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Abstract

Optimization is the process of selecting the best option from all possibilities, and
problems related to finding the best option among many options are called optimiza-
tion problems. A few examples of such problems are route picking, partial loading,
crew scheduling, and portfolio optimization, and those problems naturally appear ev-
erywhere in society and in our daily lives.

Most optimization problems could be solved by listing all possibilities and then
searching for the best one, but we aim to find a systematic strategy (known as an al-
gorithm) that finds the optimal solution in the least amount of time, as brute-force
searching is often too time-consuming. That is, we would like to find optimal algo-
rithms for finding optimal solutions.

Quantum physics provides a more accurate explanation and prediction of nature
in many cases than classical physics. Therefore, a quantum computer has the poten-
tial to be more powerful and useful than a classical one for solving optimization prob-
lems, though the extent of this advantage remains an active area of research. Moreover,
designing algorithms for a quantum computer requires fundamentally different ideas
and concepts than for a classical computer.

In this thesis, we explore the uses of quantum computers in solving several fun-
damental optimization problems. We specifically consider solving linear regression,
finding the top eigenvectors of a matrix, and finding the shortest nonzero vector of a
lattice. More precisely, we provide near-optimal quantum algorithms that are asymp-
totically better than the best-possible classical algorithms for linear regression with
ℓ1-norm constraint (known as Lasso) and for approximating the top eigenvectors of a
matrix. Our algorithms for finding the shortest nonzero vector of a lattice are asymp-
totically better than the best known classical algorithms.

On the other hand, there are some problems for which no useful computational ad-
vantage is possible, even when we use quantum computers. This situation, however,
can sometimes be beneficial if we do not want quantum computers to solve specific
problems fast - say, problems relevant to post-quantum cryptography. In such a situ-
ation, we would like evidence demonstrating the difficulty of solving these problems
on a quantum computer. To this end, we propose variants of Boolean satisfiability
problems that are believed to not be more efficiently solvable on a quantum computer,
and then via reductions use those (conjectured) quantum lower bounds to study the
quantum limitations of several popular optimization problems like lattice problems,
quantum strong simulation, and hitting set problems.
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Samenvatting

Optimalisatie is het proces waarbij de beste optie uit alle mogelijkheden wordt
geselecteerd, en problemen die te maken hebben met het vinden van de beste op-
tie uit vele opties worden optimalisatieproblemen genoemd. Enkele voorbeelden van
dergelijke problemen zijn routekeuze, gedeeltelijke belading, roosterplanning en portefeuille-
optimalisatie. Deze problemen komen veel voor in de maatschappij en in ons dagelijks
leven.

De meeste optimalisatieproblemen kunnen worden opgelost door alle mogelijkhe-
den op te sommen en vervolgens de beste te selecteren, maar wij streven ernaar een
systematische strategie te vinden (een algoritme) die de optimale oplossing in de ko-
rtst mogelijke tijd vindt, aangezien brute-force zoeken vaak te tijdrovend is. Met an-
dere woorden, we willen optimale algoritmen vinden voor het vinden van optimale
oplossingen.

Kwantumfysica biedt in veel gevallen een nauwkeurigere verklaring en voorspelling
van de natuurlijke fenomenen dan de klassieke fysica. Daarom heeft een kwantum-
computer het potentieel om krachtiger en nuttiger te zijn dan een klassieke computer
voor het oplossen van optimalisatieproblemen, hoewel het nog steeds een actief on-
derzoeksgebied is om uit te zoeken hoe groot dat voordeel is. Het ontwerpen van algo-
ritmen voor een kwantumcomputer vereist fundamenteel andere ideeën en concepten
dan voor een klassieke computer.

In dit proefschrift onderzoeken we het gebruik van kwantumcomputers bij het oplossen
van verschillende fundamentele optimalisatieproblemen. We richten ons specifiek op
het oplossen van lineaire regressie, het vinden van de belangrijkste eigenvectoren van
een matrix, en het vinden van de kortste niet-nul vector van een lattice. Meer in het bij-
zonder bieden we bijna-optimale kwantum algoritmen die asymptotisch beter zijn dan
de best mogelijke klassieke algoritmen voor lineaire regressie met ℓ1-normbeperking
(ook bekend als Lasso) en voor het benaderen van de belangrijkste eigenvectoren van
een matrix. Onze algoritmen voor het vinden van de kortste niet-nul vector van een
lattice zijn asymptotisch beter dan de best bekende klassieke algoritmes.

Aan de andere kant zijn er enkele problemen waarvoor geen nuttig computation-
eel voordeel mogelijk is, zelfs niet wanneer we kwantumcomputers gebruiken. Deze
situatie kan soms voordelig zijn als we niet willen dat kwantumcomputers specifieke
bepaalde problemen snel kunnen oplossen - bijvoorbeeld problemen die relevant zijn
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voor post-kwantum cryptografie. In zo’n situatie willen we bewijs voor de moeili-
jkheid van het oplossen van deze problemen op een kwantumcomputer. Om deze
reden stellen we varianten van Booleaanse vervulbaarheidsproblemen voor waarvan
wordt aangenomen dat ze niet efficiënter kunnen worden opgelost door een kwantum-
computer, en gebruiken we deze (vermoede) kwantum ondergrenzen via reducties om
de kwantumbeperkingen van enkele populaire optimalisatieproblemen te bestuderen,
zoals lattice problemen, kwantum sterke-simulatie en problemen over hitting sets.
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摘要

最佳化（Optimization）指從所有的可能性中選擇最好、或者盡可能好的那
個。在日常生活中，我們會請導航軟體帶我們從甲地到乙地、在固定的機艙空間
中塞進更多更緊急的貨品、為醫院員工和火車安排班表、尋找低風險高收益的投
資組合。這些都是最佳化演算法能派得上用場的地方。
這類的最佳化演算法儘管已經非常成熟、且每年帶來數百億美元的效益，但

他們始終沒有真正觸及最核心的問題，即，「最佳」意味著從「所有」的可能中
找到最好的。但是在實際應用中，列出所有可能性的成本往往遠遠超過預期的好
處，這就是為什麼我們迫切的需要更多、更準、更便宜的數學工具來解決這些問
題。又或者，我們可以利用量子力學的特性，請大自然來幫我們解決這些問題？
在許多情況下，量子力學比古典力學提供了更準確的自然解釋和預測。因此，

量子電腦在解決最佳化問題時有潛力比古典電腦更快更好，儘管這一優勢仍是一
個活躍的研究領域。此外，為量子電腦設計演算法需要本質上完全不同的想法和
概念。依據量子力學，我們可以考慮每個粒子狀態以及粒子與粒子間的纏結（交
互作用），使得一個精心設計的量子系統可以以一種「平行化」的方式，在固定
的時間內探索更大量的可能性。而為了把最佳解決方案從這樣的量子系統中「提
取」出來，我們亦需要設計相對應的「量子轉古典」的介面。
本論文意在探討如何使用量子電腦解決最佳化問題。我們設計了可以解線性回

歸、找特徵根與特徵向量、找最短晶格向量的量子演算法。並且我們還證明，因
為某些數學以及量子物理上的限制，這些量子演算法已經好到幾乎沒有改進的空
間。在解有ℓ1-constraint的線性回歸（通常稱為Lasso）和特徵向量時，隨著參數
慢慢變大，我們的量子演算法會優於任何古典演算法。這論述包含尚未被發現的
古典演算法在內，因為數學以及古典物理上的限制，任何不用到量子力學的演算
法的能力有一個明確的上限。至於最短晶格向量的問題，雖然沒辦法證明我們的
方法好過所有的古典演算法，但卻好過所有我們知道的古典演算法。
另一方面，即使使用量子電腦，也有一些問題無法獲得任何實質性的計算優

勢。然而，在某些情況下，如果我們不希望量子電腦快速解決特定問題——例如
與後量子密碼學相關的問題，這種情況可能是有利的。在這種情況下，我們希望
有證據顯示解決這些問題的困難性以及在量子電腦上進行這些計算的精確複雜
度。為此，我們提出了一些布林可滿足性問題的變體問題，這些變體問題被廣泛
認為無法有效地通過量子電腦解決，並且我們使用這些（假設的）量子限制來研
究一些流行的最佳化問題（如晶格問題、量子強模擬和碰撞集問題）的量子限
制。
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CHAPTER 1

Overview

1.1 Introduction

This thesis is dedicated to the potential use of quantum computers in fundamental
optimization problems.

1.1.1 Quantum computing

Quantum computing is interdisciplinary, lying at the intersection of two fields: quan-
tum mechanics and computer science.

Quantum mechanics The field of quantum mechanics began at the start of the 20th
century. Planck proposed the idea of “quantized energy” in 1900 [Pla00a; Pla00b] to
explain the observations of black-body radiation. This “quantum” idea soon inspired
many scientists, to explain and predict the nature of the photoelectric effect [Ein05],
the spectral lines of the hydrogen atom [Boh13], Bose-Einstein condensation [Ein24],
and Pauli’s exclusion principle [Pau25]. Heisenberg, Born, and Jordan [Hei25; BJ25;
BHJ26] further proposed wave function and matrix mechanics notions to formalize
quantum mechanics and explain the seemingly contradictory idea that a photon, the
particle of light, behaves like a wave. Light indeed comes in discrete packets (as do
other particles), but the position of these packets is not precisely deterministically de-
fined. However, it can still be described by a certain probability, leading to wave-like
behavior as these probabilities spread through space. The celebrated uncertainty prin-
ciple of Heisenberg states that these probabilities do not originate from our lack of
knowledge about the world; they are inherent to the world: until observed, there is no
real position of the particle. Instead, the system is described by a set of amplitudes,
one for each possible position in space, from which the corresponding probability can
be derived. By the end of the 1930s, quantum mechanics had grown to become a major
field of physics.
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Computer science Computer science studies computation, automation, and resources.
People thousands of years ago already cared about computing things faster and more
accurately: ancient people invented the abacus to perform daily calculations. Mod-
ern computer science, on the other hand, started with Church and Turing, built on the
work of Gödel, formalizing the notion of an automatic machine [Tur37; Chu36], now
known as a Turing machine. An algorithm, which is the key to automation, is a finite se-
quence of rigorous instructions so precise that even an idiot or a machine can perform
it. Indeed, we also care about how complex and time-consuming such instructions
are, and hence, people design algorithms that not only compute the answer but use the
fewest resources or, equivalently, algorithms that are the most efficient. After Edmonds
introduced the idea of efficient algorithms [Edm65], Hartmanis and Stearns formalized
the notion of a complexity class [HS65], and by further introducing the notion of the
class of problems that are solvable by an efficient algorithm (that is, an algorithm that
runs in polynomial time in the input size), they started the field of complexity theory,
which classifies computational problems according to their resource usage.

Quantum computing Nature can be seen as a machine. Quantum mechanics, a more
elaborate and complicated theory than classical mechanics to explain Nature, could, of
course, possibly provide new insights for designing automatic machines. Wiesner in-
troduced the idea of quantum money [Wie83] and started the whole field of quantum
information.1 The field of quantum computation, on the other hand, was initiated
in the early 1980s by Deutsch, Feynman, Manin, and Benioff [Deu85; Fey82; Fey86;
Man80; Man99; Ben82], when they realized an exponential increase in overhead for
simulating quantum dynamics. They proposed that a quantum computer, based on
the laws of quantum mechanics, could be more efficient than a classical computer for
simulating quantum systems. Several quantum advantages were explored soon after
the initiation of the quantum computation and quantum information fields: the per-
fect security of quantum key distribution by Bennett and Brassard [BB84], an efficient
quantum algorithm for factoring by Shor [Sho97], and a general quadratic speedup
for the unstructured search by Grover [Gro96]. Quantum computing has since blos-
somed into a major field at the intersection of physics, mathematics, and computer
science. The past two decades have seen much research trying to understand the tasks
for which quantum provides an advantage.

1.1.2 Optimization

Optimization is the process of selecting the best element/object from a set of avail-
able alternatives with regard to some criterion. Optimization problems naturally arise
in all quantitative disciplines, and the development of solution methods has been of
interest in mathematics for centuries. In practice, an optimization problem consists
of maximizing or minimizing a real function by systematically choosing input values
from within an allowed set and computing the function’s value. Depending on the

1The idea in [Wie83] was proposed by Wiesner already in 1970 and remained unpublished until 1983.
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variables of an optimization problem, it can generally be divided into two categories:
continuous optimization and discrete optimization. Here, we introduce some notable
branches of these two categories.

One of the most popular branches of continuous optimization is convex optimiza-
tion. As its name suggests, it optimizes a convex function over a convex domain. One
of the fundamental problems in convex optimization is least-squares linear regression:
given a bunch of data and its corresponding label, we would like to fit a line through
those data (with respect to least-squares error). Linear regression and its variants have
many applications in the field of machine learning and hence attract much attention.
Another fundamental problem in convex optimization is finding the top eigenvalue
and its corresponding eigenvector of a given matrix, which could be considered the
most important information of a matrix. Many convex optimization algorithms also
involve finding the top eigenvector of a matrix as a subroutine. One more important
fundamental problem in convex optimization is linear programming, which optimizes
a linear function over a domain described by linear constraints. Linear programming
plays a major role in convex optimization because many practical problems can be
expressed as linear programming problems.

Integer programming, on the other hand, plays a very important role in discrete
optimization, in which the variables of the integer program are restricted to integer
points or lattice points. Integer programming is a natural problem generalized from
linear programming. The combined algorithmic study of these problems was called
the algorithmic geometry of numbers by Kannan [Kan87b]. This type of research soon
attracted the attention of mathematicians to test new combinatorial and geometric
techniques on exceedingly difficult computational problems [Kan87a; LLL82; Len83].
The subject of lattice algorithms has grown exponentially due to its many new connec-
tions to cryptography and complexity theory.

1.1.3 Quantum algorithms and limitations for optimization problems

As the hardware of a quantum computer is rapidly evolving, quantum scientists are
also continually improving and creating new quantum algorithms for solving opti-
mization problems. Many quantum algorithms have been invented during this decade,
including algorithms for solving semidefinite programming, least-squares fitting, gra-
dient descent, and more. Still, these quantum algorithms are not yet enough to handle
many existing optimization problems, and hence, we need to explore further the pos-
sibilities of a quantum computer.

Of course, quantum computing has its limits. Bennett, Bernstein, Brassard, and
Vazirani showed that the quadratic speedup over the unstructured search is the best we
can hope for by an argument called the “hybrid method” [BBB+97]. After that, Beals,
Buhrman, Cleve, Mosca, and de Wolf gave a general tool for recognizing the limitations
of quantum queries [BBC+01] by observing that the amplitudes of the final state of T -
query quantum algorithms are degree-T polynomials. Ambainis further generalized
the idea of Bennett, Bernstein, Brassard, and Vazirani, giving a clean combinatorial
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method for proving quantum query lower bounds [Amb02]. These methods are very
helpful to prevent people from wasting their time trying to invent something totally
impossible.

The above-mentioned lower bound tools are for query lower bounds. Time lower
bounds for a computation/optimization problem are, in general, hard to prove. An
alternative way to study (both classical and quantum) time lower bounds for these
problems is to assume a certain important problem (which people believe is hard)
needs exponential time to solve, and then try to reduce that problem to other prob-
lems, which then must be also hard. This is called conditional (quantum) lower bound
or (quantum) fine-grained complexity in the computer science field. By transferring
the conjectured intractability to another problem, we can characterize the hardness of
other problems. Moreover, if we find a more efficient algorithm for any of these prob-
lems, this algorithm can immediately be converted to a more efficient algorithm for
solving such a certain important problem.

1.2 Contribution

In this thesis, we propose quantum algorithms and analyze their limitations for solv-
ing linear regression, top eigenvectors, and lattice problems. Parts of our quantum
algorithms are created by “quantizing” existing classical algorithms. Obviously, not all
“quantized” classical algorithms have a quantum speedup, and many of them have ac-
tually been shown to have no quantum speedup [GKN+21]. All classical algorithms we
choose to quantize (and achieve quantum speedup) in this thesis are typically robust
against tiny errors.

The results presented in this work are organized into three parts. In Part I, we
will discuss quantum algorithms for fundamental optimization problems like linear
regression, finding the top eigenvectors, and the shortest vector problem of a lattice;
in Part II, we include both classical and quantum lower bounds for those problems
we mentioned above, showing our quantum algorithms in Part I are nearly optimal
and surely have a quantum advantage over the best possible classical ones. In Part III,
we will introduce a framework on quantum conditional lower bounds and apply this
framework to other optimization problems.

Parts of our quantum algorithms include the use of QRAM (also called QCRAM). In
analogy with classical RAM, a QRAM is a device that stores a classical string and allows
efficient access to the individual bits of the string, as well as to several bits in superposi-
tion. Note that the QRAM memory content itself is classical: it is just a classical string,
not a superposition of such strings. It should be noted that QRAM is a controversial
notion in some corners of quantum computing. Still, classical RAM is not considered
a problematic notion and in practice is implemented in near-perfect hardware. Since
classical RAM is not problematic and one has to allow quantum superposition anyway
in order to do anything in quantum computing, we feel that assuming QRAM is con-
ceptually acceptable. On the other hand, we will also include QRAM-free counterparts
in this thesis, and those still show quantum advantages.
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1.2.1 Overview of each chapter

In the first half of Chapter 2, we introduce some basic notations and terminology.
We then briefly introduce the basics of quantum computation, followed by a list of
useful quantum algorithmic techniques that will be used throughout this thesis, in-
cluding quantum unstructured search, amplitude estimation, generalized quantum
minimum-finding, and amplitude amplification. After that, we introduce a type of
quantum-accessible classical data structure for efficient state preparation, followed by
block-encoding and Hamiltonian simulation. For the second half of Chapter 2, we start
with some useful notions and theorems of probability theory, concentration bounds,
and Fourier analysis. Then, we finish the chapter with lattice problems and some use-
ful high-dimensional geometry facts and tools.

In Chapter 3, we give quantum algorithms for solving linear regression (with re-
spect to squared loss) with ℓ1-norm constraint, or Lasso. Our quantum algorithms pro-
vide a quadratic quantum speedup in terms of the dimension by speeding up the cost
per iteration of the Frank-Wolfe algorithm. We use a variant of a QRAM data structure
to store the nonzero entries of our candidate solution in each iteration in such a way
that we can (1) quickly prepare this candidate as a quantum state, and (2) quickly in-
corporate the change of this candidate incurred by a Frank-Wolfe iteration. The Frank-
Wolfe algorithm ensures that the candidate is always sparse, and hence we will not
need too many QRAM bits. In fact, we can still have a quadratic quantum speedup
in terms of dimension for Lasso by paying an extra sparsity-factor cost, without using
QRAM.

In Chapter 4, we give two different quantum algorithms that, given query access
to the entries of a d ×d Hermitian matrix A and assuming a constant eigenvalue gap,
output a classical description of a good approximation of the top eigenvector: one al-
gorithm with time complexity Õ(d 1.75) and one with time complexity d 1.5+o(1). We ex-
tend this to a quantum algorithm that outputs a classical description of the subspace
spanned by the top-q eigenvectors in time qd 1.5+o(1). Our quantum algorithms run a
version of the classical power method that is robust to certain benign kinds of errors,
where we implement each matrix-vector multiplication with small and well-behaved
error on a quantum computer, in different ways for the two algorithms. We also de-
velop an almost optimal time-efficient process tomography algorithm for reflections
around bounded-rank subspaces, providing the basis for our top-eigensubspace esti-
mation algorithm, and in turn providing a pure-state tomography algorithm that only
requires a reflection about the state rather than a state preparation unitary as input.

In Chapter 5, we give two quantum algorithms for solving the shortest vector prob-
lem (SVP). SVP is one of the most fundamental lattice problems, and faster algorithms
for SVP threaten the leading candidates for post-quantum cryptography. Given a ba-
sis of a lattice with rank n, we can solve SVP in 20.9497n+o(n) time, which improves
over the best known classical algorithm by Aggarwal, Dadush, Regev, and Stephens-
Davidowitz [ADR+15]. If we are allowed to use QRAM memory, then the time com-
plexity can be further improved to 20.8345n+o(n) time. Our algorithms make exponen-
tially many calls to a bounded distance decoding oracle (BDD), and we use quantum
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minimum-finding to reduce the number of queries we make to that oracle. We also
show how to improve the time complexity of extra calls to BDD oracles by storing many
discrete Gaussian samples in QRAM memory. The running time of our quantum al-
gorithms is obtained using a known upper bound on a quantity related to a geometric
object called the lattice kissing number, which is 20.402n . For most lattices, this quantity
is likely to be subexponential, and in such a situation, our quantum algorithm without
using QRAM runs in time 20.75n+o(n) and the one using QRAM runs in time 20.667n+o(n).

In Chapter 6, we show quantum query lower bounds for linear regression with ℓ1-
and ℓ2-norm constraints (which are called Lasso and Ridge, respectively). We prove
such lower bounds by introducing a problem called the hidden set-finding problem:
in this problem, we receive an N ×d ±1-matrix X that hides a subset of the columns
by letting those columns have slightly more +1s than −1 (say, the probability of +1 is
0.5+p for some p > 0), and the rest of the columns have the same amount of +1 and
−1. We use the composition property of the quantum adversary lower bound to show
one needs ∼ √

d w/p quantum queries to entries of X to recover this hidden set with
size w . Together with a worst-case to average-case reduction, we show a Lasso/Ridge
solver can solve this hidden set problem, and hence it obtains a quantum query lower
bound for Lasso and Ridge. Interestingly, because of some ℓ2-norm properties, we can
choose a bigger subset for Ridge than the one for Lasso, implying a better quantum
lower bound for Ridge. Unfortunately, our quantum lower bound shows that there is
no quantum speedup for Ridge in terms of dimension. We further extend this result to
prove the first classical lower bound for Lasso that is tight up to polylog factors.

In Chapter 7, we give anΩ(d 2) classical lower bound and an Ω̃(d 1.5) quantum lower
bound for approximating the top eigenvector. This classical lower bound shows that
both our quantum algorithms in Chapter 4 for approximating the top eigenvector pro-
vide a polynomial speedup over the best possible classical algorithm, and our quan-
tum lower bound shows that our d 1.5+o(1)-time quantum algorithm is nearly optimal.
We show both our classical and quantum lower bounds by analyzing a hard instance
A = 1

d uuT +N , which hides a vector u ∈ {−1,1}d using a d×d matrix N with i.i.d. Gaus-

sian entries of mean 0 and standard deviation ∼ 1/
p

d . By using random matrix theory,
we know that with overwhelming probability, the top eigenvector of A is very close
to u/

p
d and hence, a (quantum) lower bound for approximating u is also a (quan-

tum) lower bound for approximating the top eigenvector. To learn one entry of u, it
requires ∼ d classical queries (or ∼p

d quantum queries). Hence it requires ∼ d 2 clas-
sical queries (or ∼ d 1.5 quantum queries) for approximating the whole u.

In Chapter 8, we will discuss a framework called quantum strong exponential-time
hypothesis, or QSETH. Inspired by Buhrman, Patro, and Speelman’s QSETH frame-
work [BPS21], we give quantum (conditional) time lower bounds for a few natural vari-
ants of CNFSAT, such as parity-CNFSAT, counting-CNFSAT, and approximate-counting-
CNFSAT. We further use those quantum time lower bounds for variants of CNFSAT to
study the quantum fine-grained complexity for (the corresponding variants of) lattice
problems, strong simulation and hitting set problem.
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CHAPTER 2

Preliminaries

2.1 Notations

Throughout the thesis, log without a base means the binary logarithm, ln = loge is the
natural logarithm, and exp( f ) = e f . We let [d ] denote the set {1, . . . ,d} and [d ]−1 denote
the set {0, . . . ,d −1}. For each integer q ≥ 2, we write Zq for the cyclic group {0, . . . , q −1}
with addition modulo q . UN = U {0, . . . , N −1} is the discrete uniform distribution over
integers 0,1,2, . . . , N −1.

It will be convenient for us to index entries of vectors starting from 0, so the en-
tries xi of a d-dimensional vector x are indexed by i ∈ {0, . . . ,d − 1} = [d ] − 1. For
1 ≤ p <∞ the ℓp -norm ∥x∥p of any vector x ∈Cd is defined by

∥x∥p :=
(d−1∑

i=0
|xi |p

)1/p
.

Additionally, the ℓ∞-norm of such a vector x is defined as ∥x∥∞ := maxi∈[d ]−1 |xi |. The
unit ℓp -ball B d

p ⊂ Rd is defined by {x ∈ Rd | ∥x∥p ≤ 1}. For r > 0, we also use B d
p (r ) :=

r ·B d
p to denote the ℓp unit ball with radius r .

For A ∈ Cd×d ′
, we define the spectral norm ∥A∥ = max

v∈Cd ′
∥Av∥
∥v∥ . For a set S, we define

the indicator function 1S as

1S(x) =
{

1 if x ∈ S,

0 otherwise.

The total variation distance between probability distributions P and Q is defined as
dT V (P,Q) = supA P (A)−Q(A), where the supremum is over events A. In particular, for
discrete distributions we have dT V (P,Q) = 1

2

∑
x |P (x)−Q(x)|. We say that two random

variables are δ-close to each other if the total variation distance between their distri-
butions is at most δ. One can also see that if dT V (P,Q) ≤ ε, then for every function f ,
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dT V ( f (P ), f (Q)) ≤ ε. For two distributions P,Q over the same space, the relative en-
tropy DK L(P ∥Q) (also called Kullback-Leibler divergence or KL-divergence) from P to
Q is defined as

DK L(P ∥Q) =
∫

p(x) · ln
p(x)

q(x)
dx = Ep

[
ln

p(x)

q(x)

]
,

where p(x), q(x) are the probability density functions (pdf) of P and Q, respectively. In
case P is not absolutely continuous with respect to Q we define DK L(P ∥Q) =∞.

For us a projector is always a matrix Π which is idempotent (Π2 = Π) and Hermi-
tian (Π† =Π). This is sometimes called an “orthogonal projector” in the literature, but
we drop the adjective “orthogonal” in order to avoid confusion with orthogonality be-
tween a pair of projectors. For a subspace S we denote the unique (orthogonal) projec-
tor to S byΠS .

We use big-Oh notation. When we say T (n) = O( f (n)), it means there exist con-
stants c, n′ ≥ 0 s.t. for all integers n ≥ n′, we have T (n) ≤ c · f (n). We similarly use
big-Omega notation for lower bounds. When we say T (n) = Ω( f (n)), it means there
exist constants c, n′ ≥ 0 s.t. T (n) ≥ c · f (n) for all n ≥ n′. We denote T (n) = Θ( f (n))
if both T (n) =O( f (n)) and T (n) =Ω( f (n)) hold. We also use Õ, Ω̃, and Θ̃ to “ignore”
polylogarithmic relevant factors. We further use the little-oh notation. When we say
T (n) = o( f (n)), it means that lim

n→∞T (n)/ f (n) = 0.

2.2 Computational model

Our computational model is a classical computer (a classical random-access machine)
that can invoke a quantum computer as a subroutine. In Chapters 3 and 4, the input is
stored in quantum-readable read-only memory (a QROM), whose bits can be queried.
The classical computer can also write bits to a quantum-readable classical-writable
classical memory (a QRAM). In Section 2.5 and Chapter 4, we also consider the special
case where the input matrix A is s-sparse, meaning that each of its rows and columns
has at most s-nonzero entries, we additionally assume we can also query the location
of the ℓth nonzero entry in the j th column. This is called “sparse-query-access to A”,
and is a common assumption for quantum algorithms working on sparse matrices (for
instance in Hamiltonian simulation). This corresponds to storing the matrix A using
an “adjacency list”, i.e., the locations and values of the nonzero entries for each row
and column in, a QROM. In Chapter 5, the input is a classical description of vectors.
The classical computer can send a description of a quantum circuit to the quantum
computer; the quantum computer runs the circuit (which may include queries to the
input bits stored in QROM and to the bits stored by the computer itself in the QRAM),
measures the full final state in the computational basis, and returns the measurement
outcome to the classical computer. In this model, an algorithm has time complexity
T if it uses at most T elementary classical operations and quantum gates, quantum
queries to the input bits stored in QROM, and quantum queries to the QRAM. The
query complexity of an algorithm only measures the number of queries to the input
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stored in QROM. We call a (quantum) algorithm bounded-error if (for every possible
input) it returns a correct output with probability at least 2/3 (standard methods allow
us to change this 2/3 to any constant in (1/2,1) by only changing the complexity by a
constant factor).

We will represent real numbers (and complexity numbers by pairs of real numbers)
in computer memory using a number of bits of precision that is polylogarithmic in the
relevant parameters (i.e., Õ(1) bits). This ensures all numbers are represented through-
out our algorithms with negligible approximation error and we will ignore those errors
later on for ease of presentation. For all Boolean functions f : {0,1}N → {0,1} stored
in a quantum oracle O f : |r, a〉 → |r, a ⊕ f (r )〉 for all r ∈ {0,1}N , we define the quantum
query complexity Qδ( f ) as the minimum number of queries (to O f ) required to deter-
mine f (x) with failure error probability no more than δ.

2.3 Useful quantum algorithmic techniques

Below we state some important quantum algorithms that we will use as subroutines,
starting with (an exact version of) Grover search and amplitude estimation.

Theorem 2.1 ([Gro96; BHT98]). Let f : [d ]−1 → {0,1} be a function that marks a set of
elements F = { j ∈ [d ]−1 : f ( j ) = 1} of known size |F |. Suppose that we have a quantum
oracle O f such that O f : | j 〉 |b〉 → | j 〉 |b ⊕ f ( j )〉. Then there exists a quantum algorithm

that finds an index j ∈ F with probability 1, using
⌈
π
4

√
d
|F |

⌉
queries to O f .

Note that we can use the above “exact Grover” repeatedly to find all elements of F
with probability 1, removing in each search the elements of F already found in earlier
searches. This even works if we only know an upper bound on |F |.

Corollary 2.2 ([BCW+99]). Let f : [d ]− 1 → {0,1} be a function that marks a set of el-
ements F = { j ∈ [d ]− 1 : f ( j ) = 1}. Suppose we know an upper bound u on the size of
F and we have a quantum oracle O f such that O f : | j 〉 |b〉 → | j 〉 |b ⊕ f ( j )〉. Then there

exists a quantum algorithm that finds F with probability 1, using π
2

p
du +u queries to

O f .

Proof. Use the following algorithm:

1. Set S =;

2. For k = u downto 1 do:
use Theorem 2.1 on a modification g of f , where g ( j ) = 0 for all j ∈ S, assuming

|F | = k;
check that the returned value j satisfies f ( j ) = 1 by one more query; if so, add j

to S.
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Since we don’t know |F | exactly at the start, we are not guaranteed that each run of
Grover finds another solution. However, k will always be an upper bound on the num-
ber of not-yet-found elements of F : either we found a new solution j and we can re-
duce k by 1 for that reason, or we did not find a new solution and then we know (by the
correctness of the algorithm of Theorem 2.1) that the actual number of not-yet-found
solutions was < k and we are justified in reducing k by 1. Hence at the end of the al-
gorithm all elements of F were found (S = F ) with probability 1. The total number of

queries is
u∑

k=1
(
π

4

p
d/k +1) ≤ π

4

p
d

∫ u

0

1p
x

d x +u = π

2

p
du +u.

Theorem 2.3 (follows from Section 4 of [BHM+02], amplitude estimation). Let δ ∈
(0,1). Given a natural number M and access to an (n +1)-qubit unitary U satisfying

U |0n〉 |0〉 =p
a |φ0〉 |0〉+

p
1−a |φ1〉 |1〉 ,

where |φ0〉 and |φ1〉 are arbitrary n-qubit states and a ∈ [0,1], there exists a quantum al-
gorithm that uses O(M log(1/δ)) applications of U and U † and Õ(M log(1/δ)) elemen-
tary gates, and outputs an estimator λ such that, with probability ≥ 1−δ,

|pa −λ| ≤ 1

M
.

Theorem 2.5 below is a modified version of quantum minimum-finding, which in
its basic form is due to Høyer and Dürr [DH96]. Our proof of Theorem 2.5 relies on the
following result.

Theorem 2.4 ([AGG+20], Theorem 49). Let m ∈ R and δ1 ∈ (0,1). Suppose we have a
unitary U that maps |0〉 → ∑

ℓ∈[M ]−1

p
pℓ |ψℓ〉 |xℓ〉, where the |ψℓ〉 are normalized states

and the xℓ are real numbers satisfying x0 < x1 < ·· · < xM−1, and define X a random vari-
able with Pr[X = xℓ] = pℓ. Let K be a natural number ≥ 1000p

Pr[X≤m]
· log(1/δ1). Then there

exists a quantum algorithm that outputs a state |ψi 〉 |xi 〉 where xi ≤ m with probability
≥ 1−δ1, using K applications of U and U †, and Õ(K ) elementary gates.

Theorem 2.5 (min-finding with an approximate unitary). Letδ1,δ2,ε ∈ (0,1), v0, . . . , vd−1 ∈
R. Suppose we have a unitary Ã that maps | j 〉 |0〉→ | j 〉 |Λ j 〉 such that for every j ∈ [d ]−1,
after measuring the state |Λ j 〉, with probability≥ 1−δ2 the first registerλ of the measure-
ment outcome satisfies |λ− v j | ≤ ε. There exists a quantum algorithm that finds an in-

dex j such that v j ≤ mink∈[d ]−1 vk+2εwith probability ≥ 1−δ1−1000log(1/δ1)·
√

2dδ2,

using 1000
p

d ·log(1/δ1) applications of Ã and Ã†, and Õ(
p

d) elementary gates. In par-
ticular, if δ2 ≤ δ2

1/(2000000d log(1/δ1)), then the above algorithm finds such a j with
probability ≥ 1−2δ1.

Proof. Without loss of generality, we assume logd is a natural number. Let v∗ = mink∈[d ]−1 vk .

For every j ∈ [d ]−1, we let |Λ j 〉 =
√

pε
j |Λεj 〉+

√
1−pε

j |Λε
⊥

j 〉, where |Λεj 〉 is the superpo-

sition over numbers that are ε-approximations of v j , |Λε⊥j 〉 is the superposition over
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numbers that are not ε-approximations of v j , and pε
j ≥ 1−δ2 for every j ∈ [d ]−1. Sup-

pose we have a unitary A that maps | j 〉 |0〉 → | j 〉 |Λεj 〉 and let U = A(H⊗ logd ⊗ I ). Then
one can see that if we apply the algorithm of Theorem 2.4 with the unitary U , then after
using K = 1000

p
d · log(1/δ1) ≥ 1000/

p
Pr[X ≤ v∗+ε] · log(1/δ1) applications of A and

A†, and Õ(
p

d) elementary gates, with probability≥ 1−δ1, the first outcome λ of the
second register satisfies λ≤ v∗+ε. Note that if λ≤ v∗+ε, then the corresponding state
|Φ〉 satisfies that after measuring in the computational basis, the outcome j satisfies
v j ≤ v∗+2ε. Therefore one can find a j such that v j ≤ v∗+2ε.

By the deferred measurement principle, one can consider the algorithm above as
applying the unitary A = U0E0U1E2 · · ·UK−1EK−1 to the state |0〉 |0〉 and measuring in
the computational basis to get an outcome, where Ui ∈ {U ,U †} and Ei is a circuit of
elementary gates. Let us consider Ũ = Ã(H⊗ logd ⊗ I ), and let

|ψ̃〉 = Ũ |0〉 |0〉 = 1p
d

∑
j∈[d ]−1

| j 〉 |Λ j 〉 and |ψ〉 = 1p
d

∑
j∈[d ]−1

| j 〉 |Λεj 〉 =α |ψ̃〉+β |ψ̃⊥〉 .

Where α≥
√

1−δ2 because pε
j ≥ 1−δ2 for every j , and β=

p
1−α2.

Claim 2.1. There exists a unitary U such that U |0〉 |0〉 = |ψ〉 and ∥U −Ũ∥ ≤
√

2δ2.

Proof: Define a unitary V such that

• V |ψ̃〉 = |ψ〉.
• V |ψ̃⊥〉 =−β |ψ̃〉+α |ψ̃⊥〉.
• For every |φ〉 orthogonal to span{|ψ〉 , |ψ̃〉}, V |φ〉 = |φ〉.

Let U = V Ũ . One can see that U |0〉 |0〉 = V Ũ |0〉 |0〉 = V |ψ̃〉 = |ψ〉. Also, if we consider

orthonormal basis {|ψ̃〉 , |ψ̃⊥〉 , |φ2〉 , |φ3〉 , . . . , |φd−1〉}, then V will be

(
α −β
β α

)
⊕ Id−2, and

hence

∥U −Ũ∥ = ∥I −V ∥ = ∥
(
1−α β

−β 1−α
)
∥

= max
a,b∈C,

s.t. |a|2+|b|2=1

√
|a(1−α)+bβ|2 +|b(1−α)−aβ|2

=
√
|1−α|2 +|β|2 ≤

√
2δ2.

This proves the claim. ■
Now let us consider the unitary Ã = Ũ0E0Ũ1E2 · · ·ŨK−1EK−1 applying to the state

|0〉 |0〉 and measuring in the computational basis to get an outcome, where Ũi ∈ {Ũ ,Ũ †}.
Because ∥Ã−A∥ ≤ K ·∥U−Ũ∥ ≤ 1000log(1/δ1)

√
2dδ2, with probability≥ 1−δ1−1000log(1/δ1)

√
2dδ2,

the first outcome λ of the second register of Ã |0〉 |0〉 also satisfies λ≤ v∗+ε, and hence
we also find a j such that v j ≤ v∗+2ε by the same arguments as above.
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Theorem 2.6 ([GSL+19; YLC14], fixed-point amplitude amplification). Let a,δ > 0, U
be a unitary that maps |0〉 → |ψ〉 and RA,R|0〉 be quantum circuits that reflect through
subspaces A and (the span of) |0〉 respectively. Suppose ∥ΠA |ψ〉∥ ≥ a. There is a quan-
tum algorithm that prepares |ψ′〉 satisfying ∥|ψ′〉− ΠA|ψ〉

∥ΠA|ψ〉∥∥ ≤ δ using a total number

of O(log(1/δ)/a) applications of U ,U−1, controlled RA,R|0〉 and additional single-qubit
gates.

We also use the following theorem to help us find all marked items in a d-element
search space with high probability. The theorem was implicit in [Gro96; BBH+98]. For
more details and for a better d ,δ-dependency, see [AGN24, Section 3]. Note that Corol-
lary 2.2 is mainly about query complexity, while the theorem below is about time com-
plexity.

Theorem 2.7. Let f : [d ]−1 → {0,1} be a function that marks a set of elements F = { j ∈
[d ]− 1 : f ( j ) = 1}, and δ ∈ (0,1). Suppose we know an upper bound u on the size of
F and we have a quantum oracle O f such that O f : | j 〉 |b〉 → | j 〉 |b ⊕ f ( j )〉. Then there

exists a quantum algorithm that finds F with probability at least 1−δ, using O(
p

du ·
poly log(d/δ)) time.

2.4 KP-tree: a data structure for efficient state prepara-
tion

Kerenidis and Prakash [Pra14; KP17] gave a quantum-accessible classical data struc-
ture to store a vector θ with support t (i.e., t nonzero entries) to enable efficient quan-
tum state preparation. In this section, we modify their data structure such that for
arbitrary a,b ∈ R and j ∈ [d ]−1, we can efficiently update a data structure for the vec-
tor θ to a data structure for the vector aθ+be j , without having to individually update
all nonzero entries of the vector. We call this data structure a “KP-tree” (or K Pθ if we’re
storing vector θ) in order to credit Kerenidis and Prakash. We will include two types of
KP-trees here with respect to different kinds of norms.

2.4.1 KP-tree with respect to ℓ1-norm

First we explain how to modify the data structure by Kerenidis and Prakash to effi-
ciently prepare the following state:

|θ〉 = ∑
j∈[d ]−1

√
|θ j |
∥θ∥1

| j 〉 |phase(θ j )〉 .

Note that here the amplitude in front of | j 〉 is

√
|θ j |
∥θ∥1

in stead of
|θ j |
∥θ∥2

. This modification

allows us to prepare a quantum state θ with respect to its ℓ1-norm. We also store the
phase of θ j in the second register. If θ ∈Rd , then phase(θ j ) = sign(θ j ).
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Definition 2.8 (KP-tree w.r.t. ℓ1-norm). Let θ ∈Cd have support t . We define a KP-tree
K Pθ of θ w.r.t. ℓ1-norm as follows:

• K Pθ is a rooted binary tree with depth ⌈logd⌉ and with O(t logd) vertices.

• The root stores a scalar A ∈R\ {0} and the support t of θ.

• Each edge of the tree is labelled by a bit.

• For each j ∈ supp(θ), there is one corresponding leaf storing
θ j

A . The number of
leaves is t .

• The bits on the edges of the path from the root to the leaf corresponding to the
j th entry of θ, form the binary description of j .

• Each intermediate node stores the sum of its children’s absolute values.

For ℓ ∈ [⌈logd⌉]−1 and j ∈ [2ℓ]−1, we define K Pθ(ℓ, j ) as the value of the j th node in
the ℓth layer, i.e., the value stored in the node that we can reach by the path according
to the binary representation of j from the root. Also, we let K Pθ(0,0) be the sum of all
absolute values stored in the leaves. If there is no corresponding j th node in the ℓth

layer (that is, we cannot reach a node by the path according to the binary representa-
tion of j from the root), then K Pθ(ℓ, j ) is defined as 0. Note that both the numbering
of the layer and the numbering of nodes start from 0. In the special case where θ is the
all-0 vector, the corresponding tree will just have a root node with t = 0.

20,3

5

5

-32

1

1

1

10,3

10

10

-64

2

2

2

Figure 2.1: Each of the above two binary trees
represents the vector θ = 20e2 +
40e6 − 60e7. If we see the sec-
ond layer of KPθ on the right-hand
side, K Pθ(2,0) = 0, K Pθ(2,1) = 2,
K Pθ(2,2) = 0, and K Pθ(2,3) = 10.

10,3

5

5

-32

2

2

2

8,4

5

5

-32

4

4

22

Figure 2.2: The update rule: we update the
vector θ = 20e2 +20e6 −30e7 to the
new vector 4

5θ+ 16e4 by updating
the scalar in the root to 4

5 · 10 =
8, adding a new leaf with value
16/8 = 2, recomputing the values
of the intermediate nodes between
the root and the leaf, and updating
the support number to 4.

Theorem 2.9. For each j ∈ [d ] − 1, one can read the number θ j by reading at most
poly logd nodes of K Pθ and by using poly logd many (classical) elementary operations.
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Proof. Read the scalar A stored in the root. Choose the path according to the binary
representation of j . If the chosen path reaches a leaf, then read the value v at that leaf
and output v A. If it does not reach a leaf, output 0. The total cost is at most polylogd
because the depth of K Pθ is ⌈logd⌉.

From the fourth bullet of Definition 2.8, if j ∈ supp(θ), then the corresponding leaf
j stores θ j /A and hence the output is (θ j /A) · A = θ j . On the other hand, if j ∉ supp(θ),
then we do not reach a leaf and know θ j = 0.

Theorem 2.10. Given a KP-tree K Pθ, j ∈ [d ]−1, and numbers a ∈ R \ {0} and b ∈ R, we
can update K Pθ to K Paθ+be j by using poly logd elementary operations and by modifying
poly logd many values stored in the nodes of K Pθ.

Proof. Read the scalar A and support t stored in the root.
If there does not exist a leaf for the entry j , then add a new leaf for the entry j and

a path according to its binary representation. Now update the stored value in the leaf
j to b/(a A). After that, update the stored values for all nodes on the path from the root
to the leaf for the entry j . Update the scalar in the root to a A, and if b ̸= 0, update the
support value in the root to t +1.

If, instead, there already existed a leaf for the entry j , then read the value v stored
in the leaf j , update the value stored in the leaf j to v ′ = v +b/(a A), and then update
the stored values for all nodes on the path from the root to the leaf j for the entry j , and
update the scalar to a A. After that, check the value v ′ stored in the leaf for the entry
j ; if v ′ = 0, then remove all nodes storing the value 0 from the leaf j to the root, and
update the support value at the root to t −1.

Theorem 2.11. Suppose we have a KP-tree K Pθ of vector θ, and suppose we can make
quantum queries to a unitary OK Pθ that maps |ℓ,k〉 |0〉 → |ℓ,k〉 |K Pθ(ℓ,k)〉. Then one

can prepare the state |θ〉 = ∑
j∈[d ]−1

√
|θ j |
∥θ∥1

| j 〉 |phase(θ j )〉 up to negligible error1 by using

poly logd queries to OK Pθ and O†
K Pθ

, and Õ(1) elementary gates.

Proof. For simplicity and without loss of generality, we assume logd is a natural num-
ber. Define the two-controlled rotation unitary as for each a,b ∈C

U2C R : |a〉 |b〉 |0〉→


|a〉 |b〉 (

1p
2
|0〉+ 1p

2
|1〉), if a = b = 0,

|a〉 |b〉 (

√
|a|

|a|+ |b| |0〉+
√

|b|
|a|+ |b| |1〉), otherwise,

which can be implemented up to negligibly small error by Õ(1) elementary gates. Also,
define the children-reading gate as UC : |ℓ〉 |k〉 |0〉⊗2 → |ℓ〉 |k〉 |lℓ,k〉 |rℓ,k〉, where the left
child lℓ,k = K Pθ(ℓ+1,2k) and the right child rℓ,k = K Pθ(ℓ+1,2k+1); this can be imple-
mented by using two queries to OK Pθ and Õ(1) elementary gates. Last, define the phase

1By this we mean an error smaller than the inverse of an arbitrary polynomial in the input length.
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gate Up : | j 〉 |0〉 → | j 〉 |phase(θ j )〉, which can be implemented by using two queries to

OK Pθ , O†
K Pθ

, and Õ(1) elementary gates.

To prepare |θ〉, we first prepare the state |K P 0
θ
〉 = |0〉, and for the purpose of induc-

tion, suppose we can prepare the state

|K Pℓ
θ 〉 =

1√
K Pθ(0,0)

2ℓ−1∑
k=0

√
|K Pθ(ℓ,k)| |k〉 ,

where K Pθ(0,0) is the sum of all absolute values stored in the leaves and hence K Pθ(0,0) =
2ℓ−1∑
k=0

|K Pθ(ℓ,k)|. We prepare the state |ℓ〉 |K Pℓ
θ
〉 |0〉⊗2 |0〉, apply UC on the first four regis-

ters, and apply U2C R on the last three registers to get

|ℓ〉 1√
K Pθ(0,0)

2ℓ−1∑
k=0

√
|K Pθ(ℓ,k)| |k〉 |lℓ,k〉 |rℓ,k〉

( √|lℓ,k |√|lℓ,k |+ |rℓ,k |
|0〉+

√|rℓ,k |√|rℓ,k |+ |rℓ,k |
|1〉)

=|ℓ〉 1√
K Pθ(0,0)

2ℓ−1∑
k=0

|k〉 |lℓ,k〉 |rℓ,k〉
(√|lℓ,k | |0〉+

√|rℓ,k | |1〉
)
,

where the equation holds because |K Pθ(ℓ,k)| = |K Pθ(ℓ+1,2k)|+ |K Pθ(ℓ+1,2k +1)| =
|lℓ,k |+ |rℓ,k |, from the sixth bullet of Definition 2.8. Uncomputing the third and fourth
registers, and discarding the first, third, and fourth registers, we get

1√
K Pθ(0,0)

2ℓ−1∑
k=0

|k〉(√|lℓ,k | |0〉+
√|rℓ,k | |1〉

)
= 1√

K Pθ(0,0)

2ℓ−1∑
k=0

(√|lℓ,k | |k〉 |0〉+
√|rℓ,k | |k〉 |1〉

)
= 1√

K Pθ(0,0)

2ℓ+1−1∑
k=0

√
|K Pθ(ℓ+1,k)| |k〉 = |K Pℓ+1

θ 〉 .

Therefore, iterating the above process for logd times, we can prepare the state

|K P logd
θ

〉 = 1√
K Pθ(0,0)

d−1∑
k=0

√
|K Pθ(logd ,k)| |k〉 = ∑

j∈[d ]−1

√
|θ j |
∥θ∥1

| j 〉 ,

where the last equation follows from the fourth and sixth bullets of Definition 2.8. To

obtain |θ〉, we prepare
∑

j∈[d ]−1

√
|θ j |
∥θ∥1

| j 〉 |0〉 and apply Up .

There are logd layers, and each layer only usesO(1) queries to OK Pθ , O†
K Pθ

and Õ(1)

elementary gates. Hence O(logd) queries to OK Pθ , O†
K Pθ

, and Õ(1) other gates suffice
to prepare |θ〉.
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To implement OK Pθ and O†
K Pθ

in the above theorem, we use QRAM to store K Pθ,
then we can make quantum queries to the bits of the data structure directly. Or, if we
want to avoid QRAM altogether, then we can use the following theorem with Õ(s) extra
cost in circuit size for each query, where s is the sparsity of the bitstring that represents
K Pθ. From Definition 2.8 we can see that the number of bits is s = Õ(t logd), where t
is the sparsity of θ.

Theorem 2.12. Suppose p, s ∈ N and D ∈ {0,1}p is a bit string with sparsity s (i.e., the
number of 1s in D is ≤ s), then for each b ∈ {0,1} and k ∈ [p]−1, we can implement the
unitary UD : |k,b〉→ |k,b ⊕Dk〉 using O(s log p) elementary gates.

Proof. For every i ∈ [p]−1, we define the controlled bit-reading unitary Ui as for each
b ∈ {0,1} and k ∈ {0,1}p

Ui : |k〉 |b〉→
{
|k〉 |b ⊕1〉 , if k = i ,

|k〉 |b〉 , otherwise,

which can be implemented using O(log p) elementary gates. Observing that UD =
Πi :Di=1Ui , we can therefore implement UD using O(s · log p) elementary gates.

2.4.2 KP-tree with respect to ℓ2-norm

Here we will introduce another variant of KP-tree which can help us efficiently pre-
pare |θ〉 with respect to ℓ2-norm. Precisely, we would like to have a data structure to
efficiently prepare the following state:

|θ〉 = ∑
j∈[d ]−1

phase(θ j ) · |θ j |
∥θ∥2

| j 〉 = ∑
j∈[d ]−1

θ j

∥θ∥2
| j 〉 .

This can be done by using a data structure similar to the KP-tree with respect to ℓ1-
norm (Definition 2.8), as follows.

Definition 2.13 (KP-tree w.r.t. ℓ2-norm). Let v ∈Cd . We define a KP-tree K Pv of v with
respect to ℓ2-norm as follows:

• The root stores the scalar ∥v∥ and the size of the support t = |supp(v)| of v .

• K Pv is a binary tree on O(t logd) vertices with depth ⌈logd⌉.

• The number of leaves is t ; for each j ∈ supp(v) there is one corresponding leaf
storing v j .

• Each edge of the tree is labeled by a bit; the bits on the edges of the path from the
root to the leaf corresponding to the j th entry of v form the binary description of
j .

• Intermediate nodes store the square root of the sum of their children’s squared
absolute values.
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Suppose we have a classical vector θ ∈ Cd , we can use Õ (d) time and QRAM bits
to build a KP-tree (w.r.t. ℓ2-norm) for θ. Given a KP-tree KPθ, we are allowed to query

entries of θ and prepare the quantum state
∑

j∈[d ]−1

θ j

∥θ∥2
| j 〉 efficiently by using a proof

similar to Theorem 2.11.

Theorem 2.14. Suppose we have a KP-tree K Pθ of vector θ, and suppose we can apply
a unitary OK Pθ that maps |ℓ,k〉 |0〉→ |ℓ,k〉 |K Pθ(ℓ,k)〉. Then one can implement a uni-

tary Uθ that maps |0〉 to | θ
∥θ∥2

〉 = ∑
j∈[d ]−1

θ j

∥θ∥2
| j 〉 up to negligible error by using poly logd

applications of OK Pθ and O†
K Pθ

, and Õ(1) elementary gates.

Note that if ∥θ∥2 < 1, then we can also prepare a quantum state |θ〉 = |0〉 ∑
j∈[d ]−1

θ j | j 〉+
|1〉 |Φ〉 for some |Φ〉 using just polylogd time and queries to KPθ.

2.5 Block-encoding and Hamiltonian simulation

Block-encoding embeds a scaled version of a (possibly non-unitary) matrix A in the
upper-left corner of a bigger unitary matrix U .

Definition 2.15. Suppose that A is a 2w -dimensional matrix, α,ε > 0, and a ∈ N. We
call an (a +w)-qubit unitary U an (α, a,ε)-block-encoding of A if

∥A−α〈0a |⊗ I2w )U (|0a〉⊗ I2w )∥ ≤ ε.

Theorem 2.16 ([LC19]). Suppose that U is an (α, a,ε/|2t |)-block-encoding of the Hamil-
tonian H. Then we can implement an ε-precise Hamiltonian-simulation unitary V
which is a (1, a+2,ε)-block-encoding of e i t H , withO(|αt |+log(1/ε)) uses of controlled-U
and its inverse, and with O(a|αt |+a log(1/ε)) additional elementary gates.

Theorem 2.17 ([Low19, Theorem 2]). Let A be a d ×d Hermitian matrix with opera-
tor norm ≤ 1, and t > 0. Suppose A has sparsity s and we have sparse-query-access to A.
Then we can implement a unitary U such that ∥U−exp(i At )∥ ≤ εusing Õ

(
t
p

s(t
p

s/ε)o(1)
)

time and queries.

If we do not have a sparse oracle or if A is dense, then the time complexity of the
above theorem simply becomes Õ((

p
d t )1+o(1)/εo(1)) by setting s = d .

Theorem 2.18 ([GSL+19, Corollary 71]). Let ε ∈ (0,1/2), A be a d ×d Hermitian ma-
trix with operator norm ≤ 1/2, and U = exp(i A). Then we can implement a (2/π,2,ε)-
block-encoding of A, using O(log(1/ε)) applications of controlled-U , controlled-U in-
verse, O(log(1/ε)) time, and one auxiliary qubit.

Combining the above two theorems, we have the following theorem.
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Theorem 2.19. Let A be a d ×d Hermitian matrix with operator norm ≤ 1. Suppose A
has sparsity s and we have sparse-query-access to A. Then we can implement a unitary
U which is a (4/π,2,ε)-block-encoding of A with Õ

(p
s(s/ε)o(1)

)
time and queries.

Theorem 2.20 ([ACG+23], Lemma 6). Let U = ∑
x Ux ⊗ |x〉〈x| and V = ∑

x Vx ⊗ |x〉〈x|
be controlled (by the second register) state-preparation unitaries, where Ux : |0〉 |0⊗a〉 →
|0〉 |ψx〉+|1〉 |ψ̃x〉 and Vx : |0〉 |0⊗a〉→ |0〉 |φx〉+|1〉 |φ̃x〉 are (a+1)-qubit state-preparation
unitaries for some (sub-normalized) a-qubit quantum states |ψx〉 , |φx〉. Then (I⊗V †)(SWAP⊗
I2a+1 )(I⊗U ) is a (1, a+2,0)-block-encoding of the diagonal matrix diag({〈ψx |φx〉}), where
the SWAP gate acts on the first and second qubits.

2.6 Singular-value and singular-vector-perturbation bounds

We invoke some tight bounds on the perturbation of singular values and singular vec-
tors of a matrix. In the following we order the singular values ς1(A),ς2(A), . . . ,ςn(A) of
a matrix A in decreasing order, such that i < j ⇒ ςi (A) ≥ ς j (A).

Theorem 2.21 (Weyl’s singular value perturbation bound [Bha97, Corollary III.2.6, Prob-
lem III.6.13]). Let A,B ∈Cn×m be any matrices, then for all i ∈ [n] we have

|ςi (A)−ςi (B)| ≤ ∥A−B∥.

In order to state the following perturbation bound we defineΠX
S to be the projector

onto the subspace spanned by the left-singular vectors of X having singular values in
S.

Theorem 2.22 (Wedin-Davis-Kahan sin(θ) theorem [Wed72]). Let A,B ∈ Cn×m be any
matrices, and α,δ≥ 0, then2

∥(I −ΠA
>α)ΠB

≥α+δ∥ ≤
∥A−B∥

δ
.

Lemma 2.23 (Operator norm equivalence to sin(θ) between subspaces [Bha97, after
Exercise VII.1.11]). Let P,Q ∈Cn×n be projectors with equal rank, then ∥P −Q∥ = ∥P (I −
Q)∥ = ∥(I −P )Q∥.

2This bound is tight for any rank-r projectors A,B , when α= 0 and δ= 1 due to Lemma 2.23. Wedin’s
paper proves the statement for singular-vector subspaces that we use here, and the analogous statement
for normal matrices is proven in Bhatia’s book [Bha97, Theorem VII.3.1], which actually also implies
Theorem 2.22 with a bit of work.
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2.7 Probability distributions and concentration inequal-
ities

2.7.1 Gaussian, Sub-Gaussian, and discrete Gaussian distributions

A random variable X overRhas Gaussian distribution with meanµ= E[X ] and variance
σ2 =Var(X ), denoted X ∼ N (µ,σ2), if its probability density function is

p(x) = 1p
2πσ2

exp
(
− (x −µ)2

2σ2

)
, for x ∈R.

A well-known property of a Gaussian is that its tail decays rapidly, which can be quan-
tified as:

• If X ∼ N (µ,σ2), then for any t > 0, it holds that

Pr[X −µ> t ] ≤ 1p
2πt

exp(−t 2/(2σ2)).

A random variable X over R is called τ-sub-Gaussian with parameter α > 0, denoted
in short by X ∼ τ-subG(α2), if its moment-generating function satisfies E[exp(t X )] ≤
exp(τ)exp(α2t 2/2) for all t ∈R. We list and prove a few useful properties of sub-Gaussian
distributions below.

• The tails of X ∼ τ-subG(α2) are dominated by a Gaussian with parameter α, i.e.,

Pr[|X | > t ] ≤ 2exp(τ)exp(−t 2/(2α2)) ∀t > 0. (2.1)

• If Xi ∼ τ-subG(α2
i ) are independent, then for any a = (a1, . . . , ad )T ∈Rd , the weighted

sum
∑

i∈[d ]
ai Xi is (

∑
i∈[d ]τi )-sub-Gaussian with parameter α̃=

√
d∑

i=1
a2

i α
2
i .

To prove (2.1), we first use Markov’s inequality to obtain that for all s > 0

Pr[X ≥ t ] = Pr[exp(sX ) ≥ exp(st )] ≤ E[exp(sX )]/exp(st ) ≤ exp(τ)exp(α2s2/2− st ).

Since the above inequality holds for every s > 0, we have Pr[X ≥ t ] ≤ exp(−t 2/(2α2))
because min

s>0
(α2s2/2− st ) = −t 2/(2α2). The same argument applied to −X gives the

bound on Pr[X ≤−t ].
The second property can be easily derived using the independence of the Xi ’s:

E[exp(t
d∑

i=1
ai Xi )] =

d∏
i=1
E[exp(t ai Xi )] ≤

d∏
i=1

exp(τi )exp(α2
i a2

i t 2/2) = exp(
d∑

i=1
τi )exp(

d∑
i=1

α2
i a2

i t 2/2).

Next, we explain what a discrete Gaussian is. For any s > 0, we define the function
ρs : R→ R as ρs(x) = exp(−πx2/s2). When s = 1, we simply write ρ(x). For a countable
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set S we define ρs(S) = ∑
a∈S

ρs(a); if ρs(S) <∞, we define DS,s = 1
ρs (S)ρs to be the discrete

probability distribution over S such that the probability of drawing x ∈ S is propor-
tional to ρs(x). We call this the discrete Gaussian distribution over S with parameter
s. The following theorem states that such distributions over Z are sub-Gaussian with
parameter s:

Theorem 2.24 ([MP12, Lemma 2.8]). For anyλ,ν> 0 and τ ∈ (0,0.1], if s ≥λ√
log(12/τ)/π,3

then DλZ+ν,s is τ-sub-Gaussian with parameter s. Moreover, for every s > 0, DλZ,s is 0-
sub-Gaussian with parameter s.

We also consider truncations of the above infinite discrete Gaussian distributions,
and defineD[−L,R]

Z,s asDZ∩[−L,R],s . For every δ ∈ (0,1], if L,R ≥ s
p

2ln(1/δ), then by Corol-

lary 2.35 we have dT V (DZ,s ,D[−L,R]
Z,s ) ≤ 2δ, because the tail of DZ,s can be bounded by

2δ using (2.1) due to Theorem 2.24. We also define Dmod N
Z,s as a modular version of the

discrete Gaussian distribution DZ,s , which has probability Dmod N
Z,s (k) =DZ,s(N ·Z+k)

for every k ∈ {−⌊N /2⌋, . . . ,⌈N /2⌉−1}, and probability 0 for all other k ∈Z. Again, by us-
ing Theorem 2.24 and (2.1), we have that for every δ ∈ (0,1/2), if N ≥ 2s

p
2ln(1/δ),

then dT V (DZ,s ,Dmod N
Z,s ) ≤ 2δ. Combining these we get dT V (Dmod N

Z,s ,D[−L,R]
Z,s ) ≤ 4δ if

N ,L,R ≥ 2s
p

2ln(1/δ). Finally, these arguments can also be applied toDZ+c,s with large
enough s.

Corollary 2.25. Let δ ∈ (0,1]. For any c > 0 and τ ∈ (0,0.1], if s ≥ √
log(12/τ)/π and

N ,L,R ≥ 10s
p

2ln(2/δ), then DZ+c,s , D[−L,R]
Z+c,s , and Dmod N

Z+c,s are 4δexp(τ)-close to each
other in total variation distance.

2.7.2 Concentration inequalities

Repeated sampling is very important for our quantum tomography algorithms, and
here we describe some of the tail bounds we need.

