10. Now,

212 CHAPTER 5. SPAN PROGRAMS FOR GRAPH PROBLEMS

the span program algorithm in Theorem 45, even with the right bounds for
W+ and W−, decides the span program with bounded error, say 9/10. We
conclude that choosing a vertex s at random and applying the algorithm from
Theorem 45 decides connG,X with total probability of error ≤ 1− (9/10)2 ≤
1/5. In other words, we have proven the following theorem.

Theorem 124. For any family of graphs G and X ⊆ {0, 1}E(G) there exists a
procedure that decides connG,X with bounded error and with query complexity

O

(√
RC

n2

(n− nmax)2

)
,

where R is a known upper bound on Ravg(G(x)) for all connected G(x), and
for all disconnected G(x), C ≥ Cs is an upper bound for the largest out-
degree of any component of G(x) and nmax upper bounds the size of the largest
component of G(x).

Let us end this section by talking about the time complexity of deciding
Ps. By Lemmas 54, 55, and 56, we know that the time complexity of the
span program unitary depends on the complexity of re�ecting around kerA
and generating the initial state |w(s)

0 〉 := A+|τs〉.
Since the span program Ps uses the sameH, V andA as the st-connectivity

span program, the time complexity of 2ΠkerA − I has already been shown
to be O (U/δ(G)) in Ref. [JK17], where U is the cost of the quantum walk
operator and δ(G) is the spectral gap of the symmetric normalized Laplacian
of G.

The time complexity of generating the minimal witness for Ps is not much
di�erent from that of generating the minimal witness for the st-connectivity
span program.

Lemma 125. Let H, V, A be as de�ned in De�nition 88, |τs〉 be the state
in Eq. (5.68), and Ps = (H,V , A, |τs〉). Then, with constant probability the

state
|w(s)

0 〉∥∥∥|w(s)
0 〉
∥∥∥ can be constructed using polylog(|V |, ε) queries to the re�ection

2ΠkerA − I.

Proof. First, we add the edges of a star graph {|s, t, ∅〉}t:t6=s to Hfalse with
weight c(s, t, ∅) = 1/α2, and extend the action of A on those edges to act as

5.6. GRAPH CONNECTIVITY WITHOUT GRAPH SURGERY 213

it normally would. Call Ã this map acting on E(G) ∪ {|s, t, ∅〉}t:t6=s. Adding
edges to a graph cannot decrease the spectral gap of its symmetric normalized
Laplacian, so the cost of re�ecting around ker(Ã) is not bigger than the cost
of re�ecting around ker(A). Observe that adding edges to G and running
the st-connectivity span program algorithm with this extended graph would
a�ect the negative complexity, but this is not what we are doing here. We
are adding the edges only for the subroutine that generates |w(s)

0 〉.
De�ne the unnormalized state |0̂〉 as

|0̂〉 =
∑
t:t6=s

|s, t, ∅〉
n− 1

. (5.73)

Then, Π(kerÃ)⊥|0̂〉 = Ã+Ã|0̂〉 = Ã+ 1
α
|τ〉 = 1

α
|w′0〉, where the vector |w′0〉 =

Ã+|τ〉 is the shortest vector such that Ã|w′0〉 = |τ〉. Hence, |0̂〉 has the
following decomposition

|0̂〉 =
1

α
|w′0〉+ |w⊥〉

where |w′0〉 ∈ (ker Ã)⊥ and |w⊥〉 ∈ kerÃ. If follows that |w′0〉 is in the +1

eigenspace of Ref(kerÃ) and |w⊥〉 is in the −1 eigenspace of Ref(kerÃ).
Running standard phase estimation on Ref(kerÃ) with initial state |0̂〉

‖|0̂〉‖
yields the state √

n− 1

α
|w′0〉|0〉+ |w⊥〉|1〉

with only one query to Ref(KerÃ). We need to understand a bit more
about |w′0〉.

Remember that Ã|w′0〉 = |τ〉, and that span |0̂〉 are the only vector in
the span of the new edges that map to span{|τ〉}. Thus, |w′0〉 has to be a
combination of the minimal witness for A, |w(s)

0 〉 and α|0̂〉, because it is the
only witness.

Altogether we have

|w′0〉 = γ|w(s)
0 〉+ (1− γ)α|0̂〉, (5.74)

where γ is such that ‖|w′0〉‖ is minimal. It is a simple exercise to see that
γ = α2

(n−1)
∥∥∥|w(s)

0 〉
∥∥∥2+α2

.

214 CHAPTER 5. SPAN PROGRAMS FOR GRAPH PROBLEMS

Observe that running phase estimation with constant precision on 2(n−
1)|0̂〉〈0̂| − I maps |w′0〉 to the state γ|w0〉|0〉+ (1− γ)α|0̂〉|1〉, and the choice
for α2 that maximizes γ is

α2 = (n− 1)
∥∥∥|w(s)

0 〉
∥∥∥2

.

Combining one call to phase estimation on the unitary Ref(kerÃ) with
one call to phase estimation on 2(n− 1)|0̂〉〈0̂| − I we can generate the state

√
n− 1

α

(
γ‖|w(s)

0 〉‖
|w(s)

0 〉
‖|w(s)

0 〉‖
|0〉+ (1− γ)α|0̂〉|1〉

)
|0〉+ |w⊥〉|0〉|1〉 (5.75)

=
α
√
n− 1‖|w(s)

0 〉‖
(n− 1)‖|w(s)

0 〉‖2 + α2

|w(s)
0 〉

‖|w(s)
0 〉‖
|0〉|0〉+ (5.76)(

1− α2

(n− 1)‖|w(s)
0 〉‖2 + α2

)
|0̂〉∥∥|0̂〉∥∥ |1〉|0〉+ |w⊥〉|0〉|1〉 (5.77)

At this stage all we need to do is measure the two extra qubit registers.

If the result is |0〉|0〉 then we are left with |w(s)
0 〉

‖|w(s)
0 〉‖

in the �rst register. The

probability of this event is

psucc =

(
α
√
n− 1‖|w(s)

0 〉‖
(n− 1)‖|w(s)

0 〉‖2 + α2

)2

.

If we choose an α such that α2 � (n − 1)
∥∥∥|w(s)

0 〉
∥∥∥2

, then the probability of

success goes as α2

(n−1)
∥∥∥|w(s)

0 〉
∥∥∥2 � 1, whereas α2 � (n − 1)

∥∥∥|w(s)
0 〉
∥∥∥2

leads to a

success probability
(n−1)

∥∥∥|w(s)
0 〉
∥∥∥2

α2 � 1.

As we said, the optimal choice of α is α2 = (n − 1)
∥∥∥|w(s)

0 〉
∥∥∥2

, for which
the success probability is 1/4. It is easy to see that any choice of α that is
Θ
(√

n− 1
∥∥∥|w(s)

0 〉
∥∥∥) will lead to a success probability of O(1).

If the value ‖|w(s)
0 〉‖ is not known, the iterative process in which we vary

α of Lemma 47 results in an estimation of α2 = (n − 1)
∥∥∥|w(s)

0 〉
∥∥∥2

within

5.7. WITNESS GENERATION FOR ST -CONNECTIVITY 215

multiplicative error 1/2 in O(log(n− 1)
∥∥∥|w(s)

0 〉
∥∥∥2

) steps. Once we have this

estimate, we can generate the state |w(s)
0 〉

‖|w(s)
0 〉‖

with constant probability using

O(1) queries to 2ΠkerA − I and 2 |0̂〉〈0̂|‖|0̂〉‖2 − I.

Putting together all the results and insight in this section, together with
Theorem 45 and Theorem 53 we have proven the following:

Theorem 126. For any family of graphs G and X ⊆ {0, 1}E(G), let U be the
cost of the quantum walk operator de�ned in Equation (5.32), and δ(G) be the
spectral gap of the symmetric normalized Laplacian of G. Then there exists
a procedure that decides connG,X with bounded error and cost (neglecting
logarithmic factors)

O

√RC n2

(n−nmax)2

δ(G)
U

 .

where R is a known upper bound on Ravg(G(x)) for all connected G(x), and
for all disconnected G(x), C ≥ Cs is an upper bound for the largest out-
degree of any component of G(x) and nmax upper bounds the size of the largest
component of G(x).

5.7 Witness generation for st-connectivity

In Theorem 48, we gave an algorithm that generated an ε-approximation of
the positive witness for a general span program using O

(
1
ε

√
w+(x)w̃−(x)

)
queries to the span program unitary. In this section we will use that algorithm
to generate an optimal positive witness for the st-connectivity span program
over a particular graph. We will then measure that state in the computational
basis of H, obtaining an edge, which will indicate an st-path in G. We want
to stress that this is simply a proof of concept aimed at proving the utility
of the witness generation algorithm. The witness generation algorithm does
not produce an st-path in general, but rather a combination of paths in
superposition, or one edge in an st-path after measuring. How to generate
st-paths with small space complexity remains an interesting open problem,
which we hope we can tackle using our witness generation algorithms.

216 CHAPTER 5. SPAN PROGRAMS FOR GRAPH PROBLEMS

Figure 5.5: Representation of the graph G and a subgraph G(x) where all
but k paths are missing exactly one edge.

Let G be the graph consisting of m edge-disjoint paths of length d con-
necting two points s and t. For simplicity imagine that all weights are equal
to one, see Figure 5.5. Then consider the problem of st-connectivity on G.

This problem is equivalent to solving the function ORm composed with
ANDd because any one of the m paths makes s and t connected and every
edge in a given path must be present for it to be a valid st-path in G(x).
The randomized query complexity of these problems is Ω(md). See, for
example, [ABK16, Theorem 5] or [JK09, Theorem 4]. Quantumly, the only
algorithm that we know of that can generate st-paths is the algorithm in
[DHH+06] that generates spanning trees in time O(n3/2), where n = md in
this case. Since this lower bound applies to all graphs, not just the one we
use here, we do not claim that our algorithm outperforms theirs in terms
of query complexity. However, the algorithm by Dürr et al. will necessarily
store a spanning tree of the graph, which in their approach requires O(md)
space (the number of edges in this particular graph). Since our algorithm
simply makes calls to the st-connectivity span program unitary, we achieve
our goal of �nding an st-path with only O(log n) = O(logmd) space.

Let's return to our problem. In Figure 5.5 we can see that any graph
G(x) such that s and t are connected is composed of k disjoint st-paths of
length d, for some k > 1, and a bunch of loose ends. By Lemma 89, the
optimal positive witness corresponds to an st-�ow on G(x) which is nothing
but a superposition of st-paths. It is easy to see that since all st-paths are
disjoint and of equal length, the optimal �ow will split equally among them,

5.7. WITNESS GENERATION FOR ST -CONNECTIVITY 217

each carrying 1/k �ow. Moreover, there will be no �ow through any of the
edges that are not part of a valid st-path.

Let |p1〉, . . . , |pk〉 be these paths, where |pi〉 = |s, ui,2〉 + · · · + |ui,d−1, t〉.
Then what we just said is that |w〉 = 1

k

∑k
i=1|pi〉 is the optimal positive

witness for G(x). By Theorem 48, we can generate a state |w̃〉 ε-close to
|w〉/ ‖|w〉‖ using O

(
1
ε

√
w+(x)w̃−(x)

)
queries to a unitary Ux which by The-

orem 53 has query complexity exactly 1. Since |w〉 is orthogonal to all edges
that are not part of any st-path, measuring |w̃〉 in the computational basis
of H will produce an edge |u, v〉 which will not be an element of an st-path
with probability less than ε. In other words, generating |w̃〉 and measuring it
will produce an edge in one of the k st-paths of G(x) with probability bigger
than 1− ε. If that is the case, the result of the measurement itself is enough
for us to �nd an st-path, since each edge belongs to only one path.

The positive witness size is w+(x) = d
k
by direct calculation. The min. er-

ror negative witness size w̃−(x) will be a bit harder to compute. Just to make
our life a little bit harder, let us assume that each broken path is missing
exactly one edge.

Observe that the graph G is a planar graph. This means that we can use
the dual graph construction in [JK17] to produce a graph G′ constructed in
the following manner. Fix a planar embedding of G and for each internal
face add a vertex of G′. Then add an edge from the vertex s to in�nity and
an edge from t to in�nity. This will split the exterior face into two faces call
one such face s′ and the other t′. Then, for each edge in G that is adjacent
to two faces, add an edge in G′ that connects their respective vertices. For
our particular G, the graph G′ can be seen in Figure 5.6. This graph encodes
ANDk ◦ORm. Observe that every edge of G′ cuts exactly one edge in G. A
subgraph G′(x) of G will include an edge |u′, v′〉 if and only if the edge in
G that it cuts is not an edge in G(x). The beauty of this correspondence is
that negative witnesses in G(x) correspond exactly to positive witnesses in
G′(x). The same thing is true for non-exact witnesses. It is rather easy to
convince ourselves that the min. error negative witness in G(x) will be the
min. error positive witness in G′(x), which is surprisingly easy to compute.

Indeed, consider the graph G′(x). Any positive witness in G′(x), exact
or not, is an s′t′-�ow, but since this graph is a chain, the �ow through every
vertex is always 1. Therefore, �nding the min. error �ow through the chain
amounts to �nding the min. error �ow through each link of the chain. Each
complete path in G(x) will be d parallel edges between the same two vertices

218 CHAPTER 5. SPAN PROGRAMS FOR GRAPH PROBLEMS

Figure 5.6: Left: The dual graph G′, represented in blue, has a vertex for
every interior face of G and an edge between two faces if the faces share an
edge in G. Right: The dual graph G′(x). Dashed edges represent edges in
G′ \G′(x), while the solid edges are edges in G′(x), which correspond to the
missing edges of G(x).

of G′, and since every edge in the path is in G(x), the dual edges in G′ are
all in G′ \G′(x). We conclude that the �ow through this link of the chain all
contributes towards the negative error of the �ow. In these sections, the �ow
that minimizes the error is the one that is split along the d parallel edges,
which contribute a 1/d term to the min. error (i.e. the energy of the �ow
through the edges in G′ \G(x)), and to the overall energy of the �ow. Since
there are k such links, the error of the �ow through these links is k/d.

