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Abstract
This note presents, motivates and details, a logic —model and proof theory—
for a first order language with contextually restricted quantification.

1 Introduction

It can hardly be denied that the interpretation of natural language expres-
sions is context dependent, and that the interpretation of various kinds of noun
phrases —quantifying noun phrases, definite descriptions, as well as indefinite
descriptions— can be contextually determined in substantial ways.1 The philo-
sophical and linguistic literature consequently features intriguing discussions
about the nature and location of such contextual restrictions.2 This present
note is not, however, concerned with the philosophical reflection on this contex-
tual influence, nor with the peculiarities of contextual restriction in the syntax
and semantics of natural languages. The note is concerned with providing a
formal language that allows us to formulate the dependencies and study their
logical impact. There are, to my knowledge, only a few previous proposals for
such a formalization, and these are, arguably, not entirely conclusive.3

In order to obtain a logic of context dependent quantification this note
first presents a language of first order predicate logic with contextually restricted
quantification, and next supplies it with both a model- and a proof theory. The
system will be illustrated by means of some linguistic applications, and it is also
shown that the logical system properly extends and properly improves upon,

1. Westerståhl 1985; von Fintel 1994; Roberts 1995; Neale 1990; Stanley & Szabó 2000;
Schwarzschild 2002; Martí 2003; Glanzberg 2006; Etxeberria & Giannakidou 2010
2. There is the question whether contextual dependence should be marked in the syntax,
explicitly, or implicitly, and where, and also whether such data are cross-linguistic valid. (Neale
1990; Reimer 1998; von Fintel 1994; Stanley & Szabó 2000; Etxeberria & Giannakidou 2010).
There are also foundational questions such as whether contexts are sets, properties or situations
perhaps(Westerståhl 1985; Reimer 1998; Recanati 1996; Stanley & Szabó 2000; Schwarz 2012),
and whether the determination of the context is objective or intentional. (Gauker 1997; Bianchi
2006)
3. Kuroda 1982; Bonomi 1998; Francez 2014
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in particular, Nissim Francez’ previous proposal for a proof system that is very
much alike in spirit.

2 Contextual Restriction in Predicate Logic

Contextually restricted quantification will be cast in a language PL of first order
predicate logic that is built up, in the usual way, from a set of variables x, y, . . . ∈
V , individual constants n,m ∈ N , sets of relational constants R,S, . . . ∈ Rj

of arbitrary arity j, and the logical constants ¬,∧,→,=,∃,∀.4 A distinctive
feature is that our quantifiers are (pre-)superscripted with indices 0, 1, . . .. The
indices on the quantifiers serve to distinguish various contexts, or contextual
restrictions, on the domain of quantification.5

The predicate logic language for extensionally restricted quantification
can be defined, as follows, in Backus-Naur style.

Definition 1 (Language of PLERQ) for x ∈ V , n ∈ N , R ∈ Rj and i ∈ N
t ::= x, n

φ ::= Rt1 . . . tj | t1=t2 | ¬φ | (φ ∧ φ) | (φ→ φ) | i∃xφ | i∀xφ

One may read i∃xφ as saying that in context i there is an x such that φ, and
i∀xφ as saying that for all x in context i φ holds.

In the extensional system presented in this note, contexts are just sets of
individuals from a domain D, which is equated with a default context C0. All
contexts consist of individuals actually existing.

for any i: Ci ⊆ C0 = D

Models for our language consist of such an indexed collection {Ci} of such
contexts, and an interpretation function I giving an extensional interpretation
of the individual and relational constants in our language. So if n ∈ N , I(n) ∈ D,
and if R ∈ Rj , then I(R) ⊆ Dj is a set of j-tuples of individuals.

Definition 2 (Models of PLERQ) A modelM for PLERQ is a pair 〈{Ci}, I〉,
with {Ci} and I as detailed above.

