
Coalgebraic fixpoint logic

Fatem
eh Seifan

Expressivity and completeness results

Coalgebraic fixpoin
t logic Expressivity an

d com
pleten

ess results

Fatemeh Seifan

Coalgebraic fixpoint logic
Expressivity and completeness results

Fatemeh Seifan

Coalgebraic fixpoint logic
Expressivity and completeness results

ILLC Dissertation Series DS-2024-05

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam

Science Park 107
1098 XG Amsterdam

phone: +31-20-525 6051
e-mail: illc@uva.nl

homepage: http://www.illc.uva.nl/

The research for/publication of this doctoral thesis received financial assistance
from Vrije Competitie grant 612.001.115 of the Netherlands Organisation for Sci-
entifc Research (NWO).

Copyright c� 2024 by Fatemeh Seifan.

Cover design by Fatemeh Seifan.
Printed and bound by US-AB.

Coalgebraic fixpoint logic: expressivity and completeness results

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam

op gezag van de Rector Magnificus

prof. dr. ir. P.P.C.C. Verbeek

ten overstaan van een door het College voor Promoties ingestelde commissie,

in het openbaar te verdedigen in de Aula der Universiteit

op woensdag 5 juni 2024, te 17.00 uur

door Fatemeh Seifan

geboren te Teheran

Promotiecommissie

Promotores: prof. dr. Y. Venema Universiteit van Amsterdam
prof. dr. H.H. Hansen Rijksuniversiteit Groningen

Copromotores: dr. N.J.S. Enqvist Stockholms universitet

Overige leden: dr. A. Baltag Universiteit van Amsterdam
dr. N. Bezhanishvili Universiteit van Amsterdam
prof. dr. P. van Emde Boas Universiteit van Amsterdam
prof. dr. L. Schröder Friedrich-Alexander University

Erlangen-Nürnberg
prof. dr. I. Walukiewicz Université de Bordeaux

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

to Afshin

v

Contents

Acknowledgments xi

1 Introduction 1
1.1 Modal logic, fixpoints and automata 1

1.1.1 Modal logics . 1
1.1.2 The standard µ-calculus 3
1.1.3 Automata for µ-calculus 4

1.2 Coalgebras . 6
1.2.1 Systems as coalgebra . 6
1.2.2 Equivalence . 8

1.3 Coalgebraic logic and automata 9
1.3.1 Coalgebraic modal logic 10
1.3.2 Coalgebraic fixpoint logic 12
1.3.3 Coalgebraic automata theory 12

1.4 Contributions . 14
1.4.1 Chapter 3: Uniform Interpolation 14
1.4.2 Chapter 4: Expressive Completeness 16
1.4.3 Chapter 5: Axiomatic Completeness 17

2 Preliminaries 21
2.1 Modal logic and fixpoints . 21

2.1.1 Modal logics . 21
2.1.2 µ-calculus over Kripke models 24

2.2 Parity games . 26
2.3 Category theory and coalgebras 28

2.3.1 Sets and relations . 28
2.3.2 Coalgebras . 29
2.3.3 Properties of set functors 33
2.3.4 Behavioural equivalence and Bisimulation 36

vii

2.3.5 Algebras vs coalgebras . 39
2.4 Coalgebraic fixpoint logic and automata 40

2.4.1 Coalgebraic µ-calculus via the r-modality 40
2.4.2 Coalgebraic µ-calculus via predicate liftings 42
2.4.3 Coalgebraic automata theory 44

3 Uniform Interpolation 47
3.1 Special relation liftings . 48
3.2 Coalgebraic fixpoint logic . 54
3.3 Coalgebraic Automata . 60
3.4 Simulation . 62
3.5 Closure properties . 69
3.6 Logic and Automata . 74
3.7 Uniform Interpolation . 75
3.8 The monotone µ-calculus . 76
3.9 Conclusion . 77

4 Expressive Completeness 79
4.1 The µ-calculus and monadic second-order logic 82
4.2 Coalgebraic perspective . 83

4.2.1 Coalgebraic µ-calculus . 83
4.2.2 Coalgebraic MSO . 84
4.2.3 Coalgebraic FOL . 86

4.3 Automata and one-step languages 88
4.3.1 Automata for µML⇤ . 89
4.3.2 Automata for MSO⇤ . 90
4.3.3 Closure properties . 92
4.3.4 Second-order automata . 95

4.4 One-step expressive completeness 103
4.5 Bisimulation invariance . 108

4.5.1 Adequate uniform constructions 114
4.5.2 Weakly adequate uniform constructions 115
4.5.3 Characterizing µML⇤ inside µML⇤[{2s} 119
4.5.4 Applications . 126

4.6 Characterizing the monotone µ-calculus 129
4.6.1 No adequate construction for M 129
4.6.2 A weakly adequate uniform construction for M 130

4.7 Conclusion . 137

5 Axiomatic Completeness 139
5.1 Proof strategy . 140
5.2 Coalgebraic fixpoint logic . 142

5.2.1 Syntax . 142

viii

5.2.2 Semantics . 143
5.2.3 Axiomatics . 143

5.3 Modal automata and one-step formulas 145
5.3.1 One-step logic . 145
5.3.2 Modal automata . 153
5.3.3 Operations on modal automata 154
5.3.4 Translating formulas to automata 158

5.4 Games for Automata . 159
5.4.1 Traces . 160
5.4.2 The satisfiability game . 161
5.4.3 Consequence game . 163

5.5 Taming the traces - one step at a time 166
5.5.1 Functional, clusterwise functional and thin relations 167

5.6 Disjunctive and semi-disjunctive automata 169
5.6.1 A key lemma . 175

5.7 A strong simulation theorem . 180
5.8 From automata to formulas . 194
5.9 Completeness . 201
5.10 Conclusion . 204

Bibliography 205

Samenvatting 217

Abstract 219

ix

Acknowledgments

It has taken me many years to finally complete this thesis, and now all that
remains is to express my gratitude to the individuals who have been with me on
this long journey.

On the top of my list are my promotor Yde Venema and co-promotors Sebas-
tian Enqvist and Helle Havid Hansen. As a master’s student in Iran, I had the
opportunity to read many of Yde’s articles. It wasn’t until I had the opportu-
nity to attend his lecture at ILLC that everything suddenly fell into place. He is
an exceptional teacher who knows how to convey the intuition behind the most
abstract concepts and their interconnections without sacrificing the precision. I
have learned a lot from him both academically and personally and always enjoyed
his interest in art and literature. While meeting his high standards as a researcher
and supervisor was challenging, the experience has left me with cherished mem-
ories. I am deeply grateful for his care and patience over the years.

I am thankful to Sebastian for accepting to be my second supervisor. His
support and generous willingness to share his knowledge were pivotal in complet-
ing this thesis. Our brainstorming sessions and his detailed feedback on various
drafts of manuscripts and this thesis were invaluable.

I wish to express my gratitude to Helle, who joined the supervisory team
later in the process. Without her, I can’t imagine this thesis would have been
completed. I appreciate Helle for her valuable feedback on numerous versions of
this thesis, for her encouragement, and for all the late afternoon and weekend
meetings. I am deeply thankful for all the support.

I extend my sincere gratitude to the members of my dissertation committee,
Alexandru Baltag, Nick Bezhanishvili, Peter van Emde Boas, Lutz Schröder and
Igor Walukiewicz, who have kindly agreed to read and evaluate my dissertation.

I am also thankful to Majid Alizadeh and Shahram Mohsenipoor for sparking
my passion for logic.

To my family, especially my parents and sisters, I am grateful for their sup-
port. My mom’s encouragement and belief in me during di�cult times were

xi

instrumental in keeping me motivated on completing this thesis.
Last but foremost, with all my heart, I would like to thank Afshin, my best

friend, who has been with me on this journey the longest.

xii

Chapter 1

Introduction

The main topic of this thesis is coalgebraic fixpoint logic. Our general aim is to
strengthen the link between the areas of logic, automata and coalgebra. More
in particular, we provide a coalgebraic generalization of the automata-theoretic
approach towards modal fixpoint logic, and address some questions regarding
expressivity and completeness of coalgebraic fixpoint logic.

In this introduction we give an overview of how logic and automata meet
coalgebras. Technical preliminaries are provided in Chapter 2. The structure of
this chapter is as follows. In the next section we sketch the relation of modal
logic, fixpoints and automata. Section 1.2 presents coalgebras as general models
for transition systems. In Section 1.3 we explain how coalgebras encounter modal
logic, fixpoints and automata and provide a suitable uniform framework to study
various modal fixpoint logics. We finish with Section 1.4 where we discuss the
contributions of this thesis.

1.1 Modal logic, fixpoints and automata

The connection between logic and automata has proven to be a fruitful area which
provides useful insight on both topics. In this section we give a brief overview
of the relation between logics featuring in this thesis and automata. We begin
with modal logic as a key ingredient and building block for modal fixpoint logic.
We refer the reader to [BdRV02] and [vB10] for thorough introductions to modal
logic.

1.1.1 Modal logics

Modal logic is a branch of logic that extends classical propositional and predicate
logic to include modal operators that formalise modalities such as “necessity” and
“possibility”. Modal logic was originally developed by philosophers in the begin-
ning of the 20th century and has been considered as a framework for philosophical

1

2 Chapter 1. Introduction

logic. From the early 1930s, two types of mathematical semantics for modal logic
developed: algebraic semantics and relational semantics. Algebraic semantics in-
terprets modal operators on Boolean algebras and relational semantics, known as
Kripke semantics, interprets modalities over relational structures called Kripke
models. Kripke semantics for modal logic, which is of particular interest in this
thesis, was introduced by Saul Kripke [Kri59] in late 1950s and had an irrefutable
impact on the development of the theory of modal logic. The elements of Kripke
models are thought of as possible worlds, moments of time or states of a computer
program or a process. This view opened the door to connections with di↵erent
disciplines. Modal logic crossed over to linguistics via the Montague grammar
approach to natural language semantics [Mon74], and to computer science, where
processes are modelled as relational structures [HM80, Mil81]. Indeed many of
the logics that are used in computer science today for verification of hardware
and software systems are variations of modal logics [BK08, HTK00].

Starting from the 1970s, an extensive theory has been developed for modal
logics, including model theory and proof theory. One of the highlights of that
theory was to take a perspective on modal logic, as a fragment of classical logics,
such as first-order and second-order logics, rather than as an extension of classical
propositional logic. A key result in this area was proved by Johan van Benthem,
who showed that modal logic is the bisimulation-invariant fragment of first-order
logic [vB76]. This theorem provides a characterization of the expressive power
of modal logic. Compared to classical logics, modal logics have a good balance
between expressivity and complexity ; they tend to be decidable [Var96]. This bal-
ance is the foundation for the application of modal logics in automated program
verification.

In the following, we present three examples of modal logics. More variations
will be covered in Section 2.1.1.

Examples

1.1.1. Example. Basic modal logic [BdRV02] is obtained by adding modal op-
erators 3 and 2 to classical propositional logic. Formulas of this logic are evalu-
ated over Kripke models, which are triples (W,R, V) where W is the set of states
(worlds), R ✓ W ⇥W is an accessibility relation that relates a state to its suc-
cessor, or “possible alternative worlds”, and V : X ! PW is a valuation of the
set X of proposition letters of a given modal logic.

The semantics of modal formulas 3' and 2' over a Kripke model (W,R, V)
is defined as follows:

w � 3' i↵ v � ' for some v 2 W such that wRv,

w � 2' i↵ v � ' for all v 2 W such that wRv.

1.1. Modal logic, fixpoints and automata 3

This semantics gives the reading of 3' as “possibly '” as ' holds in at least one
world that is accessible from the current world. Similarly, 2' reads as “necessarily
'” as ' holds in all worlds accessible from the current world.

1.1.2. Example. As is clear from the semantics of 3 and 2 in basic modal logic,
these modal operators just check the existence of successors with certain proper-
ties. To generalize these modalities, one may decide to count such successors of a
current state in a Kripke model. This way Fine [Fin72] defined graded modali-
ties 3k and 2k for graded modal logic with the following semantics over a Kripke
model (W,R, V):

w � 3k
' i↵ |{v 2 W | wRv and v � '}| � k,

w � 2k
' i↵ |{v 2 W | wRv and v 6� '}| < k.

This reads as w �V 3k
' i↵ “' holds in at least k successors of w”, and w �V 2k

'

i↵ “' fails in less than (!) k successors of w”. It is clear that we obtain 3 and 2

as the special cases 3 = 31 and 2 = 21.

1.1.3. Example. Monotone modal logic [Che80] is a generalization of basic modal
logic in which the distribution of 2 over conjunctions has been weakened to a
monotonicity condition. The standard semantics for such logics is provided by
so-called monotone neighborhood models. A monotone neighbourhood model is a
structure (W,M, V) which has a set W of states and a valuation V , but instead
of an accessibility relation, a function M : W ! 22

W
assigning to each state an

upwards-closed set of subsets, called its neighbourhoods. The interpretation of
2' in a monotone neighbourhood model (W,M, V) is then defined as follows:

w � 2' i↵ {v 2 W | v � '} 2M(w).

1.1.2 The standard µ-calculus

The standard µ-calculus is a fixpoint logic obtained by adding the least fixpoint
operator µ and the greatest fixpoint operator ⌫ to basic modal logic. It origi-
nates from seminal work of Dana Scott and Jaco de Bakker [SB69] on program
verification, and is of interest to computer science because of its expressive power
for describing properties of labeled transition systems. In the context of modal
logic, works of Emerson, Clarke [CE80] and Park [Par80] on correctness and fair-
ness properties of parallel programs, and work of Pratt [Pra81] on a decidable
extension of modal logic with a minimization operator, prefigured the definition
of µ-calculus. Their work on extending modal logics with fixpoints led Kozen
to introduce and develop the version of µ-calculus used nowadays [Koz83]. This
logic, which is presented in detail in Section 2.1.2, has a standard syntax and se-
mantics over Kripke models (see Definitions 2.1.7 and 2.1.8), and yet the fixpoint
operators, by capturing the full power of recursion, allow the logic to encode many

4 Chapter 1. Introduction

dynamic and temporal logics including propositional dynamic logic PDL [FL79],
branching time logic CTL⇤ [EL86] and its widely used fragments – linear temporal
logic LTL [Pnu77] and computation tree logic CTL [CE81]. We refer the reader
to Chapter 3 in [BS01] for a more detailed discussion of the relation between
fixpoints and recursion.

Where the µ-calculus subsumes several interesting modal logics for verifica-
tion, it can itself be viewed as a fragment of monadic-second order logic MSO.
MSO is the fragment of second-order logic SO, that only allows quantification
over subsets of the domain. On binary trees, the µ-calculus is equivalent to MSO

[Rab69, EJ91a, Niw88, Niw97]. On arbitrary structures, however, the µ-calculus
is a proper fragment of MSO. A central result to this thesis is the theorem by Janin
and Walukiewicz [JW96], who proved that over labelled transition systems, the
µ-calculus is the bisimulation-invariant fragment of MSO. This result extends Jo-
han van Benthem’s characterisation theorem for modal logic, which states that
basic modal logic is the bisimulation-invariant fragment of first-order logic.

From an algebraic perspective, the µ-calculus can be seen as an algebra of
monotonic functions over a complete lattice. From this viewpoint, the semantics
of µ-calculus formulas is based on the Knaster-Tarski fixpoint theorem [Tar57],
which states that a monotone function over a complete lattice has a least fixpoint.
The existence of a greatest fixpoint is then assured by duality. We refer the
interested reader to [AN01], where the µ-calculus is studied mainly as an algebraic
system rather than a logic.

Another important aspect of the µ-calculus is its tight connection to games.
The game semantics for µ-calculus is defined via an infinite two-player game with
perfect information; a parity game between players called 9 and 8. A priority
map assigns to each position in the game a natural number called its priority.
An infinite match is then winning for 9 (losing for 8) if and only if the minimum
priority that occurs infinitely often in the match is even (see Section 2.2). The
advantage of this parity game semantics is that it is more intuitive than the alge-
braic semantics, especially for complex formulas with nested fixpoint operators.
As a framework, parity games can help to answer questions about the µ-calculus.
A good example is the model checking problem for the µ-calculus which has been
shown to be equivalent to the problem of solving parity games [Mos91, EJ91a].
Conversely, the µ-calculus provides a useful setting to study and describe proper-
ties of parity games. We refer the reader to Chapter 4 of [AN01] where properties
of the µ-calculus are employed to prove results on parity games.

1.1.3 Automata for µ-calculus

Analogous to games, automata are e↵ective tools in the theory of µ-calculus
[GTW02]. In fact, most of the central results about the µ-calculus have been
proved using automata as an alternative way of thinking about formulas.

An automaton consists of a set of states and a transition map defining how to

1.1. Modal logic, fixpoints and automata 5

get from one state to another state. Imposing extra structure on this basic defini-
tion, one obtains di↵erent types of automata operating on a variety of structures.
There are two main dimensions along which we can classify automata. The first
dimension is the type of the transition map which categorizes automata into the
three classes of deterministic, non-deterministic, and alternating automata. The
second dimension is the type of the acceptance condition, which describes when
an automaton accepts or rejects a given structure. Here in this thesis we focus
on the parity acceptance condition. Automata with a parity acceptance condition
were introduced by Mostowski [Mos84] and Emerson and Jutla [EJ91a] indepen-
dently. This parity condition is the same condition as in parity games, that is,
an infinite run is accepting i↵ the minimum priority that occurs infinitely often
is even.

The long tradition connecting logic and automata theory can be traced back
to the seminal work of Büchi [Büc60] and Rabin [Rab69] showing that for infinite
words and infinite binary trees, automata and MSO are expressively equivalent. In
a more recent paper [Wal96] Walukiewicz introduced alternating parity automata
for MSO on arbitrary trees, and generalised Rabin’s result by proving that MSO and
alternating parity automata have the same expressive power over arbitrary trees.

In the context of µ-calculus, automata provide a mathematical formalism
to deal with the combinatorics of traces caused by the unravelling of fixpoint
operators. The most frequently used automata for the µ-calculus are alternating
parity automata for labeled transition systems [Wil01]. Two main results on the
expressivity of µ-calculus that will be generalized to the level of coalgebras in
this thesis using automata are the Janin-Walukiewicz [JW96] characterization
theorem for the µ-calculus and MSO, and D’Agostino and Hollenberg’s [DH00]
result stating that the µ-calculus has uniform interpolation. We will provide
more details about the automata-theoretic ideas and techniques used to prove
these results in Section 1.4 and the respective chapters.

For now we focus on the axiomatisation of the µ-calculus to illustrate the
e�ciency of automata-theoretic techniques to establish important results in this
area. Kozen, in [Koz83], aimed to prove a completeness result for the µ-calculus,
but he discovered that the interaction between all connectives in µ-calculus led
to di�culties in analysing fixpoint formulas. Hence he focused on a syntactic
fragment he called aconjunctive, and proved a completeness result for this frag-
ment. To address the di�culties that Kozen faced, Janin and Walukiewicz [JW95]
viewed formulas as automata, and realised that while disjunctions are like nonde-
terministic choices, conjunctions cause “uncontrolled” branching of traces. This
led them to define the class of disjunctive formulas in which conjunctions only
occur in a restricted form by replacing the modal operators hai and [a] with a
single connective.This connective is the labelled version of the r modality that
was independently introduced in coalgebraic modal logic for Kripke frames (see
Section 1.3.1.1). Employing this connective they defined the so-called µ-automata
(disjunctive automata) corresponding to disjunctive formulas. A key observation

6 Chapter 1. Introduction

about this fragment of the µ-calculus is that many combinatorial di�culties en-
countered in the general case may be avoided for these formulas. For instance, the
satisfaction problem is easy for disjunctive formulas. Janin and Walukiewicz uti-
lized µ-automata to prove that every µ-formula is equivalent to a disjunctive one.
A crucial part of their proof is based on a simulation theorem which shows that
an alternating automaton can be transformed into an equivalent nondeterministic
one [MS87].

Based on some of the ideas and results in [JW95], a few years later, Walukiewicz
extended Kozen’s completeness theorem and proved that Kozen’s axiomatisation
[Koz83] is sound and complete for the µ-calculus [Wal00].

1.2 Coalgebras

In this section, we aim to explain how coalgebra, the other main component of this
thesis, enters into the picture of logic and automata we sketched in the previous
section. Here we will give a brief introduction to basic coalgebraic concepts
and leave further definitions for Section 2.3.2. For a detailed introduction to
coalgebras in general we refer the reader to [Jac16] and [Rut00] where the theory
of universal coalgebra and state-based evolving systems is developed.

The motivation to bring coalgebras to the theories of modal logic and au-
tomata is twofold. Mainly, coalgebras can be seen as generalisations of state-based
systems such as streams, (infinite) trees, Kripke models, transition systems, and
many others. Hence, coalgebra provides a general framework to study a variety
of structurally di↵erent systems in a uniform way. On top of that, this frame-
work comes with a general notion of equivalence and several reasoning principles.
Secondly, coalgebras specify system behaviour in a one-step manner by listing
the possible futures after one transition step of the system. This “one-step be-
haviour” is paralleled both on the level of modal (fixpoint) logic and coalgebra.
In fact, many of the properties of modal (fixpoint) logic are already manifest at
the one-step level, that is, at the level of formulas of modal depth one.

1.2.1 Systems as coalgebra

Informally, a coalgebra consists of a set A of states, or state space, together with
a map A ! TA where T describes the type of transitions and observations that
can be made in the coalgebra. In contrast to algebraic operations that are used
to construct complex objects from simple ones, coalgebraic operations go out of
the state space and observe the behaviour of states.

A simple example of a coalgebra is the function:

A

a 7!(a,a)

��������! A⇥ A

1.2. Coalgebras 7

where the transition map a 7! (a, a) is the diagonal morphism on a space or set
A.

Another popular example of a coalgebra is the collection of streams (i.e.,
infinite words) A! over an alphabet set A [Rut00, Jac16]:

A
!

(hd,tl)

��������! A⇥ A
!

where the “head” function hd : A! ! A maps a word w = a.w
0 to its first letter a,

and the “tail” function tl : A! ! A
! maps w = a.w

0 to w0. More in particular, the
map (hd, tl) de-constructs elements of A! and tells us what is observable about a
stream w.

Also labeled transition systems can be seen as coalgebras. A labeled transition
system is a tuple (A,L,R), where A is a set of states, L is a set of labels and
R ✓ A⇥L⇥A is a ternary relation. The labeled transition system (A,L,R) can
be described as the following coalgebra:

A

a 7!{(l,a0)|(a,l,a0)2R}
�����������������! P(L⇥ A)

We now give the formal definition of a coalgebra over the category Set of
sets and functions. The general definition is given in Definition 2.3.1, but all
coalgebras considered in this thesis are coalgebras over Set, so we focus on this
particular instance here. We assume the reader is familiar with the basic defini-
tions of category and functor, and refer to Section 2.3 for more details.

Coalgebras Given a functor T on Set, a T-coalgebra is a pair S = (S, �) where
S is a set of states and � : S ! TS is a structure map. A coalgebra morphism, or
just morphism, from coalgebra S = (S, �) to S0 = (S 0

, �
0), written as f : S ! S0,

is a map f : S ! S
0 such that �0 � f = (Tf) � �.

The structure map of a coalgebra describes the one-step behaviour for each
state, and coalgebra morphisms are functions that respect these one-step be-
haviours. The “complete behaviour” or simply “behaviour” of a state can be
obtained from one-step behaviour by repeated applications of the structure map.
To formalise the notion of behaviour for coalgebras we apply final coalgebras,
which can be thought of as a domain of complete behaviours. A T-coalgebra S0

is final if for every T-coalgebra S there exists a unique morphism beh : S ! S0.
Given a final T-coalgebra, the behaviour of a state s in a T-coalgebra S can then
be defined as beh(s).

One of the main motivations for studying coalgebras in the context of modal
logic is that it creates unity in a landscape of widely varying modal logics. Here
we show how Kripke structures (Example 1.1.1) and monotone neighbourhood
structures (Example 1.1.3) can be seen as coalgebras. In Section 2.3.2 we give
coalgebraic representations of the semantic structures of many other well-known
modal logics including multiset frames for graded modal logic (Example 2.3.7) and
probabilistic transition systems for probabilistic modal logic (Example 2.3.8).

8 Chapter 1. Introduction

1.2.1. Example. A Kripke frame (W,R) is a Kripke model (W,R, V) without
the valuation V (see Example 1.1.1). It is easy to check that Kripke frames can be
represented as P-coalgebras for the powerset functor P : Set ! Set which maps
a set S to the set of all its subsets PS = {V | V ✓ S}. A function f : S ! T is
mapped to the direct image map Pf : PS ! PT , which is defined for any V ✓ S

by Pf(V) = f [V] = {f(v) | v 2 V }. A Kripke frame (W,R) can be represented
as a P-coalgebra (W,R[�]), where R[�] : W ! PW is defined as follows:

R[w] := {w0 2 W | w0 is a R-successor of w}.

Given a Kripke model (W,R, V), a valuation V : X! PW can also be seen as a
map mV : W ! PX by setting mV (w) := {p 2 X | p 2 V (w)}. We call mV the
marking associated with valuation V . Then it is easy to see that we can represent
Kripke models as structures of the form (W, �) where � : W ! PW ⇥ PX which
are coalgebras for the functor P �⇥PX.
As it turns out, morphisms for these coalgebras correspond precisely to the so-
called p-morphisms (or bounded morphisms) of modal logic [KKV03].

1.2.2. Example. In [HK04] it was shown that monotone neighbourhood frames
can be characterized as coalgebras for the set functor M that is defined on sets
as:

M(X) = {Y ✓ P(X) | Y is upwards closed, i.e. if U 2 Y and U ✓ V then V 2 Y },

and M maps f : S ! T to the double-inverse image map Mf : MS ! MT

defined by Mf(↵) := {U ✓ T | f�1[U] 2 ↵}. Moreover, it was shown that mor-
phisms between M-coalgebras correspond to bounded morphisms for monotone
modal logic.

We will return to the functor M in Chapters 2 and 3.

1.2.2 Equivalence

One of the benefits of having a coalgebraic description of a system is that the
theory of coalgebra provides general notions of behavioural equivalence and bisim-
ulation that can be instantiated for concrete system types.

Behavioural equivalence Intuitively, if a functor T admits a final coalge-
bra, then behavioural equivalence between states of T-coalgebras can be for-
mulated using the map beh: states s and s

0 are behaviourally equivalent if
beh(s) = beh(s0). However, a final coalgebra is not required. Using that coal-
gebra morphisms respect behaviour, behavioural equivalence can be defined by
identification via cospans of morphisms. States s and s

0 of coalgebras S = (S, �)
and S0 = (S 0

, �
0) are behaviourally equivalent if they can be identified in a third

1.3. Coalgebraic logic and automata 9

coalgebra (Q, �). That is, if there are coalgebra morphisms f : (S, �) ! (Q, �)
and f

0 : (S 0
, �

0)! (Q, �) such that f(s) = f
0(s0) (see the left part of Figure 1.1).

(S, �) (S 0
, �

0)

(Q, �)

f f
0

(R, �)

(S, �) (S 0
, �

0)

⇡2⇡1

Figure 1.1: Behavioural Equivalence (left) and T-Bisimulation (right)

Bisimilarity Another path to take is to express equivalence by identification
via spans of morphisms, which defines the fundamental equivalence notion of
bisimilarity. Let S = (S, �) and S0 = (S 0

, �
0) be two T-coalgebras. A relation

R ✓ S⇥S
0 with projection maps ⇡1 : R! S and ⇡2 : R! S

0 is a T-bisimulation
if there is a T-coalgebra structure � : R! TR, such that ⇡1 and ⇡2 are coalgebra
morphisms, see the right part of Figure 1.1. Then points s 2 S and s

0 2 S0, such
that sRs

0 for a T-bisimulation R, are called T-bisimilar [Acz88, AM89]. This
notion directly generalises bisimilarity of Kripke models.

Although there are two standard equivalence notions for coalgebras, it is well
known that for many functors of interest, including functors representing Kripke
frames, multiset frames and labelled transition systems, these two notions coin-
cide. More precisely, if T preserves a certain categorical structure called weak
pullback (see Definition 2.3.14), the notions of T-bisimilarity and behavioural
equivalence for T coincide. This fails for the monotone neighbourhood functor
M (see Example 2.3.16). In [HK04] Hansen shows that for M the coalgebraic
bisimulation is strictly stronger than the logical notion of bisimulation for mono-
tone neighbourhood models, whereas behavioural equivalence is equivalent with
logical monotone bisimilarity. To resolve this situation Marti [Mar11] introduced
another coalgebraic notion of bisimulation which generalizes T-bisimilarity and
yields an adequate notion of bisimilarity for monotone neighborhood models. We
will discuss this in more details in Section 2.3.4.1.

1.3 Coalgebraic logic and automata

We now launch into a coalgebraic generalisation of modal logics by introducing
coalgebraic modal logic as a common platform to accommodate di↵erent modal
logics, see [Mos99, KP11]. Next, following [Ven06, CKP09, FLV10] we extend
coalgebraic modal logic with fixpoint operators to define coalgebraic fixpoint modal
logic. Finally, coalgebraic automata are presented in order to generalise the link
between logic and automata to the level of coalgebras. One of the main ob-
servations underlying this link is the one-step nature of modal operators and

10 Chapter 1. Introduction

coalgebras; i.e. modal operators (only) specify properties of the (immediate) suc-
cessor states. Similarly, coalgebras describe the one-step behaviour of systems:
the structure map of a coalgebra gives access only to the immediate successor
states. We will come back to this property of coalgebras and modal operators at
the end of this section.

1.3.1 Coalgebraic modal logic

So far we advertised coalgebraic modal logic as a common platform for studying
di↵erent modal logics. Yet they can also be viewed as specification languages for
coalgebras. Therefore an ideal coalgebraic modal logic tries to be parametric in
the functor T, which represents the type of coalgebras, and to keep the balance
between uniformity and reflecting our intuition about specific variations of modal
logics.

There are two main approaches to coalgebraic modal logic. In the following
we describe both approaches without going into the technical details (we refer to
2.4.1 and 2.4.2 for detailed definitions).

1.3.1.1 Coalgebraic modal logic via r

In 1996, Barwise and Moss [BM96] introduced a non-standard modality for Kripke
models, called the cover modality (here denoted byr (“ nabla”) following [Ven06])
that operates on sets of formulas instead of on formulas. More precisely, for a fi-
nite set of formulas �, they definedr� as a formula of the logic with the following
semantics:

r� holds at a state w of a Kripke model W i↵ every formula in � holds at
some successor of w, while at the same time, every successor of w satisfies some
formula in �.

Considering the standard syntax of basic modal logic, r� is equivalent to the
formula:

2
_

'2�

' ^
^

3�,

where 3� = {3' | ' 2 �}. Conversely, the standard formulas 2' and 3' are
respectively equivalent to r; _r{'} and r{>,'}.

These equivalences show that the nabla modality and the standard modalities
3 and 2 are interdefinable, and hence the language based on r is an alternative
formulation of basic modal logic. Independently, Janin and Walukiewicz [JW95]
made the same observation which led them to develop automata corresponding
to formulas of the µ-calculus.

Following this path to define a coalgebraic modal logic, Moss generalised the
result of [BM96] on Kripke models as coalgebras for the powerset functor. In

1.3. Coalgebraic logic and automata 11

[Mos99], he initiated the idea of taking the coalgebra type functor itself to con-
struct a modality. Given a set functor T, Moss assigned a modality rT to T such
that for each ↵ 2 TL where L is the set of formulas, rT↵ is a formula in L. He
then defined the semantics of this modality in terms of a relation lifting applied
to the satisfaction relation (see Definition 2.3.26 and Equation 2.1). Fixing a
functor T, we denote the arising modal language by ML

T
r, and call it the r-based

modal language for functor T.
While Moss’ r-based formalism was recognised as a seminal contribution to

the field, it had two main drawbacks. First of all, Moss defined the semantics of
his modality via the so-called Barr lifting (see Example 2.3.27), and to make it
well-behaved he needed to impose weak-pullback preservation on the functor (see
Definition 2.3.14). So his formalism excluded some important coalgebras such as
neighborhood and monotone neighborhood models and frames. And second, the
syntax of Moss’ modality is rather non-standard compared to 2 and 3.

Hence, a natural question to ask is how to obtain a more general coalgebraic
modal language which uses standard modalities. The approach that we will dis-
cuss in the next section is an answer to this question.

1.3.1.2 Coalgebraic modal logic via predicate liftings

The predicate lifting approach was pioneered by Pattinson [Pat03b], and further
developed by Ĉırstea, Pattinson, Schröder and others, see e.g. [CP04, Sch08,
SP09a]. In this setting, in order to obtain semantics for modalities for a functor
T, one needs to choose a set ⇤ of predicate liftings for T (see Definition 2.4.11).
Informally, a predicate lifting “lifts” a predicate over the state space S to a
predicate over TS. To give some intuition on the semantics of modal operators
via predicate liftings, consider a formula ' as a description of a property of states
of a Kripke model. Then the modalized formula 2' asserts a property of one-
step behaviours. Unlike the r-based language, modal languages using predicate
liftings have a standard syntax and since relation liftings are not involved in the
semantics, the constraint on weak-pullback preservation drops automatically.

Fixing a functor T and a set of predicate liftings ⇤, we denote the arising
coalgebraic modal logic by ML⇤. This logic is a direct generalisation of the basic
modal logic, and indeed many other variations of modal logic arise as instances of
the coalgebraic modal logic ML⇤ associated with a suitable functor T and modal
signature ⇤. The formal definition is given in Section 2.4.2 along with several
examples including basic modal logic (Example 2.4.14) and monotone modal logic
(Example 2.4.15).

One benefit of coalgebraic modal logic is that many results can be proved at
the abstract level of coalgebras and these results can then be instantiated to con-
crete system types. Such results include a coalgebraic Hennessy-Milner theorem
[Sch08], which ensures that coalgebraic modal logic is expressive enough to distin-
guish states of coalgebras that are not behaviourally equivalent, and a coalgebraic

12 Chapter 1. Introduction

generalisation of the van Benthem characterisation theorem [SPL15]. Also axiom-
atization and completeness can often be proved at the coalgebraic level. We refer
the reader to [SP09b] where a coalgebraic strong completeness result is proved
using canonical models, and to [Pat03b] and [KKV12] and the references therein
for completeness results for coalgebraic modal logic using predicate lifting and
r respectively. Finally we note that the balance between expressivity and com-
plexity holds for coalgebraic modal logic as well. In particular, the satisfiability
problem for coalgebraic modal logic is generally PSPACE-complete [SP08].

1.3.2 Coalgebraic fixpoint logic

In Section 1.1.2, we presented the standard µ-calculus and mentioned that adding
fixpoint operators to modal logic results in a significant increase of the expres-
sive power. Similar to what happens in modal logic, we can extend coalgebraic
modal logic with fixpoint operators to obtain a coalgebraic µ-calculus. It is then
natural to ask if coalgebraic µ-calculus provides a uniform framework to study
di↵erent modal fixpoint logics, and whether results from standard µ-calculus can
be generalised to the level of coalgebras.

Since we have two approaches towards coalgebraic modal logic, it is not sur-
prising that coalgebraic µ-calculus comes in two variants: one based on the cover
modality r, and one based on predicate liftings. For the detailed definition of
the syntax in both settings, we refer to Definition 2.4.1 and Definition 2.4.12. In
this thesis we will work with both approaches.

1.3.3 Coalgebraic automata theory

Given the success of the automata-theoretic approach towards the standard µ-
calculus, a suitable uniform automata theory as a pillar of the theory of coalge-
braic µ-calculus is desired. In this section we give a brief overview of some of
the results regarding the development of such automata theory for coalgebraic
µ-calculus. This thesis makes further contributions to this area, and as a main
result, presented in Chapter 5, we show how to bring automata explicitly into the
proof theory of the µ-calculus.

Coalgebraic automata are designed as abstract devices that operate on pointed
coalgebras and either accept or reject them based on a parity condition. They
generalise many well-known types of automata in a way that we can instantiate
the coalgebra type to these structures and get automata such as word, tree and
graph automata.

Automata for the r-based fixpoint logic were first introduced by Venema in
[Ven06], where he also introduced r-based µ-calculus µML

T
r. Focusing on func-

tors that preserve weak pullbacks, Venema proposed three main variants of (al-
ternating and non-deterministic) coalgebraic automata: T-automata, chromatic
T-automata and logical T-automata. Although Venema proved that these three

1.3. Coalgebraic logic and automata 13

kinds of automata for colored coalgebras are just variants of one another, each
can be more convenient for a specific purpose. For instance T-automata can be
directly used to prove general and uniform results for automata operating on
state-based systems (including relational structures). Chromatic T-automata are
more convenient when results such as closure under projection need to be proved
(see Chapter 3). And finally logical T-automata are more appropriate in case a
syntactical connection to logical formulas is desired (e.g. Chapters 4 and 5).

A key result proved in [Ven06] states that there are e↵ective translations
between logical T-automata and µML

T
r-formulas, and that logical T-automata and

µML
T
r-formulas are expressively equivalent over pointed coalgebras. The theory of

T-automata was then further developed in [KV08], where several results including
closure properties and a simulation theorem were established for such automata.
Subsequently some of these results have been generalised from weak pull back-
preserving functors to the class of functors with a quasi-functorial lax extension
in [MSV15].

Coalgebraic automata for µMLTr do not correspond directly to the coalgebraic
µ-calculus with predicate liftings µML⇤. In addition, all the variants of coalgebraic
automata that have been so far mentioned are restricted to functors that preserve
weak pullbacks. Therefore Fontaine et al. in [FLV10] introduced automata for
coalgebras of arbitrary type. More precisely, for a set functor T and a set ⇤ of
predicate liftings they defined a logical ⇤-automaton which is an alternating parity
automaton operating on T-coalgebras. In the same paper, Fontaine et al. also pro-
vided e↵ective translations between ⇤-automata and µML⇤-formulas, and proved
expressive equivalence of ⇤-automata and µML⇤-formulas over T-coalgebras.

1.3.3.1 One-step logic

One-step logic stems from the work on coalgebraic modal logic by Ĉırstea, Pat-
tinson, Schröder and others [Pat03b, CP04, CKP+08, SP09a, SP10] to provide
the syntax and semantics for one-step formulas, that are formulas of modal depth
one. This logic plays a pivotal role in strengthening the link between fixpoint
logic, automata and coalgebras. Its importance is due to the observation that
many of the properties of (coalgebraic) modal fixpoint logic are already mani-
fest at the one-step level, that is, at the level of one-step formulas and one-step
unfoldings of coalgebra states [FLV10, ESV16a, SSP17, ESV17].

By defining the transition map of logical automata with one-step formulas,
and applying properties of one-step logic, we are able to separate two key aspects
of the coalgebraic µ-calculus: the one-step dynamics encoded by modal operators
and one-step unfolding of coalgebras, and the combinatorics related to nested
fixpoints. In particular, we will see that the “trace theory” of an automaton is
largely determined by the shape of the formulas of the one-step language. For
example one of our key concepts, that of a semi-disjunctive automaton (see Def-
inition 5.6.2), which is related to the notion of aconjunctive formulas in [Koz83],

14 Chapter 1. Introduction

is defined in terms of a syntactic form of the one-step formulas, but is motivated
by certain results about the acceptance game and the structure of traces for such
automata.

The one-step perspective lets us go beyond expressive equivalence between
formulas and automata, by establishing a syntactic link between automata and
formulas, which puts automata to use in proof theory. This is one of our main
contributions to the field and will be further discussed in Sections 1.4.3 and 5.8.

1.4 Contributions

In this thesis, we study some important properties of coalgebraic fixpoint logic,
namely uniform interpolation, expressive completeness and axiomatic complete-
ness. We devote a separate chapter to each of these properties and in this section
we give an overview of our contribution in each chapter.

1.4.1 Chapter 3: Uniform Interpolation

In Chapter 3, which is based on [MSV15], we study uniform interpolation for the
r-based coalgebraic fixpoint logic. Uniform interpolation is a stronger version of
Craig Interpolation [Cra57]; the latter says that if a formula '1 implies a formula
'2, then there exists a formula , called an interpolant, such that every nonlogical
symbol in occurs both in '1 and '2, and '1 implies and implies '2. A
logic then has uniform interpolation if the interpolant for the formulas '1 and
'2 depends only on '1 and the language that '2 shares with '1 (rather than
on '2 itself). Although it is easy to show that classical propositional logic has
uniform interpolation, not many logics have this property. For instance first-order
logic does not enjoy uniform interpolation, even though it has Craig interpolation
[Hen63, Pit92].

Generally, there are several motivations to consider interpolation properties
in logics. As described in [D’A08] one may study interpolation for reasons that
are internal to logic. For instance, in classical logic Craig interpolation can be
used to prove definability and preservation results such as Beth and Lyndon
theorems [Bet56] [Lyn59]. External motivations to study interpolation come from
applications of this concept in computer science, specifically in software design
and model checking [McM18].

In the theory of modal fixpoint logic, as we already mentioned in Section 1.1.3,
D’Agostino and Hollenberg proved that the modal µ-calculus has uniform inter-
polation [DH00]. The main contribution of Chapter 3 is to take a coalgebraic
perspective and generalise this result to a wider class of fixpoint logics. Our work
mainly builds on results from [SV10] and [Mar11].

In [SV10], Santocanale and Venema took a coalgebraic perspective on mono-
tone modal logic and reconstructed the syntax of this logic by replacing the box

1.4. Contributions 15

and diamond with a suitable r-modality. They defined the semantics of r via
a relation lifting fM, which is di↵erent from the standard Barr lifting (see Ex-
ample 2.3.27) and is appropriate for M which does not preserve weak pullbacks.
Using this relation lifting they proved that monotone modal logic enjoys uniform
interpolation. Generalizing the work in [SV10] for the monotone neighborhood
functor, Marti [Mar11] proved that the r-based coalgebraic modal logic for T-
coalgebras has uniform interpolation if T has a relation lifting (lax extension, see
Definition 3.1.1) satisfying a certain property called quasi-functoriality, see Defi-
nition 3.1.5 and Example 3.1.7. The class of functors with a quasi-functorial lax
extension includes all functors that preserve weak pullbacks (such as the Kripke
functor), but also, the monotone neighbourhood functor M.

Main result In Chapter 3, we prove that if a set functor T admits a quasi-
functorial lax extension L, then the r-based coalgebraic fixpoint logic µML

L

r has
the uniform interpolation property (Theorem 3.7.1). Using that the r-based
monotone µ-calculus is expressively equivalent with the standard monotone µ-
calculus, we also obtain uniform interpolation for the latter.

Generally, there are two paths to follow in order to prove a uniform interpo-
lation theorem: A proof-theoretic approach and a semantic approach. A good
example of the proof-theoretic approach is [B́ıl07], which adopts Pitts’ proof of
uniform interpolation in intuitionistic propositional logic [Pit92]. The semantic
approach is based on providing definability of bisimulation quantifiers, which im-
plies the uniform interpolation property [Vis96a]. In Chapter 3 we follow the
semantic approach and take an automata-theoretic perspective similar to [DH00]
in order to show that bisimulation quantifiers are definable in µML

L

r.

Proof strategy First, we generalise the class of alternating coalgebraic au-
tomata defined in [Ven06] and [KV08] for weak pullback-preserving set functors,
to functors admitting a quasi-functorial lax extension. We then prove a sim-
ulation theorem (Theorem 3.4.5) stating that every alternating automaton can
be replaced with an equivalent non-deterministic one. To be able to define in-
ductive translations between formulas of µMLLr and coalgebraic non-deterministic
automata (Proposition 3.6.1), we prove closure properties of automata for boolean
operators. Finally, as our main technical result, we prove that the class of au-
tomata we defined is closed under projection (Theorem 3.5.3). This result, which
generalises Proposition 5.9 in [KV08], is the automata-theoretic counterpart of
definability of bisimulation quantifiers, and our proof strategy for that is the same
as in [KV08], but the construction here is more involved. We then apply this
result and the translations between automata and formulas to show that bisimu-
lation quantifiers are definable in our language (Proposition 3.7.2). Once we have
bisimulation quantifiers in hand, it is routine to construct a uniform interpolant
for any given pair of formulas (Theorem 3.7.1).

16 Chapter 1. Introduction

1.4.2 Chapter 4: Expressive Completeness

As we mentioned in Section 1.1.3, the Janin-Walukiewicz theorem can be seen as
an expressive completeness result, stating that all relevant properties of Kripke
models in monadic second-order logic can be expressed in the modal µ-calculus.
More precisely, a monadic second-order formula is equivalent to a formula of µ-
calculus i↵ it is invariant under bisimulation. In Chapter 4, which is based on
[ESV15] and [ESV17], we address the question whether the Janin-Walukiewicz
theorem can be generalized from Kripke structures to the setting of arbitrary
coalgebras. The aim is to prove a characterisation theorem for the coalgebraic µ-
calculus with predicate liftings as modalities. In order to formulate the theorem,
we first employ a set ⇤ of predicate liftings for a set functor T to introduce a
coalgebraic monadic second-order logic MSO⇤ interpreted over T-coalgebras, and
we extend the link between logic, coalgebra and automata by defining automata
for MSO⇤. We then take an automata-theoretic approach and prove our main
result.

Main result In Chapter 4 we prove that if ⇤ consists of all monotone predicate
liftings for T and T admits a so-called adequate uniform construction (see Defini-
tions 4.5.3 and 4.5.8), then µML⇤ is the fragment of MSO⇤ that is invariant under
behavioural equivalence (Theorem 4.5.9). This theorem can be instantiated to
obtain concrete results for particular logics. Examples include taking T to be
the power set functor (standard Kripke structures), where the adequate uniform
construction roughly consists of taking !-fold products (see Example 4.5.32), the
bag functor (Example 4.5.33), and all polynomial functors (Proposition 4.5.35).

However, it turns out that there are functors that provably do not admit an
adequate uniform construction. A concrete example is the monotone neighbor-
hood functor M. As the final contribution of Chapter 4 we show how, with
some extra work, a characterization result (Theorem 4.6.11) for the monotone
µ-calculus can be derived using our main result (Theorem 4.5.9) with respect to
a natural monadic second-order language for monotone neighborhood structures
that we call “monotone MSO” and denote by MMSO.

What follows next is a sketch of our proof strategy.

Proof strategy We first define the coalgebraic monadic second-order language
MSO⇤ for any set ⇤ of monotone predicate liftings (Definition 4.2.3), and let MSOT
and µMLT denote the logics obtained by taking for ⇤ the set of all monotone
predicate liftings T. Our main goal is then to answer the following question: For
which T does the coalgebraic µ-calculus µMLT correspond to the fragment of MSOT
that is invariant for behavioural equivalence. In other words, for which T do we
have µMLT ⌘ MSOT/⇠? To answer this question we take an automata-theoretic
approach. Automata corresponding to µMLT already exist [FLV10], and are de-
fined using the one-step modal language ML

1
T. Hence, we only need to define a

1.4. Contributions 17

class of coalgebraic parity automata corresponding to formulas in MSOT. These
automata are based on the one-step second-order logic SO

1
T and are equivalent

to MSOT-formulas over coalgebras that are ‘tree-like’ in some sense (see Defini-
tion 4.3.8), similar to the case of standard MSO (Theorem 4.3.24). Denoting the
class of automata for MSOT by Aut(SO1T), we can reformulate the earlier question
on the level of automata instead of formulas: For which functors T do we have
Aut(ML1T) ⌘ Aut(SO1T)/⇠? We approach this question at the level of the one-
step languages SO

1
T and ML

1
T, and identify that this is the case if T admits an

adequate uniform construction (see Definitions 4.5.3 and 4.5.8). On the basis of
this observation the proof of our generalisation of the Janin-Walukiewicz theorem
(Theorem 4.5.9) is straightforward. Finally, we prove our second main charac-
terization theorem (Theorem 4.5.13) for functors that do not admit an adequate
uniform construction, but preserve finite sets and have a weakly adequate uniform
construction (Definition 4.5.12), and as an application of this theorem we get a
characterization result for the monotone µ-calculus with respect to monotone MSO
(Theorem 4.6.11).

1.4.3 Chapter 5: Axiomatic Completeness

One of the main questions asked about any logic is whether it has a sound
and complete axiomatization. In the seminal paper introducing the µ-calculus
[Koz83], Kozen also proposed an axiom system for the logic, and proved a partial
completeness result for a fragment of the µ-calculus, which he called the aconjunc-
tive fragment. The completeness question of Kozen’s axiomatization for the full
language remained open for about a decade, until it was resolved by Walukiewicz
[Wal00]. While the Walukiewicz completeness theorem is often cited and gen-
erally recognized as a landmark in the theory of the modal µ-calculus, it has
remained something of an isolated point in the completeness theory of modal
(fixpoint) logic. This is largely due to the complexity of Walukiewicz’ proof. One
source of this complexity lies in the general combinatorial issues involved in deal-
ing with infinite traces, i.e., possible histories of formulas, recording unfoldings
of fixpoint variables - see also the work of Niwinski and Walukiewicz [NW96]
on tableau games for the modal µ-calculus. The other source of di�culty in
Walukiewicz’ proof seems to be an intricate mix of ideas from automata theory,
game theory and logic (such as tableaux). It is the aim of Chapter 5, which is
based on [ESV16b] and [ESV18], to clarify and generalise Walukiewicz’ proof by
applying ideas from automata theory and coalgebra. In particular, we set up a
framework for dealing with the completeness problem, where we bring automata
into the picture at an earlier stage and put traces and their combinatorics in the
foreground.

Taking Walukiewicz’ proof as starting point, and noting that the modality he
worked with in his proof is in fact the nabla modality for the powerset functor,
we first addressed the completeness question for the r-based coalgebraic fixpoint

18 Chapter 1. Introduction

logic µMLTr in [ESV16b, ESV18]. We later generalised this result to the predicate
lifting setting in a separate paper [ESV19], which will be discussed in the follow
up works section.

In order to handle the fixpoint operators of the r-based coalgebraic fixpoint
logic µMLr, we add Kozen’s axiom and rule to the complete axiomatization of r-
based coalgebraic modal logic ML

T
r from [KKV12], and define an axiomatization

K for µMLTr. Our main result is the following completeness theorem.

Main result In Chapter 5, we prove that if a set functor T preserves weak
pullbacks and finite sets then the axiom systemK for µMLTr is sound and complete
(Theorem 5.9.4).

To prove our main theorem, we follow the approach taken by Kozen and
Walukiewicz, but with some di↵erences. Before discussing the di↵erences, let us
first briefly review the main steps of Walukiewicz’ proof which builds on Kozen’s
result for aconjunctive formulas. Walukiewicz’ proof starts with the observa-
tion that the satisfaction problem is easy for so-called disjunctive formulas which
correspond to disjunctive automata, i.e. non-deterministic parity automata op-
erating on Kripke models. He then proves that every µ-calculus formula ' is
semantically equivalent to a disjunctive formula '

0, such that the implication
'! '

0 is provable in Kozen’s system. The first di↵erence between our approach
and Walukiewicz’ proof strategy is that we work with a wider class of automata
than disjunctive ones, and we formulate a precise connection between the proof
theory and automata. This enables us to make automata the main building block
of our proof strategy and reformulate Kozen’s and Walukiewicz’ arguments in an
entirely automata-theoretic framework. As a second di↵erence, we set up a frame-
work where we may clearly distinguish dynamics (coalgebra) from combinatorics
(trace management). And third, our approach is thoroughly game-theoretic in
nature.

Proof strategy We start by defining coalgebraic modal automata using a one-
step r-based coalgebraic modal language (Definition 5.3.17) and provide a trans-
lation which associates to every µML

T
r-formula ' a semantically equivalent modal

automaton A'. We then provide a translation tr in the opposite direction, that

is, from automata to formulas, and establish that for every formula ' 2 µML
T
r,

we have ' is provably equivalent to tr(A') (Proposition 5.8.1). Next we focus
on two automata-related games: First, the satisfiability game (Definition 5.4.5)
of [FLV10], which comprises the logical notion of tableau. Second, we introduce
the consequence game (Definition 5.4.10) between two automata. This game
resembles Walukiewicz’ consequence game between tableaux, and can be consid-
ered of independent interest. We then isolate classes of automata which allow a
relatively simple trace management in the satisfiability and consequence games.
The first automata that naturally appear are the disjunctive automata. These
automata admit a trivial trace theory, in the sense that the matches of the sat-
isfiability game of a disjunctive automaton involves a single trace only. The
second class of special automata consists of semi-disjunctive automata. These

1.4. Contributions 19

automata roughly correspond to the weakly aconjunctive formulas introduced by
Walukiewicz. They are much less constrained than disjunctive automata, but
their one-step formulas are still of a shape that guarantees the trace theory of an
infinite match of the satisfiability and consequence games to be well-behaved. As
a key step of our proof strategy we then establish the following coalgebraic gener-
alisation of one of Walukiewicz’ main lemmas (Theorem 5.1.2): For every formula
' 2 µML

T
r, there is a semantically equivalent disjunctive automaton D such that

`K '! tr(D). The completeness theorem (Theorem 5.9.4) is then a straightfor-
ward corollary of Theorem 5.1.2: If ' is an arbitrary consistent formula, then by
Theorem 5.1.2 it is semantically equivalent to a consistent disjunctive automa-
ton D. But for disjunctive automata it is easy to prove that consistency implies
satisfiability (applying Lemma 5.9.1 and Proposition 5.6.4), and so we are done.

Chapter 2

Preliminaries

In this chapter, we present a technical introduction to the material that will be
covered throughout this thesis. Not surprisingly, most of this chapter concerns
coalgebras and fixpoint logic. We refer the reader to [AN01] and [BS01] for
fixpoint logic, and to [Rut00], [Jac16] and [Rut19] for detailed surveys on the
theory of coalgebras. For introductions to coalgebraic logic one may consult
[Pat03a] and [KP11].

2.1 Modal logic and fixpoints

We discussed the connection between modal logics, fixpoints and automata in
Section 1.1. The goal of this section is to provide formal definitions of concepts
that will be needed in this thesis.

2.1.1 Modal logics

We begin by introducing modal logics, and recall that these are logics obtained by
extending classical propositional logic with operators called modalities, evaluated
over transition systems. Here we cover some examples of modal logics and refer
the reader to [BdRV02] for detailed definitions of syntax and semantics.

Examples

2.1.1. Example. We first recall Basic modal logic from Example 1.1.1. This
logic, which we denote by ML, is obtained by adding modal operators 3 and 2

to classical propositional logic [BdRV02]. Formulas of this logic are evaluated
over Kripke models which are Kripke frames equipped with a valuation. More
precisely, Kripke models are triples (W,R, V) withW as the set of states (worlds),
the binary relation R ✓ W ⇥ W as a successor (accessibility) relation, and a
valuation V : X! PW where X is the set of proposition letters of a given modal

21

22 Chapter 2. Preliminaries

logic. The semantics of modal formulas3' and 2' over a Kripke model (W,R, V)
is defined as follows:

w �V 3' i↵ v �V ' for some v 2 W such that wRv,

w �V 2' i↵ v �V ' for all v 2 W such that wRv.

This semantics gives the reading of 3' as “possibly '” as ' holds in at least one
successor of the current state of the model. Similarly, 2' reads as “necessarily
'” as ' holds in all successors to the current state.

2.1.2. Example. As is clear from the semantics of 3 and 2 in basic modal logic,
these modal operators just check the existence of successors with certain proper-
ties. To generalize these modalities, one may decide to count such successors of
a current state in a Kripke model. This way, Fine [Fin72] defined graded modal-
ities 3k and 2k for graded modal logic [Fin72], with the following semantics over
a Kripke model (W,R, V):

w �V 3k
' i↵ |{v 2 W | wRv and v �V '}| � k,

w �V 2k
' i↵ |{v 2 W | wRv and v 6�V '}| < k.

This reads as w �V 3k
' i↵ “' holds in at least k successors of w”, and w �V 2k

'

i↵ “' fails in at most (!) k� 1 successors of w”. It is clear that we obtain 3 and
2 as the special cases 3 = 31 and 2 = 21.

2.1.3. Example. The next idea to generalize 3 and 2 is to use rational num-
bers; e.g. probabilities, instead of natural numbers for graded modalities. The
modalities of probabilistic modal logic [HM98] are written as 3p and 2p for a
rational p 2 [0, 1]. These modalities are interpreted over probabilistic transition
systems (also called Markov chains). A probabilistic transition system is a pair
(W,P) where W is a set of states and P = (µw)w2W is a family of probability
distributions on W . The semantics of the modalities over a probabilistic model
W = (W,P, V), i.e., a probabilistic transition system equipped with a valuation
V is defined as follows:

w �V 3p' i↵ µw(J'KW) � p,

w �V 2p' i↵ µw(J¬'KW) < p,

where J'KW = {v 2 W | v �V '} is the extension of ' over model W. The
reading of 3p' and 2p' is then respectively “' holds with probability at least p
in the next state” and “' fails with probability less than p in the next state” .

2.1.4. Example. The Scott-Montague neighbourhood semantics (cf. [Sco70],
[Mon70]) of modal logic generalizes Kripke semantics. The modality of neigh-
bourhood modal logic is denoted by 2, and is interpreted over neighbourhood

2.1. Modal logic and fixpoints 23

structures. A neighbourhood frame is a pair W = (W,N) where W is a set of
states and N : W ! 22

W
a neighbourhood function, which assigns to each state

of W a collection of subsets of W that is called its neighbourhoods. Considering
that the notion of neighbourhood here is very liberal - it is not even required that
a point lies in all its neighbourhoods- it can be shown that neighbourhood mod-
els generalise Kripke models [Che80]. The semantics of 2 over a neighbourhood
model W = (W,N, V), i.e. a neighbourhood frame with a valuation, is defined as
follows:

w �V 2' i↵ J'KW 2 N(w),

in words: w satisfies 2' i↵ “the extension of ' is a neighbourhood of w”.

2.1.5. Example. It is common to require a bit more structure on neighbourhood
frames from Example 2.1.4, and define the monotone neighbourhood semantics
[Che80, Han03]. A monotone neighbourhood model W = (W,N, V) is a neigh-
bourhood model with the restriction that all neighbourhood collections are upsets
(that is, if U 2 N(w) and U ✓ U

0, then U
0 2 N(w)). The semantics of 2' is the

same as over neighbourhood models:

w �V 2' i↵ J'KW 2 N(w).

2.1.6. Example. Coalition logic [Pau02] is a modal logic for reasoning about the
coalitional power of agents in a strategic game. Given a finite set N of agents or
players, subsets of N are called coalitions. In coalition logic for each coalition A

we have a modal operator [A], where [A]' informally reads as “coalition A has a
joint strategy to ensure an outcome that satisfies '”. Formulas of coalition logic
are interpreted over game models. A game model W = (W,G, V) consists of a
set W of states, a valuation V , and a map G that at a state w 2 W assigns:

• a set Sw

i
of available moves to each agent i 2 N

• an outcome function

fw : (
Q

i2N S
w

i
)! W

that determines the successor state of w, given a choice of a move by each
agent.

For a coalition A and joint choices ⇢A 2
Q

i2A S
w

i
and ⇢N�A 2

Q
i2N�A

S
w

i
of

moves by the agents in A and the agents outside A, respectively, we let h⇢A, ⇢N�Ai
represent the obvious induced element of

Q
i2N S

w

i
, i.e. the arising overall choice

of moves. The semantics of the operators [A] is then determined, for a state w

with data S
w

i
, fw as above, by

w �V [A]' i↵ 9⇢A 2
Q

i2A S
w

i
. 8⇢N�A 2

Q
i2N�A

S
w

i
. fwh⇢A, ⇢N�Ai � '.

24 Chapter 2. Preliminaries

2.1.2 µ-calculus over Kripke models

Although we assume that the reader is familiar with the syntax and semantics of
the µ-calculus, here we provide a quick review of the main notions that play a
role in this thesis. We present the µ-calculus in two di↵erent syntactic formats.
The first format, denoted by µML, is the standard µ-calculus which is obtained by
adding fixpoint operators to the basic modal logic ML. The second formulation is
the r-based modal fixpoint logic denoted by µML

P
r, which we obtain by replacing

the standard modalities of µML by the modality “nabla” (r) for the powerset
functor.

To simplify the notation, we will focus on monomodal logic with only one
modality. More detail on the general formalism can be found in [Koz83], [Wal00]
and [AN01].

Standard µ-calculus

Throughout this section, we fix an infinite set of propositional variables.

2.1.7. Definition. The language µML of the modal µ-calculus is given by the
following grammar:

' ::= > | ? | p | ' _ ' | ' ^ ' | 3' | 2' | ¬' | µx.' | ⌫x.',

where p and x are propositional variables, and the formation of the formulas µx.'
and ⌫x.' is subject to the constraint that the variable x is positive in ', i.e., all
occurrences of x in ' are in the scope of an even number of negations. Elements
of µML will be called modal fixpoint formulas, µ-formulas, or simply formulas.

The collection of subformulas of a formula is defined as usual. Syntactically,
the fixpoint operators are similar to the quantifiers of first-order logic in the way
they bind variables. They bind the variable that they occur with everywhere
in the subformula to which they are applied. Given a formula ', the free and
bound variables are defined in the usual way. Fix a formula '. The sets FV (')
and BV (') of its free and bound variables are defined in the usual way. As a
convention, the free variables of a formula ' are denoted by the symbols p, q, r, . . .,
and referred to as proposition letters, while we use the symbols x, y, z, . . . for the
bound variables of a formula.

Semantics of µML

Formulas of µML(X) are interpreted over Kripke models. A Kripke model S =
(S,R, V) is a Kripke frame equipped with a valuation V : X! PS.

2.1.8. Definition. By induction on the complexity of modal fixpoint formulas,
we define a meaning function [[·]], which assigns to a formula ' 2 µML its extension

2.1. Modal logic and fixpoints 25

[[']]S ✓ S in any Kripke model S = (S,R, V). The clauses of this definition are
standard:

[[>]]S := S

[[?]]S := ;
[[p]]S := V (p)

[[' _]]S := [[']]S [[[]]S

[[' ^]]S := [[']]S \ [[]]S

[[3']]S := {s 2 S | R[s] \ [[']]S 6= ?}
[[2']]S := {s 2 S | R[s] ✓ [[']]S}
[[¬']]S := S \ [[']]S

[[µx.']]S :=
\

{U 2 PS | [[']]S[x 7!U] ✓ U}

[[⌫x.']]S :=
[

{U 2 PS | U ✓ [[']]S[x 7!U]},

where S[x 7! U] denotes the model (S,R, V [x 7! U]) obtained from S by replacing
V with the valuation V [x 7! U], which is exactly like V apart from mapping x

to U .
Given a model S = (S,R, V) we also define a relation � between S and µML

by saying that (s,') belongs to the relation � if s 2 [[']]S. In the case that (s,')
belongs to � we say that ' is true at s or holds at s, or that s satisfies '.

Representing standard µ-calculus using the r-modality

As we discussed in Section 1.3.1.1, Barwise and Moss [BM96] introduced a non-
standard modality r for Kripke models that operates on sets of formulas instead
of on formulas. Using this modal operator we can define the r-based fixpoint
language µML

P
r.

2.1.9. Definition. The language µML
P
r is given by the following grammar:

' ::= > | ? | p | ' _ ' | ' ^ ' | r� | ¬' | µx.' | ⌫x.',

where p and x are propositional variables, � ✓! µML
P
r, and similar to the def-

inition of µML, the formation of the formulas µx.' and ⌫x.' is subject to the
constraint that the variable x is positive in ', i.e., all occurrences of x in ' are
in the scope of an even number of negations.

To formulate the semantics of the r-modality, we use the standard defini-
tion from the literature (see [Mos99]), which applies the Egli-Milner lifting (see
Example 2.3.28) of the satisfaction relation �:

S, s � r� i↵ R[s] P(�) �.

26 Chapter 2. Preliminaries

Working out the details, this says that r� holds at s i↵ every successor of s
satisfies some formula in � and every formula in � holds in some successor of s.
From this observation it is easy to derive that:

r� ⌘
^

3� ^2
_
�,

where 3� denotes the set {3' | ' 2 �}. Conversely, the standard modal
operators can be expressed in terms of the r-modality:

3' ⌘ r{',>}
2' ⌘ r{'} _r?.

We note that r? holds at a point s i↵ s is a ‘blind’ world, that is, R[s] = ?.
Since r and the standard modalities 3 and 2 are interdefinable, the languages
µML and µML

P
r are expressively equivalent.

2.2 Parity games

Parity games [EJ91b, Mos91] are special graph games with a parity winning
condition. These games are closely connected to the theory of fixpoint logic, and
are used to define a game semantics for the standard µ-calculus and determine
the acceptance condition for automata corresponding to this logic.

All the games that we consider in this thesis are graph games involving two
players, standardly called Éloise (9) and Abelard (8).

Given a set A, let A! denote the collection of infinite words (streams) over A,
respectively. For ⇢ 2 A

! we let:

Inf(⇢) := {a 2 A | a occurs infinitely often in ⇢}.

A parity graph game is a tuple G = (B9, B8, E,⌦) where:

• B9, B8 are disjoint sets of positions for the players 9 and 8 respectively.
The set G := B9 [B8 is called the board of the game G.

• E ✓ G⇥G is a binary relation on G that defines admissible moves.

• ⌦ : G ! ! is a priority function, i.e. a function from G to ! with finite
range.

A play or match consists of an initial position bI 2 G and a sequence of moves of
the players according to the following rule:

• In position b 2 B9 (b 2 B8) player 9 (8) has to move to some position
b
0 2 E[b], where E[b] := {b0 2 G | (b, b0) 2 E}.

2.2. Parity games 27

Therefore a (possibly infinite) match of G starting from initial position bI is
represented by a sequence of positions b0b1b2 · · · where b0 = bI and bi+1 2 E[bi].
A match ⇢ = b0b1 · · · from some position b0 = bI is said to be complete if either
⇢ = b0b1 · · · bn is finite and E[bn] = ; or ⇢ = b0b1 · · · is infinite. We call an
incomplete match ⇢ = b0b1 · · · bn a partial match.