For the sections that correspond to paths in G(x) that are broken, there
are d parallel edges through which a unit �ow must go, but one of them is
an edge in G′(x), while all the others are edges in G′ \G(x). It follows that
the �ow that minimizes the error is the one that goes all through the solid
edge. Therefore, the min. error �ow, in going through this sections does not
contribute to the error. You can tell that we are on the right track because
the error of this �ow is k/d = 1/w+(x), exactly as Theorem 42 would predict.
Overall, given that there are k sections in G′(x) with no solid edges andm−k
sections with exactly one solid edge, we conclude that the min. error positive

5.7. WITNESS GENERATION FOR ST -CONNECTIVITY 219

witness size in G′(x) has norm

w̃−(x) =
k

d
+m− k. (5.78)

Together with our computation of the positive witness size we have the
following.

Theorem 127. Let G be the graph consisting of m parallel paths of length
d between two vertices s and t. Let G(x) be a connected subgraph of G with
k st-paths. Then, there exists a quantum algorithm that, with bounded error,
�nds an st-path on G(x) with query complexity

O
(√

w+(x)w̃−(x)
)

= O

(√
md

k

)
. (5.79)

Our algorithm is a quadratic speed-up compared to the randomized query
complexity lower bound, and much faster than the general purposeO

(
n3/2

)
=

O
(

(md)3/2
)
complexity in [DHH+06], although it is possible that their algo-

rithm, adapted to this speci�c problem, would achieve the same complexity
as ours. Nonetheless, we expect the advantage of our algorithm with respect
to theirs in terms of space complexity to remain.

Path-�nding in more general graphs

As we have already stated, the witness generation algorithm applied to the
st-connectivity span program does not produce a path. Instead, it approxi-
mately produces a superposition of edges belonging to st-paths, with edges
that sit in shorter paths having a bigger amplitude than edges on longer
paths.

Measuring this state in the computational basis produces a single edge,
call it |u, v〉, which will be in an st-path with high probability � A constant
error ε in Theorem 48 su�ces because we can always run su-connG,X and
vt-connG,X a few times to con�rm it.

In the example above, that edge is part of a segment in G having s and t
as its endpoints. The measurement result |u, v〉 indicates not only that |u, v〉
belongs to an st-path in G(x), but that every edge in the segment belongs
to an st-path in G(x). In this particular case, it just so happens that the
segment is itself an st-path. Needless to say, this need not be the case in

220 CHAPTER 5. SPAN PROGRAMS FOR GRAPH PROBLEMS

more general graphs, but the logic of identifying the whole segment to which
|u, v〉 belongs as part of an st-path still remains.

Now that we have identi�ed one segment (u∗, . . . , u, v, . . . , v∗) belonging
to an st-path in G(x), we could, for example, contract it. This would shorten
every st-paths that go through that segment, thus increasing the amplitude
through their edges while decreasing the amplitude through the st-paths
disjoint from the contracted segment. We can see that this is true by drawing
from the electrical analogy. Contracting a segment reduces the resistance of
any path containing said segment, and so more �ow would follow those paths,
to the detriment of the paths disjoint to the segment. Moreover, since the
total resistance would decrease, �nding the optimal positive witness on the
contracted graph would now be cheaper.

Another thing that we could do is remove the segment (u∗, . . . , u, v, . . . , v∗)
and break the problem into two, one of �nding an su∗-path, and one of �nd-
ing a v∗t-path. This would again de-emphasize st-paths that do not contain
the segment (u∗, . . . , u, v, . . . , v∗).

Regardless of which way we choose to proceed, iterating on the process
would eventually lead to an st-path with high probability, if only because a
graph can only be contracted or cut so many times. We hope that we can
use these ideas to construct a path-�nding algorithm that uses an amount of
space of the order of the length of the path, rather that the size of the whole
graph. How exactly remains, you guessed it, an open question.

5.8 Discussion and open problems

In this chapter we have provided a tight characterization of the negative
witness of the st-connectivity span program. Since st-connectivity is fairly
ubiquitous, it seems that our approach may, in turn, help analyse future
applications of st-connectivity. Additionally we provide two algorithms for
deciding the problem of graph connectivity. The �rst one, discussed in Sec-
tion 5.4 has a query complexity of

Q1 = O

(√
Rn2

κ

)
,

where R is an upper bound on Ravg(G(x)) for all connected subgraphs G(x).
Given the complete characterization of the st-connectivity span program, we

5.8. DISCUSSION AND OPEN PROBLEMS 221

think that the query complexity of this algorithm is actually Θ(n
√
R/κ).

In the worst case, κ = 2 and R < n − 1 so the algorithm has complexity
Θ(n3/2), which is known to be optimal. However, we want to remark that
this is a promise problem, and given a strong promise one could go well
below the n3/2 complexity of the worst case. For instance, it is known that
random graphs with n vertices and edge probability p, usually denoted as
G(n, p), will be almost surely connected if p ≥ c lnn/n for any c > 1 and
almost surely disconnected if p = Ω(1/n). In that last case the number of
components will be O(n/ lnn) components. Under this promise, we would
then have R ≤ diam(G(x)) = O(log n/ log log n) and κ ≥ O(n/ lnn) for a
total complexity of Õ(

√
n).

On the other hand, the spectral algorithm from Section 5.5 has a query
complexity of

Q2 = O

(√
ndmax(G)

κλ

)
,

where λ is a lower bound for the algebraic connectivity of all connected in-
stances. Unlike the other algorithm, where the complexity depended uniquely
on the number of vertices and our promises on positive and negative wit-
nesses, the query complexity of this algorithm �also� depends on the parent
graph through the dmax(G) factor. In the unweighted worst case, λ2(G(x)) ≥
2/n2 and dmax = n−1, which gives a sub-optimal O(n2) algorithm. However,
for some classes of inputs, this algorithm may perform better than our �rst
algorithm. Indeed, let us consider the quotient

Q1

Q2

=

√
nRλ

dmax(G)
.

Using the fact that Ravg(G(x)) ≤ 1/λ2(G(x)) and dmax ≤ n− 1 we have that
as long as dmax/n ∼ 1 then the �rst algorithm will outperform the second. If
dmax � n it is possible that Q2 < Q1 as long as R is not much smaller than
1/λ. We could imagine a scenario where the parent graph G had low degree
but still have high algebraic connectivity for its connected subgraphs. For
example, it is known that expander graphs have those properties. Naively it
seems like our two algorithms are incomparable even though they are based
on similar unitaries. It would be worthwhile to understand whether the two
approaches are fundamentally di�erent.

We remark that our spectral connectivity algorithms apply for any choice
of edge weights on G: davg(G) and dmax(G) should be interpreted as the

222 CHAPTER 5. SPAN PROGRAMS FOR GRAPH PROBLEMS

average and maximum weighted degrees in G, and λ2(G) and λ2(G(x)) the
second-smallest eigenvalue of the weighted Laplacian of G and G(x) respec-
tively. The choice of weights may also impact the costs U and S. Therefore,
another open question is to determine how to set the weights of edges in our
graphs since these weights can have a signi�cant e�ect on query and time
complexity.

The third connectivity algorithm shares features, for good or ill, with both
of the approaches discussed above. Like the �rst one, its query complexity
is described by electrical quantities and the number of vertices as

Q3 = O

(√
RC

n2

(n− nmax)2

)
,

where R is a known upper bound on Ravg(G(x)) for all connected G(x), and
for all disconnected G(x), C is an upper bound for the largest out-degree
of any component of G(x) and nmax upper bounds the size of the largest
component of G(x).

When the weights are uniform and we have no multi-edges, this complex-

ity reduces to O
(√

n3dmax

n−nmax

)
= O(n2), worse that the worst case O(n3/2)

of the algorithm in Theorem 98, and on-par with the spectral algorithm of
Section 5.5.

When the number of components is κ = O(1) and no component is much
bigger than the others for all disconnected graphs, then the complexity re-
duces to O(

√
RC), or O

(√
Rndmax

)
. Since dmax ≤ n and R ≤ 1/λ2(G(x)),

this algorithm can be better than either of the algorithms in sections 5.4 and
5.5 when these inequalities are not tight.

Discussions about time complexity, sometimes referred to as cost, are nec-
essarily more tentative as it has not been the focus of this chapter. First of
all, because these algorithms have di�erent starting assumptions. The �rst
one only works for unweighted graphs, and works best for simple graphs
(without multi-edges), while we have given two versions of the spectral al-
gorithm, one that works for any graph and can be rather ine�cient, and a
more e�cient one for Cayley graphs.

Moreover, the time complexity depends on quantities that can vary wildly
depending on the structure of the parent graph, some of which we have not
fully characterized. For example, the time complexity of the �rst algorithm

5.8. DISCUSSION AND OPEN PROBLEMS 223

depends on δ(G), the spectral gap of the symmetric Laplacian of G, which
is yet to be characterized. Intuitively one would expect this to be signi�-
cantly bigger than δ(G) since the spectral gap of the symmetric normalized
Laplacian is equal to the spectral gap of the random walk over G. This
spectral gap, in turn, is proportional to the mixing time of G, which is a a
chain of ∼ n2 copies of G. The mixing time of a chain scales quadratically
with the length of the chain, and since each node of the chain is an entire
copy of G that has to be traversed, one would expect the mixing time to
be ∼ n4CT (G), where CT (G) is the average commute time in G, which is
known to be related to the average resistance [CRR+96].

The time complexity of the second algorithm is not much easier to char-
acterize in the general case, although it does bene�t from only ever using
the parent graph G. This allows its time complexity to depend on δ(G),
the spectral gap of Lsym

G , rather than δ(G). In contrast, the time complexity
of the third algorithm is neatly characterized as the query complexity times
U/δ(G) for every parent graph (ignoring logarithmic factors), weighted or
unweighted. If such graph is su�ciently structured (e.g. expander graphs,
or the complete graph), these two terms can be as small as O(log |V |), which
would make this third algorithm time e�cient.

In Section 5.7 we applied the witness generation algorithm in Theorem 48
to the st-connectivity span program to �nd st-paths in a particular graph.
Taking inspiration from this toy problem, we sketched a couple of ideas that
we believe could lead to algorithms for path-�nding with small space com-
plexity in other graphs. For the sake of brevity we will not repeat them here,
but we do want to mention the three main avenues of future research related
to this problem. The �rst thing to do is formalize such an algorithm and
prove its correctness and complexity. It might be that a rigorous proof of
correctness and account of complexity is just not possible. If that is so, it
can still be the case that the algorithm works on a heuristic level, with nu-
merical simulations providing the necessary evidence. Once an algorithm is
formalized, it would be wise to restrict ourselves, as a �rst step, to particular
families of graphs, such as planar graphs or series-parallel graphs. Last, it
remains an open question whether there exists applications of the witness
generation algorithm for st-connectivity other than path-�nding.

Finally, it would be interesting to see whether one can extend our al-
gorithm for estimating algebraic connectivity to accept more general parent
graphs than the complete graph. Looking closely at our algorithm, it is clear

224 CHAPTER 5. SPAN PROGRAMS FOR GRAPH PROBLEMS

that the algorithm works because the Laplacian of the complete graph is de-
generate (all non-zero eigenvalues are equal). Absent that, it is unclear how
one could determine the spectrum of D = A+A(x) = Πker(A)⊥ΠH(x). A last
open question is whether or not it would be possible to adapt this algorithm
to graphs with almost degenerate Laplacians. For example, it is well known
that the spectrum of the completely bipartite graph Kn,n is n with multiplic-
ity 2(n− 1) and 2n with multiplicity 1. It would be worthwhile to see if an
argument can be made that can give us useful bounds on the spectrum of D
when G = Kn,n.

Chapter 6

Span programs for boundary

problems

6.1 Overview

In the last chapter of this dissertation we will dust o� our old topology
books and show that the problem of st-connectivity is a particular instance
of a much larger class of problems. That of simplicial homology.

We assume no previous knowledge of the topic, and so we will de�ne all
the concepts we need and explain them as they appear. The contents of this
chapter are based on a paper in preparation and is joint work with Maris
Ozols and Stacey Je�ery.

Boundary problems in graphs In Section 6.2, we take a broader look
at the st-connectivity span program and frame the problem it solves as a
boundary problem. This allows us to imagine di�erent boundaries encoding
other graph problems. We show how one can modify the st-connectivity span
program to decide if there exist �ows with multiple sources and sinks, and
obtain algorithms for the OR and the AND of st-connectivity problems.

Simplicial complices Further generalizing st-connectivity to higher di-
mensions requires us to �rst generalize graphs to higher dimensions. We
do just that in Section 6.3.1, where we de�ne the concepts of simplices, n-
dimensional counterparts to triangles, simplicial k-complices, collection of k
dimensional simplices and all the smaller-dimensional simplices they contain

225

226 CHAPTER 6. SPAN PROGRAMS FOR BOUNDARY PROBLEMS

within their boundaries, and simplicial space, which is the inner product
space generated by a simplicial complex. The importance of simplicial com-
plices does not come just from the fact that they generalize graphs. It is a
classic theorem in topology [DM68; Moi13] that any topological manifold of
dimension ≤ 3 accepts a triangulation, that is, a simplicial complex that is
topologically equivalent (i.e. there exists a continuous bijection with contin-
uous inverse) to the manifold. Many smooth manifolds of higher dimension
accept a triangulation too.

Simplicial homology We continue in Section 6.3.2 with the de�nitions of
simplex orientation, boundary maps ∂k and k-cycles as elements of ker(∂k)
for all k ∈ N.

For example, the 2-simplex (i.e. triangle) |(v1, v2, v3)〉 is mapped to the
clockwise oriented cycle |(v1, v2)〉+ |(v2, v3)〉 − |(v1, v3)〉 by the map ∂2. The
map ∂1 maps a 1-simplex |(u, v)〉 to |(u)〉−|(v)〉, and so ∂1◦∂2|(v1, v2, v3)〉 = 0.
In fact, the property ∂k ◦ ∂k+1 = 0 is true for any k ∈ N. A simplicial
space, together with its boundary maps (or any collection of maps such that
∂k ◦ ∂k+1 = 0 for all k), forms what is known as a chain complex.

