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Abstract
This paper exposes semantics for various sub-intuitionistic logics.

The semantics transparently reflect how assumptions on the epistemic
and cognitive abilities of the creative subject influences the underlying
logic. One of these semantics is used to obtain a lower bound on the
length of proofs of certain intuitionistic tautologies.

1 Introduction

This paper is an exposition and exploration of various semantics for different
logics. Most logics considered here are subsystems of intuitionistic logic.
The idea is that a semantics is developed such that all but one or two of the
axioms schemes or rules of intuitionistic logic hold on it.

The motivation for such a project originally came from proof complexity.
In particular, the semantics that are found and exposed can be used to
pursue lower bounds on the length of proofs in propositional intuitionistic
logic. And, as a matter of fact, we employ one particular semantics to prove
a linear lower bound for intuitionistic logic. Surely, a linear lower bound
is not impressive at all, but it nicely demonstrates how semantics for sub-
intuitionistic logics can be used to obtain lower bounds. This method was
first applied in a recent paper ([1]) where an exponential lower bound for a
large family of modal logics is obtained.

This paper is rather self contained. Whatever is not explicitly mentioned
here and concerns intuitionistic logic, can be found in [6] or in [7]. We do not
only have technical applications in mind in this paper. The semantics also
transparently reflect how assumptions on the epistemic/cognitive abilities of
the creative subject influences the underlying logic.

∗This paper is partly written while employed at the Mathematical Institute of the
Academy of Sciences of the Czech Republic in Prague. The stay in Prague was also
financed by the Netherlands Organization for Scientific Research (NWO).
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2 A semantic approach to lower bounds

The motivation for proof complexity comes largely from computational com-
plexity and telling computational complexity classes apart. Some of these
separations are reduced to showing super-polynomial lower bounds for gen-
eral proof systems. A first step in getting such lower bounds are lower
bounds for specific systems.

A general approach to the latter problem that turned out very promising
is the following. A so-called Frege proof system consists of a finite set of
axiom schemes, and a finite set of rules. Now, if some tautology (as a
sequence) has super-polynomial proofs at least one of the axiom schemes,
say S is likely to be included super-polynomially many times in the proofs
(possibly in a subsequence, which is not problematic).

Designing a semantics that only fails this axiom scheme S gives a way
to single out those formulas that are not provable without it. With good
semantics even counting the minimal number of applications of S in a proof
is possible. This approach has first been applied successfully in [1].

With this approach one can obtain lower bounds if every proof of some
tautology requires a large number of applications of S. However, the sit-
uation might be more subtle in the following sense. If τn is a series of
tautologies which does not have polynomial size proofs, it may still be the
case that certain proofs πn of τn require super-polynomially many appli-
cations of S whereas other proofs π′n of τn can do with only polynomially
many. In the worst case every hard tautology exhibits this behavior with
respect to every axiom scheme.

We can summarize the above reasoning in the following easy theorem.

Theorem 2.1. Let L be a Frege system of some logic. Let Γ be a subset
of axioms of L. Let |̃= be a semantical consequence relation such that |̃= is
closed under all rules of L and sound for all axioms of L except for the ones
in Γ.

Let ϕ be a tautology of L. If for every set ∆ of instances of Γ with
|∆| ≤ n we can find a structure M such that

1. M 6 |̃=ϕ,

2. M |= ∆,

then ϕ is not provable in L using less than (n+ 1) instances from Γ.

Proof. Suppose for a contradiction that there is some proof

p : p0, p1, . . . , pi, . . . , pm = ϕ
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in L with ≤ n instances of Γ in p. Let M be a structure validating (in the
|̃= sense) all these n instances. By induction on i we get that each pi holds
(in the |̃= sense) on M which contradicts M 6 |̃=ϕ (= pn).

2.1 Modal logics

As to illustrate the potential of the above mentioned method, let us briefly
summarize the content of [1]. For a number of modal logical systems a
semantics can be obtained where the distributivity axiom is replaced by the
distributivity rule or even a weaker version of it; the so called transparency
rule:

A↔ B

�A↔ �B
.

This semantics allows one to really count the minimal number of applica-
tions of the different distributivity axioms needed. For classical tautologies
of the form α(~p, ~r) → β(~p,~s), where α is monotone in ~p, it turns out that
there is a very close connection between the minimal number of applications
of distributivity in a proof of α( ~�p, ~r) → �β(~p,~s) and the number of gates
in a monotone circuit interpolating α(~p, ~r) and β(~p,~s).