Given a complete match ⇢ of G, we say 9 wins ⇢ if either

• ⇢ = b0b1 · · · bn and bn 2 B8 or

• ⇢ is infinite and max{⌦(b) | b 2 Inf(⇢)} is even.

Otherwise 8 wins.
An important property of parity graph games is their history-free determinacy,

i.e. the fact that starting from any position ofG either of the players has a history-
free winning strategy [EJ91b, Mos91]. We will now formally define the notion of
such a winning strategy and then state the theorem.

2.2.1. Definition. Let G = (B9, B8, E,⌦) be a parity graph game, G = B9[B8
the set of positions. A strategy for a player ⇧ in {9, 8} is a function F mapping a
partial match b0b1 · · · bn with bn 2 B⇧ to some position b. We call F an admissible
strategy for ⇧ from position b0 if for all partial matches ⇢ = b0b1 · · · bn with bn 2
B⇧ we have F (⇢) 2 E[bn]. A strategy F is called history-free if F depends only
on the actual position of the match and not on its history, that is F (⇢) = F (⇢0)
for all matches ⇢ and ⇢0 that have the same last position.

Let F be a strategy for ⇧. Then a match ⇢ is called F -guided if for all initial
parts b0b1 · · · bn of ⇢ ending at bn 2 B⇧ we have that b0b1 · · · bnF (b0b1 · · · bn) is
also an initial part of match ⇢.

A strategy F for ⇧ is called a winning strategy for ⇧ in G from position b 2 G

if F is an admissible strategy from b and all complete F -guided matches ⇢ starting
from b are won by ⇧.

A position b 2 G is called a winning position for ⇧ if there is a winning
strategy for ⇧ in G starting from b. We use the following notation to denote the
set of winning positions of players 9 and 8 in G:

Win9(G) := {b 2 B9 [B8 | b is a winning position for 9}
Win8(G) := {b 2 B9 [B8 | b is a winning position for 8}.

Now we are ready to state the main result about parity games:

2.2.2. Theorem ([EJ91b, Mos91]). Let G = (B9, B8, E,⌦) be a parity graph
game and G = B9 [B8 the set of its positions. Then G is history-free deter-
mined, i.e. G = Win9(G) [Win8(G) and the player who has a winning strategy
from a position b also has a history-free winning strategy.

In addition to the original papers mentioned in the theorem, the reader can
also check [Zie98] for the proof of this theorem.

28 Chapter 2. Preliminaries

2.3 Category theory and coalgebras

This section introduces some terminology and background on category theory
and coalgebras. We presuppose that the reader has made contact with basic
concepts from category theory before. For example, we assume familiarity with
basic notions such as categories and functors. We refer the reader to [ML71] for
detailed definitions.

2.3.1 Sets and relations

In this thesis, we work in the category Set, that has sets as objects and functions
as arrows. It is assumed that the reader is familiar with the usual constructions
on sets, so the following explanations are there to fix notation. The notation
f : X ! Y means that f is a function with domain X and codomain Y . The
identity function for a set X is denoted by idX : X ! X. The composition of
two functions f : X ! Y and g : Y ! Z is the usual composition of functions
written as g � f : X ! Z. For sets X 0 ✓ X, the inclusion map from X

0 to X is
denoted by iX0,X : X 0

,! X, x 7! x. For a function f : X ! Y , we define the set
ran(f) = {y 2 Y | 9x 2 X, f(x) = y} ✓ Y .

Another category that we will use frequently is the category Rel of sets and
relations between sets. Its arrows from a set X to a set Y are all the relations
between X and Y . We write R : X ! Y to indicate that R is a relation between
X and Y . Note that a relation R : X ! Y as an arrow in the category Rel is not
just a set of pairs, that is, a subset of X ⇥ Y , but it also contains information
about its domain and codomain. At some places, especially once we use relation
liftings later, it matters what the domain and codomain of a relation are.

The graph of any function f : X ! Y is a relation between X and Y for
which we write again f : X ! Y . It will be clear from the context, in which a
symbol f occurs, whether it is meant as an arrow in Set or as an arrow in Rel.

The diagonal relations �X : X ! X are the identity arrows in the category
Rel and defined by (x, x0) 2 �X i↵ x = x

0. The composition of two relations
R : X ! Y and S : Y ! Z is written as R ; S : X ! Z and defined by:

R ; S := {(x, z) 2 X ⇥ Z | (x, y) 2 R and (y, z) 2 S for some y 2 Y }.

The composition of relations is written the other way round than the com-
position of functions. So we have, using the identification of functions with the
relation of its graph, that g � f = f ; g for functions f : X ! Y and g : Y ! Z.
The converse R

� : Y ! X of a relation R : X ! Y is given by (y, x) 2 R
� i↵

(x, y) 2 R. The projections of a relation R : X ! Y are denoted by ⇡1 : R! X

and ⇡2 : R! Y . It holds that R = ⇡
�
1 ; ⇡2.

For a relation R : X ! Y we define the following sets:

dom(R) := {x 2 X | 9y 2 Y s.t. (x, y) 2 R} ✓ X,

2.3. Category theory and coalgebras 29

ran(R) := {y 2 Y | 9x 2 X s.t. (x, y) 2 R} ✓ Y.

We call a relation R : X ! Y full on X (respectively Y) if we have dom(R) = X

(respectively ran(R) = Y).
For any set X, let 2X : X ! PX be the membership relation between X and

subsets of X.

2.3.2 Coalgebras

In this section, we formally define coalgebras. We assume, if not explicitly stated
otherwise, that functors are covariant endofunctors on the category Set, and we
show that all of the transition systems discussed in section 2.1.1 can be seen as
coalgebras for suitable functors.

2.3.1. Definition. Given a setfunctor T : Set ! Set, a T-coalgebra is a pair
S = (S, �) where S is a set of states and � : S ! TS is the structure map of
the coalgebra S. A coalgebra homomorphism or just morphism from T-coalgebra
S = (S, �) to S0 = (S 0

, �
0), written as f : S ! S0, is a map f : S ! S

0 such that
the following diagram commutes:

S S
0

TS TS 0

f

�

Tf

�
0

Intuitively, coalgebra morphisms are functions that preserve T-structure. The
identity function on a T-coalgebra is always a coalgebra morphism, and the com-
position of two coalgebra morphisms is again a a coalgebra morphism. Thus the
collection of all T-coalgebras together with T-coalgebra morphisms is a category,
which we denote by Coalg(T).

2.3.2. Remark. In general, T-coalgebras can be defined for any endofunctor
T : C ! C, however since we only work with set functors in this thesis we
restrict Definition 2.3.2 to endofunctors on Set.

2.3.3. Definition. Given a functor T : Set ! Set, a pointed T-coalgebra is a
pair (S, s) consisting of a T-coalgebra S together with a distinguished element s
from the set of states of S.

30 Chapter 2. Preliminaries

2.3.2.1 Examples

In the following, we consider some examples of coalgebras of set functors from
[KP11]. Most of the examples concern modal logic, in the sense that they are
coalgebraic representations of the semantic structures of modal logics discussed
in Section 2.1.1.

2.3.4. Example. For our first example, we consider deterministic transition sys-
tems with output. These systems are such that on each state one can observe a
value from a fixed set A, and the system moves on to a next state. Such a system
can be represented as a coalgebra (S, � : S ! A ⇥ S) for the functor T which
maps a set S to A ⇥ S. More precisely, the structure map � for this coalgebra
is defined in a way that ⇡1(�(s)) 2 A denotes the current value of the system,
and ⇡2(�(s)) 2 S specifies the next state, with ⇡1 and ⇡2 denoting the projection
maps on A⇥ S.
Considering the same functor T = (A ⇥ �), it is easy to see that the system
(A!

, (hd, tl)) of infinite words over A together with maps “head” and “tail” that
we saw in Section 1.2.1, is a T-coalgebra. In fact, infinite words form a final
deterministic transition system with output. We will say more about this in
Section 2.3.2.2.

2.3.5. Example. [Rut00] Recall that deterministic automata are tuples A =
(A,C,⇥, F) such that A is a set of states, C is an alphabet, ⇥ : A ⇥ C ! A

is a transition map and F ✓ A is a collection of accepting states. Observe that
we can represent F by the characteristic map �F : A ! 2 (where 2 denotes the
set {0, 1}) and represent ⇥ as a map A ! A

C where A
C denotes the collection

of maps from C to A. Hence we can model a deterministic automaton A as a
T-coalgebra, where TA := 2⇥ A

C for all A.

2.3.6. Example. Recall from Example 2.1.1 that a Kripke frame is a pair (W,R)
with W as the set of states and the binary relation R ✓ W⇥W as an accessibility
relation. These structures are coalgebras for the powerset functor P : Set! Set,
which maps a set S to the set of all its subsets PS = {U | U ✓ S}. A function
f : S ! T is mapped to Pf : PS ! PT , which is defined for any U ✓ S

by Pf(U) = f [U] = {f(u) | u 2 U}. A Kripke frame (W,R) is a P-coalgebra
(W,R[�]), where R[�] : W ! PW is defined as follows:

R[w] := {w0 2 W | w0 is a R-successor of w}.

A Kripke model (W,R, V) is a Kripke frame together with a valuation V : X!
PW where X is the set of proposition letters of a given modal logic. Note that V
can also be seen as a mapmV : W ! PX by settingmV (w) := {p 2 X | p 2 V (w)}.
We call mV the marking associated with valuation V . Then it is easy to see that
Kripke models are structures of the form (W, �) where � : W ! PW ⇥PX which
are coalgebras for the functor T = P �⇥PX.

2.3. Category theory and coalgebras 31

2.3.7. Example. A multiset frame is a directed graph with N-weighted edges,
known also as a multigraph [DV02]. More precisely, a multiset frame has a (finite)
number of successors, each of which comes with a weight or multiplicity. A
multiset frame can be seen as a coalgebra for the Bag (finitary multiset) functor.
The Bag (finitary multiset) functor B : Set ! Set sends a set S to the set of
mappings f : S ! ! such that the set {u 2 S | f(u) > 0} is finite. The action
on morphisms is given by letting, for f 2 BX and h : S ! Y , the multiset
Bh(f) : Y ! ! be defined by w 7!

P
h(v)=w

f(v).
Multiset frames can be used to provide semantics for graded modal logic (see

Example 2.1.2). Let us note that, originally, formulas of graded modal logic
[Fin72] are interpreted over Kripke frames, not multiset frames. However, each
Kripke frame can be seen as a multigraph with all edges with weight 1 and,
conversely, to each multigraph we can associate a Kripke frame by adding enough
copies of successor states.

2.3.8. Example. Recall from Example 2.1.3 that a probabilistic transition sys-
tem is a pair (W,P) where W is a set of states and P = (µw)w2W is a family of
probability distributions on W . Probabilistic transition systems are coalgebras
for the finitary distribution functor D : Set ! Set, which maps a set X to the
set of discrete probability distributions over X with finite support, i.e. DX is the
set of all µ : X ! [0, 1] such that

P
x2X µ(x) = 1, with finite support. D maps a

function f : X ! Y to the function Df : DX ! DY mapping µ : X ! [0, 1] to

Df(µ) : Y �! [0, 1]

y 7!
X

x2f�1({y})

µ(x).

D-coalgebras are generally referred to as Markov chains.

2.3.9. Example. As we mentioned in Example 2.1.4, neighbourhood frames gen-
eralize Kripke frames and are used in the semantics of classical modal logic.
Neighbourhood structures can be seen as coalgebras for the double contravariant
powerset functor N := QQ also known as the neighbourhood functor [HKP09].
The contravariant powerset functor Q maps a set S to QS = PS. On func-
tions Q is the inverse image map, that is, for a function f : S ! T we have
Qf : QT ! QS, V 7! f

�1[V]. The neighborhood functor N : Set ! Set maps
a set S to NS = QQS and a map f : S ! T to a map N f : NS ! NT with
N f(↵) = {V ✓ T | f�1[V] 2 ↵} for all ↵ 2 NS.

2.3.10. Example. A monotone neighbourhood frame from example 2.1.5 can be
characterized as a coalgebra for the monotone neighbourhood functor M : Set!
Set. We need the following notion in order to define how M operates on sets and
functions. Given a set S and an element ↵ 2 NS, we define

↵
" := {X 2 PS | Y ✓ X for some Y 2 ↵},

32 Chapter 2. Preliminaries

and we say that ↵ is upward closed if ↵ = ↵
". The monotone neighborhood functor

M is the restriction of the neighborhood functor to upward closed sets. More
concretely, the functor M is given by MS := {� 2 NS | � is upward closed},
while for f : S ! T , we define Mf : MS ! MT by Mf(�) := N f(�). It is
straightforward to check N f(�) is upward closed whenever � is upward closed.

2.3.11. Example. Game frames (see Example 2.1.6) can also be represented as
coalgebras. A game frame is a coalgebra for the game functor G : Set ! Set
which is defined in the following. Let N be a set of agents and Si be the set of
strategies for the respective agent i 2 N . The game functor G maps a set X to:

G(X) = {((Si)i2N , f) | 8i 2 N(; 6= Si ✓ !) and f :
Y

i2N

Si ! X}

where f is an outcome function that produces a new position of the game given
the choice of individual strategies. G maps a function h : X ! Y to the function
Gh : GX ! GY by putting Gh((Si)i2N , f) := ((Si)i2N , h � f).

2.3.2.2 Final Coalgebra

A final coalgebra for a functor T is a final or terminal object of the category
Coalg(T), i.e., for every T-coalgebra S = (S, �) there exists a unique morphism to
the final coalgebra. This unique morphism, as demonstrated on many examples
in [Rut00], expresses the “abstract behaviour of states of S”. Moreover, there
are many well-known mathematical structures that are associated with the final
coalgebra of some functor.

Below we give some concrete examples of final coalgebras from [Rut00].

2.3.12. Example. [Rut00] Consider the set functor T := (A⇥�) of deterministic
transition systems with output, and a T-coalgebra S = (S, � : S ! A ⇥ S).
Define a map beh : S ! A

! by beh(s) = (a0, a1, a2, · · ·) such that �(s) = (a0, s1),
�(s1) = (a1, s2) and �(s2) = (a2, s3), etc. It is not di�cult to check that the
behaviour map s 7! beh(s) is the unique homomorphism from S to the coalgebra
(A!

, (hd, tl)) (the collection of infinite words over A together with maps head
and tail as mentioned in Section 1.2.1). This shows that (A!

, (hd, tl)) is the final
object in the category Coalg(A⇥�).

2.3.13. Example. [Rut00] Given the set functor T := 2⇥ (�)C , and recall that
T-coalgebras are deterministic automata over the alphabet C. The collection
P(C⇤) of all languages over C provides the state space of the final coalgebra for
this functor. Consider the following transition function � : P(C⇤)! 2⇥P(C⇤)C

to turn P(C⇤) into a T-coalgebra. Writing �(L) = (�1(L), �2(L)) for L 2 P(C⇤),
define:

�1(L) =

⇢
1 if the empty word belongs to L

0 otherwise

2.3. Category theory and coalgebras 33

and

�2(L)(c) := {w 2 C
⇤ | c.w 2 L}.

With this definition, the structure (P(C⇤), �) forms a final object in the category
Coalg(2 ⇥ (�)C). Given a (2 ⇥ (�)C)-coalgebra A, the unique homomorphism
lang : A ! (P(C⇤), �) maps a state a 2 A to the language that is accepted by
the deterministic automaton that is obtained by taking a as initial state of A.

2.3.2.3 Coinduction

An important application of final coalgebras is provided by the notion of co-
induction, both as a definition and proof principle. This principle is dual to that of
induction. To see this, without going to technicalities, one can describe induction
as “use of initiality for algebras”. Dually, coinduction can be formulated by “use
of finality for coalgebras” as mentioned in [JR97]. Finality of a coalgebra involves
two concepts: existence which is used to define maps into the final coalgebra and
uniqueness which corresponds to the coinduction proof principle.

Coinduction is an important concept in the theory of coalgebras. However it
does not directly play a role in this thesis, thus we keep this section short and
refer the interested reader to [JR97] for more information.

2.3.3 Properties of set functors

In this section, we gather some properties of set functors that are of interest in
the setting of coalgebras.

Inclusion preservation A set functor T is inclusion preserving if for all sets
X

0 andX withX
0 ✓ X, we have TiX0,X = iTX0,TX , where i stands for the inclusion

map.
Each set functor is “almost” inclusion-preserving. For each set functor T

there exists an inclusion-preserving set functor T0 such that the restriction of
T and T0 to all non-empty sets and non-empty maps are naturally isomorphic
[AT90, Theorem on page 132].

Finite intersection preservation. A set functor T preserves finite intersec-
tions if for all sets X and Y we have: T(X \ Y) = TX \ TY .

Every set functor preserves finite non-empty intersections [Trn69] and [AGT09,
Proposition 2.2].

Preservation of surjective maps A set functor T preserves surjective maps
if for all surjective maps f : A ! B the map Tf : TA ! TB is surjective too.
All set functors preserve surjective maps [AT90, Proposition 4.2.(ii)].

34 Chapter 2. Preliminaries

Weak pullback preservation. A very important property of set functors for
the theory of coalgebras is weak pullback preservation. Let us first define weak
pullbacks.

2.3.14. Definition. Given functions f : X ! Z and g : Y ! Z, the pullback
of f and g is the following set

P = {(x, y) 2 X ⇥ Y | f(x) = g(y)},

together with the projections p1 : P ! X and p2 : P ! Y such that f � p1 =
g �p2. The pullback of f and g is determined up-to-isomorphism by the following
universal property: For any setQ and functions q1 and q2 that satisfy f�q1 = g�q2,
there is a unique function h : Q! P such that q1 = p1 � h and q2 = p2 � h. This
universal property is described in the following diagram.

P Y

X Z

Q

p2

p1

f

g
q1

q2

h

If the function h is not necessarily unique, we call (P, p1, p2) a weak pullback.

2.3.15. Definition. A functor T preserves weak pullbacks if it transforms every
weak pullback (P, p1, p2) for f and g into a weak pullback (TP,Tp1,Tp2) for
Tf and Tg. An equivalent characterization is to require T to weakly preserve
pullbacks, that is, to turn pullbacks into weak pullbacks [Rut00, GS05].

2.3.16. Example. All the functors mentioned in the examples of section 2.3.2
preserve weak pullbacks, except for the neighborhood functor and its monotone
variant.

2.3.17. Example. The set of Kripke polynomial functors (KPF) is inductively
defined as follows:

T ::= CA | Id | T⇥ T | T+ T | TD | PT,

where for a finite set A, CA denotes the constant functor mapping all sets to A,
Id refers to the identity functor, and the ⇥ and + denote binary product and
disjoint union respectively. Furthermore given a finite set D, we write TD for the
functor mapping a set S to the D-fold product (TS)D. The class of polynomial

2.3. Category theory and coalgebras 35

functors (PF) consists of all functors T 2 KPF that do not involve the power
set functor. It can be shown that the property of preserving weak pullbacks is
preserved under the operations +, ⇥, (�)D and P(), so that all Kripke polynomial
functors preserve weak pullbacks.

The next fact gives a characterisation for weak pullback-preserving set func-
tors:

2.3.18. Fact. [Gum01] A set functor T preserves weak pullbacks if and only if
for all maps f : X ! Z and g : Y ! Z we have: For all u 2 TX, v 2 TY
with Tf(u) = Tg(v) there is an element w 2 TP such that Tp1(w) = u and
Tp2(w) = v, where P = {(x, y) | f(x) = g(y)} with p1 and p2 as projections on
X and Y .

TP TY

TX TZ

Tp2

Tp1

Tf

Tg

Finite set preservation. A functor T preserves finite sets if TX is finite when-
ever X is.

2.3.19. Definition. An inclusion preserving functor T is called finitary if for
all sets X, we have:

TX =
[

{TX 0 | X 0 ✓ X and X
0 is finite}.

The finitary version T! of an inclusion preserving functor T is defined such that
it maps a set X to T!X =

S
{TX 0 | X 0 ✓ X and X

0 is finite}.

2.3.20. Example. Given the power set functor P , its finitary version P! maps
a set X to the set of all its finite subsets.

The reason that we are interested in finitary functors is that we want our
language to be finitary, in the sense that a formula has only finitely many subfor-
mulas. The key property of finitary functors that will make this possible, is that
every ⌧ 2 TX is supported by a finite subset of X, and in fact, there will always
be a smallest such set.

36 Chapter 2. Preliminaries

2.3.21. Definition. Given a functor T, we define for every set X the map
BaseX :

BaseT
X
: T!X �! P!X

⌧ 7!
\

{X 0 ✓ X | ⌧ 2 TX 0}.

The key point about this notion is that Base(⌧) (we drop the subscript X and
superscript T whenever possible) is the least set U 2 P!X such that ⌧ 2 TU .

2.3.22. Example. The following examples are easy to check: BaseId
X

: X ! PX

is the singleton map and BaseP
X
: P!X ! P!X is the identity map on P!X.

Natural transformation

2.3.23. Definition. A natural transformation � : F) T from a set functor F
to a set functor T provides a function �X : FX ! TX for every set X such that
for all functions f : X ! Y the following diagram commutes:

FX TX

TYFY

�X

TfFf

�Y

2.3.24. Fact. [KKV12] BaseT : T!) P! is a natural transformation if T pre-
serves weak pullbacks.

2.3.4 Behavioural equivalence and Bisimulation

The coalgebraic formulation of systems enables us to define general notions of
behavioural equivalence and bisimulation as the principal notions of equivalence
between states of systems. As we discussed in Section 1.2.2, viewing coalgebra
morphisms as behaviour preserving maps, we can define behavioural equivalence
in terms of a pullback of a cospan of morphisms i.e., two states are behaviourally
equivalent if and only if they can be identified by a pair of coalgebra morphisms
(see Figure 1.1 on page 9).

2.3.25. Definition. Given a set functor T and T-coalgebras (S, �) and (S 0
, �

0),
we say that two states s 2 S and s

0 2 S
0 are behaviourally equivalent if there

is a T-coalgebra (Q, �) and T-coalgebra morphisms f : (S, �) ! (Q, �) and
f
0 : (S 0

, �
0)! (Q, �) such that f(s) = f

0(s0).

2.3. Category theory and coalgebras 37

In Section 1.2.2 we defined the notion of T-bisimulation between T-coalgebras
as a span of coalgebra morphisms (see Figure 1.1), and mentioned that T-bisimilarity
between T-coalgebras is closely related to behavioural equivalence [Rut00]. In
particular, for all functors that preserve weak pullbacks the two notions coincide.
In this section, we will define a more general notion of bisimulation for coalgebras,
using relation liftings.

2.3.4.1 Relation liftings

2.3.26. Definition. A relation lifting L for a set functor T assigns to a relation
R : X ! Y a relation LR : TX ! TY . We require relation liftings to preserve
converse, meaning that L(R�) = (LR)� for all relations R.

2.3.27. Example. Given a binary relation R : X ! Y with the projection maps
⇡X : R ! X and ⇡Y : R ! Y , the so-called Barr lifting T of a set functor T
maps R to the relation TR : TX ! TY defined as:

TR := {(x, y) | 9z 2 TR s.t. T⇡X(z) = x and T⇡Y (z) = y}.

2.3.28. Example. The Egli-Milner lifting P is a relation lifting for the covariant
power set functor P that is defined for any R : X ! Y as PR =

�!PR \ �PR,
where:

�!PR := {(U, V) 2 PX ⇥ PY | 8u 2 U 9v 2 V s.t. (u, v) 2 R},

 �PR := {(U, V) 2 PX ⇥ PY | 8v 2 V 9u 2 U s.t. (u, v) 2 R}.

It is not di�cult to check that P is an instance of the Barr lifting.

The next result applies the Barr lifting to give another characterization of
weak pullback-preserving functors:

2.3.29. Fact. [Rut98] A functor T weakly preserves pullbacks if and only if for
all relations R : X ! Y and Q : Y ! Z we have:

T(R ; Q) = TR ; TQ.

2.3.30. Fact. [Mos99, Bal00]Let T be a set functor that preserves inclusions and
weak pullbacks. Then the relation lifting T

(1) extends T to the category Rel: Tf = Tf ;

(2) is monotone: R ✓ Q implies TR ✓ TQ;

(3) commutes with taking restrictions: T(R�
X⇥X0) = (TR)�TX⇥TX0 .

38 Chapter 2. Preliminaries

The lifting of special relations, like the membership relation, is used to define
notions that will be used in the next Chapters.

2.3.31. Definition. Given a functor T that preserves weak pullbacks, and a set
X, we let 2X ✓ X ⇥ PX denote the membership relation, restricted to X. We
define the maps �T

X
: TPX ! PTX by

�
T
X
(�) := {↵ 2 TX | ↵ T2X �},

and call members of �T
X
(�) lifted members of �. An object � 2 TPX is a redis-

tribution of � 2 PTX if � ✓ �
T
X
(�). In case � 2 P!T!X, we call a redistribution

� slim if � 2 T!P!(
S
↵2� Base(↵)). The set of all slim redistributions of � is

denoted as SRD(�).

Slim redistributions will be later used in Chapter 3 to prove a simulation
theorem for coalgebraic automata and in Chapter 5 in order to define an axiom
system for coalgebraic fixpoint logic.

An important use of relation liftings is to yield a notion of bisimulation.

2.3.32. Definition. Let L be a relation lifting for T and let S = (S, �) and
S0 = (S 0

, �
0) be two T-coalgebras. An L-bisimulation between S and S0 is a

relation R : S ! S
0 such that (�(s), �0(s0)) 2 LR, for all (s, s0) 2 R. Two states

s 2 S and s
0 2 S0 are L-bisimilar if there is an L-bisimulation R between S and

S0 with (s, s0) 2 R.

To see the relation between L-bisimulation and the span definition of T-
bisimulation in Section 1.2.2, one can check that if L = T then the two notions
coincide. More precisely, a relation R : S ! S

0 with projections ⇡S : R! S and
⇡
0
S
: R ! S

0 is a T-bisimulation between coalgebras S = (S, �) and S0 = (S 0
, �

0)
i↵ there is a map � : R! TR such that the following diagram commutes:

S

TS

R S
0

TS 0TR
T⇡S

oo
T⇡0

S

//

�

✏✏

�

✏✏
�
0

✏✏

⇡Soo
⇡
0
S //

A motivation to define the notion of L-bisimulation is to get a simpler char-
acterization of behavioral equivalence. Often it is easier to check whether there is
a bisimulation between states of two coalgebras than to find two coalgebra mor-
phisms into a third coalgebra that identify the states. Of course this only works
for functors and relation liftings for which the notion of bisimilarity is the same as
behavioral equivalence. If a set functor T preserves weak pullbacks, T-bisimilarity
and behavioral equivalence coincide [Rut00]. In general, however, bisimilarity is
a strictly stronger notion than behavioral equivalence. For instance one can give

2.3. Category theory and coalgebras 39

an example of monotone neighbourhood frames that are behaviorally equivalent
while there is no M-bisimulation between them (see [HK04] for details).

In the next example, we will define a relation lifting fM for the monotone
neighbourhood functor M. This relation lifting is distinct from M and captures
the natural notion of bisimilarity associated with monotone neighborhood models.
(check [AM89], [HK04] and [SV10] for more details).

2.3.33. Example. Based on the definition of
�!PR from Example 2.3.28, we can

define a relation lifting fM for the monotone neighborhood functorM on a relation
R : X ! Y as follows:

fMR :=
�!P �PR \ �P�!PR.

In words, (↵, �) 2 fMR if for all U 2 ↵ there is some V 2 � such that for each
v 2 V there exists a u 2 U with (u, v) 2 R, and for all V 2 � there is some U 2 ↵
such that for all u 2 U there is a v 2 V satisfying (u, v) 2 R.

We now recall the definition of bisimulation between M-models [Pau99], and pro-

vide some intuition on the connection between fM and monotone neighbourhood
bisimulation.

2.3.34. Definition. A monotone neighbourhood bisimulation between mono-
tone neighborhood models S1 and S2 is a relation R ✓ S1 ⇥ S2 such that, if
s1Rs2 then:

• m1(s1) = m2(s2), with m1 and m2 denoting the colourings associated with
V1 and V2;

• for all Z1 2 �1(s1) there is Z2 2 �2(s2) such that for all t2 2 Z2 there is
t1 2 Z1 with t1Rt2;

• for all Z2 2 �2(s2) there is Z1 2 �1(s1) such that for all t1 2 Z1 there is
t2 2 Z2 with t1Rt2.

2.3.5 Algebras vs coalgebras

We conclude this section with a brief note on the duality between algebra and
coalgebra. Considering the duality between important concepts of the universal
theories of algebra and coalgebra, one may be encouraged to study coalgebra di-
rectly as a dual notion of algebra. Here we want to emphasise that the duality
between concepts such as initial algebra and final coalgebra, induction and coin-
duction does not mean that the category Alg(T) is formally dual of the category
Coalg(T). We refer the reader to [Rut00] for a detailed discussion of what the
duality between algebra and coalgebra means. In the following chart from [Rut00]
we briefly present a conceptual comparison between notions related to algebras
and coalgebras.

40 Chapter 2. Preliminaries

Algebra Coalgebra
Algebra homomorphism Coalgebra homomorphism

Congruence Bisimulation
Initial algebra Final coalgebra
Induction Coinduction

Recursion: map out of a initial algebra Corecursion: map into a final coalgebra

Table 2.1: Conceptual comparison between algebras and coalgebras [Rut00]

2.4 Coalgebraic fixpoint logic and automata

In this section, we introduce some terminology and background on coalgebraic
logic and automata. We give definitions for the two approaches toward coalgebraic
fixpoint logic introduced in Section 1.3, and continue by defining coalgebraic
automata corresponding to formulas of coalgebraic fixpoint logic.

2.4.1 Coalgebraic µ-calculus via the r-modality

We start by defining the r-based fixpoint logic for a weak pullback-preserving set
functor T. Generalizing the case of standard modal logic, to define the semantics
of r-formulas, we involve the relation lifting T of T.

2.4.1. Definition. Given a weak pullback-preserving functor T, the language
µML

T
r of coalgebraic fixpoint formulas is defined by the following grammar:

' ::= > | ? | p | ' _ ' | ' ^ ' | r↵ | ¬' | µx.' | ⌫x.',

where p belongs to the set of propositional variables, and ↵ 2 T!(µMLTr). As in
Definition 2.1.9 there is a restriction on the occurrence of negation in formulas
µp.' and ⌫p.', namely: every occurrence of x in ' must be in the scope (see
Remark 2.4.2) of an even number of negations. We denote by µML

T
r(X) the set of

formulas with free variables from set X.

2.4.2. Remark. Strictly speaking the clause for nabla formulas in Definition 2.4.1
is not stated in a correct recursive way, since it makes use of the whole language
µML

T
r, that has yet to be defined. But the readers may observe that since T! is a

finitary functor, what we are saying is simply that for any finite set X of formu-
las, any object ↵ 2 T!(X) corresponds to a formula. In fact, any ↵ 2 T!(µMLTr)
belongs to the set T!(Base(↵)), and we will call the formulas in Base(↵) the
immediate subformulas of the formula r↵. To define the notions of scope and
occurrence for formulas in µML

T
r, we inductively define the construction tree of a

formula, where the children of a node labeled r↵ are the formulas in Base(↵).
Free and bound variables are then standardly defined (see [Ven06]).

2.4. Coalgebraic fixpoint logic and automata 41

2.4.3. Definition. A formula ' is called clean if no variable occurs both free
and bound in ', and no two distinct occurrences of fixed point operators bind
the same variable. A formula ' is called guarded if every subformula µx. of '
has the property that all occurrences of x inside are within the scope of a r.

2.4.4. Definition. Fix a clean formula '. The sets FV (') and BV (') of its
free and bound variables are standardly defined by induction on the complexity
of the formula '. For the case that ' = ⌘x. with ⌘ 2 {µ, ⌫} we define FV (') :=
FV () \ {x} and BV (') := BV (') [{x}. We let µML(X) denote the set of
µ-formulas of which all free variables belongs to the set X.

To introduce the semantics of µMLTr we first generalise Kripke models and
define the notion of T-models over a set X of propositional letters.

2.4.5. Definition. A T-model S = (S, �, V) is a T-coalgebra (S, �) together
with a valuation V : X! PS.

2.4.6. Remark. Similar to the coalgebraic description of Kripke models in Ex-
ample 2.3.6, we can encode the valuation of a T-model into its coalgebra structure.
Given a valuation V : X ! PS, we define a colouring (marking) mV : S ! PX

by mV (s) := {x 2 X | s 2 V (x)}. So we can think of a T-model S = (S, �, V)
as a PX-colored T-coalgebra S = (S, �,mV). We can also think of a T-model as
a coalgebra S = (S, �m) for the functor TX defined by TXS := PX ⇥ TS where
�m : S ! TXS is given by �m(s) := (mV (s), �(s)). This way we encode the
valuation into the functor itself.

2.4.7. Definition. Using the relation lifting T, we define the semantics for the
language µML

T
r(X) on a T-model S = (S, �, V). Since apart from the r modality,

the definition of the satisfaction relation � is exactly the same as it is for the µ-
calculus (see Definition 2.1.8), here we only give the definition for ther modality:

s � r↵ i↵ (�(s),↵) 2 T(�). (2.1)

Note that again the clause for r is not stated in a correct recursive way.
We can only suppose that ��S⇥Base(↵) is already defined. The actual recursive
definition is that s � r↵ i↵ (�(s),↵) 2 T(��S⇥Base(↵)). One can apply Fact 2.3.30
item (3) to prove that this definition is equal to the clause given above.

2.4.8. Remark. In the sequel, we will use µMLTr to refer to the r-based logic ob-
tained for a functor T with the semantics given by the relation lifting T, whereas
µML

T
r is used to refer to the r-based language for T without specifying the se-

mantics.

42 Chapter 2. Preliminaries

Considering T-models as TX-coalgebras, notions such as behavioural equiva-
lence, bisimulation and homomorphisms for T-models are instances of the general
coalgebraic notions for TX-coalgebras. In particular, we obtain the following def-
inition of T-bisimilarity for T-models.

2.4.9. Definition. Two T-models S1 = (S1, �1, V1) and S2 = (S2, �2, V2) over
X are called T-bisimilar if there exists a relation R : S1 ! S2 such that for all
(s1, s2) 2 R we have (�1(s1), �2(s2)) 2 TR and mV1(s1) = mV2(s2).

In terms of Definition 2.3.32 this means that the T-models S1 = (S1, �1, V1)
and S2 = (S2, �2, V2) are T-bisimilar if the TX-coalgebras S1 = (S1, �mV1

) and

S2 = (S2, �mV2
) are TX-bisimilar. It is clear that this definition generalises the

notion of bisimilarity between Kripke models.
Using the appropriate notion of bisimulation for T-models, we obtain an im-

portant property of our coalgebraic fixed point logic: truth is bisimulation invari-
ant.

2.4.10. Fact. [Mos99, Ven06] Let T-models S1 = (S1, �1, V1) and S2 = (S2, �2, V2)
be two T-models over X. Then for any T-bisimulation R : S1 ! S2, any pair
(s1, s2) 2 R, and any µML

T
r-formula ' it holds that:

(S1, s1) � ' i↵ (S2, s2) � '.

2.4.2 Coalgebraic µ-calculus via predicate liftings

As we discussed in Chapter 1, apart from a non-standard syntax, a drawback of
the r-based logic is that, due to its dependence on relation liftings for T, it only
works properly for weak pullback-preserving functors. As an alternative, Dirk
Pattinson [Pat03b] and others developed a coalgebraic modal formalism, based
on a standard syntax and semantics involving predicate liftings, that works for
coalgebras of arbitrary type. In the following, we formally define this notion and
recall from [FLV10] the syntax and semantics of the coalgebraic fixpoint logic
µML⇤ for a given set ⇤ of predicate liftings for T.

2.4.11. Definition. Given a set functor T, an n-place predicate lifting for T is
a natural transformation

� : Q(�)n ! Q � T,
where Q(�)n denotes the n-fold product of Q with itself. A predicate lifting � is
said to be monotone if

�X(Y1, ..., Yn) ✓ �X(Z1, ..., Zn),

whenever Yi ✓ Zi for each i. The Boolean dual �d of � is defined by

(Z1, ..., Zn) 7! TX \ (�X(X \ Z1, ..., X \ Zn)).

2.4. Coalgebraic fixpoint logic and automata 43

2.4.12. Definition. Given a set functor T and a set of monotone predicate
liftings ⇤ for T, the language µML

T
⇤ of the coalgebraic µ-calculus based on ⇤ is

defined as follows.

' ::= p | ' _ ' | [�]('1, ...,'n) | ¬' | µp.'

where p 2 X, [�] is a modality associated with a monotone n-placed predicate
lifting � 2 ⇤, and, in µp.', no free occurrence of the variable p is in the scope of
an odd number of negations. Note that having the negation in the syntax enables
us to define the connectives ^, >, ? and the greatest fixpoint operator ⌫.

The semantics of formulas on pointed T-models is defined by induction on the
complexity of formulas. Here we only give the clause for the modalities, the other
cases are standard.

2.4.13. Definition. Given a pointed T-model (S, s) = (S, �, V, s) we set:

(S, s) � [�]('1, ...,'n) i↵ �(s) 2 �S(J'1K, ..., J'nK),
where J'iK = {t 2 S | (S, t) � 'i}.

As mentioned in Chapter 1 and earlier in this section, many well-known varia-
tions of fixpoint logics are instances of the definition of µML⇤ for a properly chosen
set of predicate liftings ⇤.

2.4.14. Example. Recall from Example 2.3.6 that Kripke frames are coalgebras
for the powerset functor P . The semantics of the standard modality 3 (see
Example 1.1.1) is obtained from the unary predicate lifting 3P defined by setting
for each Z ✓ X:

3P
X
(Z) := {↵ 2 PX | ↵ \ Z 6= ;}.

The language and semantics µML
P
{3} is then equivalent to the standard modal

µ-calculus µML. The dual of 3P is denoted by 2P as usual, and is defined for
each Z ✓ X as follows:

2P
X
(Z) := {↵ 2 PX | ↵ ✓ Z}.

2.4.15. Example. Recall from Example 2.3.10 that monotone frames are coal-
gebras for the monotone neighbourhood functor M. The semantics of the usual
box modality for monotone modal logic (see Example 1.1.3) is obtained by the
unary predicate lifting, which we denote by the symbol 2M and define by setting,
for Z ✓ X:

2M
X
(Z) := {↵ 2MX | Z 2 ↵}.

The language and semantics of µMLM{2} is then equivalent to the monotone µ-
calculus, denoted by µMML.

44 Chapter 2. Preliminaries

2.4.16. Example. Recall from Example 2.3.7 that multiset frames are coalge-
bras for the bag functor B. For each k the semantics of the graded modality
3k (see Example 1.1.2) is obtained by the unary predicate lifting 3k defined as
follows: For all k 2 !, all sets S and all subsets U of S we have:

3k
S(U) := {f : S ! ! | k �

X

x2U

f(x)}.

The language and semantics of µML
B
{3k|k2N} is then equivalent to the fixpoint

extension of the graded modal logic we refer to as the graded µ-calculus.

2.4.3 Coalgebraic automata theory

In Chapter 1 we discussed how the µ-calculus benefits from its connection to
areas like automata theory. Many interesting results about µML rely on automata-
theoretic proofs. For instance, the uniform interpolation theorem for µML [DH00],
the fact that MSO and the µ-calculus have the same expressive power on ranked
trees [EJ91a], and the completeness theorem for µML [Wal00] have been proved
by applying automata-theoretic machinery. Inspired by these examples, one of
the main tools to get the results of this thesis is the notion of a coalgebraic
modal automaton. Before going through the definitions, we note that this section
is included for the sake of completeness of the preliminaries and may seem a bit
condensed. We will elaborate all notions and concepts discussed here in individual
chapters.

We recall the notion of a coalgebraic modal automaton by first defining the
one-step language which has been referred to as “rank-1” logic in the literature
(see [Pat03b, CP04, SP10]) .

One-step language

r-setting: Given a set A, we define the set LF(A) of lattice terms over A

through the following grammar:

⇡ ::= ? | > | a | ⇡ ^ ⇡ | ⇡ _ ⇡,

where a 2 A. Given two sets X, A and a functor T, we define the set 1MLr(X, A)
of modal one-step formulas over A with respect to X inductively by

' ::= ? | > | p | ¬p | r� | ' ^ ' | ' _ ',

with p 2 X and � 2 T!LF(A).
One-step formulas are interpreted over one-step models.

2.4.17. Definition. Fix sets X and A and a functor T, and let TX denote the
functor PX⇥T� as in Remark 2.4.6. A one-step TX-model over set A of variables
is a triple (S, ⇠, V) where S is any set, ⇠ 2 TXS and V : A ! PS is a valuation
on A.

2.4. Coalgebraic fixpoint logic and automata 45

Any valuation V : A ! PS can be extended to a meaning function J�K0
V
:

LF(A)! PS in a natural way defined as: [[a]]0
V
:= {s 2 S | s 2 V (a)}, [[>]]0

V
:= S,

[[?]]0
V

= ; and standard clauses for ^ and _. We write S, s �0
V
' to indicate

s 2 J'K0
V
.

The meaning function J�K0
V
induces a map J�K1

V
: 1MLr(X, A)! PTXS inter-

preting one-step formulas as subsets of TXS. Before giving the definition of J�K1
V

we recall that every ⇠ 2 TXS is of the form (Y, ⌧) 2 PX⇥ TS.
Going back to the map J�K1

V
, it has the usual clauses for conjunction and

disjunction, and the following clauses for the propositional letters and the modal
operator:

• ⇠ = (Y, ⌧) 2 JpK1
V
i↵ p 2 Y

• ⇠ = (Y, ⌧) 2 J¬pK1
V
i↵ p /2 Y

• ⇠ = (Y, ⌧) 2 Jr�K1
V
i↵ (⌧, �) 2 T(�0

V
)

We write S, ⇠ �1
V
' to indicate ⇠ 2 J'K1

V
, and refer to this relation as the one-step

semantics.

Predicate lifting setting: Given a set ⇤ of predicate liftings �, and two dis-
joint sets A, X of variables, we define the set 1ML⇤(X, A) ofmodal one-step formulas
over a set A with respect to X by the following grammar:

' ::= ? | > | p | [�](⇡1, ..., ⇡n) | [�d](⇡1, ..., ⇡n) | ' _ ' | ' ^ ',

where p 2 X, � 2 ⇤ and ⇡1, ..., ⇡n 2 LF(A) where LF(A) is the set of lattice
formulas over A introduced above.

Given a one-step T-model (S, ⇠, V), the meaning function J�K1
V
: 1ML⇤(X, A)!

PTXS is defined for modal formulas as follows. Semantics of the other connectives
is defined standardly, similar to the r-setting.

• ⇠ = (Y, ⌧) 2 [[[�](⇡1, ..., ⇡n)]]1V i↵ ⌧ 2 �S([[⇡1]]0V , · · · [[⇡n]]0V)

• ⇠ = (Y, ⌧) 2 [[[�d](⇡1, ..., ⇡n)]]1V i↵ ⌧ 2 TS \ �S(S \ [[⇡1]]0V , · · ·S \ [[⇡n]]0V).

For example, in the case of the powerset functor P , the semantics of the
modality induced by the unary predicate lifting 3 of Example 2.4.14 is given as
follows:

⇠ = (Y, ⌧) 2 [[3(⇡)]]1
V

i↵ ⌧ 2 3S([[⇡]]
0
V
)

i↵ ⌧ \ [[⇡]]0
V
6= ;.

We are now ready to define modal automata corresponding to the logics µMLTr
and µML⇤:

46 Chapter 2. Preliminaries

2.4.18. Definition. Let X be a finite set of variables. A modal X-automaton
over a one-step language 1L(X, A) 2 {1MLr(X, A), 1ML⇤(X, A)} is a quadruple A =
(A,⇥,⌦, aI) such that A is a finite set of states, ⇥ : A! 1L(X, A) is the transition
map of A, ⌦ : A! ! is the priority map of A, and aI is the initial state.

Modal X-automata run on T-models over the set X, and acceptance is defined
in terms of a two player game, the acceptance game.

2.4.19. Definition. Let A = (A,⇥,⌦, aI) be a modal X-automaton and let
S = (S, �m) be a T-model with �m : S ! PX ⇥ TS. The associated acceptance
game A(A, S) is the parity game given by Table 2.2:

Position Player Admissible moves Priority
(a, s) 2 A⇥ S 9 {U : A! PS | �m(s) 2 J⇥(a)K1

U
} ⌦(a)

U : A! PS 8 {(b, t) 2 A⇥ S | t 2 U(b)} 0

Table 2.2: Acceptance Game (see [Ven06, FLV10])

The loser of a finite match is the player who got stuck. We declare the winner
of an infinite match according to the parity condition, i.e. 9 wins if the highest
priority that appears infinitely often in the match is even, and 8 is the winner
otherwise. A pointed coalgebra (S, sI) is accepted by the automaton A if (aI , sI)
is a winning position for player 9 in A(A, S).

Given a weak pullback-preserving functor T, the following result from [Ven06]
enables us to transfer between formulas of µMLTr(X) and modal X-automata.

2.4.20. Fact. There are e↵ective procedures transforming a modal X-automaton
over 1MLr(X, A) into an equivalent µMLTr(X)-formula and vice versa.

The corresponding result for the predicate lifting setting which states that
modal X-automata can be used to present formulas of µMLT⇤ is proved in [FLV10]:

2.4.21. Fact. There are e↵ective procedures transforming a modal X-automaton
over 1ML⇤(X, A) into an equivalent µMLT⇤(X)-formula and vice versa.

Chapter 3

Uniform Interpolation

The main objective of this chapter is to study Uniform Interpolation for coalge-
braic fixpoint logic µML

L

r. Uniform interpolation is a stronger version of another
type of interpolation that is known as Craig Interpolation [Cra57]. Roughly
stated, Craig Interpolation says that if a formula '1 implies a formula '2, then
there is a formula , called an interpolant, which may only use propositional
variables that appear both in '1 and in '2, such that '1 implies , and im-
plies '2. A logic has uniform interpolation if the interpolant for the formulas
'1 and '2 depends only on '1 and the language that '2 shares with '1 (rather
than on '2 itself). Although it is easy to show that classical propositional logic
has uniform interpolation, not many logics have this property, for instance in the
same paper where Henkin introduced this type of interpolation (the name has
been coined many years later by Pitts [Pit92]) he proved that first-order logic has
interpolation, but it does not enjoy the uniform version [Hen63].

Starting with the seminal work of Pitts [Pit92] who proved that intuitionis-
tic logic has uniform interpolation, the study of this property for di↵erent logics
has been actively pursued by various authors. In modal logic, Shavrukov [Sha94]
proved that the Gödel-Löb logic GL has uniform interpolation. Subsequently,
Ghilardi [Ghi95] and Visser [Vis96b] independently established the property for
the modal logic K, while [GZ95] contains negative results for the modal logic S4.
In the theory of modal fixpoint logic, as we already mentioned in Section 1.4.1,
D’Agostino and Hollenberg proved that the modal µ-calculus has uniform inter-
polation [DH00].

In this chapter we generalise the result by D’Agostino and Hollenberg [DH00]
to a wider class of fixpoint logics, including the monotone µ-calculus, which is the
extension of monotone modal logic with fixpoint operators. More precisely, we
work with r-based µ-calculus and restrict our attention to set functors that pre-
serve finite sets and admit a certain type of relation lifting called a quasi-functorial
lax extension. This class includes all functors that preserve weak pullbacks (such
as the Kripke functor), but also the monotone neighbourhood functor M which

47

48 Chapter 3. Uniform Interpolation

is not weak pullback-preserving. Another nice property of this class of functors
is that it is closed under various natural operations on functors.

The main result of this chapter is Theorem 3.7.1, where we prove that for a
functor T with a quasi-functorial lax extension L, the coalgebraic fixpoint logic
µML

L

r enjoys uniform interpolation. Our proof follows the semantic approach and
is built on definability of bisimulation quantifiers. As usual in the setting of modal
fixpoint logic, it is based on the link between logic and automata. We follow
the automata-theoretic approach by D’Agostino and Hollenberg. That is we
define a class of non-deterministic parity automata that closely correspond to our
language. Our main technical result is Theorem 3.5.3 which shows that the class
of coalgebraic automata associated with our logic are closed under projection.
From this we can easily derive the definability of bisimulation quantifiers and
consequently the proof of the Uniform Interpolation.

We start this chapter by formally introducing quasi-functorial lax extensions
as special relation liftings and stating some of their properties.

3.1 Special relation liftings

In this section we define lax extensions, which are relation liftings (see Sec-
tion 2.3.4.1) satisfying certain conditions that make them well-behaved in the
context of coalgebra. Most of the results presented in this section are from
[Mar11], and for the sake of completeness, we included some of the proofs from
[Mar11] as well.

3.1.1. Definition. A relation lifting L for a functor T is called a lax extension
if it satisfies, for all relations R,R

0 : X ! Z and S : Z ! Y and all functions
f : X ! Z:
(L1) R

0 ✓ R implies LR0 ✓ LR;
(L2) LR ; LS ✓ L(R ; S);
(L3) Tf ✓ Lf .
We say that a lax extension L preserves diagonals if it additionally satisfies:
(L4) L�X ✓ �TX .

Recall from Definition 2.3.26 that every relation lifting L for a functor T
preserves inverse of relations, i.e., for all relations R we have L(R�) = (LR)�.

The following Proposition [Mar11, Proposition 3.13] summarises how the con-
ditions (L1), (L2) and (L3) of a lax extension L directly entail useful properties
of L-bisimulations.

3.1.2. Proposition. For a lax extension L of T and T-coalgebras S, Q and Y
it holds that:

(1) The graph of every coalgebra morphism f from S to Q is an L-bisimulation
between S and Q.

3.1. Special relation liftings 49

(2) If R : S ! Q and Z : Q ! Y are L-bisimulations between S and Q
respectively Q and Y, then (R ; Z) : S ! Y is an L-bisimulation between S
and Y.

(3) Every arbitrary union of L-bisimulations between S and Q is again an L-
bisimulation between S and Q.

In Definition 3.1.1, we require only the inclusion (L4) for a lax extension to
preserve diagonals. This is justified because condition (L3) together with the
observation that �TX = idTX = T(idX) implies that �TX ✓ L�X . The proof
of this is in the following Proposition which states some basic properties of lax
extensions [Mar11, Proposition 3.10.].

3.1.3. Proposition. If L is a lax extension of T then for all functions f : X !
Z , g : Y ! Z and all relations R : X ! Z and S : Z ! Y the following
properties hold:

(1) �TX ✓ L�X ;

(2) Tf ; LS = L(f ; S) and LR ; (Tg)� = L(R ; g�);

and if L preserves diagonals then

(3) L�X = �TX and Lf = Tf ;

(4) Tf ; (Tg)� = L(f ; g�).

Proof:
For (1) recall that we identify a function with its graph. So we have that�X = idX

and we can calculate:

�TX = idTX = TidX T is a functor

✓ L(idX) = L�X (L3)

The ✓-inclusion of Tf ; LS = L(f ; S) in (2) holds because:

Tf ; LS ✓ Lf ; LS ✓ L(f ; S),

where the first inclusion is given by (L3) and second one is given by (L2).
For the ◆-inclusion first note that �TX = idTX ✓ Tf ; (Tf)� for all maps

f : X ! Y . Now consider the following argument:

L(f ; S) ✓ Tf ; (Tf)� ; L(f ; S) �TX ✓ Tf ; (Tf)�

✓ Tf ; (Lf)� ; L(f ; S) (L3)

= Tf ; Lf � ; L(f ; S) preservation of converses

✓ Tf ; L(f � ; f ; S) (L2)

✓ Tf ; LS. (L4) and f
� ; f ✓ �Y

50 Chapter 3. Uniform Interpolation

For LR ; (Tg)� = L(R ; g�) we can use the same argument and the fact that
L preserves converses.

For (3) and (4) first notice that if L preserves diagonals then because of (L4)
and (1) we have L�X = �TX . The equation Tf = Lf holds because of:

Lf = L(f ; �X)

= Tf ; L�X (2)

= Tf. L�X = �TX

Finally item (4) holds because of the following:

Tf ; (Tg)� = Tf ; L�X ; (Tg)� �TX = L�X

= L(f ; �X ; g�) (2) twice

= L(f ; g�).

The next proposition [Mar11, Proposition 3.12.] shows that for a lax extension
of an inclusion-preserving functor it does not really matter what the domain and
codomain of a relation are.

3.1.4. Proposition. For any lax extension L of an inclusion-preserving functor
T we have that for all relations R : X ! Y and sets X

0 ✓ X and Y
0 ✓ Y

L(R�X0⇥Y 0) = (LR)�TX0⇥TY 0 .

Proof:
We first rewrite the restriction of relation R as R�X0⇥Y 0 = (iX0,X ; R ; i�

Y 0,Y) where
iX0,X : X 0

,! X and iY 0,Y : Y 0
,! Y are the inclusion maps. Then it follows that:

L(R�X0⇥Y 0) = L(iX0,X ; R ; i�
Y 0,Y)

= TiX0,X ; LR ; (TiY 0,Y)
� Proposition 3.1.3 (2)

= iTX0,TX ; LR ; i�TY 0,TY T preserves inclusions

= (LR)�TX0⇥TY 0 .

Now we define the key concept of this chapter namely quasi-functorial lax
extensions.

3.1.5. Definition. We call a lax extension L of a functor T functorial, if it
distributes over composition, i.e., if LR ; LS = L(R ; S), and quasi-functorial, if

LR ; LS = L(R ; S) \ (dom(LR)⇥ ran(LS)), (3.1)

for all relations R : X ! Z and S : Z ! Y .

3.1. Special relation liftings 51

Recall from Section 2.3.1 and the definition of dom(LR) ✓ TX that ⌧ 2
dom(LR) i↵ there is a �R 2 TZ such that (⌧, �R) 2 LR. Similarly ⌫ 2 ran(LS) ✓
TY i↵ there is a �S 2 TZ such that (�S, ⌫) 2 LS. Hence the ✓-inclusion of
(3.1) holds for any lax extension because of (L2). So the ◆-inclusion is the actual
substantial requirement. It is equivalent to the condition that for all (⌧, ⌫) 2
L(R ; S) if there is a �R 2 TZ such that (⌧, �R) 2 LR and there is a �S 2 TZ
such that (�S, ⌫) 2 LS, then there is a � 2 TZ such that (⌧, �) 2 LR and
(�, ⌫) 2 LS.

3.1.6. Example. The Barr extension T (see Example 2.3.27) for a functor T that
preserves weak pullbacks is functorial. In particular it satisfies TR ; TS = T(R ;
S) for all relations R and S. Clearly this implies that T is also quasi-functorial.

A key example which shows that the class of functors with a quasi-functorial
lax extension is strictly bigger than the class of weak pullback-preserving functors
is the monotone neighbourhood functor M [Mar11, Example 3.11.(ii)].

3.1.7. Example. The relation lifting fM as defined in Example 2.3.33 for the
monotone neighbourhood functor M, is quasi-functorial.

Proof:
It is easy to check that fM is a lax extension that preserves diagonals. So in the
following we will just give the proof for the quasi-functoriality of fM:

Take any two relations R : X ! Z and S : Z ! Y . We need to show that
for all (⌧, ⌫) 2 fM(R ; S), if there are �R and �S in MZ, with (⌧, �R) 2 fMR and

(�S, ⌫) 2 fMS, then there is a � 2MZ such that (⌧, �) 2 fMR and (�, ⌫) 2 fMS.

From the assumption that (⌧, �R) 2 fMR ✓ �!P �PR, we get that:

8A 2 ⌧, 9UA 2 �R s.t. (A,UA) 2
 �PR.

Similarly from (⌧, ⌫) 2 fM(R ; S) ✓ �!P �P (R ; S) we get that:

8A 2 ⌧, 9VA 2 ⌫ s.t. (A, VA) 2
 �P (R ; S),

and from (�S, ⌫) 2 fMS ✓ �P�!P S and (⌧, ⌫) 2 fM(R ; S) ✓ �P�!P (R ; S) we have:

8B 2 ⌫, 9UB 2 �S and 9VB 2 ⌧ s.t. (UB, B) 2 �!P S and (VB, B) 2 �!P (R ; S).

From (A, VA) 2
 �P (R ; S) it follows that:

8v 2 VA, 9av 2 A s.t. (av, v) 2 R ; S.

So there is a zv 2 Z such that (av, zv) 2 R and (zv, v) 2 S.

52 Chapter 3. Uniform Interpolation

Now we define, for every A 2 ⌧ , the following set U 0
A
✓ Z:

U
0
A
:= UA [{zv 2 Z | v 2 VA}.

We claim that (A,U 0
A
) 2 �PR. To prove this, take u 2 U

0
A
, we need to show that

there exists t 2 A such that (t, u) 2 R. Since u 2 U
0
A
, we have two cases:

(i) u 2 UA, then from (A,UA) 2
 �PR we are done.

(ii) u 2 {zv 2 Z | v 2 VA}. In this case from the definition of zv we have that
there exists av 2 A such that (av, zv) 2 R.

On the other hand because 8v 2 VA, (zv, v) 2 S, we have that (U 0
A
, VA) 2

 �P S.
We can similarly define for every B 2 ⌫ a set U 0

B
✓ Z such that:

(U 0
B
, B) 2 �!P S and (VB, U

0
B
) 2 �!PR.

Now we are ready to introduce � 2MZ:

� := {U ✓ Z | 9A 2 ⌧ with U
0
A
✓ U or 9B 2 ⌫ with U

0
B
✓ U}.

It is clear that � is upward closed, so � 2MZ. It is left to show that (⌧, �) 2 fMR

and (�, ⌫) 2 fMS. We have that (⌧, �) 2 fMR i↵ (⌧, �) 2 �!P �PR and (⌧, �) 2
 �P�!PR. For the proof of (⌧, �) 2 �!P �PR note that for every A 2 ⌧ we have that

(A,U 0
A
) 2 �PR. For (⌧, �) 2 �P�!PR, pick a U 2 �. Then from the definition of �

it follows that U 0
A
✓ U for some A 2 ⌧ or U 0

B
✓ U for some B 2 ⌫. In the first

case consider that UA ✓ U
0
A
✓ U and by the assumption (⌧, �R) 2 fMR ✓ �P�!PR

we get that there exists T 2 ⌧ such that (T, UA) 2
�!PR, so (T, U) 2 �!PR. The

case for (�, ⌫) 2 fMS can be checked using a similar argument.

The following Proposition states some of the basic properties of quasi-functorial
lax extensions concerning fullness of relations. Recall that a relation R : X ! Z

is full on X(respectively Z) if dom(R) = X (respectively ran(R) = Z).

3.1.8. Proposition. Let T be a set functor and let L be a quasi-functorial lax
extension for T. Then we have:
(1) L preserves fullness of relations :

If R : X ! Z is full on both sides, then so is LR : TX ! TZ.
(2) If R : X ! Z is full on X and i : Z ,! Y is the inclusion map between Z

and a given Y such that Z ✓ Y , then L(R ; i) is full on TX.

Proof:
For the proof of (1) consider the following argument: Let ⇡X : R ! X and

3.1. Special relation liftings 53

⇡Z : R ! Z denote the projection maps. Since R = (⇡X)� ; ⇡Z and LR =
L((⇡X)� ; ⇡Z), from quasi-functoriality of L it follows that:

L(⇡X)
� ; L⇡Z = L((⇡X)

� ; ⇡Z) \ (dom(L⇡X)
� ⇥ ran(L⇡Z)).

But since R = (⇡X)� ; ⇡Z is full on both sides, the projection maps ⇡X and
⇡Z are surjective. It then follows that T⇡X : TR ! TX and T⇡Z : TR !
TZ are surjective, because set functors preserve surjectiveness. So ran(T⇡X) =
dom(T⇡X)� = TX and ran(T⇡Z) = TZ. Consequently we have:

L((⇡X)
� ; ⇡Z) \ TX ⇥ TZ = L(⇡X)

� ; L⇡Z ,

which implies L((⇡X)� ; ⇡Z) = L(⇡X)� ; L⇡Z , since L((⇡X)� ; ⇡Z) ✓ TX ⇥ TZ.
Hence in order to prove fullness of LR = L((⇡X)� ; ⇡Z) on TX and TZ it is

su�cient to prove that L(⇡X)� ; L⇡Z : TX ! TZ is full on TX and TZ. But we
are done since:

TX = dom((T⇡X)
� ; (T⇡Z)) T⇡X is surjective

✓ dom(L(⇡X)
� ; (L⇡Z)) (L3)

and,

TZ = ran((T⇡X)
� ; (T⇡Z)) T⇡Z is surjective

✓ ran(L(⇡X)
� ; (L⇡Z)) (L3)

To prove (2) notice that R ; i ✓ X ⇥ Y is full on X, so by the axiom of
choice there exists a map f : X ! Y such that f ✓ (R ; i). Hence we get
Tf ✓ Lf ✓ L(R ; i), and because Tf is full on TX, L(R ; i) is also full on TX.

(R ; i)

Y X

⇡X

⇠⇠ ⇠⇠

⇡Y

⌃⌃
oo

f

We will finish this section with a remark on some of the closure properties of
the class of functors with a quasi-functorial lax extension:

3.1.9. Fact. The collection FQL of functors with a quasi-functorial lax extension
has the following properties:
(1) The identity functor I : Set! Set is in FQL.
(2) For each set C, the constant functor C : Set! Set is in FQL.
(3) The product X 7! T1(X)⇥ T2(X) of two FQLs T1 and T2 is in FQL.
(4) The coproduct X 7! T1(X) + T2(X) of two FQLs T1 and T2 is in FQL.

54 Chapter 3. Uniform Interpolation

(5) The composition X 7! (T1 � T2)(X) of a FQL functor T1 and a functor T2

which has a functorial lax extension, is in FQL.

Proof:
Items (1) to (4) are easy to check, so we will focus on the proof of item (5).
Suppose that L1 is a quasi-functorial lax extension for T1 and L2 is a functorial
lax extension for T2. We claim that L1L2 is a quasi-functorial lax extension for
T1 � T2. First observe that since L1 and L2 are lax extensions, L1L2 is also a lax
extension.

Take (↵, �) 2 L1L2(R ; S) \ dom(L1L2R)⇥ ran(L1L2S). Hence we have:

(↵, �) 2 L1L2(R ; S),

and

(↵, �) 2 dom(L1(L2R))⇥ ran(L1(L2S)).

From (↵, �) 2 L1L2(R ; S) and by functoriality of the relation lifting L2 we
get (↵, �) 2 L1(L2R ; L2S). Now from quasi-functoriality of L1, together with
(↵, �) 2 dom(L1L2R)⇥ ran(L1L2S), we have:

(↵, �) 2 L1(L2R) ; L1(L2S) = L1L2R ; L1L2S.

3.2 Coalgebraic fixpoint logic

In this section, we recall the syntax and semantics of coalgebraic fixpoint logic,
using the r-modality and a quasi-functorial lax extension L for a set functor T.

Syntax

3.2.1. Definition. Given a functor T and an infinite set of propositional vari-
ables X, the language µML

T
r(X) is defined by the following grammar:

' ::= p | ¬' |
V
A |

W
A | r↵ | µp.'

where p belongs to the set of propositional variables, A 2 P!(µMLTr(X)) and
↵ 2 T!(µMLTr(X)). There is a restriction on the formulation of the formula µp.',
namely, every occurrence of p in ' may be in the scope (see Definition 2.4.2) of
an even number of negations. Set > =

V
; and ? =

W
;, and note that having

the negation in the syntax enables us to define the greatest fixpoint operator ⌫.
We sometimes write µML

T
r as an abbreviation for µMLTr(X).

3.2. Coalgebraic fixpoint logic 55

Note that later on in this chapter we may see negation and conjunction as
maps ¬ : µMLTr ! µML

T
r, ' 7! ¬' and ^ : P!(µMLTr) ! µML

T
r, A 7!

V
A. Hence

we can apply T to them and get maps T¬ and T^.
Given a set Q ✓ X we denote by µML

T
r(Q) the restriction of µMLTr(X) to the set

Q in the sense that it is the set of formulas with propositional variables from the
set Q instead of X.

3.2.2. Remark. For a given formula ', we denote by P' the set of all propo-
sitional variables occurring in '. Observe that for Q0 ✓ Q ✓ X, we have that
µML

T
r(Q

0) ✓ µML
T
r(Q). This can be proved by induction on the complexity of

formulas in µML
T
r(Q

0).

Semantics

Given a quasi-functorial lax extension L for T, we define the semantics of formulas
in µML

T
r over T-models (see Definition 2.4.5) as follows and refer to the logic by

µML
L

r:

3.2.3. Definition. Given a T-model S = (S, �,mV) we define the satisfaction
relation �S: S ! µML

T
r by induction:

s �S p i↵ p 2 mV (s)

s �S ¬' i↵ not s �S '

s �S
V
A i↵ s �S ' for all ' 2 A

s �S
W
A i↵ s �S ' for some ' 2 A

s �S r↵ i↵ (�(s),↵) 2 L�S

s �S µp.' i↵ s 2
\

{X ✓ S | J'KS[p 7!X] ✓ X}.

3.2.4. Definition. Given logic µMLLr we standardly define the relation of logical
consequence ✏ : µMLLr ! µML

L

r by ' ✏ '0 i↵:

s �S ' implies s �S '
0 for all states s in any T-model S.

The relation of logical equivalence ⌘ : µMLLr ! µML
L

r is defined by ' ⌘ '
0 i↵:

s �S ' i↵ s �S '
0 for all states s in any T-model S.

3.2.5. Example. By the following Proposition [Ven06, Proposition 5.15.], through-
out this chapter we always assume that formulas of µMLLr are clean and guarded
(see Definition 2.4.3).

3.2.6. Proposition. Every formula in µML
L

r is equivalent to some clean, guarded
formula.

56 Chapter 3. Uniform Interpolation

3.2.7. Remark. Although the results on r-based µ-calculus in [Ven06] have
been stated for weak pullback-preserving functors, some of the proofs do not
really depend on preservation of weak pullbacks. Throughout this chapter, we
will explicitly mention the cases where proofs need modification to be applied for
functors with a quasi-functorial lax extension, and for other cases we simply refer
to the results from [Ven06].

