
A METHOD IN PROOFS OF 

UNDEFINABILITY 

WITH APPLICATIONS TO FUNCTIONS IN 

THE ARITHMETIC OF NATURAL NUMBERS 

K. L. DE BOUVERE





A METHOD IN PROOFS OF UNDEFINABILITY





A METHOD IN PROOFS OF 

UNDEFINABILITY 
WITH APPLICATIONS TO 

FUNCTIONS IN THE ARITHMETIC OF NATURAL NUMBERS 

ACADEMISCH PROEFSCHRIFT 

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR 

IN DE WIS- EN NATUURKUNDE AAN DE UNIVER- 

SITEIT VAN AMSTERDAM, OP GEZAG VAN DE 

RECTOR MAGNIFICUS DR. M. W. WOERDEMAN, 

HOOGLERAAR IN DE FACULTEIT DER GENEES- 

KUNDE, IN HET OPENBAAR TE VERDEDIGEN 

IN DE AULA DER UNIVERSITEIT OP WOENSDAG 

20 MEI 1959 DES NAMIDDAGS TE VIER UUR 

DOOR 

KAREL LOUIS DE BOUVERE S.C.J. 
GEBOREN TE LEIDSCHENDAM 

1959 

NORTH-HOLLAND PUBLISHING COMPANY 

AMSTERDAM



No part of this book may be reproduced 
in any form by print, microfilm or any 

other means without written permission 

from the publisher 

PRINTED IN THE NETHERLANDS



Aan de Nagedachtenis van 

mijn Vader





Bij de publicatie van dit proefschrift heb ik de eer mijn oprechte 

dankbaarheid te betuigen aan mijn leermeester en promotor, 

dr. E. W. Beth. Hij heeft mijn aandacht gevestigd op de pro- 

blemen der definieerbaarheid en hij heeft gedurende het gehele 

onderzoek hoogst waardevolle adviezen verstrekt. Zijn kennis was 

een schatkamer van informatie, zijn belangstelling een bron van 

inspiratie. 

Gedurende mijn studententijd heb ik het voorrecht gehad te 

worden onderwezen door vele uitstekende beoefenaren der weten- 

schap. Het wil mij voorkomen, dat het onderwijs in de wiskunde 

aan de Universiteit van Amsterdam in de eerste jaren na de tweede 

wereldoorlog werd gekenmerkt door een ongewoon aantal mutaties 

in het docenten-corps. Aanvankelijk moge deze omstandigheid een 

enigszins verwarrende indruk hebben gemaakt, thans acht ik het van 

onschatbare waarde de lessen te hebben kunnen volgen van de 

wiskundigen dr. L. E. J. Brouwer, dr. E. M. Bruins, dr. J. G. 

van der Corput, dr. D. van Dantzig, dr. H. Freudenthal, dr. 

J. de Groot, dr. A. Heyting, dr. F. Loonstra, dr. J. A. Schouten en 

dr. B. L. van der Waerden. Ik dank hen ten zeerste voor de vor- 

ming, welke ik van hen mocht ontvangen. 

Ook het onderricht in de natuurkunde van dr. C. J. Bakker, 

dr. J. de Boer en dr. A. M. J. F. Michels is voor mij, mede in ver- 
band met mijn wijsgerige vorming, van grote waarde geweest. 

It is a pleasure to thank also the Professors L. A. Henkin, 

S. C. Kleene and A. Tarski, who spent some time as guests in 

Amsterdam and whose lectures it was a delight to attend.





INLEIDING EN SAMENVATTING 

In een recente lezing „Over waarheid in de wiskunde’’ wees 

A. Heyting op de drie voornaamste componenten der klassieke 

wiskunde. Het is bekend hoe één ervan, de intuitieve component, 

is geisoleerd door L. E. J. Brouwer, die de grondslagen heeft gelegd 

van de intuitionistische wiskunde. Heyting zelf is toonaangevend 

geweest in de verdere ontwikkeling van het intuitionisme en het 

is vooral te danken aan zijn bijdragen, zowel op het gebied van 

onderzoek als van onderwijs, dat de eervolle band is bestendigd 

tussen de intuitionistische wiskunde en het Mathematisch Instituut 

der Universiteit van Amsterdam. Geenszins echter heeft deze ver- 

dienste aanleiding gegeven tot eenzijdigheid in het grondslagen- 

onderwijs aan dit instituut. In dezelfde lezing vermeldde Heyting 

een andere component der klassieke wiskunde, die elders is uitge- 

groeid tot de semantiek, en hij wees op belangrijke en interessante 

resultaten uit dit gezichtspunt verkregen. In het mathematisch 

en logisch onderwijs der Universiteit heeft meer in het bijzonder 

EK. W. Beth deze tak van wetenschap ingevoerd. Het Instituut 

voor Grondslagenonderzoek heeft daarenboven dit gehele terrein 

gemakkelijker toegankelijk gemaakt. 

Dit proefschrift is een voorbeeld van een semantische methode 

in de theorie der definitie. Met de methode, die hier wordt ont- 

wikkeld, kan in bepaalde omstandigheden de onafhankelijkheid 

worden bewezen ener niet-logische constante van andere niet- 

logische constanten met betrekking tot een gegeven theorie. Deze 

onafhankelijkheid betekent, dat in het bestek der gegeven theorie 

de beschouwde constante niet expliciet kan worden gedefinieerd 

met behulp der andere voorkomende constanten. Tot nu toe had 

men voor dit soort bewijzen de beschikking over de methode van 

A. Padoa, daterend uit 1900. A. Tarski gaf in 1934 een theoretische 

fundering van deze methode, terwijl Beth in 1953 bewees, dat de 

methode algemeen is, dat wil zeggen: indien (onder bepaalde voor- 

waarden) met betrekking tot een theorie een niet-logische constante 

onafhankelijk is van de andere voorkomende niet-logische con- 

stanten, dan kan dit worden bewezen met behulp der methode van 

Padoa. Dat er desondanks ruimte is voor een nieuwe methode, 
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wordt aan de ene kant gerechtvaardigd door theoretische over- 

wegingen, welke een dubbel aspect aanwijzen, en aan de andere 

kant door de praktijk, waarin het niet altijd mogelijk is gebleken 

voor bepaalde onafhankelijkheden de geschikte toepassing van 

Padoa’s methode rechtstreeks aan te geven. 

In hoofdstuk I wordt het begrip expliciet defimieerbaar gekarak- 

teriseerd op model-theoretische wijze. Zowel de methode van 

Padoa als de stelling van Beth spelen een rol by deze karakteri- 

sering. Bovendien wordt er onderscheid gemaakt tussen ondefini- 

eerbaar en essentieel ondefinieerbaar. Laatstgenoemde term betekent, 

dat een constante niet op expliciete wijze definieerbaar is, niet alleen 

met betrekking tot de beschouwde theorie zelf, maar evenzeer met 

betrekking tot iedere consistente uitbreiding van deze theorie, die 

dezelfde constanten bevat. 

De model-theoretische karakterisering behelst twee methoden 

om ondefinieerbaarheid te bewijzen: de methode van Padoa en de 

methode ontwikkeld in hoofdstuk II. Laatstgenoemde geeft aan- 

leiding tot een indirect gebruik, dat analoog is met Tarski’s indirecte 

methode in bewijzen van onbeslisbaarheid. Onder bepaalde voor- 

waarden stelt de methode ons namelijk in staat vast te stellen, dat 

een constante essentieel ondefinieerbaar is met betrekking tot een 

bepaalde, bijvoorbeeld eindig axiomatiseerbare, subtheorie der 

theorie, waarom het gaat. Hieruit volgt dan, dat de ondefinieer- 

baarheid zich ook uitstrekt met betrekking tot deze theorie zelf, 

In hoofdstuk III wordt deze methode toegepast op enkele reken- 

kundige functies. De methode stelt ons bijvoorbeeld in staat vast 

te stellen, dat vermenigvuldiging essentieel niet op expliciete wijze 

kan worden gedefinieerd met behulp van eenheid en optelling met 

betrekking tot een eindig axiomatiseerbare subtheorie der geforma- 

liseerde rekenkunde der natuurlijke getallen. Hieruit volgt dan, 

dat vermenigvuldiging niet expliciet kan worden gedefinieerd met 

behulp van eenheid en optelling met betrekking tot de geformali- 

seerde rekenkunde zelf. Dit feit was uit andere hoofde reeds bekend: 

de theorie met vermenigvuldiging is onbeslisbaar, terwijl de theorie 

met alleen optelling en eenheid beslisbaar is. Maar het pleit voor 

de bruikbaarheid van de methode, dat zij ons in staat stelt het 

bewijs rechtstreeks te leveren. 

In hoofdstuk IV wordt teruggegrepen op een andere distinctie, 

welke in hoofdstuk I is gemaakt, namelijk die tussen expliciete
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definieerbaarheid en defimeerbaarheid op grond ener gelyjkheid. Deze 

distinctie geldt uitsluitend individuele en operationele constanten. 

Definieerbaarheid op grond van een gelijkheid betreft een definitie 

bestaande uit twee termen gescheiden door het gelijkteken. Nu is 

door een resultaat van K. Gödel bekend, dat bijvoorbeeld de 

hogere functies in de reeks van W. Ackermann arithmetisch zijn, 

dit wil zeggen expliciet kunnen worden gedefinieerd met behulp 

van optelling en vermenigvuldiging. Van de andere kant is een 

definitie door gelijkheid niet mogelijk. Wij passen de methode van 

hoofdstuk II toe op deze functies om hun expliciete ondefinieer- 

baarheid te bewijzen met betrekking tot bepaalde subtheorieën der 

rekenkunde. Deze toepassing blijkt tegelijk een methode op te leveren 

om de onmogelijkheid van een definitie door gelijkheid te bewijzen 

met betrekking tot de gehele geformaliseerde rekenkunde. 

Het onderzoek is in dit proefschrift beperkt tot theorieën met 

standaard-formalisering. Dit zijn theorieën geformaliseerd binnen 

het bestek der logica van de eerste orde met identiteit. Uitbreiding 

tot andere logische systemen lijkt zeker mogelijk.





PREFACE 

This study is a sample of a semantic!) method in the theory of 

definition. Already in 1900 A. Padoa ”) proposed a semantic method 

in proofs of undefinability. G. Peano *) was the first to recognize 

the value of this method, followed by A. Tarski, A. Lindenbaum, 

J. C. C. McKinsey *) and others. A new step was made by E. W. 

Beth 5) in 1953, when he showed that Padoa’s method is a general 

method, in other words, that whenever (under certain conditions) 

a non-logical constant is undefinable explicitly with respect to a 

theory from the other non-logical constants occurring in this 

theory, there is a way to prove this fact by Padoa’s method. At 

the same time this was a first application of logical methods related 

to G. Gentzen’s formalization to a problem in the theory of models. 

In this work the concept of explicit definability is characterized 

in terms of models. Both Padoa’s method and Beth’s theorem 

appear to be tools for this characterization. The study is confined 

to theories with standard formalization, but the results could be 

extended. The characterization in terms of models entails a new 

method in proofs of explicit undefinability which seems to have 

certain advantages over Padoa’s method. A distinction is made 

between explicit undefinability and essential explicit undefin- 

ability. The latter term means that a certain non-logical constant 

is undefinable explicitly from certain other non-logical constants 

not only with respect to the theory in question, but also with 

respect to every consistent extension of this theory. Under certain 

conditions the method developed in this study enables us to state 

that a given non-logical constant is essentially undefinable explicitly 

from the other non-logical constants occurring with respect to a 

certain, say finitely axiomatizable, subtheory of the theory con- 

cerned. This implies that the same non-logical constant is undefin- 

1) For a brief description of semantic methods, cf. e.g. [8]. The numbers 

in square brackets refer to References. 

2) Cf. [13], [14] and [15]. 

3) Cf. [14] and [15]. 

4) Cf. [20], [21] and [12]. 

5) Cf. [2]. 
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able explicitly from the same other non-logical constants with 

respect to the theory itself. For example, the method enables us to 

state that multiplication is essentially undefinable explicitly from 

addition and unity with respect to a finitely axiomatizable sub- 

theory of the formalized arithmetic of natural numbers. It follows 

that multiplication is undefinable explicitly from unity and addition 

with respect to the formalized arithmetic of natural numbers. This 

fact was well-known for indirect reasons: the theory with multi- 

plication is undecidable, whereas the theory with only unity and 

addition is decidable. But the method provides us with a direct 

proof of this fact, at the same time suggesting its own usefulness. 

A further distinction is made between explicit definability and 

equational definability of operation constants. The latter term 

points to a definition by means of equality. It is known by a result 

of K. Gödel 6) that e.g. the higher functions in the sequence of 

W. Ackermann”) are arithmetical, i.e. definable explicitly and 

validly from addition and multiplication with respect to the 

formalized arithmetic of natural numbers. At the same time they 

are undefinable equationally from the lower ones in the sequence 

with respect to the same theory. Application of the method 

developed in this study to show the explicit undefinability of these 

functions with respect to certain subtheories of the formalized 

arithmetic of natural numbers embodies a method to show their 

equational undefinability with respect to the complete theory of 

the formalized arithmetic of natural numbers. 

It is the author’s conviction that the suggestions made in this 

study are not more than a start for further investigations. 

6) Cf. [6]. 
7) Cf. [1].
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CHAPTER I 

DEFINABILITY 

I,1. Introduction 

In the following investigations we consider theories with standard 

formalization (theories which are formalized within the first-order 

predicate logic— with identity, without variable predicates) 1). In 

the informal discussion we refer to the non-logical constants in 

general of these theories as c1 ... Cr and d (eventually di … dm), to 

the individual constants as 7, 21 ... %, to the operation constants as 

O, 01 … Om and to the predicates (relation constants) as 7, 7e, 11...1n3 

we refer to terms as P,Q, R,..., to formulas as U,U’,V,V',W,W’,..., 

and to sentences as C,D,S,S’, Si... Sr, …. The theories are 

supposed to be formalized in the familiar logical notation with 
6 ae tE”, hinde Ed, be”, Ed, Ep, Sy”, tz, tu, _— “vi”, 

Cea’, … Sa)’, Wy)”, … “(Ha)”, (Ey)’,.…; where confusion is 

practically excluded we use the same symbols for their names in 

the informal discussion. 

Finite concatenations of symbols of these theories are called 

expressions. Among expressions we distinguish terms and formulas. 

The simplest, so-called atomic, terms are the individual constants 

and the variables. A compound term is obtained by applying a 

k-ary operation constant on k simpler terms. The simplest, so-called 

atomic, formulas are obtained by combining two arbitrary terms 

by means of “=” (throughout considered as a logical constant) 

or by combining k arbitrary terms by means of a k-ary predicate. 

Compound formulas are built from simpler ones by means of the 

negation ‘“~’’, the sentential connectives “\/’’, “&”, “—” and 

‘“<»” and quantifier expressions “(x)”, “(y)”, “(z)’, … “(Ha)”, 

“(Hy)”, “(Hz)”, .... A formula in which no variable occurs free 

is called a sentence. Technical symbols such as parentheses and 

commas are used in the familiar way; we could dispense with 

them as usual. 

1) For a description of these theories and the meanings of various 

terms used here see e.g. [22], pp. 5 ff. 
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2 DEFINABILITY 

J,2. Hxplicit definabshty of relation constants 

Although it is possible to use relation constants without knowing, 

intuitively speaking, whether they apply to all individuals, to none 

or to some, we confine ourselves in the theories under consideration 

to such relation constants 7 (assumed e.g. to be k-ary) for which 

the sentences: 

(zi) one (xx) r(x1 see Xx), 

(11) … (Xx) r(H1 … Lx), 

are valid in the theories concerned. We call these sentences the 

sentences characteristic for the relation constants 7. 

