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Chapter 1

Introduction

In the 1950s, Abraham Robinson proved a remarkable theorem: model completeness of the class of
algebraically closed valued fields [Rob56]. This means that any embedding of algebraically closed
valued fields is in fact an elementary embedding. This very strong result is analogous to the more
well-known result that the theory of algebraically closed fields is the model completion of the theory
of fields which one can deduce from quantifier elimination originally proved by Tarski [TZ12]. With
this result he started research into the model theory of valued fields, a combination of number theory
and logic that is still heavily studied to this day.

Another major milestone in the model theory of valued fields is a theorem proven by Ax and Kochen
[AK65], and independently Ershov [Ers65]. They demonstrated that for a non-principal ultrafilter U
on the set of primes we obtain an elementary equivalence∏

U
Qp ≡

∏
U

Fp ((t)) .

This has many applications in number theory, the most notable one being an asymptotic proof of
Artin’s conjecture: for an integer d ∈ N and sufficiently large prime p and homogeneous polynomial
over Qp of degree d in more than d2 variables has a root in Qp. The non-asymptotic result is called
Artin’s conjecture. Surprisingly, even though the asymptotic result is true, the general result for all
p and d is false: in 1966, Terjanian gave examples for every prime of a polynomial p of sufficiently
small degree and enough variables with no root in Qp [Ter66].

The above theorem is actually a special case of a much stronger theorem, which is the first occurrence
of what is now called an Ax-Kochen/Ershov (AKE) principle. It is a theorem about henselian valued
fields whose residue field has characteristic 0. Let (K, v) and (L,w) be two such valued fields; if we
write vK and wL for their value groups and Kv and Lw for their residue fields, then there is an
elementary equivalence (K, v) ≡ (L,w) if and only if vK ≡ wL and Kv ≡ Lw.

We can easily see that this applies to the situation above: for any given prime p both Qp and Fp ((t))
are henselian fields with residue field Fp and value group Z. The ultraproduct of Fp ((t)) must be of
characteristic 0, to this we can apply the AKE principle to get an elementary equivalence.
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The classical “shape” of an AKE principle is the following: Given some elementary class C of valued
fields containing (K, v), (L,w) there is an equivalence

(K, v) ≡ (L,w) ⇐⇒ vK ≡ wL ∧Kv ≡ Lw,

where the left elementary equivalence is in the language of valued fields, and the right ones in the
language of ordered abelian groups and fields respectively. We then say that C satisfies the AKE≡
principle. We could replace ≡ with other relations between models such as elementary substructure
⪯ or existential substructure ⪯∃ and obtain an AKE⪯ or AKE⪯∃ principle.

Ever since this result, many more AKE principles have been discovered for a variety of classes of
valued fields. Even in recent years, a lot of new results have been proven in this area. Some of the
most prominent results in this area are due to Franz-Viktor Kuhlmann, who has pioneered the model
theory of (separably) tame valued fields. We will use these extensively throughout this thesis. A
tame valued field is a valued field (K, v) which has the following properties:

1. the characteristic of the residue field Kv is some prime p > 0,

2. the residue field Kv is perfect,

3. it is algebraically maximal,

4. the value group vK is p-divisible.

This class of valued fields satisfy the AKE⪯ and AKE⪯∃ principles. If K in addition has characteristic
p as well, it also satisfies the AKE≡ principle [Kuh16]. For separably tame valued fields, similar
results hold with some more caveats due to Kuhlmann and Pal [KP16]. We will elaborate on these
results for separably tame valued fields further in this thesis.

Another interesting recent result is that of an AKE principle for henselian finitely ramified fields in
[ADJ24]. Their result state that by adding certain predicates to the language of the residue field we
can obtain an AKE principle for the class of valued fields of residue characteristic p such that the
interval (0, vp] is finite of size e: for henselian valued fields (K, v), (L,w) of characteristic (0, p) with
the same finite ramification then the AKE≡ principle holds except the elementary equivalence on
residue fields is in this previously mentioned expanded structure.

The particular result we will expand upon in this thesis is the result of Jahnke and Kartas in [JK25].
They obtain AKE principles for perfectoid fields and their tilts. Their methods all take place in a
setting with only perfect fields (in particular perfectoid fields). We extend some of their results to
the deeply ramified (non-perfect) setting.

In chapter 2, we will give an introduction to (valued) field theory, as well as introduce some more
advanced theorems which we will use in later parts of the thesis. Next, in chapter 3, we exhibit a proof
of the AKE principle for separably tame valued fields for fields of possibly infinite p-degree.

Then in chapter 4, we will introduce our own work: we construct an elementary class which will
serve as the class for which we exhibit our AKE principle. In particular, we prove the following
proposition:

Theorem 3.1.2. Let (K, v, t) be a pointed valued field of equal characteristic p > 0 which is henselian
and deeply ramified. If t ∈ mv \ {0} then the property of Ov

[
1
t

]
being separably algebraically maximal

is elementary.
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The class of pointed valued fields with this property is the class we are interested in. We will
justify this in the second half of chapter 4, and give several ways of recognizing valued fields in the
class.

Finally, in chapter 5 we will prove our various AKE principles. Most theorems we prove will be
variants of the following theorem:

Theorem 4.1.1. Let (K, v) ⊆ (L0, w0), (L1, w1) be extensions of henselian deeply ramified valued
fields such that

(i) L0/K and L1/K are separable extensions,

(ii) L0 and L1 have the same (possibly infinite) p-degree,

(iii) there is some t ∈ K× such that vt > 0 and the valuation rings Ov

[
1
t

]
,Ow0

[
1
t

]
,Ow1

[
1
t

]
are

all algebraically maximal.

Then the following are equivalent:

(i) (L0, w0) ≡(K,v) (L1, w1) in the language of valued fields,

(ii) w0L0 ≡vK w1L1 and Ow0
/t ≡Ov/t Ow1

/t in the language of ordered abelian groups and rings
respectively.

In particular, we will show this result for elementary equivalence, elementary embedding, a modified
version without base field, and finally the same result for existential embeddings.
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Chapter 2

Preliminaries

In these preliminaries, we will discuss both some basics of field theory and a few more specific topics
and theorems in valuation theory which we will use later. We will omit most proofs and refer either
to [All09] or [EP05] for basic algebra and valued field theory.

2.1 Basic field theory

Definition 2.1.1 (Algebraic and separable extensions). Let L/K be a field extension i.e. K is a
subfield of L. It is called algebraic if for all α ∈ L there is a non-zero polynomial p ∈ K[X] such
that p(α) = 0. The monic polynomial of smallest degree with this property is called the minimal
polynomial, and we will write it as fα

K .

An algebraic extension L/K is separable if for each α ∈ L with minimal polynomial fα
K the root α is

a simple root: if we compute (fα
K)′ as a formal derivative then (fα

K)′(α) ̸= 0.

Definition 2.1.2 (Perfect fields). The following are equivalent properties for a field K:

1. Every finite field extension L/K is separable.

2. If K has characteristic p > 0 then the Frobenius morphism x 7→ xp is surjective.

A field which satisfies this property is called perfect.

In general, for a ring R of characteristic p, we call R semi-perfect if the map x 7→ xp is surjective.

Proof. We refer to [All09, Proposition 4.20].

Notice that in particular a field of characteristic 0 is always perfect. For a field of characteristic p > 0,
we can measure how far away K is from being perfect using the p-degree or Ershov invariant:

Definition 2.1.3 (p-degree). Let K be a field of characteristic p > 0. The p-degree e of K is then
given by logp([K : Kp]) of the field extension K/Kp where Kp is the image of the Frobenius map
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x 7→ xp. This is either a natural number e ≥ 1 or infinity, where we don’t distinguish between
different cardinalities.

A subset X ⊆ K is called p-independent if for all proper X ′ ⊊ X there is a proper inclusion
Kp(X ′) ⊊ Kp(X). The size of the largest p-independent set (called a p-basis) is the same as the
p-degree [Mac39].

Remark 2.1.4. A field K of characteristic p > 0 is perfect if and only if it has p-degree 1: it is
perfect exactly if Kp = K.

There is a more general concept of separable extension for non-algebraic extensions which we will
need in chapter 2 to generalize the AKE principle from [KP16] to infinite p-degree.

Definition 2.1.5 (Linearly disjoint and separable extensions). Let K ⊆ L,L′ ⊆ Ω be field extensions.
Write L′.L for the smallest subfield of Ω containing both. We say L′ and L are linearly independent
over K if the map from the tensor product L‘ ⊗′

K L′ → Ω is injective.

A general field extension L/K is called separable if the extensions L and K are linearly disjoint over
Kp.

Theorem 2.1.6. The following are equivalent for a field extension L/K:

(i) L/K is separable,

(ii) Some p-basis of K is p-independent in L,

(iii) All p-bases of K are p-independent in L.

Proof. See [Mac39, Theorem 7 & 10].

Using these p-bases, we can define more notions related to separability which will be very useful later
on.