The formulas of our language are evaluated in a model and relative to a variable
assignment function. A Tarski-style satisfaction relation M, g |= φ is defined,
which reads that φ is satisfied in model M and relative to variable assignment

4. I would rather favor a declarative, quantificational, treatment of names N ∈ N, so that
Nxφ is a formula declaring N to be an individual x, so-named, such that φ. I will not, however,
detail or motivate such a treatment any further here.
5. This method of indexing, as originally proposed in (Westerståhl 1985), aligns with many
of the sources mentioned in the previous footnotes, but for the fact that not all authors agree
that the index is associated with the quantifier. It appears to me that there are no convincing
reasons for putting them elsewhere, logically speaking.
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g. Atomic formulas are satisfied if its constituent terms denote objects that have
the properties ascribed, like standing in a certain relation, or like being one and
the same object. The clauses dealing with the propositional connectives ¬, ∧
and → are standard. We will comment on the clauses for the quantifiers below.

Definition 3 (Interpretation of PLERQ)
M, g |= Rt1 . . . tj iff 〈g(x1), . . . , g(xj)〉 ∈ I(R)
M, g |= t1 = t2 iff g(x1) = g(x2)

M, g |= ¬φ iff M, g 6|= φ
M, g |= (φ ∧ ψ) iff M, g |= φ and M, g |= ψ
M, g |= (φ→ ψ) iff if M, g |= φ then M, g |= ψ

M, g |= i∃xφ iff there is d ∈ Ci: M, g[x/d] |= φ

M, g |= i∀xφ iff for all d ∈ Ci: M, g[x/d] |= φ

[t]M,g = g(t) if t ∈ V
= I(t) if t ∈ N

Suitable notions of validity and entailment are defined in the usual fashion.

Definition 4 (Validity in PLERQ) A sequence of premises φ1, . . . , φn entail
a formula ψ, φ1, . . . , φn |= ψ, iff for all M and g, if M, g |= φ1 . . . M, g |= φn,
then M, g |= ψ. We say that ψ is valid iff |= ψ.

It is useful to be able to state of the value of a variable, declared in one context,
that it also figures in another. The following notation convention helps to express
precisely this:

Utility 1 (Existence Restrictions) iEx := i∃y x=y

Like we said, all individuals, in any context Ci, are stipulated to exist in the
default context. So here is our first, schematic, theorem:

Theorem 1 (Transparency of Contexts, Model-Theoretic)

|= i∀x0Ex

3 Contextual Restriction at Work

The current system extends standard predicate logic in that it allows us to
model the kind of contextually restricted quantification familiar from the litera-
ture and also to express constraints on, or properties of, those contexts. For our
more logical purposes, it may be worthwhile to observe, that, relative to a fixed
domain, whether it is restricted or not, all familiar inferences are valid. I hope
this is intuitively clear, and, if not, it can be proved formally relatively easily.
However, if multiple quantifiers relate to possibly different domains, then, with-
out any further constraints, hardly any conclusions follow, besides, of course,
the universally valid ones.
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Consider the following line of reasoning. If i∀x(Fx → Gx) and j∃yFy,
then k∃zGz. If there are no restrictions on the quantifiers, so if i=j=k=0, then
this pattern of reasoning is valid, of course. Also if the three quantifiers are
restricted, but restricted to the same context, so if i=j=k, the very same pattern
of reasoning is valid, too. But if the first premise quantifies over a contextual
domain Ci that is independent from the contextual domain Cj of the second
premise, then—without any further constraints—, nothing follows. If, in Italy,
say, every scholar knows Dante, and if, in France, there is a scholar, this does not
logically imply that, in Germany, someone knows Dante. Some such could only
be inferred with additional premises, including those that tells us more about
the three contexts involved. This brings us to the second benefit of our system.

The present system enables us to delineate the contexts quantification
can be relative too. We can, for instance, stipulate that 0∀x(Cx↔ iEx) thereby
determining all quantified expressions that depend on context i to be restricted
to the C’s, the Canadians, say, or to whatever condition one might want it to be
related too.6 With such stipulations, restricted quantifier readings familiar from
the literature can be made fully sense of. Every time a domain restricting context
is specified or referred to in the literature, we can formulate that constraint as
an assumption in our language.