A sentence D is called an explicit definition of the k-ary relation 

constant 7 from the individual constants 41 ...7%;, the operation 

constants 01... om and the relation constants 71 … rn, if D has 

the shape 2): 

(21) eee (Xx) (r (a1 eee XE) <> OU (x1 woe Lk, vi eee U1, O1 ... Om, 71... 1n))s 

where U (a ... Xx, 11... 41, O1 … Om, 71... Tn) is a formula containing 

the free variables “xj” … “xp”, no other free variables and no 

other non-logical constants than 7 … 4,01 …… Om and 71... rn. 

We make use of two senses in which a relation constant r can be 

said to be definable explicitly from other non-logical constants 

C1... Cx with respect to a theory T: 

i) a strong sense: if there is an explicit definition D of r from 

C1... Cx Which is valid in T. In this case we say that r is definable 

explicitly and validly from ci... cy with respect to T. (This is the 

usual sense of “definable explicitly’’.) 

ij) a weak sense: if there is an explicit definition D of r from 

C1 ... Ce Which is compatible with |. In this case we say that r is 

definable explicitly and compatibly from ci ... cx with respect to T. 

For a k-ary relation constant 7, given as such in a consistent 

theory, to be definable explicitly and validly or compatibly from 

other non-logical constants with respect to the theory concerned 

it follows from the restriction expounded above (the sentences 

characteristic for a relation constant) that the explicit definition 

2) Cf. eg. [4], p. 31.
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in question has to fulfil certain conditions. If D is 

(zi) … (zr)(r(a1 … Xe) — U), 

the sentences: 

(zi) … (xx) U, 

(x1) … (ax) U, 

may not be valid in T or compatible with T U D, the union of 

T and D. The former of these sentences together with D would 

imply the validity (compatibility) of 

(x1) eee (xx) r(x eee Xx), 

and the latter together with D would imply the validity (compat- 

ibility) of 

(zi) … (Xp) r(1 … Xe), 

contrary to the characteristic sentences. 

Thus the idea of definability is guarded against quite trivial 

definitions. 

Given a consistent theory T containing the non-logical constants 

C1 ... Ck and r, the question arises whether r is definable explicitly 

from c1 ... cz with respect to T. A relation constant r is called defin- 

able explicitly from ci ...c, with respect to T or undefinable 

explicitly from c; ... cx with respect to T according as the solution 

of this problem is positive or negative. If r cannot be defined 

explicitly and validly from ci ... cy, with respect to T, we say 

simply that r is undefinable explicitly from ci ... cx with respect 

to T; if r cannot be defined explicitly and compatibly from c1 ... cx 

with respect to T, we say that r is essentially undefinable explicitly 

from c1.… cx with respect to T. 

The problem whether or not r is definable explicitly from the 

other non-logical constants cj … cp with respect to I, and in what 

sense, we call the definition problem for r with respect to T. 

If r is definable explicitly and validly from ci … cp with respect 

to T, then it is obvious that r is definable explicitly and compatibly 

from c,... cz, with respect to T. If r is essentially undefinable 

explicitly from cj … cp with respect to T, then it is obvious that 

r is undefinable explicitly from ci … cp with respect to T.
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It is possible to characterize the idea of explicit definability in 

terms of models. 

Let T be a consistent theory containing the non-logical constants 

C1 ... Cr and r. Let To be the subtheory of T containing all sentences 

of T in which r does not occur (a sentence being valid in To if and 

only if it is valid in T). 

For r to be definable explicitly and validly from ci ... cx 

with respect to T it is necessary and sufficient that any 

model Mo of To can be extended, and extended in one way 

only, with a notion r as an interpretation of r to a model 

M of T. 

i) The condition is necessary. If 7 is definable explicitly and 

validly from ci ... cx with respect to T, there is an explicit definition 

D of r from ci ... cp such that T is To UV D, the union of To and D. 

Let Mo be an arbitrary model <U; ci... cr) of To, U being the 

universe and ci … cy, the interpretations of ci ... cy respectively. 

Mo can always be extended with an interpretation r of r to M, — a 

model (U; ci ... cz, r> of T; for the explicit definition D of r from 

C1.… Cr can be interpreted as an explicit definition of r from 

C; ... Cx. On the other hand, Mo cannot be extended in more than 

one way with interpretations of r, e.g. with r and r’. Two different 

extensions would be contrary to the fact that r is definable 

explicitly and validly from ci … cz, with respect to T, according 

to the method of Padoa 3). 

ij) The condition is sufficient. If any model Mo of To can be 

extended, and extended in one way only, with an interpretation r of r 

to a model M of T, then it is impossible that there is one model Mo 

of To which can be extended into two different models of T, namely 

U; c1 … Cy, r> and (U; e1 … cz, r’>. This, however, has to be the 

case according to Beth’s result 4), whenever r cannot be defined 

explicitly and validly from ci … czy with respect to T. It follows 

that r is definable explicitly and validly from c1 ... cy with respect 

to T. 

For r to be definable explicitly and compatibly from ci ... cx 

with respect to T it is necessary and sufficient that 7 is definable 

3) Cf. [13], pp. 321, 322; [14], pp. 250, 254 ff.; [15], p. 91. 

4) Cf. [2] and [4], pp. 29 ff.
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explicitly and validly from c; ... cp with respect to some consistent 

extension of T having the same non-logical constants as T. This 

follows directly from the notions involved. So we can state: 

For r to be definable explicitly and compatibly from ci ... cz 

with respect to T it is necessary and sufficient that there 

is some consistent extension T* of T, having the same non- 

logical constants as T, such that, when To“ is the subtheory 

of T* containing all sentences of T* in which r does not 

occur, any model Mo* of To* can be extended, and extended 

in one way only, with a notion r as an interpretation of r 

to a model M* of T*. 

I, 3. Haplicit definabtlity of operation constants (and individual 

constants) 

In the theories under consideration for a k-ary operation con- 

stant o the following characteristic sentences are assumed to be 

valid: 

(zi) … (zr) ( Bara) (oli … He) = Xe41), 

(zi) … (rx) (arai) (ane) ((olmi.… Ar) = Ves. & O(A1 Kr) =O 42) > 

—> LkH=TkH2) 

A sentence D is called an explicit definition of the k-ary operation 

constant o from the individual constants #1 .… 1%, the operation 

constants 0] … Om and the relation constants 71 .… rn if D has 

the shape: 

(x1) eee (Xx) (anai) (ori eee Tk) = Le+1 <-> U (x4 wo. HEA, 11 eee V1, 

O1 eee Om, 11 we fn), 

where U(xi ... ei, 11... U1, O1 … Oms 11... %n) 18 a formula con- 

taining the free variables “a”... “ap, “apa , no other free 

variables and no other non-logical constants than 7 ... 01, 01 … Om 

and 71... Tn. 

Likewise, a sentence D is called an explicit definition of the 

individual constant 4 from the individual constants 21 ... 4%, the 

operation constants 01... om and the relation constants 7 ... rn 

if D has the shape: 

(x)\(t=ue> U(x, 1 see 41, O1 ... Om, 11... Yn));
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where U(x, 11... 01, O1 … Om, 71... Fn) is a formula containing the 

free variable “4”, no other free variables and no other non-logical 
constants than 7]... 4, 01... Om and 11 ... Tn 5). 

We can treat in this context individual constants as 0-ary 

operation constants. 

An operation constant (individual constant) o is said to be 

definable explicitly and validly from other non-logical constants 

C1 ... Cy with respect to a theory T, if there is an explicit definition 

D of o from ci ... cp which is valid in T. It is said to be definable 

explicitly and compatibly from c1 ... cx with respect to T, if there 
is an explicit definition D which is compatible with T. 

For a k-ary operation constant, given as such in a consistent 

theory T, to be definable explicitly and validly or compatibly from 

other non-logical constants with respect to the theory concerned 

it follows from the validity of the characteristic sentences that 

the explicit definition in question has to fulfil certain conditions. 

If D is 

(x1) … (%x)(Xe41)(0(%1 … Le) = Ar UV), 

the sentence: 

(vi) … (te) (Haeu)(U & (y)(U! > teu=y)), 

has to be valid in T (compatible with T UD), where “y” is an 

arbitrary variable (different from “zi” … “ar”, “tra ) which does 

not occur in U, and U’ is the formula obtained from U by replacing 

everywhere by “‘y’’ 8). “rar” 

In the same way as in the case of a relation constant we speak 

of the definition problem for o with respect to T, distinguishing 

between “‘undefinable explicitly’? and “essentially undefinable 

explicitly”. 

If o is definable explicitly and validly from ci ... cy with respect 

to T, then it is obvious that o is definable explicitly and compatibly 

from c,... cy, with respect to T. If o is essentially undefinable 

explicitly from c ... ex with respect to T, then it is obvious that o 

is undefinable explicitly from ci ... cy, with respect to T. 

5) Cf. e.g. [21], p. 299. 

6) Cf. [22], p. 20.
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There is a structural difference between the explicit definition 

of a relation constant and the explicit definition of an operation 

constant (individual constant). Both explicit definitions are con- 

textual, but in the former the definitwm contains with the definien- 

dum only variables, in the latter the definitum contains also the 

symbol “=” 7), 

The definitum in the explicit definition of an operation constant 

is in fact a relation. For any k-ary operation constant o in T can 

there be introduced into T a corresponding (k-+1)-ary relation 

constant re by the explicit definition C: 

(x1) wee (Xx) (ani) (rela +. Lk XLe+41) — o(xi wae Xe) = Xe41)- 

It follows from the sentences characteristic for an operation con- 

stant that in T UC the sentences: 

(zi) ve. (xr) (Erni) relxi XK Lk+1) 

(1) … (ma) (arr) (Area) ((Te(X1 … Ar Arai) Gre... Ar Lr+2)) > He41 = Le+2), 

are valid. Hence 7; fulfils in T UC the conditions characteristic for 

a relation constant. 
From a structural point of view in the case of the explicit 

definition of an operation constant (individual constant) it would 

seem more consistent to speak of the explicit definition of the 

corresponding relation constant. However, the characterization in 

terms of models fully justifies the common terminology to speak 

of the explicit definition of the operation constant itself. 

Let T be a consistent theory containing the non logical constants 

c, ... Cr and o. Let To be the subtheory of T containing all sentences 

of T in which o does not occur (a sentence being valid in To if and 

only if it is valid in 1). 

For o to be definable explicitly and validly from c1 … cx 

with respect to T it is necessary and sufficient that any 

model Mo of To can be extended, and extended in one way 

only, with a notion o as an interpretation of o to a model 

M of T. 

?) Cf. e.g. [5], p. 211. From a structural point of view the term definitum 

means the whole left-hand member of the equivalence; the term definuendum 

concerns only the defined constant in question.
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(The common terminology would seem inadequate if the last part 

of this characterization had to be read: ... that any model Mo 

of To can be extended and extended in one way only with a notion 

re as an interpretation of the with o corresponding relation constant 

re to a model M of T.) 

i) The condition is nécessary. If o is definable explicitly anp 

validly from ci... cx with respect to T, then there is an explicit 

definition D of o from c,... cz such that T is To U D. This is not 

so obvious as in the analogous case of the relation constant, for 

T may contain sentences where o occurs in another context than 

0(%1 … Xp) =Xe41, SO that it cannot be replaced immediately with 

the help of D. Nevertheless, for any sentence of T containing o 

in a context different from the definitum there is an equivalent 

sentence of T containing o in the required context. This may be 

illustrated by a simple example. Let e.g. a sentence S of T contain 

once 0(2%1 ... #;) in an atomic formula V different from the definitum. 

According to the sentences characteristic for an operation constant 

we may replace o(x1 … zr) in V by a new variable “‘y’’, different 

from “a,” ... “ax”, which does not occur in S. Indicating the thus 

changed atomic formula as V(y) we replace V by 

(Ey (o(a1 … zr) =y & V(y)). 

It is possible to specify the rules for a uniform process by which 

to any atomic formula V, containing o once or several times, a 

formula V’ can be effectively constructed, containing o only in 

atomic formulas of the shape o(xi … xr)=y, and having the 

property that V and V’ are equivalent with respect to T 8). We 

then argue: for any sentence S of T containing o there is an equiva- 

lent sentence S’ of To (without o) such that S is derivable from 

S' and Din Tp UD. Or, what amounts to the same thing, T is 

To U D. From what is said about relation constants it follows that 

any model Mo of To can be extended, and extended in one way 

only, with an interpretation of the relation o(xi ... x;)=y to a 

8) Two formulas U(xi … xx) and V(a... zr) of a theory T, containing 

the same free variables x; ... x, and no other free variables, are said to be 

equivalent with respect to T if and only if the sentence: 

(x1) eee (ve) (U -> Vv), 

is valid in T.
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model Af of T, which is To UD. When Mo could not be extended 

with an interpretation o of o to a model M of T, then Mo could 

not be extended with an interpretation of o(x ... x,)=y. When 

Mo could be extended in more than one way with interpretations 

of o, say o and o’, then Mo could be extended in more than one 

way with interpretations of o(xi ...v,)=y. Thus is it necessary 

that Mo can be extended, and extended in one way only, with 

an interpretation o of o to a model M of T. 

ij) The condition is sufficient. If any model Mo of To can be 

extended, and extended in one way only, with an interpretation 

o of oto a model M of T, then any model Mo of To can be extended, 

and extended in one way only, with an interpretation of o(a1 .… xx) = 4 

to a model M of T. This is sufficient for o to be definable explicitly 

and validly from c, ... cx with respect to T. 

Likewise we state: 

For o to be definable explicitly and compatibly from cy ... cz 

with respect to T it is necessary and sufficient that there 

is some consistent extension T* of T, having the same non- 

logical constants as T, such that, when To* is the subtheory 

of T* containing all sentences of T* in which o does not 

occur, any model Mo* of To* can be extended, and extended 

in one way only, with a notion o as an interpretation of 

o to a model M* of T*. 

I, 4. Hquational definability of operation constants (and individual 

constants) 

In order to avoid confusion we distinguish in this study between 

explicit definitions and equational definitions of operation con- 

stants and individual constants. A sentence D is called an equational 

definition of the k-ary operation constant o from the individual 

constants 4 ...%, and the operation constants 01... om if D has 

the shape 9): 

(x1) see (zr) (ola EE Le) = QV(x1 …… Uy Vy... U1; O1 … Om)), 

where Q(a1 … %%, U1 … 41, O1 … Om) 18 a term containing the free 
ce 99 ce variables “‘ax,’’... “xp” (and no other variables) and no other 

9) Cf. eg. [9], pp. 292, 293.
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(logical or non-logical) constants than 7 ...%; and 01... Om 1%). 

Likewise a sentence D is called an equational definition of the 

individual constant 7 from the individual constants 2; ... 4; and the 

operation constants 01 ... Om if D has the shape 1= Q(t1...41, 01 … Om), 

where Q(1 ... 1, 01 … Om) is a term containing no variables and no 

other (logical or non-logical) constants than 1 ... % and 01 ... Om. 

In this context also we may treat individual constants as 0-ary 

operation constants. 

An operation constant (individual constant) o is said to be 

definable equationally and validly from other non-logical constants 

C1... Ce with respect to a theory T, if there is an equational 

definition D of o from ci ... cz which is valid in T. It is said to be 

definable equationally and compatibly from ci ... cy with respect 

to T, if there is an equational definition D of o from c, ... cx which 

is compatible with T. 

Extending the definition problem to equational definitions we 

distinguish between ‘‘undefinable equationally” and “essentially 

undefinable equationally”’ in the same way as in the case of explicit 

definability. 

If o is definable equationally and validly from ci … ce with 

respect to T, then it is obvious that o is definable equationally 

and compatibly from c; … cx with respect to T. If o is essentially 

undefinable equationally from c1… ck with respect to T, then it 

is obvious that o is undefinable equationally from c1… cp with 

respect to T. 

Let T be a consistent theory containing the non-logical constants 

(individual constants and operation constants only) c1 … cx and o. 

Let To be the subtheory of T containing all sentences of T in which 

o does not occur (a sentence being valid in To if and only if it is 

valid in T). 