Proposition 2.26 (Bennett-Bernstein Bound [BLM13, Theorem 2.9 & Eqn. 2.10]). Let
X (i ) : i ∈ [n] be independent random variables with finite variance such that, for each i ,
X (i ) ≤ b for some b > 0 almost surely (i.e., this event has probability measure 1). Let

S =
n∑

i=1
X (i ) −E[X (i )], v =

n∑
i=1
E[(X (i ))2],

then for any t > 0,

Pr[S ≥ t ] ≤ exp

(
− v

b2
h

(
bt

v

))
≤ exp

(
− t 2

2v + 2
3 bt

)
,

3Here the lattice we consider is the one-dimensional lattice λZ, so the length of the shortest nonzero
vector λ1(λZ) is just λ. Also, by using the equation between the smoothing parameter and the length
of the shortest vector ([MR07, Lemma 3.3], or see Lemma 2.49 in this thesis), we have ητ(λZ) ≤√

log(2+2/τ)/π ·λ1(λZ) ≤ λ
√

log(3/τ)/π. Therefore, if s ≥ λ
√

log(3/τ)/π, then s ≥ ητ(λZ) and hence
DλZ+ν,s is log((1+τ)/(1−τ))-sub-Gaussian. By the fact log((1+τ)/(1−τ)) ≤ 4τ and changing τ→ τ/4, we
get the theorem as stated here.
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where h(x) = (1+x) ln(1+x)−x.

Proposition 2.27 (Chernoff-Hoeffding Bound [Che52], [Hoe63, Theorem 1], [BLM13,
Section 2.6]). Let 0 ≤X ≤ 1 be a bounded random variable and p := E[X ]. Suppose we

take n i.i.d. samples X (i ) of X and denote the normalized outcome by s = X (1)+X (2)+···+X (n)

n .
Then we have for all ε> 0

Pr[s ≥ p +ε] ≤ e−DK L(p+ε∥p)n ≤ exp

(
− ε2

2(p +ε)
n

)
, (2.2)

Pr[s ≤ p −ε] ≤ e−DK L(p−ε∥p)n ≤ exp

(
− ε2

2p
n

)
, (2.3)

where DK L(x ∥ p) = x ln x
p + (1− x) ln

(
1−x
1−p

)
is the Kullback–Leibler divergence between

Bernoulli random variables with mean x and p respectively.

Proof. The first inequality is [Hoe63, Theorem 1], while (2.3) follows from (2.2) by con-
sidering 1− X (i ). The rightmost inequalities come from the observation that ∀x, y ≥
0: D(x ∥ y) ≥ (x−y)2

2max{x,y} .

Corollary 2.28 (Okamoto-Hoeffding Bound). Let X , s be as in Proposition 2.27, then we
have

Pr[
p

s ≥p
p +ε)] ≤ exp

(−2ε2n
)

,

Pr[
p

s ≤p
p −ε] ≤ exp

(−ε2n
)

.

Proof. This directly follows from (2.2)-(2.3) using the observation [Oka59] that

DK L(x ∥ p) ≥ 2
(p

x −p
p

)2 ∀ 0 ≤ p ≤ x ≤ 1,

DK L(x ∥ p) ≥ (p
p −p

x
)2 ∀ 0 ≤ x ≤ p ≤ 1.

2.7.3 Matrix concentration inequalities

We state some random matrix concentration results for tall matrices (i.e., matrices hav-
ing more rows than columns), but in our case we mostly apply them to flat matrices
(having more columns than rows), thus we effectively apply the statements to G†. We
will use the following non-asymptotic bounds.

Theorem 2.29 (Well-conditioned tall Gaussian matrices [Ver12, Theorem 5.39 & Foot-
note 25]). There exist absolute constants4 c,C ≥ 1 such that the following holds for all

4In the real case [DS01, Theorem II.13] gives c,C = 1. While [Ver12, Footnote 25] asserts that the
statement can be adapted to the complex case, there are no specifics provided, and the proof of [Ver12,
Corollary 5.35] is borrowed from [DS01, Theorem II.13], where the adaptation of the statement to the
complex case is presented as an open question. It is tempting to try and adapt the proof of the real case
using the observation that ςmin(G) = min∥u∥=1 max∥v∥=1ℜ〈u∗,Gv〉 together with the Slepian-Gordon
lemma [Gor85, Theorem 1.4], however this approach seems to irrecoverably fail due to a banal issue:
while ∥|u〉|v〉− |u′〉|v ′〉∥2 ≤ ∥u −u′∥2 +∥v −v ′∥2 holds for real unit vectors, for complex unit vectors only
the weaker ∥|u〉|v〉 − |u′〉|v ′〉∥2 ≤ 2∥u − u′∥2 + 2∥v − v ′∥2 holds in general. Indeed, for any α ∈ (0,2π)
consider the complex numbers u = 1, v = i exp(iα),u′ = exp(−iα), v ′ = i , then we have |uv −u′v ′|2/(|u−
u′|2 +|v − v ′|2) = 1+cos(α).
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N ≥ n: if G ∈ CN×n is a random matrix whose matrix elements have i.i.d. real or com-
plex standard normal distribution,5 then its smallest singular value ςmin(G) and largest
singular value ςmax(G) satisfy, for all t ≥ 0

Pr[
p

N −C
p

n − t < ςmin(G) ≤ ςmax(G) <
p

N +C
p

n + t ] > 1−2exp(−t 2/(2c)).

Corollary 2.30. In the setting of Theorem 2.29, if N ≥ 16C 2n, we have

Pr

[
1

4

p
N < ςmin(G) ≤ ςmax(G) < 7

4

p
N

]
> 1−2exp(−N /(8c)).

Proof. Apply Theorem 2.29 with t =p
N /2.

The following slightly tighter bound can be used for bounding the norm of individ-
ual columns or rows of Gaussian random matrices.

Proposition 2.31. Let v be an n-dimensional random vector whose coordinates have
i.i.d. real or complex standard normal distribution, then E[∥v∥] ≤p

n and Pr[∥v∥ ≥p
n+

t ] ≤ exp(− t 2

2 ) ∀t ≥ 0.

Proof. We have E[∥v∥] ≤
√
E[∥v∥2] =p

n by Jensen’s inequality. The function v 7→ ∥v∥
is 1-Lipschitz due to the triangle inequality, and hence by the concentration of Lips-
chitz functions on vectors with the canonical Gaussian measure (Proposition 2.18 &
Equation (2.35) of [Led01]) we have Pr[∥v∥ ≥p

n + t ] ≤ exp(−t 2/2).6

Next, we invoke a concentration bound for the operator norm of a random matrix
with independent bounded rows.

Theorem 2.32 (Independent bounded rows [Ver12, Theorem 5.44 & Remark 5.49]).
There exists an absolute constant c ′ > 0 such that the following holds. Let G ∈ CN×n

be a random matrix whose rows Gi are independent, each having mean 0 and a covari-
ance matrix7 with operator norm at most S2, and almost surely ∥Gi∥2 ≤ B for all i ∈ [N ].
Then for every t ≥ 0, with probability at least 1−2n exp(−c ′t 2) one has

∥G∥ ≤ 2|S|
p

N + tB. (2.4)

In case G is a real-symmetric Gaussian matrix, we have the following non-asymptotic
bound.

5A complex standard normal random variable has independent real and imaginary parts each having
centered normal distribution with variance 1

2 .
6Actually, in the complex case the upper bound is even stronger: exp(−t 2).
7If ψ ∈ Cn is a mean-0 random vector and C = E[ψ†ψ] is its covariance matrix, then the covari-

ance matrix of the complex conjugate random variable ψ∗ is E[ψTψ∗] = C∗. On the other hand we
have Cov(ℜ(ψ))+Cov(ℑ(ψ)) = C+C∗

2 , and therefore ∥Cov(ℜ(ψ))+Cov(ℑ(ψ))∥ ≤ ∥C∥. Thus we can apply
[Ver12, Theorem 5.44 & Remark 5.49] separately to the real and imaginary parts of the random vectors
Gi , whence the extra (possibly sub-optimal) factor of 2 in (2.4).
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Theorem 2.33 (Symmetric Gaussian matrix [BH16, Corollary 3.9 with ε = 0.25]). Let
G ∈ Rd×d be a symmetric matrix with Gi j = bi j · gi j , where the random variables {gi j :
i ≥ j } are i.i.d. ∼ N (0,1) and the {bi j : i ≥ j } are arbitrary real scalars. Denote bmax =
max

i

√∑
j

b2
i j and b∗

max = max
i j

|bi j |. Then for every t ≥ 0,

Pr

[
∥G∥ ≥ 2.5 ·bmax + 7.5

ln(1.25)
b∗

max

p
lnd + t

]
≤ exp(−t 2/(4b∗2

max)).

2.7.4 Bounds on random variables with adaptive dependency structure

Here we present some useful bounds on random variables, where the dependency
structure follows some martingale-like structure.

The first bound gives an intuitive total variation distance bound for “adaptive” pro-
cesses. The main idea is to couple two adaptive random processes that are step-wise
similar. We use the following folklore [AS19, p. 1] observation:

Theorem 2.34 (Total variation distance and optimal coupling). Let X ,Y be random
variables. Then dT V (X ,Y ) ≤ ε iff there exist ε-coupled random variables X̃ and Ỹ (pos-
sibly dependent) with the same distribution as X and Y , respectively, such that Pr[X̃ ̸=
Ỹ ] ≤ ε.

Corollary 2.35. Let X be a random variable and A an event of the underlying probability
space such that Pr[A] > 0. Then for Y ′ = X |A, the conditioned version of X (i.e., Pr[Y ′ ∈
S] = Pr[A & X ∈S]/Pr[A] for all measurable sets S), we have that dT V (X ,Y ′) ≤ 1−Pr[A].

Proof. Let Y be a random variable that is independent of A, but its distribution is iden-
tical to that of Y ′, i.e., Pr[Y ′ ∈ S] = Pr[Y ∈ S] = Pr[A & X ∈S]/Pr[A] for all measurable sets
S. In Theorem 2.34 take X̃ := X , and Ỹ := X on A and Ỹ := Y on the complement of A;
by construction we have Pr[X̃ ̸= Ỹ ] ≤ 1−Pr[A]. Finally, observe that for all measurable
sets S we have

Pr[Ỹ ∈ S] = Pr[A & X ∈ S]+Pr[Ā &Y ∈ S] = Pr[A & X ∈ S]+Pr[Ā] ·Pr[Y ∈ S]

=
(
1+ Pr[Ā]

Pr[A]

)
Pr[A & X ∈ S] = Pr[A & X ∈ S]

Pr[A]
= Pr[X ∈ S | A] = Pr[Y ′ ∈ S].

Lemma 2.36 (Conditional total variation distance based bound). Let X = (X1, X2) and
X ′ = (X ′

1, X ′
2) be two discrete random variables, and let X2x := X2|X1=x, X ′

2x := X ′
2|X ′

1=
x. Suppose that dT V (X1, X ′

1) ≤ ε1 and dT V (X2x , X ′
2x) ≤ ε2 for all x such that Pr[X1 =

x]Pr[X ′
1 = x] > 0, then dT V (X , X ′)≤ε1 + (1−ε1)ε2.

Proof. Due to Theorem 2.34 we can find ε1-coupled random variables X̃1, X̃ ′
1, and

similarly ε2-coupled X̃2x , X̃ ′
2x for all x in the range of X1, X ′

1 respectively. We can as-
sume without loss of generality that X̃1 and X̃2x are mutually independent for all x in
the range of X1, X ′

1 and likewise are X̃1 and X̃2x . We then define X̃ = (X̃1, X̃2X̃1
) and

X̃ ′ = (X̃ ′
1, X̃ ′

2X̃ ′
1
), so that clearly Pr[X = (x1, x2)] = Pr[X̃ = (x1, x2)] and Pr[X ′ = (x1, x2)] =
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Pr[X̃ ′ = (x1, x2)]. On the other hand due to the tight coupling of Theorem 2.34 we also
get

dT V (X , X ′) ≤ Pr[X̃ ̸= X̃ ′]
= Pr[X̃1 ̸= X̃ ′

1]+∑
x

Pr[X̃1 = X̃ ′
1 = x & X̃2x ̸= X̃ ′

2x]

= Pr[X̃1 ̸= X̃ ′
1]+∑

x
Pr[X̃1 = X̃ ′

1 = x]Pr[X̃2x ̸= X̃ ′
2x]

≤ ε1 +
∑

x
Pr[X̃1 = X̃ ′

1 = x]ε2

= ε1 + (1−ε1)ε2.

The following is essentially a martingale property, which could be stated more gen-
erally, but here we prove a simple version for completeness.

Lemma 2.37 (Martingale-like covariance sum). If X ,Y , Z ∈ Cd are vector-valued dis-
crete random variables such that E[Z |(X ,Y )] = 0 (i.e., E[Z |(X = x,Y = y)] = 0 for all
x, y), then Cov(X +Z ) = Cov(X )+Cov(Z ).

Proof. It is easy to see that E[Z ] = 0, and we can assume without loss of generality that
E[X ] = 0.

Cov(X +Z ) = E[|X +Z 〉〈X +Z |]
= ∑

(x,y) :
Pr[(X ,Y )=(x,y)]>0

Pr[(X ,Y ) = (x, y)]E[|x +Z 〉〈x +Z | |(X ,Y ) = (x, y)]

= ∑
(x,y) :

Pr[(X ,Y )=(x,y)]>0

Pr[(X ,Y ) = (x, y)]
(|x〉〈x|+E[|Z 〉〈Z | |(X ,Y ) = (x, y)]

)
=∑

x
Pr[X = x]|x〉〈x|+ ∑

(x,y) :
Pr[(X ,Y )=(x,y)]>0

Pr[(X ,Y ) = (x, y)]E[|Z 〉〈Z | |(X ,Y ) = (x, y)]

= Cov(X )+Cov(Z ).

2.8 Fourier transform and analysis

2.8.1 Fourier transform

The Fourier transform ĥ :R→C of a function h :R→C is defined as

ĥ(ω) =
∫ ∞

−∞
h(x)exp(−2πi xω)d x.

The next facts follow easily from the above definition. If h is defined as h(ω) = g (ω+ν)
for some function g and value ν, then we have

ĝ (ω) = ĥ(ω)exp(2πiνω).
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On the other hand, if h(x) = g (x)exp(2πi xν), then

ĥ(ω) = ĝ (ω−ν).

Another important fact is that the Fourier transform of ρs is s ·ρ1/s for all s > 0. Also, the
sum of ρs(x) over C ·Z satisfies the Poisson summation formula [Reg09, Lemma 2.14]:

Theorem 2.38. For any scalar C > 0 and any Schwartz function f : R→ C (i.e., f and
each of its derivatives go to 0 faster than every inverse polynomial as the absolute value
of the argument goes to infinity),∑

j∈C ·Z
f ( j ) =C−1

∑
j∈C−1·Z

f̂ ( j ).

2.9 Lattice, lattice problems, and some useful properties

For any set of n linearly independent vectors B = {b1, . . . ,bn} from Rd , the lattice L
generated by basis B is

L(B) =
{

n∑
i=1

zibi : zi ∈Z
}

.

We call n the rank of the lattice L and d the dimension. The vectors B = {b1, . . . ,bn}
form a basis of the lattice. Given a basis B, we use L(B) to denote the lattice generated
by B. For a rank n lattice L⊂Rd , the dual lattice, denoted L∗, is defined as the set of all
points in span(L) that have integer inner products with all lattice points,

L∗ = {w ∈ span(L) : ∀y ∈L,〈w,y〉 ∈Z} .

A basis matrix B∗ ∈Rn×d for the dual lattice (i.e. the columns form a basis ofL∗) can
obtained from a basis B ofL, by letting B∗ = B(BT B)−1. Note that ifL is n-dimensional,
then the expression for B∗ simplifies to B−T .

2.9.1 Lattice problems

Definition 2.39. For any 1 ≤ p ≤ ∞, the Shortest Vector Problem SVPp is defined as
follows: The input is a basis B ∈Rd×n for a lattice L. The goal is to output a vector y ∈L
with ∥y∥p = min

x∈L\{0}
∥x∥p .

We also use λ(p)
1 (L) to denote the length of the shortest nonzero lattice vector of L

w.r.t. ℓp -norm. This definition can be generalized to define the i th successive mini-

mum w.r.t. ℓp -norm as the smallest λ(p)
i such that B d

p (λi ) contains i linearly indepen-
dent lattice points:

λ
(p)
i = min{r : dim(span(L∩B d

p (λi ))) ≥ i }.

When we say the shortest vector of a lattice, we always mean the shortest nonzero
lattice vector. One can use the well-known Lenstra–Lenstra–Lovász (LLL) lattice basis
reduction algorithm to estimate λ(p)

1 up to 2n multiplicative factor.
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Theorem 2.40 ([LLL82]). Let B ∈ Rd×n be a basis of lattice L(B) ⊂ Rd . For every p ∈
[1,∞), there exists a poly(n)-time algorithm that with probability at least 1−2−Ω(n), out-
puts a vector v ∈L such that λ(p)

1 (L) ≤ ∥v∥p ≤ 2nλ
(p)
1 (L).

Definition 2.41. For any 1 ≤ p ≤ ∞, the Closest Vector Problem CVPp is the search
problem defined as follows: The input is a basis B ∈ Rd×n for a lattice L and a target
vector t. The goal is to output a vector v ∈L such that ∥v−t∥p = min

x∈L
∥x−t∥p .

Definition 2.42. For any 1 ≤ p ≤∞ and α=α(n) < 1/2, the Bounded Distance Decod-
ing problem with decoding distance α α-BDDp is defined as follows: The input is a

basis B ∈ Rd×n for a lattice L and a target vector t ∈ Rd with min
x∈L

∥t− x∥p ≤ α ·λ(p)
1 (L).

The goal is to output a vector y ∈L with ∥y−t∥p = min
x∈L

∥t−x∥p .

Note that α-BDDp becomes more difficult as α gets larger. For CVP and BDD, we
can also define a preprocessing version, as follows.

Definition 2.43. For any 1 ≤ p ≤ ∞ and α = α(n) < 1/2, the search problems CVPPp

and α-BDDP are the preprocessing analogues of CVP and α-BDDp respectively. The
input for preprocessing is a basis B ∈ Rd×n of lattice L. Given the advice from the pre-
processing algorithm and the target vector t ∈Rd . The goal is to return solution of CVP
andα-BDD respectively. The preprocessing algorithm is allowed to take arbitrary time.

The following theorem shows how to sample a randomly chosen “sparsified” sub-
lattice of a lattice using a CVPp oracle.

Theorem 2.44 ([Ste16], modified Theorem 3.2). Let B ∈Rd×n be a basis of a lattice L(B)
and Q be a prime number. Consider the following sparsification process: input any two
vectors z,c ∈ Zn

Q , the sparsification process Spar (B,Q,z,c) outputs a basis BQ,z of the
sublattice Lz ⊂ L = {u ∈ L : 〈Bz,u〉 = 0 mod Q} and wz,c = Bc. Then for every t ∈ Rn ,
x ∈L with N = |(L−t)∩∥x−t∥ ·B d

p | ≤Q, and CV Pp oracle, we have

1

Q
− N

Q2
− N

Qn−1
≤ Pr

z,c∈Zn
Q

[CV Pp (t+wz,c,Lz) =x+wz,c] ≤ 1

Q
+ 1

Qn
,

and in particular,

N

Q
− N 2

Q2
− N 2

Qn−1
≤ Pr

z,c∈Zn
Q

[min
u∈Lz

∥(t+wz,c−u∥p ) ≤ ∥x−t∥p ] ≤ N

Q
+ N

Qn
.

The following theorem shows how to solve SVPp by an exponential number of calls
to α-BDDp oracle.

Theorem 2.45 ([CCL18, modified Theorem 8]). Given a basis B ∈Rd×n of lattice L(B) ⊂
Rd , a target vector t ∈ Rd , an α-BDDp oracle BDDα with α < 0.5, and an integer scalar
q > 0. Let f αq : Zn

q → Rn be f αq (s) = −q ·BDDα(L, (Bs− t)/q)+Bs, then the list m =
{ f αq (s) | s ∈Zn

q } contains all lattice points within distance qαλ(p)
1 (L) to t.
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2.9.2 Lattice on Euclidean norm

Here we introduce some tools and properties for lattices under the Euclidean norm.
We first introduce some basic facts of the lattice problems in ℓ2-norm. For arbitrary

basis B ∈ Rd×n of L, one can always find a unitary U such that U B =
[

B′

0

]
where

B′ ∈ Rn×n . Finding such a U and applying U on B takes only poly(d) time. For SVP, if

v ′ is a shortest vector of L(B′), then U−1
[

v ′

0

]
will be a shortest vector of L(B). As for

CVP, if x ∈L(B) is the closest lattice vector, then x ′ ∈L(B′) will be the closest vector to

U t ′, where

[
x ′

0

]
=Ux and t ′ = Projspan(B)(t ). As a result, in the case of ℓ2-norm, one

can always, without loss of generality, assume d = n. We assume this is the case below
when we discuss about the lattice problems w.r.t. ℓ2-norm.

For simplicity, lattice problems without a subscript are always lattice problems with
respect to ℓ2-norm (for example, CVP means CVP2) and λ1(L) simply denotes λ(2)

1 (L).

Discrete Gaussian Distribution.

For any s > 0, define ρs(x) = exp(−π∥x∥2/s2) for all x ∈ Rn . We write ρ for ρ1. Here we
overload the notation ρs introduced in Section 2.7.1. Similarly, for a countable set S,
we extend ρ to sets by ρs(S) =∑

x∈S ρs(x). Given a lattice L, the discrete Gaussian DL,s

is the distribution over L such that the probability of a vector y ∈L is proportional to
ρs(y):

Pr
X∼DL,s

[X =y] = ρs(y)

ρs(L)
.

We also call s the width of DL,s . For s = 1, we simply denote DL,.
The following problems play a central role in Chapter 5. For convenience, when we

discuss the running time of algorithms solving the problems below, we ignore polyno-
mial factors in the bit-length of the individual input basis vectors (i.e. we assume that
the input basis has bit-size polynomial in the ambient dimension n).

Definition 2.46. For δ= δ(n) ≥ 0, σ a function that maps lattices to non-negative real
numbers, and m = m(n) ∈ N, δ-DGSm

σ (the Discrete Gaussian Sampling problem) is
defined as follows: The input is a basis B of a lattice L⊂ Rn and a parameter s >σ(L).
The goal is to output a sequence of m vectors whose joint distribution is δ-close to m
independent samples from DL,s .

We omit the parameter δ if δ = 0, and the parameter m if m = 1. We stress that δ
bounds the total variation distance between the joint distribution of the output vectors
and m independent samples from DL,s .

We will use the following lemma which is initially proved in [Ban93].

Lemma 2.47 ([DRS14, Lemma 2.13]). For any lattice L⊂Rn ,

Pr
y∼DL

[
∥y∥ ≥ t

√
n

2π

]
≤ e− n

2 (t−1)2
.
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For a lattice L and ε> 0, the smoothing parameter ηε(L) is the smallest s such that
ρ1/s(L∗) = 1+ ε. Recall that if L is a lattice and v ∈ L then ρs(L+v) = ρs(L) for all
s. Note that the smoothing parameter is a monotone-decreasing function of ε. That
is, if ε1 > ε2, then ηε1 < ηε2 The smoothing parameter has the following well-known
properties.

Lemma 2.48 ([Reg09, Claim 3.8]). For any lattice L⊂Rn , c ∈Rn , ε> 0, and s ≥ ηε(L),

1−ε
1+ε ≤ ρs(L+c)

ρs(L)
≤ 1 .

One can consider the smoothing parameter to be the smallest “width” such that
the discrete Gaussian still behaves like a continuous Gaussian. Micciancio and Regev
related the smoothing parameter to λn(L).

Lemma 2.49 ([MR07, Lemma 3.3]). For any lattice L⊂Rn and ε ∈ (0,1),

ηε(L) ≤
√

ln(2n(1+1/ε))

π
λn(L).

Another useful fact is that when we add a continuous Gaussian to a discrete Gaus-
sian, the resulting distribution of the vector will be close to a continuous Gaussian,
if both widths of the discrete Gaussian and the continuous Gaussian are sufficiently
larger than the smoothing parameter.

Lemma 2.50 ([Reg09, Claim 3.9]). Let L⊂Rn be a lattice, ε ∈ (0,0.5), widths s, t > 0, and
νt := ρt /t n be an n-dimensional continuous Gaussian probability density function with
width t .8 Suppose 1/(

p
1/s2 +1/t 2) ≥ ηε(L). Consider the continuous distribution Y on

Rn obtained by sampling from DL,s and then adding a noise vector taken from νt . Then
the total variation distance between Y and νps2+t 2 is at most 4ε.

The following lemma gives a bound on the smoothing parameter.

Lemma 2.51 ([ADR+15, Lemma 2.7]). For any lattice L ⊂ Rn ,ε ∈ (0,1) and k > 1, we
have kηε(L) > η

εk2 (L)

Here we define the honest Discrete Gaussian Sampling problem.

Definition 2.52 ([ADR+15, Definition 5.1]). For εÊ 0, σ a function that maps lattices to
non-negative real numbers, and m ∈N, the honest Discrete Gaussian Sampling prob-
lem ε-hDGSm

σ is defined as follows: the input is a basis B for a lattice L ⊂ Rn and a
parameter s > 0. The goal is to output a sequence of m′ vectors whose joint distribu-
tion is ε-close to Dm′

L,s for some independent random variable m′ Ê 0. If s > σ(L) then
m′ must be equal to m.

8Note that
∫
x∈Rn ρt (x)dx= t n .
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The idea of “honest” is that when we ask a sampler to produce samples with a too-
small parameter, the output should still consist of discrete Gaussian samples of the
desired parameter, but potentially less of them (or even none at all). The authors in
[ADR+15] also show how to construct a honest discrete Gaussian sampler.

Theorem 2.53 ([ADR+15, Theorem 5.11]). Let σ be the function that maps a lattice L top
2η1/2(L). There is an algorithm that solves exp(−Ω(κ))-hDGS2n/2

σ in time 2n/2+polylog(κ)+o(n)

for an κÊΩ(n).

We also use the lemma below to find a super lattice with a smaller smoothing pa-
rameter, where a super lattice L′ of L is a superset of L.

Lemma 2.54 ([ADR+15, Lemma 5.12]). There is a polynomial-time algorithm that takes
as input a basis B of a lattice L(B) ⊂Rn of rank n and an integer a with n/2 ≤ a < n and
returns a super lattice L′ ⊃ L of index 2a with L′ ⊆ L/2 such that for any ε ∈ (0,1), we
have ηε′(L′) ≤ ηε(L)/

p
2 with probability at least 1/2 where ε′ := 2ε2 +2(n/2)+1−a(1+ε).

Combining the above lemmas and theorems, we can sample a discrete Gaussian
sample at the smoothing parameter in ∼ 20.5n time.

Lemma 2.55. There is a probabilistic algorithm that, given a lattice L⊂Rn , m ∈Z+ and
s ≥ η1/3(L) as input, outputs m samples from a distribution (m ·2−Ω(n2))-close to DL,s in
expected time m ·2n/2+o(n) and space (m +2n/2) ·2o(n).

Proof. Let a = n
2 + 4. We repeat the following until we output m vectors. We use the

algorithm in Lemma 2.54 to obtain a lattice L′ ⊃L of index 2a . We then run the algo-
rithm from Theorem 2.53 with input (L′, s) to obtain a list of vectors fromL′. We output
the vectors in this list that belong to L. The correctness of the algorithm, assuming it
outputs anything, is clear as long as the samples obtained from Theorem 2.53 are (suf-
ficiently) independent, which we will prove below.

By Theorem 2.53, we obtain, in time and space 2(n/2)+o(n), M É 2n/2 vectors whose
joint distribution is 2−Ω(n2)-close to DM

L′,s . The theorem guarantees that M = 2n/2 if

s Êp
2η1/2(L′). Also, by Lemma 2.54, with probability at least 1/2, we have s ≥ η1/3(L) ≥p

2η1/2(L′). Note that when s <p
2η1/2(L′), the samples obtained from Theorem 2.53

are still 2−Ω(n2)-close to M vectors independently sampled from DL′,s but M could be
much lower than 2n/2 or even 0. On the other hand, if s Êp

2η1/2(L′) then M = 2n/2.
Assume that s Ê p

2η1/2(L′), which happens with probability at least 1/2. From
these M = 2n/2 vectors, we will reject the vectors which are not in the lattice L. It is
easy to see that the probability that a vector sampled from the distribution DL′,s is in
L is at least ρs(L)/ρs(L′) ≥ 1

2a by Lemma 2.48. Thus, the probability that we obtain at
least one vector from L (which is distributed as DL,s) is at least

1

2

(
1− (1−1/2a)2n/2

)
= 1

2

(
1− (1−1/2n/2+4)2n/2

)
≥ 1

2
·
(
1−e−2n/2/2n/2+4

)
= 1

2
(1−e−1/16).
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It implies that after rejection of vectors, with constant probability we will get at least
one vector from DL,s . Thus, the expected number of times we need to repeat the algo-
rithm is O(m) until we obtain vectors y1, . . . ,ym whose joint distribution is statistically
close to being independently distributed from Dm

L,s . The time and space complexity is
clear from the algorithm.

2.10 High-dimensional geometry

2.10.1 Area of hyperspherical cap

The surface area of B d
2 (r ) is well-known to be 2π

d
2

Γ( d
2 )

r d−1 [Li11, p. 66], where Γ is the

Gamma function. Let Ar
d (φ) be the surface area of a hyperspherical cap in B d

2 (r ) with
spherical angle φ. The area of this hyperspherical cap can be calculated by integrating
the surface area of a (d −1)-dimensional sphere with radius r sinθ [Li11, p. 67]:

Ar
d (φ) =

∫ φ

0
2Ar sinθ

d−1 (π/2)r dθ = 2π
d−1

2

Γ( d−1
2 )

r d−1 ·
∫ φ

0
sind−2θdθ.

We abbreviate Ad (φ) := A1
d (φ) for simplicity. Note that by some fundamental calcula-

tions, Ad (φ)/Ad (π/2) is poly(d) · (sinφ)d [BDG+16, Lemma 2.1].
Following Ravsky’s computation in his reply to a question on StackExchange [Rav21],

we now use the area of the hyperspherical cap to upper bound the probability of the
event that a uniformly random vector u on Sd−1 only has a small overlap with another
(fixed) unit vector v .

Theorem 2.56. Let d ≥ 3 be and integer, v ∈ Rd be a unit vector, and a ∈ [0,1]. Then we
have

Pr
u∼Sd−1

[|〈v,u〉| < a
]≤ 2p

π
· Γ( d

2 )

Γ( d−1
2 )

·a.

Proof. Letφ ∈ [0,π/2] such that cosφ= a. We can see that if |〈v,u〉| ≥ a, then u will be in
the hyperspherical cap (whose center is v) with spherical angle φ, and the probability
that a uniformly-random u lands in that hyperspherical cap is Ad (φ)

Ad (π/2) . Therefore,

Pr
u∼Sd−1

[|〈v,u〉| < a
]= Ad (π/2)− Ad (φ)

Ad (π/2)
=

( π d
2

Γ( d
2 )

)−1 ·
( 2π

d−1
2

Γ( d−1
2 )

)∫ π/2

φ
sinθd−2dθ

≤
( π d

2

Γ( d
2 )

)−1 ·
( 2π

d−1
2

Γ( d−1
2 )

)∫ π/2

φ
sinθdθ = 2Γ( d

2 )
p
πΓ( d−1

2 )
· (−cos

π

2
+cosφ)

= 2p
π
· Γ( d

2 )

Γ( d−1
2 )

·a.
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By using Legendre’s duplication formulaΓ( d
2 )Γ( d−1

2 ) =
p
π

2d−2Γ(d−1) [Rud76, Chap. 8.21,
Eq. 102] and the fact Γ(d) = (d −1)!, we obtain

Γ( d
2 )

Γ( d−1
2 )

=


Γ( d

2 )2

Γ( d
2 )Γ( d−1

2 )
= 2d−2(( d

2 −1)!)2

p
π(d−2)!

= 2d−2p
π
·
(d−2

d−2
2

)−1
, if d is even,

Γ( d
2 )Γ( d−1

2 )

Γ( d−1
2 )2 =

p
π(d−2)!

2d−2( d−3
2 !)2 =

p
π(d−2)
2d−2 ·

(d−3

d−3
2

)
, if d is odd.

Plugging the above into Theorem 2.56, we have the following corollary.

Corollary 2.57. Let d ≥ 4 be an integer, v ∈Rd be a unit vector, and c ≥ 1. Then we have

Pr
u∼Sd−1

[|〈v,u〉| < 1

c
p

d

]< 1

c
.

Proof. By Theorem 2.56, it suffices to show 2p
π
· Γ( d

2 )

Γ( d−1
2 )

· 1p
d
< 1 for every d ≥ 4. When d

is even, by using Robbins’ bound 4mp
πm

exp(− 1
6m ) ≤ (2m

m

)≤ 4mp
πm

[Rob55, consequence of

Eq. 1], we have

Γ( d
2 )

Γ( d−1
2 )

= 2d−2

p
π

·
(d−2

d−2
2

)−1 ≤
√

d −2

2
exp(

1

3d −6
) ≤

√
d

2
exp(

1

6
),

implying that 2p
π
· Γ( d

2 )

Γ( d−1
2 )

· 1p
d
≤

√
2
π
·exp( 1

6 ) < 1. Similarly, when d is odd, we have

Γ( d
2 )

Γ( d−1
2 )

=
p
π(d −2)

2d−2
·
(d−3

d−3
2

)
≤ d −2p

2(d −3)
,

implying that 2p
π
· Γ( d

2 )

Γ( d−1
2 )

· 1p
d
≤

√
2
π
· d−2p

d(d−3)
< 1.

2.10.2 Lattice kissing number (w.r.t. ℓ2-norm) and related quantities

Here we introduce the kissing number of the lattice with respect to ℓ2-norm, and by
the discussion at the beginning of Section 2.9.2, we here again assume the lattice is full
rank and d = n. For any lattice L ⊂ Rn and r > 0, let N (L,r ) denote the number of
nonzero lattice vectors of length (ℓ2-norm distance) at most r . A natural question is to
bound this quantity in terms of r . When r < λ1(L), only the origin lies inside the ball
so N (L,r ) = 0. When r = λ1(L), this quantity is known as the kissing number τ(L) of
the lattice:

τ(L) = | {x ∈L : ∥x∥ =λ1(L) } |.
Finally when r →∞, N (L,r ) = r n ·Vol(B n

2 )
det(L) +o(r n) by the geometric interpretation of the

determinant of a lattice. The precise behavior for intermediate values of r , however, is
unclear and for that reason we introduce the quantity

γ(L) = inf{γ : ∀r ≥ 1, N (L,rλ1(L)) ≤ γ · r n}. (2.5)
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It is clear by the definition that γ(L) ≥ τ(L). The best known upper bound on this
quantity comes from the breakthrough work of Kabatyanskii and Levenshtein [KL78]:

γ(L) É 20.401n+o(n). (2.6)

Recently, Serge Vlăduţ [Vlă19] gave a construction of an infinite set of lattices whose
kissing number is greater than 20.0338n+o(n). This is the first (and only known) construc-
tion of a family of lattices with kissing number 2Ω(n). Given this result (and the fact that
it was hard to find such a family of lattices), one might conjecture that τ(L) ≤ cn+o(n)

for some constant c much smaller than 20.401. Moreover, in practice most lattices have
a much smaller kissing number, which is often 2o(n). Given the close connection be-
tween τ(L) and γ(L), it is not unreasonable to conjecture that γ(L) is also 2o(n) for most
lattices. In view of the fact thatγ(L) can be anywhere between 2 and 20.401n+o(n), we will
study the dependence of the time complexity of our algorithms for SVP in Chapter 5 on
γ(L) by introducing

β(L) = γ(L)1/n . (2.7)

The upper bound above can then be reformulated as β(L) É 20.401+o(1) for any lattice L
and 1 is the trivial lower bound.

The following lemma connects λ1(L)ηε(L∗) to β(L).

Lemma 2.58 (Variant of [ADR+15, Lemma 6.1]). For every lattice L⊂Rn and ε ∈ (0,1),√
ln(1/ε)

π
<λ1(L)ηε(L∗) <

√
β(L)2n

2πe
·ε−1/n · (1+o(1)). (2.8)

Moreover, if ε≤ (e/β(L)2 +o(1))−
n
2 , we have√

ln(1/ε)

π
<λ1(L)ηε(L∗) <

√
ln(1/ε)+n lnβ(L)+o(n)

π
. (2.9)

We also prove the following two lemmas related to the kissing number.

Lemma 2.59. For every lattice L⊂Rn , s > 0, and r Ê s
p

n/λ1(L),

ρs(L\B n
2 (rλ1(L)) É 2er nβ(L)nρs(L\{0})r 2

.

Proof. Let t = 1+1/n, R = rλ1(L) ≥ s
p

n, ri = Rt i and Ti = B n
2 (ri+1)\B n

2 (ri ) for all i ∈N.
By the definition of β(L),

|L∩Ti | É |L∩B n
2 (ri+1)| Éβ(L)n(r t i+1)n .

It then follows that

ρs(L\B n
2 (R)) =

∞∑
i=0

ρs(L∩Ti ) É
∞∑

i=0
|L∩Ti |e−π r 2

i
s2 Éβ(L)n

∞∑
i=0

(r t i+1)ne−πR2

s2 t 2i︸ ︷︷ ︸
:= f (i )

.
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Note that for all i ∈N,

f (i +1)

f (i )
= t ne−πR2

s2 t 2i (t 2−1) É e1−3π
R2

ns2 É e1−3π < 1/2,

where we have used that t n É e, t 2i Ê 1, and t 2 − 1 É 3
n in the second equality and

R Ê s
p

n in the third one. It follows that

ρs(L\B n
2 (R)) Éβ(L)n ·2 · f (0) Éβ(L)n ·2(r t )ne−πR2

s2 É 2e · r nβ(L)n ·e−π r 2λ1(L)2

s2 .

On the other hand,

ρs(L\{0}) Ê ρs(v) = e−πλ1(L)2

s2 ,

where v is the shortest vector, so the result follows immediately.

Lemma 2.60. For all constant c > 1, lattice L⊂Rn , and ε ∈ (0,1/e), we have

tηε(L) É η
εt2 f (c,n,β)(L),

where t = 1+ 1
nc and f (c,n,β) = e−3n1−c (lnβ(L∗)+c lnn)(1−e(c·n ln(n)+n lnβ(L∗)+2+ln2)−n2c

)t 2
.9

Proof. Let r = nc and t = 1+ 1
r with c > 1. Since ε É 1/e and n ≥ 4, by Lemma 2.58 we

obtain p
n

ηε(L)λ1(L∗) É
√

nπ
ln(1/ε) É r. (2.10)

Let Γ= (L∗ \{0})∩B n
2 (rλ1(L∗)). By the definition of β(L∗) we have

|Γ| Éβ(L∗)nr n .

Now observe that

ρ1/(t ·ηε(L))(L∗ \{0}) = ∑
x∈L∗ \{0}

ρ1/(t ·ηε(L))(x) = ∑
x∈L∗ \{0}

ρ1/ηε(L)(x)t 2

Ê ∑
x∈Γ

ρ1/ηε(L)(x)t 2 Ê |Γ|
(

1
|Γ|

∑
x∈Γ

ρ1/ηε(L)(x)

)t 2

(by Jensen’s inequality)

= |Γ|1−t 2
ρ1/ηε(L)(Γ)t 2

= |Γ|1−t 2 (
ρ1/ηε(L)(L∗ \{0})−ρ1/ηε(L)(L∗ \B n

2 (rλ1(L∗))
)t 2

Ê (
β(L∗)nr n)1−t 2 (

ε−2eβ(L∗)nr nεr 2
)t 2

where the last equality holds by ρ1/ηε(L)(L∗ \{0}) = ε and Lemma 2.59 (with Eq (2.10)).
Now observe that 1− t 2 Ê−3/r and(

β(L∗)nr n)−3/r = e−3n1−c (lnβ(L∗)+c lnn)

9 f (c,n,β) is actually eo(1) since lim
n→∞ f (c,n,β) = 1+o(1).
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since c > 1. We also have that

2eβ(L∗)nr nεr 2 = e1+ln2+n lnβ(L∗)+nc ln(n)−(r 2−1)ln
1
ε ε

É e(c·n ln(n)+n lnβ(L∗)+2+ln2)−n2c
ε (since εÉ 1/e).

Then it follows that

ρ1/(t ·ηε(L))(L∗ \{0}) Ê e−3n1−c (lnβ(L∗)+c lnn)(ε)t 2
(1−e(c·n ln(n)+n lnβ(L∗)+2+ln2)−n2c

)t 2

= εt 2
f (c,n,β).

Therefore we must have η
εt2 f (c,n,β)(L) Ê t ·ηε(L).
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Quantum algorithms
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CHAPTER 3

Quantum algorithms for Lasso

3.1 Introduction

One of the simplest, most useful and best-studied problems in machine learning and
statistics is linear regression. We are given N data points {(xi , yi )}N−1

i=0 where x ∈Rd and
y ∈ R, and want to fit a line through these points that has small error. In other words,
we want to find a vector θ ∈ Rd of coefficients such that the inner product 〈θ, x〉 =∑d

j=1θ j x j is a good predictor for the y-variable. There are different ways to quantify
the error (“loss”) of such a θ-vector. One of the most common is the squared error
(〈θ, x〉− y)2, averaged over the N data points (or over an underlying distribution D that
generated the data). If we let X be the N ×d matrix whose N rows are the x-vectors of
the data, then the linear regression problem wants us to find a θ ∈ Rd that minimizes∥∥Xθ− y

∥∥2
2. This minimization problem has a well-known closed-form solution: θ =

(X T X )+X T y , where the superscript ‘+’ indicates the Moore-Penrose pseudoinverse.
In practice, unconstrained least-squares regression sometimes has problems with

overfitting. Precisely, the closed-form solution ((X T X )+X T y) often yields solutions θ
where all entries are non-zero, even when only a few of the d coordinates in the x-
vector really matter and one would really hope for a sparse vector θ [SB14, see Chap-
ters 2 and 13]. This situation may be improved by “regularizing” θ via additional con-
straints. The most common constraints are to require that the ℓ1-norm or ℓ2-norm of
θ is at most some bound B .1 Linear regression with an ℓ1-constraint is called Lasso
(due to Tibshirani [Tib96]), while with an ℓ2-constraint it is called Ridge (due to Hoerl
and Kennard [HK70]).2

1For ease of presentation we will set B = 1. However, one can also set B differently or even do a binary
search over its values, finding a good θ for each of those values and selecting the best one at the end.
Instead of putting a hard upper bound B on the norm, one may also include it as a penalty term in

the objective function itself, by just minimizing the function
∥∥Xθ− y

∥∥2
2 +λ∥θ∥, where λ is a Lagrange

multiplier and the norm of θ could be ℓ1 or ℓ2 (and could also be squared). This amounts to basically
the same thing as our setup.

2Another popular choice for the constraints is ℓ0-norm constraint, which is called best subset selec-
tion. This problem, however, is not convex and it is proven to be in general NP-hard [DK08].
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Lasso

The least absolute shrinkage and selection operator, or Lasso, is a special case of linear
regression restricting solutions to the unit ℓ1-ball. Introducing the ℓ1-penalty in linear
regression offers several advantages. Firstly, it effectively handles scenarios where the
original data is sparse by encouraging sparsity in the model itself (i.e., the θ-vector),
aligning with the inherent sparsity of the data. Moreover, the ℓ1-penalty enhances the
robustness of the model against noise, as it prioritizes the selection of relevant features
while disregarding noise or irrelevant variables [ZY06].

One other notable benefit is the guarantee of always having an ε-minimizer (i.e., a
vector θ whose loss is only an additive ε worse than the minimal-achievable loss) with
sparsity proportional to O(1/ε) (This statement actually holds for every convex objec-
tive function with constant curvature constant, see Section 3.2.3 and [Jag11, Chapter
3.2]). This property ensures that even in the presence of noise or outliers, the model
can still identify a solution that effectively represents the underlying patterns in the
data. Additionally, the computational efficiency of linear regression with an ℓ1-penalty
is significantly improved because every candidate in the iterative optimization algo-
rithms is also sparse. By promoting sparsity, the computation is streamlined, resulting
in faster model training and inference, which is advantageous, particularly for large
datasets or real-time applications.

While Lasso (ℓ1-regularization) offers various advantages, it also presents certain
drawbacks. The most significant one is the absence of a closed-form solution. Un-
like ordinary linear regression or Ridge (see below), which can be solved analytically
through matrix operations, the Lasso problem requires iterative optimization tech-
niques due to its non-differentiable penalty term (the ∥θ∥1 term). Finding the exact
minimizer, therefore, becomes computationally more demanding.

Ridge

The Ridge regression is a special case of linear regression restricting solutions to the
unit ℓ2-ball. Introducing the ℓ2-penalty in linear regression has several advantages.
Firstly, it stabilizes all convex Lipschitz or convex smooth learning processes. By incor-
porating the ℓ2-penalty, the optimization becomes more well-behaved in terms of con-
vergence. Moreover, while the closed-form loss function might only exhibit Lipschitz
continuity without ℓ2-regularization, the addition of ℓ2-penalty (which is strongly con-
vex) transforms the loss function into a strongly convex form. This ensures some favor-
able properties for optimization algorithms, like faster convergence rates. Meanwhile,
by promoting strong convexity through the ℓ2-penalty, the model becomes more ro-
bust and less likely to overfit. This property is particularly useful in the scenarios where
the dataset is noisy, as the regularization provided by the ℓ2-penalty helps lessen the
effects of such disturbances, leading to more reliable and interpretable models [SB14,
Chapters 13]. One other notable advantage of Ridge regression is its closed-form so-
lution. Unlike Lasso or some other regularization techniques that require iterative op-
timization algorithms, Ridge regression can be solved analytically, which can be com-
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putationally efficient and straightforward to implement.
Ridge regression also presents certain drawbacks. The most well-known one is that

its output tends to be dense. Unlike Lasso, which encourages sparsity by driving cer-
tain coefficients to zero, Ridge regression tends to retain all features in the model, al-
beit with reduced weights. This denseness in the output can lead to increased com-
plexity and computational overhead, especially when dealing with high-dimensional
datasets. Furthermore, in situations where feature sparsity is desirable, the dense out-
put of Ridge regression may not be ideal. Sparse solutions are often preferred for com-
putational efficiency and model interpretability, making Ridge regression less suitable
for such scenarios compared to other regularization techniques like Lasso.

Both Lasso and Ridge are widely used for robust regression and sparse estimation
in ML problems and elsewhere [Vin78; BG11]. Consequently, there has been great in-
terest in finding the fastest-possible algorithms for them. For reasons of efficiency, al-
gorithms typically aim at finding not the exactly optimal solution but an ε-minimizer
(a vector θ whose loss is only an additive ε worse than the minimal-achievable loss).
The best known results on the time complexity of classical algorithms for Lasso are
an upper bound of Õ(d/ε2) [HK12] and a lower bound of Ω(d/ε) [CSS11] (which we
actually improve to a tight lower bound, see Chapter 6); for Ridge the best bound is
Θ̃(d/ε2) [HK12], which is tight up to logarithmic factors.3

3.1.1 Main results and high-level intuition

In this chapter, we will talk about a quantum algorithm that finds an ε-minimizer
for Lasso in time Õ(

p
d/ε2). This gives a quadratic quantum speedup over the best-

possible classical algorithm in terms of d , while the ε-dependence remains the same
as in the best known classical algorithm. We will also discuss some possible ways to
achieve a quantum speedup in terms of the ε-dependency at the end of this chapter.

Our quantum algorithm is based on the Frank-Wolfe algorithm, a well-known it-
erative convex optimization method [FW56]. Frank-Wolfe, when applied to a Lasso
instance, starts at the all-zero vector θ and updates this in O(1/ε) iterations to find an
ε-minimizer. Each iteration looks at the gradient of the loss function at the current
point θ and selects the best among 2d directions for changing θ (each of the d coordi-
nates can change positively or negatively, whence 2d directions). The new θ will be a
convex combination of the previous θ and this optimal direction of change. Note that
Frank-Wolfe automatically generates sparse solutions: only one coordinate of θ can
change from zero to nonzero in one iteration, so the number of nonzero entries in the
final θ is at most the number of iterations, which is O(1/ε).

Our quantum version of Frank-Wolfe does not reduce the number of iterations,
which remains O(1/ε), but it does reduce the cost per iteration. In each iteration it

3For such bounds involving additive error ε to be meaningful, one has to put certain normalization
assumptions on X and y , which are given in the body of this chapter. It is known that N =O((logd)/ε2)
data points suffice for finding an ε-minimizer, which explains the absence of N as a separate variable in
these bounds.
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selects the best among the 2d possible directions for changing θ by using a version of
quantum minimum-finding on top of a quantum approximation algorithm for entries
of the gradient (which in turn uses amplitude estimation). Both this minimum-finding
and our approximation of entries of the gradient will result in approximation errors
throughout. Fortunately Frank-Wolfe is a very robust method which still converges
if we carefully ensure those quantum-induced approximation errors are sufficiently
small.

Our quantum algorithm assumes coherent quantum query access to the entries of
the data points (xi , yi ), as well as a relatively small QRAM (quantum-readable classical-
writable classical memory). We use a variant of a QRAM data structure developed by
Prakash and Kerenidis [Pra14; KP17], to store the nonzero entries of our current so-
lution θ in such a way that we can (1) quickly generate θ as a quantum state, and (2)
quickly incorporate the change of θ incurred by a Frank-Wolfe iteration.4 Because our
θ is O(1/ε)-sparse throughout the algorithm, we only need Õ(1/ε) bits of QRAM.

Roadmap

We include classical preliminaries for Lasso and Ridge in Section 3.2. In Section 3.2.1
we will introduce basic notations and definitions for the expected loss and empirical
loss, as well as theorems that connect those two losses. In Section 3.2.3 we will intro-
duce the Frank-Wolfe algorithm and explation how many iterations suffice for finding
a good ε-approximation solution. In Section 3.3 we show how to approximate entries
of gradient efficiently, and by plugging the result into the Frank-Wolfe algorithm we
obtain the results in Section 3.4.

Remark

In the whole Chapter 3, when we use the notation for KP-tree, it always means the KP-
tree with respect to ℓ1-norm (see Section 2.4.1).

3.2 Linear regression problems and the Frank-Wolfe al-
gorithm

We will introduce some basic notations and definitions for linear regression with norm
constraints in this section. At the end of this section, we will introduce the classical
Frank-Wolfe algorithm, and its converge rate.

4Each iteration will actually change all nonzero entries of θ because the new θ is a convex combina-
tion of the old θ and a vector with one nonzero entry. Our data structure keeps track of a global scalar,
which saves us the cost of separately adjusting all nonzero entries of θ in the data structure in each
iteration.
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3.2.1 Expected and empirical loss

Let sample set S = {(xi , yi )}N−1
i=0 be a set of i.i.d. samples from Rd ×R, drawn according

to an unknown distribution D. A hypothesis is a function h : Rd → R, and H denotes
a set of hypotheses. To measure the performance of the prediction, we use a convex
loss function ℓ :R2 →R. The expected loss of h with respect to D is denoted by LD(h) =
E(x,y)∼D[ℓ(h(x), y)], and the empirical loss of h with respect to S is denoted by LS(h) =
1
N

∑
i∈[N ]−1

ℓ(h(xi ), yi ).

Definition 3.1. Let ε > 0. An h ∈H is an ε-minimizer over H with respect to distribu-
tion D if

LD(h)−min
h′∈H

LD(h′) ≤ ε.

Definition 3.2. Let ε> 0. An h ∈H is an ε-minimizer over H with respect to sample set
S if

LS(h)−min
h′∈H

LS(h′) ≤ ε.

3.2.2 Linear regression problems and their classical and quantum setup

In linear regression problems, the hypothesis class is the set of linear functions on Rd .
The goal is to find a vector θ for which the corresponding hypothesis 〈θ, x〉 provides a
good prediction of the target y . One of the most natural choices for regression prob-
lems is the squared loss

ℓ(ŷ , y) = (ŷ − y)2.

We can instantiate the expected and empirical losses as a function of θ using the squared
loss:

LD(θ) = E(x,y)∼D[ℓ(〈θ, x〉, y)] = E(x,y)∼D[(〈θ, x〉− y)2],

LS(θ) = 1

N

∑
i∈[N ]−1

ℓ(〈θ, x〉, yi ) = 1

N

∑
i∈[N ]−1

(〈θ, x〉− yi )2.

We also write the empirical loss as LS(θ) = 1
N ∥Xθ− y∥2

2, where matrix entry Xi j is the
j th entry of the vector xi , and y is the N -dimensional vector with entries yi . As we will
see below, if the instances in the sample set are chosen i.i.d. according to D, and N is
sufficiently large, then LS(θ) and LD(θ) are typically close by the law of large numbers.

In the quantum case, we assume the sample set S is stored in a QROM, which we
can access by means of queries to the oracles OX : |i 〉 | j 〉 |0〉 → |i 〉 | j 〉 |Xi j 〉 and Oy :
|i 〉 |0〉→ |i 〉 |yi 〉.

Lasso

The least absolute shrinkage and selection operator, or Lasso, is a special case of linear
regression with a norm constraint on the vector θ: it restricts solutions to the unit ℓ1-
ball, which we denote by B d

1 . For the purpose of normalization, we require that every
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sample (x, y) satisfies ∥x∥∞ ≤ 1 and |y | ≤ 1.5 The goal is to find a θ ∈ B d
1 that (approxi-

mately) minimizes the expected loss. Since the expected loss is not directly accessible,
we instead find an approximate minimizer of the empirical loss. Mohri, Rostamizadeh,
and Talwalkar [MRT18] showed that with high probability, an approximate minimizer
for empirical loss is also a good approximate minimizer for expected loss.

Theorem 3.3 ([MRT18], Theorem 11.16). LetD be an unknown distribution over [−1,1]d×
[−1,1] and S = {(xi , yi )}N−1

i=0 be a sample set containing N i.i.d. samples from D. Then,
for each δ > 0, with probability ≥ 1−δ over the choice of S, the following holds for all
θ ∈ B d

1 :

LD(θ)−LS(θ) ≤ 4

√
2log(2d)

N
+4

√
log(1/δ)

2N
.

This theorem implies that if N = c log(d/δ)/ε2 for sufficiently large constant c, then
finding (with error probability ≤ δ) an ε-minimizer for the empirical loss LS , implies
finding (with error probability ≤ 2δ taken both over the randomness of the algorithm
and the choice of the sample S) a 2ε-minimizer for the expected loss LD.

Ridge

Another special case of linear regression with a norm constraint is Ridge, which re-
stricts solutions to the unit ℓ2-ball B d

2 . For the purpose of normalization, we now re-
quire that every sample (x, y) satisfies ∥x∥2 ≤ 1 and |y | ≤ 1. Similarly to the Lasso case,
Mohri, Rostamizadeh, and Talwalkar [MRT18] showed that with high probability, an
approximate minimizer for the empirical loss is also a good approximate minimizer
for the expected loss.

Theorem 3.4 ([MRT18], Theorem 11.11). Let D be an unknown distribution over B d
2 ×

[−1,1] and S = {(xi , yi )}N−1
i=0 be a sample set containing N i.i.d. samples from D. Then,

for each δ > 0, with probability ≥ 1−δ over the choice of S, the following holds for all
θ ∈ B d

2 :

LD(θ)−LS(θ) ≤ 8

√
1

N
+4

√
log(1/δ)

2N
.

3.2.3 The classical Frank-Wolfe algorithm

Below is a description of the Frank-Wolfe algorithm with approximate linear solvers.
For now this is for an arbitrary convex objective function L and arbitrary compact
convex domain X of feasible solutions; for Lasso we will later instantiate these to the
quadratic loss function and ℓ1-ball, respectively. Frank-Wolfe finds an ε-approximate
solution to a convex optimization problem, using O(1/ε) iterations. It is a first-order

5Note that if θ ∈ B d
1 and ∥x∥∞ ≤ 1, then |〈θ, x〉| ≤ 1 by Hölder’s inequality.
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method: each iteration assumes access to the gradient of the objective function at the
current point. The algorithm considers the linearization of the objective function, and
moves towards a minimizer of this linear function without ever leaving the domain X
(in contrast to for instance projected gradient descent).

input : number of iterations T > 0; convex differentiable function L; compact
convex domain X ;

Let CL be the curvature constant of L;
Let θ0 be an arbitrary point in X ;
for t ← 0 to T do

τt = 2
t+2 ;

find s ∈X such that 〈s,∇L(θt )〉 ≤ min
s′∈X

〈s′,∇L(θt )〉+ τt CL
4 ;

θt+1 = (1−τt )θt +τt s;
end
output: θT ;

Algorithm 1: The Frank-Wolfe algorithm with approximate linear subproblems

The convergence rate of the Frank-Wolfe algorithm is affected by the “non-linearity”
of the objective function L, as measured by the curvature constant CL :

Definition 3.5. The curvature constant CL of a convex and differentiable function L :
Rd →Rwith respect to a convex domain X is defined as

CL ≡ sup
x,s∈X ,γ∈[0,1],

y=x+γ(s−x)

2

γ2
(L(y)−L(x)−〈∇L(x), (y −x)〉).

Next we give an upper bound for the curvature constant of the empirical loss func-
tion for Lasso.

Theorem 3.6. Let S = {(xi , yi )}N−1
i=0 with all entries of xi and yi in [−1,1]. Then the cur-

vature constant CLS of LS with respect to B d
1 is ≤ 8.

Proof. We know

LS(θ) = 1

N
∥Xθ− y∥2

2 =
(Xθ− y)T (Xθ− y)

N
= θT X T Xθ− yT Xθ−θT X T y + yT y

N
,

which implies the Hessian of LS is ∇2LS(z) = 2X T X
N , independent of z. By replacing sup

by max because the domain is compact, we have

CLS = max
x,s∈X ,γ∈[0,1],

y=x+γ(s−x)

2
γ2 (LS(y)−LS(x)−〈∇LS(x), (y −x)〉)

= max
x,s∈X ,γ∈[0,1]

〈(s −x),∇2LS · (s −x)〉 = max
x,s∈X

2
N ∥X (s −x)∥2

2.
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Each coefficient of X is at most 1 in absolute value, and s − x ∈ 2B d
1 , hence each entry

of the vector X (s−x) has magnitude at most 2. Therefore max
x,y∈B d

1

2
N ∥X (s−x)∥2

2 is at most

8.

The original Frank-Wolfe algorithm [FW56] assumed that the minimization to de-

termine the direction-of-change s was done exactly, without the additive error term
τt CLS

4
that we wrote in Algorithm 1. However, the following theorem, due to Jaggi [Jag13],
shows that solving approximate linear subproblems is sufficient for the Frank-Wolfe al-
gorithm to converge at an O(CLS /T ) rate, which means one can find an ε-approximate
solution with T =O(CLS /ε) iterations.

Theorem 3.7 ([Jag13], Theorem 1). For each iteration t ≥ 1, the corresponding θt of
Algorithm 1 satisfies

LS(θt )− min
θ′∈B d

1

LS(θ′) ≤ 3CLS

t +2
.

3.3 Approximating the quadratic loss function and entries
of its gradient

In this section, we give a quantum algorithm to estimate the quadratic loss function
LS(θ) and entries of its gradient, given query access to entries of the vectors in S =
{(xi , yi )}N−1

i=0 and given a KP-tree for θ ∈ B d
1 . One can estimate these numbers with ad-

ditive error β in time roughly 1/β.
We start with estimating entries of the gradient of the loss function at a given θ:

Theorem 3.8. Let θ ∈ B d
1 , and β,δ> 0. Suppose we have a KP-tree K Pθ of vector θ and

can make quantum queries to OK Pθ : |ℓ,k〉 |0〉 → |ℓ,k〉 |K Pθ(ℓ,k)〉. One can implement
Ũ∇LS : | j 〉 |0〉 → | j 〉 |Λ〉 such that for all j ∈ [d ]− 1, after measuring the state |Λ〉, with
probability ≥ 1−δ the first register λ of the outcome will satisfy |λ−∇ j LS(θ)| ≤ β, by

using Õ( log(1/δ)
β

) applications of OX , O†
X , Oy , O†

y , OK Pθ , O†
K Pθ

, and elementary gates.

Proof. Fix j in the following proof. Note that

∇ j LS(θ) = 2

N
(X T (Xθ− y)) j = 2

N

∑
i∈[N ]−1

Xi j · (Xθ− y)i = 2

N

∑
i∈[N ]−1

∑
k∈[d ]−1

Xi j Xi kθk −
2

N

∑
i∈[N ]−1

Xi j yi .

(3.1)

We will show how to estimate both terms of the right-hand side of Equation (3.1). De-
fine the positive-controlled rotation such that for each a ∈R

UC R+ : |a〉 |0〉→
{
|a〉 (

p
a |1〉+p

1−a |0〉), if a ∈ (0,1]

|a〉 |0〉 , otherwise.
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This can be implemented up to negligibly small error by Õ(1) elementary gates. Also,

by Theorem 2.11, we can implement Uθ : |0〉 |0〉→ |θ〉, where |θ〉 = ∑
j∈[d ]−1

p|θ j |p
∥θ∥1

| j 〉 |sign(θ j )〉,

using Õ(1) queries to OK Pθ , O†
K Pθ

, and elementary gates. We also use Uu : |i 〉 | j 〉 |k〉 |s〉 |0〉→
|i 〉 | j 〉 |k〉 |s〉 |s ·Xi j ·Xi k〉, where the last register is the product of three numbers; this Uu

can be implemented (with negligible error) via O(1) queries to OX , O†
X , and Õ(1) ele-

mentary gates.
First we estimate the first term 2

N

∑
i∈[N ]−1

∑
k∈[d ]−1

Xi j Xi kθk of Equation (3.1) with ad-

ditive error β/2. Generating the state

1p
N

∑
i∈[N ]−1

|i 〉 | j 〉 |0〉 |0〉 |0〉 |0〉 ,

and applying Uθ on the third and fourth registers, Uu on the first five registers, and
UC R+ on the last two registers, with sk = sign(θk ), we get

1√
N∥θ∥1

( ∑
i∈[N ]−1,k∈[d ]−1

sk Xi j Xi k>0

√
|θk | |i , j ,k, sk , sk Xi j Xi k〉 (

√
sk Xi j Xi k |1〉+

√
1− sk Xi j Xi k |0〉)

+ ∑
i∈[N ]−1,k∈[d ]−1

sk Xi j Xi k≤0

√
|θk | |i , j ,k, sk , sk Xi j Xi k〉 |0〉

)

= 1√
N∥θ∥1

( ∑
i∈[N ]−1,k∈[d ]−1
θk Xi j Xi k>0

√
θk Xi j Xi k |i , j ,k, sk , sk Xi j Xi k〉 |1〉

+ ( ∑
i∈[N ]−1,k∈[d ]−1
θk Xi j Xi k>0

√
|θk |(1− sk Xi j Xi k ) |i , j ,k, sk , sk Xi j Xi k〉+

∑
i∈[N ]−1,k∈[d ]−1
θk Xi j Xi k≤0

√
|θk | |i , j ,k, sk , sk Xi j Xi k〉

) |0〉)

=p
a+ |φ1〉 |1〉+

√
1−a+ |φ0〉 |0〉 , for a+ = ∑

i∈[N ]−1,k∈[d ]−1
θk Xi j Xi k>0

θk Xi j Xi k /(N∥θ∥1).

