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Abstract  Understanding human behaviour involves "why"'s as well as "how"'s.

Rational people have good reasons for acting, but it can be hard to find out what these

were and how they worked. In this Note, we discuss a few ways in which actions,

preferences, and expectations are intermingled. This mixture is especially clear with

the well-known solution procedure for extensive games called 'Backward Induction'.

In particular, we discuss three scenarios for analyzing behaviour in a game. One can

rationalize given moves as revealing agents' preferences, one can also rationalize them

as revealing agents' beliefs about others, but one can also change a predicted pattern

of behaviour by making promises. All three scenarios transform given games to new

ones, and we prove some results about their scope. A more general view of relevant

game transformations would involve dynamic and epistemic game logics. Finally, our

analysis describes and disentangles matters: but it will not tell you what to do!

1 Reasons for actions

You can perform one of two available actions Left and Right:

  You
Left       Right

 x y

The choice is yours. What will you do? Without further information, no prediction

can be made. Philosophers and decision theorists say that we need to know the

values you attach to the outcomes x, y – or stated in another way, your preferences

between these. Then, the logical form of the prediction is often said to be this:

(a) You must (and can) do Left or Right,

(b) You prefer outcome x.  Therefore:

(c) You will perform action Left.

But surely, there is no compelling logical reason why you must do what is best for

you. Much of the greatest world literature is about people who do not. But one

might say that rational people behave according to this inference pattern, and hence

we could take it as a definition of behaviour for a certain kind of agent.

The same pattern of inference is often invoked post-hoc, when we explain observed

behaviour. I see you choose Left, and conclude you must have liked outcome x better
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than y. We even do this when 'rationalizing' our own actions to ourselves or others.

You chose action Left without thinking about the consequences in a shady mid-night

bar – but oh, those good reasons you can add in the following morning light! We

humans may not be very good in taking rational decisions with a strict logical

discipline beforehand, but we are wizzards in rationalizing our actions afterwards.

The entanglement of actions, preferences, and rationality gets even more complicated

in the context of games, where more than one agent is involved. Let usgo there.

2 Interactive rationality in games

Here is a simple interactive scenario. You and I are about to start a little game:

Example 1  You first choose Left or Right. If you choose left the game is over; while

if you choose Right, it is then my turn to choose between Left and Right. The pay-

offs are indicated in the following game tree, with your value written first, then mine:

  You

1, 0 Me

    0, 100   99, 99

The standard procedure in game theory for this scenario is 'Backward Induction':

We start at the bottom: as a 'rational' player, I will choose to go Left,

since 100 is better than 99. You can see this coming: so going Right

gives you only 0, whereas going Left gives you 1. Therefore, you

will choose Left at the start, and we both end up getting very little,

while I lose most of all. Rationality literally has a high price!

Much more sophisticated scenarios exist where standard game solution procedures

have strange effects. My concern in this Note is not that this is 'wrong'. Underneath

various veneers, many human interactions work on 'using' and 'being used', and

rational suspicion is a fact of life. But my interest is in the logical reasoning

underpinning Backward Induction. This is more complex than what we have with

single decisions, since it also involves a new feature, viz. your expectations about my

behaviour.  In particular, you assume that I am rational in the above sense, choosing

Left, predicting that Right will end in 0, 100 – and so on, in more complex games.

Backward Induction is often considered the 'standard solution procedure' for games.

What is the status of this mixture of available actions, preferences, and expectations?

The following sections present three ways of viewing the above pattern of reasoning.
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3 Given actions and revealed preferences

Rationality in the above sense of decision theory and backward induction has a

remarkable staying power. One reason for this is its role, not so much in predicting

human behaviour, but in rationally reconstructing it, the earlier-mentioned process

of 'rationalization'. Suppose that your preferences between the outcomes of some

given game are not known. Then one can always ascribe preferences to you which

make your actions rational in the above sense. In the simplest scenario, if you

choose action Left over Right, one can always make your given choice rational a

posteriori by assuming that you prefer the former outcome over the latter.