Definition 2.1.7. A field extension L/K is separated if L/K is separable and both have the same
p-degree. Equivalently, any p-basis of K is a p-basis of L.

We call an intermediate field L/F/K coseparable if L/F is.

A field embedding φ : L ↪→ K is separable if K/φ(L) is a separable field extension.

We apply this to get the following criterion for separable embeddings.

Corollary 2.1.8. Let L/K and K ′/K be two separable field extensions with L/K separated. Then
any embedding L ↪→ K ′ over K is separable.

Proof. Because L/K is separated, a p-basis for K is a p-basis of L. Embedding into K ′ means that
this p-basis of L is still independent and hence K ′/L is separable.

We will use the following theorem to generate and verify some examples of fields that we are interested
in later:
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Theorem 2.1.9 (Fundamental theorem of Galois theory). Let L/K be a finite (i.e. the dimension
of L as K-vector space is finite), separable and normal (i.e. finite Galois) field extension. Then there
is a bijective Galois correspondence between the lattice of intermediate fields K ⊆ F ⊆ L and the
lattice of subgroups of Aut(L/K), the group of automorphisms of L fixing K.

In particular normal subgroups of Aut(L/K) correspond to normal intermediate extensions.

Proof. We refer to [All09, Section 6.2] and [All09, Proposition 6.15] for the statement on normal
subgroups.

A particular type of field extension we will use often is the class of Artin-Schreier extensions.

Definition 2.1.10 (Artin-Schreier extension). Let K be a field of characteristic p > 0 and a ∈ K an
element such that f = xp − x− a ∈ K[X] is irreducible. We will write ρa for the generator x and
call the extension K(ρa)/K an Artin-Schreier extension.

We will write ℘ : K → K for the additive map x 7→ xp − x.

Artin-Schreier extensions have a lot of nice algebraic properties. We will discuss some of them
below:

Lemma 2.1.11. Let a ∈ K be an element not in the image of ℘. Then f = xp − x − a is an
irreducible polynomial over K and K(ρa) is a Galois extension of degree p with Galois group Z/pZ.
The roots of f in K(ρa) are given by ρa + i for i ∈ Fp.

Proof. First we show that ρa + i are all roots of f :

(ρa + i)p = ρpa + ip

= ρa + a + i

= (ρa + i) + a.

This gives p different roots of a polynomial of degree p which means that this must be all of them.
Therefore, one root of f generates the entire splitting field, so f must be irreducible.

This extension is then separable because it is generated by ρa which is separable because Xp −X − a
has distinct roots.

2.2 Valued Fields

Definition 2.2.1 (Valuation). Let K be a field and Γ an ordered abelian group. A valuation is a
surjective group morphism v : K× = K \ {0} ↠ Γ which has the following additional property for all
a, b ∈ K×:

v(a + b) ≥ min{va, vb}.

We will additionally write v0 = ∞. Usually, we will write vK for the group Γ, also called the value
group.

A valued field then consists of a tuple (K, v) consisting of a field and a valuation.
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Example 2.2.2 (Gaussian valuation). Let (K, v) be a valued field. We define the Gaussian valuation
on the function field K(X) to be the one induced by

v

(
n∑

i=0

aiX
i

)
= min {vai : i ≤ n}

on K[x].

Definition 2.2.3 (Valuation ring). The valuation ring associated to a valued field (K, v) is the set

Ov = {x ∈ K : vx ≥ 0} .

It is closed under multiplication and contains 0 and 1, so it is a subring of K. The units of Ov are
exactly those elements which have value 0. This means that the ideal

mv = {x ∈ Ov : vx > 0}

is the unique maximal ideal of Ov, which must then be a local ring. We will write quotient Ov/mv

as Kv. This field will be called the residue field.

Theorem 2.2.4. A valued field (K, v) has a natural topology which turns it into a topological ring.

Proof. For x ∈ K and ε ∈ vK, the open balls

Bε(x) = {y ∈ K : v(y − x) ≥ ε}

form the basis of a topology. To show that K is a topological ring with this topology note that
multiplication and addition map open balls to open balls.

In chapter 2, we will need that open balls in a valued field generate the field. We prove it here:

Lemma 2.2.5. Let B be an open ball in a valued field (K, v). Then B generates K as a field.

Proof. First, we may assume that 0 ∈ B by translation. We can rescale and assume that we look at
B≥0 = Ov which clearly generates K as a field.

2.3 Coarsening

One construction that we will use extensively throughout this thesis is called coarsening. It is a
method to “split” a valuation into parts that might be easier to understand separately. A more
thorough discussion and introduction can be found in [EP05].

Proposition 2.3.1 (Coarsening). Let (K, v) be a valued field with ∆ ⊆ vK a convex subgroup of
vK. Then there exist a valuation w : K× → vK/∆ such that the residue field Kw is a valued field
with valuation v : Kw× → ∆ such that for x ∈ Kw we have v(x) = vx. This is the coarsening with
respect to ∆.
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Proof. Because ∆ is a convex subgroup the quotient vK/∆ is still ordered: we say 0 < a if and only
if ∆ < a. In particular this has the property that a ≤ b if a ≤ b:

a ≤ b ⇒ 0 ≤ b− a

⇒ 0 ≤ b− a

⇒ a ≤ b.

Write π for the quotient map vK ↠ vK/∆. Define w = π ◦ v, we claim this is a valuation on K.
Clearly the map K× ↠ vK ↠ vK/∆ is still a surjective morphism, therefore we only need to show
that w(x + y) ≥ min{wx,wy}. This is pretty straightforward:

w(x + y) = v(x + y)

≥ min{vx}, {vy}
= min{vx, vy}
= min{wx,wy}.

Note that (K,w) is a valuation ring with mw = {x ∈ K : vx > ∆}.

We now show (Kw, v) is a valued field as well.

We first show that the expression for v in the theorem statement is well-defined. Suppose we have
x, x′ ∈ Ow such that x = x′ in Kw. We claim that vx = vx′. Because x− x′ = 0 we obtain
x − x′ > ∆, therefore vx = v(x′ + (x − x′)) = min{vx′, v(x − x′)} = vx′ showing that this map is
well-defined. It is surjective because for any a ∈ ∆ and x ∈ K with vx = a we have that x ∈ Ow so
vx = vx = a.

The valuation is a group morphism because v is. For x, x′ ∈ Kw we have that

v(x + x′) = v(x + x′)

≥ min{vx, vx′}
= min{vx, vx′}.

Therefore, v is in fact a valuation.

Definition 2.3.2. We can show coarsenings in a diagram in the following manner: let (K, v) be a
valued field with convex subgroup ∆ ⊆ vK. Then the coarsening is diagrammatically shown as a
diagram of places:

K Kw Kvw v

It turns out that most coarsenings do not change the induced topology on a valued field.

Theorem 2.3.3 (Induced topologies). Let (K, v) be valued field with a non-trivial coarsening w.
Then w and v induce the same topology.

Proof. We refer to [EP05, Theorem 2.3.4].
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It is possible to repeatedly coarsen a valuation to get more complex diagrams of places.

Definition 2.3.4 (Standard decomposition). Let (K, v) be a valued field with t ∈ mv \ {0}. The
standard decomposition with respect to t is a repeated coarsening.

We take the ∆+ to be the smallest convex subgroup such that vt ∈ ∆+ and ∆− the largest convex
subgroup such that vt /∈ Γ. We then first coarsen with respect to ∆− to get the following coarsening:

K Kv− Kvv− v

and then coarsen v− with respect to ∆+ to get nested coarsenings

K Kv+ Kv− Kvv+ v− v .

This is called the standard decomposition. The valuation v+ has value group vK/∆+, v− has ∆+/∆−

and v− has ∆+.

Remark 2.3.5. The valuation ring of v+ is isomorphic to the localization Ov

[
1
t

]
⊆ K. It is the

smallest valuation ring containing Ov such that t is invertible.

Similarly, the residue field of w is isomorphic to the fraction field of Ov/
√

(t). This ring is a domain
because the prime ideals of Ov are linearly ordered.

2.4 Valued field extensions

Definition 2.4.1. Let (K, v) and (L,w) be valued fields such that K ⊆ L. We say that this is an
inclusion or extension of valued fields if Ov ⊆ Ow and mv = mw ∩ Ov i.e. the inclusion Ov → Ow is
a local morphism of rings.

An extension of valued fields (K, v) ⊆ (L,w) induces an extension of residue field and value group:
we get natural inclusion morphisms vK ↪→ vL and Kv ↪→ Lw. Associated to such an inclusion we
have two (possibly infinite) quantities: the ramification index and inertia degree.

Definition 2.4.2. Let (K, v) ⊆ (L,w) be an inclusion of valued fields. The ramification index e(w/v)
of L/K is the cardinality of the group

e(w/v) = |wL/vK|

and the inertia degree f(w/v) is the degree of the field extension

f(w/v) = [Lw : Kv].

If the valuation is clear from context, we will simply write e and f .

We can bound the inertia degree and ramification index using a theorem called the fundamental
inequality.

