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Chapter 1

Introduction

Artificial intelligence (AI) has witnessed remarkable progress in recent years, largely
driven by the emergence of foundation models across various modalities. These models
are typically pre-trained on large-scale, self-supervised datasets, including vision models
(e.g., ViT (Chen et al., 2024), SAM (Kirillov et al., 2023b)), language models (e.g.,
BERT (Devlin et al., 2018), LLaMA (Touvron, 2023)), and multimodal models that
integrate vision and language (e.g., UNITER (Chen et al., 2020c), CLIP (Radford et al.,
2021a), LLaVA (Liu et al., 2023c)). Advancements in these fields (computer vision,
natural language processing, and multimodal learning) are highly interdependent, with
progress in one domain often accelerating breakthroughs in the others (Liu et al., 2024b,
2023c; Radford et al., 2021a).

Multimodal systems, particularly those combining visual and textual inputs, are
commonly pre-trained on image-caption pairs to align representations across modali-
ties (Chen et al., 2020c; Radford et al., 2021a). While this alignment enables strong
performance on recognition tasks that rely on surface-level pattern matching, these
models often struggle with reasoning tasks that require deeper understanding beyond
perceptual signals. (Deng et al., 2025; Marino et al., 2019; Yang et al., 2025; Zellers
et al., 2019a). For instance, although a model may accurately identify visual entities,
it may fail to answer questions that require inference or background knowledge ‘such
as why a person is performing an action, or what might happen next*‘due to a lack
of embedded commonsense knowledge. Bridging this gap by enriching multimodal
systems with diverse forms of commonsense knowledge, including physical, temporal,
and social reasoning, remains an essential and ongoing research direction (Lymperaiou
and Stamou, 2024; Marino et al., 2019; Schwenk et al., 2022).

More recently, the increasing scale of foundation models has endowed them with
unprecedented capacity to encode and transfer knowledge across diverse domains and
tasks (Dosovitskiy et al., 2020b; Dubey et al., 2024b; Touvron, 2023). This enhanced
representational power has demonstrated strong potential to achieve state-of-the-art
performance across a wide range of downstream applications (Dosovitskiy et al., 2020b;
Dubey et al., 2024b; Touvron, 2023). However, the sheer size and complexity of these

1



2 Chapter 1. Introduction

models introduce substantial challenges for efficient adaptation. Whether fine-tuned
for a single task or jointly optimized for multitask learning, the adaptation process
often incurs considerable computational overhead. The large number of parameters
significantly increases training and inference time, while also placing heavy demands
on memory, storage, and energy resources (Hu et al., 2021a; Li and Liang, 2021; Lian
et al., 2022; Zhang et al., 2023c), raising critical concerns regarding the scalability,
sustainability, and practical deployability of such models in real-world scenarios.

In parallel, the increasing complexity and scale of multimodal large language models
(MLLMs) have amplified the demand for greater transparency and interpretability. A
critical aspect of this challenge lies in understanding the internal mechanisms through
which MLLMs process and integrate visual and linguistic information, including the
locations within the model where such interactions occur and the ways in which they
influence the final predictions. Gaining such insights is essential for enhancing the
reliability, robustness, and trustworthiness of these systems, particularly in high-stakes
domains such as healthcare (Guan et al., 2022; Luo et al., 2024), autonomous systems
(Atakishiyev et al., 2024; Guan et al., 2022), and security (Ahmadian et al., 2023;
Szegedy et al., 2013).

Based on the above challenges, this dissertation investigates three key research
directions: (I) the integration of commonsense knowledge to enhance multimodal
reasoning, (II) the development of efficient adaptation methods for both single-task
and multitask scenarios, and (III) the improvement of transparency in multimodal large
language models. Collectively, these research efforts aim to advance the development of
Al systems that are not only robust and scalable but also interpretable and trustworthy.

Part I: Commonsense Knowledge Enhanced Multimodal Reasoning

Commonsense knowledge primarily refers to the fundamental body of practical knowl-
edge about everyday situations and events that is commonly shared across the general
population (Minsky, 2000; Shwartz, 2021; Wang and Zhao, 2023). Different categories
of commonsense knowledge have been identified, including social commonsense, which
involves inferring human intentions from their actions (e.g., recognizing that ‘‘a shopper
checking their wallet at a checkout counter intends to make a purchase‘*); temporal
commonsense, which concerns reasoning about the typical duration and ordering of
events (e.g., ‘‘recovering from surgery generally takes longer than recovering from
a common cold‘*); and physical commonsense, which pertains to understanding the
physical properties and interactions of objects (e.g., ‘‘a metal rod is heavier than a
plastic rod of the same size**) (Shwartz, 2021; Wang and Zhao, 2023).

Despite significant progress in vision-language modeling, current multimodal sys-
tems often perform well on surface-level tasks but exhibit limited capability in handling
inferences that require commonsense knowledge (Deng et al., 2025; Marino et al., 2019;
Yang et al., 2025; Zellers et al., 2019a). For example, when asked ‘“Which object in the
image is a soft starchy food item?*‘, humans are likely to infer plausible candidates such
as bananas or potatoes, even though such attributes may not be explicitly observable in



the image (Wang et al., 2020b; Zellers et al., 2019a), but existing models frequently fail
to make such inferences (Deng et al., 2025). This limitation stems from the fact that
most multimodal models are predominantly trained on image-caption pairs or visual
question answering (VQA) datasets. These models tend to capture shallow statistical co-
occurrences and conceptual alignment between visual and linguistic modalities (Chen
et al., 2020c; Liu et al., 2023c; Lu et al., 2019; Marino et al., 2019), but seldom ac-
quire or reason over abstract concepts, such as understanding that *‘knives are used for
cutting*‘* (Marino et al., 2019).

Chapter 3: To address this gap between superficial pattern recognition and human-like
common-sense reasoning, it is essential to enrich multimodal models with common-
sense knowledge. In our research, we aim to bridge that gap by injecting object-level
commonsense knowledge into multimodal reasoning systems. Specifically, we propose
incorporating commonsense knowledge of individual objects directly into their visual
representations, thereby enhancing the model ‘s reasoning ability in referring expression
comprehension (REC)‘‘a task that requires accurately localizing an object in an image
based on a natural language description.

Part I1: Efficient Adaptation

The field of deep learning has undergone a paradigm shift with the advent of large-
scale models, such as Large Language Models (LLMs) (Devlin et al., 2018; He et al.,
2020b; Touvron, 2023) and visual foundation models (Dosovitskiy et al., 2020b; Kirillov
et al., 2023a; Radford et al., 2021a). These models have achieved impressive perfor-
mance across a wide range of downstream tasks spanning natural language processing,
computer vision, and multimodal learning. Their success is largely attributed to the
adaptation of models comprising billions of parameters, which have been pre-trained
on massive datasets (Devlin et al., 2018; Dosovitskiy et al., 2020b; Touvron, 2023).

The conventional approach for adapting pre-trained large models to downstream
tasks is full fine-tuning, wherein all model parameters are updated using task-specific
data. While this method often achieves strong task performance, applying full fine-
tuning across a broad range of downstream tasks demands substantial computational
resources, including high-performance GPUs, significant memory capacity, and pro-
longed training time, which collectively result in considerable energy consumption
(Bartoldson et al., 2023; Hu et al., 2021a; Zhang et al., 2023d). Furthermore, maintain-
ing multiple fully fine-tuned models for different tasks becomes increasingly impractical
due to storage constraints and the computational overhead associated with inference
in real-world applications (Bartoldson et al., 2023; Zhang et al., 2023d). In addition,
full fine-tuning generally necessitates large-scale, high-quality task-specific datasets to
mitigate the risk of overfitting, which is a common challenge when training on small
datasets relative to the model’s large capacity (Fu et al., 2023).

To address these limitations, efficient adaptation techniques have become a major
focus in deep learning research. These techniques aim to achieve comparable or superior



4 Chapter 1. Introduction

performance to full fine-tuning (Ding et al., 2023; He et al., 2021a; Hu et al., 2021a,
2022c; Jia et al., 2022a; Li and Liang, 2021; Lian et al., 2022; Su et al., 2021) while
reducing computational costs (Dingliwa et al., 2022; Frankle and Carbin, 2018; Han
et al., 2015b; Li et al., 2016a), memory usage (Iscen et al., 2020; Mercea et al., 2024;
Ramesh et al., 2024; Sprechmann et al., 2018), runtime (Karmanov et al., 2024; Mercea
et al., 2024) or the need for extensive task-specific data (Adadi, 2021; Chen et al.,
2022; Ivison et al., 2022; Lin et al., 2024; Zhang et al., 2023d). Among the emerging
strategies for efficient adaptation, sparse training has attracted increasing attention
due to its potential to reduce both training and inference costs by constraining the
number of active parameters during optimization. Sparse training approaches aim
to update only a small subset of model parameters either statically or dynamically,
thereby significantly lowering the computational and memory demands compared to
full fine-tuning (Frankle and Carbin, 2019; Mostafa and Wang, 2019). Furthermore, this
selective adaptation paradigm inherently lowers the demand for both data and training
time, as fewer parameters require gradient computation and optimization (Dettmers and
Zettlemoyer, 2019; Varma T et al., 2022). Given these advantages, incorporating sparse
training into the adaptation process presents a promising direction for enhancing both
single-task and joint multitask learning across a broad range of downstream tasks.

Part IL.I: Parameter-efficient fine-tuning for task-specific adaptation

Parameter-efficient fine-tuning (PEFT) has emerged as a prominent paradigm for adapt-
ing large pre-trained models to downstream tasks (Hu et al., 2021a; Jia et al., 2022a;
Li and Liang, 2021; Lian et al., 2023; Su et al., 2021). Most PEFT methods keep the
backbone model frozen and introduce lightweight modules to facilitate task-specific
adaptation. For instance, adapter-based methods insert residual modules within fully-
connected layers (Bapna et al., 2019; Houlsby et al., 2019; Hu et al., 2021a; Pfeiffer
et al., 2020a,b; Rebulffi et al., 2017; Riicklé et al., 2020); prompt-based methods inject
learnable prompts into the input or intermediate layers (Ding et al., 2021; Gao et al.,
2020; Hu et al., 2021b; Jia et al., 2022a; Ju et al., 2022; Li and Liang, 2021; Liu et al.,
2023d, 2022b); and representation editing methods learn transformation parameters
to directly modify internal representations of the model (Lian et al., 2022; Liu et al.,
2022a; Wu et al., 2024a,c). In contrast, sparse training selectively updates a subset of
the model‘ ‘s original parameters while keeping the pre-trained architecture intact and
without introducing additional modules (Hu et al., 2021a; Jia et al., 2022a; Lian et al.,
2023; Su et al., 2021).

Chapters 4 and 5: While PEFT explicitly targets the reduction of computational and
memory costs by fine-tuning a minimal number of parameters to match or surpass the
performance of full fine-tuning, sparse training shares some of these efficiency goals
but does not necessarily pursue minimal parameter tuning as its primary objective. In
our research, we aim to bridge these two paradigms by evaluating the performance of
sparse training on both visual and language models under a PEFT setting, where the
number of trainable parameters is deliberately constrained to be as small as possible.



Part IL.II: Sparse training for efficient multitask learning

Multitask learning (MTL) aims to train a single model to perform multiple tasks simul-
taneously, leveraging shared knowledge across tasks to enhance overall performance.
However, a fundamental challenge in MTL is negative interference, where jointly train-
ing all tasks within a unified model can lead to performance improvements in some
tasks at the expense of others (Parisotto et al., 2016; Rusu et al., 2015; Wang et al.,
2020d). From an optimization perspective, this phenomenon is often attributed to
gradient conflicts where gradients from different tasks point in divergent directions in
the parameter space (Yu et al., 2020). When the update directions of two tasks differ
significantly (e.g., the angle between their gradients is large), the resulting joint update
may favor one task while hindering another (Yu et al., 2020).

Chapter 6: In our research, we explore the mitigation of gradient conflicts in multitask
learning from the perspective of sparse training. The main intuition is that sparse training
can be interpreted as projecting a high-dimensional optimization problem onto a lower-
dimensional subspace. This projection not only reduces the optimization complexity but
also restricts the gradient updates of each task to a subset of the model parameters. By
limiting the parameter overlap among tasks, sparse training inherently reduces potential
interference, thereby facilitating more stable and cooperative multitask optimization,
and ultimately improving overall task performance.

Part III: Transparency

Multimodal large language models (MLLMs) (Bai et al., 2023a; Dai et al., 2023; Li et al.,
2023a; Liu et al., 2024a,b) have recently achieved remarkable success across a wide
range of vision-language tasks, from image captioning to visual question answering
(VQA). This progress is largely attributed to the combination of powerful auto-regressive
large language models (LLMs) (Touvron et al., 2023a; Zhang et al., 2022b; Zheng et al.,
2023) with strong visual encoders (Dosovitskiy et al., 2020a; Fang et al., 2023; Radford
et al., 2021b). In these architectures, visual features extracted by the image encoder are
concatenated into the input sequence ahead of the word embeddings, enabling the LLM
to generate responses conditioned on both visual and linguistic inputs.

Despite these advancements, the internal working mechanisms of MLLMs remain
largely opaque. Enhancing transparency in multimodal reasoning is critical for applica-
tions where interpretability is essential, such as medical image analysis (Guan et al.,
2022; Luo et al., 2024), autonomous driving (Atakishiyev et al., 2024; Guan et al., 2022),
and cybersecurity encompassing both attack and defense strategies (Ahmadian et al.,
2023; Szegedy et al., 2013). In particular, gaining deeper insights into how MLLMs
integrate linguistic and visual information is vital for the development of more efficient,
robust, and trustworthy multimodal systems.
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Chapter 7: To address this gap, our study systematically investigates how the integra-
tion between visual and linguistic information occurs within state-of-the-art MLLMs.
Specifically, we employ a attention knockout technique (Geva et al., 2023), where the
specific attention edge between input tokens is blocked, and the change in confidence
score of the final prediction can reflect and identify where and how visual and linguistic
information interact.
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1.5 Software and repositories
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Chapter 2

Background

As this research focuses on the challenges, including integrating external factual knowl-
edge in multimodal models, enabling pre-trained model efficiently adapt to new tasks,
understanding the internal working mechanism of multimodal models, from the field of
language, vision, and their combination, we provide the backgrounds of them in this
chapter.

2.1 Language, vision and vision-language encoders

The models used in this research comes from the fields of natural language process-
ing (NLP), computer vision (CV), and vision-language modeling. In the following
sections, we provide a detailed introduction to each. In recent years, these fields have
witnessed remarkable advancements. These developments are deeply interconnected,
with advancements in one domain often acting as a catalyst for progress in another.

2.1.1 Language models

Previous models Before the Transformer architecture was introduced, language models
mainly relied on traditional statistical methods and recurrent neural network-based
architectures. N-gram Models (Shannon, 1948) estimated probabilities of fixed-length
word sequences but suffered from data sparsity. RNN (Recurrent Neural Networks)
(Rumelhart et al., 1986) captured long-range dependencies but faced vanishing gradient
and efficiency issues. LSTM/GRU (Long Short-Term Memory/Gated Recurrent Unit)
(Cho et al., 2014; Hochreiter and Schmidhuber, 1997) improved RNNs ‘¢ ability to model
long-term dependencies but remained computationally challenging for long sequences.

Transformer and its evolution In 2017, Vaswani et al. (2017a) introduced the Trans-
former architecture, revolutionizing language modeling. The key innovations included
self-attention mechanisms that efficiently captured long-range dependencies, positional
encoding to address the lack of positional information in CNNs and RNNs, and fully
parallel computation that significantly improved training efficiency over RNNs. This

9
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architecture led to the rise of numerous Transformer-based pre-trained language models,
which have become central to modern NLP technology.