For o to be definable equationally and validly from ci … cx 

with respect to T it is necessary but not sufficient that any 

10) A sentence D having the shape: 

(zi) … (@x)(O(a1 … Ue) = Q(t... My O1 … Om)), 

wherein Q(t... %, 01... Om) is a term containing no variables at all, can 

also be called an equational definition of o. In this treatment, however, 

these so-called constant functions are not under consideration. The same 
Ce 99 6e 99 

° applies when Q contains only some of the free variables ‘x’... “wr
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model Mo of To can be extended, and extended in one way 

only, with a notion o as an interpretation of o to a model 

M of T. 

Here lies the first model-theoretical difference between explicit 

definability and equational definability (we shall see another 

difference in IV, 2). 

i) The condition is necessary. If o is definable equationally 

and validly from c1 ... cx with respect to T, then there is an equa- 

tional definition D of o from ci ... cz such that T is To U D. Let 

Mo be an arbitrary model <U; eci … cu of To. Mo can always be 

extended with an interpretation o of o to a model M of T, for the 

equational definition D of o from ci ... cp can be interpreted as 

an equational definition of o from ci... cz. On the other hand, 

Mo cannot be extended in more than one way with interpretations 

of o, e.g. with o and o’. The same argumentation as Padoa’s can 

be applied directly to equational definitions. 

ij) The condition is not sufficient. If every model Mo of To can 

be extended, and extended in one way only, with an interpretation 

o of oto a model M of T, it follows that o is definable explicitly 

and validly from c1 ... cx with respect to T. Thus there is an explicit 

definition D: 

(x1) eee (xx) (E41) (0(%1 eee LK) = LK41 > U), 

valid in T, where U is a formula as mentioned above. It does not 

follow that U has the shape: 

LkHl = Q, 

where @ is a term as required in the right-hand member of an 

equational definition, and it does not follow either that U is a 

formula equivalent with zr ==. Hence it does not follow that 

o is definable equationally and validly from ci … cr with respect 

to T. We shall see counterexamples in Chapter IV. 

Likewise we state: 

For o to be definable equationally and compatibly from 

C1 … Ce with respect to T it is necessary but not sufficient 

that there is some consistent extension T* of T, having the 

same non-logical constants as T, such that, when To” is the
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subtheory of T* containing all sentences of T in which o 

does not occur, any model Mo* of To* can be extended, 

and extended in one way only, with a notion o as an inter- 

pretation of o to a model M* of T*. 

It may be useful to remark, although trivial in itself, that it 

follows from the characterizations in terms of models that, if an 

operation constant (individual constant) o is definable equationally 

and validly (or compatibly) from ci ... cx with respect to T, it is 

also definable explicitly and validly (or compatibly, respectively) 

from ci .… cy, with respect to T. 

This can also be argued in the following simple way: if o is 

definable equationally and validly (compatibly) from ci ... cx with 

respect to T, then is there an equational definition D valid in 

(compatible with) T. If D is 

(x1) eae (xr) (olax1 eee xx) =Q), 

(where @ is a term without o and without other variables than 

Sai’ … “ate’’) then the sentence: 

(x1) eee (Xx) (Xe41)(0( 41 eee Xx) = Uk41 > ÁkH = 0), 

is valid in (compatible with) T. Hence o is definable explicitly and 

validly (compatibly) from c,... cz, with respect to T. 

In connection with the following investigations we wish to 

remark that, if an operation constant (individual constant) o is 

undefinable explicitly, then it is undefinable equationally, and 

if o is essentially undefinable explicitly, then it is essentially 

undefinable equationally. Therefore, in order to show that an 

operation constant o is undefinable equationally or essentially 

undefinable equationally from ci ... cx with respect to T, it is suf- 

ficient to show that o is undefinable explicitly, respectively essen- 

tially undefinable explicitly from ci ... cy, with respect to T. If, 

however, o is definable explicitly (validly or compatibly) from 

other non-logical constants with respect to T, it does not follow 

that o is definable equationally (validly or compatibly) from other 

individual constants and operation constants with respect to T, 

for it is possible that in the explicit definition of o the right-hand 

member of the equivalence neither has the shape xv,;41:=Q nor is
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equivalent with such a formula. We shall see counterexamples 
in Chapter IV. 

If 2 is the only individual constant of a consistent theory T it 

follows from the concepts involved that 7 is essentially undefinable 

equationally from other non-logical constants with respect to T. 

This is trivial. It does not follow, however, that in this case 7 is 

undefinable explicitly or essentially undefinable explicitly from 

other non-logical constants with respect to T, for equational unde- 

finability does not imply explicit undefinability. If o is the only 

operation constant in T it follows in a trivial way from the concepts 

involved that o is essentially undefinable equationally from other 

non-logical constants with respect to T. Again this implies nothing 

about explicit undefinability of o.



CHAPTER II 

A METHOD IN PROOFS OF UNDEFINABILITY 

IL, 1. Introductory remarks 

In this chapter we attempt to establish a method for obtaining 

a negative solution to the definition problem for a non-logical 

constant d (relation constant, operation constant or individual 

constant) with respect to a consistent theory |T. Dealing with a 

negative solution we confine the terminology of the method to 

explicit definability. A non-logical constant d being undefinable 

explicitly or essentially undefinable explicitly from other non- 

logical constants with respect to a theory T is automatically 

undefinable equationally or essentially undefinable equationally 

with respect to T. On the other hand, in case d is definable explicitly 

and validly or compatibly from other non-logical constants with 

respect to T the method cannot be used to prove eventually that 

d is undefinable equationally or essentially undefinable equationally 

from the other non-logical constants with respect to T. Therefore, 

in the lemmas concerning the method, we only speak of “undefinable 

explicitly’? and “essentially undefinable explicitly’. The crucial 

case of proving the equational undefinability of a non-logical 

constant which is definable explicitly, will be discussed later 

(in IV, 2, pp. 49 ff.). 

Padoa’s 1) well-known general method in proofs of undefinability 

can be based on one side of the characterization of explicit defin- 

ability in terms of models 2), namely on the necessity that any model 

Mo (cf. I, 2 and I, 3) can be extended in one way only with an 

interpretation of the non-logical constant concerned. The method 

consists in giving an Mo that can be extended with more than one 

interpretation, thus proving that the non-logical constant con- 

cerned is undefinable explicitly from the other non-logical constants 

with respect to the theory concerned. 

1) Cf. [13], pp. 321 ff. 
2) Cf. I, 2, p. 4. 

14
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The method in proofs of undefinability, which is developed in 

this study, is based on the other side of the characterization of 

explicit definability in terms of models, namely on the necessity 

that any model Mo can be extended with an interpretation of the 

non-logical constant concerned. The method consists in giving an 

Mo that cannot be extended in any way with such an interpretation, 

thus proving that the non-logical constant concerned is (essentially) 

undefinable explicitly from the other non-logical constants with 

respect to the theory concerned. 

We shall develop this method by some lemmas in IT, 2. After- 

wards we shall discuss the advantages and disadvantages of the 

method as compared to the method of Padoa. 

This introduction may be concluded with some general remarks 

about explicit undefinability. 

If T is a complete theory, all sentences compatible with T are 

valid in T and all sentences not compatible with T are not valid 

in T, Let T be complete and contain the non-logical constants 

C1 ... cy and d, then d is not only definable explicitly and compatibly 

from ci ... Cx with respect to T whenever d is definable explicitly 

and validly from c, … cx with respect to T, but the converse holds 

also. Likewise in the case of a complete theory d is not only unde- 

finable explicitly from ci ... cx with respect to T whenever d is 

essentially undefinable explicitly from ci ... cr with respect to T, 

but the converse holds also. Hence we state: 

For a complete theory T the condition: d is definable explicitly 

and validly from ci ... cy with respect to T is equivalent to 

the condition: d is definable explicitly and compatibly from 

C1 ... Cr with respect to T; likewise the condition: d vs unde- 

finable explicitly from cy... cy with respect to T is equivalent 

to the condition: d is essentially undefinable explicitly 

from ¢c,... Cy with respect to T, 

Another introductory remark having some interest in itself is 

the following: let d be essentially undefinable explicitly from 

C1... Cx with respect to a theory |. Since in this case d is unde- 

finable explicitly from c1.… cr with respect to every consistent 

extension of T, d certainly is undefinable explicitly from ¢ ... cx
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with respect to every consistent and complete extension of T, 

which has the same constants as T. On the other hand, let D be 

an explicit definition of d from ci ... cx, which is compatible with 

T and let T be consistent. Every consistent theory has a consistent 

and complete extension, which has the same constants, as we 

know by theorems of Lindenbaum and Tarski). TUD has a 

consistent and complete extension with the same constants, where 

of course D is valid, so that d is definable explicitly and validly 

from c1 ... cx with respect to this consistent and complete extension. 

Hence we state: 

For a non-logical constant d to be essentially undefinable 

explicitly from non-logical constants ci... ce with respect 

to a theory T it is necessary and sufficient that d is unde- 

finable explicitly from ci ... cy, with respect to every con- 

sistent and complete extension of T, which has the same 

constants as T 4). 

II, 2. Deorect proofs of undefinabilty 

Let T be a consistent theory containing no other non-logical 

constants than ci ... ck and d. Assume d to be definable explicitly 

and validly from c1 ... cx with respect to T. Let To be the subtheory 

of T containing all sentences of T in which d does not occur (a 

sentence being valid in To if and only if it is valid in T). Let Mo 

be an arbitrary model of To. 

According to the characterization of explicit definability in terms 

of models Mo admits the introduction of a notion d, which is an 

interpretation of the d of T. 

Conversely, when into Mo there can in no way be introduced 

a notion d as an interpretation of the d of T, then d cannot be 

defined explicitly and validly from c;...c, with respect to T: 

Lemma 1: Let T be a consistent theory containing the non- 

logical constants ci .… cr and d. Let To be the subtheory of T 

containing the non-logical constants ci ... cz, and all sentences of 

T in which d does not occur. If To has a model Mo into which 

there can in no way be introduced a notion d as an interpretation 

8) Cf. [22], pp. 15, 16. 
4) This fact justifies the terminology, cf. [22], p. 14, where A. Tarski 

speaks of “‘essentially undecidable’’.
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of the d of T, then d is undefinable explicitly from ci ... cy with 

respect to T 5). 

Corollary: Let T be a consistent theory containing the non- 

logical constants ci ... cy and di … dm. Let To be the subtheory of 

T containing the non-logical constants ci … cp and all sentences 

of T in which di … dm do not occur. If To has a model Mp into 

which there can in no way be introduced simultaneously notions 

di ... dm as interpretations of di … dm of T, then at least one of 

di ...dm is undefinable explicitly from c1 ... cp with respect to T. 

The argument of Lemma 1 is not sufficient to read this lemma 

with “essentially undefinable” instead of “‘undefinable’’. Assuming 

d to be definable explicitly and compatibly from ci ... ce with 

respect to T, without being definable explicitly and validly from 

C1... Cx with respect to T, then no explicit definition of d from 

C1 ... Cy is valid in T. But there is, in this case, at least one such a 

definition which is compatible with T. Let D be such an explicit 

definition, which is compatible with T. In general the valid sentences 

of T containing d, translated by D to sentences without d, although 

all compatible with To, are not all valid in To. Hence T is not 

necessarily a subtheory of To U D and although any model of To 

can be extended to a model of To U D, it is not implied that any 

model of Tp can be extended to a model of T. The same can be said 

for all explicit definitions of d from ci ... cx which are compatible 

with T. 

If, however, T is complete all sentences compatible with T are 

valid in T. So we state: 

Lemma 2: Let T be a consistent and complete theory con- 

taining the non-logical constants cj ... cy and d. Let To be the sub- 

theory of T containing the non-logical constants ci ... cp and all 

sentences of T in which d does not occur. If To has a model Mo 

into which there can in no way be introduced a notion d as an 

interpretation of the d of T, then d is essentially undefinable 

explicitly from ci ... cr with respect to T. 

5) As an illustration cf. the construction in [4], p. 34, (2). The analysis 

of this example provided the starting point of the present investigation.
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Corollary: The same as the corollary to Lemma 1, with 

“consistent and complete” instead of “‘consistent”’ and “essentially 

undefinable” instead of “undefinable”’’. 

If T is not complete but To is complete and D is an explicit 

definition of d from c,... cy, compatible with T, then all valid 

sentences of T translated by D to sentences of To are not only 

compatible with To but valid in To, as this theory is complete. 

So any model of To can be extended to a model of T and the 
argument of Lemma 1 holds: 

Lemma 3: Let T be a consistent theory containing the non- 

logical constants c1...c, and d. Let To be the subtheory of T 

containing the non-logical constants ci … cp and all sentences of 

T in which d does not occur. If To is complete and has a model 

Mo into which there can in no way be introduced a notion d as an 

interpretation of the d of T, then d is essentially undefinable 

explicitly from ci ... cx with respect to T. 

Corollary: The same as the corollary to Lemma 1 with “If 

To is complete and has a model Mo” instead of “If To has a model 

Mo’ and “essentially undefinable” instead of “‘undefinable’’. 

If a non-logical constant d is undefinable explicitly from ci ... cz 

with respect to T, the question arises whether there exists always 

a model Mo of To into which there can in no way be introduced 

a notion d as an interpretation of the d of T. The answer does not 

follow from the characterization in terms of models. For it is possible 

that any model Mo of To can be extended with a notion d, an 

interpretation of d, to a model M of T, provided that there is at 

least one Mo which can be extended with two different inter- 

pretations of d to two different models of T, namely (U;c1...czd> 

and (U; c, … c,d’). According to Beth’s result 6), the last condition 

is always fulfilled: when d is undefinable explicitly from c1 ... cx 

with respect to T, then there are always two models {U; c1 ... cd) 

and <U;c,... c,d’) of T. It follows that the model-theoretical 

point of view of this study does not imply the necessity of the 

existence of a model Mo of To into which there can in no way be 

introduced a notion d as an interpretation of d, a non-logical 

6) Cf. [4], pp. 29 ff.
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constant which is undefinable explicitly from ci ... cp with respect 
to T. 

In fact, the answer to the general question is negative, as can 

be demonstrated by an example. Let T be a theory with standard 

formalization containing no other non-logical constants than “<”’ 

and “+1” (“=” is throughout considered as a logical constant), 

which represents a suitable part of the arithmetic of integers; e.g. 

let T be the theory described in [4], p. 30, example 16. T is 

axiomatically built on the axioms: 

(x)(y)(e@=y > (a<y V y<2)); 

(a)(y)(e<y (t=y V y<2)); 

By) ry & Y¥<z) > &<2); 

(x)(e<a%+1); 

(z)(Ly) ); 

(2)(Ly) ); 
(Eyle <y &By<zZ) > x44+1<2). 

R 

<A 

(y =z+1 

(ytl=z 

As Beth (l.c.) shows by Padoa’s method “<” is undefinable 

explicitly from “+1” with respect to T. But any model Mo of To 

(which is the subtheory of T containing all sentences of T where 

<’’ does not occur) can be extended with an interpretation < 

of the “<” of T, for any infinite set satisfying the conditions of 

To can be ordered in the required way. According to a result of 

Henkin?) every set can be simply ordered. A simple ordering 

fulfilling the conditions: 

(x)(x<x+1), 

By) easy & y<z) > u+1<2), 

can be obtained in the following way. Let Up be the universe 

of Mo. Let r be the binary relation in Up such that, for two 

arbitrary elements a and b of Up, r(a, b) if and only if b is one 

of the elements: 

. a=—2, a—l, a, a-l, a+2, 

7) Cf. [7]. The ordering principle 0.
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It is obvious that r is a reflexive, symmetric and transitive relation, 

dividing Up in classes A, B, C,.... Within each class there is a simple 

ordering fulfilling the required conditions. Furthermore®), the 

family {A, B, C, ...} can be simply ordered according to Henkin. 

The result is a simply ordered set fulfilling the required condi- 

tions ®). 