Theorem 2.4.3 (Fundamental inequality). Let (K, v) be a valued field and L/K a finite field
extension and {wi}i the collection of extensions of v to L. Then∑

i

e(wi/v)f(wi/v) ≤ [L : K].
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Proof. We refer to [EP05, Theorem 3.3.4].

For some special valued fields the fundamental inequality is often an equality. These fields are often
studied because they have nice model-theoretic properties.

Definition 2.4.4. A valued field (K, v) is called (separably) algebraically defectless if for all
(separable) algebraic extensions the fundamental inequality is an equality.

Similarly, it is called (separably) algebraically maximal if all (separable) algebraic extensions L/K
with e = f = 1 are trivial: they have L = K.

Later we will need some statements about extensions of valued fields such that the original field is
dense as a topological space in the extension.

Lemma 2.4.5. Let (K, v) ⊆ (L,w) be a valued field extension such that K is dense in L. Let
t ∈ mv \ {0} be any element. Then Ov/t ∼= Ow/t.

Proof. Clearly the map Ov/t → Ow/t is injective. We show it is also surjective. Take any a ∈ Ow.

The field K is dense in L exactly if every a ∈ L is a limit point of K. Then the open ball

B = {b ∈ K : v(a− b) ≥ vt} ⊆ Ow

must be non-empty. Take any element a′ ∈ B ∩Ow. Then v(a− a′) ≥ t so a− a′ ∈ (t) and therefore
a = a′ ∈ Ow/t.

Corollary 2.4.6. Let (K, v) be a valued field with Artin-Schreier closure (KAS, vAS). Then OvAS/t
is semi-perfect.

Proof. By [Kuh10, Theorem 1.11] the field KAS is dense in its perfect hull ((KAS)
1

p∞ , v′) because
the former is Artin-Schreier closed. From Lemma 2.4.5 we know OvAS/t ∼= Ov′/t. The latter is
semi-perfect because it is a quotient of the semi-perfect ring Ov′ .

This density is key in the following definition. In this thesis, we are interested in valued fields
which are almost perfect, where almost means that we can arbitrarily approximate pth roots of any
element.

Definition 2.4.7. A valued field (K, v) of characteristic p is called deeply ramified if K is dense in

its perfect hull. Equivalently, it can be defined by the property that the completion (K̂, v) is perfect.

2.5 Henselian valued fields

Definition 2.5.1. Let (K, v) be a valued field. It is called henselian if for all finite algebraic
extensions L/K there is a unique extension of v to L.

The following is a basic result in valuation theory.

Proposition 2.5.2. Let (K, v) be a valued field. Then the following are equivalent:
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1. (K, v) is henselian.

2. For all f ∈ Ov and a ∈ Ov such that f(a) = 0 and f
′
(a) ̸= 0 in Kv there is an element b ∈ Ov

such that b = a and f(b) = 0.

3. For any irreducible f ∈ Ov[X] which is non-constant on the residue field Kv, there is an
irreducible g ∈ Ov[X] with g ∈ Kv[X] irreducible such that f = gs.

Proof. See [EP05, Theorem 4.1.3].

If (K, v) is a henselian valued field with a finite extension L/K we will often also write v for the
(unique) valuation of v to L.

Since henselian valuations extend uniquely to any algebraic field extension, we get for any algebraic
extension L/K the inequality

[L : K] ≥ [Lv : Kv](vL : vK).

It turns out that we can add a correction term to this equation to make it an equality.

Theorem 2.5.3. Let (K, v) be a henselian valued field and L/K a normal finite algebraic extension.
Then there is some n ∈ N such that

[L : K] = pn[Lv : Kv](vL : vK).

Proof. For a proof see [Bou65, Page 190, Exercise 9].

The power pn is the defect of the extension.

We will also use the following property of henselian valued fields, and a corollary of it:

Lemma 2.5.4 (Krasner’s lemma). Let (K, v) be a henselian valued field with an algebraic separable
algebraic extension L/K. Take a ∈ L and let fa

K = (x− a1) · · · (x− an) be the minimal polynomial
of a over K with a = a1. If some b ∈ L has the property that

v(b− ai) > max {v(aj − a) : j ̸= 1}

then K(a, b) = K(b). In particular a ∈ K(b).

Proof. For a proof we refer to [EP05, Theorem 4.1.7].

Definition 2.5.5. For a separable polynomial f we write

kras(f) = max {v(α− α′) : α, α′ are distinct roots of f} .

It turns out that the roots of a polynomial are continuous in the coefficients of that polynomial: if
two polynomials are similar, then their roots are also close together. This similarity of polynomials is
expressed using the Gaussian valuation on K[X].
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Proposition 2.5.6. Let (K, v) be a valued field f ∈ K[X] be a separable monic polynomial. Then
for every ε ∈ vK there is some δ ∈ vK such that the following holds:

If g is monic with v(f − g) > δ then deg f = deg g, and for each root α of f there is a root β of g
such that v(α− β) ≥ ε. Moreover, if ε > kras(f) then the choice of β is unique and g is separable.

Proof. See [ĆKS23, Theorem 14].

Now combining Lemma 2.5.4 and Proposition 2.5.6 gives the following corollary:

Corollary 2.5.7. Let f ∈ K[X] be monic, separable and irreducible. Then there is some δ ∈ vK
such that for all monic polynomials g with v(f − g) > δ the polynomial g is irreducible and each
root α of f there is a unique root β of g such that K(β) = K(α).

Proof. Let ε > kras(f), and pick δ as given by Proposition 2.5.6. Let α be a root of f and β the
root of g such that v(α− β) ≥ ε > kras(f). Then by Krasner’s lemma K(α) = K(β).

Because
deg g = deg f ≤ [K(α) : K] = [K(β) : K] ≤ deg g

the polynomial g must be irreducible.

One concept we will often run into is that of an unramified extension. We will use a non-standard
definition.

Definition 2.5.8. Let (L,w)/(K, v) be an extension of henselian valued fields. We will call it
unramified if f(w/v) = [L : K] and Lw/Kv is a separable field extension. In this case, the
fundamental inequality of Theorem 2.4.3 is in fact an equality.

2.6 Interpreting valued field extensions

The following section is an elaboration on an argument of Will Johnson in his PhD thesis “Fun with
Fields” [Joh16]. We explain why certain properties of extensions of valued fields are definable.

Theorem 2.6.1. Let (K, v) be a henselian valued field and L/K a finite extension. Then the
following property is elementary: for all finite extensions L/K the unique extension (L,w) which
have e(w/v) = 1, there is an a ∈ L such that L = K(a) and 0 ≤ v(a) ≤ v(t).

In the following part we will need some notation to write polynomials over certain subsets of fields.
For a subset a ⊆ K we write a[X] for the set of polynomials with coefficients in a. We will use the
notation a[X]≤d for the polynomials of degree at most d.

Lemma 2.6.2. Let K be a field. Then field extensions L/K of fixed degree are elementarily
interpretable. In particular, we can “quantify” over all (simple) field extensions of fixed degree.

Proof. We first reduce to the case of simple field extensions. These are extensions generated by one
element. For the reduction, note that a non-separable finite extension is still generated as a field
by finitely many generators, so one can repeat this process to interpret finite non-separable field
extensions instead.
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Now let K(α)/K be a simple extension of degree d, which is also the degree of the minimal polynomial
fα
K ∈ K[X] of α. Then K(α) ∼= K[X]/fα

K .

We then know that all elements of K(α) are uniquely of the form p(α) for some p ∈ K[X]≤d. Therefore,
the domain of our interpretations is the d-fold Cartesian product Kd. Addition of polynomials is
just addition of the polynomials. For multiplication, we need to be a bit smarter. Multiplying two
polynomials, while perfectly interpretable, adds their degrees, and we can only consider polynomials
of degree smaller than d. For this we have one more trick up our sleeve: Euclidean division.

If p is a polynomial of degree n > d then there are unique polynomials q, r with q of degree n− d
and r of degree < d such that p = fα

Kq + r. This is expressible using an elementary formula, so we
can interpret multiplication in K(α).

In this interpretation, we can recover K as the constant polynomials.

To express all simple field extensions of degree d, one can quantify over the irreducible polynomials of
degree d. Note that irreducibility of a polynomial is an elementary property, because we can express
that there is a non-constant polynomial of smaller degree which divides it.

Lemma 2.6.3. If (K, v) is a henselian valued field and L/K an algebraic extension, the following
statements are equivalent for any α ∈ L:

(i) α /∈ OL,

(ii) there is a polynomial p ∈ m ∩K[X] of degree at most L/K such that p(α) = 1.

Proof. The implication (ii) ⇒ (i) is clear. We assume α ∈ Ov and show there is no such p. If
there is such a p =

∑
i aix

i ∈ m ∩ K then by the strong triangle inequality v(1) = v(p(α)) ≥
min{v(ai) + i · v(α)}i. If α ∈ Ov and ai ∈ m this is clearly impossible because v(ai) + i · v(α) > 0 for
all i.