This style of rationalization carries over to more complex interactive settings. But

now one must also think about me, i.e., the other player that you are interacting with.

Let a finite two-player extensive game  G specify my preferences, but not yours.

Moreover, let both our strategies � me, 
�

you for playing G be fixed in advance, yielding

an expanded structure that is sometimes called a 'game model' M. Now, when can we

rationalize your given behaviour � you to make our two strategies the Backward

Induction solution ('BI', for short) solution of the game? In principle, to achieve this,

we have complete freedom to just set your preferences, or equivalently, set the values

which you attach to outcomes of the game. And this can be done independently from

my already given evaluation of these outcomes.

Even so, not all game models M support Backward Induction. In particular, my

given actions encoded in � me must have a certain quality to begin with, related to my

given preferences. Note that, at any node where I must move, playing on according

to our two given strategies already fixes a unique outcome of the game. What is

clearly necessary for any successful BI-style analysis, then, is this:

My strategy chooses a move leading to an outcome which is

at least as good for me as any other outcome that might arise

by choosing an action, and then continuing with � me, 
�

you.

Let us call such a game 'best-responsive' for me. The following result is folklore:

Theorem 1    In any game that is best-responsive for me, there exists a preference 

relation  for you among outcomes making the unique path that plays our

given strategies against each other the Backward Induction solution.

Proof Sketch  One starts with final choices for players near the bottom of the game

tree, assigning values reflecting preferences for you as described at the beginning of

this section. Now proceed inductively. At my turns higher up in the game tree, their

being best-responsive for me makes sure automatically that  I am doing the right
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thing, provided our strategies in the subgames following my available moves are

already in accordance with BI. Next, suppose it is your turn, while the same inductive

assumption holds about the immediate subgames. In particular, then, these subgames

subgames already have BI-values for both you and me. Now suppose your given

move a in � you leads to a subgame which has a lower value for you than some

subgame produced by another move of yours. In that case, a simple trick makes a

the best for you. Take some fixed number N large enough so that adding it to all

outcomes  in the subtree headed by a makes them better than all outcomes reachable

by your other moves than a. Now, it is easy to see the following feature:

 Raising all your values of outcomes in a game tree by a fixed amount  N

does not change the BI-solution, though it raises your total value by N.

Doing this to a's subtree, your given move at this turn has become best.   �

Example 2  Here is a picture of how our procedure runs bottom-up – with bold face

arrows drawn for your given moves, and dotted arrows for mine, while the bold-face

numbers at the leaves indicate the values for outcomes that we postulate for you:

You  You           You

     Me   3     Me                3   Me

You    You             2              You             4

          0            1        2                3

 (a)   (b)             (c) [N=2]

Think of the value 3 to the left in (b) as having been assigned in some subgame

already.  Of course, the numbers can be assigned in many ways to get BI right.

By Theorem 1, one can always pretend that you did the rational thing by tinkering

with your preferences. This is the basis for re-analysis of games in practice,

replacing initial assignments of values for players by others so as to match observed

behaviour. But there are alternative ways of rationalizing observed behaviour!

4 Given actions and revealed beliefs

The preceding analysis fixes the use of BI to rationalize given strategies in a game G,

and their accompanying beliefs, but it postulates the preferences for one of the

players. But there are other ways to 'twist the parameters'! At the opposite extreme,

one could start from given preferences for both players, but then modify the beliefs

of the players to rationalize the given behaviour Again, here is a simple example.  
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Example 3  Suppose you choose Right in the game of Example 1. One can interpret

this rationally if we assume that you believe that I will go Right as well in the next

move. This rationalization is not in terms of your preferences, but of your beliefs

about me. Note that this style of rationalizing need not produce the BI solution.

Again, this rationalization for given strategies presupposes a certain pattern in a

game G, or better: game model M. This time, consider a finite extensive game as

before, with your strategy � you and your preference relation given (my preference

relation does not matter in this scenario). Evidently, not all behaviour of yours can be

rationalized. Suppose that you have a choice between two moves Left and Right, but

all outcomes of Left are better than all those arising after Right. Then no beliefs of

yours about my subsequent moves can make a choice for Right come out 'best'.