Bisimulation

In this section, we collect some of the bisimulation related notions that will be
used later on in this Chapter.

3.2.8. Definition. The projection of a PX-coloured T-coalgebra (T-model) S =
(S, �,mV) to a set Q ✓ X is defined as the PQ-coloured T-coalgebra SQ =
(S, �,mQ

V
) where m

Q
V
: S ! PQ is given by s 7! mV (s) \ Q.

3.2.9. Definition. Given two T-models S and S0 and a set Q ✓ X, a relation
R : S ! S

0 is an LQ-bisimulation between S and S0 if it is an L-bisimulation
between SQ = (S, �,mQ

V
) and S0Q = (S 0

, �
0
,m

Q
V 0). That is R is an L-bisimulation

between the T-coalgebras (S, �) and (S 0
, �

0) and it additionally preserves the
colour of related states over Q. More precisely, for all (s, s0) 2 R and p 2 Q we
have p 2 mV (s) i↵ p 2 mV 0(s). Equivalently one can think of this condition as
preservation of the truth of all propositional variables in Q, i.e., for all (s, s0) 2 R

and p 2 Q we have
s 2 V (p) i↵ s

0 2 V
0(p).

From this definition it is easy to see that for any Q0 ✓ Q ✓ X, if a relation R is
an LQ-bisimulation between T-models S and S0, then it is also an LQ0-bisimulation
between them.

3.2.10. Definition. Given a propositional variable p 2 X and T-models S and
S0, a relation R : S ! S

0 is an up-to-p LX-bisimulation between S and S0 if it is
an LX\{p}-bisimulation between them. Intuitively this means that the T-models
S and S0 are bisimilar if we disregard the propositional variable p. We write
S, s$L

p
S0
, s

0 to denote that s and s
0 are up-to-p LX-bisimilar.

Boolean dual

As we have already mentioned in the introduction of this chapter, our proof strat-
egy for Uniform Interpolation is based on transforming formulas into automata
and vice versa. The next Definition which can be seen as definability of the
Boolean dual � of the modality r is a crucial fact about µML

L

r which together
with other properties of the logic, enables us to transform formulas to automata.

3.2. Coalgebraic fixpoint logic 57

This fact will be explicitly used in the proofs of Proposition 3.5.2 and Proposi-
tion 3.6.1. A ‘boolean dual’ of a nabla formula r↵ is a formula �↵ such that:

�↵ ⌘ ¬r(T¬)↵.

Given a functor T, we focus on the definability of a Boolean dual for the nabla
modality since the Boolean duals of other operators are standard.

It is easy to check [KV09] that in the case of the power set functor P , defining
�� for a non-empty set � = {'1,'2, . . .'n} as:

�� := r; _
_

{r{'} | ' 2 �} _r{^�,>},

we indeed obtain that:

�{'1,'2, . . .'n} ⌘ ¬r{¬'1,¬'2, . . .¬'n}.

In the general case, for each formula r↵ we can find a set Q(↵) such that the
following definition:

�(↵) :=
W
{r� | � 2 Q(↵)},

provides a Boolean dual for r.
Note that in order to get a well-defined formula �↵ from the above definition,

we need the set Q(↵) to be finite. This is the reason that in the next definition
we require the functor T to preserve finite sets. See Definition 2.3.21 to recall the
notion of Base for nabla formulas.

3.2.11. Definition. Let T be a functor that preserves finite sets and has a
quasi-functorial lax extension L. Then for all ↵ 2 T!(µMLLr), we define �↵ as the
following formula:

�↵ :=
W
{r(T^)(�) | � 2 T!P!Base(↵), (↵,�) /2 L(/2Base(↵))}.

The next Proposition states that �↵ and r↵ are actually Boolean duals.
Moreover, it shows how we can push negations inside nablas and thereby decrease
the modal rank at which negations occur in a formula.

3.2.12. Proposition. For all ↵ 2 T!(µMLLr) we have:

¬r(T¬)(↵) ⌘
W
{r(T^)(�) | � 2 T!P!Base(↵), (↵,�) /2 L(/2Base(↵))}.

Proof:
Fix a T-model S = (S, �, V).
((=) For the direction from right to left: assume there is an � 2 T!P!Base(↵)
such that (↵,�) /2 L(/2Base(↵)) and s �S r(T^)(�) for some s 2 S. We need to
show that s �S ¬r(T¬)(↵). Assume for contradiction that s �S r(T¬)(↵). This

58 Chapter 3. Uniform Interpolation

means that (�(s), (T¬)(↵)) 2 L�S and so (�(s),↵) 2 L�S ; (T¬)�. By applying
Proposition 3.1.3 (2) we rewrite this as:

(↵, �(s)) 2 (T¬) ; (L�S
�) = L(¬ ; ��

S). (3.2)

On the other hand, from the assumption that s �S r(T^)(�) we get that:

(�(s), (T^)(�)) 2 L�S

and again by Proposition 3.1.3 we have that:

(�(s),�) 2 L(�S ; ^�). (3.3)

Equations (3.2) and (3.3) together with (L2) imply that:

(↵,�) 2 L(¬ ; ��
S) ; L(�S; ^�) ✓ L(¬ ; ��

S ; �S ; ^�). (3.4)

Denote the relation (¬ ; ��
S ; �S ; ^�) : µMLLr ! P!(µMLLr) by R. Hence we have

(↵,�) 2 LR. Now recall that /2Base(↵): Base(↵)! P!Base(↵) is the relation given
as follows:

' /2Base(↵) A i↵ ' /2 A.

From this and the definition of relation R we get that:

R�Base(↵)⇥P!Base(↵)✓ /2Base(↵),

because a formula whose negation is true at some state can not be a conjunct of
a conjunction which is also true at that state. Moreover since ↵ 2 TBase(↵) and
� 2 TP!Base(↵) we get:

(↵,�) 2 LR�TBase(↵)⇥TP!Base(↵).

By Proposition 3.1.4 we have:

(↵,�) 2 L(R�Base(↵)⇥P!Base(↵)) ✓ L(/2Base(↵)),

which is a contradiction with the assumption (↵,�) /2 L(/2Base(↵)).

(=)) For the direction from left to right: assume that s �S ¬r(T¬)(↵) for some
s 2 S. Hence we have (�(s), (T¬)(↵)) /2 L�S and by Proposition 3.1.3 (2), we
get that:

(�(s),↵) /2 L�S ; (T¬)� = L(�S ; ¬�).

In order to find a suitable � 2 T!P!Base(↵), consider the following map:

f : S ! P!Base(↵)
s 7! {' 2 Base(↵) | s �S '},

3.2. Coalgebraic fixpoint logic 59

and set � := Tf(�(s)). It is obvious that � 2 T!P!Base(↵). We claim that �,
which is defined in this way satisfies the following properties:

(i) (↵,�) = (↵,Tf(�(s))) /2 L(/2Base(↵)),

and
(ii) s �S r(T^)(�) = r(T^)(Tf(�(s))).

To verify (i) we first show that:

f ; 63Base(↵) ✓ �S ; (¬�Base(↵))
�
. (3.5)

This inequality means that if a formula ' 2 Base(↵) is not in f(t) for some t 2 S,
then the negation of ' is true at t. It holds because if ' 2 f(t) for a ' 2 Base(↵)
then by definition of f it must be the case that t 6�S ' and hence t �S ¬'.

Now assume for contradiction that (↵,Tf(�(s))) 2 L(/2Base(↵)). This entails
that (↵, �(s)) 2 L(/2Base(↵)) ; (Tf)�. So we have:

(�(s),↵) 2 Tf ; L(63Base(↵)) = L(f ; 63Base(↵)) Proposition 3.1.3 (2)

✓ L(�S ; (¬�Base(↵))
�) (3.5) and (L1)

✓ L((�S ; ¬�)�S⇥Base(↵))

= (L(�S ; ¬�))�TS⇥TBase(↵) Proposition 3.1.4

= L(�S ; ¬�).

But this contradicts (�(s),↵) /2 L(�S ; ¬�).
To prove (ii) we first observe that:

�S ✓ �S ; ((^�Base(↵))
� ; f �). (3.6)

This holds because the conjunction of formulas that are true at a state is also
true at this state.

Now consider:

(�(s), �(s)) 2 �TS ✓ L�S Proposition 3.1.3 (1)

✓ L(�S ; (^�Base(↵))
� ; f �) (3.6) and (L1)

= L �S ; (T^�Base(↵))
� ; (Tf)�. Proposition 3.1.3 (2)

Hence if follows that:

(�(s),T(^�Base(↵))(Tf(�(s)))) 2 L�S.

This means that (�(s),T^(�)) 2 L�S due to the following:

T(^�Base(↵))(Tf(�(s))) = T(^�Base(↵))(�)

= T^(�).
Hence we get s �S rT^(�) which finishes the proof of (ii) and so the proof

of Proposition 3.2.12.

60 Chapter 3. Uniform Interpolation

In the case of weak pullback-preserving functors an analogous result has been
proved in [SV10]. Shortly after, in [Mar11], it was proved that the result can be
generalised to nabla formulas of functors that preserve finite sets and admit a
quasi-functorial lax extension.

3.3 Coalgebraic Automata

In this section, we will work with a variant of modal X-automata (see Defini-
tion 2.4.19) which are called non-deterministic T-automata for a given Set func-
tor T. Similar to modal X-automata, non-deterministic T-automata operate on
T-models or coloured T-coalgebras. The di↵erence with modal X-automata that
makes non-deterministic T-automata more convenient for the proof of our main
technical result, i.e., closure under projection (Theorem 3.5.3), is the type of
their transition map. The transition map of a non-deterministic T-automaton A
over a colour set C doesn’t directly involve modal formulas and is of the form
⇥ : A⇥C ! PTA. We now give the formal definition of this family of automata.

3.3.1. Definition. Given a Set functor T and a lax extension L for T, a non-
deterministic T-automaton over a colour set C or simply a T-automaton, is a
tuple A = (A,⇥,⌦, aI), with A some finite set of states, ⇥ : A ⇥ C ! PTA the
transition function, ⌦ : A! ! a parity map and aI 2 A an initial state.

The acceptance condition for T-automata is formulated in terms of a parity
game between Éloise (9) and Abélard (8). For an automaton A and a pointed
C-coloured T-coalgebra S = (S, �, �, sI), the acceptance game A(S,A) is given by
the rules of Table 3.1.

Position Player Admissible moves Parity
(s, a) 2 S ⇥ A 9 {(�(s),#) s.t. # 2 ⇥(a, �(s))} ⌦(a)
(�(s),#) 2 TS ⇥ TA 9 {Z : S ! A | (�(s),#) 2 LZ} 0
Z ✓ S ⇥ A 8 Z 0

Table 3.1: Acceptance game for non-deterministic T-automaton

Positions of the form (s, a) 2 S⇥A will be called basic positions of the game.
A partial match of the game of the form (s, a)(�(s),#)Z(t, b) will be called a
round. For the winning conditions, recall that finite matches are lost by the
player who gets stuck. For infinite matches, consider an arbitrary such match:

⇢ = (s0, a0)(�(s0),#0)Z0(s1, a1)(�(s1),#1)Z1(s2, a2) . . .

Clearly, ⇢ induces an infinite sequence of states in A:

⇢A := a0a1a2...

3.3. Coalgebraic Automata 61

Now according to the definition of parity games, 9 is the winner of the match
⇢ if max{⌦(a) | a 2 Inf(⇢A)} is even. Otherwise 8 wins ⇢.

3.3.2. Definition. A (positional) strategy for 9 in the acceptance game A(S,A)
will be viewed as a pair of functions:

� : S ⇥ A! TA,

and
Z : S ⇥ A! P(S ⇥ A).

A position from which 9 has a winning strategy is called a winning position for
9. As usual the set of all winning positions for 9 (resp. 8) in A(S,A) is denoted
by Win9 (resp. Win8).

A strategy (�, Z) starting from a basic position (sI , b) 2 S ⇥ A is called
scattered if the relation:

R = {(sI , b)} [
[

{Zs,a ✓ S ⇥ A | (s, a) 2Win9},

with Zs,a the value of Z on (s, a), is the graph of some possibly partial function,
i.e., for all t 2 S we have |R[t]| 1. Finally, we say that T-automaton A accepts
(S, sI) if 9 has a winning strategy in the game A(S,A)@(sI , aI). If 9 has a
scattered winning strategy starting from (sI , aI), we will say A strongly accepts
(S, sI).

3.3.3. Definition. A class of pointed coloured T-coalgebras will be called a T-
language. A T-language L is recognized by some non-deterministic T-automaton A
if any pointed T-coalgebra belongs to L i↵ it is accepted by A. Given T-automata
A and B over some colour set C, we call them equivalent if the language accepted
by A is the same as the language accepted by B, i.e., L(A) = L(B).

3.3.4. Definition. Let A = (A,⇥,⌦, aI) be a non-deterministic T-automaton
over colour set C. We call a state a 2 A a true state of A if ⌦(a) is even and
⇥(a, c) = T({a}). We will standardly use the notation a> to refer to a true state.
Given (a, c) 2 A ⇥ C we call # 2 ⇥(a, c) a satisfiable element of A if there is a
witnessing C-coloured T-coalgebra (Q#, ⇢, �Q), ⌧ 2 TQ and a relation Y# : Q! A

such that (⌧,#) 2 LY# and Y# ✓Win9(A(Q,A)). Finally, we call a T-automaton
A totally satisfiable whenever # is satisfiable for all # 2

S
ran(⇥).

By the following proposition we can always assume without loss of generality
that a T-automaton A over colour set C is totally satisfiable and has a true state.
Furthermore, we may always assume that there exists a witnessing C-coloured
T-coalgebra Q that works for all (a, c) 2 A⇥ C and # 2 ⇥(a, c).

3.3.5. Proposition. For any T-automaton A over a color set C we have that:

62 Chapter 3. Uniform Interpolation

(1) There is an equivalent T-automaton A0 such that A0 has a true state.
(2) There exists a totally satisfiable T-automaton A0 which is equivalent to A.
(3) If A is totally satisfiable, then there is a C-colored witnessing coalgebra

Q = (Q, ⇢, �Q) and a relation Y : Q ! A with Y ✓ Win9(Q,A) such
that for all (a, c) 2 A ⇥ C and # 2 ⇥(a, c), there is a ⌧ 2 TQ such that
(⌧,#) 2 LY .

Proof:

(1) Define A0 := (A [{a>},⇥0
,⌦0

, a
0
I
) such that a

0
I
= aI and for all a 2 A,

⇥(a) = ⇥0(a) and ⌦(a) = ⌦0(a). For (a>, c) 2 A ⇥ C define ⇥0(a>, c) :=
T({a>}) and ⌦0(a>) := 0. It is easy to check that A and A0 are equivalent.

(2) We define A0 over C by just removing the unsatisfiable elements of any
⇥(a, c). A0 = (A,⇥0

,⌦, aI), where:

⇥0(a, c) = {# 2 ⇥(a, c) | # is a satisfiable element}.

A0 and A are equivalent since 9 will never go through unsatisfiable elements
in winning matches.

(3) Take the coproduct of all witnessing coalgebras Q# for all # 2 ⇥(a, c) and
all (a, c) 2 A⇥ C. The relation Y is the union of all Y#.

3.4 Simulation

In this section, we will present the coalgebraic generalization of one of the well
known results in automata theory: the simulation theorem. To state the coalge-
braic version of this theorem, we first generalize our notion of a non-deterministic
T-automaton to that of an alternating T-automaton, which has a transition map
of the type ⇥ : A⇥ C ! PPTA.

3.4.1. Definition. Given a Set functor T and a lax extension L for T, an al-
ternating T-automaton over a colour set C is a tuple A = (A,⇥,⌦, aI), with A

some finite set of states, ⇥ : A ⇥ C ! PPTA a transition function, ⌦ : A ! !

a parity map and aI 2 A an initial state. For an automaton A and a pointed
C-coloured T-coalgebra S = (S, �, �, sI), the acceptance game A(S,A) is a parity
game given by the rules of Table 3.2.

3.4. Simulation 63

Position Player Admissible moves Parity
(s, a) 2 S ⇥A 9 {(�(s),�) 2 S ⇥ PTA | � 2 ⇥(a, �(s))} ⌦(a)
(s,�) 2 S ⇥ PTA 8 {(s,#) 2 S ⇥ TA | # 2 �} 0
(�(s),#) 2 TS ⇥ TA 9 {Z : S ! A | (�(s),#) 2 LZ} 0
Z ✓ S ⇥A 8 Z 0

Table 3.2: Acceptance game for alternating T-automaton

As in the case of non-deterministic T-automata we say that A accepts (S, sI)
if 9 has a winning strategy from basic position (sI , aI). A (positional) strategy
for 9 in the acceptance game A(S,A) of an alternating T-automaton A is a pair
of maps of the following type:

� : S ⇥ A! PTA,

and
Z : S ⇥ A! P(S ⇥ A).

Note that any non-deterministic T-automaton can be identified with an alter-
nating T-automaton by identifying members of ⇥(a, c) with singleton sets. Then
at each round of a match of the acceptance game for this alternating T-automaton,
the first move by 9 uniquely determines the choice of 8 (the unique element of a
singleton set).

3.4.2. Definition. We call a T-language recognizable if it is recognized by an
alternating T-automaton. Similar to non-deterministic T-automata, we call al-
ternating T-automata A and B equivalent if they recognize the same T-language,
i.e, L(A) = L(B).

3.4.3. Remark. Note that although the definition of T-automata does not ex-
plicitly use the logic and r-modalities, the alternating T-automata can be seen
as a notational variant of the modal X-automata (see Definition 2.4.19). In a
sense, the transition map ⇥ of an alternating T-automaton A can be seen as a
map transforming a pair (a, c) to a disjunction of conjunctions of elements of TA,
and these correspond to r-formulas.

The following proposition [Ven06, Proposition 4.14.] shows that the alternat-
ing T-automata and modal X-automata have the same recognizing power.

3.4.4. Proposition. Alternating T-automata and modal X-automata recognise
the same classes of coalgebras.

The next theorem is a coalgebraic version of the so called simulation theorem
for T-automata. In case that the functor T preserves weak pullbacks the result
has been proved in [KV08]. Here, with a very similar proof strategy, we generalise
this result to the class of functors with a quasi-functorial lax extension.

64 Chapter 3. Uniform Interpolation

3.4.5. Theorem (Simulation). Let T be a functor with a quasi-functorial lax
extension L. Every alternating T-automaton A = (A,⇥,⌦, aI) is equivalent to
a non-deterministic T-automaton. Hence a T-language is recognizable i↵ it is
non-deterministically recognisable.

Before going into the technical details of the construction, let us first provide
some of the intuitions behind the proof. These intuitions ultimately go back to
ideas of Muller and Schupp [MS95].

The main idea is to bring the players’ interaction pattern 9898 in one round
of the acceptance games for automaton A, into the pattern 98 (or more precisely:
998). Concretely speaking, consider a basic position (s, a) in the acceptance game
A(S,A) for some T-coalgebra S. From this position a round of a match of this
game proceeds as follows:

• 9 picks � 2 ⇥(a, �(s)) moving to position (�(s),�);

• 8 picks # 2 � moving to position (�(s),#);

• 9 picks Zs,# such that (�(s),#) 2 LZs,#;

• 8 picks (t, b) 2 Zs,# as the next basic position.

This pattern may suggest that we modify the game in such a way that the relation
Z� : S ! PA which is the gathering of all relations {Zs,# | # 2 �} is an
appropriate choice for 9. This means that we can take (representations of) subsets
of A as the states of the new automaton.

However, if we would simply take subsets of A to be states of the non-
deterministic automaton we would get into trouble when defining the acceptance
condition. The problem that occurs is similar to what one encounters when de-
terminizing a stream automaton. The remedy is to define the non-deterministic
automaton based on the set of binary relations over A, rather than subsets of A,
and to link matches of the acceptance game of these automata via the notion of
a trace through a sequence of binary relations.

Now we are ready for the technical details of proof of Theorem 3.4.5.

Proof:
As we already announced we will construct an equivalent non-deterministic au-
tomaton A] based on the set A

] of all binary relations over the set A. To
give the definition of the transition map ⇥] we need to define a successor map
ma : A] ! PA for each a 2 A given by:

ma : R 7! R[a].

Thus T(ma) : TA] ! TPA. The map T(ma) enables us to link potential elements
� 2 ⇥](R, c) to T-redistributions (see Definition 2.3.31) in TPA of objects �a 2
⇥(a, c). The automaton A] is defined as follows:

A] := (A]
,⇥],NBT⌦, RI),

3.4. Simulation 65

where A
] = P(A⇥ A), RI = {(aI , aI)}, ⇥] : A] ⇥ C ! PTA] is given by:

⇥](R, c) := {� 2 TA] | 8a 2 ran(R) 9�a 2 ⇥(a, c) s.t.
T(ma)(�) is a T-redistribution of �a},

and NBT⌦ is the set of all those infinite sequences of binary relations that do
not contain any bad trace, i.e. a trace such that the highest priority occurring
infinitely often is odd.

It is obvious that A] is non-deterministic, so it is left to prove that A] and A
are equivalent.

Proof of equivalence: Fix a pointed C-colored T-coalgebra (S, sI) = (S, �, �, sI).
We will prove the following:

A accepts (S, sI)() A] accepts (S, sI). (3.7)

We prove (3.7) via a comparison of the two acceptance games A(S,A) and
A(S,A]).

(=)) For this direction assume that A accepts (S, sI). So 9 has a winning strategy
(�, Z) starting from position (S, s). In the sequel we will define a winning strategy
(⇧, Q) for 9 in the game A(S,A]) = A]. To do so we first define an auxiliary
map ⇣ : S ! (S ! P(A⇥A)) that is associated with Z and maps each s 2 S to
a map ⇣s : S ! P(A⇥ A) which is define as follows.

⇣s : S ! P(A⇥ A)

⇣s(t) := {(a, b) 2 A⇥ A | (t, b) 2 Zs,a}.

Now we define (⇧, Q) as follows:

⇧ : S ⇥ A
] ! TA]

⇧s,R := (T⇣s)�(s),

and

Q : S ⇥ TA] ! P(S ⇥ A
])

Qs,⌃ := Gr(⇣s).

Since Q only depends on its first component, we simply drop ⌃ and write Qs

instead of Qs,⌃.
The Claims 1 and 2 below state that playing this strategy, 9 wins all matches

starting from (sI , RI).
We call a position (s, R) in A] safe if (s, a) 2Win9(A) for all a 2 ran(R).

Claim 1. Given a safe position (s, R) we have:

66 Chapter 3. Uniform Interpolation

(1) (⇧, Q) provides legitimate moves at (s, R).

(2) Every (t, R0) 2 Qs is safe.

Proof of Claim 1: The main part of the proof consists of showing that ⇧ := ⇧s,R

is legitimate, i.e., ⇧ 2 ⇥](R, �(s)). Consider an arbitrary element a 2 ran(R).
By assumption (s, a) 2Win9(A(S,A)). Recall that �s,a and Zs,a are given by 9’s
winning strategy in A(S,A). To prove the legitimacy of ⇧ we show that T(ma)(⇧)
is a T-redistribution of �s,a 2 ⇥(a, �(s)). It su�ces to prove that for all # 2 �s,a:

(#,Tma(⇧)) 2 L(2A).

To verify this, note that by legitimacy of Zs,a we have that:

(�(s),#) 2 LZs,a.

Now from Zs,a = Gr(⇣s) ; ma ; 3A we get:

(�(s),#) 2 L(Gr(⇣s) ; Gr(ma) ; 3A).

Applying Proposition 3.1.3 (2) implies that:

(�(s),#) 2 T(⇣s) ; T(ma) ; L(3A).

Since ⇧ = T⇣s(�(s)) is defined as the unique object such that (�(s),⇧) 2 T(⇣s)
(since ⇣s and so T⇣s are functions), it is immediate that (⇧,#) 2 T(ma) ; L(3A)
and so:

(#,Tma(⇧)) 2 L(2A).
Legitimacy of Qs is immediate by definition:

⇧ = T⇣s(�(s))) (�(s),⇧) 2 T(⇣s)

= L⇣s

= LQs.

Part (2) of the Claim 1 is straightforward. Let a, b 2 A, t 2 S and R
0 2 A

] be
such that (t, R0) 2 Qs and (a, b) 2 R

0. We need to show that (t, b) 2Win9(S,A).
Recall that by definition of Qs, (t, R0) 2 Qs implies that R

0 = ⇣s(t) and by
definition of ⇣s we get:

(a, b) 2 R
0 i↵ (t, b) 2 Zs,a.

We are done because Zs,a is given by 9’s winning strategy in A(S,A).

Claim 2. Playing strategy (⇧, Q), 9 wins all finite and infinite matches starting
from (sI , RI).

3.4. Simulation 67

Proof of Claim 2: We first prove this claim for finite matches. Applying Claim 1
it is straightforward to check that playing strategy (⇧, Q) 9 will never get stuck
in finite partial matches.

For infinite matches consider a match:

(sI , RI)(s1, RI) . . .

ofA(S,A]) in which 9 plays according to strategy (⇧, Q). To show that this match
is won by 9, consider an arbitrary trace aIaIa1a2 . . . on the sequence RIR1 It
su�ces to show that this trace is not a bad trace. An inductive proof, using part
(2) of Claim 1, shows that (si+1, ai+1) 2 Zsi,ai for every i. From this it is easy to
find a (�, Z)-guided match:

(sI , aI)(s1, a1) . . .

in A(S,A) and hence aIaIa1a2 . . . cannot be a bad trace, since the strategy (�, Z)
was assumed to be a winning strategy for 9. This finishes the proof of Claim 2
and so the proof of direction from left to right.

((=) For the direction from right to left of Theorem 3.4.5, assume that A] accepts
(S, sI). This means there exists a winning strategy � for 9 in the acceptance game
A(S,A]) starting from position (sI , RI). We will use � and equip 9 with a strategy
�
0, in the game A(S,A) initialized at (sI , aI), which has the following property:
For any (possibly finite) �0-guided match (sI , aI)(s1, a1) . . . of A(S,A), there

is a �-guided “shadow match” (sI , RI)(s1, R1) . . . of A(S,A]), satisfying the con-
dition that:

ai+1 2 Ri+1[ai] for all i. (3.8)

Hence, the sequence of A-states
aIa1 . . .

of such a match is a trace of the A
]-sequence

RIR1 . . .

which we may associate with a �-guided match. Since � is by assumption winning
for 9 in A(S,A]), by definition of the winning condition NBT⌦ for A], the maxi-
mum parity occurring infinitely often on the trace must be even. This guarantees
that 9 wins all infinite matches of A(S,A). Hence, it su�ces to prove that at any
finite stage of a �0-guided match, she can maintain the above condition for one
more round in A(S,A).

68 Chapter 3. Uniform Interpolation

Suppose then that 9 has been able to keep this condition for k steps. That is,
with the partial A-match

(sI , aI)...(sk, ak)

we may associate a partial, �-guided A
]-match

(sI , RI)...(sk, Rk)

such that:

ai+1 2 Ri+1[ai] for all i < k. (3.9)

To simplify notation, we write a = ak, R = Rk and s = sk, so we have
a 2 ran(R). Let ⇧ 2 TA] and Q ✓ S⇥A

], respectively, be the moves dictated by
9’s winning strategy �. So ⇧ and Q are legitimate moves, that is, ⇧ 2 ⇥](R, �(s))
and (�(s),�) 2 LQ. Then by definition of ⇥], and the fact that a 2 ran(R), there
is some � 2 ⇥(a, �(s)) such that Tma(�) is a T-redistribution of �. This � is
the next move of 9 in the game A(S,A).

So suppose that 8 responds to 9’s move with an object # 2 �. Then 9 has to
come up with a relation Y : S ! A such that

(�(s),#) 2 LY.

Our instruction for 9 is to pick the following relation:

Y := Q ; Gr(ma) ; 3A,

or more precisely:

Y = {(t, b) 2 S ⇥ A | b 2 R
0[a] for some R

0 2 A
] with (t, R0) 2 Q}.

We are done if we prove that this move is legitimate for 9. To see why, distinguish
the following cases. If Y = ; then 8 gets stuck so 9 wins immediately. But if
Y 6= ;, then to any (sk+1, ak+1) 2 Y that 8 chooses as his next move, by definition
we may associate a relation Rk+1 2 A

] such that :

(ak, ak+1) 2 Rk+1 and (sk+1, Rk+1) 2 Q.

In other words, we have shown that 9 can indeed maintain the above mentioned
condition (3.9) for one more round of the game. Thus it is left to show that Y is
a legitimate move for 9 in A(S,A), which means we need to show that:

(�(s),#) 2 LY. (3.10)

For this purpose, first observe that the definition of Y and the properties of L
(Proposition 3.1.3 (2) and (L2)) imply that:

3.5. Closure properties 69

LQ ; Tma ; L(3A) = LQ ; L(Gr(ma) ; 3A) (3.11)

✓ L(Q ; Gr(ma) ; 3A) (3.12)

= LY. (3.13)

Now it follows from the legitimacy of ⇧ in the game A(S,A]), that Tma(⇧) is a
T-redistribution of �, i.e.,

(⇧,#) 2 Tma ; L(3A). (3.14)

From the legitimacy of Q we get that:

(�(s),⇧) 2 LQ. (3.15)

But then (3.10) immediately follows from (3.11), (3.14) and (3.15).
This finishes the proof of Theorem 3.4.5.

3.5 Closure properties

We now come to the central part of this chapter - a discussion on closure prop-
erties of T-automata. When discussing closure properties, we say that a class L
of T-languages is closed under some operation on T-languages if, whenever we
apply this operation to a family of languages in L, we obtain again a language
in L. As we will see in this section, the class of non-deterministically recogniz-
able languages is closed under taking union and projection, whereas the class
of recognizable languages is closed under union, intersection and complementa-
tion [Kup06] [KV09].

Closure under intersection and union

3.5.1. Proposition. Let A and A0 be two alternating T-automata over colour
set C. Then there exist alternating T-automata A\ and A[over colour set C

such that for all pointed C-coloured T-coalgebras (S, sI) we have that:

(1) A\ accepts (S, sI) i↵ both A and A0 accept (S, sI), i.e, L(A\) = L(A)\L(A0).

(2) A[accepts (S, sI) i↵ A or A0 accepts (S, sI), i.e, L(A[) = L(A) [L(A0).

The proof of this proposition proceeds along the exact same lines as the proof of
[KV08, Proposition 5.4], where the same result has been stated for T-automata
when T is a weak pullback-preserving functor.

70 Chapter 3. Uniform Interpolation

Closure under complementation

3.5.2. Proposition. Let T be a functor that preserves finite sets and admits a
quasi-functorial lax extension L. Then for every alternating T-automaton A over
colour set C, there exists another alternating T-automaton over C denoted by
Ac (or ¬A) that accepts exactly those pointed C-coloured T-coalgebras that are
rejected by A. More precisely, for all pointed C-coloured T-coalgebras (S, sI) the
following holds:

(S, sI) 2 L(Ac) i↵ (S, sI) /2 L(A).
We call the automaton Ac the complement of automaton A.

Proof:
Using that alternating T-automata correspond to modal X-automata (cf. Re-
mark 3.4.3), it is enough to prove that for any modal X-automaton A its com-
plement Ac exists. The proof proceeds along the exact same lines as the proof
in [KV09] for weak pullback-preserving functors. The key idea of the proof is to
define Ac by taking the Boolean duals of the formulas assigned by the transition
map of A, while the priority map is defined by simply raising all priorities by
1. To generalize the proof to the class of functors with a quasi-functorial lax
extension it su�ces to show that the Boolean duals of all formulas appearing in
the range of transition map of a given automaton A are definable. But this is
simply the case because of Proposition 3.2.12 and the fact that the Boolean duals
of other connectives are standardly defined.

Closure under projection

The main technical result of this chapter is Theorem 3.5.3, which is a gener-
alization of [KV08, Proposition 5.9], where the same result is proved for the
weak pullback-preserving functors. In the following theorem we will generalize
this Proposition to the class of all functors with a quasi-functorial lax extension
that preserves diagonals. The proof strategy is the same as in [KV08], but the
construction here is more involved.

3.5.3. Theorem (Closure under projection). Given a non-deterministic T-automaton
A over a colour set PX and an element p 2 X, there exists a non-deterministic
T-automaton 9p.A over the color set P(X \ {p}) such that:

(S, sI) 2 L(9p.A) i↵ (S, sI) 2 L(A) for some (S, sI) with S, sI $L

p
S, sI . (3.16)

Proof:
Given a T-automaton A = (A,⇥,⌦, aI) over a color set PX, we define the
T-automaton 9p.A over the color set P(X \ {p}) as the automaton 9p.A :=
(A,⇥p,⌦, aI), where ⇥p is given by:

⇥p : A⇥ P(X \ {p})! PTA

(a, c) 7! ⇥(a, c) [⇥(a, c [{p}).

3.5. Closure properties 71

We need to show that 9p.A satisfies (3.16).

((=) The right-to-left direction of (3.16) is straightforward: given a PX-coloured
T-coalgebra S we denote by Sp the projection of S to the set X \ {p}, that is we
omit p from the colouring and obtain a P(X \ {p})-coloured T-coalgebra. Now
it is easy to check that all legitimate moves of 9 in the game A(S,A) are also
legitimate in A(Sp, 9p.A).

(=)) For the left-to-right direction of (3.16) assume that 9p.A accepts the P(X \
{p})-colored T-coalgebra (S, sI) = (S, �, �, sI). We need to define a PX-colored
coalgebra (S, sI) = (S, �, �, sI) such that (S, sI) belongs to L(A) and is up-to-p
bisimilar with (S, sI).

By Proposition 3.3.5 we can without loss of generality assume that 9p.A has a
true state and is totally satisfiable. Furthermore we can assume that there exists
a PX-colored witnessing T-coalgebra Q = (Q, ⇢, �Q). In the following, we will
give the construction of (S, sI) using (S, sI) and Q.

We put S := (S ⇥ A)] Q and in order to define the coalgebra structure
� : S ! TS we distinguish the following cases:
(1) If q 2 Q, define �(q) := ⇢(q).
(2) If (s, a) 2 S ⇥ A and (s, a) /2 Win9(S, 9p.A), define �(s, a) := Ta(�(s)),

where a : S ! S ⇥ A, s 7! (s, a).
(3) In the case where (s, a) 2 S⇥A and (s, a) 2Win9(S, 9p.A), we define �(s, a)

as follows: from the winning strategy that witnesses (s, a) 2Win9(S, 9p.A)
we obtain a #s,a 2 ⇥(a, �(s)) and a relation Zs,a : S ! A such that Zs,a ✓
Win9(S, 9p.A) and (�(s),#s,a) 2 LZs,a. Since A contains a true state, we can
assume without loss of generality that Zs,a is full on S (we can add (a>, t)
to Zs,a for all t /2 ran(Zs,a)). We have Zs,a = ⇡

�
1 ; ⇡2 where ⇡1 : Zs,a ! S

and ⇡2 : Zs,a ! A are the projections of Zs,a. These projections can be seen
as relations from (S ⇥A)]Q to S and A respectively. It then follows that
Zs,a ✓ ⇡

�
1 ; (⇡2] Y) where Y : Q ! A is given by Proposition 3.3.5 item

(3). Since L is a lax extension one obtains that:

LZs,a ✓ L(⇡�
1; (⇡2] Y)),

and hence from (�(s),#s,a) 2 LZs,a we get:

(�(s),#s,a) 2 L(⇡�
1; (⇡2] Y)).

It also holds that:
�(s) 2 dom(L(⇡�

1)),

because Zs,a is full on S, so ⇡�
1 is full on S, and thus by Proposition 3.1.8 (2)

L(⇡�
1) is full on TS.

Moreover #s,a 2 ran(L(⇡2]Y)) because #s,a 2 ran(LY) by the properties of
Y and LY ✓ L(⇡2] Y).

72 Chapter 3. Uniform Interpolation

With the quasi-functoriality of L it now follows that:

(�(s),#s,a) 2 L(⇡�
1);L(⇡2] Y).

Hence it is possible to choose �(s, a) 2 T((S ⇥ A)]Q) such that

(�(s), �(s, a)) 2 L(⇡�
1) and (�(s, a),#s,a) 2 L(⇡2] Y). (3.17)

To complete the definition of the PX-colored pointed coalgebra (S, sI), we set
sI := (sI , aI) and define the coloring � : S ! PX by distinguishing the following
cases:
(1) If q 2 Q, define �(q) := �Q(q).
(2) If (s, a) 2 S ⇥ A and (s, a) /2Win9(S, 9p.A), define �(s, a) := �(s).
(3) If (s, a) 2 S ⇥ A and (s, a) 2 Win9(S, 9p.A) we define �(s, a) by consider-

ing the choice of 9 at (s, a). Since (s, a) is a winning position for 9, she
picks an element #s,a 2 ⇥p(a, �(s)). The function ⇥p is defined such that
⇥p(a, �(s)) = ⇥(a, �(s)) [⇥(a, �(s) [{p}). We set

�(s, a) :=

⇢
�(s) [{p} if #s,a 2 ⇥(a, �(s) [{p}),
�(s) otherwise.

We need to show that S, sI $L

p
S, (sI , aI) and that ((sI , aI), aI) 2Win9(S,A).

Claim 1. S, sI $L

p
S, (sI , aI).

Proof of Claim 1: We show that the graph of the projection ⇡S : S ⇥ A ! S

seen as a relation between S and S is an up-to-p bisimulation between (S, sI) and
(S, sI). We need to prove that:

(�(s, a), �(s)) 2 L⇡S and �(s, a) \ {p} = �(s) whenever ((s, a), s) 2 ⇡S.

That �(s, a) \ {p} = �(s) follows directly from the definition of �.
To prove (�(s, a), �(s)) 2 L⇡S we distinguish two cases:

(i) If (s, a) 2 S ⇥ A and (s, a) /2 Win9(S, 9p.A) then the statement holds
because, by definition �(s, a) = Ta(�(s)) and since L is a lax extension
and �

a
✓ ⇡S, we have that

(Ta(�(s)), �(s)) 2 (Ta)
� = L(�

a
) ✓ L⇡S.

(ii) If (s, a) 2 S⇥A and (s, a) 2Win9(S, 9p.A) then we get by the definition of
� that (�(s, a), �(s)) 2 L⇡1. It follows that (�(s, a), �(s)) 2 L⇡S because L
is a lax extension and ⇡1 ✓ ⇡S since ⇡1 : Zs,a ! S is the projection of the
relation Zs,a ✓ S ⇥ A.

Claim 2. ((sI , aI), aI) 2Win9(S,A).

3.5. Closure properties 73

Proof of Claim 2: Given the relation Y : Q ! A from Proposition 3.3.5 item
(3), let (, Y 0) be a winning strategy for 9 witnessing that Y ✓ Win9(Q, 9p.A),
and (�, Z) be a winning strategy for 9 in A(S, 9p.A). We define 9’s winning
strategy (�, Z) in A(S,A) as follows. The definitions are given for (s, a) 2
Win9(S, 9p.A). For other elements of the set S ⇥ A the following maps can be
defined arbitrarily.

� : S ⇥ A! TA

((s, b), a) 7! #s,a

(q, a) 7! "q,a

Z : S ⇥ A! P(S ⇥ A)

((s, b), a) 7! ⇡2] Y

(q, a) 7! Y
0
q,a

where #s,a and Zs,a are given by the winning strategy (�, Z) at position (s, a), ⇡2
is the projection of Zs,a : S ! A on S, and "q,a and Y

0
q,a

are given by the strategy
(, Y 0) at position (q, a).

Claim 2A. For the following positions in A(S,A), the given strategy (�, Z)
provides legitimate moves for 9:
(i) {(q, a) 2 S ⇥ A | (q, a) 2Win9(Q, 9p.A)},
(ii) {((s, a), a) 2 S ⇥ A | (s, a) 2Win9(S, 9p.A)}.

Proof of Claim 2A:
(i) We need to show that (�(q), "q,a) 2 LY

0
q,a
. This is the case since �(q) = ⇢(q)

and the moves "q,a and Y
0
q,a

are given by 9’s winning strategy (, Y 0) in
A(Q, 9p.A).

(ii) We have to show that (�(s, a),#s,a) 2 L(⇡2] Y). By the definition of � we
have that #s,a 2 ⇥(a, �(s, a)). Now because #s,a and ⇡2]Y are given by the
winning strategy (�, Z), from the definition of � and (3.17), we get that:
(�(s, a),#s,a) 2 L(⇡2] Y).

Claim 2B. (�, Z) guarantees 9 to win any match of A(S,A)@((sI , aI), aI).

Proof of Claim 2B: Note that according to the definition of S, at the end of
each round of a match of A(S,A), there are two possibilities for 8: he can either
pick an element (q, a) 2 Q⇥A or choose an element from (S⇥A)⇥A. The point
is that if at some point he picks an element from the set Q ⇥ A, because of the
definitions of � and (�, Z), there is no way to go back to basic positions of the
form ((s, b), a) 2 (S ⇥ A) ⇥ A. On the other hand, if he never picks an element
from Q ⇥ A, the match will never go through states of Q. Hence to prove that
the strategy (�, Z) is winning, it su�ces to distinguish the following two kinds
of matches:
(i) At some stage 8 chooses an element (q, a) 2 Y . From this moment on, there

is no way to go back to the states of S and since Y ✓ Win9(Q, 9p.A), 9
plays her winning strategy in A(Q,A) and wins the match.

74 Chapter 3. Uniform Interpolation

(ii) 8 never picks an element of the form (q, a). In this case, any (�, Z)-guided
match is of the form:

((sI , aI), aI)((s1, a1), a1)((s2, a2), a2) . . .

This match corresponds to the (�, Z)-guided match:

(sI , aI)(s1, a1)(s2, a2) . . .

in the game A(S,A). Since we assumed (�, Z) to be a winning strategy for
9, (�, Z) is also a winning strategy for her.

This finishes the proof of Claim 2.

And finally this proves Theorem 3.5.3.

3.6 Logic and Automata

As we mentioned earlier, in this thesis we present the notion of automaton as an
alternative way to think of a formula in fixpoint modal logic. In this section we
will briefly justify how it is possible to safely transfer from automata to formulas
and vice versa.

3.6.1. Proposition. There exists an e↵ective procedure to transform a formula
' 2 µML

L

r(X) to a non-deterministic T-automaton A' over colour set PX, such
that for every pointed PX-colored T-coalgebra (S, s) we have:

A' accepts (S, s) i↵ s �S '.

Proof:
The construction proceeds along the exact same lines as the construction of a
non-deterministic T-automaton from a given formula [Ven06, Theorem 2] in the
case of weak pullback-preserving functors. The proof proceeds in the following
stages:

(1) Using routine methods (see e.g. [Ven06, Theorem 2]), we can inductively
show that every formula ' in our language can be e↵ectively transformed into an
equivalent alternating T-automaton. The proof presented in [Ven06] essentially
works here. There is only one place in the proof of [Ven06, Theorem 2] where
the functoriality of relation lifting T of a weak pullback-preserving functor T has
been used (line 17 on page 661 in the proof of [Ven06, Proposition 4.19]), and for
this part of the proof, functoriality can be simply replaced by quasi-functoriality
of relation lifting L, i.e., property 3.1 of Definition 3.1.5.

For the case of negation, i.e., formulas of the form ¬', by the induction
hypothesis, we get an equivalent alternating T-automaton B' for ', and then

3.7. Uniform Interpolation 75

apply Proposition 3.5.2 to transform B' to its complement Bc

'
. It is obvious that

' and Bc

'
are equivalent.

(2) At this stage, we apply the Simulation Theorem 3.4.5 and transform the
alternating T-automaton we obtained at stage (1), to a non-deterministic T-
automaton.

3.6.2. Proposition. There exists an e↵ective procedure transforming a non-
deterministic T-automaton A over colour set PX to an equivalent formula 'A
in µML

L

r(X).

This result is rather standard, check [Ven06, Theorem 3] for a proof.

3.7 Uniform Interpolation

We can now prove the main theorem of this chapter, viz., uniform interpolation for
µML

L

r. As we announced in the introduction, our proof of Uniform Interpolation
follows and generalises the proof in [DH00] which shows a similar result for µ-
calculus.

3.7.1. Theorem (Uniform interpolation). Let T be a set functor that preserves
finite sets, and let L be a quasi-functorial lax extension for T. For any formula
' 2 µML

L

r and any set Q ✓ P' ✓ X of propositional variables, there is a formula
'Q 2 µMLr(Q), e↵ectively constructable from ', such that for every formula
 2 µML

L

r(X) with P' \ P ✓ Q, we have that

' ✏ i↵ 'Q ✏ .

In case that ' is fixpoint-free, so is 'Q.

As mentioned earlier, our proof is based on the definability of the bisimulation
quantifier in our language.

3.7.2. Proposition. Given any propositional variable p, there is a map:

9p : µMLLr �! µML
L

r,

such that P9p.' = P' \ {p} and for any pointed T-model (S, s) we have:

s �S 9p.' i↵ s
0 �S0 ', for some (S0

, s
0) with S, s$L

p
S0
, s

0 (3.18)

for any formula ' 2 µML
L

r(X).

76 Chapter 3. Uniform Interpolation

Intuitively, (3.18) says that we can make the formula ' true by, indeed,
changing the interpretation of p, although not necessarily here, but in an up-
to-p bisimilar state. For a detailed study of bisimulation quantifiers in modal
logic, see [Fre06].

Proof:
Take a formula ' 2 µML

L

r(X). By Proposition 3.6.1 we can transform it to an
equivalent T-automaton A'. From Theorem 3.5.3 we have a T-automaton 9p.A'

such that:

9p.A' accepts (S, s) i↵ A' accepts (S0
, s

0) for some (S0
, s

0) with S, s$L

p
S0
, s

0
.

Now by Proposition 3.6.2, we can transform the T-automaton 9p.A' to an
equivalent formula (9p.A') and put 9p.' := (9p.A'). It is easy to check that:

s �S (9p.A') i↵ s
0 �S0 ', for some S0

, s
0 with S, s$L

p
S0
, s

0
.

It is immediate that: P9p.' = P' \ {p}.

We are now ready to prove the uniform interpolation theorem i.e. Theo-
rem 3.7.1.

Proof of Theorem 3.7.1: Let p0, p1, ..., pn�1 enumerate the propositional vari-
ables in P' \ Q, and set:

'Q := 9p09p1 . . . 9pn�1.'.

It is not di�cult to verify that 'Q is fixpoint-free if ' is so.
In order to check that ' ✏ i↵ 'Q ✏ , first assume that ' ✏ . To prove

that 'Q ✏ , take a pointed T-model (S0, s0) with s0 �S0 'Q. By the semantics of
the bisimulation quantifiers we get states si in T-models Si for i = 1, 2, . . . , n such
that si $pi si+1 for i = 0, ..., n and sn �Sn '. From the latter fact it follows that
sn �Sn since we have assumed ' ✏ . Because each of the witnessing up-to-pi
LX-bisimulations for i = 0, 1, . . . , n� 1 is also an LX\{p0,p1,...,pn�1}-bisimulation, we
can compose them and obtain an LX\{p0,p1,...,pn�1}-bisimulation between s0 and sn.
Since P ✓ X \ {p0, p1, . . . , pn�1} we get s0 �S0 .

For the other direction, we show that ' ✏ 'Q. Then ' ✏ follows by
transitivity from 'Q ✏ . Take any state s in a T-model S = (S, �, V) with
s �S '. Then s �S 'Q because s is up-to-p LX-bisimilar to itself for any p 2 X,
since the identity on S is an LX-bisimulation.

3.8 The monotone µ-calculus

Monotone modal logic is a generalisation of normal modal logic in which the dis-
tribution of 2 over conjunction is weakend to a monotonicity condition expressed

3.9. Conclusion 77

as an axiom “2(p ^ q) ! 2q” or a rule “from p ! q derive 2p ! 2q”. The
semantics of this logic is given over monotone neighbourhood models (see Exam-
ple 2.1.5), which are M-models for the monotone neighbourhood functor M (see
Example 2.3.10). Then the interpretation of the modal formulas 2' and 3' in
an M-model M = (M, �, V) is given by:

M,m � 2'() 9U 2 �(m) such that 8u 2 U M, u � ',

M,m � 3'() 8U 2 �(m) 9u 2 U such that M, u � '.

The monotone µ-calculus is the fixpoint extension of the monotone modal logic
and has applications in the settings such as game logic [Par85] where the use of
normal modalities is problematic.

This logic is expressively equivalent to the logic µML
fM
r (see Example 2.3.33

and Definition 3.2.1), meaning that there are truth-preserving translations in both
directions. To prove this equivalence, it is enough to show that modalities of the
monotone µ-calculus and the language µMLfM

r are interdefinable. In order to recall
the logical structure of the satisfaction relation of the modal connectives of the
monotone µ-calculus, we shall write h89i in place of 3, and h98i in place of 2.
It is not di�cult to check that the following equivalences over M-models hold:

h98i' ⌘ r{{'}, {>}} _r{;}
h89i' ⌘ r{{',>}} _r;.

Similarly, we can write r in terms of h98i and h89i as follows:

r↵ ⌘
^

A2↵

h98i
W
A ^

^

B2↵•

h89i
W
B,

where ↵• is constructed from ↵ and belongs to the set Q!(
S
↵) (see [SV10] for

more details).

Now, since logics of the monotone µ-calculus and µML
fM
r are expressively equiv-

alent, and because fM is a quasi-functorial relation lifting for M that preserves
diagonals (see Example 3.1.7), the following result is an instance of Theorem 3.7.1.

3.8.1. Corollary. The monotone µ-calculus enjoys uniform interpolation.

3.9 Conclusion

In this chapter, we proved that the class of non-deterministic T-automata for
functors that admit a quasi-functorial lax extension which preserves diagonals
is closed under projection. This result implies that bisimulation quantifiers are
definable in the coalgebraic fixpoint logic for this class of functors, hence the logic

78 Chapter 3. Uniform Interpolation

enjoys Uniform Interpolation. As an instance of our main theorem, we get that the
monotone µ-calculus has uniform interpolation. An interesting goal for further
research would be to study the class of functors possessing such a relation lifting
in more detail. For instance, one might try to investigate and isolate properties
of a lax extension which make it quasi-functorial and characterize this class of
functors in categorical terms.

Proving uniform interpolation theorems for r-based coalgebraic modal logic
[Mar11] and r-based coalgebraic fixpoint logic [MSV15] naturally suggests to
study the case for the predicate lifting setting. Following up on the result of this
chapter, in [SSP17], Schröder et alii do this for the non-fixpoint setting. They in-
troduce a notion of one-step (uniform) interpolation and show that a coalgebraic
modal logic has uniform interpolation if it has one-step interpolation. Addition-
ally, they identify preservation of finite surjective weak pullbacks as a su�cient,
and in the monotone case (M) necessary, condition on the functor T for one-step
interpolation. It is worth mentioning here that there is a connection between
preservation of surjective weak pullbacks and having bisimulation products which
were used to prove the Craig interpolation theorem for the monotone modal logic
in [Han03]. More precisely, if a functor T preserves surjective weak pullbacks,
then T has bisimulation products. We leave it as future work to investigate the
general relationship between quasi-functoriality, preservation of surjective weak
pullbacks and bisimulation products and refer the reader to [SSP17] and [Han03]
for more details.

For the case of coalgebraic fixpoint logic with predicate liftings, Enqvist and
Venema [EV17] proved uniform interpolation using the notion of disjunctive basis.
More precisely, they used automata-theoretic techniques and proved that if the
modal signature ⇤ for a set functor T has a disjunctive basis, then bisimulation
quantifiers are definable in µML⇤ and hence uniform interpolation holds for µML⇤.

Chapter 4

Expressive Completeness

Due to the Janin-Walukiewicz theorem [JW96], which states that the modal µ-
calculus captures exactly the bisimulation invariant fragment of monadic second-
order logic, we get that any logic for labelled transition systems that is invariant
for bisimulation, and that can be translated into monadic second order logic, can
be seen as a fragment of the µ-calculus. This result is the µ-calculus counterpart
of van Benthem’s characterization theorem for basic modal logic [Ben76].

It is the aim of this chapter to generalise this result to a coalgebraic level.
For that, we first introduce a notion of coalgebraic monadic second-order logic
MSOT for coalgebras of type T. Our formalism combines two ideas from the lit-
erature. First of all, we looked for inspiration from the coalgebraic versions of
first-order logic of Litak & alii [LPSS12]. These authors introduced Coalgebraic
Predicate Logic as a common generalisation of first-order logic and coalgebraic
modal logic, combining first-order quantification with coalgebraic syntax based on
predicate liftings. Our formalism MSOT will combine a similar syntactic feature
with second-order quantification. Second, following the tradition in automata-
theoretic approaches towards monadic second-order logic, our formalism will be
one-sorted. That is, we only allow second-order quantifcation in our language, re-
lying on the fact that individual quantification, when called for, can be encoded as
second-order quantification relativized to singleton sets. Since predicate liftings
are defined as families of maps on powerset algebras, these two ideas fit together
very well, to the e↵ect that our second-order logic is in some sense simpler than
the first-order formalism of [LPSS12].

The introduction of a monadic second-order logic MSOT for T-coalgebras natu-
rally raises the question, for which T does the coalgebraic modal µ-calculus µMLT,
which denotes the logic µMLT⇤ from Definition 2.4.12 when ⇤ is the set of all mono-
tone predicate liftings for T, correspond to the fragment of MSOT that is invariant
under behavioural equivalence.

1. Question. For which class of functors T, do we have µMLT ⌘ MSOT/⇠?

79

80 Chapter 4. Expressive Completeness

To answer this question we take an automata-theoretic perspective on the
logics µMLT and MSOT via the one-step languages SO

1
T and ML

1
T. We recall that

the automata characterisation of µMLT is already available (see Fact 4.3.6). As a
contribution of this chapter we define a class of parity automata Aut(SO1T) cor-
responding to formulas in MSOT. Similar to the case of standard MSO, where the
translation of formulas to automata is valid only over trees and not over Kripke
frames in general [JW95], we need to introduce T-models that have tree-like struc-
tures which we call T-tree models (see Definition 4.3.8). We then show that there
is an e↵ective construction transforming any formula ' 2 MSOT to an automaton
A' 2 Aut(SO1T), which is equivalent to ' over T-tree models (Theorem 4.3.24).
The proof of this result proceeds by induction on the complexity of MSOT-formulas,
and thus involves various closure properties of automata, such as closure under
complementation, union and projection.

Having the automata-theoretic machinery for both MSOT and µMLT in place,
we can reformulate Question 1 in terms of automata:

2. Question. Which functors T satisfy Aut(ML1T) ⌘ Aut(SO1T)/⇠?

Continuing the program of [Ven14], we will approach this question at the level
of the one-step languages, SO1T and ML

1
T and show that it su�ces to establish a

certain type of translation called a uniform translation between the correspond-
ing one-step languages (see Definition 4.5.4). To start with, observe that any
translation from one-step formulas in SO

1
T to one-step formulas in ML

1
T naturally

induces a translation from Aut(SO1T) to Aut(ML1T). In Proposition 4.5.6 we show
that if the second-order one-step language SO1T admits a uniform translation then
Aut(ML1T) ⌘ Aut(SO1T)/⇠ and hence we have the following auxiliary characterisa-
tion result (Theorem 4.5.7).

Theorem (Auxiliary Characterization Theorem I) Let ⇤ be an expressively com-
plete set of monotone predicate liftings for a set functor T, and assume that the
monotone fragment of the second-order one-step language SO

1
⇤ admits uniform

translations. Then:
µML⇤ ⌘ MSO⇤/⇠.

The main observation we make here is that we can actually forget about the
syntactic translation and the constraint on SO

1
⇤, and focus entirely on the model

theory of one-step models. More precisely, if we can find a suitable uniform
construction (see Definitions 4.5.3) for the one-step models, satisfying a certain
model-theoretic condition with respect to the second-order one-step language, the
syntactic uniform translation SO

1
T ! ML

1
T will come for free. In particular, we show

that a uniform construction on the class of one-step models for the functor T that
satisfies certain adequacy conditions, provides (1) a translation (·)⇤ : SO1T ! ML

1
T,

together with (2) a construction (·)⇤ transforming a pointed T-model (S, s) into
a T-tree model (S⇤, s⇤) which is a coalgebraic pre-image of (S, s) such that for all

81

A 2 Aut(SO1T):
A accepts (S⇤, s⇤) i↵ A⇤ accepts (S, s).

From this it follows that an automaton A 2 Aut(SO1T) is invariant for behavioural
equivalence i↵ it is equivalent to the automaton A⇤ 2 Aut(ML1T).

On the basis of these observations we can prove the following generalisation
of the Janin-Walukiewicz theorem (Theorem 4.5.9).

Theorem (Coalgebraic Bisimulation Invariance I) Let T be any set functor. If
T admits an adequate uniform construction for every finite set � of second-order
one-step formulas, then:

µMLT ⌘ MSOT/⇠.

In our view, the proof of this theorem separates the ‘clean’, abstract part of
bisimulation invariance results from the more functor-specific parts. As a conse-
quence, Theorem 4.5.9 can be used to obtain immediate results in particular cases
including the powerset functor, bag functor and all Kripke polynomial functors
(Examples 4.5.32 - 4.5.34).

However, there are functors of interest that are not covered by the above
version of the characterization theorem. A concrete example is the monotone
neighbourhood functor which does not admit an adequate uniform construction.
To resolve this situation, we prove a second version of the general characterization
theorem (Theorem 4.5.13), where we work with a modified notion of adequate
uniform construction called weakly adequate uniform constructions. We also re-
quire some additional constraints on T: it must preserve finite sets, and admits a
quasi-functorial lax extension that preserves diagonal (see Definitions 3.1.5 and
3.1.1), which has also been used in Chapter 3.

Theorem (Coalgebraic Bisimulation Invariance II) Let T be any set functor that
preserves finite sets and admits a quasi-functorial lax extension L that preserves
diagonals. Let ⇤ be an expressively complete set of monotone predicate liftings
for T. If T admits a weakly adequate uniform construction for every finite set of
formulas of SO1⇤, then

µML⇤ ⌘ MSO⇤/⇠.

This version of the theorem covers the standard Janin-Walukiewicz theorem
as an immediate application, just like the previous result. Additionally we prove
that it yields an expressive completeness result for the monotone µ-calculus. In
this respect, the result improves on one of our results in [ESV15], where we
characterized an extension of the monotone µ-calculus with the global modality,
but were unable to obtain a proper characterization theorem for the monotone
µ-calculus itself. We will discuss the other interesting cases in Section 4.5.4.

We point out that since the second invariance theorem relies on the assumption
that T preserves finite sets, some applications of the first result (for example

82 Chapter 4. Expressive Completeness

the graded µ-calculus) cannot be captured by the second one. Hence neither
of the two characterization results subsumes the other, so we have two distinct
generalizations of the Janin-Walukiewicz theorem. Whether these results can be
unified into a single result is left as an open problem.

4.1 The µ-calculus and monadic second-order
logic

We start this chapter by briefly recalling the syntax and semantics of the µ-
calculus and monadic second-order logic over Kripke models. Let X be a fixed
infinite supply of variables.

µ-calculus. Here we present the formulas of the µ-calculus µML in negation
normal form, where negation only occurs at the propositional level:

' ::= p | ¬p | ' _ ' | ' ^ ' | 2' | 3' | ⌘p.',

with p 2 X, ⌘ 2 {µ, ⌫}, and in the formula ⌘p.' no free occurrence of the variable
p in ' may be in the scope of a negation. We define > := ⌫p.p and ? := µp.p.

The satisfaction relation between pointed Kripke models and formulas of µML
is defined as usual (see Definition 2.1.8).

Monadic second-order logic. The syntax of monadic second-order logic MSO
is given by the following grammar:

' ::= sr(p) | p ✓ q | R(p, q) | ¬' | ' _ ' | 9p.',

where p, q 2 X. Here sr stands for “source” and this connective is used to encode
the actual world. It is needed since we aim to compare MSO with the µ-calculus,
and formulas of the latter logic are evaluated relative to a point in the model. We
define > := 8p.p ✓ p and ? := ¬>. Formulas are evaluated over pointed Kripke
models by the following induction:

• (S,R, V, u) � sr(p) i↵ V (p) = {u}

• (S,R, V, u) � p ✓ q i↵ V (p) ✓ V (q)

• (S,R, V, u) � R(p, q) i↵ for all v 2 V (p) there is w 2 V (q) with vRw

• standard clauses for the boolean connectives

• (S,R, V, u) � 9p.' i↵ (S,R, V [p 7! Z], u) � ' for some Z ✓ S.

4.2. Coalgebraic perspective 83

4.1.1. Remark. In our version of monadic second-order logic we have only second-
order variables and quantification. The idea is that first-order quantification, i.e.,
quantification over individual states, can be encoded as second-order quantifica-
tion relativized to singleton sets.

Standardly we say that a formula ' 2 MSO is bisimulation invariant if it has
the same truth value over bisimilar pointed Kripke models.

4.1.2. Example. We call formulas ' and semantically equivalent if they have
the same truth value over all pointed Kripke models. We use the notation L ⌘ L

0

to say that every formula in L is semantically equivalent to a formula in L0, and vice
versa. The fragment of a language L that is invariant for behavioural equivalence
is denoted by L/⇠.

The Janin-Walukiewicz theorem [JW96] can be stated as follows.

4.1.3. Theorem (Janin-Walukiewicz Theorem). Over Kripke models, a formula
' of MSO is equivalent to a formula of µML i↵ ' is invariant for behavioural
equivalence:

µML ⌘ MSO/⇠.

4.2 Coalgebraic perspective

In this section we recall the syntax and semantics of coalgebraic fixpoint logic
and then introduce coalgebraic monadic second-order logic. Additionally we will
present a coalgebraic first-order logic (in Section 4.2.3.1) and prove that, as one
would expect, the coalgebraic MSO we define here is an extension of coalgebraic
first-order logic.

Throughout this chapter we let X be a fixed infinite supply of variables. We
also require that set functors preserve all monics in Set, i.e. that Tf is an injective
map whenever f is. This is a very mild constraint, since it almost holds for all
set functors already, the only possible exception being maps with empty domain
[AT90]. So in the reminder of this chapter “set functor” will be taken to mean:
“set functor that preserves all monics”. All the functors we consider here will
satisfy the constraint.

4.2.1 Coalgebraic µ-calculus

As we discussed in Chapter 1, there are two approaches to generalise the µ-
calculus to a coalgebraic fixpoint logic: the r-setting and the predicate lifting
setting. In this chapter we work in the predicate lifting setting. See Defini-
tion 2.4.11 to recall the notion of predicate lifting for a set functor T.

84 Chapter 4. Expressive Completeness

Syntax and semantics of µML⇤

Given a set functor T and a set of monotone predicate liftings ⇤ for T, we present
the language µML⇤ of the coalgebraic fixpoint logic based on ⇤ in negation normal
form; note that we make sure that the modal operators of the language are closed
under Boolean duals.

' ::= p | ¬p | �('1, ...,'n) | �d('1, ...,'n) | ' _ ' | ' ^ ' | ⌘p.',

where p 2 X, � is any monotone n-place predicate lifting in ⇤, ⌘ 2 {µ, ⌫}, and, in
⌘p.', no free occurrence of the variable p is in the scope of a negation. For the case
when ⇤ consists of all monotone predicate liftings for T, we write µML⇤ = µMLT.

The semantics of formulas over a pointed T-model (see Definition 2.4.5) is
defined by induction on the complexity of formulas. Here we only recall the case
of modal formulas. For � 2 ⇤ and a T-model S = (S, �, V), we set:

(S, s) � �('1, ...,'n) i↵ �(s) 2 �S(J'1K, ..., J'nK),

where J'iK = {t 2 S | (S, t) � 'i}.
As we discussed in Examples 2.4.14 and 2.4.2, the powerset functor P and the

monotone neighbourhood functor M have unary predicate liftings denoted by 3

and 2 respectively. The logic µML{3} is precisely the standard µ-calculus, and
the logic µML{2} is the monotone µ-calculus which we denote by µMML. We recall
that the notion of bisimulation arising from the quasi-functorial lax extension
fM (see Definition 3.1.5 and Examples 2.3.33 and 3.1.7) captures neighborhood
bisimilarity (see Definition 2.3.34) and this bisimilarity coincides with behavioural
equivalence for M.

It is well known that coalgebras and coalgebra morphisms for a set functor
form a co-complete category, since its forgetful functor creates colimits [Bar93].
In particular this means that coproducts of arbitrary families of T-models exist,
and they correspond to disjoint unions of models in the case of Kripke semantics.
Concretely, we define disjoint unions of a family of T-models as follows:

4.2.1. Definition. Let {Si}i2I be a family of T-models, where Si = (Si, �i, Vi).
Then we define the disjoint union

`
i2I Si = (S 0

, �
0
, V

0) by first setting S
0 =`

i2I Si to be the disjoint union of the sets Si. Let fi denote the inclusion map
of Si into S

0. Then we define �0 to be the unique map with the property that
�
0 � fi = Tfi(�i) for all i 2 I. For p 2 X we define V

0(p) =
S

i2I fi[Vi(p)].

4.2.2. Fact. For each j 2 I, the inclusion map fj : Sj !
`

i2I Si is a T-model
homomorphism.

4.2.2 Coalgebraic MSO

Now we will introduce the coalgebraic monadic second-order logic for a set ⇤ of
monotone predicate liftings.

4.2. Coalgebraic perspective 85

4.2.3. Definition. Given a set ⇤ of monotone 1 predicate liftings for T, we de-
fine the syntax of the monadic second-order logic MSO⇤ by the following grammar:

' ::= sr(p) | p ✓ q | �(p, q1, .., qn) | ' _ ' | ¬' | 9p.',

where p, q, q1, ..., qn 2 X and � is any n-place monotone predicate lifting in ⇤ that
is treated as an n + 1-place predicate in the MSO⇤ language. For ⇤ equal to the
set of all monotone predicate liftings for T, we write MSO⇤ = MSOT.