For the converse we may assume that L/K is Galois. Consider all conjugates α = α1, . . . , αn. Then
by henselianity v(αi) < 0 for all i. The minimal polynomial fα

K =
∑

i aiX
i factors as

∏
i(X − αi).

Then a0 = ±
∏

i αi must have minimal valuation because
∑

i v(αi) is smaller than summing over the
valuations of some of the αi.

Taking p = − 1
a0
fα
K + 1, a simple calculation shows that p ∈ mv[X] and p(α) = 1.

Using this, we can now prove our theorem.

Proof of Theorem 2.6.1. We define a set of formulas which will axiomatize this property.

In particular, for n ∈ N we define φn to be a formula quantifying over degree n extensions. Note
that we can quantify over polynomials of a specific degree by quantifying over the coefficients.
Multiplication and evaluation of polynomials can be expressed in formulas only using addition and
multiplication. A polynomial

∑
i aiX

i is separable if and only if ai ̸= 0 for some i which is not a pth
power.

Given some fixed extension L/K of degree n, we will write OL(a) for the formula ∀g ∈ mv[X]≤n :
g(a) ̸= 1.
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φn = ∀f ∈ K[X]n : f is separable ∧ f is irreducible

→ ∃a ∈ K[X]/f : ∀g ∈ K[X]<n : g ̸= 0 → g(a) ̸= 0

∧ OL(δa) ∧ OL(t/δa).

Intuitively, this formula states the following: for all finite separable field extensions L/K, there is an
a ∈ L which is not the root of a polynomial of degree smaller than n (i.e. it generates L) of which
the different δa has non-negative value and t/δa does as well: 0 ≤ v(δa) ≤ v(t).
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Chapter 3

AKE principles for separably tame
valued fields

In this chapter, we will discuss the model theory of separably tame valued fields as originally covered
in [KP16]. We exhibit a yet unpublished proof by Anscombe to extend these results to infinite
p-degree, which allows us to extend our results to infinite p-degree as well.

3.1 Relative Embedding Principles

Key to the AKE principles for separably tame valued fields are relative embedding principles. They
allow for back-and-forth arguments to construct isomorphisms of valued fields.

Theorem 3.1.1 (Separable Relative Embedding Property). Let (L, v), (K∗, v∗) be separably tame
valued fields with a common separably tame subfield (K, v). If

• L/K is separable,

• (L, v) is ℵ0-saturated,

• (K∗, v∗) is |L|+-saturated,

• vL/vK is torsion-free and Lv/Kv is separable,

then any embeddings of value groups σ : vL ↪→ v∗K∗ and residue field ρ : Lv ↪→ K∗v∗ over vK and
Kv extend to a valued field morphism (L, v) → (K∗, v∗).

Remark 3.1.2. Any elementary extension of fields K ⪯ L is separable.

Now there is a nice way to remove the demand that L is ℵ0-saturated.

Lemma 3.1.3. Let N,M∗ be structures of a language L and M∗ is max(L , |N |)+-saturated. If N
embeds into an L structureM elementarily equivalent tot M then N embeds into M∗.
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Proof. The diagram of N is finitely satisfiable in M∗ by assumption, the satisfiability of any finite
collection of formulas (φi(x))i≤n is elementary because ∃x,

∧
i φ(x) is a sentence satisfied in an

elementarily equivalent model. So it is satisfiable in M∗ because it is saturated of large enough
size.

Corollary 3.1.4. Theorem 3.1.1 holds if (L, v) is not ℵ0-saturated.

Proof. Let (L,w), (K∗, v∗) be as in the theorem without (L,w) being ℵ0-saturated. By taking an
appropriate ultrapower we may assume that (K∗, v∗) is in fact 2|L|+-saturated. Then the same
ultrapower of (L,w) is ℵ0-saturated and the maps ρ, σ lift to embeddings of the value groups and
residue fields of these ultrapowers as well.

Both are elementary equivalent to their smaller counterparts, so all conditions of Theorem 3.1.1 are
now fulfilled. Therefore, we get an embedding∏

U
(L,w) →

∏
U ′

(K∗, v∗)

respecting the lift of ρ, σ, which restricts to an embedding

(L,w) →
∏
U ′

(K∗, v∗)

respecting ρ, σ. By the lemma above, we know that this embedding can in fact be chosen such that
its image lies in (K∗, v∗). In fact, we can even choose it such that it respects ρ, σ: if we add a formula
to the diagram that says a = σ(a) for all a ∈ vL and x = ρ(x) for all x ∈ Lv then this is still satisfied
and hence can also be satisfied in (K∗, v∗).

3.2 Separably tame AKE for infinite degree of imperfec-
tion

We will now show a proof for the AKE-principle for separably tame valued fields which have infinite
p-degree. It is a modification of the proof of Franz-Viktor Kuhlmann in [KP16]. The ideas here are
due to Anscombe. We will prove the following strengthening of the separable relative embedding
property:

Theorem 3.2.1 (Co-separable separable relative embedding property). Let (L,w), (K∗, v∗) be
equal-characteristic p separably tame valued field with a common separably tame subfield (K, v). If

1. L/K is separable,

2. impdegL/K ≤ impdegK∗/K,

3. (K∗, v∗) is |L|+-saturated,

4. wL/vK is torsion free and Lw/Kv is separable.

Then any embeddings ρ : Lw → K∗v∗ and σ : wL → v∗K∗ over Kv and vK extend to an embedding
ı : (L,w) → (K∗, v∗) over (K, v) such that K∗/ı[L] is a separable extension.
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First we state (quite) a few theorems, lemmas, and definitions which are necessary to prove a complex
theorem such as the one above.

Theorem 3.2.2 (Separable going down). Let (L,w)/(K, v) be an extension of valued fields such
that (L,w) is separably tame, K is relatively algebraically closed in L and Lw/Kv is algebraic. Then
(K, v) is separably tame.

Proof. For a proof see [Kuh16, Lemma 3.15].

Theorem 3.2.3 (Henselian rationality). Let (L,w)/(K, v) be an immediate function field of dimension
1 of (K, v) which is separably tame. Then there is some b ∈ L such that L ⊆ K(b)h. In particular if
L is henselian then L = K(b)h.

Proof. We refer to [Kuh19, Proposition 5.7].

Theorem 3.2.4 (Strong inertial generation). Let (L,w)/(K, v) be a function field without tran-
scendence defect with (K, v) defectless. If Lw/Kv is separable and wL/vK is torsion free then the
extension of valued fields is strongly inertially generated.

Proof. See [Kuh16, Theorem 1.5].

We will prove the theorem in three steps:

1. First we construct an intermediate field L0/K such that L/L0 has no transcendence defect and
L0 is relatively algebraically closed in L. We embed this into K∗ by a separable embedding.

2. Secondly, we find L1/L0 such that L/L1 is separated and embed it into K∗ such that K∗/L1

is separable.

3. Finally, we extend the embedding to the whole of L preserving the separability of the extension.

Proof. We may assume that all involved fields are saturated in a manner similar to Corollary 3.1.4.
This gives us a cross-section of the residue map and a section of the valuation for K,L,K∗ [vdDri+14,
Lemma 7.9] [ADF23, Proposition 4.5]. In fact, we can pick those on L and K∗ to be compatible
with those on K. We call the cross-section ζ : Kv → K and the section χ : vK → K, regardless of
whether it is actually a cross-section of L or K.

Step 1: First we define L0 to be the relative algebraic closure of the field K(χ[wL], ξ[Lw]) in L.
By construction, it does not have transcendence defect and so every finitely generated subextension
is strongly inertially generated by Theorem 3.2.4. We now embed using compactness: by saturation
L0 embeds into K∗ if and only if there is an extension of the structure of K∗ satisfying the diagram
of L0. By compactness, we then only need to satisfy every finite subset of the diagram i.e. embed
every finitely generated subextension. By [KP16, Lemma 3.5] we do in fact get these embeddings, so
the full embedding also exists.

We also claim that L0/K is a separated extension. First: the extension K(χ[wL], ξ[Lw]) is separated
because χ adds transcendental elements which have pth roots by p-divisibility. Similarly, ξ only adds
transcendental with pth roots and separable-algebraic elements because Lw is perfect and L/K is
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separable respectively. This means that this extension is in fact separated. Now the relative algebraic
closure L0 is also separated because it is a purely algebraic separable extension. We conclude the
embedding L0 → K∗ is necessarily separable by Corollary 2.1.8.

Now we note that L0 is separably tame by Theorem 3.2.2 and L/L0 is immediate by construction.

Step 2: Next, we find a (possibly transfinite) p-basis of L over L0, call it (bµ)µ<ν . We will embed
each L0,µ = L0(bµ)racµ<ν into K∗ using transfinite recursion such that the embedding is separable.
This will be the intermediate field L1.

Then afterwards by Corollary 2.1.8 any embedding L → K∗ extending this map will be separable.

The base case L0,0 is just L0 and the limit case is also straightforward. Therefore, we only need to
focus on the induction step.