Equipped with these de�nitions, we then introduce the central concept of
this chapter, namely, that of simplicial homology. Fix a simplicial complex
K, and let |σ〉 ∈ CK correspond to a combination of (k+1)-simplices for some
k. From the equality ∂k ◦ ∂k+1 = 0, it follows that ∂k+1|σ〉 ∈ ker(∂k), which
is precisely the de�nition of a k-cycle. The converse is not true. There are
k-cycles that are not in the image of ∂k+1. For any k, the homology group Hk

is a way to classify the cycles in a complex in equivalence classes according
to the rule |τ〉 ∼ |η〉 i� |τ〉 − |η〉 ∈ Im(∂k+1) for any |τ〉, |η〉 ∈ ker(∂k). Two
cycles in the same equivalence class are called homologous.

Homology is studied because it is a topological invariant. If a manifold
accepts a triangulation, then the manifold's and triangulation's homology
groups will be the same. If two simplicial complices K and K′ are isomor-
phic, so will be their homology groups, and if a simplicial complex K′ is a
subdivision of another complex K, then their homology groups will be the
same.

We conclude Section 6.3 with a discussion of non-simplicial complices,
commonly known as cellular complices, and de�ne sub-complices of a complex
speci�ed by a variable x ∈ {0, 1}N for N ∈ N in Section 6.3.4.

6.1. OVERVIEW 227

A span program for simplicial homology Having de�ned simplicial
complices and sub-complices, boundary operators and k-cycles, and simpli-
cial homology, we �nally present the span program for simplicial homology
in Section 6.4. Fix a simplicial k-complex K and a cycle |τ〉 ∈ ker(∂k−1),
we de�ne H as the space generated by the k-simplices in K, H(x) as the
space generated by the k-simplices in K(x), V as the space generated by the
(k − 1)-simplices in K and A = ∂k. Then, we prove that the span program
P = (H,V , A, |τ〉) decides whether |τ〉 is homologous to the null-vector in
Hk(K(x)). This implies that there exists a quantum algorithm that decides
this function. Unfortunately, the only way we know of estimating its com-
plexity is to do it case by case. In Section 6.4.1, we show that the span
program for st-connectivity from De�nition 88 is a particular case of the
general span program for simplicial homology that computes whether two
vertices are equal in the zero-th homology group of a graph.

A span program for homology of surfaces In Section 6.5 we de�ne
orientable surfaces and show that cycles on such a surface are null in the
�rst homology group of the surface i� they are separating, i.e. they separate
the surface into two sub-surfaces, and are the sole boundary of at least one
of them. We give the example of the torus, where the only non-separating
cycles are the ones that go around the handle, called meridians, and the ones
that go around the major circumference of the torus.

The homology group of a surface contains a lot of information about
its topology and has been studied in the classical literature extensively and
used to construct algorithms, e.g. to �nd minimum cuts in a surface-oriented
graph [CEN09]. As we mentioned before, all surfaces admit a triangulation,
i.e. a simplicial 2-complex K = (F,E, V) composed of faces, edges, and
vertices, with a continuous, invertible map from the surface to the complex
that makes them topologically equivalent. In particular, homology in the
surface is captured by homology in the simplicial complex.

With that in mind, we consider the span program for simplicial homology
as it applies to triangulations of surfaces. In Lemma 135 we characterize the
positive witness size of a null-homologous 1-cycle |τ〉 in a subcomplex K(x) ⊆
K as the size of the subset of F (x) that covers the subsurface with boundary
|τ〉. The negative witness size of a non-null cycle in K(x) is characterized in
Lemma 136 as being at most 2. Together, these lemmas prove Theorem 137,
which states that the quantum query complexity of deciding whether a cycle

228 CHAPTER 6. SPAN PROGRAMS FOR BOUNDARY PROBLEMS

|τ〉 on a sub-complex K(x) of a surface triangulation K is O(
√
n+ g), where

n is the number of vertices in K and g is the genus of the surface.

6.2 Boundary problems in graphs

An old professor of the author used to say that in math there are only three
tricks −multiply by one, add zero, and make two di�erent things the same−
and a handful of problems. There are computation problems, there are iden-
ti�cation/classi�cation problems, there are boundary problems, and there
is probably something else somewhere. We will be interested in the third
kind. Boundary problems are, at their core, variations of the same ques-
tion. Is there an object with some given properties that has this particular
boundary? Derivatives and integrals or di�erential equations are examples
of boundary problems.

The st-connectivity problem is a particular kind of boundary problem.
Indeed, asking if two vertices s and t of a graph G are connected is equivalent
to asking if there exists a path, i.e. a subgraph, with s and t as boundaries
(naturally, the boundary of a line, curve, or path is just two points). In the
st-connectivity span program, positive witnesses are merely combinations of
such paths. Moreover, this problem maps naturally to the one of optimal
�ow in an electrical network.

By changing the target, we can ask about di�erent kinds of boundaries.
For example, �x two sets of vertices {|si〉 : i ∈ [k]}, and {|ti〉 : i ∈ [k]} for
some k. If we let the target be

|s1〉+ · · ·+ |sk〉 − |t1〉 − · · · − |tk〉,

then the span program tells you if there is a set of k paths, each one con-
necting a unique si to a unique tj (note, this does not solve perfect matching
as there are cases where such paths exist but there is no perfect matching).
Again, this maps perfectly to the electrical network with k sources and k
sinks. Note that the number of sources and sinks need not be the same as
long as the total in-�ow equals the total out-�ow. An extreme case would be
to take as target the state

|τ〉 = k|s〉 − |t1〉 − · · · − |tk〉.

A span program with this target would decide if s is connected to all ti.
In other words, the elements of the st-connectivity span program with this

6.2. BOUNDARY PROBLEMS IN GRAPHS 229

target would make a span program for

k∧
i=1

(sti-connG,X) . (6.1)

If the set {ti : i ∈ [k]} is V (G) \ {s}, then we would have that this span
program computes graph connectivity. Indeed, we have already encountered
and analysed this span program in Section 5.6.

If we set the target to be |s〉, and we make vertices |t1〉, . . . , |tk〉 into
�singularities� by making them the images of free vectors in H, then the span
program decides if there's a path from |s〉 to any of the |ti〉. In other words,
we would obtain a span program for

k∨
i=1

(sti-connG,X) . (6.2)

Imagine that we are promised that for any subgraph of G, s is connected
to one endpoint ti out of k di�erent possibilities. One way to �nd which
one is the right endpoint would be to run a Grover search over the possible
targets, using the st-connectivity span program algorithms to mark the right
vertex. Since this algorithm would have di�erent complexity for each pair sti,
we would have to use the variable time search from [Amb10] or the algorithm
we construct in Section 4.6. In any case, the complexity of that algorithm
would scale with k as

√
k.

Using this span program we can test many endpoints at a time, and
so we could �nd the right one through binary elimination with O(log k)
evaluations of the span program algorithm for

∨k
i=1 (sti-connG,X). However,

the positive witness for that span program would be the same as that of every
sti-connectivity span program, while the negative witness would be the sum
of all k negative witness for the sti-connectivity span programs, for a total
complexity that scales as Õ(

√
k). Rather similar but with fewer moving

parts. Together with the witness generation algorithm for st-connectivity,
slightly modi�ed for the occasion, we could generate the optimal witness
between s and the right ti without needing to know which one that is.

We will not develop any of these span programs any further, rather we
mention them to show how seeing the st-connectivity span program as a
boundary problem can help us generalize it.

230 CHAPTER 6. SPAN PROGRAMS FOR BOUNDARY PROBLEMS

6.3 Simplicial complices and homology

A di�erent way of generalizing the st-connectivity span program is going to
higher dimensions. A graph is a collection of points and segments, which
can be seen as the simplest 0-dimensional and 1-dimensional objects around.
Continuing this reasoning, the generalization of a segment is a polygonal
area, the simplest example being a triangle. After that comes a volume,
with tetrahedrons and so on. And just like the boundary of a segment is
a combination of vertices, the boundary of a polygon is a combination of
segments.

We can imagine lifting the ideas of the st-connectivity span program one
dimension up, and de�ne a span program that maps polygons to lines, which
is nothing but taking a graph and mapping faces to edges. If that is what
we are going to do, we should also think about how the targets should look
like, and what kind of functions we can decide. Answering these questions
will require us to delve a little bit into topology theory. For the battery of
de�nitions coming we apologize.

6.3.1 Simplicial complices

As we said at the beginning, boundary problems abound in mathematics.
They are the bread and butter of di�erential equations, complex analysis and
topology. Thus, characterizing the st-connectivity problem as a boundary
problem only registers as a mild surprise. In fact, graphs are the simplest
instance of a category of topological objects known as simplicial complices.
Let us break down this name, starting from the top.

A simplex is a generalization of the concept of a triangle to arbitrary
dimensions. A 0-simplex is a point, a 1-simplex is a line segment, a 2-simplex
is a triangle, a 3-simplex is a tetrahedron, and so on.

In geometry, a k-simplex is determined by its k + 1 vertices as follows.

De�nition 128 (Geometric simplex). Let v0, . . . , vk ∈ Rk such that {vi −
v0}ki=1 are linearly independent. Then the simplex determined by these points
is the set

σ =

{
α0v0 + · · ·+ αkvk :

k∑
i=0

αi = 1, αi ≥ 0,∀i

}
. (6.3)

6.3. SIMPLICIAL COMPLICES AND HOMOLOGY 231

Now, we will not be concerned from now on about coordinates and linear
constraints, but this de�nition is useful because it illustrates a few things.
First, that a k-simplex is determined by k + 1 vertices {v0, . . . , vk}. Second,
that a simplex is the convex hull of the vertex set (all the points between the
vertices). This is a complicated way to remind the reader that, for instance,
when we say that a 2-simplex is a triangle, we do not mean just three points
joined by three lines, the simplex is the surface inside the triangle. Third,
that the set of points obtained by �xing one of the αi = 0, called the faces
of a k-simplex, are (k − 1)-simplices themselves.

With a slight abuse of notation, we can forget about coordinates and just
say that a k-simplex is a formal tuple σ = (v0, . . . , vk) determined by k + 1
vertices, with the convention that two tuples determine the same simplex if
they di�er by an even permutation of their elements. We use tuples instead
of sets because we will later use the order of the elements to de�ne the
orientation of the simplex.

The faces of a simplex are the tuples formed by subsets of {v0, . . . , vk}.
Thus, the tuple (v0, v1, v2) denotes a triangle with edges (v0, v1), (v1, v2) and
(v2, v0) and vertices (v0), (v1), and (v2). This allows us to think of undirected
graphs as collections of 0-simplices, the vertices, and 1-simplices, the edges.
This is an instance of a simplicial complex.

De�nition 129. A simplicial complex K is a set of simplices such that:

1. every face of a simplex in K is also in K,

2. if two simplices σ1 and σ2 share vertices v1, . . . , v`, then the simplex
(v1, . . . , v`) is a face of both σ1 and σ2.

These requirements are necessary because when we de�ne simplices as
formal tuples of vertices, we lose the property that the faces of the simplex
are contained in the simplex, since tuples don't formally contain other tuples.
Let's give a couple of examples.

Example 6.1. Assume we have a 2-simplex σ = (v0, v1, v2) de�ned only as
a tuple of points. The smallest simplicial complex that contains σ is

K = {(v0), (v1), (v2), (v0, v1), (v0, v2), (v1, v2), σ}.

Example 6.2. Consider the following 2-complex, K shown in Figure 6.1.

K = K0 ∪ K1 ∪ K2,

232 CHAPTER 6. SPAN PROGRAMS FOR BOUNDARY PROBLEMS

where

K0 = {(v0), (v1), (v2), (v3), (v4)},
K1 = {(v0, v1), (v0, v2), (v1, v2), (v2, v3), (v2, v4), (v3, v4)},
K2 = {(v0, v1, v2)}.

Figure 6.1: A 2-complex with one triangle, 6 edges and 5 vertices.

In this de�nition, simplicial complices are just �nite sets of tuples grouped
by length. This is great for storage, but in order to do calculations, we would
like to de�ne operations. For that reason we are going to embed the complex
into the inner product vector space that it generates. See linear algebra
notation in Section 2.1. Enter the simplicial space.

De�nition 130 (Simplicial space). Let K = K0 ∪ · · · ∪ K` be a simplicial
complex, and Kj be the set of j-simplices in K. For all j ∈ [`] we formally
de�ne the j-simplicial space of K as

Cj := CKj . (6.4)

We call C = (C`, . . . , C0) the simplicial space generated by K.

Now, each Cj is a complex inner product space, which also means that it
is an Abelian group with respect to addition.

From now on we will not make much of a distinction between a simplicial
complex K � which is a combinatorial object � and its simplicial space C.
We will also make liberal use of the bra-ket notation later on, especially when
we discuss span programs and quantum algorithms for simplicial spaces. In
a slight abuse of notation, we will often say that a vector |τ〉 is in a complex
K even if |τ〉 is not an element of the standard basis of any Cj but a linear
combination of those.

6.3. SIMPLICIAL COMPLICES AND HOMOLOGY 233

6.3.2 Simplicial homology

Having generalized graphs to simplicial complices, we now turn our atten-
tion to generalizing the very problem of st-connectivity to a problem relat-
ing higher dimensional simplicial complices with complices one dimension
smaller. This will take us to the concept of homology. Before that, we need
a few de�nitions.

Orientations A really important notion will be that of orientation of a
simplex. An orientation is given by an ordering of the vertices of a simplex
with an equivalence relation that two orderings are the same if they di�er
by an even permutation. For example, the ordered tuples (v0, v1, v2) and
(v2, v0, v1) de�ne the same oriented simplex, and the tuple (v1, v0, v2) has
opposite orientation. We will always use the convention that if two oriented
simplices σ, σ̃ ∈ K are the same simplex with opposite orientation, then their
representatives in CK are opposite to each other. That is, |σ〉 = −|σ̃〉.

Boundary maps We have already said that a simplex is naturally bounded
by a set of smaller degree simplices. We can exactly de�ne a map, called
boundary operator that maps a simplex to its boundary.