For the semantics, let (S, s) be a pointed T-model, where S = (S, �, V). We define
the satisfaction relation � ✓ S ⇥ MSO⇤ as follows:

• (S, s) � sr(p) i↵ V (p) = {s},

• (S, s) � p ✓ q i↵ V (p) ✓ V (q),

• (S, s) � �(p, q1, ..., qn) i↵ �(t) 2 �S(V (q1), .., V (qn)) for all t 2 V (p), this
formula says that the condition �(q1, ..., qn) holds for the unfolding of each
state that satisfies p.

• standard clauses for the Boolean connectives,

• (S, s) � 9p.' i↵ (S, �, V [p 7! Z], s) � ', some Z ✓ S.

We introduce the following abbreviations:

• p = q for p ✓ q ^ q ✓ p,

• Em(p) for 8q.(p ✓ q),

• Sing(p) for ¬Em(p) ^ 8q(q ✓ p! (Em(q) _ q = p)),

expressing, respectively, that p and q are equal, that p denotes the empty set,
and that p denotes a singleton.

Clearly, standard MSO is the language MSO{3}, where 3 corresponds to the
predicate lifting for the standard diamond modality over Kripke models (see Ex-
ample 2.4.14). So we can reformulate the Janin-Walukiewicz theorem (Fact 4.1.3)
as follows:

µML{3} ⌘ MSO{3}/⇠ (4.1)

Considering the lifting2M forM from Definition 2.4.15 (which we may denote
by 2 for simplicity), we introduce the name monotone monadic second-order logic
for the language MSO{2}, which we will henceforth denote by MMSO. Note that the

1In the most general case, restricting to monotone predicate liftings is not needed. However,
in the context of this chapter, where we take an automata-theoretic perspective on MSOT, this
restriction makes sense.

86 Chapter 4. Expressive Completeness

atomic MSO{2}-formula 2(p, q) encodes a pattern of quantifier alternation of the
form 898: it says that every state that satisfies p has some neighborhood Z such
that every state in Z satisfies q.

As we mentioned earlier, the key question in this chapter will be to compare
the expressive power of coalgebraic monadic second-order logic to that of the
coalgebraic µ-calculus. The following observation, of which the (routine) proof is
omitted, provides the easy part of the link.

4.2.4. Proposition. Let ⇤ be a set of monotone predicate lfitings for a set
functor T. There is an inductively defined translation (·)⇧ mapping any formula
' 2 µML⇤ to a semantically equivalent formula '⇧ 2 MSO⇤.

4.2.3 Coalgebraic FOL

Since we call our language monadic second-order logic, one would expect it to be
an extension of some first-order language. Fortunately, we have some background
to build on here, as first-order logic for coalgebras was introduced in [LPSS12].
In this section we present coalgebraic FOL and verify that this language can be
translated into our coalgebraic monadic second-order language.

4.2.3.1 Syntax and semantics of FOL⇤

Given a set ⇤ of monotone predicate liftings, the language FOL⇤ is introduced by
the following grammar. Here, we let p range over propositional variables, which
are now viewed as unary predicates. We also introduce a set Ind of individual
variables and let x, x0, ..., xk range over Ind.

' ::= p(x) | ¬' | ' ^ ' | 9x.' | �(x, px0 : 0q, .., pxk : kq),
where we require that each xi appears free in i. Free and bound variables are
defined as usual, except that we count each occurrence of xi in i as bound in
the formula �(x, px0 : 0q, .., pxk : kq). This is because the expression pxi : iq
should be thought of as a “comprehension” term, denoting the set of states that
satisfy i(xi).

Given a T-model S and an assignment a : Ind! S, we define the satisfaction
relation �a inductively by taking the usual clauses for atomic formulas p(x),
negations, conjunctions and the existential quantifier, and for predicate liftings
we set:

S �a �(x, px0 : 0q, .., pxk : kq) i↵ �(a(x)) 2 �S(Z1, ..., Zk)

where Z1, ..., Zk are the unique sets such that

Zi = {s 2 S | S �a[xi 7!s] i}

Here, a[xi 7! s] is the unique assignment which is like a except that xi is mapped
to s.

4.2. Coalgebraic perspective 87

4.2.5. Proposition. Let ' be a formula of FOL⇤ with free variables x1, ..., xk,
and let q1, ..., qk 2 Var be distinct from all predicates in '. Then there is a
formula ⌧ [', q1/x1, ..., qk/xk] of MSO⇤ such that, for any model S = (S, �, V) and
any assignment a : Ind! S, we have

S �a '(x1, .., xk) i↵ (S, �, V ⇤
, u) � ⌧ [', q1/x1, ..., qk/xk]

where V
⇤ : Var! P(S) is like V except V ⇤ : qi 7! {a(xi)}, for i 2 {1, ..., k}, and

u is an arbitrary state in S.

Proof:
This is proved by a simple induction on the complexity of formulas. For an atomic
formula p(x) put ⌧ [p(x), q/x] = q ✓ p for each q 6= p. We then take care of the
inductive cases one by one: negations and conjunctions are trivial, and existential
quantifiers are taken care of by setting:

⌧ [9x.', q1/y1, ..., qk/yk] = 9p.Sing(p) ^ ⌧ [', p/x, q1/y1, ..., qk/yk]
assuming that x appears free in ' (the other case is simpler).

Finally, for the “comprehension” formulas: consider the formula �(x, px0 :
 0q, .., pxk : kq). Assume that the free variables of this formula are listed as
x, y0, ..., ym (recalling that the variables x0, ..., xk are bound). Let p, q0, ..., qm be
propositional variables distinct from all predicates appearing in this formula. We
denote the obvious one-to-one correspondence between x, y0, ..., ym and p, q0, ..., qm

by c, so that c(x) = p and c(yj) = qj. For each i 2 {1, ..., k}, pick a fresh second-
order variable Zi, and define the formula:

✓i(Zi) := 8X.Sing(X)! (X ✓ Zi $ ⌧ [i, Zi/xi, c(z0)/z0, ..., c(zl)/zl])

where the free variables of i are listed as xi, z0, ..., zl. Intuitively, the formula ✓i
says that the value of Zi consists of exactly those states s that satisfy i(xi). We
now set

⌧ [�(x, px0 : 0q, .., pxk : kq), p/x, q0/y0, ..., qm/ym] =
9Z0...9Zk.✓0(Z0) ^ ... ^ ✓k(Zk) ^ �(p, Z1, ..., Zk)

It is straightforward to check correctness of this translation.

The next result is an immediate corollary of Proposition 4.2.5.

4.2.6. Corollary. Let ' be any formula of FOL⇤ of a single free individual
variable x. Then there is a sentence of MSO⇤ such that, for any pointed T-
model (S, s), and any assignment a mapping x to s, we have

S �a ' i↵ (S, s) � .

Proof:
Pick a fresh variable Z, and consider the formula ⌧ [', Z/x] given by the previous
proposition. We set:

 := 9Z.(sr(Z) ^ ⌧ [', Z/x])
and we are done.

88 Chapter 4. Expressive Completeness

4.3 Automata and one-step languages

In this section we first recall the definition of parity automata corresponding to
the language µML⇤ employing the one-step language ML

1
⇤(A) over a set A. We then

introduce automata for the coalgebraic monadic second-order logic, and translate
formulas of MSO⇤ into automata operating on tree-like coalgebras.

We start with the definition of one-step formulas ML1⇤(A) over a set A. Note
that the one-step language that we define here is slightly di↵erent from the one in
Section 2.4.3; here we only involve one set of variables in the grammar of ML1⇤(A).
The reason is that in this chapter we work with chromatic automata, where the
power set of X (the set of propositional variables) takes on the role of an alphabet
of the automata. Moreover, unlike Section 2.4.3, here we use the same notation
as the predicate liftings � and its boolean dual �d (see Definition 2.4.11) to refer
to the modalities arising from � and �d.

4.3.1. Definition. Given a set ⇤ of monotone predicate liftings, the set ML1⇤(A)
of modal one-step formulas over a set A of variables is given by the following
grammar:

' ::= ? | > | �(⇡1, ..., ⇡n) | �d(⇡1, ..., ⇡n) | ' _ ' | ' ^ ',

where ⇡1, ..., ⇡n are formulas built up from variables in A using disjunctions and
conjunctions. More formally, as in Section 2.4.3, we require that ⇡1, ..., ⇡n 2
LF(A), the set of lattice formulas over A.

Formulas of ML1⇤(A) are interpreted over one-step T-models.

4.3.2. Definition. Given a functor T and a set of variables A, a one-step T-
model over A is a triple (S,↵, V) where S is any set, ↵ 2 TS and V : A! Q(S)
is a valuation 2.

4.3.3. Definition. Given a one-step T-model (S,↵, V), the semantics of formu-
las in ML

1
⇤(A) is given as follows:

• standard clauses for the boolean connectives,

• (S,↵, V) �1 �(⇡1, ..., ⇡n) i↵ ↵ 2 �X(J⇡1K0V , ..., J⇡nK0V)

where J⇡iK0V ✓ S is the (classical) truth set of the formula ⇡i under the valuation
V (check Section 2.4.3 for precise definition of J K0

V
).

2Note that we have written the valuation V as having the type A! Q(S) rather than A!
P(S) in this definition. This notation is equally correct since the covariant and contravariant
powerset functors act the same on objects, and it is sometimes a more convenient notation since
the naturality condition of predicate liftings is formulated in terms of Q and not P.

4.3. Automata and one-step languages 89

4.3.1 Automata for µML⇤

We can now define the class of automata used to characterize the coalgebraic
µ-calculus.

4.3.4. Definition. Let X be a finite set of propositional variables and ⇤ a set of
monotone predicate liftings. Then a (X-chromatic) modal ⇤-automaton is a tuple
(A,⇥,⌦, aI) where A is a finite set of states with aI 2 A,

⇥ : A⇥ P(X)! ML
1
⇤(A)

is the transition map of the automaton, and ⌦ : A! ! is the priority map. The
class of these automata is denoted as Aut(ML1⇤).

Note that the automata we define here are the chromatic version of modal
X-automata defined in Definition 2.4.19. Here there are two distinct sets of “vari-
ables” involved in the automaton A, and it is important to keep these apart since
they have di↵erent roles: the variables in X are used to provide the alphabet of
the automaton (and correspond to free variables of corresponding fixpoint formu-
las), while the variables in A are the states of the automaton (and correspond to
bound variables of a corresponding fixpoint formula.)

The acceptance game for an automaton A = (A,⇥,⌦, aI) and a T-model
(S, �, V) is the parity game given by Table 4.1:

Position Player Admissible moves Priority
(a, s) 2 A⇥ S 9 {U 2 (PS)A | (S, �(s), U) �1 ⇥(a,mV (s))} ⌦(a)
U : A! PS 8 {(b, t) | t 2 U(b)} 0

Table 4.1: Acceptance game for modal ⇤-automaton

The loser of a finite match is the player who got stuck, and the winner of
an infinite match is 9 if the highest priority that appears infinitely often in the
match is even, and the winner is 8 if this priority is odd. Note that the valuations
U and V in Table 4.1 play fundamentally di↵erent roles: V is a fixed valuation
given by the model on which the automaton is running, assigning values to the
open variables of the automaton, while U is a “local” valuation assigning values
to the states of the automaton, which correspond roughly to bound variables of
a fixpoint formula.

Given a strategy � for either player, a �-guided match is standardly defined
as in Definition 2.2.1. Winning strategies are also defined as usual.

4.3.5. Definition. A modal ⇤-automaton A accepts a pointed T-model (S, s),
written (S, s) � A, if 9 has a winning strategy in the acceptance game from the
starting position (aI , s). We say that an automaton A is equivalent to a formula

90 Chapter 4. Expressive Completeness

' 2 µML⇤ if, for every pointed T-model (S, s), we have that A accepts (S, s) i↵
(S, s) � '.

4.3.6. Fact. [FLV10] Let T be a set functor, and ⇤ a set of monotone predicate
liftings for T. Then:

µML⇤ ⌘ Aut(ML⇤).

That is, there are e↵ective transformations of formulas from µML⇤ into equiv-
alent automata in Aut(ML⇤), and vice versa.

4.3.2 Automata for MSO⇤

In this section, we introduce automata for coalgebraic monadic second-order logic.
As usual, we want to make sure that our generalisation recovers the standard
cases. It is known that formulas of standard MSO are equivalent to parity automata
over trees and this result can not be extended to arbitrary Kripke models. Hence
we expect a similar constraint on the models that our modal ⇤-automata run
over them. This leads us to introduce the class of T-tree models.

4.3.7. Definition. Given a set S and ↵ 2 TS, a subset X ✓ S is said to be a
support for ↵ if there is some � 2 TX with TiX,S(�) = ↵. A supporting Kripke
frame for a T-coalgebra (S, �) is a binary relation R ✓ S ⇥ S such that, for all
u 2 S, R(u) = {v | (u, v) 2 R} is a support for �(u).

Whenever X ✓ S is a support for ↵ 2 TS, our assumption that T preserves in-
clusion maps, guarantees that there is a unique ↵0 2 TX such that TiX,S(↵0) = ↵.
We shall denote this ↵0 by ↵�X .

4.3.8. Definition. A T-tree model is a structure (S, R, u) where S = (S, �, V)
is a T-model, u 2 S, and R is a supporting Kripke frame for the coalgebra (S, �),
and furthermore (S,R) is a tree rooted at u (i.e. there is a unique R-path from
u to w for each w 2 S).

To define automata for MSO⇤ we start by describing a very general class of
automata first introduced in [Ven14]. The motivation for taking this general
perspective is to emphasize that many automata-theoretic concepts and basic
results apply already in this setting, and we believe the general automaton concept
we introduce here has some independent theoretical interest. We start by the
following remark: Note that for a finite set A of size n, an n-place predicate
lifting � can be seen as � : QA ! Q � T, when fixing an ordering {a1, ..., an}
of the elements of A. In these cases we sometimes speak of “predicate liftings
over A” rather that “n-place predicate liftings”, but note that this is merely
a notational variation rather than a substantial generalization of the notion of
predicate liftings. A predicate lifting � over A can be represented equivalently

4.3. Automata and one-step languages 91

as a subset of TPA, via an application of the Yoneda lemma (this observation is
due to Schröder [Sch08]). Following this observation we can view any predicate
lifting � over A as a one-step formula in ML

1
{�}(A)

3. With this in mind we can
write (S,↵, V) �1 � instead of ↵ 2 �S(V).

In this notation the naturality constraint for a predicate lifting � over A

becomes, for given ↵ 2 TS, f : S ! Y and V : A! Q(Y):

(S,↵,Qf � V) �1 � , (Y,Tf(↵), V) �1 �.

Following the notion of predicate liftings over a set A, we now define the
notion of abstract one-step formulas. The basic idea behind the definition of
these formulas is that, as a usual formula induces a truth set given a valuation,
abstract one-step formulas induce a subset of TX, given a valuation V : A! QX.

4.3.9. Definition. Given a finite set A, an abstract one-step formula over A

assigns to each set X a map

 X : (QX)A ! QTX.

4.3.10. Definition. An abstract one-step language L consists of a collection
L(A) of abstract one-step formulas for every finite set A.

Here we follow the tradition of abstract model theory where it is common
to refer to classes of models satisfying some closure properties (such as closure
under complement and intersection) as “abstract logics”. Likewise, we can think
of an abstract one-step formula over a set of A as a collection of one-step models
over A (Definition 4.3.2) and call a set of abstract one-step formulas an “abstract
one-step language”, although there is no syntax involved.

Our automata will be indexed by a (finite) set of variables, corresponding to
the set of free variables of the MSOT-formula it represents.

4.3.11. Definition. Let P ✓ X be a finite set of variables and let L be an
abstract one-step language for the functor T. A (P-chromatic) L-automaton is a
structure (A,⇥,⌦, aI) where

• A is a finite set, with aI 2 A,

• ⌦ : A! ! is a pariority map, and

• ⇥ : A⇥ P(P)! L(A) is the transition map of A.
3More precisely, � corresponds to a one-step formula in ML

1
{�0}(A) where the lifting �0 : Qn !

Q � T is obtained by composing � with the natural isomorphism between Qn and QA induced
by some fixed bijection f : n ! A. If we write A = {a1, · · · , an} with ak = f(k � 1), this
means that we have �S(V) = �0S(V (a1), · · · , V (an)). We shall permit some abuse of notation
and simply identify � with the associated lifting �0.

92 Chapter 4. Expressive Completeness

The acceptance game of A with respect to a T-tree model (T,R, �, V, u) is
given by Table 4.2. We say that the automaton A accepts the pointed model
(T,R, �, V, u) if 9 has a winning strategy in this game starting from position
(aI , u).

Position Player Admissible moves Priority
(a, s) 2 A⇥ T 9 {U : A! P(R(s)) | (R(s),�(s)�R(s), U) �1 ⇥(a,mV (s))} ⌦(a)
U : A! P(T) 8 {(b, t) | t 2 U(b)} 0

Table 4.2: Acceptance game for L-automaton

There are two main di↵erences between these automata and the modal
⇤-automata we have considered in Section 4.3.1; first, we have dropped the nat-
urality constraint on the one-step language. Second, these automata will run on
T-tree models rather than on T-models.

4.3.3 Closure properties

In this section we will present some closure properties for L-automata. The notion
of abstract one-step formulas is useful to obtain these closure properties. We start
by closure under union and complementation. Closure under union is reduced to
closer under disjunction for the abstract one-step language L(A). Here the same
symbol _ to refer to disjunction for abstract one-step formulas, however the notion
is defined via union of liftings.

4.3.12. Proposition. If the abstract one-step language L is closed under dis-
junction, then the class of L-automata is closed under union.

Proof:
Suppose L is an abstract one-step language for T and A = (A,⇥,⌦, aI) and
A0 = (A0

,⇥0
,⌦0

, a
0
I
) are two L-automata. We can assume that A and A

0 are
disjoint. Having closure under disjunction we define the automaton A t A0 =
(A⇤

,⇥⇤
,⌦⇤

, a
⇤
I
) as follows:

• A
⇤ = {b} [A [A

0 where b is any object not in A [A
0

• a
⇤
I
= b

• ⇥⇤(b, c) = ⇥(aI , c) _⇥(a0I , c)

• ⇥⇤(a, c) = ⇥(a, c) for a 2 A, and ⇥⇤(a0, c) = ⇥0(a0, c) for a0 2 A
0

• ⌦⇤(b) = 0

• ⌦⇤(a) = ⌦(a) for a 2 A and ⌦⇤(a0) = ⌦0(a0) for a0 2 A
0

4.3. Automata and one-step languages 93

It is routine to check that L(A t A0) = L(A) [L(A0), where L(A) denotes the
language of the automaton A.

Next, we can show that L-automata are closed under complementation, pro-
vided that the one-step language L is closed under Boolean duals. The Boolean
dual of an abstract one-step formulas and monotonicity of such formulas are de-
fined exactly as in Definition 2.4.11. Additionally we call an L-automaton A
monotone if, for all a 2 A and all colours c 2 P(X), the generalized lifting ⇥(a, c)
is monotone in each variable in A.

4.3.13. Proposition. If the monotone fragment of the abstract one-step lan-
guage L is closed under boolean duals, then the class of monotone L-automata is
closed under complementation.

Proof:
Let A = (A,⇥,⌦, aI) be a monotone L-automaton. We define the automaton
Ac = (Ac

,⇥c
,⌦c

, a
c

I
) as follows:

• A
c = A

• a
c

I
= aI

• ⇥c(a, c) = ⇥(a, c)d

• ⌦c(a) = ⌦(a) + 1

It can be checked that the language recognised by this automaton is precisely the
complement of the language recognized by A.

The next property is closure under existential projection or simply closure
under projection. We will prove this property for a certain class of L-automata,
viz, the non-deterministic automata. Although the definition of these special
automata is based on the idea of [JW96], our construction is di↵erent in the sense
that we use semantical properties of one-step formulas instead of their syntactic
shape.

4.3.14. Definition. An abstract one-step formula ' over A is said to be special
basic if, for every one-step T-model (S,↵, V) such that (S,↵, V) �1 ', there is a
valuation V

⇤ : A! Q(S) such that

• V
⇤(a) ✓ V (a) for each a 2 A,

• V
⇤(a) \ V

⇤(b) = ; whenever a 6= b, and

• (X,↵, V
⇤) �1 '.

94 Chapter 4. Expressive Completeness

The second clause can also be stated as: mV ⇤(u) is either empty or a singleton,
for all u 2 S. Call an L-automaton non-deterministic if every generalized lifting
⇥(a, c) is special basic.

It is easy to check that closure under disjunction for L implies that its special
basic fragment is also closed under taking disjunctions. From this we obtain the
following:

4.3.15. Proposition. If the abstract one-step language L is closed under dis-
junction, then the class of non-deterministic L-automata is closed under existen-
tial projection over T-tree models.

Proof:
Suppose A = (A,⇥,⌦, aI) is a non-deterministic P-chromatic L-automaton. De-
fine the P \ {p}-chromatic L-automaton 9p.A = (A,⇥p,⌦, aI) by setting

⇥p(a, c) = ⇥(a, c) _⇥(a, c [{p}).

It is easy to see that every T-tree model accepted by A is also accepted by 9p.A.
Conversely, suppose 9p.A accepts some T-tree model (S,R, �, V, sI). For each
winning position (a, s) in the acceptance game, let V(a,s) be the valuation chosen
by 9 according to some given winning strategy �. Note that we can assume that
� is a positional winning strategy, since 9p.A is a parity automaton. Employing
the fact that special basic liftings are closed under disjunction, it is not di�cult
to see that the automaton 9p.A is a non-deterministic automaton, and so for
each winning position (a, s) there is a valuation V

⇤
(a,s) : A ! P(R(s)), which

is an admissible move for 9, such that V
⇤
(a,s)(b) ✓ V(a,s)(b) and such that for all

b1 6= b2 2 A we have V
⇤
(a,s)(b1) \ V

⇤
(a,s)(b2) = ;. Define the strategy �⇤ by letting

9 choose the valuation V
⇤
(a,s) at each winning position (a, s) - this is a legitimate

move since ⇥p(a,mV (s)) is special basic, and �⇤ is still a winning strategy, since
the valuations chosen by 9 are smaller and so no new choices for 8 are introduced.
Furthermore, �⇤ is clearly still a positional winning strategy.

From these facts it follows by a simple induction on the depth of the nodes
in the supporting tree that the strategy �⇤ is scattered, i.e. that for every s 2 S

there is at most one automaton state a such that (as, s) appears in a �⇤-guided
match of the acceptance game. So we can define a valuation V

0 like V except we
evaluate q to be true at all and only the states s such that:

(R(s), �(s), V ⇤
(as,s)) �1 ⇥(as, c [{q}),

where as is a necessarily unique automaton state such that (as, s) appears in some
�
⇤-guided match, and c is the color consisting of the variables true under V at s.

It is not hard to show that A accepts (S,R, �, V
0
, sI).

4.3. Automata and one-step languages 95

4.3.4 Second-order automata

We now introduce a concrete second-order one-step language SO
1
⇤ for a given

set ⇤ of monotone predicate liftings for a functor T and show that MSO⇤ can
be translated into the class of automata corresponding to SO

1
⇤. By the closure

properties established in the previous section, the language SO1⇤ needs to be closed
under disjunction and boolean dual, and furthermore we need to establish that
every automaton for this language is equivalent to a non-deterministic automaton.

4.3.16. Definition. Let ⇤ be a set of monotone predicate liftings for T. The
set of second-order one-step formulas over any set of variables A and relative to
the set of liftings ⇤ is defined by the grammar:

' ::= a ✓ b | �(a1, ..., an) | ¬' | ' _ ' | 9a.',

where a, b, a1, ..., an 2 A and � is any predicate lifting in ⇤.

The semantics of a second-order one-step formula in a one-step model (S,↵, V)
(with V : A! P(S)) is defined by the following clauses:

• (S,↵, V) �1 p ✓ q i↵ V (p) ✓ V (q),

• (S,↵, V) �1 �(a1, ..., an) i↵ ↵ 2 �S(V (a1), ..., V (an)),

• standard clauses for the Boolean connectives,

• (S,↵, V) �1 9a.' i↵ (S,↵, V [a 7! Z]) �1 ' for some Z ✓ S.

Fixing an infinite set of “one-step variables” Var1, and given a finite set A,
the set of second-order one-step sentences over A, denoted by SO

1
⇤(A), is the set

of one-step formulas over A [Var1, with all free variables belonging to A. As
before, for ⇤ equal to the set of all monotone predicate liftings for T, we write
SO

1
⇤(A) = SO

1
T(A).

Note that unlike ML1⇤, negations are allowed in the syntax of SO1⇤. This means
that second-order formulas are not monotone in general.

4.3.17. Remark. The di↵erence between the one-step language SO1⇤ and the full
language MSO⇤ may seem rather subtle at first sight. It is important to note
that an n-place predicate lifting now corresponds to an n-place predicate in the
language, not an n+1-place predicate as in MSO⇤. While the formula �(a1, ..., an)
of SO1⇤ expresses a property of one-step models, the formula �(p, q1, ..., qn) in MSO⇤

rather describes a property of the transition map of a coalgebra as a whole: it
says that the condition �(q1, ..., qn) holds for the unfolding of each state s that
satisfies p.

96 Chapter 4. Expressive Completeness

To see the relation between between SO
1
⇤(A) and the one-step language L(A)

from Definition 4.3.10, note that any second-order one-step A-sentence ' can be
regarded as a generalized predicate lifting over A, with

'X(V) = {↵ 2 TX | (X,↵, V) �1 '}.

In particular, general concepts like monotonicity and closure under boolean duals
apply to second-order one-step sentences. Also, note that second-order sentences
are invariant under a natural notion of isomorphism:

4.3.18. Definition. An isomorphism between two one-step T-models (S1,↵1, V1)
and (S2,↵2, V2) is a bijection i : S1 ! S2 such that Ti(↵1) = ↵2 and m1(u) =
m2(i(u)) for each u 2 S1, with m1 and m2 denoting as usual the markings asso-
ciated with V1 and V2.

4.3.19. Observation. Given any set of predicate liftings ⇤ and a set of variables
A, any two isomorphic one-step T-models satisfy the same formulas in the one-
step language SO

1
⇤(A).

We can now introduce second-order automata. Recall that SO1⇤ is the assign-
ment of the one-step second-order A-sentences SO

1
⇤(A) to every set of variables

A.

4.3.20. Definition. Let ⇤ be a set of monotone predicate liftings for T. A
second-order ⇤-automaton is an SO

1
⇤-automaton. We write Aut(SO1⇤) to denote

this class of automata, and Aut(SO1T) in case ⇤ is the set of all monotone predicate
liftings for T.

We already mentioned that our aim in this section is to prove that every
formula in MSO⇤ can be translated into an equivalent second-order ⇤-automaton
(over T-tree models). As one would expect, the proof is by induction on the
complexity of formulas in MSO⇤. Closure properties of second-order automata
enable us to cover all the induction steps. Since the language SO

1
⇤ is closed un-

der disjunction and Boolean duals of formulas we get closure under union and
complementation immediately. To obtain the closure under projection we need
a simulation theorem, because then the result follows from Proposition 4.3.15.
A key observation in the proof of the simulation theorem is that we can always
assume that the second-order one-step formulas that are involved in the construc-
tion of the second-order ⇤-automata are monotone. The next Proposition justifies
this assumption:

4.3.21. Proposition. Let ⇤ be any set of monotone predicate liftings. Then ev-
ery automaton A 2 Aut(SO1⇤) is equivalent to a monotone second-order automaton
A 2 Aut(SO1⇤).

4.3. Automata and one-step languages 97

Proof:
The idea comes from a useful trick by Walukiewicz [Wal02]. Enumerate A as
{a1, ..., ak}, and replace each formula ⇥(a, c) by

9Z1...9Zk.Z1 ✓ a1 ^ ... ^ Zk ✓ ak ^⇥(a, c)[(Zi/ai)i2{1,...,k}],

where ⇥(a, c)[(Zi/ai)i2{1,...,k}] is the result of substituting the variable Zi for each
free variable ai in ⇥(a, c). This new formula is monotone in the variables from A

and the resulting automaton is equivalent to A.

4.3.22. Theorem (Simulation). Let ⇤ be a set of monotone predicate liftings
for T. For any monotone automaton A 2 Aut(SO1⇤) there exists an equivalent
non-deterministic A0 2 Aut(SO1⇤).

The intuition behind the proof of this theorem is very similar to the idea of
the proof of Theorem 3.4.5. Given an automaton A 2 Aut(SO⇤), applying the
powerset construction, we first define an auxiliary non-deterministic automaton
An and then define A0 based on the automaton An. States of An are called macro
states representing a collection of states of A simultaneously. More explicitly, An

is based on the set of binary relations over A. As we explained in Chapter 3,
we cannot simply take subsets of A as macro states, because we need to keep
track of matches in the acceptance games of A and An to compare them and
make sure that these automata are equivalent. Although we make sure that An

is non-deterministic and is equivalent to A, it is not the desired automaton, since
it does not have a parity acceptance condition. Hence at the final stage of the
proof of Theorem 4.3.22, we need to turn An into a parity automaton A0.

Proof of Theorem 3.4.5: Fix an automaton A = (A,⇥,⌦, aI). We consider
the set P(A⇥ A) of binary relations over A as a set of variables. Let

Disj :=
^

R 6=R0✓A⇥A

8X.(X ✓ R ^X ✓ R
0)! Em(X).

Pick a fresh variable Za for each a 2 A. Given a one-step formula ', let

'[(Za/a)a2A]

be the result of substituting Za for each free variable a 2 A in '. Enumerate the
elements of A as a1, ..., ak, and define the formula Sim(', b) for b 2 A to be

9Za1 ...9Zak
.

^

1ik

Rep(Zai , {R0 | (b, ai) 2 R
0}) ^ '[(Za/a)a2A]),

where Rep(Zai , {R0 | (b, ai) 2 R
0}) is the formula:

8X.Sing(X)! (X ✓ Zai $
_

{X ✓ R
0 | (b, ai) 2 R

0}).

98 Chapter 4. Expressive Completeness

In informal terms, the formula Rep(Zai , {R0 | (b, ai) 2 R
0}) says that the variable

Zai represents a disjunction of all the macro-states that contain ai. The formula
Sim(', b) can thus be thought of as reformulating the formula ' in terms of
macro-states.

Let A = (A,⇥,⌦, aI) be any monadic ⇤-automaton. We can assume w.l.o.g.
that A is monotone. We first construct the automaton An = (An,⇥n, F, a

⇤
I
) with

a non-parity acceptance condition F ✓ (An)! as follows:

• An = P(A⇥ A)

• ⇥n(R, c) = Disj ^
V

b2⇡2[R] Sim(⇥(b, c), b)

• a
⇤
I
= {(aI , aI)}

• F is the set of streams over P(A⇥ A) with no bad traces.

Here, ⇡2 is the second projection of a relation R so that ⇡2[R] denotes the range
of R. We recall that a trace in a stream R1R2R3... over P(A ⇥ A) is a stream
a1a2a3... over A with a1 2 ⇡2[R1] and (aj�1, aj) 2 Rj for j > 1. A trace is
called bad if the maximum parity occurring infinitely many times in the stream
⌦(a1)⌦(a2) · · · is odd.

Lemma 1. An accepts precisely the same T-tree models as A.
Proof of Lemma 1: Fix a pointed T-tree model (S, R, sI) where S = (S, �, V).
We want to show that A accepts (S, R, sI) if and only if An does. That is, we want
to show that the languages L(A) and L(An) recognized by these two automata
are the same.

L(A) ✓ L(An): Suppose first that A accepts (S, R, sI). Let � be a positional
winning strategy for 9 in the acceptance game, mapping each winning position
(a, s) to a valuation U : A! Q(R(s)) such that:

(R(s), �(s), U) �1 ⇥(a,mV (s)).

Such a strategy exists since A is a parity automaton, and so the acceptance game
is a parity game. We define the winning strategy �⇤ for 9 in the acceptance game
for An as follows:

Given a position (B, s), define the function fB,s : R(s)! P(A⇥A) by setting

fB,s(s
0) = {(a, b) | a 2 ⇡2[B] and s

0 2 �(a, s)(b)}

At the position (B, s), let 9 choose the following valuation �⇤(B, s), defined by:

�
⇤(B, s)(B0) = {s0 2 R(s) | fB,s(s

0) = B
0}.

Our first claim is that, for each position of the form (B, s) where each (b, s) for
b 2 ⇡2[B] appears in some �-guided match of the acceptance game for A with

4.3. Automata and one-step languages 99

start position (aI , sI), the move for 9 given by the strategy �⇤ is legitimate. To
prove this claim we need to check that, for each position (B, s), we have

(R(s), �(s),�⇤(B, s)) �1 ⇥n(B,mV (s)),

provided each (b, s) for b 2 ⇡2[B] appears in some �-guided match. First, the
formula Disj is true since the marking �⇤(B, s) is the inverse of a mapping from
R(s) to P(A⇥ A). We now have to check that, for each a

0 2 ⇡2[B] we have

(R(s), �(s),�⇤(B, s)) �1 Sim(⇥(a0,mV (s)), a
0).

We need to find sets Sa1 , ..., Sak
✓ R(s) such that (R(s), �(s),�⇤(B, s)) with the

assignment Zai 7! Sai satisfies the formula

^

1ik

Rep(Zai , {B0 | (a0, ai) 2 B
0}) ^⇥(a0,mV (s))[Za/a].

Since � gives a legitimate move at the position (a0, s) for each a
0 2 ⇡2[B], each

one-step model of the form (R(s), �(s),�(a0, s)) satisfies the formula ⇥(a0,mV (s)).
Hence, if we assign to each variable Zai the set �(a0, s)(ai), then this variable
assignment satisfies the formula

⇥(a0,mV (s))[a 7! Za | a 2 A].

Since the formula ⇥(a0, s) is monotone in all the variables A, the same is true for
any larger assignment. So it now su�ces to prove that:

�(a0, s)(ai) ✓ {�⇤(B, s)(B0) | (a0, ai) 2 B
0},

since we can then safely take:

Sai = {�⇤(B, s)(B0) | (a0, ai) 2 B
0},

To prove this inclusion, suppose s
0 2 �(a0, s)(ai). Let B0 be the relation defined

by:
(d, d0) 2 B

0 , d 2 ⇡2[B] and s
0 2 �(d, s)(d0)

Clearly, (a0, ai) 2 B
0. Moreover, fB,s(s0) = B

0 by definition, and so s0 2 �⇤(B, s)(B0)
as required.

We now show that any �⇤-guided match with start position (a⇤
I
, sI) is winning

for 9. We have to prove two things: first, that 9 never gets stuck in a �⇤-guided
match, and second, that 9 wins every infinite �⇤-guided match, i.e. no infinite
�
⇤-guided match contains a bad trace.
First we show that 9 never gets stuck. For this to be the case, all we need to

show is that if (B, s) is the last position of some �⇤-guided partial match, then
all the positions (a, s) for a 2 ⇡2[B] are winning positions for the strategy � -

100 Chapter 4. Expressive Completeness

by our previous claim this guarantees the move �⇤(B, s) to be legal. We prove
by induction on the length of a finite partial match that this holds for the last
position of the match: it holds for ({(aI , aI)}, sI), clearly, since � is a winning
strategy at (aI , sI). Suppose that the induction hypothesis holds for a finite match
with last position (B, s). Let (B0

, s
0) be any position such that s0 2 �⇤(B, s)(B0).

Then
B

0 = fB,s(s
0) = {(a, b) | a 2 ⇡2[B] and s

0 2 �(a, s)(b)}.
So suppose b 2 ⇡2[B0]. Then there is some a with (a, b) 2 B

0, and we must have
a 2 ⇡2[B] and s

0 2 �(a, s)(b). But since the position (a, s) is winning by the
inductive hypothesis, this means that (b, s0) is a winning position for �, and we
are done.

We now show that 9 wins every infinite �⇤-guided match. For this, it su�ces
to show that every trace a1a2a3 · · · in a �⇤-guided infinite match

(B1, s1), (B2, s2), (B3, s3), ...

corresponds to a �-guided match

(aI , sI) = (a1, s1), (a2, s2), (a3, s3), ...

So fix a trace a1a2a3 · · · meaning that for each ai we have (ai, ai+1) 2 Bi+1. We
have to show that si+1 2 �(ai, si)(ai+1) for each i. We have:

s
i+1 2 �⇤(Bi, si)(Bi+1),

meaning that Bi+1 is equal to

fBi,si(si+1) = {(a, b) | a 2 ⇡2[Bi] and si+1 2 �(a, si)(b)}.

In particular, since (ai, ai+1) 2 Bi+1, this means we must have si+1 2 �(ai, si)(ai+1)
as required.

L(An) ✓ L(A): Conversely, suppose An accepts (S, sI) with winning strategy
�. We construct a winning strategy �⇤ for 9 w.r.t A. Note that the strategy � is
not necessarily positional, since the acceptance game for An is not a parity game.

By induction on the length of a �⇤-guided partial match

⇢ = (a1, s1), (a2, s2), (a3, s3)...(ak, sk)

with (a1, s1) = (aI , sI), we are going to define a next legitimate move �⇤(⇢) for
9, and by a simultaneous induction we construct a �-guided partial match

⌧ = (B1, s1), (B2, s2), (B3, s3)...(Bk, sk)

with (B1, s1) = (a⇤
I
, sI), aj 2 ⇡2[Bj] for each j and (aj�1, aj) 2 Bj for each

k � j > 1. Furthermore we will make sure that whenever a �⇤-guided match ⇢

4.3. Automata and one-step languages 101

is an initial segment of a match ⇢0, the �-guided match associated with ⇢ is an
initial segment of the �-guided match associated with ⇢0. It will follow at once
that �⇤ is a winning strategy, since 9 never gets stuck in any �⇤-guided partial
match and, furthermore, every infinite �⇤-guided match corresponds to a trace in
some �-guided infinite match.

The base case of the induction is the unique match of length 1 with the single
position (aI , sI), and we take the corresponding position to be (a⇤

I
, sI). Now,

suppose �⇤ has been defined on all matches of length < k, and let ⇢ be a �⇤-
guided partial match of length k of the form:

(a1, s1), (a2, s2), (a3, s3)...(ak, sk)

By the inductive hypothesis we have a corresponding �-guided match ⌧ which we
write as

(B1, s1), (B2, s2), (B3, s3)...(Bk, sk)

with ak 2 ⇡2[Bk]. Now we define the next legal move �⇤(⇢) for 9, and we show
that for every position (a0, s0) such that s0 2 �⇤(⇢)(a0), we can find a relation B

0

such that (ak, a0) 2 B
0 and

(B1, s1), (B2, s2), (B3, s3)...(Bk, sk), (B
0
, s

0)

is a �-guided match.
Since ⌧ is a �-guided partial match and � is a winning strategy for 9, we have

that:
(R(sk), �(sk),�(⇢)) �1 ⇥n(Bk,mV (sk)).

Since ak 2 ⇡2[Bk], this means that there exist sets Sb ✓ R(sk) for each b 2 A

such that the 1-step model (R(sk), �(sk),�(N)) satisfies the formula:

^

1ik

Rep(Zb, {B0 | (a0, ai) 2 B
0}) ^⇥(ak,mV (sk))[Zb/b].

under the assignment Zb 7! Sb. Hence, the valuation U defined by

U : b 7! Sb,

will be such that:
(R(sk), �(sk), U) �1 ⇥(ak,mV (sk)).

So we set �⇤(⇢) = U , a legal move. Note that we have

U(b) =
[

{�(⌧)(B0) | (ak, b) 2 B
0}.

Now, let (a0, s0) be such that s0 2 U(a0). This means that there is some B
0 with

(ak, a0) 2 B
0 and s

0 2 �(⌧)(B0). Hence, (B0
, s

0) satisfies the required conditions,
and we are done.

102 Chapter 4. Expressive Completeness

The only thing left to do at this point is to transform An into an automaton
that has its acceptance condition given by a parity map. The set of streams over
P(A ⇥ A) that contain no bad traces w.r.t. the parity map ⌦ is an !-regular
stream language, so let

Z = (Z,⇥Z ,⌦Z , zI)

be a parity stream automaton that recognizes this language, with ⇥Z : Z⇥P(A⇥
A)! Z. We now construct the automaton

A0 = An � Z = (A0
n
,⇥0

n
,⌦0

n
, a

0
I
)

as follows:

• A
0
n
= An ⇥ Z

• a
0
I
= (a⇤

I
, zI)

• ⇥0
n
((R, z), c) = ⇥n(R, c)[(R0

,⇥Z(R, z))/R0)R02P(A⇥A)]

• ⌦0
n
(R, z) = ⌦(z)

It is not di�cult to check that An � Z is equivalent to An. Since An � Z is
clearly still a non-deterministic automaton, this ends the proof of the simulation
theorem.

Combining Proposition 4.3.15 with Theorem 4.3.22, we obtain closure under
existential projection.

4.3.23. Proposition. Let ⇤ be a set of monotone predicate liftings for a set
functor T. Over T-tree models, the class of second-order ⇤-automata is closed
under existential projection.

We are now ready to state the main result of this section:

4.3.24. Theorem. For every formula ' 2 MSO⇤ with free variables in P, there
exists a monotone P-chromatic second-order ⇤-automaton A' 2 Aut(SO1⇤) that is
equivalent to ' over T-tree models.

Proof:
We will prove this theorem by induction on the complexity of the formula ' 2
MSO⇤. It is enough to cover the case for atomic formulas, since the other cases
are immediate from the closure properties we have proved.

We present only the case of formulas of the form �(p, q1, ..., qn). First, note
that by naturality of �, we have (S, R, s) � �(p, q1, ..., qn) if, and only if, for each
u 2 V (p):

�(s)�R(s) 2 �R(s)(V (q1) \R(s), ..., V (qn) \R(s)).

With this in mind, it is not hard to check that the following automaton A =
(A,⇥,⌦, aI) is equivalent to �(p, q1, ..., qn) over T-tree models, where:

4.4. One-step expressive completeness 103

• A = (aI , b1, ..., bn)

• ⇥(aI , c) =
⇢
8Z.Z ✓ aI if p /2 c

�(b1, ..., bn) ^ 8Z.Z ✓ aI if p 2 c

• ⇥(bi, c) =
⇢
? if qi /2 c

> if qi 2 c

• ⌦(aI) = ⌦(b1) = ... = ⌦(bn) = 0

Intuitively, this automaton goes on indefinitely searching the underlying tree
of the model for states that satisfy p, and whenever it finds such a state u it
checks whether u 2 �S(V (q1), ..., V (qn)).

4.4 One-step expressive completeness

Our main result in this chapter is formulated in terms of the set of all monotone
predicate liftings for a given functor, and we would argue that this is a rather
natural choice. However, in some cases it is possible to choose some smaller set
of liftings, in order to have a more concrete and manageable presentation of the
syntax of the corresponding µ-calculus. It will then be important to choose an
expressively complete set of predicate liftings, meaning that any monotone lifting
for the functor can be defined by a formula in the modal one-step language. In
particular, this will be required to recover the Janin-Walukiewicz theorem in its
original form as a special case of our main results.

4.4.1. Definition. Let ⇤ be a set of monotone predicate liftings and any
abstract one-step formula over the finite set A. We say that is ⇤-definable if
there is a formula ' 2 ML

1
⇤(A) such that, for any one-step model (X,↵, V) we

have:
↵ 2 X(V) i↵ (X,↵, V) �1 '.

We say that a set of monotone predicate liftings ⇤ is expressively complete if every
monotone predicate lifting over any given finite set A is ⇤-definable.

This raises the question: when is a set of predicate liftings expressively com-
plete? In this section we give a partial answer to the question of when a set
of liftings is expressively complete, which is quite useful in some special cases.
Clearly the set of all monotone liftings for T is expressively complete, and ar-
guably a rather natural choice. However, since all the one-step formulas in the
language ML1⇤(A) are positive formulas, we cannot hope to express every predicate
lifting for T in this language: we must make crucial use of monotonicity.

104 Chapter 4. Expressive Completeness

In the definition below, given a set A and a valuation V : A! QX we denote
by �V the satisfaction relation between X and the set LF(A) of lattice formulas
over A, corresponding to the valuation V .

4.4.2. Definition. Let L be a lax extension for T (see Definition 3.1.1), and let
⇤ be a set of predicate liftings. We say that ⇤ is L-complete if, for every finite
set A and every ↵ 2 T(LF(A)), there exists a formula r↵ 2 ML

1
⇤(A) such that

(X, �, V) �1 r↵ i↵ (�,↵) 2 L(�V),

for every one-step model (X, �, V).

Essentially, L-completeness expresses the definability of a Moss-style nabla
modality in terms of positive formulas built from liftings in ⇤. For example, the
standard nabla formula

r{ 1, ..., n} := 3 1 ^ ... ^3 n ^2(1 _ ... _ n)

shows that the single lifting 2 for P (denoted by 2P in Example 2.4.14) is P-
complete. Simillarly the predicate liftings 2M and 3M (Example 2.4.15) and the

relation lifting fM (Example 2.3.33) for the monotone neighbourhood functor M,

we have that 2M is fM-complete:

r↵ :=
^

 2↵

2M
_
 ^

^

f2ch

3M
_

 2↵

f(),

where ↵ 2 M(LF(A)), 3M is the dual of 2M , and ch is the set of all choice
functions for the family of sets ↵ (see [SV10]).

We will now prove that in case T preserves finite sets and L is quasi-functorial
(see Definition 3.1.5) and preserves diagonals, L-completeness implies expressive
completeness. This immediately shows that 2P and 2M are expressively com-
plete regarded as liftings for P and M respectively, since both functors preserve
finite sets, and P and fM are quasi-functorial lax extensions preserving diagonals
[Mar11, Example 3.11.(ii)].

In the following we define the notion of a positive left-to-right one-step L-
bisimulation between one-step models, and as the main lemma of this section, we
show that if L is quasi-functorial and preserves diagonals then positive left-to-
right L-bisimulations preserve satisfaction of all monotone predicate liftings.

4.4.3. Definition. A one-step L-bisimulation between one-step models (X,↵, V)
and (Y, �, U) is a relation R : X ! Y such that:

• If (x, y) 2 R then mV (x) = mU(y).

• (↵, �) 2 LR.

4.4. One-step expressive completeness 105

A relation R is said to be a positive left-to-right one-step L-bisimulation if:

• If (x, y) 2 R then mV (x) ✓ mU(y).

• (↵, �) 2 LR.

4.4.4. Lemma. Let L be a quasi-functorial lax extension for T that preserves
diagonals and let � be any monotone predicate lifting. Suppose there is a positive
left-to-right L-bisimulation from (X,↵, V) to (Y, �, U), where U, V are defined on
the finite set of variables A. Then (X,↵, V) �1 � implies (Y, �, U) �1 �.

Check Definitions 4.3.16 to recall the definition of �1.

Proof:
Suppose that (X,↵, V) �1 �; we want to show that (Y, �, U) �1 �. First, let
X + Y denote the disjoint union of X and Y and let iX and iY denote the
insertion maps of X and Y respectively. Let W denote the valuation on X + Y

given by setting, for a 2 A:

W (a) = iX [V (a)] [iY [U(a)]

Using naturality of � it is easy to show that (X + Y,TiX(↵),W) �1 �, and, to
finish the proof it su�ces to show that (X + Y,TiY (�),W) �1 � since we can
then apply naturality again to get (Y, �, U) �1 �.

By our assumption, there is a positive left-to-right one-step bisimulation R

from (X,↵, V) to (Y, �, U). Let R0 denote the relation on X + Y defined by

R
0 = {(iX(x), iY (y)) | (x, y) 2 R}.

Claim 1. R
0 is a positive left-to-right one-step bisimulation from the one-step

model (X + Y,TiX(↵),W) to (X + Y,TiY (�),W).

Proof of Claim 1: The clause concerning the valuations is trivial, so we only
prove that we have (TiX(↵),TiY (�)) 2 LR

0. Note that

R
0 = ciX

�
; R ; biY ,

where bf denotes the graph of a function f . We have (↵,TiX(↵)) 2 L(ciX) so

(TiX(↵),↵) 2 L(ciX)� = L(ciX
�
). Similarly we have (�,T(iY)(�)) 2 L(biY). Since

(↵, �) 2 LR, we get

(TiX(↵),TiY (�)) 2 L(ciX
�
) ; L(R) ; L(biY) ✓ L(ciX

�
; R ; biY) = LR

0
,

and so (TiX(↵),TiY (�)) 2 LR
0 as required to conclude proof of Claim 1.

Now, let R
00 be the relation R

0 [�X+Y (where �X+Y = \�X+Y). It is easy
to see that R

00 is still a positive left-to-right one-step bisimulation from (X +

106 Chapter 4. Expressive Completeness

Y,TiX(↵),W) to (X + Y,TiY (�),W): the fact that (TiX(↵),TiY (�)) 2 LR
00

follows from Claim 1 since R0 ✓ R
00, and the clause for the valuation W continues

to hold since we have only added pairs from the diagonal relation on X + Y . Let
⇡1 and ⇡2 denote the left and right projections of R00 into X + Y , respectively.

Claim 2. There is an element � 2 TR00 such that (TiX(↵), �) 2 L(b⇡1)� and
(�,TiY (�)) 2 L(b⇡2).

Proof of Claim 2: Since the relation R
00 is clearly full on X + Y , i.e. we have

dom(S) = ran(S) = X + Y,

the projection maps ⇡1 and ⇡2 are surjective. Since all set functors preserve
epimorphisms, there is �1 2 TR00 with T⇡1(�1) = TiX(↵) and �2 2 TR00 with
T⇡2(�2) = TiY (�). Hence, (T(iX)(↵), �1) 2 L(b⇡1)� and (�2,T(iY)(�)) 2 L(b⇡2).
Hence, since R

00 = b⇡1� ; b⇡2, we get:

(TiX(↵),TiY (�)) 2 L(b⇡1� ; b⇡2) \ (dom(L(b⇡1�))⇥ ran(L(b⇡2)))

Since we assumed that L was quasi-functorial, it follows that:

(TiX(↵),TiY (�)) 2 L(b⇡1�) ; L(b⇡2) = L(b⇡1)� ; L(b⇡2),

which is just another way to state the desired conclusion of the claim.
So pick some � 2 TR00 as described in Claim 2. Since L preserves diagonals

we have T⇡1(�) = TiX(↵) and T⇡2(�) = TiY (�). We define two valuations
P1 : A! Q(R00) and P2 : A! Q(R00) as follows: for a variable a 2 A, we set

P1(a) = {(x, y) 2 R
00 | x 2 W (a)} and P2(a) = {(x, y) 2 R

00 | y 2 W (a)}.

In other words, P1 = Q⇡1�W , so by naturality together with the fact that we have
(X + Y,TiX(↵),W) �1 � and T⇡1(�) = TiX(↵) it follows that (R00

, �, P1) �1 �.
It is not di�cult to check that from definition of W and R

00, and the fact that R
is a positive left-to-right L-bisimulation (mV (x) ✓ mU(y)), we get that for each
a 2 A P1(a) ✓ P2(a). So by monotonicity of � we have (R00

, �, P2) �1 �. But
P2 = Q⇡2 �W so once again we can apply naturality to get (X + Y, �,W) �1 �

as required.

We can now state the main result of this section:

4.4.5. Theorem. Let L be a quasi-functorial lax extension for T that preserves
diagonals, and suppose that T restricts to finite sets. Then any L-complete set of
monotone predicate liftings for T is expressively complete.

4.4. One-step expressive completeness 107

Proof:
Suppose that � is any monotone predicate lifting. Let (X,↵, V) be any one-step
model. We define the map g : X ! LF(A) by setting g(x) =

V
mV (x). We set

ch(X,↵, V) = r(Tg(↵)). We think of this as the characteristic formula of the
one-step model (X,↵, V).

Claim. Let (Y, �, U) be any one-step model. Then (Y, �, U) �1 ch(X,↵, V)
if, and only if, there is a positive left-to-right L-bisimulation from (X,↵, V) to
(Y, �, U).

Proof of Claim. It is easy to check that (X,↵, V) �1 ch(X,↵, V), so the “if”
direction follows from the fact that ch(X,↵, V) like all one-step formulas corre-
sponds to a monotone predicate lifting and hence is preserved by positive left-to-
right bisimulations. For the “only if” direction, suppose (Y, �, U) �1 ch(X,↵, V).
Then (�,Tg(↵)) 2 L(�U). Since (↵,Tg(↵)) 2 L(bg) we have

(↵, �) 2 L(bg ; ��
U
)

so to show that the relation bg ; ��
U
is a positive left-to-right one-step bisimulation,

it su�ces to prove that if (x, y) 2 (bg ; ��
U
) then we have mV (x) ✓ mU(y). But

(x, y) 2 (bg ; ��
U
) simply means that y �U g(x) and the desired conclusion clearly

follows and finishes the proof of claim.
Now, since T preserves finite sets, there are only finitely many one-step for-

mulas over the set of variables A of the form r↵, for ↵ 2 T(LF(A)). Hence, we
can safely take disjunctions of arbitrary sets of such formulas. Now, set:

 =
_

{ch(X,↵, V) | (X,↵, V) �1 �}.

We show that defines �: it is easy to see that � implies . Conversely, sup-
pose that (Y, �, U) �1 . Then there is a one-step model (X,↵, V) such that
(X,↵, V) �1 �, and such that (Y, �, V) �1 ch(X,↵, V). Hence, there is a positive
left-to-right one-step bisimulation from (X,↵, V) to (Y, �, U). By Lemma 4.4.4,
it follows that (Y, �, U) �1 � as required.

4.4.6. Corollary. Suppose that T preserves finite sets, and let L be a quasi-
functorial lax extension for T that preserves diagonals. Then a set of liftings ⇤
for T is expressively complete if, and only if, it is L-complete.

Proof:
The “if” direction follows immediately from the previous theorem. For the “only
if” direction, suppose (X,↵, V) is a one-step model. It su�ces to note that for
any ↵ 2 TLF(A) we obtain a corresponding monotone predicate lifting �↵ over A
defined by:

� 2 �↵
X
(V) i↵ (�,↵) 2 L(�V).

Thus this predicate lifting must be ⇤-definable if ⇤ is expressively complete.

108 Chapter 4. Expressive Completeness

The following useful fact is fairly easy to check:

4.4.7. Fact. If ⇤ is a one-step expressively complete set of predicate liftings,
then MSO⇤ ⌘ MSOT and µML⇤ ⌘ µMLT.

Now we can establish the following corollary of Theorem 4.3.24.

4.4.8. Corollary. Suppose ⇤ is any expressively complete set of monotone
predicate liftings for T. Then for every formula of MSOT, there exists an equivalent
second-order ⇤-automaton over T-tree models.

To conclude this section we recall that in Equation (4.1) we reformulated the
Janin-Walukiewicz theorem for the standard µ-calculus and MSO as µML{3} ⌘
MSO{3}/⇠ which can be considered as an instance of the characterisation result
corresponding to Question 1. Now since we know that the lifting 3 for P (also
denoted by 3P) is expressively complete, by the above Fact we get that MSO{3} ⌘
MSOP and µML{3} ⌘ µMLP . Hence we can state the Janin-Walukiewicz theorem in
yet another form, which corresponds to Question 2.

µMLP ⌘ MSOP/⇠

4.5 Bisimulation invariance

This section continues the program of [Ven14], making use of the automata-
theoretic translation of MSOT we have just established. The gist of our approach is
that, in order to characterize a coalgebraic fixpoint logic µMLT as the bisimulation-
invariant fragment of MSOT, it su�ces to establish a certain type of translation
between the corresponding one-step languages. First we need some definitions.

4.5.1. Definition. Given sets X, Y , a mapping h : X ! Y and a valuation
V : A ! Q(Y), we define the valuation V[h] : A ! Q(X) by setting V[h](b) =
h
�1[V (b)] for each b 2 A. In other words:

V[h] := Qh � V.

Note that for a pair of composable maps f, g, we have V[f�g] = (V[g])[f]. The
most important concept that we take from [Ven14] is that of a uniform translation
(called uniform correspondence in [Ven14]).

4.5.2. Definition. A one-step frame is a pair (X,↵) with ↵ 2 TX. A ho-
momorphism of one-step frames h : (X 0

,↵
0) ! (X,↵) is a map h : X 0 ! X

with Th(↵0) = ↵. A one-step frame (X 0
,↵

0) together with a homomorphism
h : (X 0

,↵
0)! (X,↵) is called a cover of (X,↵).

We can now define the notions of uniform translations and uniform constructions:

4.5. Bisimulation invariance 109

4.5.3. Definition. Given a functor T, a uniform construction for T is an as-
signment of a cover h↵ : (X⇤,↵⇤)! (X,↵) to every one-step frame (X,↵).

We will usually denote the uniform construction consisting of an assignment of
covers h↵ : (X⇤,↵⇤)! (X,↵) simply by (�)⇤.

4.5.4. Definition. We say that an abstract one-step language L admits uniform
translations with respect to ⇤ if, for any finite set A and any finite set � of
abstract one-step formulas in L(A), there exists a uniform construction (�)⇤ and
a translation (�)⇤ : �! ML

1
⇤(A) such that for any one-step model (X,↵, V) and

any ' 2 �, we have

(X,↵, V) �1 '
⇤ i↵ (X⇤,↵⇤, V[h↵]) �1 ',

where h↵ is the cover assigned to (X,↵) by the construction. The pair consisting
of the translation (�)⇤ and the uniform construction (�)⇤ will be referred to as
a uniform translation for the set of formulas �.

As an example, consider the disjunctive formulas introduced by Walukiewicz.

4.5.5. Definition. For a P-chromatic second-order automaton A = (A,⇥, aI ,⌦)
and a uniform translation for the finite set ⇥[A⇥P(P)], we define a corresponding
modal ⇤-automaton A⇤ = (A,⇥⇤

, aI ,⌦), with ⇥⇤ given by ⇥⇤(a, c) := (⇥(a, c))⇤.

The proof of the next result closely follows that of the main result in [Ven14].
But since here we work with a more general class of models, we need an “unravelling”-
like component to turn a T-model to a tree-like model.

4.5.6. Proposition. Assume that SO1⇤ admits uniform translations, and let A
be a second-order ⇤-automaton. Then for each pointed T-model (S, s) there is a
T-tree model (T, R, t), with a T-model homomorphism f from T to S, mapping t

to s, and such that

A accepts (T, R, t) i↵ A⇤ accepts (S, s).

Proof:
Consider any given pointed T-model (S1, s1) where S1 = (S1, �1, V1). We are
going to construct a T-tree model (S2, R, s2), S2 = (S2, �2, V2), together with a
model homomorphism from the underlying pointed T-model S2 to S1 mapping s2

to s1, and such that A accepts the T-tree model (S2, s2) if and only if A⇤ accepts
the pointed T-model (S1, s1).

We construct this T-tree model as follows: for each u 2 S1, we define an
associated pair (Xu,↵u) as follows: set Xu = (S1)⇤ and set ↵u = �1(u)⇤. Observe
that, by the construction of these one-step models, for each u 2 S1, there is a
mapping ⇠u : Xu ! S1 such that:

110 Chapter 4. Expressive Completeness

1. T(⇠u)(↵u) = �1(u),

2. For each valuation U : A! Q(S1), every u 2 S1 and every one-step formula
⇥(a, c) appearing in A, we have

(S1, �1(u), U) �1 ⇥
⇤(a, c) i↵ (Xu,↵u, U[⇠u]) �1 ⇥(a, c).

The map ⇠u is given by h�1(u). We now construct the T-tree model (S2, R, �2, s2, V2)
as follows: first, consider the set of all non-empty finite (non-empty) tuples
(v1, ..., vn) of elements in

{s1} [
[

u2S1

Xu,

such that v1 = s1. We define, by induction, for each natural number n > 0 a
subset Mn of this set, and a mapping �n : Mn ! S1, as follows:

• Set M1 = {(s1)}, and define �1(s1) = s1.

• Set Mn+1 = {~v · w | ~v 2Mn, w 2 X�n(~v)}. Define �n+1(~v · w) = ⇠�n(~v)(w).

Here, we write ~v · w to denote the tuple (v1, ..., vn, w) if ~v = (v1, ..., vn). Set
S2 =

S
n>0 Mn, and define � =

S
n>0 �n. Define the relation R ✓ S2 ⇥ S2 to be

{(~v,~v · w) | ~v 2 S2, w 2 X�(~v)}

Note that there is, for every ~v 2 S2, a bijection i~v : X�(~v) ! R(~v) given by
w 7! ~v · w. Note also that, for each ~v 2 S2, we have

� � iR(~v),S2 � i~v = ⇠�(~v)

With this in mind, we define the coalgebra structure �2 by setting:

�2(~v) = T(iR(~v),S2 � i~v)(↵�(~v))

Note that �2(~v)|R(~v) = Ti~v(↵�(~v)). Finally, set s2 to be the unique singleton tuple
with sole element s1, and define the valuation V2 by setting m2(~v) = m1(�(~v)).

Clearly, (S2, R, �2, s2, V2) is a T-tree model. Denote the underlying T-model
by S2. We can then prove the following two claims:

Claim 1. The map � is a T-model homomorphism from S2 to S1.

Claim 2. A accepts (S2, R, �2, s2, V2) i↵ A⇤ accepts S1.

Proof of Claim 1: The map � clearly respects the truth values of all proposi-
tional atoms, and �(s2) = s1. It su�ces to show that � is a coalgebra morphism,
i.e. that T�(�2(~v)) = �1(�(~v)) for all ~v. Pick any ~v 2 S2. We have:

T�(�2(~v)) = T� � TiR(~v),S2 � T(i~v)(↵�(~v))
= T(� � iR(~v),S2 � i~v)(↵�(~v))
= T(⇠�(~v))(↵�(~v))

= �1(�(~v))

4.5. Bisimulation invariance 111

as required.

Proof of Claim 2: We have two parts that need to be proved here:

First part: A accepts (S2, R, �2, s2, V2) implies A⇤ accepts (S1, s1)

Suppose that � is a (positional) winning strategy in the acceptance game for A
and (S2, R, �2, s2, V2). We are going to define a strategy �⇤ for 9 in the acceptance
game for A⇤ and S1, with the property that for any �⇤-guided partial match

⇢ = (a1, s
1
1), ..., (an, s

1
n
)

of length n with s
i

i
2 S1 and s

1
1 = s1, there exists a �-guided partial match

⇢⇤ = (a1, s
2
1), ..., (an, s

2
n
)

with s
2
i
2 S2, s21 = s2 and �(s2

i
) = s

1
i
for each index i, and chosen in such a way

that if a �⇤-guided match ⇢0 is an extension of ⇢, then the �-guided match ⇢0⇤ is
an extension of the �-guided match ⇢⇤.

We define the strategy �⇤ by induction on the length of a partial match. For
the partial match ⇢ consisting of the single position (aI , s11) we let ⇢⇤ consist of
the single position (aI , s2), and we define the valuation �

⇤(⇢) : A ! Q(S1) by
setting, for each b 2 A,

�
⇤(⇢)(b) = �[�(aI , s2)(b)].

Similarly, suppose that �⇤ has been defined for all matches of length less than n,
and let ⇢ be any match of length n > 1. If ⇢ is not �⇤-guided, then we can define
�
⇤(⇢)(b) = ; for all b 2 A. If ⇢ is �⇤-guided, then write

⇢ = (a1, s
1
1),, (an, s

1
n
)

Since this match is �⇤-guided, by the induction hypothesis there is a �-guided
partial match

⇢⇤ = (a1, s
2
1), ..., (an, s

2
n
)

with �(s2
i
) = s

1
i
for all i. We set, for each b 2 A,

�
⇤(⇢)(b) = �[�(an, s

2
n
)(b)].

Clearly, with this definition, the induction hypothesis continues to hold for all
�
⇤-guided matches of length n + 1. Furthermore, we note that, whenever ⇢ is a
�
⇤-guided match of length n, the move �⇤(⇢) is legal: since the move �(an, s2n)

must be legal, we have

(R(s2
n
), �2(s

2
n
) �R(s2n),�(an, s

2
n
)) �1 ⇥(an,m2(s

2
n
)).

112 Chapter 4. Expressive Completeness

But since
�2(s

2
n
)�R(s2n) = Tis2n(↵�(s2n)) = Tis2n(↵s1n

),

we see that is2n is an isomorphism between the models (R[s2
n
], �2(s2n)�R(s2n)

,�(an, s2n))
and (Xs1n

,↵s1n
,�(an, s2n)[is2n]

), so we have:

(Xs1n
,↵s1n

,�(an, s
2
n
)[is2n]

) �1 ⇥(an,m2(s
2
n
)).

For all b 2 A, we have:

�(an, s2n)[is2n]
(b) ✓ ⇠

�1
s2n
[⇠s2n [�(an, s

2
n
)[is2n]

(b)]]

= ⇠
�1
s2n
[�[�(an, s2n)(b)]]

= ⇠
�1
s2n
[�⇤(⇢)(b)]

= �
⇤(⇢)[⇠(s2n)]

(b)

So by monotonicity we get:

(Xs1n
,↵s2n

,�
⇤(⇢)[⇠s2n]

) �1 ⇥(an,m2(s
2
n
)).

Hence, since ⇥⇤(an,m2(s2n)) is the uniform translation of ⇥(an,m2(s2n)), we get

(S1, �1(s
2
n
),�⇤(⇢)) �1 ⇥

⇤(an,m2(s
2
n
)),

as required. It is now easy to show that 9 never gets stuck in a �⇤-guided partial
match, and we also see that every infinite �⇤-guided match:

(aI , s
1
1), (a2, s

1
2), (a3, s

1
3), ...

corresponds to an infinite �-guided match:

(aI , s
2
1), (a2, s

2
2), (a3, s

2
3), ...

and so since 9 wins every infinite �-guided match, she wins every infinite �⇤-
guided match as well.