More precisely, a game model which can be expanded so as to make your moves

bets in terms of your beliefs about my strategy must satisfy the following condition:

Your strategy � you never prescribes  a move for which each outcome

reachable  via further play according to  � you  and any moves of mine

is worse than all outcomes reachable via some other move for me.

In case you are the last to move, this coincides with the usual decision-theoretic

requirement that you must choose a move that guarantees a best possible outcome

for you. Let us call a game model satisfying this condition 'not-too-bad' for you.

Theorem 2    In any game that is not-too-bad for you, there  exists a strategy �
for me against which, if you believe that I will play � , your � you is optimal.

Proof Sketch  This time, the adjustment procedure for finding the rationalizing

strategy �  is a bit different. The idea works top-down along the given game tree.

Suppose that you make a move a right now according to your strategy. Since your

given strategy � you is not-too-bad for you, each alternative move b of yours must

have at least one reachable outcome y (via � you plus some suitable sequence of moves

for me) which is majorized by some reachable outcome x via a. In particular, the

maximum outcome value for you reacheable by playing a will always be better than

some value in the subgame for the other moves.

Now we describe the expected strategy for me which makes your given move a

optimal. Choose later moves for me in the subgame for a which lead to the outcome

x, and choose moves for me leading to outcomes y� x in the subgames for my other

moves b. Doing this makes sure a is a best response against any strategy of mine

that includes those moves. This does not yet fully determine the strategy that you

believe I will play, but one can proceed downward along the given game tree.  �
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Example 4   Here is a game with your moves marked as bold-face arrows, and with

the necessary rationalized beliefs about me indicated by the dotted arrows. Note that

in contrast with Theorem 1, the outcome values for you are now given beforehand:

You

     Me                    Me

You You     You        You

       1            4    2            1       3              Me  5              6

       5          2

Your initial choice for going Left has been rationalized by forcing the outcome 4  –

assuming that I will go Left –, which is better than the forced outcome 3 on the right

– assuming that I would go Left there, too. Likewise, one step further down, in the

subtree with outcomes 3, 5, 2, a Right move for you would have resulted in 2 rather

than 3, if we assume that I would next go Right there.

Theorem 2 provides no underpinning of your belief that I will play � . Indeed, �  may

go totally against your known preferences! But the rationalization becomes more

convincing, of course,  if we can think up some plausible story of why I might want

to act according to � . And this is sometimes possible in ways different from

Backward Induction. E.g., why might I believe that you will choose Right in the

game of Examples 1, 3? Van Benthem 2003 suggests a general alternative to BI in

terms of Returning Favours. If players have run risks for the 'common good', they

should not be punished for that, but rewarded. In particular, in the given game, I run

the risk of losing one point in playing Right. Hence you owe me at least that much –

and you should reward me by choosing an outcome where I do not lose it.

Even so, Theorem 1 still applies. Even 'historical justice' can be reanalyzed in the BI-

style of Section 3, as changing the values which players would attach to outcomes.

This is no contradiction: just different ways of making sense of the same behaviour.

Also, Theorems 1 and 2 describe extreme cases of rationalizing given strategies in

games. We could devise procedures manipulating both my preferences and beliefs.

5 Promises, game change, and dynamic logic

But instead of rationalizing whatever has happened already, we can also try to do

something about the initial situation we find ourselves in. Clearly, it would be good
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for me in the game of Section 2 to change the outcome. And indeed, our life is full

of dynamic actions that break out of some given scenario, and change it! A good

way of changing the world in this way is making a promise to the other player:

Example 5 In the game of Example 1, I can promise you that

"I will not go Left when you have gone Right."

In that case, we can both be assured of getting an outcome of 99, as opposed to that

meagre outcome 1, 0 recommended by BI. Now there are many tricky aspects to this,

such as what would convince you that I would keep that promise. But these are not

my concern: I am just interested in modeling the action in its simplest form. Let us

say that my promise puts such a high punishment on my choosing Left that this

branch disappears from the game tree. In that case, the new game becomes

 You

1, 0            Me

           99, 99

How can we model a process where games can change because of certain actions?