Having this close connection, it is possible to invoke a result of Razborov’s
that Cliquek

n(~p, ~r) → ¬Colork−1
n (~p,~s) has no polynomial size monotone inter-

polating circuits to obtain an exponential lower bound.

2.2 Intuitionistic logic

We know that there exist faithful interpretations of propositional intuition-
istic logic into modal logics, most prominently S4. The translations that are
best known are the following two.

(p)� = �p (p)◦ = p

(⊥)� = ⊥ (⊥)◦ = ⊥
(A ∧B)� = A� ∧B� (A ∧B)◦ = A◦ ∧B◦

(A ∨B)� = A� ∨B� (A ∨B)◦ = �(A◦ ∨B◦)
(A→ B)� = �(A� → B�) (A→ B)◦ = �(A◦) → B◦

However, it seems unlikely that these translations can be used to get lower
bound results for intuitionistic logic as a corollary of the lower bounds for
modal logics. However, Hrubes has announced a forth-coming paper in
which an exponential lower bound for intuitionistic propositional logic is
obtained. He uses a different kind of translation and a version of monotone
interpolation for intuitionistic logic.
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A more direct approach seems also fruitful. That is, again designing
a semantics that makes almost all of the axioms true but fails just one or
two. For example, we can consider the following set of complete axioms for
intuitionistic logic, where ¬A is defined as A→ ⊥.

1. A→ (B → A)

2. [A→ (B → C)] → [(A→ B) → (A→ C)]

3. A→ A ∨B, B → A ∨B

4. (A→ C) → [(B → C) → (A ∨B → C)]

5. A ∧B → A, A ∧B → B

6. A→ (B → A ∧B)

7. ⊥ → A

The only rule involved in this system is MP, Modus Ponens. It does not
really matter which Frege system we use as we know from [3] that all Frege
systems for intuitionistic logic polynomially simulate each other. We shall
now discuss some semantics and their behavior with respect to the axioms.

2.3 A natural candidate

The most natural candidate to focus on when proving a lower bound, seems
to be the axiom

[A→ (B → C)] → [(A→ B) → (A→ C)].

For, if a proof is long, then many parts of the proof have to be combined. If
MP is the only rule, the only axiom to combine parts of the proof is indeed
this axiom. Moreover, it is known ([4]) that the implicational fragment of
intuitionistic logic is already P− SPACE complete and this seems to be the
only informative axiom in this system.

Note the similarity of this axiom with the distributivity axiom in modal
logics. In particular, by taking for A := > and viewing > → ψ as �ψ,
we syntactically recognize the distribution axiom. However, this is just a
heuristic.
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3 Kripke semantics for subintuitionistic logics

A semantics that is sound and complete with respect to all the axioms and
rules of intuitionistic propositional logic is the well known Kripke semantics
where a model is a triple 〈W,≤, V 〉. Here W is non-empty set of possible
worlds, ≤ is a transitive reflexive relation on W , and V is a mapping that
tells us which propositional variables hold at which world. In addition V
has to be upwards persistent, that is, if p ∈ V (a) and a ≤ b, then p ∈ V (b).

The notion of a formula A being forced in a world a is as usual inductively
defined:

a  p ⇔ p ∈ V (a)
connectives ⊥, ∨ and ∧ : As usual (commuting)
a  A→ B ⇔ ∀b (a ≤ b  A⇒ b  B)

The notion of truth is upwards persistent, that is, preserved upwards. The
heuristic of this semantics is that a ≤ b represents that b is a possible future
world of a where possibly more knowledge may have been obtained by the
creative subject. We shall refer to this semantics here as ”classical” or
”usual” Kripke semantics.

From now on we will consider only structures in which the number of
possible worlds is finite. For classical intuitionistic logic we know that this is
no restriction as we have completeness with respect to finite Kripke models.

3.1 General semantical notions

We shall now discuss some variations of Kripke semantics so as to validate
almost all axioms but one or two. Again we shall define notions as the
forcing relation  and the like.

With [A] we shall denote the set of worlds where a formula A is forced
under some given definition of forcing. With [A] we shall denote the smallest
set of worlds containing [A] which is closed upwards. Note that in ”classical”
Kripke semantics we have that [A] = [A] for all A.

We say that a forcing relation  is upwards persistent or just persistent
if a  A & a ≤ b → b  A holds for all A.

3.2 Minimal logic

Minimal logic is as intuitionistic logic, only now omitting the axiom schema
⊥ → A. It is well known that General Kripke semantics where ⊥ is consid-
ered as a propositional variable is sound and complete for minimal logic.
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So, this semantics is an easy example of a semantics that validates all
axioms of intuitionistic logic but one. An application of an axiom ⊥ → A is
sound on a model if [A] ∩ [⊥] = [⊥]. Looking for a (constructive) tautology
for which any proof needs a lot of applications of the axiom ⊥ → A is now
tantamount to looking for a tautology which has models in minimal logic
where it fails to hold, but where for many instances of A, we have that
[A] ∩ [⊥] = [⊥].