Second part: A⇤ accepts (S1, s1) implies A accepts (S2, R, �2, s2, V2)

Let �⇤ be a winning strategy for 9 in the acceptance game for A⇤ and S1. We
define the strategy � as follows: given a partial match:

⇢ = (a1, s
2
1), ..., (an, s

2
n
)

set �(⇢) = �
⇤(�(⇢))[�], where �(⇢) is the match:

(a1, �(s
2
1)), ..., (an, �(s

2
n
))

4.5. Bisimulation invariance 113

It is straightforward to check that, whenever ⇢ is a �-guided match, �(⇢) is a
�
⇤-guided match, and that the move �⇤(�(⇢)) is legal if and only if the move �(⇢)

is legal. It follows that 9 never gets stuck in a �-guided partial match, and that
she wins every infinite �-guided match, since an infinite �-guided match

(aI , s
2
1), (a2, s

2
2), (a3, s

2
3), ...

corresponds to an infinite �⇤-guided match:

(aI , �(s
2
1)), (a2, �(s

2
2)), (a3, �(s

2
3)), ...

This concludes the proof.
The lemma now follows by combining the two claims.

From this we get the following result, which is the characterisation theorem
corresponding to Question 1. Here, we use the fact that every MSO⇤-formula is
equivalent to a monotone second-order automaton over T-tree models, so that it
su�ces to find translations of monotone one-step formulas.

4.5.7. Theorem (Auxiliary Characterization Theorem I). Let ⇤ be an expres-
sively complete set of monotone predicate liftings for a set functor T, and assume
that the monotone fragment of the second-order one-step language SO

1
⇤ admits

uniform translations. Then:

µML⇤ ⌘ MSO⇤/⇠.

Proof:
Given a formula ' of MSO⇤ which is invariant under behavioural equivalence, let
A be an equivalent monotone second-order automaton, and let (�)⇤ be a uniform
translation of the monotone fragment of the one-step language SO

1
⇤. Let be a

formula in µML⇤ equivalent to the automaton A⇤ over T-tree models. Then for any
pointed T-model S, s, let (T, R, t) be the T-tree model provided by Proposition
4.5.6. Then we get:

S, s � ' , T, t � ' ' is invariant under behavioural equivalence

, T, t � A ' is equivalent to A over T-tree models

, S, s � A⇤ Proposition 4.5.6

, S, s � is equivalent to A⇤

and the proof is done.

114 Chapter 4. Expressive Completeness

4.5.1 Adequate uniform constructions

The formulation of Theorem 4.5.7 raises the question for which class of functors
there always exists an expressively complete set of monotone predicate liftings
such that SO

1
⇤ admits a uniform translation? One may think that to answer

this question we need to observe both syntax and semantics of formulas in SO
1
⇤

closely, since the uniform translation involves a translation on the syntactic side
and a uniform construction on the semantic side. However, we claim that the
model-theoretic constraint on uniform constructions for one-step formulas will be
enough and that the syntactic translation will come for free.

4.5.8. Definition. Let ' be any one-step formula in SO
1
⇤(A). Then a uniform

construction (�)⇤ for T is called adequate for ' if, for any pair of one-step frames
(X,↵) and (Y, �), any one-step frame homomorphism f : (X,↵) ! (Y, �) and
any valuation V : A! Q(Y), we have the following:

(X⇤,↵⇤, V[f�h↵]) �1 ' i↵ (Y⇤, �⇤, V[h�]) �1 ' (4.2)

We say that the construction is adequate for a set of formulas � if it is adequate
for every member of �.

The following diagram illustrates equation 4.2:

(X⇤,↵⇤, V[f�h↵])

(X,↵, V[f])

(Y⇤, �⇤, V[h�])

(Y, �, V)

'()

f

//

h↵

✏✏
h�

✏✏

We are now ready to state our first main theorem:

4.5.9. Theorem (Coalgebraic Bisimulation Invariance I.). Let T be any set func-
tor. If T admits an adequate uniform construction for every finite set of second-
order one-step formulas �, then:

µMLT ⌘ MSOT/⇠.

Proof:
By Theorem 4.5.7 it su�ces to show that the monotone fragment of SO1T admits
uniform translations. Let � be a finite set of monotone formulas of SO1T(A), for
some finite set A, and suppose the uniform construction (�)⇤ is adequate for �.
Given ' 2 � we define a monotone predicate lifting � over A by setting

↵ 2 �X(V) i↵ (X⇤,↵⇤, V[h↵]) �1 '.

It is easy to check that this lifting is monotone, and naturality of � is a direct con-
sequence of the equation 4.2. If A has n elements and we list these as (a1, ..., an),

4.5. Bisimulation invariance 115

then as we discussed at the bottom of page 91, we can view � as a a formula in
ML

1
⇤(A) of the form �

0(a1, ..., an), where �0 is the n-place predicate lifting corre-
sponding to � with this given ordering of A. We now get a uniform translation
by mapping ' to the formula �0(a1, ..., an).

The following result for an expressively complete set ⇤ of predicate liftings
follows from the fact that every formula in SO

1
T(A) is semantically equivalent to

a formula in SO
1
⇤(A). So it is enough to find an adequate uniform construction

for every finite set of formulas in SO
1
⇤(A).

4.5.10. Corollary. Let T be any set functor, and let ⇤ be an expressively com-
plete set of monotone predicate liftings for T. If T admits an adequate uniform
construction for every finite set of formulas of SO1⇤, then

µML⇤ ⌘ MSO⇤/⇠.

If T preserves weak pullbacks (see Section 2.3.1), the Barr extension T is a
(functorial) lax extension and we can reformulate equation 4.2 as the following:

4.5.11. Proposition. Suppose that T preserves weak pullbacks, and let (�)⇤
be a uniform construction for T. Then (�)⇤ is adequate for ' if, and only if,
for every pair of one-step T-bisimilar one-step models (X,↵, V) and (Y, �, U) we
have:

(X⇤,↵⇤, V[h↵]) �1 ', (Y⇤, �⇤, U[h�]) �1 '.

4.5.2 Weakly adequate uniform constructions

As we shall see in Section 4.6 not all functors of interest admit adequate uniform
constructions. The famous problematic (in the context of coalgebras) monotone
neighbourhood functor M does not admit an adequate uniform construction.
Hence we cannot compare the expressive power of the monotone µ-calculus and
monotone monadic second order logic applying Theorem 4.5.9. Hence we require
a second version of our main result, that makes use of what we will call weakly
adequate uniform constructions. These are similar to adequate uniform construc-
tions, except that the condition 4.2 is only required to hold in those cases where
the bottom one-step homomorphism in the diagram is surjective.

4.5.12. Definition. Let ' be any one-step formula in SO
1
⇤(A), and let (�)⇤ be a

uniform construction for T that assigns a surjective cover to each one-step frame.
Then this construction is said to be weakly adequate for ' if, for any pair of
one-step frames (X,↵) and (Y, �), any surjective one-step frame homomorphism
f : (X,↵) ! (Y, �) and any valuation V : A ! Q(Y) equation 4.2 holds. A
uniform construction is called weakly adequate for a finite set of formulas � if it
is weakly adequate for every member of �.

116 Chapter 4. Expressive Completeness

Our goal is now to prove the following result. To recall the notion of quasi-
functorial lax extension see Definitions 3.1.1 and 3.1.5

4.5.13. Theorem (Coalgebraic Bisimulation Invariance II). Let T be a set func-
tor that preserves finite sets and admits a quasi-functorial lax extension L that
preserves diagonals. Let ⇤ be an expressively complete set of monotone predicate
liftings for T. If T admits a weakly adequate uniform construction for every finite
set of formulas of SO1⇤, then

µML⇤ ⌘ MSO⇤/⇠

If T admits a quasi-functorial lax extension L, we can reformulate the condi-
tion 4.2 as follows:

4.5.14. Definition. Let L be a lax extension for T and let R be a one-step
L-bisimulation between one-step models (X,↵, V) and (Y, �, U). Then R is said
to be a global one-step bisimulation if:

forth for every u 2 X there is a v 2 Y with uRv,
back for every v 2 Y there is a u 2 X with uRv.

4.5.15. Proposition. Let (�)⇤ be a uniform construction for T that assigns
a surjective cover to every one-step frame, and let L be a quasi-functorial lax
extension for T. Then (�)⇤ is weakly adequate for the formula ' if and only
if, for every pair of globally one-step L-bisimilar one-step models (X,↵, V) and
(Y, �, U), we have:

(X⇤,↵⇤, V[h↵]) �1 ', (Y⇤, �⇤, U[h�]) �1 '.

Proof:
The direction from right to left follows since the graph of a surjective one-step
model homomorphism is clearly a global one-step L-bisimulation. For the con-
verse, suppose that (�)⇤ is weakly adequate, and let R be a global L-bisimulation
between (X,↵, V) and (Y, �, U). Since R is global its projection maps ⇡1, ⇡2
to X and Y respectively are surjective. Since set functors preserve surjective
maps, and since cTf ✓ L(bf) for all maps f , we get that dom(L(b⇡1�)) = TX and
ran(L(b⇡2)) = TY . Since L is quasi-functorial we now find � 2 TR such that
T⇡1(�) = ↵ and T⇡2(�) = �. Furthermore, we have V[⇡1] = U[⇡2], since for all
(u, v) 2 R:

(u, v) 2 V[⇡1](a) i↵ u 2 V (a) i↵ v 2 U(a) i↵ (u, v) 2 U[⇡2](a).

Hence V[⇡1�h�] = U[⇡2�h�]. Using the fact that (�)⇤ is weakly uniform and the fact
that the projection maps for R are surjective, we get

(X⇤,↵⇤, V[h↵]) �1 ' , (R⇤, �⇤, V[⇡1�h�]) �1 '

, (R⇤, �⇤, U[⇡2�h�]) �1 '

, (Y⇤, �⇤, U[h�]) �1 '

4.5. Bisimulation invariance 117

as required.
The following diagram may be helpful to understand the above equations:

(X⇤,↵⇤, V[h↵])

(X,↵, V)

(R⇤, �⇤, V[⇡1�h�])
'() (R⇤, �⇤, U[⇡2�h�])

'() (Y⇤, �⇤, U[h�])

(R, �, U[⇡2]) (Y, �, U)(R, �, V[⇡1])

'()

⇡1
oo

h↵

✏✏
h�

✏✏
h�

✏✏
h�

✏✏
⇡2 //

The key to prove our second main characterization theorem, Theorem 4.5.13, is
to work with a modified version of the functor T instead of T itself. The idea is to
define this modified functor Ts in such a way that one-step frame homomorphisms
for Ts essentially correspond to surjective one-step frame homomorphisms for the
original functor T, so that a weakly adequate uniform construction for T provides
us with an adequate uniform construction for Ts. By Theorem 4.5.9 this gives
us a characterization theorem for the language µMLTs , and from this we want to
deduce a characterization theorem for the original language µMLT. But in order to
do this we need to understand precisely how the two languages µMLT and µMLTs

are related. It turns out that we can characterize µMLT neatly as a fragment of
µMLTs , and this will provide the link we need to obtain Theorem 4.5.13.

4.5.2.1 The supported companion of a functor

4.5.16. Definition. The supported companion Ts of T is the sub-functor of
P ⇥ T defined by:

Ts(X) = {(Z,↵) 2 PX ⇥ TX | Z supports ↵}.

It is easy to check that this is indeed a well-defined subfunctor of P⇥T, i.e.; for all
sets X we have Ts(X) ✓ PX ⇥TX, and for all maps f : X ! Y , the map Ts(f)
is the restriction of (P ⇥T)(f) to Ts(Y). The first condition holds by definition.
The second one holds since for any map f : X ! Y , any ↵ 2 TX and any set
Z ✓ X, the image f [Z] = Pf(Z) is a support for Tf(↵) whenever Z is a support
for ↵. The reader may note that what we have called “T-tree models” are actually
special instances of Ts-models. We will show that this construction repairs the
monotone neighborhood functor, so that the supported companion Ms of M
admits an adequate uniform construction. Interestingly, the same construction
happens to repair weak pullback preservation:

4.5.17. Proposition. The functor Ms preserves weak pullbacks.

We leave the verification of this to the reader; the argument is similar to the
reasoning in [MV12] used to establish the existence of a well-behaved relation

118 Chapter 4. Expressive Completeness

lifting for M. In the next section we will prove a more general version of this
result for Ts.

Note that the functor Ts comes equipped with a unary predicate lifting 2s

defined by:
2s

X
(Y) := {(Z,↵) 2 Ts

X | Z ✓ Y }
The Boolean dual of this lifting will be denoted by 3s.

4.5.18. Lemma. Let T be any functor and ⇤ a set of predicate liftings for T. If
T admits a weakly adequate uniform construction for every finite set of formulas
in SO

1
⇤, then its supported companion Ts admits a uniform construction for every

finite set of formulas in SO
1
⇤[{2s}(A).

Proof:
Fix a finite set of variables A. First, we note as a quite trivial observation that
there is a translation

t : SO1⇤[{2s}(A)! SO
1
⇤(A)

such that, for every one-step T-model (X,↵, V), and every one-step formula ' 2
SO

1
⇤[{2s}(A), we have the following condition:

(X,↵, V) �1 t(') i↵ (X, (X,↵), V) �1 '. (4.3)

This translation can be defined by a straightforward induction on the complexity
of formulas. The only interesting case is an atomic formula of the form 2s

p, for
which we set

t(2s
p) := 8q.q ✓ p.

With this in mind, let � be a finite set of formulas of SO1⇤[{2s}, and let (�)⇤ be a
weakly adequate uniform construction for the set of formulas t[�]. Note that we
can extend (�)⇤ to a uniform construction for Ts in the following way: given a one-
step frame (X, (S,↵)) for Ts, where ↵ 2 TX and S is a support for ↵, the uniform
construction (�)⇤ gives a surjective cover h(↵|S) : (S⇤, (↵|S)⇤) ! (S, (↵|S)), and
we let the new uniform construction assign to (X, (S,↵)) the cover

iS,X � h(↵|S) : (S⇤, (S⇤, (↵|S)⇤))! (X, (S,↵))

The condition that P(iS,X � h(↵|S))(S
⇤) = S follows by surjectivity of the map

h(↵|S) : S⇤ ! S.
To check that this construction is adequate for each ' 2 �, consider a one-step

frame homomorphism f : (X, (S,↵)) ! (X 0
, (S 0

,↵
0)) and let V : A ! Q(X 0) be

a valuation. Let U : A ! Q(S 0) be the valuation defined by U(a) = V (a) \ S
0.

To keep notation bearable we abbreviate h(↵|S) = h and h(↵0|S0) = h
0. The map

f |S is easily checked to be a surjective one-step homomorphism from (S,↵|S) to
(S 0

,↵
0|S0), so by weak adequacy of (�)⇤ for t(') we get:

(S⇤, (↵|S)⇤, U[f |S�h]) �1 t('), (S 0
⇤, (↵

0|S0)⇤, U[h0]) �1 t(').

4.5. Bisimulation invariance 119

But it is easily checked that:

U[f |S�h] = V[f�iS,X�h] and U[h0] = V[iS0,X0�h0].

Together with the equation 4.3 for the translation t, this gives us:

(S⇤, (S⇤, (↵|S)⇤), V[f�iS,X�h]) �1 ', (S 0
⇤, (S

0
⇤, (↵

0|S0)⇤), V[iS0,X0�h0]) �1 ',

which shows that the uniform construction we defined for Ts is indeed adequate
for ', as required.

4.5.3 Characterizing µML⇤ inside µML⇤[{2s}

A little issue that we need to address, before we can proceed to characterize the
monotone µ-calculus, is just how the language µML⇤ is related to µML⇤[{2s} for
a given set of liftings ⇤ for T. The rest of this section will provide the answer,
and give a characterization theorem for µML⇤ as the fragment of µML⇤[{2s} that is
invariant for behavioural equivalence. Formally we shall write (S, s) ⇠ (S0

, s
0), for

Ts-models S and S0, to say that the respective underlying pointed T-models are
behaviourally equivalent. To distinguish this from actual behavioural equivalence
in the sense of the companion functor Ts, we write (S, s) ⇠s (S0

, s
0) to say that

these pointed models are behaviourally equivalent as Ts-models. We note that the
behavioural equivalence relation ⇠s between Ts-models amount to behavioural
equivalence with respect to functors P and T for the underlying P-models and
T-models respectively.

We shall borrow a result from [FLV10]:

4.5.19. Fact. [FLV10] For any set of liftings ⇤ for any set functor T, the logic
µML⇤ has the finite model property.

4.5.20. Definition. Given a lax extension L for functor T, we define a relation
lifting L

s for Ts by setting:

((S,↵), (S 0
,↵

0)) 2 L
s
R i↵ (S, S 0) 2 PR and (↵,↵0) 2 LR,

for a relation R ✓ X ⇥ Y .

We recall that a relation lifting for a functor T is called a T-relator if it provides
a functor over the category Rel of sets and relations. The following proposition
provides constraints on L that make L

s a relator.

4.5.21. Proposition. If L is quasi-functorial and preserves diagonals, then L
s

is a Ts-relator.

120 Chapter 4. Expressive Completeness

Proof:
It is clear that Ls preserves diagonals. We show that Ls(R ; S) = L

s
R ; Ls

S for
arbitrary relations R, S.

Consider R ✓ X ⇥ Y and S ✓ Y ⇥ Z, and let ((↵, X 0), (�, Z 0)) 2 L
s(R;S).

Then there is some Y 0 ✓ Y with (X 0
, Y

0) 2 PR and (Y 0
, Z

0) 2 PS. Furthermore,
X

0 supports ↵ and Z
0 supports �, and we have:

(↵|X0 , �|Z0) 2 L([iX0,X ;R;S; diZ0,Z
�
).

But since we must have dom([iX0,X ;R) = X
0, ran(S; diZ0,Z

�
) = Z

0 and ran([iX0,X ;R) =

dom(S; diZ0,Z
�
) = Y

0, we can apply Proposition 3.1.8 together with quasi-functoriality

of L to find � 2 TY 0 with (↵|X0 , �) 2 L([iX0,X ;R) and (�, �|Z0) 2 L(S; diZ0,Z
�
).

Clearly Y
0 supports TiY 0,Y (�), so (Y 0

,TiY 0,Y (�)) 2 Ts
Y , and a simple calculation

will now show that

(↵,TiY 0,Y (�)) 2 L
s
R and (TiY 0,Y (�), �) 2 LS

so (↵, �) 2 L
s
R;Ls

S as required.

Proposition 4.5.21 is an important technical result for the rest of this chapter,
because, by a theorem usually attributed to Carboni, Kelly and Wood, a set
functor admits a relator if and only if it preserves weak pullbacks [CKW91].
Hence Proposition 4.5.21 transforms a functor T that admits a quasi-functorial lax
extension, into a weak pullback preserving functor Ts. This might help to explain
why the coalgebraic logics of functors admitting quasi-functorial lax extensions,
like monotone modal logic (Proposition 4.5.17), have turned out to be generally
well behaved.

We assume that we have at our disposal a fixed “universal” Ts-model U =
(U, �, V) which is a disjoint union of one isomorphic copy for every finite pointed
T-model (S, s). It is not hard to see that such a model does exist: just take a dis-
joint union containing each T-model defined on some finite subset n = {0, ..., n�1}
of !. Since the collection of all these models forms a set (of size at most
|
`

n2! T(n)|) their disjoint union is a well-defined Ts-model.

4.5.22. Definition. Let S be any Ts-model. We define the Ts-model S � U =
(S + U, �+, V+) as a disjoint union, except we let the underlying Kripke acces-
sibility relation also relate every point to every other point. More precisely, for
each s 2 S we have

�+(s) = (S + U,T(◆S,S+U)(↵))

where �(s) = (X,↵), and similarly for each u 2 U .4

The following lemmas are immediate from the definition.

4In this definition we have used “+” as the symbol for binary coproducts of sets.

4.5. Bisimulation invariance 121

4.5.23. Lemma. Let S be a finite Ts-model. Then for all u 2 U , we have:

(U, u) ⇠s (S� U, u).

Furthermore, for every point s 2 S there is some u 2 U with

(S� U, s) ⇠s (S� U, u).

Proof:
For every s 2 S there is some u 2 U and some L-bisimulation Rs between S and
U such that (s, u) 2 Rs. The relation

Z = \◆U,S+U [
[

s2S

R
�
s

is therefore an L-bisimulation from U to S� U. In fact it is easily checked from
Definition 4.5.20 that Z is an L

s-bisimulation, and since uZu for all u 2 U this
takes care of the first part of the lemma.

For the second part of the lemma, if we set

Z
0 = �S+U [

[

s2S

Rs,

where we recall that �S+U is the diagonal relation on S + U , then this is an
L-bisimulation from S � U to itself. Again, it is in fact an L

s-bisimulation, and
since Z

0 relates every s 2 S to some u 2 U we are done - since L-bisimilarity
is equivalent to behavioural equivalence when L is quasi-functorial and preserves
diagonals [Mar11].

Clearly, it follows from this lemma that for every s 2 S there is some u 2 U

with (S� U, s) ⇠s (U, u).

4.5.24. Lemma. (S, s) ⇠ (S� U, s).

Proof:
Clearly, since the underlying T-model corresponding to S � U is formed as a
disjoint union.

Note that Lemma 4.5.24 is not guaranteed to hold if we replace ⇠ by the finer
equivalence relation ⇠s.

It will be convenient in this section to work with a second version of the accep-
tance game for a modal ⇤-automaton, which we will call the extended acceptance
game for A with respect to a T-model S, denoted E(A, S). Given a modal ⇤-
automaton A = (A,⇥, aI ,⌦) and a T-model S = (S, �, V) this game has three

122 Chapter 4. Expressive Completeness

types of positions: pairs of the form (, s) with 2 ML
1
⇤(A), pairs of the form

(, s) with 2 LF(A) (lattice formulas over A), and maps f : LF(A) ! P(S).
Admissible moves are given in Table 4.3.

Position Pl’r Admissible moves Priority
(1 _ 2, s) 9 {(1, s), (2, s)} 0
(1 ^ 2, s) 8 {(1, s), (2, s)} 0
(a, s) 2 A⇥ S 9 {(⇥(a,mV (s)), s)} ⌦(a)
(�(1, ..., n), s) 9 {f : LF(A)! PS | �(s) 2 �(f(1), ..., f(n))} 0
(>, s) 8 ; 0
(?, s) 9 ; 0
f : LF(A)! PS 8 {(, s) | s 2 f()} 0

Table 4.3: The extended acceptance game E(A, S)

It is easy to see that the position (>, s) is always winning for 9, and (?, s) is
always winning for 8. The following result is entirely routine to prove:

4.5.25. Theorem. Let A = (A,⇥, aI ,⌦) be a modal ⇤-automaton and (S, s) a
pointed T-model. Then A accepts (S, s) if, and only if, (aI , s) is a winning position
in the extended acceptance game.

We also have the following observation, in which we will be sloppy and denote
the extended acceptance game between a modal ⇤-automaton A and a T-model
underlying a Ts-model S by E(A, S).

4.5.26. Observation. Let be any one-step formula in ML
1
⇤(A) for a set of

liftings ⇤ for some given set functor T, and let P 2 {8, 9}. If (S, s) ⇠s (S0
, s

0)
then the position (, s) is winning for P in E(A, S) if and only if (, s0) is a
winning position for P in E(A, S0). In particular, this means that for a pair of
Ts-models S and S0 such that (S, s) ⇠s (S0

, s
0), and a formula 2 ML

1
⇤[{2s}(A),

the position (, s) is winning for P in E(A, S) if and only if (, s0) is a winning
position for P in E(A, S0).

4.5.27. Definition. Let A = (A,⇥, aI ,⌦) be a ⇤ [{2s}-automaton and let
be a formula in the range of ⇥. We say that is A-valid if for all (finite) pointed
T-models (S, s), the position (, s) is winning in E(A, S). We say that is A-
satisfiable if there is some (finite) pointed T-model (S, s), such that the position
(, s) is winning in E(A, S).

Let ⇤ be any set of predicate liftings for T and let A be any modal ⇤[{2s}-
automaton. Making use of our fixed universal Ts-model U (see the text above
Definition 4.5.22), we shall define a translation tA : ML1⇤[{2s}(A) ! ML

1
⇤(A) by

induction as follows:

4.5. Bisimulation invariance 123

• For � 2 ⇤, we set tA(�(1, ..., k)) = �(1, ..., k), and similarly for the dual
�
d for every lifting � 2 ⇤.

• tA(>) = > and tA(?) = ?

• tA(1 _ 2) = tA(1) _ tA(2) and tA(1 ^ 2) = tA(1) ^ tA(2).

• tA(2s
) =

⇢
> if is A-valid
? otherwise

• tA(3s
) =

⇢
> if is A-satisfiable
? otherwise

Note that this translation depends on the whole automaton A, not just the set
of variables A. So for any given set of variables A, we have one translation tA :
ML

1
⇤[{2s}(A)! ML

1
⇤(A) for each automaton A with states A, and the translations

will generally be di↵erent for di↵erent choices of A. However, we will drop the
index A from now on to simplify notation. Given a modal ⇤ [{2s}-automaton
A = (A,⇥, aI ,⌦), we will write t(A) for the modal ⇤-automaton (A,⇥t

, aI ,⌦)
where ⇥t is defined by ⇥t(a, c) = t(⇥(a, c)). Clearly t(A) is a modal ⇤-automaton.

We shall view the translation t as a map defined on the domain ML
1
⇤[{2s}(A)[

LF(A) by setting t() = for 2 LF(A).

4.5.28. Lemma. For every finite pointed Ts-model (S, s), and for any modal ⇤[
{2s}-automaton A, we have

(S, s) � t(A) i↵ (S� U, s) � A

Proof:
For left to right, suppose that (S, s) � t(A). By Theorem 4.5.25 there is a strategy
� for 9 in the extended acceptance game for t(A) and the underlying T-model
also denoted as S, which is winning at (aI , s). Without loss of generality we may
assume that � is positional, and a winning strategy at every winning position in
E(t(A), S). Our goal is to construct a positional strategy �0 for 9 in the extended
acceptance game for A and S�U, which prescribes a move for 9 at every position
(, v) belonging to 9 and with v 2 S, such that:

1. �0 assigns a legitimate move to every position belonging to 9 of the form
(, v) with v 2 S such that (t(), v) is a winning position in E(t(A), S),

2. every �0-guided partial match ⇢ starting at (aI , s) and ending with a position
(, v) satisfies one of the following two criteria:

a v 2 S and t[⇢] is a �-guided match in E(t(A), S) (hence consists only of
winning positions for 9).

b (, v) is a winning position in E(A, S� U).

124 Chapter 4. Expressive Completeness

Here, given that ⇢ = ⇡1....⇡n, we define t[⇢] = t(⇡1)....t(⇡n) where t(, v) =
(t(), v) if 2 1ML⇤(A) [LF(A), and t(f) = f for a position f : LF(A)! P(S).
Clearly, we can build a winning strategy in E(A, S� U) from such a strategy �0.

We define the strategy �0 by a case distinction, given a position (, v) belong-
ing to 9 with v 2 S and such that (t(), v) is a winning position in E(t(A), S). If
 = ↵1_↵2 then t() = t(↵1)_ t(↵2), so we set �0(, v) = ↵i where �(t(), v). If
 = �('1, ...,'n) then t() = �('1, ...,'n) too, so we set �0(, v) = �(t(), v). A
simple naturality argument shows that this is still a legitimate move in E(A, S�U).

Finally, the interesting case is the one involving the support modality: at a
position (3s

', v), if (t(3s
', v)) is winning for 9 in E(A, S) then we must have

t(3s
') = >, because otherwise there is no admissible move for 9 at this posi-

tion, hence ' is A-satisfiable. Hence, by the construction of U, and by Observa-
tion 4.5.26 there is some u 2 U such that (', u) is winning for 9 in E(A, S� U).
So we let the strategy �0 pick the mapping f given by f(') = {v}, and f('0) = ;
for all other lattice formulas. For the case involving the dual 2s, if t(2s

') = >
then ' is valid, and we can let 9 pick the map f sending ' to S+U and f('0) = ;
for ' 6= '

0.
We also need to check that every �0-guided partial match satisfies one of the

conditions (a) or (b), and we prove this by an induction on the length of a partial
match. The only interesting case is for the extension of a partial match ⇢ ending
with a position (2s

', v). By the induction hypothesis on ⇢, we have v 2 S and
(t(2s

'), v) is winning for 9, hence we must have t(2s
') = >. This means that '

is A-valid, so any move (', w) by 8 answering the move S + U by 9 will satisfy
the condition (b), i.e. (', w) is winning for 9 in E(A, S� U).

For right to left, suppose that 9 has a winning strategy � at the position (aI , s)
in the extended acceptance game for A with respect to S� U. We shall give 9 a
winning strategy �0 at the same position in the game for t(A) with respect to S.
We shall inductively associate with every �0-guided partial match ⇡ of length k

a �-guided “shadow match” (1, v1), ..., (k, vk) such that ⇡ is of the form

(t(1), v1),, (t(k), vk).

We shall also make sure that whenever ⇡0 is an extension of ⇡, the shadow match
associated with ⇡0 is an extension of the shadow match associated with ⇡ as well.
It will clearly follow that 9 wins every infinite �0-guided match.

For the singleton match consisting of (aI , s) we let (aI , s) itself be the shadow
match. (This is acceptable because, by convention, we have set t(aI) = aI .) For
a match ⇡ of length k we define the move �0(⇡) depending on the shape of the
last position on the associated shadow match. Again we treat only the interesting
cases.

If the last position on the shadow match is (�(1, ..., m), v) then � provides
a map f : LF(A)! Q(S + U) such that

�+(v) 2 �S+U(f(1), ..., f(m)),

4.5. Bisimulation invariance 125

where �+ is given by Definition 4.5.22. We set �0(⇡) = f
0, where f

0 : LF(A) !
Q(S) is defined by ✓ 7! f(✓) \ S for each ✓ 2 LF(A). This move is legal since
v 2 S and by naturality of �. It is easy to see how to extend the shadow match
for each response by 8.

If the last position on the shadow match is (2s
 , v) then since this position

is winning for 9, it must be the case that every position (, w) for w 2 S + U

is winning for 9, hence this holds for every w 2 U . This can only be true if
is A-valid and so we have t(2s

) = >. This means we are done since (>, v) is
a winning position for 9. Similarly, if the last position on the shadow match is
(3s

 , v), then there is some w 2 S + U such that (, w) is winning for 9, so
is A-satisfiable. Hence t(3s

) = >, and the conclusion follows as in the previous
case.

We can now prove that over Ts-models, µML⇤ is equivalent to the fragment of
µML⇤[{2s} that is invariant for behavioural equivalence:

4.5.29. Theorem. Let T be any set functor equipped with a quasi-functorial lax
extension L that preserves diagonals, and let ⇤ be any set of predicate liftings for
T. Then over Ts-models:

µML⇤ ⌘ µML⇤[{2s}/⇠

Proof:
Suppose a formula ' of µML⇤[{2s} is invariant for behavioural equivalence. By
the finite model property for µML⇤[{2s} it su�ces to show that ' is equivalent
to a µML⇤-formula over finite models. Let A be a modal ⇤ [{2s}-automaton
equivalent to ', and let be a formula of µML⇤ equivalent to the automaton
t(A). Consider an arbitrary finite pointed Ts-model (S, s). We have:

(S, s) � ' , (S� U, s) � ' (Lemma 4.5.24 + assumption on ')
, (S� U, s) � A
, (S, s) � t(A) (Lemma 4.5.28)
, (S, s) �

as required.

4.5.30. Proposition. Suppose ⇤ is an L-complete set of predicate liftings for
T, where L is a quasi-functorial lax extension for T that preserves diagonals, and
suppose that T preserves finite sets. Then ⇤ [{2s} is expressively complete for
Ts.

Proof:
By Proposition 4.5.21, Ls is a quasi-functorial lax extension for Ts that preserves
diagonals, and it is simple to check that ⇤ [{2s} is L

s-complete. Since Ts

preserves finite sets it follows from Corollary 4.4.6 that ⇤ [{2s} is expressively
complete.

126 Chapter 4. Expressive Completeness

We can now combine Theorem 4.5.9, Lemma 4.5.18 and Proposition 4.5.30 to
obtain the following result.

4.5.31. Theorem (Auxiliary Characterization Theorem II). Let ⇤ be any expres-
sively complete set of monotone predicate liftings for the set functor T, and sup-
pose T preserves finite sets and admits a quasi-functorial lax extension that pre-
serves diagonals. If there exists a weakly adequate uniform construction for every
one-step formula in SO

1
⇤(A), for every finite set A, then over Ts-models we have:

µML⇤[{2s} ⌘ MSO⇤[{2s}/⇠s

Now we can finally prove Theorem 4.5.13, the second main characterization
result:

Proof of Theorem 4.5.13:
Suppose that the formula ' of MSO⇤ is invariant for T-bisimilarity, where ⇤ is
expressively complete, and suppose the lax extension L is quasi-functorial and
preserves diagonals. It follows that ' is invariant for L-bisimilarity, since L-
bisimilarity is equivalent to behavioural equivalence when L preserves diagonals
[Mar11]. But then ' is clearly also L

s-bisimulation-invariant, regarded as a for-
mula of MSO⇤[{2s}. Hence, it is equivalent to a formula of µML⇤[{2s} by Theorem
4.5.31. It then follows by Theorem 4.5.29 that ' is in fact equivalent to a formula
of µML⇤, as required.

4.5.4 Applications

We will now cover some instances of our main characterisation results.

4.5.32. Example. As a first application, the standard Janin-Walukiewicz char-
acterization of the modal µ-calculus can be seen as an instance of the first main
characterization result (Theorem 4.5.9) by taking ⇤ = {3} and T = P , recalling
that MSO = MSO{3}. The uniform construction for P , which is adequate with
respect to any set of one-step formulas, is given as follows: consider a one-step
frame, i.e. a pair (X,↵) with ↵ 2 P(X). We take X⇤ = ↵⇤ = ↵ ⇥ !, and we let
h↵ : ↵⇥ ! ! X be the projection map.

We could also cover this application by the second main characterization result
(Theorem 4.5.13), by taking X⇤ = X ⇥ !, ↵⇤ = ↵ ⇥ ! and let h↵ : X⇤ ! X be
the projection map. This is a weakly adequate uniform construction.

4.5.33. Example. Consider the finitary multiset (“bags”) functor B (see Exam-
ple 2.3.7), Given a pair (X,↵) where ↵ : X ! ! has finite support, we define

X⇤ =
[

{{u}⇥ ↵(u) | u 2 X}.

4.5. Bisimulation invariance 127

The mapping ↵⇤ : X⇤ ! ! is defined by setting ↵⇤(w) = 1 for all w 2 X⇤.
The map h↵ : X⇤ ! X is defined by (u, i) 7! u. It is easy to check that
whenever two one-step frames (X,↵) and (Y, �) are related by some morphism
f : (X,↵)! (Y, �), the models (X⇤,↵⇤, V[f�h↵]) and (Y⇤, �⇤, V[h�]) are isomorphic,
for any valuation V : A! Q(Y). It follows that the construction is adequate for
any set of one-step formulas, hence we get µMLB ⌘ MSOB/⇠.

4.5.34. Example. Consider the set of all polynomial functors defined by the
“grammar”:

T ::= C | Id | T⇥ T |
a

i2I

Ti | (�)C

where C is any constant functor for some set C, and Id is the identity functor on
Set. These functors cover many important applications: streams, binary trees,
deterministic finite automata and deterministic labelled transition systems are all
examples of coalgebras for polynomial functors, as is the so called game functor
whose coalgebras provide semantics for Coalition Logic. For this last instance,
the “game functor” G for n agents (see Example 2.3.11) can be written in the
form of a polynomial functor as follows:

a

hS0,...,Sn�1i2(P(!)\{;})n
{hS0, ..., Sn�1i}⇥ Id(S0⇥...⇥Sn�1)

For a given set X, an element of GX will be a pair consisting of a vector
hS0, ..., Sn�1i of available strategies for each player, together with an “outcome
map” f assigning an element of X to each strategy profile in S0 ⇥ ...⇥ Sn�1.

Every polynomial functor admits adequate uniform constructions for all sets
of one-step formulas. The proof proceeds by a straighforward induction, which
provides each polynomial functor T with a uniform construction such that for
any one-step frame homomorphism f : (X,↵) ! (Y, �) and any V : A ! Q(Y),
the one-step models (X⇤,↵⇤, V[f�h↵]) and (Y⇤, �⇤, V[h�]) are isomorphic. Hence, we
get:

4.5.35. Proposition. For every polynomial functor T, we have:

µMLT ⌘ MSOT/⇠.

Proof:
We provide a sketch of the inductive construction of an adequate uniform con-
struction.
Constant functor: For the constant functor C, a one-step frame is a pair (X, c)
with c 2 C. We set X⇤ = ;, c⇤ = c and hc : ; ! X to be the unique inclusion of
the empty set.
Identity functor: Given a one-step frame (X, u) for the identity functor, which
consists of a set X and u 2 X, we set X⇤ = {u}, u⇤ = u and we set hu : {u}! X

128 Chapter 4. Expressive Completeness

to be the inclusion map sending u to itself.
Product: Suppose that T1 and T2 have associated adequate uniform construc-
tions with the required property. Consider a one-step T1 ⇥ T2-frame (X, (↵, �))
with ↵ 2 T1X and � 2 T2X. Let h1 : (X1,↵1) ! (X,↵) be the cover assigned
by the uniform construction for T1 and let h2 : (X2, �2) ! (X, �) be the cover
assigned by the uniform construction for T2. Then we take X⇤ to be the disjoint
union X1 +X2, and set

(↵, �)⇤ = (T1i1(↵1),T2i2(�2))

where i1 : X1 ! X1 + X2 and i2 : X2 ! X1 + X2 are the insertion maps for
the co-product. Finally, we define the covering map h(↵,�) : X1 + X2 ! X be
obtained by simply co-tupling the maps h1, h2, i.e. h(↵,�) is the map given by the

universal property of the co-product applied to the diagram X1
h1�! X

h2 � X2.
We get:

(T1 ⇥ T2)h(↵,�)((↵, �)⇤) = (T1h(↵,�)(T1i1(↵1)),T2h(↵,�)(T2i2(�2)))

= (T1(h(↵,�) � i1)(↵1),T2(h(↵,�) � i2)(�2))
= (T1h1(↵1),T2h2(�2))

= (↵, �)

so h(↵,�) is indeed a covering map as required.
Exponentiation: The case of a functor TC for some constant C is handled
analogously with the case of binary products, so we leave it to the reader.
Co-product: This step of the construction is the easiest one. Suppose that each
functor Ti for i 2 I is equipped with an adequate uniform construction. Let
(X,↵) be a one-step frame for the co-product

`
i2I Ti. Then since co-product is

disjoint union in Set, there is a unique i 2 I with ↵ 2 TiX, and so we define
the cover h↵ : (X⇤,↵⇤)! (X,↵) merely by applying the uniform construction for
each Ti.

4.5.36. Remark. These uniform constructions were all designed in a case-by-
case fashion, and at the present time we do not know whether there is any general
recipe for producing an adequate uniform construction when it exists. What the
constructions mentioned so far seem to have in common is that we want to pro-
duce enough equivalent (in some sense) copies of each state in a one-step model,
but this is not always su�cient. In the next section we will see a somewhat more
involved construction for the monotone µ-calculus, which aims to create su�-
ciently many copies of each state but also, crucially, su�ciently many pairwise
disjoint copies of all the neighborhoods. In this case we are trying to neutralize
not only the capability of the second-order one-step language to count states in
one-step models, but also its capability to express how certain neighborhoods are
related to each other, in particular, whether they overlap or not. For example, the

4.6. Characterizing the monotone µ-calculus 129

second-order one-step language can express the property that any two neighbor-
hoods intersect, or there is a smallest neighborhood contained in all others etc.,
and the uniform construction we provide needs to trivialize all such statements.
In general, applying our main result as it stands may require a bit of creativity,
and we regard it as an interesting (possibly quite hard) task for future research
to come up with a result that makes the task entirely mechanical. We mention
some related questions in our concluding section.

4.6 Characterizing the monotone µ-calculus

In this final section we will present the characterisation result for the monotone
µ-calculus in detail. As we already mentioned, the first version of our charac-
terization theorem cannot be applied to M, since there is no adequate uniform
construction for it.

In the following we will first explain why M does not admit an adequate
uniform construction, and then define a uniform construction for it, which we
show that is a weakly adequate uniform construction. We can then apply the
second version of our main result.

4.6.1 No adequate construction for M
4.6.1. Proposition. The functor M does not admit an adequate uniform con-
struction for the formula ' defined as: 9p.¬(a ✓ p), or equivalently ¬Em(a).

Proof:
The formula ' just says that the value of a is non-empty. Suppose there ex-
isted an adequate uniform construction for this formula. Consider the situa-
tion depicted in the diagram below, which shows three one-step frames together
with two one-step frame morphisms, one for each of the two bottom one-step
frames. The top frame consists of two points {w1, w2} and has neighborhoods
{{w1, w2}, {w2}}, the bottom left frame has points {u1, u2, u3} and neighbor-
hoods {{u1, u2}, {u2, u3}, {u1, u2, u3}}. Finally the bottom right frame has a sin-
gle point v, and the associated singleton as its only neighborhood. In other words,
the picture shows a co-span in the category of one-step frames and one-step frame
morphisms. Furthermore, consider the valuation on the topmost one-step frame
which makes a true at exactly the one state w1, i.e. the one not belonging to
the singleton neighborhood. This valuation is depicted in the diagram by repre-
senting the state where a is true by a blank circle, and the state where it is not
true by a filled circle. The induced valuations on the bottom one-step frames via
the frame morphisms are depicted in the same manner. With respect to these
valuations, p will be true at u1, but false at u2, u3 and v.

130 Chapter 4. Expressive Completeness

Every cover satisfies '

No cover satisfies '

Let us denote the top frame by (Y, �), its valuation by V , the bottom-left
frame as (X,↵), the bottom-right one as (X 0

,↵
0) and the corresponding frame

morphisms as f and f
0 respectively. Now, the supposed adequate construction

will assign a cover to each of the three frames, and we get valuations for each
cover from the valuations depicted in the diagram. It follows from the defining
condition 4.2 for adequacy that ' must have the same truth value in each of
these covers. But this leads to a contradiction: it is not hard to check that the
cover h↵ : (X⇤,↵⇤)! (X,↵) must be such that (X⇤,↵⇤, V[f�h↵]) � ', because the
image of the map h↵ must support ↵ and therefore include the one element of
X coloured red. On the other hand, we clearly must have (X 0

⇤,↵
0
⇤, V[f 0�h↵0]) 2 ',

which contradicts the condition 4.2.

4.6.2 A weakly adequate uniform construction for M
We now define a uniform construction for the supported companion Ms of M
w.r.t. a given finite set of formulas, and prove that it is weakly adequate. More
precisely, we proceed as follows: Throughout the section we fix an arbitrary
natural number k and a finite set A of variables, and define a uniform construction
(�)⇤ which will be shown to be weakly adequate for every formula in SO

1
{2}(A)

of quantifier depth k. It follows that there is a weakly adequate uniform
construction for every finite set � of formulas in SO

1
{2}, since we can apply the

result to the maximum quantifier depth of any formula in �.

4.6.2. Definition. Given a set X, and an object ↵ 2MX, put

X⇤ := X ⇥ 2k ⇥ P(X)⇥ !

4.6. Characterizing the monotone µ-calculus 131

and let ⇡X be the projection map from X⇤ to X. Define ↵⇤ 2M(X⇤) by setting
Z 2 ↵⇤ for Z ✓ X⇤ i↵ dY, je ✓ Z for some Y 2 ↵ and some j < !, where

dY, je := {(u, i, Y, j) | u 2 Y, i < 2k}.

The sets of the form dZ, je for Z 2 ↵ will be called the basic members of ↵⇤. The
set of all elements in X⇤ that do not belong to any basic member will be called
the residue of the frame (X⇤,↵⇤). Note that X⇤ is partitioned into each of the
basic members along with the residue, as an extra partition cell.

The intuition behind the construction is that we want to create infinitely many
disjoint copies of each neighborhood, and furthermore we want to create su�-
ciently many copies of each state within each copy of a neighborhood.

4.6.3. Proposition. For every given one-step M-frame (X,↵), the projection
map ⇡X : (X⇤,↵⇤)! (X,↵) is a surjective cover.

Proof:
Clearly the projection map ⇡X is always surjective since (u, 0, ;, 0) 7! u for all
u 2 X. (Note that 0 < 2n for all n 2 !, so we always have (u, 0, ;, 0) 2 X⇤.)

We need to check that M⇡X(↵⇤) = ↵. In other words, we have to check that
for all Z ✓ X, we have Z 2 ↵ i↵ ⇡�1

X
(Z) 2 ↵⇤. For left to right, if Z 2 ↵ then

dZ, 0e is a basic member of ↵⇤, and clearly dZ, 0e ✓ ⇡
�1
X
(Z). Conversely, suppose

⇡
�1
X
(Z) 2 ↵⇤. Then there is some basic member dY, je 2 ↵⇤ with dY, je ✓ ⇡

�1
X
(Z).

But then Y 2 ↵, and furthermore Y ✓ Z: if u 2 Y then (u, 0, Y, j) 2 dY, je,
so (u, 0, Y, j) 2 ⇡

�1
X
(Z) meaning that ⇡X(u, 0, Y, j) = u 2 Z. So Z 2 ↵ as

required.

The main goal of this section is to prove the following:

4.6.4. Proposition. (�)⇤ is weakly adequate for every formula in SO
1
{2}(A) of

quantifier depth k.

Clearly it then follows that there is a weakly adequate uniform construction
for every finite set � of formulas in SO

1
{2}, since we can apply the result to the

maximum quantifier depth of any formula in �.
To prove that (�)⇤ is weakly adequate for all formulas of quantifier depth k,

it su�ces to prove that for every pair of one-step fM-bisimilar models (X,↵, V)
and (Y, �, U), the corresponding models (X⇤,↵⇤, V[⇡X]) and (Y⇤, �⇤, U[⇡Y]) satisfy

the same formulas of quantifier depth k, where fM is the lax extension for
M defined in Example 2.3.33. It should not be too surprising that we can
prove this, but the actual proof is not entirely trivial. From now on we keep the
models (X,↵, V) and (Y, �, U) fixed, as well as a global one-step bisimulation
R relating these models. Throughout this section, we shall use the notation
(X,↵, V) ⌘k (Y, �, U) to say that two one-step models satisfy the same formulas
of MSO1{2}(A) with at most k nested quantifiers.

132 Chapter 4. Expressive Completeness

4.6.5. Definition. A propositional A-type ⌧ is a subset of A. Given a set X

and a valuation V : A ! Q(X), the propositional A-type of v 2 X is defined to
be mV (v) = {a 2 A | v 2 V (a)}.

4.6.6. Definition. Given a subset Z of X⇤ or Y⇤, a valuation W such that
W : B ! Q(X⇤) or W : B ! Q(Y⇤), and a natural number n, the n-signature
of Z over B relative to the valuation W is the mapping �Z : P(B) ! {0, ..., n}
defined by:

�Z(t) := min(|{x 2 Z | mW (x) = t}|, n)

4.6.7. Definition. Let B be any superset of A, and let V1 : B ! Q(X⇤) and
V2 : B ! Q(Y⇤). Then for any natural number n we write

(X⇤,↵⇤, V1) ⇡n (Y⇤, �⇤, V2),

and say that these one-step models match up to depth n, if:

1. For every n-signature � over variables B, the number of basic elements of
signature � in ↵⇤ and �⇤ respectively are either both finite and equal, or
both infinite.

2. The residues of the two one-step models have the same n-signature.

Using the assumption that the models (X,↵, V) and (Y, �, U) are globally

one-step fM-bisimilar, we get the following lemma (which is the only point in the
proof where we make use of the fact that R is a global L-bisimulation rather than
an arbitrary one).

4.6.8. Lemma. (X⇤,↵⇤, V[⇡X]) ⇡2k (Y⇤, �⇤, U[⇡Y]).

Proof:
To see that the residues of the two models have the same 2k-signature, for
one direction just note that if the residue of (X⇤,↵⇤, V[⇡X]) contains an element
(u, i, Z, j) then it contains infinitely many elements of the same propositional
type, namely one member (u, i, Z, p) for every p 2 !. But then so will the residue
of (Y⇤, �⇤, U[⇡Y]): just pick some v with uRv (again using the fact that R is a
global one-step bisimulation). Since v /2 ;, for every p 2 ! the element (v, 0, ;, p)
will be a member of the residue of (Y⇤, �⇤, U[⇡Y]) of the same propositional type
as (u, i, Z, j).

Now for the basic elements. First note that, for any 2k-signature �, ↵⇤ either
contains no basic elements of signature �, or infinitely many: if there is some
basic element dZ, je of signature �, then for any i 6= j, the basic element dZ, ie
has the same 2k-signature as dZ, je with respect to the valuation V[⇡X]. The same
holds for �⇤ with respect to the valuation U[⇡Y]. Hence, it su�ces to show that ↵⇤

4.6. Characterizing the monotone µ-calculus 133

contains a basic element of signature � w.r.t. V[⇡X] i↵ �⇤ contains a basic element
of signature � w.r.t U[⇡Y].

We consider only one direction: suppose that ↵⇤ contains a basic element
dZ, je of signature �, where Z 2 ↵. Then there must be Z

0 2 � such that, for
all v 2 Z

0, there is u 2 Z with uRv, since R was a one-step L-bisimulation.
Furthermore, since R was a global one-step bisimulation, for every w 2 Z we can
pick some w

0 2 Y with wRw
0, and put

Z
00 = Z

0 [{w0 | w 2 Z}

By monotonicity we have Z
00 2 �. Furthermore, Z and Z

00 are clearly related so
that the following back-and-forth conditions hold: for all u 2 Z there is v 2 Z

00

with uRv, and for all v 2 Z
00 there is u 2 Z with uRv. Since any two states related

by R have the same propositional type, it follows that the same propositional
types appear in dZ, je and dZ 00

, je. But since both these sets contain at least 2k

copies of every propositional type that appears in them, it follows that dZ, je and
dZ 00

, je have the same 2k-signature, as required.

We are going to show, by induction on a natural number m k, that if
two one-step models of the form (X⇤,↵⇤, V1) and (Y⇤, �⇤, V2) match up to depth
2m, then they satisfy the same formulas of quantifier depth m. Together with
the previous lemma, it then follows that the one-step models (X⇤,↵⇤, V[⇡X]) and
(Y⇤, �⇤, U[⇡Y]) satisfy the same formulas of quantifier depth k. For the basis
case of 20 = 1, we need the following result:

4.6.9. Lemma. Let B be a set of variables containing A, and let V1 : B ! Q(X⇤)
and V2 : B ! Q(Y⇤) be valuations such that:

(X⇤,↵⇤, V1) ⇡1 (Y⇤, �⇤, V2)

Then these two one-step models satisfy the same atomic formulas of the one-step
language SO

1
{2}(B).

Proof:
We only prove one direction for each case. Suppose first that:

(X⇤,↵⇤, V1) �1 p ✓ q,

where p, q 2 B. Suppose for a contradiction that V2(p) * V2(q). Then there is
some (u, i, Z, j) 2 Y⇤ such that (u, i, Z, j) 2 V2(p)\V2(q). If (u, i, Z, j) comes from
the residue of (Y⇤, �⇤) then since the residue of (X⇤, V↵) has the same 1-signature,
it must contain some element (u0

, i
0
, Z

0
, j

0) of the same 1-type, and so we cannot
have V1(p) ✓ V1(q). The case where (u, i, Z, j) comes from a basic member is
similar.

134 Chapter 4. Expressive Completeness

Now, suppose that:
(X⇤,↵⇤, V1) �1 2p

Then V1(p) 2 ↵⇤, so there is some basic element dZ, je 2 ↵⇤ with dZ, je ✓ V1(p).
There must be some basic dZ 0

, j
0e 2 �⇤ of the same 1-signature over B as dZ, je,

and clearly it follows that dZ 0
, j

0e ✓ V2(p) and so V2(p) 2 �⇤ as required.

We now only need the following lemma:

4.6.10. Lemma. Let B be a finite superset of A, let 0 < l k and let V1 : B !
Q(X⇤) and V2 : B ! Q(Y⇤) be valuations such that:

(X⇤,↵⇤, V1) ⇡2l (Y⇤, �⇤, V2)

Let q be any fresh variable. Then for any valuation V
0
1 over B [{q} extending

V1 with some value for q, there exists a valuation V
0
2 over B [{q} extending V2,

such that:
(X⇤,↵⇤, V

0
1) ⇡2(l�1) (Y⇤, �⇤, V

0
2)

and vice versa.

Proof:
We only prove one direction since the other direction can be proved by a sym-
metric argument.

Let V 0
1 be given. By the hypothesis, for any 2m-signature � over the variables

B, the number of basic elements of signature � in ↵⇤ and �⇤ relative to V1 and V2

are either both finite and the same, or both infinite. Let �1, ..., �k be a list of all
the distinct 2m-signatures over B such that the set of basic elements of ↵⇤ and
�⇤ of signature �i, with 1 i k, is non-empty but finite, and let �k+1, ..., �l

be a list of all the 2m-signatures such that, for k + 1 i l, there are infinitely
many basic elements of ↵⇤ and of �⇤ of signature �i. Then, for each i 2 {1, ..., l},
let ↵⇤[�i] denote the set of basic elements in ↵⇤ of signature �i, and similarly let
�⇤[�i] denote the set of basic elements of �⇤ of signature �i. Then ↵⇤[�1], ...,↵⇤[�l]
is a partition of the set of basic elements of ↵⇤ into non-empty cells, and similarly
�⇤[�1], ..., �⇤[�l] is a partition of the set of basic elements of �⇤.

Given the extended valuation V
0
1 on X⇤ defined on variables B [{q}, we

similarly let ⌧1, ..., ⌧k0 be a list of all the 2l�1-signatures over B [{q} such that,
for 1 i k

0, the set of basic elements of ↵⇤ of 2l�1-signature ⌧i is non-empty but
finite. We let ⌧k0+1, ..., ⌧l0 be a list of all the 2l�1-signatures over B[{q} such that,
for each i with k

0 + 1 i l
0, the set of basic elements of ↵⇤ of 2m�1-signature

⌧i is infinite. Let ↵⇤[⌧i] denote the set of basic elements of ↵⇤ of 2l�1-signature
⌧i, so that the collection ↵⇤[⌧1], ...,↵⇤[⌧l0] constitutes a second partition of the
set of basic elements of ↵⇤. It will be useful to introduce the abbreviation D1

for the finite set ↵⇤[�1] [... [↵⇤[�k], and the abbreviation D2 for the finite set
↵⇤[⌧1] [... [↵⇤[⌧k0].

4.6. Characterizing the monotone µ-calculus 135

For each i with 1 i k, there is a bijection between the set ↵⇤[�i] and
�⇤[�i], and we can paste all these bijections together into a bijective map

f : ↵⇤[�1] [... [↵⇤[�k]! �⇤[�1] [... [�⇤[�k]

Since every basic element of ↵⇤ not in D1 belongs to a 2m-signature of which there
are infinitely many basic elements in �⇤, and since D1 [D2 is finite, it is easy to
see that we can extend the map f to a map g which is an injection from the set
D1[D2 into the set of basic elements of �⇤, such that for each basic element dZ, je
in D1[D2, dZ, je and g(dZ, je) have the same 2m-signature over B, and such that
g �D1 = f . Each basic element of �⇤ not in the image of g must then be of one of
the 2m-signatures �k+1, ..., �l, and so we can partition the set of basic elements of
�⇤ outside the image of g into the cells �⇤[�k+1] \ g[D2], ..., �⇤[�l] \ g[D2]. For each
i with k + 1 i l, let �i1, ..., �

i

r
list all infinite sets of the form ↵⇤[�i] \ ↵⇤[⌧j]

for k
0 + 1 j l

0. The list �i1, ..., �
i

r
must be non-empty, and so since the set

�⇤[�i] \ g[D2] is also infinite, we may partition it into r many infinite cells and
list these as �i1, ..., �

i

r
. Now, for each basic element dZ, je of �⇤, we define a map

WdZ,je from B [{q} to P(dZ, je) by a case distinction as follows:
Case 1: dZ, je = g(dZ 0

, j
0e) for some dZ 0

, j
0e 2 D1 [D2. Then dZ, je and

dZ 0
, j

0e have the same 2m-signature over B. Using this fact we define the valuation
WdZ,je so that, for each p 2 B, we have WdZ,je(p) = V2(p) \ dZ, je, and so that
dZ 0

, j
0e and dZ, je have the same 2m�1-signature over B[{q} with respect to the

valuations V 0
1 and WdZ,je. We show how to assign the value of the variable q: for

each propositional type t over B [{q}, there are three di↵erent possible cases to
consider. If dZ 0

, j
0e has m

0
< 2m�1 elements of type t [{q} over B [{q}, then

pick m
0 many elements of dZ, je of type t and mark them by q. This is possible

since m
0
< 2l�1 2m and dZ 0

, j
0e and dZ, je have the same 2l-signature. If there

are m0
< 2l�1 elements of dZ 0

, j
0e of type t over B [{q}, then pick m

0 elements of
dZ, je of type t over B, and mark all the other elements of dZ, je of type t by q.
Finally, if there are at least 2m�1 elements of dZ 0

, j
0e of type t[{q} over B [{q}

and at least 2l�1 elements of dZ 0
, j

0e of type t over B [{q}, then all in all there
must be at least 2l elements of dZ 0

, j
0e of type t over B, and so there must be at

least 2l elements of dZ, je of type t over B. Pick 2l�1 of these and mark them by
q. Finally, let WdZ,je(q) be the set of elements of dZ, je marked by q.

Case 2: dZ, je is not in the image of g. Then there must be some i 2
{k0 + 1, ..., l0} such that dZ, je 2 �⇤[�k+1] \ g[D2], and this set is partitioned into
�
i

1, ..., �
i

r
. Let dZ, je 2 �i

j
, and pick some arbitary element dZ 0

, j
0e of the set �i

j
.

Then dZ 0
, j

0e and dZ, je have the same 2m-signature over B and we can proceed
as in Case 1.

We define the valuation V
0
2 so that the intersection of V 0

2(q) with the union of
all the basic members of �⇤ equals the union of the sets WdZ,je(q) for dZ, je a basic
element in �⇤, and so that the residue of (Y⇤, �⇤) has the same 2(m�1)-signature
as the residue of (X⇤,↵⇤) with respect to the valuations V

0
1 and V

0
2 . This can

136 Chapter 4. Expressive Completeness

be done using the same reasoning as in the two previous cases. We now need to
check that

(X⇤,↵⇤, V
0
1) ⇡2(m�1)

(Y⇤, �⇤, V
0
2)

First, suppose there are infinitely many basic elements of ↵⇤ of some 2m�1 signa-
ture ⌧j, meaning that k0 j l

0. Then since the set ↵⇤[⌧j] is infinite, D1 is finite
and

↵⇤[⌧j] = (D1 \ ↵⇤[⌧j]) [(↵⇤[�k+1] \ ↵⇤[⌧j]) [... [(↵⇤[�l] \ ↵⇤[⌧j])

there must be some i 2 {k + 1, ..., l} such that the set ↵⇤[�i] \ ↵⇤[⌧j] is infinite.
This means that ↵⇤[�i] \ ↵⇤[⌧j] appears in the list �i1, ..., �

i

r
, and so we see that

all elements of some member of the list �i1, ..., �
i

r
will have the 2m�1-signature ⌧j.

Since each member of this list is infinite, we see that there must be infinitely
many basic elements of �⇤ of signature ⌧j.

Conversely, suppose there are infinitely many basic elements of �⇤ of 2m�1-
signature ⌧j over B [{q}. Then since the image of g is finite, some of these
elements must be outside the image of g, which means that for some i 2 {k +
1, ..., l}, some member of the list �i1, ..., �

i

r
will consist of elements of signature

⌧j. This means that some member of the list �i1, ..., �
i

r
will consist of elements

of signature ⌧j, and since each member of this list is infinite we see that ↵⇤ has
infinitely many basic elements of 2m�1-signature ⌧j over B [{q}.

Finally, suppose that there are finitely many basic elements of ↵⇤ and �⇤ of
2m�1-signature ⌧j. We check that the mapping g restricts to a bijection between
the basic elements of ↵⇤ and �⇤ of this signature. First, g is injective and maps
basic elements of ↵⇤ of signature ⌧j to basic elements of �⇤ of signature ⌧j. It only
remains to show that (the restriction of) g is surjective, i.e. each basic element
dZ, re of signature ⌧j is equal to g(dZ 0

, r
0e) for some dZ 0

, r
0e. But suppose dZ, re

is not in the image of g; then it is in one of the members of the list �i1, ..., �
i

r
for

some i, and since each of these members is an infinite set of basic elements of
the same signature, we see that there are infinitely many basic elements of �⇤ of
signature ⌧j, contrary to our assumption. Hence, the proof is done.

We now get the following result as an application of Theorem 4.5.13 for the
monotone neighbourhood functor. We recall that the monotone µ-calculus is the
logic µML2M which we refer to by µMML, and the monotone monadic second-order
logic is the logic MSO2M denoted by MMSO (see Definitions 2.4.15 and 4.2.3).

4.6.11. Theorem. The monotone µ-calculus is the fragment of monotone monadic
second-order logic that is invariant for behavioural equivalence. In a formula:

µMML ⌘ MMSO/⇠.

Proof:
It su�ces to prove that MSO{2,2s}/⇠ is equal to µML{2,2s}, and then apply The-
orem 4.5.29. For this, by Theorem 4.5.9 it su�ces in turn to prove that the

4.7. Conclusion 137

construction (�)⇤ is weakly adequate for all formulas in SO
1
{2,2s}(A) of quanti-

fier depth k. We can prove this by combining the last three lemmas, using
Ehrenfeucht-Fräıssé games for the one-step language. Lemmas 4.6.8 and 4.6.10
provide a recipe for how “Duplicator” can survive k steps of the game comparing
the models (X⇤,↵⇤, V[⇡X]) and (Y⇤, �⇤, U[⇡Y]), and 4.6.9 guarantees that the valu-
ations constructed at the end of the game will satisfy the same atomic formulas.
Working out the full argument is entirely standard, so we leave the details to the
reader.

4.7 Conclusion

We conclude this chapter by mentioning some questions for future research:

1. Is there a good categorical and “logic free” characterization of those set func-
tors T that admit an adequate (or weakly adequate) uniform construction,
for instance, in terms of T preserving certain limits or colimits? Trying to
answer this question would involve a deeper study of how the model theory
of one-step languages is related to categorical properties of the type functor
involved. Related to this, an anonymous referee of [ESV17] pointed out to
us that the machinery of one-step frames, covers and uniform constructions
are all taking place in the category of elements associated with the set func-
tor T, and properties of the functor T are closely related to properties of
the corresponding category of elements [BW95]. This could very well be a
fruitful direction to investigate further.

2. Can we improve our work on the supported companion functor, to the ef-
fect that every set functor T has a companion T0 that admits an adequate
uniform construction? Relating this to the previous question, we would
like to understand why the supported companion to M admits an ade-
quate uniform construction, but not M itself. The construction achieves
two things, in general: First, it ensures that every ↵ 2 Ts

X has a unique
smallest support (even when X is infinite), often called its base. Second,
and in our view more importantly, we get that the map baseX : Ts

X ! PX

defined by sending each ↵ to its base is a natural transformation. Condi-
tions for a functor under which this holds have been isolated by Gumm in
[Gum05]. Are these conditions related to the existence of adequate uniform
constructions?

3. It would be interesting to further explore the relation between MSOT and the
first-order logic of Litak & alii [LPSS12] for T-coalgebras. For instance, an
interesting question would be whether (on T-tree models) MSOT is equivalent
to some extension of this first-order language with fixpoint operators.

138 Chapter 4. Expressive Completeness

4. Finally, there is the question of finding su�cient and necessary conditions
for a Janin-Walukiewicz theorem to hold. Related to this question, we have
not been able to produce an example of a functor for which the Janin-
Walukiewicz theorem does not hold (the question of whether such an ex-
ample can be found was raised to us by an anonymous referee). Given all
that we can say for sure, it could be the case that a Janin-Walukiewicz
theorem simply holds for every set functor, but we conjecture that at least
some conditions on the functor are required.

Chapter 5

Axiomatic Completeness

In this chapter, we address the completeness question for the coalgebraic fixpoint
logic µML

T
r. Our axiomatization K can be seen as a generalization of Kozen’s

proof system for the modal µ-calculus to the coalgebraic level of generality. It
consists of an extension of the complete axiomatisation M for the r-based coal-
gebraic modal logic ML

T
r from [KKV12] with Kozen’s axiom and rule for the

fixpoint operators. Hence another way to view the result of this chapter is that it
extends the completeness result of [KKV12] to the setting of coalgebraic fixpoint
logic. We recall that the nabla approach that we take towards modal logic, deals
with a coalgebraic generalization of the same cover modality that is the main
operator featuring in Walukiewicz’ completeness proof for the modal µ-calculus
[Wal00], which as we mentioned in Section 1.3.1.1 was also used in [JW95] to
define automata corresponding to formulas of the modal µ-calculus. Just as in
Walukiewicz’ completeness proof, we use translations between formulas of µMLTr
and coalgebraic automata. The di↵erence is that we will be more radical and
bring automata into the picture at an earlier stage so that all our proofs involve
automata in an essential way. The coalgebraic automata that we will employ
here were developed by Venema [Ven06] as the automata-theoretic counterpart
of µMLTr.

Here, our approach will follow the same track as in Chapter 4: a pivotal role
in our proofs will be played by the notion of a one-step logic. As we have seen
in previous chapters, one-step logics are simple logical formalisms that feature as
the codomain of the transition function of modal automata. Their importance
lies in the observation that many results on modal fixpoint logics, often involving
nontrivial automata-theoretic phenomena, can be understood at the basic level
of one-step logic [FV18, ESV17]. In the following section we will review the main
steps of our proof strategy.

139

140 Chapter 5. Axiomatic Completeness

5.1 Proof strategy

In this section, we outline our proof strategy. We split the ideas, concepts and
technical results into two parts: “Automata, coalgebras and proof theory” and
“Games and special automata”.