It is important to observe, however, that we can also do without such
stipulations. If someone says “Everybody danced, and nobody complained.” this
is most naturally construed as quantifying twice about a contextually restricted
domain of individuals Ci which we may know nothing about, but for the fact
that it is said to be one such that none of them did not dance, and everyone of
them did not complain. The two formulas i∀xDx and ¬i∃xCx express precisely
this. The two statements can, if need be, be supplemented further by additional
assumptions or claims. For instance, it is not at all irrelevant to assume that
i∃xx=x, because otherwise the two previous claims would be vacuously true.
One could also possibly add, more substantially, for instance, that, in i, there are
the people who visited the party last night. But note that while such supplements
are, of course, indispensable, pragmatically speaking, they, equally obviously,
need not be supplied by the formulas or linguistic expressions themselves.

Restricted domains also allow us to make proper sense of definite, and also
indefite, noun phrases. An expression of the form “the A” or “ ιxφx” can be un-
derstood, upon its Russellian analysis, to denote the unique individual that is A,
or that satisfies φ.7 Its meaning can be explained in full sentential constructions
so that sentences of the form “The A B” say that there is a unique A and that
it is B. Formally:

6. Note that such a stipulation would then also allow us to eliminate the context dependence
of any quantified expression iQxφ by replacing it by an unrestricted quantifier 0Qxφ′, where
φ′ is obtained from φ by adding the explicit restriction that Cx.
7. Existence and uniqueness of such an individual are thereby asserted, according to Russell,
or presupposed, according to Strawson. (Russell 1905; Strawson 1950, among many others.)
There is no need to enter the enduring and rather convoluted debate about this here.
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Utility 2 (Russellian Description)

i ιxφψ := i∃x(i∀y([y/x]φ↔ x=y) ∧ ψ)

For most uses of definite descriptions in natural language, such a Russellian anal-
ysis has often been observed to only make sense if they are evaluated relative to
contextually supplied domains of quantification, or so that in particular the uni-
versal quantifier is suitably restricted. (Neale 1990) Our contexts model precisely
that. Thus, if it is said that ithe blonde smiles, this can be rendered as i ιxBxSx
which upon its Russellian expansion comes out as i∃x(i∀y(By ↔ x=y) ∧ Sx).
If, as is required by this formula, there is indeed such a unique blond in i the
description can be understood as a term that denotes that individual.

More generally any form of quantification can thus be rendered contex-
tual, by (i) relating the quantifier to some contextual domain Ci and (ii) possibly
define to be in Ci to be equivalent with satisfying whatever contextual require-
ment one may want to impose on it. Roger Schwarzschild has argued that it
is linguistically expedient to have such a restricted interpretation of indefinite
descriptions, too. (Schwarzschild 2002)

4 Proof Theory for Contextually Restricted Quantification

The proof theory for our language can be presented in the form of a natural
deduction system along the lines of (Fitch 1952). Such a system defines the
derivability of a conclusion ψ from a, possibly empty, series of premises, formally:
φ1, . . . , φn ` ψ.

A derivation here is most generally an enumerated and labeled list of
formulas, in which each formula is either an explicit assumption, or a formula
derived from what has been established earlier in the list according to the natural
deduction rules which will be specified in due course. The labels always indicate
by what rule a formula is inserted on a line, and, if relevant, with unambiguous
reference to the preceding lines that provide the input required for applying the
rule. The rules ensure that what is obtained on a line is, if not an assumption,
something that logically follows from what has been established before.

As we will see, certain rules may, as it is called, discharge specific assump-
tions. What is withdrawn then, on some line n, is the last pending assumption,
on some previous line m, and it means that the formula on that line m, and
those on the lines below it—until, but not including, the current line n—, are
no longer available for use below line n. In a visual display they are then brack-
eted out. All assumptions in a derivation that are not discharged this way are
pending, and better be explicitly included among the initial list of premises.

More formally, but still somewhat incompletely, we can now define:

Definition 5 (Derivability in PLERQ) A conclusion ψ is derivable from a
series of premises φ1, . . . , φn, φ1, . . . , φn ` ψ, iff there is a valid derivation:
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1. φ1 [ass.]
...

n. φn [ass.]
...
ψ

without any pending assump-
tions after line i.