By Theorem 2.3, with failure probability at most 1/1000, we can estimate a+ with ad-
ditive error β/(8∥θ∥1) using O(∥θ∥1/β) applications of OX , O†

X , Uθ, U †
θ

, and Õ(∥θ∥1/β)
elementary gates. Note that our algorithm knows ∥θ∥1 because it is stored in the root
of K Pθ. We similarly estimate

a− =− ∑
i∈[N ]−1,k∈[d ]−1
θk Xi j Xi k<0

θk Xi j Xi k /(N∥θ∥1)

with additive error β/(8∥θ∥1). Hence we estimate 2
N

∑
i∈[N ]−1

Xi j ·(Xθ)i = 2∥θ∥1 ·(a+−a−)

with additive error β/2.
For the second term of the right-hand side of Equation (3.1) we use a very similar

strategy: we separately estimate its positive term and its negative term, each with ad-
ditive error β/4, using O(1/β) applications of OX , O†

X , Oy , O†
y , and Õ(1/β) elementary

gates, respectively. Therefore, we can estimate 1
N

∑
i∈[N ]−1

Xi j yi with additive error β/2.
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Combining the previous estimations, with failure probability at most 1/100, we es-
timate ∇ j LS(θ) with additive error β. Since ∥θ∥1 ≤ 1, we use Õ(1/β) applications of OX ,

O†
X , Oy , O†

y , OK Pθ , O†
K Pθ

, and elementary gates. By repeating the procedure O(log(1/δ))
times and taking the median of the outputs, we can decrease the failure probability
from at most 1/100 to at most δ.

Next we show how to estimate the value of the loss function itself at a given θ:

Theorem 3.9. Let θ ∈ B d
1 , and β,δ > 0. Suppose we have a KP-tree K Pθ of vector θ

and can make quantum queries to OK Pθ : |ℓ,k〉 |0〉 → |ℓ,k〉 |K Pθ(ℓ,k)〉. Then we can
implement ŨLS : |0〉 → |Λ〉 such that after measuring the state |Λ〉, with probability ≥
1−δ the first register λ of the outcome will satisfy |λ−LS(θ)| ≤ β, by using Õ( log(1/δ)

β
)

applications of OX , O†
X , Oy , O†

y , OK Pθ , O†
K Pθ

, and elementary gates.

Proof. Recall

LS(θ) = 1

N

∑
i∈[N ]−1

|〈xi ,θ〉− yi |2 = 1

N

∑
i∈[N ]−1

〈xi ,θ〉2 − 2

N

∑
i∈[N ]−1

yi 〈xi ,θ〉+ 1

N

∑
i∈[N ]−1

y2
i .

(3.2)

We use the positive controlled rotation gate defined in the proof of Theorem 3.8. By

Theorem 2.11, we can implement Uθ : |0〉 |0〉→ |θ〉, where |θ〉 = 1p
∥θ∥1

∑
j∈[d ]−1

√
|θ j | | j 〉 |sign(θ j )〉,

using Õ(1) queries to OK Pθ and elementary gates.

We start by estimating (with additive errorβ/4) the first term on the right-hand side
of Equation (3.2), which is

1

N

∑
i∈[N ]−1

〈xi ,θ〉2 = 1

N

∑
i∈[N ]−1

∑
k1,k2∈[d ]−1

θk1θk2 Xi k1 Xi k2 .

Let Uu : |i 〉 |k1〉 |s1〉 |k2〉 |s2〉 |0〉 → |i 〉 |k1〉 |s1〉 |k2〉 |s2〉 |s1s2Xi k1 Xi k2〉, where the last regis-
ter is the product of four numbers. This can be implemented (with negligible error) via
O(1) queries to OX , O†

X , and Õ(1) elementary gates.

We generate 1p
N

∑
i∈[N ]−1

|i 〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉, and apply Uθ twice to obtain the state

1p
N

∑
i∈[N ]−1

|i 〉 |θ〉⊗2 |0〉 |0〉. Applying Uu on the second to seventh registers and applying
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UC R+ on the last two, we obtain

1√
N∥θ∥2

1

( ∑
i∈[N ]−1,k1,k2∈[d ]−1

sk1 sk2 Xi k1 Xi k2>0

√
|θk1θk2 | |Zi ,k1,k2〉 (

√
sk1 sk2 Xi k1 Xi k2 |1〉+

√
1− sk1 sk2 Xi k1 Xi k2 |0〉)

+ ∑
i∈[N ]−1,k1,k2∈[d ]−1

sk1 sk2 Xi k1 Xi k2≤0

√
|θk1θk2 | |Zi ,k1,k2〉 |0〉

)

= 1√
N∥θ∥2

1

( ∑
i∈[N ]−1,k1,k2∈[d ]−1
θk1θk2 Xi k1 Xi k2>0

√
θk1θk2 Xi k1 Xi k2 |Zi ,k1,k2〉 |1〉

+ ( ∑
i∈[N ]−1,k1,k2∈[d ]−1
θk1θk2 Xi k1 Xi k2>0

√
|θk1θk2 |(1− sk1 sk2 Xi k1 Xi k2 ) |Zi ,k1,k2〉+

∑
i∈[N ]−1,k1,k2∈[d ]−1
θk1θk2 Xi k1 Xi k2≤0

√
|θk1θk2 | |Zi ,k1,k2〉

) |0〉)

=p
a+ |φ1〉 |1〉+

√
1−a+ |φ0〉 |0〉 , for a+ = ∑

i∈[N ]−1,k1,k2∈[d ]−1
θk1θk2 Xi k1 Xi k2>0

θk1θk2 Xi k1 Xi k2

N∥θ∥2
1

,

where sk1 = sign(θk1 ), sk2 = sign(θk2 ), Zi ,k1,k2 = (i ,k1, sk1 ,k2, sk2 , sk1 sk2 Xi k1 Xi k2 ).
By applying Theorem 2.3, with failure probability at most 1/1000, we can estimate

a+ with additive error β/(6∥θ∥2
1) using O(∥θ∥2

1/β) applications of OX , O†
X , Uθ, U †

θ
, and

Õ(∥θ∥2
1/β) elementary gates. Note that our algorithm knows ∥θ∥1 because it is stored

in the root of K Pθ. Similarly we estimate

a− =− ∑
i∈[N ]−1,k1,k2∈[d ]−1
θk1θk2 Xi k1 Xi k2<0

θk1θk2 Xi k1 Xi k2

N∥θ∥2
1

with the same additive error. Hence we can estimate

1

N

∑
i∈[N ]−1,k1,k2∈[d ]−1

θk1θk2 Xi k1 Xi k2 = ∥θ∥2
1 · (a+−a−)

with additive error β/3.
For the second and third terms of the right-hand side of Equation (3.2), we use a

similar strategy to estimate each with additive error β/3, using O(1/β) applications of
OX , O†

X , Oy , O†
y , Uθ, U †

θ
, and Õ(1/β) elementary gates.

Combining the previous estimations and the fact that we can implement Uθ by
Õ(1) queries to OK Pθ , O†

K Pθ
and ∥θ∥1 ≤ 1, with failure probability at most 1/100, we

can estimate LS(θ) with additive error β by using Õ(1/β) applications of OX , O†
X , Oy ,

O†
y , OK Pθ , O†

K Pθ
, and elementary gates. By repeating the procedure Θ(log(1/δ)) times

and taking the median among the outputs, we can decrease the failure probability from
at most 1/100 to at most δ.

If we have multiple vectors θ0, . . . ,θm−1, then we can apply the previous theorem
conditioned on the index of the vector we care about:

Corollary 3.10. Let θ0,θ1, . . . ,θm−1 ∈ B d
1 , and β,δ > 0. Suppose for all h ∈ [m]− 1, we

have a KP-tree K Pθh of vector θh and can make quantum queries to OK Pθ : |h,ℓ,k〉 |0〉→
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|h,ℓ,k〉 |K Pθh (ℓ,k)〉. Then we can implement ŨLS : |h〉 |0〉 → |h〉 |Λ〉 such that for all h ∈
[m]−1, after measuring the state |Λ〉, with probability ≥ 1−δ the first register λ of the

outcome will satisfy |λ−LS(θh)| ≤β, by using Õ( log(1/δ)
β ) applications of OX , O†

X , Oy , O†
y ,

OK Pθ , O†
K Pθ

, and elementary gates.

3.4 Quantum algorithms for Lasso

3.4.1 Quantum algorithms for Lasso with respect to S

In this subsection, we will show how to find an approximate minimizer for Lasso with
respect to a given sample set S. The following algorithm simply applies the Frank-Wolfe
algorithm to find an ε-minimizer for Lasso with respect to the sample set S given C , a
guess for the curvature constant CLS (which our algorithm does not know in advance).
Note that to find an s ∈ B d

1 such that 〈s,∇LS(θt )〉 ≤ min
s′∈X

〈s′,∇LS(θt )〉+τtCLS /4, it suffices

to only check s ∈ {±e0, . . . ,±ed−1} because the domain is B d
1 and ∇LS is a linear function

in θ. Also, by Theorem 3.6, the curvature constant CLS of loss function LS is at most 8
because (xi , yi ) is in [−1,1]d × [−1,1] for all i ∈ [N ]−1.

input : a positive value C ; additive error ε;
Let θ0 be the d-dimensional all-zero vector;

Let T = 6 · ⌈C
ε ⌉;

for t ← 0 to T do
τt = 2

t+2 ;
Let s ∈ {±e0, . . . ,±ed−1} be such that
〈∇LS(θt ), s〉 ≤ min

j ′∈[d ]−1
−|∇ j ′LS(θt )|+ C

8t+16 ;

θt+1 = (1−τt )θt +τt s;
end
output: θT ;

Algorithm 2: The algorithm for Lasso with a guess C for the value of the curva-
ture constant

It is worth mentioning that Algorithm 2 also outputs an ε-minimizer if its input
C equals the curvature constant CLS approximately instead of exactly. For example,
suppose we only know that the curvature constant CLS is between C and 2C , where
C is the input in Algorithm 2. Then the output of Algorithm 2 is still an ε-minimizer.
We can see this by first observing that the error we are allowed to make for the linear

subproblem in iteration t is
CLS
4t+8 ≥ C

8t+16 , and hence by Theorem 3.7, after T = 6 · ⌈C
ε
⌉

iterations, the output θT is a 3C
(T+2) = 3C

6·⌈C /ε⌉+2 -minimizer for LS . Because 3C
6·⌈C /ε⌉+2 ≤ ε,

the output θT is therefore an ε-minimizer.
In the Lasso case, we do not know how to find a positive number C such that CLS ∈

[C ,2C ], but we know CLS ≤ 8 by Theorem 3.6. Hence we can try different intervals of
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possible values for CLS : we apply Algorithm 2 with different input C = 8,4,2, . . . ,2−⌈log(1/ε)⌉,
and then we collect all outputs of Algorithm 2 with those different inputs, as candi-
dates. After that, we compute the objective values of all those candidates, and output
the one with minimum objective value. If CLS ∈ (ε,8], then at least one of the values we
tried for C will be within a factor of 2 of the actual curvature constant CLS . Hence one
of our candidates is an ε-minimizer.

However, we also need to deal with the case that CLS ≤ ε. In this case, we consider
the “one-step” version of the Frank-Wolfe algorithm, where the number of iterations
is 1. But now we do not estimate 〈∇LS(θt ), s〉 anymore (i.e., we do not solve linear
subproblems anymore). We find that the only possible directions are the vertices of
the ℓ1-ball, and θ0 is the all-zero vector, implying that θ1, the output of one-step Frank-
Wolfe, must be in I = {±e0/3, . . . ,±ed−1/3} by the update rule of Frank-Wolfe. Besides,

CLS ≤ ε implies that θ1 is a
3CLS
1+2 ≤ ε-minimizer for Lasso. Hence we simply output a

v = argmin
v ′∈I

LS(v ′) if CLS ≤ ε.

Combining the above arguments gives the following algorithm:

input : ε;
Let v ∈ {±e0/3, . . . ,±ed−1/3} be such that LS(v)−min j∈[d ]−1 LS(±e j /3) ≤ ε/10;
Let candidate set A = {v};

for C ← 8,4,2,1, 1
2 , . . . ,2−⌈log(1/ε)⌉−1 do

RUN Algorithm 2 with inputs C and ε/10;
ADD the output of Algorithm 2 to A;

end
output: argminw∈A LS(w);

Algorithm 3: The algorithm for Lasso

Theorem 3.11. Let S = {(xi , yi )}N−1
i=0 be the given sample set stored in QROM. For each

ε ∈ (0,0.5), there exists a bounded-error quantum algorithm that finds an ε-minimizer

for Lasso with respect to sample set S using Õ(
p

d
ε2 ) time and Õ( 1

ε ) QRAM and classical
space.

Proof. We will implement Algorithm 3 in Õ(
p

d
ε2 ) time and Õ( 1

ε ) QRAM space. Below we
analyze its different components.

Analysis of Algorithm 2. We first show that we can implement Algorithm 2 in Õ(
p

d
ε2 )

time. Because CLS ≤ 8 (Theorem 3.6), the number of iterations for Algorithm 2 with
input C = CLS is at most 6 · ⌈8

ε⌉. However, as we mentioned above, we don’t know how
large CLS is exactly, so we try all possible inputs (of Algorithm 2) in Algorithm 3. Note
that for every input C ∈ {8,4,2,1, 1

2 , . . . ,2−⌈log(1/ε)⌉−1} and for every number of iterations
t ∈ {1, . . . ,6 · ⌈C

ε
⌉}, C

4t+8 is at least ε
10 , so it suffices to ensure that in each iteration in each

of our runs of Algorithm 2, the additive error for the approximate linear subproblem is
≤ ε

10 .
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Suppose we have K Pθt for each iteration t of Algorithm 2, and suppose we can
make queries to OK Pθt , then by Theorem 3.8, one can implement Ũ∇LS : | j 〉 |0〉→ | j 〉 |Λ〉
such that for all j ∈ [d ]−1, after measuring the state |Λ〉, with probability≥ 1− ε2

2d ·1020·log6(1/ε)

the first register λ of the measurement outcome will satisfy |λ−∇ j LS(θ)| ≤ ε
20 , by using

Õ( log(d/ε)
ε ) time and queries to OK Pθt , O†

K Pθt
. Then by Theorem 2.5, with failure prob-

ability at most ε
10000log(1/ε) , one can find s ∈ {±e0, . . . ,±ed−1} such that 〈∇LS(θt ), s〉 ≤

min
j ′∈[d ]−1

−|∇ j ′LS(θt )| + 2 · ε
20 , by using Õ(

p
d · log(1/ε)) applications of Ũ∇LS and Ũ †

∇LS
,

and Õ(
p

d) elementary gates.
For each iteration t in Algorithm 2, we also maintain K Pθt and hence we can make

quantum queries to OK Pθt . The cost for constructing K Pθ0 and the cost for updating

K Pθt to K Pθt+1 is Õ(1) for both time and space by Theorem 2.10. Moreover, the total
number of iterations T is at most 6 · ⌈8

ε
⌉ in Algorithm 2 because CLS ≤ 8, and hence the

space cost for maintaining K Pθt and implementing OK Pθt is Õ( 1
ε

) bits. Hence we can

implement Algorithm 2 with failure probability at most ⌈8
ε⌉ · 6ε

10000log(1/ε) using Õ(
p

d
ε2 )

time and Õ( 1
ε ) bits of QRAM and classical space.

Analysis of Algorithm 3. Now we show how to implement Algorithm 3 with failure

probability at most 1/10 using Õ(
p

d
ε2 ) time. By Corollary 3.10, one can implement ŨLS :

| j 〉 |0〉 → | j 〉 |Λ〉 such that for all j ∈ [d ]− 1, after measuring the state |Λ〉, with failure
probability at most 1

2d ·1016 the first register λ of the outcome will satisfy |λ−LS(e j /3)| ≤
ε/20 using Õ( 1

ε
) time. Then by Theorem 2.5, with failure probability at most 0.0001+

1000 · log(1000)
√

2d
2d ·1016 ≤ 2

1000 we can find v ∈ {±e0/3, . . . ,±ed−1/3} such that LS(v)−
min j∈[d ]−1 LS(±e j /3) ≤ 2 ·ε/20 = ε/10 by using Õ(

p
d) applications of ŨLS and Ũ †

LS
and

Õ(
p

d) elementary gates, and hence Õ(
p

d
ε

) time.
Because Algorithm 3 runs Algorithm 2 ⌈log(1/ε)⌉ times and each run fails with prob-

ability at most ⌈8
ε⌉· 6ε

10000log(1/ε) , the candidate set A, with failure probability ⌈8
ε⌉· 6ε

10000log(1/ε) ·
⌈log(1/ε)⌉+ 2

1000 ≤ 1
20 , contains an ε

10 -minimizer. To output argminw∈A LS(w), we use
Theorem 3.9 to evaluate LS(w) for all w ∈ A with additive error ε

10 with failure probabil-
ity at most 1

40log(1/ε) , and hence we find an ε/10-minimizer among A with probability

at least 1−1/20−⌈log(1/ε)⌉· 1
40log(1/ε) ≥ 0.9. Because the candidate set A contains an ε

10 -

minimizer for Lasso, the ε
10 -minimizer among A is therefore an ε-minimizer for Lasso.

The QRAM and classical space cost for each run is at most Õ( 1
ε ) because the space cost

for Algorithm 2 is Õ( 1
ε ). Hence the total cost for implementing Algorithm 3 is Õ(

p
d
ε2 )

time and Õ( 1
ε

) bits of QRAM and classical space.

3.4.2 Quantum algorithms for Lasso with respect to D
In the previous subsection, we showed that we can find an ε-minimizer for Lasso with
respect to sample set S. Here we show how we can find an ε-minimizer for Lasso with
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respect to distribution D. First sample a set S of N = Õ((logd)/ε2) i.i.d. samples from
D, which is the input that will be stored in QROM, and then find an ε/2-minimizer for
Lasso with respect to S by Theorem 3.11. By Theorem 3.3, with high probability, an
ε/2-minimizer for Lasso with respect to S will be an ε-minimizer for Lasso with respect
to distribution D. Hence we obtain the following corollary:

Corollary 3.12. Let S = {(xi , yi )}N−1
i=0 be the given sample set, sampled i.i.d. from D. For

arbitrary ε > 0, if N = Õ( logd
ε2 ), then there exists a bounded-error quantum algorithm

that finds an ε-minimizer for Lasso with respect to distribution D using Õ(
p

d
ε2 ) queries

to OX , Oy and elementary gates, and using Õ( 1
ε ) space (QRAM and classical bits).

We can also use Theorem 2.12 to avoid the usage of QRAM in the above corollary
with Õ(1/ε) extra overhead.

Corollary 3.13. Let S = {(xi , yi )}N−1
i=0 be the given sample set, sampled i.i.d. from D. For

arbitrary ε > 0, if N = Õ( logd
ε2 ), then there exists a bounded-error quantum algorithm

that finds an ε-minimizer for Lasso with respect to distribution D using Õ(
p

d
ε3 ) queries

to OX , Oy and elementary gates, and using Õ( 1
ε

) classical bits.

3.5 Open problems

We mention a few directions for future work:

• While we gave a quantum speedup for Lasso with respect to d-dependence (we
also show this dimension-dependency is tight in Chapter 6), the ε-dependence
still remains the same as classical. So a natural question is if we can also show a
quantum speedup in terms of ε-dependency. At the very beginning we felt this
might be possible by using a version of accelerated gradient descent [Nes83] with
O(1/

p
ε) iterations instead of Frank-Wolfe’s O(1/ε) iterations. However, we soon

realized that to leverage accelerated gradient descent effectively, precise gradient
calculations are necessary (thus negating any quantum speedup). Otherwise,
the accumulation of errors would result in a convergence rate of O(1/T ) rather
than O(1/T 2) (where T represents the number of iterations), implying that the
algorithm still requires O(1/ε) iterations, similar to the Frank-Wolfe approach.

• Similar question for Ridge: can we provide a quantum algorithm with better
ε-dependence while the d-dependency remains the same? If we don’t ask for
the linear dimension-dependency, we can actually achieve a quantum algorithm
for Ridge with ε-dependency Õ(1/ε) by combining the state-tomography result
(Corollary 4.7 in Chapter 4) and the result by Chakraborty, Morolia, and Peduri [CMP23].
However, the running time of the algorithm stated above will end up being Õ(d 1.5/ε)
(assuming the condition number of the matrix X is constant) whose d-dependency
is significantly worse than the best known classical algorithm. The most interest-
ing outcome would be a quantum algorithm for Ridge with better ε-dependence
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than the optimal classical complexity of Θ̃(d/ε2) and with the same d-dependency;
currently we do not know of any reasonable quantum speedup for Ridge.

• Can we speed up some other methods for (smooth) convex optimization? In par-
ticular, can we find a classical iterative method where quantum algorithms can
significantly reduce the number of iterations, rather than just the cost per itera-
tion as we did here?

• There are many connections between Lasso and Support Vector Machines [Jag14],
and there are recent quantum algorithms for optimizing SVMs [RML14; SK19;
SA19; AH20; SPA21]. We would like to understand this connection better, espe-
cially about how an ε-minimizer for Lasso can be converted to an ε-optimizer for
SVM.
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CHAPTER 4

Quantum algorithms for approximating
the top eigenvectors

4.1 Introduction

Arguably, the most important property of a diagonalizable d ×d matrix A is its largest
eigenvalue λ1, with an associated eigenvector v1. One can consider the top eigenvec-
tor v1 as the most important “direction” in which the matrix A operates. The ability to
efficiently find v1 is an important tool in many applications, for instance, in the PageR-
ank algorithm of Google’s search engine, as a starting point for Principal Component
Analysis (for clustering or dimensionality-reduction), for Fisher discriminant analysis,
or in continuous optimization problems where sometimes the best thing to do is to
move the current point in the direction of the top eigenvector of an associated matrix.

One way to find the top eigenvector of A is to diagonalize the whole matrix. Theo-
retically this takes matrix multiplication time: O(dω) where ω ∈ [2,2.37. . .) is the still-
unknown matrix multiplication exponent. In practice often Gaussian elimination (which
takes time O(d 3)) is actually faster, unless d is enormous. Diagonalization gives us not
only the top eigenvector but a complete orthonormal set of d eigenvectors. However,
this is overkilled if we only care about finding the top eigenvector, or the top-q eigen-
vectors for some q ≪ d , and better methods exist in this case (see e.g. [Par87] for a
whole book about this).

The power method for approximating a top eigenvector A quite efficient method for
(approximately) finding the top eigenvector is the iterative “power method”. This uses
simple matrix-vector multiplications instead of any kind of matrix decompositions,
and works as follows. We start with a random unit vector w0 (say with i.i.d. Gaussian
entries with variance 1/d). This is a linear combination

∑d
i=1αi vi of the d unit eigen-

vectors v1, . . . , vd of the Hermitian matrix A, with coefficients of magnitude typically
around 1/

p
d . Then we apply A to this vector some K times, computing w1 = Aw0,

w2 = Aw1, etc., up to wK = AK w0. This has the effect of multiplying each coefficientαi
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with the powered eigenvalue λK
i . If there is some “gap” between the first two eigenval-

ues (say |λ1|−|λ2| ≥ γ> 0, or |λ1/λ2| > 1), then the relative weight of the coefficient of v1

will start to dominate all the other coefficients even already for small K , and the renor-
malization of the final vector wK = AK w0 will be close to v1, up to global phase. Specif-
ically, if A has bounded operator norm and eigenvalue gap γ, then K = O

(
log(d)/γ

)
iterations suffice to approximate v1 up to 1/poly(d) ℓ2-error (see e.g. [GL13, Section
8.2.1] for details).

The cost of this algorithm is dominated by the K matrix-vector multiplications,
each of which costs Õ

(
d 2

)
time classically.1 Hence if the eigenvalue gap γ is not too

small, say constant or at least 1/polylog(d), then the power method takes Õ(d 2) time
to approximate a top eigenvector.Unsurprisingly, as we show in Section 7.3 in Chap-
ter 7, Ω(d 2) queries to the entries of A are also necessary for classical algorithms for
this task.

4.1.1 Main results and high-level intuition

Our main results in this chapter are two faster quantum algorithms for (approximately)
finding the top eigenvector of a Hermitian matrix A.2 Both quantum algorithms run a
version of the classical power method (also known as the noisy power method) that
is robust to certain benign kinds of errors, where we implement each matrix-vector
multiplication with small and well-behaved (sub-Gaussian) error in different ways for
the two algorithms.

Approximate matrix-vector multiplication by Gaussian phase estimation. Our first
algorithm uses that each entry of the vector Aw is an inner product between a row
of A and the column-vector w . Because such an inner product is the sum of d num-
bers, we may hope to approximate it well via some version of amplitude estimation or
quantum counting, using roughly

p
d time per entry and d 1.5 time for all d entries of

Aw together. This approach is easier said than done, because basic quantum-counting
subroutines produce small errors in the approximation of each entry, and those errors
might add up to a largeℓ2-error in the d-dimensional vector Aw as a whole. To mitigate
this issue we develop a “Gaussian phase estimation” procedure that can estimate one
entry of Aw with a complexity that is similar to standard phase estimation, but with
well-behaved sub-Gaussian error. These well-behaved errors in individual entries typ-
ically still add up to a large ℓ2-error for the vector Aw as a whole. However, with very
high probability the error remains small in one or a few fixed directions—including
the direction of the unknown top eigenvector. To speed up the computation of each
entry, we split the rows into “small” and “large” entries, and handle them separately.

1It costs less if A is sparse: if A has s nonzero entries, given in some easily-accessible way like lists of
nonzero entries for each row, then it costs Õ (s) time.

2If the matrix A is non-Hermitian, then we could instead use the Hermitian matrix A′ =
[

0 A
A† 0

]
for finding the largest (left or right) singular value of A, replacing the eigenvalue gap with the singular
value gap.
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This divide-and-conquer approach uses Õ
(
d 1.75

)
time in total for the d entries of Aw

(Theorem 4.10). This is asymptotically worse than our second algorithm (described
below), but we still feel it merits inclusion because it uses an intuitive entry-by-entry
approach, it has a slightly better dependence on the precision than our second algo-
rithm, and most importantly our new technique of Gaussian phase estimation may
find applications elsewhere.

Approximate matrix-vector multiplication by unbiased pure state tomography. Our
second algorithm is faster and more “holistic”; it does not approximate the matrix-
vector product Aw entry-by-entry. Instead it implements a block-encoding of the ma-
trix A, uses that to (approximately) produce Aw as a log(d)-qubit state, and then ap-
plies a subtle tomography procedure to obtain a classical estimate of the vector Aw
with small ℓ2-error.3 The introduced new tomography procedure incorporates ideas
from [KP20] and [ACG+23]. The procedure first estimates the magnitudes of an un-
known quantum state |ψ〉’s entries to get a reference state |ψ̄〉 whose entries are just
(approximate) magnitudes of |ψ〉. After that, it prepares and measures (|+〉|ψ〉+|−〉|ψ̄〉)/

p
2

in the computational basis. By O(d) measurement outcomes, we can recover the un-
known state |ψ〉 with both bounded ℓ2-norm error and bounded variance.4 This pro-
cedure matches the essentially optimal query complexity stated in [ACG+23], but im-
proves upon both their time complexities. Doing tomography at the end of each it-
eration of the power method is somewhat expensive (since we need d 0.5+o(1) time to
produce |Aw〉, and extra O(d) overhead for state tomography), but still leaves us with
a time complexity of only d 1.5+o(1) (Corollary 4.16 with q = 1 and s = d), which turns out
to be a near-optimal quantum speed-up over classical, as our lower bounds (discussed
in Chapter 7) imply.

Quantum noisy power method. In both of our algorithms, the vector resulting in
each iteration from our approximate matrix-vector multiplication will have small er-
rors compared to the perfect matrix-vector product. In the basic power method we
cannot tolerate small errors in adversarial directions: if w0 has roughly 1/

p
d overlap

with the top eigenvector v1, and we compute Aw0 with ℓ2-error > λ1/
p

d , then our
approximation to the vector Aw0 may have no overlap with v1 at all anymore! If this
happens, if we lose the initially-small overlap with the top eigenvector, then the power
method fails to converge to v1 even if all later matrix-vector multiplications are im-
plemented perfectly. Fortunately, Hardt and Price [HP14] have already showed that
the power method is robust against errors in the matrix-vector computations if they

3In fact our second algorithm first implements a block-encoding of the rank-1 projectorΠ= v1v†
1 us-

ing Õ
(
1/γ

)
applications of an approximate block-encoding of the matrix A (by applying QSVT [GSL+19,

Theorem 31]), and then applies our state tomography algorithm to obtain a classical estimate of the vec-
tor Πw , which is proportional to v1. This increases the spectral gap from γ to Θ(1) and hence further
improves our γ-dependency.

4The measurement outcome of (|+〉|ψ〉 + |−〉|ψ̄〉)/
p

2 only gives us the information of the real part
of the unknown state, but we can similarly prepare and measure the state (|+〉|ψ〉+ i |−〉|ψ̄〉)/

p
2 in the

computational basis to read out the information of the imaginary part. See Section 4.3.2 for more details.
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are sufficiently well-behaved (in particular, entrywise sub-Gaussian errors with mod-
erate variance suffice). Much of the technical effort in our quantum subroutines for
matrix-vector multiplication is to ensure that the errors in the resulting vector are in-
deed sufficiently well-behaved not to break the noisy power method.5

Finding the top-q eigenvectors. Going beyond just the top eigenvector, the ability to
find the top-q eigenvectors (with q ≪ d) is crucial for many applications in machine
learning and data analysis, such as spectral clustering, Principal Component Analy-
sis, low-rank approximation of A, and dimensionality reduction of d-dimensional data
vectors w (e.g., projecting the data vectors onto the span of the top-q eigenvectors of
the covariance matrix A = E[w w T ]). In most cases it suffices to (approximately) find
the subspace spanned by the top-q eigenvectors of A rather than the individual top-
q eigenvectors v1, . . . , vq , which is fortunate because distinguishing v1, . . . , vq can be
quite expensive if the corresponding eigenvalues λ1, . . . ,λq are close together.

The noisy power method can also (approximately) find the subspace spanned by
the top-q eigenvectors of A, assuming some known gap γ between the qth and (q+1)th
eigenvalue. Using our knowledge of the gap, we give an algorithm to approximate λq

(Corollary 4.14). Knowingλq and this gap (at least approximately), we then show how a
block-encoding of A can be efficiently converted using quantum singular-value trans-
formation [GSL+19] into a block-encoding of the projector Π that projects onto the
subspace spanned by the top-q eigenvectors. In Section 4.4.3 we give a new almost
optimal process-tomography algorithm for recovering the projector Π, assuming only
the ability to apply (controlled) reflections 2Π− I about the rank-q subspace that we
are trying to recover (Theorem 4.11). This algorithm, applied to Π, gives us the sub-
space corresponding to the top-q eigenvectors of A. For constant eigenvalue gap and
desired precision, it uses time qd 1.5+o(1). In fact, what we above called our “second
algorithm” for finding the top eigenvector is just the special case q = 1. In the case
where A is s-sparse (meaning each row and column of A has ≤ s nonzero entries) and
we have sparse-query-access to it, the time complexity becomes q

p
sd 1+o(1) (Corol-

lary 4.16; this result implies the claim of the previous sentence by setting s = d). If the
pairwise spacing between the first q eigenvalues is at least Ω(1/q), then we can also
(approximately) find each of the eigenvectors v1, . . . , vq individually, at the expensive
of poly(q) more time.

5For simplicity we assume here that γ (or some sufficiently good approximation of it) is known to
our algorithm. However, because we can efficiently approximate |λ1| (by [AGG+20, Lemma 50], one can
estimate λ1 with additive error γ/4 using Õ(d 1.5/γ) time) and verify whether the output of our algorithm
is approximately an eigenvector for this eigenvalue by one approximate matrix-vector computation, we
can actually try exponentially decreasing guesses for γ until the algorithm returns an approximate top
eigenvector.

It should be noted that our algorithm has polynomial dependence on the precision ε, namely linear
in 1/ε, which is worse than the log(1/ε) dependence of the classical power method with perfect matrix-
vector calculations. This is the price we pay for our polynomial speed-up in terms of the dimension. For
many applications, the precision need not be extremely small and there our polynomial dependence
on ε would be an acceptable price to pay.
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As a byproduct of this algorithm we also obtain a qualitatively improved tomogra-
phy procedure that works assuming the ability to reflect around the state that we want
to estimate, but does not need the stronger assumption of being able to prepare that
state.

Roadmap In Section 4.2 we introduce a new method to do the phase estimation with
the guarantee that the error is sub-Gaussian and in Section 4.3, we introduce a new
time-efficient quantum state tomography procedure. Both above-mentioned tools can
be used to compute approximate matrix-vector products, which will be elaborated in
Section 4.4. In Section 4.4 we further explain how to use approximate matrix-vector
products to approximate the top eigenvector.

Remark In the whole Chapter 4, when we use the notation for KP-tree, it always
means the KP-tree with respect to ℓ2-norm (see Section 2.4.2). In Section 4.2, when
we use the notation ρs and when we mention discrete Gaussian distribution, it is al-
ways over R.

4.2 Quantum Gaussian phase estimator

Before we explain our quantum noisy power method, we introduce another tool which
we call the “quantum Gaussian phase estimator”. Its aim is to do phase estimation with
(approximately) Gaussian error on the estimate. The high-level idea of this estimator is
to replace the initial uniform superposition in the algorithm of phase estimation [Kit95;
CEM+98] by a discrete Gaussian quantum state, with standard deviation s; then the
distribution of the error ã −a between the amplitude a and the estimator ã produced
by the quantum Gaussian amplitude estimator, is also a discrete Gaussian distribution,
now with standard deviation 1/s. Since the latter distribution is sub-Gaussian with
parameter 1/s, with probability at least 1−δ the output is at most

√
log(1/δ)/s away

from a.

Recall that ρs is the pdf for the Gaussian with standard deviation s, defined in Sec-
tion 2.7.1. We first use Corollary 2.25 and the discussion above Corollary 2.25 to show
that the truncated discrete Gaussian state is close to the modular discrete Gaussian
state when N , s are both reasonably large.

Theorem 4.1. Let δ ∈ (0,0.1], s ≥ 8
√

2log( 1
δ ), N ≥ 16s

√
2ln( 1

δ ) even number, and t ∈
[−N

8 , N
8 ]. Let f :R→C be an arbitrary phase function such that | f (x)| = 1 for every x ∈R
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and

|G〉 = 1p
G

∑
x∈Z

f (x + t )ρs(x + t ) |x〉 ,

|G tr 〉 = 1p
Gtr

∑
x∈{−N

2 ...,0,..., N
2 −1}

f (x + t )ρs(x + t ) |x〉 ,

|Gmod 〉 = 1p
Gmod

∑
x∈Z

f (x + t )ρs(x + t ) |(x + N

2
mod N )− N

2
〉 ,

where G ,Gmod ,Gtr are normalizing factors. Then |G tr 〉 , |Gmod 〉 , |G〉 are 9δ-close to each
other.6

Proof. Let [[±a]] denote the set {−⌈a⌉ . . . ,0, . . . ,⌈a⌉− 1}. We first show |G tr 〉 is close to

|G〉. Define |G̃ tr 〉 =
√

Gtr
G |G tr 〉, which has ℓ2-norm

√
Gtr
G ≤ 1. We can see

∥|G̃ tr 〉− |G〉∥2 = 1

G

∑
x∈Z\[[±N

2 ]]

ρ2
s (x + t ) ≤ 1

G

∑
x∈Z\{x:|x+t |≤N /4}

ρ2
s (x + t ) ≤ δ2,

where the last equality holds because ρ2
s = ρs/

p
2 and DZ+t ,s/

p
2 is δ2-sub-Gaussian with

parameter s/
p

2 by Theorem 2.24 (note s/
p

2 ≥ 8
√

log(1/δ) ≥ √
log(12/δ2)/π) and be-

cause of the first property of sub-Gaussians: Pr[|x+t | > N /4] ≤ 2exp(δ2)exp(−(N /4)2/(2·
s2/2)) ≤ δ2. Note that 1 ≥ ∥|G̃ tr 〉∥ ≥ ∥|G〉∥−∥|G̃ tr 〉− |G〉∥ ≥ 1−δ and hence ∥|G̃ tr 〉−
|G tr 〉∥ = ∥(

√
Gtr
G −1) |G tr 〉∥ ≤ δ. Therefore, we obtain

∥|G tr 〉− |G〉∥ ≤ ∥|G̃ tr 〉− |G tr 〉∥+∥|G̃ tr 〉− |G〉∥ ≤ 2δ.

To show |Gmod 〉 is close to |G〉, let us similarly define |�Gmod 〉 =
√

Gmod
G |Gmod 〉. We can

see

∥|�Gmod 〉− |G〉∥2 ≤ 1

G

∑
x∈[[±N

2 ]]

( ∑
y∈Z\{0}

ρs(x + t +N y)
)2 + 1

G

∑
x∈Z\[[±N

2 ]]

(
ρs(x + t )

)2
.

To upper bound the first term in the RHS above, we split the domain of x into three
disjoint parts: D1 = {x ∈ [[±N

2 ]] : |x + t | ≤ N /4}, D2 = {x ∈ [[±N
2 ]] : N /2 ≥ |x + t | > N /4},

and D3 = {x ∈ [[±N
2 ]] : |x + t | > N /2}.

When x ∈ D1, we can see
∑

y∈Z\{0}
ρs(x+t+N y) ≤ ρs(x+t )·2

∞∑
y=1

δ2y = ρs(x+t )·2δ2/(1−
δ2), because for every y ∈N∪ {0} and x ∈ D1 both

ρs(x + t + (y +1)N )/ρs(x + t + y N ) = exp(− π

s2
·N (2(x + t )+ (2y +1)N )) ≤ δ2 (4.1)

6Equivalently, if t ∈ [−5N /8,−3N /8] (and the constraints for N , s remain the same), then |G〉,
|(G tr )′〉 = 1p

Gtr

∑
x∈[N ]

f (x + t )ρs (x + t ) |x〉 , |(Gmod )′〉 = 1p
Gmod

∑
x∈Z

f (x + t )ρs (x + t ) |x mod N )〉 are 9δ-close

to each other.
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and

ρs(x + t − (y +1)N )/ρs(x + t − y N ) = exp(− π

s2
·N (−2(x + t )+ (2y +1)N )) ≤ δ2 (4.2)

hold (because exp(− π
s2 ·N (N ±2(x + t )) ≤ exp(− π

s2 · N 2

2 ) ≤ δ2 for every x ∈ D1).
When x ∈ D2 we use a similar argument, the only difference is that Equations 4.1

and 4.2 now hold for every y ∈N (excluding 0), so

∑
y∈Z\{0}

ρs(x + t +N y) ≤ ρs(x + t ) ·2
∞∑

y=0
δ2y = ρs(x + t ) ·2/(1−δ2).

When x ∈ D3, we can see that either x +N or x −N is N /2-close to (but 3N /8-far from)
−t , and without loss of generality and for simplicity we can assume |x + N − (−t )| ∈
[3N /8, N /2]. Then using a similar argument as for the x ∈ D2, we can show that for
every x ∈ D3, ∑

y∈Z\{0}
ρs(x + t +N y) ≤ ρs(x +N + t ) ·2/(1−δ2).

Since ρ2
s = ρs/

p
2 and DZ+t ,s/

p
2 is δ2-sub-Gaussian with parameter s/

p
2, we have

∥|�Gmod 〉− |G〉∥2 ≤ 1

G

∑
x∈D1∪D2∪D3

( ∑
y∈Z\{0}

ρs(x + t +N y)
)2 + 1

G

∑
x∈Z\[[±N

2 ]]

(
ρs(x + t )

)2

≤ 1

G

(
(

2δ2

1−δ2
)2

∑
x∈D1

ρ sp
2

(x + t )+ (
2

1−δ2
)2

∑
x∈D2

ρ sp
2

(x + t )+ (
2

1−δ2
)2

∑
x∈D3

ρ sp
2

(x +N + t )+δ2G
)

≤ 1

G

( 4δ4

(1−δ2)2
G + 8

(1−δ2)2
(δ2G)+δ2G

)
= 4δ4 +8δ2

1−δ2
+δ2 ≤ 10δ2,

where the second equality holds because∑
x∈D2

ρs/
p

2(x + t )+ ∑
x∈D3

ρs/
p

2(x +N + t )

≤ ∑
x∈Z\{x:|x+t |≤N /8}

ρs/
p

2(x + t ) ≤G ·2exp(δ2)exp(−(N /8)2/(2 · s2/2)) ≤ δ2G .

Note that ∥|�Gmod 〉∥ ∈ ∥|G〉∥ ± ∥|�Gmod 〉 − |G〉∥ (implying ∥|�Gmod 〉∥ ∈ (1±p
10δ)) and

hence ∥|�Gmod 〉−|Gmod 〉∥ = ∥(
√

Gmod
G −1) |Gmod 〉∥ ≤p

10δ. As a result, we obtain ∥|Gmod 〉−
|G〉∥ ≤ ∥|�Gmod 〉− |G〉∥+∥|�Gmod 〉− |Gmod 〉∥ ≤ 2

p
10δ < 7δ. And by triangle inequality,

we obtain ∥|Gmod 〉− |G tr 〉∥ ≤ ∥|Gmod 〉− |G〉∥+∥|G〉− |G tr 〉∥ ≤ 9δ.

Using the above theorem, we now show the correctness of our quantum Gaussian
phase estimator.

Theorem 4.2. Let δ ∈ (0,0.1], s ≥ 20
√

2log(1/δ), a ∈ [0,1], N = 200 · ⌈s
√

log(100/δ)⌉, U
be a unitary, |ψ〉 be an eigenvector of U such that U |ψ〉 = exp(πi a/4) |ψ〉. There exists a
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quantum algorithm that for every such U and a, given one copy of |ψ〉, outputs an esti-
mator ã satisfying that a − ã distributes δ-close to D 8

N ·Z− 8
N ν, 8p

2s
for some ν ∈ [0,1), using

O(s ·polylog(s/δ)) applications of controlled-U , controlled-U−1 and Õ(s ·polylog(s/δ))
time.

Proof. We first explain the algorithm of our quantum Gaussian phase estimator. Let
|ρ̃s〉 = 1p

G̃

∑
z∈{−N /2,...,N /2−1}

ρs(z) |z〉, where G̃ is a normalizing constant. Let Uz be a uni-

tary that maps |z〉 |ψ〉→ |z〉U z |ψ〉 for z ∈ {−N /2, . . . , N /2−1}, and Uπ be a unitary that
maps |z〉→ (−1)z |z〉 (this Uπ is basically a Z -gate on the least-significant bit of z).

The algorithm is as follows. We first prepare the state |ρ̃s〉 |w ′〉. We then apply Uz

to this state, apply Uπ, apply QFT−1
N on the first register, and then measure the first

register in the computational basis, divide the outcome value by N /8, subtract 4 from
it, and output this value.

We first explain the time complexity of the above algorithm. To prepare |ρ̃s〉, it
suffices to compute all values of ρs(z) for z ∈ {−N /2, . . . , N /2−1},7 and computing all
those values (ρs(−N /2), . . . ,ρs(N /2−1)) and constructing a KP-tree with those values
stored in its leaves takes O(N ·polylog N ) time. To construct the unitary Uz , it suffices
to use O(N polylog N ) applications of controlled-U , controlled-U−1 and time. Also,
QFTN can be implemented using O(log2 N ) elementary gates. As a result, the total cost
here is O(N log N · log(1/δ)+ log2 N ) =O(s ·polylog(s/δ)) time and O(N ·polylog N ) =
O(s ·polylog(s/δ)) applications of controlled-U , controlled-U−1.

Now we show the correctness of the above algorithm. Applying UπUz to |ρ̃s〉 |w ′〉
gives the state 1p

G ′
∑

z∈{−N /2,...,N /2−1}
ρs(z)(−1)z exp(πi az/4) |z〉 |w ′〉. If we discard the sec-

ond register, which is in tensor product with the rest of the state, then the remaining
state is also 9δ-close to

|Ψ〉 = 1p
G

∑
z∈Z

ρs(z)exp(2πi (a/8+1/2)z) |(z +N /2 mod N )−N /2〉

because s ≥ 8
√

2log(1/δ), N > 16s
p

2ln(1/δ), and by Theorem 4.1, where G is a nor-
malizing constant. Therefore, the distribution of the outcome of the quantum Gaus-
sian phase estimator is 9δ-close to the distribution obtained by measuring the follow-

7Once we have those values, we can do the controlled-rotation tricks similar to how the KP-tree rou-
tine produces the quantum state. Since we only need to prepare |ρ̃s〉 once, it is fine for us to prepare the
state using N log N time. This procedure does not require the use of QRAM.
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ing state (using a′ = a/8+1/2)

QFT−1
N |Ψ〉 = 1p

NG

∑
y∈[N ]

∑
z∈Z

ρs(z)exp(2πi a′z)exp(−2πi y((z +N /2 mod N )−N /2)/N ) |y〉

= 1p
NG

∑
y∈[N ]

∑
z∈Z

ρs(z)exp(2πi z(N a′− y)/N ) |y〉 (e−2πi y N z/N = 1)

= 1p
NG

∑
y∈[N ]

{ ∑
z∈ 1

N ·Z
ρs/N (z)exp(2πi z(N a′− y))

}
|y〉 (z ← z/N )

= 1p
NG

∑
y∈[N ]

{
N · ∑

x∈N ·Z
ρs/N exp(2πi z(N a′− y))
∧

(x)
}
|y〉 (by Theorem 2.38)

= 1p
NG

∑
y∈[N ]

{ s

N
·N · ∑

x∈N ·Z
ρN /s(x −N a′+ y)

}
|y〉 (�ρs/N = s

N
·ρN /s)

= sp
NG

∑
y∈[N ]

ρN /s(N ·Z−N a′+ y) |y〉

= sp
NG

∑
y∈Z

ρN /s(−N a′+ y) |y mod N〉 .

By Theorem 4.1 again, because a′ ∈ [1/2,5/8], N /s ≥ 8
√

2log(1/δ), and N ≥ 16(N /s)
p

2ln(1/δ),
we know QFT−1

N |Ψ〉 is 9δ-close to 1p
G ′′

∑
y∈[N ]ρN /s(−N a′+ y) |y〉 where G ′′ is a normal-

izing constant. Therefore, the probability distribution of y −N a′ (letting y be the mea-
surement outcome) is 9δ-close to D[−N /2,N /2−1]

Z−N a′, Np
2s

. Moreover, since
√

log(12/δ)/π ≤ Np
2s

and 10 Np
2s

p
2ln(1/δ) ≤ N /2, by Corollary 2.25 we know y −N a′ is also 9δ+4δexp(δ)-

close to DZ−N a′, Np
2s

= DZ−ν, Np
2s

for some ν ∈ [0,1), implying that the distribution of

8y/N − 4− a is 9δ+ 4δexp(δ)-close to D 8
N ·Z− 8

N ν, 8p
2s

. As a result, the output of the al-

gorithm in the second paragraph is 9δ+9δ+4δexp(δ)-close to D 8
N ·Z− 8

N ν, 8p
2s

. Rescaling

δ by a multiplicative constant, we finish the proof.

Using Theorem 2.24, since 4
p

2
s ≥ 8

√
log(12/δ)/π/N by the choice of N , we can see

D 8
N ·Z−8ν, 4

p
2

s
is δ-sub-Gaussian with parameter 4

p
2

s . By letting s = 4
p

2
ε

, we have the

following corollary.

Corollary 4.3 (Sub-Gaussian phase estimator, subGPE(U ,ε,τ)). Let ε,τ ∈ (0,0.1], a ∈
[0,1], U be a unitary, |ψ〉 be an eigenvector of U such that U |ψ〉 = exp(πi a/4) |ψ〉. There
exists a quantum algorithm that, given one copy of |ψ〉, outputs an estimator ã satis-
fying that a − ã is τ-close to τ-sub-Gaussian with parameter ε using Õ(poly log(1/τ)/ε)
applications of controlled-U , controlled-U−1 and elementary gates.

4.3 Time-efficient unbiased pure-state tomography

In this section we design efficient methods for obtaining a good classical description
of a pure quantum state (i.e., tomography), by manipulating and measuring multiple
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copies of that state.

4.3.1 Pure-state tomography by computational-basis measurements

A direct corollary of Corollary 2.28 as observed in [ACG+23] is that computational-basis
measurements yield a good approximation of the absolute values of the amplitudes of
a (sub)normalized quantum state vector.

Corollary 4.4. Suppose that ε,δ ∈ (0,1], ψ ∈ Cd has ℓ2-norm at most 1, and we are

given n ≥ 1
ε2 ln

(
2d
δ

)
copies of the pure quantum state |ϕ〉 := |0̄〉 |ψ〉+ |0̄⊥〉, where (|0̄〉〈0̄|⊗

I ) |0̄⊥〉 = 0. If we measure each copy in the computational basis and denote by si the
normalized number (i.e., frequency) of outcomes |0̄〉 |i 〉 then the vector

ψ̄i :=p
si

with probability at least 1−δ gives an ε-ℓ∞ approximation of |ψ|. Moreover, ∥ψ̄∥2 ≤ 1
with certainty and if ∥ψ∥2 = 1, then also ∥ψ̄∥2 = 1, and in general

∣∣∥ψ̄∥2 −∥ψ∥2
∣∣ ≥ ε

holds with probability ≤ δ
d .

Proof. By Corollary 2.28 we have that

Pr
[∣∣psi −|ψi |

∣∣≥ ε]≤ δ

d
,

and similarly

Pr
[∣∣∥ψ̄∥2 −∥ψ∥2

∣∣≥ ε]= Pr

∣∣∣∣∣∣
√√√√d−1∑

i=0
si −

√√√√d−1∑
i=0

|ψi |2
∣∣∣∣∣∣≥ ε

≤ δ

d
.

Finally, ∥ψ̄∥2
2 =

∑d−1
i=0 si ≤ 1, where the last inequality is an equality if ∥ψ∥2 = 1.

4.3.2 Pure-state tomography using conditional samples

Now we show how to produce an unbiased estimator of ψ itself (not just of the magni-
tudes of its entries) with bounded variance using computational-basis measurements
with the help of a reference state ψ̄. Our approach is inspired by [KP20] but improves
over their biased estimator by making it unbiased.

Lemma 4.5. Suppose that ψ ∈ Cd has
∥∥ψ∥∥

2 ≤ 1, and we are given a copy of the state

|ϕ′〉 :=
(
|+〉( |0̄〉|ψ〉 + |0̄⊥〉)+ |−〉( |0̄〉|ψ̄〉 + |0̄′⊥〉))/

p
2, where |0̄〉 = |0a〉 for some a ∈ N,

(|0̄〉〈0̄| ⊗ I ) |0̄⊥〉 = 0, and (|0̄〉〈0̄| ⊗ I ) |0̄′⊥〉 = 0. If we measure |ϕ′〉 in the computational
basis and denote by X ∈ {0,1}2d the indicator of the measurement outcomes |b〉 |0̄〉 |i 〉
(this X is a weight-1 Boolean vector indexed by (b, i ) where b ∈ {0,1} and i ∈ [d ]− 1),
then the random vector ψ′ ∈Cd with coordinates

ψ′
i := X0,i −X1,i

|ψ̄i |
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is an unbiased estimator of ψℜ
i := Re

(
ψi

ψ̄∗
i

|ψ̄i |
)
, with ∥ψ′∥2 ≤ 1

min{|ψ̄i | : i∈[d ]−1} with cer-

tainty, and covariance matrix Cov(ψ′) = I
2 +diag

( |ψi |2
2|ψ̄i |2

)
−|ψℜ〉〈ψℜ|.

Proof. The probabilities of getting measurement outcomes |0〉 |0̄〉 |i 〉 and |1〉 |0̄〉 |i 〉 are

p0,i := |〈0| 〈0̄| 〈i | |ϕ′〉 |2 =
∣∣∣∣ψi + ψ̄i

2

∣∣∣∣2

= |ψi |2 +ψi ψ̄
∗
i +ψ∗

i ψ̄i +|ψ̄i |2
4

= E[X0,i ],

p1,i := |〈1| 〈0̄| 〈i | |ϕ′〉 |2 =
∣∣∣∣ψi − ψ̄i

2

∣∣∣∣2

= |ψi |2 −ψi ψ̄
∗
i −ψ∗

i ψ̄i +|ψ̄i |2
4

= E[X1,i ],

and therefore

E[X0,i −X1,i ] = p0,i −p1,i =
ψi ψ̄

∗
i +ψ∗

i ψ̄i

2
= |ψ̄i |

ψi
ψ̄∗

i
|ψ̄i | +ψ

∗
i
ψ̄i
|ψ̄i |

2
= |ψ̄i |ψℜ

i .

For the norm bound observe that

∥ψ′∥2 ≤
d−1∑
i=0

|ψ′|i ≤
d−1∑
i=0

X0,i +X1,i

|ψ̄|i
≤

d−1∑
i=0

X0,i +X1,i

min{|ψ̄i | : i ∈ [d ]−1}
≤ 1

min{|ψ̄i | : i ∈ [d ]−1}
.

We can compute the covariance matrix directly as follows

Cov(ψ′)i j = E[ψ′
iψ

′
j ]−E[ψ′

i ]E[ψ′
j ] = δi j

p0,i +p1,i

|ψ̄i |2
−ψℜ

i ψ
ℜ
j = δi j

|ψi |2/|ψ̄i |2 +1

2
−ψℜ

i ψ
ℜ
j ,

where the second equality uses that Xa,i Xb, j = δab ·δi j · Xa,i because X is a weight-1
Boolean vector.

By an analogous argument as in the proof of Lemma 4.5, we can obtain an unbiased

estimator of the imaginary partsψℑ
j := Im

(
ψ j

ψ̄∗
j

|ψ̄ j |

)
(with the same ℓ2-norm and covari-

ance matrix gaurantee) by measuring |ϕ′′〉 := (|+〉(|0̄〉 |ψ〉+ |0̄⊥〉)+ i |−〉(|0̄〉 |ψ̄〉+ |0̄′⊥〉))/
p

2
in the computational basis.

We now give a procedure (the first part of Theorem 4.6) to find an unbiased esti-
mator ψ̃ ofψ that simultaneously has a good bound on the error of the estimator (with
overwhelming probability) in some k fixed directions using Lemma 4.5. The second
part of Theorem 4.6 shows that the output ψ̃will be close (in total variation distance) to
an “almost ideal” unbiased estimator qψ that simultaneously has a good bound on the
error of the estimator with certainty in some k fixed directions. This will be used later
when estimating a matrix-vector product Aw in order to avoid an estimation-error that
has too much overlap with k of the eigenvectors of A.

Theorem 4.6. Letψ ∈Cd such that ∥ψ∥2 ≤ 1, ε,δ ∈ (0,1], η ∈R+, k ∈N, n ≥ 4d
ε2

(
4
3 + 1

η

)
ln

(
8k
δ

)
.

Suppose there exists a “reference state” (not necessarily known to the algorithm) ψ̄ ∈ Cd
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such that |ψ̄ j |2 ≥ max{ε
2

d ,η|ψ j |2} ∀ j ∈ [d ]−1, and ∥ψ̄∥ ≤ 1. Given n copies of the pure
quantum states

|ϕ′〉 := (|+〉(|0̄〉 |ψ〉+ |0̄⊥〉)+|−〉(|0̄〉 |ψ̄〉+ |0̄′⊥〉))/
p

2,

|ϕ′′〉 := (|+〉(|0̄〉 |ψ〉+ |0̄⊥〉)+ i |−〉(|0̄〉 |ψ̄〉+ |0̄′⊥〉))/
p

2,

where |0̄〉 = |0a〉 for some a ∈N, (|0̄〉〈0̄|⊗I ) |0̄⊥〉 = 0, and (|0̄〉〈0̄|⊗I ) |0̄′⊥〉 = 0, if we measure
each copy in the computational basis and denote by s′b, j , s′′b, j the normalized number of

measurement outcomes |b〉 |0̄〉 | j 〉 from measuring the states |ϕ′〉 and |ϕ′′〉 respectively,
then the random vector ψ̃ ∈Cd with coordinates

ψ̃ j :=
(
s′0, j − s′1, j + i s′′0, j − i s′′1, j

) ψ̄ j

|ψ̄ j |2

is an unbiased estimator of ψ. Moreover, for every set V = {v ( j ) : j ∈ [k]} ⊂ Cd of vectors
we have

Pr

[
∀v ∈V : | 〈ψ̃−ψ|v〉 | < εp

d
∥v∥2

]
≥ 1−δ. (4.3)

In particular if k ≥ d, then Pr
[∥ψ̃−ψ∥2 < ε

]≥ 1−δ.
Finally, let {v ( j ) : j ∈ [k]} be a fixed set of orthonormal vectors andΠk be the projector

to their span. Let A be the event that ∃ j ∈ [k] : | 〈ψ̃−ψ|v ( j )〉 | > εp
d

, Ā be the complement

of A, and Xζ be an independent Bernoulli random variable such that Pr[Xζ = 0] = ζ :=
δ−p
1−p for p := Pr[A]. Define qψ ∈Cd as follows8

qψ=
{
ψ̃ on Ā∩ (Xζ = 1)
(I −Πk )ψ̃+ ∑

j∈[k]
|v ( j )〉E[〈v ( j )|ψ̃〉 |A∪ (Xζ = 0)] on A∪ (Xζ = 0).

Then E[ qψ] = ψ, Pr[∀ j ∈ [k] : | 〈qψ−ψ|v ( j )〉 | ≤ k+3
k

εp
d

] = 1 (which is why we call qψ an

“almost ideal” unbiased estimator), the total variation distance between ψ̃, and qψ is at

most δ, and
∥∥Cov(Πk qψ)

∥∥≤ ∥∥Cov(Πkψ̃)
∥∥+25δε2 k

d ≤
(

1

4ln
(

8k
δ

) +25δk

)
ε2

d .

Proof. We prove the first part of Theorem 4.6 first. Let us define the random vectors
ψ′,ψ′′ ∈Cd with coordinates

ψ′
j :=

X ′
0, j −X ′

1, j

|ψ̄ j |
, ψ′′

j :=
X ′′

0, j −X ′′
1, j

|ψ̄ j |
,

where X ′, X ′′ ∈ {0,1}2d denote the indicator of the measurements outcomes |b〉 |0̄〉 | j 〉
for the states |ϕ′〉 and |ϕ′′〉, respectively. Then by Lemma 4.5 and the discussion after

8Here we introduce Xζ to ensure that Pr[A ∪ (Xζ = 0)] exactly equals δ, which is helpful because we
use both upper and lower bounds on this probability in the proof.
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the proof of Lemma 4.5,ψ′,ψ′′ are unbiased estimators ofψℜ
j := Re

(
ψ j

ψ̄∗
j

|ψ̄ j |

)
, andψℑ

j :=

Im

(
ψ j

ψ̄∗
j

|ψ̄ j |

)
respectively, such that ∥ψ′∥2,∥ψ′′∥2 ≤

p
d/ε with certainty and

Cov(ψ′)+E[ψ′]E[ψ′T ] ⪯
(

1

2
+ 1

2η

)
I , Cov(ψ′′)+E[ψ′′]E[ψ′′T ] ⪯

(
1

2
+ 1

2η

)
I , (4.4)

where for the latter psd inequalities we used that |ψ̄ j |2 ≥ η|ψ j |2 and hence diag
( |ψi |2

2|ψ̄i |2
)
⪯

1
2η I .

Let w ∈ Rd , then the random variables ψ′
w := 〈ψ′|w〉 ,ψ′′

w := 〈ψ′′|w〉 satisfy |ψ′
w | ≤

∥ψ′∥2∥w∥2 ≤
p

d∥w∥2/ε, |ψ′′
w | ≤ ∥ψ′′∥2∥w∥2 ≤

p
d∥w∥2/ε with certainty. Also, E[|ψ′

w |2]

and E[|ψ′′
w |2] are both ≤

(
1
2 + 1

2η

)
∥w∥2

2, because for both φ=ψ′ and φ=ψ′′, we have

E[| 〈φ|w〉 |2] = 〈w |E[φφT ] |w〉 = 〈w | (Cov(φ)+E[φ]E[φT ]) |w〉 ≤ ∥Cov(φ)+E[φ]E[φT ]∥ ·∥w∥2
2.

Let Ψ′,Ψ′′ ∈ Rd be the sum of n i.i.d. copies of ψ′,ψ′′, respectively, obtained from the
measurement outcomes of the n copies of |ϕ′〉 and |ϕ′′〉, so that

ψ̃ j = (Ψ′
j + iΨ′′

j )
ψ̄ j

n|ψ̄ j |
. (4.5)

Let us analogously define Ψ′
w := 〈Ψ′|w〉, and Ψ′′

w := 〈Ψ′′|w〉. Then clearly E[Ψ′
w ] =

n 〈ψℜ|w〉, and E[Ψ′′
w ] = n 〈ψℑ|w〉. For all τ≥ 1, the Bennett-Bernstein tail bound (Propo-

sition 2.26) implies

Pr

[
|Ψ′

w −n 〈ψℜ|w〉 | ≥ τεn∥w∥2

2
p

d

]
≤ 2exp

− τ2ε2n2∥w∥2
2/(4d)(

1+ 1
η

)
∥w∥2

2n + τ
3∥w∥2

2n


≤ 2exp

(
−τε

2n/(4d)
4
3 + 1

η

)
≤ 2

(
δ

8k

)τ
, (4.6)

and similarly Pr[|Ψ′′
w −n 〈ψℑ|w〉 | ≥ τεn∥w∥2/

p
4d ] ≤ 2

(
δ

8k

)τ
.