3.3 Long suspense semantics

The long suspense semantics is almost as usual finite Kripke semantics.
The only difference is in the truth definition of the implication →. In this
semantics we set:

a  A→ B ⇔ ∀b (a ≤ b  A→ ∃c b ≤ c  B).

The heuristic is as follows. Once the creative subject knows that A→ B, in
a future world, where he gets to know A he shall obtain B but possibly at
some later time as he might need to perform some calculations.

Under this definition of , it is easy to check by induction on the com-
plexity if a formula that we still have persistency of truth. Note, that ¬A,
which is short for A→ ⊥, has the same semantical condition as in classical
Kripke semantics.

All axioms remain valid. However, instead of Modus Ponens, we get
some weaker versions of it, like:

MP− :
A A→ B

> → B
; MP>

l :
> → A A→ B

> → B
; MP>

r :
> → A > → (A→ B)

> → B
.

Here, > is a logical constant satisfying the following defining axiom and rule.

>
` > → B ⇒ ` ¬¬B

It seems unlikely that this semantics is enough fine-grained to really
count the number of applications op Modus Ponens that is needed in a
proof of an intuitionistic tautology. In particular, we have that

|=long suspense A→ B ⇔ |=i A→ ¬¬B.
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3.4 Short suspense semantics

This semantics is as the long suspense semantics, with the only difference
that the creative subject is to calculate immediately all consequences of new
facts. Let ≤] be defined as

a ≤] b :⇔ (a ≤ b ∧ ∀c (a ≤ c ≤ b→ c = a ∨ c = b)).

The definition of  now becomes as follows.

a  A→ B ⇔ ∀b (a ≤ b  A⇒ ∃c (b ≤] c  B))

Note that the logic corresponding to the short suspense semantics would be
different if we allowed infinite structures too.

Again, it is not hard to see that we have persistency of . And, again,
instead of MP we only have MP−. The only axiom scheme that fails is

[A→ (B → C)] → [(A→ B) → (A→ C)].

In order to see that this scheme is not valid, we take A = p, B = q and
C = r. Next, we consider the structure

a ≤ b ≤ c ≤ d

with
V (d) = {p, q, r};
V (c) = {p, q};
V (b) = {p};
V (a) = ∅.

Clearly, a 6 p → r, as b  p but for no x with b ≤] x we have x  r.
However, a  p → q, so a 6 (p → q) → (p → r). On the other hand,
a  q → r whence also a  p→ (q → r). Consequently

a 6 (p→ (q → r)) → ((p→ q) → (p→ r)).

It is very much unclear if this semantics allows one to control the num-
ber of applications of [A → (B → C)] → [(A → B) → (A → C)] in an
intuitionistic proof.
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3.5 Weak persistent semantics

The semantics is as classical Kripke semantics, with the only difference that
now we do not demand that V is persistent. Rather, we require V to be
weakly persistent, that is,

a ≤ b→ ∃ c≥b V (a) ⊆ V (c).

Note, that if a branch in a model has a top element, this element is maximal
along this branch with respect to V . The heuristic is that the creative
subject may temporarily forget something, provided that he or she later
reconstructs the knowledge at some point.

We now define  as usual, that is

a  A→ B ⇔ ∀b (a ≤ b  A⇒ b  B).

We loose upwards persistency of . Rather, we have that  is weakly
persistent in the sense that a  ϕ ∧ a ≤ b→ ∃c b ≤ c  ϕ. However,  is
strongly persistent for formulas of the form A → B. The two axioms that
fail are

A→ (B → A)

and
A→ (B → (A ∧B)).

However, the weak persistent semantics is sound with respect to the following
two rules.

` A ⇒ ` B → A

and
` A ⇒ ` (B → (A ∧B)).

Moreover, we do have restricted versions of the axioms. That is, if A is of
the form E → F , then both axioms are valid indeed. On this semantics MP
holds. Note that, e.g., 6|= (> → A) ↔ A. Semantically, axioms of the form
A→ (B → (A∧B)) and of the form A→ (B → A) are equivalent and seem
to be interderivable.

However, it seems that all axioms of the form A→ (B → A ∧B) are as
independent as possible. For example

6|= [(p ∨ q) → (r → ((p ∨ q) ∧ r))] → [p→ (r → (p ∧ r))].