The definition is said to be “incomplete” because the natural deduction rules
have not been specified yet. The required specification of the classical rules is
given in appendix A; the rules dealing with contextually restricted quantification
are presented and discussed in the remainder of this section.

The proof rules for contextually restricted quantifiers are obtained by relativiz-
ing the familiar rules of quantification to the contexts they are meant to be
sensitive to. The rules of existential generalization and universal instantiation
have to be related to variables that are secured to inhabit the contexts that
quantification is relative to. Such a guarantee comes from the rules for univer-
sal generalization and existential instantiation, which induce sub-derivations in
which variables are declared to inhabit the contexts quantification is relative to.
Guiding notion is that of a variable x that, in certain parts of the proof, counts
as being declared in context i.

The rules, with the necessary restrictions and licenses, read as follows.

∃-Introduction (I∃)
...

m. [z/x]φ
...

n. i∃xφ [I∃, m]

Variable z must count as declared in
i at line m.

∃-Elimination (E∃)
...

l. i∃xφ
...

m. [z/x]φ [ass.]
...

n-1. ψ

n. ψ [E∃, l]

Variable z may not occur free in
other assumptions, φ or ψ. It counts
as declared in i from line m to n.

If something, z, has been established to be φ, and if it has also been established
that this z lives in context i, then we can conclude that something in i is φ.
Conversely, if it has been established that something in context i is φ, and if we
are able to conclude that ψ holds whenever anything in i is φ, then ψ, of course,
must hold. These rules are actually the familiar ones, save for the restriction to
being in i. Observe that if we, as usual, consider the quantifiers interdefinable,
so that i∀xφ equals ¬i∃x¬φ, we can validate, the following rules for ∀.8

8. Appendix C shows how this is accomplished.
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∀-Introduction (I∀)
...

m. z = z [ass.]
...

n-1. [z/x]φ

n. i∀xφ [I∀]

Variable z may not occur free in
other assumptions, or in φ. It counts
as declared in i from line m till n.

∀-Elimination (E∀)
...

m. i∀xφ
...

n. [z/x]φ [E∀, m]

Variable z must count as declared in
i at line n.

If we can conclude that z is φ on the mere assumption that it is there in context
i, then we can conclude that every z in i is φ. This is, of course, the standard
logical inference rule, but now relativized to contexts. Conversely, if everything
in i is φ, then so is any z, provided that z has been established to be in i.

In our extensional framework it is assumed that all variables count as
declared in the default context, and the same goes for individual constants.
This assumption grounds our second theorem.

Theorem 2 (Transparency of Contexts, Proof-Theoretic)

` i∀x0Ex

The very same assumption also entails that, if there is no dependence on con-
texts other than the default one, our system of rules is classical. Soundness and
completeness of our calculus is thereby easily established. (See appendix B for
an outline of the proof.)

The alert reader may note that the notion of a variable or name being declared
in a context, and that of having a value, or existing, in a context, do not en-
tirely coincide. This, however, is a spurious distinction in the proof theory. If a
variable x or name n is not declared in a context Ci, and if it is equated with
a variable y that is declared in that context, then we can effectively count the
variable or name as being declared in that context, too. The Leibniz inference
rule guarantees that whatever holds of y, holds of x, or of n, and vice versa. So
if we have established that y exists in i, then so does x, or n, for that matter.
As a consequence, if a context Ci is known to be subsumed by another context
Cj , so that, semantically, Ci ⊆ Cj ,9 this does not entail that a variable x that
counts as declared in i also counts as declared in j, but it does entail that it
can be equated with some variable y that is declared in j, and so that if we can
deduce anything about y, because it belongs to context j, it will also ipso facto
hold about x, and vice versa.