De�nition 131 (Boundary maps). Let K be an oriented simplicial complex,
C be its simplicial space, and let σ = (v0, . . . , vk) ∈ Kk ⊂ K be an oriented
k-simplex. We de�ne the k-boundary operator as the map

∂k : Ck → Ck−1

|(v0, . . . , vk)〉 7→
k∑
i=0

(−1)i|(v0, . . . , vi−1, vi+1, . . . , vk)〉. (6.5)

Given that there are no (−1)-simplices, the boundary map of the vertex
set C0 is de�ned as ∂0 : C0 → {0}, ∂0(v) = 0. A simple calculation gives us
that this family of maps has the crucial property that ∂k−1 ◦∂k = 0. Another
way of expressing this is to say that Im(∂k) ⊂ Ker(∂k−1).

Chain complices Together with the boundary maps, a simplicial complex
forms an object known as a chain complex.

A chain complex is an algebraic structure formed by a sequence of Abelian
groups (Ak, . . . , A1, A0) and a sequence of boundary maps (∂k, . . . , ∂0) taking

234 CHAPTER 6. SPAN PROGRAMS FOR BOUNDARY PROBLEMS

one group to the next, and such that ∂i ◦ ∂i+1 = 0. Without going into
too much detail, chain complices are very rich objects that contain a lot of
information about the groups and how they all sit inside each other. They are
studied in many contexts, from Galois theory, to abstract algebra, geometry,
or topology. It is in this last context, topology, where we will use them.

It is a classic theorem [DM68; Moi13] that any topological manifold of
dimension ≤ 3 accepts a triangulation. That is, a simplicial complex that is
topologically equivalent (i.e. there exists a continuous bijection with contin-
uous inverse) to the manifold.

The opposite is also true. Any simplicial 3-complex can be embedded into
a su�ciently complicated, smooth manifold (although it need not be a com-
plete triangulation if the complex is not boundary-less). In low dimensions,
we will think of points sitting on manifolds and forming simplicial complices
on top of them. Sometimes we will not distinguish the manifold from its
triangulation, for example, when we talk about tori.1

Triangulations and chain complices are used in topology because there are
certain topological features, namely the homology group (hurrah, more de�-
nitions!), that are shared between a manifold and its triangulation. However,
it is not necessary to embed a complex in a manifold to de�ne the homology
group. Before we de�ne the concept of homology, lets talk about cycles.

k-Cycles Intuitively, a cycle is a curve that comes back to the initial point.
Another way of saying that is that a cycle is a curve without boundaries. This
is the property that we use to generalize cycles to arbitrary dimensions.

De�nition 132 (k-cycles and boundaries). Let C = (C`, . . . , C0) be a chain
complex. We say |σ〉 ∈ Ck is a k-cycle if ∂k|σ〉 = 0. We say |σ〉 ∈ Ck is
a k-boundary if |σ〉 ∈ Im(∂k+1). We denote the space of all k-cycles and
k-boundaries as Zk := ker(∂k) and Bk := Im(∂k+1) respectively.

For example, any vertex is a 0-cycle, any loop in a graph is a 1-cycle, any
closed surface is a 2-cycle (e.g. a sphere, a torus, a Klein bottle), and so on.
Now, because ∂k∂k+1 = 0, any k-cycle has no boundary, and any element in
Bk is a k-cycle. We call this kind of cycles separating, because they are the
boundary of a sub-complex, and therefore, they separate the complex into

1Pedant for toruses. Not to be confused with torii, ceremonial gates in Japanese tem-
ples.

6.3. SIMPLICIAL COMPLICES AND HOMOLOGY 235

two. The converse, however, is not always true, as there can exist k-cycles
that are nobody's boundary.

For example, in a torus we have two di�erent kinds of non-separable k-
cycles, the ones that go around the handle, and the ones that go around the
circumference of the torus, see Figure 6.2. We would like to have a tool that
di�erentiates these two di�erent kinds of cycles while classifying all meridians
together, and all longitudes together. That tool is the homology group of the
torus.

Figure 6.2: Two di�erent kinds of cycles. The red ones are called meridians,
while the blue ones are longitudes.

Homology

We said at the beginning that the number of tricks available to a mathemati-
cian is rather limited. There is adding zero, multiplying by 1, and taking two
di�erent things and calling them the same. Homology is the third kind of
trick applied to cycles.

Let K be a simplicial complex and let C be its chain complex. From the
basic properties of boundary maps we have that Im(∂k+1) ⊂ Ker(∂k). Now,
since the elements of a chain complex are Abelian groups, this is an inclusion
of Abelian subgroups. That means that one can take the quotient of ker(∂k)
modulo Im(∂k+1). That is what we call the k-Homology group of C (or K),

Hk(K) := Hk(C) =
ker(∂k)

Im(∂k+1)
, (6.6)

This group divides ker(∂k) into di�erent equivalence classes. On the
one hand, we have the k-cycles in Im(∂k+1), which we named separating
cycles or boundaries. These cycles are equivalent to the null cycle in Hk.
Non-separating cycles are sent to non-null elements. We say that two non-

236 CHAPTER 6. SPAN PROGRAMS FOR BOUNDARY PROBLEMS

separating k-cycles γ and η are homologous if γ − η ∈ Im(∂k+1). This is the
same as saying that together they are the boundary of a sub-manifold.

Going back to our example torus, we have that our two non-separating
1-cycles would be non-null in H1. Moreover, any two meridians with opposite
orientation would be the boundary of a cylinder, which means they belong
in the same equivalence class in H1. Similarly, any two longitudes de�ne a
ring, which makes them equivalent in H1. And �nally, we have that the red
and blue cycle do not de�ne the boundary of a sub-manifold, meaning that
they are in di�erent equivalence classes in H1.

Example 6.3 (Homology of a graph). We have said this before and we repeat
it now, graphs are equivalent to simplicial 1-complices, where the vertices are
0-simplices, and the edges are 1-simplices. It is therefore possible to de�ne the
plethora of concepts we have recently introduced, in particular, the simplicial
space associated to a graph, the boundary operators ∂i from de�nition 131
and the homology groups Hk(G).

For a graph G with simplicial space C(G) = (C0, C1) the only non-
trivial boundary operator is ∂1, and so the only non-zero homology groups
are H0(C(G)) and H1(C(G)). From Eq. (6.5), this map acts on edges as
∂1|(u, v)〉 = |(u)〉 − |(v)〉, which is (up to weights) the map A in the st-
connectivity span program of De�nition 88.

The 0-th homology group is de�ned as H0(G) := ker(∂0)
Im(∂1)

. The numerator
of this expression is ker(∂0) = C0, because ∂0 is trivial. This means that all
vertices are 0-cycles and H0(G) is in fact a splitting of the vertex set into
equivalence classes. The denominator of the expression, which determines
the equivalence classes in which V (G) is split, is

Im(∂1) = span{|u〉 − |v〉 : |u, v〉 ∈ C1}.

Two vertices u, v are equivalent if |u〉−|v〉 ∈ Im(∂1). At �rst sight this means
that a vertex u is equivalent to all its neighbors, but by the transitivity of the
equivalence relation, we conclude that, in fact, two vertices u, v are equivalent
if and only if they are connected.

Therefore, H0(G) has an equivalence class for every connected component
of G. Remember that C0 is not the set of vertices but the linear space
generated by the vertices, CV (G). If u and v are connected, not only |u〉 ∼ |v〉,
but for any z ∈ C, z|u〉 ∼ z|v〉 too. Therefore, H0(G) has exactly one

6.3. SIMPLICIAL COMPLICES AND HOMOLOGY 237

equivalence class for every component and every z ∈ C. Denoting the number
of connected components by κ, we arrive at

H0(G) ∼= Cκ.

The other non-trivial homology group is H1(G). Recall that ∂2 is trivial
because C2 = C∅ = {0}. It follows that Im(∂2) = {0} and so

H1(G) :=
ker(∂1)

Im(∂2)
∼= ker ∂1.

This is precisely the space generated by the cycles of the graph, which has
already appeared in Chapter 5 and is integral to the st-connectivity span
program. Its dimension is the cyclotomic number, also known as the cycle
rank.

6.3.3 Cellular complices

We have focused on simplices so far because they are the simplest objects
with which we can construct complices. It is possible, however, to envision
a set similar to a simplicial complex, i.e. ful�lling the conditions of De�ni-
tion 129, but using polytopes instead of simplices. After all, a polytope is
characterized by being delimited by other polytopes of smaller dimension,
and the intersection of polytopes is a polytope. Such a non-simplicial com-
plex is called a cellular complex.

Cellular complices are interesting in their own right, and many times
they are the more natural choice for a problem. For example, every �nite
graph (i.e. 1-complex) can be embedded on a surface in such a way that no
two edges cross. The complement of the graph in the surface is a series of
polygonal regions delimited by edges which we call faces of the graph. A
graph G = (E, V) together with the set of faces F it forms with respect to
such an embedding would be an example of a cellular complex.

Since any polytope can be subdivided into a collection of simplices �
for example, through a process called barycentric subdivision, see [GT01]
� we can think of cellular complices as insu�ciently subdivided simplicial
complices. For example, it is always possible to add edges to a planar graph
so that every face is a triangle.

It is possible to directly de�ne the spaces generated by cellular complices
and boundary operators between them, thus obtaining the concepts necessary

238 CHAPTER 6. SPAN PROGRAMS FOR BOUNDARY PROBLEMS

for de�ning homology. However, the process can get messy, and is ultimately
unnecessary. Let us explain why.

Let K be a cellular k-complex. As we just said, we can always break
any polytope down and express it as the union of simplices. Let K′ be a
simplicial k-complex de�ned by a given subdivision of the polytopes of K.
For any dimension `, pick any polytope π ∈ K`, and let {σi : i ∈ [d]} ⊂ K′
for some d be the set of oriented simplices that add up to π, that is, their
orientation is consistent with that of π. Then we can identify the vector
generated by π within CK` with

∑d
i=1|σi〉 ∈ CK′ , and in this way see all of

CK` as a subspace of CK′` , see Example 6.4. The boundary operator acts on
CK` as

∂` : CK` ⊆ CK′` → CK`−1 ⊆ CK′`−1

∂`|π〉 :=
d∑
i

∂`|σi〉.

In this way, we can see a cellular complex as a simplicial complex in
which we have �glued� together some adjacent simplices. For the remainder
of the chapter, we will forget about cellular complices and stick to simplicial
complices.

Figure 6.3: A very simple non-simplex.

Example 6.4. In Figure 6.3 we have a square π = (v1, v2, v3, v4) oriented
clockwise which has been subdivided into two triangles σ1 = (v1, v2, v3) and
σ2 = (v1, v3, v4). Observe that these triangles preserve the clockwise orien-
tation of the original square, and that a new 1-simplex has been added, the

6.4. A SPAN PROGRAM FOR SIMPLICIAL HOMOLOGY 239

edge (v1, v3). Then, the boundary operator acts on |π〉 as

∂2|π〉 =∂2|σ1〉+ ∂2|σ2〉
=|(v1, v2)〉+ |(v2, v3)〉+ |(v3, v1)〉+ |(v1, v3)〉+ |(v3, v4)〉+ |(v4, v1)〉
=|(v1, v2)〉+ |(v2, v3)〉+ |(v3, v4)〉+ |(v4, v1)〉.

In the last equality, we have used that |(vi, vj)〉 = −|(vj, vi)〉.

6.3.4 Sub-complices of a complex

Span programs decide substructure problems by nature. They decide Boolean
functions f : X ⊆ [q]n → {0, 1} in which an input x ∈ X determines a
subspace H(x) =

⊕
iHi,xi ⊆ H of a larger space H. Thus, if we want to

mix span programs and simplicial complices, we better be able to de�ne
substructures instantiated by a variable x ∈ [q]n, for some q, n ∈ N. In the
case of the st-connectivity span program, we assumed that we had a parent
graph, G, and that every string x ∈ {0, 1}N determined a subgraph G(x) =
(E(G(x)), V (G)), where E(G(x)) ⊆ E(G). We construct sub-complices the
same way we constructed subgraphs in Section 2.3.1.

LetK = {Kk, . . . ,K0} be a simplicial k-complex. LetN ∈ N, and consider
the set of variables and their negations {x1, . . . , xN , x̄1, . . . , x̄N}, which we call
literals. We assume there exists a map L : Kk → {x1, . . . , xN , x̄1, . . . , x̄N}.
Then, for every x ∈ {0, 1}N , we de�ne the sub-complices Kk(x) and K(x) as

Kk(x) :=
⋃

i∈[N]:xi=1

{σ ∈ Kk : L(σ) = xi} ∪
⋃

i∈[N]:xi=0

{σ ∈ Kk : L(σ) = x̄i},

K(x) := {Kk(x),Kk−1, . . . ,K0}

In particular, each k-simplex in Kk is associated with a literal xi or its nega-
tion x̄i, and is included in Kk(x) if and only if its associated literal evaluates
to 1. In the simplest case, N = |Kk|, but this need not be the case. This
way of de�ning sub-complices of a complex is also suitable for non-simplicial
complices.

6.4 A span program for simplicial homology

The setup of chain complices, cycles, boundaries, and homological equiva-
lence translates well to the language of span programs.

240 CHAPTER 6. SPAN PROGRAMS FOR BOUNDARY PROBLEMS

Let K be an oriented simplicial k-complex, and C be its chain complex.
Because span programs are substructure problems speci�ed by some input, let
x ∈ {0, 1}N specify a sub-complex K(x) ⊆ K in the manner of Section 6.3.4.
Then, for every (k − 1)-cycle |τ〉, we can de�ne the span program P =
(H,V , A, |τ〉), where

Hi,1 = span{|σ〉 : σ ∈ Kk, L(σ) = xi}, Hi,0 = span{|σ〉 : σ ∈ Kk, L(σ) = xi},

H =
⊕

i∈[N],b∈{0,1}

Hi,b = Ck, H(x) =
⊕
i∈[N]

Hi,xi =: Ck(x),

V = Ck−1 = CKk−1 , A = ∂k, |τ〉 ∈ Zk−1. (6.7)

Remember that a span program decides whether |τ〉 ∈ AΠH(x) = Im(∂k(x)),
where ∂k(x) denotes the restriction ∂k|Ck(x). In other words, this span pro-
gram decides whether the (k − 1)-cycle |τ〉 is null-homologous in C(x), or,
for the humans among us, whether |τ〉 is a boundary in K(x). Alternatively,
choosing as a target the di�erence |τ〉 = |γ〉 − |η〉, |γ〉, |η〉 ∈ Zk−1, our span
program decides whether γ and η are homologous to each other in K(x).
This is exactly what the st-connectivity span program decides.