Evolution of pre-trained language models BERT (Devlin et al., 2019) was a bidi-
rectional Transformer model that introduced Masked Language Modeling (MLM) and
Next Sentence Prediction (NSP) tasks for better text understanding. At the same time,
GPT (Radford et al., 2019) was released, which employed an autoregressive generation
approach, excelling in natural language generation. TS5 (Raffel et al., 2020) unified
text generation, classification, and translation by formatting all tasks as text-to-text
conversions. BART (Lewis et al., 2019) combined BERT’s bidirectional encoding
with GPT’s autoregressive decoding to enhance text generation quality. After that,
GPT-3 and Large-Scale Models (Brown et al., 2020) scaled up to 175B parameters,
demonstrating strong zero-shot and few-shot learning abilities. More recent, ChatGPT
and GPT-4 (OpenAl, 2023) integrated RLHF (Reinforcement Learning with Human
Feedback) to make interactions more natural and human-like. LLaMA, Mistral, and
Other Open-Source Models (Touvron, 2023) were released by companies like Meta,
providing lightweight, efficient models that promoted further advancements in open
LLM research.

2.1.2 Vision models

Convolutional neural networks (CNNs) and their evolution The adoption of
deep learning in vision tasks was significantly influenced by the success of AlexNet
(Krizhevsky et al., 2012), which demonstrated the effectiveness of deep CNNs in image
classification. Subsequent models such as VGGNet (Simonyan and Zisserman, 2014)
and ResNet (He et al., 2016) further improved performance by increasing network
depth and introducing residual connections, respectively. CNNs have remained the
dominant approach for various vision tasks, including object detection, segmentation,
and face recognition (He et al., 2017; Ren et al., 2015). More recently, ConvNeXt (Liu
et al., 2022c) demonstrated that with modern design principles, CNNs can still achieve
competitive performance against transformer-based models.

The rise of vision transformers (ViTs) A paradigm shift occurred with the intro-
duction of Vision Transformers (ViTs) by Dosovitskiy et al. (2020b). Unlike CNNss,
ViTs leverage self-attention mechanisms to model long-range dependencies in images,
achieving competitive performance on image classification benchmarks. This approach
was further improved with hierarchical transformer architectures like Swin Transformer
(Liu et al., 2021d), which introduced local attention windows to enhance computational
efficiency. ViTs have demonstrated remarkable generalization capabilities, prompting
widespread adoption in tasks such as segmentation (Xie et al., 2021) and object detection
(Carion et al., 2020). Additionally, hybrid models combining CNNs and transformers
have emerged to leverage the strengths of both architectures (Graham et al., 2021).
Recent advancements in this domain include Masked Autoencoders (He et al., 2022),
which utilize self-supervised learning to improve feature representations, and SAM
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(Kirillov et al., 2023b), a powerful vision model designed for general segmentation
tasks, significantly advancing the field of universal vision modeling.

2.1.3 Vision-language models

Early developments in vision-language models Early efforts in vision-language
modeling focused on handcrafted features and rule-based approaches. The initial meth-
ods relied on convolutional neural networks (CNN5s) for image processing and recurrent
neural networks (RNNs) for text generation. Classical models such as Show and Tell
(Vinyals et al., 2015) introduced an encoder-decoder framework for image caption-
ing, where CNN’s extracted visual features, and RNNs generated textual descriptions
based on the extracted visual features. However, these approaches faced limitations in
capturing complex multimodal relationships.

Evolution of transformer-based vision-language models The advent of transformer
architectures revolutionized vision-language modeling. The introduction of the Vision
Transformer (Dosovitskiy et al., 2020b) and transformer-based NLP models like BERT
(Devlin et al., 2019) paved the way for multimodal transformers. Early transformer-
based VLMs such as VILBERT (Lu et al., 2019) and LXMERT (Tan and Bansal, 2019a)
adopted a dual-stream architecture, where separate encoders processed vision and
language inputs before fusing their representations through cross-modal attention mech-
anisms. This approach allowed for a more comprehensive understanding of multimodal
data. Subsequent models, such as UNITER (Chen et al., 2020c) and Visual BERT (Li
et al., 2019), introduced single-stream architectures, where a shared transformer encoder
processed both image and text inputs jointly. This integration improved computational
efficiency and enhanced multimodal representation learning. The rise of contrastive
learning further improved vision-language models. CLIP (Radford et al., 2021b) and
ALIGN (Jia et al., 2021) leveraged large-scale image-text pairs to train models that
aligned visual and textual features in a shared embedding space. These models exhib-
ited remarkable zero-shot generalization, enabling classification, retrieval, and other
vision-language tasks without explicit task-specific fine-tuning.

Multimodal large language models The recent advancements in multimodal large
language models (MLLMs) have been largely driven by the rapid progress in large
language models (LLMs). The increasing scale and capability of LLMs have facilitated
their extension into multimodal domains, enabling more sophisticated interactions
between vision and language. Unified frameworks like Flamingo (Alayrac et al., 2022),
LLaMA-3 (Dubey et al., 2024a) and BLIP (Li et al., 2022a) integrate vision processing
into powerful LLMs to enhance multimodal reasoning and understanding across diverse
tasks. A significant breakthrough in this domain has been the emergence of models
such as LLaVA (Liu et al., 2023c), Qwen-VL (Bai et al., 2023b), which use a single
MLP and cross-attention module to connect vision encoders like CLIP (Radford et al.,
2021b) and the pre-trained LLMs like LLaMA (Touvron, 2023) respectively, allowing
them to process and generate image-grounded textual responses. These models excel
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in tasks such as visual reasoning, detailed image captioning, and multimodal dialogue
generation.

2.1.4 The influence of computer vision and NLP on each other

Influence of computer vision on NLP models Recent advances in NLP have been in-
fluenced by methods from CV. CNNss, originally designed for image processing (LeCun
et al., 1998), have been adapted for text classification (Kim, 2014). Contrastive learning,
widely used in CV (Chen et al., 2020b; He et al., 2020a), has inspired self-supervised
approaches in NLP (Gao, 2021). Normalization techniques have also transferred from
CV to NLP, with LayerNorm (Ba et al., 2016) replacing BatchNorm (Ioffe and Szegedy,
2015) in Transformer architectures (Devlin et al., 2018). More recently, diffusion
models, first developed for image generation (Ho et al., 2020), have been applied to text
generation (Li et al., 2022b). These cross-domain influences demonstrate the growing
convergence between NLP and CV.

Influence of NLP on vision models Inspired by NLP models like BERT (Devlin et al.,
2018), Vision Transformers (ViTs) leverage self-attention mechanisms for improved
feature learning. Masked image modeling, an adaptation of masked language modeling,
has also enhanced vision models. For example, BEiT (Bao et al., 2021) and MAE (He
et al., 2022) apply the concept of masking and reconstructing missing patches in images.
Another major influence from NLP is the use of large-scale pretraining strategies, which
have shaped the development of foundation vision models, like Florence (Yuan et al.,
2021).

Influence of NLP and CV on vision-language models Early methods relied on
CNNs s for image feature extraction and RNNs for text processing, with simple fusion
at the task level. For example, in image captioning (Vinyals et al., 2015), CNNs
extract image features, which are then processed by RNNs for sequence modeling. The
rise of Transformers in NLP, such as BERT (Devlin et al., 2018), enhanced semantic
understanding. This facilitated the development of the structures combining Faster
R-CNN (Ren et al., 2015) and Transformer, which allow object detection and textual
information to be jointly optimized within the same framework, leading to models such
as VILBERT (Lu et al., 2019) and LXMERT (Tan and Bansal, 2019a) (two-stream
architectures), as well as UNITER (Chen et al., 2020c¢) and VisualBERT (Li et al., 2019)
(single-stream architectures). Subsequently, the development of Vision Transformers
(ViT) (Dosovitskiy et al., 2020b) and Swin Transformer (Liu et al., 2021d) in the
field of computer vision allowed image processing to move beyond the limitations of
CNNss, strengthening global information modeling capabilities. This paved the way
for unified architectures like LLaVA (Liu et al., 2023c) and Qwen-VL (Bai et al.,
2023b), integrating text and vision into a single Transformer framework for more
efficient multimodal learning. The continued development of language models and
vision models has paved the way for more capable multimodal models, bridging the gap
between vision and language comprehension and fostering the rise of general-purpose
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Al systems with high-level multimodal reasoning capabilities.

2.2 Commonsense knowledge

Commonsense knowledge is the fundamental knowledge that humans accumulate
about the world through daily experiences (Minsky, 2000). For example, we know
that “fire can burn the skin”, “bananas are edible” and “cars require fuel to run”. Com-
monsense knowledge can be mainly categorized into three types: social commonsense,
temporal commonsense, and physical commonsense (Shwartz, 2021). Social common-
sense is the human ability to infer others’ mental states, such as motivations, intentions,
and future actions, as well as internalized norms of acceptable behavior, like recogniz-
ing that “it’s impolite to interrupt someone who is speaking‘‘ (Shwartz, 2021). While
humans apply such knowledge implicitly in our actions and decisions, machines must
be explicitly taught these social conventions. Temporal commonsense refers to the
implicit understanding of time-related information in natural language, which often
relies on commonsense knowledge rather than explicit statements (Shwartz, 2021). For
example, "Kane is baking a cake” indicates an event lasting a few hours, whereas "Kane
is renovating his house” suggests a process spanning weeks or months. Such knowledge
typically involves durations, sequences, and frequencies etc. of events. Physical com-
monsense captures intuitive knowledge about the physical properties and affordances
of everyday objects (Shwartz, 2021). For example, most people understand that ice
will melt if left out at room temperature. Such knowledge underpins many aspects of
reasoning about the physical world.

Several commonsense knowledge bases have been developed, such as Wikipedia
(Vrande‘i‘ and Kr‘tzsch, 2014), ConceptNet (Speer et al., 2017a), and WebChild (Tan-
don et al., 2017a). These resources provide structured or unstructured knowledge across
various domains. Wikipedia (Vrande‘i‘ and Kr‘tzsch, 2014), as the world’s largest on-
line encyclopedia, contains extensive unstructured knowledge. In contrast, ConceptNet
and WebChild include structured knowledge. Specifically, ConceptNet (Speer et al.,
2017a) is a graph-structured commonsense knowledge base that formats information
as triplets, for example (a start node, a relation, an end node). The relations are drawn
from a closed set, including IsA, HasA, MadeOf, PartOf, CapableOf, and UsedFor.
WebChild (Tandon et al., 2017a) extracts commonsense knowledge from web data to
construct a large-scale knowledge base, where the knowledge is further categorized
into three classes: properties (e.g., HasSize, HasShape, HasTaste), comparatives (e.g.,
SmallerThan, FasterThan), and part-whole relations (e.g., SubstanceOf, PhysicalPartOf,
MemberOf).

Language models are typically pre-trained on large-scale text corpora in a self-
supervised manner, either by predicting the next word in a sequence (e.g., GPT; Radford
et al., 2018) or by recovering masked words within a sentence (e.g., BERT; Devlin et al.,
2018). A growing body of research has investigated whether such models inherently
capture commonsense knowledge. Empirical studies have demonstrated that language
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models exhibit the ability to encode certain aspects of commonsense knowledge, as
evidenced by their performance on tasks such as completing incomplete commonsense
facts (Petroni et al., 2019b), ranking plausible candidate facts (Davison et al., 2019),
associating concepts with a given set of properties (Weir et al., 2020), and even mining
new commonsense facts from text (Trinh and Le, 2019). Nonetheless, the common-
sense knowledge acquired by language models is often noisy and brittle. For instance,
models tend to exhibit insensitivity to negated statements, failing to distinguish between
affirmative and negated versions of facts (Ettinger, 2020; Kassner and Schiitze, 2020).
To address these limitations, recent research has explored integrating external com-
monsense knowledge into language models to enhance downstream natural language
processing tasks, including story generation (Guan et al., 2020), recommendation sys-
tems (Yang et al., 2024), question answering (Bian et al., 2021), event representation
learning (Ding et al., 2019), and commonsense reasoning (Liu et al., 2021b).

Vision-language models With the rapid advancement of vision-language models,
including early transformer encoder-only architectures such as UNITER (Chen et al.,
2020d), VL-BERT (Su et al., 2020), and LXMERT (Tan and Bansal, 2019b), as well
as more recent multimodal large language models (transformer decoder-only) like
LLaVA (Liu et al., 2023c) and Qwen-VL (Bai et al., 2023b), substantial progress has
been achieved in various multimodal tasks. Despite these advances, most existing
models primarily rely on data-driven alignment between visual and linguistic modali-
ties through large-scale image-text pair training, which often limits their capacity for
explicit commonsense reasoning (Ye et al., 2023). While some studies suggest that
pre-trained multimodal models may exhibit a degree of commonsense understanding,
with preliminary evidence indicating a potential to associate visual concepts with lin-
guistic knowledge, there remains a substantial gap in achieving robust and generalizable
multimodal reasoning capabilities (Yang and Silberer, 2022; Yun et al., 2021). Recent
efforts have begun to address this limitation by enhancing the commonsense reasoning
abilities of multimodal models in both vision-language and purely linguistic tasks, such
as image-text retrieval (Ye et al., 2023), reading comprehension (Yariv et al., 2024),
visual commonsense reasoning (Yariv et al., 2024), and knowledge-based visual ques-
tion answering (VQA) (Rao et al., 2023). In our research, we propose a method to
integrate structured commonsense knowledge into the visual representations of objects
within an image, aiming to enhance the multimodal reasoning capabilities of models,
with a particular focus on improving performance in the task of referring expression
comprehension.

2.3 Efficient adaption

2.3.1 Parameter-efficient fine-tuning

The pre-training and fine-tuning paradigm has become a standard approach for adapting
large-scale models, initially pre-trained on vast amounts of data, to downstream tasks
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with limited supervision. Nevertheless, fine-tuning all parameters of such models
poses significant challenges in terms of memory consumption and data efficiency. This
makes full fine-tuning impractical, particularly when adapting a model to multiple
tasks concurrently (Houlsby et al., 2019; Jia et al., 2022a; Lian et al., 2022). To
address these challenges, parameter-efficient fine-tuning (PEFT) methods have been
proposed. These methods focus on optimizing only a small subset of parameters while
keeping the majority of the pre-trained model fixed. This not only reduces memory
and computational costs but also simplifies optimization and mitigates the risk of
overfitting under low-resource conditions. Moreover, PEFT methods often achieve
performance comparable to, or even better than, full fine-tuning, while maintaining high
efficiency (Jia et al., 2022a).

Among existing PEFT approaches, one of the most prevalent strategies involves
introducing additional parameters to the pre-trained backbone for fitting the downstream
tasks. For instance, adapter-based methods introduce and update a residual module
of the fully-connected layers (Bapna et al., 2019; Houlsby et al., 2019; Pfeiffer et al.,
2020a,b; Rebuffi et al., 2017; Riicklé et al., 2020; Stickland and Murray, 2019; Sung
et al., 2022; Wang et al., 2020c; Zhang et al., 2021b). Moreover, prompt-based and
representation editing methods injecting learnable prompts into the input or intermediate
representations (Ding et al., 2021; Gao et al., 2020; Hu et al., 2021b; Jia et al., 2022a; Ju
etal., 2022; Li and Liang, 2021; Liu et al., 2023d, 2022b), and by learning transformation
parameters to edit the internal representations of the model (Lian et al., 2022; Liu et al.,
2022a; Wu et al., 2024a,c), respectively. In contrast to methods that introduce additional
parameters, our research proposes a novel selection-based approach that refrains from
adding any new parameters. Instead, it selectively updates a subset of the original
model‘‘s parameters while preserving the intrinsic architecture of the pre-trained model.