Automata, coalgebras and proof theory Our automata-theoretic approach
allows for an explicit study of the interaction between the two main parallel
aspects of the completeness proof: the combinatorics involved in reasoning with
fixpoints, and the dynamics encoded in the semantics of the modal operators. In
this way, we can make the key concept of a trace, which is an essential but fairly
informally discussed ingredient in Walukiewicz’ proof, more explicit by developing
a framework for “managing” traces. Thus our machinery separates combinatorics
(trace management) from dynamics (coalgebra and one-step language), which
allows us to deal with the combinatorial and the dynamic concepts in largely
separate frameworks. On the other hand, the use of modal automata will allow us
to combine these two features, to understand where and how the two perspectives
interact, and how they connect to each other. In particular, we will see that the
trace theory of an automaton is largely determined by the shape of the formulas
of the one-step language.

As we discussed in Section 1.4.3, Walukiewicz’ main goal in his proof strategy
is to show that every formula of the µ-calculus provably implies a semantically
equivalent disjunctive formula, that is, a formula in a normal form corresponding
to a disjunctive automaton, i.e., a non-deterministic parity automaton operating
on Kripke models. Technically, the way we achieve this is to work with the
full class of coalgebraic modal automata instead of only with disjunctive ones,
so we can link formulas and automata by much more elementary techniques:
every formula is provably equivalent to a formula in a normal form, that is, the
syntactic representation of some coalgebraic modal automaton. Formally, we
define a recursive construction providing a modal automaton A' for each formula
', and a translation in the converse direction providing a formula tr(A) for each
modal automaton A. We then prove the following proposition (with ⌘K denoting
provable equivalence with respect to system K):

5.1.1. Theorem. For every formula ' 2 µML
T
r, we have ' ⌘K tr(A').

Theorem 5.1.1 takes us “half-way” towards Walukiewicz’ result, since it en-
ables us to apply proof-theoretic notions such as derivability and consistency
to automata and hence the remainder of the distance can now be addressed by
automata-theoretic methods.

Games and special automata The main tools that we employ in our automata-
theoretic approach are two kinds of games for modal automata: the satisfiability

5.1. Proof strategy 141

game and the consequence game, and two special kinds of modal automata: in
addition to the disjunctive automata, the class of semi-disjunctive automata.

The satisfiability game S(A) related to an automaton A was introduced in
[FLV10]. It is an infinite two-player game, that can be seen as a streamlined,
game-theoretic analog for automata to what tableaux are for formulas. In this
game, the dynamics of the semantics appears in the moves of the player 9 who
has the role of “model builder”, and attempts to construct a satisfying model
one layer at a time, while constrained by the one-step transition structure of the
automaton.

The combinatorics of the trace theory enters the picture through the winning
condition for infinite matches. As we shall see, each infinite match naturally in-
duces a trace graph, an intricate graph structure of which the finite and infinite
paths correspond to A-traces: finite and infinite sequences of states of the au-
tomaton A. The winning condition of S(A) states that for 9 to win the infinite
match, all infinite traces, corresponding to full branches through this graph, need
to satisfy the acceptance condition of A. Intuitively then, the smaller and simpler
the trace graph, the easier it is for her to win. In particular, it will be to her
advantage if we restrict the use of conjunctions in the one-step language, since
these correspond to branching in the trace graph.

As another contribution of this chapter, related to the satisfiability game, we
identify a new class of automata, which we call semi-disjunctive. These automata
can be viewed as an automata-theoretic counterpart to the “weakly aconjunctive
formulas” introduced by Walukiewicz. The use of conjunctions in the one-step
formulas of a semi-disjunctive automaton is restricted, and even though they are
much less constrained than disjunctive automata, their one-step formulas are still
of a shape that guarantees the trace theory of an infinite match of the satisfiability
game to be well behaved, in the sense that we can guarantee that the collection of
bad traces associated with a match of the satisfiability game for a semi-disjunctive
automata is finite (modulo a natural equivalence relation of cofinal equality).

The consequence game C(A,A0) is an original contribution of our approach.
It is an infinite two-player game which resembles Walukiewicz’ consequence game
between tableaux, and can be seen as a kind of implication game between the
satisfiability games of two automata, concentrating on establishing structural con-
nections between the automata. Its moves revolve around one of the players, pro-
saically named “player II”, trying to establish some structural connection between
the two automata to support the claim that A implies A0. We write A ✏C A0 in
case he succeeds, in the sense of having a winning strategy in the game C(A,A0).

Completeness proof Bringing all these ideas together, as a key step in our
proof, we establish the following generalization of Walukiewicz’ main technical
result:

142 Chapter 5. Axiomatic Completeness

5.1.2. Theorem. For every formula ' 2 µML
T
r, there is a semantically equivalent

disjunctive automaton D such that `K '! tr(D).

We prove this theorem by a formula induction, and it should not come as a
surprise that the key inductive cases are those concerning the fixpoint operators.
In particular, the case where ' is of the form ' = µx.↵(x) requires all of the
machinery developed earlier on. Finally, from Theorem 5.1.2, the completeness
theorem is almost immediate. If ' is an arbitrary consistent formula, then by
Theorem 5.1.2 it is semantically equivalent to a consistent disjunctive automaton
D. But for disjunctive automata it is easy to prove that consistency implies
satisfiability (applying Lemma 5.9.1 and Proposition 5.6.4), and so we are done.

5.2 Coalgebraic fixpoint logic

In this chapter we will work with r-based coalgebraic fixpoint logic, as we did
in Chapter 3. For the sake of completeness, we first recall the syntax and the
semantics of coalgebraic fixpoint logic for a weak pullback-preserving functor T.
Here we follow the notation discussed in Remark 2.4.8: we will use µMLTr to refer
to the r-based fixpoint logic obtained for a functor T with the semantics given
by the relation lifting T, whereas µMLTr is used to refer to the r-based language
for T without specifying the semantics.

5.2.1 Syntax

We fix an infinite set of propositional variables.

5.2.1. Definition. The language µML
T
r of coalgebraic fixpoint formulas is de-

fined by the following grammar:

' ::= ? | > | p | ' _ ' | ' ^ ' | r↵ | ¬' | µp.' | ⌫p.'

where p belongs to the set of propositional variables, and ↵ 2 T!(µMLTr). There
is a restriction on the formation of the formulas µp.' and ⌫p.', namely, no oc-
currence of p in ' may be in the scope of an odd number of negations. We denote
by µML

T
r(X) the set of formulas with free variables from set X, and as a conven-

tion we usually use letters p, q, r, ... to denote bound variables and x, y, z, ... for
free variables of formulas (for the precise definition of the notions of scope and
occurrence we refer the reader to Definition 2.4.2).

5.2.2. Definition. Let ' and { z | z 2 Z} be modal fixpoint formulas, where
Z is a set of variables that are free in '. Then we let

'[z/z | z 2 Z]

5.2. Coalgebraic fixpoint logic 143

denote the formula obtained from ' by simultaneously substituting each formula
 z for z in ' (with the usual understanding that no free variable in any of the
 z will get bound by doing so). In case Z is a singleton z, we will simply write
'[z/z], or '[] if z is clear from context. If Z = Y1] Y2, it will occasionally be
convenient to write '[z/z | z 2 Y1, z/z | z 2 Y2] instead of '[z/z | z 2 Z].

5.2.3. Fact. Let { y | y 2 Y} and {�z | z 2 Z} be sets of formulas that are
indexed by two disjoint sets of variables Y and Z. Then for every formula ' we
have

(1) '[y/y | y 2 Y][�z/z | z 2 Z] = '

h
 y[�z/z | z 2 Z]/y | y 2 Y,�z/z | z 2 Z

i

(2) '[y/y | y 2 Y][�z/z | z 2 Z] = '

h
 y/y | y 2 Y,�z/z | z 2 Z

i
,

provided no z 2 Z occurs freely in any y.

We will sometimes make the assumption (but always explicitly) that our for-
mulas are in negation normal form.

5.2.2 Semantics

To introduce the semantics of µMLTr we first define the notion of a T-model over
a set X of propositional letters. In this chapter it will be more convenient to work
with markings instead of valuations, so we will stick to the following definition of
a T-model.

5.2.4. Definition. A T-model S = (S, �,m) is a T-coalgebra (S, �) together
with a marking m : S ! PX. It will be convenient to think of a T-model S as a
coalgebra S = (S, �m) for the functor TX defined by TXS := PX⇥ TS where �m :
S ! TXS is given by the map (m, �). It is obvious that any marking m : S ! PX

induces a valuation Vm : X! PS mapping p to the set {s 2 S | p 2 m(s)}.

Using the relation lifting T from Example 2.3.27, we define the semantics for
the language µML

T
r(X) on T-models. Since apart from the nabla modality, the

definition of the satisfaction relation �Vm is exactly the same as it is for the
standard µ-calculus (see Definition 2.1.8), here we only recall the definition for
the nabla modality:

s �Vm r↵ i↵ (�m(s),↵) 2 T(�Vm).

The logic obtained by this particular semantics is denoted by µML
T
r.

5.2.3 Axiomatics

Our derivation system K is the extension of the complete derivation system M
for Moss’ finitary logic [KKV12][KKV08] with rules and axioms for the fixpoint
operators.

144 Chapter 5. Axiomatic Completeness

5.2.5. Definition. The derivation system K which is uniformly parametric in
the functor T is given by the following axioms and derivation rules in Table 5.1,
together with any complete set of axioms and rules for classical propositional
logic.

(�1)
{'! | (',) 2 Z}

r↵! r� (↵, �) 2 TZ

(�2)
V
{r↵ | ↵ 2 �}!

W
{r(T^)(�) | � 2 SRD(�)}

(�3) r(T_)(�)!
W
{r↵ | ↵ T2 �}

(Af) '(µx.'(x))! µx.'(x)

(Rf)
'()!

µx.'!

Table 5.1: Rules and axioms of the system K

The axioms (�2) and (�3) are governing the interaction of r with conjunc-
tions and disjunctions respectively and can be seen as modal distributive laws.
Here we see conjunction and disjunction (^ and _) as maps from P!(µMLTr) to
µML

T
r, so we can apply T to them and get maps T^ and T_. In addition we

denote the set of all slim redistributions of � by SRD(�) as in Definition 2.3.31.
The rule (�1) can be read as a congruence and monotonicity rule in one. It has
a side condition expressing that it may only be applied when the set of premisses
is indexed by a relation Z such that (↵, �) belongs to the lifted relation TZ. (Af)
and (Rf) are the standard axiom and rule for least fixpoints.

The notions of derivability with respect to this system is standard. If there
is a derivation of the formula ', we write `K '. Given formulas ' and we say
' provably implies , notation: ' K , if `K '! . We write ' ⌘K in the
case that both ' K and K ' hold. A formula ' is K-consistent or simply
consistent if '! ? is not derivable in K.

5.2.6. Example. In the case of the power set functor (T = P) the axioms (�2)
and (�3) look as follows respectively:

^
{r↵ | ↵ 2 �}!

_
{r{

V
� | � 2 �} |

S
� =

S
� and ↵ \ � 6= ;

for all ↵ 2 �, � 2 �}

r{
W
� | � 2 �}!

_
{r↵ | ↵ ✓

S
� and ↵ \ � 6= ; for all � 2 �}

5.3. Modal automata and one-step formulas 145

5.3 Modal automata and one-step formulas

As mentioned in the introduction of this chapter, automata play a crucial role
in the completeness proof presented by Walukiewicz [Wal00]. In the complete-
ness proof we present in this chapter for µML

T
r, we strengthen the role of au-

tomata and define a translation transforming a formula of µMLTr into an equivalent
modal automaton. Of course, there are already a few di↵erent methods available
for this transformation, for instance, in the method introduced by Janin and
Walukiewicz [JW95] first a tableau is built up from a given formula, and then the
equivalent automaton is constructed from this tableau. The output automaton
from this method is already a non-deterministic automaton (called disjunctive
automaton in our approach) which is not suitable for our purpose, since we want
to work with a wider class of modal automata introduced by Wilke [Wil01]. We
will define the translation in one go by induction on the complexity of formulas,
making use of certain closure properties of modal automata.

Here we first recall the notion of one-step logic. As we discussed in Sec-
tion 2.4.3, one-step logic determines the transition map of modal automata. This
notion originated from the theory of coalgebraic logic. Intuitively one-step logic
provides the syntax and semantics to extract information about the one-step level
of coalgebras. Notions like one-step syntax (a language consists of one-step for-
mulas), one-step semantics, one-step derivation system and one-step model theory
naturally come into the picture, see for instance[KKV12][SP09b].

5.3.1 One-step logic

Modal automata are based on the one-step language which consists of modal
formulas of rank one. The basic definitions were already given in Section 2.4.3,
but since one-step logic plays a crucial role in this chapter, we include the formal
definitions here as well.

5.3.1. Definition. Given a set A, we define the set LF(A) of lattice terms over
A through the following grammar:

⇡ ::= ? | > | a | ⇡ ^ ⇡ | ⇡ _ ⇡,

where a 2 A. Given two sets X and A, we define the set 1MLr(X, A) of modal
one-step formulas over A with respect to X inductively by

↵ ::= ? | > | p | ¬p | r� | ↵ ^ ↵ | ↵ _ ↵,

with p 2 X and � 2 T!LF(A).

Note that elements from the two parameter sets, X and A, are treated quite
di↵erently in the syntax of one-step formulas: all occurrences of elements of X,

146 Chapter 5. Axiomatic Completeness

corresponding to the proposition letters, must be unguarded, whereas the ele-
ments of A, corresponding to bound variables of a formula and to states of our
modal automata, may only occur in the scope of exactly one modality. Observe
as well that all formulas in 1MLr(X, A) are positive in A.

One-step formulas will be interpreted in one-step models which consist of a
one-step frame together with a marking.

5.3.2. Definition. A one-step TX-frame is a pair (S, ⇠) with ⇠ 2 TXS. A one-
step TX-model over a set A of variables is a triple (S, ⇠,m) consisting of a set S,
a chosen object ⇠ 2 TXS and a marking m : S ! PA.

Using the definition of one-step model we can inductively define the semantics
of the one-step language.

5.3.3. Definition. The one-step satisfaction relation between one-step models
and one-step formulas is defined as follows. Fix a one-step model (S, ⇠,m) with
⇠ = (Y, ⇠0) 2 TXS and a modal one-step language 1MLr(X, A). First, we define the
meaning function J�K0

m
: LF(A) ! PS for lattice formulas over A by induction,

setting JaK0
m

= {s 2 S | a 2 m(s)} for a 2 A, and treating conjunctions and
disjunctions in the obvious manner. We write S, s �0

m
⇡ to indicate s 2 J⇡K0

m
.

The meaning function J�K0
m
induces a map J�K1

m
: 1MLr(X, A)! PTXS inter-

preting one-step formulas as subsets of TXS. Before giving the definition of J�K1
m

we recall that every ⇠ 2 TXS is of the form (Y, ⇠0) 2 PX⇥ TS.
Going back to the map J�K1

m
, it has the usual clauses for conjunction and

disjunction, and the following clauses for the propositional letters and the modal
operator:

• ⇠ = (Y, ⇠0) 2 JpK1
m
i↵ p 2 Y

• ⇠ = (Y, ⇠0) 2 J¬pK1
m
i↵ p /2 Y

• ⇠ = (Y, ⇠0) 2 Jr�K1
m
i↵ (⇠0, �) 2 T(�0

m
)

We write S, ⇠ �1
m
', or S, ⇠,m �1

' to indicate ⇠ 2 J'K1
m
, and refer to this

relation as the one-step semantics. When it is clear from the context that we are
dealing with on-step formulas and there is no risk for confusion, we may drop the
superscript 1 from the notation of meaning function.

5.3.4. Definition. Let ↵ and ↵
0 be one-step formulas. The formula ↵ is one-

step satisfiable if there is a one-step model (S, ⇠,m) such that S, ⇠,m �1
↵,

and one-step valid if S, ⇠,m �1
↵ for all one-step models (S, ⇠,m). We say

that ↵0 is a one-step consequence of ↵ (written ↵ ✏1
↵
0) if S, ⇠,m �1

↵ implies
S, ⇠,m �1

↵
0, for all one-step models (S, ⇠,m), and that ↵ and ↵

0 are one-step
equivalent, notation: ↵ ⌘1

↵
0, if ↵ ✏1

↵
0 and ↵0 ✏1

↵.

5.3. Modal automata and one-step formulas 147

We also need morphisms between one-step frames and models.

5.3.5. Definition. A one-step frame morphism between two one-step frames
(S 0

, ⇠
0) and (S, ⇠) is a map f : S 0 ! S such that (TXf)⇠0 = ⇠. In case such a map

satisfies m0 = m � f ,
S
0

m
0 !!

f // S

m}}
PA

for some markings m and m
0 on S and S

0, respectively, we say that f is a one-step
model morphism from (S 0

, ⇠
0
,m

0) to (S, ⇠,m).

One of the main results about the one-step language is bisimulation invariance,
i.e., all one-step formulas are invariant for bisimulation between one-step models.
An instance of the one-step bisimulation invariance that we consider below is
called naturality of one-step formulas. In fact, naturality of one-step formulas is
the property that ensures that the truth of one-step formulas is invariant under
one-step morphisms, and so it enables us to safely apply maps to one-step models
and get new one-step models that satisfy the same formulas. We call this property
“naturality”, since in the case of coalgebraic modal logic with predicate liftings,
it boils down to the naturality of predicate liftings used in the syntax.

5.3.6. Proposition. [Naturality of one-step formulas] Let f : (S 0
, ⇠

0
,m

0) !
(S, ⇠,m) be a morphism of one-step models over A. Then for every one-step
formula ' 2 1MLr(X, A) we have

S
0
, ⇠

0
,m

0 �1
'() S, ⇠,m �1

'.

Formulating it di↵erently, for any one-step frame (S 0
, ⇠

0), any marking m : S !
PA, and any map f : S 0 ! S, we have

S
0
, ⇠

0
,m � f �1

'() S, (TXf)⇠
0
,m �1

'.

As a specific instance of this invariance result we obtain the following corollary
which we mention explicitly for future reference.

5.3.7. Corollary. Let (S, ⇠,m) be a one-step model over A, and let T ✓ S be
a subset of S such that ⇠ 2 TXT . Then for every formula ' 2 1MLr(X, A) we have

S, ⇠,m �1
'() T, ⇠,m�

T
�1

'.

Proof:
Immediate from Proposition 5.3.6 by the observation that the inclusion map i :
T ,! S is a one-step model morphism.

148 Chapter 5. Axiomatic Completeness

The following proposition states that the meaning of a one-step formula only
depends on the variables occurring in it.

5.3.8. Proposition. Let (S, ⇠,m) be a one-step model over A, and let ' 2
1MLr(X, A) be a one-step formula which belongs to the set 1MLr(X, B), for some
subset B ✓ A. Then we have

S, ⇠,m �1
'() S, ⇠,m

B �1
',

where m
B is the B-marking given by m

B(s) := m(s) \B.

5.3.9. Definition. The boolean dual '� of a formula ' 2 1MLr(X, A) is the for-
mula we obtain from ' by simultaneously replacing all occurrences of p 2 X with
¬p and vice versa, _ with ^ and vice versa, and r with � (see Definition 3.2.11).

Because all the formulas in 1MLr(X, A) are positive in every variable a 2 A,
we have the following monotonicity property.

5.3.10. Proposition. Let (S,↵) be a one-step frame, and let m,m
0 : S ! PA

be two markings such that m(s) ✓ m
0(s), for all s 2 S. Then we have

S,↵,m �1
' implies S,↵,m

0 �1
',

for any formula ' 2 1MLr(X, A).

For technical reasons, we need the following binary version of the modal dis-
tributive law for one-step conjunctions. See [Ven19, Definition 5.25] for a more
general version of this modal distributive law.

5.3.11. Proposition. Given ↵1,↵2 2 T!LF(A) the following holds:

r↵1 ^r↵2 ⌘K

_
{r(T^)↵ | ↵ 2 T(Base(↵1)⇥ Base(↵2))

and T⇡i(↵) = ↵i for i 2 {1, 2}},

where the conjunction on the right hand side is the conjunction map between
lattice terms over A, ^ : LF(A)⇥ LF(A)! LF(A).

To prove this result we can use properties of weak pullback-preserving functors
to show that these formulas are semantically equivalent, and then from the one-
step completeness result of [KKV12] derive that they are provably equivalent.
We first define the notion of canonical valuations and then state the one-step
completeness theorem from [KKV12], and finally prove Proposition 5.3.11.

5.3. Modal automata and one-step formulas 149

5.3.12. Definition. Given a set A and let A
] := P(A ⇥ A) denote the set of

binary relations over A. The canonical or natural a-valuation V
A

a
: A ! PA

] is
given by

V
A

a
: b 7! {R 2 A

] | (a, b) 2 R}.

Its transpose, i.e., the corresponding canonical or natural a-marking on the set
A
] is defined as the map n

A

a
: A] ! PA given by

n
A

a
: R 7! R[a] = {b 2 A | (a, b) 2 R}.

For ↵ 2 TXA
] and ' 2 1MLr(X, A), we write ↵ �1

a
' to denote that A]

, n
A

a
,↵ �1

', and we define J'K1
a
:= {↵ 2 TXA

] | ↵ �1
a
'}. When there is no risk for

confusion, we may drop the superscript A from the notation of natural valuation
and marking.

5.3.13. Remark. The notation [[']]1
a
may seem to be somewhat ambiguous, since

it does not refer to the ambient variable set A. However, by Proposition 5.3.6 and
Corollary 5.3.7 it follows that, for any pair of sets A,B such that ↵ 2 1MLr(X, A)\
1MLr(X, B) we have

{↵ 2 TXA
] | A]

, n
A

a
,↵ �1

'} = {↵ 2 TXB
] | B]

, n
B

a
,↵ �1

'}.

As another instance of Corollary 5.3.7, for any subset R ✓ A
] and for any

object ↵ 2 TXR we have

A
]
,↵, n

A

a
�1

'() R,↵, n
A

a
�R �1

',

where n
A

a
�R is the natural a-marking on A

], restricted to R. If no confusion is
likely, we will often denote the marking n

A

a
�R simply by n

A

a
.

5.3.14. Remark. We may think of any object ↵ 2 TXA
] as a family {(A]

, n
A

a
,↵) |

a 2 A} of one-step models on the same one-step frame (A]
,↵). It may occasion-

ally be useful, however, to consider this ‘family of one-step models’ as one single
model. To do so, we involve, for each a 2 A, the substitution ⌧a : A ! A ⇥ A

that tags each variable b 2 A with its ‘origin’ a, that is, ⌧a : b 7! (a, b). One may
verify, on the basis of a straightforward formula induction, that

A
]
, n

A

a
,↵ �1

'() A
]
, idA] ,↵ �1

'[⌧a]

for each one-step formula ' 2 1MLr(X, A). In particular, it follows that

↵ 2
\

a2B

[[⇥(a)]]1
a
() A

]
, idA] ,↵ �1

^

a2B

'[⌧a],

for any family {⇥(a) | a 2 B} of formulas.

150 Chapter 5. Axiomatic Completeness

For the next proposition, recall the notion of Base from Definition 2.3.21.

5.3.15. Proposition (One-step completeness). Let ⇥ be a map assigning a one-
step formula over A to each a 2 A, and let {⌧a | a 2 A} be a collection of
maps from A to formulas in µML

T
r. If for some subset B ✓ A the conjunctionV

a2B ⇥(a)[⌧a] is consistent, then there is some element (Y,↵) 2 TXA
] such that

(Y,↵) 2
T

a2BJ⇥(a)Ka and, for each Q 2 Base(↵), the conjunction
V

(a,b)2Q ⌧a(b)
is consistent.

This statement of the proposition is formulated in a way that fits our present
setting and slightly deviates from how it is stated in [KKV12], but this version of
the result follows from the one in [KKV12]. Intuitively, the map ⇥ will in practice
be the transition map of some modal automaton, and the maps ⌧a for a 2 A will
be assignments of “strengthened” versions of formulas corresponding to states in
A. Note that in the case when T is the powerset functor, an element of TXA

]

is just a pair (Y,R) where Y is a set of proposition letters, and Base is just the
identity map. So in this case, the one-step completeness statement becomes:

5.3.16. Proposition (One-step completeness for T = P). Let ⇥ be a map as-
signing a one-step formula over A to each a 2 A, and let {⌧a | a 2 A} be a collec-
tion of maps from A to formulas in µML

P
r. If for some subset B ✓ A the conjunc-

tion
V

a2B ⇥(a)[⌧a] is consistent, then there is some element (Y,R) 2 PXA
] such

that (Y,R) 2
T

a2BJ⇥(a)Ka and, for each Q 2 R, the conjunction
V

(a,b)2Q ⌧a(b) is
consistent.

Proof of Proposition 5.3.11:
We prove the semantical equivalence over one-step models.
(=)) Given a one-step model (X, ⇠,m) such that X, ⇠ �1

m
r↵1 ^ r↵2. In order

to find a suitable ↵ 2 T(Base(↵1) ⇥ Base(↵2)), we define the binary relation
Z : X ! Base(↵1) ⇥ Base(↵2) by (x, (a, b)) 2 Z i↵ x �0

m
a and x �0

m
b . Here

�0
m
: X ! Base(↵1)[Base(↵2) is the restriction of the satisfaction relation on X

and Base(↵1) [Base(↵2). Now consider the following diagram with �0
i
denoting

the relation �0
i
: X ! Base(↵i) (the zero-step satisfaction relation according to

the markingm). For i 2 {1, 2} the map qi is the projection on the first component
for the relation �0

i
, and pi : Z ! �0

i
is the map defined by (x, (a1, a2)) 7! (x, ai).

It is easy to see that the following diagram is commutative, and (Z, p1, p2) is a
pullback for (q1, q2).

Z

�0
1 X

�0
2

p2

p1

q1

q2

5.3. Modal automata and one-step formulas 151

Z

(Base(↵1)⇥ Base(↵2)) Base(↵2)Base(↵1)

�0
2�0

1

X

p2p1

q
0
2q

0
1

⇡1 ⇡2

⇡
0
1

⇡
0
2

q2q1

Figure 5.1: Extended pullback diagram

We extend this pullback diagram to the diagram in Figure 5.1, where ⇡i and ⇡0
i

are projection maps on Base(↵1) ⇥ Base(↵2) and Z respectively, and q
0
i
: �0

i
!

Base(↵i) is the second projection on �0
i
. It is easy to check that all the squares

and triangles of the latter diagram commute.

It then follows by the functoriality of T that by applying T to the extended
pullback diagram we still get commuting squares and triangles. Now because
X, ⇠ �1

m
r↵1^r↵2 we get that X, ⇠ �1

m
r↵i and so (⇠,↵i) 2 T �0

i
for i 2 {1, 2}.

By applying the definition of T we obtain �i 2 T �0
i
such that:

Tqi(�i) = ⇠ and Tq0
i
(�i) = ↵i. (5.1)

From Tq1(�1) = Tq2(�2) = ⇠ and the facts that (Z, p1, p2) is a pullback and T
weakly preserves pullbacks, we get a � 2 TZ such that:

Tpi(�) = �i. (5.2)

We claim that ↵ := T⇡0
2(�) 2 T(Base(↵1)⇥ Base(↵2)) does the job for us.

1. Claim. For ↵ := T⇡0
2(�) the following hold:

(i) X, ⇠ �1
m
r(T^)↵;

(ii) T⇡i(↵) = ↵i.

Proof of Claim 1: Consider the following diagram.

152 Chapter 5. Axiomatic Completeness

TZ
��1 �2

↵

⇠

↵2↵1

T(Base(↵1)⇥ Base(↵2)) TBase(↵2)TBase(↵1)

T�0
2T�0

1

TX

Tp2Tp1

Tq02Tq01

T⇡1 T⇡2

T⇡0
1

T⇡0
2

Tq2Tq1

For i 2 {1, 2} we have

T⇡i(↵) = T⇡i((T⇡
0
2)(�))

= Tq0
i
(Tpi(�))

(5.2)
= Tq0

i
(�i)

(5.1)
= ↵i

which proves item (ii) of the claim. For item (i) first observe that Z ; ^ ✓ �0
m

which implies that TZ ; T^ ✓ T�0
m
. On the other hand we have:

T⇡0
1(�) = (Tq2 � Tp2)(�)

= Tq2(Tp2(�))
(5.2)
= Tq2(�2)

(5.1)
= ⇠

and T⇡0
2(�) = ↵, hence (⇠,↵) 2 TZ. Consequently (⇠, (T^)↵) 2 T�0

m
which

means X, ⇠ �1
m
r(T^)↵. This finishes the proof of item (i) and so the proof of

Claim.

((=) For this direction we assume:

X, ⇠ �1
m

_
{r(T^)↵ | ↵ 2 T(Base(↵1)⇥Base(↵2)) and T⇡i(↵) = ↵i for i 2 {1, 2}}.

This means there exists ↵ 2 T(Base(↵1)⇥ Base(↵2)) such that X, ⇠ �1
m
r(T^)↵

and T⇡i(↵) = ↵i for i 2 {1, 2}. So from this we get:

• (⇠, (T^)↵) 2 T�0
m

5.3. Modal automata and one-step formulas 153

and by Fact 2.3.30 we have:

• ((T^)↵,↵) 2 (T^)� = T(^�)

• (↵,↵i) 2 T⇡i = T⇡i

From this it follows that (⇠,↵i) 2 T�0
m

; T^� ; T⇡i, so that, using the fact that
�0

m
; ^� ; ⇡i ✓ �0

i
, and that T preserves weak pullbacks we consequently get

(⇠,↵i) 2 T�0
i
✓ T�0

m
. This finishes the proof of Proposition 5.3.11.

5.3.2 Modal automata

In this section we recall the definition of modal automata from Section 2.4.3 and
present some automata-related notions that we will use in the remainder of this
chapter.

5.3.17. Definition. A (coalgebraic) modal X-automaton is a quadruple A =
(A,⇥,⌦, aI) such that A is a finite set of states, ⇥ : A ! 1MLr(X, A) is the
transition map of A, ⌦ : A ! ! is the priority map of A, and aI is the initial
state.

The underlying structure of an automaton A = (A,⇥,⌦, aI) is the triple
(A,⇥,⌦). With b 2 A, we let Ahbi denote the variant of A that takes b as its
starting state, i.e., Ahbi = (A,⇥,⌦, b).

Modal X-automata run on T-models over X , and acceptance is defined in terms
of a two-player game, the acceptance game.

5.3.18. Definition. Let A = (A,⇥,⌦, aI) be a modal X-automaton and let
S = (S, �,m) be a T-model. The associated acceptance game A(A, S) is the
parity game given by Table 5.2:

Position Player Admissible moves
(a, s) 2 A⇥ S 9 {V : A! PS | �m(s) 2 J⇥(a)K1

V
}

V : A! PS 8 {(b, t) 2 A⇥ S | t 2 V (b)}

Table 5.2: Acceptance Game

The loser of a finite match is the player who got stuck; the winner of an
infinite match is 9 if the greatest parity that appears infinitely often in the match
is even, and it is 8 if this parity is odd. A pointed T-model (S, sI) is accepted
by the automaton A if (aI , sI) is a winning position for player 9 in A(A, S). We
refer to the class of pointed T-models that are accepted by A as the language
recognized by A, and denote it with L(A).

154 Chapter 5. Axiomatic Completeness

5.3.19. Definition. Let A and A0 be two modal automata. We say that A
(semantically) implies A0 (notation: A A0), if L(A) ✓ L(A0), and that A and
A0 are equivalent (notation: A ⌘ A0), if they recognise the same language, i.e.,
L(A) = L(A0). An automaton A is equivalent to a formula ' in µML

T
r if any

pointed T-model (S, s) is accepted by A i↵ (S, s) � '.

In the sequel, we will need the following strong version of equivalence between
automata.

5.3.20. Definition. Two modal automata A = (A,⇥,⌦, aI) and A0 = (A0
,⇥0

,⌦0
, a

0
I)

are one-step equivalent, (notation: A ⌘1 A0), if A = A
0, ⌦ = ⌦0, aI = a

0
i and

⇥(a) ⌘1 ⇥0(a) for all a 2 A.

It is obvious that one-step equivalence implies equivalence.
In the remainder of this subsection we introduce various concepts and nota-

tions related to modal automata and automaton structures.

5.3.21. Definition. The (directed) graph of A is the structure (A,EA), where
aEAb if a occurs in ⇥(b), and we let �A denote the transitive closure of EA. If
a �A b we say that a is active in b. We write a ./A b if a �A b and b �A a. A
cluster of A is a cell of the equivalence relation generated by ./A; a cluster C is
degenerate if it is of the form C = {a} with a 6./A a. For a state a we denote by
Ca the unique cluster of A to which a belongs.

5.3.22. Definition. Fix an automaton structure A = (A,⇥,⌦). The size |A| of
A is defined as the cardinality of its carrier A. We write a @A b if ⌦(a) < ⌦(b),
and a vA b if ⌦(a) ⌦(b). When clear from context we sometimes write @ and
v instead, dropping the reference to A. We say that A is positive in a proposition
letter p 2 X if each occurrence of p in each formula ⇥(a) is positive. A state a 2 A

is called a true state of A if ⇥(a) = >.

5.3.3 Operations on modal automata

We now introduce the logical operations on modal automata that will enable us
to translate formulas to modal automata, and later to connect proof theoretic
concepts with automata theory. Some of these operators like complementation
and union are standard. Our definitions of least and greatest fixpoints of modal
automata, and of substitution, are new as far as we know.

Conjunction and disjunction Suppose we are given modal X-automata A =
(A,⇥A,⌦A, aI) and B = (B,⇥B,⌦B, bI). We define the automaton A ^ B =
(C,⇥C ,⌦C , aC) as follows:

- aC is some arbitrarily chosen object not in A] B, and C is defined to be
A] B] {aC}.

5.3. Modal automata and one-step formulas 155

- ⇥C(aC) := ⇥A(aI) ^⇥B(bI) and ⌦C(aC) := n+ 1 where n is the maximum
priority of A and B.

- For a 2 A, ⇥C(a) := ⇥A(a) and ⌦C(a) := ⌦A(a).

- For b 2 B, ⇥C(a) := ⇥B(b) and ⌦C(b) := ⌦B(b).

Disjunction is handled similarly by setting ⇥C(aC) := ⇥A(aI) _⇥B(bI) instead.

Negation Negation corresponds to complementation on the automata side [KV09],
and for this we apply the notion of boolean dual '� of a formula ' (see Defini-
tion 3.2.11 for boolean dual of r-formulas, other cases are defined standardly.

Given a modal automaton A = (A,⇥,⌦, aI) we define the automaton ¬A :=
(A,⇥0

,⌦0
, aI) by setting, for each a 2 A:

- ⇥0(a) := ⇥(a)�

- ⌦0(a) := ⌦(a) + 1.

Nabla modality Given a finite set {Ai}i2I of automata with Ai = (Ai,⇥i,⌦i, ai),
and p↵ 2 T{Ai}i2I , we define the automaton r p↵ := (A,⇥,⌦, aI) as follows:

- A =
U

i2I{Ai}] {aI} with aI /2
U

i2I{Ai}.

⇥0 and ⌦0 agree with, respectively, ⇥i and ⌦i on Ai, whereas for the initial state
a
0
I
we define:

- ⇥(aI) := rTf(p↵), where f : {Ai}i2I ! LF(A) is the map sending each
automaton Ai to its initial state ai.

- ⌦0(aI) := n+ 1,

where n is the maximum priority of {Ai}i2I .
Next we define a substitution operation on automata.

Substitution Let A = (A,⇥A,⌦A, aI) and B = (B,⇥B,⌦B, bI) be modal
automata over the languages X] {p} and X, respectively, and assume that A
is positive in p. We define the modal X-automaton A[B/p] as the structure
(C,⇥C ,⌦C , cI), where:

- C := A] B and cI := aI .

- For c 2 A, ⇥C(c) := ⇥A(c)[⇥B(bI)/p] and for c 2 B, ⇥C(c) := ⇥B(c).

- Finally, we set ⌦C(b) := ⌦B(b) for b 2 B and ⌦C(a) := n+⌦(a) for a 2 A,
where n is the least even number greater than any priority in B.

156 Chapter 5. Axiomatic Completeness

Fixpoint operators We now turn to the di�cult case of the definition of fix-
point operators on automata. The complexity mainly arises from two reasons.
First, recall that in the one-step formulas appearing in the range of transition
maps of modal automata, the proposition letters (corresponding to the free vari-
ables of a formula) are treated rather di↵erently from the states of the automaton
(which correspond to the bound variables of a formula). We have good reasons
to do so, but when constructing the automaton ⌘x.A from an automaton A there
is a price to pay for this, related to the di↵erent status of the variable x in the
two automata: while x is a free proposition letter in A, and so appears only in
unguarded positions in the one-step formulas, it is treated as a state of ⌘x.A and
must therefore appear only guarded in ⌘x.A. For this reason it will be necessary
to pre-process the automaton A putting it in a shape Ax in which x is, in some
sense, guarded.

Second, we have to be careful about how we go about this “pre-processing”
of A. This will become clearer once we consider the satisfiability game for modal
automata in Section 5.4.

In order to turn to the construction of the auxiliary structure Ax, we will need
the following proposition.

5.3.23. Proposition. For every modal X-automaton A positive in x 2 X, and
any state a 2 A, there are formulas ✓a0 and ✓a1 in which x does not appear, such
that

⇥(a) ⌘K (x ^ ✓a0) _ ✓a1 .

Proof:
First rewrite ⇥(a) as a disjunction

(x ^ 0) _ ... _ (x ^ n) _ 0
0 _ ... _ 0

m

where each i and each 0
j
is a conjunction consisting of literals distinct from x

and formulas of the form r�. This is then equivalent to

(x ^ (0 _ ... _ n)) _ (0
0 _ ... _ 0

m
)

and so we are done.

5.3.24. Example. Relying on the previous observation, we fix from now on for
every automaton A and a 2 A, one-step formulas ✓a0 , ✓

a

1 such that:

⇥(a) ⌘K (x ^ ✓a0) _ ✓a1 .

Now we are ready for the definitions of Ax, µx.A and ⌫x.A.

5.3. Modal automata and one-step formulas 157

5.3.25. Definition. Let A = (A,⇥A,⌦A, aI) be an X] {x}-automaton which
is positive in x. By Proposition 5.3.23 for each a 2 A we may fix formulas
✓
a

0 , ✓
a

1 2 1MLr(X, A) such that ⇥(a) ⌘K (x^✓a0)_✓a1 . We now define automata Ax,
µx.A and ⌫x.A. All three structures are based on the same carrier, viz., the set
(A ⇥ {0, 1})] {x}; we will denote states of the form (a, i) as ai, if no confusion
is likely. Of all these three automata, we specify their transition map ⇥, priority
map ⌦ and initial state i in Table 5.3. In this table, denotes the substitution

 : a 7! (x ^ a0) _ a1,

while n is the smallest even number that is greater than the maximum priority
of A.

Automaton ⇥(ai) ⇥(x) ⌦(ai) ⌦(x) i

Ax
✓
a

i
[] x ⌦A(a) 0 x

µx.A ✓
a

i
[] ✓

aI
1 [] ⌦A(a) n+ 1 x

⌫x.A ✓
a

i
[] ✓

aI
0 [] _ ✓aI1 [] ⌦A(a) n+ 2 x

Table 5.3: The automata Ax, µx.A and ⌫x.A

5.3.26. Remark. The automaton Ax is not equivalent to A, in the sense that
it does not accept the same pointed pointed models as A does. On the other
hand, it does contain all information that A does, and vice versa. The precise
connection between A and Ax can best be expressed using the translation map
that we will define in section 5.8. Running ahead of this, assume that we have
defined, for each modal automaton A = (A,⇥,⌦, aI), a map trA : A ! µML

T
r

assigning to each state a 2 A an equivalent µ-calculus formula trA(a) in the sense
that Ahai ⌘ trA(a).

Phrased in terms of this translation map, the relation between A and Ax is
given by the equivalences

trA(a) ⌘ (x ^ trAx(a0)) _ trAx(a1)

and
trAx(ai) ⌘ ✓

a

i
[trA(b)/b | b 2 A]

which hold for all a 2 A and i 2 {0, 1}.

The key to understand Definition 5.3.25, and to prove correctness of the con-
structions is the following proposition.

5.3.27. Proposition. Let '0,'1 be any formulas in which the variable x appears
positively. Then:

µx.(x ^ '0) _ '1 ⌘K µx.'1

and
⌫x.(x ^ '0) _ '1 ⌘K ⌫x.'0 _ '1

158 Chapter 5. Axiomatic Completeness

Proof:
We consider the case for µ first. One direction of the equivalence is immediate,
since we have '1 K (x ^ '0) _ '1. For the converse we have:

((x ^ '0) _ '1)[µx.'1/x] = ((µx.'1) ^ '0[µx.'1/x]) _ '1[µx.'1/x] (1)
K ((µx.'1) ^ '0[µx.'1/x]) _ µx.'1 (2)
K µx.'1 (3)

In more details, (1) is a syntactic equality by definition of substitution, (2)
holds by (Af) : '(µx.'(x)) ! µx.'(x) from K (see Definition 5.2.5) implying
'1[µx.'1/x]! µx.'1 and (A) : (p! q)! ((r _ p)! (r _ q)) from propositional
logic, and finally (3) is immediate by lattice law (p ^ q) _ p = p.

For the ⌫-case, again one direction is immediate since we have (x^'0)_'1 K

'0 _ '1. For the other direction we reason as follows:

⌫x.'0 _ '1 ⌘K (⌫x.'0 _ '1) ^ (⌫x.'0 _ '1)
K (⌫x.'0 _ '1) ^ ('0[⌫x.'0 _ '1/x] _ '1[⌫x.'0 _ '1/x]) (Af , A)
K

�
(⌫x.'0 _ '1) ^ '0[⌫x.'0 _ '1/x]

�
_ '1[⌫x.'0 _ '1/x]

= ((x ^ '0) _ '1)[⌫x.'0 _ '1/x]

and the proof is finished.

5.3.28. Remark. We finish this subsection with noting that all the constructions
defined above are semantically correct, in the sense that L(A^B) = L(A)\L(B),
etc. Since these statements follow from the results we shall prove in section 5.8
(in particular, from Proposition 5.8.16) we leave semantic proofs as exercises for
the reader.

5.3.4 Translating formulas to automata

We finish this section by providing a translation associating a modal automaton
to every µML

T
r-formula. As we mentioned earlier, we will define the translation

by induction on the complexity of formulas and make use of operations we just
defined.

5.3.29. Definition. By induction on the complexity of a formula ' 2 µML
T
r we

define a modal automaton A'.
First of all, we need to consider atomic formulas: given any propositional

variable p, we take some arbitrary object a distinct from p to be the one and only
state of Ap, and define ⇥p(a) = p, and ⌦p(a) = 0.

5.4. Games for Automata 159

With this in place, we can complete the translation as follows:

A¬' := ¬A'

A'_ := A' _ A

Ar↵ := r p↵ where Base(↵) = {'1,'2, ...,'n} and p↵ 2 T{A'1 , · · · ,A'n}
is defined by p↵ = Tf(↵) with f : {'1,'2, ...,'n}! {A1,A2, ...,An}
in turn defined by 'i 7! A'i

Aµx.' := µx.A'

We finish by stating the semantic correctness of this definition. Since this
proposition is not needed in the sequel, we leave the details of its proof, which
proceeds by a routine induction on the complexity of formulas, as an exercise to
the reader.

5.3.30. Proposition. For every formula ' 2 µML
T
r we have:

' ⌘ A'. (5.3)

5.4 Games for Automata

In this section, we introduce two of our main tools: the satisfiability game S(A)
associated with a modal automaton A, and the consequence game C(A,B) related
to two modal automata A and B.

Before we turn to the technicalities of the definitions, we start with an intu-
itive explanation of the satisfiability game, which is based on the infinite tableau
game introduced by Niwiński & Walukiewicz [NW96]. Our variant, introduced
in [FLV10] in the more general setting of the coalgebraic µ-calculus, can be seen
as a streamlined, game-theoretic analog for automata to what tableaux are for
formulas. To understand the game S(A), which is played by two players, 8 and 9,
it helps to think of 9 as defending the claim that the language L(A) is nonempty.
In fact, we may think of 9’s winning strategies as blueprints for constructing (tree-
based) structures that are to be accepted by A. The role of 8 in S(A) is rather
di↵erent: he acts as a path finder in the (partial) structure constructed by 9, his
task being to challenge 9 to come up with more evidence to her claims and to
construct ever more detail of the structure. What distinguishes the satisfiability
game from tableaux is that, because of the uniform internal structure of modal
automata as compared to formulas, the interaction between the players can be
shaped in a highly regulated pattern. The satisfiability game does not have sepa-
rate rules dealing with specific connectives; in particular, all rules/moves dealing
with Boolean connectives have been encapsulated in the streamlined interaction
between 9 and 8.

For two reasons, it is also useful to relate the satisfiability game S(A) to the
acceptance games associated with A. First, similar to the acceptance games for

160 Chapter 5. Axiomatic Completeness

A, the satisfiability game proceeds in rounds : one round of S(A) consists of first
9 constructing (or aiming to construct) one more level of the tree structure for A,
and then 8 picking one of the newly created nodes for further inspection. Second,
and more in particular, every play of S(A) can be seen as a bundle of plays of
the acceptance game played on exactly the structure that 9 is constructing.

5.4.1 Traces

We first need some notation and terminology concerning streams of binary rela-
tions and the traces they carry. The key concept here is that of a trace running
through an infinite sequence of binary relations. This concept appears in many
papers dealing with decidability questions on fixpoint logics, going back to at
least Streett & Emerson [SE89] (where it appears under the name ‘derivation
sequence’); we took our terminology from Niwiński & Walukiewicz [NW96].

5.4.1. Definition. Fix a set A. We let A
] denote the set of binary relations

over A, that is, A] := P(A ⇥ A). Given a finite word ⇢ = R0R1R2 . . . Rk over
the set A

], a trace through ⇢ over A
] is a finite A-word a0a1a2...ak+1 such that

aiRiai+1 for all i k. A trace through an A
]-stream R0R1R2R3... is an A-stream

a0a1a2... such that aiRiai+1 for all i < !.
Given a stream ⇢ = R0R1R2... over A] we denote by ⇢�

k
the word R0 · · ·Rk

and for a trace ⌧ = a0a1a2... on ⇢ we denote by ⌧�k the restricted trace a0a1a2...ak
on ⇢�

k
. We use similar notation for restrictions of words over A] of length � k.

It is often convenient to think of the set of finite traces providing a graph
structure. Formally we define the trace graph of an A

]-stream as follows.

5.4.2. Definition. Given an A
]-stream ⇢ = (Rn)n�0, we define the trace graph

G⇢ as the directed graph with vertices ! ⇥ A and edges EG := {((i, a), (j, b)) |
j = i+ 1 and aRib}.

Observe that the infinite ⇢-traces are in 1-1 correspondences with the maximal
infinite paths through the trace graph.

5.4.3. Definition. Fix a finite set A and a priority map ⌦ : A ! !. We let
NBT⌦ denote the set of A]-streams that contain no bad trace, that is, no trace
⌧ = a0a1 . . . such that max(⌦[Inf (⌧)]), the highest priority occurring infinitely
often on ⌧ , is odd.

It is not di�cult to show that NBT⌦ is an !-regular subset of (A])!.

5.4.4. Proposition. Given a finite set A and a priority map ⌦ : A! !, there
is a parity stream automaton recognizing the set NBT⌦, seen as a stream language
over A

].

5.4. Games for Automata 161

Proof:
It is easy to construct a nondeterministic parity stream automaton A recognizing
the complement of NBT⌦, that is, the set of A]-streams that do contain a bad
trace. The Proposition is then immediate by the fact that the collection of !-
regular language is closed under taking complementation.

5.4.2 The satisfiability game

In this section, we follow [Fon10] and [ESV18] to define the satisfiability game
and give an indication of how it works.

As we already mentioned, every basic position of the satisfiability game for A,
i.e. S(A), can be represented as a subset B of A, which is called a macro-state
of A. Given such a macro-state B, 9 claims that there is a pointed model (S, s)
such that for all b 2 B the automaton A = (A,⇥,⌦, b) accepts (S, s). This means
9 has to come up with a winning strategy from positions (b, s) in the acceptance
game, for all b 2 B. Clearly, if such a pointed structure (S, s) exists, then each
position (b, s) is winning for her in the acceptance game for (S, s).

For each t 2 S and for each b 2 B, we define the set A
b

t
as the collection

of states b
0 2 A such that (b0, t) is a possible basic position in the acceptance

game following the basic position (b, s). Since B is a macro-state, we define
At :=

S
{Ab

t
| b 2 B}. Hence, each such a set is a potential next combination

of states in A that 9 has to be able to handle simultaneously. In this set-up 9’s
move would be based on the set {At | t 2 S}. Now it is up to 8 to choose a set
from this collection, moving to the next macro-state.

With this definition of the game, a match of S(A) corresponds to a sequence
⇢ := B0B1B2... of basic positions, which are subsets of A. Now to clarify whether
⇢ is won by 9 we could naively say that 9 wins if there is no bad trace b0b1b2... in
⇢. However, if there is such a bad trace b0b1b2... , this would only be a problem if
it actually corresponds to a match of the acceptance game. Up to now we know
that each bi occurs in some match of the acceptance game, but there is no way
to know whether b0b1b2... is the projection of an actual match of the acceptance
game. This shows that defining the game based on subsets of A doesn’t work
properly. A solution to this problem is to replace the subset B by a relation
R 2 A

]. The range of R would play the same role as B. This helps us to
remember which traces are relevant, when we define the winning condition.

We are now ready for the formal definition of the satisfiability game, where
we use the notions of natural valuations introduced in Definition 5.3.12, and Base
from Definition 2.3.21.

5.4.5. Definition. The satisfiability game associated with a modal X-automaton
A = (A,⇥,⌦, aI) is denoted by S(A) and is given by Table 5.4:

162 Chapter 5. Axiomatic Completeness

Position Player Admissible moves
R 2 A

] 9
T

a2ran(R)J⇥(a)K1a
(Y,↵) 2 TX(A]) 8 {R | R ✓ R

0 for some R
0 2 Base(↵)}

Table 5.4: Admissible moves in the satisfiability game S(A)

The winner of an infinite play of the satisfiability game is given by the induced
stream ⇢ = R0R1 . . . 2 (A])! of basic positions. This winner is 9 if ⇢ belongs to
the set NBT⌦ (also denoted by NBTA), that is, if ⇢ contains no bad traces, and
it is 8 otherwise. A winning strategy of 8 in S(A) may be called a refutation of
A.

5.4.6. Example. Let A = (A,⇥,⌦, aI) be a modal automaton. Since we will
only consider matches of the satisfiability game S(A) that take the singleton
{(aI , aI)} as their starting position, we will often be sloppy and blur the di↵erence
between S(A) and the initialized game S(A)@{(aI , aI)}.

5.4.7. Remark. An alternative and perhaps more natural version of S(A) would
restrict the moves available to 8 at position (Y,↵) 2 TXA

] to the actual elements
of Base(↵), instead of allowing subsets of elements of Base(↵). It is not so di�cult
to prove, however, that this version of the game is in fact equivalent to S(A) itself.
Roughly, the reason for this is that in S(A) it never will be to 8’s advantage at
a position (Y,↵) 2 TXA

] to pick a strict subset R of some relation R
0 2 Base(↵):

the bigger the relations that he picks, the more opportunities he has to obtain a
bad trace.

Our motivation for taking S(A) as the standard version of our satisfiability
game is simply that in some cases S(A) is technically more convenient to work
with than its apparently simpler variant.

The following proposition from [FLV10] expresses the adequacy of the satisfi-
ability game.

5.4.8. Proposition (Adequacy). Let A be a modal automaton. Then 9 has a
winning strategy in S(A) i↵ the language recognized by A is non-empty.

5.4.9. Remark. In general, S(A) is not a parity game, but we saw in Proposi-
tion 5.4.4 that the winning condition NBT⌦ is an !-regular subset of (A])!. It
follows from a result by Büchi & Landweber [BL69] that we may assume that
winning strategies in S(A) only use finite memory. This observation is used in
[FLV10] to prove the finite model property of coalgebraic modal automata, and
hence, of the coalgebraic modal µ-calculus (predicate lifting approach).

5.4. Games for Automata 163

5.4.3 Consequence game

As announced in our introduction, an important role in our approach is played
by the consequence game C(A,A0) associated with two automata A and A0, which
is played by two players I and II. One may think of player II trying to show that
automaton A implies A0 by establishing a close structural connection between the
two automata, and of player I trying to show this does not hold.

Matches of the consequence game C(A,A0) are tightly linked to the matches
of the satisfiability games S(A) and S(A0), and this connection extends to the
definition of the winning conditions of C(A,A0) in terms of winning conditions of
S(A) and S(A0).

To describe the game, we consider a match of C(A,A0). Each round of this
match consists of three moves. At the start of the round, at a basic position
(R,R

0) 2 A
]⇥A0], player I picks a local model ↵ 2 TXA

] for formulas given by the
range of R, as if she was player 9 in the satisfiability game S(A). Second, player
II transforms this one-step model into a model for formulas given by the range of
R

0, inducing a move for 9 in the satisfiability game S(A0). More precisely, player
II provides a map f : A] ! A

0] turning ↵ into a model for R0. The admissibility
of this move reveals the essentially coalgebraic nature of the game, using the fact
that T is actually a functor, i.e., it operates on arrows (that are, functions) as
well as on objects (sets). More specifically, player II’s move f is admissible if the
model ↵0, that we obtain by applying the map TXf to the model ↵, is a model
for R0. Player I then finishes the round by picking an element from the graph of
the map f as the next basic position.

5.4.10. Definition. The consequence game C(A,A0) between modal automata
A = (A,⇥,⌦, aI) and A0 = (A0

,⇥0
,⌦0

, a
0
I
) is given by the following table.

Position Player Admissible moves
(R,R

0) 2 A
] ⇥ A

0] I
T

a2ran(R)J⇥(a)K1a
(↵, R0) 2 TXA

] ⇥ A
0] II {f : A] ! A

0] | TXf(↵) 2
T

b2ran(R0)J⇥0(b)K1
b
}

f : A] ! A
0] I {(R,R

0) | f(R) = R
0}

Table 5.5: Consequence Game

As we already mentioned, a pair of the form (R,R
0) in the above definition

will be called a basic position of the consequence game. Similar to the satisfiabil-
ity game, our standard assumption is that ({(aI , aI)}, {(a0I , a0I)}) is the starting
position of C(A,A0). We declare player I to be the winner of an infinite match
(R0, R

0
0)(R1, R

0
1)(R2, R

0
2)... if there exists a bad trace on the A0-side, i.e. through

R
0
0R

0
1R

0
2... but no bad trace on the A-side i.e. through R0R1R1.... In all other

cases player II is the winner. Whenever II has a winning strategy in C(A,A0) we
say that A0 is a game consequence of A and denote this fact with A ✏C A0.

164 Chapter 5. Axiomatic Completeness

5.4.11. Remark. The consequence game can be seen as a kind of communica-
tion or implication game between the satisfiability games of the two automata
involved. As such, the construction of C(A,A0) from S(A) and S(A0) is vaguely
reminiscent of the operation h�,�i on games, defined by Santocanale [San02],
where Santocanale’s construction in its turn is the result of enriching fixpoint
theory with ideas from the game semantics of linear logic (see, e.g., Blass [Bla92]
or Joyal [Joy95]). Note however that the actual moves of our game crucially in-
volve modal one-step logic, in a way that makes C(A,A0) rather di↵erent from the
game hS(A),S(A0)i one would obtain by applying Santocanale’s construction.

The following result can be seen as a soundness result for the consequence
game.

5.4.12. Proposition. Given modal X-automata A and A0 we have that A ✏C A0

implies L(A) ✓ L(A0).

Proof:
Fix a pointed TX-coalgebra S = (S, �, sI), a winning strategy � for 9 in the ini-
tialized acceptance game A(A, S)@(aI , sI) and a winning strategy f for Player II
in C(A,A0). For simplicity we assume without loss of generality that the strategy
� is positional (recalling that A(A, S) is a parity game). Our goal is to provide
a winning strategy �0 for 9 in the game A(A0

, S)@(a0
I
, sI). By induction on the

length of a �0-guided match with basic positions (a0
I
, sI), (a01, s1)...(a

0
n+1, sn+1), we

shall define an f -guided shadow match (R0, R
0
0)(R1, R

0
1)...(Rn, R

0
n
) such that the

following conditions hold:

(1) aIa1...an+1 is a trace through R0R1...Rn i↵ (aI , sI)(a1, s1)...(an+1, sn+1) is a
�-guided match; furthermore, each b 2 ran(Rn) is the last element of some
trace through R0R1...Rn.

(2) a
0
I
a
0
1...a

0
n+1 is a trace through R

0
0R

0
1...R

0
n
.

Furthermore, we shall associate these shadow matches in a uniform manner, so
that the shadow match of an initial segment of a partial match ⌃ is an initial
segment of the shadow match associated with ⌃. First, note that this means
that 9 wins all �0-guided infinite matches: if (a0

I
, sI)(a01, s1)(a

0
2, s2)... is a loss

for 9 then a
0
I
a
0
1a

0
2... is a bad trace through R

0
0R

0
1R

0
2... in the shadow match

(R0, R
0
0)(R1, R

0
1)(R2, R

0
2)... by condition (1). Since this shadow match was f -

guided and f is a winning strategy, this means there must be some bad trace
aIa1a2... throughR0R1R2..., and by condition (2) we get that (aI , sI)(a1, s1)(a2, s2)...
is an infinite �-guided match, which furthermore is a loss for 9. This is a contra-
diction since � was a winning strategy by assumption.

We now show how 9 can respond to any move by 8 while maintaining the
induction hypothesis. Suppose we are given a �0-guided partial match ⌃ consisting
of positions (a0

I
, sI), (a01, s1)...(a

0
n+1, sn+1) with a shadow match:

(R0, R
0
0)(R1, R

0
1)...(Rn, R

0
n
)

5.4. Games for Automata 165

satisfying the conditions (1) and (2). For each a 2 ranRn, by (1) there is a �-
guided partial match with last position (a, sn). So we see that the move �(a, sn) :
A ! PS prescribed by the winning strategy � is legitimate for each such a.
Define the map h : S ! A

] by

h(v) = {(b, b0) | b 2 ranRn & v 2 �(b0, sn)}

Then it follows by naturality (see Proposition 5.3.6) that TXh(�(sn)) is a le-
gitimate move for Player I in the consequence game at the position (Rn, R

0
n
),

i.e. TXh(�(sn)) 2
T

a2ranRn
J⇥(a)Ka. So the winning strategy f provides a map

g : A] ! A
0] such that TX(g � h)(�(sn)) 2

T
b02ranR0

n
J⇥0(b0)Kb0 . In particular, we

get TX(g � h)(�(sn)), Va0n �1 ⇥0(a0
n
), where Va0n is the natural valuation at a0

n
. It

follows by naturality that �(sn), Vm�g�h �1 ⇥0(a0
n
), where we let m denote the

marking associated with the natural valuation Va0n and Vm�g�h denote the valua-
tion corresponding to the marking m�g �h. So we set �0(⌃) = Vm�g�h, and this is
a legitimate move in the game A(A0

, S)@(a0
I
, sI). Furthermore, if v 2 Vm�g�h(b0),

then b
0 2 m(g(h(v)), so (a0

n
, b

0) 2 g(h(v)), and we can continue the shadow match
with the pair (h(v), g(h(v)). Then the extended shadow match

(R0, R
0
0)(R1, R

0
1)...(Rn, R

0
n
)(h(v), g(h(v)))

satisfies both conditions (1) and (2), so the proof is finished.

It should be stressed that the converse direction of Proposition 5.4.12 does
not hold in general. If A0 is a game consequence of A, the existence of a winning
strategy for player II in the consequence game indicates a close structural relation
between A and A0, far tighter than what is required for A being a semantic
consequence of A0. In the following we will present a counter-example, but we
first give an example of two automata that do satisfy the game consequence
relation. Note that this example is closely linked to the fixpoint rule of Kozen’s
axiom system.

5.4.13. Proposition. For all modal automata A that are positive in x, we have
Ax[µx.A/x] ✏C µx.A.

Proof:
Recall from Definition 5.3.25 that the automaton µx.A has the same carrier as
the automaton Ax, and that the automaton Ax[µx.A] is built from µx.A together
with one disjoint copy of Ax, so Ax[µx.A] will contain for each state a in µx.A an
extra state a

0 corresponding to a belonging to the disjoint copy of Ax. With this
in mind, we define a map f from states of Ax[µx.A] to states of µx.A by mapping
a
0 to a, and a to itself, for each state a in µx.A. This map induces a map F from

relations over the states of Ax[µx.A] to relations over the states of µx.A by the
assignment:

F : R 7! {(f(a), f(b)) | (a, b) 2 R}

166 Chapter 5. Axiomatic Completeness

Thus we get a strategy for Player II in the game C(Ax[µx.A/x], µx.A) defined by
choosing the map F �Base(↵) as a response to every move (Y,↵) made by Player I.
It can be checked that this is a winning strategy for Player II.

It is not too hard to convince oneself that the automata A[µx.A] and Ax[µx.A]
are semantically equivalent, but the consequence game is a stronger concept and
while Proposition 5.4.13 shows that Ax[µx.A/x] ✏C µx.A, in general it is some-
what surprisingly not true that A[µx.A/x] ✏C µx.A. An explicit example is given
in [ESV18, Example 5.20]. Intuitively, what is driving this example is that the
construction Ax splits states of A into disjunctions, which gives Player I some
extra power in the game C(A[µx.A], µx.A) since she can choose which disjunct
of a one-step formula to make true on the left-hand side of the game, while the
choice may be already made for Player II on the right-hand side. This illustrates
our earlier point that A |=C A0 indicates a rather tight structural relation between
the two automata.

To finish this subsection we mention the following fact showing that the game
consequence relation between modal automata is reflexive and transitive.

5.4.14. Proposition. Let A, A0 and A00 be modal automata.

(1) A ✏C A;

(2) if A ✏C A0 and A0 ✏C A00 then A ✏C A00
.

Proof:
The proof of the first item is trivial. Item (2) follows from a routine check that
the composition of any two winning strategies for player II in games C(A,A0) and
C(A0

,A00) is a winning strategy for II in game C(A,A00).

5.4.15. Remark. Applying this Proposition one can define the category of modal
X-automata by setting X-automata as objects and defining arrows as follows:

A! B if and only if A ✏C B.

It is immediate from Proposition 5.4.14 that this collection forms a category.

5.5 Taming the traces - one step at a time

As we have seen in the satisfiability and consequence games, the winner of the
matches of these games is determined by the shape of traces through streams of
binary relation. So a good understanding of trace graphs of such streams will be
crucial for us. But sometimes the combinatorics of these trace graphs gets rather
involved. For this reason, we will be interested in classes of modal automata for

5.5. Taming the traces - one step at a time 167

which the trace graphs of matches of the satisfiability and consequence games
have a simpler structure. We start by isolating certain classes of binary relations
over A (for a fixed modal automaton A), such that the trace graphs of streams of
such relations have a simple structure. We then introduce corresponding one-step
languages that produce modal automata for which infinite matches of satisfiability
and consequence games can indeed be assumed, without loss of generality, to have
relations belonging to these restricted classes of relations in A

].

5.5.1 Functional, clusterwise functional and thin relations

The simplest class of relations that we shall consider are the functional ones:

5.5.1. Definition. Let A = (A,⇥,⌦, aI) be a modal automaton, and let R 2 A
]

be a relation. We call R functional, if each a 2 A has at most one R-successor.
This element, if it exists, is denoted as a+

R
, or as a+ in case R is clear from context.

The set of functional relations in A
] will be denoted by A

]
f .

The trace combinatorics of streams of functional relations is trivial, as de-
scribed by the following proposition. Although the result is obvious, we state it
explicitly for emphasis:

5.5.2. Proposition. Fix a modal automaton A and let R0R1R2 . . . be any stream
over A

]
f . Then for each a 2 dom(R0) there is at most one infinite trace on this

stream beginning with a, and if each Ri is total then the correspondence is one-
to-one.

In particular, there are at most |A| many infinite traces on any stream on A
]
f .

Since there is in total only a bounded number of traces to consider, it is easy to
check whether there is any bad trace on such a stream.

Recalling the notion of a cluster for an automaton A from Definition 5.3.21,
we can define a wider class of relations that maintains some of this simplicity.

5.5.3. Definition. Given a fixed modal automaton A, a relation R 2 A
] is said

to be clusterwise functional if:

(1) for all a, b 2 A with aRb, we have b�A a;

(2) for all a 2 A, there is at most one b 2 Ca such that aRb.

The set of clusterwise functional relations in A
] will be denoted by A

]
cf .

Generally, a stream over the alphabet A
]
cf will have infinitely many traces.

However, the trace combinatorics of these streams is still much simpler than in
the general case. The next Proposition clarifies this. We recall that two streams
�, ⌧ over any alphabet are said to be eventually equal if there is a k 2 ! such
that �(j) = ⌧(j) for all j � k.

168 Chapter 5. Axiomatic Completeness

5.5.4. Proposition. Given a modal automaton A, let ⇢ = R0R1R2 . . . be any
stream over A

]
cf . Then there exists a collection F of at most |A| many infi-

nite traces over ⇢ = R0R1R2 . . ., such that every infinite trace on this stream is
eventually equal to some trace in F .

Proof:
By the first condition on clusterwise functionality, every infinite trace ⌧ through
⇢ eventually ends up in a cluster C, in the sense that 9n.8k � n.⌧(k) 2 C. It
thus su�ces to prove that the relation of eventual equality, taken over the set of
traces that eventually end up in an arbitrary but fixed cluster C, is an equivalence
relation of size at most |C|.