II, 3. Comparison with Padoa’s method 

The two-models method of Padoa and the one-model method 

developed in this work, to prove the independence of a non-logical 

constant from other non-logical constants with respect to a con- 

sistent theory T, form together a pendant of the well-known 

method to show the independence of a sentence S from other 

sentences $1 … S; with respect to a theory T (i.e. that S is not 

derivable from S,...S; in T). Roughly speaking, this method 

consists in producing a model Mo which is a model of S81... Sz 

without being a model of S; the theorem of Löwenheim-Skolem— 

Gödel guarantees the existence of such a model. 

The one-model method to prove the undefinability of a non- 

logical constant from others with respect to a theory T is analogous 

to the method to prove the independence of a sentence from 

others with respect to a theory | in this sense, that both methods 

make use of one single model 1°). However, the one-model method 

for non-logical constants seems not to be supported by a simple 

pendant of the theorem of Löwenheim-Skolem-Gödel. 
The two-models method of Padoa to prove the undefinability 

of a non-logical constant from others with respect to a theory T 

is supported by Beth’s theorem 1!), which is quite analogous to 

the theorem of Löwenheim-Skolem-Gödel. Beth’s theorem guaran- 

tees the existence of two models to prove the undefinability in 

question. The method itself, however, is not analogous to the 
method showing the independence of sentences. 

8) Cf. [19], where Th. Skolem proves the existence of non-classical models. 

®) Cf. [23]. A Tarski’s ordering principles 02 and 03 are more complicated 

than the one developed here. 

10) Recently J. G. Kemeny approached the problem of the independence 

of sentences in a way very similar to the way developed in this study 

concerning the independence of notions. Cf, [10] and this work Chapter ITI. 
11) Cf. [4], pp. 29 ff.
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From a theoretical point of view Padoa’s two-models method 

is wider than the one-model method: whenever a non-logical 

constant is undefinable explicitly from other non-logical constants 

with respect to a theory T, it is possible to prove this situation 

with Padoa’s method. The same cannot be said about the one- 

model method. In practice it does not make much difference, since 

the real problem in most cases consists in finding out whether or 

not a non-logical constant is definable explicitly from the other 

non-logical constants with respect to T. From a heuristic point of 

view the construction of one model might have advantages over 

the construction of two models. This can be illustrated by one of 

the few cases where we know for other reasons that a certain 

non-logical constant is undefinable explicitly from the others with 

respect to a theory T. The case in question concerns the explicit 

undefinability of multiplication (“-”) from addition (“+”) with 

respect to a theory describing the elementary properties of the 

arithmetic of natural numbers with addition and multiplication. 

Since the theory with “1” and “+” is decidable (Presburger 12)) 

and the theory with “1”, “+” and “-” is undecidable (Barkley 

Rosser 13)) it follows that “-” is undefinable explicitly from “1” 

and “+” with respect to the last mentioned theory 14). Hence, it 

is sure that there exist two models, different in the multiplication 

only, to prove this undefinability by Padoa’s method. However, 

as far as the author knows, two such models have not yet been 

directly constructed. On the other hand, it is possible to prove 

the undefinability in question directly with the one-model method, 

as will be done in III, 3, where we construct a model into which 

in no way multiplication can be introduced. 

When one does not know beforehand whether or not a non- 

logical constant is definable explicitly, the attempts to construct 

the two models in order to apply Padoa’s method take on the risk 

of being vain, since the non-logical constant might be definable 

explicitly. Attempts to construct one model in order to apply the 

one-model method run the same risk but from a double source: 

the non-logical constant in question might be definable explicitly 

and there might be no model to demonstrate an eventual unde- 

12) Cf. [16]. 
13) Of. [18]. 
14) Cf. [11], p. 407 and [4], p. 34.
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finability. As illustrated in the example of multiplication, the 

greater risk does not imply less success. 

The one-model method is essentially stronger than Padoa’s 

method because of Lemma 3. By this lemma it can be decided 

that a non-logical constant d is not only undefinable explicitly 

from other non-logical constants c; ... cx with respect to a certain 

incomplete theory T, but even essentially undefinable i.e. not 

only undefinable explicitly with respect to theory T itself but 

also with respect to every consistent extension of T. Thus the 

method constitutes an analogy between undefinability with respect 

to a theory and undecidability of a theory 15). It will be shown in 

IIT, 3 that Lemma 3 can be used in practice. In III, 4 we shall 

also consider more closely the analogy mentioned. First we deal 

more in particular with the indirect method in proofs of undefin- 

ability. The reader acquainted with Tarski’s indirect method in 

proofs of undecidability will recognize the analogy in question. 

II, 4. Indirect method 

The Lemmas 1, 2 and 3 constitute a direct method to obtain a 

negative solution of the definition problem for a non-logical constant 

d with respect to a theory T. This direct method can be combined 

with an indirect method, which consists in reducing the definition 

problem for d with respect to a theory T2 to the definition problem 

for d with respect to some other theory 11, for which the problem 

has previously been solved. 

If d is essentially undefinable explicitly from c,...c, with 

respect to a theory T, then d can be defined explicitly and validly 

from ci .… cy, neither with respect to theory T itself, nor with 

respect to any consistent extension of T. On the other hand, let 

T contain the non-logical constants c1 ... cx, d and let d be undefin- 

able explicitly from ci ... cy, with respect to theory T, then d is 

undefinable explicitly from ci ...cz with respect to every sub- 

theory of T containing d. We might refer to this property by 

saying that a non-logical constant d, which is undefinable explicitly 

from other non-logical constants ci ... cp with respect to a theory 

T, is hereditarily undefinable explicitly from ci ... cx with respect 

to T 16), 

15) Cf. [22] passim; “‘essentially undecidable theory’’, p. 14. 

16) The terms “essentially undefinable” and “hereditarily undefinable’”’ 



INDIRECT METHOD 23 

Let Ti and Tz be consistent theories containing the non-logical 

constants ci ... cx and d, and let the latter be an extension of the 

former. Assume d to be definable explicitly and compatibly from 

c1 … Cx with respect to theory Te. Then d is definable explicitly 

and compatibly from c1 … cp with respect to theory Ti also. For 

a sentence compatible with a theory is a fortiori compatible with 

a subtheory of it. Conversely, if d is essentially undefinable 

explicitly from ci... cp with respect to T1, then d is essentially 

undefinable explicitly from ci ... cz with respect to Ts. Likewise 

it follows from the notions involved: if d is definable explicitly 

and validly from ci ... cp with respect to Te, then d is definable 

explicitly and compatibly from ci ... cz, with respect to 11; if d is 

undefinable explicitly from ci... cp with respect to Te, then d is 

undefinable explicitly from c, ... cy with respect to 11; if d is 

essentially undefinable explicitly from ci ... cp with respect to To, 

then d is undefinable explicitly from c ... cp with respect to Ta; 

and if d is definable explicitly and validly from cj ... cx with respect 

to Ti, then d is definable explicitly and validly from c, … cx, with 

respect to Ts. To the most practical of these statements we refer as: 

Lemma 4: Ifa theory Ti is a subtheory of a consistent theory 

Tg, both containing the non-logical constants ci ... cx, d, and if d 

is essentially undefinable explicitly from ci ... cz, with respect to 
Ti, then d is essentially undefinable explicitly from ci … cp with 

respect to Ts. 

Let T1 and Te be two consistent theories, both containing the 

non-logical constants ¢;...c, and d. Let Ti be compatible with 

Ts. If d is definable explicitly and validly from ci ... cp with respect 

to Te, then d is definable explicitly and compatibly from ci ... cz 

with respect to Ti. Conversely, if d is essentially undefinable 

explicitly from ci ... cx with respect to Te, then d is undefinable 

explicitly from c; ... cx with respect to Ti. We refer to this statement 

as: 

as used here are analogous to these in [22] of “‘essentially undecidable”’ 

and “hereditarily undecidable’’. ‘““Undefinable” applies to a non-logical 

constant with respect to a theory, whereas “‘undecidable”’ applies to a theory; 

the aspects of extensionality and intensionality are the same. Cf. foot- 

note 4 of this chapter.
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Lemma 5: Let Ti and Tz be two compatible theories, both 

containing the non-logical constants ci, ...cz, d and let d be 

essentially undefinable explicitly from ci ... cx with respect to Ty, 

then d is undefinable explicitly from ci ... cx with respect to Te. 

Let T, contain the non-logical constants c1 … cz, d and let T; 

be a subtheory of a consistent theory Te. If d is undefinable 

explicitly from ci … cp with respect to 71, it does not follow that 

d is undefinable explicitly from ci ... cx with respect to Te, for an 

explicit definition D which is not valid in Ti, might be valid in Te. 

If, however, Ta contains with c; ... cx, d other non-logical constants 

Ck41 … Ck+m and if Ty contains all sentences of Ta in which cx …. Ceram 

do not occur, the situation is different: an explicit definition D 

of d from c; ... cx which is valid in Ts, belongs to the valid sentences 

of Ti. Hence we state: 

Lemma 6: If a theory 1; containing the non-logical constants 

C1 ... Ce, d is a subtheory of a consistent theory Ts containing the 

non-logical constants c1 ... Cx, d, Cra … Cem, and if Tj contains all 

sentences of Ts in which Cz41 … Chim do not occur, whereas d is 

undefinable explicitly from ci ... cx with respect to theory Ti, then 

d is undefinable explicitly from ci ... cx with respect to theory Te.



CHAPTER III 

ADDITION AND MULTIPLICATION 

IN THE FORMALIZED ARITHMETIC OF 

NATURAL NUMBERS 

III, 1. Introductory remarks 

We consider the arithmetic of natural numbers formalized with 

standard formalization and with only five non-logical constants: 

an individual constant “1”, a unary operation constant “S’’, a 

binary relation constant “>” and two binary operation constants 

“4+ and “‘.”. Hence every possible realization of this theory is 

a system A, or ¢X; 1, 01, r, 02, 03), in which X is an arbitrary set, 

iis an element of X, 0; is a unary operation on X to X, ris a binary 

relation in X and og and oz are binary operations on XxX to X. 

To define the validity in this theory we consider that special 

realization <N;1,S8, >, +, ->, where all the symbols have their 

usual arithmetical meaning; the elements of N will be denoted as 

regular natural numbers. A sentence is said to be valid in this 

theory of arithmetic of natural numbers if and only if it holds in 

<N;1,S8, >, +, >>. We refer to this theory as T(-). 

T(-) is complete since the set of all valid sentences of T(-) coin- 

cides with the set of sentences which are satisfied in a single model. 

However, theory T(-) is known to be essentially undecidable and 

not axiomatizable 1). 

Let T(+) be the subtheory of T(-) containing all sentences of 

the latter in which “-” does not occur, a sentence being valid in 

T(+) if and only if it is valid in T(-). Obviously theory T(-+) is 

complete. Presburger 2) has shown that the complete theory of 

formalized arithmetic of integers, formalized with standard 

1) Cf. e.g. [22], p. 60, Theorem 9 (reading theory T(-) for theory N), 

in connection with p. 14, Theorem 1. Theory N of [22] has “0” as a non- 

logical constant instead of our ‘‘1’’, but that can be adapted easily. Further, 

theory N does without “‘>’’, but “>” can be introduced by an explicit 
definition. The same applies to “S’’. 

2) Cf. [16], p. 395 and pp. 92 ff. 

25
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formalization and containing no other non-logical constants than 

<0”, “1”, “4” and “>” ig axiomatizable and decidable. In fact 

he gives a recursive set of axioms in the symbolism of this theory 

and shows that the theory based on these axioms is complete and 

decidable. It is possible to adapt the axiom system of Presburger 

to an axiom system of T(+) by well-known methods. It follows 

that T(+) is decidable and hence axiomatizable. 

For our purpose it is sufficient to know that 

i) T(+) is complete and axiomatizable; 

ij) T(+) has the closure property for “S” and “+”. 

The latter of these statements needs some explication. Let 

<U; 1, S, >, +> be an arbitrary model of T(+), U being the 

universe and 1, S, >, + the interpretations of “1”, “56%, “>”, “+” 

respectively. Let i be an arbitrary element of U and let U’ be the 

closure of {i} under the operations S and +. We shall prove that 
for every model <U;1,S, >, +) of T(+) and for every element 

i of U, XU’; 1,8, >, + is also a model of T(+) 3). We refer to this 

fact by saying that T(+) has the closure property for “S’’ and 

“+. Later (cf. IV, 2, p. 51) we shall deal more in general with 

this property. Here we confine ourselves to what is needed in 

this chapter. It can be proved in an easy way that T(+) has the 

3) U’ as the closure of {i} under the operations S and + means, that U’ 

contains with i no more elements of U than those obtainable from i by 

(repeated) application of the operations S and +. 

Among the sentences describing the generating properties of S and + 

we reckon here the sentences: 

(x)(Ly)(« > 1 > Sy = 0), 
(x)(y)(Hz)(e > y >x=y + 2). 

Together with the sentences: 

(x)(y)(z)(Sy = « & Sz = x) > y = 2), 
(x\(y)(z)(u((e=yt+2z2e&u=ytu)>z= 4); 

they justify the operation constants “—l’? and “—’, which could be 
introduced into T(+) by the explicit definitions: 

yael = y by = 2), 
(x)(y)(2)(e-y = zou=y + 2). 

We do not add these explicit definitions to T(+), but we wish to stress 

that in this context the closure of {i} under the operations S and + includes 

the operations —l and — in their familiar arithmetical meaning.
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closure property for “$” and “+”. It is sufficient to show that 

each axiom of one chosen complete axiom system for T(+) holds 

as well in a model thus “deflated” as it does in the original model. 

Without going into details we argue that e.g. Presburger’s axiom 

system adapted for T(+) satisfies this condition. Presburger’s 

axioms are complete and form a recursive set of which each axiom 

has either the shape: 

(x) ... (y)V, 

or the shape: 

(x)... (y)(Hz) … (HuyV, 

where V is quantifier-free. The transformation to an axiom system 

for T(+) affects neither these shapes nor the recursiveness. Thus 

it can be verified in an easy way that each axiom contains only 

conditions which are satisfied in the closure mentioned. An axiom 

of the shape: 

(x)... (Y)V, 

holding for the original model holds automatically for the deflated 

model (a condition holding for all elements of a set holds for some 

elements of it); an axiom of the shape: 

(x)... (y)(H#z) … (Hu)V, 

holds in the deflated model, since the axioms of this kind of the 

system mentioned describe exactly the generating properties of 

S and +, and nothing more 3). 

We shall also consider a theory T'(-), an axiomatizable sub- 

theory of T(-) and an extension of 1(+) with some axioms con- 

cerning “-’’. We shall see that the new axioms concerning “-’’ are 

such, that T’(-) has the closure property for “S’’, “+” and “.”’. 

In this case this means that for every model (U; 1, S, >, +, > 

of T’(-) and for every element i of U, <U’;i,S, >, +, +) is also 

a model of T’(-), where U’ is the closure of {i} under the operations 

S, + and - 

Furthermore, theory T(+) is extended to a theory Ta(+) by 

adding to the axioms of T(+) the following recursive set of axioms 
C699, containing a new individual constant “a”:
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(la) al; 

(2a) a>w1; 

(3a) a>sS(S1); 

Obviously Ta(+) is axiomatizable. Moreover, from the fact that 

T(+) has the closure property for “9” and “+”, it follows that 

Tel +) has the closure property for “S” and “+”, In this case 

this means that for every model {U;1,S, >, +,a> of Ta(+) 

and for every two elements ij and ig of U, which are suitable inter- 

pretations of “1” and “a” respectively (i.e. ie > ii, ie > Sin, 

ig > S(Sii), …) U’; ii, S, >, -, ie) is also a model of Ta(+), 

where U’ is the closure of {ij, ig} under the operations S and +. 

In proving that Ta(+) has the closure property for “S’’ and “+” 

we can apply the same argument as for T(+), since the axioms 

(la), (2a), (3a),... have no influence. 