2.3.2 Multitask learning

Multitask learning aim to enable a single model to simultaneously learn multiple tasks,
with the objective of improving overall performance by leveraging shared knowledge
across tasks, respectively. A fundamental challenge of them is how to effectively share
information while mitigating potential interference across different tasks. One straight-
forward strategy is to explicitly design the model architecture with two components:
task-specific modules, which capture specific knowledge for individual tasks, and shared
modules, which facilitate knowledge transfer across them (Kokkinos, 2017; Murugesan
and Carbonell, 2017; Sachan and Neubig, 2018; Shi et al., 2023; Sun et al., 2020; Zhang
et al., 2021a, 2025). Another line of research retains a unified architecture and instead
focuses on resolving the problem of negative interference, where the learning of one
task adversely impacts others, by exploring solutions from an optimization perspective
(Chen et al., 2020e; Choenni et al., 2022; Liu et al., 2023a, 2021a,c; Navon et al., 2022;
Sener and Koltun, 2018; Shaham et al., 2022; Wang et al., 2020d; Yu et al., 2020).
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Negative interference is a prevalent challenge in joint learning of multiple tasks.
Specifically, competition may arise during joint optimization, wherein performance
improvements on certain tasks can lead to degradation on others, compared to training
them independently (Parisotto et al., 2016; Rusu et al., 2015; Wang et al., 2020d). From
an optimization point of view, a primary cause of this phenomenon is the existence of
conflicting gradients among tasks (Yu et al., 2020) during training. In joint training,
task-specific gradients are typically averaged to compute the final update direction.
However, when the angle between some of these gradients exceeds 90 degrees, the
resulting update may reduce the loss for one task while increasing it for another, thereby
hindering overall convergence. In our research, we investigate whether the proposed
sparse training method where only a subset of model parameters is updated while
the overall model architecture remains unchanged, can effectively mitigate gradient
conflicts, with the aim of improving overall multitask performance.

2.4 Transparency

2.4.1 Interpretability

With the rapid advancement of deep learning across various domains, including com-
puter vision, natural language processing and multimodel learning, black-box models
have become the dominant paradigm due to their remarkable performance (Xu and Yang,
2025). However, their internal decision-making processes often remain non-transparent,
which poses significant challenges in critical application scenarios such as medical
image analysis (Guan et al., 2022; Luo et al., 2024), autonomous driving (Atakishiyev
et al., 2024; Guan et al., 2022), and cybersecurity, including both attack and defense
mechanisms (Ahmadian et al., 2023; Szegedy et al., 2013). This opacity underscores
the urgent need for transparency and interpretability, which aim to uncover the internal
mechanisms of black-box models and clarify their decision-making processes (Xu and
Yang, 2025). Interpretability methods can generally be classified into two primary
categories: active and passive approaches (Xu and Yang, 2025; Zhang et al., 2021c).

Active interpretability refers to techniques that intervene in a model ‘s structure prior
to training or involve the design of inherently transparent model architectures. These
approaches aim to enhance interpretability while maintaining task performance, thereby
making the model’s decision-making process more intelligible to human users (Xu and
Yang, 2025; Zhang et al., 2021c). For instance, decision trees utilize a series of ’if* ‘then”
rules arranged in a hierarchical structure, intuitively revealing the model ‘s decision-
making logic and providing a clear basis for understanding predictions (Custode and
Tacca, 2023; Ueno and Zhao, 2018; Ying et al., 2015). Similarly, knowledge graphs,
which consist of heterogeneous triplets (head entity, relation, tail entity), also offer high
interpretability (Mohamed et al., 2021; Neil et al., 2018; Wang et al., 2019d), especially
in tasks like information retrieval (Gaur et al., 2022) and question answering (Tuan
et al., 2022). Additionally, some methods employ additive model structures, where each
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feature contributes independently to the final output through smooth functions, allowing
for a clearer understanding of feature effects (Agarwal et al., 2021; Caruana et al.,
2015; Hastie, 2017; Kraus et al., 2024). Other approaches incorporate optimization
techniques‘‘such as regularization (Srivastava et al., 2014), activation regularization
(Wu et al., 2017), and explanation loss (Dong et al., 2017)“‘or integrate interpretable
modules like capsule networks (Sabour et al., 2017), Memory Wrap (La Rosa et al.,
2023), and Stack-NMN (Hu et al., 2018), to guide the model toward more transparent
reasoning mechanisms during training.

Passive interpretability, in contrast to active interpretability, is applied post hoc*‘that
is, after the model has been trained. These methods aim to uncover human-
understandable rules or patterns by analyzing various components of the model, in-
cluding its learned weights, output behaviors, and architecture (Xu and Yang, 2025;
Zhang et al., 2021c). A wide range of representative approaches fall under this category,
each focusing on different aspects of the model, such as behavior, attribution, concepts,
and underlying mechanisms (Bereska and Gavves, 2024). Behavior-based methods are
model-agnostic, treating the model as a black box and analyzing only the relationship
between input and output. These techniques are widely used to assess model robustness
and identify dependencies among input variables (Covert et al., 2021; Ribeiro et al.,
2016; Shapley et al., 1953). Attribution-based methods seek to explain model outputs
by tracing them back to individual input contributions, thus providing transparency
without requiring access to internal structures. The most common technique in this
category is based on the gradient, such as Integrated Gradients (Sundararajan et al.,
2017), Grad-CAM (Selvaraju et al., 2017), SmoothGrad (Smilkov et al., 2017), and
DeepLIFT (Shrikumar et al., 2017a). Concept-based methods explore the internal
representations learned by the model with the goal of probing abstract concepts and
behavioral patterns, such as probing latent knowledge (Burns et al., 2022), quantifying
the similarity of the representation across different models (Bansal et al., 2021; Burns
et al., 2022). Our work primarily focuses on mechanistic interpretability, which aims to
dissect and understand the internal computational mechanisms of models, and will be
introduced in detail in the next section.

2.4.2 Mechanistic interpretability

Mechanistic interpretability (Nanda et al., 2023; Olah, 2024) is an emerging subfield
within artificial intelligence interpretability research that aims to elucidate the internal
computational mechanisms of neural networks. Rather than treating models as black
boxes, this approach emphasizes analyzing the internal structure of models by examining
components such as weights, neurons, layers, activations, and circuits, in order to derive
meaningful explanations for model behavior (Bereska and Gavves, 2024). In general,
this approach adopts a reverse-engineering methodology to identify functional roles of
specific network components (Conmy et al., 2023; Sharkey et al., 2025). Mechanistic
interpretability plays a critical role not only in understanding model decisions but also
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in facilitating a range of downstream applications (Lin et al., 2025). These include
model editing and intervention (Basu et al., 2024), the enhancement of compositional
generalization capabilities (Zarei et al., 2024), and the identification and mitigation
of spurious correlations (Balasubramanian et al., 2024). While this approach has
attracted substantial attention in the context of natural language processing, research
on mechanistic interpretability in multimodal models remains relatively limited. Our
research focuses on this type of interpretability in the multimodal domain, with the goal
of investigating how large multimodal language models integrate and interact across
different modalities.

2.4.3 Interpretability for different-modality models

Vision models have been extensively explored from the perspective of interpretability.
A fundamental category of these methods is feature visualization, which aims to recon-
struct input patterns that maximally activate specific neurons. Such techniques reveal
the hierarchical feature organization in convolutional neural networks (CNNs), from
low-level edges to high-level semantic concepts (Springenberg et al., 2015; Zeiler and
Fergus, 2014). Another widely adopted class focuses on attribution-based visualization,
which highlights input regions most responsible for the model’s predictions. Techniques
such as CAM (Zhou et al., 2016), Grad-CAM (Selvaraju et al., 2017), Score-CAM
(Wang et al., 2020a), and SmoothGrad (Smilkov et al., 2017) have demonstrated that
CNNss often rely on sparse, localized, and discriminative regions, rather than the entire
object. Beyond visualization, interpretability research also explores the construction of
diagnostic datasets to probe model biases or attributions. For instance, works in (Kim
et al., 2018, 2023; Lucieri et al., 2020) build counterfactual examples to interpret how a
specific concept affects the outcome of the target image classifier, while Lapuschkin et al.
(2019) reveal that models may exploit spurious correlations, such as background artifacts
or watermarks, instead of target-relevant features. Relatedly, studies using adversarial
examples (Goodfellow et al., 2015; Ilyas et al., 2019) highlight that vision models often
rely on non-robust and imperceptible features that, while predictive, are misaligned
with human perception. This challenges the assumption that the representations learned
by these models are inherently meaningful or interpretable from a human perspective.
Recent works have introduced auxiliary or synthetic datasets to systematically examine
such biases; for example, Arias-Duart et al. (2023) employ Stable Diffusion (Rombach
et al., 2022) to generate images with controlled contextual variations, enabling fine-
grained analysis of model behavior across different scenarios (Gao et al., 2023a; Jain
et al., 2022). Additionally, feature inversion techniques (Dosovitskiy and Brox, 2016;
Mahendran and Vedaldi, 2015) have shown that deeper layers in CNNs retain substantial
perceptual information, but show a bias toward texture. Efforts to quantify the semantic
alignment of internal representations, such as Bau et al. (2017) reveal that only a limited
subset of neurons corresponds to clearly defined, human-understandable concepts. With
the advent of Vision Transformers (ViTs), attention-based interpretability has gained
traction. For example, Chefer et al. (2021b) propose an attention attribution method
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that illustrates how ViTs exhibit more global receptive behavior compared to CNNss,
effectively capturing object boundaries, though deeper attention heads tend to specialize
in class-specific semantics.

Language models have witnessed substantial progress, prompting a growing body of
research focused on their interpretability (Mosbach et al., 2024). Some works focused
on exploring the contribution of the modules in the model for the final prediction. For
example, in Jain and Wallace (2019) questioned the explanatory power of attention
mechanisms, demonstrating that attention weights do not reliably indicate causal deci-
sion pathways. Differently, several works focused on analyzing the internal structure
and semantic representations within models. For instance, Clark et al. (2019b) re-
vealed functional differentiation across attention heads and layers, where lower layers
predominantly encode syntactic relations and higher layers capture semantic align-
ment. Similarly, probing studies by Liu et al. (2019a) demonstrated that contextual
embeddings hierarchically encode linguistic knowledge, ranging from surface syntax to
abstract semantics. To further enhance interpretability, causal and counterfactual analy-
sis frameworks have been proposed, enabling the identification of decision-critical input
features and the diagnosis of model vulnerabilities through controlled perturbations and
influence-tracing techniques (Alvarez-Melis and Jaakkola, 2017; Moradi and Samwald,
2021). Additionally, researchers have exposed the social and cultural biases embedded
in large language models by employing specially curated datasets, illustrating how these
models frequently reflect cultural centrism and value-laden assumptions inherited from
their training corpora (Nadeem et al., 2020; Tao et al., 2024). Another important line
of inquiry explores factual knowledge within language models, such as investigating
whether models can memorize such knowledge (Petroni et al., 2019a), where it is stored
(Jiang et al., 2020), how it can be modified or updated (De Cao et al., 2021; Dhingra
et al., 2022), and how it is extracted during inference (Geva et al., 2023).

Vision-language models have also attracted increasing attention in the field of inter-
pretability. Several studies adopt a black-box perspective by analyzing the input—output
behavior of models to understand the influence of various modalities. For example, Cao
et al. (2020) compare the relative importance of visual and textual modalities, while
Frank et al. (2021a) investigate how each modality contributes to performance across
visual and textual tasks. In contrast, other works focus on instance-level explanations by
attributing model predictions to specific input components. These include techniques
such as aggregating attention scores across layers (Aflalo et al., 2022; Stan et al., 2024),
gradient-based attribution methods (Chefer et al., 2021a), and model disentanglement
strategies (Lyu et al., 2022). Furthermore, a top-down perspective has been employed
in probing studies, which aim to uncover high-level semantic properties encoded in
learned representations. These approaches reveal the extent to which models capture
visual semantics (Dahlgren Lindstrom et al., 2020), verb understanding (Hendricks and
Nematzadeh, 2021), and physical attributes such as shape and size (Salin et al., 2022).
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2.4.4 Mechanistic Interpretability for different-modality models

Vision models have received comparatively less attention in the field of mechanistic
interpretability, particularly in contrast to the language models. Nonetheless, recent
efforts have begun to bridge this gap. Joseph (2023) proposed a framework for probing
the internal mechanisms of Vision Transformers (ViTs), utilizing the logit lens technique
to visualize the evolution of patch-level predictions across model layers. Moreover,
Bahador (2025) conducted a fine-grained analysis of individual attention heads in ViTs
fine-tuned on visually distorted 2D representations that include extraneous artifacts such
as axis labels, titles, and color bars. Their results reveal a hierarchical specialization
within the model: attention heads in early layers predominantly capture low-level
and often task-irrelevant features (e.g., text fragments, edges, or corners), whereas
deeper layers exhibit increased task relevance by attending to semantically meaningful
regions. Zimmermann et al. (2023) investigated the effect of model scale on mechanistic
interpretability using a psychophysical evaluation paradigm. Their results‘‘based on a
range of architectures including GooglLeNet (Szegedy et al., 2015), ConvNeXt (Liu et al.,
2022d), ResNet-50 (He et al., 2016), and ViT (Dosovitskiy et al., 2020b)‘‘demonstrate
that scaling alone does not inherently improve interpretability.

Language models have been the focus of a substantial body of mechanistic inter-
pretability. Several methods have been proposed to elucidate the internal mechanisms
of models by examining how information is represented and processed across different
layers. For instance, techniques such as the logit lens have been employed to reveal
how prediction confidence evolves over computational stages, as well as to probe the
nature of information encoded in intermediate hidden representations (Belrose et al.,
2023a; Geva et al., 2022; Pal et al., 2023). In a similar vein, other studies focus on ana-
lyzing the functional roles of specific architectural components, including the encoder
in encoder-decoder transformers (Langedijk et al., 2023) and individual attention heads
in autoregressive models such as GPT-2 (Sakarvadia et al., 2023). Moreover, given
that certain features can be interpreted as linear combinations of neuron activations
(Elhage et al., 2022), a growing body of research has focused on disentangling such rep-
resentations by decomposing neural network activations into interpretable component
features through the use of sparse autoencoders (Cunningham et al., 2023; Marks et al.,
2024; Sharkey et al., 2022). In addition, a body of work has adopted causal method-
ologies‘‘such as causal tracing (Meng et al., 2022), causal mediation analysis (Vig
et al., 2020), and causal ablation (Wang et al., 2022)‘‘to investigate the decision-making
processes within models by isolating and manipulating internal activations to assess
their impact on output behavior. These methods have enabled key applications such as
localizing model behavior by identifying critical activation pathways responsible for
storing and retrieving factual knowledge (Geva et al., 2023; Goldowsky-Dill et al., 2023;
Meng et al., 2022; Stolfo et al., 2023), as well as analyzing component interactions via
circuit-level analysis to uncover sub-networks responsible for implementing specific
functions within the model’s computation graph (Geva et al., 2023; Hanna et al., 2023;
Hendel et al., 2023; Lieberum et al., 2023; Wang et al., 2022).
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Vision-language models have received comparatively less attention in the domain
of mechanistic interpretability, despite the growing interest in this area within natural
language processing. One of the early efforts in this direction is the causal tracing
tool proposed by Palit et al. for image-conditioned text generation on BLIP (Li et al.,
2022a). Recent studies have begun to probe the internal behavior of multimodal large
language models (MLLMs) by connecting specific external outputs to underlying mech-
anisms‘ ‘such as the storage of information in model parameters (Basu et al., 2024),
the emergence of toxic content in the logit distributions of initial tokens (Zhao et al.,
2024), and the localization and transformation of object-related visual information
across layers (Neo et al., 2024; Palit et al.; Schwettmann et al., 2023). Further inves-
tigations have explored the localization of safety mechanisms (Xu et al., 2024) and
the mitigation of redundant visual tokens (Zhang et al., 2024a). Nevertheless, research
offering a comprehensive understanding of the internal mechanisms behind multimodal
information integration in MLLMs is still lacking. Our research makes an important
first step towards filling this gap.