Any sub-complex (for reference, think sub-manifold, sub-surface, sub-
graph, etc.) of Ck(x) that has |τ〉 as its boundary would be a positive witness.

Similarly, if |τ〉 /∈ Im(∂k(x)) then there must exist negative witnesses.
That is, there must exist elements |ω〉 ∈ V such that 〈ω|τ〉 6= 0 and 〈ω|∂k(x) =
0. And they do! Take, for example, |ω〉 = ΠIm(δk(x))⊥|τ〉. This vector must
be non-zero since |τ〉 /∈ Im(∂k(x)) and Im(∂k(x)) is a subspace of V .

By framing these simplicial homology problems in terms of span programs
we add new concepts to our vocabulary in the form of witnesses. It is not just
that a cycle is or is not in a given subspace, in the span program there exist
vectors in H(x) or V to witness that. Moreover, we can make a quantum
algorithm that decides it without explicitly �nding the witnesses.

Let us put what we just said in formal statements.

Claim 6. Let K be a k-complex and x ∈ {0, 1}N specify a sub-complex
K(x) ⊆ K. Let |τ〉 ∈ Zk−1. Then the span program P = (H,V , A, |τ〉)

6.4. A SPAN PROGRAM FOR SIMPLICIAL HOMOLOGY 241

de�ned in Eq. (6.7) exactly decides the function

fK,X,τ : X ⊆ {0, 1}N → {0, 1},

fK,X,τ (x) =

{
1 if |τ〉 null-homologous inC(x)

0 else.
(6.8)

By Theorem 45, any span program deciding a function f can be compiled
into a quantum algorithm that decides the same function with bounded error.
Thus, we obtain:

Theorem 133. Let fK,X,τ be the function de�ned in Eq. (6.8). Then, there
exists a quantum algorithm that computes f with bounded error.

Unfortunately, this problem is so general that we cannot make any state-
ments for the complexity of this algorithm. Every dimension requires its own
analysis, as we will shorty illustrate for dimension 1 (graphs) and 2 (surfaces).

6.4.1 st-connectivity revisited

And so we return to the origin, st-connectivity. In st-connectivity we have
a graph G = (E, V), two connected vertices s and t, and we would like
to know if s and t are still connected in a subgraph G(x) = (E(x), V) for
every x ∈ X.That is to say that s − t is the boundary of a subgraph of
G(x). We can picture G as a simplicial 1-complex, where the edges are
1-dimensional simplices (because they are tuples of two), and the vertices
are the 0-dimensional simplices. The st-connectivity span program maps
the space H = span{|e〉 : e ∈ E} to V = span{|v〉 : v ∈ V }, which are
nothing but the simplicial spaces of G. The map taking H to V is A =∑

(u,v)∈E(G) (|u〉 − |v〉) 〈u, v| = ∂1 and the target is the di�erence between
two vectors in ker(∂0) = V .

Following the reasoning of the previous section, this span program tests
if the 0-cycles s and t are homologically equivalent. As we have seen in
Example 6.3, the equivalence classes of H0(G(x)) are the components of
G(x), so the span program tests whether s and t are in the same component;
that is, whether s and t are connected.

The complexity of the span program algorithm deciding st-connectivity is
exactly characterized in Corollary 91 by the product of an e�ective resistance
and an e�ective capacitance.

242 CHAPTER 6. SPAN PROGRAMS FOR BOUNDARY PROBLEMS

6.5 A span program for homology of surfaces

A surface is a compact, connected subset of R3 that is locally 2-dimensional.
That is, for every point z in the surface, there exists a neighbourhood B of
z and a continuous, invertible map ϕ from B to either the disc {(x, y) ∈ R2 :
x2 +y2 ≤ 1} or the half-disc {(x, y) ∈ R2 : x2 +y2 ≤ 1, x ≥ 0}. A continuous,
invertible map between two topological spaces (read, surfaces, curves, points)
with a continuous invertible inverse is called a homeomorphism. A surface is
boundary-less if it has no points with a half-disc neighbourhood. Otherwise
the set of such points forms the boundary of the surface. Any connected
component of the boundary is homeomorphic to a S1, i.e. a circle.

Surfaces can be orientable or non-orientable. A non-orientable surface is
any surface that contains a sub-surface homeomorphic to the Möbius strip.
The projective plane, the Klein bottle and the Möbius strip itself are all non-
orientable surfaces. An orientable surface is a surface that does not contain
a Möbius strip. In the remainder of this section we will deal with orientable
surfaces.

All oriented surfaces without boundary are characterized up to homeo-
morphism by their genus, which is the maximum number of disjoint simple
cycles on the surface whose complement is connected. For visualization, these
are tori with multiple handles. The number of handles determining the genus
of the surface. Surfaces with boundaries are characterized by their genus and
the number of connected components of the boundary.

Figure 6.4: A triangulation of a torus.

Let Σ be a surface. A triangulation of Σ is a simplicial 2-complex K =
(F,E, V) consisting of triangles, also known as faces f ∈ F , edges e ∈ E

6.5. A SPAN PROGRAM FOR HOMOLOGY OF SURFACES 243

and vertices v ∈ V , together with a map that takes vertices of K to points
in Σ, edges to simple, disjoint paths, and faces to the disjoint subsets of Σ
homeomorphic to discs that are delimited by the edges of the face (or rather,
their paths in Σ). In a slight abuse of language, we will often use the term
triangulation to refer to the simplicial complex therein.

Observe that the subcomplex G = (E, V) ⊂ K with this same embedding
forms what is known as a graph embedding. There is an extensive literature
on surface embedded graphs [Cab10; Eri11; CVL11], in which graphs drawn
on a surface are used to study its topology.

We want to stress that a triangulation and a graph embedding are not
the same thing. In a graph embedding, the faces are merely the interior of
�minimal� cycles on the surface, whereas in a triangulation, the faces are part
of the complex, and it matters whether a triangle is present or not.

Figure 6.5: A 2-complex embedded on a cylinder. Notice that it is missing a
face.

When reduced to triangulations, the span program for simplicial ho-
mology described in Eq. (6.7) is the following. Let K = (F,E, V) be a
triangulation of a surface Σ, and let x ∈ {0, 1}|F | de�ne a sub-complex
K(x) = (F (x), E, V). Then the span program that decides if the target
cycle is null-homologous in the �rst homology group H1(K) is de�ned as
P = (H,V , A, |τ〉), where

H = CF , H(x) = CF (x),

V = CE, A = ∂2, |τ〉 ∈ Z1. (6.9)

Remember that the �rst homology group classi�es 1-cycles in the complex.
In other words, it classi�es the cycles in the edgeset of the triangulation, and
since the complex and the surface are homeomorphic to each other, it too
classi�es the cycles of the surface.

244 CHAPTER 6. SPAN PROGRAMS FOR BOUNDARY PROBLEMS

De�nition 134 (Contractible and separating cycles). A cycle σ ∈ Σ is
contractible if it is homotopous to a disc, that is, it can be continuously
deformed to a single point. These are sometimes referred to as trivial or
null-homotopic cycles. A cycle σ ∈ Σ is separating if it is the boundary of a
sub-surface of Σ. If Σ is boundary-less, then any separating cycle is actually
the boundary of two sub-surfaces.

Figure 6.6: Di�erent kinds of cycles in a genus-2 surface.

From these de�nitions we see that any contractible cycle is also sepa-
rating since it is the boundary of its interior disc. In Figure 6.6 we have a
genus-2 surface with three cycles depicted. The red cycle is contractible (and
separating), while the blue cycle is separating but not contractible. Indeed,
if we cut the double torus along the blue cycle we are left with two surfaces
not homeomorphic to a disc. Thus, these two cycles belong to the same ho-
mology class but cannot be continuously deformed to each other. They are
not homotopous. The black cycle is non-separating. Other non-separating
cycles would be the ones that go around the holes, the ones that go around

6.5. A SPAN PROGRAM FOR HOMOLOGY OF SURFACES 245

the contour of the double torus, the ones that go around the other handle or
the ones that go around both holes, perpendicular to the blue cycle.

All cycles within these families are clearly homologous, any pair de�nes
the boundary of a subsurface, and these families are pairwise non-homologous
(and only pairwise!).

In short, what we have seen is that for boundary-less surfaces, null cycles
in H1(K) are separating, and non-null cycles in H1(K) are non-separating
cycles. For surfaces with boundaries the situation is a little more complicated.
Null cycles are still the boundary of a subsurface, so they are still separating.
Non-separating cycles are still non-null. The di�erence now is that there
can be non-null, separating cycles. Indeed, the sub-surfaces that result from
cutting along a separating cycle have it as part of their boundary, but it need
not be the only element in the boundary. Hence, we see that the null cycles
are actually separating cycles that are the sole boundary of at least one of
the sub-surfaces they generate.

Regardless of a surface boundary, the triangulation is homeomorphic to
the surface, and so all these notions hold for the complex. Sub-surfaces are
equivalent to sub-complices formed by contiguous triangles and their edges
and vertices. Cycles on the surface are equivalent to cycles on the edge-set
of the sub-complex, and null-cycles, in particular, are rather simple. They
are simply the boundary of a subsurface. For a triangulated surface, let |Σ|
be the number of triangles in its corresponding complex.

Lemma 135. Let K = (F,E, V) be a triangulation of a surface and P =
(H,V , A, |τ〉) be the span program de�ned in Eq. (6.9). Let x de�ne a sub-
triangulation K(x) such that |τ〉 is null-homologous in K(x), then w+(x, P) ≤
‖∂−1

2 |τ〉‖ ≤ |F (x)|.

Proof. Let Σ(x) be the subsurface of Σ that is covered by F (x) by the homeo-
morphism of the triangulation. Since |τ〉 is null-homologous, it is separating,
so there exists a subsurface of Σ(x) that has (a cycle that maps to) |τ〉 as its
boundary, call it Στ . The image of that surface through the homeomorphism
must be a sum of contiguous, non-overlapping triangles in F (x). In other
words, there exists |w〉 =

∑d
i=1 |fi〉 for some fi ∈ F (x) and some d such that

A|w〉 = |τ〉. Since this is contained in F (x) and has no repeated triangles
(because it is a proper sub-surface) the number of terms is d = |Στ | ≤ |F (x)|,
and so w+(x, P) = d ≤ |F (x)|.

The reader would be excused to think that this proof sounded like a

246 CHAPTER 6. SPAN PROGRAMS FOR BOUNDARY PROBLEMS

Monthy Python sketch. The negative witnesses are a little bit more nuanced.

Lemma 136. Let K = (F,E, V) be a triangulation of an orientable surface
without boundaries. and P = (H,V , A, τ) be the span program de�ned in
Eq. (6.9). Let x de�ne a sub-triangulation K(x) such that |τ〉 is a self-
avoiding non-null cycle in K(x). If |τ〉 is also non-null in K, there exists
a non-zero negative witness |ω〉 with negative witness size ‖〈ω|A‖2 = 0, and
if |τ〉 is null-homologous in K, then w−(x, P) ≤ 2.

Proof. As we have already discussed, homology in surfaces with boundaries
is a bit more complicated than just separability. While it is true that null-
homologous cycles are separating, it is possible to have separating cycles that
are also not null-homologous. That means we have to split the proof in three
di�erent cases.

Case 1 We begin by proving the case where |τ〉 is non-separating in K(x).
Since K(x) de�nes a sub-surface of the surface Σ triangulated by K, |τ〉 is also
non-separating in K (hence, non-null). Consider the surface Σ̃ obtained by
cutting Σ along τ (see Figure 6.7). By assumption, this surface is connected
and has (at least) two boundaries corresponding to two copies of |τ〉. Pick
a vertex |v〉 in |τ〉. After the cut, |v〉 has two copies in Σ̃, call them |v〉 and
|v′〉. Since the surface is connected, there exists a shortest path p going from
|v〉 to |v′〉. This path is simple and so it turns into a simple directed cycle
|γ〉 in K that crosses |τ〉 exactly once.

By assumption the surface is orientable, so all cycles are what is known
as two-sided. That is, given a direction for a cycle, the notions of left and
right neighbours of the vertices in the cycle are well de�ned. Let |u〉 be a
vertex in a directed cycle |γ〉, the left neighbourhood of |u〉 is the set

Lγ(u) = {v ∈ V : |(u, v)〉 ∈ E, v is immediately to the left of u}. (6.10)

Let us assume that |γ〉 crosses |τ〉 from right to left through the vertex
|u∗〉. The negative witness is the state

|ω〉 =
∑
u∈γ

v∈Lγ(u)

|(u, v)〉. (6.11)

Clearly, |τ〉 has one edge, and only one, in Lγ(u∗), so 〈ω|τ〉 = 1. We claim
that this state is orthogonal to Im(A). Indeed, remember that every non-null

6.5. A SPAN PROGRAM FOR HOMOLOGY OF SURFACES 247

Full surface Cut surface

Figure 6.7: Example of a surface with a non-separating cycle |τ〉, before and
after cutting along |τ〉. The negative witness is the set of directed edges to
the left of the cycle (blue).

cycle σ is separating and splits Σ into two sub-surfaces. Let us consider a
walker that walks around the cycle γ and starts its walk in one of the two
sub-surfaces. Since the walker eventually goes back to the start, the number
of times γ crosses into the second sub-surface equals the number of times it
crosses back into the �rst one. The inner product 〈ω|σ〉 is then zero because
for every time σ crosses γ from left to right there is one crossing from right
to left. We conclude that 〈ω|A = 0.

In the other two cases, the cycle |τ〉 is separating but not null-homologous
in K(x). The di�erence will be the behaviour of |τ〉 in K.