Suppose we have a separable embedding L0,µ → K∗. Take c ∈ L0,µ+1. By henselian rationality, there
must be a d ∈ L0,µ+1 such that L0,µ(d)h = L0,µ(bµ, c)

h. Our elements d and bµ are p-interdependent,
i.e. one is p-independent if the other is, so because bµ is by assumption p-independent the element d
is p-independent.

Choose a pseudo-Cauchy sequence (dδ)δ ∈ L0,µ which has pseudo-limit d and no pseudo-limit in
KL0,µ. By the proof of [KP16, Proposition 3.10] this sequence is of transcendental type

We then embed L0,µ(d)h into K∗ over L0,µ using this sequence. The quantifier free type of d is
determined uniquely by the formulas v(x− dδ) ≥ γδ for a sequence (γδ)δ [Kap, Theorem 2]. We can
transfer these equations to K∗ using our found embeddings. By saturation, we can satisfy this type
in K∗, and thus we can embed L0,µ(d)h into K∗ using the universal property of henselization.

We claim that we can do this such that the embedding is still separable as well. To do this,
we show that this type can be satisfied by an element which is separable over L0µ. Take any
finite set of formulas v(x − dδ) ≥ γδ from earlier. Then the intersection of these balls is just the
smallest of these balls. Because (K∗)p ·K0,µ cannot be the whole field K∗ (for example because
impdegL0,µ/K < impdegL/K ≤ impdegK∗/K), there must be an element disjoint from this
subfield contained in this ball, which is then p-independent of K0,µ in K∗. We conclude that this
extension of the embedding can therefore be chosen to be separable.

Step 3: Now finally, we can extend this embedding to the entirety of L in the same manner we
have done before using transfinite pseudo-Cauchy sequences except we don’t need to worry about
separability any more: it is automatically separable because L/L0,µ is a separated extension and
K∗/L0,µ is separable.

Given this version of the embedding property, we can prove the AKE≡ property for the class of
separably tame valued fields of the same p-degree.

Corollary 3.2.5. The class of separably tame valued field with the same (possibly infinite) p-degree
satisfies the AKE≡ principle.

Proof. First, we may assume that the valued fields are non-trivially valued vK = vL = 0 because
then the statement is immediate from the fact that Kv = K ≡ L = Lw.
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Let (K, v), (L,w) be two separably tame valued fields of characteristic p and p-degree e with
elementarily equivalent value group and residue field. By absoluteness of the statement we may
assume the generalized continuum hypothesis [HK23]. Therefore, we may assume that both are
saturated of the same size. Then we in fact obtain isomorphisms ρ : vK

∼−→ wL and σ : Kv
∼−→ Lw.

In the case of infinite p-degree, the saturation gives us a p-basis of cardinality |K| = |L| of K and L.

Both contain the trivial valued field Fp. We perform a back-and-forth argument over this using
Theorem 3.2.1 to get an isomorphism of (K, v) and (L,w).

Let (ai)i and (bj)j be enumerations of K and L and construct the isomorphism compatible with
ρ and σ by transfinite induction. Our assumptions in the induction step are that we work over
a common valued subfield (K ′, v′) ⊆ (K, v), (L,w) such that both extensions are separable, the
quotients of value groups are torsion free, the residue field extensions are separable and (K ′, v′) is
separably defectless. This base field will contain increasingly more ai and bj .

The base case of the induction is Fp ⊆ (K, v), (L,w) which clearly satisfies all of these criteria.

Now for the induction step. We may assume we want to embed an ai, else we just swap K and L and
proceed. Let (K∗, v∗) ⪯ (K, v) be a strict elementary substructure of smaller cardinality containing
K ′ and ai. Using Theorem 3.2.1, ρ and σ we embed it into L. We now take K∗ as the common
substructure for the next step.

The valued field (K∗, v∗) satisfies the induction hypothesis: it is an elementary substructure of K.
Therefore, it is separably defectless K/K∗ is separable the vK/v∗K∗ is torsion free and Kv/K∗v∗.
For L/K∗ the same conclusions hold by Theorem 3.2.1 and the assumption that our embedding
restricts to ρ and σ.

In the limit case, we just take the total embedding K(ai)i<µ → L as induced by the union.

This process yields an isomorphism (K, v) ∼= (L,w) and so the two are elementarily equivalent.

Remark 3.2.6 (Separable relative subcompleteness). If we start with a different subfield than Fp

which satisfies the same assumptions of the induction hypothesis, then we obtain an isomorphism over
that subfield. This gives elementary equivalence over this subfield as well. This is called separable
relative subcompleteness.

In the case of saturated models, elementary equivalence and isomorphisms are equivalent. We would
like for the isomorphism of saturated models obtained from the AKE principle to be compatible
with the isomorphisms of the residue fields. One can trace through the proof to see that the
isomorphism constructed in Corollary 3.2.5 is compatible with the isomorphisms of residue field and
value group.

Corollary 3.2.7. Let (K, v) ⊆ (K∗, v∗) be separably tame valued fields and (K∗, v∗) saturated of
size |K|+ such that:

• The extension K∗/K is separable,

• The extension K∗v∗/Kv is separable and v∗K∗/vK is torsion free.
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Then any pair of automorphisms

ρ :K∗v∗ → K∗v∗,

σ :v∗K∗ → v∗K∗

fixing Kv and vK extend to an automorphism of (K∗, v∗) over (K, v).
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Chapter 4

Elementary class

We now introduce the main object of study, a certain elementary class of valued fields. In this
chapter, we will first introduce the class and show it is elementary, then we will justify why this class
is the one we are interested in and give a way to “recognize” its members.

4.1 Axiomatizing separable-algebraic maximality

Lemma 4.1.1. Let (K, v, t) be a deeply ramified henselian valued field of equicharacteristic p > 0
such that {vtn = n · vt : n ∈ N} is cofinal in vK. Then for any finite separable field extension L/K
there is an α ∈ L such that L = K(α) and 0 ≤ vδ(a) ≤ vt.

Proof. Let L/K be such an extension and take any generator α ∈ Ov which exists by separability.
This will have 0 ≤ v(δα).

We get a diagram of valued fields

L L.K
1

p∞

K K
1

p∞

The extension K
1

p∞ /K is immediate and purely inseparable, therefore it is linearly disjoint from L

over K. Therefore, we get that [L.K
1

p∞ : K
1

p∞ ] = [L : K]. In particular fα
K is still irreducible over

K
1

p∞ and L.K
1

p∞ = K
1

p∞ (α). By separability δα = (fα
K)′(α) ̸= 0 so v(δα) < tn for some n ∈ N.

We claim that there is an α′ ∈ K
1

p∞ such that L.K
1

p∞ = K
1

p∞ (α′) and δα′ = 1
pN δα ≤ vt. The pN th

root pN
√
α does the trick.

Writing fα
K =

∑k
i=0 aix

i and naming its roots α = α1, . . . , αk, we see that the minimal polynomial of

the generator pN
√
α has roots pN

√
α = pN

√
α1, . . . , pN

√
αn and is given by

∑k
i=0

pN
√
aix

i with ak = 1.
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Therefore

δ pN
√
α =

(
f

pN
√
α

K

)′ (
pN
√
α
)

= pN
√

(fα
K)′(α) =

pN
√
δα,

and also K
1

p∞ ( pN
√
α) = K

1
p∞ (α) by a degree argument.

Now we approximate this root in K with sufficient precision and demonstrate that it yields the

desired element. Let ε > 1
pN kras

(
f

pN
√
α

K

)
and δ be as given by Proposition 2.5.6. Let g ∈ K[X]

be a monic polynomial with v

(
f

pN
√
α

K − g

)
> δ. Then for each pN

√
ai there is a unique root βi of g

such that v( pN
√
αi − βi) ≥ ε. We claim that K(β) = L and vδβ = vδ pN

√
α ≤ vt.

We know that K(β) = L because

v(βpN

− α) = pNv(β − pN
√
α)

>
pN

pN
kras(f)

= kras(f),

so we conclude by Lemma 2.5.4.

To show that pN
√
α and β have the same different we use the ultrametric triangle inequality. First

note that for i ̸= j

v
(

pN
√
αi − βj

)
< ε ≤ v

(
pN
√
αi − βi

)
Hence, we claim that v

(
pN
√
αi − pN

√
αj

)
= v(βi − βj). Take i ̸= j, then

v(βi − βj) = v
(
βi − pN

√
αi + pN

√
αi − βj

)
= min

{
v
(
βi − pN

√
αi

)
, v

(
pN
√
αi − βj

)}
= min

{
v
(
βi − pN

√
αi

)
, v

(
pN
√
αi − pN

√
αj + pN

√
αj − βj

)}
= min

{
v
(
βi − pN

√
αi

)
, v

(
pN
√
αi − pN

√
αj

)
, v

(
pN
√
αi − βj

)}
= v

(
pN
√
αi − pN

√
αj

)
.