Chapter 3

Commonsense Knowledge Enhanced
Multimodal Reasoning

Chapter Highlights One of the key challenges in multimodal systems is their limited
ability to perform inferences that require commonsense knowledge, which is a more
human-like form of reasoning compared to superficial pattern recognition. In this
research, we aim to enhance multimodal reasoning by integrating object-level com-
monsense knowledge into multimodal systems. Specifically, we focus on a high-level
multimodal reasoning task: referring expression comprehension (REC). We propose
incorporating commonsense knowledge of individual objects directly into their visual
representations, thereby improving the model*‘s reasoning capabilities. This approach
seeks to bridge the gap between surface-level recognition and deeper, more nuanced
inference, making the system better equipped for tasks that demand an understanding
of the world‘‘s underlying commonsense relationships.

3.1 Introduction

Referring expression comprehension (REC) aims at locating a target object/region in
an image given a natural language expression as input. The nature of the task requires
multi-modal reasoning and joint visual and language understanding. In the past few
years, several REC tasks and datasets have been proposed, such as RefCOCO (Yu et al.,
2016), RefCOCOg (Mao et al., 2016) and RefCOCO+ (Yu et al., 2016) (RefCOCOs).
These ‘conventional’ REC tasks typically focus on identifying an object based on visual
or spatial information of the object, such as its colour, shape, location, etc.; therefore
primarily evaluating a model’s reasoning abilities over visual attributes and spatial
relationships.

In practice, however, people often describe an object using non-visual or spatial
information — consider, for example, the sentence (expression) “Give me something soft
but rich in starch to eat” (Wang et al., 2020b). Such instances require reasoning beyond
spatial and visual attributes, and need to be interpreted with respect to the common
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Figure 3.1: CK-Transformer. For each candidate (the first one in the figure), given
an expression, a set of visual region candidates and top-K facts (K=3 in the figure),
the model first encodes the expression and all top-K facts into corresponding multi-
modal features, then fuses these features and maps them into a matching score for the
candidate.

sense knowledge (fact) embedded in the expressions, such as knowledge about which
kind of objects are edible, soft and rich in starch in the given image. Recently, Wang
et al. (2020b) proposed a new dataset, KB-Ref, to evaluate the reasoning ability of a
model over not only visual and spatial features but also commonsense knowledge. The
dataset is devised such that at least one piece of fact from a knowledge base (KB) is
required for a target object (referred to by an expression) to be identified.

Therefore, searching for appropriate facts from a KB is also crucial part in KB-Ref.
In contrast to the only existing work (Wang et al., 2020b), in which for each object
candidate, the top-K facts with the highest cosine similarity between the averaged
Word2Vec (Mikolov et al., 2013) embedding of the fact and the given expression
are maintained, our framework focuses on multi-modal embedding and reasoning
simultaneously over both the expression and the image to identify the top-K facts.
Multi-modal features encode richer information helping to improve reasoning over
varying (semantic) contexts and identification of relevant facts; for example, the above
example of expression can be answered with the object “banana” in an image (or,
equivalently, with the object “mushed potato” in another image).

In this paper, we propose a novel multi-modal framework for KB-Ref — Common-
sense Knowledge Enhanced Transformers (CK-Transformer, CK-T for short) — that
integrates (top-K) facts into all object candidates in an image for better identification of
the target object. Specifically, our contributions are four-fold: 1) We propose the CK-T
(see Figute 3.1) that effectively integrates diverse input from different modalities: vision,
referring expressions and facts; 2) To the best of our knowledge, our approach is the
first that introduces visual information into the identification of (top-K) relevant facts;
3) Our approach achieves a new state of the art using only top-3 facts per (candidate)
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object, which is furthermore substantially more efficient compared to existing work
utilizing as much as top-50 facts; 4) We introduce facts into ‘conventional’ REC tasks,
leading to improved performance.

3.2 Related Work

Referring expression comprehension with commonsense knowledge Different
from conventional REC tasks (see Appendix A.l for details), KB-Ref focuses on
querying objects given an expression that requires commonsense knowledge reasoning.
The authors benchmarked a baseline model, ECIFA, for integration of facts, expression
and image, and selects the target object by comparing the match scores between the
image features and corresponding top-K fact features for all object candidates in the
image (Wang et al., 2020b). In our framework, we select top-K facts for each candidate
by comparing the cosine similarity between the fact and expression embedding, where
the embeddings are generated from a multi-modal encoder rather than a text encoder
used in the ECIFA model.

Pre-trained vision-language encoders Several pre-trained multi-modal encoders
(Chen et al., 2020c; Li et al., 2019; Su et al., 2019; Tan and Bansal, 2019a) have
been proposed, achieving state-of-the-art results on vision—language tasks. Currently,
UNITER (Chen et al., 2020c) as one of powerful pre-trained encoders achieves the best
performance on REC tasks (RefCOCOs). In this paper, we adapt UNITER such that it
is used as a multi-modal encoder in fact search and as part of the CK-T.

3.3 Methodology

We formulate KB-Ref as a classification problem based on an image / consisting of a
set of candidates (image regions) I = {c;}_; obtained from either ground-truth labels
or predictions of a pre-trained object detector. Specifically, given an expression e, an
image I and a KB, we first search for top-K facts F* = {f; };?:1 from the KB for
each candidate ¢;, and then feed e, I, and F f (the selected facts over [) into our CK-T
simultaneously to predict the target object over all candidates.

3.3.1 Image-based fact search

For each candidate ¢; in a given image, we retrieve all the facts from the KB (see
Appendix A.4 for details on the KB used in our framework) according to its category
(e.g., a candidate object may belong to category ‘car’). Then, we calculate the cosine
similarity between the facts and the given expression, where the similarities are obtained
from a similarity extractor which we train by adapting UNITER. Specifically, given
image—expression and image—fact pairs as input, we extract expression and fact features
respectively from the position of the cross-modality output of UNITER (corresponding
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to the input of [CLS] token, see Appendix A.2 for details), and then calculate the cosine
similarity between the two. During training, inspired by Devlin et al. (2018), we replace
50% of ground-truth facts with random facts from the KB (with a similarity of 0), to
help the model better distinguish useful facts from non-useful ones. Finally, we maintain
top-K facts /X with higher similarities to the expression for each candidate ;.

3.3.2 Commonsense Knowledge Enhanced Transformer

The CK-T consists of a bi-modal encoder (see 3.3.2) and a fact-aware classifier (see
3.3.2).

Bi-modal encoder

The bi-modal encoder (initialized by UNITER-base with N=12 layers (Chen et al.,
2020c¢)) integrates two modalities: image and text (e or f;). Specifically, after generating
the input embedding E,,;, consisting of image and text embedding (same with UNITER,
see Appendix A.3 for details), for each candidate ¢;, we extract the expression-aware
and fact-aware object features respectively (f; and ﬁ ) from the position of the visual
output corresponding to ¢; in the same encoder, based on the input of all candidates 7,
and e or f;.

Fact-aware classifier

The fact-aware classifier is composed of multi-head attention layers and fully connected
layers. For each candidate ¢;, f; and F Zf (all K fact-aware object features for c;) are fed
into the integrator simultaneously (Key and Value are from F f , and Query is from f}),
and fused into one three-source object features f; (image, expression and top-K facts).

Finally, f: is mapped into a match score s; for ¢; by a linear layer, and the optimiza-
tion objective is to minimize the cross-entropy loss over all scores {s;}’_; corresponding
to all candidates /.

3.4 Results

We compare our CK-T to existing approaches on KB-Ref task without and with facts.
Then we explore the importance of introducing visual information for fact search.
Furthermore, we introduce facts into the traditional RefCOCOs dataset, which was
collected from MSCOCO (Lin et al., 2014) but differs in the types of expressions
and object candidate settings. We extract image region features using an off-the-shelf
detector, Faster R-CNN with ResNet-101 (Ren et al., 2015), based on bounding boxes
(bbxes) (ground-truth labels or predicted results from the detector). See Appendix A.4
and A.5 for details about these datasets and experiment setting!. Through parameter

'Including the efficiency discussion about our model
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Accuracy (%)
Model Val Test

CMN (Hu et al., 2017) 41.28 40.03
SLR (Yu et al., 2017) 44.03 42.92
VC (Niu et al., 2019) 44.63 43.59
LGARNSs (Wang et al., 2019¢) 45.11 44.27
MAttNet (Yu et al., 2018) 46.86 46.03
ECIFA-nf (Wang et al., 2020b) 37.95 35.16
CK-T-nf (Ours) 58.02 57.53

ECIFA (Wang et al., 2020b) 5945 58.97
MATtt+E (Wang et al., 2020b) 64.08 63.57

CK-T-Word2Vec 60.40 61.39
CK-T-Uw/olmage 64.44 64.78
CK-T (Ours) 65.62 66.71
Human — 90.31

Table 3.1: Accuracy on KB-Ref dataset without and with facts (top and bottom part,
respectively) using ground-truth bounding boxes and object categories.

search on K and M (see Figure 1 and 2 in Appendix A.6), we keep M = 2 Fact-aware
classifier blocks and top-3 facts for each candidate.

Ground-truth bounding boxes and categories By following Wang et al. (2020b),
we report our results on KB-Ref without and with facts. As can be seen in Table 3.1
(top), CK-T-nf, a version of CK-T without facts?, achieves an accuracy of 57.53% on
the test set, outperforming existing approaches that do not utilize facts by approximately
11% — 22%. At the bottom part of the table we can see that our fact-enhanced CK-T
model achieves the highest accuracy (66.71%) on the test set, which is 7.74% higher
than that of ECIFA (a baseline model proposed by Wang et al. (2020b)), and 3.14%
higher than MAtt+E?. It is worth noting that both ECIFA and MAtt+E incorporate the
top-50 facts for each candidate, which is considerably higher compared to top-3 facts
in our CK-T. We surmise this is due to the fact that our fact search approach utilizes
multi-modal fact and expression embeddings.

Predicted bounding boxes and categories To facilitate a fair comparison with
ECIFA-d (Wang et al., 2020b), we also use the maximum 10 detected bbxes for each
image (CK-T-m10). As can be seen in Table 3.2, CK-T-m10 achieves an accuracy which
is &~ 5% higher than that of ECIFA-d on the test set. CK-T-m100, a variant using at most
100 detected bbxes achieves a substantial improvement with ~ 7%, compared with

2all word tokens in fact sentences are replaced with only one [MASK] token.
3Wang et al. (2020b) introduces their facts fusion module —Episodic Memory Module (E)-into
MAttNet model (Matt) (Yu et al., 2018) widely used for conventional REC.
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Accuracy (%)

Model Val Test

ECIFA-d (Wang et al., 2020b) 24.11 23.82
CK-T-m10 (Ours) 28.33 28.71
CK-T-m100 (Ours) 35.66 35.96

Table 3.2: Accuracy on KB-Ref using predicted bbxes and object categories.

CK-T-m10. This difference is primarily due to the increase in the number of correctly
detected bbxes and predicted categories. Specifically, we find that with the top-100
bbxes, the number of samples containing the target bbxes rises from 18,901 to 31, 653,
while among these target bbxes, the number of correctly predicted categories grows
from 11, 324 to 15, 928, out of a total of 43, 284 samples in the KB-Ref dataset. This
can also explain the dramatic decline on the accuracy between CK-T and CK-T-m10.

Incorporating image features into fact search We experiment with various ap-
proaches to fact search and evaluate their effectiveness on KB-Ref (Table 3.1). We
first utilize top-k facts searched in (Wang et al., 2020b), where they use a pre-trained
Word2Vec (Skip-Gram) (Mikolov et al., 2013) for searching facts (CK-T-Word2Vec).
Then, we also selected facts from similarity predictors based on only text as input
(CK-T-Uw/oImage)*, instead of image-text pairs in CK-T. As shown in Table 3.1, both
CK-T-Uw/olmage and CK-T achieve better accuracy on the test set compared to CK-T-
Word2Vec. Compared to CK-T-Uw/oImage, CK-T achieves around 2% higher accuracy.
This is primarily due to the additional visual information used during fact search (see
Appendix A.9 for the examples of the selected facts by these fact search methods).

Introducing facts in traditional REC tasks We incorporate facts from the KB used
in KB-Ref into the tasks of RefCOCOs using CK-T. Table 3.3 shows the results based
on the ground-truth bbxes and categories (discussion about the detected results can be
seen in Appendix A.7). Compared with Uggc°, the model introducing facts achieves
better or equal accuracy on all RefCOCOs tasks, where RefCOCOg is improved more
than RefCOCO and RefCOCO+. This is because RefCOCOg has less same-category
object candidates in an image compared to RefCOCO and RefCOCO+ (an average
of 1.63 and 3.9 per image, respectively) (Yu et al., 2016), and thus the retrieved facts
integrated into different candidates are diversified (we first retrieve facts using the
category), which contributes to distinguishing between candidates. This difference can
also be proved in McNemar Test, where we find the change in the proportion of errors is
statistically significant after introducing facts as compared to before on RefCOCOg (p-
value = 1.19¢—08 < o = 0.05), while the similar proportions are found on RefCOCO

“*Inspired by Frank et al. (2021b), we replace all object candidate feature with the average of all image
region features.

Chen et al. (2020c) achieve state-of-the-art results on RefCOCOs by finetuning UNITER. (We
re-finetune the model for fair comparison and conduct McNemar Test)
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Accuracy (%)
Ugrgc Intro Facts

Val 90.98 91.43

Task

ggfé o TestA 9150 92.09
Test B  90.89 90.95
Val 8323 8345

Ref- Test A 85.09 85.49

COCO+ ’ .

TestB  79.08 79.08

Ref- Val 86.23 87.21
COCOg Test 85.79 87.59

Table 3.3: Introducing facts into RefCOCO, RefCOCO+ and RefCOCOg. RefCOCO
and RefCOCO+ have two different test sets, Test A and Test B, containing multiple
persons and multiple objects in images respectively.

and RefCOCO+ (see Appendix A.8 for details about McNemar Test). The overall
impact of commonsense knowledge in traditional REC is, however, not substantial.
This is primarily due to much smaller number (78) of categories among the candidates
in RefCOCOs, compared to 1805 in the KB-Ref (Wang et al., 2020b). This limits
the variety of selected facts, therefore impacting the extent to which commonsense
knowledge is useful.

3.5 Analysis

To investigate in what cases commonsense knowledge helps, we conduct a fine-grained
analysis of model performance on the test set of KB-Ref. Specifically, we compare
the samples predicted by model with and without facts (CK-T and CK-T-nf) on three
aspects: object categories, spatial relationships and the size of the bounding box.