Note, as well, that when x counts as declared in i, we have x=x from
which we can deduce i∃y x=y which equals iEx; conversely, when iEx, then,

9. The relevant situation is rendered by the assumption that i∀x jEx.
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effectively, x may count as being declared in i in a subsequent sub-derivation.
The same goes for individual constants. When iEn, then, effectively, n counts
as declared in i. The rules for i∃-introduction and i∀-elimination may, thus,
indirectly, apply to individual constants, or names, too, that is, as long as they
are stipulated to have a value in i. Note, finally, that if En (i.e., ∃y n=y), then
by ∃-elimination and the identity rules we have that n=n.

1. ∃y n = y [ass.]
2. n = y [ass.]
3. n = n [L, 2, 2]

4. n = n [E∃, 1]

This is why it suffices to have the Identity Rule license self-identity of variables
only: indirectly it applies to individual constants, too.10

5 Francez’ Calculus of Restricted Quantification

In Francez 2014, §2, a proof theory is proposed for contextually restricted quan-
tification in a first order language that is similar to the one proposed here, but
regimented differently. Nissim Francez defines a calculus issuing whether Γ `c φ,
i.e., when φ is derivable from Γ in context c, where this context c constrains the
possible values that quantified variables in Γ and φ may have. A context c is de-
fined as a collection of formulas, each one of which has one free variable only, and
the formulas are thereby, collectively, and proof-theoretically, taken to restrict
the possible ranges of the variables quantified over in Γ and φ.

Without going into details, it may, I hope, be obvious from this circum-
scription that whatever results from Francez’ system, can be captured in ours in
a rather transparent way. For any quantified expression Qxφ in Francez’ system,
if it is employed in a deduction involving any context c there, it can be equated
with one in ours as iQxφ, if we add the explicit assumption ∀x(Cx ↔ iEx),
where Cx equals whatever Francez’ context c brings to bear on the possible
values of x. If things work in Francez’ system the ways things are supposed to
work classically, then a translation along these lines should capture all of it.

Francez presents his system to argue for, and favor, a proof-theoretic approach
to natural language semantics, as against a model-theoretic one. Even though
I am quite sympathetic to this enterprise, I fear the contextually restricted
interpretation of quantifiers does not constitute a convincing argument. The
model-theory we have defined in section 2 is sound and complete relative to

10. The Leibniz Rule could also be stated for identified variables only, if we had adopted the
quantificational, declarative, treatment of names mentioned above.
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the natural deduction system that we presented in section 4, so it should be
immaterial logically speaking which method to adopt.11

Francez also claims that it is a benefit of his proof system that it obeys
what he calls the CIP, the context incorporation principle:

[F]or every quantified sentence S depending on a context c, there ex-
ists a sentence S′, the meaning of which is independent of c, s.t. the
contextually restricted meaning of S is equal to the meaning of S′.
Thus, the effect of a context can always be internalized. The current
model-theoretic accounts of contextual domain restriction do not sat-
isfy CIP, in that they imply intersection of some extension with an
arbitrary subset of the domain that need not be the denotation of any
NL-expression. (Francez 2014, p. 249)

I find it hard to make proper sense of this. Surely it is convenient if we are able to
express everything we want to express in a context independent way. One might,
with good reason, call this Frege’s ideal. It is, however, at best, a convenient
result, if a result at all. In Francez’ system, however, it is a built-in assumption,
one that arguably limits the scope of its work. Contexts are, in Francez’ system,
defined by his open formulas, so, in Francez’ approach, unspecifiable contexts do
not exist by definition. This is a point that is surely not independently argued
for in the paper, and actually it might be a severe limitation, as we will argue
below.

As against model theoretic semantics (MTS ) approaches to context de-
pendence, Francez also levels the following objection.

(. . . ) [T]he consequences that can be drawn from the contextually
varying meaning of an (affirmative) sentence, namely (affirmative)
sentences entailed by a sentence with contextually varying meaning,
which themselves have meanings varying with context, are hardly ever
considered in MTS-based discussions. [p. 256]

I believe the rather straightforward semantics spelled out in the second section
of the current note proves this objection to be mistaken.