This means that we have

v
(
δ pN

√
α
)

= v

∏
j ̸=i

(
pN
√
αi − pN

√
αj

)
=
∑
j ̸=i

v
(

pN
√
αi − pN

√
αj

)
=
∑
j ̸=i

v (βi − βj)

= v(δβ).
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Proposition 4.1.2. Let (K, v) be a deeply ramified henselian valued field of equicharacteristic p > 0
with t ∈ mv \ {0}. Then the following are equivalent

(i) The valued field Ov

[
1
t

]
is separably defectless.

(ii) For every finite separable valued field extension K ′ : K with e(v′/v) = 1 there is an a ∈ Ov′

such that K ′ = K(a) and 0 ≤ v′(δa) ≤ vt.

(iii) The valued field Ov

[
1
t

]
is separable-algebraically maximal.

Proof. First we prove that if Ov

[
1
t

]
= K all three statements are trivially true. This is immediately

obvious for (i) and (iii). For (ii) this is true by Lemma 4.1.1.

Now we prove the equivalence. We will refer to the standard decomposition of K with respect to t a
lot, so will give it for reference:

K Kv+ Kv− Kvv+ v− v

In particular if Ov+ ̸= k, then the residue field Kv+ is perfect because (K, v) is deeply ramified.

(i) ⇒ (ii) Let L/K be a separable valued field extension with e = 1. Then because v+ is separably
defectless we get that [Lv+ : Kv+] = [L : K]. This extension is separable because Kv+ is perfect.
Therefore, the extension is unramified. By [JK25, Lemma 4.1.2] we know that this means there is
such a desired α.

(ii) ⇒ (iii) Let L/K be an immediate extension with respect to v+. By Theorem 2.5.3 we know that
[L : K] = pn(v+L : v+K)[v+L : v+K] where pn is the defect of the extension with respect to v+. By
assumption the extension was immediate so [L : K] = pn. Then because p-divisible linearly ordered
groups have no extensions of degree pn we get that the extension L/K of the entire valuation v is
also unramified.

This means that there is an a with 0 ≤ v(δa) ≤ vt and therefore the extension L/K is unramified
with respect to v+. This means the extension is trivial.

(iii) ⇒ (i) Because Kv+ is perfect, the valued field (K, v+) is separable-algebraically maximal, and
vK is p-divisible the valued field is separably tame [KP16, Lemma 2.14].

Corollary 4.1.3. The property of being contained in C is elementary.

Being deeply ramified [KR23, Theorem 1.2] and (ii) in equicharacteristic p > 0 are elementary. Then
by Theorem 2.6.1 conclude that the class of pointed valued fields of equicharacteristic p > 0 (K, v, t)
which are henselian, deeply ramified and with Ov

[
1
t

]
separably defectless is elementary.

We will write Cp for the class of all structures in this class. In the future, we will want to specialize
to the elementary class of valued fields in C which have a fixed p-degree e. We will write Cp,e for this
subclass.

We now give an example of a valued field which is not separably tame, but is contained in C.
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Example 4.1.4. Let p be an odd prime. The pointed valued field (Fp ((t))
AS

, v, t) is in C. It is deeply
ramified and rank 1, so the coarsening Ov

[
1
t

]
is the trivial valuation ring which is defectless. The

field itself however is not separably tame.

We claim that separable extension Fp ((t)) (
√
t)
(
ρ 1√

t

)
is linearly disjoint of F ((t))

AS
. This is sufficient

to show that the composite extension Fp ((t)) (
√
t)
(
ρ 1√

t

)
.Fp ((t))

AS
/Fp ((t))

AS
must have defect: both

the value group and residue field of Fp ((t))
AS

have no degree p extension. The value is 1
p∞Z which is

p-divisible, and the residue field Fp
AS has no degree p-extensions either.

Now to show linear independence we use some basic Galois theory. In this case, it is sufficient to

show that Fp ((t)) (
√
t)
(
ρ 1√

t

)
∩ Fp ((t))

AS
is Fp ((t)). Therefore, we assume that the intersection is a

non-trivial intermediate extension as in the diagram below.

Fp ((t)) (
√
t)
(
ρ 1√

t

)
.Fp ((t))

AS

Fp ((t)) (
√
t)
(
ρ 1√

t

)
Fp ((t))

AS

L

Fp ((t))

The field extension L/Fp ((t)) must have degree p: Fp ((t))
AS

/Fp ((t)) is a tower of degree p extensions
and Fp ((t)) (

√
t)/Fp ((t)) has degree 2p. This means that L/Fp ((t)) has degree p. It is also a Galois

extension, because it is the intersection of two Galois extensions.

The Galois group Gal
(
Fp ((t)) (

√
t)/Fp ((t))

)
must be the dihedral group Dp of order 2p, which is the

only non-commutative group of order 2p. This group has no normal subgroup of order 2, so by the
fundamental theorem of Galois theory the non-trivial intermediate field L cannot exist.

This demonstrates that Fp ((t))
AS

with the t-adic valuation is not separably defectless.

Not every deeply ramified valued field has a parameter t such that (K, v, t) is contained in C. We
can find such a field using [JK25, Observation 6.1.5].

Example 4.1.5. Let U be a non-principal ultrafilter on N and consider the field K = Fp ((t))
U

once again for an odd prime p. We claim its perfect hull K
1

p∞ has no element x with the desired

property. It is sufficient to only consider x ∈ K. This is because any element of K
1

p∞ is in the same
Archimedean class as an element of K.

Let (xi)i∈N ∈ K. Suppose that the coarsening Ov

[
1
x

]
of K

1
p∞ is algebraically maximal. We show it

does not satisfy Item (ii)1.

1Note that technically Item (ii) talks about deeply ramified valued fields. In this case the field is perfect, so
separably algebraically maximality and algebraically maximality coincide and reduce to the original criterion in [JK25]
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Choose a sequence y = (yi)i∈N such that vyi ≥ n · vxi, vyi < vyj for i < j, and p ∤ vyi for all i. We

show that L = K
1

p∞ (ρ 1
y
) gives a field extension with the desired property.

The value group of Ov

[
1
x

]
is p-divisible, so the extension L/K

1
p∞ is unramified Galois of degree p.

Therefore, there must be an a ∈ K with va ≥ −vt and L = K(ρa).

Then we have that the following things are equivalent:

1

y
− a ∈ ℘

(
K

1
p∞
)
⇔ yp

n

− ap
n

∈ ℘ (K) for some n ∈ N

⇔ y − ap
n

∈ ℘(K) for some n ∈ N.

The last equivalence holds because Artin-Schreier roots are additive and a−ap has a as Artin-Schreier
root.

Then by  Los’ theorem, the set {
i :

1

yi
− ap

n

∈ ℘(K)

}
is an element of the ultrafilter U . For sufficiently large i, v

(
1
yi

− ap
n
)

= v
(

1
yi

)
which is not

p-divisible. Therefore, 1
yi

− ap
n

cannot be in the image of ℘ because it is not p-divisible and no such
a can exist. This gives a desired contradiction.

It turns out that this field does not admit any elementary extension which could be interpreted to be
in C either. We show that no ultrapower of this field can have this property. By the Keisler-Shelah
theorem [She71] this is sufficient to show that there is no elementary extension at all.

Let U be an ultrafilter on some set I, (K ′, v′) = (K, v)U and x = (xi)i∈I ∈ mv′ \{0}. By  Los’ theorem
[TZ12], the set X = {i ∈ I : xi ∈ mv \ {0}} is an element of U . Then again by  Los’ theorem and the
above remark we can find a field extension L/K ′ of degree p which has defect for all i ∈ X with
respect to the coarsening2 v+ and hence L/K ′ has defect with respect to Ov′

[
1
x

]
.

Example 4.1.6. We can also combine the proof strategy above with the example of the separable

defect of K = Fp ((t))
UAS

for a non-principal ultrafilter U on N to get a non-perfect field with no
elementary extensions which can be interpreted to be in C.

By the same reasoning as in Example 4.1.5, it suffices to find an upper bound on the smallest
degree of separable defect extensions of Fp ((t))

AS
. Let (xi)i∈N ∈

∏
U Fp ((t)) be an element of m \ {0}.

Choose a sequence y = (yi)i∈N such that vyi > i · vxi and 2 ∤ vyi. The extension K(
√
y)(ρ 1√

y
) of

degree 2p has separable defect with respect to Ov

[
1
x

]
by the same argument as in Example 4.1.4:

K(
√
y)(ρ 1√

y
)/K(

√
y) is an unramified Galois extension and hence descends to a Galois extension of

degree p on the residue field. Because K(
√
y)/K is purely ramified, the extension of residue fields

K(
√
t)(ρ 1√

t
)v+/Kv+ is Galois of degree p as well: i.e. an Artin-Schreier extension. However, this

residue field is Artin-Schreier closed, so there is no such extension. This gives us that this separable
extension of degree 2p has defect.