Object categories The test set contains 1502 categories and CK-T outperforms CK-
T-nf on 1347 categories. Top 10 categories for which most improvement is observed are
shown in Figure 3.2a. In case of the 155 categories that do not show improvement, we
find that the average number of samples per category is 6.68, making the results less
reliable.

Spatial relationships We then investigate to what extent solving the REC task with
and without facts relies on spatial reasoning, and whether there are particular spatial
relationships between objects for which the use of facts is most crucial. Similar to the
works of (Johnson et al., 2017; Kazemzadeh et al., 2014), we focus on the following
spatial relationships: left, right, front, behind, bottom, top, middle. As shown in Figure
3.2b, the model with facts (CK-T) outperforms that without facts (CK-T-nf) on all
spatial relationships.
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(a) Top 10 categories showing (b) The analysis of spatial relation- (¢) The analysis of different
most improvement after introduc- ships. bounding box sizes.
ing facts.

Figure 3.2: Fine-grained analysis. all: the total number of samples in the test set; with
fact: the number of test samples that CK-T predicts correctly; without fact: the number
of test samples that CK-T-nf predicts correctly.

The size of the bounding box We then investigate the role of facts when identifying
objects of different sizes, using the size of their bounding box as a proxy. We use the
normalized area of the bounding box as the metric of bbxes size. As shown in Figure
3.2c, the facts improve model performance on all bounding box sizes.

3.6 Conclusion

In this paper, we proposed CK-Transformer, which effectively integrates commonsense
knowledge and the expression into the representations of the corresponding visual
objects for multi-modal reasoning on KB-Ref. Our CK-Transformer achieves a new
state-of-the-art performance on KB-Ref using only top-3 most relevant facts. We also
demonstrated that visual information is beneficial for fact search. Finally, we show
that commonsense knowledge improves conventional REC tasks across three different
datasets.

3.7 Limitations

The computational requirements of our model are affected by the number of facts.
Specifically, we train our CK-Transformer for 10000 steps with a batch size of 64 on
one Titan RTX GPU, which takes 2.5, 3, 3.5, 7 days with the number of facts: 3, 5, 10,
20 respectively. The CK-Transformer processes 3.8, 2.8, 2.1, 0.7 samples on average per
second at training time and 8.3, 7.3, 6.6, 1.1 samples per second at test time, with these
amounts of facts. The computational requirements of our models are thus substantial,
and future work should consider improving computational efficiency and thus reducing
environmental impact.



Chapter 4

Gradient-based Parameter Selection for
Efficient Fine-Tuning

Chapter Highlights With the growing size of pre-trained models, full fine-tuning
and storing all the parameters for various downstream tasks is costly and infeasible.
Parameter-efficient fine-tuning (PEFT) arise as an promising method for this challenge.
In this chapter, we will investigate the parameter-efficient fine-tuning (PEFT) through
the perspective of the sparse training as sparse training can provide a more precise
and fine-grained tuning. Specifically, we propose a new parameter-efficient fine-tuning
method, Gradient-based Parameter Selection (GPS), demonstrating that only tuning
a few selected parameters from the pre-trained model while keeping the remainder
of the model frozen can generate similar or better performance compared with the
full model fine-tuning method. Different from the existing popular and state-of-the-
art parameter-efficient fine-tuning approaches, our method does not introduce any
additional parameters and computational costs during both the training and inference
stages. Another advantage is the model-agnostic and non-destructive property, which
eliminates the need for any other design specific to a particular model.

4.1 Introduction

The pre-training and fine-tuning pipeline has become a common paradigm for adapting
large models pre-trained on substantial amounts of data to downstream tasks with fewer
training samples. However, fine-tuning all the parameters in the model is memory-
intensive and data-inefficient, which is costly and infeasible for multiple downstream
tasks given a large-scale model (Houlsby et al., 2019; Jia et al., 2022a; Lian et al.,
2022). To tackle this issue, parameter-efficient fine-tuning (PEFT) methods have been
proposed with the aim of tuning a minimal number of parameters to fit downstream
tasks while keeping most of the parameters frozen. Another benefit of PEFT is that
tuning a smaller set of parameters reduces the complexity of optimization and alleviates
overfitting concerns when adapting large pre-trained models to downstream tasks with

31
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Transformer

EECOOO0

(b) Gradient-based Parameter Selection (Ours)

Figure 4.1: Comparison between our GPS and other PEFT methods. (a) Exiting popular
methods introduce extra parameters for tuning downstream tasks, which might need a
special design for diverse architectures, such as appending prompt into the input token in
Transformer or inserting different modules into different layers (b) Our approach avoids
the introduction of additional parameters and solely fine-tunes the selected parameters
from the model, employing a unified gradient-based parameter selection method across
diverse architectural variations, e.g. Transformer and CNN.

limited data, resulting in comparable or even superior performance compared to full
fine-tuning (Jia et al., 2022a). Inspired by the success of PEFT in NLP (Ding et al.,
2023; He et al., 2021a; Hu et al., 2021a, 2022c; Li and Liang, 2021; Su et al., 2021),
several methods have been introduced to vision tasks, such as Adapter (Houlsby et al.,
2019) and Visual Prompt Tuning (VPT) (Jia et al., 2022a) introducing extra learnable
parameters into the backbone and the input space of the pre-trained model respectively.
SSE, another representative method, transforms features across layers of the pre-trained
model using extra learnable layers (Lian et al., 2022).

However, these methods introduce additional parameters into the pre-trained model
and disrupt its original architecture, leading to increased computational costs during
training and/or inference stages. Furthermore, these approaches lack generalizability
across various model architectures. Specifically, different models are equipped with
distinct components (layers), such as MLPs, activation functions, and self-attention
layers. These methods need to determine the optimal locations for inserting extra
parameters between different layers; moreover, certain transformer-based techniques
cannot be directly applied to convolution-based methods like VPT. Therefore, these
methods exhibit limited compatibility with diverse architectures.

To tackle the above issues, we propose a non-destructive network architecture and
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Figure 4.2: Performance comparisons of 11 fine-tuning methods with a pre-trained
ViT-B/16 model on the VTAB-1k (a) and FGVC (b) benchmarks. Our GPS (red stars)
achieves state-of-the-art performance on both benchmarks with only 0.25% and 0.77%
average trainable parameters respectively.

model-agnostic PEFT approach, which introduces no extra parameters during both
training and test stages and provides a unified solution for various architectures. We
select a small number of essential parameters from the pre-trained model and only
fine-tune these parameters for the downstream tasks. To select them, we propose a
fine-grained Gradient-based Parameter Selection (GPS) method. For each neuron in
the network, we choose top-K of its input connections (weights or parameters) with the
highest gradient value, resulting in a small proportion of the parameters in the model
being selected.

Such design offers five-fold benefits: 1) The pre-trained model can efficiently tackle
downstream tasks because the gradient direction indicates the fastest loss function
changes and highest change rate, facilitating efficient gradient descent during model fine-
tuning. We also provide a sparse regularized equivalent form for GPS, which indicates
better generalization than full fine-tuning; ii) Each neuron within the network possesses
the potential to adjust its activation state by fine-tuning selected input connections.
Consequently, the pre-trained model exhibits flexibility in modifying features of varying
granularities to suit diverse downstream tasks. For instance, when adapting a model
pre-trained on ImageNet (Deng et al., 2009) for CIFAR-100 (Rebuffi et al., 2017), it
is necessary to refine high-level features; whereas for ImageNet-Sketch (Wang et al.,
2019b) adaptation, more detailed feature fine-tuning is required. iii) Our approach avoids
introducing extra parameters and computational costs and keeps the architecture of the
model intact; iv) The selection procedure enables its application across diverse models
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Method Mean Params. Model No extra No extra Task
Acc. (%) Agnostic  Train param. Infer params. Adaptive
Full (Jia et al., 2022a) 70.36 100 v v v X

Linear (Jia et al., 2022a) 58.48 0.08
Bias (Zaken et al., 2021) 67.54  0.20

Adapter (Houlsby et al., 2019) 60.04 0.35
VPT (Jia et al., 2022a) 73.53  0.76
LoRA (Hu et al., 2021a) 75.16  0.90
SSF (Lian et al., 2022) 76.77  0.32

GPS (ours) 78.64 0.36

AR N ENEN
N> %% %[NSN
NER R IR
N ™ % X% %[ X% %

Table 4.1: Comparison between different fine-tuning methods. The ViT-B/16 model
accuracy over all 24 tasks in FGVA and VTAB fine-tuned on ViT-B/16 model and the
number of tunable parameters are shown in columns Acc. and Params. (%).

by adopting a neuron-based rather than a layer-based method, thereby eliminating the
necessity for distinct designs for different layers in various models. v) Different from
other methods using a pre-defined and consistent strategy for different tasks, our method
adaptively selects parameters for each task by our proposed gradient strategy to better fit
the domain-specific semantics of different downstream tasks. Please see the difference
between our method with others in Figure 4.1 and Table 4.1.

We evaluate our approach on a total of 27 visual tasks (including image classification
and semantic segmentation) over 4 different model architectures. Our GPS achieves
state-of-the-art performance compared to other PEFT methods and has a good balance
between performance and the number of trainable parameters, as illustrated in Figure 4.2.
Compared with the full fine-tuning, GPS achieves 3.33% (FGVC) and 9.61% (VTAB)
improvement of the accuracy while tuning only 0.36% parameters of the pre-trained
model on average over 24 tasks; it also demonstrates a significant improvement of
17% and 16.8% in mDice and mloU, respectively, on medical image segmentation task.
Moreover, we verify the effectiveness of our approach on different network architectures,
such as Transformer and Convolutional Neural Networks. Furthermore, we compare
GPS with various parameter selection methods and demonstrate its superior properties.
GPS provides a new paradigm for PEFT and inspires deeper insights into this field.

4.2 Related work

Visual parameter efficient fine-tuning In general, there are typically two primary
categories of PEFT. Addition-based methods introduce additional parameters to the pre-
trained backbone. Adapters (Gao* et al., 2021; Gao et al., 2023b; Houlsby et al., 2019;
Pfeiffer et al., 2020a,b; Rebuffi et al., 2017; Stickland and Murray, 2019; Sung et al.,
2022; Wang et al., 2020c; Zhang et al., 2021b, 2022a, 2023b) adopt a residual pathway
and learn down and up projection with a nonlinear activation. Others (Mahabadi et al.,
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Figure 4.3: The overall pipeline of GPS. We first select a small portion of important
parameters (sub-network) for each task from the original pre-trained model using a
gradient-based method. Then only fine-tune the sub-network while keeping other
parameters frozen.

2021) propose a hyper-network to generate model weights or decompose the dense
weighted matrix into the low-rank matrix (Karimi Mahabadi et al., 2021). Prompt
methods (Ding et al., 2021; Gao et al., 2020; Hu et al., 2021b; Ju et al., 2022; Li and
Liang, 2021; Liu et al., 2023d, 2022b; Zhang et al., 2023c; Zhu et al., 2023) wrap the
input with context. VPT (Jia et al., 2022a) prepend learnable prompts to the input tokens.
SSF (Lian et al., 2022) achieves promising results by scaling and shifting the feature
between layers. Selection-based methods select a subset of the parameters for tuning,
such as only fine-tuning bias (Zaken et al., 2021), last K layers (Houlsby et al., 2019; Jia
et al., 2022a). While traditionally considered less effective than addition-based methods,
our approach of adaptively selecting parameters for each task yielded surprisingly strong
results.

Sub-network training Pruning technique (Gale et al., 2019; Han et al., 2015a,b; Kr-
uschke and Movellan, 1991; Li et al., 2016a; Wen et al., 2016) uncovers the importance
of subnetworks. The lottery ticket hypothesis (Frankle and Carbin, 2018) articulates that
subnetworks can reach the accuracy of the original model. Fine-tuning sub-networks
are widely studied. SpotTune (Guo et al., 2019) designs a policy network to make
routing decisions for subset networks. Child-tuning (Xu et al., 2021) iteratively updates
a subset of parameters by masking out some gradients during the backward process.
However, these methods are not aligned with the PEFT setting. We fix a small number
of parameters and only tune them for fitting downstream to achieve PEFT.

4.3 Approach

Different from the currently popular methods introducing additional parameters to fine-
tune the pre-trained model for downstream tasks (Houlsby et al., 2019; Jia et al., 2022a;
Lian et al., 2022), we select only a small number of parameters from the pre-trained
model and then only update these parameters during the fine-tuning stage. Specifically,
our method has two stages: parameter selection and masked fine-tuning. For each
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downstream task ¢, we first select a small portion of important parameters (task-specific
parameters) from the original pre-trained model using a gradient-based method. We then
fine-tune the pre-trained model for the task ¢, keeping all other unimportant parameters
frozen and updating only selected parameters using a sparse binary mask to set the
gradient of unimportant parameters to zero (see Figure 4.3).

4.3.1 Gradient-based parameter selection

Relevant studies have indicated that the pre-trained backbone exhibits diverse feature
patterns at distinct parameter positions, and the same positions make varying contribu-
tions to fine-tuning various tasks (Chatterji et al., 2019; Kumar et al., 2022; Naseer et al.,
2021; Raghu et al., 2021; Yosinski et al., 2014). Therefore, we posit that there exists
an optimal subset of parameters for fine-tuning a pre-trained model to a downstream
task. This subset is essential and necessary for fine-tuning the task, and the different
tasks require a distinct subset. Formally, given a downstream task ¢ with the dataset
D, and a pre-trained model © = {wy, ws, ..., wy}, we aim to find a subset of w, i.e.
w = {wy,ws, ..., w,} (n < N). we select parameters following two principles: 1)
Important for downstream tasks; 2) Distributed over the whole network.

Importance for downstream tasks We identify the importance of parameters in
a pre-trained model for a specific task by selecting those with the highest gradient
value, which is obtained by calculating the gradient of a loss function with respect to its
parameters. The intuition behind this is that the parameters with the largest gradient
value indicate the loss function changes fastest along the gradient direction and has
the greatest change rate, which facilitates efficient gradient descent during fine-tuning.
Specifically, the gradient of the parameters is calculated by

-
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where L£(w) is the loss function. Normally, when we fine-tune a pre-trained model
on a downstream task, we need a new classification head (i.e. MLP) with random
initialization. In order to avoid the adverse effects of these randomly initialized parame-
ters on gradient calculation using the cross-entropy loss function, we use Supervised
Contrastive Loss (SCL) (Khosla et al., 2020) as the loss function for calculating the
gradient during parameter selection, since it does not need to involve the head (We
still use cross-entropy loss during fine-tuning stage). SCL is a variant of Contrastive
Loss (CL) that aims to bring different augmented samples of the same image closer
together in embedding space. In contrast, SCL tries to cluster samples from the same
class together, which coincides with our target of the downstream classification tasks.
Specifically, given a task with the dataset D, = {x;,y;}._, . SCL is calculated by

L:SCI _ Z E;Cl Z | Z Z eXp ZZ © ZP/T) 42)
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where i represents i sample in Dy; P(i) = {p € A(i) : §, = ¥;} is subset of D;, in
which all samples have the same class with i; A(7) = D;\{i}; z is the feature extacted
from the pre-trained encoder and 7 € R is a scalar temperature parameter.