In the system presented in section 2 of this note, it is possible to give
partial specifications of a context, for instance that a context Ci contains two
individuals one of which loves the other.12 Such enables us to legitimately speak
of the lover in Ci and the beloved one there. Such are typically the kind of things
we need to know about contexts, and most of the times perhaps all we need to
know. Such a partially specified context, is, however, not available in Francez’
system. Likewise, it can be useful to know that one context Ci is included in
an other one Cj , as expressed by i∀xjEx, even if we don’t know how the two
context are actually specified. Again, it is impossible to model some such in
Francez’ system.

11. Normally the notions of soundness and completeness are defined the other way around,
but in this case it seems to be more appropriate to establish this converse relation.
12. We can, e.g., stipulate, or assume, that i∃xi∃y(Lxy ∧ ¬Lyx ∧ i∀z(z=x ∨ z=y)).
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There are, moreover, some logical problems with the proposal by Francez.
Francez’ contexts essentially restrict the domain of a quantifier by explicitly
constraining the values of the variables bound and for this reason the system
does not allow any substitution of bound variables. The fact that we cannot
always allow substitution of bound variables is, logically speaking, problematic,
to put it relatively mildly. Relatedly, there is the problem that the specifications
of the contexts must be interpreted in a context independent way themselves,
otherwise there is no obvious way to save and rescue the cherished CIP. It is not
clear, however, how we must regiment this use of assumed context independent
assumptions, in an inference format that is meant to interpret them context
dependently.

There are, to my knowledge, only two other proposals for a logic dealing with
restricted quantification, Kuroda 1982 and Bonomi 1998. Kuroda’s project is,
nominally, similar to mine, in that he advocates an indexed predicate calculus,
the indices in which serve to be indicative of varying contexts of interpretation.
However, his aims pertain to non-extensional types of discourse, that involve
other worlds, or ‘mini-worlds’, and he does not actually present any formal
proposal.13

Bonomi’s project is also close to mine, when he observes, for instance,
that “(. . . ) different quantifiers in the same sentence may refer to different do-
mains. For this purpose, a set I of indices is added to the usual vocabulary of
the first order language.” (Bonomi 1998, p. 471–2). The indices are supposed
to relate to contexts which are full-blown, but partial, submodels of an exten-
sional model. Unfortunately, Bonomi also offers only a “sketch of a formalism”.
(Bonomi 1998, § 6) It is not obvious how it should be spelled out.14

6 Conclusion

In this note I have presented a calculus for contextually restricted quantification,
and sketched some applications. I have detailed a model-theoretic interpretation,
as as well as a proof theory, the suitability of which is outlined in the appendix.
The proof system was also compared with a proof calculus proposed by Nissim
Francez, which is similar in outline and spirit, but which is heavily restricted by
the assumption that its contexts are syntactically defined; Francez’ system was
also suggested to be superior to any model-theoretic approach, a suggestion I
think failed solid motivation.

13. “[T]he (. . . ) paper is intended only to set out a programme, not as a summary of an
accomplished work. (. . . ) No semantic rule in the strict sense of formal logic is formulated.
(Kuroda 1982, p. 45-6)
14. The semantics suggested in the paper involves a specification of some partial extensions
and counterextensions of the relation expressions and, apparently, an evaluation of the formulas
that is partial, with a positive and negative dimension. Footnote 2 does refer to some earlier
work, “formerly discussed from a different standpoint,” but these references are by no means
conclusive, either.
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My main, principal and principled, objection to Francez’ proposal is that
it is not just built on a convenient and simplifying assumption, but it is essen-
tially relying on it. Without a syntactic specification of contexts, there simply
are no contexts in Francez’ system—just none, by definition—, while in natural
and logical practice we may still be able to reason with contexts that are only
partially specified, or not even specified at all.

Two pressing issues have not been addressed in this note. First, as Craige
Roberts, among many others, has argued, natural language discourse can be used
to change contexts, also those that affect domains of quantification. (Roberts
1995) Moreover, various theories of dynamic semantics have emphasized obvi-
ously anaphoric uses of definite descriptions, so uses which also ask for a con-
textual determination. It must for now remain an open question how this type
of discourse dynamics has to be incorporated in our system.