248 CHAPTER 6. SPAN PROGRAMS FOR BOUNDARY PROBLEMS

Case 2 First we deal with the case that |τ〉 is separating in K but not
null-homologous. In this situation we have that cutting K along |τ〉 splits
the surface Σ in two sub-surfaces, Σ1 and Σ2. However, since |τ〉 is non-null
in K, |τ〉 cannot be the only element of the boundary of either sub-surface,
see Fig. 6.8 for an example. Let |σ1〉 be a cycle in the boundary of Σ1 and
|σ2〉 be a cycle in the boundary of Σ2. Observe that |σ1〉 and |σ2〉 can overlap
with |τ〉, but there must exist at least one edge in |σ1〉 that is not in |τ〉,
because |τ〉 is self-avoiding. In fact, we can assume that there exists a vertex
|u〉 in σ1 that is not adjacent to |τ〉 because we can always subdivide K using
barycentric subdivision, which would split the edge that is not in |τ〉 into two
edges with a vertex in between, all not in |τ〉. Since this edge sits on σ1 but
not in |τ〉, it must be in Σ1 but not in Σ2 The same is true for |σ2〉. Let u, v
be vertices in |σ1〉 and |σ2〉 not adjacent to |τ〉. Then the shortest path |p〉
from u to v must be a simple path that crosses |τ〉 an odd number of times.

Figure 6.8: |σ1〉 and |σ2〉 are both part of the boundary of Σ. In this case |τ〉
is separating but not null-homologous in K.

Just like we did for the cycle |γ〉 in the previous case, there exist left and
right neighbourhoods of |p〉 so we de�ne the negative witness as

|ω〉 =
∑
u∈p

v∈Lp(u)

|(u, v)〉. (6.12)

Now, 〈ω|τ〉 is the number of times |τ〉 crosses |p〉 from right to left minus
the times it crosses from left to right, and since the number of crossings is
odd, we conclude that 〈ω|τ〉 = ±1. We can assume that it is actually 1,

6.5. A SPAN PROGRAM FOR HOMOLOGY OF SURFACES 249

otherwise we pick −|ω〉 as negative witness and proceed on to computing
〈ω|A. Let |σ〉 be any null-homologous cycle in K, that is |σ〉 ∈ Im(A). This
cycle necessarily cuts Σ into two sub-surfaces, and, |σ〉 is the sole boundary
of one of such sub-surfaces. That means that both |σ1〉 and |σ2〉, which are
elements in the boundary of Σ, are in the same sub-surface. Therefore, if the
path p crosses the cycle |σ〉 it must do so an even number of times, for both
ends are on the same side of |σ〉. This means that 〈ω|σ〉 = 0. We conclude
that 〈ω|A = 0.

Case 3 Last but not least, we tackle the case where |τ〉 is separating inK(x)
and null-homologous in K. Since |τ〉 is null-homologous in K, it separates
Σ into two sub-surfaces Σ1 and Σ2 and it is the sole boundary of at least
one of them, say, Σ1. But |τ〉 is also separating and non-null in K(x), so
cutting K(x) along |τ〉 results in two disconnected sub-surfaces, Σ1(x) ⊆ Σ1

and Σ2(x) ⊆ Σ2, that have |τ〉 as part of their boundary. Observe that
|τ〉 cannot be all of their boundary, otherwise |τ〉 would be null-homologous
in K(x). Hence, there must exist at least two cycles |σ1〉 and |σ2〉 in the
boundaries of Σ1(x) and Σ2(x), and, at least, |σ1〉 is not in the boundary of
Σ1. In other words, Σ1(x) has a new hole, see Figure 6.9 for an example.

Figure 6.9: The target |τ〉 divides Σ into two subsurfaces and is actually the
boundary of one, Σ1. The cycle |σ1〉 is a boundary in K(x) but not in K, and
the green triangle is the only face in K that is not orthogonal to 〈ω|A.

Following exactly the same construction as before, we take a path p from
|σ1〉 to |σ2〉 that crosses |τ〉 an odd number of times. The state |ω〉 from
Eq. (6.12) is still a witness since any null-homologous cycle in K(x) crosses

250 CHAPTER 6. SPAN PROGRAMS FOR BOUNDARY PROBLEMS

the path an even number of times. Hence 〈ω|AΠH(x) = 0. Let us compute
the witness size.

‖〈ω|A‖2 =
∑
f∈F

‖〈ω|A|f〉‖2. (6.13)

For a face |f〉 = |(u, v, w)〉, let |c(f)〉 := A|f〉 = |(u, v)〉 + |(v, w)〉 +
|(w, u)〉 be its boundary. For every |f〉 ∈ K(x), 〈ω|c(f)〉 = 0 since |c(f)〉 is
contractible, and thus, null-homologous. Furthermore, if |f〉 has two vertices
in p and the third one is to the left of p, then necessarily 〈ω|c(f)〉 = 0, and if
|f〉 = |(u, v, w)〉 has one vertex u in p which is neither the �rst or last, then
〈ω|c(f)〉 = 〈ω|u, v〉 − 〈ω|w, u〉 = 0. It follows that any face not orthogonal
to 〈ω|A must have one vertex in p that is either the �rst or the last one and
only one edge incident on |ω〉. Finally, we recall that by assumption, |σ1〉
is a null cycle in Σ1, so the interior of |σ1〉 must be covered by a subsurface
of K. Then it must be the case that there exists a face in K adjacent to
|σ1〉 that has overlap 1 with 〈ω|A. If, in addition, |σ2〉 is also not in the
boundary of Σ2, then there can be another triangle |f〉 adjacent to p such
that 〈ω|A|f〉 = 1. We conclude that

‖〈ω|A‖2 =
∑
f∈F

‖〈ω|A|c(f)〉‖2 ≤ 2. (6.14)

The fact that in this last lemma we have w−(x) = 0 for two of the
three cases should immediately raise an eyebrow. It would seem that the
formalism in Chapter 3 is not equipped to deal with instances that have
non-zero witnesses with zero witness size. Indeed, if that were the case,
Ref. [ACK20] implies that the query complexity of deciding those instances
would be 0, which seems rather odd. This seemingly impossible result is
explained by the fact that in those two cases, the function fK,X,τ decided by
the surface homology span program is constant. More importantly, we can
check that it is so without making any queries to x. That is because in both
cases |τ〉 is non-null in K(x) but also in K, but that implies that |τ〉 must
be non-null in K(x) ⊂ K for all x. We discuss why have bothered to �nd
negative witnesses to a constant function in Section 6.6.

Together, Lemma 135 and Lemma 136 prove the following theorem.

6.6. DISCUSSION 251

Theorem 137. Let K = (F,E, V) be a triangulation of an orientable surface
Σ, let |τ〉 be a self-avoiding 1-cycle in K, let X ⊆ {0, 1}N , and let fK,X,τ be
de�ned as in Eq. (6.8). Then, there exists a quantum algorithm that decides
fK,X,τ with bounded error making O(

√
n+ g) queries, where n = |V | and g

is the genus of Σ.

Proof. By Lemma 135, for every x ∈ f−1
K,X,τ (1), we have that w+(x) ≤ |F (x)|.

Hence, we bound the positive complexity as W+ ≤ |F |. By Euler's formula
|V | − |E|+ |F |+ 2g = 2 (see, e.g. [MT01]), so we have that |F | = O(|V |+ g)
and |E| = O(|V |+ g). We conclude that W+ = O(|V |+ g).

By Lemma 136, the negative witness size is w−(x) ≤ 2 for all x ∈
f−1
K,X,τ (0). We conclude that W− = O(1). By Theorem 45 the result fol-
lows.

6.6 Discussion

In this chapter we have seen the st-connectivity problem as a particular
instance of a boundary problem. We have then proposed modi�cations of the
st-connectivity span program for other boundaries, arriving at span programs
for the AND and OR of sitj-connG,X , for some given pairs of vertices si, tj.

One such example was already discussed in Section 5.6, where we used the
span program for

∧
i sti-connG,X to solve the problem of graph connectivity.

The same span program can be repurposed to simply compute the AND
of k bits (or the OR). Indeed, consider the star graph G with vertex set
V (G) = {s, v1, . . . , vk} and edges E(G) = {(s, vi)}ki=1. Let x ∈ {0, 1}N
determine a subgraph G(x) in the usual way, i.e. each edge is included if
its corresponding literal xi = 1. Clearly this graph is connected if and only
if
∧k
i=1 xi = 1. Following the analysis in Section 5.6, one arrives at W− =

O(k2), and W+ = (1/k), and so, this span program computes ANDk with
query complexity O

(√
k
)
. Since the graph is so simple, the time complexity

is the same up to logarithmic factors.
In [JK17], the authors give a way to encode AND/OR formulas in terms

of st-connectivity problems on graphs. The graph that encodes ANDk in
their formulation is a single path of length k with the end-points identi�ed
as s and t. Naturally, that graph also decides ANDk with query complexity
O
(√

k
)
. The di�erence, is that our graph for computing ANDk has diam-

eter 1 instead of k. It remains an open question whether these new span

252 CHAPTER 6. SPAN PROGRAMS FOR BOUNDARY PROBLEMS

programs for AND and OR of sitj-connG,X can be used to map formula
evaluation problems to boundary problems on graphs with small diameter,
and most importantly, whether that would be a useful thing to do.

We have also discussed extensively simplicial homology and argued that
span programs are a natural way of encoding questions about simplicial ho-
mology. A prime example of a span program for simplicial homology is the
st-connectivity span program. In Section 6.5 we give a second example, a
span program that decides whether a cycle on a surface is homologically null
on an input-dependent subsurface. The role of cycle homology on surfaces
is often a subject of study in the classical literature on surface-embedded
graphs [Eri11; Cab10; CVL11; CEN09]. However, the focus in those papers
has been to �nd short non-trivial cycles on a surface, rather than deciding
whether a cycle is null-homologous on a sub-surface.

In some ways, the function we have constructed is a very arti�cial one. A
big open question, then, is to �nd a utility for the span program algorithm
implied by Theorem 137. Even if there is none, the algorithm serves us to
prove a point, i.e. that span programs can be used to construct quantum
algorithms for topology problems. In this particular case, we have a strong
suspicion that the quantum algorithm from Theorem 137 o�ers a quadratic
speed-up over any classical algorithm deciding the same function. That is
because for any separating cycle |τ〉 on a triangulation K, a single missing
triangle on the surface of K(x) is enough to make |τ〉 non-null in K(x).
Therefore, any classical algorithm must at least check that all the triangles
interior to |τ〉 in K are still present in K(x). In the worst case, the sub-surface
of K delimited by |τ〉 has size O(n + g), which is quadratically bigger than
O (
√
n+ g), our span program algorithm's query complexity.

As a last remark, we want to comment on why we provided negative
witnesses for the cases 1 and 2 in Lemma 136, where the function fK,X,τ is
constant.

There are two reasons for this. First, in computational geometry one
is not typically given a triangulation and an oracle to a sub-triangulation.
Rather, the initial promise is simply that one is given a triangulation of a
surface with f faces, m edges and n vertices. In the query oracle model, that
would correspond to having K be the complete simplicial 2-complex on n
vertices (which is not homeomorphic to any surface) with the promise that
for every x, K(x) is a triangulation of a surface. With this promise on K and
x, and the additional promise that |τ〉 is a cycle on K(x), the witnesses we

6.6. DISCUSSION 253

have constructed in Lemma 135 and Lemma 136, would still be witnesses,
which is why we computed them in the �rst place, but the negative witness
sizes would be non-zero. Analysing the complexity of deciding fK,X,τ with
these promises remains an open problem.

Second, we believe that understanding what constitutes a negative wit-
ness for a target |τ〉 composed of a single cycle will help us �nd witnesses
for targets of the form |τ〉 = |γ〉 − |η〉, where |γ〉, |η〉 are non-separating
cycles on K(x). In some sense this is the more natural generalization of
st-connectivity, where every vertex by itself is non-null, but a combination
|s〉 − |t〉 can be null in H0, the zero-th homology group of the graph. For
example, Lemma 136 tells us that in a simple torus, any meridian de�nes
a witness for any longitude. In higher genus, we can argue that if |γ〉 and
|η〉 are cycles around di�erent �handles�, then there must exist witnesses for
one of the cycles that are orthogonal to the other cycle. Formalizing this
argument is also an open problem.

254 CHAPTER 6. SPAN PROGRAMS FOR BOUNDARY PROBLEMS

Bibliography

[ABK16] Scott Aaronson, Shalev Ben-David, and Robin Kothari. Separations in

query complexity using cheat sheets. Proceedings of the forty-eighth an-
nual ACM symposium on Theory of Computing (2016). doi: 10 . 1145/
2897518.2897644.

[Abr07] Nair Abreu. Old and new results on algebraic connectivity. Linear Algebra
Appl. 423 (2007), pp. 23�53.

[ACK20] Noel T. Anderson, Jay-U Chung, and Shelby Kimmel. Leveraging Un-

known Structure in Quantum Query Algorithms. 2020. arXiv: 2012.01276
[quant-ph].

[Amb02] Andris Ambainis. Quantum Lower Bounds by Quantum Arguments. Jour-
nal of Computer and System Sciences 64, 4 (2002), pp. 750�767. doi:
https://doi.org/10.1006/jcss.2002.1826.

[Amb07] Andris Ambainis. Quantum walk algorithm for element distinctness. SIAM
Journal on Computing 37, 1 (2007), pp. 210�239. doi: 10.1137/S0097539705447311.

[Amb10] Andris Ambainis. Quantum search with variable times. Theory of Comput-
ing Systems 47, 3 (2010). doi: 10.1007/s00224-009-9219-1.

[Ari16] Agnis 	Arin
,
². Span-program-based quantum algorithms for graph bipartite-

ness and connectivity. Mathematical and Engineering Methods in Com-
puter Science (MEMICS 2015). Ed. by Jan Kofro¬ and Tomá² Vojnar.
Vol. 9548. Lecture Notes in Computer Science. Springer International Pub-
lishing, 2016, pp. 35�41. isbn: 978-3-319-29817-7. doi: 10.1007/978-3-319-
29817-7_4.

[Bel12a] Aleksandrs Belovs. Learning-graph-based quantum algorithm for k-distinctness.
Proceedings of the 53rd Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS 2012). 2012, pp. 207�216. doi: 10.1109/FOCS.2012.
18.

[Bel12b] Aleksandrs Belovs. Span programs for functions with constant-sized 1-certi�cates.
Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of
Computing. STOC '12. New York, New York, USA: Association for Com-
puting Machinery, 2012, pp. 77�84. isbn: 9781450312455. doi: 10.1145/
2213977.2213985.