Equivalent with sparse regularization In the above, we implicitly assume that
), which
means selecting parameters with top-n gradient norm is the same as selecting top-n of

the fine-tuning changes. Therefore, GPS captures the top-n important parameters for
downstream tasks. The optimization objective can be rewritten as

the order of <H§—5H e Ha‘?v—'CNH) is the same as (||w} — wy]| - - ||wy — wy

©" = min L(O) st. [|©—=06]o<n (4.3)

where ||||o is the [p norm and ©’ is the fine-tuned model. By Lagrangian duality, solving
the above problem is equivalent to solving the following problem:

L(0") + \|©" — 6o 4.4)

with appropriate A. Hence, GPS can be reviewed as a sparse regularized fine-tuning,
which may lead to better generalization. Fu et al. (2023) demonstrate that Equation (4.4)
has smaller generalization bound than pure optimization toward £ with full fine-tuning,
resulting in better performance.

Distribution over the whole network A simple idea for parameter selection is to
select a certain percentage of parameters with the highest gradient from the entire
network. Our experiments have shown that with this idea, the majority of the selected
parameters are located in the top layers of the network (see Supplementary for details),
which is consistent with the findings reported in (Houlsby et al., 2019; Howard and
Ruder, 2018). However, solely fine-tuning these top-layer parameters is insufficient to
mitigate the impact of the pre-trained model’s own inductive bias, particularly when
there exist substantial disparities in data distributions between upstream and downstream
tasks, which need to fine-tune more detailed features from shallower layers. Motivated
by various studies indicating the distinct roles played by different components of neural
networks (Cao et al., 2022; Fan et al., 2020; Proakis and Manolakis, 1992; Shrikumar
et al., 2017b; Wang et al., 2021b), we posit that when fine-tuning a pre-trained model
for downstream tasks, the adjusted parameters should be distributed throughout the
entire network. The reason behind this lies in the ability of the model to adapt the
information stored in parameters at different levels of granularity to fit downstream
tasks. Therefore, our strategy is that for each neuron in the network, we select top-K
(at least one) connections (weights) among all the input connections of the neuron,
as shown in Figure 4.3. By doing so, every neuron within the network possesses the
potential to fine-tune its activation state rather than solely adjust high-level information
in the top layers. In other words, our approach fine-tunes the detailed information
stored in each neuron of the network, which better fits the downstream task during the
fine-tuning stage. Our exploratory experiment further substantiates this assertion, as
shown in Table 4.6(a).
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Combining the two points above, we first calculate the gradient of the loss with
respect to all the weights in the models for a specific task. Then for each neuron in the
network, we select top-K connections with the highest gradient value (the modulus of
gradient) among all input connections to the neuron. Doing so can not only ensure that
important parameters for downstream tasks are chosen and allow the model to tune the
activation state of all neurons for better fitting of downstream tasks. Another benefit
of this selection procedure is its ease of application across various model architectures,
such as Transformer and CNN, avoiding any model-specific design. Our experiments
also demonstrate the effectiveness of our approach across diverse architectures, as
shown in Table 4.2 and Table 4.4.

4.3.2 Masked fine-tuning

After parameter selection for a specific task, we fine-tune the pre-trained model on the
task. During fine-tuning, we only update the selected parameters while keeping the
remaining parameters of the pre-trained model frozen. As our selected parameters are
distributed across all neurons in every layer, only a few parameters within a specific
weight matrix of the network are chosen, resulting in the updated matrix being sparse.
Therefore, we utilize a mask to help with the sparse training. Specifically, for j*
weight matrix W; € R%n *dout jp the network, we build a same size of binary mask
M; € R%n Xdou;

1, w'ew
— ) J
M; { 0. wé‘? §é'w 4.5)

where wf represents k' element in j* weight matrix. For each element in M, its
value is set to 1 if the corresponding parameter in W is selected, and O otherwise. Then
the weight matrix is updated by

where VL(W;) is the gradient of the cross-entropy loss with respect to W,. As a
result, the gradients of unselected parameters are zeroed out and excluded from updates,
while only a small number of our selected parameters are updated during fine-tuning for
downstream tasks. Please see Figure 4.3 for a visualization of our method.

4.4 Experiments

We evaluate GPS on various downstream tasks, including image classification tasks and
semantic segmentation tasks with different architectures. First, we briefly introduce
our experimental settings, including datasets, backbones, and baselines. Then we
demonstrate the effectiveness and universality of GPS. Moreover, we systematically
study the impacts of different selection schemes and conduct comprehensive ablation
experiments.
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CUB NA- Oxford Stan. Stan. Mean Params.

Dataset -2011 Brids Flowers Dogs Cars Acc. (%)
Full (Jia et al., 2022a) ‘ 873 82.7 98.8 89.4 84.5 8854 100.00
Linear (Jia et al., 2022a) 853 759 97.9 86.2 51.3 79.32 0.21

Bias (Zaken et al., 2021) 884 84.2 98.8 912 794 8840 033

Adapter (Houlsby et al., 2019) | 87.1 84.3 98.5 89.8 68.6 85.66 048
LoRA (Hu et al., 2021a) 85.6 79.8 98.9 87.6 72.0 8478  0.90
VPT-Shallow (Jia et al., 2022a) | 86.7  78.8 98.4 90.7 6877 84.62  0.29
VPT-Deep (Jia et al., 2022a) 88.5 84.2 99.0 90.2 83.6 89.11 0.99
SSF (Lian et al., 2022) 89.5 85.7 99.6 89.6 892 90.72 045
SPT-Adapter (He et al., 2023a) | 89.1  83.3 99.2 91.1 86.2 89.78  0.47
SPT-LoRA (He et al., 2023a) 88.6 834 99.5 914 873 90.04 0.60

GPS (Ours) ‘ 89.9 86.7 99.7 922 904 91.78 0.77

Table 4.2: Performance comparisons on FGVC with ViT-B/16 models pre-trained on
ImageNet-21K.

4.4.1 Experimental settings

Datasets Following VPT (Jia et al., 2022a) and SSF (Lian et al., 2022), we evalu-
ate our GPS method on a series of datasets categorized into three groups: 1) FGVC:
Fine-Grained Visual Classification (FGVC) benchmark includes 5 downstream tasks,
which are CUB-200-2011 (Wah et al.), NABirds (Van Horn et al., 2015), Oxford Flow-
ers (Nilsback and Zisserman, 2008), Stanford Dogs (Khosla et al., 2011) and Stanford
Cars (Gebru et al., 2017). ii) VTAB-1k: Visual Task Adaptation Benchmark (Zhai et al.,
2019) (VTAB) contains 19 visual classification tasks which are grouped into three sets:
Natural, Specialized, and Structured. iii) CIFAR-100 (Krizhevsky et al., 2009) and
ImageNet-1k (Deng et al., 2009): widely use for general image classification task.

Backbones For a fair comparison, we follow VPT and SSF by using ViT-B/16 (Doso-
vitskiy et al., 2020b) pre-trained on ImageNet-21K (Deng et al., 2009) for the main
image classification experiments. Moreover, to demonstrate the universality of our
GPS, we also explore other backbones, including Swin Transformer (Liu et al., 2021d)
and ConvNeXt-B (Liu et al., 2022c) for another variant of Transformer-based and
CNN-based architecture, respectively. In addition, we finetune semantic segmentation
tasks on SAM (Kirillov et al., 2023a), a strong segmentation foundation model.

Baselines We compare our GPS with a variety of fine-tuning protocols that can be
mainly categorized into three types: i) Full: Full fine-tuning is the most commonly used
protocol updating all parameters of the whole model during tuning. ii) Selection-based:
This kind of method selects a subset of parameters in the original model for fine-tuning,
including linear probing and Bias (Zaken et al., 2021). Such methods are easy to
implement and require no extra computations but have not worked well. Our method
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‘ Natural Specialized Structured VTAB
- )
S — 5} > = =] 5 -~ AM[a 1 . =
Dataset § 3 § % C o g g g ,E é E % % g %
& z 5|9 5 % 5|28 = 8 gz z| < &
Method £ 2o . £ 2|5 % 4 £|5 33 E 5 E 2|5 &
E 3 £ 5 g 5 %5 5|2 B = s 8
5 682 & %2 3|& &4 & 2| C AE% 3% & 5|2 =
Full (Jia et al., 2022a) \68.9 87.7 64.3 97.2 86.9 87.4 38.8\79.7 95.7 84.2 7349\56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 \65457 100.00

Linear (Jia et al., 2022a) 63.4 85.0 64.3 97.0 86.3 36.6 51.0|78.5 87.5 68.6 74.0|34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2|53.00 0.05
Bias (Zaken et al., 2021) 72.8 87.0 59.2 97.5 85.3 59.9 51.4|78.7 91.6 72.9 69.8|61.5 55.6 32.4 55.9 66.6 40.0 15.7 25.1|62.05 0.16

Adapter (Houlsby et al., 2019) |74.1 86.1 63.2 97.7 87.0 34.6 50.8|76.3 88.0 73.1 70.5(45.7 37.4 31.2 53.2 30.3 25.4 13.8 22.1|55.82 0.31
LoRA (Hu et al., 2021a) 68.1 91.4 69.8 99.0 90.5 86.4 53.1|85.1 95.8 84.7 74.2|83.0 66.9 50.4 81.4 80.2 46.6 32.2 41.1|72.63 0.90
VPT-Shallow (Jia et al., 2022a) |77.7 86.9 62.6 97.5 87.3 74.5 51.2{78.2 92.0 75.6 72.9|50.5 58.6 40.5 67.1 68.7 36.1 20.2 34.1(64.85 0.13
VPT-Deep (Jia et al., 2022a) |78.8 90.8 65.8 98.0 88.3 78.1 49.6|81.8 96.1 83.4 68.4/68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8/69.43 0.70
SSF (Lian et al., 2022) 69.0 92.6 75.1 99.4 91.8 90.2 52.9|87.4 95.9 87.4 75.5|75.9 62.3 53.3 80.6 77.3 54.9 29.5 37.9|73.10 0.28
SPT-ADAPTER (He et al., 2023a)|72.9 93.2 72.5 99.3 91.4 88.8 55.8(86.2 96.1 85.5 75.5|83.0 68.0 51.9 81.2 51.9 31.7 41.2 61.4|73.03 0.44
SPT-LoRA (He et al., 2023a) |73.5 93.3 72.5 99.3 91.5 87.9 55.5|85.7 96.2 85.9 75.9|84.4 67.6 52.5 82.0 81.0 51.1 30.2 41.3|74.07 0.63

GPS (Ours) ‘81.1 94.2 75.8 99.4 91.7 91.6 52.4‘87.9 96.2 86.5 76.5‘79.9 62.6 55.0 82.4 84.0 55.4 29.7 4671‘75.18 0.25

Table 4.3: Performance comparisons on VTAB-1k with ViT-B/16 models pre-trained
on ImageNet-21K.

belongs to this group and achieves the best performance while ensuring convenience and
universality. iii) Addition-based: This kind of method adds new trainable parameters
to the backbone, including Adapter (Houlsby et al., 2019), VPT (Jia et al., 2022a) and
SPT-Adapter (He et al., 2023a). Such methods require extra computations in both the
training and inference stages. Other methods like LoRA (Hu et al., 2021a), SSF (Lian
et al., 2022), and SPT-LoRA (He et al., 2023a) also add new tunable parameters during
the training stage, but these parameters can be reparameterized into the backbone during
testing.

Implementation details We follow SSF to process the images in all the FGVC,
VTAB-1k and CIFAR-100 datasets. We employ the Adam (Kingma and Ba, 2014)
optimizer with cosine learning rate decay to fine-tune models for 100 epochs, and the
linear warm-up is used in the first 10 epochs. All experiments are conducted on the
NVIDIA A100 GPU.

4.4.2 Performance on image classification

We present a comprehensive evaluation of the effectiveness of our GPS by comparing
it against multiple baselines on 3 benchmarks, comprising a total of 26 datasets. In
addition to common benchmarks (FGVC and VTAB-1k), we also compare our method
with others on different architectures. We evaluate the performance and effectiveness
by Top-1 accuracy (%) and the number of fine-tuned parameters.

Image classification performance As shown in Table 4.2 and Table 4.3, our GPS
outperforms all other fine-tuning methods by a large margin on both FGVC and VTAB
benchmarks, sufficiently demonstrating that our method of parameter selection is a
simple yet effective way for model tuning. On FGVC, GPS outperforms all other
fine-tuning methods, including full fine-tuning, on all 5 tasks. It obtains 1.02% and
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Archi | Swin-B ConvNeXt-B
rchitecture
| Ave. Acc. Params.(%) | Ave. Acc. Params.(%)
Full (Jia et al., 2022a) 92.42 100.00 93.04 100.00
Linear (Jia et al., 2022a) 87.90 0.28 88.00 0.28
SSF (Lian et al., 2022) 91.54 0.56 92.48 0.56
GPS (Ours) 92.56 0.95 93.32 0.90

Table 4.4: Performance comparisons on FGVC benchmark (Average accuracy over 5
tasks) with different model architectures.

3.24% accuracy improvement of the mean accuracy compared to the previous SOAT
method SSF (Lian et al., 2022) and full fine-tuning, while it only uses 0.77% of
trainable parameters. On VTAB, GPS also outperforms all other fine-tuning methods.
Specifically, it obtains 1.11% and 9.61% improvement of the mean accuracy on 19
VTAB tasks compared to the previous SOAT method SPT-LoRA (He et al., 2023a)
and full fine-tuning. GPS beats the previous SOTA by 1.75%, 0.23%, and 0.63% in
the Natural, Specialized and Structured subsets, respectively. Meanwhile, GPS also
uses fewer trainable parameters compared to VPT-Deep, SSF, and SPT-LoRA (0.25%
vs. 0.70%, 0.28% and 0.63%), which further illustrates the high efficiency of our
approach. For most tasks, we exclusively select the top 1 input connection for each
neuron; however, for more challenging tasks, multiple connections are chosen (see
Supplement for details). The percentage of learnable parameters in our GPS can be
explicitly controlled by adjusting the number of connections selected, allowing for a
balance between parameter count and performance in tasks.

Generalization on different architectures Since our method only selects a subset of
parameters from the pre-trained model for fine-tuning, it is naturally model-agnostic.
We compare GPS with other representative methods across ViT-B/16 (Table 4.2), Swin-
B and ConvNeXt-B architectures on the FGVC dataset (Table 4.4), CIFAR-100 and
ImageNet-1k (Please see full results in Supplementary). Among all three architectures,
GPS consistently outperforms all other baselines, demonstrating its model-agnostic
advantage. The Swin and Convnext have more complex designs than ViT, enabling them
to acquire comprehensive and high-quality features during pre-training. Consequently,
even the simplest linear probing method yields commendable results on these two
architectures, reducing the effectiveness of the PEFT method and causing the previous
SOTA SSF to underperform Full. However, in this scenario, our GPS still maintains
a lead over Full with gains of 0.12% and 0.28%, respectively, further showing the
effectiveness of our method.

Computational cost In Figure 4.4, we compare the computational cost of GPS with
other fine-tuning methods to demonstrate the efficiency of our approach. Following
SSF (Lian et al., 2022), we reimplement VPT (Jia et al., 2022a) with 200 and 50 prompts
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Figure 4.4: Computational cost of different tuning methods. From left to right: training
time, training memory, test time, and test memory. Training/Test time is the time
consumed by a mini-batch.