Second, Sige-Yuki Kuroda, Kai von Fintel and Jason Stanley and Zoltán
Szabó have, among various others, argued that contexts can be quantified, per-
haps indirectly. (Kuroda 1982; von Fintel 1994; Stanley & Szabó 2000) Von
Fintel discusses the following example, attributed to Irene Heim.
(24) Only one class was so bad that no student passed the exam.

Apparently this must be read as saying that in one class all students, in that
class, failed, while in any other class at least one student, in that class, passed.
The remedy, consists in allowing for a kind of functional dependencies, in the
proposals by these authors indicated by compound indices. Thus, they propose
to (partially) formalize (24) as (25).
(25) Only one class x was so bad that nof(x) student passed the exam.

The idea here is that the function f assigns a domain of quantification to any
x that is a class, and more in particular the set of individuals belonging to
that class. It may go without saying that the very same method can also be
incorporated in our system.

In my first footnote I mentioned several other pressing issues relating to con-
text dependence and this note is obviously incapable of fully answering them. I
nevertheless hope that a decent and well-defined classical formal framework as
presented in this note will help in guiding subsequent discussions along tractable
and verifiable directions.
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Appendix A. Proof Rules for the Propositional Connectives

The derivation rules for propositional logic are displayed in a schematic form
and their use is briefly explained.

Assumption (Ass)
...

n. φ [ass.]
[Any assumption can be made any time.]

The propositional connectives are governed by rules of elimination (aka ‘use’)
and introduction. If a conjunction has been established, say at some previous
line m, then either conjunct (‘left’ or ‘right’) can be inferred from it.

∧-Elimination (E∧l)
...

m. (φ ∧ ψ)
...

n. φ [E∧l
, m]

∧-Elimination (E∧r)
...

m. (φ ∧ ψ)
...

n. ψ [E∧r , m]

Of course, the previously established conjunction may not be an assumption
that is withdrawn, or depend on assumptions that have been withdrawn in
the meantime. One may derive the conjunction (φ ∧ ψ) of any two previously
established propositions φ and ψ.

∧-Introduction (I∧)
...

l. φ
...

m. ψ
...

n. (φ ∧ ψ) [I∧, l, m]

Again, the previously established propositions may not depend on assumptions
that are withdrawn. (I will henceforth refrain from making this proviso explicit.)

→-Elimination (E→)
...

l. (φ→ ψ)
...

m. φ
...

n. ψ [E→, l, m]

→-Introduction (I→)
...

m. φ [ass.]
...

n-1. ψ

n. (φ→ ψ) [I→]
there are no pending assump-
tions between lines m and n.
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An implication (φ→ ψ) established at some line l can be used if its antecedent
φ has been established as well, say, at line m, and it licenses one to conclude to
its consequent ψ, at line n. We conclude to such an implication by hypotheti-
cally assuming its antecedent φ on some line m, and then, in the context of that
assumption (and in the context of the lines above m) validly derive some conclu-
sion ψ. If this has been established then—upon withdrawing that assumption,
and everything that is based on it—one may conclude that (φ → ψ), in that
very same context again.

¬-Elimination (E¬)
...

l. ¬φ
...

m. φ
...

n. ⊥ [E¬, l, m]

¬-Introduction (I¬)
...

m. φ [ass.]
...

n-1. ⊥
n. ¬φ [I¬]

there are no pending assump-
tions between lines m and n.

A negation ¬φ excludes that φ, so if we establish ¬φ, on some line l and φ
on some line m, then we reach a dead end, marked by the falsum (‘⊥’) in the
negation elimination rule. If such a falsum (‘⊥’) marks the dead end of a line of
hypothetical reasoning, we may conclude that the assumption that it is based
upon is excluded, so that we can conclude to the negation of that assumption.

¬¬-Elimination (E¬¬)
...

m. ¬¬φ
...

n. φ [E¬¬, m]

If it is excluded that φ is excluded, as ¬¬φ says, we cannot but agree to accept
φ, even if we fail a direct proof of it. (For the latter reason the rule is not
universally agreed upon.) For the first order system, we also need two, classical,
rules dealing with identity.