Suppose for contradiction that this is not the case, i.e., there are traces {⌧i |
0 i |C|}, all ending up in C, and such that ⌧i and ⌧j are eventually equal
only if i = j. Then we can find an n 2 ! such that for all k � n each ⌧i(k)
belongs to C. By the pigeon hole principle then there must be distinct indices i
and j such that ⌧i(n) = ⌧j(n). But by clusterwise functionality this implies that
⌧i(k) = ⌧j(k) for all k � n, so that ⌧i and ⌧j are eventually equal after all.

In particular this means that we only have to examine the |A| many traces
in F to decide whether there is a bad trace on R0R1R2 . . ., since two eventually
equal traces are clearly either both bad or both not bad.

Cluster-wise functional relations are almost the key concept that we need, but
it turns out that we are going to require a little bit of extra generality. While the
number of infinite traces of a stream over A]

cf is essentially finite in the sense of
Proposition 5.5.4, we shall finally consider a wider class of relations for which the
corresponding streams have the property that there are essentially only finitely
many bad traces.

5.5.5. Definition. Let A be a modal automaton and let C be a cluster of A.
An element a 2 C is called a maximal even element of C if it has the maximal
priority in C, and this priority is even. A relation R 2 A

] is thin with respect to
A and a if:

(1) for all b 2 A with aRb we have b�A a;

(2) for all b1, b2 2 A with b1, b2 2 R[a] \ Ca, either b1 = b2 or one of b1 and b2

is a maximal even element of Ca.

We call R A-thin or simply thin, if it is thin with respect A and all a 2 A. We
denote the collection of thin relations in A

] by A
]
thin .

A motivating observation about thin relations is the following.

5.5.6. Proposition. Given a modal automaton A, let ⇢ = R0R1R2... be any
stream of thin relations over A

]
thin . Then there exists a collection F of at most

5.6. Disjunctive and semi-disjunctive automata 169

|A| many infinite traces on ⇢, such that any given bad trace on ⇢ is eventually
equal to some trace F .

Proof:
We prove this proposition by a similar argument as used for Proposition 5.5.4,
the di↵erences being that we restrict attention to bad traces, and, in the reductio
argument, let n 2 ! satisfy the additional requirement that for all k � n, and all
i, ⌧i(k) is not the maximal even element of C.

Again, this combinatorial property of thin relations significantly simplifies the
problem of checking whether an infinite stream has a bad trace, since we only
have to check whether the bounded collection F contains a bad trace or not. To
exploit this nice property of these relations, we will introduce the second version
of the satisfiability game:

5.5.7. Definition. Given a modal automaton A, the thin satisfiability game for
A, denoted by Sthin(A) is defined as the satisfiability game S(A) except that the
moves of 8 are constrained so that 8 may only choose A-thin relations. That is,
R is a legitimate move by 8 at some position in Sthin(A) i↵ R is a legitimate move
at the same position in S(A), and R is an A-thin relation.

In general, the game Sthin(A) is not equivalent to S(A) in the sense that there
is always a winning strategy for the same player in both games: since the moves
of 8 are restricted in Sthin(A), it may be that 9 has a winning strategy in Sthin(A)
but not in S(A) . In the following subsection, we shall arrive at a class of modal
automata for which the equivalence does hold.

5.6 Disjunctive and semi-disjunctive automata

As mentioned in the introduction to this chapter, an important role in our proof
of completeness is played by two kinds of special automata that correspond to
classes of functional and thin binary relations and hence allow somewhat simpler
trace graphs: disjunctive and semi-disjunctive automata.

The conditions on these automata can be nicely expressed in terms of restric-
tions on the one-step language.

5.6.1. Definition. Given sets X andA we define the sets LitC(X) and 1MLdr(X, A)
by respectively:

⇡ 2 LitC(X) ::= ? | > | p ^ ⇡ | ¬p ^ ⇡

where p 2 X, and

↵ 2 1ML
d

r(X, A) ::= ? | ⇡ ^r� | ↵ _ ↵,

170 Chapter 5. Axiomatic Completeness

where ⇡ 2 LitC(X) and � 2 TA. Elements of 1MLdr(X, A) are called one-step
disjunctive formulas and a modal automaton A = (A,⇥,⌦, aI) is disjunctive if
⇥(a) belongs to 1ML

d

r(X, A) for all a 2 A.

5.6.2. Definition. Let A be a modal automaton and let C be a cluster of A. The
set of (zero-step) C-safe conjunctions, denoted by Conj

C

0 (A) consists of formulas
of the form

V
B with B ✓ A, such that for all b1 6= b2 2 B \ C, either b1 or b2 is

a maximal even element of C. The grammar

↵ 2 1ML
s(C)
r (X, A) ::= ? | ⇡ ^r� | ↵ _ ↵,

where ⇡ 2 LitC(X) and � 2 TConjC0 (A), defines the set 1ML
s(C)
r (X, A) of (one-

step) C-safe formulas. We call a one-step formula ↵ semi-disjunctive with respect
to a 2 A if ↵ is a Ca-safe formula. A modal automaton A = (A,⇥,⌦, aI) is
semi-disjunctive if ⇥(a) is semi-disjunctive with respect to a for all a 2 A.

5.6.3. Remark. Disjunctive automata are a subclass of semi-disjunctive ones
since disjunctive formulas are semi-disjunctive. In more details, given a disjunc-
tive automaton A and let C be a cluster of A. It is easy to check that each element
a 2 A can be seen as a Ca-safe conjunction. This implies that A ✓ Conj

C

0 (A), and
by the assumption that T preserves inclusions, we get that this TA ✓ TConjC0 (A).

Note that as we already mentioned, it is not always the case that for an
arbitrary automaton A the satisfiability game S(A) and the thin satisfiability
Sthin(A) are equivalent, but for semi-disjunctive automata it holds:

5.6.4. Proposition. Let A be a semi-disjunctive automaton. Then each player
⇧ 2 {9, 8} has a winning strategy in S(A) if and only if she/he has a winning
strategy in Sthin(A).

Before going to the details of the proof we state the following remark which
will be used in the proof of Proposition 5.6.4

5.6.5. Remark. Given a modal automaton A = (A,⇥,⌦, aI) and a state b 2 A,
we denote the marking we get from the natural valuation Vb : A ! PA

] by
nb : A] ! PA. Then from naturality of one-step formulas (see Proposition 5.3.6)
we find that for every ↵ 2 TXA

]:

A
]
,↵ �1

b
⇥(b)() PA,TXnb(↵) �1

VId
⇥(b),

where VId is the valuation corresponding to the identity marking Id : PA! PA.

Proof of Proposition 5.6.4: It is clear that any winning strategy for 9 in
S(A) is still a winning strategy for her in Sthin(A). Conversely, we prove that any

5.6. Disjunctive and semi-disjunctive automata 171

winning strategy � of 9 in Sthin(A) can be transformed into a winning strategy �0

for her in the full game. This strategy �0 will be such that all witnesses ↵ picked
by 9 in a �0-guided match are such that Base(↵) contains only thin relations.

To prove our claim, first of all note that the moves by 9 in the satisfiability
game are elements of TXA

], so they are pairs containing a subset of set X as
the first component and an element of the set TA] as the second component.
In the following proof, to simplify the notation, and because everything on the
propositional side will be kept the same for both strategy � and �0, we focus on
the second component and think of ↵ and ↵0 as elements of TA].

Take a partial �-guided match R0↵0R1↵1...Rn↵n, and suppose that

↵n 2
\

a2ranRn

J⇥(a)Ka

is the first place such that Base(↵) contains a non-thin relation. We will provide
an alternative move ↵0

n
satisfying the following properties:

(i) ↵0
n
is a legitimate move for 9 at position Rn;

(ii) Base(↵0
n
) contains only thin relations;

(iii) (Base(↵0
n
),Base(↵n)) 2

�!P✓.

These conditions are there to make sure that we have trace reflection, i.e.,
for all �0-guided matches ⇢ there exists a corresponding �-guided shadow-match
such that traces through ⇢ corresponds to the traces of the shadow match. More
particularly, since we ensure that (Base(↵0

n
),Base(↵n)) 2

�!P✓, and that every
element of Base(↵0

n
) is thin, it follows that every response by 8 to the move ↵0

n
in

the satisfiability game S(A) is also an admissible response to the original move
↵n (which was part of the winning strategy �) in the thin satisfiability game
Sthin(A). Hence every �0-guided play is winning, since it has the same traces as
some �-guided shadow play.

Suppose that Q 2 Base(↵n) is not thin. Then there is an a 2 A, and b1 6=
b2 2 Ca\Q[a] such that neither of them is a maximal even element of Ca. In case
there are more Q, obtain ↵0

n
by iterating the procedure we are about to describe.

Since ⇥(a) is semi-disjunctive, it is equivalent to
W
� for some � where each

� 2 � is of the form � = ⇡ ^ r� for some � 2 TConjCa
0 (A) and ⇡ 2 LitC(X).

Now from ↵n 2
T

a2ranRn
J⇥(a)Ka we get for all a 2 ranRn a disjunct ⇡ ^r� such

that ↵n 2 J⇡ ^r�Ka. Hence ↵n 2 Jr�Ka which implies that (↵n, �) 2 T �0
a
.

Define R 2 PA
] to be the following collection:

R := (Base(↵n) \ {Q}) [{Q1} [{Q2},

where for i = 1, 2 we define Qi := Q \ {(a, bi)}. In words, we obtain R from
Base(↵n) by replacing Q with Q1 and Q2. We now introduce relation Z :

172 Chapter 5. Axiomatic Completeness

Base(↵n)! R by:

Z := {(R,R) 2 Base(↵n)⇥R | R 6= Q} [{(Q,Q1), (Q,Q2)}.

Note that Z is the converse of the graph of a surjective map from R to Base(↵n).

Claim. The following diagram in the category Rel, in which the relation �0
a
is the

zero-step satisfaction relation given by the valuation Va, the relation �0
a
�↵n
�

is the
restriction of �0

a
to Base(↵n)⇥ Base(�), and the relation �0

a
�R
�
is the restriction

of �0
a
to R⇥ Base(�), is commutative.

Base(�)

Base(↵n) R

�0
a
�R
�

�0
a
�↵n
�

Z

Proof of Claim. The commutativity of the above diagram boils down to the
following identity:

�0
a
�↵n
�

= Z ; �0
a
�R
�
.

(✓) Since � 2 TConjCa
0 (A), elements of Base(�) 2 PConj

Ca
0 (A) are zero-step Ca-

safe conjunctions of the form
V

B for someB ✓ A. Now given (Y,
V

B) 2 (�0
a
�↵n
�
),

from the definition of �0
a
we get that for all b 2 B it holds that (a, b) 2 Y . In case

that Y 6= Q we have (Y, Y) 2 Z and (Y,
V

B) 2 (�0
a
�R
�
). In case Y = Q, becauseV

B is a zero-step Ca-safe conjunction, for all b 6= b
0 2 B either b or b0 is a maximal

even element of Ca. Recall that b1 and b2 obtained from the assumption that Q
is not thin, and since they were both assumed not to be maximal even elements,
at most one of b1 and b2 belongs to B. Depending on whether b1 2 B or b2 2 B

we get a Y
0 = Q \ {(a, bi)} 2 R with (Y, Y 0) 2 Z such that for all b 2 B we have

(a, b) 2 Y
0. Hence (Y 0

,
V

B) 2 (�0
a
�R
�
) and so we find that (Y,

V
B) 2 (Z ; �0

a
�R
�
)

indeed.

(◆) Conversely assume that (Y,
V

B) 2 (Z ; �0
a
�R
�
). Then there is an Y

0 2 R
such that (Y, Y 0) 2 Z and (Y 0

,
V
B) 2 (�0

a
�R
�
). Now since

V
B 2 Conj

Ca
0 (A) and

Y
0 ✓ Y , because for each (Y, Y 0) 2 Z either Y 6= Q and Y = Y

0 or Y = Q and
Y

0 = Qi, we get that (Y,
V

B) 2 (�0
a
�↵n
�
). This finishes the proof of the Claim.

Returning to the proof of Proposition 5.6.4, we first observe that by the com-
mutativity of the diagram it follows that:

T(�0
a
�↵n
�
) = T(Z) ; T(�0

a
�R
�
).

But then from (↵n, �) 2 T(�0
a
�↵n
�
) we may derive the existence of an ↵

0
n
2

TR ✓ TA] such that (↵n,↵
0
n
) 2 TZ and (↵0

n
, �) 2 T(�0

a
�R
�
). We now prove

that ↵0
n
satisfies the conditions (i)-(iii).

5.6. Disjunctive and semi-disjunctive automata 173

For (i) we show that ↵0
n
2

T
a2ranRn

J⇥(a)Ka. Take an arbitrary b 2 ranRn

and consider the natural b-marking nb : A
] ! PA defined by R 7! R[b] :=

{c 2 A | (b, c) 2 R}. It is clear from the definition of the relation Z that
for b 6= a we have that for all z = (R,R

0) 2 Z, nb � ⇡1(z) = nb � ⇡2(z) (?),
because either R 6= Q and R = R

0 or R = Q and R
0 = Qi. So in particular for

(↵n,↵
0
n
) 2 TZ, from the definition of TZ (see Definition 2.3.27) and clause (?)

above, we have that Tnb(↵n) = Tnb(↵0
n
). Now since ↵n satisfies ⇥(b) and because

Tnb(↵n) = Tnb(↵0
n
), by Remark 5.6.5, ↵0

n
also satisfies ⇥(b) (for b 6= a). For b = a

from (↵0
n
, �) 2 T(�0

a
�R
�
) we get that ↵0

n
satisfies ⇥(a).

Clause (ii) is immediate from the definition of R, and the fact that ↵0
n
2 TR

implies that Base(↵0
n
) ✓ R.

For (iii) we need to prove that (Base(↵0
n
),Base(↵n)) 2

�!P✓. To show this,
observe that from (↵0

n
,↵n) 2 TZ� and the fact that Base is natural transformation

for weak pullback-preserving functors, we immediately get that:

(Base(↵0
n
),Base(↵n)) 2 PZ

� ✓ P(✓) ✓ �!P (✓).

To finish the proof of Proposition 5.6.4, note that by repeating the same
process we can define �0 inductively for matches of arbitrary length and get a
winning strategy for 9 such that all the witnesses picked by 9 have a thin Base,
i.e, a Base which contains only thin relations. And finally, the results for 8 directly
follow from the results for 9 and the determinacy of the satisfiability game.

The final proposition of this section summarizes some of the closure properties
of (semi)-disjunctive automata. Here we say an automaton is (semi-)disjunctive
modulo one-step equivalence if is it one-step equivalent to a (semi-)disjunctive
automaton.

5.6.6. Proposition. Let A and B be modal automata. Then we have:

(1) If A is disjunctive, then it is also semi-disjunctive;

(2) If A and B are disjunctive, then so is A _ B;

(3) If A and B are semi-disjunctive, then so is A _ B;

(4) If A and B are semi-disjunctive, then so is A ^ B, modulo one-step equiva-
lence;

(5) If A and B are semi-disjunctive then so is A[B/x], modulo one-step equiv-
alence;

(6) If A is disjunctive and positive in x, then ⌫x.A and Ax are semi-disjunctive,
modulo one-step equivalence.

174 Chapter 5. Axiomatic Completeness

Proof:
The first three statements are immediate consequences of the definition. We skip
the proof of the fourth statement: it is similar to but simpler than that of (5),
since in the case of A ^ B there is only one state, where we have to replace a
conjunction of r-formulas by a disjunction of appropriate r-formulas, viz., the
initial one.

Clause (5): Let’s denote the automaton A[B/x] by D. We need to prove that
for all d 2 D := A]B the formula ⇥D(d) is one-step equivalent to a formula which
is semi-disjunctive with respect to d. First observe that the states from B cause
no problem whatsoever: for d 2 B we have that ⇥D(d) = ⇥B(d), so the one-step
formulas assigned to any d 2 B are d-safe since B is semi-disjunctive. So it is
enough to prove the semi-disjunctivity (modulo one-step equivalence) of formulas
belonging to the A-part of the automaton A[B/x]. In the following we will show
that for all d 2 A the formula ⇥D(d) = ⇥A(d)[⇥B(bI)/x] is semi-disjunctive with
respect to d.

Pick d 2 A. Because ⇥A(d) is a semi-disjunctive formula, it is of the formW
i2I ⇡i^r�i with �i 2 TConjCd

0 (A) and since B is semi-disjunctive too, ⇥B(bI) is

of the form
W

k2K ⇡
0
k
^ r�k with �k 2 TConj

CbI
0 (B). Note that x can only occur

in lattice terms ⇡i, hence we have the following (if x /2 ⇡ then ⇥A(d)[⇥B(bI)/x] =
⇥A(d) and so is semi-disjunctive):

⇥A(d)[⇥B(bI)/x] =
W

i2I ⇡i[⇥B(bI)/x] ^r�i
=

W
i2I(⇡i \ x) ^ (Wk2K⇡

0
k
^r�k) ^r�i

It is not di�cult to check that by the rules of propositional logic, we can rewrite
⇥A(d)[⇥B(bI)/x] as a disjunction of conjunctions of the form (⇡\x)^⇡0^r�^r�,
and consider each of these conjunctions separately. In this proof, for simplicity
and without loss of generality, we assume that there is only one such conjunction
and ⇥A(d)[⇥B(bI)/x] is of the following form:

⇥A(d)[⇥B(bI)/x] = (⇡ \ x) ^ ⇡0 ^r� ^r�.

To show that ⇥A(d)[⇥B(bI)/x] = ⇡
00^r�^r� with ⇡00 = (⇡\x)^⇡0 is equivalent

to a semi-disjunctive formula with respect to d, it is enough to prove thatr�^r�
is equivalent to a disjunction

W
j2J r�j such that each disjunct r�i is a one-step

Cd-safe formula, i.e., �j 2 TConjCd
0 (D). Because then we get ⇥A(d)[⇥B(bI)/x] ⌘KW

i2I ⇡
00
i
^ r�i and so is a semi-disjunctive formula with respect to d. But this is

the case by the modal distribution law from Proposition 5.3.11:

r� ^r� ⌘K

_
{r(T^)↵ | ↵ 2 T(Base(�)⇥ Base(�)) s.t.

T⇡1(↵) = � and T⇡2(↵) = �},

5.6. Disjunctive and semi-disjunctive automata 175

and since there is no cluster of automaton A[B/x] that contains states from both A

and B, the image of the restriction of the conjunction map ^ to Base(�)⇥Base(�)
is contained in the set of zero-step Cd-safe conjunctions and so we have that (T^)↵
for ↵ 2 T(Base(�)⇥ Base(�)) belongs toTConjCd

0 (A).

Clause (6): Recall from Proposition 5.3.23 that for every one-step formula
⇥(a) there exist formulas ✓a

i
in which x does not appear and such that ⇥(a) ⌘K

(x ^ ✓a0) _ ✓a1 . Assume that the automaton A is disjunctive. Then it is not
di�cult to check that without loss of generality we can assume that formulas ✓a

i

themselves are disjunctive. The problem is that when we define the transition
maps for the automata Ax and ⌫x.A, the substitution : a 7! (x ^ a0) _ a1

introduces conjunctions in the scope of modality r. We claim however, that:

if ↵ 2 1ML
d

r(X, A), then ↵[] is equivalent to a one-step Ca-safe formula for every a.

Clearly we may restrict our attention to the case of nabla formulas ↵ = r� with
� 2 TA. To prove that r�[] is a one-step Ca-safe formula for every a, we use
the following one-step equivalence [KKV08] to distribute r over disjunctions (cf.
Axiom �3)

r(T_)� ⌘1

_
{r� | � (T2)�}.

Now given the substitution , we can think of it as
W
�g where g : a 7!

{x ^ a0, a1}. So we get that r�[] = r(T_)(Tg)(�) is one-step equivalent to a
disjunction of r� with � (T2)Tg(�). To finish the proof it is enough to show
that in the case of both Ax and ⌫x.A we have � 2 TConjCa

0 for all a.
From (�,Tg(�)) 2 T2 and definitions of Base (Definition 2.3.21) and Barr

lifting (Example 2.3.27), we get that (Base(�),Base(Tg(�))) 2 P2. Now from
naturality of Base we have: (Base(�), g[Base(�)]) 2 P2. We claim that for both
Ax and ⌫x.A it holds that Base(�) ✓ Conj

Ca
0 so that � 2 TConjCa

0 for all a.
To prove the claim take some ⌧ 2 Base(�). We have that there is a 2 Base(�)
such that ⌧ 2 g(a) = {x ^ a0, a1}. It is easy to see that ⌧ is a zero-step Ca-safe
conjunction because in the case of Ax the claim follows from the fact that x forms
a degenerate cluster on its own, so that x and a0 belong to di↵erent clusters. In
the case of ⌫x.A the state x is by construction the maximal even element of its
cluster, so that again the x ^ a0 is a safe zero-step conjunction. Hence we have
Base(�) ✓ Conj

Ca
0 .

5.6.1 A key lemma

We now come to one of the key results of this chapter. The role of this Theorem
in the overall completeness proof is to establish a link between the two games we

176 Chapter 5. Axiomatic Completeness

have introduced for modal automata, the satisfiability game and the consequence
game.

5.6.7. Theorem. Let A be a semi-disjunctive automaton and D be an arbitrary
modal automaton such that A ✏C D. Then A ^ ¬D has a thin refutation.

This theorem is an automata-theoretic version of Lemma 36 from [Wal00],
one of the key lemmas of Walukiewicz’ completeness proof, and at the same time
it generalizes that result in two ways. First, our coalgebraic approach extends
the result from the power set functor P to a set functor T. Second, we prove the
result for an arbitrary automaton D instead for a disjunctive one.

Before we prove this theorem, we formulate an auxiliary lemma. Recall that
the transition map of the automaton ¬D is defined by taking boolean duals of
the formulas assigned by the transition map of D, and the priority map is defined
by simply raising all priorities by 1. We shall need the following fact on boolean
duals, which is a straightforward consequence of the definitions.

5.6.8. Proposition. Let (S, �) be a one-step TX-frame, let ' be a one-step
formula in 1MLr(X, A) and let m,m

0 : S ! P(A) be two markings such that
S,m, � �1

' and S,m
0
, � �1

'
�. Then for some a 2 A and some s 2 S we have

a 2 m(s) \m
0(s).

Proof of Theorem 5.6.7: We first fix the notation, let A = (A,⇥A,⌦A, aI)
and D = (D,⇥D,⌦D, dI) and denote the automaton A ^ ¬D, denoted by B =
(B,⇥B,⌦B, bI) with B = A[D [{bI}. Let � be the winning strategy for player
II in C(A,D) which exists by the assumption that A ✏C D. We will use � to
construct a winning strategy � for 8 in Sthin(B). Given a �-guided partial match
⇢ in S(B) with basic positions

R0R1R2...Rn

our aim is to introduce a response Rn+1 for 8 to every possible move � = (Y,�)
by 9, such that:
(i) Rn+1 is a legitimate move for 8, i.e., Rn+1 ✓ R

0 for some R
0 2 Base(�);

(ii) ran(Rn+1) \D is a singleton;
(iii) There is a �-guided partial C(A,D)-match (S0, S

0
0)(S1, S

0
1)...(Sn, S

0
n
), where

(a) S0 = {(aI , aI)} and S
0
0 = {(dI , dI)};

(b) S1 = {(aI , a) 2 A
2 | (aI , a) 2 R1} and {(dI , d) 2 D

2 | (aI , d) 2 R1} ✓ S
0
1;

(c) for each i > 1 we have Ri \ A
2 = Si and Ri \ D

2 is a singleton {(d, d0)}
with d 2 ran(Ri�1) \D and (d, d0) 2 S

0
i
.

By definition we have R0 = {(bI , bI)}, S0 = {(aI , aI)} and S
0
0 = {(dI , dI)}.

The definition of R1 will be given after we show how to define Rn+1 for n � 1, as
it will be a variation on this general case.

5.6. Disjunctive and semi-disjunctive automata 177

Suppose the inductive hypothesis has been maintained for the partial match ⇢
with basic positions R0R1R2...Rn, with shadow match (S0, S

0
0)(S1, S

0
1)...(Sn, S

0
n
),

and let � = (Y,�) 2 TX(B)] be an arbitrary move chosen by 9 at the position Rn.
Let d be the unique element of ran(Rn) \ D and let ran(Rn) \ A = {a1, ..., ak}.
Then we have by the admissibility of � that:

� 2
\

1ik

J⇥A(ai)Kai \ J⇥D(d)
�Kd.

In terms of natural valuations (Definition 5.3.12), this means:

B
]
, �, n

B

ai
�1 ⇥A(ai) for all a1, ..., ak

and
B
]
, �, n

B

d
�1 ⇥D(d)

�
.

Then by Corollary 5.3.7 and Proposition 5.3.8, we obtain that

Base(�), �, nD

d
�1 ⇥D(d)

�
, (5.4)

and

A
]
, �, n

A

a
�1 ⇥A(a) for all a 2 A \ ranRn. (5.5)

Let resA : B] ! A
] denote the map sending R to R \ A

2, and similarly for
resD : B] ! D

].
By (5.5) and naturality of one-step formulas (Proposition 5.3.6) we get:

TXresA(�) 2
\

1ik

J⇥A(ai)Kai

meaning that:

A
]
,TXresA(�), n

A

a
�1 ⇥A(a), for all a 2 A \ ranRn (5.6)

But then by Corollary 5.3.7 we have that

Base(�),TXresA(�), n
A

a
�1 ⇥A(a), for all a 2 A \ ranRn, (5.7)

And hence TXresA(�) is an admissible move for player I in the consequence
game at position (Sn, S

0
n
). Thus by Player II’s winning strategy � we find a map

f : A] ! D
] such that TX(f � resA)(�) 2 J⇥D(d)K. Denoting TX(f � resA)(�) by

�
0 = (Y0,�0) we get:

Base(�0), �0, nD

d
�1 ⇥D(d), (5.8)

We shall prove the following claim:

Claim. There is some S 2 Base(�), and some c 2 D such that (d, c) 2 f(resA(S))\
resD(S).

178 Chapter 5. Axiomatic Completeness

Proof of Claim: Note that the map f : A] ! D
] is a one-step frame morphism.

Hence, if we define a marking m : Base(�)! PD by setting

m(S) := n
D

d
(f(resA(S))),

then we may apply naturality (Proposition 5.3.6) to (5.8) and obtain

Base(�), �,m �1 ⇥D(d). (5.9)

But then by Proposition 5.6.8, it follows from (5.4) and (5.9) that there is
some c 2 D and some S 2 Base(�) such that c 2 n

D

d
(S) \m(S). Unravelling the

definitions of nD

d
and m we find that, respectively, (d, c) 2 resD(S) and (d, c) 2

f(resA(S)) as required.

With this claim in place, we define the next move for 8 prescribed by the
strategy � to be the relation Rn+1 := resA(S) [{(d, c)}, where S 2 Base(�)
and c 2 D are as described in the claim, so that (d, c) 2 f(resA(S)) \ resD(S).
Note that this Rn+1 is a legitimate move in response to � = (Y, �) since Rn+1 ✓
S 2 Base(�). The shadow match is then extended by the pair (Sn+1, S

0
n+1) :=

(resA(S), f(resA(S)) so that condition (iii)(c) of the induction hypothesis holds as
an immediate consequence of the claim. For conditions (i) and (ii), it is obvious
that |ran(Rn+1)\D| = 1. By an argument similar to the one used in the proof of
Proposition 5.6.4, and the assumption that A is semi-disjunctive, we can ensure
that Rn+1 is thin with respect to A.

We now explain how to define R1. The definition follows a similar line of
argumentation, but we need to take care of the switch between initial states in
B, A and D such that we can relate traces in ⇢ with traces in the shadow match.
First note that in position R0, by the definition of A^¬D, an admissible 9-move
� is such that:

B
]
, �, n

B

bI
�1 ⇥A(aI)

and
B
]
, �, n

B

bI
�1 ⇥D(dI)

�
.

Now instead of resA and resD, we use the maps res⇤
A
: A] ! A

] and res⇤
D

:
B
] ! D

] defined by:

res⇤
A
(S) = {(aI , a) | (bI , a) 2 S},

and
res⇤

D
(S) = {(dI , d) | (bI , d) 2 S}.

Then by naturality (Proposition 5.3.6), we get

A
]
, (TXres

⇤
A
)(�), nA

aI
�1 ⇥A(aI)

5.6. Disjunctive and semi-disjunctive automata 179

and
D
]
, (TXres

⇤
D
)(�), nD

dI
�1 ⇥D(dI)

�
.

So (TXres⇤A)(�) is a legal move for player I in C(A,D). Let f : A] ! D
] be the

�-guided response by player II. Then we have

D
]
,TX(f � res⇤A)(�), nD

dI
�1 ⇥D(dI).

Now, as in the above Claim, define the marking m := n
D

dI
� f � res⇤

A
. By

naturality, we then get
Base(�), �,m �1 ⇥D(dI).

Hence by Proposition 5.6.8, we obtain S 2 Base(�) and c 2 D such that
c 2 n

B

bI
(S) \m(S). Now define

R1 := {(bI , a) | a 2 A} [{(bI , c)}.

Note that R1 is a legal 8-move since c 2 n
B

bI
(S) and hence (bI , c) 2 S. We

then extend the shadow match by setting S1 = res⇤
A
(S) and S

0
1 = f(S1). To see

that condition (iii)(b) holds, note that:

{(dI , d) 2 D
2 | (bI , d) 2 R1} = {(dI , c)}

✓ {(dI , d) 2 D
2 | d 2 m(S)}

= {(dI , d) 2 D
2 | d 2 (nD

dI
� f � res⇤

A
)(S)}

✓ f(res⇤
A
(S)) = S

0
1.

To show that the thus defined strategy � is winning for 8, first observe that
he never gets stuck, so that we may focus on infinite matches. It su�ces to prove
that every infinite �-guided match contains a bad trace, so consider an arbitrary
such match ⇢ = (Ri)i�0.

Clearly we may assume that all initial parts of ⇢, corresponding to the partial
matches (Ri)0in, satisfy the conditions (i) to (iii). From this it follows that ⇢
itself has an infinite �-guided shadow match (Si, S

0
i
)i�0 satisfying the condition

(iii)(a-c). In addition, it follows from (i) and (ii) that ⇢ will contain a unique trace
in D, which by (iii) will also be a trace on the right side of the shadow match in
the consequence game. That is, the match R0R1Rn . . . contains a unique trace
of the form bId1d2d3 . . . with each di in D, and by definition of S1, this trace
corresponds to a trace dId1d2d3 . . . through the stream S

0
0S

0
1S

0
2 If this trace

is bad, then we are done. If not, then given the priorities assigned to states in
¬D it must be bad as a trace in D since parities are swapped in ¬D. Hence there
must be a bad trace aIa1a2a3 . . . on the left side S0S1S2 . . . of the shadow match
in the consequence game, since this shadow match was guided by the winning
strategy � of Player II. But then this trace corresponds to a bad bIa1a2a3 . . . a
bad trace in the match R0R1R2 . . . of the satisfiability game. Summarizing, we
see that either the unique trace through D in ⇢ is bad or there is some bad trace
through A in ⇢. In either case, ⇢ is a loss for 9 as required.

180 Chapter 5. Axiomatic Completeness

5.7 A strong simulation theorem

The goal of this section is to prove a strengthened simulation theorem for coal-
gebra automata: we will present a construction sim(.) that turns an arbitrary
modal automaton A into a disjunctive modal automaton sim(A) that is not only
semantically equivalent to A, but in fact game-equivalent to A in the strong sense
as stated in Theorem 5.7.2 below. Roughly speaking, the idea is to define sim(A)
via a variation of the power set construction such that a match of the acceptance
game of sim(A) corresponds to 9 simultaneously playing various matches of the
acceptance game of A.

5.7.1. Definition. Fix a modal X-automaton A = (A,⇥,⌦, aI). Given a set
Y ✓ X, let bY denote the following set of formulas:

^
{p | p 2 Y} ^

^
{¬p | p /2 Y}.

The pre-simulation of A is defined to be the structure pre(A) = (A]
,⇥0

,NBT⌦, a
0
I
)

where A
] := P(A⇥ A) as always, a0

I
:= {(aI , aI)},

⇥0(R) =
_

{bY ^r↵ | (Y,↵) 2
\

b2ranR

J⇥(b)Kb},

and NBT⌦ as usual is the set of streams over A
] that do not contain any bad

traces.
Since the acceptance condition NBT⌦ is an !-regular language with alpha-

bet A
], we may pick some deterministic parity automaton Z = (Z, �,⌦0

, zI) on
alphabet A

] that recognizes NBT⌦. Finally, we define sim(A) to be the modal
automaton (D,⇥00

,⌦00
, dI) where:

• D = A
] ⇥ Z,

• dI = (a0
I
, zI),

• ⇥00(R, z) = ⇥0(R)[(Q, �(R, z))/Q | Q 2 A
]] and

• ⌦00(R, z) = ⌦0(z).

We also define a “forgetful” map G : D ! A
] by sending a pair (R, z) in the

product A] ⇥ Z to its left component R.

Note that the simulation construction is very tightly related to the satisfiabil-
ity game; the states of the pre-simulation of A just are the basic positions of the
satisfiability game for A, and the acceptance condition for the pre-simulation of
A is exactly the winning condition in S(A).

The main result of this section is the following result, which is one of the key
lemmas in our completeness proof.

5.7. A strong simulation theorem 181

5.7.2. Theorem. The map sim(·) assigns to each modal automaton A a disjunc-
tive automaton sim(A) such that:

(1) A ✏C sim(A) and sim(A) ✏C A,

(2) B[sim(A)/x] ✏C B[A/x], for any modal automaton B which is positive in x.

Proof:
To prove that A ✏C sim(A), let Z be the fixed stream automaton that recognizes
NBT⌦. Every finite word R0 . . . Rk over A] determines an associated state of Z by
simply running Z on the word R0 . . . Rk; so for ✏ (the empty word) the associated
state is zI , for R0 the associated state is �(R0, zI) etc. Since every partial match
⇢ of the consequence game C(A, sim(A)) determines a word R0 . . . Rk over A] in
the obvious way, we can associate a state z⇢ of Z with each such partial match. If
player I continues the match ⇢ consisting of basic positions (R0, R

0
0) . . . (Rk, R

0
k
)

by choosing the move (Y,↵) 2 TXA
], then we let player II respond with the

map f : Base(↵) ! (A] ⇥ Z)] (since only the action on Base(↵) will matter for
legitimacy of the move) that is defined by mapping R 2 Base(↵) to the singleton
{((Rk, z⇢), (R, �(Rk, z⇢))}. It can be checked that this defines a functional winning
strategy for Player II, and we leave the details to the reader.

The direction sim(A) ✏C A of clause (1), which can be seen as a simple special
case of clause (2), follows from Propositions 5.7.5 and 5.7.6, as will clause (2)
itself.

The di�cult part of Theorem 5.7.2 is to prove clause (2), and this will be the
focus of the rest of this section. It will be convenient to state more abstractly
what the crucial properties are of the automaton sim(A) that we have associated
with an arbitrary automaton A. First we need an auxiliary definition, for which
we recall the notion of a true state from Definition 5.3.22.

5.7.3. Definition. Given a disjunctive automaton D = (D,⇥,⌦, di), and a fixed
true state d> of D, we let

Sing>(d) :=

⇢
? if d = d>
{d} if d 6= d>.

define the D-marking Sing> : D ! PD.

5.7.4. Definition. Let A = (A,⇥A,⌦A, aI) and D = (D,⇥D,⌦D, dI) be an
arbitrary and a disjunctive modal automata respectively. We say D is a disjunctive
companion of A if D has a true state d> and there is a map G : D ! A

] satisfying
the following conditions:

(DC1) GdI = {(aI , aI)} and G(d>) = ?.

182 Chapter 5. Axiomatic Completeness

(DC2) Let � 2 TXD and D, �, Sing> ✏1 ⇥D(d). Then TXG(�) 2 J⇥A(a)Ka for all
a 2 ran(Gd).

(DC3) If (Gdi)i2! 2 (A])! contains a bad A-trace, then (di)i2! is itself a bad
D-trace.

The map G in this definition is intended as a witness of a tight structural rela-
tionship between the automaton D and the satisfiability game for A. In particular
the map G captures the intuition that every state of a disjunctive companion rep-
resents a macro-state of A (i.e. a position of the satisfiability game), plus possibly
some extra information. In the concrete case of the automaton sim(A), this “extra
information” is a state of the stream automaton that detects bad traces. Infor-
mally one can think of a state d 2 D as a conjunction of the states in ran(Gd),
or di↵erently put: for each for a 2 ran(Gd), think of a as being “implied by” d.

Each of the clauses of this definition can thus be given an informal explanation
that is consistent with this idea. The first clause (DC1) simply expresses that the
start state of D is a representation of the start position of the satisfiability game
S(A). The second clause (DC2) captures the idea that any state a a 2 ran(Gd)
is “entailed” by d in the following sense. Given an object � = (Y,↵) 2 TXD, we
can see � as a one-step model over D by taking Sing> : D ! PD (restricted to
the Base(↵)) as a D-marking. Similarly, applying the map G to �, we obtain
TXG(�) 2 TXA

]. Recalling from Remark 5.3.14, TXG(�) may be taken as a family
{(A]

, n
A

a
,TXG(�)) | a 2 A} of one-step models. Now the condition (DC2) requires

that if D, �, Sing> ✏1 ⇥D(d), then A
]
, n

A

a
,TXG(�) ✏1 ⇥A(a) for all a 2 ran(Gd).

Finally clause (DC3) makes sure that if (di)i2! is a “good” D-stream, in the sense
that it satisfies the acceptance condition of D, then the A

]-stream (Gdi)i2! has
no bad trace, and thus each of its traces is a win for 9 in the satisfiability game.

5.7.5. Proposition. The simulation map sim(.) assigns a disjunctive compan-
ion to any modal automaton.

Proof:
It is fairly straightforward to check that the map G : D ! A

], specified in
Definition 5.7.1, which simply forgets the states of the stream automata used in
the product construction, has all the properties required to witness that sim(A)
is a disjunctive companion of A.

5.7.6. Proposition. Let A and B be arbitrary modal automata, let D be a dis-
junctive companion of A, and assume that B is positive in x. Then:

B[D/x] ✏C B[A/x].

5.7. A strong simulation theorem 183

Before we set out to prove Proposition 5.7.6, we provide an auxiliary result
from [ESV19], which helps us to make a simplifying assumption on the moves
player I makes in the consequence game associated with B[D/x] and B[A/x]. The
proof is completely analogous to that of Proposition 8.7 in [ESV19], and so we
omit the rather tedious details.

5.7.7. Proposition. Let ⇥BD denote the transition map of the automaton B[D/x],
where B is an arbitrary modal automaton (positive in x), and D is a disjunctive
disjunctive automaton. Fix some R 2 (B [D)], Q ✓ (B [D)], some C ✓ ranR
and � 2 TXQ such that

� 2
\

a2ranR

J⇥BD(a)K1a.

Then there are Q0 ✓ (B [D)] and �0 2 TXQ0 such that �0 2
T

a2ranRJ⇥BD(a)K1a,
and for each Q 2 Q0 and c 2 C, we have |Q[c] \D| 1.

We are now ready for the proof of Proposition 5.7.6. We start by fixing a
notation.

5.7.8. Example. Let ⇢ = R0R1 . . . Rk be any stream over A] such that all traces
through ⇢ are functional. If a 2 dom(Rn) for some n < k, then a has at most one
Rn+1-successor. We denote this unique successor of a by a

+.

Proof of Proposition 5.7.6. Starting with notation, let A = (A,⇥A,⌦A, aI),
B = (B,⇥B,⌦B, bI) and D = (D,⇥D,⌦D, dI) and let G : D ! A

] be the map
given by Definition 5.7.4 witnessing that D is a disjunctive companion of A. We
denote by ⇥BD and ⇥BA the transition map B[D/x] and B[A/x] respectively.

Our goal is to provide a winning strategy � for player II in the consequence
game C(B[D/x],B[A/x]). Using Proposition 5.7.7, it will be convenient to make
the following simplifying assumptions on player I’s moves.

1. Claim. Without loss of generality we may assume that in any partial match
⇢ ending with (R,R

0), player I always pick an element ↵ = (Y,�) such that:

(1) dom(Q) ✓ ran(R) for all Q 2 Base(�),

(2) Q \ (D ⇥ B) = ; for all Q 2 Base(�),

(3) |Q[d] \D| 1 for all Q 2 Base(�) and d 2 B [D.

For a given relation R 2 (B[D)], let ranBR denote the set ran(R)\B, and let
ranDR denote the set ran(R) \D. Furthermore, we denote the sets R \ (B ⇥B)
and R \ (D ⇥D) by resBR and resDR respectively. We use analogous notations
for a relation R

0 2 (B [A)].

184 Chapter 5. Axiomatic Completeness

To appreciate the above claim, consider an arbitrary partial match

⇢ = (R0, R
0
0) . . . (Rk, R

0
k
),

in C(B[D/x],B[A/x]) with R0 = R
0
0 = {(bI , bI)}. It follows by Claim 1 that

we may assume each element c 2 ranRk to lie on some trace through R0 . . . Rk,
and that every trace through R0 . . . Rk is either a B-trace, or else it consists of
an initial, non-empty B-trace, followed by a non-empty D-trace. By the second
and third assumption of the claim, traces are D-functional, in the sense that if
d 2 ranDRn for some n < k, then d has at most one Rn+1-successor. Following
Convention 5.7.8 we will denote this successor as d+, if it exists. As a consequence,
every trace ⌧ on R0 . . . Rn ending at d has at most one continuation through
Rn+1 . . . Rk.

A key role in our proof is played by a ⇢-induced total order on ranDRk that
we will introduce now. Intuitively, we say, for d, d

0 2 ranDRk, that d is ⇢-older
than d

0 if d lies on a trace ⌧ that entered D at an earlier stage than any trace
arriving at d0.

For the formal definition of this ordering, we fix an arbitrary injective map
mnt : D ! !, which we will use to break “ties”, i.e., situations where the longest
D-traces leading to two di↵erent states in D are of the same length. The number
mnt(d) is called the birth minute of d. We let tb⇢(d) be the smallest pair of
natural numbers (j, l) in the lexicographic order on ! ⇥ ! such that there is
some e 2 ranDRj with mnt(e) = l, and such that the unique trace on Rj . . . Rk

beginning with e ends with d. Note that by Claim 1(1) and Claim 1(2) such an
e is guaranteed to exist, and the corresponding trace is unique because of trace
functionality in D. The pair tb⇢(d) = (j, l) is called the time of birth of d relative
to the match ⇢; we simply write tb(d) if ⇢ is clear from context.

Note that tb⇢ is always an injective map. To see this, suppose that tb⇢(d) =
tb⇢(d0) = (j, l). Then there are e, e

0 2 ranDRj such that the unique trace on
Rj . . . Rk beginning with e ends with d, and the unique trace beginning with e

0

ends with d
0, and such that mnt(e) = mnt(e0) = l. By injectivity of mnt, we get

e = e
0, and so we get d = d

0 by uniqueness of traces in the D-part of R0 . . . Rk.
Finally, we define a strict total ordering /⇢ on ranDRk relative to ⇢ by saying

that d is ⇢-older than d
0 (denoted by d /⇢ d

0) if tb⇢(d) is smaller than tb⇢(d0) (in
the lexicographic order). We may drop the reference to the match ⇢ when this is
clear from context. We leave it for the reader to verify that, for d 2 ranRn with
n < k, it holds that tb(d+) tb(d).

We now turn to player II’s winning strategy �. By a simultaneous induction
on the length of a partial �-guided match

⇢ = (R0, R
0
0) . . . (Rk, R

0
k
),

with R0 = R
0
0 = {(bI , bI)}, we will define maps

Fn : (B [D)] ! (B [A)],

5.7. A strong simulation theorem 185

and
gn : ranAR

0
n
! ranDRn.

We let the F -maps determine player II’s strategy in the following sense. Suppose
that in the mentioned partial play ⇢, player I legitimately picks an element ↵ =
(Y,�) 2 TX(B [D)]. Then player II’s response will be the map Fn+1�R, that is
the map Fn+1, restricted to the set R := Base(�) ✓ (B [D)], such that

TX(Fn+1�R)(↵) 2
\

b2ran(R0)

J⇥BA(b)K1b .

Inductively we will ensure that the following conditions are maintained:

(⇤) FnRn = R
0
n
, for all n � 0,

(†0) R
0
n
= resBR0

n
[(R0

n
\ (B ⇥ A)) [resAR0

n
,

(†1) resBR0
n
✓ resBRn,

(†2) R
0
n
\ (B ⇥ A) ✓

S
d2D{(b, a) | (b, d) 2 Rn and (aI , a) 2 Gd},

(†3) resAR0
n
✓

S
{Gd | d 2 ranRn \D},

(††) a 2 ranG(gn(a)) for all a 2 ranR0
n
\ A.

For some explanation and motivation of these conditions, observe that (*)
indicates that ⇢ itself is indeed �-guided. For conditions (†0) to (†3) which we
may refer to as condition (†), first observe that while by Claim 1, all B[D/x]-
traces consist of an initial B-part followed by an D-tail, condition (†0) implies
that similarly, all B[A/x]-traces consist of an initial B-part followed by an A-
tail. Condition (†1) then implies that the B-part on the left and right side of a
C(B[D/x],B[A/x])-match is the same, and condition (†3) implies that every pair
(a, b) 2 resAranR0

n
is ‘covered’ or ‘implied’ by some d 2 ranDRn. Finally, (††)

states that, for every a 2 ranR0
n
, the map gn picks a specific element d 2 ranDRn

such that a 2 ran(Gd). As we will see in Claim 4 below, it will be this condition,
together with the condition on the reflection of traces in Definition 5.7.4 and the
actual definition of the maps gn, that is pivotal in proving that player II wins all
infinite matches.

Setting up the induction, observe that R0 = R
0
0 = {(bI , bI)}. Defining F0 as

the map R 7! resBR and g0 as the empty map, we can easily check that (*), (†)
and (††) hold.

In the inductive case we will define the maps Fn+1 and gn+1 for a partial
match ⇢ = (R0, R

0
0) . . . (Rn, R

0
n
) as above. For the definition of Fn+1 : (B [D)] !

(B [A)], first observe that that by (†0) we are only interested in relations R 2
(B [D)] that are of the form R = resBR [(R \ (B ⇥ D)) [resDR. We will

186 Chapter 5. Axiomatic Completeness

define Fn+1 by treating these three parts of R separately, using, respectively, the
identity map on B

] and two auxiliary maps that we define now.
For the D-part of R, we define an auxiliary map Hn+1 : D ⇥D ! A

]:

Hn+1 : (d, d
0) 7! {(a, a0) 2 G(d0) | d = gn(a)}.

For the B ⇥ D-part of R, we need a second auxiliary map L : B ⇥ D !
P(B ⇥ A), given by

L(b, d) := {(b, a) 2 B ⇥ A | (aI , a) 2 G(d)}.

We now define the map Fn+1 : (B [D)] ! (B [A)] by

Fn+1(R) := resBR
[

S
{L(b, d) | (b, d) 2 R \ (B ⇥D)}

[
S
{Hn+1(d, d+) | (d, d+) 2 resDR}.

That is, we define Fn+1(R) as the union of three disjoint parts: a B⇥B-part,
a B ⇥ A-part and an A⇥ A-part.

For the definition of gn+1, consider an arbitrary position (Rn+1, R
0
n+1) following

the partial play ⇢. Note that we may assume that Rn+1 satisfies the assumptions
formulated in Claim 1, and that we have R

0
n+1 = Fn+1(Rn+1) by the fact that

player II’s strategy is given by the map Fn+1. Given a 2 ranAR0
n+1, distinguish

cases:

Case 1 If a does have an R
0
n+1-predecessor in A, that is, the set {b 2 A | (b, a) 2

R
0
n+1} is non-empty, we can define gn+1a to be the oldest element (with

respect to the match ⇢ · (Rn+1, R
0
n+1)) of the set {(gnb)+ | (b, a) 2 R

0
n+1} ✓

D. Note that this set is indeed non-empty, by definition of Fn+1 and gn+1

is well-defined.

Case 2 If a has no R
0
n+1-predecessor in A, then by definition of Fn+1 and L,

the set of states d 2 D for which there is a b 2 B with (b, d) 2 Rn+1 and
(aI , a) 2 Gd is non-empty. We define gn+1a to be the oldest element of this
set, that is, in this case, the element with the earliest birth minute.

To gain some intuitions concerning this definition, observe that in the second
case, we cannot define gn+1a inductively on the basis of the map gn applied to
an R

0
n+1-predecessor of a: we have to start from scratch. This case only applies,

however, in a situation where a does have an R
0
n+1-successor b 2 B such that in

Rn+1, this same b has an Rn+1-successor d 2 D such that (aI , a) 2 Gd. In this
case we simply define gn+1a := d, and if there are more such pairs (b, d), then for
gn+1a we may pick any of these d’s, for instance the one with the earliest birth
minute.

5.7. A strong simulation theorem 187

We now turn to the first clause of the definition of gn+1 — here lies, in fact,
the heart of the proof of Proposition 5.7.6. Consider a situation where a0 and a1,
both in A, are the two Rn+1-predecessors of a 2 A. Both gna0 and gna1 are states
in D, and therefore their Rn+1-successors in D, if existing, are unique, and will be
denoted by (gna0)+ and (gna1)+, respectively. We want to define gn+1a as either
(gna0)+ or (gna1)+, but then we are facing a choice between these two states of
D in case they are distinct. It is here that our play-dependent ordering of states
in D comes in: we will define gn+1a as the oldest element of the two, relative
to the (extended) play ⇢ · (Rn+1, R

0
n+1). Suppose (without loss of generality) it

holds that (gna0)+ is older than (gna1)+, so that we put gn+1a := (gna0)+. In this
case we say that the trace through gna0 is continued, while there is also a trace
jump witnessed by the fact that (a1, a) 2 R

0
n+1 but (gna1, gn+1a) 62 Rn+1 (see

Figure 5.2, where the dashed lines represent the g-maps, and the partial trace of
white points on the right is not mapped to a partial trace on the left, due to a
trace jump).

Rn

Rn+1

Rn+2

R
0
n

R
0
n+1

R
0
n+2

Figure 5.2: A trace merge results in a trace jump.

2. Claim. By playing according to the strategy �, player II indeed maintains the
conditions (⇤), (†) and (††).

Proof of Claim 2:1

Let ⇢ be a partial �-play satisfying the conditions (*), (†) and (††), and let
(Rn+1, R

0
n+1) 2 Gr(Fn+1) be any possible next position. It su�ces to show that

(Rn+1, R
0
n+1) also satisfies (*), (†) and (††).

1The proof of this Claim is verbatim the same as that of Claim 2 in the proof of Proposi-
tion 8.6 in [ESV19].

188 Chapter 5. Axiomatic Completeness

The conditions (*), (†0), (†1) and (†2) are direct consequences of the definition
of Fn+1, while (†3) is immediate by the fact that

(b, a) 2 Fn+1Rn+1 () (b, a) 2 G((gnb)
+), (5.10)

for all b, a 2 A. To prove (5.10), consider the following chain of equivalences,
which hold for all b, a 2 A:

(b, a) 2 Fn+1Rn+1
(Def. Fn+1)() (b, a) 2 Hn+1(d, d

+), some (d, d+) 2 resDRn

(Def. Hn+1)() (b, a) 2 G(d+), some (d, d+) 2 resDRn with d = gnb

(obvious)
=) (b, a) 2 G((gnb)

+).

Finally, for condition (††), let a 2 ranAR0
n+1 be arbitrary. If a has an R

0
n+1-

predecessor in A, then we are in case 1 of the definition of gn+1a, where gn+1a is
of the form (gnb)+ for some b with (b, a) 2 resAR0

n+1. But then (b, a) 2 G((gnb)+)
by (5.10), so that indeed we find a 2 ranG(gn+1a). If, on the other hand, a has
no R

0
n+1-predecessor in A, then we are in case 2 of the definition of gn+1a. In this

case, gn+1a is an element of a set, each of whose elements d satisfies a 2 ranG(d);
so we certainly have a 2 ranG(gn+1a).

3. Claim. The moves for Player II prescribed by the strategy � are legitimate.

Proof of Claim 3:2 Let ⇥BD and ⇥BA denote the transition maps of the au-
tomata B[D/x] and B[A/x], respectively. Consider a partial match ⇢ ending with
the position (Rn, R

0
n
) and a subsequent move � = (Y,�) 2 TX(B [D)] by player

I such that

(B [D)], �, nB[D
e

�1 ⇥BD(e), (5.11)

for all e 2 ranRn. By naturality of one-step formulas (Proposition 5.3.6), in order
to prove the claim it su�ces to show that, for an arbitrary element c 2 ranR0

n
=

ran(Fn+1Rn), we have

(B [A)],TXFn+1(�), n
B[A
c

�1 ⇥BA(c). (5.12)

But since c 2 B[A by definition of B[A/p], one of the following two cases applies:

Case 1: c 2 A. Then by (††) we find c 2 ran(G(d)), where d := gn(c)
belongs to ranDRn. As an immediate consequence of (5.11) and the fact that
⇥BD(d) = ⇥D(d), we find

(B [D)], �, nB[D
d

�1 ⇥D(d), (5.13)

2The proof of this Claim is verbatim the same as that of Claim 3 in the proof of Proposi-
tion 8.6 in [ESV19].

5.7. A strong simulation theorem 189

from which it follows by naturality that

R, �, n
B[D
d

�R �1 ⇥D(d). (5.14)

with R := Base(�).
Let the map succd : R! D be given by

succd(Q) :=

⇢
e if Q[d] = {e},
d> if Q[d] = ;.

Observe that this provides a well-defined (total) map by (Ass3) in Claim 1, and
an easy calculation reveals that the diagram below commutes:

R

n
B[D
d �R !!

succd // D

Sing>}}
PD

so that we may conclude that succd is a one-step model morphism:

succd : (R, �, n
B[D
d

�R)! (succd[R], (TXsuccd)(�), Sing>).

From this, (5.14), the fact that ⇥D(d) is a one-step formula in D, and Corol-
lary 5.3.7 we conclude that

D, (TXsuccd)�, Sing> �1 ⇥D(d). (5.15)

Now we may use the assumption that D is a disjunctive companion of A, obtaining
from clause (DC2) that

A
]
, (TXG)(TXsuccd)(�), n

A

c
�1 ⇥A(c). (5.16)

By functoriality of TX and the fact that ⇥A(c) = ⇥BA(c), this is equivalent to

A
]
, (TX(G � succd))(�), nA

c
�1 ⇥BA(c), (5.17)

and so by Corollary 5.3.7 and Proposition 5.3.8 we obtain

(B [A)], (TX(G � succd))(�), nB[A
c

�1 ⇥BA(c). (5.18)

From here on for conciseness we will write nc for n
B[A
c

. We now claim that,
comparing the two A-markings nc � (G � succd) and nc � Fn+1, we have

�
nc � (G � succd)

�
(Q) ✓

�
nc � Fn+1

�
(Q) (5.19)

for all Q 2 R. To see this, recall that d = gn(c). Now assume that a 2
�
nc �

(G � succd)
�
(Q), that is, (c, a) 2 G(succd(Q)). Observe that since G(d>) = ?

by (DC1), by definition of the map succd it must be the case that succd(Q) = e

190 Chapter 5. Axiomatic Completeness

for some unique e = d
+
Q
2 D such that Q[d] = {d+

Q
}. Then (c, a) belongs to

Hn+1(d, d
+
Q
) by definition of Hn+1, and to Fn+1Q by definition of Fn+1. But from

(c, a) 2 Fn+1(Q) we immediately obtain a 2
�
nc � Fn+1

�
(Q). This proves (5.19).

We use this observation in the following line of reasoning, where the key
observation is that in fact both maps G � succd and Fn+1 are one-step model
morphisms.

(B [A)], (TX(G � succd))�, nc �1 ⇥BA(c)

m (Prop. 5.3.6)

(B [A)], �, nc � (G � succd) �1 ⇥BA(c)

m (Corollary 5.3.7)

R, �,
�
nc � (G � succd)

�
�R �1 ⇥BA(c)

+ ((5.19), Prop. 5.3.10)

R, �,
�
nc � Fn+1

�
�R �1 ⇥BA(c)

m (Corollary 5.3.7)

(B [A)], �, nc � Fn+1 �1 ⇥BA(c)

m (Prop. 5.3.6)

(B [A)], (TXFn+1)(�), nc �1 ⇥BA(c).

This proves (5.12), as required.

Case 2 c 2 B. Note that in this case we have ⇥BA(c) = ⇥B(c)[⇥A(aI)/x] and
⇥BD(c) = ⇥B(c)[⇥D(dI)/x]. Thus by assumption we know that (B [D)], �, nB[D

c
�1

⇥B(c)[⇥D(dI)/x], while we need to establish that

(B [A)],TXFn+1(�), n
B[A
c

�1 ⇥B(c)[⇥A(aI)/x].

To achieve this it clearly su�ces to show that

(B [D)], �, nB[D
c

�1
↵[⇥D(dI)/x] implies (B [A)],TXFn+1(�), n

B[A
c

�1
↵[⇥A(aI)/x]

(5.20)

for all ↵ 2 1ML
+
r(X, B). We will prove (5.20) by induction on the one-step formula

↵, taken as a lattice term over the set {x} [1ML
+
r(X \ {x}, B). This perspective

allows us to distinguish the following two cases in the induction base.
Base Case a: ↵ = x. Here we find ↵[⇥D(dI)/x] = ⇥D(dI) and ↵[⇥A(aI)/x] =

⇥A(aI). In other words, in order to prove (5.20) we assume that

(B [D)], �, nB[D
c

�1 ⇥D(dI), (5.21)

and we need to show that

(B [A)],TXFn+1(�), n
B[A
c

�1 ⇥A(aI). (5.22)

5.7. A strong simulation theorem 191

Our line of reasoning here will be close to that in Case 1, and for this reason we
are a bit more sketchy. By (Ass3) we may define a map succc : R! D by setting
succc(Q) to be the unique Q-successor of c if Q[c] is nonempty, and the true state
d> otherwise. As in Case 1 this map is a one-step morphism of models:

succc : (R, �, n
B[D
c

�R)! (D,TXsuccc(�), Sing>). (5.23)

We also claim that our definition of the map Fn+1 has been tailored towards
the following inclusion:

�
n
B[A
aI
� (G � succc)

�
(Q) ✓

�
n
B[A
c
� Fn+1

�
(Q) (5.24)

for all Q 2 R. For a proof of (5.24), assume that a 2
�
n
B[A
aI
� (G � succc)

�
(Q)

for some Q 2 Base(�). In other words, we have (aI , a) 2 G(succc(Q)), and so by
definition of succc there is a unique d 6= d> 2 D such that (c, d) 2 Q. But then we
obtain (aI , a) 2 L(b, d) by definition of the map L, and since (c, d) 2 Q\ (B⇥D)
this gives (c, a) 2 Fn+1Q by definition of Fn+1. But from (c, a) 2 Fn+1Q we
directly see that a 2 n

B[A
c

(Fn+1Q), as required. This proves (5.24).
We can now show how to prove (5.22) from (5.21):

(B [D)], �, nB[D
c

�1 ⇥D(dI)

m (Corollary 5.3.7)

R, �, n
B[D
c

�R �1 ⇥D(dI)

m (Prop. 5.3.6, (5.23))

D, (TXsuccc)(�), Sing> �1 ⇥D(dI)

+ (DC1,DC2)

A
]
, (TXG)((TXsuccc(�)), nA

aI
�1 ⇥A(aI)

m (functoriality)

A
]
, (TX(G � succc))(�), nA

aI
�1 ⇥A(aI)

m (as in Case 1)

(B [A)], (TX(G � succc))(�), nB[A
aI

�1 ⇥A(aI)

+ (as in Case 1, by (5.24))

(B [A)], (TXFn+1)(�), nB[A
c

�1 ⇥A(aI).

Base Case b: ↵ 2 1ML
+
r(X\{x}, B), that is, ↵ is a x-free one-step formula over

B. In this case the proof of (5.20) is straightforward: clearly the substitutions in
(5.20) have no e↵ect, so what we have to prove is that

(B [D)], �, nB[D
c

�1
↵ implies (B [A)], (TXFn+1)(�), n

B[A
c

�1
↵. (5.25)

192 Chapter 5. Axiomatic Completeness

But intuitively this is clear, since ↵ only uses variables from B, and ‘when re-
stricted to B’, the two models in (5.25) are the same.

Formally, our proof of (5.25) proceeds as follows:

(B [D)], �, nB[D
c

�1
↵

m (Proposition 5.3.8)

(B [D)], �, nB

c
� resB �1

↵

m (Prop. 5.3.6)

B
]
, (TXresB)(�), nB

c
�1

↵

m (†1)
B
]
, (TX(resB � Fn+1))(�), nB

c
�1

↵

m (functoriality)

B
]
, (TXresB)((TXFn+1)(�)), nB

c
�1

↵

m (Prop. 5.3.6)

(B [A)], (TXFn+1)(�), nB

c
� resB �1

↵

m (Prop. 5.3.8)

(B [A)], (TXFn+1)(�), nB[A
c

�1
↵

Inductive case: The inductive cases in the proof of (5.20), where ↵ is of the
form ↵0 _ ↵1 or ↵0 ^ ↵1, are trivial.

To finish the proof of Proposition 5.7.6 we need to show that � is a winning
strategy. Since it is clear that player II never gets stuck playing the strategy �,
it is enough to show that all infinite �-guided matches are won by player II.

4. Claim. Suppose ⇢ is an infinite �-guided match with basic positions

(R0, R
0
0)(R1, R

0
1)(R2, R

0
2)...

If there is a bad trace on R
0
0R

0
1R

0
2..., there is also a bad trace on R0R1R2....

Proof of Claim 4:
For the proof of this claim, fix a �-guided match ⇢ as above. There are two
possibilities for a trace ⌧ on R

0
0R

0
1R

0
2...: either ⌧ stays entirely in B, or from some

finite stage onwards ⌧ stays entirely in A. Since the first case is easy we focus on
the second: so suppose ⌧ is an infinite trace of the form

b0b1...bnan+1an+2an+3...,

where the bj are all in B, and the ai are all in A. It now su�ces to prove the
following:

5.7. A strong simulation theorem 193

(?) There exists an index k such that for all j � k, we have
gj+1(aj+1) = (gj(aj))+.

Before we prove (?), let us see how it entails Claim 4. Suppose there ex-
ists such an index k, and consider gk(ak) 2 ranDRk. Pick an arbitrary initial
trace b0...bndn+1...dk of R0...Rk such that gk(ak) = dk (as mentioned already after
Claim 1, the existence of such a trace follows from our assumptions on player I’s
strategy). Then the stream

b0...dk�1gk(ak)gk+1(ak+1)gk+2(ak+2)...,

is a trace of R0R1R2... by the property of the index k described in (?). Further-
more, it follows that akak+1ak+2.... is a trace of the stream

G(gk(ak))G(gk+1(ak+1))G(gk+2(ak+2))...

To see why, consider the pair (aj, aj+1) where j � k. Then (aj, aj+1) 2
R

0
j+1 = Fk(Rj+1), so there is some (d, d0) 2 Rj+1 with (aj, aj+1) 2 Hj+1(d, d0).

Hence d = gj(aj) and (aj, aj+1) 2 G(d0).
But d

0 = d
+ by functionality of traces on D (which follows from the third

assumption in Claim 1), and so we find d
0 = d

+ = (gjaj)+ = gj+1aj+1. From
this we get (aj, aj+1) 2 G(gj+1aj+1) as required. Note too that akak+1ak+2 . . .

has the same tail as ⌧ , and hence it is a bad trace too. It now follows from the
trace reflection clause (DC3) of Definition 5.7.4 that gkak, gk+1ak+1, gk+2ak+2, . . .

is itself a bad trace, and so we have found a bad trace on R0R1R2 . . . as required.

We now prove (?). Say that a trace jump occurs at the index j � k if we have
gj+1(aj+1) 6= gj(aj)+. We want to show that there can only be finitely many j at
which a trace jump occurs. Since, clearly, if no trace jump occurs at j, then

tb(gj(aj)) � tb(gj(aj)
+) = tb(gj+1(aj+1)),

it su�ces to prove that if a trace jump occurs at j then tb(gj+1(aj+1)) is strictly
smaller than tb(gj(aj)) in the lexicographic order. It follows that the stream

tb(gk(ak))tb(gk+1(ak+1))tb(gk+2(ak+2))...,

is a stream of pairs of natural numbers that never increases, and strictly decreases
at each j at which a trace jump occurs. By well-foundedness of the lexicographic
order on ! ⇥ ! this can therefore only happen finitely many times, as required.

So, we are left with the task of proving that tb is strictly decreasing at each
index j for which a trace jump occurs. To see this is indeed so, suppose that
gj+1(aj+1) 6= gj(aj)+. Recall that by Case 1 of definition of gn+1, we define
gj+1(aj+1) to be the oldest element of the following set

{(gj(c))+ | (c, aj+1) 2 R
0
j+1)}.

194 Chapter 5. Axiomatic Completeness

But since (aj, aj+1) 2 R
0
j+1, it follows that gj+1(aj+1) must be older than

(gj(aj))+, with respect to the order induced by the match (R0, R
0
0), . . . , (Rj+1, R

0
j+1),

and so tb(gj+1(aj+1)) must be strictly smaller than tb((gj(aj))+) tb(gj(aj)), as
required. This completes the proof of (?).

Finally, the proof of of Proposition 5.7.6 is immediate by the last two claims:
it follows from Claim 3 that player II never gets stuck, so that we need not to
worry about finite plays. But Claim 4 states that II wins all infinite plays of
B[D/x] ✏C B[A/x] as well.

5.8 From automata to formulas

In section 5.3.4, we defined a translation from formulas to modal automata by
induction on the complexity of formulas, and based on operations on automata
corresponding to the Boolean connectives, modalities and fixpoint operators. In
this section3, we provide a translation tr in the opposite direction, that is, from
automata to formulas, and we establish some properties of this translation. Our
definition of the translation map is based on a more or less standard induction
on the complexity of the automaton [GTW02].