Let ṽ j := v j
ψ̄∗

j

|ψ̄ j | , ṽℜ
j := Re(ṽ j ), ṽℑ

j := Im(ṽ j ), and observe that for any v ∈V

〈ψ̃|v〉−〈ψ|v〉 = 1

n
〈Ψ′+ iΨ′′|ṽ〉−〈ψℜ+ iψℑ|ṽ〉

=
(〈Ψ′|ṽℜ〉

n
−〈ψℜ|ṽℜ〉︸ ︷︷ ︸

:=a∥ṽℜ∥2

−〈Ψ′′|ṽℑ〉
n

+〈ψℑ|ṽℑ〉︸ ︷︷ ︸
:=b∥ṽℑ∥2

)
+ i

(〈Ψ′|ṽℑ〉
n

−〈ψℜ|ṽℑ〉︸ ︷︷ ︸
:=c∥ṽℜ∥2

−〈Ψ′′|ṽℜ〉
n

+〈ψℑ|ṽℜ〉︸ ︷︷ ︸
:=d∥ṽℑ∥2

)
,
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so

| 〈ψ̃|v〉−〈ψ|v〉 | ≤p
2max

{∣∣Re(〈ψ̃|v〉−〈ψ|v〉)∣∣ ,
∣∣Im(〈ψ̃|v〉−〈ψ|v〉)∣∣}

=p
2max

{∣∣∣a∥ṽℜ∥2 +b∥ṽℑ∥2

∣∣∣ ,
∣∣∣c∥ṽℜ∥2 +d∥ṽℑ∥2

∣∣∣}
≤p

2max{|a|, |b|, |c|, |d |}(∥ṽℜ∥2 +∥ṽℑ∥2)

≤ 2max{|a|, |b|, |c|, |d |}∥v∥2,

where the last step uses that |ṽ j | = |v j | for all j , and Cauchy-Schwarz. Using Eq. (4.6)
four times with different choices of w , and the union bound over 4 events, we have

max{|a|, |b|, |c|, |d |} < τε

2
p

d
except with probability ≤ 8

(
δ

8k

)τ
. Eq. (4.3) now follows by

choosing τ = 1 and taking the union bound over all k vectors v ∈ V . If k ≥ d then
we can apply the statement for a set V containing the computational basis, and then
∥ψ̃−ψ∥∞ ≤ εp

d
implies ∥ψ̃−ψ∥2 ≤ ε by Cauchy-Schwarz.

Now we prove the second part of Theorem 4.6, where V is an orthonormal set (the
“Finally” part). Note that the previous paragraph already proved that for every v ∈ Cd

and for all τ≥ 1,

Pr[| 〈v |ψ̃−ψ〉 | > τ εp
d
∥v∥2] ≤ 8

(
δ

8k

)τ
. (4.7)

Defining ε̊ := ε/
p

d and ψ̊ j := 〈v ( j )|ψ̃−ψ〉, we bound

E
[
|ψ̊ j |1(ε̊,∞)(|ψ̊ j |)

]
=

∞∑
ℓ=0

E
[
|ψ̊ j |1(2ℓε̊,2ℓ+1ε̊](|ψ̊ j |)

]
≤

∞∑
ℓ=0

2ℓ+1ε̊Pr
[
|ψ̊ j | ∈ (2ℓε̊,2ℓ+1ε̊]

]
≤

∞∑
ℓ=0

2ℓ+1ε̊Pr
[
|ψ̊ j | > 2ℓε̊

]
≤

∞∑
ℓ=0

2ℓ+1ε̊8

(
δ

8k

)2ℓ
(
Pr[|ψ̊ j | > τε̊] ≤ 8

(
δ

8k

)τ)
≤

∞∑
ℓ=0

2ℓ+1ε̊8

(
δ

8k

)ℓ+1

(since δ/k ≤ 1, and 2ℓ ≥ ℓ+1)

= 2
δε

k
p

d

∞∑
ℓ=0

(
δ

4k

)ℓ
≤ 2

δε

k
p

d

∞∑
ℓ=0

(
1

4

)ℓ
(since δ/k ≤ 1)

< 3δ

k

εp
d

. (4.8)

We have already proven Eq. (4.3), implying that p = Pr[A] ≤ δ. Observe that

E[〈v ( j )|ψ̃〉 |A∪ (Xζ = 0)] = 〈v ( j )|ψ〉+E[ψ̊ j |A∪ (Xζ = 0)],

and hence
E[〈v ( j )|ψ̃−ψ〉 |A∪ (Xζ = 0)] = E[ψ̊ j |A∪ (Xζ = 0)].

Since Pr[A∪ (Xζ = 0)] = 1−Pr[Ā∩ (Xζ = 1)] = δ, using (4.8) we have

|E[ψ̊ j |A∪ (Xζ = 0)]| ≤ E[|ψ̊ j | | A∪ (Xζ = 0)] = E[|ψ̊ j |1A∪(Xζ=0)]

δ
≤
ε̊δ+ 3δ

k
εp
d

δ
=

(
1+ 3

k

)
εp
d

.

(4.9)
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Since we modified ψ̃ on an event of probability δ to get qψ, the total variation distance
between the distributions of the random variables qψ and ψ̃ is at most δ. The bound-
edness of qψ is by construction and the unbiasedness is inherited from that of ψ̃, as
follows: abbreviating the event Ā∩ (Xζ = 1) to B , we have

E[ qψ] = Pr[B ] ·E[ qψ | B ]+Pr[B̄ ] ·E[ qψ | B̄ ]

= Pr[B ] ·E[ψ̃ | B ]+Pr[B̄ ] ·E[(I −Πk )ψ̃+ ∑
j∈[k]

|v ( j )〉E[〈v ( j )|ψ̃〉] | B̄ ]

= Pr[B ] ·E[ψ̃ | B ]+Pr[B̄ ] ·E[(I −Πk )ψ̃+ ∑
j∈[k]

|v ( j )〉〈v ( j )| · ψ̃ | B̄ ]

= Pr[B ] ·E[ψ̃ | B ]+Pr[B̄ ] ·E[(I −Πk )ψ̃+Πkψ̃ | B̄ ]

= Pr[B ] ·E[ψ̃ | B ]+Pr[B̄ ] ·E[ψ̃ | B̄ ] = E[ψ̃] =ψ.

Finally, defining ε̄ := ε
√

k
d and ψ̊ :=Πk (ψ̃−ψ) =∑

j∈[k] ψ̊
j v ( j ) we bound

∥∥E[|ψ̊〉〈ψ̊|1(ε̄,∞)(∥ψ̊∥2)
]∥∥≤ E[∥ψ̊∥2

21(ε̄,∞)(∥ψ̊∥2)
]= ∞∑

ℓ=0
E
[∥ψ̊∥2

21(2ℓε̄,2ℓ+1ε̄](∥ψ̊∥2)
]

≤
∞∑
ℓ=0

4ℓ+1ε̄2 Pr
[
∥ψ̊∥2 ∈ (2ℓε̄,2ℓ+1ε̄]

]
≤

∞∑
ℓ=0

4ℓ+1ε̄2 Pr
[
∥ψ̊∥2 > 2ℓε̄

]
≤

∞∑
ℓ=0

4ℓ+1ε̄28k

(
δ

8k

)2ℓ (
Pr[∥ψ̊∥2 > τε̄] ≤ 8k

(
δ

8k

)τ)
≤

∞∑
ℓ=0

4ℓ+1ε̄28k

(
δ

8k

)ℓ+1

(since δ/k ≤ 1, and 2ℓ ≥ ℓ+1)

= 4δε2 k

d

∞∑
ℓ=0

(
δ

2k

)ℓ
≤ 4δε2 k

d

∞∑
ℓ=0

(
1

2

)ℓ
(since δ/k ≤ 1)

= 8δε2 k

d
. (4.10)

This then implies that∥∥Cov(Πkψ̃)−Cov(Πk qψ)
∥∥= ∥∥E[|ψ̊〉〈ψ̊|−Πk |qψ−ψ〉〈qψ−ψ|Πk

]∥∥
= ∥∥E[(|ψ̊〉〈ψ̊|−Πk |qψ−ψ〉〈qψ−ψ|Πk

)
1A∪(Xζ=0)

]∥∥
≤ ∥∥E[|ψ̊〉〈ψ̊|1A∪(Xζ=0)

]∥∥+∥∥E[
Πk |qψ−ψ〉〈qψ−ψ|Πk ·1A∪(Xζ=0)

]∥∥ ,

(4.11)

where the second equality is because ψ̃= qψ on the complement of the event A∪ (Xζ =
0). Using the definition of qψ, and the fact that Πk (I −Πk ) = 0, we can see that Πk qψ

conditioned on A∪(Xζ = 0) is actually a fixed vector E[Πkψ̃ | A∪(Xζ = 0)], not a random
variable anymore. We now have∥∥E[

Πk |qψ−ψ〉〈qψ−ψ|Πk ·1A∪(Xζ=0)
]∥∥= Pr[A∪ (Xζ = 0)] ·∥∥E[

Πk |ψ̃−ψ〉 | A∪ (Xζ = 0)
]∥∥2

2 .
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Continuing with Eq. (4.11), we have∥∥Cov(Πkψ̃)−Cov(Πk qψ)
∥∥≤ ∥∥E[|ψ̊〉〈ψ̊|1A∪(Xζ=0)

]∥∥+δ∥E[ψ̊ | A∪ (Xζ = 0)]∥2
2

≤ E[∥ψ̊∥2
21A∪(Xζ=0)

]+16δε2 k

d
(by (4.9) and (1+3/k ≤ 4))

= E
[
∥ψ̊∥2

21A∪(Xζ=0)

(
1[0,ε̄](∥ψ̊∥2)+1(ε̄,∞)(∥ψ̊∥2)

)]
+16δε2 k

d

≤ δε̄2 +8δε2 k

d
+16δε2 k

d
= 25δε2 k

d
.

(by (4.10) and Pr[A∪ (Xζ = 0)] = δ)

We obtain∥∥Cov(Πk qψ)
∥∥≤ ∥∥Cov(Πkψ̃)−Cov(Πk qψ)

∥∥+∥∥Cov(Πkψ̃)
∥∥≤ 25δε2 k

d
+ ε2

4d ln
(

8k
δ

)
because

∥∥Cov(Πkψ̃)
∥∥ ≤ ∥∥Cov(ψ̃)

∥∥ = 1
n

∥∥Cov(ψ′)+Cov(ψ′′)
∥∥, and the matrix inside the

latter norm can be upper bounded by 2( 1
2 + 1

2η )I using Eq. (4.4).

If we have n conditional samples |ϕ〉 := (|0〉(|0̄〉 |ψ〉+ |0̄⊥〉)+|1〉 |0̄〉 |0〉)/
p

2, then we
can first use Corollary 4.4 to produce (with success probability≥ 1−δ

2 ) a 1p
d

-ℓ∞ approx-

imation ψ′ of the vector |ψ| of the magnitudes of entries, which has ∥ψ′∥2 ≤ 1. Setting

ψ̄i := |ψ′
i |+ 1p

d
2 , and building a KP-tree for ψ̄ to be able to efficiently prepare a state that

is coordinate-wise 1
4
p

d
-close to |ψ̄〉/∥ψ̄∥2, we can transform the conditional copies |ϕ〉

to the form required by Theorem 4.6 using O
(
n log2(d)

)
classical operations, ordinary

quantum gates and QRAM read-out calls. Since η=Ω(1), we get a time-efficient unbi-

ased tomography algorithm using O
(

d
ε2 ln

(
2d
δ

))
conditional samples.

4.3.3 Improved pure-state tomography using state-preparation oracles

If we have a state-preparation oracle available, rather than copies of the state, then
the precision-dependence can be quadratically improved using iterative refinement
[Gil23]:

Corollary 4.7. Let ψ ∈ Cd such that ∥ψ∥ ≤ 1, and ε,δ ∈ (0, 1
2 ]. Suppose we have access

to a controlled unitary U (and its inverse) that prepares the state U |0⊗a′〉 = |0⊗a〉 |ψ〉+
|0⊗a⊥〉, where a′, a =O

(
poly log(d/(δε))

)
. There is a quantum algorithm that outputs a

random vector ψ̃ ∈Cd such that, for every set V = {v (1), v (2), . . . , v (k)} of unit vectors, with
probability at least 1−δ, | 〈ψ− ψ̃|v〉 | ≤ ε/

p
d for all v ∈ V , using O( d

ε
poly log(kd/(εδ))

applications of controlled U , U †, two-qubit quantum gates, read-outs of a QRAM of size
O(d ·poly log(kd/(εδ))), and classical computation.

If k = d and V is an orthonormal set, then ψ̃ is δ-close in total variation distance to
an “almost ideal” discrete random variable qψ ∈Cd such that E[ qψ] =ψ, Pr[∀v ∈V : | 〈qψ−ψ|v〉 | ≤
εp
d

] = 1, and ∥Cov( qψ)∥ ≤ ε2

d .
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Proof. The idea is to use the tomography algorithm of [Gil23] to get an estimator ψ′

with ℓ2-error ε, with success probability ≥ 1− δ
4 , using O

(
d
ε

log(d/δ)
)

queries in time

O( d
ε log(1/δ) ·polylog(d/ε)). In case of failure we set qψ=ψ.
We first build the KP-tree for ψ′ in QRAM. We can now prepare a state |0〉 |ψ′〉 +

|1〉 |.〉, and thus also the state |00〉 |(ψ−ψ′)/2〉+ |1〉 |..〉, and using linearized amplitude
amplification [GSL+19, Theorem 30], we can also prepare a subnormalized stateφ such
that ∥φ− (ψ−ψ′)/(2ε)∥ ≤ δ

16
p

d
with O

(
log(d/δ)/ε

)
(controlled) uses of U and U †.

As discussed at the start of this subsection, by Corollary 4.4 using d ln( 6d
δ

) copies

of |φ〉 we can output a vector µ⃗ ∈ [0,1]d such that with probability at least 1− δ
4 , |⃗µ j −

|φ j || ≤ 1p
d

for every j ∈ [d ]. (In case of failure we once again set qψ = ψ.) Upon suc-

cess, the vector µ⃗′ := 1
2 µ⃗+ 1

2
p

d
1d where 1d is the d-dimensional all-1 vector, satisfies

|⃗µ′
j |2 ≥ 1

4 max{|φ j |2, 1
d } for every j ∈ [d ]. Also, by using Õ(d) time and QRAM bits, we

can construct a KP-tree KP
µ⃗′ for µ⃗′. Thus, by using one query to KP

µ⃗′ and Õ(1) time, we

can prepare a state |0̄〉 |µ⃗′〉+ |0̄′⊥〉, where |µ⃗′〉 = ∑
j∈[d ]

µ⃗′
j | j 〉.

By Theorem 4.6 we can output an unbiased estimator φ̃ of φ such that Pr[∀v ∈
V : | 〈φ̃−φ|v〉 | ≤ 1

32
p

d
] ≥ 1−δ

4 . Defining ψ̃ :=ψ′+2εφ̃we then have Pr[∀v ∈V : | 〈ψ̃−ψ|v〉 | ≤
ε

8
p

d
] ≥ 1− δ

4 since ∥φ− (ψ−ψ′)/(2ε)∥ ≤ δ

16
p

d
. If V is an orthonormal basis, then fur-

thermore φ̃ is δ/4-close to an “ideal” (though not error-free) unbiased estimator φ′

of φ such that Pr[∀v ∈ V : | 〈φ′−φ|v〉 | ≤ 1
8
p

d
] = 1. Since ∥φ− (ψ−ψ′)/(2ε)∥ ≤ δ

16
p

d

there is another discrete-valued estimator qφ within total variation distance δ
4 to φ′

that satisfies E[ qφ] = (ψ−ψ′)/(2ε) and Pr[∥qφ−φ′∥ > 1
4
p

d
] = 0 in turn implying Pr[∀v ∈

V : | 〈qφ− (ψ−ψ′)/(2ε)|v〉 | ≤ 1
2
p

d
] = 1. We then set qψ :=ψ′+2εqφ (in case no failure hap-

pened). We have ∥Cov( qφ)∥ ≤ 2∥Cov( qφ−φ′)∥+2∥Cov(φ′)∥, because for all vectors a,b,
the matrix 2aa† +2bb† − (a +b)(a +b)† = (a −b)(a −b)† is psd. Therefore the claimed
properties of ψ̃, qψ follow from those of φ̃,φ′ as guaranteed by Theorem 4.6, assuming
without loss of generality that δ≤ 1

k .

4.4 Quantum noisy power method

In this section we introduce quantum algorithms for approximating the top eigenvec-
tor or top-q eigenvectors by using the two tools we introduced in the previous two
sections. For simplicity, we assume the input matrix A is real and Hermitian, and has
operator norm ∥A∥ ≤ 1 (which implies all entries are in [−1,1]). Since A is Hermitian,
its eigenvalues λ1, . . . ,λd are real, and we assume them to be ordered in descending or-
der according to their absolute value.9 Since the entries of A are real, there is always an

9Sometimes the eigenvalues are ordered 1 ≥ λ1 ≥ ·· · ≥ λd ≥ −1 according to their value (instead of
their absolute value). To find the v1 associated with λ1 in this situation, one can just let A′ = A/3+2I /3.
Then the eigenvectors of A and A′ are the same, and the eigenvalues of A′ now are all between 1/3
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associated orthonormal basis of real eigenvectors v1, . . . , vd . For simplicity and with-
out loss of generality, when we mention the qth eigenvector of A, we mean vq in this
basis. The goal of the algorithms in this section is to find a unit vector w which has
large overlap with v1 in the sense that |〈w, v1〉| ≥ 1−ε2/2. Note that this is equivalent
to finding a unit vector w satisfying that either ∥w −v1∥2 or ∥w +v1∥2 is small (at most
ε), and hence we say w approximates v1 with small ℓ2-error.

4.4.1 Classical noisy power method for approximating the top eigenvector

For the sake of completeness and pedagogy, we start with the noisy power method of
Hardt and Price [HP14], given in Algorithm 4 below. Like the usual power method, it
works by starting with a random vector and applying A some K times to it; the resulting
vector will converge to the top eigenvector after relatively small K , assuming some gap
between the first and second eigenvalues of A. We include a short proof explaining
how the noisy power method can approximate the top eigenvector of A even if there is
a small noise vector Gk in the kth matrix-vector computation that does not have too
much overlap with v1.

input : a Hermitian matrix A ∈ [−1,1]d×d with operator norm ∥A∥ ≤ 1;
Let w0 be a unit vector randomly chosen from Sd−1;
for k ← 0 to K −1 do

yk = Awk +Gk ;
wk+1 = yk /∥yk∥2;

end
output: wK ;

Algorithm 4: Noisy power method (NPM) for approximating the top eigenvector
of A

Theorem 4.8. Let A be a d×d Hermitian matrix with top eigenvector v1, first and second
eigenvalues λ1 and λ2, and γ = |λ1| − |λ2|. Let ε ∈ (0,0.5) and K = 10|λ1|

γ
log(20d/ε).10

Suppose Gk satisfies |〈Gk , v1〉| ≤ γ/(50
p

d) and ∥Gk∥2 ≤ εγ/5 for all k ∈ [K ]−1. Then the
unit vector wK in Algorithm 4 satisfies |〈wK , v1〉| ≥ 1−ε2/2 with probability ≥ 0.9.

Proof. Let w0 =∑
i∈[d ]α

(0)
i vi . Because w0 is chosen uniformly at random over the unit

sphere, by Corollary 2.57 (without loss of generality assuming d ≥ 4), with probabil-
ity ≥ 0.9, we have |α(0)

1 | ≥ 1/(10
p

d) and hence we assume |α(0)
1 | ≥ 1/(10

p
d) below for

simplicity. Suppose wk = ∑
i∈[d ]α

(k)
i vi . We define the tangent angle of wk as tanθk =

and 1 (and hence one can use Algorithm 4 to find v1). This trick can also be used to find vd by simply
considering A′′ =−A/3+2I /3. Note that the gap between the top and the second eigenvalues of A′ might
be different from the gap between the top and the second eigenvalues of A′′.

10If K ≥ 10|λ1|
γ log(20d/ε), then the theorem still holds.
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sinθk
cosθk

=
√∑d

i=2(α(k)
i )2

|α(k)
1 | , and hence tanθ0 ≤ 10

p
d . It suffices to show that tanθK ≤ ε/2, be-

cause that implies |〈wK , v1〉| = cosθK ≥ 1−ε2/4.
Since wk = ∑

i∈[d ]α
(k)
i vi , we have Awk = ∑

i∈[d ]α
(k)
i λi vi . Also because Gk satisfies

|〈Gk , v1〉| ≤ γ/(50
p

d) and ∥Gk∥2 ≤ εγ/50, we can give an upper bound for tanθk+1 as
follows:

tanθk+1 ≤
√∑d

i=2(λ2
i α

(k)
i )2 +∥Gk∥2

|λ1| · |α(k)
1 |− |〈Gk , v1〉|

≤
|λ2|

√∑d
i=2(α(k)

i )2 +εγ/5

|λ1| · |α(k)
1 |−γ/(50

p
d)

≤ 1

cosθk
· |λ1|sinθk +εγ/5

|λ1|−γ/5

= 1

cosθk
· |λ1|sinθk +εγ/5

|λ2|+4γ/5
= sinθk

cosθk
· |λ1|
|λ2|+4γ/5

+ 1

cosθk
· εγ/5

|λ2|+4γ/5

≤ tanθk ·
|λ1|

|λ2|+4γ/5
+ (1+ tanθk ) · εγ/5

|λ2|+4γ/5

= (
1− γ/5

|λ2|+γ/5

) |λ2|+εγ/5

|λ2|+3γ/5
tanθk +

γ/5

|λ2|+4γ/5
ε≤ max{ε,

|λ2|+εγ/5

|λ2|+3γ/5
tanθk }.

Note that |λ2|+εγ/5
|λ2|+3γ/5 ≤ max{ε, |λ2|

|λ2|+2γ/5 } because the left-hand side is a weighted mean of

the components on the right ( |λ2|+εγ/5
|λ2|+3γ/5 = ε· γ/5

|λ2|+3γ/5+ |λ2|
|λ2|+2γ/5 ·

|λ2|+2γ/5
|λ2|+3γ/5 ). Also, |λ2|

|λ2|+2γ/5 ≤
( |λ2|
|λ2|+5γ/5 )2/5 = ( |λ2|

|λ1| )
2/5, so we have tanθk+1 ≤ max{ε, tanθk ·max{ε, (|λ2

λ1
|)2/5}}. By letting

K = 10|λ1|
γ

log(20d/ε), we obtain tanθK ≤ ε/2, which concludes the proof.

4.4.2 Quantum noisy power method using Gaussian phase estimator

In this subsection we combine the noisy power method and the quantum Gaussian
phase estimator (introduced in the previous subsection) to get a quantum version of
the noisy power method. It approximates the top eigenvector of a given matrix A
with additive ℓ2-error ε in Õ(d 1.75/(γ2ε)) time, which is a factor d 0.25 faster in its d-
dependence than the best-possible classical algorithm (see Section 7.3 for the Ω(d 2)
classical lower bound).

We first prove the following theorem, which helps us estimate an individual entry
of a matrix-vector product Aw (the vector u would be one of the rows of A).

Theorem 4.9 (Inner product estimator, IPE(τ,δ,ε)). Let τ,δ,ε ∈ (0,0.1], and u, w ∈ B d
2

s.t. ∥w∥2 = 1. Suppose we can access a KP-tree KPw of w and have quantum query access
to entries of u by a unitary Ou . There is a quantum algorithm that with probability at
least 1−δ, outputs an estimator µ̃ satisfying that µ̃−〈u, w〉 is τ-close to τ-subG(ε2), using
time Õ(d 0.75poly log(d/δ)+d 0.25poly log(1/τ)/ε).

Proof. In this proof, we index entries of vectors starting from 0. Let I1 = [−d−0.25,d−0.25]
and I2 = [−1,1] \ I1. Let u = u1 +u2, where (u1) j = u j1I1 (u j ) and (u2) j = u j1I2 (u j ) for
every j ∈ [d ]−1. Informally, u1 is the vector with smallish entries, and u2 is the vector
with largish entries. We separately estimate 〈u1, w〉 and 〈u2, w〉.
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Finding u2 and computing 〈u2, w〉. The number of nonzero entries of u2 is at mostp
d because ∥u∥2 ≤ 1. We first find (with success probability at least 1−δ/2) all the

nonzero entries of u2 inO(
√

d ·pd ·polylog(d/δ)) =O(d 0.75 ·polylog(d/δ)) time using
Theorem 2.7. Since we can query the entries of w through its KP-tree, we can now
compute 〈u2, w〉 in time Õ(

p
d).

Estimating 〈u1, w〉. Our goal below is first to show how to prepare (in time Õ(1)) a su-
perposition corresponding to the vector d−0.25u1, using the fact that all entries of u1 are
small; and then to use this to estimate 〈u1, w〉 with Gaussian error in time Õ(d 0.25/ε).

We can implement Ou1 using 2 queries to Ou and Õ(1) elementary gates: query Ou ,
and then apply O−1

u conditional on the magnitude of the value being > d−0.25 to set the
value back to 0 for entries that are in the support of u2 rather than u1. Let C R be a
controlled rotation such that for every a ∈ [−d−0.25,d−0.25]

C R |a〉 |0〉 = |a〉 (a ·d 0.25 |0〉+
√

1−a2 ·d 0.5 |1〉).

This can be implemented up to negligibly small error by Õ(1) elementary gates. Using
one application each of Ou1 , O−1

u1
, and C R, and Õ(1) elementary gates, we can map

|0⊗ logd 〉 |0〉 |0〉 H⊗ logd⊗I−−−−−−→ ∑
j∈[d ]−1

d−0.5 | j 〉 |0〉 |0〉 Ou1⊗I−−−−→ ∑
j∈[d ]−1

d−0.5 | j 〉 |(u1) j 〉 |0〉

Id⊗C R−−−−→ ∑
j∈[d ]−1

(d−0.25(u1) j | j 〉 |(u1) j 〉 |0〉+ (
√

d−1 − (u1)2
j ·d−0.5 | j 〉 |(u1) j 〉 |1〉)

O−1
u1

⊗I−−−−→ ∑
j∈[d ]−1

(d−0.25(u1) j | j 〉 |0〉 |0〉+ (
√

d−1 − (u1)2
j ·d−0.5 | j 〉 |0〉 |1〉).

Swapping the second register to the front of the state, we showed how to implement
the state-preparation unitary Ud−0.25u1

that maps

Ud−0.25u1
: |0〉 |0⊗ logd 〉→ |0〉 ∑

j∈[d ]−1
(d−0.25(u1) j ) | j 〉+ |1〉 |Φ〉 ,

for some arbitrary unnormalized state |Φ〉.
Now we show how to estimate 〈u1, w〉. Since we have a KP-tree of w , we can imple-

ment the state-preparation unitary Uw that maps |0⊗ logd 〉→∑
j∈[d ]−1 w j | j 〉 using Õ(1)

time by Theorem 2.11. Let W = I ⊗Uw ⊗ Z and V =Ud−0.25u1
⊗ I . Using Theorem 2.20

(with x ranging over 2 cases), using Õ(1) time we can implement a (1, logd+2,0) block-
encoding of diag({d−0.25〈u1, w〉,−d−0.25〈u1, w〉}). In order to be able to use our Gaus-
sian phase estimator, we want to convert 〈u1, w〉 into an eigenphase. To that end, by
Theorem 2.16, we implement a unitary Uexp which is a (1, logd +2,0)-block-encoding
of W = exp(iπ(〈u1, w〉/4)Z ) using Õ(d 0.25) time. Since |0〉 is an eigenvector of W with
eigenvalue exp(iπ〈u1, w〉/4), our Gaussian phase estimator (Corollary 4.3) can output
(with success probability ≥ 1−δ/2) an estimator η̃ such that η̃−〈u1, w〉 is τ-close to
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τ-subG(ε2) using Õ(polylog(1/τ)/ε) applications of controlled-Uexp , controlled-U−1
exp ,

and time.
Because 〈u, w〉 = 〈u1, w〉+〈u2, w〉, with probability at least 1−δ we obtain an esti-

mator µ̃= η̃+〈u2, w〉 such that µ̃−〈u, w〉 = η̃−〈u1, w〉 is τ-close to τ-subG(ε2).

Note that the two terms in the time complexity of the above theorem are roughly
equal if ε is a small constant times 1/

p
d . Such a small error-per-coordinate translates

into a small overall ℓ2-error for a d-dimensional vector. Accordingly, such a setting of ε
is what we use in our quantum noisy power method for estimating the top eigenvector.

input : a Hermitian matrix A ∈ [−1,1]d×d with operator norm at most 1;
Let γ= |λ1(A)|− |λ2(A)|; ε ∈ (0,1); K = 10|λ1|

γ log(20d/ε);

Let δ= 1/(1000K d); τ= δ/(1000K d 2); ζ= εγ

100d 0.5
p

log(1000K d/δ)
;

Let w0 be a unit vector randomly chosen from Sd−1;
for k ← 0 to K −1 do

Prepare a KP-tree for wk ;
For every j ∈ [d ], compute an estimator (yk ) j of 〈A j , wk〉 using IPE(τ,δ,ζ)

of Theorem 4.9 (A j is the j th row of A);
wk+1 = yk /∥yk∥2;

end
output: wK ;

Algorithm 5: Quantum noisy power method using Gaussian phase estimator

Theorem 4.10 (Quantum noisy power method using Gaussian phase estimator, Al-
gorithm 5). Let A ∈ [−1,1]d×d be a symmetric matrix with operator norm at most 1,
first and second eigenvalues λ1(A) and λ2(A), γ = |λ1(A)| − |λ2(A)|, v1 = v1(A) be the
top eigenvector of A, and ε ∈ (0,1]. Suppose we have quantum query access to entries
of A. There exists a quantum algorithm (namely Algorithm 5) that with probability
at least 0.89, outputs a d-dimensional vector w such that |〈w, v1〉| ≥ 1 − ε2/2, using
Õ(d 1.75/(γ2ε)) time and Õ(d) QRAM bits.

Proof. Each iteration of Algorithm 5 uses Õ(d) time and QRAM bits to build the KP-tree
for wk , and for every j ∈ [d ], we use Õ(d 0.75polylog(d/δ)+d 0.25polylog(1/τ)/ζ) time
and Õ(

p
d) QRAM bits for estimating 〈A j , wℓ〉 by IPE(τ,δ,ζ) in Theorem 4.9. Hence the

total number of elementary gates we used and queries to entries of A is Õ(d · (d 0.75 +
d 0.25/ζ) ·K ) = Õ(d 1.75/(γ2ε)).

Now we are ready to show the correctness of Algorithm 5. By Theorem 4.8 and the
union bound, it suffices to show that for each k ∈ [K ]−1, both ∥yk − Awk∥2 ≤ γε/5 and
|〈yk−Awk , v1〉| ≤ γ/(50

p
d) hold with probability ≥ 1−1/(100K ). Fix k. By Theorem 4.9,

we know that for every j ∈ [d ], with probability at least 1−δ, (yk − Awk ) j is τ-close to
τ-subG(ζ2) for every j ∈ [d ]. Let e = yk − Awk . There are three different kinds of bad
events, whose probabilities we now analyze. Firstly, we can see that for every j ∈ [d ],
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with probability at least 1−δ,

Pr

[
|e j | > γε

5
p

d

]
≤ 2exp(τ) ·exp

− ( γε

5
p

d
)2

2ζ2

+τ= 2exp(τ−200log(1000K d/δ))+τ≤ δ

100K d
.

Therefore, with probability at least 1−dδ−δ/(100K ), |e j | ≤ γε

5
p

d
for every j ∈ [d ], imply-

ing that ∥e∥2 ≤ γε
5 . Secondly, by the properties of sub-Gaussians from Section 2.7.1, we

know that with probability at least 1−dδ, 〈e, v1〉 is dτ-close to dτ-subG(
∑

j∈[d ]
(v1)2

jζ
2).

Thirdly, since v1 is a unit vector, we have that (with probability at least 1−dδ) 〈e, v1〉 is
dτ-close to dτ-subG(ζ2) and hence

Pr

[
|〈e, v1〉| > γ

50
p

d

]
≤ 2exp(dτ) ·exp

− ( γ

50
p

d
)2

2ζ2

+dτ

= 2exp(dτ) ·exp

(
−2

log(1000K d/δ)

ε2

)
+dτ≤ δ

100K d
.

As a result, by the union bound over the three kinds of error probabilities, for each k ∈
[K ]∪{0}, with probability 1−2dδ−δ/(50K ) ≥ 1−1/(100K ), we have both ∥yk −Awk∥2 ≤
γε/5 and |〈yk − Awk , v1〉| ≤ γ/(50

p
d). This proves correctness of Algorithm 5.

4.4.3 Almost optimal process-tomography of “low-rank” reflections

In this subsection we describe an essentially optimal algorithm for the “tomography”
of projectors Π of rank at most q (or of the corresponding reflection 2Π− I , which is a
unitary).11 We will use this in the next subsection to approximate the eigensubspace
spanned by the top-q eigenvectors. For generality, we will from here on allow our ma-
trices to have complex entries, not just real entries like in the earlier subsections.

Our algorithm is inspired by the noisy power method and has query complexity
Õ

(
d q/ε

)
and time complexity Õ

(
d q/ε+d q2

)
(using QRAM). When q ≪ d this gives

a better complexity than the optimal unitary process-tomography algorithm of Haah,
Kothari, O’Donnell, and Tang [HKO+23]. Also in the special case when q = 1 this gives a
qualitative improvement over prior pure-state tomography algorithms [KP20; ACG+23]
which required a state-preparation unitary, while for us it suffices to have a reflection
about the state, which is a strictly weaker input model.12 Surprisingly, it turns out that
this weaker input essentially does not affect the query and time complexity.

11Having access to a controlled reflection 2Π−I is equivalent up to constant factors to having access to
controlled U±1

Π
(i.e., controlled-UΠ and its inverse) for a block-encoding UΠ of the projectorΠ, as follows

from the QSVT framework [GSL+19].
12Indeed, we can implement a reflection about a state |ψ〉 by a state-preparation unitary and its in-

verse as in amplitude amplification. However, if we only have access to a reflection about an unknown
classical basis state |i 〉 for i ∈ [d ], then we need to use this reflection Ω(

p
d) times to find i (because

of the optimality of Grover search) showing that the reflection input is substantially weaker than the
state-preparation-unitary input.
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Observe that if we have two projectorsΠ,Π′ of rank r , then

∥Π−Π′∥1/(2r ) ≤ ∥Π−Π′∥ ≤ ∥Π−Π′∥1/2. (4.12)

This implies that the ε-precise estimation of a rank-1 projector Π (i.e., the density
matrix corresponding to a pure state) is equivalent to ε-precise approximation of the
quantum stateΠ. Since the complexity of pure-state tomography using state-preparation
unitaries is known to be Θ̃(d/ε) [ACG+23], it follows that our algorithm is optimal up
to log factors in the q = 1 case.

Similarly, the query complexity of our algorithm is optimal for ε = 1
6 up to log fac-

tors, as can be seen by an information-theoretic argument using ε-nets, since by Lemma 4.12
there is an ensemble of exp(Ω(d q)) rank-q ′ projectors for q ′ = min(q,⌊d

2 ⌋) such that
each pair of distinct projectors is more than 1

3 apart in operator norm. We conjecture
that the query complexity of the task is actually Ω̃(d q/ε), meaning that our algorithm
has essentially optimal query complexity for all ε ∈ (0, 1

6 ].
Now we briefly explain our algorithm for finding an orthonormal basis of the im-

age of Π, assuming for ease of exposition that its rank is exactly q . We want to find a
d × q isometry W such that ∥W W † −Π∥ is small. Our algorithm (Algorithm 6 below)
can be seen as a variant of the noisy power method: We start with generating m Gaus-
sian vectors g1, . . . , gm (m = Θ̃(q) will be slightly bigger than q), with i.i.d. (complex)
normal entries each having standard deviation ∼ 1/

p
d . Subsequently, we repeat the

following process K ≈ log
p

d/m times: we estimate Πgi for every i ∈ [m] using our
quantum state tomography algorithm (Theorem 4.6 and Corollary 4.7), and multiply
the outcome by 2, resulting in m new vectors (these factors of 2 allows our analysis to
treat all the errors together in one geometric series later). Finally, let V be the d ×m
matrix whose columns are the versions of those m vectors after the last iteration. The
algorithm classically computes the singular value decomposition (SVD) of this V , and
outputs those left-singular vectors w1, w2, . . . , wq that have singular value greater than
the threshold of 1

14 .
Note that the span of g1, . . . , gm includes the q-dimensional image of Π almost

surely. Hence if no error occurs in the tomography step, then V = 2KΠ[g1, . . . , gm], and
the image of V is the image of Π (almost surely). Thus, if

∑q
i=1ςi wi u†

i is the SVD of V ,

then
∑

i∈[q] wi w †
i = Π. That is, we get the desired output W by rounding the singular

values of V appropriately: the first q singular values are rounded to 1, and the others
are rounded to 0. To show the stability of this approach it remains to show that the
singular values ς1, . . . ,ςq of the final V in the non-error-free case are still large (≈ 1), the
other d − q singular values are still essentially 0, and the error incurred by the quan-
tum state tomography is small. Our analysis relies on the concentration of the singular
values of sufficiently random matrices, see Section 2.7.3.

To bound the effect of errors induced by tomography we combine the operator
norm bound on random matrices of Theorem 2.32 with our unbiased tomography al-
gorithm (Theorem 4.6). The key observation is that Corollary 4.7 gives an estimator ψ̃
that is δ-close in total variation distance to an “ideal” (though not error-free) estimator
qψ that satisfies E[ qψ] =ψ, whose covariance matrix has operator norm at most S2 ≤ ε2

d ,
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and ∥Πqψ−Πψ∥2 ≤ ε
√

q
d with certainty. For the sake of analysis we can assume that we

work with qψ, because we only notice the difference between qψ and ψ̃ with probability
at most δ, which can be made negligibly small at a logarithmic cost in Corollary 4.7.
Finally, we use perturbation bounds on singular values and vectors from Section 2.6.

Input : Dimension d , failure probability δ′ ∈ (0, 1
2 ], target precision ε ∈ (0, 1

2 ],

Õ
(
εδ′
d q

)
-approximate block-encoding UΠ of a projectorΠ of rank ≤ q

Output: ε-approximate orthonormal basis W of the image ofΠ, i.e.,∥∥W W † −Π∥∥≤ ε
Init: m :=min

(⌈
max

(
16C 2q,8c ln

(10
δ′

))⌉
,d

)
, K :=

⌈
log2

(√
d
m +1

)⌉
,

ε′ := ε

65+98
√

ln
(

10d
δ′

)
/c ′

// the constants c,C come from Corollary 2.30 and in the real

case
4

c,C = 1
// the constant c ′ comes from Theorem 2.32

1.) if m = d then set g j = | j 〉/4, else generate m random vectors g j with i.i.d.

complex (or real ifΠ ∈Rd×d ) standard normal entries multiplied by η := 4·2−K

7
p

m

// note η< 4
7
p

d

2.) for j = 1 to m do
Set g (0)

j = g j ; if ∥g j∥ > 2 then ABORT

for k = 0 to K −1 do
Classically compute ∥g (k)

j ∥ and store g (k)
j /∥g (k)

j ∥ in a KP-tree

(we can now unitarily prepare |ψ〉 =Πg (k)
j /∥g (k)

j ∥ using this KP-tree and

UΠ)

Obtain y (k+1)
j via ε′/∥g (k)

j ∥-precise tomography (Corollary 4.7) on |ψ〉
setting δ← δ′/(5mK ) // query complexity is Õ (d/ε)

Set g (k+1)
j ← 2∥g (k)

j ∥y (k+1)
j ; if ∥g (k+1)

j ∥ > 2 then ABORT

endfor
endfor

3.) Output the left-singular vectors of V = [g (K )
1 , . . . , g (K )

m ] with singular value
above 1

14 .

// Classical complexity is Õ
(
d q2

)
via diagonalization of V †V

// The output is correct with probability at least 1−δ′
// The total UΠ-query and quantum time complexity is Õ

(
d q/ε

)
Algorithm 6: Time-efficient approximation of the top-q eigensubspace

We say that UΠ is an ε-approximate block-encoding of Π if ∥UΠ−U∥ ≤ ε for some
U satisfyingΠ= (〈0a |⊗ I )U (|0a〉⊗ I ).13

13The condition ∥(〈0a |⊗I )UΠ(|0a〉⊗I )−Π∥ ≤ ε′ appears similar, however is in some sense quadratically
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Theorem 4.11 (Correctness of Algorithm 6). Let Π ∈Cd×d be an orthonormal projector

of rank at most q, given via an Õ
(
εδ′
d q

)
-approximate block-encoding UΠ. Algorithm 6

outputs an isometry W such that, with probability at least 1−δ′, ∥W W † −Π∥ ≤ ε, using

Õ
(

d q
ε

)
controlled UΠ, U †

Π, two-qubit quantum gates, read-outs of a QRAM of size Õ(d),

and Õ
(
d q2

)
classical computation.

Proof. First consider the case when there is no error in tomography and in the imple-
mentation of Π. Then we end up with g (K )

j = 2KΠg (0)
j , and the corresponding matrix

Vi deal = 2K [Πg (0)
1 , . . . ,Πg (0)

m ] has almost surely rank(Π) nonzero singular values with
associated left-singular vectors lying in the image of Π. The m = d case is trivial.
If m < d , then due to Corollary 2.30 all corresponding singular values are in ( 1

7 ,1)

with probability at least 1 − δ′
5 .14 By Proposition 2.31 (and a union bound over all

j ∈ [m]) we know that with probability at least 1 − δ′
10 we have for all j ∈ [m] that15

∥g j∥ < η(
p

d +p
2ln(10m/δ′)) < 6

7 . Thereby with probability at least 1− 3δ′
10 Algorithm 6

does not abort at the intialization of g (0)
j , and the left-singular vectors of Vi deal with sin-

gular value at least 1/7 form the columns of the desired matrix W such that W W † =Π;
in the remainder of the proof we assume this is the case.

Second, we consider what happens when the tomography has error, but we can
implement Π exactly. Let ẽ(k,ℓ)

j := g (k)
j −2k−ℓΠg (ℓ)

j be the aggregate tomography error
that occurred from the ℓ-th iteration to the k-th iteration where k ∈ [K ], ℓ ∈ [k]−1, and
observe that ẽ(k,ℓ)

j = ẽ(k,k−1)
j +∑k−1

i=ℓ+1 2k−i ·Πẽ(i ,i−1)
j . For each iteration, we do the to-

mography with precision ε′/∥g (k)
j ∥ onΠg (k)

j /∥g (k)
j ∥ via Corollary 4.7, guaranteeing that

the random variable ẽ(k,k−1)
j is δ-close in total variation distance to an “ideal” random

variable e(k,k−1)
j such that ∥e(k,k−1)

j ∥ ≤ ε′ and ∥Πe(k,k−1)
j ∥ ≤ ε′

√
q/d almost surely, and

E[e(k,k−1)
j ] = 0, ∥Cov(e(k,k−1)

j )∥ ≤ ε′
d 2 (to see this, choose V to be an orthonormal basis

whose first q elements span the image of Π). We define analogously e(k,ℓ)
j := e(k,k−1)

j +

weaker. Consider, e.g., Π = 1, a = 1, and UΠ =
(

cos(x) −sin(x)
sin(x) cos(x)

)
, then 1−cos(x) = x2/2+O(x4), but

for any unitary U = |0〉〈0|+ z|1〉〈1| we have ∥UΠ−U∥ ≥ |sin(x)| = |x|+O(|x|3). Nevertheless, because Π
is a projector, we can remedy this in general by converting UΠ to an (approximate) block-encoding of
Π/2 via linear combination of unitaries, and then applying quantum singular value transformation with
the polynomial −T3(x) = 3x − 4x3; the resulting unitary is then indeed O(ε′)-close to a perfect block-
encoding ofΠ, see for example the proof of [GSL+19, Lemma 23].

14The matrix 1
η [g (0)

1 , . . . , g (0)
m ] is a d ×m random matrix with i.i.d. (complex) standard normal entries.

After multiplying byΠ this effectively (up to a rotation) becomes a q×m random matrix with i.i.d. (com-
plex) standard normal entries. We apply Corollary 2.30 (with N = m) to the latter matrix, obtaining the
interval [ 1

4

p
m, 7

4

p
m] for its singular values. Multiplying by η2K = 4/(7

p
m) we get the interval [ 1

7 ,1] for
the singular values of Vi deal .

15We have η(
p

d + p
2ln(10m/δ′)) ≤ η

p
d + 2

7
p

m

p
2ln(10m/δ′) < 4

7 + 2
7

√
2ln(10m/δ′)

m = 4
7 +

2
7

√
2ln(m)+2ln(10/δ′)

m < 6
7 , because m ≥ 8ln(10/δ′) and 2ln(x)

x takes its maximum at x = e, where it is

less than 3
4 .
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∑k−1
i=ℓ+1 2k−i ·Πe(i ,i−1)

j . Note that the distribution of ẽ(k,k−1)
j (and e(k,k−1)

j ) can depend on

ẽ(i ,i−1)
j (and e(i ,i−1)

j ′ , respectively) only if j = j ′ and i ≤ k. Let⃗̃e j := (ẽ(1,0)
j , ẽ(2,1)

j , . . . , ẽ(K ,K−1)
j ),

and define e⃗ j analogously. We can apply Lemma 2.36 recursively to show that dT V (⃗ẽ j , e⃗ j ) ≤
Kδ. Since the ⃗̃e j are independent from each other, we can assume without loss of gen-
erality that so are the e⃗ j . Once again by Lemma 2.36 we get that when comparing the
two sequences of m random variables, we have dT V ((⃗ẽ j : j ∈ m), (⃗e j : j ∈ m)) ≤ mKδ=
δ′
5 . From now on we replace (⃗ẽ j : j ∈ m) by (⃗e j : j ∈ m) throughout the analysis, which

can therefore hide an additional failure probability of at most δ′
5 .

By the triangle inequality we have that

∥e(k,0)
j ∥ ≤ ∥e(k,k−1)

j ∥+
k−1∑
i=1

2k−i∥Πe(i ,i−1)
j ∥ ≤ ε′+

k−1∑
i=1

2k−iε′
√

q/d

≤ (1+2k
√

q/d)ε′ < (1+2(
p

d/m +1)
√

q/d)ε′ ≤ 5ε′

for every k ∈ [K ]. This also implies that for every k ∈ [K ] we have ∥g (k)
j ∥ ≤ ∥2kΠg (0)

j ∥+
∥e(k,0)

j ∥ ≤ ∥2KΠg (0)
j ∥+5ε′ ≤ 1+5ε′ ≤ 2, and therefore Algorithm 6 also does not abort in

the for-loop.
Let us define Etomo := [e(K ,0)

1 , . . . ,e(K ,0)
m ] = V −Vi deal as the matrix of accumulated

tomography errors. We can apply Lemma 2.37 recursively with X =Πe(k−1,0)
j ,Y = (I −

Π)e(k−1,0)
j , Z = e(k,k−1)

j to show that for all k ∈ [K ] we have

∥Cov(e(k,0)
j )∥ ≤ ∥Cov(e(k,k−1)

j )∥+
k−1∑
i=1

4k−i∥Cov(Πe(i ,i−1)
j )∥

≤ ∥Cov(e(k,k−1)
j )∥+

k−1∑
i=1

4k−i∥Cov(e(i ,i−1)
j )∥

≤
k∑

i=1
4k−i ε

′2

d
≤ 4K ε′2

3d
≤ 4(

p
d/m +1)2ε′2

3d
≤ 16ε′2

3m
.

Applying Theorem 2.32 for t =p
ln(10d/δ′)/c ′ gives that with probability at least 1− δ′

5
we have

∥Etomo∥ ≤ 8ε′p
3
+7ε′

√
ln(10d/δ′)/c ′ ≤ ε

14
. (4.13)

Since ∥Etomo∥ ≤ ε
14 , using the notation of Theorem 2.22 we have that Π = ΠVi deal

>0 and
the rank of ΠV

> 1
14

is rank(Π) ≤ q due to Weyl’s bound (Theorem 2.21). Therefore, by

Theorem 2.22 and Lemma 2.23 we have ∥Π−ΠV
> 1

14
∥ ≤ 14∥V −Vi deal∥ = 14∥Etomo∥ ≤ ε

as desired.
Finally, let us analyze the effect of implementation errors in UΠ. We perform to-

mography mK times via Corollary 4.7, each time using T =O( d
εpolylog(d/(εδ)) appli-
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cations of U±1
Π , therefore the induced total variation distance16 in the output distribu-

tion is at most TmK · Õ
(
εδ′
d q

)
≤ δ′

10 . Preparing a KP-tree that allows a similar precision

for the preparation of g (k)
j /∥g (k)

j ∥ likewise induces at most an additional δ′
10 total vari-

ation distance, implying that our algorithm outputs a sufficiently precise answer with
probability at least 1−δ′ when all approximations are considered. The quantum time
complexity comes entirely from Corollary 4.7, which is time efficient, while the final
computation requires computing the SVD of a d ×m matrix, which can be performed
in Õ

(
dm2

)= Õ
(
d q2

)
classical time.

Note that Algorithm 6 uses QRAM for time-efficiently preparing the quantum state
|ψ〉. One can use Theorem 2.12 to avoid the usage of QRAM in Theorem 4.11. Though
this will cost extra Õ(d) factor quantum gate complexity overhead, the number of ap-
plications of controlled U±

Π will still remain the same.

Using the following lemma and basic quantum information theory, one can see
that recovering the q-dimensional subspace with small constant error ε = 1/6 gains
usΩ(d q) bits of information about the subspace, and hence requires Ω̃(d q) quantum
queries. This shows that the query complexity of our previous algorithm is essentially
optimal in its d q-dependence.

Lemma 4.12 (ε-net of subspaces). Let q ≤ d/2. There exists a set S of q-dimensional
subspaces of Rd of size exp(Ω(d q)) such that for any distinct s,r ∈ S we have ∥Πs−Πr ∥ >
1
3 , whereΠt denotes the projector to the subspace t .

Proof. We can assume without loss of generality that d ≥ 1283.

First let us assume that q ≤ d/64; we show the existence of such a set S via the
probabilistic method, by showing that for any set S of subspaces, if |S| < exp(qd/32−
1), then with non-zero probability a Haar-random q-dimensional subspace r satisfies
∥Πs −Πr ∥ > 1

3 for every s ∈ S (thereby we can take S ← S ∪ {r }). We sample r as follows:
generate a random matrix R ∈ Rd×q with i.i.d. standard normal entries, and accept R
only if ςmin(R) ≥ 3

4

p
d (i.e., take a sample conditioned on this happening – we know by

Theorem 2.29 that this happens with probability ≥ 1
e ).

Upon acceptance we compute a singular value decomposition R =UΣV † and de-
fine Π = UU † as the projector corresponding to the subspace. Since Π = UU † is an
orthogonal projection to the image of R =UΣV † we have Πri = ri for all columns ri of

16With more careful tracking of error spreading in the estimated vectors it might be possible to show
that it suffices to have access to a block-encoding satisfying the weaker condition ∥(〈0a | ⊗ I )UΠ(|0a〉⊗
I )−Π∥ ≤ ε′p

dm
.
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R and thus

∥Πsri∥ ≥ ∥Πri∥−∥(Π−Πs)ri∥
= ∥ri∥−∥(Π−Πs)ri∥
≥ (1−∥Π−Πs∥)∥ri∥
≥ (1−∥Π−Πs∥)ςmin(R)

≥ 3

4

p
d(1−∥Π−Πs∥).

Hence ∥Π−Πs∥ ≤ 1
3 is only possible if ∥Πsri∥ ≥ p

d/2 for all columns of R. Without

the conditioning (on ςmin(R) ≥ 3
4

p
d , the condition we accept R), Πsri is effectively a

random q-dimensional vector with i.i.d. standard normal entries. Since
p

d/2−p
q ≥p

d/4, by Proposition 2.31 for any s ∈ S we have Pr[∥Πsri∥ ≥
p

d/2] ≤ exp(−d/32), and
due to the independece of the columns the probability that this happens for all i ∈ [q]
is less than exp(1− qd/32) even after conditioning. Taking the union bound over all
s ∈ S we can conclude that with non-zero probability ∥Π−Πs∥ > 1

3 for all s ∈ S.
The statement for q =Ω(d) follows from [HHJ+17, Lemma 8]. Alternatively, if q >

d/64, we can set q ′ := ⌈q/128⌉, d ′ := d−(q−q ′) so that q ′ ≤ d ′/64. Then from a large set
S′ of q ′-dimensional subspaces ofRd ′

satisfying ∥Πs′−Πr ′∥ > 1
3 for any distinct s′,r ′ ∈ S′

we construct S := {s : Πs =Πs′ ⊕ Iq−q ′ for some s′ ∈ S′} so that also ∥Πs −Πr ∥ > 1
3 for any

distinct s,r ∈ S.

4.4.4 Approximating the subspace spanned by top-q eigenvectors

In this subsection, we give a quantum algorithm to “approximate the top-q eigenvec-
tors” in a strong sense using qd 1.5+o(1) time (and q

p
sd 1+o(1) time if the matrix is s-

sparse). In particular, when q = 1, this algorithm outputs a vector that approximates
the top eigenvector using d 1.5+o(1) time. This is what we referred to as our “second
algorithm” in Section 4.1.1.

Consider the following situation: for q ∈ [d ], suppose we only know there is a signif-
icant eigenvalue gap between the qth eigenvalue λq and the (q +1)th eigenvalue λq+1.
Is there a way we can learn the subspace spanned by the top-q eigenvectors? Here we
consider the subspace instead of the top-q eigenvectors directly, because there might
be degeneracy among λ1, . . . ,λq , in which case the set of the top-q eigenvectors is not
uniquely defined.

We first estimate the magnitude of λq (with additive error γ/100) using the follow-
ing theorem.

Theorem 4.13. Let δ ∈ (0,1), q < d, A ∈Cd×d be a Hermitian matrix with operator norm
at most 1, v1, . . . , vd be an orthonormal basis of eigenvectors of A, and corresponding
eigenvaluesλ1, . . . ,λd such that |λ1| ≥ · · · ≥ |λd |, where we know the gap γ= |λq |−|λq+1|.
Suppose UA = exp(πi A). There is a quantum algorithm that with probability at least
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1−δ, estimates |λq | with additive error γ/100, using O
(p

qd
γ

log( log(1/γ)
δ

) log( d
δ

) log( 1
γ

)
)

controlled applications of U±
A and Õ

(p
qd
γ

log( log(1/γ)
δ

) log( d
δ

) log( 1
γ

)
)

time.

Proof. Let δ′ = δ/(10d), A = ∑
i∈[d ]

λi |vi 〉〈vi |, and T = 2⌈log(200log(1/δ′)/γ)⌉+2. Unitary W =
T−1∑
t=0

|t〉〈t |⊗exp(πi t A) does Hamiltonian simulation according to A on the second reg-

ister, for an amount of time specified in the first register. Observe that 1p
d

∑
i∈[d ]

|i 〉 |i 〉 =
1p
d

∑
i∈[d ]

|vi 〉 |v∗
i 〉 because of the invariance of maximally entangled states under uni-

taries of the form U ⊗U †. Hence we can apply phase estimation with precision γ/200
and failure probability δ′ to the quantum state 1p

d

∑
i∈[d ]

|vi 〉 |v∗
i 〉 |0〉 using W , to obtain

the state
1p
d

∑
i∈[d ]

|vi 〉 |v∗
i 〉 |Li 〉 , (4.14)

where the state |Li 〉 contains a superposition over different estimates λ̃i of λi . For each
i ∈ [d ], if we were to measure |Li 〉 in the computational basis, then with probability at
least 1−δ′ we get an outcome λ̃i such that |λi − λ̃i | ≤ γ/200.17 Let µ ∈ [0,1], and Rµ be
a unitary that marks whether a number’s absolute value is <µ, i.e., for every a ∈ [−1,1]

Rµ |a〉 |0〉 =
{
|a〉 |0〉 , if |a| ≥µ
|a〉 |1〉 , otherwise.

This unitary can be implemented up to negligibly small error by Õ(1) elementary gates.
Applying Rµ on the last register of the state of Eq. (4.14) and an additional |0〉, we obtainp

pµ |φ0〉 |0〉+
√

1−pµ |φ1〉 |1〉 for some |φ0〉 and |φ1〉, where pµ is the probability of out-
come 0 if we were to measure the last qubit. Note that if µ≥ |λq |+γ/150 > |λq |+γ/200,
then pµ ≤ (q −1)/d + (d −q +1)δ′/d , where the first term on the right-hand side is the
maximal contribution (to the probability pµ of getting outcome 0 for the last qubit)
coming from |Li 〉 with i ≤ q −1 and the second term is the maximal contribution com-
ing from |Li 〉 with i > q −1. On the other hand, if µ≤ |λq |−γ/150 < |λq |−γ/200, then
pµ ≥ (q/d)·(1−δ′), which is the minimal contribution coming from |Li 〉 with i ≤ q . The
difference between the square-roots of these two values is therefore

√
q

d
· (1−δ′)−

√
q −1

d
+ d −q +1

d
δ′ ≥

√
q

d
−δ′−

√
q −1

d
+δ′ =

1
d −2δ′√

q
d −δ′+

√
q−1

d +δ′
,

(4.15)

17There’s a small technical issue here: the unitary eπi A (to which we apply phase estimation) has
phases ranging between −π and π because the λ j range between −1 and 1, and phase estimation treats
−π and π the same. However, we can easily fix that by applying phase estimation to the unitary eπi A/2,
whose phases range between −π/2 and π/2.
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where the last equality is because a − b = (a2 − b2)/(a + b). Because δ′ = δ/(10d) ∈
(0,1/(10d)), both terms in the denominator are ≤ √

q/d , and hence the right-hand
side of Eq. (4.15) is at least 2/(5

√
qd). To estimate |λq | with additive error γ/100, it

therefore suffices to do binary search over the values of µ (with precision γ/300, that
is, binary search over µ ∈ {0,γ/300,2γ/300, . . . ,1}), in each iteration estimating

p
pµ to

within ±1/(5
√

qd). We can implement the unitary that maps |0〉 |0〉 → p
pµ |φ0〉 |0〉+√

1−pµ |φ1〉 |1〉 using one application of W and Õ(1) time. Let δ′′ = δ/(10log(300/γ)) >
0. By Theorem 2.3 with additive error η = 1/(5

√
qd) = Θ(1/

√
qd) and with failure

probability δ′′, one iteration of the binary search succeeds with probability at least

1−δ′′ and uses O(log(1/δ′′)/η) =O
(√

qd log( log(1/γ)
δ

)
)

applications of W and W †, and

Õ
(√

qd log( log(1/γ)
δ )

)
time. Therefore by the union bound, with probability at least

1− (⌈log(300/γ)⌉+ 1) ·δ′′ ≥ 1−δ, all iterations of the binary search give a sufficiently
good estimate of the value

p
pµ of that iteration, so the binary search gives us an esti-

mate of |λq | to within ±(γ/150+γ/300) =±γ/100.

Since we use O(log(1/γ)) iterations of binary search, we useO
(√

qd log( log(1/γ)
δ

) log( 1
γ

)
)

applications of W and W † and Õ
(√

qd log( log(1/γ)
δ ) log( 1

γ )
)

time for the whole binary

search. We can implement W and W † using O(T ) = O( log(d/δ)
γ ) controlled applica-

tions of U±
A and Õ( log(d/δ)

γ ) time. Thus we obtain a good estimate of |λq | with proba-

bility ≥ 1−δ, using O
(p

qd
γ log( log(1/γ)

δ ) log( d
δ ) log( 1

γ )
)

controlled applications of U±
A and

Õ
(p

qd
γ

log( log(1/γ)
δ

) log( d
δ

) log( 1
γ

)
)

time.

The above theorem assumes perfect access to exp(πi A) = UA for doing phase es-
timation. If we only assume we have sparse-query-access to A, then by Theorem 2.17
we can implement a unitary ŨA such that ∥ŨA −exp(πi A)∥ ≤ ε using Õ(s0.5+o(1)/εo(1))
time and queries.

Since the procedure in Theorem 4.13 makes use of D =O
(p

qd
γ log( log(1/γ)

δ ) log( d
δ ) log( 1

γ )
)

controlled applications of U±
A , if we replace UA with ŨA, the algorithm still outputs

the desired answer with success probability at least 1−δ−Dε.18 By plugging in the

time complexity for constructing ŨA with ε = Θ
(

δγp
qd log(log(1/γ)/δ) log(d/δ) log(1/γ)

)
, with

the constant in the Θ(·) chosen such that T ε ≤ δ (and rescaling δ by factor of 2), we
immediately have the following corollary.

Corollary 4.14. Let q < d and A ∈ Cd×d be a Hermitian matrix with operator norm at
most 1, v1, . . . , vd be an orthonormal basis of eigenvectors of A, and eigenvaluesλ1, . . . ,λd

such that |λ1| ≥ · · · ≥ |λd |, where we know the gap γ = |λq |− |λq+1|, and δ ∈ (0,1). Sup-
pose A has sparsity s and we have sparse-query-access to A. There is a quantum algo-

18Here we use the fact that if two unitaries are ε-close in operator norm, and they are applied to the
same quantum state, then the resulting two states are ε-close in Euclidean norm, and the two probability
distributions obtained by measuring the resulting two states in the computational basis are ε-close in
total variation distance.



4.4. Quantum noisy power method 83

rithm that with success probability at least 1−δ, estimates |λq |with additive errorγ/100,

using Õ
(

1
δo(1) (

p
d qs
γ )1+o(1)

)
queries and time.

The following proposition shows that every bounded-error quantum algorithm needs
Ω(

p
d s) sparse-access queries to estimate the top eigenvalue of an s-sparse matrix with

constant additive error. This implies the above corollary is near-optimal when q = 1.