As we only consider finite frames, we do have that A→ (B → ¬¬(A∧B))
holds. If we allowed also infinite models this could be refuted.
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A weak persistent model M being sound with respect to an axiom of the
omitted form has a moderately nice characterization.

M |= A→ (B → A) ⇔ [A] ∩ [B] ⊆ [A] (∗)

Thus clearly, we also have the following sufficient condition.

[A] is upwards closed on M ⇒ M |= A→ (B → A) for any B

3.5.1 A linear lower bound

We will use the weak persistent semantics to prove the following lower bound
for intuitionistic propositional logic.

Theorem 3.1. The intuitionistic tautology

p0 → (. . .→ (pn → (pn+1 → p0 ∧ . . . pn+1))

is not provable in intuitionistic propositional logic using less than n schemes
of the form

Ai → (B → Ai ∧B) for fixed Ai,

or
Ai → (B → Ai) for fixed Ai.

From now on, we will consider rooted (weak persistent) models only and
denote them 〈M, r〉 where r is the root.

Definition 3.2. If 〈M, r〉 and 〈M ′, r′〉 be rooted Kripke structures, e.g.,
weak persistent models. Let r0 be a new variable. We define the structure
[〈M, r〉 ↖ r0 ↗ 〈M ′, r′〉] by putting r0 ≤ r, r0 ≤ r′ and then taking the
transitive and reflexive closure.

Note that if A and B are weak persistent rooted models we can always
find V (r0) such that [A↖ r0 ↗ B] becomes a weak persistent rooted model
too. This does not hold for classical intuitionistic structures.

Whenever V (r) is defined and [A↖ r ↗ B] is a well defined model, we
shall also use the notation [A↖ r ↗ B] to refer to that model.

Lemma 3.3. Let 〈M, r〉 be a weak persistent rooted model such that M, r 6
A. Let 〈M ′, r′〉 be an arbitrary other such model, and choose V (r0) such
that V (r0) ⊆ V (r). If [〈M, r〉 ↖ r0 ↗ 〈M ′, r′〉] is a weak persistent model,
then it holds that

[〈M, r〉 ↖ r0 ↗ 〈M ′, r′〉], r0 1 A.
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Proof. By an easy induction on the complexity of A. For A = ⊥ it clearly
holds. If A is a propositional variable it holds as V (r0) ⊆ V (r). The
connectives ∧ and ∨ are easy. If A = B → C and M, r 1 B → C, we can
find r ≤ r̃  B and M, r̃ 1 C. But also r0 ≤ r̃ and also

[〈M, r〉 ↖ r0 ↗ 〈M ′, r′〉], r̃  B and [〈M, r〉 ↖ r0 ↗ 〈M ′, r′〉], r̃ 1 C.

Let us phrase the following observations in a lemma.

Lemma 3.4. If [A] is upwards closed on a weak persistent model M , then
the following two schemata (as schemata in B) hold on M .

A→ (B → A ∧B)
A→ (B → A)

Proof. By the characterization stated in (∗) and the fact that the two
schemata are semantically equivalent.

The proof of Theorem 3.1 now follows from Theorem 2.1 and the follow-
ing lemma.

Lemma 3.5. Let the following n axiom schemata be given.

Ai → (B → Ai ∧B) for fixed Ai; 1 ≤ i ≤ n.

Let ~q be a string of variables distinct from each of p0, . . . , pn+1. There exists
a model [〈M, r〉 ↖ r0 ↗ 〈N, r′〉] where ~q holds at each world, each of the n
axiom schemata Ai → (B → Ai ∧B) holds at r0, however,

r0 6 p0 → (. . .→ (pn → (pn+1 → p0 ∧ . . . pn+1)).

Moreover, the 〈M, r〉 and the 〈N, r′〉 are classical Kripke models.

Proof. By induction on n. For n = 0 we consider the simple model con-
sisting of three points a ≤ b ≤ c where V (a) = {p0, ~q}, V (b) = {p1, ~q}
and V (c) = {p0, p1, ~q}. Clearly, this is a weak persistent model where
p0 → p1 → p0∧p1 fails to hold and where, moreover, ~q holds at any world. It
is easy to consider this model as [∅ ↖ r0 ↗ 〈N, r′〉] with 〈N, r′〉 a classical
Kripke model.

If we now consider n + 1 axiom schemata Ai → (B → Ai ∧ B) for
1 ≤ i ≤ n+ 1, we reason as follows. First we make a case distinction.
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If 6`i ~q ∧ p0 →
∨n+1

i=1 Ai we find a classical (note that we used `i in the
case distinction) Kripke model 〈M, r〉 with r  p0, ~q but r 6 Ai for all i.
Next, we consider the Kripke model N consisting of just two points b ≤ c
with V (b) = {p1, . . . , pn+2, ~q} and V (c) = {p0, . . . , pn+2, ~q}.