In the same way we extend T’(-) to Ta (-) by adding the axiomer 

(la), (2a), (8a), … to the axioms of T’(-). Obviously T,’(-) is 

axiomatizable and in the same way as expounded above for Ta(+), 

it follows from the fact that T’(-) has the closure property for 

“8”, “+” and “-”, that T,’(-) has this property also (in the 

sense of Ta( +), reading S, + and «instead of S and +). Further 

we might extend in the same way (in order to complete the scheme, 

although we do not need it) T(-) to Ta(-) by adding (la), (2a), 

(3a), ... as valid sentences to the valid sentences of T(-). Obviously 

Ta(-) is not axiomatizable; later we shall see that T(-) has not 

the closure property for “S’’, “+” and “-” (cf. IV, 1, p. 49), 

neither has Ta(-). We obtain the following scheme: 

x 

J Nal ) 
y 
T(-) x y 

| So Tal + ) 

ND 4 
T(+) 

4) According to a recent paper of J. G. Kemeny the method to add 

sentences a~la~#2,a%3, ... 

to a theory of this kind is due to L. A. Henkin. Cf. [10], p. 164.
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Every theory in this scheme is an extension of the theories which 

can be reached from it following the arrows. For our purpose (to 

show the independence of “-” from “1”, “S’, “>” and “+” 

with respect to the theories T’(-) and T(-), ef. III, 3) we need 

only the five theories 

T(-), T(:), T+), Ta(-) and Tal +), 

related as: 

TE) C TC) CT), 

TH) CT) CE Tal), 

T(+) C Ta(+) C Ta (-). 

In these theories there occur no other individual constants than 

“1” and “a’’, no other compound terms (cf. I, 1, p. 1) than those 

formed from atomic terms by (repeated) application of the unary 

operation constant “S’’ and the binary operation constants “+” 

and ““.”, and no other atomic formulas than those obtained by 

combining two arbitrary terms by means of “=” (throughout 

considered as a logical constant) or the binary relation constant “‘>”’. 

T(+) is consistent, since it has the model {N;1,S, >, +). 

So Ta(+) is consistent, since any finite subtheory of it has the 

model <N;1,S, >, +, ao) (where ao belongs to N) and is con- 

sistent. T(-) and T’(-) are consistent, since both have the model 

<N; 1,8, >, +, >. So Ta’(-) is consistent, since any finite sub- 

theory has the model <N; 1, S, >, +, +, ao) (where ao belongs to 

N) and is consistent. 

Starting with T(+) we can form in a similar way another scheme 

of theories: 

Every theory in this scheme is an extension of the theories which 

can be reached from it following the arrows. For our purpose (to
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show the independence of “+” from “1”, “S” and “>”, ef. ITI, 2) 

we need only the five theories 

T(+), T+), TOS), Ta’(+) and Ta(S), 

related as: 

TSC T’(+) C T(+4), 

TS) C T’'(+) C Ta (+), 

T(S) C Te (S) C Ta (+). 

T(+) is as expounded above. T(S) is the subtheory of T(+) con- 

taining all sentences of the latter in which “+” does not occur, 

a sentence being valid in T(S) if and only if it is valid in T(+). 
T(S) has the properties i) and ij) of p. 26 reading T(S) for T(+) 

and S for S and +. T’(+) is a subtheory of T(+) and an extension 

of T(S). For the main purpose of ITI, 2 we could dispense with 

T’(+) and work instead immediately with I(+); but for the 

unity of treatment, for clearness’ sake in connection with the 

analogy to Tarski’s undecidability and in order to show the 

strength of the method, it is useful to apply the extra link of T’(+). 

Ta (+) and Tg(S) are obtained by adding to the axioms of these 

theories the recursive set of axioms (la), (2a), (3a), .... Since T(S) 

has the closure property for “S’’, Ta(S) has this property also, as 

argued for T(+) and Ta(+). 

As the latter scheme of theories is a continuation downwards 

of the former, it is obvious that all theories under consideration 

in the latter are consistent. 

About constants, terms and formulas in the theories of the 

latter scheme, cf. what is said for the theories of the former scheme, 

reading “+” instead of “+” and “-”, 

In order to fix the thoughts and to refer in an easy way we give 

first a list of some (well-known 5)) valid sentences of T(-): 

¢ 99, i) sentences with no other non-logical constants than “> 

(l1>) (x)y)\(e@=yo (4>y V y>2)); 
(2>) (x)y)(e>yo (e=y V y>x)); 
(83>) (x)(y\(2\((e>y & y>z) > e>2); 

5) All these sentences can be interpreted as well-known arithmetical] 

theorems.
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ij) sentences with no other non-logical constants than “1’’, 
669” and “ow. 

(IS) _ (x)(Hy)(Sx=y); 
(25) — (x)(y)(z)((St=y & Sx=z) > y=2); 
(3S) — (x)(Hy)(w>1 > Sy=2); 
(45) (x)(y)(z)((Sy=a & Sz=ax) > y=2) 
(5S) (x)\(w=1 > a>1); 

(6S) (x)(Sa> x); 

(78) (a)(y)(e@>y > Sx>Sy) 
(8S) (x)(y)(z)((a@>y & y>z) > v> 82) 

lij) sentences with no other non-logical constants than ‘‘1”’, 
og? os and “ 47. 

1+)  (x)(y)(Hz)(a@+y=2); ( 
(2+) DW) eee 2 &¢+y=u) > z=u); 
(3+) (x)(e+1=82); 
(4+) cyte Sy S(x+4)); 
(5+) (PY (rl & y>1) > (x+y>Sa & e+y>Sy)); 

(6+) (x)y)(z)\(e>y — (e€+2>y+2)); 

(7+) (x)(y)(2Z)(y>2 > (e+ y>x+2)); 
(S+)  (x)(y)(z)(@+ (y +2) = (24) +2); 

iv) sentences with no other non-logical constants than “1”, 
ES, ED, ce”? and 66 7? 

(x)(y)(H2z)(x-y=2); 

x Me \(ul(e-y=e & w-y=U) > 2=U); 

w-1l=2x); 

ye: Sy=tt (2-4); 

yal & y>1) > (x-y>Su & x-y>Sy)); 

em
d 

(x)( 
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Z)(y>2z—>xu-y>u-2); 

glee (yz) = (w-y)-2). 

It is practical to remark that from the sentences (1>), (2>),
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(83>) and (18S)... (8S) the sentences: 

(x)((2>1—-> U(x))<> U(S2)); 

(x)((t>S1 — U(a)) > (x>1 > U(Sx))); 

are derivable in the theories under consideration. These equivalences 

provide us with practical rules of inference for the arithmetical 

theories concerned: 

(x)(~>1—> U(z)) 

(x) U(Sz) 

(x)(a>S1 — U(x)) 

(x)\(a> 1 + U(S2)) 

and so on. 

We refer to these rules as (R). 

and conversely, (R) 

and conversely, 

III, 2. Undefinability of “+” from “1” and “S” 

Proceeding to the definition problem for “+” from “1”, “S” 

and ‘‘>’’ with respect to theory T(+) we consider the theories 

T(S), Ta(8), T(+), Ta (+) and (+), 

as mentioned above ®). 

T(S) is known to be finitely axiomatizable 7). For our purpose 

it is of no interest which axiom system in particular is chosen for 

T(S), provided it is complete, contains the non-logical constants 

“7 “8” and “>” and has <N; 1,58, >), where all the symbols 

have their familiar arithmetical meaning, as a model. In every 

system the sentences (1>), (2>), (83>), (18) ... (8S) are provable, 

because they are valid in T(S). T(S) has the closure property for 

58°, as can be shown in a similar way as for T(+) (cf. III, 1, p. 26, 

dropping “+” and +). 

6) In this particular case of T(-+-) the method could be applied in a less 

complicated way (cf. III, 1, p. 30). However, the scheme followed here can 

be applied in more cases as will be shown in III, 3 and IV. 

7) Cf. e.g. [3], pp. 57 ff. E. W. Beth’s theory M is a theory of integers, 

but can be adapted.
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T’(+) is obtained by adding as axioms to the axioms of T(S) 

the sentences (1+-), (2+), (3+), (4+) and (7+) 8). 

Theory Tq’(+) contains a.o. the following provable sentences: 

(la+) at+a>NSa; 

(2a +) at+a>S(Sa); 

(Ba +) ata>NS(S(Sa)); 

Proof: a+a>a+1, (la) and (7+); 

a+1=Sa, (3+); 

so ata>Sa. 

Further, 

ata>a+8S81, (2a) and (7+); 

a+S1=S(a+1), (4+); 

S(a+1)=S(Sa), (3+); 

so at+a>S(Sa). 

Similarly for (3a+) and so on. 

Since Tg(S) is consistent it has a model. This model contains 

interpretations for “1”, “5”, “>” and “a”, which we designate 

by 1, S, > and a. We consider only the closure of {1, a} under 

the operation S. The universe thus deflated we designate by AS, 

(AS; 1,8, >>, a> with the universe thus deflated is still a model 

of T,(S) for the reasons mentioned in ITI, 1, p. 30, (Ta(S) has the 

closure property for ‘“S’’). AS can be represented as: 

1,2,3,.... a, al, a, atl, a+2,.... 

where we borrow the symbols 2, 3, .... and — from the familiar 

arithmetic; in (AS; 1,S, >,a) the symbols 1, S and > have 

8) The reason why the list of p. 31 contains also the sentences (5 +), 

(6 +) and (8 +), not needed here, is a matter of uniformity with IV, 1. 

The sentence (2 +) is not used directly in the arguments of this section, 

but it is needed as one of the characteristic sentences for an operation 

constant, cf. I, 3, p. 5. The axiom system for T’(+) as given here, is not 

independent, e.g. “5” can be defined explicitly and validly from “1” and 

‘‘1 >? with respect to T’(+) and thus be eliminated (‘‘S”’ is “+ 1”). This 

fact is of no interest for our purpose.
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their usual arithmetical meaning and the ordering of AS is given 

by the order in which the elements are written down from left 

to right. AS contains two enumerable subsets A1S and A25, A,S 

having the order-type of the natural numbers, A2S having the 

order-type of the integers; ng>>n holds between every ng belonging 

to A25 and every n belonging to AiS. 

AS does not contain an element a* with the properties: 

a* >a; 
a” > Sa; 

a” > S(Sa); 

since this a* would exceed all elements given by the closure of 

{1,a} under the operation S. 
The model (AS; 1, S, >, a> is also a model of T(S), since this 

theory is a subtheory of T,(S). 

99 Theorem 1: The non-logical constant “+” is undefinable 

explicitly and essentially undefinable explicitly from the non- 

logical constants “1”, “$” and “>” with respect to theory T’(+). 

Proof: We apply Lemma 1 to T(S) and T’(+) with (AS; 1, 

S, >, a) as a model of the former. In no way into this model can 

there be introduced a notion + as an interpretation of the “+” 

of T’(+). 

For such an introduction would imply that (AS; 1, S, >, +, a) 

would be a model of T,’(+). But according to (1+) AS would then 

contain an element a + a; according to (la+), (2a+), (8a+), .... 

this element would have the properties: 

a+a> Sa; 

a +a > S(Sa); 

a + a > S(S(Sa)); 

As we have seen AS does not contain such an element a*. So “+” 

is undefinable explicitly from “1”, “S” and “>” with respect to
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theory [’(+). Moreover, T(S) is complete and so by Lemma 3 

we obtain that “+” is essentially undefinable explicitly from 

“Ir, “S” and “>” with respect to T’(+). 

Theorem 2: The non-logical constant “+” is essentially 

undefinable explicitly from the non-logical constants “1”, “9” 

and “>’’ not only with respect to T'(+), but also with respect 

to every consistent extension of I’(+), in particular with respect 

to I(+). 

Proof: The theorem is an immediate consequence of Theorem 1 

and Lemma 4. 

99 Theorem 3: The non-logical constant “+” is undefinable 

explicitly from “1”, “S’ and “>” with respect to every sub- 

theory of T(+) containing “1”, “S’’, “>” and “+”. The same 

holds with respect to every consistent theory which is compatible 

with T’(+) and which contains the mentioned non-logical con- 

stants. 

Proof: The first part of the theorem follows from the remarks 

preceding Lemma 4. The second part results from Lemma 5. 

Corollary: What is said about “+” being (essentially) unde- 

finable explicitly from “1”, “S’’ and “>” with respect to the 

theories mentioned in Theorems 1, 2 and 3, applies a fortiori to 

the (essential) undefinability of “+” from “1” and “S”’ with 

respect to the same theories. 

Corollary: If “>” is definable explicitly and validly from 

“1”, “S” and “+” with respect to a theory mentioned in the 

Theorems 2 and 3, then “+” is (essentially) undefinable not only 

from “1”, “S”’ and “>” with respect to this theory, but also from 

“1” and “SS” with respect to the subtheory obtained from this 

theory by dropping all sentences containing “‘>”’ 

The corollaries are trivial. Since “>” is definable explicitly 

and validly from “+” with respect to 1T(+) 9%), the corollaries 

justify the title of this section in a double aspect. 

III, 3. Undefinability of 66 9? from “1? and “+” 

Proceeding to the definition problem for “-” from “1”, “8”, 

°) (x)y)(e > y + (Hz)(y + 2 = 2)).
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“>” and “+” with respect to theory T(-) we consider the theories 

(+), Ta(+), T(-), Ta'(-) and T(-), 

as mentioned above. 

T(+) is known to be finitely axiomatizable 10), For our purpose 

it is of no interest which axiom system in particular is chosen for 

T(+), provided it is complete, contains the non-logical constants 

A, “8? “>” and “+” (“S8” may be included in “+” as “*+1’’), 

and has <N; 1, S, >, +) as a model. In every system the sentences 

(l>)....(3>), (1S).... (8S), (1+).... (8+) are provable 

because they are valid in T(+). T(+) has the closure property 

for “S” and “+” as pointed out in III, 1, p. 26 and so has Tal +). 

T’(-) is obtained by adding as axioms to the axioms of T(+) 

the sentences (1-), (2-), (3-), (4-) and (5-) 14). 

The following sentence is provable in T’(-): 

(9) (a)(y)((w@>1 & y>S1) > eget). 

Proof: (x)(y)(y>1—>Sa-y>Sy), (5-) and (R); 

(x)(y)(y>1 — Sx+Sx-y>Sx+S8y), (7+); 

(x)(y)(y>1 > Sx-Sy>Sx+Sy), (4+); 
(al & y>S1) >a-y>a+y), (R). 

The following sentences are provable in theory Ta(-): 

(la-) a-a>a+a; 

(2a-) a-a>at+(at+a); 

(Ja) a-a>a+(a+(a+a)); 

10) In III, 1 we quoted M. Presburger’s infinite axiomatization (for 

historical reasons). The argument which E. W. Beth gives for a theory of 

integers with “1”, “8” and “>>” can also be applied here: the decision method 

involves only a finite number of non-logical principles, hence the theory is 

finitely axiomatizable. 

Cf. [3], pp. 57 ff. 

11) The sentences (6-), (7-) and (8-) in the list of p. 31 are not needed 

here. They are mentioned in the list for the sake of uniformity with IV, 1. 

The axiom system for T’(-) as given here is not independent, cf. footnote 8 

of this chapter.
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Proof: a-a>a+a, (la), (2a) and (9-). 

Further, according to (388) and (la), (2a), (3a), .... we introduce 

auxiliary constants: 

—]’, “a—2”, “a—3”, .... characterized by 

S(a—1)=a; 

S(a—2)=a—1; 

S(a—3)=a—2; 

(Obviously a—1>1, a—2>1, a—3>1, ....). 

We then argue: 

a-a=a+(a+a-(a—2)), (4-) twice; 

a-(a—2)>a, (5-); 

a-a>a+(a+a), (7+) twice. 

Similarly (3a-) can be proved, and so on. 