Think of dynamic logics of information update. A binding promise is like

a public announcement !A of a true assertion A

To be precise here, we should work again with game models M, not just games (cf.

van Benthem 2001, 2002 for details). A public announcement restricts the current

model M, s to a model M|A, s of just those worlds in M which satisfy A. One can

then analyze effects of making announcements on agents' beliefs in dynamic

epistemic or doxastic logics which involve valid 'reduction axioms'such as:

[!A]B i

�
	
  (A �  Bi ([!A]

�
 | A))

where the binary belief operator Bi(– | –) on the right stands for a conditional belief.

In our game scenario, a promise announces an intention in a game, which restricts

the possible reachable nodes.  We will merely sketch how this can be done more

systematically, referring to the incipient technical literature in the field.

For a complete logic for game changing by promises and announced intentions,  one

needs a language over game models which describes players' moves, preferences,

and beliefs. A good test on whether the right expressive power has been achieved is

definability of the Backward Induction solution. Various answers in the literature

can be used here: cf. van Benthem 2001, De Bruin 2004, Harrenstein 2004, or van

Benthem, van Otterloo & Roy 2006. But once this has been set up, we have this
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Theorem 3 There is a complete logic of public announcements over extensive

games of perfect information which consist of a standard static base logic

plus a complete set of reduction axioms for announcement modalities

over the relevant move and preference modalities of the game language.

As an illustration, here is the key axiom for making a move a:

[!A][a] ��   Poss(A) � [a][!A] � �
where Poss(A) says that at least one reachable end node satisfies A.

The required compositional reduction axioms for preference modalities are like

those given in van Benthem & Liu 2005, and those for belief are as in van Benthem

2006. We do not repeat them here, as they are well-known and accessible. But

maybe the more interesting issue concerning behaviour is how public announcement

of intentions changes what we know about the effects of strategies in a game.

Strategies can be defined as programs in a dynamic logic over extensive games (van

Benthem 2002), which can then define a modality

{ � } �  saying that strategy �  only leads to nodes satisfying condition �

Now we can also give reduction axioms for reasoning about the effects of strategies

in the changed game. These become equivalences of the form

 [!A]{ � } ���� � �  A�  ][!A] � ,

using the fact that propositional dynamic logic is closed under domain relativization

(van Benthem 1999). This applies to reasoning about the new BI-strategies in our

earlier games changed by a promise. Eventually, defining equilibria in games

requires modal fixed-point logics such as the � –calculus (van Benthem 2003), in

which case we need to exploit the closure of such logics under relativization, and

other model-changing constructions (cf. van Benthem, van Eijck & Kooi 2005).

This dynamic take on changing games is more in line with procedural conceptions

of rationality, as following the right procedure to improve one's situation.

6 Where to go from here

Our simple observations raise many further questions. What minimal number of

promises will make a given game end in the way I want? What about issuing threats,

not just promises? What if players do not know each others' preferences? What

about alternatives to Backward Induction, such as Repaying Favours, or Wishful

Thinking, assuming that things will always go for the best? What if we do not know

other players' strategies, and our beliefs do not fix a single hypothesis? As the game

unfolds, we will learn more – but this requires much richer game models than the
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ones used here. And what if we recast the scenario of Section 5 as a new game over

a given one, where making promises itself becomes viewed as an admissible move?

Despite all these open ends, we hope to have shown that a dynamic look at game

transformations is rewarding, and that it leads to interesting logical questions.

Moreover, we think all this helps getting a better grasp of rationality, which involves

the circular, but intriguing requirement that we be able to interact successfully with

other rational agents. In traditional mathematical logic, it was enough to record the

structure of 'agent-free' proofs, semantic structures, and valid inferences. But a

modern logic for analyzing human behaviour must also have a story of the 'hidden

variables': the  beliefs, preferences, and the other features which make us tick.
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