Method | mDice (1) mloU (1) | Params. (M)
Full (Jiaetal,, 2022a) | 71.1 557 | 938
Linear (Jia et al., 2022a) 71.6 46.6 4.06
Bias (Zaken et al., 2021) 86.5 69.1 4.16
Adapter (Chen et al., 2023) 84.8 66.7 4.12
SSF (Lian et al., 2022) 87.3 71.7 4.26
GPS (Ours) | 881 725 | 422

Table 4.5: Quantitative Result for Polyp Segmentation

for the shallow and deep versions, respectively. A batch size of 32 is used in both the
training and inference stages. For a fair comparison, for all experiments, we do not use
mixed precision training, which was used in SSE. All metrics are measured on a single
NVIDIA A100 GPU. In the training stage, GPS has less time and memory consumption
than both VPT and SSF. Compared with full fine-tuning, GPS has a much lower time
overhead and a similar memory overhead, but it leads to an increased performance
by a large margin. Since GPS is a selection-based method, it does not introduce any
additional parameters, so it can achieve the same minimum time and memory overhead
as full fine-tuning during inference without any reparameterization operation, which is
much lower than the addition-based Adapter and VPT.

4.4.3 Semantic segmentation

In addition to visual classification tasks, we also explore our method for the task of
semantic segmentation. Segment Anything Model (SAM) (Kirillov et al., 2023a) is
a strong foundation model for segmentation. It is pre-trained on a large-scale dataset
enabling powerful generalization. However, several studies, e.g. (Chen et al., 2023),
have reported poor performance of SAM on medical segmentation tasks such as polyp
segmentation (Jha et al., 2020a). To address this limitation, they proposed employing
Adapter to effectively fine-tune SAM for downstream medical segmentation tasks.
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Ground
Truth

Figure 4.5: The Visualization of Polyp segmentation task. Our GPS can still handle
difficult segmentation cases compared with others.

Following their experimental setup, we applied our method to SAM and conducted a
comparative analysis with other PEFT approaches. Our GPS yielded exceptional results,
as shown in Table 4.5 and visually depicted in Figure 4.5 (See Supplementary for more
case visualization).

4.4.4 Impacts of different selection schemes

Different selection levels Our GPS selects trainable parameters at the neuron level,
i.e. selecting top-k input connection per neuron. We also investigate parameter selection
methods at different levels. As shown in Table 4.6 (a), Net and Layer represent selecting
a certain proportion of the parameters with the highest gradient based on the entire
network and each layer, respectively. For a fair comparison, we keep the same number
of parameters selected over these levels. We can see that the finer the granularity of
selection, the better the performance. For example, the accuracy on CUB increases by
0.44% and 0.77% when selection level changes from network to layer, and from layer
to neuron.

Different selection criteria We further study the effectiveness of our gradient-based
selection method by comparing different selection criteria. As shown in Table 4.6 (b),
Net Random and Neuron Random means randomly selecting top-K the input connection
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Figure 4.6: Impacts of different selection locations and quantities. From left to right:
(a) Performance drop caused by not selecting parameters from k-th blocks. (b) And
by not selecting from the top k blocks. (c) Impacts of different numbers of selected
connections on performance.

Dataset ‘ CUB NAbirds Flowers Cars  Dogs
@) Net 86.86  86.55 99.62 89.65 91.32
Layer 87.30  86.79 99.64 90.03 91.90

Net Random 86.60 85.98 99.61 89.10 91.34
(b) | Neuron Random | 87.17 86.02 99.62 89.52 91.82
Magnitude 87.29 85.99 99.62 89.29 91.30

(c) | Head+CE | 87.05 8620  99.64  89.25 9129

88.07 86.64 99.69 90.10 92.30
+£0.11 £0.03 +£0.01  +0.10 =£0.10

GPS

Table 4.6: The result on FGVC for investigating impacts of different selection schemes
and ablations. (a) Different selection levels. (b) Different selection criteria. (¢) Gradient
calculating method.

for each neuron and selecting the same number of parameters based on the whole
network respectively. Magnitude means selecting top-K input connections with the
largest weight per neuron. As we can see, the increase in the randomness of parameter
selection causes a decrease in performance (Net Random<Neuron Random). The result
of Magnitude is similar to Neuron Random, demonstrating neuron-level selection is
crucial.

Different selection location To investigate the impact of selected parameters located
at different layers within the network, we conducted experiments using the ViT-B/16
model fine-tuning on CUB and evaluated accuracy degradation when applying our GPS
method to select parameters from the entire network except for a specific transformer
block or previous several transformer blocks. As shown in Figure 4.6a, it is surprising
to note that when we do not select parameters from a specific block, the biggest drop in
the accuracy comes from the shallow layers (block 2 and block 4). This finding supports
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our GPS approach that selects parameters from the entire network rather than just the
last few layers. When we do not select the parameters from the first specific number
of blocks, it is observed that the accuracy drop increases with more blocks removed
(Figure 4.6b).

4.4.5 Ablation study

Head-free contrastive loss To obtain more accurate gradients for selecting parameters,
inspired by the representation learning pre-training methods, Our GPS adopts the
supervised contrastive loss to calculate gradient (without random initialization of the
classification head). As shown in Table 4.6 (c), when we use the cross-entropy loss
(with the head) to calculate the gradient, the average accuracy on FGVC is dropped by
0.67%, illustrating the importance of obtaining accurate gradients.

Selected connection number As shown in Figure 4.6¢ we select top-K input connec-
tions per neuron as trainable parameters, ranging from 1 to 15, and conduct experiments
on the 5 tasks. We can observe that more trainable parameters do not necessarily lead
to better performance, but each data set has a performance peak. In addition, on the
dataset with sufficient training data, the addition of trainable parameters can greatly
improve the accuracy. Our GPS can easily control the number of trainable parameters
and achieve optimal results on each dataset.

Robustness to seeds Addition-based fine-tuning methods like VPT are sensitive to
the initialization of additional parameters as well as random seeds, whereas select-based
methods are not. All results in Table 4.6 are the average accuracy of three seeds on
FGVC datasets (Only shows the std of GPS here. Please see details in supplementary).
The results show random seeds have little influence on our method.

4.5 Conclusion

In this paper, we propose a new paradigm for PEFT, i.e. Gradient-based Parameter
Selection (GPS). Our approach does not introduce any additional parameters and only
fine-tunes a small subset of the pre-trained model’s parameters for downstream tasks,
resulting in robust generalization across diverse models and adaptively selecting a subset
of parameters for each task. Remarkably, GPS achieves significant improvement on a
range of tasks (including image classification and semantic segmentation), compared
to the full fine-tuning method. GPS also attains SOTA performance compared to other
PEFT methods.






Chapter 5

GPU-Efficient Sparse Training for
Parameter-Efficient Fine-Tuning

Chapter Highlights In this chapter, we further explore parameter-efficient fine-tuning
through sparse training on larger models, specifically addressing the challenge of GPU
memory consumption, which is a common issue encountered with sparse training.
Existing parameter-efficient fine-tuning (PEFT) methods can generally be categorized
into two types: addition-based methods and selective in-situ adaptation. The former,
such as LoRA, introduce additional modules to adapt the model to downstream tasks,
providing strong memory efficiency. However, these methods often have limited rep-
resentational capacity, making them less suitable for fine-grained adaptation. On the
other hand, selective in-situ adaptation directly fine-tunes a carefully selected subset of
the original model parameters, enabling more precise and effective adaptation, but at
the cost of significantly increased memory consumption. To address this trade-off, we
propose a novel PEFT method that combines the benefits of sparse training (fine-grained
model fine-tuning) with the memory efficiency characteristic of addition-based methods,
thereby achieving both high adaptation precision and memory efficiency.

5.1 Introduction

Large language models (LLMs) demonstrate remarkable generalization capabilities, yet
achieving optimal performance on downstream tasks often still requires fine-tuning. As
model sizes grow, full-parameter fine-tuning becomes increasingly impractical due to
substantial computational and memory demands. For example, fine-tuning LLaMA 2-
13B without CPU offloading requires 26 GB for trainable parameters in FP16, 52 GB
for Adam optimizer states (two FP32 moments per parameter), 26 GB for gradients, and
an additional 2—4 GB for activations depending on batch size and sequence length. This
results in a memory footprint of approximately 106—108 GB in total, far exceeding the
capacity of commodity GPUs and necessitating premium hardware (e.g., A100 80G).
This highlights the pressing need for more efficient and scalable adaptation strategies.

47
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& Top-k Adaptation Frozen weights

Layer 0 Layer 1 Layer N-1

Figure 5.1: Overview of NeuroAda. For each neuron, only the top-k weights are adapted,
while the rest remain frozen. Bold blue indicates selected pretrained weights; red dashed edges
represent newly introduced trainable parameters.

A growing body of work on parameter-efficient fine-tuning (PEFT) addresses the
computational and memory overhead of full-model adaptation by introducing a set
of trainable parameters while keeping the backbone frozen. One major class of these
methods is known as addition-based adaptation, which augments the pretrained model
with additional modules designed to inject task-specific flexibility. These additions vary
in form and location, including adapter layers inserted into projection blocks (Pfeiffer
et al., 2020a; Sung et al., 2022), nonlinear activation reparameterizations (Zhang et al.,
2021b), prompt tuning applied to input embeddings (Liao et al., 2023a,b; Lin et al.,
2020), latent representation perturbations (Wu et al., 2024b), and low-rank matrix
decompositions applied directly to weight spaces, such as in LoRA (Hu et al., 2022a)
and its variants (Kopiczko et al., 2023; Zhang et al., 2023a). These methods typically
offer improved memory efficiency by restricting gradient computation and optimizer
state updates to the newly introduced modules, as opposed to the entire model in
full fine-tuning. However, their scalability is constrained: as model size increases,
the limited representational capacity of the added modules often leads to diminishing
returns (He et al., 2024).

Another prominent line of research is selective in-situ adaptation, which fine-
tunes a carefully selected subset of a pretrained model’s original parameters, without
introducing any additional parameters, modules, or layers. Structure-based approaches,
such as BitFit (Ben Zaken et al., 2022) and Partial-k (Jia et al., 2022b) updating only
the bias terms and the last £ layers, respectively, exemplify early efforts in this direction.
More recently, fine-grained and unstructured parameter selection methods have attracted
increasing attention. These approaches aim to identify task-relevant parameters at a
more granular level, such as GPS (Zhang et al., 2024b) and SPT (He et al., 2023b), which
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(a) Pretrained Matrix (b) Gradient Matrix (c) Binary Mask Matrix (d) Tuned Matrix

Figure 5.2: Mask-based sparse tuning employs a binary mask matrix to suppress gradient
updates for unselected parameters. However, this approach incurs significant memory overhead,
as gradients for the entire original parameter matrix must still be computed and retained by the
optimizer.

demonstrate strong performance on vision tasks by selectively fine-tuning subsets of
parameters that are most critical for the target task. Compared to structured approaches
and addition-based adaptation methods, these unstructured strategies offer greater
flexibility in parameter selection, enabling more precise and targeted model adaptation,
and thereby substantially improving downstream performance (Fu et al., 2023; Shen
et al., 2024). However, this sparse tuning paradigm leads to higher memory usage due
to mask-based implementations. As shown in Figure 5.2, although only a small portion
of the parameters is selected for updating, memory consumption remains comparable
to that of full fine-tuning. This limitation becomes particularly problematic with the
increase of model size (Shen et al., 2024; Zhai et al., 2022).

These limitations motivate us to explore whether a unified approach can be de-
signed that achieves the fine-grained parameter tuning characteristic of selective in-situ
adaptation, while retaining the memory efficiency advantages of addition-based meth-
ods. To this end, we propose NeuroAda, an additive, overlay-style adaptation method
that utilizes a carefully designed approach to introduce new parameters to enable fine-
grained adjustments while maintaining memory efficiency. Specifically, as shown
in Figure 5.1, NeuroAda first selects the top-£ highest-magnitude input connections
(weights/parameters) for each neuron in the network prior to finetuning and then, for
each selected parameter, a bypass connection (initialized to zero) is introduced. During
finetuning, only the newly introduced parameters are fine-tuned, while the original
parameters remain frozen. This approach inherits both the performance benefits of
selective in-situ adaptation and the memory efficiency of addition-based methods.
Crucially, for each neuron, at least one of its input connections is selected for update,
ensuring that all neurons have the potential to modify their activation states and thus
change the state of the entire network for effective adaptation. Consequently, NeuroAda
presents a scalable and practical solution for large language models.

NeuroAda offers four key advantages that make it both practical and effective in
real-world scenarios: (1) Highly efficient computation: NeuroAda eliminates the need
of the mask for sparse finetuning, which typically requires full gradient computation.
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(2) Highly efficient GPU memory usage: Only the newly added parameters are
updated, significantly lowering memory usage by avoiding optimizer state tracking for
the full model. (3) Task-agnostic and generalizable: Parameter selection is based
on weight magnitudes from the pretrained model, enabling consistent selection across
tasks, making the method broadly applicable and easy to deploy. (4) Fine-grained,
neuron-level adaptation: NeuroAda ensures every neuron has the potential to change
the activation state of each neuron during finetuning, maximizing the representational
expressiveness of individual neurons. Empirically, NeuroAda achieves state-of-the-
art performance on 23+ tasks compared with other PEFT methods, including both
natural language generation and understanding, highlighting its practical utility and
effectiveness.

5.2 Related Work

Addition-based Adaptation. Includes adapter-based methods (He et al., 2021b; Liao
et al., 2023a,b; Lin et al., 2020; Pfeiffer et al., 2020a) and low-rank reparameterization
techniques such as LoRA (Hu et al., 2022a) and its variants AdaLoRA (Zhang et al.,
2023a), VeRA (Kopiczko et al., 2023), QLoRA (Dettmers et al., 2024), and DoRA (Liu
et al., 2024c¢), which introduce trainable low-rank matrices into projection layers. While
LoRA avoids inference-time overhead by merging updates into base weights, it often
suffers from scalability issues and diminishing returns when applied to large models or
complex tasks (Liu et al., 2024c). A parallel direction modifies hidden states instead of
weights: activation steering (Li et al., 2023b; Liu et al., 2023e), concept erasure (Avitan
et al., 2024; Belrose et al., 2023b; Singh et al., 2024), and block-level editing (Wu et al.,
2024b) offer instance-specific control but require task-specific adaptation.

Selective In-Situ Adaptation. This class of work fine-tunes a subset of the model*‘s
original parameters without introducing any additional modules or weights, often
achieving strong performance with minimal architectural changes. However, its practical
memory and compute benefits frequently fall short in large-scale settings. Methods
such as SIFT (Song et al., 2023), SHiRA (Bhardwaj et al., 2024) ,and SpIEL (Ansell
et al., 2024) enforce sparsity constraints, yet still require full backward passes to
compute gradients for the entire weight space. More targeted approaches, including
SMT (He et al., 2024) and GPS (Zhang et al., 2024b), improve efficiency by selecting
submatrices or top-k gradients per neuron, but rely on gradient-based warm-up and
dynamic masking. These mechanisms introduce additional overhead from binary mask
storage, dense optimizer states, and full-gradient tracking, making them difficult to scale
to large language models. In contrast, our method, NeuroAda, inherits the advantages
of both paradigms by avoiding gradient-based selection and selecting the top-k weights
per neuron.



5.3. Methodology 51

|:| Frozen OOOOOCOO Trainable

. x[00ooooo]

Eln|
al

Top-k weights per neuron

o0
al
Eln|

1
]
1
1
1
]
1
dous ) 2 l00 00000]
1
1
1
1
]

Eln|
al
Elnl
al
Kl
al
Kl

«—— dy, ——> . .
) . (b) Top-k weight gradients per neuron;
(a) Pretrained Weights here k — 1

Figure 5.3: Neuron-wise Top-~ Weight Selection and Gradient Computation. (a) Pre-
trained weight matrix of size d,,; x d;,, where for each neuron (row), only the top-k
weights(i.e., highest-magnitude) are selected for adaptation (colored), and the rest re-
main frozen (white). (b) Corresponding gradient matrix restricted to the top-k£ weights
per neuron (here £ = 1), showing gradients only for trainable entries. This strategy
enables fine-grained, neuron-level adaptation while preserving most of the pretrained
model, effectively activating each neuron’s potential through less-invasive tuning.