Since T,g(+) is consistent, it has a model. This model contains 

interpretations for “1”, “S’, “>”, “+” and “a”, which we 

designate by 1,S, >, + and a. We consider only the closure of 

{1, a} under the operations S and + as described in T(+). Since 

Ta(+) has the closure property as well as T(—+), the model 

(A+; 1, S, >, +, a>, where A+ designates the deflated universe, 

is still a model of Ta(+). At contains enumerably many enumerable 

subsets and can be represented as: 

1,2,3,.... a—2, al, a, al, a+ 2, 

. 2a—2, 2a—1, 2a, 2a+1, 2a + 2, 

. 3a—2, 3a — 1, 3a, 3a +1, Ja + 2, 

where we borrow the symbols 2, 3, .... and — from the familiar 

arithmetic and where we write 2a for a +-a, 3a for aaa 

and so on as usual.
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At does not contain an element a* with the properties: 

a* >a; 
a* Sa ta; 

Proof: Every element of At is either one of the elements 

a,a-+-a,a-a-+a,.... or is exceeded by one of these elements. 

For we can replace first — by + wherever it occurs and then k 

by a wherever it occurs (k is one of the regular natural numbers 

1,2,3,....). 

So A+ does not contain such an element a*. 

The model (A+; 1, S, >, +, a> is also a model of T(+), since 

this theory is a subtheory of Tal +): 

cc 53 
e Theorem 4: The non-logical constant is undefinable 

explicitly and essentially undefinable explicitly from the non- 

logical constants “1”, “S’’, “>” and “+” with respect to theory 

T’(-). 

Proof: We apply Lemma 1 to T(+) and T’(-) with 

CAT; 1, S, >, +, a> as a model of the former. In no way into this 

model can there be introduced a notion - as an interpretation of 

the “-” in T’(-). For then <At;1,S, >, +, -,a> would be a 

model of T’(-), and hence according to (1-) At would contain an 

element a-a; however, according to (la-), (2a-), (3a-), .... this 

element would have the properties: 

aa Dada; 

a-a >a + (a +a); 

a-apa + (a + (a + a)); 

and as we have seen A* does not contain such an element a*. 

So “-” is undefinable explicitly from “1”, 68”, “>” and “+” 

with respect to theory T’(-). Moreover, T(+) is complete and so 

by Lemma 3 we obtain that “-”’ is essentially undefinable explicitly 

from “1”, “S’’, “>” and “+” with respect to theory T’(-).
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€6 699 Theorem 5: The non-logical constant is essentially 

undefinable explicitly from the non-logical constants ‘1’, ‘“S”’, 

“>” and “+” not only with respect to T’(-), but also with respect 

to every consistent extension of T’(-), in particular with respect 

to T(-). 

Proof: The theorem is an immediate consequence of Theorem 

4 and Lemma 4. 

66 694 Theorem 6: The non-logical constant is undefinable 

explicitly from “1, “8”, “>” and “+” with respect to every 

subtheory of T(-) containing “1”, “8”, “>” and “+”. The same 

holds with respect to every consistent theory which is compatible 

with T’(-) and contains the mentioned non-logical constants. 

Proof: The first part of the theorem follows from the remarks 

preceding Lemma 4. The second part results from Lemma 5. 

Corollary: What is said about “‘-”’ being (essentially) undefin- 

able explicitly from “1”, “9”, “>” and “+” with respect to the 

theories mentioned in the Theorems 4, 5 and 6 applies a fortiori 

to the (essential) undefinability of “-” from “1” and “+” with 

respect to the same theories. 

Corollary: If“S” and “>” are definable explicitly and validly 

from “1” and “+” with respect to a theory mentioned in the 

Theorems 4, 5 and 6, then “-” is (essentially) undefinable not only 

from “1, 65”, “>” and “+” with respect to this theory, but 

also from “1” and “+” with respect to the subtheory obtained 

from this theory by dropping all sentences containing “$” and “>”, 

The corollaries are trivial. In fact the non-logical constants “‘S”’ 

and “>” are definable explicitly and validly from “1” and “+” 

with respect to T’(-) and all theories which are consistent extensions 

of T'(-). As to subtheories of T(-) and theories compatible with 

T’(-) (Theorem 6), it depends. The corollaries justify the title of 

this section. 

III, 4. Comments 

Since theory T(+) is finitely axiomatizable, theory T'(-) is 

finitely axiomatizable. The strength of Theorem 4 lies in the fact 

that “-” is essentially undefinable explicitly from “1”, “8”, “>”
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and “+” with respect to a finitely axiomatizable subtheory of T(-). 

The results in the Theorems 5 and 6 are in accordance with 

the facts that T’(-) is essentially undecidable and so is every 

consistent extension of T’(-),—that every subtheory of T(-) having 

the same non-logical constants is undecidable, —that every theory 

compatible with T’(-) and having the same non-logical constants 
is undecidable, — whereas T(+) and every subtheory of T(+) 

with the same non-logical constants is decidable 12). Let T be a 

consistent theory containing the non-logical constants ¢1... Cx, 

d and To the subtheory of T containing all sentences of T in which 

d does not occur; if d is definable explicitly and validly from 

C1... Cy with respect to T, then d can be eliminated from T. It 

follows that if To is decidable, T should be decidable as well. 

At the same time the analogy between the undefinability of a non- 

logical constant from other non-logical constants with respect to 

a theory T and the undecidability of a theory T (mentioned in II, 8, 

p. 22), is illustrated by the following example. 

Theory T'(-) plays the same part in proving indirectly that “-” 

is (essentially) undefinable explicitly from the other non-logical 

constants with respect to various theories as theory Q of [22] 18) 

plays in proving indirectly the (essential) undecidability of various 

theories. 

It is beyond the scope of this work to consider some of these 

various theories in detail. 

It results from the Theorems 2 and 3 that the mentioned analogy 

is real and not the effect of a hidden correlation. Theory T’(+) 

plays the same part in proving indirectly that “+” is (essentially) 

undefinable explicitly from the other non-logical constants as 

theory Q plays in proving indirectly the (essential) undecidability 

of various theories. However, the theories of the Theorems 2 and 3 

are all decidable and the indirect proof of undefinability with the 

help of T’(+) has no connection with undecidability. 

12) Cf. [22], pp. 16 ff.; pp. 60 ff. 

18) Cf. [22], pp. 51 ff.



CHAPTER IV 

RESULTS CONCERNING EQUATIONAL 

UNDEFINABILITY 

IV,1. The Ackermann sequence 

Turning to a more general treatment we consider the arithmetic 

of natural numbers formalized with standard formalization and 

with n+3 non-logical constants: an individual constant “1”, 

a unary operation constant “S’’, a binary relation constant “> 

and » binary operation constants “py, ... “pn. Hence, every 

possible realization of this arithmetical theory is a system R, or 

CX; i, 01, F, O2 … On41>, in which X is an arbitrary set, 1 is an 

element of X, 0; is a unary operation on X to X, r is a binary 

relation in X and 02 … On41 are n binary operations on XXX to X. 

To define the validity in this theory we consider a special realization 

<N; 1,8, >, pi... pn> where all the symbols have their usual 

arithmetical meaning, pi... px coinciding with the sequence of 

Ackermann !) given by 

i(k, l= 

i(k, I= Sin I); 

o(k, I= 

pz(k, seni pe(k, 1)); 

and for m larger than 2 

Pm(k, 1)=pm-i(k, 1); 

Pm(k, S1)=pm-i(k, pm(k, 1). 

A sentence is said to be valid in this theory of arithmetic of natural 

numbers if and only if it holds in <N;1,S, >, pi... pnd. 

We refer to this theory as 7». 

Obviously, pi(k, 1) coincides with k +1, pe(k, 1) with k-l, ps(k, 1) 

with k exp! or kl, and so on in accordance with the sequence of 

Ackermann. Each theory under consideration here is assumed to 

ns
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A=
, 

E
n
 

1) Cf. [1], pp. 119 ff. 

41
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contain a finite number of binary operation constants “pi’’ … “pn”. 

T „is complete since the set of all valid sentences of 7, coincides 

with the set of sentences which are satisfied in one single model. 

It is obvious that, for » larger than 1, 7» is undecidable and not 

axiomatizable 2). 

We shall consider axiomatic subtheories of 7, referred to as 

Tn, Tn-1, … Tg, Ty. In this sequence each of the theories is a sub- 

theory of the preceding ones and |, is a subtheory of 7». All 

theories of the sequence contain the non-logical constants ‘‘1’’, 

“S” and “>” and further Ti contains ““pi’’, Te contains “pi” 

and “‘p9’’, …, Tn—-1 contains “pi”, “pe”, … “pn”, and T, contains 

all “pi” … “pn. All theories Ty, ... T1 are axiomatic with a finite 

set of non-logical axioms, all have the closure property for the 

operation constants they contain, as described for T1 (i.e. T(+)) 

in ITI, 1, p. 26. Ty-1 contains all sentences of Ty, in which “‘p,”’ 

does not occur, Tn-2 all sentences of Ty in which “py does 

not occur, ... T; all sentences of Tz in which ‘“‘pe’’ does not occur. 

We shall also consider the axiomatic theories T,(a), Tn-1(a), .. 

… Te(a), Ti(a) of which respectively Tn, Tn-i,... Tz, T1 are sub- 

theories. They are the extensions of these theories with the 

individual constant “‘a’’ and the recursive set of axioms (la), (2a), 

(3a),... (cf. p. 28). They are built in such a way that they all have 

the closure property for the operation constants they contain, as 

described for Ti(a) (ie. Ta(+)) in III, 1, p. 28. Thus we obtain 

the following scheme: 

Tn(a) 

a 
| t 
iy J, Tml a) 

TX ee 

L Le 
Tm X 

y 7 Tia 

aa 
TX 

2) For 7 larger than 1, 7», contains T(-). Cf. [22], Corollary 10, p. 62. 
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Every theory in this scheme is an extension of the theories, 

which can be reached from it following the arrows. 

About expressions, terms, formulas, sentences of these theories 

the same remarks hold as in III, 1, p. 29 with “pi” … “pm” 

instead of “+” and ““-”. Parentheses and commas are used in 

the familiar way as technical symbols and could be dispensed with. 

Tn has the model <N; 1,8, >, pi... Pr) and is consistent. So 

Tn(@) is consistent, since any finite subtheory of it has the model 

<N; 1, S, >, pi … pn, ao) (where ao belongs to N) and is consistent. 

So for all m (m over 1...) Tm(a) is consistent, since Tm(a) is a 

subtheory of Tr(a) (cf. scheme). 

The non-logical axioms of T„ are those of T(+) of III, 1, p. 26, 

somehow finitely axiomatized 3) (where “+” has to be read as 

‘“o1’’), the axioms (1-) … (8-) (where “-” has to be read as ““pe’’), 

and further for each “pm” (m larger than 2 and not larger than n) 

the axioms: 

(lm) = (%)(y)(#z)(Pm(x, y) =2); 

(2m) (x)(y)(2)(U)((Pm(x, y)=2 & Pm(%, y) =U) > 2=U); 

(3m) (&)(Pm(x, oP 1)); 
(4m) = (X) (y)(Pm(x, SY) = Pml, Pm(2, 4))); 

(5m) (yal & y>1) > (pala, y) > Sx & pmlt,y) SY); 

(6m) = (x) (y)(z)(e@>Y > Plz, 2) > PmlY, 2)); 
(7m) = (x)(y)(z)((@>1 & y>z) > pmle, y) > Pmlz, 2)); 
(8m) (x)(y)(z)(y> 1 — Pm(X, Pm(Y, 2)) 2 Pm(Pm(X, 4), 2)) 4). 

The axioms of T, are not all independent and the system can be 

reduced to a simpler one. So e.g. “S”’ can be defined explicitly 

and validly from “1” and “+” with respect to T, and thus be 

eliminated. This fact, however, is of no interest for our purpose. 

We still have to prove that T is really a subtheory of Zn. The 

finite character of the axiom system for T, enables us to do so in 

an easy way. Knowing that Ts (being T’(-)) is a subtheory of Jz 

(being T(-)), ef. III, 1, we only have to show that the sentences 

(lm) … (8m) (for m larger than 2 and not larger than 7) are valid 

sentences of Z,. We can do this metamathematically, deducing 

3) Cf. ITI, footnote 10. 

4) As an abbreviation we write « 2y forwt=y Vuw>y.
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in the arithmetic of natural numbers the arithmetical theorems 

which are the interpretations of the sentences under consideration. 

In this metamathematical deduction we may use the whole 

apparatus of the familiar arithmetic of natural numbers (e.g. 

complete induction). Insofar as these deductions are not generally 

known, they can be carried out in an easy way. 

The finite character of the axiom system for T, enables us also 

to check in an easy way that each Tm has the closure property 

for “py”... “pm. The axioms all have the shapes: 

(xz)... (9)V, 
(a) ... (y)(Ez) … (Eu)V, 

where V is quantifier-free. The same argument as in III, 1, p. 26 

can be applied. In a similar way as for Ta(+) it follows that 

Tm(a) has the closure property for “py,” … “pm. 

Theory T1 being T(+) of III is complete. Ta being T’(-) of IIT 

is not complete. So Tm with m larger than 1 is not complete. 

We wish to prove that in the sequence “pi”, “pa, … “Par “Dn?” 

each constant is undefinable explicitly from the preceding ones 

and “1”, “55”, “>” with respect to theory Tn, and that “pi” is 

undefinable explicitly from “1”, “S” and “>” only with respect 

to Ty. Let m be one of 1, 2, ... n, then it is sufficient to prove that 

“pm is undefinable explicitly from “‘1’’, “S’’, “>”, “pi” … “pm 

with respect to theory Tm. Then, according to Lemma 6, the 

statement holds also with respect to theory Ty. For “py” and “p2” 

this proof has been established in III, 2 and III, 3. For “pm” 

with m larger 5) than 2 and not larger than n we apply Lemma 1 

to Tm-1 and Tm with a model of the former into which in no way 

there can be introduced a notion pm as an interpretation of the 

“Om? in Tm. 

For each m (m larger than 1) the following sentence is provable 

in Tm: 

(9m) yal & y>S1) > pm(%, 9) > Pm-il®, 4)). 

Proof: For m equals 2, see III, 3, (9-). 

5) The argument is such that the case ‘“‘m equal to 2” is included again.
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For m larger than 2 the argument is similar: 

(x)(y)(y>1 — pmlSz, y)>Sy), (5m) and (R); 

(x)( 

(x)(y(y>1 > pm(Sx, Sy) > Pm-1(Sx, Sy)), (4m); 

(x)(y)((e>1 & y>S1) > pm(x, y) > pm-1(%, y)), (R). 

) 

y)(y>1 — Pm-1(ST, Pm(S2, Y)) > Pm-1(S2, Sy)), (7m) ; 

x)(y)( 

)( 

For each m (m larger than 1) the following sentences are provable 

in Im(a): 

) Pm(a, a) > Pm-1(0, a); 

(2am) = Pm(@, @) > Pm-1(4, Pm-i(4, @)); 

) _ Pmla, &) > Pm-1(4, Pm-1(4, Pm-1(4, 4))); 

(lam 

Proof: For m equals 2, see III, 3, (la-), (2a-), (8a-), .... 

For m larger than 2 the argument is similar. We borrow the 

symbols “‘a—1”, “a—2”, “a—3”,... , asin III, 3. We then argue: 

a>1 and a>&l, (la) and (2a); 

SO Dm(a, 4) > Pm-1ld, a), (Om). 

Further pm(a, a) = Pm-1(4, Pm-1ld, Pm(a, a—2))), (4m) twice; 

and pm(a,a—2)>a, (5m), (6S) and (3); 

SO Pm(a, 4) > Pm-1(A, Pml, 4)), (7m). 
Similarly we can prove (3am), and so on. 

Since Tm(a) is consistent, it has a model. This model contains 

interpretations for ‘1’, “49°, “>”, “pi” … “pm and “a’, which 

we designate 1, S, >, pi … Pm and a. We consider only the closure 

of {1, a} under the operations S, pi … Pm. The universe thus deflated 

we designate by A”, We remark that (A; 1, S, >, pi... pm, a> 

with the universe thus deflated is still a model of T(a), for Tm 

has the closure property for “pi” … “pm” and so has Tm(a). 