Finally we choose a fresh r0, define V (r0) = {p0, ~q} and consider [〈M, r〉 ↖
r0 ↗ N ]. We now combine Lemma 3.3 and the fact that our two building
blocks are classical Kripke models to conclude that the [Ai] are upwards
closed on [M, r ↖ r0 ↗ N ]. Consequently, by Lemma 3.4 we see that all
the axiom schemata Ai → (B → Ai ∧ B) hold on this model. Indeed, we
also have that r0 6 p0 → (. . .→ (pn → (pn+1 → p0 ∧ . . . pn+1)).

In case `i ~q ∧ p0 →
∨n+1

i=1 Ai, by the well known disjunction/Harrop
property (see e.g. [2] or [5] Chapter 3, Corollary 3.1.5) we know that for some
Ai we have that `i ~q ∧ p0 → Ai. We assume w.l.o.g. that `i ~q ∧ p0 → An+1.
We now apply our induction hypothesis to the n axiom schemata Ai →
(B → Ai ∧ B) for 1 ≤ i ≤ n together with the formula p1 → . . . pn+2 →
p1 ∧ . . . ∧ pn+2. However, we now demand in our call on the induction
hypothesis that all of ~q, p0 hold in any point of the model. By Lemma 3.4
it is clear that this model suffices for our purpose.

3.6 Quasi filter semantics

This semantics is reminiscent of neighborhood semantics for modal logics. A
model is now a quadruple 〈W,R, V,G〉 such that 〈W,R, V 〉 is a usual Kripke
model and G is a set of subsets of W such that W ∈ G. The definition of 
is now only altered for the implication connective. To state this definition,
we first need some notation. We will denote by a↑ the set {b | a ≤ b}.
With Ga we mean the set of subsets in G intersected with a↑. In a more
general approach, the Ga could be defined separately and independent of
some overall G.

With [A]a we mean the set {b ∈ a↑ | b  A}. Clearly these sets are
defined inductively simultaneously with the forcing relation .

a  A→ B ⇔ ([A]a ∈ Ga ⇒ [B]a ∈ Ga).

Note, that if [A]a ∈ Ga and a ≤ b, then [A]b ∈ Gb and hence  is
monotone.

The semantics is closed under MP as W ∈ G. Some axioms require some
closure conditions on G. Actually there is a close correspondence.

11



Axiom scheme Restriction on G
A→ (B → A) no restrictions
(A→ (B → C)) → ((A→ B) → (A→ C)) ?
A→ A ∨B, B → A ∨B G closed under supersets
(A→ C) → [(B → C) → (A ∨B → C)] ?
A ∧B → A,A ∧B → B G closed under supersets
A→ (B → A ∧B) G closed under intersections
⊥ → A ∅ /∈ G

This semantics seems rather promising with respect to direct proofs in
lower bounds for two reasons. First, by altering properties of G we can
make some axioms true and others not. Second, this approach is similar to
the approach that was applied to modal logics in [1] and proved fruitful. In
particular, one can say what it means for a certain instance of the axiom to
hold on the model and hence the number of axioms can be controlled. A
significant difference is with the finite model property. Given a finite number
of variables, the canonical model in many modal logics is finite. However,
this is not the case in intuitionistic logic.

4 Other logics

The semantic approach to obtain lower bounds can be applied to any other
logic, in particular to classical propositional logic. In the case of classical
logic, we are interested in semantics that fail only some of the axioms. Clas-
sical logic is obtained by adding to the axioms of intuitionism the axiom
schema

¬¬A→ A.

Any known sub-logic of classical logic with a good semantics can serve as a
candidate to prove lower bounds for classical logic.

4.1 Intuitionistic logic

We could hope that some tautologies require a large number of axioms of
the form ¬¬A → A. However, this hope is in vain as we have Glivenko’s
theorem which says that for propositional logical A we have:

`c A↔`i ¬¬A.

Thus, every classical tautology has a proof with just one application of
excluded middle of the form ¬¬A→ A.
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4.2 Hybrid logics

It is also possible to consider a logic where both ¬ and → are primitive sym-
bols where the ¬ is defined classically and the → intuitionistically. Clearly,
in this case we have p ∨ ¬p and ¬p 6≡ (p→ ⊥). The relation of this logic to
S4 is evident as �A ∧A can be defined as > → A.
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