255

https://doi.org/10.1145/2897518.2897644
https://doi.org/10.1145/2897518.2897644
https://arxiv.org/abs/2012.01276
https://arxiv.org/abs/2012.01276
https://doi.org/https://doi.org/10.1006/jcss.2002.1826
https://doi.org/10.1137/S0097539705447311
https://doi.org/10.1007/s00224-009-9219-1
https://doi.org/10.1007/978-3-319-29817-7_4
https://doi.org/10.1007/978-3-319-29817-7_4
https://doi.org/10.1109/FOCS.2012.18
https://doi.org/10.1109/FOCS.2012.18
https://doi.org/10.1145/2213977.2213985
https://doi.org/10.1145/2213977.2213985

256 BIBLIOGRAPHY

[BHM+02] Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. Quantum
amplitude ampli�cation and estimation. Contemporary Mathematics 305
(2002), pp. 53�74.

[Bol13] Béla Bollobás. Modern graph theory. Vol. 184. Springer Science & Business
Media, 2013.

[BR12] Aleksandrs Belovs and Ben W. Reichardt. Span programs and quantum

algorithms for st-connectivity and claw detection. Algorithms � ESA 2012.
Ed. by Leah Epstein and Paolo Ferragina. Vol. 7501. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 193�204. isbn: 978-3-642-33090-2. doi: 10 .1007/978- 3 - 642 - 33090-
2_18.

[BT20] Salman Beigi and Leila Taghavi. Quantum Speedup Based on Classical

Decision Trees. Quantum 4, 241 (2020). doi: 10.22331/q-2020-03-02-241.

[Cab10] Sergio Cabello. Finding shortest contractible and shortest separating cycles
in embedded graphs. ACM Transactions on Algorithms (TALG) 6, 2 (2010),
pp. 1�18.

[CEM+98] Richard Cleve, Arthur Ekert, Chiara Macchiavello, and Michele Mosca.
Quantum algorithms revisited. Proceedings of the Royal Society A: Math-
ematical, Physical and Engineering Sciences 454, 1969 (1998), pp. 339�
354.

[CEN09] Erin W. Chambers, Je� Erickson, and Amir Nayyeri. Minimum Cuts and

Shortest Homologous Cycles. Proceedings of the Twenty-Fifth Annual Sym-
posium on Computational Geometry. SCG '09. New York, NY, USA: Asso-
ciation for Computing Machinery, 2009, pp. 377�385. isbn: 9781605585017.
url: https://doi.org/10.1145/1542362.1542426.

[Chi21] Andrew M. Childs. Lecture notes on quantum algorithms. University of
Maryland, 2021. url: http://www.cs.umd.edu/~amchilds/qa/qa.pdf.

[Chu97] Fan RK Chung. Spectral graph theory. 92. American Mathematical Soc.,
1997.

[CJO+20] Arjan Cornelissen, Stacey Je�ery, Maris Ozols, and Alvaro Piedra�ta. Span
Programs and Quantum Time Complexity. 45th International Symposium
on Mathematical Foundations of Computer Science (MFCS 2020). Ed.
by Javier Esparza and Daniel Krá©. Vol. 170. Leibniz International Pro-
ceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl�
Leibniz-Zentrum für Informatik, 2020, 26:1�26:14. isbn: 978-3-95977-159-7.
doi: 10.4230/LIPIcs.MFCS.2020.26.

[CKS17] Andrew M Childs, Robin Kothari, and Rolando D Somma. Quantum al-

gorithm for systems of linear equations with exponentially improved depen-

dence on precision. SIAM Journal on Computing 46, 6 (2017), pp. 1920�
1950.

https://doi.org/10.1007/978-3-642-33090-2_18
https://doi.org/10.1007/978-3-642-33090-2_18
https://doi.org/10.22331/q-2020-03-02-241
https://doi.org/10.1145/1542362.1542426
http://www.cs.umd.edu/~amchilds/qa/qa.pdf
https://doi.org/10.4230/LIPIcs.MFCS.2020.26

BIBLIOGRAPHY 257

[CMB18] Chris Cade, Ashley Montanaro, and Aleksandrs Belovs. Time and space

e�cient quantum algorithms for detecting cycles and testing bipartiteness.
Quantum Information and Computation 18 (2018), pp. 0018�0050. doi:
10.26421/QIC18.1-2.

[CRR+96] Ashok K. Chandra, Prabhakar Raghavan, Walter L. Ruzzo, Roman Smolen-
sky, and Prasoon Tiwari. The Electrical Resistance of a Graph Captures

its Commute and Cover Times. Computational Complexity 6, 4 (1996),
pp. 312�340.

[CVL11] Sergio Cabello, Eric Colin de Verdiere, and Francis Lazarus. Finding cycles
with topological properties in embedded graphs. SIAM Journal on Discrete
Mathematics 25, 4 (2011), pp. 1600�1614.

[deW19] Ronald deWolf. Quantum computing: Lecture notes (2019). ArXiv: 1907.
09415 (quant-ph).

[DHH+06] Christoph Dürr, Mark Heiligman, Peter Høyer, and Mehdi Mhalla. Quan-
tum query complexity of some graph problems. SIAM Journal on Computing
35, 6 (2006), pp. 1310�1328.

[DM68] Patrick H. Doyle and Daniel A. Moran. A short proof that compact 2-

manifolds can be triangulated. Inventiones mathematicae 5, 2 (1968), pp. 160�
162.

[Eri11] Je� Erickson. Shortest non-trivial cycles in directed surface graphs. Pro-
ceedings of the twenty-seventh annual symposium on Computational ge-
ometry. 2011, pp. 236�243.

[Fie89] Miroslav Fiedler. Laplacian of graphs and algebraic connectivity. Banach
Center Publications 25, 1 (1989), pp. 57�70.

[Gro96] Lov K Grover. A fast quantum mechanical algorithm for database search.
Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing. 1996, pp. 212�219.

[GT01] Jonathan L Gross and Thomas W Tucker. Topological graph theory. Courier
Corporation, 2001.

[HLS07] Peter Hoyer, Troy Lee, and Robert Spalek. Negative weights make adver-

saries stronger. Proceedings of the thirty-ninth annual ACM symposium on
Theory of computing - STOC '07 (2007). doi: 10.1145/1250790.1250867.

[HLW06] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and
their applications. Bulletin of the American Mathematical Society 43, 4
(2006), pp. 439�561.

[IJ19] Tsuyoshi Ito and Stacey Je�ery. Approximate span programs. Algorithmica
81, 6 (2019), pp. 2158�2195. doi: 10.1007/s00453-018-0527-1.

[Jef14] Stacey Je�ery. Frameworks for quantum algorithms. PhD thesis. University
of Waterloo, 2014. url: https://uwspace.uwaterloo.ca/handle/10012/8710.

https://doi.org/10.26421/QIC18.1-2
1907.09415
1907.09415
https://doi.org/10.1145/1250790.1250867
https://doi.org/10.1007/s00453-018-0527-1
https://uwspace.uwaterloo.ca/handle/10012/8710

258 BIBLIOGRAPHY

[Jef20] Stacey Je�ery. Span programs and quantum space complexity. 11th Inno-
vations in Theoretical Computer Science Conference (ITCS 2020). Ed. by
Thomas Vidick. Vol. 151. Leibniz International Proceedings in Informat-
ics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl�Leibniz-Zentrum fuer
Informatik, 2020, 4:1�4:37. isbn: 978-3-95977-134-4. doi: 10.4230/LIPIcs.
ITCS.2020.4.

[JJK+18] Michael Jarret, Stacey Je�ery, Shelby Kimmel, and Alvaro Piedra�ta.Quan-
tum algorithms for connectivity and related problems. 26th Annual Euro-
pean Symposium on Algorithms (ESA 2018). Ed. by Yossi Azar, Hannah
Bast, and Grzegorz Herman. Vol. 112. Leibniz International Proceedings
in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl�Leibniz-
Zentrum fuer Informatik, 2018, 49:1�49:13. isbn: 978-3-95977-081-1. doi:
10.4230/LIPIcs.ESA.2018.49.

[JK09] Rahul Jain and Hartmut Klauck. The Partition Bound for Classical Com-

munication Complexity and Query Complexity. 2009. arXiv: 0910 . 4266
[cs.CC].

[JK17] Stacey Je�ery and Shelby Kimmel. Quantum algorithms for graph connec-

tivity and formula evaluation. Quantum 1 (2017), p. 26. doi: 10.22331/q-
2017-08-17-26.

[Kit95] A Yu Kitaev. Quantum measurements and the Abelian stabilizer problem.
arXiv preprint quant-ph/9511026 (1995).

[KW93] Mauricio Karchmer and Avi Wigderson. On span programs. Proceedings
of the 8th Annual IEEE Conference on Structure in Complexity Theory.
1993, pp. 102�111. doi: 10.1109/SCT.1993.336536.

[LMR+11] Troy Lee, Rajat Mittal, Ben W Reichardt, Robert �palek, and Mario
Szegedy. Quantum query complexity of state conversion. 2011 IEEE 52nd
Annual Symposium on Foundations of Computer Science. IEEE. 2011,
pp. 344�353.

[Moi13] Edwin EMoise.Geometric topology in dimensions 2 and 3. Vol. 47. Springer
Science & Business Media, 2013.

[MT01] Bojan Mohar and Carsten Thomassen. Graphs on surfaces. Vol. 16. Johns
Hopkins University Press Baltimore, 2001.

[NC02] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum

information. 2002.

[NT95] Noam Nisan and Amnon Ta-Shma. Symmetric Logspace is Closed Under

Complement. Proceedings of the Twenty-seventh Annual ACM Symposium
on Theory of Computing (STOC 1995). ACM, 1995, pp. 140�146. isbn: 0-
89791-718-9. doi: 10.1145/225058.225101.

[PP20] Subhasree Patro and Alvaro Piedra�ta. An Overview of Quantum Algo-

rithms: From Quantum Supremacy to Shor Factorization. 2020 IEEE In-
ternational Symposium on Circuits and Systems (ISCAS). 2020, pp. 1�5.
doi: 10.1109/ISCAS45731.2020.9180793.

https://doi.org/10.4230/LIPIcs.ITCS.2020.4
https://doi.org/10.4230/LIPIcs.ITCS.2020.4
https://doi.org/10.4230/LIPIcs.ESA.2018.49
https://arxiv.org/abs/0910.4266
https://arxiv.org/abs/0910.4266
https://doi.org/10.22331/q-2017-08-17-26
https://doi.org/10.22331/q-2017-08-17-26
https://doi.org/10.1109/SCT.1993.336536
https://doi.org/10.1145/225058.225101
https://doi.org/10.1109/ISCAS45731.2020.9180793

BIBLIOGRAPHY 259

[PR17] Álvaro Piedra�ta and Joseph M. Renes. Reliable Channel-Adapted Error

Correction: Bacon-Shor Code Recovery from Amplitude Damping. Phys.
Rev. Lett. 119 (25 2017), p. 250501. doi: 10 . 1103 /PhysRevLett . 119 .
250501.

[Rei09] Ben W. Reichardt. Span programs and quantum query complexity: The gen-

eral adversary bound is nearly tight for every Boolean function. Proceedings
of the 50th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2009). 2009, pp. 544�551. doi: 10.1109/FOCS.2009.55.

[Rei10] Ben W. Reichardt. Span programs and quantum query algorithms. Elec-
tronic Colloquium on Computational Complexity (ECCC) 17 (2010), p. 110.

[R�12] Ben W. Reichardt and Robert �palek. Span-program-based quantum algo-

rithm for evaluating formulas. Theory of Computing 8, 13 (2012), pp. 291�
319. doi: 10.4086/toc.2012.v008a013.

[San08] Miklos Santha. Quantum walk based search algorithms. International Con-
ference on Theory and Applications of Models of Computation. Springer.
2008, pp. 31�46.

[Sze04] Mario Szegedy. Quantum speed-up of Markov chain based algorithms. 45th
Annual IEEE Symposium on Foundations of Computer Science. 2004,
pp. 32�41.

[WY20] QishengWang and Mingsheng Ying.Quantum random access stored-program

machines. 2020. eprint: 2003.03514.

https://doi.org/10.1103/PhysRevLett.119.250501
https://doi.org/10.1103/PhysRevLett.119.250501
https://doi.org/10.1109/FOCS.2009.55
https://doi.org/10.4086/toc.2012.v008a013
2003.03514

260 BIBLIOGRAPHY

Abstract

This dissertation is an in-depth discussion of the theory and applications of
span programs. These objects, �rst introduced in the context of classical
counting branching programs by Karchmer and Wigderson, are a model of
computation (i.e. they encode 2-output functions) and can be compiled into
quantum query algorithms. Moreover, it was known before our work that the
resulting span-program-based algorithms can be query and space optimal.
The thesis is divided in three parts. Part I contains the introduction and
mathematical preliminaries.

In Part II, we discuss the theory of span programs, meaning that we
study the features and structure that are common to all � or at least large
families � of span programs. Chapter 3 begins with a review of two exist-
ing formulations of span programs before presenting a new formulation that
contains and generalizes the previous two. The second part of the chapter
presents a plethora of di�erent quantum algorithms that can be compiled
out of a span program. Special emphasis is put on the �exibility of span
programs for the purposes of algorithm design, a feature that has often been
underappreciated. In Chapter 4 we study a correspondence between quan-
tum query algorithms and span programs. We conclude that for a broad
category of functions, an optimal time, query and space span-program-based
algorithm always exists, and perhaps more importantly, that all these �avours
of optimality are simultaneously achievable.

In Part III we use span programs to design quantum algorithms. In
Chapter 5, we use the st-connectivity span program to design quantum al-
gorithms for graph connectivity and other related graph problems, some of
which are not decision problems. We end the dissertation in Chapter 6 with
a discussion of the st-connectivity problem as a boundary problem and a par-
ticular instance of the simplicial homology problem and give span programs
(and thus, quantum algorithms) for a few instances of this problem.