The main purpose of this translation is to prove the following proposition:

5.8.1. Proposition. For every formula ', we have ' ⌘K tr(A').

The proof of this proposition will proceed by induction on the complexity of
formulas. As a central auxiliary result (Lemma 5.8.16 below) we will show that
the translation commutes with the logical operations on automata and formulas,
and with the operation of substitution.

The key point about the translation tr and Proposition 5.8.1 is that, allowing
us to apply proof-theoretic notions such as derivability or consistency to au-
tomata, they open the door to proof theory for automata.

5.8.2. Definition. A modal automaton A will be called consistent if the for-
mula tr(A) is consistent. Given two modal automata A and B, we say that A
provably implies B, notation: A K B, if tr(A) K tr(B), and that A and B are
provably equivalent if tr(A) ⌘K tr(B). We will use similar notation and termi-
nology relating formulas and automata, for instance we will say that ' provably
implies A and write ' K A if ' K tr(A), etc.

In order to provide the translation tr(A) of an automaton A, we first define
a map trA assigning a formula to each state of A. The formula tr(A) is then
obtained by applying the map trA to the initial state of A. For a proper inductive

3This section is verbatim the same as that of Chapter 8 in [ESV18], except for minor modi-
fications concerning the r modality in a more general coalgebraic setting.

5.8. From automata to formulas 195

formulation of this definition it is convenient to extend the class of automata,
allowing states of the automaton to appear in the scope of a modality in a one-
step formula.

5.8.3. Definition. A generalized modal automaton is a structure A = (A,⇥,⌦, aI)
where A, ⌦ and aI are as in the definition of standard modal automata, and the
transition map ⇥ is of type ⇥ : A! 1ML

+
r(X, A [X).

The notion of acceptance for generalized automata is a straightforward gener-
alization of the one for standard modal automata. For completeness we provide
a definition here — one that stays close to our approach in terms of one-step
models is the following.

5.8.4. Definition. A generalized one-step TX-model is a structure (S, Y,↵,m)
such that S is some set, Y : S] {?} ! PX is an X-marking on the set S] {?},
↵ 2 TS, andm is an A-marking on the set S. The one-step satisfaction relation �1

for generalized one-step formulas in 1ML
+
r(X, A[X) is defined in the most obvious

way: we treat a generalized one-step model (S, Y,↵,m) as if it were the standard
one-step TX-model (S, (Y(?),↵), (Y�

S
[m)) over X [A, with (Y(?),↵) 2 TXS, and

Y�
S
[m being the (X [A)-marking defined by (Y�

S
[m)(s) := Y�

S
(s) [m(s).

It will make sense to define the mentioned translation map trA for ‘unini-
tialized’ automata, i.e., structures (A,⇥,⌦) that could be called (generalised)
automata if they did not lack an initial state.

5.8.5. Definition. An automaton structure is a triple A = (A,⇥,⌦) such that
A is a finite, non-empty set endowed with a transition map ⇥ : A! ML

1
T(X, A[X)

and a priority function ⌦ : A! !.

The underlying automaton structure of a (generalized) modal automaton A =
(A,⇥,⌦, aI) is given as the triple A := (A,⇥,⌦). Conversely, given an automaton
structure A = (A,⇥,⌦) and a state a in A, we let Ahai denote the initialized
automaton (A,⇥,⌦, a).

Many concepts that we defined for automata in fact apply to automaton
structures in the most obvious way, and we will use this observation without
further notice.

Finally, the restriction that we announced is that for our definition of the
translation map trA we will first confine our attention to so-called linear au-
tomaton structures.

5.8.6. Definition. An automaton structure A = (A,⇥,⌦) will be called linear
if the relation @A is a strict linear order satisfying (�A \⇤A) ✓ @A.

Given two automaton structures A = (A,⇥,⌦) and A0 = (A,⇥,⌦0), we say
that A0 is a refinement of A if

196 Chapter 5. Axiomatic Completeness

(1) the partial order vA is clusterwise contained in vA0 , i.e., a ./ b and a vA b

imply a vA0 b; and

(2) ⌦0(a0) has the same parity as ⌦(a), for all a 2 A.

A linear refinement is called a linearization.

In words: linear automata structures have an injective priority map ⌦, and
satisfy the condition that if one state a is active in another state b, but not vice
versa, then a @ b. In other words, the priority of states goes down if a match
of the acceptance game passes from one cluster to the next. Our focus on linear
automaton structures is justified by the observation that all linearizations of an
automaton A are equivalent to A (and hence, to one another). In the sequel we
shall need a formulation of this equivalence in terms of the consequence game.

5.8.7. Proposition. Every automaton structure A has a linearization Al such
that, for all a 2 A

(1) Ahai |=C Alhai and Alhai |=C Ahai;

(2) each player ⇧ 2 {9, 8} has a winning strategy in S(Ahai) (resp. Sthin(Ahai))
i↵ she/he has a winning strategy in S(Alhai) (resp. Sthin(Alhai)).

Proof:
One may easily obtain a linearization Al of A, so it su�ces to prove that the
statements in (1) and (2) hold for an arbitrary refinement Al of A and an arbi-
trary state a in A. To prove (1), it is straightforward to verify that the identity
map on A

] provides a winning strategy for player II in both C(Ahai,Alhai) and
C(Alhai,Ahai). And to prove (2), it is equally straightforward to verify that a
winning strategy for 9 in the (thin) satisfiability game for Ahai is also a winning
strategy for her in the (thin) satisfiability game for Alhai, and vice versa. Part
(2) then easily follows by the determinacy of the (thin) satisfiability game.

The advantage of working with linear automaton structures is that we may
define the translation map by a simple induction on the size of the structure. For
its definition, we recall that our notation for formula substitution has been given
in Definition 5.2.2.

5.8.8. Definition. By induction on the size of a linear modal X-automaton
structure A we define a map trA : A! µML

T
r(X).

In the base case of the induction we are dealing with an automaton structure
A based on a single state a. Then we define

trA(a) := ⌘aa.⇥(a),

5.8. From automata to formulas 197

where ⌘a 2 {µ, ⌫}.

In the inductive case, where |A| > 1, by injectivity of ⌦ there is a unique state
n 2 A that reaches the maximal priority, that is, with ⌦(n) = max⌦[A]. Let A�

to be the X [{n}-automaton structure (A�
,⇥�

,⌦�) with

A
� := A \ {n}

⇥� := ⇥�A�

⌦� := ⌦�A� .

Clearly we have |A�| < |A|, so that inductively we may assume a map trA� :
A

� ! µML
T
r(X [{n}).4

The map trA is now defined in two steps. First we define trA(n) as follows:

trA(n) := ⌘n.⇥(n)[trA�(a)/a | a 2 A
�].

Second, by putting
trA(a) := trA�(a)[trA(n)/n]

we define trA(a) for each a 6= n.

We now turn to the translation map for arbitrary automaton structures. By
standard order theory every automaton structure has at least one linearization.
Furthermore, by the following result the translation maps of di↵erent lineariza-
tions of the same structure are provably equivalent.

5.8.9. Proposition. Let A0 = (A,⇥,⌦0) and A00 = (A,⇥,⌦00) be two lineariza-
tions of the automaton structure A = (A,⇥,⌦). Then

trA0(a) ⌘K trA00(a)

for all a 2 A.

Proof:
The proof of this proposition is conceptually straightforward, boiling down to
the observation that, where M is the set {m1, ...,mn} of maximal states of an
automaton A, it does not matter in which way we order the states in M to obtain
a linearization of A, in the sense that all choices provide provably equivalent
translations. To prove this, it su�ces to show that the Bekič principle holds in
the class of modal µ-algebras, which can be done by verifying that the proofs
in [AN01, section 1.4] in fact do not rely on completeness of the underlying
lattices, but only on the existence of all least- and greatest fixpoints.

4Our motivation for introducing generalized modal automata stems from the observation
that ⇥�(a) generally will have guarded occurrences of m, which in A� is no longer a state of
the automaton but a proposition letter.

198 Chapter 5. Axiomatic Completeness

Proposition 5.8.9 ensures that modulo provable equivalence the following def-
inition of tr(A) for an arbitrary automaton A does not depend on the particular
choice of a linearization for the underlying automaton structure of A.

5.8.10. Definition. With each automaton structure A = (A,⇥,⌦) we associate
an arbitrary but fixed linearization Al of A (with the understanding that Al = A
in case A itself is linear). We then define trA := trAl .

Finally, given an arbitrary modal automaton A = (A,⇥,⌦, aI), we let

tr(A) := trAl(aI)

define the translation of the automaton A itself.

5.8.11. Remark. The translation given in Definition 5.8.10 is reasonably stan-
dard. A particular feature of the formula tr(A) is that it will always be strongly
guarded in the sense that there is a modality between any two occurrences of a
fixpoint operator. Its alternation depth will not exceed the maximal size of a
cluster in the automaton A.

5.8.12. Remark. An alternative approach would be to define the translation by
induction on the index of an automaton, i.e., the size of the range of the priority
map. In this approach, one would not have a unique maximal state, but a set of
maximal states {m1, ...,mn}, and the automaton structure A� would remove all
the maximal states. We would then get a set of “equations” mi = ⇥(mi)[trA�(b) |
b @A mi], which is solved by a formula of the vectorial µ-calculus [AN01], and
this formula can then be translated into the one-dimensional µ-calculus using the
Bekič principle for simultaneous fixpoints.

The following lemma gives two useful representations of the translation map
trA associated with an automaton structure A. The point of the second result is
that it displays each formula trA(a) as a fixpoint formula; this characterization
will be of crucial importance in the next section. For its formulation we need
to consider restrictions of linear automaton structures, and it is for this defini-
tion that we needed to introduce the notion of an automaton structure: initialized
automata will not necessarily be closed under this operation, but automata struc-
tures are.

5.8.13. Definition. Let A = (A,⇥,⌦) be a linear automaton structure, and let
a 2 A. The a-restriction of A is the automaton structure A#a := (B,⇥�

B
,⌦�

B
)

of which the carrier is given as B := {b 2 A | b v a}.

5.8.14. Lemma. Let A be any automaton structure and let a 2 A. Then:

trA(a) ⌘K ⇥(a)[trA(b)/b | b 2 A]. (5.26)

If A is linear, we have in addition

trA(a) ⌘K ⌘aa.⇥(a)[tr(A#a)�(b)/b | b @ a][trA(b)/b | a @ b] (5.27)

5.8. From automata to formulas 199

Before moving on to prove this Lemma, we quickly note that for a linear
automaton structure A, a is the maximal priority state of A # a, so that we find

trA#a(a) = ⌘aa.⇥(a)[tr(A#a)�(b)/b | b @ a]

by definition of tr(A#a)� . Hence, we may read (5.27) as stating that

trA(a) ⌘K trA#a(a)[trA(b)/b | a @ b],

which may be of help to understand this characterization.

Proof:
For the first part of the lemma, we reason by induction on the size of A. By
Proposition 5.8.9 we may without loss of generality assume that A is linear. The
case for automaton structures of size 1 is simple, so we focus on the case of a
structure A with |A| > 1. Let n be the (by linearity unique) state that reaches
the maximal priority of A, that is, ⌦(n) = max⌦[A]. For this state n we obtain:

trA(n) = ⌘nn.⇥(n)[trA�(b)/b | b @ n] (Definition trA)

⌘K ⇥(n)[trA�(b)/b | b @ n][trA(n)/n] (fixpoint logic)

= ⇥(n)[trA�(b)[trA(n)/n]/b | b @ n, trA(n)/n] (Fact 5.2.3)

= ⇥(n)[trA(b)/b | b @ n, trA(n)/n] (Definition trA)

= ⇥(n)[trA(a)/a | a 2 A]

For a 6= n, we have:

trA(a) = trA�(a)[trA(n)/n] (Definition trA)

⌘K ⇥(a)[trA�(b)/b | b @ n][trA(n)/n] (inductive hypothesis)

= ⇥(a)[trA�(b)[trA(n)/n]/b | b @ n, trA(n)/n] (Fact 5.2.3)

= ⇥(a)[trA(b)/b | b @ n, trA(n)/n] (Definition trA)

= ⇥(a)[trA(b)/b | b 2 A]

The second part of the lemma is also proved by induction on the size of
the automaton structure, and again we only consider the inductive case of the
argument. Supposing that the result holds for automaton structures smaller than
A, we prove the result for A.

For the unique state n of maximal priority, the result is immediate from the
definition since in this case A#n = A.

For a non-maximal state a, assuming that the induction hypothesis holds for

200 Chapter 5. Axiomatic Completeness

states b with b @ a, we get:

trA(a)

⌘K trA�(a)[trA(n)/n] (Definition trA)

= ⌘aa.⇥
�(a)[tr(A�#a(b)/b | b @ a][trA�(b)/b | a @ b @ n][trA(n)/n] (inductive hyp.)

= ⌘aa.⇥
�(a)[tr(A#a)�(b)/b | b @ a][trA�(b)/b | a @ b @ n][trA(n)/n] ((A#a)� = A�#a)

= ⌘aa.⇥(a)[tr(A#a)�(b)/b | b @ a][trA�(b)/b | a @ b @ n][trA(n)/n] (⇥(a) = ⇥�(a))

= ⌘aa.⇥(a)[tr(A#a)�(b)/b | b @ a][trA(b)/b | a @ b] (Fact 5.2.3, Def. trA)

as required.

The translation map interacts well with the operation on automata that we
defined in section 5.3.3. As an auxiliary result we need the following observation,
the proof of which can be found in the appendix of the report version [ESV16a]
of [ESV18].

5.8.15. Proposition. Let A be a modal automaton with x free and positive.
Then we have:

tr(A) ⌘K (x ^ trAx((aI)0) _ trAx((aI)1) (5.28)

tr(µx.A) ⌘K µx.trAx((aI)1) (5.29)

tr(⌫x.A) ⌘K ⌫x.(trAx((aI)0) _ trAx((aI)1)). (5.30)

Note that we can alternatively write (5.29) as:

tr(µx.A) ⌘K µx.tr(Ax),

since we chose (aI)1 as the start state of Ax. (The corresponding equation for
⌫x.A does however not hold. To see this, take the {x, p, q}-automaton A to have
just a single state mapped to the formula (x^ p)_ q. We have tr(⌫x.A) ⌘K p_ q,
but ⌫x.tr(Ax) ⌘K q.)

As mentioned, the central result of this section is the following.

5.8.16. Proposition. The following claims hold, for all modal automata A,B:

(1) tr(A ^ B) ⌘K tr(A) ^ tr(B) and tr(A _ B) ⌘K tr(A) _ tr(B);

(2) tr(¬A) ⌘K ¬tr(A);

(3) for automata A1,A2, ...,An and p↵ 2 T{A1,A2, ...,An} we get that
tr(r p↵) ⌘K r(Ttr)(p↵);

(4) if A is positive in p then tr(⌘p.A) ⌘K ⌘p.tr(A) for ⌘ 2 {µ, ⌫};

5.9. Completeness 201

(5) if A is positive in p then tr(A[B/p]) ⌘K tr(A)[tr(B)/p].

Proof:

A full proof can be found in the appendix of [ESV16a]. Here we include only
the proof for Clause (4).

Clause (4) For this clause we will use Proposition 5.8.15. We first consider the
case where ⌘ = µ. We have:

tr(µx.A) ⌘K µx.trAx((aI)1) (5.29)

= µx.(x ^ trAx((aI)0)) _ trAx((aI)1) Proposition 5.3.27

⌘K µx.tr(A) (5.28)

Next, for the case of ⌘ = ⌫, we have:

tr(⌫x.A) ⌘K ⌫x.(trAx((aI)0) _ trAx((aI)1) (5.30)

= ⌫x.((x ^ trAx((aI)0)) _ trAx((aI)1) Proposition 5.3.27

⌘K ⌫x.tr(A) (5.28)

and the proof is done.

From this result, Proposition 5.8.1 follows easily.

Proof of Proposition 5.8.1: By induction on the complexity of a formula.
For atomic formulas the result is easily checked, and for the inductive clauses we
use the properties established in Proposition 5.8.16. For example, for a fixpoint
formula µx.'(x), we have Aµx.'(x) = µx.A'(x) by definition, and we get

tr(Aµx.'(x)) = tr(µx.A'(x)) ⌘K µx.tr(A'(x)) ⌘K µx.'(x).

The other cases are similar.

5.9 Completeness

In this section, we give an overview of the completeness proof for µML
T
r with

respect to the derivation system K. In [Koz83] Kozen proved the completeness
of his proof system for a fragment of the modal µ-calculus: he showed that for
aconjunctive formulas consistency implies satisfiability. The following lemma,
which is the one result missing to prove our main result, can be seen as an
automata-theoretic version of Walukiewicz’ rendering of Kozen’s result.

5.9.1. Lemma. [Kozen’s Lemma] Given an automaton A, if tr(A) is consistent,
then 9 has a winning strategy in the thin satisfiability game for A.

202 Chapter 5. Axiomatic Completeness

Proof:
The proof of this Lemma is almost verbatim a copy of the proof of the analogous
result, viz., Theorem 5, in [ESV18]: the only di↵erence is that here we need the
one-step completeness result, Proposition 5.3.15.

We are now ready to proof our main technical result. Observe that here, and
in the sequel, we will use the notation of Definition 5.8.2.

5.9.2. Theorem. For every formula ' 2 µML
T
r, there is a semantically equivalent

disjunctive automaton D such that ' K D.

To prove this theorem, recall from Proposition 5.8.1 that every formula ' 2
µML

T
r is provably equivalent to the translation of the modal automaton A'.

Thus in particular we have ' K A'. We now want to apply the automata-
theoretic machinery that we developed in previous sections, to strengthen this
result, showing that for any formula ' there is a disjunctive automaton D' such
that ' K D'. The following lemma shows that whenever ' is the translation of
a semi-disjunctive automaton this result can be proved.

5.9.3. Lemma. Let A be any semi-disjunctive automaton. Then A K sim(A).

Proof:
By Proposition 5.7.2 there is a winning strategy for player II in the consequence
game C(A, sim(A)). Since A is semi-disjunctive, it follows from Theorem 5.6.7 that
there is a winning strategy for 8 in the thin satisfiability game for A ^ ¬sim(A).
By Kozen’s Lemma (Lemma 5.9.1) it follows that the automaton A ^ ¬sim(A) is
inconsistent. Then from this and clause (2) of Lemma 5.8.16 it is immediate that
A K sim(A) as required.

Proof of Theorem 5.9.2:
Since any fixpoint formula is provably equivalent to a formula in negation normal
form, without loss of generality we may prove the theorem for formulas in this
shape, and proceed by an induction on the complexity of such formulas. That is,
the base cases of the induction are the literals, and we need to consider induction
steps for conjunctions, disjunctions, the modal operator and both fixpoint oper-
ators. The base case for literals follows immediately since it is easy to see that
the modal automaton A' corresponding to a literal ' is already disjunctive.

Disjunction and modality are easy since the operations _ and r on automata
preserve the property of being disjunctive. For conjunctions, given formulas ↵,↵0

we have disjunctive automata D ⌘ ↵ and D0 ⌘ ↵
0 such that ↵ K D and ↵0 K D0.

By the first clause of Proposition 5.8.1 we get ↵ ^ ↵0 K D ^ D0. But D ^ D0 is

5.9. Completeness 203

semi-disjunctive by the fourth clause of Lemma 5.6.6, and we can apply Lemma
5.9.3 to obtain the desired conclusion.

Finally we turn to the fixpoint operators. For the greatest fixpoint opera-
tor, consider the formula ' = ⌫x.↵(x), and assume inductively that there is a
disjunctive automaton A for ↵ such that ↵ ⌘ A and ↵ K A. It follows by
Proposition 5.8.16(4) that ' = ⌫x.↵ K ⌫x.A, and since ⌫x.A is semi-disjunctive
modulo provable equivalence by Proposition 5.6.6(6), by Lemma 5.9.3 we are
done.

Now we consider the crucial case where ' = µx.↵(x). By the induction
hypothesis there is a semantically equivalent disjunctive automaton A for ↵ such
that ↵ K A. Let D := sim(µx.A). This automaton is clearly semantically
equivalent to '. We want to show that:

µx.A K D,

from which the result follows since ' K µx.A. By Proposition 5.8.1 and (5.29)
we obtain µx.A ⌘K tr(µx.A) ⌘K µx.tr(Ax), and by Proposition 5.8.1 we also
have D ⌘K tr(D), so in fact it su�ces to show that:

µx.tr(Ax) K tr(D).
Hence by the fixpoint rule it su�ces to prove that:

tr(Ax)[tr(D)/x] K tr(D).

But using clause (5) of Proposition 5.8.16 we get

tr(Ax)[tr(D)/x] ⌘K tr(Ax[D/x]),

so it su�ces to prove Ax[D/x] K D, or equivalently:

`K ¬(tr(Ax[D/x]) ^ ¬tr(D)).

We can now apply the clauses (1) and (2) of Proposition 5.8.16 to see that this
is equivalent to `K ¬tr(Ax[D/x] ^ ¬D), and by Lemma 5.9.1 it therefore su�ces
to prove that 8 has a winning strategy in the thin satisfiability game for the
automaton Ax[D/x] ^ ¬D. Note that by clause (6) of Proposition 5.6.6 Ax is
semi-disjunctive since A is disjunctive. Now since D is disjunctive and Ax is
semi-disjunctive, from Proposition 5.6.6 clause (5) it follows that Ax[D/x] is semi-
disjunctive too. Hence, by Theorem 5.6.7 the required conclusion follows if we
can show that Ax[D/x] ✏C D. But from Proposition 5.4.13 and Theorem 5.7.2 we
get by transitivity of game consequence:

Ax[µx.A/x] ✏C µx.A ✏C sim(µx.A) = D,

so it su�ces to show that

Ax[D/x] ✏C Ax[µx.A/x].

204 Chapter 5. Axiomatic Completeness

But this is an instance of Proposition 5.7.6, and so we are done.

Finally we have all the pieces in place to prove completeness.

5.9.4. Theorem. [Completeness] Every consistent formula ' 2 µML
T
r is satisfi-

able.

Proof:
Given a consistent formula ', by Theorem 5.9.2 there exists a semantically
equivalent disjunctive automaton D such that tr(D) is consistent too. Now by
Lemma 5.9.1 9 has a winning strategy in Sthin(D). But D is disjunctive and
hence semi-disjunctive, and so by Proposition 5.6.4 9 also has a winning strategy
in S(D).

5.10 Conclusion

In this chapter, we brought ideas from automata theory and the theory of coal-
gebras together and proved a completeness result for the nabla-based coalgebraic
fixpoint logic µML

T
T, where T weakly preserves pullbacks. Following up on the

results of this chapter, which was based on [ESV18] and [ESV16b], we set up a
more general framework for proving completeness results for variants of the modal
µ-calculus. In [ESV19], taking the predicate lifting approach towards coalgebraic
modal logic, we illustrate the method by proving two new completeness results:
for the graded µ-calculus (which is equivalent to monadic second-order logic on
the class of unranked tree models), and for the monotone modal mu-calculus.
Besides these main applications, our result in [ESV19] covers also the Kozen-
Walukiewicz completeness theorem for the standard modal µ-calculus, as well
as the linear-time µ-calculus and modal fixpoint logics on ranked trees. Com-
pleteness of the linear-time µ-calculus is known, but the proof we obtain here is
di↵erent, and places the result under a common roof with Walukiewicz’ result.

Bibliography

[Acz88] Peter Aczel, Non-well-founded sets, CSLI Lecture Notes, vol. 14, 1988.

[AGT09] J. Adámek, H. P. Gumm, and V. Trnková, Presentation of set func-
tors: A coalgebraic perspective, Journal of Logic and Computation 20
(2009), no. 5, 991–1015.

[AM89] Peter Aczel and Nax Paul Mendler, A final coalgebra theorem, Cate-
gory Theory and Computer Science, 1989, pp. 357–365.

[AN01] A. Arnold and D. Niwiński, Rudiments of µ-calculus, Studies in Logic
and the Foundations of Mathematics, vol. 146, North-Holland Pub-
lishing Co., Amsterdam, 2001.

[AT90] Jǐŕı Adámek and Věra Trnková, Automata and algebras in categories,
Mathematics and its Applications (East European Series), vol. 37,
Kluwer Academic Publishers Group, Dordrecht, 1990.

[Bal00] Alexandru Baltag, A logic for coalgebraic simulation, Electronic Notes
in Theoretical Computer Science 33 (2000), 42–60.

[Bar93] Michael Barr, Terminal coalgebras in well-founded set theory, Theo-
retical Computer Science 114 (1993), no. 2, 299 – 315.

[BdRV02] P. Blackburn, M. de Rijke, and Y. Venema, Modal logic, Cambridge
Tracts in Theoretical Computer Science, vol. 53, 2002.

[Ben76] J. van Benthem, Modal correspondence theory, Ph.D. thesis, Mathe-
matisch Instituut & Instituut voor Grondslagenonderzoek, University
of Amsterdam, 1976.

[Bet56] E. W. Beth, On padoa’s method in the theory of definition, Journal of
Symbolic Logic 21 (1956), no. 2, 194–195.

205

206 Bibliography

[B́ıl07] Marta B́ılková, Uniform interpolation and propositional quantifiers in
modal logics, Studia Logica 85 (2007), 1–31.

[BK08] Christel Baier and Joost-Pieter Katoen, Principles of model checking
(representation and mind series), The MIT Press, 2008.

[BL69] J.R. Büchi and L.H. Landweber, Solving sequential conditions by finite
state strategies, Transactions of the American Mathematical Society
138 (1969), 295–311.

[Bla92] A. Blass, A game semantics for linear logic, Annals of Pure and Ap-
plied Logic 56 (1992), no. 1-3, 183–220.

[BM96] Jon Barwise and Lawrence Moss, Vicious circles, CSLI Lecture Notes,
vol. 60, 1996.

[BS01] Julian Bradfield and Colin Stirling, Modal logics and mu-calculi: An
introduction, 2001.

[Büc60] J. R. Büchi, Weak second-order arithmetic and finite automata, Math-
ematical Logic Quarterly 6 (1960), no. 1-6, 66–92.

[BW95] Michael Barr and Charles Wells (eds.), Category theory for computing
science, 2nd ed., Prentice Hall International (UK) Ltd., Hertfordshire,
UK, UK, 1995.

[CE80] Edmund M. Clarke and E. Allen Emerson, Characterizing correctness
properties of parallel programs using fixpoints, Proceedings of the 7th
Colloquium on Automata, Languages and Programming, Springer-
Verlag, 1980, p. 169?181.

[CE81] , Design and synthesis of synchronization skeletons us-
ing branching-time temporal logic, Logic of Programs, Workshop,
Springer-Verlag, 1981, p. 52?71.

[Che80] Brian F. Chellas, Modal logic: An introduction, Cambridge University
Press, 1980.

[CKP+08] Corina Cirstea, Alexander Kurz, Dirk Pattinson, Lutz Schröder, and
Yde Venema, Modal logics are coalgebraic, Visions of Computer Sci-
ence, BCS International Academic Research Conference (BCS 2008)
(Samson Abramsky, Erol Gelenbe, and Vladimiro Sassone, eds.),
British Computer Society, 2008, pp. 129–140.

[CKP09] Corina Ĉırstea, Clemens Kupke, and Dirk Pattinson, EXPTIME
tableaux for the coalgebraic µ-calculus, Computer Science Logic, 23rd
international Workshop, CSL 2009, 18th Annual Conference of the

Bibliography 207

EACSL, Coimbra, Portugal, September 7-11, 2009. Proceedings, 2009,
pp. 179 – 193.

[CKW91] A. Carboni, G. M. Kelly, and R. J. Wood, A 2-categorical approach
to change of base and geometric morphisms i, Cahiers de Topologie et
Géométrie Di↵érentielle Catégoriques 32 (1991), no. 1, 47–95.

[CP04] Corina Ĉırstea and Dirk Pattinson, Modular construction of modal log-
ics, CONCUR 2004 - Concurrency Theory, Springer Berlin Heidelberg,
2004, pp. 258–275.

[Cra57] William Craig, Three uses of the Herbrand-Gentzen theorem in relating
model theory and proof theory, Journal of Symbolic Logic 22 (1957),
no. 3, 269–285.

[D’A08] Giovanna D’Agostino, Interpolation in non-classical logics, Synthese
164 (2008), no. 3, 421–435.

[DH00] Giovanna D’Agostino and Marco Hollenberg, Logical questions con-
cerning the µ-calculus: Interpolation, lyndon and loś-tarski, Journal
of Symbolic Logic 65 (2000), no. 1, 310–332.

[DV02] Giovanna D’Agostino and Albert Visser, Finality regained: A coalge-
braic study of scott-sets and multisets, Archive for Mathematical Logic
41 (2002), no. 3, 267–298.

[EJ91a] E. A. Emerson and C. S. Jutla, Tree automata, mu-calculus and deter-
minacy, Proceedings of the 32nd Annual Symposium on Foundations
of Computer Science, 1991, p. 368?377.

[EJ91b] E. Allen Emerson and Charanjit S. Jutla, Tree automata, mu-calculus
and determinacy, [1991] Proceedings 32nd Annual Symposium of
Foundations of Computer Science (1991), 368–377.

[EL86] E. Allen Emerson and Chin-Laung Lei, E�cient model checking in
fragments of the propositional mu-calculus (extended abstract), Pro-
ceedings of the First Annual IEEE Symposium on Logic in Com-
puter Science (LICS 1986), IEEE Computer Society Press, June 1986,
pp. 267–278.

[ESV15] Sebastian Enqvist, Fatemeh Seifan, and Yde Venema, Monadic
second-order logic and bisimulation invariance for coalgebras, Proceed-
ings of the 30th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), LICS ’15, IEEE Computer Society, 2015, pp. 353 –
365.

208 Bibliography

[ESV16a] S. Enqvist, F. Seifan, and Y. Venema, Completeness for the modal
µ-calculus: separating the combinatorics from the dynamics, Tech.
Report PP-2016-33, Institute for Logic, Language and Computation,
Universiteit van Amsterdam, 2016, (Submitted).

[ESV16b] Sebastian Enqvist, Fatemeh Seifan, and Yde Venema, Completeness
for coalgebraic fixpoint logic, 25th EACSL Annual Conference on Com-
puter Science Logic (CSL 2016) (Dagstuhl, Germany), Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), vol. 62, Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2016, pp. 7:1– 7:19.

[ESV17] , An expressive completeness theorem for coalgebraic modal mu-
calculi, Logical Methods in Computer Science 13 (2017), no. 2.

[ESV18] , Completeness for the modal mu-calculus: Separating the com-
binatorics from the dynamics, Theor. Comput. Sci. 727 (2018), 37–
100.

[ESV19] Sebastian Enqvist, Fatemeh Seifan, and Yde Venema, Completeness
for µ-calculi : A coalgebraic approach, Annals of Pure and Applied
Logic 170 (2019), no. 5, 578–641.

[EV17] Sebastian Enqvist and Yde Venema, Disjunctive bases: Normal forms
for modal logics, 7th Conference on Algebra and Coalgebra in Com-
puter Science, (CALCO 2017), vol. 72, 2017, pp. 11:1–11:16.

[Fin72] Kit Fine, In so many possible worlds., Notre Dame J. Formal Logic
13 (1972), no. 4, 516–520.

[FL79] Michael J. Fischer and Richard E. Ladner, Propositional dynamic logic
of regular programs, J. Comput. Syst. Sci. 18 (1979), 194–211.

[FLV10] Gäelle Fontaine, Raul Leal, and Yde Venema, Automata for coalgebras:
An approach using predicate liftings, ICALP’10: Automata, Languages
and Programming: Bordeaux, France, July, 2010. Proceedings, Part
II, 2010, pp. 381–392.

[Fon10] Gabriel A Fontaine, Modal fixpoint logic: some model theoretic ques-
tions, 2010.

[Fre06] Tim French, Bisimulation quantifiers for modal logic, Ph.D. thesis,
School of Computer Science and Software Engineering, University of
Western Australia, 2006.

[FV18] Gaëlle Fontaine and Yde Venema, Some model theory for the modal
µ-calculus: syntactic characterisations of semantic properties, Logical
Methods in Computer Science 14 (2018), no. 1.

Bibliography 209

[Ghi95] Silvio Ghilardi, An algebraic theory of normal forms, Annals of Pure
and Applied Logic 71 (1995), no. 3, 189–245.

[GS05] H. P. Gumm and T. Schröder, Types and coalgebraic structure, Journal
of Algebra Universalis 53 (2005), no. 2, 229–252.

[GTW02] E. Grädel, W. Thomas, and T. Wilke (eds.), Automata, logic, and
infinite games, LNCS, vol. 2500, Springer, 2002.

[Gum01] Peter H. Gumm, Functors for coalgebras, Algebra Universalis 45
(2001), no. 2, 135–147.

[Gum05] H. Peter Gumm, From t-coalgebras to filter structures and transition
systems, Algebra and Coalgebra in Computer Science, Springer, 2005,
pp. 194–212.

[GZ95] Silvio Ghilardi and Marek Zawadowski, Undefinability of propositional
quantifiers in the modal system S4, Journal of Studia Logica 55
(1995), no. 2, 259–271.

[Han03] Helle Hvid Hansen, Monotonic modal logics, Master’s thesis, ILLC,
Universiteit van Amsterdam, the Netherlands, 10 2003.

[Hen63] Leon Henkin, An extension of the Craig-Lyndon interpolation theorem,
Journal of Symbolic Logic 28 (1963), no. 3, 201–216.

[HK04] Helle Hvid Hansen and Clemens Kupke, A coalgebraic perspective on
monotone modal logic, Electronic Notes in Theoretical Computer Sci-
ence 106 (2004), 121–143.

[HKP09] Helle Hvid Hansen, Clemens Kupke, and Eric Pacuit, Neighbourhood
structures: Bisimilarity and basic model theory, Logical Methods in
Computer Science 5 (2009), no. 2.

[HM80] Matthew Hennessy and Robin Milner, On observing nondeterminism
and concurrency, Automata, Languages and Programming, Springer
Berlin Heidelberg, 1980, pp. 299–309.

[HM98] Aviad Heifetz and Philippe Mongin, The modal logic of probability,
Proceedings of the 7th Conference on Theoretical Aspects of Ratio-
nality and Knowledge, TARK ’98, Morgan Kaufmann Publishers Inc.,
1998, pp. 175–185.

[HTK00] David Harel, Jerzy Tiuryn, and Dexter Kozen, Dynamic logic, MIT
Press, 2000.

210 Bibliography

[Jac16] Bart Jacobs, Introduction to coalgebra: Towards mathematics of states
and observation, Cambridge Tracts in Theoretical Computer Science,
Cambridge University Press, 2016.

[Joy95] A. Joyal, Free lattices, communication and money games, Proceed-
ings of the 10th International Congress of Logic, Methodology, and
Philosophy of Science, 1995.

[JR97] Bart Jacobs and Jan Rutten, A tutorial on (co)algebras and
(co)induction, EATCS Bulletin 62 (1997), 62–222.

[JW95] David Janin and Igor Walukiewicz, Automata for the modal µ-
calculus and related results, MFCS’95 Symposium on Mathematical
Foundations of Computer Science, Prague, Czech Republic, August-
September, 1995. Proceedings, vol. 969, 1995, pp. 552–562.

[JW96] , On the expressive completeness of the propositional mu-
calculus with respect to monadic second order logic, CONCUR ’96:
Concurrency Theory: Pisa, Italy, August, 1996. Proceedings, 1996,
pp. 263–277.

[KKV03] Clemens Kupke, Alexander Kurz, and Yde Venema, Stone coalgebras,
Electronic Notes in Theoretical Computer Science 82 (2003), no. 1,
170–190, CMCS’03, Coalgebraic Methods in Computer Science (Satel-
lite Event for ETAPS 2003).

[KKV08] , Completeness of the finitary Moss logic, AiML’08: Advances
in Modal Logic, Nancy, France, September, 2008. Proceedings, 2008,
pp. 193–217.

[KKV12] , Completeness for the coalgebraic cover modality, Logical
Methods in Computer Science 8 (2012), no. 3, 1–76.

[Koz83] Dexter Kozen, Results on the propositional µ-calculus, Theoretical
Computer Science 27 (1983), no. 3, 333–354.

[KP11] C. Kupke and D. Pattinson, Coalgebraic semantics of modal logics:
An overview, Theoretical Computer Science 412 (2011), no. 38, 5070
– 5094, CMCS Tenth Anniversary Meeting.

[Kri59] Saul A. Kripke, A completeness theorem in modal logic, The Journal
of Symbolic Logic 24 (1959), no. 1, 1–14.

[Kup06] Clemens Kupke, Finitary coalgebraic logics, Ph.D. thesis, ILLC, Uni-
versiteit van Amsterdam, 3 2006.

Bibliography 211

[KV08] Clemens Kupke and Yde Venema, Coalgebraic automata theory: Basic
results, Logical Methods in Computer Science 4 (2008), no. 4.

[KV09] Christian Kissig and Yde Venema, Complementation of coalgebra au-
tomata, CALCO’09: Algebra and Coalgebra in Computer Science,
Udine, Italy, September, 2009. Proceedings, 2009, pp. 81–96.

[LPSS12] Tadeusz Litak, Dirk Pattinson, Lutz Schröder, and Katsuhiko Sano,
Coalgebraic predicate logic, 39th International Colloquium on Au-
tomata, Languages and Programming (ICALP 2012) (Kurt Mehlhorn,
Andrew Pitts, and Roger Wattenhofer, eds.), vol. 7392, 2012, pp. 299–
311.

[Lyn59] Roger C. Lyndon, An interpolation theorem in the predicate calculus,
Pacific Journal of Mathematics 9 (1959), no. 1, 129–142.

[Mar11] Johannes Marti, Relation liftings in coalgebraic modal logic, Master’s
thesis, ILLC, Universiteit van Amsterdam, the Netherlands, 9 2011.

[McM18] Kenneth L. McMillan, Interpolation and model checking, pp. 421–446,
Springer International Publishing, 2018.

[Mil81] R. Milner, A modal characterisation of observable machine-behaviour,
CAAP ’81, Springer Berlin Heidelberg, 1981, pp. 25–34.

[ML71] Saunders Mac Lane, Categories for the working mathematician, Grad-
uate Texts in Mathematics, no. 5, Springer-Verlag, 1971.

[Mon70] R. Montague, Universal grammar, Theoria 36 (1970), no. 3, 373–398.

[Mon74] Richard Montague, Universal grammar, Theoria 36 (1974), 373 – 398.

[Mos84] Andrzej Wlodzimierz Mostowski, Regular expressions for infinite trees
and a standard form of automata, Symposium on Computation The-
ory, 1984.

[Mos91] , Games with forbidden positions, Technical Report 78, Univer-
sity of Gdań sk, 1991.

[Mos99] Larry Moss, Coalgebraic logic, Annals of Pure and Applied Logic
96 (1999), 277–317, (Erratum published Ann.P.Appl.Log. 99:241–259,
1999).

[MS87] David E. Muller and Paul E. Schupp, Alternating automata on infinite
trees, Theoretical Computer Science 54 (1987), no. 2, 267 – 276.

212 Bibliography

[MS95] , Simulating alternating tree automata by nondeterministic au-
tomata: New results and new proofs of the theorems of rabin, mc-
naughton and safra, Theoretical Computer Science 141 (1995), no. 1-
2, 69–107.

[MSV15] Johannes Marti, Fatemeh Seifan, and Yde Venema, Uniform interpola-
tion for coalgebraic fixpoint logic, CALCO’15: Algebra and Coalgebra
in Computer Science, Nijmegen, Netherlands, June, 2015. Proceed-
ings, 2015, pp. 238–252.

[MV12] Johannes Marti and Yde Venema, Lax extensions of coalgebra functors,
Proceedings of the International Workshop on Coalgebraic Methods
in Computer Science (CMCS) (2012), 150–160.

[Niw88] Damian Niwinski, Fixed points vs. infinite generation, Proceedings of
the Eleventh Annual IEEE Symposium on Logic in Computer Science
(LICS 1988), IEEE Computer Society Press, 1988, pp. 402 – 409.

[Niw97] , Fixed point characterization of infinite behaviour of finite-
state systems, Theoretical Computer Science 189 (1997), no. 1, 1 –
69.

[NW96] D. Niẃınski and I. Walukiewicz, Games for the µ-calculus, Theoretical
Computer Science 163 (1996), 99–116.

[Par80] David Park, On the semantics of fair parallelism, Abstract Software
Specifications, Springer Berlin Heidelberg, 1980, pp. 504–526.

[Par85] Rohit Parikh, The logic of games and its applications, Annals of Dis-
crete Mathematics, Elsevier, 1985, pp. 111 – 140.

[Pat03a] Dirk Pattincon, An introduction to the theory of coalgebras, Course
notes for NASSLLI, 2003.

[Pat03b] Dirk Pattinson, Coalgebraic modal logic: soundness, completeness and
decidability of local consequence, Theor. Comput. Sci. 309 (2003),
no. 1-3, 177–193.

[Pau99] M. Pauly, Bisimulation for general non-normal modal logic,
Manuscript (unpublished) (1999).

[Pau02] , A modal logic for coalitional power in games, J. Logic Com-
put. 12 (2002), no. 1, 149–166.

[Pit92] Andrew M. Pitts, On an interpretation of second order quantification
in first order intuitionistic propositional logic, Journal of Symbolic
Logic 57 (1992), no. 1, 33–52.

Bibliography 213

[Pnu77] Amir Pnueli, The temporal logic of programs, Proceedings of the 18th
Annual Symposium on Foundations of Computer Science, SFCS 77,
IEEE Computer Society, 1977, pp. 46–57.

[Pra81] Vaughan R. Pratt, A decidable mu-calculus: Preliminary report, 22nd
Annual Symposium on Foundations of Computer Science (sfcs 1981)
(1981), 421–427.

[Rab69] Michael O. Rabin, Decidability of second-order theories and automata
on infinite trees, Transactions of the American Mathematical Society
141 (1969), 1–35.

[Rut98] J.J.M.M. Rutten, Relators and metric bisimulations, Electronic Notes
in Theoretical Computer Science 11 (1998), 252 –258.

[Rut00] , Universal coalgebra: a theory of systems, Theoretical Com-
puter Science 249 (2000), no. 1, 3–80.

[Rut19] , The method of coalgebra: exercises in coinduction, CWI,
February 2019.

[San02] Luigi Santocanale, Free µ-lattices, Journal of Pure and Applied Alge-
bra 168 (2002), no. 2-3, 227–264.

[SB69] D. Scott and J. W. De Bakker, A theory of programs, Unpublished
manuscript. IBM (1969).

[Sch08] Lutz Schröder, Expressivity of coalgebraic modal logic: The limits and
beyond, Theoretical Computer Science 390 (2008), no. 2, 230 – 247.

[Sco70] D. Scott, Advice on modal logic, Philosophical Problems in Logic:
Some Recent Developments (K. Lambert, ed.), 1970, pp. 143–173.

[SE89] Robert S. Streett and E. Allen Emerson, An automata theoretic de-
cision procedure for the propositional mu-calculus, Information and
Computation 81 (1989), no. 3, 249 – 264.

[Sha94] Vladimir Yurievich Shavrukov, Adventures in diagonalizable algebras,
Ph.D. thesis, ILLC, Universiteit van Amsterdam, 6 1994.

[SP08] L. Schröder and D. Pattinson, Shallow models for non-iterative modal
logics, KI 2008: Advances in Artificial Intelligence (Berlin, Heidel-
berg), Springer Berlin Heidelberg, 2008, pp. 324–331.

[SP09a] Lutz Schröder and Dirk Pattinson, PSPACE bounds for rank-1 modal
logics, ACM Trans. Comput. Log. 10 (2009), no. 2, 13:1–13:33.

214 Bibliography

[SP09b] Lutz Schröder and Dirk Pattinson, Strong completeness of coalgebraic
modal logics, 26th International Symposium on Theoretical Aspects
of Computer Science (STACS 2009) (Susanne Albers and Jean-Yves
Marion, eds.), 2009, pp. 673–684.

[SP10] Lutz Schröder and Dirk Pattinson, Rank-1 modal logics are coalgebraic,
J. Log. Comput. 20 (2010), no. 5, 1113–1147.

[SPL15] Lutz Schröder, Dirk Pattinson, and Tadeusz Litak, A van ben-
them/rosen theorem for coalgebraic predicate logic, J. Log. Comput.
27 (2015), 749–773.

[SSP17] L. Schröder, F. Seifan, and D. Pattinson, Uniform interpolation in
coalgebraic modal logic, 7th Conference on Algebra and Coalgebra in
Computer Science (CALCO 2017), Leibniz International Proceedings
in Informatics (LIPIcs), vol. 72, 2017, pp. 21:1–21:16.

[SV10] Luigi Santocanale and Yde Venema, Uniform interpolation for mono-
tone modal logic, AiML’10: Advances in Modal Logic, Moscow, Russia,
August, 2010. Proceedings, 2010, pp. 350–370.

[Tar57] Alfred Tarski, A lattice-theoretical fixpoint theorem and its applica-
tions, Pacific journal of mathematics 22 (1957).

[Trn69] V. Trnková, Some properties of set functors, Commentationes Math-
ematicae Universitatis Carolinae 10 (1969), no. 2, 323–352.

[Var96] Moshe Vardi, Why is modal logic so robustly decidable?, Descriptive
Complex Finite Models 31 (1996).

[vB76] Johan van Benthem,Modal correspondence theory, Ph.D. thesis, ILLC,
Universiteit van Amsterdam, 1976.

[vB10] J. van Benthem, Modal logic for open minds, Bibliovault OAI Repos-
itory, the University of Chicago Press, 2010.

[Ven06] Yde Venema, Automata and fixed point logic: a coalgebraic perspective,
Information and Computation 204 (2006), 637–678.

[Ven14] Yde Venema, Expressiveness modulo bisimilarity: A coalgebraic per-
spective., Johan van Benthem on Logic and Information Dynamics,
Springer, 2014, pp. 33–65.

[Ven19] Yde Venema, Coalgebra and modal logic: an introduction, Lecture
Notes, ILLC, University of Amsterdam, 2019.

Bibliography 215

[Vis96a] Albert Visser, Bisimulations, model descriptions and propositional
quantifiers, vol. 161, Logic Group Preprint Series, 1996.

[Vis96b] , Uniform interpolation and layered bisimulation, Gödel’96:
Logical foundations of mathematics, computer science and physics—
Kurt Gödel’s legacy, Brno, Czech Republic, August, 1996. Proceed-
ings, Lecture Notes in Logic, vol. 6, 1996, pp. 139–164.

[Wal96] Igor Walukiewicz, Monadic second order logic on tree-like structures,
1996.

[Wal00] , Completeness of Kozen’s axiomatisation of the propositional
µ-calculus, Information and Computation 157 (2000), 142–182.

[Wal02] I. Walukiewicz, Monadic second-order logic on tree-like structures,
Theoretical Computer Science 275 (2002), 311–346.

[Wil01] Thomas Wilke, Alternating tree automata, parity games, and modal µ-
calculus, Bulletin of the Belgian Mathematical Society - Simon Stevin
8 (2001), no. 2, 359–391.

[Zie98] Wieslaw Zielonka, Infinite games on finitely coloured graphs with ap-
plications to automata on infinite trees, Theoretical Computer Science
200 (1998), no. 1-2, 135–183.

Samenvatting

Dit proefschrift bestudeert de expressiviteit en volledigheid van de coalgebräısche
µ-calculus. Met deze logica, een coalgebräısche generalisatie van de standaard
µ-calculus, creëren we een uniform raamwerk voor verschillende modale dekpunt-
logica’s. Ons belangrijkste doel is om te laten zien dat verscheidene belangrijke
resultaten, zoals uniforme interpolatie, expressieve volledigheid en axiomatische
volledigheid van de standaard µ-calculus kunnen worden gegeneraliseerd naar het
niveau van coalgebra’s. Om dit doel te bereiken ontwikkelen we automaten- en
speltheoretische methodes om eigenschappen van de coalgebräısche µ-calculus te
bestuderen.

In Hoofdstuk 3 bewijzen we een uniforme-interpolatiestelling voor de coal-
gebräısche µ-calculus. Deze stelling generaliseert een resultaat van D’Agostino
en Hollenberg [DH00] naar een bredere klasse van dekpuntlogica’s, waaronder de
monotone µ-calculus: de uitbreiding van de monotone modale logica met dekpun-
toperatoren. Om dit doel te bereiken beschouwen we eerst een belangrijke eigen-
schap van automaten, namelijk afsluiting onder projectie. We bewijzen dat deze
eigenschap, waarvan bekend is dat deze geldt voor functoren die zwakke pullbacks
behouden, ook geldt voor een bredere klasse van functoren, te weten de functoren
met een zogeheten quasi-functionele lakse relatielifting. Vervolgens laten we zien
dat afsluiting onder projectie impliceert dat de bisimulatiekwantor definieerbaar
is in de taal van de coalgebräısche µ-calculus. Ten slotte gebruiken we dit re-
sultaat om een uniforme-interpolatiestelling te bewijzen voor de coalgebräısche
µ-calculus.

In hoofdstuk 4 generaliseren we de stelling van Janin-Walukiewicz [JW96] die
stelt dat de modale µ-calculus precies het bisimulatie-invariante fragment van de
monadische tweede-orde logica vangt, naar het niveau van coalgebra’s. Daarvoor
introduceren we eerst een notie van coalgebräısche monadische tweede-orde logica
MSOT voor coalgebra’s van type T. In navolging van automaten-theoretische be-
naderingen van de gewone monadische tweede-orde logica definiëren we een klasse
van pariteitsautomaten die correspondeert met MSOT. Vergelijkbaar met bekende

217

218 Samenvatting

resultaten voor de monadische tweede-orde-logica over bomen, geven we een ver-
taling van MSOT naar deze automaten die waarheidbehoudend is over de klasse
van boomachtige T-coalgebra’s. Vervolgens identificeren we functoren T waar-
voor de coalgebräısche µ-calculus µMLT overeenkomt met het fragment van MSOT

dat invariant is onder gedragsequivalentie. We benaderen dit op het niveau van
éénstapstalen en laten zien dat het, om een coalgebräısche karakteriseringsstelling
te bewijzen, voldoende is om een adequate uniforme constructie voor de functor T
te vinden. Als toepassing van dit resultaat verkrijgen we een gedeeltelijk nieuw be-
wijs voor de stelling van Janin-Walukiewicz, en bisimulatie-invariantieresultaten
voor de multiset-functor (gegradeerde modale logica), en alle exponentiële poly-
nomiale functoren. In het laatste deel van dit hoofdstuk gaan we dieper in op de
monotone omgevingsfunctor M, die een coalgebräısche semantiek verschaft voor
de monotone modale logica. Het blijkt dat er geen adequate uniforme construc-
tie is voor M. We lossen dit probleem op door een aangepaste versie van onze
algemene karakteriseringsstelling te bewijzen.

In Hoofdstuk 5 bewijzen we een axiomatisch volledigheidsresultaat voor de
coalgebräısche µ-calculus. Hier volgen we dezelfde lijn als in hoofdstuk 4: een cru-
ciale rol in onze bewijzen is weggelegd voor automaten en de notie van éénstapslog-
ica. Door ideeën uit de automatentheorie en de coalgebra toe te passen, is het ons
doel om Walukiewicz’ bewijs van volledigheid voor de modale µ-calculus [Wal00]
te generaliseren naar het niveau van coalgebra’s. Onze belangrijkste bijdrage
is dat we automaten expliciet in de bewijstheorie onderbrengen. Binnen deze
automaten-theoretische benadering kunnen we twee belangrijke aspecten van de
coalgebräısche µ-calculus (en de standaard µ-calculus) onderscheiden:
de éénstapsdynamiek die gecodeerd ligt in de semantiek van de modale opera-
toren, en de combinatoriek die een rol speelt bij het omgaan met geneste dekpun-
toperatoren. Dit onderscheid stelt ons in staat om grotendeels onafhankelijk met
deze twee aspecten te werken. Meer in detail zijn de belangrijkste instrumenten
die we gebruiken in onze automatentheoretische benadering twee soorten spellen
voor modale automaten: het vervulbaarheidsspel en het consequentiespel, en twee
speciale soorten modale automaten: disjunctieve en semi-disjunctieve automaten.
Het consequentiespel tussen twee automaten is een originele bijdrage van onze
aanpak. Het is een oneindig spel voor twee spelers dat gericht is op het tot stand
brengen van structurele verbindingen tussen de automaten. Naast de disjunc-
tieve automaten die bekend zijn uit het werk van Janin en Walukiewicz [JW95],
definiëren we de klasse van semi-disjunctieve automaten en laten we zien dat
deze semi-disjunctieve automaten, net als de disjunctieve, een relatief eenvoudige
combinatorische sporentheorie hebben met betrekking tot de vervulbaarheids-
en consequentiespellen. Als onze belangrijkste bijdrage generaliseren we het
belangrijkste technische resultaat van Walukiewicz, namelijk, dat elke formule
van de modale µ-calculus bewijsbaar de vertaling impliceert van een disjunctieve
automaat, naar het niveau van coalgebras. Hieruit volgt de volledigheidsstelling
vrijwel onmiddellijk.

Abstract

This dissertation studies the expressivity and completeness of the coalgebraic µ-
calculus. This logic is a coalgebraic generalization of the standard µ-calculus,
which creates a uniform framework to study di↵erent modal fixpoint logics. Our
main objective is to show that several important results, such as uniform inter-
polation, expressive completeness and axiomatic completeness of the standard
µ-calculus can be generalized to the level of coalgebras. To achieve this goal
we develop automata and game-theoretic tools to study properties of coalgebraic
µ-calculus.

In Chapter 3 we prove a uniform interpolation theorem for the coalgebraic µ-
calculus. This theorem generalizes a result by D’Agostino and Hollenberg [DH00]
to a wider class of fixpoint logics, including the monotone µ-calculus, which is
the extension of monotone modal logic with fixpoint operators. To this aim,
first we consider a key property of automata, namely closure under projection.
We prove this property, which is known to hold for weak pullback-preserving
functors, for a wider class of functors, i.e., functors with a certain type of relation
lifting called a quasi-functorial lax extension. Then we show that closure under
projection implies definability of the bisimulation quantifier in the language of the
coalgebraic µ-calculus. Finally, we use this result to prove a uniform interpolation
theorem for the coalgebraic µ-calculus.

In Chapter 4 we generalize the Janin-Walukiewicz theorem [JW96], which
states that the modal µ-calculus captures exactly the bisimulation invariant frag-
ment of monadic second-order logic, to the level of coalgebras. For that, we first
introduce a notion of coalgebraic monadic second-order logic MSOT for coalge-
bras of type T. Following the tradition of automata-theoretic approaches toward
monadic second-order logic we define a class of parity automata that corresponds
to MSOT. Similar to well-known results for monadic second-order logic over trees,
we provide a translation from MSOT to these automata, which is truth-preserving
on the class of tree-like T-coalgebras. We then proceed by identifying the class of
functors T for which the coalgebraic µ-calculus µMLT corresponds to the fragment

219

220 Abstract

of MSOT that is invariant under behavioural equivalence. We approach this at the
level of one-step languages and show that to prove a coalgebraic characterization
theorem, it su�ces to find what we call an adequate uniform construction for
the functor T. As applications of this result we obtain a partly new proof of
the Janin-Walukiewicz theorem, and bisimulation invariance results for the bag
functor (graded modal logic), and all exponential polynomial functors. In the
last part of this chapter we consider in some detail the monotone neighborhood
functor M, which provides coalgebraic semantics for monotone modal logic. It
turns out that there is no adequate uniform construction for M. We resolve this
problem by proving a second version of our general characterization theorem.

In Chapter 5 we prove an axiomatic completeness result for the coalgebraic
µ-calculus. Here we follow the same track as in Chapter 4: a crucial role in
our proofs is played by the notions of one-step logic and automata. Applying
ideas from automata theory and coalgebra, our aim is to generalise Walukiewicz’
proof of completeness for the modal µ-calculus [Wal00] to the level of coalgebras.
Our main contribution is to bring automata explicitly into the proof theory. This
automata-theoretic approach lets us distinguish two key aspects of the coalgebraic
µ-calculus (and the standard µ-calculus): the one-step dynamic encoded in the
semantics of the modal operators, and the combinatorics involved in dealing with
nested fixpoints. This distinction allows us to work with these two features in
a largely independent manner. More in detail, the main tools that we employ
in our automata-theoretic approach are two kinds of games for modal automata:
the satisfiability game and the consequence game, and two special kinds of modal
automata: disjunctive and semi-disjunctive automata. The consequence game
between two automata is an original contribution of our approach. It is an infinite
two-player game concentrating on establishing structural connections between the
automata. In addition to the disjunctive automata that are known from the work
of Janin andWalukiewicz [JW95], we define the class of semi-disjunctive automata
and show that similar to the disjunctive ones, semi-disjunctive automata also
have a fairly simple trace theory (combinatorics) with regards to the satisfiability
and consequence games. As our main result we then provide a generalization of
Walukiewicz’ main technical result, which states that every formula of the modal
µ-calculus provably implies the translation of a disjunctive automaton, to the
level of coalgebras. From this the completeness theorem is almost immediate.

Titles in the ILLC Dissertation Series:

ILLC DS-2018-13: Jeroen Zuiddam
Algebraic complexity, asymptotic spectra and entanglement polytopes

ILLC DS-2019-01: Carlos Vaquero
What Makes A Performer Unique? Idiosyncrasies and commonalities in ex-
pressive music performance

ILLC DS-2019-02: Jort Bergfeld
Quantum logics for expressing and proving the correctness of quantum pro-
grams

ILLC DS-2019-03: András Gilyén
Quantum Singular Value Transformation & Its Algorithmic Applications

ILLC DS-2019-04: Lorenzo Galeotti
The theory of the generalised real numbers and other topics in logic

ILLC DS-2019-05: Nadine Theiler
Taking a unified perspective: Resolutions and highlighting in the semantics of
attitudes and particles

ILLC DS-2019-06: Peter T.S. van der Gulik
Considerations in Evolutionary Biochemistry

ILLC DS-2019-07: Frederik Möllerström Lauridsen
Cuts and Completions: Algebraic aspects of structural proof theory

ILLC DS-2020-01: Mostafa Dehghani
Learning with Imperfect Supervision for Language Understanding

ILLC DS-2020-02: Koen Groenland
Quantum protocols for few-qubit devices

ILLC DS-2020-03: Jouke Witteveen
Parameterized Analysis of Complexity

ILLC DS-2020-04: Joran van Apeldoorn
A Quantum View on Convex Optimization

ILLC DS-2020-05: Tom Bannink
Quantum and stochastic processes

ILLC DS-2020-06: Dieuwke Hupkes
Hierarchy and interpretability in neural models of language processing

ILLC DS-2020-07: Ana Lucia Vargas Sandoval
On the Path to the Truth: Logical & Computational Aspects of Learning

ILLC DS-2020-08: Philip Schulz
Latent Variable Models for Machine Translation and How to Learn Them

ILLC DS-2020-09: Jasmijn Bastings
A Tale of Two Sequences: Interpretable and Linguistically-Informed Deep
Learning for Natural Language Processing

ILLC DS-2020-10: Arnold Kochari
Perceiving and communicating magnitudes: Behavioral and electrophysiologi-
cal studies

ILLC DS-2020-11: Marco Del Tredici
Linguistic Variation in Online Communities: A Computational Perspective

ILLC DS-2020-12: Bastiaan van der Weij
Experienced listeners: Modeling the influence of long-term musical exposure
on rhythm perception

ILLC DS-2020-13: Thom van Gessel
Questions in Context

ILLC DS-2020-14: Gianluca Grilletti
Questions & Quantification: A study of first order inquisitive logic

ILLC DS-2020-15: Tom Schoonen
Tales of Similarity and Imagination. A modest epistemology of possibility

ILLC DS-2020-16: Ilaria Canavotto
Where Responsibility Takes You: Logics of Agency, Counterfactuals and Norms

ILLC DS-2020-17: Francesca Za↵ora Blando
Patterns and Probabilities: A Study in Algorithmic Randomness and Com-
putable Learning

ILLC DS-2021-01: Yfke Dulek
Delegated and Distributed Quantum Computation

ILLC DS-2021-02: Elbert J. Booij
The Things Before Us: On What it Is to Be an Object

ILLC DS-2021-03: Seyyed Hadi Hashemi
Modeling Users Interacting with Smart Devices

ILLC DS-2021-04: Sophie Arnoult
Adjunction in Hierarchical Phrase-Based Translation

ILLC DS-2021-05: Cian Guilfoyle Chartier
A Pragmatic Defense of Logical Pluralism

ILLC DS-2021-06: Zoi Terzopoulou
Collective Decisions with Incomplete Individual Opinions

ILLC DS-2021-07: Anthia Solaki
Logical Models for Bounded Reasoners

ILLC DS-2021-08: Michael Sejr Schlichtkrull
Incorporating Structure into Neural Models for Language Processing

ILLC DS-2021-09: Taichi Uemura
Abstract and Concrete Type Theories

ILLC DS-2021-10: Levin Hornischer
Dynamical Systems via Domains: Toward a Unified Foundation of Symbolic
and Non-symbolic Computation

ILLC DS-2021-11: Sirin Botan
Strategyproof Social Choice for Restricted Domains

ILLC DS-2021-12: Michael Cohen
Dynamic Introspection

ILLC DS-2021-13: Dazhu Li
Formal Threads in the Social Fabric: Studies in the Logical Dynamics of
Multi-Agent Interaction

ILLC DS-2022-01: Anna Bellomo
Sums, Numbers and Infinity: Collections in Bolzano’s Mathematics and Phi-
losophy

ILLC DS-2022-02: Jan Czajkowski
Post-Quantum Security of Hash Functions

ILLC DS-2022-03: Sonia Ramotowska
Quantifying quantifier representations: Experimental studies, computational
modeling, and individual di↵erences

ILLC DS-2022-04: Ruben Brokkelkamp
How Close Does It Get?: From Near-Optimal Network Algorithms to Subop-
timal Equilibrium Outcomes

ILLC DS-2022-05: Lwenn Bussière-Carae
No means No! Speech Acts in Conflict

ILLC DS-2023-01: Subhasree Patro
Quantum Fine-Grained Complexity

ILLC DS-2023-02: Arjan Cornelissen
Quantum multivariate estimation and span program algorithms

ILLC DS-2023-03: Robert Paßmann
Logical Structure of Constructive Set Theories

ILLC DS-2023-04: Samira Abnar
Inductive Biases for Learning Natural Language

ILLC DS-2023-05: Dean McHugh
Causation and Modality: Models and Meanings

ILLC DS-2023-06: Jialiang Yan
Monotonicity in Intensional Contexts: Weakening and: Pragmatic E↵ects
under Modals and Attitudes

ILLC DS-2023-07: Yiyan Wang
Collective Agency: From Philosophical and Logical Perspectives

ILLC DS-2023-08: Lei Li
Games, Boards and Play: A Logical Perspective

ILLC DS-2023-09: Simon Rey
Variations on Participatory Budgeting

ILLC DS-2023-10: Mario Giulianelli
Neural Models of Language Use: Studies of Language Comprehension and
Production in Context

ILLC DS-2023-11: Guillermo Menéndez Turata
Cyclic Proof Systems for Modal Fixpoint Logics

ILLC DS-2023-12: Ned J.H. Wontner
Views From a Peak: Generalisations and Descriptive Set Theory

ILLC DS-2024-01: Jan Rooduijn
Fragments and Frame Classes: Towards a Uniform Proof Theory for Modal
Fixed Point Logics

ILLC DS-2024-02: Bas Cornelissen
Measuring musics: Notes on modes, motifs, and melodies

ILLC DS-2024-03: Nicola De Cao
Entity Centric Neural Models for Natural Language Processing

	Acknowledgments
	Introduction
	Modal logic, fixpoints and automata
	Modal logics
	The standard -calculus
	Automata for -calculus

	Coalgebras
	Systems as coalgebra
	Equivalence

	Coalgebraic logic and automata
	Coalgebraic modal logic
	Coalgebraic fixpoint logic
	Coalgebraic automata theory

	Contributions
	Chapter 3: Uniform Interpolation
	Chapter 4: Expressive Completeness
	Chapter 5: Axiomatic Completeness

	Preliminaries
	Modal logic and fixpoints
	Modal logics
	-calculus over Kripke models

	Parity games
	Category theory and coalgebras
	Sets and relations
	Coalgebras
	Properties of set functors
	Behavioural equivalence and Bisimulation
	Algebras vs coalgebras

	Coalgebraic fixpoint logic and automata
	Coalgebraic -calculus via the -modality
	Coalgebraic -calculus via predicate liftings
	Coalgebraic automata theory

	Uniform Interpolation
	Special relation liftings
	Coalgebraic fixpoint logic
	Coalgebraic Automata
	Simulation
	Closure properties
	Logic and Automata
	Uniform Interpolation
	The monotone -calculus
	Conclusion

	Expressive Completeness
	The -calculus and monadic second-order logic
	Coalgebraic perspective
	Coalgebraic -calculus
	Coalgebraic MSO
	Coalgebraic FOL

	Automata and one-step languages
	Automata for ML
	Automata for MSO
	Closure properties
	Second-order automata

	One-step expressive completeness
	Bisimulation invariance
	Adequate uniform constructions
	Weakly adequate uniform constructions
	Characterizing ML inside ML{s}
	Applications

	Characterizing the monotone -calculus
	No adequate construction for M
	A weakly adequate uniform construction for M

	Conclusion

	Axiomatic Completeness
	Proof strategy
	Coalgebraic fixpoint logic
	Syntax
	Semantics
	Axiomatics

	Modal automata and one-step formulas
	One-step logic
	Modal automata
	Operations on modal automata
	Translating formulas to automata

	Games for Automata
	Traces
	The satisfiability game
	Consequence game

	Taming the traces - one step at a time
	Functional, clusterwise functional and thin relations

	Disjunctive and semi-disjunctive automata
	A key lemma

	A strong simulation theorem
	From automata to formulas
	Completeness
	Conclusion

	Bibliography
	Samenvatting
	Abstract