Leibniz (L)
...

l. t1 = t2
...

m. [t1/z]φ
...

n. [t2/z]φ [L, l, m]

Self-Identity (=)
...

n. x = x [=]
The variable x must count as de-
clared at line n.

[The terms t1 and t2 must be
free for the variable z in φ.]
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Appendix B. Normalization in the Extensional Calculus

We define a normalization, or decontextualization, of our contextually restricted
quantifiers by making their context-dependence explicit in the language. For
this purpose we avail ourselves of a set of one place predicates {Pi}, not used
otherwise, that we can assume to be uniquely related to the contexts {Ci} that
we employ. We define the normalization φ′ of any formula φ, by a simple recursive
definition, which hosts only two characteristic clauses. Assuming that Pi is the
one place predicate uniquely associated with index i, these are the following.

i∃xφ′ = ∃x(Pix ∧ φ′) i∀xφ′ = ∀x(Pix→ φ′)

It may be obvious that, for any formula φ, the normalization φ′ contains no con-
textual restrictions other than the default ones, so that the formula is classical,
and has a classical model- and proof theory.

We can use the normalization procedure to show soundness and completeness
of our system, in outline, through the following series of equations.

Theorem 3 (Soundness and Completeness of PLERQ)
φ1, . . . , φn |=rqpl ψ iffa φ′1, . . . , φ′n |=rqpl ψ

′ iffb φ′1, . . . , φ′n |=cpl ψ
′ iffc

φ′1, . . . , φ
′
n `cpl ψ′ iffd φ′1, . . . , φ

′
n `rqpl ψ′ iffe φ1, . . . , φn `rqpl ψ

The first equivalence (iff a) holds that the normalization procedure is effectively
meaning preserving in the sense that if, and only if, any model M = 〈{Ci}, I〉
satisfies any formula φ it can be transformed into a model M ′ that models φ′

by adding, to M , the interpretation I(Pi) = Ci, for any context Ci ∈ {Ci}.
The second equivalence (iff b) follows from the fact that the semantics of

our language with no other contextual restriction than the default one is clas-
sical. The third equivalence (iff c) follows from the soundness and completeness
of classical logic. The fourth equivalence (iff d) follows from the fact that our
proof theory for the context free fragment of the language is classical.

The last equivalence (iff e) holds because any application of a proof rule
for a context-dependent quantifier can be replaced by an application of the
corresponding proof rule for the normalized quantifier, with the proviso that
any time a variable z was taken to count as declared in a context i, it is now
associated with the condition Piz. Thus:
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Normal ∃-Introduction (I∃)
...

m. [z/x]φ′

...
n. Piz [R, decl. z]
n′. [z/x](Pix ∧ φ′) [I∧, n, m]
n′′. ∃x(Pix ∧ φ′) [I∃, n′]

Normal ∃-Elimination (E∃)
...

l. ∃x(Pix ∧ φ′
...

m. [z/x](Pix ∧ φ′) [ass.]
m′. Piz [E∧, m]
m′′. [z/x]φ′ [E∧, m]

...
n′. ψ′

n′′. ψ′ [E∃, l]

Appendix C. Derivability of the Rules for ∀ from those for ∃

∀-Introduction (via E∃)
...

m. i∃x¬φ [ass.]
m′. [z/x]¬φ [ass.]
m′′. z = z [=]

...
n′′-1. [z/x]φ
n′′. ⊥ [E¬, m′, n′′-1]

n′′′. ⊥ [E∃, m]

n′′′′. ¬i∃x¬φ [I¬]

Variable z may not occur free in other as-
sumptions, or in φ. It counts as declared in
i from line m′ till n′′′.

∀-Elimination (via I∃)
...

m. ¬i∃x¬φ
...

n. [z/x]¬φ [ass.]
n′. i∃x¬φ [I∃, n]
n′′. ⊥ [E¬, m, n′]

n′′′. [z/x]¬¬φ [I¬]
n′′′′. [z/x]φ [E¬¬, n′′′]

Variable z is assumed to be declared in
i at line n.
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