Nederlandse samenvatting

Dit proefschrift biedt een diepgaande blik op de theorie en toepassingen
van omhulselprogramma's. Deze objecten, die voor het eerst zijn geïntro-
duceerd in de context van klassieke forktellingprogramma's door Karchmer
en Wigderson, vormen een rekenmodel (d.w.z. ze coderen 2-outputfuncties)
en kunnen worden gecompileerd naar kwantumquery-algoritmen. Bovendien
was het al voor ons werk bekend dat de resulterende op omhulselprogramma's
gebaseerde algoritmen zowel query- als ruimteoptimaal kunnen zijn. Het
proefschrift is verdeeld in drie delen. Deel I bevat de inleiding en wiskundige
voorbereidingen.

InDeel II bespreken we de theorie van omhulselprogramma's, wat betekent
dat we de kenmerken en de structuur bestuderen die alle omhulselprogramma's
� of tenminste grote families daarvan � gemeen hebben. Het hoofdstuk be-
gint met een bespreking van twee bestaande formuleringen van omhulselpro-
gramma's alvorens een nieuwe formulering voor te stellen die de vorige twee
bevat en veralgemeniseert. Het tweede deel van het hoofdstuk presenteert
een overvloed aan verschillende kwantumalgoritmen die uit een omhulselpro-
gramma's kunnen worden gecompileerd. Speciale nadruk wordt gelegd op de
�exibiliteit van omhulselprogramma's voor het ontwerpen van algoritmen,
een eigenschap die vaak ondergewaardeerd wordt. In Hoofdstuk 4 bestud-
eren we een overeenkomst tussen kwantumqueryalgoritmen en omhulselpro-
gramma's. We concluderen dat er voor een breed assortiment van functies
altijd een tijd-, query- en ruimteoptimaal algoritme bestaat dat is ontstaan
uit een omhulselprogramma's, en misschien nog wel belangrijker, dat al deze
soorten optimaliteit gelijktijdig haalbaar zijn.

In Deel III gebruiken we omhulselprogramma's om kwantumalgorit-
men te ontwerpen. In Hoofdstuk 5 gebruiken we het bereikbaarheidsprob-
leemomhulselprogramma om kwantumalgoritmen te ontwerpen voor graaf-
samenhangendheid en andere verwante graafproblemen, waarvan sommige
geen beslissingsproblemen zijn. We eindigen het proefschrift in Hoofdstuk 6
met een bespreking van het bereikbaarheidsprobleem als een grensprobleem
en een bijzonder voorbeeld van het simpliciale homologieprobleem en we
geven omhulselprogramma's (en dus kwantumalgoritmen) voor enkele voor-
beelden van dit probleem.

Acknowledgements

First, I want to thank my advisor, Stacey Je�ery, and my promotor, Harry
Buhrman, for giving me the chance of doing a PhD at QuSoft. Fact is, when
I started, I was but a naïve physicist with a background in quantum informa-
tion. I knew virtually nothing of theoretical computer science, complexity
theory, or classical algorithms, and yet I was certain I wanted to research
quantum algorithms for my PhD.

You believed in me and patiently introduced me to the world of complex-
ity theory, CS, algorithms, and most importantly, span programs. Special
thanks go to Stacey. I was your �st student, which is �ne because you were
my �rst supervisor, and I know you put a lot of hard work into mentoring
me. You took me under your wing and then encouraged me to go out and
�nd my own way. This thesis is the result of the trust you put in me.

I also want to thank my co-authors, Maris, Michael, Shelby, Arjan, and
again, Stacey. All my best ideas came in one way or another out of a con-
versation with one of you. Working with you made the work fun and kept
me motivated to pull through the inevitable ugly parts of writing a thesis.

I want to thank my thesis committee members for agreeing to be part of
the committee and read this 250-page hunk of chunk. In particular Ronald,
whose door was always open for questions. CWI is full to the brim with
learned men and women. Ronald, however, is a rara avis, a renaissance man.
If there is any consistency in hyphenation throughout this document it is due
entirely to him. All remaining inconsistencies, of course, are my fault.

As high praise and gratitude goes to Stacey as it must go to my o�ce-
mate, co-author and friend, Arjan Cornelissen. I could not have started my
PhD without her, and I would not have �nished without you. I cherish our
collaboration above all the things I did at QuSoft. Getting you interested
in span programs is, without a doubt, my biggest contribution to their study.

Now, I have a reputation to maintain, so before we get sentimental, I
want to shift gears and express my gratitude for my colleagues at CWI. In
no special order I want to thank András, Yfke, Koen, Tom, Freek, Joris,
Jana, Srini, Mathys, Ralph, Jeroen, the Chris's, the Sebastians, Ido, Simon,
Alex, Michael, Yinan, Yan-Lin and Sander. I thoroughly enjoyed taking your
ELO. Big thank you to the support sta�, Susanne, Doutzen and Victor. Your
tireless work makes a big di�erence. I also want to thank all the new people

I barely got to meet due to the circumstances of the pandemic. You know
who you are. Particularly Maarten. I have a lot of faith in you, son.

Special mention to Jan, Jonas (another renaissance man), Esteban, Wes-
sel, Willem Jan, Brinn, Joran and Isabella. Playing with you has been a
�xed point of joy and merriment, especially during the pandemic, and I want
you to know that if (more like, when) I killed or maimed your characters, I
did it out of love.

To my o�ce mates in the peanut-butter room, Farrokh, Harold, Arjan
and Subha, a toast! We had a lot of fun, perhaps too much. I apologize for
all the pranking and time I made you waste with my shenanigans. Subha,
our after-lunch discussions were always a delight. To Farrokh, Harold and
Arjan, I bequeath unto you the stewardship of the old ways of foosball. I
taught you almost everything I know the way I myself was taught. Through
yelling, sarcasm and repeated humiliating defeat. I know you will make me
proud.

Last but not least, I want to thank my friends and family. ½Luis and
Aitor, hasta la victoria siempre! Guillem and Joana, per casi quatre anys
heu estat els meus millors amics. Gràcies per adopter-me i formar part de la
sit-com que es la meva vida.

Gracias a Isa por escucharme y apoyarme. Bedankt, Yente, voor de dans.
Thanks Leen, Dilan, Fanny and Sarai. Tack, Clara, vi ses igen. Nuala, here's
looking at you, kiddo.

Gracias a mis abuelos, tíos y primos. A Nico por no darme la razón
cuando no la tengo y a Gabi por no dársela a él. Gracias a mis padres, por
toda una vida detrás de mí. Esta tesis es la culminación de tres décadas de
esfuerzo y cariño.

And to you, whoever you may be, thank you for reading these lines. I
hope you enjoyed this thesis, I promise I won't do it again.

Titles in the ILLC Dissertation Series:

ILLC DS-2016-01: Ivano A. Ciardelli
Questions in Logic

ILLC DS-2016-02: Zoé Christo�
Dynamic Logics of Networks: Information Flow and the Spread of Opinion

ILLC DS-2016-03: Fleur Leonie Bouwer
What do we need to hear a beat? The in�uence of attention, musical abilities,

and accents on the perception of metrical rhythm

ILLC DS-2016-04: Johannes Marti
Interpreting Linguistic Behavior with Possible World Models

ILLC DS-2016-05: Phong Lê
Learning Vector Representations for Sentences - The Recursive Deep Learning

Approach

ILLC DS-2016-06: Gideon Maillette de Buy Wenniger
Aligning the Foundations of Hierarchical Statistical Machine Translation

ILLC DS-2016-07: Andreas van Cranenburgh
Rich Statistical Parsing and Literary Language

ILLC DS-2016-08: Florian Speelman
Position-based Quantum Cryptography and Catalytic Computation

ILLC DS-2016-09: Teresa Piovesan
Quantum entanglement: insights via graph parameters and conic optimization

ILLC DS-2016-10: Paula Henk
Nonstandard Provability for Peano Arithmetic. A Modal Perspective

ILLC DS-2017-01: Paolo Galeazzi
Play Without Regret

ILLC DS-2017-02: Riccardo Pinosio
The Logic of Kant's Temporal Continuum

ILLC DS-2017-03: Matthijs Westera
Exhaustivity and intonation: a uni�ed theory

ILLC DS-2017-04: Giovanni Cinà
Categories for the working modal logician

ILLC DS-2017-05: Shane Noah Steinert-Threlkeld
Communication and Computation: New Questions About Compositionality

ILLC DS-2017-06: Peter Hawke
The Problem of Epistemic Relevance

ILLC DS-2017-07: Aybüke Özgün
Evidence in Epistemic Logic: A Topological Perspective

ILLC DS-2017-08: Raquel Garrido Alhama
Computational Modelling of Arti�cial Language Learning: Retention, Recogni-

tion & Recurrence

ILLC DS-2017-09: Milo² Stanojevi¢
Permutation Forests for Modeling Word Order in Machine Translation

ILLC DS-2018-01: Berit Janssen
Retained or Lost in Transmission? Analyzing and Predicting Stability in Dutch

Folk Songs

ILLC DS-2018-02: Hugo Huurdeman
Supporting the Complex Dynamics of the Information Seeking Process

ILLC DS-2018-03: Corina Koolen
Reading beyond the female: The relationship between perception of author gen-

der and literary quality

ILLC DS-2018-04: Jelle Bruineberg
Anticipating A�ordances: Intentionality in self-organizing brain-body-environment

systems

ILLC DS-2018-05: Joachim Daiber
Typologically Robust Statistical Machine Translation: Understanding and Ex-

ploiting Di�erences and Similarities Between Languages in Machine Transla-

tion

ILLC DS-2018-06: Thomas Brochhagen
Signaling under Uncertainty

ILLC DS-2018-07: Julian Schlöder
Assertion and Rejection

ILLC DS-2018-08: Srinivasan Arunachalam
Quantum Algorithms and Learning Theory

ILLC DS-2018-09: Hugo de Holanda Cunha Nobrega
Games for functions: Baire classes, Weihrauch degrees, trans�nite computa-

tions, and ranks

ILLC DS-2018-10: Chenwei Shi
Reason to Believe

ILLC DS-2018-11: Malvin Gattinger
New Directions in Model Checking Dynamic Epistemic Logic

ILLC DS-2018-12: Julia Ilin
Filtration Revisited: Lattices of Stable Non-Classical Logics

ILLC DS-2018-13: Jeroen Zuiddam
Algebraic complexity, asymptotic spectra and entanglement polytopes

ILLC DS-2019-01: Carlos Vaquero
What Makes A Performer Unique? Idiosyncrasies and commonalities in ex-

pressive music performance

ILLC DS-2019-02: Jort Bergfeld
Quantum logics for expressing and proving the correctness of quantum programs

ILLC DS-2019-03: András Gilyén
Quantum Singular Value Transformation & Its Algorithmic Applications

ILLC DS-2019-04: Lorenzo Galeotti
The theory of the generalised real numbers and other topics in logic

ILLC DS-2019-05: Nadine Theiler
Taking a uni�ed perspective: Resolutions and highlighting in the semantics of

attitudes and particles

ILLC DS-2019-06: Peter T.S. van der Gulik
Considerations in Evolutionary Biochemistry

ILLC DS-2019-07: Frederik Möllerström Lauridsen
Cuts and Completions: Algebraic aspects of structural proof theory

ILLC DS-2020-01: Mostafa Dehghani
Learning with Imperfect Supervision for Language Understanding

ILLC DS-2020-02: Koen Groenland
Quantum protocols for few-qubit devices

ILLC DS-2020-03: Jouke Witteveen
Parameterized Analysis of Complexity

ILLC DS-2020-04: Joran van Apeldoorn
A Quantum View on Convex Optimization

ILLC DS-2020-05: Tom Bannink
Quantum and stochastic processes

ILLC DS-2020-06: Dieuwke Hupkes
Hierarchy and interpretability in neural models of language processing

ILLC DS-2020-07: Ana Lucia Vargas Sandoval
On the Path to the Truth: Logical & Computational Aspects of Learning

ILLC DS-2020-08: Philip Schulz
Latent Variable Models for Machine Translation and How to Learn Them

ILLC DS-2020-09: Jasmijn Bastings
A Tale of Two Sequences: Interpretable and Linguistically-Informed Deep Learn-

ing for Natural Language Processing

ILLC DS-2020-10: Arnold Kochari
Perceiving and communicating magnitudes: Behavioral and electrophysiological

studies

ILLC DS-2020-11: Marco Del Tredici
Linguistic Variation in Online Communities: A Computational Perspective

ILLC DS-2020-12: Bastiaan van der Weij
Experienced listeners: Modeling the in�uence of long-term musical exposure on

rhythm perception

ILLC DS-2020-13: Thom van Gessel
Questions in Context

ILLC DS-2020-14: Gianluca Grilletti
Questions & Quanti�cation: A study of �rst order inquisitive logic

ILLC DS-2020-15: Tom Schoonen
Tales of Similarity and Imagination. A modest epistemology of possibility

ILLC DS-2020-16: Ilaria Canavotto
Where Responsibility Takes You: Logics of Agency, Counterfactuals and Norms

ILLC DS-2020-17: Francesca Za�ora Blando
Patterns and Probabilities: A Study in Algorithmic Randomness and Com-

putable Learning

ILLC DS-2021-01: Yfke Dulek
Delegated and Distributed Quantum Computation

ILLC DS-2021-02: Elbert J. Booij
The Things Before Us: On What it Is to Be an Object

ILLC DS-2021-03: Seyyed Hadi Hashemi
Modeling Users Interacting with Smart Devices

ILLC DS-2021-04: Sophie Arnoult
Adjunction in Hierarchical Phrase-Based Translation

ILLC DS-2021-05: Cian Guilfoyle Chartier
A Pragmatic Defense of Logical Pluralism

ILLC DS-2021-06: Zoi Terzopoulou
Collective Decisions with Incomplete Individual Opinions

ILLC DS-2021-07: Anthia Solaki
Logical Models for Bounded Reasoners

ILLC DS-2021-08: Michael Sejr Schlichtkrull
Incorporating Structure into Neural Models for Language Processing

ILLC DS-2021-09: Taichi Uemura
Abstract and Concrete Type Theories

ILLC DS-2021-10: Levin Hornischer
Dynamical Systems via Domains: Toward a Uni�ed Foundation of Symbolic

and Non-symbolic Computation