2For each xi individually.
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4.2 More concrete descriptions

In [JK25], instead of considering deeply ramified valued fields, Jahnke and Kartas consider valued
fields (K, v) of residue characteristic p such that Ov/p is semi-perfect. If K has characteristic 0,

these notions are equivalent because in this case Ôv/p ∼= Ov/p. In equicharacteristic p, the notion of
being deeply ramified is slightly weaker: we only ask that the completion of K is perfect, instead of
K itself. We will give a justification why this is the correct generalization to the separably tame case.
In doing so we will also find some ways to recognize valued fields in C.

First we introduce a more concrete algebraic description of deeply ramified valued fields of equichar-
acteristic p.

Lemma 4.2.1. Let (K, v) be a valued field of characteristic p > 0. Then K is deeply ramified if and
only if for all x ∈ mv \ {0} the ring Ov/x is semi-perfect.

Proof. The right to left implication is simple: Ov/x ∼= Ôv/x and Ôv is semi-perfect so Ov/x is as
well.

For the other implication we show that for all a ∈ Ov and open balls around p
√
a there is an element

of Ov in it. Let B>ε( p
√
a) be an open ball for some ε ∈ vK and take x such that p · vx > ε. Then

there is a b such that bp − a ∈ (xp). Then v(b− p
√
a) ≥ vx > ε.

One can weaken the criterium above to a slightly weaker statement.

Remark 4.2.2. It is in fact sufficient to have that Ov/xi is semi-perfect for some sequence of xi

such that vxi is cofinal in vK. This is because if Ov/x is semi-perfect and vy ≥ vx then there is a
surjection Ov/x ↠ Ov/y, so this ring is semi-perfect as well.

Now using this equivalent algebraic property, we can relate deeply ramified coarsenings to the original
valued field.

Lemma 4.2.3. Let (K, v) be a valued field with t ∈ mv \ {0} such that Ov

[
1
t

]
̸= K. If O

[
1
t

]
is

deeply ramified, so is Ov.

Proof. By Remark 4.2.2 it is sufficient to show that for all x ∈
⋂

i∈N(ti) \ {0} the ring Ov/x is
semi-perfect.

For any such x the ring Ov

[
1
t

]
/(x2) is semi-perfect by assumption. In particular for any a ∈ Ov

there are b, c ∈ Ov such that (
b

tn

)p

= a +
c

tm
x2.

We will show that this element is contained in Ov and a pth root mod x. Notice that

v
( c

tm
x2
)

= vc−m · vt + 2 · vx

≥ vc + vx

≥ vx

≥ 0.
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We therefore see that

v

(
b

tn

)
= v

(
a +

c

tn
x2
)

≥ min
{
v(a), v

( c

tn
x2
)}

≥ 0

and hence b
tn ∈ Ov. Now finally we have

v

((
b

tn

)p

− a

)
= v

( c

tm
x2
)

≥ x.

This shows that (
b

tn

)p

− a ∈ (x)

showing that all elements of Ov/x have a pth root, so it is semi-perfect.

Remark 4.2.4. There is also a topological argument for the above theorem: if Ov

[
1
t

]
is a non-trivial

valuation ring then it induces the same topology as Ov by ??. Therefore, K is dense in K
1

p∞ with
respect to one valuation if and only if it is with respect to the other.

Now we are ready to reap the rewards of this algebraic manipulation. It turns out that for rank 1
fields, it is relatively easy to be contained in the class C:

Lemma 4.2.5. Let (K, v) be a valued field such that vK has no minimal positive element. If
x, y ∈ mv are in the same Archimedean class then Ov/x is semi-perfect if and only if Ov/y is.

Proof. We know that Ov/x is semi-perfect if and only if for all elementary extensions (K ′, v′) ⪰ (K, v)
the quotient Ov/

√
(x) is [JK25, Lemma 7.2.19]. Therefore, it suffices to show that

√
(x) =

√
(y)

in all elementary extensions. This is because x, y are in the same Archimedean class if and only
if there are n,m ∈ N such that n · vx ≥ vy and m · vy ≥ vx. This is also exactly the condition
for
√

(x) =
√

(y). These inequalities clearly lift to elementary extensions, so
√

(x) =
√

(y) in all
elementary extensions of (K, v).

Corollary 4.2.6. If (K, v) has rank 1 and Ov/t is semi-perfect for some t ∈ mv \ {0} which is not of
minimal positive value then Ov is deeply ramified.

Proof. If Ov/t is semi-perfect and v(t) is not minimal positive, then vK must be p-divisible by the
strong triangle inequality. By Lemma 4.2.5, the field is then deeply ramified.

Proposition 4.2.7. If (K, v) is a rank 1 valued field with some t ∈ mv \ {0} such that Ov/t is
semi-perfect and v(t) is not minimal positive. Then (K, v, t) is contained in the class C.

Proof. By the above corollary (K, v) is deeply ramified. The trivially valued field Ov

[
1
t

]
= K is

separable-algebraically maximal. Therefore, (K, v, t) is contained in C.
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For arbitrary valued fields, we obviously cannot use this rank 1 trick. We do however have some way
to recognize the kind of fields we are interested in.

Proposition 4.2.8. Let (K, v, t) be a pointed henselian valued field of equicharacteristic p such that
vK is p-divisible and t ∈ mv \ {0}. If there is some elementary extension (K∗, v∗) ⪰ (K, v) such that
Ov∗

[
1
t

]
is non-trivial and separably tame, then (K, v) is deeply ramified and contained in C.

Proof. The valued ring Ov∗
[
1
t

]
is deeply ramified because it is separably tame and non-trivial [KR23,

Theorem 1.2]. Then Ov∗ is deeply ramified by Lemma 4.2.3. Being deeply ramified is an elementary
property so Ov is deeply ramified as well.

By Proposition 4.1.2 the property that Ov

[
1
t

]
is separable-algebraically maximal is elementary

for deeply ramified fields, so because the elementary extension (K∗, v∗) has this property, so does
(K, v).

It turns out that using the criteria above, it is much easier to tell whether ℵ1-saturated fields are
contained in C. This is because it turns out we get just slightly more coarsenings with perfect
residue.

Proposition 4.2.9. If (K, v, t) is a pointed, ℵ1-saturated valued field and t ∈ m \ {0} such that
Ov/t is semi-perfect and vK is p-divisible. Then it is contained in C if and only if Ov

[
1
t

]
is

separable-algebraically maximal or, equivalently, separably defectless.

Proof. The key insight here is that the residue field Kv+ is also perfect, not just Kv−. We prove
this first. Consider the standard decomposition

K Kv+ Kv− Kvv+ v− v .

By [JK25, Lemma 2.3.7] the core valued field (Kv+, v−) is spherically complete and therefore defectless.
Let x ∈ Kv+ be an element without pth root and consider the field extension Kv+ ( p

√
x) /Kv+. We

claim that this extension is unramified: the value group of v− is a quotient of a p-divisible group and
hence p-divisible. The residue field already admits all pth roots by assumption, so this extension is
immediate. By defectlessness we then get that p

√
x ∈ Kv+. This is a contradiction, so the field is

perfect.

This means that Ov

[
1
t

]
has perfect residue, is separable-algebraically maximal/separably defectless

and p-divisible value group. Therefore, the valued field is separably tame.

By saturatedness, Ov

[
1
t

]
cannot be trivially valued. Thus, by Proposition 4.2.8 the pointed valued

field (K, v, t) is contained in C.

Remark 4.2.10. If the pointed valued field (K, v, t) ∈ C is ℵ1-saturated, then (K, v+) cannot be
trivially valued and therefore has perfect residue and is separably tame.

In the proof of the AKE principle next chapter, what we continuously use is the fact that the valued
field O

[
1
t

]
is separably tame in saturated extensions. The corollary above gives us that any valued

field with this property is contained in C. This means that it is a pretty good guess for the largest
class where the proof of the next section will work.
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Chapter 5

Ax-Kochen/Ershov principle

We will now prove various version of the AKE principle for two fields in C if they have the same
p-degree i.e. two fields in Cp,e.

5.1 Elementary equivalence and substructure

Theorem 5.1.1. Let (K, v, t) ⊆ (L,w, t), (K ′, v′, t) be pointed valued fields in the class Cp for a
prime p > 0 such that (L,w, t), (K ′, v′, t) ∈ Cp,e for a fixed p-degree e. Assuming

(i) K ′/K and L/K are separable,

(ii) vK ⪯∃ v′K ′,

the following are equivalent:

(i) (L,w) ≡(K,v) (K ′, v′),

(ii) wL ≡vK v′K ′ and Ow/t ≡Ov/t Ov′/t.

Proof. The claim (i) ⇒ (ii) is trivially true.

By absoluteness of the statement we may assume the generalized continuum hypothesis [HK23].
Therefore, by Corollary 4.1.3 we may assume that (K ′, v′) and (L,w) are saturated of size |K|+ and
(K, v) is ℵ1-saturated.

The structures Ov′/t and Ow/t are elementarily equivalent over Ov/t, and so by uniqueness of
saturation we obtain an isomorphism Ov′/t ∼=Ov/t Ow/t. The same holds for v′K ′ and wL.