Proposition 4.15. Let A ∈ Cd×d be a Hermitian matrix with operator norm at most 3.
Suppose A has sparsity s and we have sparse-query-access to A. Every bounded-error
quantum algorithm that estimates the top eigenvalue of A with additive error 0.1 uses
Ω(

p
d s) queries.

Proof. For simplicity and without loss of generality we assume A has sparsity 2s+1 and
d ≥ 2s +1 is a multiple of s. The idea is to encode an s(d − s)-bit Boolean string into a
2s +1-sparse d ×d matrix. Given a Boolean string X ∈ {0,1}s(d−s) := X (1)X (2) . . . X (d/s)−1

with Hamming weight either 0 or 1, where X (k) is an s2-bit Boolean string for each
k ∈ [d/s −1]. For every k ∈ [d/s −1], define Y (k) ∈ {0,1}s×s as (Y (k))i j = X (k)

s·i+ j . Let A be

defined by d/s ·d/s = d 2/s2 many s × s square matrices such that for i ≥ j

Ai j =


Is if i = j

Y (i ) +2−d · Js if i = j +1

0s otherwise,

where Is is the s × s identity matrix, Js is the s × s all-1 matrix, and 0s is the s × s all-
0 matrix; and for i < j , Ai j = AT

j i . One can easily see that A has sparsity 2s + 1, and
because the Hamming weight Ham(X ) of X is at most 1, the operator norm of A is at
most 2+ 2s · 2−d ≤ 2+d · 2−d ≤ 3. Note that given access to the oracle OX that maps
|i 〉 |0〉 → |i 〉 |Xi 〉 for every i ∈ [s(d − s)], one can construct an oracle that allows us to
make sparse-query-access to A using 2 applications of O±

X .
Observe that if Ham(X )=0, then the operator norm of A is at most 1+ 2s · 2−d ≤

1+d ·2−d ≤ 1+1/(e · ln2) < 1.6, while if Ham(X )=1, then the operator norm of A is at
least 2. Therefore, if there exists a T -query quantum algorithm A that estimates the
top eigenvector of A with additive error 0.1, then A can also be used to distinguish if
Ham(X ) is 0 or 1 using 2T queries to OX . On the other hand, by adversary method
(see Theorem 6.4), every bounded-error quantum algorithm uses Ω(

p
d s) queries to

decide if the Hamming weight Ham(X ) of an s(d − s)-bit string X is 0 or 1. Combining
the above two arguments, we know T =Ω(

p
d s).

Once we know |λq |, we can apply [GSL+19, Theorem 31] to implement a block-

encoding of UΠ using Õ
(
1/γ

)
applications of a block-encoding of A, whereΠ=∑

i∈[q] vi v†
i .

Combining the above argument with Theorem 2.19, we directly get the following corol-
lary of Theorem 4.11:

Corollary 4.16. Let q < d and A ∈ Cd×d be a Hermitian matrix with ∥A∥ ≤ 1, v1, . . . , vd

be an orthonormal eigenbasis of A with respective eigenvalues λ1, . . . ,λd such that |λ1| ≥
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· · · ≥ |λd |, where we know the gap γ = |λq |− |λq+1|. Let ε,δ ∈ (0,1) and Π = ∑
i∈[q] vi v†

i .
Suppose A has sparsity s and we have sparse-query-access to A. There exists a quantum
algorithm that outputs a d × q matrix W with orthonormal columns such that, with

probability ≥ 1 − δ, ∥W W † −Π∥ ≤ ε, using Õ
((

d
p

sq
γε

)1+o(1) + 1
δo(1)

(p
d qs
γ

)1+o(1)

+d q2

)
time and Õ(d) QRAM bits.

For the case of dense matrix A, we can set s = d to get time complexity roughly
qd 1.5. The special case q = 1 gives our main result for approximating the top eigen-

vector (with additive ℓ2-error ε)19 in time Õ
((

d 1.5/(γε)
)1+o(1)

)
. The ε-dependency is

slightly worse than the algorithm in Section 4.4.2, while both the d-dependency and γ-
dependency are significantly better (for d , the power is 1.5+o(1) instead of 1.75; for γ,
the power is 1+o(1) instead of 2). In Chapter 7 we show that its d-dependence to be es-
sentially optimal. However, the complexity with respect to q is sub-optimal for q close
to d , because one can diagonalize the entire matrix A classical in matrix-multiplication
time O(dω).

Again we note that if we only care about the number of queries to entries of the
input matrix (instead of time complexity), then we can get an O

(
d 1.5+o(1)

)
-vs-Ω(d 2)

quantum-classical query-complexity separation (see Section 7.3 for classical query lower
bounds) for approximating the top eigenvector without using any QRAM, because we

can prepare | g (k)
j

∥g (k)
j ∥〉 (of Algorithm 6) from its classical description using a circuit of Õ (d)

gates that uses no QRAM and no queries to entries of the input matrix.

4.5 Open problems

Here we mention some questions for future work.

• Can we improve the d-dependence to d 1.5, without the o(1) in the exponent? And
maybe also without using QRAM? Our upper bound of roughly qd 1.5 for finding
the subspace spanned by the top-q eigenvectors is essentially optimal for con-
stant q , but it cannot be optimal for large q (i.e., q =Ω(d)) because diagonaliza-
tion finds all d eigenvectors exactly in time roughly d 2.37, which is less than d 2.5.
We should try to improve our algorithm for large q .

• Matrix-vector multiplication is a very basic and common operation in many al-
gorithms. So far there has not been much work on speeding this up quantumly,
possibly because easy lower bounds preclude quantum speed-ups for exact matrix-
vector multiplication.20 Can we find other applications of our polynomially faster
approximate matrix-vector multiplication? One such application is computing

19Note that for every unit w, v ∈Cd it holds that ∥w w † − v v†∥ = 2
√

1−|〈w, v〉|2, thus ε≥ ∥w w † − v v†∥
implies |〈w, v〉| ≥

p
1−ε2/4 ≥ 1−ε2/4 ≥ 1−ε2/2.

20Exact matrix-vector multiplication takes Ω(d 2) quantum queries to entries of A (and hence has no
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an approximate matrix-matrix product AB in time roughly d 2.5, by separately
computing ABi for each of the d columns Bi of B . This would not beat the
current-best (but wholly impractical) matrix-multiplication techniques, which
take time d 2.37..., but it would be a very different approach for going beyond the
basic O

(
d 3

)
matrix-multiplication algorithm. A related application is to matrix-

product verification: we can decide whether AB is close to C in Frobenius norm
for given d ×d matrices A,B ,C , in quantum time roughly d 1.5, by combining our
approximate matrix-vector computation with Freivalds’s algorithm [Fre77]. This
should be compared with the quantum algorithm of Buhrman and Špalek [BŠ06]
that tests if AB is equal to C (over an arbitrary field) using Õ

(
d 5/3

)
time.

speed-up). This is easy to see by taking A ∈ {0,1/d}d×d and w = ( 1p
d

, . . . , 1p
d

)T , because then d 1.5 Aw

gives the number of nonzero entries in A. It is well-known that Ω(d 2) quantum queries are needed to
count this number exactly.
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CHAPTER 5

Quantum algorithms for SVP

5.1 Introduction

The most important computational problem on lattices is the Shortest Vector Problem
(SVP). Given a basis for a lattice L ⊆ Rn ,1 SVP asks us to compute a nonzero vector
in L with the smallest Euclidean norm. Starting from the ’80s, the use of approximate
and exact SVP solvers (and other lattice problems) gained prominence for their appli-
cations in algorithmic number theory [LLL82], convex optimization [Len83; Kan87b;
FT87], coding theory [Bud89], and cryptanalysis [Sha84; Bri84; LO85]. The security
of many cryptographic primitives is based on the worst-case hardness of (a decision
variant of) approximate SVP to within polynomial factors [Ajt96; MR07; Reg09; Reg06;
MR08; Gen09; BV14] in the sense that any cryptanalytic attack on these cryptosystems
that runs in time polynomial in the security parameter implies a polynomial-time al-
gorithm to solve approximate SVP to within polynomial factors. Such cryptosystems
have attracted a lot of research interest because those lattice problems are conjectured
to be resistant to quantum attacks.

The SVP is a well-studied computational problem in both its exact and approxi-
mate (decision) versions. By a randomized reduction, it is known to be NP-hard to
approximate within any constant factor, and hard to approximate even within a factor
nc/loglogn for some c > 0 under reasonable complexity-theoretic assumptions [Mic00;
Kho05; HR12].2 For an approximation factor 2O(n), one can solve SVP in time polyno-
mial in n using the celebrated LLL lattice basis reduction algorithm [LLL82]. In general,
the fastest known algorithm(s) for approximating SVP within factors polynomial in n
rely on (a variant of) the BKZ lattice basis reduction algorithms [Sch87; SE94; AKS01;
GN08; HPS11; ALN+20; ALS21], which can be seen as generalizations of the LLL al-
gorithm and gives an r n/r approximation in 2O(r )poly(n) time. All these algorithms
internally use an algorithm for solving (near) exact SVP in lower-dimensional lattices.

1By the discussion at the beginning of Section 2.9.2, we assume the lattice is full rank and d = n.
2When we say we “approximate” the shortest vector within a factor γ, it means we find a nonzero

lattice vector whose length is at most γ ·λ1, where λ1 is the length of the shortest vector.
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Therefore, finding faster algorithms to solve exact SVP is critical to choosing security
parameters of cryptographic primitives.

As one would expect from the hardness results above, all known algorithms for solv-
ing exact SVP, including the ones we present here, require at least exponential time.
There has been some recent evidence [AS18] showing that one cannot hope to get a
2o(n) time algorithm for SVP if one believes in complexity-theoretic conjectures such
as the (Gap) Exponential Time Hypothesis (see Chapter 8 for more details about the
Exponential Time Hypothesis). Most of the known algorithms for SVP can be broadly
classified into two classes: (i) the algorithms that require memory polynomial in n but
run in time nO(n) and (ii) the algorithms that require memory 2O(n) and run in time
2O(n). The first class, initiated by Kannan [Kan87b; Hel85; HS07; GNR10; MW15], com-
bines basis reduction with exhaustive enumeration inside Euclidean balls. While enu-
merating vectors requires 2O(n logn) time, it is much more space-efficient than other
kinds of algorithms for exact SVP.

The second class of algorithms, and currently the fastest, is based on sieving. First
developed by Ajtai, Kumar, and Sivakumar [AKS01], they generate many lattice vectors
and then divide-and-sieve to create shorter and shorter vectors iteratively. A sequence
of improvements [Reg04; NV08; MV10; PS09; ADR+15; AS18], has led to a 2n+o(n) time
and space algorithm by sieving the lattice vectors and carefully controlling the distribu-
tion of the output, thereby outputting a set of lattice vectors that contains the shortest
vector with overwhelming probability.

There are variants [NV08; MV10; BDG+16; BCS+23] of the above-mentioned clas-
sical sieving algorithms that, under some heuristic assumptions, have an asymptoti-
cally smaller (but still 2Θ(n)) time and space complexity than their provable counter-
parts. A number of works have also investigated the potential quantum speedups for
lattice algorithms (under some heuristic assumptions), and SVP in particular [LMP15;
CL21]. A similar landscape to the classical one exists, although the quantum mem-
ory model needs additional attention because it comes in a number of different kinds.
While quantum enumeration algorithms only require qubits [ANS18], sieving algo-
rithms usually require the usage of QRAM memory [LMP15; KMP+19].

5.1.1 Main results and high-level intuition

Our main result is to provide two provable quantum algorithms for SVP that both im-
prove over the current fastest quantum algorithm for SVP [ADR+15] (the algorithm
in [ADR+15] is still the fastest classical algorithm for SVP). The first one takes 20.9497n+o(n)

time, which is slower than the second one but it does not require the usage of QRAM
memory. The second one takes time 20.8345n+o(n) and uses 20.293n+o(n) QRAM bits,
which is the best known provable quantum algorithm for solving SVP.

The time complexity of both our quantum algorithms is obtained using a known
upper bound on a quantity β(L)n (also known as the lattice kissing number, see Sec-
tion 2.10.2), which depends on the lattice and is always upper-bounded by 20.402n . We
analyzed the dependency of the running time of our algorithm on this quantity β(L)
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and plotted (Figure 5.2) the graph of the complexity exponent as a function of β(L). In
practice, for most lattices, β(L)n is often 2o(n) (see the discussion in Section 2.10.2). In
this case, the running time of our algorithm is significantly better than when using the
generic upper bound on β(L). Precisely, our first quantum algorithm (the one without
using QRAM) runs in time 20.750n+o(n) and our second quantum algorithm uses only
20.667n+o(n) time and 20.167n+o(n) QRAM bits.

Our high-level idea is to generalize the result in [CCL18]: if we have an α-BDD or-
acle, then by Theorem 2.45, ⌈α−1⌉n := qn calls to this oracle can enumerate all lattice
points within q ·αλ1 ≥ λ1 distance to the origin. If we want to speed up this enumer-
ation algorithm proposed by [CCL18], then we can either try to improve the running
time of an α-BDD oracle or try to reduce q = ⌈α−1⌉.

Quantum algorithm for BDDP in QRAM.

In [DRS14], Dadush, Regev, and Stephens-Davidowitz gave an algorithm for BDD with
preprocessing (or BDDP), which requires advice containing discrete Gaussian samples
over the dual lattice. The idea is to use the periodic Gaussian function f (defined in
Section 5.2) to go near the closest lattice vector. The function f is periodic over the
lattice, and its value depends only on the distance between the input vector and the
lattice. Now we can do the gradient ascent by iteratively updating the target vector
using values of ∇ f and f such that the distance of the target vector from the closest
lattice vector decreases. Here we show that we can reduce the time complexity of this
algorithm by using quantum amplitude estimation assuming that the advice string is
stored in a QRAM memory. More specifically, we show that just by using ∼ O(

p
N )

arithmetic operations in QRAM, we can solve BDDP where N is the size of the advice
string required in [DRS14].

Covering the surface of a ball by spherical caps.

This result improves the quantum algorithm from [CCL18]. As we mentioned above,
one can enumerate all lattice points within a qα distance to a target t by querying an
α-BDD oracle qn times. However, to make use of Theorem 2.45, we should ensure the
target is uniquely decodable, or equivalently, α < 1/2. 3 Therefore, if we choose t to
be 0, then q has to be at least 3 to ensure that the shortest vector is one of the vectors
output by the enumeration algorithm mentioned above.

We observe here that if we choose a target t to be a random vector on a sphere of
a well-chosen radius centered at the origin, then the shortest vector will be within a
radius 2α from the target t with some probability P , and thus we can find the shortest
vector by making 2n/P calls to the BDD oracle (and hence

p
2n/P quantum queries to

BDD oracle using quantum minimum-finding). An appropriate4 choice of the target
t and the factor α gives a quantum algorithm (with its corresponding optimized value

3Also note that the decoding distance of α-BDD oracle built by discrete Gaussian samples in [DRS14]
only succeeds if the target vector is within a radius αλ1(L) for α< 1/2.

4The optimal choice of α is obtained by numerical optimization, see Section 5.5.
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of α, which is different from the latter one) that runs in time 2n/2 · 20.4497n+o(n) using
poly(n) qubits. Finally, if we can store those DGS samples in a QRAM memory, we can
obtain a further speedup and an algorithm that runs in time 2n/2 ·20.3345n+o(n) and uses
20.293n+o(n) QRAM bits.

Dependency on a quantity related to the kissing number.

The running time of the above algorithms crucially depends on a quantity related to
the kissing number of the input lattice. This quantity plays a role in the BDD-to-DGS
reduction when relating the decoding radius α to the ε when sampling at the smooth-
ing parameter ηε. Our algorithms take significantly less time for the smaller values
of this quantity. However, the only known upper bound on this quantity seems to be
very pessimistic for most lattices. Since we have used this upper bound to derive the
complexity of our algorithm (except in Section 5.5), this means that the actual running
time of this algorithm might be much better for most lattices. For a more elaborate
discussion on this, see Section 5.5.

Roadmap

In Section 5.2, we will explain how to speed up the gradient-ascent algorithm by [DRS14]
assuming those DGS samples are stored in a QRAM memory. In Section 5.3 we discuss
the tradeoff between the time complexity ofα-BDD oracle (built by the gradient-ascent
algorithm) and the decoding distance α. In Section 5.4 we combine the spherical cap
covering idea with the enumeration algorithm of [CCL18], as well as the α-BDD oracle
we built up in Section 5.3 and Section 5.2, to give two quantum algorithms for solving
SVP. In Section 5.5, we show how the time complexity of our two quantum algorithms
decreases as the lattice kissing number β(L) becomes smaller.

Remark

For convenience, we sometimes will only describe a BDD oracle that succeeds with
constant probability, while this success probability can be anyway increased to 1 −
2−Ω(n) by a polynomial number of repeated calls to a BDD oracle (and then by choos-
ing the closest one). We sometimes describe both algorithms for BDD and BDDP in
the same theorem, and in this case, we always explain the time complexity of BDD and
then the time complexity of BDDP (the sentence will start with “Every extra call”). For
preliminaries of lattice and related problems (w.r.t. ℓ2-norm), see Section 2.9.2.

5.2 Quantum speedup for BDDP using QRAM

The goal of this section is to obtain a quantum speedup of Theorem 5.1.

Theorem 5.1 ([DRS14, Theorem 3.1]). Let ε ∈ (0, 1
200 ), latticeL⊂Rn , andα≤

p
ln(1/ε)/π−o(1)
2ηε(L∗)λ1(L) .

There exists a classical algorithm that with probability ≥ 1−2−Ω(n), solvesα-BDDP using
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m ·poly(n) time where m =O( n log(1/ε)p
ε

). The preprocessing advice consists of m vectors

sampled from DL∗,ηε(L∗).
5

We improve the time complexity of the algorithm by almost a square root factor,
but we also require the advice string to be stored in QRAM. We first give an overview of
the known algorithms for BDDP.

Most of the known BDDP algorithms (including the one in [DRS14]) are based on
the algorithm for decision-CVPP by Aharonov and Regev [AR05]. We first revisit the
algorithm for decision-CVPP. In their work, the authors introduced the periodic Gaus-
sian function f :Rn →R+,

f (t) := ρ(t+L)

ρ(L)

towards giving an algorithm for O(
√

n/logn)-approximation of decision-CVPP. They
observed that by the Poisson summation formula, we get the identity

f (t) = E
w∼DL∗

[cos(2π〈w,t〉)]. (5.1)

They also showed that when the distance of the target vector t from lattice L is
at least

p
n, then f (t) is negligible, and when the distance between t and lattice L is

at most
√

logn, then f (t) is non-negligible (and the ratio between those two values
= √

n/logn is the approximation factor for decision-CVP). This function f evaluated
on any vector t is an infinite sum, and is not easy to evaluate efficiently. Their algorithm
crucially relied on the observation in Eq (5.1) that shows that the function f can be
estimated by using a polynomial-size advice string with at most 1/poly(n) error. They
gave the estimator

fW (t) = 1

N

N∑
i=1

cos(2π〈wi ,t〉) (5.2)

where W = (w1, . . . ,wN ) ∈ L∗ are i.i.d. samples from DL∗ ; and showed that fW ≈ f
with at most 1/poly(n) error when N is a large enough number upper bounded by a
polynomial in n.

Later, Liu, Lyubashevsky, and Micciancio [LLM06] gave an algorithm for the ap-
proximation of search BDDP. The idea is to iteratively update the target vector t such
that its distance from the closest lattice vector decreases and eventually, it is easy to
efficiently find the closest lattice vector. They are able to solve the α-BDDP for α ≤

5 We are going to use this reduction in the superpolynomial regime: typically m will be exponential in
n because ε will be exponentially small in n. This leaves unclear the space complexity of the reduction.
The reduction works by evaluating a polynomial number of times functions of the form

∑m
i=1 fi (x) where

each fi is a polynomial-time computable function that depends on the i th DGS sample. Furthermore,
all the complexities above are in terms of arithmetic operations, not bit complexity. If we assume that
all the DGS samples have poly(n) bit-size then the reduction has time complexity m ·poly(n) and space
complexity O(poly(n)+logm) excluding the storage space of the m vectors provided by the DGS. Finally, as
noted in the proof of the theorem in [DRS14], only the preprocessing is probabilistic and with probability
at least 1−2−Ω(n) over the choice of the samples, the algorithm will solve all α-BDD instances.
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O
(√

logn
n

)
. Dadush, Regev, and Stephens-Davidowitz gave an improvement by a care-

ful analysis of the function f (t). They proposed that by iteratively updating t by an
approximation of

t+ ∇ f (t)

2π f (t)
,

we can go near the closest lattice vector. Their algorithm solves α-BDDP, for α =p
ln(1/ε)/π−o(1)
2ηε(L∗)λ1(L) . The advice string consists of N vectors fromDL∗,ηε(L∗) and the algorithm

performs O(N +poly(n)) arithmetic operations where N =O
(

n log(1/ε)p
ε

)
. In this section,

we will show that if the advice string is stored in QRAM, then we can achieve the same
approximation of BDDP by using only O(

p
N +poly(n)) arithmetic operations.

We will start with listing some of the lemmas and theorems from [DRS14] that we
will directly use in our proof. After that, we will show the quantum improvement in the
estimation of function fW and ∇ fW . We will present the main result in the last part of
this section.

5.2.1 Results from [DRS14]

Let ρ(x) = exp(−π∥x∥2) be a perfect (unnormalized) Gaussian, then for all vectors t,
t+ ∇ρ(t)

2πρ(t) = 0, which means one step of the gradient ascent will immediately decode a
vector t back to 0. The proof idea of [DRS14] is to first show that “locally” the periodic
Gaussian function f behaves really like a Gaussian (and hence the gradient ascent can
help you move closer to the lattice). The following lemma tells us that the periodic
Gaussian function is always “above” the perfect Gaussian.

Lemma 5.2. [DRS14, Lemma 2.14] Let L ⊂ Rn be a lattice. Then, for all t ∈ Rn , f (t) ≥
ρ(t).

The following theorem tells us that if we can compute f (t) and its gradient, and
suppose that t is sufficiently close to the lattice (here we denote this distance as sε/2),

then we can simply apply the gradient ascent algorithm to find a vector t′ = ∇ f (t)
2π f (t) + t

such that the new vector t′ is even closer to the closest lattice vector of t. Note that
since the periodic Gaussian f is periodic over the lattice, without loss of generality we
can always assume the closest vector is 0 and the vector t gets shorter after one step of
the gradient ascent.

Theorem 5.3. [DRS14, Corollary 4.3] Let ε ∈ (0,1/400) and L⊂Rn a lattice with ρ(L) =
1+ε. Let sε =

(
1
π ln 2(1+ε)

ε

)1/2
. Then for all t ∈Rn satisfying ∥t∥ ≤ sε/2,∥∥∥∥ ∇ f (t)

2π f (t)
+t

∥∥∥∥≤ 12(ε/2)1−2δ(t)∥t∥,

where δ(t) = max(1/8,∥t∥/sε). In particular, for δ(t) ≤ 1/2−2/(πs2
ε),∥∥∥∥ ∇ f (t)

2π f (t)
+t

∥∥∥∥≤ ∥t∥/4.
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Once we know t′ = ∇ f (t)
2π f (t) + t gets closer to the lattice as we wanted, it then suffices

to show ∇ f (t)
2π f (t) is very close to ∇ fW (t)

2π fW (t) with respect to Euclidean norm. To this, it suffices
to show that both fW and f are not too small (because both f , fW are denominators)
and that both f (t) ≈ fW (t) and ∇ f (t) ≈ ∇ fW (t) simultaneously for all relevant t (with
overwhelming probability). Here we have two regions for the length of t: when the
length of t is relatively small, we can already show that doing the gradient ascent on
fW helps us to find a closer point.

Lemma 5.4. [DRS14, Lemma 4.7] Let L ⊂ Rn be a lattice with ρ(L) = 1 + ε for ε ∈
(0,1/400). Let W = (w1, . . . ,wN ) be sampled independently fromDL∗ with N ≥Ω(n/

p
ε).

Then,

Pr[∃t,∥t∥ ≤ ε1/8/(1000n) : ∥∇ fW (t)/(2π fW (t))+t∥ > ε0.25∥t∥] ≤ 2−Ω(n).

When t is relatively far away from (but still close enough to) 0, we do not directly get
a result similar to the lemma above, but still we can show the following four things hold
simultaneously for all relevant t (with overwhelming probability): ∇ f ≈ ∇ fW , f ≈ fW ,
fW ∼ 1, and ∥∇ fW ∥ is not too big.

Lemma 5.5. [DRS14, Lemma 4.10] Let L ⊂ Rn be a lattice with ρ(L) = 1+ ε with ε ∈
(0,1/400). Let sε =

(
1
π ln 2(1+ε)

ε

)0.5
. Let W = (w1, . . . ,wN ) be sampled independently from

DL∗ . Then, for ε2 ≤ s ≤ 10, if N ≥Ω(n ln(1/ε)/s2),

Pr
[
∃t ∈Rn ,ε1/8/(1000n) ≤ ∥t∥ ≤ sε : ∥∇ fW (t)−∇ f (t)∥ > s∥t∥

]
≤ 2−Ω(N ·s2).

Lemma 5.6. [DRS14, Lemma 4.12] Let L ⊂ Rn be a lattice with ρ(L) = 1+ ε with ε ∈
(0,1/400). Let sε = ( 1

π
ln 2(1+ε)

ε
)0.5. Let W = (w1, . . . ,wN ) be sampled independently from

DL∗ . Then, for ε2 ≤ s ≤ 10, if N ≥Ω(n ln(1/ε)/s2), then

Pr
[
∃t ∈Rn ,∥t∥ ≤ sε : | fW (t)− f (t)| > s

]
≤ 2−Ω(N ·s2).

Lemma 5.7. [DRS14, Consequence of the proof of Lemma 4.7] Let L ⊂ Rn be a lattice
with ρ(L) = 1+ε for some ε> 0, and W = (w1, . . . ,wN ) be sampled independently from
DL∗ with N =Ω(n/

p
ε). Then we have

Pr

[
∃t ∈Rn ,∥t∥ ≤ ε1/8

1000n
: ∥∇ fW (t)∥ > (2π+4ε0.25)∥t∥

]
≤ 2−Ω(n),

and

Pr

[
∃t ∈Rn ,∥t∥ ≤ ε1/8

1000n
: | fW (t)| < 1− ε0.25

100

]
≤ 2−Ω(n).

We also include the following lemma.

Lemma 5.8. [DRS14, First item of Lemma 4.5] Let L⊂ Rn be a lattice with ρ(L) = 1+ε
for some ε> 0, and let W = (w1, . . . ,wN ) be sampled independently from DL∗ . Then, for
s ≥ 0, N min(s, s2) ≥Ω(n), and ∆ε = 4πε

1+ε (ln 2+2ε
ε

+1), we have

Pr
[
∥H fW (0)+2πIn∥ >∆ε+ s

]
≤ 2−Ω(N min{s,s2}),

where H fW denotes the Hessian matrix of fW .
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5.2.2 Estimation of fW and ∇ fW using QRAM

In this subsection, we will show how to estimate fW and ∇ fW faster using a quantum
computer assuming W is stored in QRAM.

Theorem 5.9. Let ε′,δ ∈ (0,1), N be a positive integer, latticeL⊂Rn and W = {w1, . . . ,wN }
be a set of vectors from L∗. Suppose we can make quantum queries to OW : | j 〉 |0〉 →
| j 〉 |w j 〉. There exists a quantum algorithm that given target t ∈ Rn outputs f̃W (t) such

that, with probability ≥ 1−δ, | f̃W (t)− fW (t)| ≤ ε′, using O( 1
ε′ log 1

δ ) applications of O±
W

and Õ( 1
ε′ log 1

δ ) time.

Proof. We define the positive controlled rotation unitary as, for any a ∈R

UC R+ : |a〉 |0〉→
{
|a〉 (

p
a |1〉+p

1−a |0〉), if a > 0

|a〉 |0〉 , otherwise,

which can be implemented up to negligible error by Õ (1) quantum elementary gates.
Also, we define the cosine inner product unitary as for any t,w ∈Rn

Ucos : |w〉 |t〉 |0〉→ |w〉 |t〉 |cos(2π〈w,t〉)〉 ,

which can also be implemented up to negligible error by Õ (1) quantum elementary

gates. Preparing the state 1p
N

N∑
j=1

| j 〉 |0〉 |t〉 |0〉 |0〉, applying OW on the first and second

registers, applying Ucos on the second, third, fourth registers, and applying UC R+ on
the fourth and fifth registers, we obtain

1p
N

∑
j∈[N ] and

cos(2π〈w j ,t〉)>0

| j 〉 |w j 〉 |t〉 |cos(2π〈w j ,t〉)〉(√cos(2π〈w j ,t〉 |1〉+
√

1−cos(2π〈w j ,t〉 |0〉)

+ 1p
N

∑
j∈[N ] and

cos(2π〈w j ,t〉)≤0

| j 〉 |w j 〉 |t〉 |cos(2π〈w j ,t〉〉 |0〉 .

By rearranging the equation, the above is equal to

1p
N

∑
j∈[N ] and

cos(2π〈w j ,t〉)>0

√
cos(2π〈w j ,t〉 | j ,w j ,t〉 |cos(2π〈w j ,t〉)〉 |1〉

+ 1p
N

( ∑
j∈[N ] and

cos(2π〈w j ,t〉)>0

√
1−cos(2π〈w j ,t〉) | j ,w j ,t〉 |cos(2π〈w j ,t〉)〉+ ∑

j∈[N ] and
cos(2π〈w j ,t〉≤0

| j ,w j ,t〉 |cos(2π〈w j ,t〉〉) |0〉
=
p

a+ |φ1〉 |1〉+
p

1−a+ |φ0〉 |0〉 ,

where a+ = ∑
j∈[N ] and

cos(2π〈w j ,t〉)>0

cos(2π〈w j ,t〉)
N . By applying Theorem 2.3, we can estimate a+

with additive error ε′/2 by using O(ε′−1) applications of OW , O†
W , and Õ(ε′−1) time.
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Following the same strategy, we can also estimate a− = ∑
j∈[N ] and

cos(2π〈w j ,t )<0

cos(2π〈w j ,t〉)
N with

the same additive error and by using the same amount of queries and time. There-

fore, we can estimate a++a− = ∑
j∈[N ]

cos(2π〈w j ,t〉)
N with additive error ε′. By repeating the

procedureΘ(log 1
δ ) times and taking the median among them, we finish the proof.

Theorem 5.10. Let ε′,δ ∈ (0,1), N be a positive integer, latticeL⊂Rn , and W = {w1, . . . ,wN }
be the set of vectors in L∗. Suppose we can make quantum queries to OW : | j 〉 |0〉 →
| j 〉 |w j 〉 and suppose we know a number wmax ≥ max

j∈[N ]
∥w j∥. Then for all i ∈ [n]−1, there

exists a quantum algorithm that given target t ∈ Rn outputs �∇i fW (t), such that, with
probability ≥ 1−δ, |�∇i fW (t)−∇i fW (t)| ≤ 2πε′∥t∥ ·w 2

max, using O( 1
ε′ log 1

δ ) applications
of O±

W and Õ( 1
ε′ log 1

δ ) time.

Proof. From Eq (5.2), we get ∇i fW (t) = −1
N

N∑
j=1

sin(2π〈w j ,t〉) · (w j )i for i ∈ [n]−1. Also

observe that for all i ∈ [n]−1 and j ∈ [N ],

|sin(2π〈w j ,t〉) · (w j )i | ≤ |2π〈w j ,t〉 ·wmax | ≤ 2π∥t∥ ·w 2
max ,

and hence
∣∣∣ sin(2π〈w j ,t〉)·(w j )i

2π∥t∥·w2
max

∣∣∣ ≤ 1 for all i ∈ [n]− 1 and j ∈ [N ]. For simplicity, we de-

fine gi (w,t) = sin(2π〈w,t〉)·(w)i

2π∥t∥·w2
max

. Then we define the sine inner product unitary as for any

t,w ∈Rn and i ∈ [n]−1

Usin : |w〉 |t〉 |i 〉 |0〉→ |w〉 |t〉 |i 〉 |gi (w,t)〉 ,

which can be implemented by Õ (1) quantum elementary gates. Also, we would like to
use the positive controlled rotation unitary UC R+ defined in the proof of Theorem 5.9,
which again can be implemented up to negligible error by Õ (1) quantum elementary
gates.

Preparing the state 1p
N

N∑
j=1

| j 〉 |0〉 |t〉 |i 〉 |0〉 |0〉, applying OW on the first and second

registers, applying Usin on the second, third, fourth, fifth registers, and applying UC R+



96 Chapter 5. Quantum algorithms for SVP

on the fifth and sixth registers, we obtain

1p
N

∑
j∈[N ] and
gi (w j ,t )>0

| j 〉 |w j 〉 |t〉 |i 〉 |gi (w j ,t)〉(√gi (w j ,t) |1〉+
√

1− gi (w j ,t) |0〉)

+ 1p
N

∑
j∈[N ] and
gi (w j ,t)≤0

| j 〉 |w j 〉 |t〉 |i 〉 |gi (w j ,t)〉 |0〉

= 1p
N

∑
j∈[N ] and
gi (w j ,t)>0

√
gi (w j ,t) | j 〉 |w j 〉 |t〉 |i 〉 |gi (w j ,t)〉 |1〉

+ 1p
N

( ∑
j∈[N ] and
gi (w j ,t)>0

√
1− gi (w j ,t) | j 〉 |w j 〉 |t〉 |i 〉 |gi (w j ,t)〉+ ∑

j∈[N ] and
gi (w j ,t)≤0

| j 〉 |w j 〉 |t〉 |i 〉 |gi (w j ,t)〉) |0〉
=
p

a+ |φ1〉 |1〉+
p

1−a+ |φ0〉 |0〉 ,

where a+ = ∑
j∈[N ] and
gi (w j ,t)>0

gi (w j ,t)
N . By applying Theorem 2.3, we can estimate a+ with ad-

ditive error ε′/2 using O(ε′−1) applications of OW , O†
W , and Õ(ε′−1) time. Following

the same strategy, we can also estimate a− = ∑
j∈[N ] and
gi (w j ,t)<0

gi (w j ,t)
N with the same additive

error and by using the same amount of queries and time. Therefore, we can estimate

a++ a− = ∑
j∈[N ]

gi (w j ,t)
N = −∇i fW (t)

2π∥t∥·w2
max

with additive error ε′. By repeating the procedure

Θ(log 1
δ ) times and taking the median among them, we finish the proof.

5.2.3 Building BDDP using QRAM

From the previous subsection, given t, we can estimate fW and its gradient with small
additive error. In this subsection, we will replace fW and its gradient with the approxi-
mate ones, and show that doing gradient ascent on the approximation function f̃W (t)
still helps us to find the closest vector, and hence we can use f̃W to solve BDDP.

Theorem 5.11. Let ε ∈ (0,1/400), L ⊂ Rn be a lattice with ρ(L) = 1+ε, N be a positive

integer, sε =
(

1
π

ln 2(1+ε)
ε

)0.5
, δmax = 0.5− 2

πs2
ε

, and W = (w1, . . . ,wN ) be a set of vectors

from L∗. Suppose that for some γ > 0, t ∈ Rn , one can compute f̃W (t) and �∇ fW (t), and
it holds that

1. ∥t∥ ≤ min{δmaxsε,
√

ln(1/(4γ))/π},

2. ∥∇ fW (t)−∇ f (t)∥ ≤ π
2γ∥t∥,

3. ∥∇ fW (t)− �∇ fW (t)∥ ≤ π
2γ∥t∥,

4. | fW (t)− f (t)| ≤ γ,
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5. | fW (t)− f̃W (t)| ≤ γ.

Then, ∥∥∥∥∥ �∇ fW (t)

2π f̃W (t)
− ∇ f (t)

2π f (t)

∥∥∥∥∥≤ 6γ

ρ(t)
∥t∥ .

Proof. By triangle inequality, the second and third conditions imply

∥�∇ fW (t)−∇ f (t)∥ ≤πγ∥t∥, (5.3)

and the fourth and fifth imply

| f̃W (t)− f (t)| ≤ 2γ. (5.4)

From Lemma 5.2 and the condition on the length of t, we get f (t) ≥ ρ(t) ≥ 4γ. By
triangle inequality, we get∥∥∥∥∥ �∇ fW (t)

2π f̃W (t)
− ∇ f (t)

2π f (t)

∥∥∥∥∥=
∥∥∥∥∥ �∇ fW (t)−∇ f (t)

2π f (t)

f (t)

f̃W (t)
+ ∇ f (t)

2π f (t)

(
f (t)

f̃W (t)
−1

)∥∥∥∥∥
≤

∥∥∥∥∥ �∇ fW (t)−∇ f (t)

2π f (t)

∥∥∥∥∥ f (t)

f̃W (t)
+

∥∥∥∥ ∇ f (t)

2π f (t)

∥∥∥∥
∣∣∣∣∣ f (t)

f̃W (t)
−1

∣∣∣∣∣ (5.5)

To bound the first term in Eq (5.5), by using Eq (5.3) and Eq (5.4), we get∥∥∥∥∥ �∇ fW (t)−∇ f (t)

2π f (t)

∥∥∥∥∥ f (t)

f̃W (t)
≤ πγ∥t∥

2π f (t)

f (t)

f (t)−2γ
= γ∥t∥

2( f (t)−2γ)
. (5.6)

For the second term in Eq (5.5), we use Theorem 5.3 (∥t∥ ≤ δmaxsε < sε/2) and
Eq (5.4), ∥∥∥∥ ∇ f (t)

2π f (t)

∥∥∥∥
∣∣∣∣∣ f (t)

f̃W (t)
−1

∣∣∣∣∣≤ 5

4
∥t∥

(
f (t)

f (t)−2γ
−1

)
= 10γ

4( f (t)−2γ)
∥t∥. (5.7)

From Eq (5.5), Eq (5.6), Eq (5.7), and the fact f (t) ≥ ρ(t) ≥ 4γ, we get∥∥∥∥∥ �∇ fW (t)

2π f̃W (t)
− ∇ f (t)

2π f (t)

∥∥∥∥∥≤ 3γ · ∥t∥
f (t)−2γ

≤ 6γ

ρ(t)
∥t∥.

The following lemma shows that if the target vector t is very close to the lattice,
then even if we make some additive errors for estimating fW and ∇ fW , one step of the
gradient ascent still shrinks the distance by a desired factor.
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Lemma 5.12. Let ε ∈ (0,1/400), L ⊂ Rn be a lattice with ρ(L) = 1 + ε, t ∈ Rn such
that ∥t∥ ≤ ε1/8/(1000n), W = (w1, . . . ,wN ) with wi sampled i.i.d. from DL∗ with N =
Ω(n/

p
ε). Suppose f̃W (t) and �∇ fW (t) satisfy both

| f̃W (t)− fW (t)| ≤ ε1/4

100
and ∥�∇ fW (t)−∇ fW (t)∥ ≤ ε1/4

100
∥t∥.

Then6

Pr

[
∃t ∈Rn ,∥t∥ ≤ ε1/8

1000n
:

∥∥∥∥∥ �∇ fW (t)

2π f̃W (t)
+t

∥∥∥∥∥≥ 3ε1/4∥t∥
]
≤ 2−Ω(n).

Proof. By Lemma 5.7, with probability at least 1−2 ·2−Ω(n), ∥∇ fW (t)∥ ≤ (2π+4ε1/4)∥t∥
and | fW (t)| > 1− ε1/4

100 hold simultaneously for all t≤ ε1/8/(1000n). By triangle inequality
and both the assumptions, with probability at least 1−2 ·2−Ω(n),

∥�∇ fW (t)∥ ≤ (2π+5ε1/4)∥t∥ and | f̃W (t)| > 1− ε1/4

50
, (5.8)

holds simultaneously, which implies∥∥∥∥∥ �∇ fW (t)

2π f̃W (t)
− ∇ fW (t)

2π fW (t)

∥∥∥∥∥≤
∥∥∥∥∥ �∇ fW (t)−∇ fW (t)

2π f̃W (t)

∥∥∥∥∥+ ∥∇ fW (t)∥
2π

∣∣∣∣∣ 1

f̃W (t)
− 1

fW (t)

∣∣∣∣∣
≤ ε1/4∥t∥/100

2π(1−ε1/4/50)
+ (2π+5ε1/4)∥t∥

2π
· ε1/4/100

(1−ε1/4/100)(1−ε1/4/50)
≤ 2ε1/4∥t∥.

Also, by Lemma 5.4 we know that, with at least 1− 2−Ω(n) probability,
∥∥∥ ∇ fW (t)

2π fW (t) +t
∥∥∥ ≤

ε1/4∥t∥. Hence, by triangle inequality and union bound, we finish the proof.

We further extend the above lemma to ensure that even if the target is relatively far
from (but reasonably close to) the lattice, the gradient ascent still works.

Theorem 5.13. Let ε ∈ (0,1/400),L⊂Rn be a lattice withρ(L) = 1+ε, sε = ( 1
π

ln 2(1+ε)
ε

)0.5,
δmax = 0.5− 2

πs2
ε

, t ∈ Rn such that ∥t∥ ≤ δmaxsε, δ(t) = max{1/8,∥t∥/sε} < 1/2, and W =
(w1, . . . ,wN ) be sampled independently from DL∗ with N ≥ Ω(n ln(1/ε)/

p
ε). Suppose

f̃W (t) and �∇ fW (t) satisfy both

| f̃W (t)− fW (t)| ≤ ε1/4

100
and ∥�∇ fW (t)−∇ fW (t)∥ ≤ ∥t∥ ·ε1/4

100
.

Then with probability at least 1−2−Ω(n),
∥∥∥ �∇ fW (t)

2π f̃W (t)
+t

∥∥∥≤ ε(1−2δ(t))/4∥t∥.

Proof. Lemma 5.12 already shows that the theorem is satisfied for all t with ∥t∥ ≤
ε1/8/(1000n). So it suffices to show the case when ε1/8/(1000n) < ∥t∥ ≤ δmaxsε. By
Lemma 5.2, for such t,

f (t) ≥ ρ(t) ≥ e−πδ2
maxs2

ε > εδ2
max /2 ≥ ε1/4/2.

Also by Lemma 5.5 and Lemma 5.6 (choosing s = ε1/4/100) we know that

6The probability is over the choice of the set W .
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• ∥∇ fW (t)−∇ f (t)∥ ≤ ε1/4∥t∥/100 holds with probability ≥ 1−2−Ω(ε1/2N /1002) = 1−
2−Ω(n).

• ∥ f (t)− f (t)∥ ≤ ε1/4/100 holds with probability ≥ 1−2−Ω(ε1/2N /1002) = 1−2−Ω(n).

Therefore, by using Theorem 5.11 with γ = ε1/4

50π , we have that with probability ≥
1−2−Ω(n),∥∥∥∥∥ �∇ fW (t)

2π f̃W (t)
+t

∥∥∥∥∥≤ 6γ

ρ(t)
∥t∥+

∥∥∥∥ ∇ f (t)

2π f (t)
+t

∥∥∥∥
≤ 3ε1/4

25
·eπ∥t∥

2∥t∥+12(ε/2)1−2δ(t)∥t∥ (by Theorem 5.3)

≤ 3ε1/4

25

(
2(1+ε)

ε

)δ(t)2

∥t∥+12(ε/2)1−2δ(t)∥t∥ (since δ(t) ≥ ∥t∥/sε)

≤ ε0.25−δ(t)2

6
· ∥t∥+ 3

10
ε(1−2δ(t))/4∥t∥

≤ ε(1−2δ(t))/4∥t∥ (since δ(t)/2 ≥ δ(t)2),

where the fourth equation holds because (ε2 )
3(1−2δ(t))

4 ≤ ( 1
800 )

9
16 < 1

40 and (ε2 )
(1−2δ(t))

4 < ε (1−2δ(t))
4 .

Now we show how to build up a BDD oracle, given i.i.d. samples drawn fromDL∗,ηε(L∗)

assuming they are all stored in a QRAM memory and we are allowed quantum queries.

Theorem 5.14. Let ε ∈ (e−n2
,1/400), latticeL⊂Rn ,φ(L) =

p
ln(1/ε)/π−o(1)

2ηε(L∗) , N = 100n2 ln(1/ε)p
ε

,

and W = {w1, . . . ,wN } ⊂ L∗ with wi sampled i.i.d. from DL∗,ηε(L∗). Suppose we can
make quantum queries to OW : | j 〉 |0〉 → | j 〉 |w j 〉. There exists a quantum algorithm

that with probability ≥ 1−2−Ω(n), solves φ(L)/λ1(L)-BDD,7 using O( n2.5 logn
ε0.25 loglog( 1

ε ))

applications of O±
W and Õ( n2.5 logn

ε0.25 loglog( 1
ε )+n3) time.

Proof. Let sε = ( 1
π log( 2(1+ε)

ε ))1/2 and δmax = 1
2 − 2

πs2
ε

. The algorithm takes target t ∈ Rn .

It then iteratively updates t ← t+ �∇ fW (t)

2π f̃W (t)
for 1+ ⌈8log(

p
nsε)/ log(1/ε)⌉ times, where�∇ fW (t) and f̃W (t) are computed by Theorem 5.9 and Theorem 5.10 with additive error

ε′ = ε1/4/(800πn2.5) and failure probability δ = 2−100n . It then queries the first 100n2

vectors in W and takes the first n linearly independent vectors of length bounded byp
n · ηε(L∗) as set V ∗ = (v∗

1 , . . . ,v∗
n) ⊂ W . If no such set exists then abort. Compute

V = (v1, . . . ,vn) such that 〈v j ,v∗
k 〉 = δ j ,k and return

∑
j∈[n] c jv j where c j = ⌊v∗

j · t⌉ is the

nearest integer of v∗
j · t. For each iteration, the algorithm uses O(1/ε′) =O(n2.5/ε0.25)

applications of O±
W and Õ(n2.5/ε0.25) time to estimate �∇ fW (t) and f̃W (t). Since it re-

peats the iterative update 1+⌈8log(
p

nsε)/ log(1/ε)⌉ =O((logn) loglog(1/ε)) times, and

7Note that by the left equality of Eq (2.8), φ(L)/λ1(L) =
p

ln(1/ε)/π−o(1)
2ηε(L∗)λ1(L)

< 1/2.
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since it makes 100n2 queries to OW and uses O(n3) time to compute V ∗ and V by

Gaussian elimination, the algorithm therefore uses O( n2.5 logn
ε0.25 loglog( 1

ε )) applications

of O±
W as well as Õ( n2.5 logn

ε0.25 loglog( 1
ε

)+n3) time.
Now we show the correctness. By scaling the lattice appropriately, we can assume

without loss of generality that ρ(L) = 1+ε, so that ηε(L∗) = 1. Let t′ = t−w such that
∥t′∥ ≤ δmax sε for some w ∈ L. There exists such a vector t′ because of the promise of
the φ/λ1-BDD and the fact that φ(L) ≤ δmax sε. By Lemma 2.47 with t =p

2πn and the
union bound, we get that with probability 1−N ·e−2n2 ≥ 1−2Ω(n), ∀i ∈ [N ],∥wi∥ ≤ 2n+1.
Then by Theorem 5.9 and Theorem 5.10, we can estimate f̃W (t) and �∇ fW (t) such that,
with probability 1−2−Ω(n),

| f̃W (t)− fW (t)| ≤ ε1/4

100
and ∥�∇ fW (t)−∇ fW (t)∥ ≤ ε1/4

100
∥t∥.

Note that fW (t) = fW (t′) and ∇ fW (t) =∇ fW (t′) because both fW and ∇ fW are periodic
over the lattice by their definition (see Eq (5.2)), and hence f̃W (t) and �∇ fW (t) are also
good estimators for fW (t′) and ∇ fW (t′). Therefore, by Theorem 5.13 we can say that by

every update of t by t← t+ �∇ fW (t)

2π f̃W (t)
=w+ t′+ �∇ fW (t′)

2π f̃W (t′)
, the output vector is of the form

w+ t∗ where ∥t∗∥ shrinks by a factor of at least ε(1−2(1/4))/4 = ε1/8 with probability 1−
2−Ω(n) for every update. Hence by 1+⌈8log(

p
nsε)/ log(1/ε)⌉ updates, we get t=w+t∗

such that ∥t∗∥ < 1/(2
p

n). Since v∗
j ∈L∗ for all j ∈ [n], we obtain ⌊〈v∗

j ,t〉⌉ = ⌊〈v∗
j ,t∗〉⌉+

〈v∗
j ,w〉 for every j ∈ [n]. Also, because ∥t∗∥ < 1/(2

p
n) and ∥v∗

j ∥ ≤
p

n for all j ∈ [n], by
Cauchy-Schwarz we get ⌊〈v∗

j ,t∗〉⌉ = 0 for every j ∈ [n], implying
∑

j∈[n]〈v∗
j ,w〉v j = w .

Hence, we get the vector w as the output with probability greater than 1−2−Ω(n).
It remains to show that {w1, . . . ,w100n2 } contains n linearly independent vectors of

length at most
p

n with probability at least 1− 2−Ω(n2). Let W ′ = (w1, . . . ,w100n2 ). By
Lemma 2.47 and union bound, with at least 1−100n2 ·e−n probability, all vectors in W ′

have length at most
p

n. From Lemma 5.8, we know that

∥H fW ′(0)+2πIn∥ ≤ 4πε

1+ε
(
log

(
2(1+ε)

ε
+1

)
+1

)
< 2π

with probability at least 1 − 2−Ω(n2). Hence, we have that H fW ′(0) is invertible and

H fW ′(0) = −4π2

m

∑m
i=1wiw

T
i (from Eq (5.2)). It implies that W ′ spans Rn , which com-

pletes the proof.

5.3 Improved quantum algorithms for BDD

In the previous section, we showed how to construct a faster BDD solver using a quan-
tum computer assuming we already have a bunch of samples stored in a QRAM mem-
ory, while the decoding distance is explicitly stated (with respect toλ1) in Theorem 5.14.
In this section, we will explicitly give a lower bound for the decoding distance stated in
Theorem 5.14.
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The decoding distance of our BDD solver heavily depends on the quantity β(L)
which is related to the kissing number of the lattice (see Section 2.10.2). For this reason,
we will first provide complexity bounds that depend onβ(L) and then obtain complex-
ity bounds in the worst case (β(L) É 20.401+o(1)) as corollaries.

5.3.1 Reduction from BDDP to honest DGS

In Theorem 5.14, we gave an algorithm for BDDP which requires a sampler from the
discrete Gaussian distribution exactly at the smoothing parameter ηε(L∗), which is gen-
erally not known. In this subsection, we present a modification of Theorem 5.1 and
Theorem 5.14 that gives a reduction from BDDP (with preprocessing) to hDGS, which
does not require knowing the exact value of ηε(L∗). The idea is simple: We just try all
possible values of the smoothing parameter.

Theorem 5.15. For all α ∈ (0,2), ε satisfying e−n2 É ε É min(e−nα ,1/200), there exist
two algorithms (one is classical and the other is quantum) that, on input a basis B
of L(B) ⊂ Rn , with constant probability, construct a φ(L)

λ1(L) -BDDP oracle, where φ(L) ≡p
ln(1/ε)/π−o(1)

2ηε(L∗) . The classical algorithm in the preprocessing stage makes poly(n) calls to

a 0.5-hDGSm
ηε

sampler on the lattice L∗, takes poly(n) time, and stores all of those sam-
ples using m ·poly(n) space. Each extra call to the BDD oracle constructed by the classi-
cal algorithm after the preprocessing stage uses m ·poly(n) time and O(poly(n)+ lnm)
space. The quantum algorithm in the preprocessing stage makes poly(n) calls to a 0.5-
hDGSm

ηε
sampler on the lattice L∗, takes poly(n) time, and stores all of those samples in

a QRAM memory using m ·poly(n) QRAM bits. Each extra call to the BDD oracle con-
structed by the quantum algorithm after the preprocessing stage uses

p
m ·poly(n) time,

O(poly(n)+ lnm) classical space, poly(n) qubits and
p

m ·poly(n) queries to the samples
stored in a QRAM memory.

Proof. First we note that we can easily identify an interval I = [a,b] such that ηε(L∗) ∈
[a,b] and b

a É 2n+o(n). By Eq (2.8) in Lemma 2.58, one has√
ln(1/ε)/πÉλ1(L)ηε(L∗) Ép

n ·20.402ε−1/n/
p

2πe

so ηε(L∗) ∈ 1
λ1(L) [a′,b′] where b′

a′ = Õ(n0.5+o(1)). Furthermore, by Theorem 2.40, we can
obtain a length ℓ such that 2−nℓ É λ1(L) É ℓ in poly(n) time. It follows that ηε(L∗) ∈
[a,b] := [ a′

ℓ
, 2n ·b′

ℓ
] and b

a = 2n b′
a′ = 2n+o(n).

Now let c = 2+α, ∆ = 1+ 1
nc and N =

⌈
ln(b/a)

ln∆

⌉
. Note that N = poly(n) since b

a =
2n+o(n). Furthermore, if we let si = a∆i for i = 1, . . . , N then there must exist some i0

such that
1
∆ si0 É ηε(L∗) É si0 . (5.9)

The preprocessing stage of both the classical algorithm Ac and the quantum al-
gorithm Aq consists in calling the hDGSm

ηε
sampler with σ = si for each i = 1, . . . , N ,
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to obtain lists Li of m vectors,8 and storing all the lists in either classical memory or
in a QRAM memory. This requires N = poly(n) calls and we need to store m ·poly(n)
vectors.

We now describe the algorithms for φ/λ1-BDDP after the preprocessing stage. We
start with the classical one Ac : On input t ∈ Rn , for each i = 1, . . . , N , Ac calls the algo-
rithm of Theorem 5.1 on input t and provides the list Li to the algorithm of Theorem 5.1
in place of the DGS samples. Hence, for each i , we either obtain a lattice vector yi or
the algorithm of Theorem 5.1 fails and we let yi = 0 in that case. Finally, Ac returns the
point closest to t in the list y1, . . . ,yN .9

As for the quantum one Aq , we use Theorem 5.14 instead of Theorem 5.1 which
gives exactly the same result except for the exponent in the complexity of the oracle
and the quantum queries to the samples stored in a QRAM memory. The running time
of both Ac and Aq described above is therefore clear, so it remains to prove that the
algorithms actually solve φ(L)/λ1(L) BDDP on L.

We first note that when called on si0 , the hDGSm
σ sampler will return m vectors

whose joint distribution is 0.5-close Dm
L,si0

since si0 Ê σ(L) = ηε(L∗) by Eq (5.9). Fur-

thermore, by Lemma 2.60 we have

tηε(L∗) É η
ε∆

2 f (L∗),

where f is defined in Lemma 2.60. It follows by Eq (5.9) that

ηε(L∗) É si0 É∆ηε(L∗) É η
ε∆

2 · f (L∗).

Also, the map ε 7→ ηε(L) is continuous and decreasing, so it follows that there exists ε′

s.t.
si0 = ηε′(L∗) and ε∆

2
f É ε′ É ε.

Therefore by Theorem 5.1(Theorem 5.14 for the quantum algorithm, but for the anal-
ysis of the decoding distance it is the same as the classical one), Footnote 5 and those
m samples whose joint distribution is 0.5-close Dm

L,si0
, with constant probability over

the choice of Li0 , the algorithm of Theorem 5.1(Theorem 5.14) solvesψ(L)/λ1(L)-BDD
when given Li0 , where

ψ(L) =
p

ln(1/ε′)/π−o(1)

2ηε′(L∗)
.

8Note that the hDGS sampler is allowed to return fewer than m samples if si < ηε: in this case, we
do not care about the distribution of the vectors anyway so we can add random vectors until we get m
samples when that happens.

9As noted in Footnote 5, if we assume that all DGS samples have poly(n) bit-size, then the reduction
from Theorem 5.1 has time complexity m ·poly(n) and space complexity O(poly(n)+ lnm) excluding the
storage space of the m vectors provided by the DGS. Furthermore, we can ensure that all DGS samples
have poly(n) bit-size by first generating more samples (say twice the amount) and throwing away all
samples of norm larger than exp(Ω(n2)). SinceDL,s is sub-Gaussian with parameter s by [MP12, Lemma
2.8] and the vectors are sampled from DL,s with s = exp(O(n)), the error induced by throwing away the

tail of the distribution is smaller than 2−Ω(n2) in total variation distance.
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Here we use the fact that m = |Li0 | Ê m′ :=O( n ln(1/ε′)p
ε′

) which holds because

n ln(1/ε′)p
ε′

É n∆2 ln(1/ε)+o(n)√
εδ

2 f
É n ln(1/ε)+n1−c ln(1/ε)+o(n)p

εεn−c /2eo(1)
=O

(
n ln(1/ε)p

ε

)

by Footnote 9, n1−c lnε= n1−c+α = o(1) and εn−c /2 = enα−c /2 = eo(1). It follows that, with
constant probability over the preprocessing stage, Ac (Aq ) solves ψ(L)/λ1(L)-BDDP.

We can verify that εδ
2

f Ê εδ2+ln f since ε< 1
e and thus by Lemma 2.51 and Footnote 9,

η
εδ

2 f (L∗) É η
εδ

2+ln f (L∗) É (δ2 + ln f )ηε(L∗) É (1+o(1))ηε(L∗)

since δ= 1+o(1). Hence we have

ψ(L) Ê
p

ln(1/ε)/π−o(1)

2(1+o(1))ηε(L∗)
≡φ(L).

5.3.2 Tradeoff between the time complexity of BDDP and its decoding
distance

In the previous subsection, we showed how to create a BDDP oracle by DGS samples
without knowing the exact smoothing parameter, and in this subsection, we will try to
give explicit lower bounds for the decoding distance of the BDDP oracle constructed
in the previous section and subsection, and then give a tradeoff between time and de-
coding distance. We will discuss this tradeoff by splitting the interval of possible values
of ε (of the smoothing parameter ηε) into two parts. We will heavily use Theorem 5.15
and Lemma 2.58 to relate the smoothing parameter to other parameters (ε and β) of
the lattice.

When ε is small (ε≤ (e/β)−n)

A small difficulty when applying Lemma 2.58 is the case distinction on ε. We will start
by using Eq (2.9), which will require taking very small values of ε when sampling dis-
crete Gaussian samples.

Lemma 5.16. Let n ≥ 17. There exist two algorithms (one classical and one quantum)
that, on input a basis B of lattice L ⊂ Rn , with constant probability, create a classi-
cal and a quantum α-BDD oracle respectively (α will be specified later). Both algo-
rithms take time 2(A+1)n/2+o(n), space 20.5n+o(n), and the quantum one uses additional
2An/2+o(n) QRAM bits, where b = log2β(L), A is an arbitrary positive value satisfying

1
2ln2 −b+o(1) É A É 1, andα= 1

2

√
A

A+b . Every extra call to the classical oracle takes time

2An/2+o(n). Every extra call to the quantum oracle takes time 2An/4+o(n) and 2An/4+o(n)

queries to the preprocessed data stored in a QRAM memory.
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Proof. Let ε= 2−An , A É 1 to be fixed later. We know that ηε(L∗) > η1/3(L∗) for any suf-
ficiently large n (n > 1

A log2 3) by the monotonicity of the smoothing parameter func-
tion. Hence for any m ∈ N, the DGSm

η1/3
sampler from Lemma 2.55 can be used as a

DGSm
ηε

sampler.
By Theorem 5.15 we can construct an α-BDD such that each call takes time m ·

poly(n) = 2An/2+o(n) and space poly(n), where α=φ(L)/λ1(L) =
p

ln(1/ε)/π−o(1)
2ηε(L∗)λ1(L) and m =

O( n log(1/ε)p
ε

) = 2An/2+o(n). The preprocessing stage consists of poly(n) calls to the hDGSm
ηε

sampler described above and uses m · poly(n) space. Hence the total complexity is
poly(n) ·m ·2n/2+o(n) = 2(A+1)n/2+o(n) in time and 2An/2+o(n) É 2n/2+o(n) in space. By us-
ing Eq (2.9) in Lemma 2.58, which is only valid when ε≤ (e/β(L)2+o(1))−

n
2 (and hence

gives a lower bound for A), we have that

ηε(L∗)λ1(L) <
√

ln(1/ε)+n lnβ(L)+o(n)

π
.

Hence we can guarantee that

α=
p

ln(1/ε)/π−o(1)

2ηε(L∗)λ1(L)
>

p
ln(1/ε)/π−o(1)

2
√

ln(1/ε)+n lnβ(L)+o(n)
π

= 1

2

√
ln(1/ε)+o(1)

ln(1/ε)+n lnβ(L)
= 1

2

√
A

A+b+o(1)

where b = log2β(L). Furthermore, as noted above, this inequality holds when ε ≤
(e/β2 + o(1))−

n
2 , that is A Ê 1

2ln2 − b + o(1). Since b É 0.401, we must have A Ê 0.32
and the inequality holds as soon as n Ê 5 Ê 1

A log2 3. Finally note that Theorem 5.15
requires εÉ 1/200 which holds as soon as n Ê 17 Ê 1

A ln200.
The quantum algorithm is exactly the same but using the quantum oracle of The-

orem 5.15, which uses m ·poly(n) = 2An/2+o(n) QRAM bits in the preprocessing stage
and each call after the preprocessing stage takes time

p
m ·poly(n) = 2An/4+o(n) (and

the same number of queries to the preprocessing data stored in a QRAM memory).

We can reformulate the previous lemma by expressing the complexity in terms ofα
instead of some arbitrary constant A.

Corollary 5.17. Let n Ê 17. There exist two algorithms (one classical and one quantum)
that, on input a basis B of latticeL⊂Rn , with constant probability, create a classical and
a quantum α-BDD oracle respectively (α will be specified later). Both algorithms take
time 2(A+1)n/2+o(n) and space 20.5n+o(n), and the quantum one uses additional 2An/2+o(n)

QRAM bits, where b = log2β(L), α is an arbitrary value satisfying 1
2

p
1−2b ln2+o(1) É

α< 1
2

√
1

1+b , and A = 4bα2

1−4α2 . Every extra call to the classical oracle takes time 2An/2+o(n);

and every extra call to the quantum oracle takes time 2An/4+o(n) and 2An/4+o(n) queries
to the preprocessed data stored in a QRAM memory.