Further we remark that (Am; 1, S, >, pi … pm, a) is also a model 

of Tm, a subtheory of Tm(a). 

The ordered set A” does not contain an element a* with the 

properties:



46 RESULTS CONCERNING EQUATIONAL UNDEFINABILITY 

a“ >Pm(a, a); 

a“ DPm(a, Pm(a, a); 

a“ >pm(a, Pm(a, Pm(a, a))); 

For the sake of the argument we introduce pm*(a)-sequences. A 

Pm*(a)-sequence is structurally defined as a term containing no 

other 6) symbols than k—1 times the symbol pm and k times the 

symbol a; the first symbol of the sequence is pm and the last two 

are a, further the symbol pm and the symbol a alternate. Thus 

we obtain: 

Pm'(a)=a,; 

Pm*(a)=Pm(a, a); 
Pm?(a)=Pm(a, Pm(a, a)); 

We have to prove now that A™ does not contain an element a* 

with the properties: 

a*>Pm(a); 

a” >Pm°(a); 
a*>Pm*(a); 

Proof: For m equal to 1, see III, 3, p. 38; for m larger than 1: 

elements of A” which can be written with 1, a, pi ... pm only (S is 

included in pi) are called polynomials in 1, a, pi... pm. Not all 

elements of A” are such polynomials, e.g. 

a—~la—2,a—3, ... 

pi(a, a) — 1, pi(a, a) — 2, pi(a, a) — 3, … 

and such more. 

6) Parentheses and commas are used as technical symbols only. They 
could as well be left out.
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For every element that is not a polynomial in I, a, pi... pm 

obviously there is a polynomial which exceeds it, simply obtainable 

by changing — in + (i.e. pi) wherever it occurs. We then argue 

that every polynomial is either a pm*(a)-sequence or it is exceeded 

by such a sequence. When the polynomial is not a pm*(a)-sequence, 

then we obtain an element that exceeds it by replacing first all 

symbols 1 by a ((6m) and (7m) or (6-) and (7-)), and then all 

Pi … Pm-1 by pm, ((9m)). Further we replace successively all sub- 

terms of the shape pm(Pm"(a), Pm%(a)) by Pm"t#(a), a process by 

which the term can only grow, for 

Pm(Pm' (a), Pm*(@))=Pm(Pm(a, Pm 1(a)), Pmi(a)) £ 

SPm(a, Pm(Pm"1(a), Pm°(a))), ((8m) or (8-)); 

and so on. 

So there is no element a* that exceeds all pm*(a)-sequences. 

Theorem 7: The non-logical constant “pm is undefinable 

explicitly from the non-logical constants “17, “S’’, “>’’, ‘py, 

… “Pm with respect to theory Tm. 

Proof: For m equal to 1, see III, 2. For m larger than 1: we 

apply Lemma 1 to Tm-1 and Tm with (Am; 1, S, >, pi... pm-i, a> 

as a model of the former. If into this model there could be intro- 

duced a notion pm, the interpretation of the “pm of Tm, then 

<Am™-1;1,8, >, pi … Pm-1; Pm, a) would be a model of Tm(u). But 

according to (lm) or (1-) A1 would then contain an element 

Pm(a, a). This element, however, would have the properties: 

Pm(a, a) >Pm-i(a, a); 

Pm(a, 2) >Pm-1(a, Pm—1(a, a)); 

Pm(a, 2)>Pm-1(a, Pm-1l4, Pm-1(a, a))); 

according to (lam), (2am), (3am), … . But as we have seen Am! 

does not contain an element which exceeds all pm_i*(a)-sequences. 

Theorem 8: Each non-logical constant in the sequence 

“1... “pn” is undefinable explicitly from the preceding ones
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together with ‘1’, “S’ and “>” with respect to theory In (for 

‘pi’ this means from “1”, “S’? and “>” only). 

Proof: The theorem is an immediate consequence of Theorem 7 

and Lemma 6. 

Corollary: Each non-logical constant in the sequence (‘‘1’’), 

“pi” ... Pn is undefinable explicitly from the preceding ones with 

respect to theory T,, and also with respect to the subtheory of 

Tn obtained from Ty, by dropping all sentences containing ‘“‘S”’ 

and “>”, 

The corollary is trivial. If the non-logical constant d is undefinable 

explicitly from the non-logical constants ci ... cx with respect to 

a theory T, then a fortiori d is undefinable explicitly from some 

of ci … cx with respect to T. Further, since T„ is an extension of 

T(+), “S” and “>” can be defined explicitly and validly from 

1 and “+” with respect to T, and so be eliminated. It is even 

possible to go on in this direction and to eliminate more of these 

non-logical constants 7), but this is beyond the scope of this study. 

Corollary: Each non-logical constant in the sequence 

“pi” … “Pn” is undefinable explicitly from the preceding ones 

together with “1”, “S” and “>” (“pi from “1”, “S” and “>” 

only) with respect to every subtheory of Tn containing these non- 

logical constants. 

This corollary is an immediate application of the property that 

an undefinable non-logical constant is hereditarily undefinable 

(cf. IT, 4, p. 22). One could make more corollaries of this kind 

combining the two mentioned, but all this is trivial. 

Theorem 9: Each non-logical constant in the sequence 

pi’ ... “pn is undefinable nd from the preceding ones 

together with “1”, “8” and “>” (“pi”’ from “1”, “9” and “>” 
only) with respect to every sonsistent extension Tn* of Tn fulfilling 

the conditions 

i) Ta" is a subtheory of 74; 

ij) Tr’, the subtheory of T„* containing all sentences of T,* 

in which “p„’”’ does not occur, has the closure property for 
€€ 99 66 9? 
P1 . Pn 1 . 

7) Cf. [17].
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Proof: Let T,* be an extension of T, and a subtheory of Jy, 

and let Tn-1* have the closure property for “pi” … “pr. Let 

Tu” be the subtheory of T,* containing all sentences of T,* in 

which “pm” ... “Pa, “pn”? do not occur. Obviously Tm“ is an 

extension of Tm and obviously Tm-1* has the closure property for 

‘pi’ ... ““Dm-1”. The same argument as for Tm in Theorem 7 holds 

for Tm. Further the same argument as for T„ in Theorem 8 holds 

for T,*. 

For m larger than 2 it cannot be concluded that ‘‘pm’’ is essen- 

tially undefinable explicitly from “1’’, “87, “>’’, “gy” … “pm 

with respect to theory Tm, since neither Tm nor Tm-; is complete. 

Hence it cannot be concluded that each non-logical constant of 

the sequence “‘p3”... “pn,” is essentially undefinable explicitly 

from the preceding ones together with “1”, “S’, “>”, “pi” and 

“pz” with respect to theory Ty. Thus it does not follow that each 

constant of this sequence is undefinable explicitly from the pre- 

ceding ones together with “1”, “8”, “>”, “pi” and “pe” with 

respect to e.g. theory 7». This is in accordance with the fact 

that the non-logical constants “ps3”, “pa”, … “pn are known 

to be arithmetical, i.e. definable explicitly and validly from 

“1, (8, “>” ,) “pi” and “pa” with respect to 7, 8). In con- 

nection with Theorem 9 it follows from Gédel’s result that, for n 

larger than 1, 7» has not the closure property for “pi” ... ““pn’’ ®). 

IV,2. Hquational undefinabilty 

In the foregoing section we met the operation constants 

“pz” … “pn, which according to Gdédel’s result were definable 

explicitly and validly from “1”, “S’, “>”, “pi? and “po” with 

respect to theory 7». At this point the question arises whether 

or not a constant of the sequence “ps”... “pn” is definable 

equationally and validly 1°) from the preceding ones together with 

LI, “8, >”) “pi” and “pe”? with respect to theory 7p. It is 

8) Cf. [6], Satz VII, pp. 191 ff. 
9) Cf. [10], p. 168, where Kemeny states that Js has not the closure 

property for “+” and “-”’. 
10) We say “validly” because 7, is complete and all sentences containing 

no more non-logical constants than “1’’, “S’’, “>”, “pi” … “pa which 

are compatible with 7, are valid in Jn.
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well-known that the answer to this question is negative. In 7», one 

says, “pm grows faster than any polynomial in “py”... “pm-z’’. 
E.g. in Jn “ps” grows faster than any polynomial in “pi”, “pa”, 

i.e. some sentence of the shape !"): 

(x)(y)(Hz)\((a>2z & y>z) > paz, y) > Q(x, y)), 

is valid in Fn, where Q(z, y) is an arbitrary term, containing 

“xr” and “y” as the only free variables and no other operation 

constants than “‘p,;” (including “S’’) and “‘pe”’, (since Q is a term, 

it does not contain logical constants or relation constants). The 

argument is: if “pg” were definable equationally and validly from 

“1”, “or” and “pe” with respect to Zn, then for a certain Q(z, 4) 

a sentence of the shape: 

(x)(y)(palx, ¥) = Q(x, 9)), 

would be valid in 7 „. But the latter sentence is not compatible 

with the former. 

This can be generalized in a slight way by saying: in In a 

sentence of the shape S: 

(Lx) (Hy)(ps(x, y) =Q(z, 4)), 

is valid for any Q(x, y); therefore ““p3’’ is not definable equationally 

and validly from “1”, ‘pi’? and “pe” with respect to Fy. It is 

obvious that “ps” is not definable equationally and compatibly 

from “1”, “py? and “pe” with respect to any subtheory of JZ» 

which contains the non-logical constants “‘1”’, “pi”, “ pr’, “pe” and “pz” 
and in which some sentence of the shape S is valid. In other words, 

if T is a subtheory of Z», containing the non-logical constants 

mentioned, and if a sentence of the shape S is valid in T, then 

‘ps’ is essentially undefinable equationally from “1”, “pi” and 

“pa” with respect to T. Thus, in order to prove that “ps” is 

undefinable equationally from “1”, “pi” and “‘p2”’ with respect to 

Jn, all we have to do is to prove that e.g. in T3 of the foregoing 

section a sentence of the shape S is valid for any Q(z, y). 

Proceeding we shall argue: the condition [3 has not the closure 

property for “py” and “pe” is equivalent to the condition a sentence 

U) ‘“‘ys(a, y)”? can be written as “wexpy” or “av”; “pile, y)” and 

““pelx, y)" as “a + y” and “a-y” respectively.
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of the shape S is valid in 13 for any Q(x, y). Thus it will be sufficient 

to prove that Ts has not the closure property for “pi” and “pa”. 

This is exactly what we did implicitly in the argument of Theorem 7 
in the foregoing section, where we proved that 

(AME; 1, S, >, Pi .-- Pm-1, Pm, a» 

is not a model of Tm(a), which should be the case if T(a) had the 
closure property for “py”... “Pm. 

In this section we deal with equational undefinability in a 

general way which is closely connected with the method developed 

in chapter II to prove the (explicit) 12) undefinability of non-logical 

constants. In fact, the examples of IV, 1 reveal a unity of treatment: 

there we had operation constants which are definable explicitly 

and validly from other non-logical constants with respect to theory 

TJ. At the same time they were undefinable explicitly from these 

other non-logical constants with respect to theory Tn, a certain 

subtheory of TJ „. This implied that they were undefinable equa- 

tionally from the other non-logical constants in question with 

respect to theory T, (explicit undefinability implies equational 

undefinability). We shall see now that the arguments given in 

IV, 1 entail the possibility to state that the non-logical constants 

in question are essentially undefinable equationally from the 

other non-logical constants in question with respect to theory Tn, 

and so undefinable equationally with respect to 7». Thus in one 

stroke we show the explicit undefinability with respect to certain 

subtheories of 7» and the equational undefinability with respect 

to JT» itself. At the same time we deal with the crucial case 

(mentioned in IT, 1, p. 14) in terms of models also. 

First we have to consider the closure property in a more 

general way. Let T be a consistent theory containing the non- 

logical constants 11... 41, O1 … Om and 71... rn. Let the model 

CU; i, … iz, O1 … Om, 11... Fn) be an arbitrary model of T, U 

being the universe and i; … 1, 01 … Om, T1 … Fn the interpretations 

Of 11 … 41, O1 … Om, 71... Fn respectively. Let U’ be the closure of 

{i,’ … ij} under the operations 0; ...0;, where 0;... 0; are some 

12) The parentheses indicate that explicit undefinability implies equa- 

tional undefinability.
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of O1 … Om 13) and where iy’ … ij’ are arbitrary elements of U, 

such however, that iy’... i)’ are apt to be the interpretations of 

1%... respectively. The last remark means that, if e.g. 

rit … Ur), (71 assumed to be k-ary) 

is a valid sentence of T, then 

11 (ig’ eee ix’), 

is true in (U; iy … iz, O1 … Om, T1 … Fy), and likewise for all mutual 

relations concerning 7; ... 4; as given in T. U’ being the closure of 

{ir … i’} under the operations 0; ...0; means that U’ contains 

in addition to iz’... ij no more elements of U than those obtainable 

from i,’ … ij by (repeated) application of the operations 0; … 05. 

T is said to have the closure property for o;...0; if and only 

if for any model (U; iy... i, O1 … Om, T1 … Fn) of T and for 

any suitable iy’... i,’ of U, CU’; in’ … ij, 01 … Om, f1 … In) is also 

a model of T. E.g. in the foregoing sections we saw that T(+) 

or |; had the closure property for “S’? and “+” (“pi”), T’(-) 

or Ts had the closure property for “S’’, “+” and “-” (“py and 

pa”), Tm—-1 had the closure property for ‘““p,” … “Pm . In this 

section we shall speak explicitly about the fact that Tm had not 

the closure property for “pi” … “Pm. 

Let T be a consistent theory containing the non-logical constants 

11... U1, O1 … Om; 0, 71 … Tn. Let To be the subtheory of T containing 

all sentences of T in which o does not occur (a sentence being valid 

in To if and only if it is valid in T). Let To have the closure property 

for 01...0m. Let M be an arbitrary model of T, say M is 

CU; in … i, 01 … Om, O, F1 … Fn). Since To is a subtheory of T, 

the model XU; ij ... iz, 01 … Om, F1 … Fn) is a model of To. Moreover, 

the model <U’; iy’ ... ij’, 01 ... Om, T1 … In) Where U’ is the closure 

of {ij … iz’} under the operations 0; ... Om, is a model of To, since 

this theory has the closure property for 01 ... Om. This is the case 

for any model M of T. On the other hand, if T has not the closure 

18) In the particular cases of Chapter III and IV, 1 we specified that 

in addition to S and + the operations —1 and — were taken into con- 

sideration (cf. Chapter III, footnote 3). This particular convention does 

not apply to the general treatment here. If, however, in this section we 

refer to theories of the preceding sections as illustrations of the general 

treatment, the convention of footnote 3, Chapter III holds for these theories.
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property for 01... Om, i.e. if there is a model M of T which does 

not remain a model of T if the universe is deflated to the closure 

of a certain {ii … ij} under the operations 01 ... Om, then there 

is a U’; iy’... iy’, 01 ... Om, O, F1 … Fy), which is not a model of T. 

In other words, in this case there is not only a model of To, into 

which in no way there can be introduced an interpretation o of 

the o of T, but the very reason of this impossibility is given also, 

namely the deflation of the universe of the model. According to 

Lemma 1 it follows that o is undefinable explicitly (and equa- 

tionally) from 21 ... 47, 01 … Om, 11... fn With respect to T. It is 

also obvious that this is due to the valid existential sentences of T. 

Intuitively speaking one could say that apparently U’ contains 

all elements required by the valid existential sentences of To, but 

not all elements required by the valid existential sentences of T. 