The isomorphism of rings above reduces to an isomorphism of valuation rings (i.e. an isomorphism of
reduced structures)

Ov′ = Ov′/
√

(t) ∼=Ov/
√

(t)
Ow′/

√
(t) = Ow
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Therefore
φ :
(
K ′(v′)−, v′

) ∼=(Kv−,v)

(
Lw−, w

)
as valued fields. We now prove that this extends to an isomorphism of our original valued fields over
(K, v).

By ℵ1-saturation of (K, v), the valued field (Kv+, v−) is defectless [JK25, Lemma 2.3.7], with p-
divisible value group and with perfect residue field hence it is tame. The composition of valued fields
(K, v−) is therefore also separably tame. Note that the same is true for the appropriate coarsenings
of (L,w) and (K ′, v′).

In order to do this, we add a predicate for and Ov− and once again saturate our models in this
new structure. The above remark about tameness is true in these saturated models as well: using
the predicate we added this statement is elementary. The usefulness of these predicates is the fact
that these coarsenings will now also be saturated. It is however not the case any more that these
predicates correspond to the actual coarsenings v−, w−, (v′)−.

Now we can use Corollary 3.2.7 to lift isomorphisms to these finer coarsenings. By the AKE-principle
for separably tame fields (Corollary 3.2.5) of the same p-degree, we see that

(K ′, v−) ≡ (L,w−)

and by saturation we get an isomorphism of these valued fields. Using Corollary 3.2.7 we can then
actually take this isomorphism to be compatible with (K, v−) and φ. We check all the requirements
of the lemma: the (K, v−) is saturated by a previous remark, K ′/K is separable by assumption, the
extension (K ′v′)−/Kv− is separable because Kv− is perfect, the quotient (v′)−K ′/v−K is torsion
free by [JK25, Lemma 2.2.2].

This proves the theorem.

Corollary 5.1.2. If (K, v, t) ⊆ (L,w, t) are both valued fields in Cp,e such that L/K is separable.
Then the following are equivalent:

1. (K, v) ⪯ (L,w),

2. vK ⪯ vL and Ov/t ⪯ Ow/t.

Proof. Take (K ′, v′) = (K, v). Then the statement is exactly Theorem 5.1.1.

Theorem 5.1.3. Let (K, v, t), (L,w, s) be pointed valued fields in Cp,e of the same characteristic
p > 0. If (vK, vt) ≡ (wL,ws) and Ov/t ≡ Ow/t then (K, v) ≡ (L,w).

Proof. The proof is analogous to that of Theorem 5.1.1 where we take the common substructure to
be (Fp, vtriv) with the trivial valuation. Each step is similar to the corresponding one in the proof of
Theorem 5.1.1. At the end, we get isomorphisms of valued fields over Fp.

The original intermediate isomorphism Ov′/
√

(t) ∼=Ov/
√

(t)
Ow/

√
(t) now becomes an isomorphism

over Fp instead of Ov/
√

(t). We can just as well apply Corollary 3.2.7 to this as well. Note that this
works for Fp in particular because it is perfect and trivially valued (hence tame), and therefore any
extension is separable and vK/(vtrivFp) = vK is torsion free.
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Corollary 5.1.4. Let K/Fp(t)h be an algebraic extension of valued fields with ramification such
that the valuation ring Ov of K is semi-perfect mod t. Then we get an elementary embedding of
valued fields

K ⪯ K.Fp ((t)) .

Proof. We claim that the inclusion of valued fields induces an isomorphism of value group and
valuation rings mod t, and is separated. Then because both fields are deeply ramified and Ov

[
1
t

]
is

trivially valued for both fields, we conclude that the embedding is elementary by Corollary 5.1.2.

Now we show all these claims.

We know that Fp(t)h ⊆ Fp ((t)) is an immediate extension. Therefore, the extension of value groups
of K.Fp ((t)) /K is trivial as well.

We demonstrate that OK/t = OK.Fp
((t)) /t first for simple extensions K/Fp(t)h and show we can

repeat this process for arbitrary algebraic extension.

Let Fp(t)h(a) be a simple algebraic extension. We claim that for all f ∈ Fp ((t)) (a), there is an

f̃ ∈ Fp(t)h(a) such that v(f − f ′) ≥ t. The element f is a finite linear combination of powers of a
and elements of Fp ((t)): f =

∑n
i=0 xif

i for xi ∈ Fp ((t)). Polynomials are continuous, and therefore

there is some δ such that if v(x̃i − xi) ≥ δ and v(f̃ − f) ≥ δ then

v

(∑
i

xif
i −
∑
i

x̃if
i

)
≥ v(t).

Because Fp(t)h is dense in Fp ((t)), we may take all x̃i in Fp(t)h. This gives that OK/t → OK.Fp((t))/t
is a surjective map. It is injective by construction, so it is an isomorphism as well.

This works in general as well: if we want to show that some residue class of OK.Fp((t))/t is in the
image of the inclusion, it suffices to consider a finite simple extension generated by an element of this
residue class.

By assumption v(t) is not minimal positive in vK. Then by Proposition 4.2.7 our field is deeply
ramified.

Now all we need to show is that the extension is separated. To do this, there are two cases: K/Fp(t)h

is separable, or it is not.

If K/Fp(t)h is separable-algebraic, then t is a p-basis of both K and K.Fp ((t)).

If K is perfect, then the extension is separable as well by definition of perfect fields. The only
remaining case is if K/Fp(t)h is non-perfect but non-separable. Then pn

√
t is a p-basis for some n > 1

and also in K.Fp ((t)).

This means the extension K.Fp ((t)) /K is always separable and so is an elementary embedding of
valued fields.

Corollary 5.1.5. The natural embedding (Fp(t)h)
AS ⊆ (Fp(((t))))

AS
is elementary.

Proof. We show that (Fp(t)h)
AS

.Fp ((t)) = Fp ((t))
AS

and use Corollary 5.1.4. To show the equality,
we use Krasner’s lemma (Lemma 2.5.4).

34/38



AKE-principles for deeply ramified fields Jonas van der Schaaf

Clearly the former is contained in the latter. We show the first has all roots of Artin-Schreier roots.

By the same argument as in Corollary 5.1.4, the inclusion (Fp(t)h)
AS ⊆ (Fp(t)h)

AS
.Fp(t)h has dense

image. Now take any f ∈ (Fp(t)h)
AS

.Fp(t)h. By Lemma 2.5.4 it is sufficient to show that Xp−X− f̃

has a root for f̃ sufficiently close to f . We can get such an f̃ from (Fp(t)h)
AS

.

Remark 5.1.6. An analogous statement to the one above for the inclusion Fp(t)h ⊆ Fp ((t)) is still
one of the major open problems in the model theory of valued fields.

5.2 Existential substructures

We can also prove a similar AKE principle for existential embeddings. First we need an equivalent
characterization for existential substructures.

Lemma 5.2.1. Let L be some first order language with structures A,B. Then A ⪯∃ B if and only
if there exists some elementary superstructure C ⪰ A such that B is a substructure of C over A.

Proof. A more general statement can be found as an exercise in section 6.5 of [Hod93].

Using this, we are able to prove the desired theorem about existential substructures:

Theorem 5.2.2. Let (K, v) ⊆ (L,w) be a separable inclusion of deeply ramified valued fields in a
fixed class Cp,e. Then the following statements are equivalent:

1. (K, v) ⪯∃ (L,w),

2. vK ⪯∃ wL and Ov/t ⪯∃ Ow/t.

Proof. This proof is similar to that of Theorem 5.1.1. We may assume that L is saturated of size
|K|+.

Then can find a sufficiently saturated ultrapower (K∗, v∗) of (K, v) such that we have an embed-
ding Ow/t → Ov∗/t and wL → v∗K∗ over (K, v) using Lemma 5.2.1. Then the reduced ring
Ow/

√
(t) embeds into Ov∗/

√
(t) over Ov/

√
(t) as well. This is exactly an embedding of valued fields

(Lw−, w) → (K∗(v∗)−, v∗) over (K, v).

(Kv−, v) (Lw−, w)

(K∗(v∗)−, v∗)

As before, the valued field (Lv+, v−) is tame by saturation so the composition of valuations (L, v−)
is separably tame.

Now, we can use the separable relative embedding property to embed (L,w−) into (K∗, (v∗)−) over
(K, v−). To see this note that by assumption L/K is separable and the residues of all non-trivial
coarsenings are perfect because the valued fields are deeply ramified. The value group extension is
torsion free because we assumed that vK ⪯∃ vL.
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Now, we obtain a commutative diagram using the separable relative embedding property

(K, v−) (L,w−)

(K∗, (v−)∗)

Because it is compatible with the embedding Ow/t → Ov∗/t we actually get that this is an embedding
with respect to the total valuations v, w, v∗. Now because (K, v) → (K∗, v∗) is elementary by
construction, by Lemma 5.2.1 we must have that (K, v) ⪯∃ (L,w).
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