Proof. Apply Lemma 5.16 for some A to be fixed later. Observe that α = 1
2

√
A

A+b so
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A = 4bα2

1−4α2 . Now the constraints 1
2ln2 −b +o(1) É A É 1 become

1
2ln2 −b +o(1) É 4bα2

1−4α2 ⇔ ( 1
2ln2 −b +o(1))(1−4α2) É 4bα2

⇔ 1
4ln2 − b

2 +o(1) É α2

ln2

⇔ 1
2

p
1−2b ln2+o(1) Éα

and
4bα2

1−4α2 É 1 ⇔ 4(1+b)α2 É 1 ⇔αÉ 1
2

√
1

1+b .

When ε is large (ε≥ (e/β)−n)

The Eq (2.9) in Lemma 2.58 tells us that if we take an extremely small ε to compute
the BDD oracle, we can find a BDD oracle with α(L) almost 1/2. However, the time
complexity for each call of the oracle will be very costly. On the other hand, if we use the
Eq (2.8) in Lemma 2.58 with a larger ε, then each call of the oracle will take much less
time, but the constraint on the decoding coefficient α will be different. It is, therefore,
important to study this second regime as well. Note that Eq (2.8) actually applies to all
ε ∈ (0,1) but is mostly useful when ε is large.

Lemma 5.18. Let n ≥ 17. There exist two algorithms (one is classical and one is quan-
tum) that, on input a basis B of lattice L ⊂ Rn , with constant probability, create a clas-
sical and a quantum α-BDD oracle respectively (α will be specified later). Both algo-
rithms take time 2(A+1)n/2+o(n), space 20.5n+o(n), and the quantum one uses additional
2An/2+o(n) QRAM bits, where A is an arbitrary value satisfying 1

n log2 3 É A É 1 and

α= 2−A
p

A
p

2e ln2
2β(L) −o(1). Every extra call to the classical oracle takes time 2An/2+o(n). Ev-

ery extra call to the quantum oracle takes time 2An/4+o(n) and 2An/4+o(n) queries to the
preprocessed data stored in a QRAM memory.

Proof. Let ε= 2−An , A É 1 to be fixed later. We know that ηε(L∗) > η1/3(L∗) for any suf-
ficiently large n (n > 1

A log2 3) by the monotonicity of the smoothing parameter func-
tion. Hence for all m ∈N, the DGSm

η1/3
sampler from Lemma 2.55 can be used as a DGSm

ηε
sampler.

By Theorem 5.15 we can construct a α−BDD such that each call takes time m ·
poly(n) = 2An/2+o(n) and space poly(n), where α=φ(L)/λ1(L) =

p
ln(1/ε)/π−o(1)
2ηε(L∗)λ1(L) and m =

O( n log(1/ε)p
ε

) = 2An/2+o(n). The preprocessing stage consists of poly(n) calls to the DGSm
ηε

sampler described above and uses m · poly(n) space. Hence the total complexity is
poly(n) ·m ·2n/2+o(n) = 2(A+1)n/2+o(n) in time and 2An/2+o(n) É 2n/2+o(n) in space. By us-
ing Eq (2.8) in Lemma 2.58, we have that

λ1(L)ηε(L∗) <
√
β(L)2n

2πe
·ε−1/n(1+o(1)).
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Hence we can guarantee that

α=
p

ln(1/ε)/π−o(1)

2ηε(L∗)λ1(L)
> 1

2

√
2e ln 1

ε
−o(1)

n
·β(L)−1ε

1
n ·(1−o(1)) = 2−A

p
A ·p2e ln2

2β(L)
−o(1).

The quantum algorithm is exactly the same but using the quantum oracle of Theo-
rem 5.15, which uses m ·poly(n) = 2An/2+o(n) QRAM bits in the preprocessing stage,
and each call after the preprocessing stage takes time

p
m ·poly(n) = 2An/4+o(n) (and the

same amount of the queries to the preprocessing data stored in a QRAM memory).

We again reformulate the previous lemma by expressing the complexity in terms of
α instead of some arbitrary constant A. To express A in terms ofα, we have to introduce
the principal branch of the Lambert W function, which is defined to be the function
satisfying W (z) ·exp(W (z)) = z for arbitrary z ∈R.

Corollary 5.19. Let n Ê 17. There exist two algorithms (one is classical and one is quan-
tum) that, on input a basis B of lattice L⊂Rn , with constant probability, create a classi-
cal and a quantum (α+o(1))-BDD oracle (αwill be specified later). Both algorithms take
time 2(A+1)n/2+o(n) and space 2n/2+o(n), and the quantum one uses additional 2An/2+o(n)

QRAM bits, where α is an arbitrary value satisfying
p

e ln3p
2nβ(L)

ÉαÉ 1
2β(L) . Every extra call

to the classical oracle takes time 2An/2+o(n); and every extra call to the quantum oracle
takes time 2An/4+o(n) and 2An/4+o(n) queries to the preprocessed data stored in a QRAM
memory, where

A =− 1
2ln2W (−4α2β(L)2

e ).

Furthermore, the above expression of A is a continuous and increasing function of β(L).

Proof. By Lemma 5.18, we can build an oracle for any 1
n log2 3 É A É 1 such that the

decoding radius is α= 2−A
p

A
p

2e ln2
2β(L) −o(1). Hence, we want to find A such that

2−A
p

A
p

2e ln2

2β(L)
=α and 1

n log2 3 É A É 1.

Let f : A 7→ 2−A
p

A so that the first condition is equivalent to

f (A) = 2αβ(L)p
2e ln2

. (5.10)

Now assume that Eq (5.10) holds and let y =−2A ln(2), then it is equivalent to

e y y =−2ln(2) 2α2β(L)2

e ln2 ,

that is
e y y =−4α2β(L)2

e . (5.11)

This equation admits a solution if and only if

−4α2β(L)2

e Ê−1
e , which can be reformulated to αÉ 1

2β(L) . (5.12)
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Assuming this is the case, Eq (5.11) can admit up to two solutions. However, since the
complexity increases with A, we want the solution that minimizes A, i.e. that maxi-
mizes y . The largest of the (up to) two solutions of Eq (5.11) is always given by the
principal branch W of the Lambert W function:

y =W (−4α2β(L)2

e ) that is A =− 1
2ln2W (−4α2β(L)2

e ), (5.13)

and always satisfies y Ê −1. In particular, we always have A É 1
2ln2 . Note that f is

strictly increasing over [0, 1
2ln2 ]. Hence, the condition 1

n log2 3 É A is equivalent to

f ( 1
n log2 3) É f (A)

⇔ f ( 1
n log2 3)2 É

(
2αβ(L)p

2e ln2

)2
by Eq (5.10)

⇔ 2− 2
n log2 3 1

n log2 3 É 2α2β(L)2

e ln2

⇔ e ln3
2nβ(L)2 9− 1

n Éα2

⇐ e ln3
2nβ(L)2 Éα2. (5.14)

In summary, we can always take A as in Eq (5.13) assuming Eq (5.12) and Eq (5.14)
hold.

5.3.3 Putting everything together

We have analyzed the construction ofα-BDD oracles in two regimes, based on Lemma 2.55.
It is not a priori clear which construction is better, and in fact, we will see that it de-
pends in a nontrivial way on the relation between α and β(L).

Theorem 5.20. Let n ≥ 17. There exist two algorithms (one is classical and one is quan-
tum) that, on input a basis B of lattice L⊂Rn , with constant probability, creates a clas-
sical and a quantumα-BDD oracle (αwill be specified later). Both algorithms take time
2(A+1)n/2+o(n) and space 2n/2, and the quantum one uses additional 2An/2+o(n) QRAM

bits, where b = log2β(L) and
p

e ln3p
2nβ(L)

É α < 1
2

√
1

1+b . Every extra call to the classical or-

acle takes time 2An/2+o(n). Every extra call to the quantum oracle takes time 2An/4+o(n)

and 2An/4+o(n) queries to the preprocessed data stored in a QRAM memory, where

A =
{
− 1

2ln2W (−4α2β(L)2

e ) when b < 1−4α2

2ln2
4α2

1−4α2 b when b Ê 1−4α2

2ln2 .

Furthermore, the above expression of A is a continuous and increasing function of b.

Proof. Let
p

e ln3p
2nβ(L)

É α < 1
2

√
1

1+b and b = log2β(L). By Corollary 5.17, we can build an

α-BDD if 1
2

p
1−2b ln2 Éα, in which case the complexity will depend on A = A1(α,b) :=

4bα2

1−4α2 . By Corollary 5.19, we can build an α-BDD if α< 1
2

p
1−2b ln2, in which case the
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complexity will depend on A = A2(α,b) :=− 1
2ln2W (−4α2β(L)2

e ). In both cases, the BDD
oracle can be created in time 2(A+1)n/2+o(n), space 20.5n+o(n) and each call takes time
2An/2+o(n). Now observe that

α< 1
2

p
1−2b ln2 ⇔ 4α2 < 1−2b ln2 ⇔ b < 1−4α2

2ln2 .

Let b∗ := 1−4α2

2ln2 . Then there are two cases:

• If b Ê b∗ then 1
2

p
1−2b ln2 Éα so only Corollary 5.17 applies and we can build a

α-BDD. In this case the complexity exponent is A1(α,b) = 4α2

1−4α2 b.

• If b < b∗ then α< 1
2

p
1−2b ln2 so Corollary 5.19 applies but Corollary 5.17 does

not for this particular value of α. However, we can apply Corollary 5.17 to build
anα′-BDD oracle withα′ Êαmi n

1 (b) := 1
2

p
1−2b ln2 >α. We will show that theα-

BDD of Corollary 5.19 is always more efficient than the α′-BDD of Corollary 5.17

in this case and the complexity exponent will thus be A2(α,b) =− 1
2ln2W (−4α2β(L)2

e ).

Assume that b < b∗, we claim that A1(α,b) Ê A2(α′,b) for any α′ Êαmi n
1 (b). Indeed, on

the one hand A2 is an increasing function of b so

A2(α,b) < A2(α, 5
18ln2 ) =− 1

2ln2W (−4α2e−4α2
) = 4α2

2ln2 = 2α2

ln2 since W (xex) = x.

On the other hand, A1 is an increasing function of α so

A1(α,b) Ê A1(αmi n
1 (b),b) = 1−2b ln2

2ln2

which is a decreasing function of b, therefore

A1(α,b) Ê A1(αmi n
1 (b∗),b∗) = 1−2b∗ ln2

2ln2 = 2α2

ln2 > A2(α,b).

5.4 Solving SVP by spherical caps on the sphere

In this section, we will show how to use the BDD oracles we constructed in the previ-
ous section to solve SVP. One can use Theorem 2.45 to directly solve SVP using BDD
by choosing q = 3 and α = 1/3. In this case, we make 3n (3n/2 quantum) calls to the
BDD oracle and the time complexity is simply |1/3-BDD| + 30.5n · |1/3-BDDP| using
quantum minimum-finding, where |1/3-BDD| is the time complexity of building up
1/3-BDD and |1/3-BDDP| is the cost of extra queries to this 1/3-BDD oracle. One can
already achieve faster quantum algorithms (than the 2n+o(n)-time classical algorithm
of [ADR+15]) using this simple strategy. Since the decoding distance α needs to be
< 1/2 (if we want to use Theorem 2.45), seemingly we cannot avoid 3n (3n/2 quantum)
calls to the BDD oracle. Or can we?
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We now explain how to further reduce the number of queries to the α-BDD oracle
as follows. Consider a target vector tuniformly at random on the sphere of the ball with
radius rλ1. We enumerate all lattice vectors within distance 2αλ1(L) of t and keep only
the shortest nonzero one. We show that for any αÊ 1

3 , we will get the shortest nonzero
vector of the lattice with probability at least 2−cn+o(n) for some c that depends on α.
This probability is typically the ratio of the area of the spherical cap to the whole sphere
area (see Figure 5.1).

One can simply generate 2cn+o(n) samples uniformly at random on rλ1 · Sn−1 to
ensure that we can find the shortest vector. To achieve a further quadratic quantum
speedup over the sphere, we would like to have a unitary that prepares a quantum
state with the property that if we measure its last register in the computational ba-
sis, the measurement outcome will distribute close to a sample that is uniform over
rλ1 ·Sn−1. To achieve that, it suffices to first sample a Gaussian vector g, prepare the

quantum state
∑

x∈Zn

√
ρs (x)
ρs (Zn ) |x〉, and then output

∑
x∈Zn

√
ρs (x)
ρs (Zn ) |x〉 |g〉 |x+g〉 |rλ1

x+g
∥x+g∥〉.

By Lemma 2.50, one can see that if both widths of continuous Gaussian and discrete
Gaussian are big enough, the measurement outcome of the third register will be close
to a sample drawn from a continuous Gaussian, and hence its normalized outcome will
be close to a sample drawn uniformly at random from the sphere. Here, we include the
following theorem to show how to efficiently prepare the discrete Gaussian state over
Zn .

Theorem 5.21. Let n be an integer, δ ∈ (0,1), s > 0, and |ρs(Zn)〉 = ∑
x∈Zn

√
ρs (x)
ρs (Zn ) |x〉.

There exists a quantum algorithm that prepares |ψ〉 such that ∥|ψ〉 − |ρs(Zn)〉∥ ≤ nδ,
using Õ(ns ·poly log(ns/δ)) time.

Proof. One can see that
∑

x∈Zn

√
ρs (x)
ρs (Zn ) |x〉 =

⊗
i∈[n]

∑
xi∈Z

√
ρs (xi )
ρs (Z) |xi 〉 . So it suffices to show

how to prepare a quantum state that is δ-close to
∑

x∈Z

√
ρs (x)
ρs (Z) |x〉 in Õ(s ·polylog(s/δ))

time.
Let N = ⌈2s ·pln(2/δ)⌉ and set S = {−N ,−N + 1, . . . , N }. By Theorem 2.24 and the

discussion below Theorem 2.24, one can see that the state
∑

x∈S

√
ρs (x)
ρs (S) |x〉 is δ-close to∑

x∈Z

√
ρs (x)
ρs (Z) |x〉. To prepare the state

∑
x∈S

√
ρs (x)
ρs (S) |x〉, one can compute ρs(x) for all x ∈ S

and then store those values in the leaves of a KP-tree with respect to ℓ2-norm (see Defi-
nition 2.13).10 Since the sparsity of this KP-tree is 2N+1, using Theorem 2.14 and Theo-

rem 2.12, one can prepare the state
∑

x∈S

√
ρs (x)
ρs (S) |x〉 using O(N log N ) = Õ(s ·polylog(s/δ))

time.

Now we are ready to reduce SVP toα-BDD. The optimal choice ofα (for solving SVP
most efficiently) is not obvious and is deferred to the end of this section and Section 5.5.

10Note that the KP-tree here does not use any QRAM bits. It is just a pure classical data structure if we
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O

v
2αλ1

rλ1

λ1
φ

Figure 5.1: One can cover the sphere of radius λ1 by balls of radius 2αλ1, where 1
3 É α < 1

2 ,
whose centers (here v) are at distance rλ1 from the origin O. Each such ball covers
a spherical cap of half-angle φ.

Theorem 5.22. Suppose we can create a (quantum) α-BDD oracle, with α Ê 1
3 , in time

T , space S (and using poly(n) qubits and Sq QRAM bits) such that each extra call takes
time To . Then there exists a quantum algorithm that with constant probability, solves
SVP in classical space S (and using poly(n) qubits and Sq QRAM bits) and in time 2o(n) ·
(T +Toα

−n/2).

Proof. On input lattice L(B), use Theorem 2.40 to get a number d that satisfies λ1(L) ≤
d ≤ 2nλ1(L). For i = 1, . . . ,2n2, let di = d/(1+ 1

2n )i . Also let BDDα denote the α-BDD
oracle and f :Zn

2 ×Rn →L defined by 11

f (x,v) = Bx−2 ·BDDα(L, (Bx−v)/2). (5.15)

Let s = 100n100, νs := ρs/sn be the n-dimensional continuous Gaussian probabil-

ity density function with width s and UG : |r,g,0,0〉 → ∑
x∈Zn

√
ρs (x)
ρs (Zn ) |r,g〉 |x〉 |r · x+g

∥x+g∥〉.
Note that by Theorem 5.21 with δ= 2−100n2

, one can implement UG up to 2−Θ(n2) error
by poly(n) quantum elementary gates; then we define

U0 : |x,0〉→
{
|x,∥x∥〉 if ∥x∥ ̸= 0

|x,2d〉 otherwise ,

which can be implemented up to negligible error by poly(n) elementary quantum gates.
Also we define U f : |x,v,0〉 → |x,v, f (x,v)〉 , which can be implemented by first using

do not implement an oracle that allows quantum queries. See the discussion above Theorem 2.12 for
more details.

11Even though a BDD oracle can output anything if the target is not close enough to the lattice, one
can easily transfer a non-lattice vector to a lattice vector by simply using the basis vectors b1, . . . ,bn ∈ B
to round the output, and then convert it to a lattice vector. So here, without loss of generality, we assume
that the output of f is always a lattice vector.
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Õ(T ) time in the preprocessing stage and then Õ(To) time for each application after
the preprocessing stage. We now describe the algorithm. For i = 1, . . . ,n2 we do the fol-
lowing. Let ri be a value to be fixed later. Sample a Gaussian sample g from νs . Starting
with |0,ri di ,g,0,0,0,0〉, we apply H⊗n on the first register, apply UG on the second,
third, fourth, and fifth registers, apply U f on the first, fifth, and sixth registers, and U0

on the last two registers. After that, we apply Theorem 2.4 to find the minimum of the
last register and collect the corresponding vectorwi (which is on the sixth register). We
output the shortest nonzero wi at the end of the algorithm.

Since di = d/(1+ 1
2n )i for all i ∈ [2n2] and λ1(L) ≤ d ≤ 2nλ1(L), there exists k ∈ [2n2]

such that λ1(L) ≤ dk ≤ (1 + 1
n )λ1(L). We assume we are working on this dk for the

rest of the proof. Let Pφ be the probability that the cosine of the angle between x+g
and the shortest vector is at most φ, where x ∼DZ,s and g ∼ νs . To show the correct-
ness and the time complexity of the algorithm, it suffices to lower bound the proba-
bility Pφ. This is because if the angle between the shortest vector and v := x+g is at
most φ (of Figure 5.1), then by the correctness of Theorem 2.45, { f (x,v)}x∈Zn

2
must in-

clude the shortest vector. Also, when measuring the last register, the smallest possible
value is λ1 because the last register stores the length of a nonzero lattice vector, so the
generalized quantum minimum-finding can find the shortest vector using O(

√
2n/Pφ)

applications of U±
G , U±

f , U±
0 and Õ(

√
2n/Pφ) time. Since both UG and U0 can be imple-

mented in polynomial time, the running time of the algorithm is therefore dominated
by the cost of implementing U f , and hence is O(T +To

√
2n/Pφ) ·poly(n).

To lower bound the probability Pφ, we have to first choose the optimal rk in our
algorithm described above. Observe that a ball of radius 2αλ1 at center v ∈ rk dk ·Sn−1

will cover the spherical cap with angle φ= arccos(
λ2

1+r 2
k d 2

k−4α2λ2
1

λ1rk dk
) of the ball of radius λ1

by the law of cosines. For convenience, we write rk dk (1− 1
2n ) = rλ1 for some rk ≤ r ≤

(1+1/n)rk . We can now calculate the optimal choice of rλ1 by noting that if we take

the center of the caps to be at distance rλ1 then the angleφ satisfies cosφ= 1+r 2−4α2

2r :=
f (r ). We want to maximize the angle φ, since the area we can cover increases with φ.
We can verify that that f (r ) is decreasing until r =

p
1−4α2 and then increasing. We

conclude that the optimal radius r ′ is when r ′ =
p

1−4α2 and this gives an optimal an-
gle φ′ such that cosφ′ =

p
1−4α2 and therefore sinφ′ = 2α. Note that dk ∈ (1±1/n)λ1.

Hence when we choose our rk =
p

1−4α2, rk dk /λ1 ∈ (1±1/n)r ′, and hence the corre-
sponding sinφ ∈ 2α±o(1).

Let ε = 2−100n2
, u1 denote the shortest vector. By Lemma 2.50, Lemma 2.49, and

the fact λn(Zn) = 1, we have that s/
p

2 ≥ ηε(Zn) and hence v/∥v∥ = (x+g)/∥x+g∥
distributes 4ε-close to a vector drawn from Sn−1 uniformly at random. Therefore we



112 Chapter 5. Quantum algorithms for SVP

obtain

Pφ = Pr
x∼DZn ,s ,g∼νs

[〈x+g,u1〉 ≥ cosφ · ∥x+g∥ ·∥u1∥}|]
≥ Pr

v′∼νp2s

[〈v′,u1〉 ≥ cosφ · ∥v′∥ ·∥u1∥}|]−4ε

= An(φ)

2 · An(π/2)
−4ε

≥2−o(n)(sinφ)−n −4ε≥ 2−o(n)(2α−o(1))−n −2−Ω(n2)

=2−o(n) · (2α)−n ,

where the second equation holds because x+g is 4ε-close to v′ and fourth equation
holds by the discussion in Section 2.10.1. Therefore the running time of the algorithm
is O(T +To

√
2n/Pφ) ·poly(n) = 2o(n) · (T +Toα

−n/2).

By plugging in the best choice of the parameters, we obtain the following corollary.

Corollary 5.23. There is a quantum algorithm without using QRAM that, with constant
probability, solves SVP in time 20.9497n+o(n), classical space 20.5n+o(n), and poly(n) qubits.
There is a quantum algorithm using QRAM that, with constant probability, solves the
SVP in time 20.8345n+o(n), using 20.293n+o(n) QRAM bits, poly(n) qubits and classical space
20.5n .

Proof. Consider the classical BDD oracle Theorem 5.20 withα= 0.3473:12 since 0 É b =
log2β(L) É 0.401+o(1), we indeed have that α< 1

2

√
1

1+b so we can create a (α+o(1))-

BDD oracle in time Tc = 2(A+1)n/2+o(n), classical space Sc = 20.5n+o(n) such that each
extra call takes time To = 2An/2+o(n) where A = A(b) is given by Theorem 5.20. The

theorem also guarantees that A(b) increases with b so A É A(0.401). But 0.401 Ê 1−4α2

2ln2 ≈
0.3733 so A(0.401) = 4α2

1−4α2 ·0.401 by Theorem 5.20. Then we can apply Theorem 5.22 to
get a quantum algorithm (without using QRAM) that solves SVP in classical space Sc ,
polynomial qubits, and in time

T := Tc + 2o(n)To

αn
= 2(A+1)n/2+o(n) +2An/2−n/2log2α+o(n) = 20.9497n+o(n).

For the quantum algorithm using QRAM, we consider the quantum BDD oracle in The-
orem 5.20 with α′ = 0.3853: each extra call to the quantum oracle now takes T ′

o =
2A′n/4+o(n) and it uses Tq = 2A′n/2+o(n) QRAM bits in the preprocessing stage, where
A′ ≈ 0.5862 now. Then we apply Theorem 5.22 to get a quantum algorithm (without
using QRAM) in time

T ′ := Tc +
2o(n)T ′

o

αn
= 2(A′+1)n/2+o(n) +2A′n/4−n/2log2α+o(n) = 20.8345n+o(n)

and using classical space Sc = 20.5n+o(n), Tq = 20.293n+o(n) QRAM bits and polynomially
many qubits.

12The optimal value of α was found numerically, see Section 5.5.
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Figure 5.2: (Exponent c(b) of the) time complexity of the spherical capping algorithm, plotted
against b = log2β(L). The complexity of the algorithms is 2c(b)n+o(n).

5.5 Dependence of our SVP solver on a quantity related
to the kissing number

In the previous sections, we obtained several algorithms for SVP and bounded their
complexity using the only known bound on the quantity β(L), which is related to the
lattice kissing number (see Equation 2.7): β(L) É 20.402. The complexity of those algo-
rithms is highly affected by this quantity and since β(L) can be anywhere between 1
and 20.402 (see Section 2.10.2), we will study the dependence of the time complexity on
β(L). Recall that b = log2β(L).

In order to avoid doing the analysis two times, we introduce a factor ξ that is 1
for the quantum algorithm without using QRAM, and 1

2 for quantum algorithms using
QRAM. We now can reformulate the time complexity in Theorem 5.22 as

Tc + 2o(n)To

αn/2
(5.16)

We instantiate the algorithm in Theorem 5.22 with the α-BDD oracle provided by The-
orem 5.20 which satisfies

Tc = 2(A+1)n/2+o(n), To = 2Aξn/2+o(n) and Sc = 20.5n+o(n)

where

A =
{
− 1

2ln2W (−4α2β(L)2

e ) when b < 1−4α2

2ln2
4α2

1−4α2 b when b Ê 1−4α2

2ln2

.

The new expression of the time complexity is

2(A+1)n/2+o(n) +2(Aξ/2−0.5log2α)n+o(n). (5.17)

Note that for the quantum algorithm without using QRAM, the cost of preprocessing
stage is always negligible compared to the cost of the queries but this is not necessarily
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the case when using QRAM memory. The optimal choice of α is not obvious: by in-
creasing the decoding radius, we reduce the number of queries but increase the cost of
each query. While we could, in principle, obtain closed-form expressions for the opti-
mal value of α, those are too complicated to be really helpful. Instead, we express it as
an optimization program. Formally, we have T = 2c(b,ξ)n+o(n) where

c(b,ξ) = min
α∈[

1
3 ,

1
2 )

max
(

A+1
2 , Aξ

2 −0.5log2α)
)

where A and cosφ are given by the expressions above that depend on α. We numeri-
cally computed the graph of this function and plotted the result in Figure 5.2 for quan-
tum algorithms with and without QRAM, respectively. In particular, we obtain the fol-
lowing result when γ(L) =β(L)n is subexponential in n:

Theorem 5.24. For any family (Ln)n of full-rank lattices such thatLn ⊆Rn andβ(Ln)n =
2o(n), there are quantum algorithms to solve the SVP on Ln :

• in time 20.750n+o(n), classical space 20.5n+o(n) and poly(n) qubits,

• in time 20.667n+o(n), classical space 20.5n+o(n), poly(n) qubits, and 20.167n+o(n) QRAM
bits.

5.6 Open problems

We mention a few directions for future work:

• Can our approach also give a faster provable quantum algorithm for CVP? The
current fastest classical algorithm (and also the fastest quantum algorithm at the
same time) still runs in 2n+o(n) time.

• Can we further improve our quantum algorithms for SVP? A natural limit of our
approach is 20.5n since to use Theorem 2.45, we have to at least choose p = 2 and
in this case, the number of quantum queries to the BDD oracle is at least 20.5n .
There is still a huge gap with the best heuristic algorithm for SVP, which takes
time 20.292n+o(n) classically by [BDG+16] (22563n+o(n) quantumly by [BCS+23]).

• Is it possible to give a better upper bound for the lattice kissing number?
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CHAPTER 6

Query lower bounds for linear
regression with norm constraints

6.1 Introduction

In Chapter 3, we discussed quantum algorithms for linear regression with norm con-
straints, and in this chapter, we prove quantum query lower bounds for those prob-
lems (Lasso and Ridge). In the quantum query access model, we assume we can have
quantum access to entries of the samples, and we want to know how many quantum
queries are necessary for outputting an ε-minimizer (a classical d-dimensional vector)
for Lasso and Ridge. In the classical case, people usually care about how many samples
we need for outputting an ε-minimizer, while in the quantum case, we assume those
samples are already stored in a QRAM, and we care about how many queries we need
for finding an ε-minimizer.

Cesa-Bianchi, Shalev-Shwartz, and Shamir [CSS11] provided aΩ(d/ε) classical query
lower bound for both Lasso and Ridge (assuming query access to entries of X and y),
and soon after Hazan and Koren [HK12] obtained an optimal (up to polylog) Θ̃(d/ε2)
classical query lower bound for Ridge.1

6.1.1 Main results and high-level intuition

We prove a lower bound ofΩ(
p

d/ε1.5) quantum queries for Lasso, showing that the d-
dependence of our quantum algorithm is essentially optimal by combining the results
in Chapter 3, while our ε-dependence might still be slightly improvable. Our lower
bound strategy “hides” a subset of the columns of the data matrix X by letting those

1In [CSS11] and [HK12], the authors are actually instered in the limited attribute observation model
(LAO). In the LAO model, for each given pair (Xi , yi ), the learner can access yi , but only limited number
of entries of Xi . The goal is to output an ε-minimizer using fewest samples. While the authors in [CSS11]
and [HK12] concerned the lower bound for Lasso/Ridge in the LAO model, they actually provided lower
bounds for Lasso/Ridge in query model, because a lower bound in the query model implies a lower
bound in the LAO model.
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columns have slightly more +1s than −1, and observes that an approximate minimizer
for Lasso allows us to recover this hidden set. We then use the composition property
of the adversary lower bound [BL20] together with a worst-case to average-case reduc-
tion to obtain a quantum query lower bound for this hidden-set-finding problem, and
hence for Lasso.

Somewhat surprisingly, no tight classical lower bound was known for Lasso prior
to this work. To the best of our knowledge, the previous-best classical lower bound
wasΩ(d/ε), due to Cesa-Bianchi, Shalev-Shwartz, and Shamir [CSS11]. As a byproduct
of our quantum lower bound, we use the same set-hiding approach to prove for the
first time the optimal (up to logarithmic factors) lower bound of Ω̃(d/ε2) queries for
classical algorithms for Lasso (Section 6.4).

What about Ridge? Because ℓ2 is a more natural norm for quantum states than ℓ1,
one might hope that Ridge is more amenable to quantum speedup than Lasso. Unfor-
tunately this turns out to be wrong: we prove a quantum lower bound ofΩ(d/ε) queries
for Ridge, using a similar strategy as for Lasso. This shows that the classical linear de-
pendence of the runtime on d cannot be improved on a quantum computer (recall
Hazan and Koren showed a Ω(d/ε2) query lower bound). As we mentioned in Sec-
tion 3.1, Ridge regression tends to keep all features in the model with reduced weights,
allowing us to hide a subset of the columns with size Θ(d), while in the Lasso case, we
can only hide a subset with size Θ(1/ε) (because ℓ1-regularizer ensures that there is
always an ε-minimizer with sparsity O(1/ε)). Whether the ε-dependence can be im-
proved remains an open question.

Roadmap

We show a Lasso solver can help us to solve the distributional set-finding problem (de-
fined in the beginning of Section 6.2.1) approximately in Section 6.2.1, and a quan-
tum query lower bound for the hidden-set finding problem in Section 6.2.2. After that,
we provide a worst-case to average-case reduction for the set-finding problem in Sec-
tion 6.2.3 and conclude a quantum query lower bound for Lasso. We use almost the
same strategy to show a quantum query lower bound for Ridge in Section 6.3. We fur-
ther dequantize our strategy to get a tight classical query lower bound (up to polylog
factor), stated in Section 6.4

Remark

For the whole Chapter 6, we inherit the regression model in Section 3.2.2. In this chap-
ter, when we say a (quantum) algorithm is bounded-error, it always means that it re-
turns a correct output with probability 9/10; choosing 9/10 instead of 2/3 is to simplify
parts of our statements and proofs.
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6.2 Quantum query lower bounds for Lasso

In this section we prove a quantum lower bound of Ω(
p

d/ε1.5) queries for Lasso. To
show such a lower bound, we define a certain set-finding problem, and show how it
can be solved by an algorithm for Lasso. After that, we show that the worst-case set-
finding problem can be seen as the composition of two problems, which have query
complexitiesΩ(

p
d/ε) andΩ(1/ε), respectively. Then the composition property of the

quantum adversary bound implies aΩ(
p

d/ε·1/ε) =Ω(
p

d/ε1.5) query lower bound for
Lasso.

6.2.1 Finding a hidden set W using a Lasso solver

In this subsection we define the distributional set-finding problem, and show how to
reduce this to Lasso. Let p ∈ (0,1/2), W ⊂ [d ]−1, and W = [d ]−1\W . Define the distri-
bution Dp,W over (x, y) ∈ {−1,1}d × {−1,1} as follows. For each j ′ ∈ W , x j ′ is generated
according to Pr[x j ′ = 1] = Pr[x j ′ = −1] = 1/2, and for each j ∈ W , x j is generated ac-
cording to Pr[x j = 1] = 1/2+p. And y is generated according to Pr[y = 1] = 1. The goal
of the distributional set-finding problem DSFDp,W with respect to Dp,W is to output a
set W̃ such that |W̃∆W | ≤ w/200, given M samples from Dp,W . One can think of the
M ×d matrix of samples as “hiding” the set W : the columns corresponding to j ∈ W
are likely to have more 1s than −1s, while the columns corresponding to j ∈ W have
roughly as many 1s as −1s.

We first show some basic properties of LDp,W . In this subsection, let

θ∗ = v ·eW , where v = 2p/(1+4p2(w −1)) and eW = ∑
j∈W

e j .

Theorem 6.1. Let θ be a vector in Rd . We have

• LDp,W (θ) = ∑
j ′∈W

θ2
j ′+

∑
j∈W

(θ j −2p)2+4p2 ∑
j1∈W

∑
j2∈W \{ j1}

θ j1θ j2 −4p2w +1, where w =
|W |.

• ∇ j LDp,W (θ) =


2θ j −4p +8p2
∑

ℓ∈W \{ j }
θℓ, if j ∈W,

2θ j , otherwise.

• [∇2LDp,W (θ)] j k =


2δ j k , if j ,k ∈W ,

(2−8p2)δ j k +8p2, if j ,k ∈W,

0, otherwise,

If we rearrange the order of indices such that {0,1, . . . , w−1} ∈W and {w, w+1, . . . ,d−1} ∈
W , then the Hessian of LDp,W is

∇2LDp,W =
(8p2 Jw + (2−8p2)Iw 0w×w̄

0w̄×w 2Iw̄ ,

)
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where w̄ = d − w. Note that this is independent of θ, and ∇2LDp,W ⪰ (2− 8p2)Id . The
unique global minimizer of LDp,W is θ∗.

Proof. Note that for all distinct j1, j2 ∈W ,

E(x,y)∼Dp,W [x j1 x j2 ] = Pr
(x,y)∼Dp,W

[x j1 = x j2 ] ·1+ Pr
(x,y)∼Dp,W

[x j1 =−x j2 ] · (−1)

= ((1/2+p)2 + (1/2−p)2)−2(1/2+p)(1/2−p) = 4p2.

For all distinct j , j ′ such that j ∈ [d ]−1 but j ′ ∈W , we have E(x,y)∼Dp,W [x j x j ′] = 0.
We first prove the first bullet. By definition and the facts we mentioned above,

LDp,W (θ) = E(x,y)∼Dp,W [(〈x,θ〉− y)2] = E(x,y)∼Dp,W [(
∑

j∈[d ]−1
x jθ j − y)2]

= E(x,y)∼Dp,W

[ ∑
j∈[d ]−1

x2
j θ

2
j +

∑
j1∈[d ]−1

∑
j2∈[d ]−1\{ j1}

θ j1θ j2 x j1 x j2 −2
∑

j∈[d ]−1
x jθ j y + y2

]
= ∑

j∈[d ]−1
θ2

j +4p2
∑

j1∈W

∑
j2∈W \{ j1}

θ j1θ j2 −4p
∑

j∈W
θ j +1

= ∑
j ′∈W

θ2
j ′ +

∑
j∈W

(θ j −2p)2 +4p2
∑

j1∈W

∑
j2∈W \{ j1}

θ j1θ j2 −4p2 · |W |+1.

The last equation holds because
∑

j∈W
θ2

j −4p
∑

j∈W
θ j = ∑

j∈W
(θ j −2p)2 −4p2 · |W | by com-

pleting the square. The second and third bullets are easy to see by taking first and sec-
ond partial derivatives of the expression of the first bullet. To see ∇2LDp,W ⪰ (2−8p2)Id ,

note that ∇2LDp,W − (2−8p2)Id is block-diagonal, where the W ×W block is 4p2 times

the all-1 matrix (which is positive semidefinite) and the W ×W block is diagonal with
diagonal entries 8p2 (which is positive definite).

The minimizer θ∗ is a solution of the linear system one gets by setting all derivatives
of the second bullet to 0. Because the Hessian is positive definite (we assumed p < 1/2,
hence 2−8p2 > 0), this solution is the unique minimizer.

The following theorem relates the entries of an approximate minimizer θ for Lasso
with respect to distribution Dp,W to the elements of the hidden set W .

Theorem 6.2. Let ε ∈ (2/d ,1/100), w be either ⌊1/ε⌋ or ⌊1/ε⌋− 1, p = 1/(2⌊1/ε⌋), and
W ⊂ [d ]−1 be a set of size w. For every θ ∈ B d

1 satisfying LDp,W (θ)−LDp,W (θ∗) ≤ ε/8000,
we have ∑

j∈W
(θ j − v)2 ≤ ε/6400 and

∑
j ′∈W

θ2
j ′ ≤ ε/6400.

Proof. Let θ∗ = v ·eW be the minimizer of LDp,W from Theorem 6.1. Because∇ j LDp,W (θ∗) =
0 for every j ∈ [d ]−1 and ∇2LDp,W is a constant matrix, independent of θ, we have that

ε/8000 ≥ LDp,W (θ)−LDp,W (θ∗)

= 〈∇LDp,W (θ∗),θ−θ∗〉+〈∇2LDp,W · (θ−θ∗),θ−θ∗〉/2

≥ 0+ (2−8p2)∥θ−θ∗∥2
2/2,
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which implies ∥θ− θ∗∥2
2 ≤ ε/(8000 · (1− 4p2)) ≤ ε/6400 from the fact that p ≤ 1/200.

Because θ∗ = v ·eW , we have ∥θ−θ∗∥2
2 =

∑
j∈W

(θ j −v)2 + ∑
j ′∈W

θ2
j ′ ≤ ε/6400, and therefore

∑
j∈W

(θ j − v)2 ≤ ε/6400 and
∑

j ′∈W

θ2
j ′ ≤ ε/6400.

Note that if ε ∈ (2/d ,1/100), 1 ≤ w ≤ ⌊1/ε⌋, p = 1/(2⌊1/ε⌋), then

∥θ∗∥1 = v w ≤
1

⌊1/ε⌋ · ⌊1
ε
⌋

1+ 1
⌊1/ε⌋2 (1−1)

≤ 1,

implying that θ∗ ∈ B d
1 , so the global minimizer actually satisfies Lasso’s norm con-

straint. Now we are ready to show that algorithms for Lasso also find a good approxi-
mation to the hidden set W .

Theorem 6.3. Let ε ∈ (2/d ,1/100), w be either ⌊1/ε⌋ or ⌊1/ε⌋− 1, p = 1/(2⌊1/ε⌋), and
W ⊂ [d ]− 1 be a set of size w. Let θ be an ε/8000-minimizer for Lasso with respect to
Dp,W . Then the set W̃ that contains the indices of the entries of θ whose absolute value
is ≥ ε/3 satisfies |W∆W̃ | ≤ w/200.

Proof. Because θ is an ε/8000-minimizer for Lasso, Theorem 6.2 implies
∑

j∈W
(θ j −v)2 ≤

ε/6400 and
∑

j ′∈W

θ2
j ′ ≤ ε/6400. Hence

• at most w/400 many j ′ ∈W have |θ j ′ | ≥
p

400ε/(6400w) ≥p
ε/⌊1/ε⌋/4,

• at least w−w/400 many j ∈W have θ j ≥ v−p400ε/(6400w) ≥ v−pε/(⌊1/ε⌋−1)/4.

Note that v−p
ε/(⌊1/ε⌋−1)/4 ≥ ε/3 ≥p

ε/⌊1/ε⌋/4 for both the cases that w = ⌊1/ε⌋ and
w = ⌊1/ε⌋−1. Hence the set W̃ that contains the indices of the entries whose absolute
value is ≥ ε/3, omits at most w/400 of the j ∈ W and includes at most w/400 of the j ′

∈W . Therefore |W∆W̃ | ≤ w/400+w/400 = w/200.

This implies that algorithms that find an ε/8000-minimizer for Lasso with respect
to Dp,W can also find a set W̃ ⊂ [d ]−1 such that |W∆W̃ | ≤ w/200.

6.2.2 Worst-case quantum query lower bound for the set-finding problem

Here we will define the worst-case set-finding problem and then provide a quantum
query lower bound for it. Before we step into the query lower bound for the worst-case
set-finding problem, we have to introduce the adversary method and the lower bounds
for two problems first.
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Theorem 6.4 ([Amb02], modified Theorem 6). Let f (x0, . . . , xd−1) be a function of d in-
puts with values from some finite set, ε ∈ (0,1/2), and X , Y be two sets of valid inputs for
f . Let R⊆X ×Y be a relation such that

• For every (x, y) ∈R, f (x) ̸= f (y).

• For every x ∈X , there exist at least m different y ∈Y such that (x, y) ∈R.

• For every y ∈Y , there exist at least m′ different x ∈X such that (x, y) ∈R.

Let ℓx, j be the number of y ∈Y such that (x, y) ∈R, and x j ̸= y j and ℓy, j be the number
of x ∈ X such that (x, y) ∈R and x j ̸= y j . Let ℓmax be the maximum of ℓx, j ·ℓy, j over
all (x, y) ∈ R and j ∈ [d ]− 1 such that x j ̸= y j . Then, every quantum algorithm that

computes f with success probability 1− ε uses at least (1/2−p
ε(1−ε)) ·

√
mm′/ℓmax

queries.

Using this adversary bound, we can give a query lower bound for the exact set-
finding problem: given input x = x0 . . . xd−1 ∈ {0,1}d with at most w 1s, find the set
W of all indices j with x j = 1 (equivalently, learn x). To see the query lower bound for
this problem, we consider the identity function where both domain and codomain are
Z = {z ∈ {0,1}d : |z| = w}, and give a lower bound for computing this. If we can com-
pute the identity function, then we can simply check the output string x0, x1, . . . , xd−1

and collect all indices j with x j = 1.

Theorem 6.5. Let w be an integer satisfying 0 < w ≤ d/2, W ⊂ [d ]−1 with size w, and
x ∈ {0,1}d such that x j = 1 if j ∈ W and x j ′ = 0 if j ′ ∈ W . Suppose we have query access

to x. Then every quantum bounded-error algorithm to find W makes at least 1
8

p
d w

queries.

Proof. Note that if we can compute W , then we can compute the identity function
f : Z → Z . Let X = Y = Z , and consider the relation R ⊂ X ×Y such that for every
(x, y) ∈ R, dH (x, y) = 2 (which implies f (x) ̸= f (y)). Then we know

• For every x ∈ X , there exist at least m = w · (d − w) different y ∈ Y such that
(x, y) ∈ R.

• For every y ∈ Y , there exist at least m′ = w · (d − w) different x ∈ X such that
(x, y) ∈ R.

• ℓmax = max
(x,y)∈R, j∈[d ]−1

s.t .x j ̸=y j

ℓx, j ·ℓy, j = w · (d −w).

By Theorem 6.4, every quantum algorithm that computes f with probability ≥ 9/10
uses at least

(1/2−
p

1/10 ·9/10) ·
√

mm′/ℓmax ≥ 1

5

√
w · (d −w) ≥ 1

8

p
d w

queries.
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We now prove a lower bound for the approximate set-finding problem ASFd ,w , which
is to find a set W̃ ⊂ [d ]−1 such that |W∆W̃ | ≤ w/200. The intuition of the proof is that
if we could find such a W̃ then we can “correct” it to W itself using a small number of
Grover searches, so finding a good approximation W̃ is not much easier than finding W
itself.

Theorem 6.6. Let w be an integer satisfying 0 < w ≤ d/2, W ⊂ [d ]−1 with size w, and
x ∈ {0,1}d such that x j = 1 if j ∈ W and x j ′ = 0 if j ′ ∈ W . Suppose we have query access
to x. Then every bounded-error quantum algorithm that outputs W̃ ⊂ [d ]−1 satisfying
|W∆W̃ | ≤ w/200 makesΩ(

p
d w) queries.

Proof. Suppose there exists a T -query bounded-error quantum algorithm to find a set
W̃ satisfying |W∆W̃ | ≤ w/200. Define a function f which marks the elements of F =
W∆W̃ . Since we have a classical description of W̃ , we can implement a query to f
using one query to x. Now use Corollary 2.2 (with u = w/200) to find all elements of
F with probability 1, using π

2

p
d w/200+ w/200 queries. This gives a bounded-error

quantum algorithm that finds W itself using T ′ = T + π
2

p
d w/200+w/200 queries. By

Theorem 6.5 we have T ′ ≥ 1
8

p
d w , implying T =Ω(

p
d w).

Next we consider the Hamming-weight distinguisher problem HDℓ,ℓ′ : given a z ∈
{0,1}N of Hamming weight ℓ or ℓ′, distinguish these two cases. The adversary bound
gives the following bound (a special case of a result of Nayak and Wu [NW99] based on
the polynomial method [BBC+01]).

Theorem 6.7. Let N ∈ 2Z+, z ∈ {0,1}N , and p ∈ (0,0.5) be multiple of 1/N . Suppose we
have query access to z. Then every bounded-error quantum algorithm that computes
HD N

2 ,N ( 1
2+p) makesΩ(1/p) queries.

Proof. Let X = {x ∈ {0,1}N : |x| = N /2}, Y = {y ∈ {0,1}N : |y | = N /2+pN }, and consider
the relation R = {(x, y) : x ∈ X , y ∈ Y , x ≤ y}, where x ≤ y if and only if ∀i ∈ [N ]− 1,
xi ≤ yi . We know

• For every x ∈X , there exist at least m = (N /2
pN

)
different y ∈Y such that (x, y) ∈ R.

• For every y ∈Y , there exist at least m′ = (N /2+pN
pN

)
different x ∈X such that (x, y) ∈

R.

• ℓmax = max
(x,y)∈R, j∈[d ]−1

s.t .x j ̸=y j

ℓx, j ·ℓy, j =
(N /2−1

pN−1

) · (N /2+pN−1
pN−1

)
.

Hence by Theorem 6.4, every bounded-error quantum algorithm that computes g uses
at least

(1

2
−

√
9

10
· 1

10

)
·
√

mm′

ℓmax
=Ω


√√√√√ (N /2

pN

) · (N /2+pN
pN

)
(N /2−1

pN−1

) · (N /2+pN−1
pN−1

)
=Ω

(√
N /2 · (N /2+pN )

pN ·pN

)
=Ω

( 1

p

)
queries.
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The above theorem implies a lower bound of Ω(1/p) queries for HD N
2 ,N ( 1

2+p). One

can also think of the input bits as ±1 and in this case, the goal is to distinguish whether
the entries add up to 0 or to 2pN . For convenience, we abuse the notation HD N

2 ,N ( 1
2+p)

also for the problem with ±1 inputs. Now we are ready to prove a lower bound for
the worst-case set-finding problem WSFd ,w,p,N : given a matrix X ∈ {−1,1}N×d where
each column-sum is either 2pN or 0, the goal is to find a set W̃ ⊂ [d ]− 1 such that
|W̃∆W | ≤ w/200, where W is the set of indices for those columns whose entries add
up to 2pN and w = |W |. One can see that this problem is actually a composition of
the approximate set-finding problem and the Hamming-weight distinguisher prob-
lem. Composing the relational problem ASFd ,w with d valid inputs of HD N

2 ,N ( 1
2+p),

exactly w of which evaluate to 1, we can see that the d-bit string given by the values
of HD N

2 ,N ( 1
2+p) on these d inputs, is a valid input for ASFd ,w . In other words, the set

of valid inputs for WSFd ,w,p,N , or equivalently, the set of valid inputs for the composed
problem ASFd ,w ◦ (HD N

2 ,N ( 1
2+p))

d is

{(x(1), . . . , x(d)) ∈Pd : |HD N
2 ,N ( 1

2+p)(x(1)) . . .HD N
2 ,N ( 1

2+p)(x(d))| = w},

where P = {x ∈ {0,1}N : |x| ∈ {N /2, N /2+ pN }}. The next theorem by Belovs and Lee
shows that the quantum query complexity of the composed problem ASFd ,w◦(HD N

2 , N+2pN
2

)d

is at least the product of the complexities of the two composing problems:

Theorem 6.8 ([BL20], Corollary 27). Let f ⊆ S × T , with S ⊆ {0,1}d , be a relational
problem with bounded-error quantum query complexity L. Assume that f is efficiently
verifiable, that is given some t ∈ T and oracle access to x ∈ S, there exists a bounded-
error quantum algorithm that verifies whether (x, t ) ∈ f using o(L) queries to x. Let
D ⊆ {0,1}N and g : D → {0,1} be a Boolean function whose bounded-error quantum
query complexity is Q. Then the bounded-error quantum query complexity of the rela-
tional problem f ◦ g d , restricted to inputs x ∈ {0,1}d N such that g d (x) ∈ S, isΩ(LQ).

Applying Theorem 6.8 with the lower bounds of Theorem 6.7 and Theorem 6.6, we
obtain:

Corollary 6.9. Let N ∈ 2Z+ and p ∈ (0,0.5) be an integer multiple of 1/N . Given a matrix
X ∈ {−1,+1}N×d such that there exists a set W ⊆ [d ]−1 with size w and

• For every j ∈W ,
∑

i∈[N ]−1
Xi j = 2pN .

• For every j ′ ∈W ,
∑

i∈[N ]−1
Xi j ′ = 0.

Suppose we have query access to X . Then every bounded-error quantum algorithm that
computes W̃ such that |W∆W̃ | ≤ w/200, usesΩ(

p
d w/p) queries to OX .



6.2. Quantum query lower bounds for Lasso 125

6.2.3 Worst-case to average-case reduction for the set-finding problem

Our goal is to prove a lower bound for Lasso algorithms that have high success proba-
bility w.r.t. the distribution Dp,W , yet the lower bound of the previous subsection is for
worst-case instances. In this subsection, we will connect these by providing a worst-
case to average-case reduction for the set-finding problem. After that, by simply com-
bining with the query lower bound for the worst-case set-finding problem and the re-
duction from the distributional set-finding problem to Lasso, we obtain anΩ(

p
d/ε1.5)

query lower bound for Lasso.

Theorem 6.10. Let N ∈ 2Z+, p ∈ (0,0.5) be an integer multiple of 1/N , w be a natural
number between 2 to d/2, and M be a natural number. Suppose X ∈ {−1,+1}N×d is a
valid input for WSFd ,w,p,N , and let W ⊂ [d ]−1 be the set of the w indices of the columns
of X whose entries add up to 2pN . Let R be an M ×d matrix whose entries are i.i.d.
samples from UN , and define X ′ ∈ {−1,1}M×d as X ′

i j = XRi j j . Then the M vectors (X ′
i ,1),

where X ′
i is the i th row of X ′ and i ∈ [M ]−1, are i.i.d. samples from Dp,W .

Proof. Every entry of R is a sample from UN , so XRi j j is uniformly chosen from the en-
tries of the j th column of X . Moreover, because every valid input W for WSFd ,w,p,N sat-

isfies that for every j ∈W , Pri∼UN [Xi j = 1] = 1/2+p and for every j ′ ∈W , Pri∼UN [Xi j ′ =
1] = 1/2, we know (X ′

i ,1) is distributed as Dp,W .

The above theorem tells us that we can convert an instance of WSFd ,w,p,N to an in-
stance of DSFDp,W . Note that we can produce matrix R offline and therefore we can
construct the oracle OX ′ : |i 〉 | j 〉 |0〉 → |i 〉 | j 〉 |XRi j j 〉 using 1 query to OX : |i 〉 | j 〉 |0〉 →
|i 〉 | j 〉 |Xi j 〉 (and some other elementary gates, which is irrelevant to the number of
queries). Also observe that if M = 1012 · ⌈logd⌉ · ⌊1/ε⌋2 =O((logd)/ε2) and hence S′ =
{(X ′

i ,1)}M−1
i=0 is a sample set with M i.i.d. samples from Dp,W , then by Theorem 3.3, with

probability ≥ 9/10, an ε/16000-minimizer for Lasso with respect to S′ is also an ε/8000-
minimizer for Lasso with respect to distribution Dp,W . By Theorem 6.3, an ε/8000-
minimizer for Lasso with respect to distribution Dp,W can be used to output a set
W̃ ⊂ [d ]−1 such that |W̃∆W | ≤ w/200, where W is the set of indices for those columns
of X whose entries add up to 2pN . Hence we have a reduction from the worst-case
set-finding problem to Lasso. By the reduction above and by plugging w = ⌊1/ε⌋ and
p = 1/(2⌊1/ε⌋) in Corollary 6.9 (and N an arbitrary natural number such that pN ∈N),
we obtain a lower bound of Ω(

p
d/ε1.5) queries for WSFd ,w,p,N , and hence the main

result of this section: a lower bound ofΩ(
p

d/ε1.5) for Lasso.

Corollary 6.11. Let ε ∈ (2/d ,1/100), w = ⌊1/ε⌋, p = 1/(2⌊1/ε⌋), and W ⊂ [d ]−1 with size
w. Every bounded-error quantum algorithm that computes an ε-minimizer for Lasso
with respect to Dp,W usesΩ(

p
d/ε1.5) queries.

Classical lower bound. In Section 6.4 we show how this quantum lower bound ap-
proach can be modified to prove, for the first time, a lower bound of Ω̃(d/ε2) on the
classical query complexity of Lasso. This lower bound is optimal up to logarithmic fac-
tors.
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6.3 Quantum query lower bound for Ridge

Now we switch our attention from Lasso to Ridge. We will prove a lower bound of
Ω(d/ε) queries for Ridge in a very similar way as our lower bound for Lasso. Recall that
Ridge’s setup assumes the vectors in the sample set are normalized in ℓ2 rather than ℓ∞
as in Lasso. We modify the distribution to D′

p,W over (x, y) ∈ {−1/
p

d ,1/
p

d}d × {−1,1}

as follows. Let p ∈ (0,1/4), W ⊂ [d ] − 1, and W = [d ] − 1 \ W . For each j ′ ∈ W , x j ′

is generated according to Pr[x j ′ = −1/
p

d ] = 1/2+ p; for each j ∈ W , x j is generated

according to Pr[x j = 1/
p

d ] = 1/2+ p; y is generated according to Pr[y = 1] = 1. Now
again we want to solve a distributional set-finding problem with respect to D′

p,W , given

M samples from D′
p,W . Similar to the Lasso case, one can think of the M ×d matrix of

samples as “hiding” the set W : the columns corresponding to j ∈ W are likely to have
more 1/

p
d ’s than −1/

p
d ’s, while the columns corresponding to j ∈ W are likely to

have more −1/
p

d ’s than 1/
p

d ’s.
In this section let

θ∗ = ∑
j∈[d ]−1

e jp
d

(−1)[ j∈W ]

and note that for every θ ∈Rd ,

LD′
p,W

(θ) = E(x,y)∼D′
p,W

[〈θ, x〉2]−2E(x,y)∼D′
p,W

[〈θ, x〉]+1

= (E(x,y)∼D′
p,W

[〈θ, x〉2]−E(x,y)∼D′
p,W

[〈θ, x〉]2)+E(x,y)∼D′
p,W

[〈θ, x〉]2 −2E(x,y)∼D′
p,W

[〈θ, x〉]+1

= ∥θ∥2
2 · (1−4p2)/d + (E(x,y)∼D′

p,W
[〈θ, x〉]−1)2

= ∥θ∥2
2 · (1−4p2)/d + (2p〈θ,θ∗〉−1)2,

where the third equality holds because 〈θ, x〉 is a sum of independent random variables
and hence its variance is the sum of the variances of the terms θi xi (which are θ2

i (1−
4p2)/d).

Next we show that θ∗ is the minimizer for Ridge with respect to D′
p,W .

Theorem 6.12. Let w = ⌊d/2⌋ and W ⊂ [d ]−1 be a set of size w, and let ε ∈ (1000/d ,1/10000)

and p = 1/⌊1/ε⌋. Then θ∗ = ∑
j∈[d ]−1

e jp
d

(−1)[ j∈W ] is the minimizer for Ridge with respect

to D′
p,W .

Proof. Let θ = ∑
j∈[d ]−1

θ j e j ∈ B d
2 be a minimizer. We want to show θ j = θ∗j for every

j ∈ [d ]−1. Note that if θ j · (−1)[ j∈W ] < 0, then we can flip the sign of θ j to get a smaller
objective value, that is,

LD′
p,W

(θ′)−LD′
p,W

(θ) = (∥θ′∥2
2 −∥θ∥2

2) · (1−4p2)/d + (2p〈θ′,θ∗〉−1)2 − (2p〈θ,θ∗〉−1)2

= (2p〈θ′−θ,θ∗〉)(2p〈θ′+θ,θ∗〉−2)

= (−4pθ j · (−1)[ j∈W ])(2p〈θ′+θ,θ∗〉−2) < 0,
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where θ′ = ∑
k∈[d ]−1\{ j }

θk ek −θ j e j , and the last inequality is because −4pθ j ·(−1)[ j∈W ] > 0

and 2p〈θ′+θ,θ∗〉 ≤ 2p∥θ′+θ∥2 · ∥θ∗∥2 ≤ 4p ≤ 1. Since θ was assumed a minimizer, for

all j ∈ [d ]−1 the sign of θ j must be (−1)[ j∈W ].
Second, we show that we must have |θ0| = |θ1| = · · · = |θd−1|. Suppose, towards

a contradiction, that this is not the case. Consider θ′ = ∑
j∈[d ]−1

ue j · (−1)[ j∈W ], where

u =
√ ∑

j∈[d ]−1
|θ j |2/d . We have

LD′
p,W

(θ′)−LD′
p,W

(θ) = (2p〈θ′−θ,θ∗〉)(2p〈θ′+θ,θ∗〉−2)

= (2p/
p

d) · (du − ∑
j∈[d ]−1

|θ j |) · (2p〈θ′+θ,θ∗〉−2) < 0.

The last inequality holds because again 2p〈θ′+θ,θ∗〉 ≤ 4p ≤ 1 and in addition,

d · ∑
j∈[d ]−1

|θ j |2 > (
∑

j∈[d ]−1
|θ j |)2

by the Cauchy–Schwarz inequality (which is strict if the |θ j | are not all equal). Hence if
θ is indeed a minimizer, then its entries must all have the same magnitude.

Now we know a minimizer θ must be in the same direction as θ∗, we just don’t know
yet that the magnitudes of its entries are 1/

p
d . Suppose ∥θ∥2 = u ≤ 1 and θ = u ·θ∗,

then we have

LD′
p,W

(θ) = ∥θ∥2
2 · (1−4p2)/d + (2p〈θ,θ∗〉−1)2

= (u2(1−4p2)/d + (2pu −1)2).

The discriminant of f (u) = u2(1−4p2)/d+(2pu−1)2 is less than 0, and u = 2p
4p2+(1−4p2)/d

is the global minimizer of f (u). Note that u = 2p
4p2+(1−4p2)/d

> 1, and hence f (1) ≤ f (u)

for every u ≤ 1. Therefore we know θ∗ is the minimizer for Ridge with respect to D′
p,W .

Next we show that the inner product between the minimizer and an approximate
minimizer for Ridge will be close to 1.

Theorem 6.13. Let w = ⌊d/2⌋, W ⊂ [d ]−1 be a set of size w, ε ∈ (1000/d ,1/10000), and
p = 1/⌊1/ε⌋. Suppose θ ∈ B d

2 is an ε/1000-minimizer for Ridge with respect to D′
p,W .

Then 〈θ,θ∗〉 ≥ 0.999.

Proof. Because θ is an ε/1000-minimizer, we have

0.001ε≥ LD′
p,W

(θ)−LD′
p,W

(θ∗) = (1−4p2) · (∥θ∥2
2 −1)/d + (2p〈θ,θ∗〉−1)2 − (2p −1)2

=⇒ 2p〈θ,θ∗〉 ≥ 1−
√

1−4p +4p2 +0.001ε− (1−4p2) · (∥θ∥2
2 −1)/d .



128 Chapter 6. Query lower bounds for linear regression with norm constraints

Letting z = 4p −4p2 −0.001ε+ (1−4p2) · (∥θ∥2
2 −1)/d , we have

2p〈θ,θ∗〉 ≥1−p
1− z ≥ 1− (1− z/2) = z/2

=2p −2p2 + (1−4p2) · (∥θ∥2
2 −1)/d −0.001ε,

where the second inequality holds because z ∈ (0,1). Dividing both sides by 2p, we
have

〈θ,θ∗〉 ≥ 1−p + (1−4p2) · (∥θ∥2
2 −1)/(2pd)−0.0005ε/p.

Because θ ∈ B d
2 , p = 1/⌊1/ε⌋, and ε ∈ (1000/d ,1/10000), the above implies 〈θ,θ∗〉 ≥

0.999.

Combining the above theorem with the following theorem, we can see how to relate
the entries of an approximate minimizer for Ridge with respect toD′

p,W to the elements
of the hidden set W .

Theorem 6.14. Suppose θ ∈ B d
2 satisfies 〈θ,θ∗〉 ≥ 1−0.001. Then #{ j ∈ [d ]−1 | θ j ·θ∗j ≤

0} ≤ d/500.

Proof. If θ j ·θ∗j ≤ 0 then |θ j −θ∗j | ≥ |θ∗j | = 1p
d

, hence using Theorem 6.13 we have

1

d
#{ j ∈ [d ]−1 | θ j ·θ∗j ≤ 0} ≤ ∥θ−θ∗∥2

2 = ∥θ∥2
2 +∥θ∗∥2

2 −2〈θ,θ∗〉 ≤ 2−2(1−0.001) = 1/500.

We know θ∗ = ∑
j∈[d ]−1

e jp
d

(−1)[ j∈W ], so by looking at the signs of entries of θ, we can

find an index set W̃ = { j ∈ [d ]−1 : θ j > 0} satisfying that |W∆W̃ | ≤ d/500 ≤ w/200 be-
cause w = ⌊d/2⌋. Therefore, once we have an ε/1000-minimizer for Ridge with respect
to D′

p,W , we can solve DSFD′
p,W

.