This applies already if T is the minimal extension of To with 

the operation constant o, i.e. if to the valid sentences of To are 

added as valid sentences only the two sentences: 

(x) ... (y)(Bz)(o(#, … y)=2), 
(x) ... (y)(z)(u)((o(a, ..., y) =z & olx, …, y) =U) > Z= U), 

required for o to be an operation constant. Hence, if this T does 

not have the closure property for 01... om, then the sentence: 

(x) ... (y)(Hz)(0(x, … y)=2), 

does not hold for the deflated model. If,. however, there was a 

sentence of the shape D: 

(x) ... (y(o(z, … YY=Q(H, … Y))s 

(i.e. an equational definition), which was compatible with T (where 

Q(x, ..., y) is a polynomial in 0; ... Om with “x”’ … “y” as the only 

free variables), then the deflated model would be a model of 

TUD, and this is contradictory. It follows that a sentence of 

the shape D is not compatible with T, or that o is essentially 

undefinable equationally from 7 ... 41, 01 … Om with respect to T, 

or that any sentence of the shape S: 

(Ex) ... (Ey)(olz, ..., y)=Q(a, …, y)), 

is valid in T. The same applies to any T which contains no other 
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valid existential sentences containing o than those derivable from 

the union of To and the sentence: 

(x)... (y)(H2z)(o(a, …, y)=2). 

Whenever this is the case, we call T a@ minimal extension of To 

with o. 

We then summarize in the following way: 

Lemma 7: Let T be a consistent theory containing the non- 

logical constants 21 ...%1, 01... Om, 0, 11... 1n. Let To be the sub- 

theory of T containing all sentences of T in which o does not occur. 

Let T be a minimal extension of To with o. If To has the closure 

property for 01 ... Om, whereas T has not the closure property for 

O1 … Om, then o is undefinable explicitly from 2... 13, O1 … Om, 

r1...7% and essentially undefinable equationally from 7... 4, 

01 … Om with respect to T. 

As a first example we can state: 
> Theorem 10: The non-logical constant “pm is essentially 

undefinable equationally from the non-logical constant “1”, ‘S8’’, 

“pi” ... “Pm with respect to theory Tm of the foregoing section. 

Proof: In the proof of Theorem 7 we established that Tn; 

has the closure property for “pi” … “pm, whereas Tm has not 

the closure property for “pi” ... ““pm-i’’. We saw (on p. 47) that 

(Aml; 1, S, >, pi... Pm-1, Pm, a> is not a model of Tm(a). Hence, 

Tm(a) has not the closure property for “py,” … “pm 5 and hence, 

Tm has not the closure property for “py” ... “pm (if Tm has 

the closure property for “py”... “Pm , then Tm(a) has the 

closure property for ‘“pi’’... “pm-1’’). Moreover Tm is a minimal 

extension of Tm-1 with “pm. We apply Lemma 7. 

In a similar way as in II, 4 we can develop an indirect method 

in proofs of equational undefinability. The arguments are obvious 

(cf. II, 4), and we shall confine ourselves to giving the main results 
in some lemmas. 

Lemma 8: Ifa theory Ti is a subtheory of a consistent theory 

Tg, both containing the non-logical constants 71 ... 41, 01 ... Om, 0, 

and if o is essentially undefinable equationally from 11 ... #7, 01 ... Om
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with respect to Ti, then o is essentially undefinable equationally 

from 21... dp, O1 … Om with respect to To. 

Lemma 9: Let Ti and Tz be two compatible theories, both 

containing the non-logical constants 71 ... 47, 01 ... Om, 0, and let o 

be essentially undefinable equationally from 4 ... 41, 01 … Om with 

respect to T;; then o is undefinable equationally from 41 ... 41, 01 … Om 

with respect to Te. 

Lemma 10: Let a theory 17; containing the non-logical 

constants 11 ... 4], 01 ... Om, o be a subtheory of a consistent theory 

Tz containing the non-logical constants 21 … 41, 0741 ... W147, O1 … Om; 

O, Om+1 … Om+k, Whereas Tj contains all sentences of Ts in which 

V141 vo. 4147, Om … Omg do not occur and o is undefinable equa- 

tionally from 71 ... 41, 01 ... Om with respect to T1; then o is undefin- 

able equationally from 71 ... 71, 01... Om with respect to Te. 

It is not necessary to rewrite Lemma 10 with “essentially 

undefinable equationally” instead of “undefinable equationally”’. 

Lemma 8 provides for the case that Tz contains more non-logical 

constants than Ti. The non-logical constants of Te, which are not 

contained in Tj, do not play a part in the definition problem under 

consideration in the case of Lemma 8. 

As examples of the indirect method we can state: 

> 
Theorem 11: The non-logical constant “pm is essentially 

undefinable equationally from the non-logical constants “1”, 

8, “a? … “pm not only with respect to Tm, but also with 

respect to every consistent extension of Tm, in particular with 

respect to 7 m. 

Proof: The theorem is an immediate consequence of Theorem 

10 and Lemma 8. 

b] 
Theorem 12: The non-logical constant “pm’’ is undefinable 

equationally from the non-logical constants ‘1’, “S’’, “pi” … “pm” 

with respect to any subtheory of Jm containing “1”, “S’’, 

“or” ... “Pm « The same holds with respect to any consistent 

theory which is compatible with Tm and which contains the non- 

logical constants mentioned.
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Proof: The first part of the theorem follows from the fact 

that equational undefinability in the same way as explicit undefin- 

ability is hereditary (cf. II, 4, p. 22). The second part results from 

Lemma 9. _ | 

Theorem 13: Each non-logical constant in the sequence 

“pi … “pn is essentially undefinable equationally from the pre- 

ceding ones together with “1” and “6” with respect to theory Ty. 

(For “pi” this means: from “1” and “S” only.) 

Proof: The theorem is an immediate consequence of Theorem 

10 and Lemma 8. If Tm is extended to T, it is true that T„ contains 

besides ““p1”’ … “pm still other non-logical constants (““pmi1”’ … 

… “pn ), but they do not matter. 

Theorem 14: Each non-logical constant in the sequence 

“or... “pn is essentially undefinable equationally from the 

preceding ones together with “1” and “S’’ with respect to any 

consistent extension of T„, in particular with respect to J» (for 

pi’: from “1” and “S”’ only). 

Proof: The theorem is an immediate consequence of Theorem 

13 and Lemma 8. 

Theorem 15: Each non-logical constant in the sequence 

“pi” ... “pm is undefinable equationally from the preceding ones 

together with “1” and “S” with respect to any subtheory of 7, 

containing “1”, “9”, “pi”... “pn. The same holds with respect 

to any consistent theory which is compatible with T, and which 

contains the non-logical constants mentioned (for ‘‘p,’’: from “1” 

and ‘S’’ only). 

Proof: The first part of the theorem follows from the fact 

that equational undefinability is hereditary. The second part 
results from Lemma 9. 

What is said about the (essential) equational undefinability 

of operation constants applies also to individual constants. We 

consider the individual constant in question as a O-ary operation 

constant and argue in the same way. E.g. let T be a consistent 

theory containing the non-logical constants 71... 41, 1, 01... Om, 

11... Fn. | has the closure property for e.g. 1, o1 … Om if and only
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if for any model (U; i … iz, 1, 01 … Om, T1 … Fa) Of T and for any 

suitable ij … iz’ of U, CU’; i)’ … iy’, 1, O1 ... Om, Ti … Fn) is also a 

model of T, where U’ is the closure of {ij’ … ij } under the operations 

i, O1 … Om, ie. i belongs to the closure of {ij … ij} under the 
operations O1 … Om. If in this context we say that JT does not 

have the closure property for 01 ... Om, we imply that there is a 

model (U; i; … iy, 1, O1 ... Om, 1... Fn) of T, such that a suitable 

CU’; in’ … iz’, 1, Or … Om, F1 … Fn) is not a model of T. If To is the 

subtheory of T containing all sentences of T in which 2 does not 

occur, and if To has the closure property for o1 … Om, whereas T 

is a minimal extension of To with 1, which does not have the closure 

property for o1 … om, then 7 is undefinable explicitly from 7 … %, 

O1 …. Om, T1...%n and essentially undefinable equationally from 

11... U, 01... Om With respect to T. T being a minimal extension 

of To with © means in this context that T contains no more valid 

existential sentences containing 4 than those derivable from the 

union of To and the sentence (H#2)(x=1). 

E.g. Ta(S) of chapter III contains the non-logical constants 

“1, “a”, SS” and “>”, We consider “a” as a O-ary operation 

constant. T(S) is the subtheory of T,g(S) containing all sentences 

of Ta(S) in which “a” does not occur. Tg(S) is a minimal extension 

of T(S) with “a”. T(S) has the closure property for “9”; Ta(S) has 

not the closure property for “S’’, since a does not belong to the 

closure of {1} under the operation S. It follows that “a” is undefin- 

able explicitly from “1”, “S” and “>’,’ and essentially undefinable 

equationally from “1” and “S” with respect to Ta(S). In the same 

way it can be proved that “a” is undefinable explicitly from 

ST 487, SS “pi … “pm and essentially undefinable equa- 

tionally from “1”, “py”... “pm with respect to theory Tm(u).
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STELLINGEN 

I 

Zij f(y, …, Yn) de Fourier-getransformeerde van een eindige, 

niet-negatieve Borel-maat in de „-dimensionale ruimte Re 

(y; reëel). 

Zij verder w= (wx, …, Wen) € RP, (k=1, ..., N). 

Neem aan, dat gr(t)=f(twri, ..., tWen) met —e<t<+e kan 

worden voortgezet tot een functie, die continu is in de rechthoek 

|Re(t)|<e, ax < Im(t) <br, en analytisch in het inwendige (e>0, 

ax <0, by >0, k=l, …, N). Zij tenslotte C de kleinste convexe ver- 

zameling in RA? met arwr EC, byw, EC, (k=l, …,N). Dan kan 

f(y1, …, Yn) voortgezet worden tot een functie g(zi, …, 2n), die 

continu is in het gebied {[Im (zi), …, Im (z,)] €C} en analytisch 

in het inwendige. 

II 

De karakterisering door N. H. McCoy: 

“Een ideaal p in een willekeurige ring R is dan en slechts dan 

een priem-ideaal in FR als aRbep impliceert aep of bep” 

verdient een ruimere belangstelling in verband met de toepassings- 

mogelijkheden van stellingen voor commutatieve ringen op alge- 

mene ringen. 
N.H. McCoy: Prime Ideals in General Rings. American 

Journal of Mathematics, 71 (1949), pp. 823 ff. 

III 

„Ten onrechte beweert Borel, dat de bol de som is van drie 

disjuncte delen, A, B en C, welke voor geschikte rotaties p en yp 

voldoen aan de relaties: 

gp A=B+C, 

yp A=B, 

yp B=C. 

Bovendien is zijn bewijs van de niet-houdbaarheid van het keuze- 

axioma onjuist. 
E. BoreL: Les paradoxes de l'infini. Paris, 1946.



IV 

Een monotoon stijgende binaire functie “‘p’’ kan niet expliciet 

worden gedefinieerd met behulp van “1”, “9” en “>” met be- 

trekking tot de rekenkunde der natuurlijke getallen geformaliseerd 

met standaard-formalisatie. 

Zie dit proefschrift, Theorem 2, p. 35. Theorem 2 kan 

in de zin van deze stelling worden gegeneraliseerd. 

Vv 

Het resultaat van het eerste onderzoek met het synchro-cyclotron 

van CERN te Genève (experimentele bevestiging van Yukawa’s 

theorie van 1935 aangaande het verval der z-mesonen) heeft 

duidelijk het belang voor de wetenschap van een internationale 

samenwerking aangetoond. 

VI 

Het “Veiligheidsbesluit ioniserende stralen’’ van 20 maart 1957 

geldt met betrekking tot de beveiliging van arbeiders tegen de 

gevaren van toestellen of stoffen, die ioniserende stralen uitzenden. 

In artikel 10,3 wordt een maximum doseringssnelheid vastgesteld 

aan de oppervlakte van televisietoestellen. Het is in dit verband 

bevreemdend, dat een dergelijke maatregel ontbreekt geldend met 

betrekking tot de beveiliging van iedereen. 

Staatsblad van het Koninkrijk der Nederlanden, 116 

(18 april 1957). 

VII 

De constructie van mathematische modellen en de beschikbaar- 

heid van electronische reken- en administratiemachines heeft het 

mogelijk gemaakt op vereenvoudigde wijze de activiteiten van 

leiders van bedrijven in een markteconomie te simuleren. Het 

daaruit ontwikkelde “Business Game” wordt door de ontwerpers 

aanbevolen als een aanvullend leermiddel bij de scholing van het 

hogere bedrijfskader. Meer dan de opleiding is echter de selectie 

met deze nieuwe mogelijkheid gediend. 

Zie bijvoorbeeld: [BM Decision-Making-Laboratory, 

deel I: Handleiding voor deelnemers. Amsterdam, 

1959.



Vill 

De wijze, waarop H. Reichenbach de mening verdedigt, dat de 

relativiteitstheorie van Einstein behalve als een fysische theorie 

ook als een filosofische theorie moet worden beschouwd, is niet 

overtuigend. 

H. REICHENBACH: The Philosophical Significance of 

the Theory of Relativity, in Albert Einstein : Philo- 

sopher-Scientist, The Library of Living Philosophers. 

New York, 1949, pp. 289ff. 

IX 

Wijsgerige beschouwingen, die een “monde en soi’’ pretenderen 

te beschrijven, kunnen zich bij de behandeling van verschijnselen der 

anorganische natuur niet beroepen op resultaten der fysica, tenzij 

zij eerst het bewijs hebben geleverd, dat ook deze resultaten 

betrekking hebben op een “monde en soi”. Een zodanig bewijs 

wordt door de resultaten der fysica op zichzelf niet geïmpliceerd. 

M. MERLEAU-PONTY : Phénoménologie de la perception. 

Paris, 1945. 

X 

De beschouwing van de fysica als een verschijnsel in de zin der 

fenomenologische methode maakt het noodzakelijk de verschillende 

soorten van verschijnselen aan een gradatie te onderwerpen. 

Daarbij komt aan het verschijnsel fysica een hogere graad toe dan 

aan de verschijnselen, die door de fysica worden geordend. Deze 

gradatie is ook in ander opzicht vruchtbaar voor natuurfilosofische 

beschouwingen. 

XI 

Bij pogingen om tot een formalisering te komen van theorieën 

uit de natuurkunde en scheikunde verdient de mereologie van 

St. Lesniewski bijzondere aandacht. 

XII 

De opvatting van P. Lorenzen over de taak van de wijsbegeerte 

der wiskunde (opsporing en kritiek der “Vormeinungen’’, welke 

aan de hedendaagse wiskunde ten grondslag liggen) is te beperkt.



Zijn mening, dat de kritiek op het principe van het uitgesloten 

derde de moderne wiskunde niet op beslissende wijze aantast, is 

aanvechtbaar. 

P. LORENZEN: Wie ist Philosophie der Mathematik 
möglich? Philosophia Naturalis, 4 (1957), pp. 192 ff. 

XIII 

De discussie tussen N. Rescher, J. L. Mackie en L. Goddard over 

het bestaan van “willekeurige individuen” vooronderstelt een 

probleem, dat reeds tevoren door E. W. Beth volledig tot oplossing 

was gebracht. 

N. RESCHER: Can there be Random Individuals? 

Analysis, 18 (1957-1958), pp. 114ff. 
L. GopDARD: Mr. Rescher on Random Individuals. 

Analysis, 19 (1958-1959), pp. 6f. 

J. L. MACKIE: The Rules of Natural Deduction. 

Analysis, 19 (1958-1959), pp. 27ff. 

E. W. Beru: Semantic Entailment and Formal Deriva- 

bility. Amsterdam, 1955. 

XIV 

Bij de opleiding van leraren in de wis- en natuurkundige vakken 

dient aandacht te worden geschonken aan de studie van de methode- 

leer. Meer in het bijzonder behoort de studie van de mathematische 

logika en van het wiskundig grondslagenonderzoek een onderdeel 

te vormen van de opleiding tot leraar in de wiskunde.