With the reduction from DSFD′
p,W

to Ridge, we here show (similar to Lasso) a lower

bound for the worst-case symmetric set-finding problem WSSFd ,w,p,N : given a matrix

X ∈ { −1p
d

, 1p
d

}N×d where each column-sum is either 2pN /
p

d or −2pN /
p

d , the goal

is to find a set W̃ ⊂ [d ]− 1 such that |W̃∆W | ≤ w/200, where W is the set of indices
for those columns whose entries add up to 2pN /

p
d and w = |W |. This problem is

again a composition of the approximate set finding problem in Section 6.2.2 and the
Hamming-weight distinguisher problem HDℓ,ℓ′ with ℓ= N

2 −pN and ℓ′ = N
2 +pN up to

a scalar 1/
p

d . Following the proof of Theorem 6.7, we prove a lower bound of Ω(1/p)
queries for this problem.

Theorem 6.15. Let N ∈ 2Z+, z ∈ {0,1}N , and p ∈ (0,0.5) be an integer multiple of 1/N .
Suppose we have query access to z. Then every bounded-error quantum algorithm that
computes HD N

2 −pN , N
2 +pN makesΩ(1/p) queries.
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Again we think of the input bits as ±1 and abuse the notation HD N
2 −pN , N

2 +pN for

the problem with ±1 input. Also, by the composition property of the adversary bound
from Belovs and Lee [BL20] (Theorem 6.8), we have a lower bound of Ω(

p
d w/p) for

WSSFd ,w,p,N from the Ω(
p

d w) lower bound for ASFd ,w and the Ω(1/p) lower bound
for HD N

2 −pN , N
2 +pN .

Corollary 6.16. Let N ∈ 2Z+ and p ∈ (0,0.5) be an integer multiple of 1/N . Given a
matrix X ∈ {−1/

p
d ,+1/

p
d}N×d such that there exists a set W ⊆ [d ]−1 with size w and

• For every j ∈W ,
∑

i∈[N ]−1
Xi j = 2pN /

p
d.

• For every j ′ ∈W ,
∑

i∈[N ]−1
Xi j ′ =−2pN /

p
d.

Then every bounded-error quantum algorithm that computes W̃ such that |W∆W̃ | ≤
w/200, takesΩ(

p
d w/p) queries.

The final step for proving a lower bound for Ridge, using the same arguments as in
Section 6.2.3, is to provide a worst-case to average-case reduction for the symmetric
set-finding problem. We follow the same proof in Theorem 6.10 and immediately get
the following theorem:

Theorem 6.17. Let N ∈ 2Z+, p ∈ (0,0.5) be an integer multiple of 1/N , w be a natural
number between 2 to d/2, and M be a natural number. Suppose X ∈ {−1/

p
d ,+1/

p
d}N×d

is a valid input for W SSFd ,w,p,N , and let W ⊂ [d ]− 1 be the set of the w indices of the

columns of X whose entries add up to 2pN /
p

d. Let R be an M ×d matrix whose entries
are i.i.d. samples from UN , and define X ′ ∈ {−1/

p
d ,1/

p
d}M×d as X ′

i j = XRi j j . Then the

vectors (X ′
i ,1), where X ′

i is the i th row of X ′ and i ∈ [M ]−1, are i.i.d. samples from D′
p,W .

By setting M = 1010 · ⌈logd⌉ · ⌊1/ε⌋2 =O((logd)/ε2) and letting S′ = {(X ′
i ,1)}M−1

i=0 be
a sample set with M i.i.d. samples from D′

p,W , with probability ≥ 9/10, an ε/2000-

minimizer for Ridge with respect to S′ is also an ε/1000-minimizer for Ridge with re-
spect to distribution D′

p,W from Theorem 3.4. By Theorem 6.14 and Theorem 6.13, an

ε/1000-minimizer for Ridge with respect to distribution D′
p,W gives us a set W̃ ⊂ [d ]−1

such that |W̃∆W | ≤ w/200, where W is the set of indices for those columns of X whose
entries add up to 2pN /

p
d . Hence we have a reduction from the worst-case symmet-

ric set-finding problem to Ridge. By this reduction and by plugging w = ⌊d/2⌋ and
p = 1/⌊1/ε⌋ in Corollary 6.16 (and N an arbitrary natural number such that pN ∈ N),
we obtain a lower bound of Ω(d/ε) queries for WSSFd ,w,p,N , and hence for Ridge as
well, which is the main result of this section.

Corollary 6.18. Let ε ∈ (2/d ,1/1000), w = ⌊d/2⌋, p = 1/⌊1/ε⌋, and W ⊂ [d ]−1 with size
w. Every bounded-error quantum algorithm that computes an ε-minimizer for Ridge
with respect to D′

p,W usesΩ(d/ε) queries.
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6.4 Classical lower bound for Lasso

In this section, we will give a classical lower bound for Lasso. Here we first introduce
some tools we will use. The first one is the hypergeometric distribution Hyp(N ,L,m)
with parameters N , L, and m: the distribution of the number of marked balls drawn
when m balls are drawn without replacement from a set of n balls, L of which are
marked and N−L are unmarked. On the other hand, the binomial distribution Bin(m,L/N )
is the distribution on the number of marked balls drawn with replacement. Holmes
showed that when m is small enough, the total variation distance between those two
distribution will be very small.

Theorem 6.19 ([Hol03], Theorem 3.1). Let N ,L,m ∈N. If N ≥ L ≥ m, then

dT V (Hyp(N ,L,m),Bin(m,L/N )) ≤ (m −1)/(N −1)

We also use another distance between probability distributions.

Definition 6.20. Given two discrete probability distributions P , Q over [N ] − 1, the
Hellinger distance dH between P and Q is defined as

dH (P ,Q) :=
√

1

2

∑
i∈[N ]−1

(
√
Pi −

√
Qi )2 =

√
1− ∑

i∈[N ]−1

√
PiQi .

From the definition above we also have the following property for product distri-
butions:

d 2
H (P⊗m ,Q⊗m) = 1− (

∑
i∈[N ]−1

√
PiQi )m = 1− (1−d 2

H (P ,Q))m ≤ m ·d 2
H (P ,Q). (6.1)

The following lemma bridges the Hellinger distance and total variation distance.

Lemma 6.21. For arbitrary discrete probability distributions P , Q over [N ]−1, we have

d 2
H (P ,Q) ≤ dT V (P ,Q) ≤p

2dH (P ,Q).

Proof. First we prove the left inequality:

d 2
H (P ,Q) = 1

2

∑
i∈[N ]−1

(
√
Pi −

√
Qi )2 ≤ 1

2

∑
i∈[N ]−1

(|
√
Pi −

√
Qi |)(

√
Pi +

√
Qi )

= 1

2

∑
i∈[N ]−1

|Pi −Qi | = dT V (P ,Q).

The right inequality follows using Cauchy-Schwarz:

dT V (P ,Q) = 1

2

∑
i∈[N ]−1

|
√
Pi −

√
Qi |(

√
Pi +

√
Qi )

≤ 1

2

√ ∑
i∈[N ]−1

|
√
Pi −

√
Qi |2

√ ∑
i∈[N ]−1

|
√
Pi +

√
Qi |2

= dH (P ,Q) ·
√

1+ ∑
i∈[N ]−1

√
PiQi = dH (P ,Q) ·

√
2−d 2

H (P ,Q) ≤p
2dH (P ,Q).
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After introducing the above tools, we are ready to prove the following result.

Theorem 6.22. Let m ∈ Z+, p ∈ (0,0.5), and P ,Q be two hypergeometric distributions
Hyp(N , N /2,m) and Hyp(N , N /2+pN ,m) respectively. Then we have dT V (P ,Q) ≤ 2(m−
1)/(N −1)+p

p
3m.

Proof. Let P ′,Q′ be the binomial distributions Bin(m,1/2) and Bin(m,1/2+p) respec-
tively. By the triangle inequality, Theorem 6.19, and Lemma 6.21, we have

dT V (P ,Q) ≤ dT V (P ′,P)+dT V (P ′,Q′)+dT V (Q′,Q)

≤ (m −1)/(N −1)+dT V (P ′,Q′)+ (m −1)/(N −1)

≤ 2(m −1)/(N −1)+p
2dH (P ′,Q′).

Suppose p′ and q′ are Bernoulli distributions with mean 1/2 and 1/2+p respectively,
then using Eq. (6.1) we have

dH (P ′,Q′) ≤ dH (p′⊗m ,q′⊗m) ≤p
m ·dH (p′,q′) ≤p

m ·
√

1− 1

2
(
√

1+2p +√
1−2p) ≤ p

√
3m

2
,

where the last inequality holds because
√

1+2p +√
1−2p ≥ 2− 3p2 for p ∈ (0,0.5).

Combining the above two results, we have

dT V (P ,Q) ≤ 2(m −1)/(N −1)+p
2dH (P ′,Q′) ≤ 2(m −1)/(N −1)+p

p
3m.

Using the above theorem, we can show a classical query lower bound for the exact
set-finding problem ESFd ,w,p,N , which is the following: given a matrix X ∈ {−1,1}N×d

where each column-sum is either 2pN or 0, the goal is to find the set W (of size w or
w −1) of indices of the columns whose entries add up to 2pN . The following theorem
gives a classical query lower bound for this problem.

Theorem 6.23. Let N ∈ 2Z+, p ∈ (1/
p

N ,0.5) be an integer multiple of 1/N , and w =
1/(2p). Given a matrix X ∈ {−1,1}N×d such that there exists a set W ⊂ [d ]−1 with size w
or w −1 satisfying

• for every j ∈W ,
∑

i∈[N ]−1
Xi j = 2pN ;

• for every j ′ ∈W ,
∑

i∈[N ]−1
Xi j ′ = 0.

Suppose we have classical query access to X . Then every classical algorithm that com-
putes W with success probability ≥ 1−1/100 usesΩ((d −w)/p2) queries.

Proof. Let W = {1, . . . , w −1} and let DW be the distribution on the input X where each
column of X is chosen uniformly at random subject to the column sums as specified
in the theorem: if j ∈ W then the j th column-sum is 2pN , and if j ̸∈ W then the j th
column-sum is 0.
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LetA be a randomized classical algorithm with worst-case query complexity T that
computes the hidden set with error probability ≤ 1/100 for every input. Let random
variable t j be the number of queries that algorithm A makes in the j th N -bit string
(i.e., to entries in the j th column of X ) under DW , and T j be the expectation of t j

under DW . Because
∑

j∈[d ]−1 T j ≤ T , there must be a k ∈ [d ]− 1 \ W such that Tk ≤
T /(d −w +1). We use algorithm A to prove the following claim:

Claim 6.1. There exists a classical randomized algorithm with worst-case query com-
plexity ≤ 100T /(d −w +1) := τ in the k-th column that distinguishes DW from DW ∪{k}

with success probability ≥ 0.98.

Proof: Let B be the following randomized classical algorithm: run A until the number
of queries in k-th column is ≥ τ. If A outputs W , then we output that; if A does not
output W or did not terminate within τ queries, then we output W ∪ {k}.

We here prove the correctness of algorithm B. If we run B on input distribution
DW , then the probability thatA (run all the way until it terminates) does not output W ,
is ≤ 1/100. By Markov’s inequality, the probability (still under distribution DW ) that A
did not terminate within τ queries, ≤ 1/100. Hence by the union bound, the probability
that B does not output W is ≤ 2/100.

If, on the other hand, we run B on input distribution is DW ∪{k}, then the probabil-
ity that B outputs the correct set W ∪ {k} is lower bounded by the probability that A
outputs W ∪ {k}, because we defined B to output W ∪ {k} when A did not already ter-
minate. Since A has success probability ≥ 99/100, the probability (under DW ∪{k}) that
B outputs W ∪ {k} is ≥ 99/100. ■

Because algorithm B decides with success probability ≥ 98/100 whether k is in the
hidden set or not, it has to distinguish (in the kth column of X ) a uniformly random
column with column-sum 0 from a uniformly random column with column-sum 2pN
with success probability ≥ 98/100. Hence we must have

Ω(1) ≤ 2(100Tk −1)

N −1
+p

√
300Tk ≤ 200T

(d −w +1)(N −1)
+p

√
300T

(d −w +1)
,

where the first inequality follows by Theorem 6.22 and the last one follows because
Tk ≤ T /(d −w +1). Rearranging implies T =Ω((d −w)/p2).

The last step towards our lower bound for classical Lasso-solvers is to show that one
can solve the exact set-finding problem using an approximate Lasso-solver, as follows.

Theorem 6.24. Let N ∈ 2Z+, p ∈ (1/
p

N ,0.25) be an integer multiple of 1/N , and w =
1/(2p). Suppose A is an algorithm that finds a p/4000-minimizer for Lasso with respect
to Dp,W with probability ≥ 1−1/(20000logd) for every W ⊂ [d ]−1 with size w or w −1.
Then Algorithm 7 outputs the correct answer for ESFd ,w,p,N with success probability ≥
99/100.
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input : Algorithm A that outputs (with probability ≥ 1−1/(20000logd)) a
p/4000-minimizer for Lasso with respect to Dp,W for every possible
W ⊂ [d ]−1 of size w or w −1, using M samples; X ∈ {−1,1}N×d a valid
input for ESFd ,w,p,N ;

for u = 0 to U −1 = ⌈100logd⌉−1 do
GENERATE a permutation π ∈ Sd uniformly at random;
GENERATE an M ×d matrix R such that all its entries are i.i.d. samples from
UN ;

Let X ′ ∈ {−1,1}M×d be X ′
i j = XRiπ( j )π( j ); let X ′

m denote its mth row;

RUN Algorithm A with inputs (X ′
1,1), (X ′

2,1), . . . , (X ′
M ,1) and let W ′

u ⊆ [d ]−1
be the set of indices of entries of the output of Algorithm A whose absolute
value is ≥ 2p/3;

STORE Wu =π−1(W ′
u);

end
output: W̃ = { j ∈ [d ]−1 : j is included in at least half of the sets W0, . . . ,WU−1};

Algorithm 7: Solve ESFd ,w,p,N using a p/4000-Lasso solver A

Proof. Let u ∈ [U ]−1 and define p j = Pr[ j is in Wu]. Note that p j is independent of u
because all iterations do the same thing. First we show that ∀u ∈ [U ]−1 and ∀ j1, j2 ∈
W , p j1 = p j2 . Let p j ,π = Pr[ j ∈ π−1(W ′

u) | π] be the probability of the event that index
j is in π−1(W ′

u) = Wu if the uth iteration used the permutation π. We can see that
p j = 1

d !

∑
π∈Sd

p j ,π. Consider a permutation σ ∈ Sd satisfying that

σ( j ) =


j2, if j = j1,

j1, if j = j2,

j , otherwise.

We have for every π ∈ Sd , that p j1,π = p j2,σπ because both j1 and j2 are in W and each
of them is drawn from the corresponding columns with replacement. Therefore, we
have

p j1 =
1

d !

∑
π∈Sd

p j1,π = 1

d !

∑
π∈Sd

p j2,σπ = p j2 ,

and using a similar argument, we can also show that for arbitrary j ′1, j ′2 ∈ W , we have
p j ′1 = p j ′2 .

Combining the above argument and Theorem 6.3, we have that if algorithm A suc-
ceeds, then for every j ∈ W , p j ≥ 0.995 and for every j ′ ∈ W , p j ′ ≤ 0.005. This implies
that for every j ∈ W , Pr[ j ∉ W̃ ] ≤ 1/200d and for every j ′ ∈ [d ]− 1 \ W , Pr[ j ′ ∈ W̃ ] ≤
1/200d by Hoeffding bound. Also because algorithm A outputs a p/4000-minimizer
with error probability at most 1/(20000logd), by union bound the probability that A
fails in at least one of the U inner loops is at most 1/200. Hence W̃ is the correct answer
for ESFd ,w,p,N with probability ≥ 1−1/200−d/200d = 99/100.
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Similar to the arguments in Section 6.2.3, the above theorem tells us that we can
convert an instance of ESFd ,w,p,N to an instance of DSFDp,W (and hence an instance
for Lasso). Again the matrix R is produced offline and therefore we do not use extra
queries in Algorithm 7 apart from the runs of A. Now suppose we have a T -query clas-
sical algorithm that outputs (with success probability ≥ 1−1/(20000logd)) a p/4000-
minimizer for Lasso with respect to Dp,W for arbitrary W ⊂ [d ]−1 of size w or w −1,
then using T ·100logd queries, we can solve ESFd ,w,p,N with probability ≥ 99/100. Note
that we can construct such a high-success-probability Lasso solver by applying a Lasso
solver with success probability ≥ 2/3 for O(loglogd) times and then outputting the
output vector with the smallest objective value (estimating objective values with addi-
tive error p with success probability ≥ 1−δ uses only Õ(log(1/δ)/p2) queries). Also,
Theorem 6.23 gives a Ω((d −w)/p2) lower bound for ESFd ,w,p,N , and hence we obtain

a classical lower bound of Ω̃(d/ε2) queries for Lasso for ε ∈ (1/
p

d ,1/200) by letting
p = ε/2 and by the fact ⌊1/ε⌋ ≥ w ≥ ⌊1/ε⌋−1:

Corollary 6.25. Let ε ∈ (1/
p

d ,1/200), w be either ⌊1/ε⌋ or ⌊1/ε⌋ − 1, p = 1/(2⌊1/ε⌋),
and W ⊂ [d ]−1 with size w. Every bounded-error classical algorithm that computes an
ε-minimizer for Lasso with respect to Dp,W uses Ω̃(d/ε2) queries.

6.5 Open problems

We mention a few directions for future work:

• We show both Lasso and Ridge solvers can solve distributional set-finding (with
respect to different distribution), but is it possible that we can use a distributional
set-finding solver for solving Lasso or Ridge?

• We conjecture the lower bound for Lasso is not tight for the ε-dependency. As for
the lower bound for Ridge, Θ̃(d/ε) might be the right bound.

• On the other hand, is it possible to reduce a harder problem to Lasso/Ridge? We
tried to encode a bigger subset into the distributional set-finding problem for a
better quantum query lower bound for Lasso, but because ℓ1-regularizer ensures
a O(1/ε) sparsity for an ε-minimizer, a Lasso ε-minimizer cannot approximate a
bigger subset in this case.
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CHAPTER 7

Query lower bounds for approximating
the top eigenvector

7.1 Introduction

In this chapter we prove essentially tight classical and quantum query lower bounds
for approximating the top eigenvector of a matrix whose entries we can query.

7.1.1 Main results and high-level intuition

We show an Ω̃(d 1.5) quantum query lower bound for finding the top eigenvector, im-
plying that Algorithm 6 (Corollary 4.16 with s = d and q = 1) in Chapter 4 is essentially
optimal. We do this by analyzing a hard instance A = 1

d uuT +N , which hides a vector

u ∈ {−1,1}d using a d ×d matrix N with i.i.d. Gaussian entries of mean 0 and standard
deviation ∼ 1/

p
d . Note that the entry Ai j = ui u j /d has magnitude 1/d , but is “hid-

den” in the entry Ai j by adding noise to it of much larger magnitude ∼ 1/
p

d . One
can show that (with high probability) this matrix has a constant eigenvalue gap, and its
top eigenvector is close to u/

p
d . A lower bound for recovering u thus implies a lower

bound for recovering the top eigenvector.
First, this hard instance provides the above-mentioned unsurprising1 Ω(d 2) query

lower bound for classical algorithms, as follows. To approximate the top eigenvector
(and hence u), an algorithm has to recover most of the d signs ui of u. Note that the
entries of the i th row and column of A are the only entries that depend on ui . If the
algorithm makes T queries overall, then there is an index i such that the algorithm
makes at most 4T /d queries to entries in the ith row and column, while still recovering

1A simpler way to see this lower bound is to consider the problem of distinguishing the all-0 matrix
from a matrix that has a 1 in one of the d 2 positions and 0s elsewhere. This is just the d 2-bit OR problem,
for which we have an easy and well-known Ω(d 2) classical query bound. However, the quantum ana-
logue of this approach only gives an Ω(d) lower bound, since the quantum query complexity of d 2-bit
OR is Θ(d). Therefore we present a more complicated argument for the classical lower bound whose
quantum analogue does provide an essentially tight bound of Ω̃(d 1.5).
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ui with good probability. Slightly simplifying, one can think of each of those entries as
a sample from either the distribution N (1/d ,1/

p
d) or the distribution N (−1/d ,1/

p
d),

with the sign of the mean corresponding to ui. It is well known that Ω(d) classical
samples are necessary to estimate the mean of the distribution to within ±1/d and
hence to distinguish between these two distributions. This implies 4T /d =Ω(d), giving
us the T = Ω(d 2) classical query lower bound for approximating the top eigenvector
of A (Corollary 7.2).

Second, a similar but more technical argument works to obtain the Ω̃(d 1.5) quan-
tum query lower bound (Corollary 7.4), as follows. A good algorithm recovers most ui -s
with good probability. If it makes T quantum queries overall, then there is an index i
such that the algorithm has at most 4T /d “query mass” on the entries of the ith row
and column (in expectation over the distribution of A), while still recovering ui with
good probability. It then remains to show that distinguishing between either the distri-
bution N (1/d ,1/

p
d) or the distribution N (−1/d ,1/

p
d), with the ability to query mul-

tiple samples from that distribution in quantum superposition, requires Ω̃(
p

d) quan-
tum queries. This we prove by a rather technical modification of the adversary bound
of Ambainis [Amb02; Amb06], using expectations under a joint distribution µ on pairs
of matrices (the two marginal distributions of µ are our hard instance conditioned on
ui = 1 and ui = −1, respectively) of Hamming distance roughly

p
d in the ith row and

column.2

Roadmap

In Section 7.2 we prove that an approximate top-eigenvector (with additiveℓ2-norm er-
ror at most 1/1000) can recoverΩ(d) entries of vector u. In Section 7.3 and 7.4, we show
that we need to makeΩ(d 2) queries (Ω̃(d 1.5) quantum queries) to entries of the matrix
to recover Ω(d) entries of vector u, and hence Ω(d 2) (Ω̃(d 1.5) quantum) query lower
bound for approximating the top-eigenvector with additive ℓ2-error at most 1/1000.

7.2 The hard instance for the lower bound

Consider the following case, which is the “hard instance” for which we prove the lower
bounds. Let u ∈ {−1,1}d be a vector, and define symmetric random matrix A = 1

d uuT +
N where the entries of N are i.i.d. Ni j ∼ N (0, 1

4·106d
) for all 1 ≤ i ≤ j ≤ d (and Ni j = N j i if

i > j ); the goal is to recover most (say, 99%) of the entries of the vector u. In this prob-
lem, the information about the ui -s is hidden in the matrix A: the entry Ai j is clearly a

sample from N (
ui u j

d , 1
4·106d

). Hence to learn entries of u, intuitively we should be able

to distinguish the distribution N ( 1
d , 1

4·106d
) from the distribution N (− 1

d , 1
4·106d

). In the
classical case (where querying an entry of Ai j is the same as obtaining one sample fom
the distribution) it requires roughly Ω(d) queries to the entries of the i th row and col-

2We cannot just use the adversary bound “off the shelf”, because our inputs are vectors of samples
from a continuous distribution rather than fixed binary strings.
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umn to learn one ui , even if all u j with j ̸= i are already known. In the quantum case,

it requires Ω(
p

d) queries. Intuitively, learning 0.99d of the ui -s should then require
roughly d times more queries, so Ω(d 2) and Ω(d 1.5) classical and quantum queries in
total, respectively. We show in the next two subsections that this is indeed the case.

First we show that (with high probability) A has a large eigenvalue gap. Note that
A = 1

d uuT + 1
2000

p
d

G where Gi j ∼ N (0,1) for 1 ≤ i ≤ j ≤ d and Gi j = G j i for the lower-

triangular elements. Since G itself is symmetric and its entries are i.i.d. ∼ N (0,1), by
Theorem 2.33 with t = 0.4

p
d (here bmax =p

d and b∗
max = 1) we have that the opera-

tor norm of G is upper bounded by 2.5
p

d + (0.4+o(1))
p

d ≤ 3
p

d with probability at
least 1−exp(−0.04d); below we assume this is indeed the case. Therefore, by triangle
inequality, the top eigenvalue of A is upper bounded by 1+ 3

2000 and lower bounded by
∥A up

d
∥2 ≥ 1− 3

2000 , implying that there is a unit top eigenvector v1 = v1(A) of A that has

inner product nearly 1 with the unit vector up
d

:

1− 3

2000
≤ ∥Av1∥2 ≤ ∥ 1

d
uuT v1∥2 +∥ 1

2000
p

d
Gv1∥2 ≤ | 1p

d
uT v1|+ 3

2000
,

hence |〈v1, up
d
〉| ≥ 1− 3

1000 . We may assume without loss of generality that the eigen-

vector v1 has been chosen such that 〈v1, up
d
〉 is positive, so we can ignore the absolute

value sign. The signs of v1(A) have to agree with the signs of u in at least 99.4% of the d
entries, because each entry where the signs are different contributes at least 1/d to the
squared distance between u/

p
d and v1(A):

1

d
#{ j ∈ [d ] | u j · (v1(A)) j ≤ 0} ≤ ∥ up

d
− v1(A)∥2

2 = 2−2〈 up
d

, v1(A)〉 ≤ 3

500
.

Moreover, the second eigenvalue λ2(A) of A is at most 0.08:

λ2(A) = max
w :∥w∥2=1,w⊥v1

∥Aw∥2 ≤ 3

2000
+ max

w :∥w∥2=1,w⊥v1
∥uuT w

d
∥2 ≤ 3

2000
+
p

3 ·1997

997
< 0.08,

where the last inequality holds because 〈v1, up
d
〉 ≥ 1− 3

1000 .3 Hence there is a constant

gap between the top and the second eigenvalue of A.
If we have an algorithm that outputs a vector ũ satisfying ∥ũ − v1(A)∥2 ≤ 1

1000 , then
we can use the signs of ũ to learn 99% of the ui -s. Hence a (classical or quantum) query
lower bound for recovering (most of) u is also a query lower bound for approximating
the top eigenvector of our hard instance.

7.3 A classical lower bound

We first show that every classical algorithm that recovers 99% of the ui -s needs Ω(d 2)
queries.

3Let v1 = α1
up
d
+β1w1 and v2 = α2

up
d
+β2w2 for some unit vectors w1, w2 ⊥ up

d
and for some

α1,α2,β1,β2 ∈ [−1,1] satisfying α2
1 + β2

1 = α2
2 + β2

2 = 1. Since v1 ⊥ v2, we have 〈v1, v2〉 = α1α2 +
β1β2〈w1, w2〉 = 0, implying |α2| = |β1β2|

|α1| |〈w1, w2〉| ≤ |β1|
|α1| =

√
1−α2

1

|α1| ≤
p

3·1997
997 .
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Theorem 7.1. Let u ∈ {−1,1}d be a vector, e11,e12, . . . ,e1d ,e22, . . . ,edd be d(d +1)/2 inde-
pendent samples drawn from N (0, 1

4·106d
), and A ∈Rd×d be the matrix defined by

Ai j =
{

1
d ui u j +ei j , if 1 ≤ i ≤ j ≤ d ,

A j i , otherwise.

Suppose we have query access to entries of A. Every bounded-error classical algorithm
that computes a ũ ∈ {−1,1}d at Hamming distance ≤ d/100 from u, usesΩ(d 2) queries.

Proof. Suppose there exists a T -query bounded-error classical algorithm A to com-
pute such a ũ, with worst-case error probability ≤ 1/20. Note that the only entries that
depend on ui are in the i th column and row of A. Let random variable Ti be the num-
ber of queries that A makes in the i th column and row (here the randomness comes
from the input distribution and from the internal randomness of A). Because every
query is counted at most twice among the Ti -s (and only once if the query is to a diag-
onal entry of A), we have E[

∑
i∈[d ] Ti ] ≤ 2T . Define index i as “good” if Pr[ui = ũi ] ≥ 0.8,

and let IG be the set of good indices. Since A has error probability at most 1/20, we can
bound the expected Hamming distance by

E[Ham(u, ũ)] ≤ Pr[Ham(u, ũ) ≤ d

100
]· d

100
+Pr[Ham(u, ũ) > d

100
]·d ≤ 1· d

100
+ 1

20
·d ≤ d

10
.

By plugging in the definition of IG , we obtain

d

10
≥ E[Ham(u, ũ)] = ∑

i∈[d ]
Pr[ui ̸= ũi ] ≥ ∑

i∈[d ]\IG

Pr[ui ̸= ũi ] ≥ ∑
i∈[d ]\IG

1

5
= d −|IG |

5
,

implying that |IG | ≥ d/2. Because E[
∑

i∈IG Ti ] ≤ E[
∑

i∈[d ] Ti ] ≤ 2T , by averaging there
exists an index i ∈ IG such that E[Ti ] ≤ 4T /d . This implies that there is a classical algo-
rithm A′ that recovers ui with probability at least 0.8 using an expected number of at
most 4T /d queries to entries in the ith row and column of A.

Now suppose we want to distinguish ui = 1 from ui =−1 using samples from N ( ui
d , 1

4·106d
).

We can use A′ for this task, as follows. Generate u1, . . . ,ui−1,ui+1, . . . ,ud uniformly at
random from ±1, and generate e ′

i j from N (0, 1
4·106d

) for all 1 ≤ i ≤ j ≤ d . Then we de-

fine a d ×d matrix A′ as

A′
i j =



1
d ui u j +e ′

i j , if 1 ≤ i ≤ j ≤ d , i ̸∈ {i , j }

u j · sample from N ( ui
d , 1

4·106d
) if i = i and i < j

ui · sample from N ( ui
d , 1

4·106d
) if j = i and i < j

A′
j i , otherwise.

Note that for every i , j ∈ [d ], A′
i j is a sample drawn from N (

ui u j

d , 1
4·106d

). Given that
our algorithm knows the values it generated itself (in particular, all u j with j ̸= i), it
can implement one query to an entry in the ith row or column of A′ by at most one
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new sample from N ( ui
d , 1

4·106d
), and queries to other entries of A′ do not cost additional

samples.
By running A′ on the input matrix A′, we have Pr[ui = ũi] ≥ 0.8. Hence by using an

expected number of 4T /d samples drawn from N ( ui
d , 1

4·106d
), we can distinguish ui = 1

from ui = −1 with probability ≥ 0.8. Then by Markov’s inequality, worst-case 40T /d
samples suffice to distinguish ui = 1 from ui =−1 with probability ≥ 0.7.

The KL-divergence between N ( 1
d , 1

4·106d
) and N (− 1

d , 1
4·106d

) is Ex∼N ( 1
d , 1

4·106d
)[8·106x] =

8·106

d . As a result, by using the well-known Pinsker’s inequality (dT V (P,Q) ≤
√

1
2 DK L(P ||Q))

and the fact that DK L(P⊗t ||Q⊗t ) = t ·DK L(P ||Q) for any distributions P,Q and natural
number t , we obtain

Ω(1) ≤ dT V

(
N (

1

d
,

1

4 ·106d
)⊗

40T
d , N (− 1

d
,

1

4 ·106d
)⊗

40T
d

)
≤

√
1

2
DK L

(
N (

1

d
,

1

4 ·106d
)⊗

40T
d

∣∣∣∣∣∣N (− 1

d
,

1

4 ·106d
)⊗

40T
d

)
(by Pinsker’s inequality)

=
√

1

2
· 40T

d
·DK L

(
N (

1

d
,

1

4 ·106d
)
∣∣∣∣∣∣N (− 1

d
,

1

4 ·106d
)
)
=O

(√
T /d 2

)
,

implying T =Ω(d 2).

By the discussion in Section 7.2, we therefore obtain the following corollary.

Corollary 7.2. Let A be a d × d symmetric matrix with ∥A∥ = O(1) and an Ω(1) gap
between its top and second eigenvalues. Suppose we have query access to the entries of
A. Every classical algorithm that with probability at least ≥ 99/100, approximates the
top eigenvector of A with ℓ2-error at most 1

1000 usesΩ(d 2) queries.

This query lower bound is tight up to the constant factor, since we can compute the
top eigenvector exactly using d 2 queries: just query every entry of A and diagonalize
the now fully known matrix A (without any further queries) to find the top eigenvector
exactly.

7.4 A quantum lower bound

Now we move to the quantum case, still using the same hard instance. Our proof uses
similar ideas as the hybrid method [BBB+97] and adversary method [Amb02; Amb06]
for quantum query lower bounds, but adjusted to continuous random variables in-
stead of input bits.

Theorem 7.3. Let u ∈ {−1,1}d be a uniformly random vector, e11,e12, . . . ,e1d ,e22, . . . ,edd

be d(d+1)/2 independent samples drawn from N (0, 1
4·106d

), and A ∈Rd×d be the random
matrix defined by

Ai j =
{

1
d ui u j +ei j , if 1 ≤ i ≤ j ≤ d ,

A j i , otherwise.
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Suppose we have quantum query access to entries of A. Every bounded-error quan-
tum algorithm that computes ũ ∈ {−1,1}d at Hamming distance ≤ d/100 from u, uses
Ω(d 1.5/

√
logd) queries.

Proof. Let ν denote the input distribution given in the theorem statement, and X ∼ ν

be a random d ×d input matrix according to that distribution (with instantiations of
random variable X denoted by lower-case x). Let Ox denote the query oracle to input
matrix x. Suppose there exists a T -query quantum algorithmA=UT OxUT−1 · · ·U1OxU0,
alternating queries and input-independent unitaries on some fixed initial state (say,
all-0), to compute such a ũ with error probability ≤ 1/20, probability taken over both
ν and the internal randomness of A caused by the measurement of its final state. Our
goal is to lower bound T .

For t ∈ {0, . . . ,T −1}, let |ψt
x〉 =

∑
i , j∈[d ]

αt
xi j |i , j 〉 |φt

xi j 〉 be the quantum state of algo-

rithm A just before its (t +1)st query on input matrix x. Let |ψT
x 〉 be the final state on

input x. We define the query mass on (i , j ) ∈ [d ]× [d ] on input x as pi j x = ∑
t∈[T ]

|αt
xi j |2,

and define the query mass on i on input x as pi x = ∑
t∈[T ], j∈[d ]

|αt
xi j |2 +|αt

x j i |2. Note that∑
i , j |αt

xi j |2 ≤ 1 for all x and t . Every |αt
xi j |2 is counted once in pi x and once in p j x if

i ̸= j , and counted only in pi x if i = j . Hence we have
∑

i∈[d ] pi x ≤ 2T for every x. De-
fine Ti = Ex∼ν[pi x] as the expected query mass on the i th row and column of the input
matrix, then

∑
i∈[d ] Ti ≤ 2T .

Call index i ∈ [d ] “good” if Pr[ui = ũi ] ≥ 0.8, where the probability is taken over ν
and the internal randomness of the algorithm. Let IG be the set of good indices. Since
A has error probability at most 1/20, we have

Ex[Ham(u, ũ)] ≤ Pr[Ham(u, ũ) ≤ d

100
]· d

100
+Pr[Ham(u, ũ) > d

100
]·d ≤ 1· d

100
+ 1

20
·d ≤ d

10
.

Using linearity of expectation and the definition of IG , we have

d

10
≥ Ex[Ham(u, ũ)] = ∑

i∈[d ]
Pr[ui ̸= ũi ] ≥ ∑

i∈[d ]\IG

Pr[ui ̸= ũi ] ≥ d −|IG |
5

,

which implies |IG | ≥ d/2. Since
∑

i∈IG Ti ≤ ∑
i∈[d ] Ti ≤ 2T , by averaging there exists an

index i ∈ IG such that Ti ≤ 4T /d . We fix this i for the rest of the proof. Note that because
i has Prν[ui = ũi] ≥ 0.8, we also have Prν+[ui = ũi] ≥ 0.6 and Prν−[ui = ũi] ≥ 0.6, where
the distributions ν+ and ν− are ν conditioned on ui = 1 and ui =−1, respectively.

We now define an (adversarial) joint distribution µ on (X ,Y )-pairs of input matri-
ces, such that the marginal distribution of X is ν+ and the marginal distribution of Y
is ν−. First sample a matrix x (with associated u ∈ {−1,1}d with ui = 1) according to
ν+. We want to probabilistically modify this into a matrix y by changing only a small
number of entries, and only in the ith row and column of x. Let f and g be the pdf of
N ( 1

d , 1
4·106d

) and N (− 1
d , 1

4·106d
), respectively. Consider an entry xi j in the ith row of x,

with j ̸= i. Conditioned on the particular u we sampled, its pdf was f if u j = 1 and g



7.4. A quantum lower bound 141

if u j = −1. If the pdf of xi j was f , then obtain yi j from xi j as follows: if xi j > 0, then

negate it with probability
f (xi j )−g (xi j )

f (xi j ) , else leave it unchanged.

Claim 7.1. If xi j ∼ N ( 1
d , 1

4·106d
), then yi j ∼ N (− 1

d , 1
4·106d

).

Proof: Let h be the pdf of yi j . For a value z > 0, we have h(z) = f (z)− f (z) · f (z)−g (z)
f (z) =

g (z).

For z ≤ 0 we have h(z) = f (z)+ f (−z) · f (−z)−g (−z)
f (−z) = f (z)+ f (−z)−g (−z) = f (−z) = g (z).

■

If the pdf of xi j was g instead of f , then we do something analogous: if xi j < 0, then

negate it with probability
g (xi j )− f (xi j )

g (xi j ) . This gives the analogous claim: the pdf of yi j is

then f .

Let matrix y be obtained by applying this probabilistic process to all entries in the
ith row of x, and changing the entries in the ith column to equal the new ith row (since
the resulting y needs to be a symmetric matrix). Outside of the ith row and column,
x and y are equal. Let µ be the resulting joint distribution on (x, y) pairs. An impor-
tant property of this distribution that we use below, is that the d ×d matrices x and
y typically only differ in roughly

p
d entries, because the probability with which xi j

is modified (=negated) is O(1/
p

d). The marginal distribution of Y is ν−, because the
change we made in the X -distribution corresponds exactly to changing ui from 1 to
−1. We could equivalently have defined µ by first sampling Y ∼ ν−, and then choosing
xi j by an analogous negating procedure on yi j .

We now use the general template of the adversary method [Amb02] together with
our distributionµ to lower bound the total number T of queries thatAmakes. Define a
progress measure St = Ex y∼µ[〈ψt

x |ψt
y〉]. As usual in the adversary method, this measure

is large at the start of the algorithm and becomes small at the end: S0 = 1 because
〈ψ0

x |ψ0
y〉 = 1 for all x, y (since the initial state is fixed, independent of the input); and

ST ≤ 1−Ω(1) because for (x, y) ∼ µ, our algorithm outputs 1 with probability at least
0.6 on x and outputs −1 with probability at least 0.6 on y , meaning that 〈ψT

x |ψT
y 〉 is

typically bounded below 1. Let ∆t = |St+1 −St | be the change in the progress measure
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due to the (t +1)st query. We can upper bound that change as follows:

∆t = |Ex y∼µ[〈ψt+1
x |ψt+1

y 〉−〈ψt
x |ψt

y〉]|
= |Ex y∼µ[〈ψt

x |
(
O†

xOy − I
)|ψt

y〉]|

= |Ex y∼µ

[ ∑
i , j∈[d ]

αt
xi j 〈i , j | 〈φt

xi j |
∑

i , j :xi j ̸=yi j

αt
yi j |i , j 〉 |φ′t

yi j 〉
]
|

≤ Ex y∼µ

[ ∑
i , j :xi j ̸=yi j

|αt
xi j | · |αt

yi j |
]

= Ex y∼µ

[ ∑
j :xi j ̸=yi j

|αt
xi j | · |αt

yi j |+
∑

j :x j i ̸=y j i

|αt
x j i| · |αt

y j i|
]

≤ 1

2
Ex y∼µ

[ ∑
j :xi j ̸=yi j

(
|αt

xi j |2 +|αt
yi j |2

)
+ ∑

j :x j i ̸=y j i

(
|αt

x j i|2 +|αt
y j i|2

)]
.

where we use that |ψt+1
x 〉 =Ut+1Ox |ψt

x〉 and |ψt+1
y 〉 =Ut+1Oy |ψt

y〉, that O†
xOy : |i , j ,b〉→

|i , j 〉 |b −xi j + yi j 〉, that x and y only differ in the ith row and column, and the AM-GM
inequality (ab ≤ (a2 +b2)/2) in the last step.

Now observe that

Ex y∼µ

[ ∑
j :xi j ̸=yi j

|αt
xi j |2

]
= ∑

j∈[d ]
Ex[ Pr

y∼µ|x
[xi j ̸= yi j ] · |αt

xi j |2]

=∑
j

∫ ∞

0

f (xi j )− g (xi j )

f (xi j )
· |αt

xi j |2 · f (xi j )dxi j

=∑
j

(∫ 10
p

logdp
d

0

(
1− g (xi j )

f (xi j )

) · |αt
xi j |2 · f (xi j )dxi j

+
∫ ∞

10
p

logdp
d

(
f (xi j )− g (xi j )

) · |αt
xi j |2dxi j

)
≤∑

j

(
max

z∈[0,
10
p

logdp
d

]

|1−exp(−8 ·106z)| ·Ex[|αt
xi j |2]

+
∫ ∞

10
p

logdp
d

(
f (xi j )− g (xi j )

)
dxi j

)
≤∑

j

(8 ·107
√

logdp
d

·Ex∼ν+[|αt
xi j |2]+2exp(−100logd)

)
,

where the first part of the first inequality holds because
g (xi j )
f (xi j ) = exp(−8·106xi j ), the first

part of the second inequality holds because for every z, 1−exp(−z) ≤ z, and the second
part of the second inequality holds because both f , g are Gaussians with variance 1

4·106d

and
10
p

logdp
d

− 1
d ≥ 10 · 1

2000
p

d
.
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We can similarly upper bound
∑

t∈[T ]
Ex y∼µ[

∑
j :x j i ̸=y j i

|αt
x j i|2],

∑
t∈[T ]

Ex y∼µ[
∑

j :xi j ̸=yi j

|αt
yi j |2],

and
∑

t∈[T ]
Ex y∼µ[

∑
j :x j i ̸=y j i

|αt
y j i|2]. Now we have

Ω(1) ≤ |S0 −ST |
≤ ∑

t∈[T ]−1
∆t

≤ 1

2

∑
t∈[T ]−1

Ex y∼µ

[ ∑
j :xi j ̸=yi j

(
|αt

xi j |2 +|αt
yi j |2

)
+ ∑

j :x j i ̸=y j i

(
|αt

xi j |2 +|αt
yi j |2

)]

≤ ∑
t∈[T ]−1, j∈[d ]

(4 ·107
√

logdp
d

(
Ex∼ν+[|αt

xi j |2 +|αt
xi j |2]+Ey∼ν−[|αt

yi j |2 +|αt
y j i|2]

)+4exp(−100logd)
)

≤ 4 ·107
√

logdp
d

(
Ex∼ν+[pix]+Ey∼ν−[piy ]

)
+4d 3 exp(−100logd)

≤ 8 ·107
√

logdp
d

Ex∼ν[pix]+4d 3 exp(−100logd)

≤ 8 ·107
√

logdp
d

· 4T

d
+4d 3 exp(−100logd),

where the sixth inequality uses that ν+ + ν− = 2ν, and that j ranges over d values
and t ranges over T values (and T ≤ d 2 without loss of generality). This implies T =
Ω(d 1.5/

√
logd).

Again invoking the discussion in Section 7.2, we obtain the following corollary which
shows that our second algorithm is close to optimal.

Corollary 7.4. Let A be a d × d symmetric matrix with ∥A∥ = O(1) and an Ω(1) gap
between its top and second eigenvalues. Suppose we have quantum query access to the
entries of A. Every quantum algorithm that with probability at least ≥ 99/100, approxi-
mates the top eigenvector of A with ℓ2-error at most 1

1000 usesΩ(d 1.5/
√

logd) queries.

7.5 Open problems

We mention a few directions for future work:

• In Chapter 4 we show that to approximate top-q eigenspace (a rank-q subspace),
it is necessary and sufficient to use Θ̃(d q) applications of controlled projection
Πq onto the top-q subspace (see Lemma 4.12). Then what is the correct quan-
tum query bound for approximating the top-q eigenspace? It is not even clear
how to connect the query lower bound to the lower bound of the applications of
controlledΠq (assuming λ1 = ·· · =λq = 1,λq+1 = ·· · =λd = 0).
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• What is the correct quantum query bound for approximating the top-q eigen-
vectors? We conjecture the correct query lower bound should be Ω(

√
d 3q). We

tried to prove this by considering multiple orthonormal vectors u1 . . . ,uq and by

letting the matrix A = ∑
i∈[q]

q−i+1
q+1 ui uT

i + N . However, we do not see how the
(approximate) top-q eigenvectors of A could recover all ui -s. Maybe we should
involve more structures for those ui -s to ensure we can always decode them even
only given an isometry d ×q matrix for top-q eigenspace (approximately)?

• Is it possible to remove the
√

logd factor in the quantum query lower bound for
approximating the top-eigenvector?



Part III

Conditional quantum lower bounds
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CHAPTER 8

The quantum strong exponential-time
hypothesis and its applications

8.1 Introduction

A popular classical hardness conjecture known as the Strong Exponential Time-Hypothesis
(SETH) says that determining whether an input CNF formula is satisfiable or not can-
not be done in O(2n(1−δ)) time for any constant δ > 0 [IP01; IPZ01]. Several condi-
tional lower bounds based on SETH have been shown since then; see [Vas15; Vas18]
for a summary of many such results (and see the end of Section 1.1.3 for a brief in-
troduction of fine-grained complexity). Some of the SETH-hard problems are building
blocks for fine-grained cryptography [BRS+17; LLW19]. Besides finding a satisfying as-
signment, natural variants of the CNFSAT problem include computing the number or
the parity of the number of satisfying assignments to a CNF formula known as #SETH
and ⊕SETH. Counting-SETH (#SETH) says that calculating the exact number of satis-
fying assignments of an input CNF formula cannot be done in O(2n(1−δ)) time for any
constant δ, and parity-SETH (⊕SETH) says calculating the parity of satisfying assign-
ments of an input CNF formula cannot be done in O(2n(1−δ)) time for any constant δ.
These conjectures are weaker (i.e. more believable) than SETH since if one of #SETH
and ⊕SETH is false, then SETH is false immediately as well. Nevertheless, those con-
jectures still play a central role in fine-grained complexity and can still be used to show
conditional lower bounds for various problems [CDL+16].

When considering quantum computation, the SETH conjecture is no longer true,
because using Grover’s algorithm for unstructured search [Gro96] (see Section 2.3 of
this thesis) one can solve the CNFSAT problem in 2

n
2 ·poly(n) time. Aaronson, Chia,

Lin, Wang, and Zhang assume this Grover-like quadratic speedup is nearly optimal for
CNFSAT and initiate the study of quantum fine-grained complexity [ACL+20]. How-
ever, conjectures such as #SETH or ⊕SETH are likely to still hold in the quantum setting
because a Grover-like quantum speedup is not witnessed when the task is to compute
the total number of satisfying assignments or the parity of this number. This situation
can in some cases be exploited to give better quantum lower bounds than one would
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get from the conjectured quantum lower bound for the vanilla CNFSAT problem. This
makes it at least as relevant (if not more) to study variants of CNFSAT and their impli-
cations in the quantum setting, as has been done classically. In fact, motivated by this
exact observation, Buhrman, Patro, and Speelman [BPS21] introduced a framework
of Quantum Strong Exponential-Time Hypotheses (QSETH) as quantum analogues to
SETH, with a striking feature that allows one to ‘technically’ unify conjectures such as
quantum analogues of ⊕SETH, #SETH, etc. under one umbrella conjecture.

8.1.1 Main results and high-level intuition

In this chapter, inspired by Buhrman, Patro, and Speelman’s QSETH framework, we
state a few variants of CNFSAT problems and state conjectures and discuss their corre-
sponding time lower bounds. The high-level idea of their QSETH framework (without
going into detailed complexity notions): Consider the problem in which one is given a
circuit representation of an n-variable Boolean function and is asked whether a prop-
erty P on the truth table of this circuit evaluates to 1. The authors in [BPS21] conjec-
tured that for most natural properties P, the time taken to compute P on the truth table
of poly(n)-sized circuits is lower bounded by Q1/3(P ), i.e. the bounded-error quantum
query complexity of P, on all bit-strings of length N := 2n . In other words, having a
description of the truth table in the form of a small circuit shouldn’t help very much
compared to the black-box situation.

Problem Variants Q-time lower bound Reference

CNFSAT

Vanilla 2
n
2 −o(n) Conjecture 8.3

Parity 2n−o(n) Conjecture 8.9
Majority 2n−o(n) Conjecture 8.10
Count 2n−o(n) Conjecture 8.8
Countq 2n−o(n) Conjecture 8.11

∆-Additive error

(√
2n

∆ +
p

ĥ(2n−ĥ)
∆

)1−o(1)

Conjecture 8.15

γ-Multi factor

(
1
γ

√
2n−ĥ

ĥ

)1−o(1)

Corollary 8.19

k-SAT
k =Θ(log(n))

Vanilla 2
n
2 −o(n) [ACL+20]

Parity 2n−o(n) Corollary 8.21
Count 2n−o(n) Corollary 8.21
Countq 2n−o(n) Corollary 8.21

γ-Multi factor

(
1
γ

√
2n−ĥ

ĥ

)1−o(1)

Corollary 8.22

Table 8.1: Overview of conditional quantum time lower bounds for variants of CNFSAT and
k-SAT. The variable ĥ above is an arbitrary natural number satisfying γĥ ≥ 1. Our
results hold for the multiplicative factor γ ∈ [ 1

2n ,0.4999
)

and the additive error ∆ ∈
[1,2n).
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Instead of starting with a bunch of definitions and notions used in the QSETH
framework by [BPS21], in this chapter, we avoid those definitions and notions and will
directly introduce some natural properties and their corresponding variants of CNF-
SAT problems, and then state the conjectures and discuss the time complexity. Though
those variants of CNFSAT problems are inspired by the QSETH framework, the stan-
dalone conjectures themselves are already interesting. The quantum time lower bound
for those variants of CNFSAT is then conjecturally lower-bounded by the correspond-
ing quantum query lower bound, and the conjecture will be called P-QSETH in this
chapter for the corresponding property P. We list those variants of QSETH in Table 8.1.

We also use the above-mentioned lower bound for CNFSAT to understand the quan-
tum complexity of k-SAT. As a first step we study the classical reduction from CNFSAT
to k-SAT given by [CIP06] and observe that the 2

n
2 quantum lower bound for k-SAT,

for k = Θ(logn), follows from the quantum lower bound of CNFSAT. After that, we
observe that this reduction by [CIP06] is count-preserving and can be used to con-
clude lower bounds for other counting variants of k-SAT. After that, we give conditional
quantum time lower bounds for lattice problems, strong simulation, orthogonal vec-
tors, set cover, hitting set problem, and their respective variants (see Table 8.2).

Roadmap

Throughout the whole chapter, we use N to denote 2n . In Section 8.2, we will start
with introducing some popular properties and their corresponding CNFSAT problems
and then conjecture the quantum time lower bound for those problems according to
their quantum query lower bound, as well as the consequences for the time complexity
of corresponding variants of k-SAT problems. After that, in Section 8.3 we use those
QSETH-based lower bounds (for variants of CNFSAT) to show quantum conditional
lower bounds for some (variants of) popular problems that are widely studied in the
classical case.

8.2 Conjectures for variants of CNFSAT

In this section, just as in the QSETH framework [BPS21], the corresponding quantum
time lower bound is conjectured to be the quantum query lower bound of comput-
ing P on all bit-strings of length N . We begin with the definitions for CNFSAT, k-SAT,
and some common variants of CNFSAT which are also very well-studied classically
[CDL+16], and then proceed with some less popular variants but with interesting con-
sequences.
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Problem Variants Q-time lower bound Reference

STRONG

SIMULATION

Exact (n + 1-
bit precision)

2n−o(n) Theorem 8.24

Exact (2-bit
precision)

2n−o(n) Corollary 8.25

∆-Add error

(√
1
∆ +

p
ĥ(2n−ĥ)

2n∆

)1−o(1)

Corollary 8.27

γ-Multi factor

(
1
γ

√
2n−ĥ

ĥ

)1−o(1)

Theorem 8.29

CVPp FOR p ∉ 2Z 2
n
2 −o(n) Section 8.3.2

LATTICE

COUNTING

(non-even norm)

Vanilla 2n−o(n) Corollary 8.36
q-count 2n−o(n) Corollary 8.36

γ-Multi factor

(
1
γ

√
2n−ĥ

ĥ

)1−o(1)

Corollary 8.37

ORTHOGONAL

VECTORS

Vanilla n1−o(1) [ACL+20; BPS21]
Parity n2−o(1) Corollary 8.47
Count n2−o(1) Corollary 8.47

γ-Multi factor

(
1
γ

√
n2−ĥ

ĥ

)1−o(1)

Corollary 8.48

HITTING SET

Vanilla 2
n
2 −o(n) Corollary 8.43

Parity 2n−o(n) Corollary 8.43
Count 2n−o(n) Corollary 8.43

γ-Multi factor

(
1
γ

√
2n−ĥ

ĥ

)1−o(1)

Corollary 8.44

⊕SET COVER 2n−o(n) Corollary 8.50

Table 8.2: Overview of lower bounds based on conditional quantum time lower bounds for
variants of CNFSAT. The variable ĥ in the above table is an arbitrary natural num-
ber satisfying γĥ ≥ 1. Our results hold for the multiplicative factor γ ∈ [ 1

2n ,0.4999
)

and the additive error ∆ ∈ [ 1
2n ,1).
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CNFSAT and k-SAT

A Boolean formula over variables x1, . . . , xn is in CNF form if it is an AND of OR’s of
variables or their negations. More generally, a CNF formula has the form∧

i

(∨
j

vi j

)
where vi j is either xk or ¬xk . The terms vi j are called literals of the formula and the
disjunctions

∨
j

vi j are called its clauses. A k-CNF is a CNF formula in which all clauses

contain at most k literals (or the clause width is at most k). Note that when k > n, then
clauses must contain duplicate or trivial literals (for example, xk ∨¬xk and xk ∨ xk ),
therefore we can assume without loss of generality that k is at most n. A DNF is defined
in the exact same way as CNF, except that it is an OR of AND’s of variables or their

negations, that is, a DNF formula has the form
∨
i

(∧
j

vi j

)
. We also define computational

problems k-SAT and CNFSAT.

Definition 8.1 (CNFSAT). Given as input a CNF formula φ defined on n variables, the
goal is to determine if ∃x ∈ {0,1}n such that φ(x) = 1.

Definition 8.2 (k-SAT). Given as input a k-CNF formula φ defined on n variables, the
goal is to determine if ∃x ∈ {0,1}n such that φ(x) = 1.

8.2.1 Quantum complexity of CNFSAT and other related problems

We first restate the (conjectured) quantum hardness of CNFSAT before showing hard-
ness results for its other variants. One can consider CNFSAT as a problem that asks
to compute OR on the truth table of the input CNF formula. Since the quantum query
lower bound for computing OR on 2n-bit strings isΩ(2n/2), we therefore conjecture the
following quantum time lower bound:

Conjecture 8.3 (BASIC-QSETH [ACL+20; BPS21]). For each constant δ > 0, there ex-
ists c > 0 such that there is no bounded-error quantum algorithm that solves CNFSAT

(even restricted to formulas with m ≤ cn2 clauses) in O
(
2

n(1−δ)
2

)
time.

Quantum complexity of #CNFSAT, ⊕CNFSAT, #q CNFSAT and MAJ-CNFSAT

To give conditional quantum lower bounds for variants of CNFSAT, we should un-
derstand their corresponding quantum query lower bound (on the 2n-bit truth table).
Here we introduce the properties that correspond to those popular variants of CNF-
SAT (which will be defined later.)

Definition 8.4. Let |x| = |{i : xi = 1}| denote the Hamming weight of N -bit binary string
x. We here list some properties defined on binary strings.
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1. COUNT: Let COUNT : {0,1}N → [N ]∪ {0} be the non-Boolean function defined by
COUNT(x) = |x|.

2. PARITY: Let PARITY : {0,1}N → {0,1} be the Boolean function defined by PARITY(x) =
|x| mod 2.

3. COUNTq : Let q be an integer and let COUNTq : {0,1}N → [q]−1 be the non-Boolean
function defined by COUNTq (x) = |x| mod q .

4. MAJORITY: Let MAJORITY : {0,1}N → {0,1} be the Boolean function defined by

MAJORITY(x) =
{

1 if |x| ≥ N
2 ,

0 otherwise.

And, there is also the following function almost similar to MAJORITY.

5. strict-MAJORITY: Let strict-MAJORITY : {0,1}N → {0,1} be the Boolean function
with

strict-MAJORITY(x) =
{

1 if |x| > N
2 ,

0 otherwise.

Here, we define variants of CNFSAT corresponding to the above-mentioned prop-
erties.

Definition 8.5 (variants of CNFSAT). Let |φ| = {y ∈ {0,1}n : φ(y) = 1} denote the Ham-
ming weight of the truth table of φ. The following lists five variants of CNFSAT:

1. #CNFSAT: Given a CNF formula φ on n input variables, output |φ|.
2. ⊕CNFSAT: Given a CNF formula φ on n input variables, output |φ| mod 2.

3. #q CNFSAT: Given a CNF formulaφ on n input variables and an integer q ∈ [2n]\
{1}, output |φ| mod q .

4. MAJ-CNFSAT: Given a CNF formulaφ on n input variables, output 1 if |φ| ≥ 2n/2
(else output 0).

5. strict-MAJ-CNFSAT: Given a CNF formula φ on n input variables, output 1 if
|φ| > 2n/2 (else output 0).

Now again, we use the quantum query lower bound for P whenever we want to dis-
cuss the time complexity of P-CNFSAT as in the QSETH framework by [BPS21]. There-
fore, immediately after the definitions for variants of CNFSAT (with respect to property
P), we will introduce the corresponding bounded-error quantum query lower bound
for computing P, and then conjecture the time lower bound for P-CNFSAT (P variant
CNFSAT) using this query lower bound. After that, we can use lower bounds for those
variants of CNFSAT to understand the quantum complexity of (variants of) k-SAT. We
include the quantum query lower bounds for those properties for completeness.
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Lemma 8.6 ([BBC+01]). The bounded-error quantum query complexity for COUNT, PAR-
ITY, MAJORITY and strict-MAJORITY on inputs of N -bit Boolean strings isΩ(N ).

Proof. [BBC+01] showed that the bounded-error quantum query complexity of a (to-
tal) Boolean function f : {0,1}N → {0,1}, denoted by Q( f ) := Q1/3( f ) (see the end of
Section 2.2) is lower bounded by 1/2 of the degree of a minimum-degree polynomial
p that approximates f on all X ∈ {0,1}N , i.e., |p(X )− f (X )| ≤ 1/3; let us denote this
approximate degree by d̃eg ( f ). Another important result by Paturi [Pat92] showed
that if f is a non-constant, symmetric1 and total Boolean function on {0,1}N then
d̃eg ( f ) =Θ(

√
N (N −Γ( f ))) where Γ( f ) = min{|2k −N +1| : fk ̸= fk+1 and 0 ≤ k ≤ N −1}

and fk = f (X ) for |X | = k.
Using the above two results we can show the following:

1. Γ(PARITY) = 0 for odd N andΓ(PARITY) = 1 whenever N is even. Hence Q(PARITY) =
Ω(N ).2

2. Similar to the above item Γ(MAJORITY) = Γ(strict-MAJORITY) = 0 for odd N and
Γ(MAJORITY) = Γ(strict-MAJORITY) = 1 otherwise. Hence, Q(MAJORITY) = Ω(N )
and Q(strict-MAJORITY) =Ω(N ).

3. Any of the above three properties can be computed from COUNT. Hence, Q(COUNT) =
Ω(N ).

Lemma 8.7. Let q ∈ [3, N
2 ] be an integer and COUNTq : {0,1}N → [q]−1 be the function

defined by COUNTq (x) = COUNT(x) mod q. Then Q(COUNTq ) =Ω(
√

N (N −2q +1)).

Proof. Let DEC-COUNTq be a decision version of the COUNTq defined for all x ∈ {0,1}N

as

DEC-COUNTq (x) =
{

1, if COUNTq (x) = q −1,

0, otherwise.
(8.1)

When the function is non-constant and symmetric then one can use Paturi’s the-
orem to characterize the approximate degree of that function [Pat92]. It is easy to see
that DEC-COUNTq is a non-constant symmetric function. Combining both these results
we get that Q(DEC-COUNTq ) =Ω(

√
N (N −Γ(DEC-COUNTq ))).

We now compute the value of Γ(DEC-COUNTq ). For any symmetric Boolean func-
tion f : {0,1}N → {0,1} the quantity Γ( f ) is defined as Γ( f ) = mink {|2k − N + 1|} such
that fk ̸= fk+1 and fk = f (x) for |x| = k with 1 ≤ k ≤ N − 1. It is easy to see that
DEC-COUNTq (x) = 1 only for x with Hamming weight |x| = r q − 1 where r is an inte-
ger and DEC-COUNTq (x) = 0 elsewhere. Let r ′ be the integer such that r ′q − 1 ≤ N

2 ≤
(r ′+1)q−1 then the k minimizing Γ(DEC-COUNTq ) is either r ′q−1 or (r ′+1)q−1. This

1A symmetric Boolean function f : {0,1}N → {0,1} implies f (X ) = f (Y ) for all X ,Y whenever |X | = |Y |.
2One can actually immediately give Q(PARITY) ≥ N /2 by an elementary degree lower bound without

using Paturi’s result.
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implies that Γ(DEC-COUNTq ) ≤ 2q−1, which in turn implies that N−Γ(DEC-COUNTq ) ≥
N −2q +1. Therefore, Q(DEC-COUNTq ) =Ω(

√
N (N −2q +1)).

As one can compute DEC-COUNTq using an algorithm that computes COUNTq , we
therefore have Q(COUNTq ) =Ω(

√
N (N −2q +1)).

We now conjecture the quantum time lower bound for the above-mentioned vari-
ants of CNFSAT, based on their quantum query lower bound on N = 2n-bit strings.

Conjecture 8.8 (#QSETH). For each constant δ > 0, there exists c > 0 such that there
is no bounded-error quantum algorithm that solves #CNFSAT (even restricted to for-
mulas with m ≤ cn2 clauses) in O(2n(1−δ)) time.

Conjecture 8.9 (⊕QSETH). For each constant δ > 0, there exists c > 0 such that there
is no bounded-error quantum algorithm that solves ⊕CNFSAT (even restricted to for-
mulas with m ≤ cn2 clauses) in O(2n(1−δ)) time.

Conjecture 8.10 (Majority-QSETH). For each constant δ > 0, there exists c > 0 such
that there is no bounded-error quantum algorithm that solves

1. MAJ-CNFSAT (even restricted to formulas with m ≤ cn2 clauses) in O(2n(1−δ))
time;

2. strict-MAJ-CNFSAT (even restricted to formulas with m ≤ cn2 clauses) inO(2n(1−δ))
time.

Note that if the first item of the above conjecture holds, then the second holds
immediately. It may seem redundant to define both MAJ-CNFSAT and strict-MAJ-
CNFSAT, since from a query-complexity perspective these two problems seem equiv-
alent, and in fact essentially the same. However, Akmal and Williams showed that one
can actually compute the Majority on the truth table of k-CNF formulas for constant k
in polynomial time, while computing the strict-Majority on the truth table of such for-
mulas is NP-hard [AW21]. Therefore, here we define both majority and strict-majority
and their variants of CNFSAT problems for clarity (and state the hardness of both prob-
lems in one conjecture). Note that for CNFSAT, each clause is allowed to contain n lit-
erals (which means k is no longer a constant), and in this case, it is not clear if one can
solve MAJ-CNFSAT in polynomial time or not. Therefore Conjecture 8.10 is not imme-
diately false yet. (See also the discussion at the bottom of page 5 in the arXiv version
of [AW21] for reductions between MAJ-CNFSAT and strict-MAJ-CNFSAT.)

Conjecture 8.11 (#q QSETH). Let q ∈ [3, N
2 ] be an integer. For each constant δ > 0,

there exists c > 0 such that there is no bounded-error quantum algorithm that solves
#q CNFSAT (even restricted to formulas with m ≤ cn2 clauses) in O

(
2n(1−δ)

)
time.

Note that since we can solve ⊕CNFSAT, #q CNFSAT and MAJ-CNFSAT using a
#CNFSAT-solver, if one of Conjectures 8.9 to 8.11 holds, then Conjecture 8.8 holds.



8.2. Conjectures for variants of CNFSAT 155

Quantum complexity of∆-ADD-#CNFSAT

Instead of the exact number of satisfying assignments to a formula, one might be in-
terested in an additive-error approximation. Towards that, we define the problem ∆-
ADD-#CNFSAT as follows.

Definition 8.12 (∆-ADD-#CNFSAT). Given a CNF formula φ on n variables. The goal
of the problem is to output an integer d such that |d −|φ|| <∆where ∆ ∈ [1,2n].

This problem (Definition 8.12) can be viewed as computing the following property
on the truth table of the given formula.

Definition 8.13 (∆-ADDITIVE-COUNT). Given a Boolean string x ∈ {0,1}N ,∆-ADDITIVE-COUNT

asks to output an integer w such that |w −|x|| <∆where ∆ ∈ [1, N ).

Note that ∆-ADDITIVE-COUNT is a relation instead of a function now because its
value is not necessarily uniquely defined. The bounded-error quantum query com-
plexity for computing ∆-ADDITIVE-COUNT was studied in [NW99]. They showed the
following result.

Theorem 8.14 (Theorem 1.11 in [NW99]). Let∆ ∈ [1, N ). Every bounded-error quantum

algorithm that computes ∆-ADDITIVE-COUNT uses Ω
(√

N
∆ +

p
t (N−t )
∆

)
quantum queries

on inputs with t ones.

Then we use the quantum query lower bound to conjecture the corresponding
quantum time lower bound for ∆-ADD-#CNFSAT.

Conjecture 8.15 (∆-ADD-#QSETH). Let ∆ ∈ [1,2n). For each constant δ > 0, there ex-
ists c > 0 such that there is no bounded-error quantum algorithm that solves ∆-ADD-

#CNFSAT (even restricted to formulas with m ≤ cn2 clauses) inO
((√

N
∆ +

p
ĥ(N−ĥ)
∆

)1−δ)
time, where ĥ is the number of satisfying assignments.

Quantum complexity of γ-#CNFSAT and other related problems

One other approximation of the count of satisfying assignments is the multiplicative-
factor approximation, defined as follows.

Definition 8.16 (γ-#CNFSAT). Let γ ∈ (0,1). The γ-#CNFSAT problem is defined as
follows. Given a CNF formula formula φ on n Boolean variables, The goal of the prob-
lem is to output an integer d such that (1−γ)|φ| < d < (1+γ)|φ|. 3

3The same results hold if the approximation is defined with the equalities, i.e., (1−γ)|φ| ≤ d ≤ (1+
γ)|φ|. An additional observation under this changed definition of γ-#CNFSAT is as follows. Given a CNF
formula as input, the algorithm for γ-#CNFSAT outputs 0 only when there is no satisfying assignment
to that formula. Hence, one can decide satisfiability of a given CNF formula using the algorithm for
γ-#CNFSAT. Therefore, the same lower bound holds for this changed definition of γ-#CNFSAT.
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The expression (1−γ)|φ| < d < (1+γ)|φ| can be categorized into the following two
cases.

• Case 1 is when γ|φ| ≤ 1: in this regime, the algorithm solving γ-#CNFSAT is ex-
pected to return the value |φ|, which is the exact count of the number of solu-
tions to the CNFSAT problem. From Conjecture 8.8 we postulate that for each
constant δ> 0, there is no O(2n(1−δ)) time algorithm that can compute the exact
number of solutions to input CNF formula; this is a tight lower bound.

• Case 2 is when γ|φ| > 1: in this regime, the algorithm solving γ-#CNFSAT is ex-
pected to return a value d which is a γ-approximate relative count of the number
of solutions to the CNFSAT problem.

In order to understand the hardness of γ-#CNFSAT in the second case, we will first
try to understand how hard it is to compute the following property. Let fℓ,ℓ′ :D→ {0,1}
with D ⊂ {0,1}N be a partial function defined as follows

fℓ,ℓ′(x) =
{

1, if |x| = ℓ,

0, if |x| = ℓ′.
Nayak and Wu in [NW99] analyzed the approximate degree of fℓ,ℓ′ . By using the poly-
nomial method [BBC+01] again we have a lower bound on the quantum query com-
plexity of fℓ,ℓ′ as mentioned in the following statement.

Lemma 8.17. [NW99, Corollary 1.2] Let ℓ,ℓ′ ∈ N be such that ℓ ̸= ℓ′, fℓ,ℓ′ : D → {0,1}
where D ⊂ {0,1}N , and

fℓ,ℓ′(x) =
{

1, if |x| = ℓ,

0, if |x| = ℓ′.
Let ∆ℓ = |ℓ−ℓ′| and p ∈ {ℓ,ℓ′} be such that |N

2 −p| is maximized. Then every bounded-

error quantum algorithm that computes fℓ,ℓ′ usesΩ

(√
N
∆ℓ

+
p

p(N−p)
∆ℓ

)
queries.

With the lower bound for fℓ,ℓ′ , we conjecture the following:

Conjecture 8.18. Let ℓ ∈ [2n]∪ {0} and ℓ′ ∈ [2n]∪ {0} be such that ℓ ̸= ℓ′. Then at least
one of the following is true:

• For each constant δ > 0, there exists c > 0 such that there is no bounded-error
quantum algorithm that computes fℓ,ℓ′ on the truth table of CNF formulas de-

fined on n variables in O
((√

2n

∆ℓ
+
p

p(2n−p)
∆ℓ

)1−δ)
time (even restricted to formu-

las with m ≤ cn2 clauses);

• For each constant δ > 0, there exists c > 0 such that there is no bounded-error
quantum algorithm that computes fN−ℓ,N−ℓ′ on the truth table of CNF formu-

las defined on n variables in O
((√

2n

∆ℓ
+
p

p(2n−p)
∆ℓ

)1−δ)
time (even restricted to

formulas with m ≤ cn2 clauses);
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here ∆ℓ = |ℓ−ℓ′| and p ∈ {ℓ,ℓ′} such that |2n−1 −p| is maximized. In particular, when
ℓ+ℓ′ = 2n , the above immediately implies the following:

• For each constant δ > 0, there exists c > 0 such that there is no bounded-error
quantum algorithm that computes fℓ,ℓ′ on the truth table of CNF formulas de-

fined on n variables in O
((√

2n

∆ℓ
+

p
ℓℓ′
∆ℓ

)1−δ)
time (even restricted to formulas

with m ≤ cn2 clauses).

Inspired by the arguments used in the proof of Theorem 1.13 in [NW99], we will
now show that Conjecture 8.18 implies the following result. Our result holds for γ ∈[ 1

2n ,0.4999
)
; this range of γ suffices for our reductions presented in the later sections.

Corollary 8.19 (γ-#QSETH). Let γ ∈ [ 1
2n ,0.4999

)
. For each constant δ > 0, there exists

c > 0 such that there is no bounded-error quantum algorithm that solves γ-#CNFSAT
(even restricted to formulas with m ≤ cn2 clauses) in time

1. O
((

1
γ

√
2n−ĥ

ĥ

)1−δ)
if γĥ > 1, where ĥ is the number of satisfying assignments;

2. O(2n(1−δ)) otherwise,

unless Conjecture 8.18 is false.

We show the first part of Corollary 8.19 in the following way and use the result from
Conjecture 8.8 for the second part. Given a value of γ ∈ [ 1

2n ,0.4999
)

we will fix values of
ℓ ∈ [2n]∪ {0} and ℓ′ ∈ [2n]∪ {0} such that we are able to compute fℓ,ℓ′ on the truth table
of an input CNF formulas on n variables using the algorithm that solves γ-#CNFSAT.
Hence, we can show a lower bound on γ-#CNFSAT using the lower bound result from
Conjecture 8.18.

Proof. Let N = 2n . Let ℓ= N
2 +⌈γt⌉ = ⌈N

2 +γt
⌉

and ℓ′ = N
2 −⌈γt⌉ = ⌊N

2 −γt
⌋

; here t ∈ [N ]
is a value that we will fix later but in any case, we have 1 ≤ ⌈γt⌉ < N

2 . With that, we
are ensured that γℓ > 1

2 . We also make sure to choose values ℓ,ℓ′ in such a way that
γℓ′ = Ω(1). Clearly, ℓ+ ℓ′ = N and ∆ℓ = |ℓ− ℓ′| = 2⌈γt⌉. Therefore by invoking the
result from Conjecture 8.18 we can say that for these values of ℓ,ℓ′ there is no bounded-
error quantum algorithm that can solve fℓ,ℓ′ on the truth table of CNF formulas in

O

((√
N

⌈γt⌉ +
p
ℓ(N−ℓ)
⌈γt⌉

)1−δ)
time, for each δ> 0; let us denote this claim by (*).

Let A be an algorithm that computes γ-#CNFSAT, i.e., Algorithm A returns a value
h such that (1−γ)ĥ < h < (1+γ)ĥ. Given ℓ= N

2 +⌈γt⌉ and ℓ′ = N
2 −⌈γt⌉, there are values

of t ∈ [N ] such that we will be able to distinguish whether the number of satisfying
assignments to a formula is ℓ or ℓ′ using Algorithm A. As ℓ> ℓ′ in our setup, we want
t such that ℓ′(1+γ) < ℓ(1−γ); it is then necessary that γN < 2⌈γt⌉; let us denote this as
Condition 1.
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Now we set the values of ℓ and ℓ′. Given a value of γ ∈ [ 1
N , 1

2

)
, we set ℓ =

⌈
N

2(1−γ)

⌉
and ℓ′ = N − ℓ. This implies N

2(1−γ) ≤ ℓ < N
2(1−γ) + 1, N (1−2γ)

2(1−γ) − 1 < ℓ′ ≤ N (1−2γ)
2(1−γ) , and

γN
(1−γ) ≤ |ℓ− ℓ′| < γN

(1−γ) + 2. Therefore we obtain 2γℓ− 2γ ≤ |ℓ− ℓ′| < 2γℓ+ 2.4 We

know from claim (*) that every quantum algorithm that (for these values of ℓ,ℓ′) com-

putes fℓ,ℓ′ on CNF formulas requiresΩ(L1−δ) time for each δ> 0, where L = 1
γ

√
N−ℓ
ℓ+1 =

Ω
(

1
γ

√
N−ℓ
ℓ

)
. Moreover, ℓ′ is (ℓ−1)(1−2γ)−1 < ℓ′ ≤ ℓ(1−2γ). Therefore, we can see

that L =Ω
(

1
γ

√
N−ℓ
ℓ

)
=Ω

(
1−2γ
γ

√
N−ℓ′
ℓ′

)
=Ω

(
1
γ

√
N−ℓ′
ℓ′

)
.

It is also easy to see that if ℓ= ⌈ N
2(1−γ)⌉ were to be expressed as N

2 +⌈γt⌉ (i.e. denote ℓ

to be N
2 +⌈γt⌉), then for that value of t we have ⌈γt⌉ = ⌈ N

2(1−γ)⌉− N
2 ≥ Nγ

2(1−γ) >
Nγ

2 , which
satisfies Condition 1. Hence here we can use Algorithm A to distinguish whether the
number of satisfying assignments to a formula is ℓ or ℓ′. Hence given a CNF formula
as input, we will be able to use Algorithm A to distinguish whether the number of

satisfying assignments is ℓ or ℓ′. Let T = 1
γ

√
N−ℓ
ℓ

+ 1
γ

√
N−ℓ′
ℓ′ =O( 1

γ

√
N−ℓ′
ℓ′ ). If for some

constant δ> 0, A can solve γ-#CNFSAT on an input CNF formula that has ĥ number

of satisfying assignments in O(( 1
γ

√
N−ĥ

ĥ
)1−δ) time, then we are essentially computing

fℓ,ℓ′ in O(T 1−δ) time, which is a contradiction to claim (*). Hence the first part of the
statement of Corollary 8.19 proved.

Proof of the second part of this theorem follows from Conjecture 8.8 as the regime
γĥ ≤ 1 translates to exactly counting the number of satisfying assignments.

8.2.2 Quantum complexity of #k-SAT and other related problems

In the previous subsection, we discussed the quantum complexity of variants of CNF-
SAT problems. However, it is not clear how to immediately derive a similar quantum
complexity result for variants of k-SAT problems with constant k by using the quantum
(conditional) hardness results for variants of CNFSAT problems. Of course we could
make a further conjecture about variants of k-SAT problems like we did in the previous
subsection, but it would introduce too many conjectures. Moreover, some variants of
k-SAT (for constant k) are even shown to be solvable in polynomial time [AW21].

To give the (quantum) complexity of some optimization problems (for example,
lattice problems [BGS17]), on the other hand, we might want to have some (quan-
tum) conditional lower bounds for (variants of) k-SAT problems with not too large
k. This is because we might make 2k ·poly(n) calls to a solver of those problems to
solve k-SAT. This is undesirable for giving the (quantum) complexity of those optimiza-
tion problems when k approaches n, while it is tolerable for a relatively small k (like
k = polylogn). Hence in this subsection, we would like to say something interesting
about quantum hardness for #k-SAT and ⊕k-SAT when k = Θ(logn), only using the

4To view the calculations in a less cumbersome way one can use the fact that asymptotically ℓ =
N

2(1−γ) , ℓ′ = N (1−2γ)
2(1−γ) and |ℓ−ℓ′| = γN

(1−γ) = 2γℓ.
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hardness assumptions on counting-CNFSAT (that is, #QSETH). Here, variants of k-SAT
are defined exactly the same way as Definition 8.5, Definition 8.12, and Definition 8.16,
except that the input is now a k-CNF formula.

We use the classical algorithm by Schuler [Sch05].5 This algorithm can be viewed as
a Turing reduction from SAT with bounded clause density to SAT with bounded clause
width, which was analyzed in [CIP06]. The time complexity of this algorithm is upper
bounded by

(m+n/k
n/k

) ·poly(m,n), where m is number of clauses.

Input : CNF formula ψ
if ψ has no clause of width > k then

output ψ;
else

let C ′ = {l1, . . . , lk ′} be a clause of ψ of width k ′ > k;
C = {l1, . . . , lk }; // the first k literals of C ′

ψ0 ← (ψ− {C ′})∪ {C }; // replace C ′ by a shorter C
ψ1 ←ψ∧¬l1 ∧¬l2 ∧·· ·∧¬lk ;
ψ1 ← Remove variables corresponding to literals l1, . . . , lk from ψ1 by setting

l1 = 0, . . . , lk = 0
ReduceWidthk (ψ0); // left branch, which sets C to be true
ReduceWidthk (ψ1); // right branch, which sets C to be false

end

Algorithm 8: ReduceWidthk (ψ)

Algorithm 8 takes as input a CNF formula of width greater than k, and then outputs
a list of k-CNF formulasψi where the solutions of the input formula is the union of the
solutions of the output formulas, i.e., sol(ψ) = ∪i sol(ψi ), where sol(φ) denotes the set
of satisfying assignments to a formula φ. In fact, it is not hard to see that the count of
the number of satisfying assignments also is preserved, i.e., |sol(ψ)| =∑

i |sol(ψi )|.

Lemma 8.20 (Implicit from Section 3.2 in [CIP06]). Algorithm 8 takes as input a CNF
formula ψ on n input variables, with m clauses, that is of width strictly greater than k
and outputs a number of k-CNF formulas ψi each defined on at most n input variables
and at most m clauses such that |sol(ψ)| =∑

i |sol(ψi )|.

Proof. Letψ=C ′
1∧C ′

2∧·· ·∧C ′
m be the input CNF formula to Algorithm 8. The algorithm

finds the first clause C ′
i that has width k ′ > k. Let C ′

i = (l1 ∨ l2 ∨·· ·∨ lk ′) and Ci = (l1 ∨
l2 ∨ ·· · ∨ lk ). The algorithm then constructs two formulas ψ0 = (ψ− {C ′

i })∪ {Ci } and
ψ1 =ψ∧¬l1∧¬l2∧·· ·∧¬lk . Then the algorithm recursively calls the subroutine onψ0

and ψ1. We now claim the following.

Claim 8.1. sol(ψ0)∩ sol(ψ1) =; and sol(ψ) = sol(ψ0)∪ sol(ψ1), i.e., sol(ψ) = sol(ψ0)⊔
sol(ψ1).

5This algorithm can also be used to solve CNFSAT on n variables, m clauses in
O(poly(n)2n(1−1/(1+logm))) expected time.
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Proof: Let x ∈ sol(ψ0). Then the clause Ci (x) = (l1(x)∨ ·· · ∨ lk (x)) should evaluate to
1. Equivalently, ¬(l1(x)∨ ·· · ∨ lk (x)) = 0. Using De Morgan’s laws we know (¬l1(x)∧
·· · ∧¬lk (x)) = 0, which means that ψ1(x) = ψ(x)∧¬l1(x)∧ ·· · ∧¬lk (x) = 0. A similar
argument can be used to show that if x ∈ sol(ψ1), then x ∉ sol(ψ0). Therefore, sol(ψ0)∩
sol(ψ1) =;.

What remains to show is sol(ψ) = sol(ψ0)∪ sol(ψ1).

• If x ∈ sol(ψ0) then Ci (x) = 1, which implies C ′
i (x) = 1. Therefore x ∈ sol(ψ). If

x ∈ sol(ψ1) then ψ1(x) = 1, but ψ1(x) =ψ(x)∧¬l1(x)∧¬l2(x)∧·· ·∧¬lk (x) which
means ψ(x) = 1 as well. Therefore, if x ∈ sol(ψ0)∪ sol(ψ1) then x ∈ sol(ψ).

• If x ∈ sol(ψ) then ψ(x) = 1, which means C ′
i (x) = 1. However, C ′

i (x) = (l1(x)∨·· ·∨
lk (x))∨ (lk+1(x)∨·· ·∨ l ′k (x)). This means either (l1(x)∨·· ·∨ lk (x)) =Ci (x) = 1 or
(lk+1(x)∨·· ·∨ l ′k (x)) = 1 or both evaluate to 1. If Ci (x) = 1 then ψ0(x) = 1, which
means x ∈ sol(ψ0). If Ci (x) = 0 then ψ1(x) = ψ(x)∧ (¬Ci (x)) = 1, which means
x ∈ sol(ψ1).

Therefore, sol(ψ) = sol(ψ0)⊔ sol(ψ1). ■
Using Claim 8.1 we conclude that sol(ψ) = ⊔i sol(ψi ), hence |sol(ψ)| = ∑

i |sol(ψi )|.

Using Lemma 8.20 and Lemma 5 in [CIP06] we will now show the hardness of k-SAT
and its counting variants when k =Θ(logn) without introducing new conjectures.

Corollary 8.21. For each constant δ > 0, there exists a constant c such that there is no
bounded-error quantum algorithm that solves

1. c logn-SAT in O(2(1−δ)n/2) time unless BASIC-QSETH (Conjecture 8.3) is false;

2. #c logn-SAT in O(2(1−δ)n) time unless #QSETH (Conjecture 8.8) is false;

3. ⊕c logn-SAT in O(2(1−δ)n) time unless ⊕QSETH (Conjecture 8.9) is false;

4. ⊕q c logn-SAT in O(2(1−δ)n) time unless #q QSETH (Conjecture 8.11) is false.

Proof. We first prove the first item. Suppose that for each constant c, there is an algo-
rithm A that solves #c logn-SAT in 2ns for some constant s := 1−δ < 1. Let k = c logn
for the rest of the proof. Consider the ReduceWidthk algorithm (Algorithm 8) with in-
put CNF formula ψ. Let p be some path of length t in the tree T of recursive calls to
ReduceWidthk (ψ). Letψp be the output formula of width at most k at the leaf of p. Let
l ,r be the number of left, right branches respectively on path p. Every left branch in
the path reduces the width of exactly 1 clause to k, therefore l ≤ m. On the other hand,
with additional poly(n,m) time, every right branch of path p reduces the number of
variables by k, therefore r ≤ n/k. As a result, the number of paths in tree T with r right
branches is at most

(m+r
r

)
and each outputs a formula with n − r k variables.
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Using the same arguments as in [CIP06, Lemma 5], one can see that A together
with the ReduceWidthk subroutine can be used to solve #CNFSAT (ignoring poly(n)
factors) in time at most

n/k∑
r=0

(
m + r

r

)
2s(n−r k) +

(
m +n/k

n/k

)
·poly(m,n)

≤
n/k∑
r=0

(
m + n

k

r

)
2s(n−r k)

=2sn
n/k∑
r=0

(
m + n

k

r

)
1

2sr k

≤2sn(1+ 1

2sk
)m+ n

k

≤2sne
1

2sk (m+ n
k )

since (1+x) ≤ ex

≤2
sn+ 4m

2sk ,

where the last equality holds because we can assume that m ≥ n
k without loss of gener-

ality (by appending dummy clauses). Therefore, for each c ′, there exist a constant c for
k = c logn and δ′ such that if m ≤ c ′n2, then s+ 4m

n2sk < 1−δ′. As a result, a 2ns-time algo-

rithm for #c logn-SAT implies a 2n(1−δ′)-time algorithm for #CNFSAT (restricted to for-
mulas with m ≤ c ′n2), which would refute #-QSETH (Conjecture 8.8). This proves the
first item of the corollary. The same arguments hold for k-SAT, ⊕k-SAT, and ⊕q k-SAT
as well.

Note that, we cannot extend the same arguments for the MAJORITY or strict-MAJORITY

or additive-error approximation of count because those properties are not count-preserving.
However, these arguments do extend to the multiplicative-factor approximation of the
count.

Corollary 8.22. Let γ ∈ [ 1
2n ,0.4999

)
. For each constant δ> 0, there exists constant c such

that, there is no bounded-error quantum algorithm that solves γ-#c logn-SAT in time

1. O
((

1
γ

√
2n−ĥ

ĥ

)1−δ)
if γĥ > 1, where ĥ is the number of satisfying assignments;

2. O(2n(1−δ)) otherwise,

unless γ-#QSETH (Corollary 8.19, implied by Conjecture 8.18) is false.

8.3 Implications of QSETH

In Section 8.2, we introduced lots of variants of CNFSAT and conjectured (or gave)
quantum conditional lower bounds for all of them. Now having somewhat under-
stood the complexities of the above-mentioned variants of CNFSAT, we give condi-
tional quantum time lower bounds for lattice problem, strong simulation, orthogonal
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vectors, set cover, hitting set problem, and their variants in this section by using vari-
ants of QSETH (see the corresponding subsections for the precise definitions of those
variants of problems and see Table 8.2 for the implications of QSETH).

QSETH-based lower bounds for the strong simulation As an application to the bounds
that we get from the property variants of CNFSAT, we look at the strong simulation
problem. It was already established by [CHM21; Van10] that strongly simulating a
quantum circuit is a #P-hard problem. Here we give exact lower bounds for the same.
Additionally, using the lower bounds of approximate counts of CNFSAT, we are able
to shed light on how hard it is to quantumly solve the strong simulation problem with
additive-error and multiplicative-factor approximation. See Section 8.3.1.

QSETH-based lower bounds for lattice problems The quantum 2
n
2 -time lower bound

we present for CVPp (for p ∉ 2Z) follows from a reduction from k-SAT to CVPp by
[BGS17; ABG+21] and from the hardness result of k-SAT we present. Though such a
result would also trivially follow from the version of QSETH by Aaronson, Chia, Lin,
Wang, and Zhang, we stress that our hardness result of k-SAT is based on basic-QSETH
which is a weaker conjecture.6 Additionally, we discuss the quantum conditional lower
bound of the lattice counting problem (for non-even norm). We present a reduction,
using a similar idea of [BGS17], from #k-SAT to the lattice counting problem, and
we show a 2n-time quantum lower bound for the latter when k = Θ(logn). See Sec-
tion 8.3.2.

QSETH-based lower bounds for orthogonal vectors, set cover, and hitting set prob-
lems Last but not least, we are also able to use the lower bounds for the property
variants of CNF-SAT to give quantum conditional lower bounds for orthogonal vec-
tors, hitting set problem and their respective variants. See Section 8.3.3.

8.3.1 Quantum time complexity for strong simulation of quantum circuits

We use the phrase strong simulation problem to mean strong simulation of quantum
circuits which is defined as follows.7

Definition 8.23 (The strong simulation problem). Let p ∈ N. Given a quantum cir-
cuit C on n qubits and x ∈ {0,1}n , the goal of strong simulation with p-bit precision
is to output the value of | 〈x|C |0n〉 | := 0.C1C2 . . . up to p-bit precision. That is, output
C0.C1 . . .Cp−1.8

6If basic-QSETH framework by Buhrman-Patro-Speelman is false then QSETH by Aaronson-Chia-
Lin-Wang-Zhang is also false, but the implication in the other direction is not obvious.

7Note that this is different from the weak simulation problem; a weak simulation samples from prob-
ability distribution p(x) := |〈0n |C |x〉 |2.

8Though in some papers the strong simulation problem requires that we output 〈x|C |0n〉 instead of
| 〈x|C |0n〉 |, we use this definition because it is more comparable to the definition of the weak simulation
problem. Also, the lower bound we present holds for both of these definitions.
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Figure 8.1: The circuit Cφ.

For a quantum circuit C , computing | 〈x|C |0n〉 | up to a precision of n + 1 bits, is
#P-hard [CHM21; Van10]. This means even a quantum computer will likely require
exponential time to solve the strong simulation problem. In this subsection, we pro-
vide a more precise quantum time lower bound for strongly simulating quantum cir-
cuits, both exactly and approximately. In the approximate case, we present complexity
results for both multiplicative-factor and additive-error approximation. Our results
extend the results by [HNS20] in two directions: firstly, we give explicit (conditional)
bounds showing that, it is hard to strongly simulate quantum circuits using quantum
computers as well. Secondly, we also address the open question posed by [HNS20] on
the (conditional) hardness of strong simulation with additive error Θ(2−n/2). Our re-
sults are, however, based on a hardness assumption on ∆-ADD-#CNFSAT, rather than
SETH or Basic-QSETH.

The results presented in this section are based on two main components. Firstly,
on the observation that the reduction from CNFSAT to the strong simulation prob-
lem given by [HNS20, Theorem 3] encodes the count of the number of satisfying as-
signments. This fact allows us to use the same reduction to reduce other variants of
CNFSAT, such as #CNFSAT or ⊕CNFSAT, to the strong simulation problem. More-
over, the same reduction also allows us to reduce γ-#CNFSAT and ∆-ADD-#CNFSAT
to analogous variants of the strong simulation problem, respectively. As the second
main component, we use the quantum hardness of these variants of CNFSAT prob-
lem conjectured in Section 8.2.

We will first state the result of the exact quantum time complexity of the strong
simulation problem, and then use that result to show how hard it is for a quantum
computer to strongly simulate a quantum circuit with additive-error or multiplicative-
factor approximation.

Theorem 8.24. For each constant δ> 0, there is no bounded-error quantum algorithm
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that solves the strong simulation problem (Definition 8.23) up to a precision of n+1 bits
in O(2n(1−δ)) time, unless #QSETH (Conjecture 8.8) is false.

The proof is similar to the proof of [HNS20, Theorem 3]. We restate it here for ease
of reading.

Proof. Let φ be a CNF formula on n input variables and m clauses. Let C ′
φ denote the

reversible classical circuit, using TOFFOLI, CNOT and X gates, that tidily computesφ(x)
for all x ∈ {0,1}n .9 One can construct circuit C ′

φ of width k with n ≤ k ≤ n +2(⌈logn⌉+
⌈logm⌉) and size s ≤ 8×3⌈logn⌉+⌈logm⌉ with sublinear space and polynomial-time over-
head; see [HNS20, Section 4.1]. Let C ′′

φ denote the quantum analogue of the classical

reversible circuit C ′
φ, i.e., for the gates in C ′

φ, TOFFOLI and CNOT remain unchanged.

Therefore, the width and size of C ′′
φ remains k and s, respectively.

Clearly, C ′′
φ maps H to H where H denotes a 2k -dimensional Hilbert space. Then,

we see that C ′′
φ |x〉 |0k−n〉 = |x〉 |φ(x)〉 |0k−1−n〉. Let Cφ denote the quantum circuit in

Figure 8.1. Width of this circuit is still k and size is O(s). One can see that 〈0k |Cφ |0k〉
encodes the fraction of satisfying assignments to formula φ (that is, |φ|/2n).

If there exists a constant δ> 0 such that strong quantum simulation of circuit Cφ on
basis state |x〉 = |0k〉 can be computed in T = 2k(1−δ) time up to n +1 bits of precision,
then this could count the number of satisfying assignments formula of φ in time T ex-
actly. Plugging in the values of k ≤ n +2(⌈logn⌉+ ⌈logm⌉) and s ≤ 8×3⌈logn⌉+⌈logm⌉ =
poly(n,m) we get T ≤ O(2n(1−δ)) ·poly(m) time. This would refute #QSETH (Conjec-
ture 8.8).

Note that even if we only care about the first two bits C0.C1 of | 〈x|C |0n〉 | =C0.C1C2 . . .,
it is still hard to determine which values C0 and C1 are, because it means we deter-
mine if the number of satisfying assignments is ≥ 2n/2 or not (if C0C1 = 10 or 01, then
|φ| ≥ 2n/2, and if C0C1 = 00, then |φ| < 2n/2). Therefore, using exactly the same state-
ment in the proof above, we obtain the following corollary that gives the same lower
bound for 2-bit precision, by using a different hardness assumption (which is Majority-
QSETH).

Corollary 8.25. For each constant δ> 0, there is no bounded-error quantum algorithm
that solves the strong simulation problem (Definition 8.23) up to 2 bits of precision in
O(2n(1−δ)) time, unless Majority-QSETH (Part 1 of Conjecture 8.10) is false.

9A classical circuit C : {0,1}n+w(n)+1 → {0,1}n+w(n)+1 reversibly and tidily computes a function f :
{0,1}n → {0,1} if the following statements are true.

1. Circuit C reversibly computes f if C consists of reversible gates, such as {TOFFOLI, CNOT, NOT},
and

∀x ∈ {0,1}n ,∃W (x) ∈ {0,1}w(n),C (x,0w(n),b) = (x,W (x),b ⊕ f (x)). (8.2)

2. Circuit C tidily computes f if

∀x ∈ {0,1}n ,∀b ∈ {0,1},C (x,0w(n),b) = (x,0w(n),b ⊕ f (x)). (8.3)
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One can also try to solve the strong simulation problem with additive-error approx-
imation using the following definition.

Definition 8.26. (Strong simulation with additive error ∆′) Let ∆′ ∈ [ 1
2n+1 ,1). Given

a quantum circuit C on n qubits and x ∈ {0,1}n , the goal of strong simulation with
additive error ∆′ is to estimate d ′ = |〈0n |C |x〉 | with additive error ∆′.

Using the same reduction in the proof of Theorem 8.24 and the conjectured hard-
ness of the ∆-ADD-#CNFSAT problem we can immediately get the following corol-
lary.10

Corollary 8.27. For each constant δ> 0, there is no bounded-error quantum algorithm

that solves strong simulation with additive error∆′ = ∆
2n ∈ [ 1

2n ,1) in Õ
((√

2n

∆ +
p

ĥ(2n−ĥ)
∆

)1−δ)
time where ĥ = 〈0n |C |x〉 ·2n , unless ∆-ADD-#QSETH (Conjecture 8.15) is false.

It is beneficial to note that we only get (at best) a poly(n)-time quantum lower
bound for the strong simulation problem when ∆′ = ∆

2n =Θ(1). Fortunately, this lower
bound matches the poly(n) time quantum upper bound for the strong simulation prob-
lem when∆′ =Θ(1), see the end of this subsection and Theorem 8.30 for details. In fact,
for some values of ĥ our lower bounds are also tight in terms of∆′. Additionally, we can
use a similar argument to show strong simulation results with multiplicative factor, de-
fined as follows.

Definition 8.28. (Strong simulation with multiplicative factor γ) Let γ > 0. Given a
quantum circuit C on n qubits and x ∈ {0,1}n , the goal of strong simulation with mul-
tiplicative factor γ is to estimate the value d ′ = |〈0n |C |x〉 | with multiplicative error γ,
i.e., output a value d such that (1−γ)d ′ < d < (1+γ)d ′.

The exact arguments in the proof of Theorem 8.24 can be used to prove the follow-
ing statement.

Theorem 8.29. Let γ ∈ [ 1
2n ,0.4999). For each constant δ > 0, there is no bounded-error

quantum algorithm that can solve the strong simulation problem with multiplicative
error γ in time

1. O
((

1
γ

√
2n−ĥ

ĥ

)1−δ)
if γĥ ≥ 1, where ĥ = 〈0n |C |x〉 ·2n for input x ∈ {0,1}n ;

2. O(2n(1−δ)), otherwise,

unless γ-#QSETH (Corollary 8.19, implied by Conjecture 8.18) is false.

10Note that the value of k in relation to n is such that 2k = Õ(2n); here k refers to the k used in the
proof of Theorem 8.24 instead of the k of k-SAT.
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Proof. LetAdenote an algorithm that for a given s-sized quantum circuit C on k qubits
and a given x ∈ {0,1}k , for some constants δ and δ′, computes 〈0k |C |x〉 with multiplica-
tive error γ either

1. in O
((

1
γ

√
2k−ĥ

ĥ

)1−δ)
time, whenever γĥ ≥ 1, or

2. in O(2k(1−δ′)) time, otherwise.

Then, given a CNF formula φ on n input variables and m clauses, one can do the
following to approximately count the number of satisfying assignments to φ: first use
the poly(n,m) reduction as in the proof of Theorem 8.24 to construct the quantum
circuit Cφ of size s = poly(n,m) and width k ≤ n + 2(⌈logn⌉ + ⌈logm⌉). Then run al-
gorithm A on quantum circuit Cφ and x = 0k as inputs. The output would then be a
γ-multiplicative approximation of the count of the number of satisfying assignments
to φ. Depending on the value of γ · ĥ, the running time of this entire process is either

O
(

poly(n,m)+
(

1
γ

√
2k−ĥ

ĥ

)1−δ)
=O

((
1
γ

√
2n−ĥ

ĥ

)1−δ
·poly(m)

)
for some constant δ > 0,

or O(2k(1−δ′)) =O(2n(1−δ′) ·poly(m)) time for some constant δ′ > 0. Either way refutes
γ-#QSETH (Corollary 8.19).

Quantum upper bounds for strong simulation

Here, we include a quantum algorithm for strong simulation with additive error ∆′ for
completeness.

Theorem 8.30. Let ∆′ ∈ [ 1
2n+1 ,1). There exists a quantum algorithm that solves strong

simulation with additive error ∆′ (Definition 8.26) in poly(n, |C |) · 1
∆′ time, where |C | is

the size (the number of quantum elementary gates it contains) of input circuit C .

Proof. Given a quantum circuit C on n input variables and x ∈ {0,1}n , the task (of
strong simulation with additive error ∆′) is to estimate the value of | 〈x|C |0n〉 | with
∆′ ∈ [ 1

2n+1 ,1) additive-error approximation.
Let |ψ〉 =C |0n〉 :=∑

i∈{0,1}n αi |i 〉. Let U ′ denote the unitary U ′ : |i 〉 |x〉 |b〉→ |i 〉 |x〉 |b ⊕ (i = x)〉
for i , x ∈ {0,1}n and b ∈ {0,1}. It is easy to verify that combining C and U ′ we can con-
struct a unitary U on 2n +1 qubits such that

U |02n〉 |0〉 =αx |x〉 |x〉 |1〉+
∑
i ̸=x

αi |i 〉 |x〉 |0〉 ,

and |αx | = |〈x|C |0n〉 |. Using the amplitude estimation algorithm (Theorem 2.3), we
can estimate | 〈x|C |0n〉 | to an additive error of ∆′ in poly(n, |C |) · 1

∆′ time.
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8.3.2 Quantum time complexity for lattice counting and q-count problems

In this subsection, we will connect k-SAT to variants of lattice problems. Then, by
using the QSETH lower bound we have in Section 8.2.2, we will give quantum con-
ditional lower bounds for those lattice problems. For the definition of a lattice and
lattice-related theorems, see Section 2.9.11

Conditional lower bounds for lattice problems are popular and widely studied in
the classical case [BGS17; ABG+21; AC21; AS18; BP20; BPT22]. Lots of variants of
lattice problems have been considered before, and the most well-studied one is the
closest vector problem CVPp (with respect to ℓp norm, see Definition 2.41). CVPp is
known to have a 2n-SETH lower bound for any p ̸∈ 2Z [BGS17; ABG+21], and for even
p, there seems to be a barrier for showing a polynomial-time reduction from k-SAT
to CVP [AK23]. Kannan gave an nO(n)-time algorithm for solving CVPp for arbitrary
p ≥ 1 [Kan83], while the best known algorithm for solving CVPp with noneven p is
still nO(n)-time. To get a conditional quantum lower bound for CVPp for noneven p,
given there is already a classical reduction from k-SAT to CVPp using 2k ·poly(n) time
(for noneven p) [BGS17; ABG+21], either one can directly use the QSETH framework
by [ACL+20] to get a 20.5n lower bound, or we can use Corollary 8.21 to get the same
lower bound in our QSETH framework.

A natural question arises here: Can we have a 2(0.5+δ)n-QSETH lower bound for any
(variants of) lattice problems? The answer is yes by using the QSETH framework and
the problems introduced in Section 8.2.2 (and by considering the counting variant of
lattice problems.) We begin with introducing the (approximate) lattice counting prob-
lem and some other related problems as follows:

Definition 8.31 (Lattice counting problem). Letγ≥ 0 and 1 ≤ p ≤∞. Theγ-approximate
Vector Counting Problem γ-VCPp is the counting problem defined as follows: The in-
put is a basis B ∈Rd×n of a lattice L(B), target vector t ∈Rd , and radius r ∈R+. The goal
of this problem is to output a value C satisfying |(L−t)∩ r ·B d

p | ≤C ≤ (1+γ) · |(L−t)∩
r ·B d

p |. If γ= 0, we simply denote the problem as VCPp .

The (approximate) lattice counting problem was first introduced by Stephens-Davidowitz
as a promise problem [Ste16], and here we slightly modify the definition to make it a
counting problem. We also generalize the lattice vector counting problem to the q-
count problem, as follows.

Definition 8.32 (Lattice q-count problem). Let γ≥ 1, 1 ≤ p ≤∞, and q ∈ [2n] \ {1}. The
lattice q-count Problem #q -VCPp is the lattice q-count problem defined as follows: The
input is a basis B ∈ Rd×n of a lattice L(B), target vector t ∈ Rd , and radius r ∈ R+. The
goal of this problem is to output a value C = |(L−t)∩ r ·B d

p | mod q . If q = 2, then we
simply denote the problem as ⊕VCPp .

11Note that here lattice problems are defined over the non-Euclidean norm, so unlike Euclidean norm
case (see Section 2.9.2), we do not know how to reduce a non-full-rank lattice to a full-rank lattice.
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One can consider the above two problems as the counting and the q-counting ver-
sion of CVPp , respectively. To connect these problems to the counting k-SAT prob-
lem, we should first introduce the following geometric tool introduced by Bennett,
Golovnev, and Stephens-Davidowitz [BGS17].

Definition 8.33 (Isolating parallelepiped). Let k be an integer between 3 and n and

1 ≤ p ≤∞. We say that V ∈ R2k×k and u ∈ R2n
define a (p,k)-isolating parallelepiped if

∥u∥p > 1 and ∥V x−u∥p = 1 for all x ∈ {0,1}k \ {0k }.

For the sake of completeness, we will explain how to connect a k-CNF formula to an
instance of VCP using the above object. The proof is very similar to the proof of [BGS17,
Theorem 3.2].

Theorem 8.34. Let k be an integer between 3 and n. Suppose we have a (p,k)-isolating
parallelepiped (V ,u) for some p = p(n) ∈ [1,∞) and can make quantum queries to
oracles OV : |i 〉 |s〉 |0〉 → |i 〉 |s〉 |Vi s〉 and Ou : |i 〉 |0〉 → |i 〉 |ui 〉 for i ∈ [2k ] and s ∈ [k].
Then for every given input oracle OΦ : | j 〉 |w〉 |0〉 → | j 〉 |k〉 |Cw ( j )〉 of k-CNF formula
(with m clauses) ψ = C1 ∧C2 ∧ ·· · ∧Cm for w ∈ [m] and j ∈ [n], one can output ora-

cles OB : |h〉 | j 〉 |0〉 → |h〉 | j 〉 |B j (h)〉 of basis B ∈ R(m·2k+n)×n for each h ∈ [m ·2k +n] and

j ∈ [n], Ot : |h〉 |0〉 → |h〉 |th〉 of target vector t ∈ Rm·2k+n for each h ∈ [m · 2k +n], and
radius r such that |sol(ψ)| =VCPp (B,t,r ), using poly(n,m) queries to OV , O†

V , Ou, O†
u,

OΦ, O†
Φ, and elementary gates.

Proof. Let d = m ·2k +n and V = {v1, . . . ,vk} with vs ∈ R2k
for every s ∈ [k]. The basis

B ∈Rd×n and target vector t ∈Rd in the output instance have the form:

B =


B1

...

Bm

2 ·m1/p · In

 , t=


t1

...

tm

m1/p ·1n

 ,

with blocks Bw ∈ R2k×n that correspond to the clause Cw = ∨k
s=1ℓw,s and tw ∈ R2n

for
each w ∈ [m]. For each w ∈ [m] and j ∈ [n], the j th column (Bw ) j of block Bw is

(Bw ) j =


vw, if x j is the wth literal of clause w ,

−vw, if ¬x j is the wth literal of clause w ,

02d , otherwise,

and tw = u− ∑
s∈Nw

vs , where Nw = {s ∈ [k] : ℓw,s is negative} is the set of the indices of

negative literals in Cw . Also set r = (mn +m)1/p .
Define the unitary Ue : |a〉 |b〉 |0〉→ |a〉 |b〉 |δ|a|,|b|〉 for each a,b ∈ [d ], and the unitary

as for each x1, . . . , xn ∈ {0,1},

Uloc : |x1〉 |x2〉 . . . |xn〉 |0〉→
{
|x1〉 |x2〉 . . . |xn〉 |s〉 , if only xs = 1 and all others are 0,

|x1〉 |x2〉 . . . |xn〉 |0〉 , otherwise,
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which can both be implemented via poly(n) elementary gates up to negligible error.
Also, we define the unitary as follows: for each w ∈ [m], j ∈ [n],

Usℓ : |w〉 | j 〉 |0〉→


|w〉 | j 〉 |s〉 , if x j is the sth literal of clause Cw ,

|w〉 | j 〉 |−s〉 , if ¬x j is the sth literal of clause Cw ,

|w〉 | j 〉 |0〉 , otherwise,

which can also be implemented by using poly(m,n) applications of OΦ and poly(m,n)
many elementary gates.

We are now ready to show how to implement OB and Ot. For input |h〉 | j 〉 |0〉 |0〉 |0〉 |0〉,
let |h〉 = |h1〉 |h2〉 where h2 is the last n bits of h and h1 is the remaining prefix. Then we
first apply Ue to the first, third, and fifth registers to obtain |h1〉 |h2〉 | j 〉 |0〉 |δh1,0〉 |0〉 |0〉.
After that, apply Usℓ to the first, third, and sixth registers, and apply OV to the second,
third, and seventh registers we get

|h1〉 |h2〉 | j 〉 |0〉 |δh1,0〉 |s〉 |V j s〉 ,

where V j s = (vs) j . Finally, adding another ancilla register, we can store the value V j s ·
δh1,0+2m1/p (1−δh1,0)δh−m·2k , j in the last register. Uncomputing the fourth to seventh
registers, we have

|h1〉 |h2〉 | j 〉 |V j s ·δh1,0 +2m1/p (1−δh1,0)δh−m·2k , j 〉 = |h〉 | j 〉 |(vs) j ·δh1,0 +2m1/p (1−δh1,0)δh−m·2k , j 〉 ,

and (vs) j ·δh1,0+2m1/p (1−δh1,0)δh−m·2k , j is exactly the coefficient of B j (h). One can see

we only use poly(n,m) queries to OV , O†
V , OΦ, O†

Φ and a similar number of elementary
gates. We can also construct Ot using a similar strategy, which can also be done using
at most poly(n,m) queries to OV , O†

V , OΦ, O†
Φ, Ou , O†

u , and elementary gates.
To see the correctness, consider y ∈Zn . If y ∉ {0,1}n , then

∥By−t∥p
p ≥ ∥2m1/p Iny−m1/p 1n∥p

p ≥ m(n +2).

On the other hand, if y ∈ {0,1}n , then for each Bw

∥Bwy−t∥p
p = ∥ ∑

s∈Pw

yind(ℓw,s ) ·vs −
∑

s∈Nw

yind(ℓw,s ) ·vs − (u − ∑
s∈Nw

yind(ℓw,s ) ·vs)∥p
p

= ∥ ∑
s∈Pw

yind(ℓw,s ) ·vs +
∑

s∈Nw

(1−yind(ℓw,s )) ·vs −u∥p
p

= ∥ ∑
s∈Sw (y)

vs −u∥p
p ,

where ind(ℓw,s) is the index of the variable underlying ℓw,s (that is, ind(ℓw,s) = j if
ℓw,s = x j or ¬x j ), Pw = {s ∈ [k] : ℓw,s is positive} is the set of the indices of positive
literals in Cw , and Sw (y) = {s ∈ Pw : yind(ℓw,s ) = 1}∪ {s ∈ Nw : yind(ℓw,s ) = 0} is the in-
dices of literals in Cw satisfied by y. Because (V ,u) is a (p,k)-isolating parallelepiped,
if |Sw (y)| ̸= 0, then ∥ ∑

s∈Sw (y)
vs −u∥p

p = 1, and it will be greater than 1 otherwise. Also,
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|Sw (y)| ̸= 0 if and only if Cw is satisfied. Therefore, we have that for every satisfying
assignment y,

∥By−t∥p
p =

m∑
k=1

∥Bky−t∥p
p +mn = m +mn,

and for all other unsatisfying assignments y′, ∥By′− t∥p
p > m +mn. As a result, every

satisfying assignment ofψ=C1∧C2∧·· ·∧Cm is encoded as a lattice point of latticeL(B)
with distance r = (mn +m)1/p to the target vector t , which implies that the answer of
counting-SAT with input ψ is equal to VCPp (B,t,r ).

The theorem above shows how to connect the counting k-SAT problem to the vec-
tor counting problem given access to a (p,k)-isolating parallelepiped. However, it is
not always the case that we can compute such an isolating parallelepiped efficiently.
Aggarwal, Bennett, Golovnev, and Stephens-Davidowitz [BGS17; ABG+21] showed the
existence of isolating parallelepiped for some p,k and provided an efficient algorithm
for computing them.

Theorem 8.35 ([ABG+21]). For k ∈ Z+ and computable p = p(n) ∈ [1,∞) if p satisfies

either (1) p ∉ 2Z or (2) p ≥ k, the there exists a (p,k)-isolating parallelepiped V ∈R2k×k ,

u ∈R2k
and it is computable in time poly(2k ,n).

Therefore, by choosing k =Θ(logn) and combining Corollary 8.21 and Theorems 8.34
and 8.35, we can directly show a 2n-QSETH lower bound for VCPp for all non-even p.
Also, a similar idea works for the q-count and approximate counting of CNF-SAT: for
each CNF-SAT formulaψ, using Algorithm 8 and Lemma 8.20, we can output a number
of k-CNF formulas ψ1 . . . ,ψN such that |sol(ψ)| = ∑

i∈[N ] |sol(ψi )|. Once we have an al-
gorithm that solves γ#-k-SAT (#q k-SAT), we can use it to compute γ-#k-SAT(ψi ) (#q k-
SAT(ψi )) for all i ∈ [N ], and then by adding the outputs together, we can get a valid
solution to γ-#CNFSAT (#q CNFSAT) with input ψ. Combining the above arguments
with Theorem 8.34 (and the proof of Corollary 8.21), we have the following corollaries.

Corollary 8.36. Let p ∈ [1,∞) \ 2Z and q ∈ [2n] \ {1,2}. For each constant δ > 0, there is
no bounded-error quantum algorithm that solves

1. VCPp in O(2n(1−δ)) time, unless #QSETH(Conjecture 8.8) is false;

2. ⊕VCPp in O(2n(1−δ)) time, unless ⊕QSETH(Conjecture 8.9) is false;

3. #q VCPp in O(2n(1−δ)) time, unless #q QSETH(Conjecture 8.11) is false.

Corollary 8.37. Let γ ∈ [ 1
2n ,0.4999) and p ∈ [1,∞) \ 2Z. For each constant δ> 0, there is

no bounded-error quantum algorithm that solves γ-VCPp in time

1. O
((

1
γ

√
2n−ĥ

ĥ

)1−δ)
, if γĥ > 1 where ĥ is the number of the closest vectors,

2. O(2(1−δ)n), otherwise,
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unless γ-#QSETH (Corollary 8.19, implied by Conjecture 8.18) is false.

The following theorem also shows how to connect the approximate vector counting
problem to the closest vector problem. The classical reduction from approximate VCPp

to CVPp was already shown in [Ste16, Theorem 3.5], while we can easily give a quadratic
saving for the number of calls to CVPp oracle. We include the proof at the end of this
subsection for completeness.

Theorem 8.38. Let f (n) ≥ 20 be an efficiently computable function and p ∈ [1,∞). One
can solve f (n)−1-VCPp using O( f (n)2) quantum queries to CVPp .

To prove Theorem 8.38, we first introduce a gapped version of the lattice counting
problem as follows:

Definition 8.39 (Gap-VCP). Let γ ≥ 0 and 1 ≤ p ≤ ∞. The problem γ-approximate
gap Vector Counting Problem γ-Gap-VCPp is a promise problem defined as follows:
The input is a basis B ∈ Rd×n of a lattice L(B), target vector t ∈ Rd , radius r ∈ R+, and
N ≥ 1. The goal of this problem is to output “No” if |(L−t)∩ r ·B d

p | ≤ N and “Yes” if

N > (1+γ) · |(L−t)∩ r ·B d
p |.

One can easily see that if we can solve γ-Gap-VCPp , then by using poly(n) calls of
it we can solve γ-VCPp . As a result, it suffices to show how to reduce γ-Gap-VCPp to
CVPp in the following proof.

Proof of Theorem 8.38. Choose a prime Q =Θ( f (n) ·N ) and let OCV P be the quantum
CVPp oracle. Define USpar : |B,Q,z,c〉 |0〉 |0〉→ |B,Q,z,c〉 |BQ,z〉 |wz,c〉, where BQ,z,wz,c

are the output of Spar (B,Q,z,c). Since given a CVPp oracle and a basis B, the sparsi-
fication process (Theorem 2.44) can be efficiently done according to the construction,
we can also implement the unitary USpar efficiently.

First we prepare the superposition state 1
Qn/2

∑
z,c∈Zn

Q

|B,Q,z,c〉 |0〉 |t〉 |0〉 |0〉, apply USpar

on the first six registers, and apply OCV Pp on the fifth, sixth, seventh registers, and then
apply the subtraction unitary Usub : |a〉 |b〉 |0〉 → |a〉 |b〉 |∥a−b∥p〉 on the last three reg-
isters, then we get

1

Qn/2

∑
z,c∈Zn

Q

|B,Q,z,c〉 |BQ,z〉 |t+wz,c〉 |CV Pp (BQ,z,t+wz,c)〉 |∥t+wz,c−CV Pp (BQ,z,t+wz,c))∥p〉 .

Let rz,c = ∥t+wz,c−CV Pp (BQ,z,t+wz,c))∥p and umcompute the first seven registers,
then we get

1

Qn/2

∑
z,c∈Zn

Q

|rz,c〉 .

Adding another ancilla |0〉 at the end of the above state, and then applying the r -
threshold gate

Ur : |R〉 |0〉→
{
|R〉 |1〉 if R ≤ r

|R〉 |0〉 otherwise,
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on it, we get

1

Qn/2

( ∑
rz,c≤r

|rz,c〉 |1〉+
∑

rz,c,>r
|rz,c〉 |0〉

)
:=p

a |φ1〉 |1〉+
p

1−a |φ0〉 |0〉 ,

where a = |{(z,c) : rz,c ≤ r }|/Qn = Pr
z,c,∈Zn

Q

[rz,c ≤ r ]. Note that by Theorem 2.44, if |L∩(r B n
p+

t)| ≤ N , then

Pr
z,c,∈Zn

Q

[rz,c ≤ r ] ≤ N

Q
+ N

Qn
,

and if |L∩(r B n
p +t)| ≥ γN , then

Pr
z,c,∈Zn

Q

[rz,c ≤ r ] ≥ γN

Q
− γ2N 2

Q2
− γ2N 2

Qn−1
.

Observing that γN
Q − γ2N 2

Q2 − γ2N 2

Qn−1 − ( N
Q + N

Qn ) = Θ( f (n)−1N /Q), we know that to distin-
guish the above two cases, it suffices to learn a = Pr

z,c,∈Zn
Q

[rz,c ≤ r ] with additive er-

ror Θ( f (n)−1N /Q). Therefore, by using Theorem 2.3, we can solve γ-Gap-VCPp with
γ = f (n)−1 using O( f (n)Q/N ) queries to OCV Pp and time. Because Q =Θ( f (n)N ), we
finish the proof.

Note that the QSETH lower bound for f (n)−1-VCPp depends on f (n). Therefore
if we can show a reduction from f (n)−1-VCPp to CVPp using f (n)c for some constant
c < 1, then we will end up with a better QSETH lower bound for CVPp .

8.3.3 Hardness of Counting/Parity of OV, Hitting Set, and Set-Cover

In this subsection, we will discuss the consequences of Corollary 8.19 and Corollary 8.21
for some well-motivated optimization problems: Orthogonal Vectors, Hitting Set and
Set Cover. Following are the definitions of Hitting Set and its variants.

Definition 8.40 (Hitting Set). Let integers n,m > 0. The Hitting Set problem is defined
as follows: The input is a collection of sets Σ = (S1, . . . ,Sm), where Si ⊂ V and integer
t > 0, the goal is to output a subset S′ ⊂ V such that |S′| ≤ t and ∀i ∈ [m], |S′∩Si | > 0.
We call such S′ a hitting set for Σ.

Definition 8.41 (Variants of Hitting Set). Let integers n,m > 0 andγ ∈ [ 1
2n , 1

2

)
. We define

the following four variants of Hitting Set. The input for all of them is a collection Σ =
(S1, . . . ,Sm), where Si ⊂V and integer t > 0.

1. In the Count Hitting Set problem, the goal is to output d ′;

2. in the Parity Hitting Set problem, the goal is to output d ′ mod 2;

3. in the strict-Majority Hitting Set problem, the goal is to output 1 if d ′ > 2n−1,
otherwise output 0;
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4. in the γ-approximation of count Hitting Set, the goal is to output an integer d
such that (1−γ)d ′ < d < (1+γ)d ′;

where d ′ = |S′ ⊂V :
∣∣S′| ≤ t ,∀i ∈ [m], |S′∩Si | > 0

∣∣.
In [CDL+16], the authors showed a Parsimonious reduction between CNFSAT and

Hitting Set. By Parsimonious reduction, we mean a transformation from a problem to
another problem that preserves the number of solutions.

Theorem 8.42 (Theorem 3.4 in [CDL+16]). For each constant δ> 0, there exists a poly-
nomial time Parsimonious reduction from CNFSAT on n variables to Hitting Set on
n(1+δ) size universal set.

By using the above theorem, we immediately get the following corollaries.

Corollary 8.43. For each constant δ> 0, there is no bounded-error quantum algorithm
that solves

1. Hitting Set in O(2
n
2 (1−δ)) time, unless BASIC-QSETH (Conjecture 8.3) is false.

2. Count Hitting Set in O(2n(1−δ)) time, unless #QSETH(Conjecture 8.8) is false.

3. Parity Hitting Set in O(2n(1−δ)) time, unless ⊕QSETH(Conjecture 8.9) is false.

4. Strict-Majority Hitting Set inO(2n(1−δ)) time, unless Majority-QSETH(Conjecture 8.10)
is false.

Corollary 8.44. Let γ ∈ [ 1
2n ,0.4999

)
. For each constant δ> 0, there is no bounded-error

quantum that solves γ-multiplicative-factor approximation of count Hitting Set in time

1. O
(

1
γ

√
2n−ĥ

ĥ

)1−δ
, if γĥ > 1 where ĥ is the number of hitting sets,

2. O(2(1−δ)n), otherwise,

unless γ-#QSETH (Corollary 8.19, implied by Conjecture 8.18) is false.

We also use our results from Section 8.2 to show conditional lower bounds for prob-
lems in the complexity class P. More specifically, we study Orthogonal Vectors problem
and its variants defined as follows.

Definition 8.45 (Orthogonal Vectors (OV)). Let d ,n be natural numbers. The Orthogo-
nal Vectors problem is defined as follows: The input is two lists A and B, each consisting
of n vectors from {0,1}d . The goal is to find vectors a ∈ A,b ∈ B for which 〈a,b〉 = 0. We
call such pair (a,b) a pair of orthogonal vectors.

Definition 8.46 (Variants of OV). Let integers d ,n > 0, γ ∈
[

1
n2 ,0.4999

)
, and the input

is two lists A and B each consisting of n vectors from {0,1}d .
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1. In the Count OV problem, the goal is to output d ′;

2. in the Parity OV problem, the goal is to output d ′ mod 2;

3. in the strict-Majority OV, the goal is to output 1 if d ′ > n2/2, otherwise output 0;

4. in the γ-approximation of count OV, the goal is to output an integer d such that
(1−γ)d ′ < d < (1+γ)d ′;

where d ′ = |(a,b) : a ∈ A,b ∈ B ,〈a,b〉 = 0|.
Orthogonal Vectors is an important computational problem that lies in the com-

plexity class P. It turns out to be one of the central problems to show fine-grained
hardness of problems in P [Vas15; ABD+18]. Williams showed a reduction from CNF-
SAT to OV [Wil05]. We observe that Williams’s reduction is Parsimonious. Therefore
we can also show quantum conditional lower bounds for counting versions of OV us-
ing our QSETH conjectures. In [BPS21], the authors showed O(n)-hardness for OV
under basic-QSETH assumption, and here we give O(n2)-hardness for counting ver-
sions of OV, which might be useful for showing quantum conditional lower bounds for
(variants of) other problems (like string problems or dynamic problems, see [Vas15,
Figure 1]).

Corollary 8.47. For each constant δ> 0, there is no bounded-error quantum algorithm
that solves

1. Count OV in O(n2−δ) time, unless #QSETH (Conjecture 8.8) is false;

2. Parity OV in O(n2−δ) time, unless ⊕QSETH (Conjecture 8.9) is false;

3. Majority OV in O(n2−δ) time, unless Majority-QSETH (Conjecture 8.10) is false.

Corollary 8.48. Let γ ∈ [ 1
2n ,0.4999

)
. For each constant δ> 0, there is no bounded-error

quantum algorithm that solves γ-multiplicative-factor approximation of count OV in
time

1. O
(

1
γ

√
n2−ĥ

ĥ

)1−δ
, if γĥ > 1 where ĥ is the number of pairs of orthogonal vectors,

2. O(n(2−δ)), otherwise,

unless γ-#QSETH (Corollary 8.19, implied by Conjecture 8.18) is false.

We can also give a quantum conditional lower bound for the parity Set-Cover prob-
lem defined as follows.

Definition 8.49 (parity Set-Cover). For any integers n,m > 0, the parity Set-Cover prob-
lem is defined as follows: The input is a collection Σ = (S1, . . . ,Sm), where Si ⊂ V and
integer t > 0, the goal is to output |{F ⊂Σ :

⋃
S∈F S =V , |F | ≤ t }| mod 2.

In [CDL+16], the authors showed an efficient reduction from parity Hitting Set to
parity Set-Cover. Using the third item of Corollary 8.43 we get the following corollary:

Corollary 8.50. For each constant δ> 0, there is no bounded-error quantum algorithm
that solves parity Set-Cover in 2n(1−δ) time, unless ⊕QSETH (Conjecture 8.9) is false.
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8.4 Open problems

We mention some questions for future work.

• It would be interesting to see if it is possible to use the QSETH framework to give
a single-exponential lower bound for CVP in Euclidean norm (CVP2).

• It’s a big open question to get an efficient (quantum) fine-grained reduction from
Hitting Set or CNF-SAT to Set-Cover. Note that Hitting Set and Set Cover are
dual problems of each other but this reduction does not say anything interest-
ing about the fine-grained hardness of Set-Cover.
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