5.3 Methodology

In this section, we first present the necessary preliminaries, and then introduce Neu-
roAda, a new adaptation framework that activates each neuron’s potential by selectively
updating a small subset of its weights. Specifically, we freeze all pretrained model
weights and introduce sparse, additive overlay-style adaptation method in which top-%
bypasses of input connections (weights/parameters) are introduced into each neuron
in the neural network for adaptation. This neuron-wise adaption preserves the origi-
nal parameters intact while enabling targeted learning signals at fine granularity. As
illustrated in Figure 5.3, NeuroAda ensures that every neuron participates in adaptation,
supporting both efficiency and generalization. During inference, the small number of
learned deltas can be merged into the base weights, resulting in no additional overhead
at runtime.

5.3.1 Preliminaries

Let Mg be an L-layer pretrained language model with parameters ® = {W®) b}~
For any linear sub-layer we write hy,, = Why, + b, where W € R%«*dn and each
row of W corresponds to a neuron. During standard fine-tuning all entries of W are
updated, yielding heavy computational and memory costs (‘5.1).
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Table 5.1: Memory comparison per projection. Mask-based sparse tuning methods require 1
bit per weight!. NeuroAda with & = 1 only stores one BF16 value (2 bytes) and one index (2
bytes) per row, totaling 4 bytes per neuron. This yields over 100 x memory savings for a single
linear layer.

Model dmodel Mask [MB] NeuroAda[MB] Saving Ratio
LLaMA-17B 4096 499570 ~2.00 40964 ~0.016 =~ 125x
LLaMA-27B 4096 2.00 0.016 125x
LLaMA-113B 5120 J1200 ~3.13 3120%4 50020 =~ 156
LLaMA-2 13B 5120 3.13 0.020 156 x

Sparse additive updates. NeuroAda freezes ® and introduces a delta‘ ‘parameter
tensor A with the same shape as ® but sparsity constrained:

=2+ A Al <2, 5.1

where || - ||o counts non-zero elements. Only A is trainable; the base model remains
intact, so A can be merged in-place after training, incurring zero inference overhead.

5.3.2 Top-k selection

A core design goal is that every neuron receives at least a small learning signal. For
each neuron‘‘that is, for each row w € R% of a weight matrix, we identify the indices
of its k largest-magnitude components:

Z(w) = argtop k’wj‘. (5.2)
jE{l,...7din}

We then allocate trainable delta weights only at these positions:

(9@' ifj € I(Wz)
[a], =3 (5.3)

0 otherwise,

where 6, ; is a trainable parameter defined only for j € Z(wi) and initialized to 0.
For all other positions, Az, j is fixed to zero and excluded from both optimization
and memory storage. While NeuroAda uses weight magnitude for top-% selection,
the framework is flexible: task-guided criteria such as gradient magnitude or random
ticketing can be substituted into Z(-). We employ magnitude due to its task-agnostic
stability and the advantage of requiring no warm-up or additional computation. This
design choice is empirically validated in our ablation study, where magnitude-based
selection achieves strong performance without relying on task-specific signals, as shown
in Figure 5.7.

"'While 1-bit-per-weight is a theoretical lower bound for binary mask storage, actual implementa-
tions in PyTorch and other frameworks use byte-addressable storage (e.g., BoolTensor), leading to
significantly higher memory overhead.
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Mask-free implementation. Since the top-£ sparsity pattern is determined a priori,
Eq. equation 5.3 can be implemented without maintaining a full binary mask over the
weight matrix. Instead, we store a compact list of indices and corresponding BF16
values‘‘only k entries per row‘ ‘eliminating the need for dense masking or indexing
during training. This design leads to substantial memory savings and indexing efficiency.
As shown in Table 5.1, for a single projection layer in LLaMA-2 13B, a 1-bit-per-weight
binary mask requires over 3 MB of memory, while NeuroAda with k=1 uses only
0.02 MB*“‘over 156 smaller. These savings scale across layers and are especially
beneficial for high-throughput training on limited-memory devices.

5.3.3 Featherlight adaptation

During fine-tuning we optimize only {6; ;} while re-using the forward path of the frozen
backbone. For a linear layer the forward pass becomes

hoy = Why, + (P®®)hin7 (5.4)
fi
rozen trainable A

where P is an index matrix with zeros everywhere except [P] ;= lwhen (i,j) €
Z(w;), ® denotes element-wise product, and © is the dense tensor of learnable 6); ;.>

Lightweight backward pass and optimizer states. During back-propagation, Neu-
roAda updates only the & selected coordinates per neuron. As a result, the dominant
memory contributors in full-model training‘ ‘BF16/FP32 gradients and the two FP32
moment estimates in the AdamW optimizer‘‘are reduced proportionally by a factor
of dim. Because all delta parameters are stored directly in BF16 and no FP32 master
weights are needed, the optimizer maintains only 2 x & FP32 values per row instead of
2 x d;,.This yields a substantial memory reduction in the optimizer state maintained
by AdamW. In standard dense fine-tuning, AdamW stores two FP32 moment estimates
(first and second moments) for each trainable parameter, resulting in:

AdamW Mem. (Masked): 2 X doy X din X 4(bytes), (5.5

where 4 bytes denotes the size of a 32-bit float. In contrast, NeuroAda updates only
k weights per row, so the optimizer state becomes:

AdamW Mem. (NeuroAda):2 X doy X k X 4(bytes). (5.6)

This reduces memory usage by a factor of % per linear layer. For example, with
din = 5120 and k£ = 1, this corresponds to a 5120 x reduction in AdamW state memory.

2We implement this with fused scatter-add so the additional multiply is executed only on the k selected
positions; no dense mask is materialised.
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Figure 5.4: Performance comparison between our NeuroAda and mask-based methods
on LLaMA-7B. Top-k means selecting top-k input connections per neuron in the neural
network.

5.4 Neuron-wise Sparse Adaptation: Comparative
Analysis

In this section, we first compare the mask-based method, which applies binary masks
to zero out the gradients of unselected (frozen) parameters (see Figure 5.2), with our
NeuroAda, which introduces new trainable parameters to bypass the selected ones,
rather than directly tuning them, for sparse fine-tuning. The comparison is conducted in
terms of effectiveness, GPU memory usage, and training efficiency. We then further
investigate the effectiveness of the proposed method NeuroAda, which aims to ensure
that all neurons in the network have the potential to update their activation states during
fine-tuning. This is done by analyzing the proportion of neurons involved in fine-tuning
and examining different parameter selection strategies for activating them.

Experiment setup To ensure a fair comparison between our NeuroAda and mask-
based methods, as well as across different parameter selection strategies, we conduct a
hyperparameter search over different the learning rates for each experiment using the
training set. The best-performing configuration is then selected based on validation
set performance. This is necessary because PEFT methods are generally sensitive to
the choice of learning rate (Wu et al., 2024¢). The hyperparameter search space is
presented in Table 16 in Appendix. The details of used datasets: COMMONSENSE15K
and GSM8K are provided in Appendix C.4.
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Figure 5.5: Training GPU memory and training efficiency on different models (RoBERTa-base,
RoBERTa-large, LLaMA-7B, LLaMA3-8B) with NeuroAda, mask-based and full fine-tuning
method.

Question 1:  Can our method NeuroAda be a competitive or even superior alternative
to the mask-based sparse tuning approach? We address this by comparing their task
performance, GPU memory usage, and training efficiency.

Performance To comprehensively and fairly evaluate the effectiveness of the two
methods, we compare them under the same proportion of trainable parameters, ranging
from 0.02% to 10%, on the COMMONSENSE15K and GSMS8K tasks. As shown in
Figure 5.4, our proposed method NeuroAda performs comparably to, or even better than,
the mask-based method across most parameter budgets on both datasets. In particular,
the NeuroAda outperforms the mask-based method by approximately 9% and 14% in
accuracy when using 6.05% and 10.09% of trainable parameters, respectively, on the
commonsense reasoning task.

Training memory and time We evaluate models of varying sizes, including
RoBERTa-base, RoBERTa-large (Liu et al., 2019¢), LLaMA-7B (Touvron, 2023),
and LLaMA3-8B (Vavekanand and Sam, 2024). Specifically, we sample 500 examples
from the MNLI task in the GLUE natural language understanding benchmark (Wang
et al., 2019a), and another 500 examples from the natural language reasoning task
GSMS8K. We use these samples to train the ROBERTa and LLaMA models, respectively.
All experiments are conducted on a single NVIDIA H100 GPU with a batch size of 2.
We report the GPU memory usage and training time for each model. Figure 5.5 shows
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Figure 5.6: Comparison across different proportions of neurons involved in the fine-
tuning process.

our proposed addition-based sparse training method NeuroAda consumes less GPU
memory compared to the mask-based counterpart, especially as the model size increases.
For example, the NeuroAda achieves up to 60% memory savings on LLaMA3-8B. In
addition, the NeuroAda enables significantly faster training, particularly for larger
models. It processes 16.6 samples per second, compared to only 1.1 samples per second
with the mask-based method.

Question 2:  How effective is the proposed method NeuroAda in enabling all neurons
to update their activation states during fine-tuning for downstream task adaptation? To
answer this question, we first investigate how different parameter selection strategies
can be used to ensure that all neurons have the potential to update their activation states
during fine-tuning. We further analyze how task performance on COMMONSENSE15K
and GSMS8K varies with the proportion of neurons allowed to update their activation
states during training.

Involved number of neurons. Our proposed method selects the top-k input connec-
tions for each neuron in the network, ensuring that at least one input connection per
neuron is selected for tuning. This design enables all neurons to update their activation
states during fine-tuning, allowing better adaptation to downstream tasks. To demon-
strate its effectiveness, we select parameters from various proportion of neurons per
layer for tuning and evaluate the resulting performance on the COMMONSENSE15K and
GSMS8K tasks. As shown in Figure 5.6, increasing the number of neurons involved
during training leads to consistent performance improvements on both tasks. This
suggests that enabling all neurons to update their activation states is beneficial‘‘and
likely necessary‘ ‘for effective downstream task adaptation.
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Figure 5.7: Comparison of different parameter selection strategies for involving neurons
for the fine-tuning process. Among all input connections for each neuron in the network,
Top-k connection with highest magnitude (Magnitude), highest gradient absolute value
(Gradient), lowest magnitude (Reverse) are selected for training using addition-based
method. Random means randomly selecting Top-£ input connections per neuron.

Different selection strategies To explore the effectiveness of enabling all neurons in
the network to update their activation states during training, we experiment with different
parameter selection strategies for each neuron under different trainable parameter budget.
Specifically, for each neuron, we select the top-£ input connections based on four criteria:
highest weight magnitude, highest gradient absolute value, lowest weight magnitude,
and random selection from all input connections. As shown in Figure 5.7, all selection
methods yield comparable performance on both the COMMONSENSE15K and GSM8K
tasks across different trainable parameter budgets. The average accuracies across all
budgets for all selection methods are closely aligned, ranging from 77.69% to 79.24%
on COMMONSENSE1 5K, and from 35.89% to 36.54% on GSMS8K. These results again
highlight the importance of involving all neurons in the adaptation process, regardless
of the specific selection method used. Additionally, across both tasks, the Magnitude
selection method achieves the highest win rate across different parameter budgets
compared to the other strategies. Therefore, we adopt the Magnitude selection strategy
as the default in NeuroAda.

5.5 Experiments

We evaluate NeuroAda on 23+ datasets spanning commonsense reasoning (Sec-
tion 5.5.1), arithmetic reasoning (Section 5.5.2), and natural language understanding
(Section 5.5.3). Experiments cover both encoder-only (RoBERTa-base (Liu et al.,
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Table 5.2: Performance comparison with existing PEFT methods on eight commonsense
reasoning datasets and seven arithmetic reasoning datasets across four models: LLaMA-7B/13B,
LLaMA2-7B, and LLaMA3-8B. *Most baseline results are taken from Hu et al. (2023a). TResults
are from Wu et al. (2024c¢), ¥ results are taken from He et al. (2024) and *results are from Liu
et al. (2024c), as they share the same experimental setting with Hu et al. (2023a). For a fair
comparison, our NeuroAda is also trained for 3 epochs to align with these baselines. *When
3-epoch results are not available in the original paper, we re-trained the baselines using the
official code and their reported best hyperparameters. All results for our method are averaged
over three runs with different random seeds. Our method selects the top-20 and top-1 input
connections per neuron for high-budget and low-budget parameter groups, respectively. The
results of LLaMA3-8B are shown in Table 13 in Appendix due to space limitation.

Model PEFT Params (%) Accuracy (1)

Commonsense Reasoning
BoolQ PIQA SIQA  HellaS. WinoG. ARC-e ARC-c  OBQA Avg.

ChatGPT* — — 73.1 85.4 68.5 78.5 66.1 89.8 79.9 74.8 71.0
Series* 1.953% 63.0 79.2 76.3 67.9 75.7 74.5 57.1 72.4 70.8

Parallel* 3.542% 67.9 76.4 78.8 69.8 78.9 73.7 57.3 75.2 723

LoRA* 0.826% 68.9 80.7 77.4 78.1 78.8 77.8 61.3 74.8 74.7

DoRA,¢* 0.427% 70.0 82.6 79.7 83.2 80.6 80.6 65.4 77.6 71.5

DoRA* 0.838% 68.5 82.9 79.6 84.8 80.8 81.4 65.8 81.0 78.1

LLaMA SMT# 0.840% 68.7 81.7 78.3 91.6 78.8 84.1 67.7 77.4 78.7
(7B) NeuroAda 0.404% 73.1 85.4 80.9 94.3 84.3 87.8 71.7 84.2 82.7
PrefT* 0.039% 64.3 76.8 73.9 42.1 72.1 72.9 54.0 60.6 64.6

DiReFT* 0.031% 66.1 825 78.8 92.6 819 832 67.1 79.8 79.0

LoReFT! 0.031% 68.3 83.5 79.7 92.7 82.6 832 67.4 78.5 79.5

NeuroAda 0.020% 69.6 83.6 80.5 92.3 81.1 84.0 68.1 80.4 80.0

Series* 1.586% 71.8 83.0 79.2 88.1 824 82.5 67.3 81.8 79.5

Parallel” 2.894% 72.5 84.9 79.8 92.1 84.7 84.2 71.2 82.4 81.5

LoRA* 0.670% 72.1 83.5 80.5 90.5 83.7 82.8 68.3 824 80.5

DoRA,¢* 0.347% 72.5 853 79.9 90.1 829 82.7 69.7 83.6 80.8

LLaMA DoRA* 0.681% 72.4 84.9 81.5 92.4 84.2 84.2 69.6 82.8 81.5
(13B) SMT? 0.680% 71.1 84.4 81.7 93.7 832 86.7 73.7 85.2 82.4
NeuroAda 0.327% 73.3 87.9 82.7 96.0 86.9 90.2 771 88.6 85.3

PrefT* 0.031% 65.3 754 72.1 552 68.6 79.5 62.9 68.0 68.4

DiReFT* 0.025% 70.2 86.6 82.5 95.0 852 86.3 73.5 84.4 83.0

LoReFT! 0.025% 72.0 85.6 82.1 94.8 85.3 86.9 73.0 85.0 83.1

NeuroAda 0.016% 73.0 86.4 82.2 94.5 84.0 87.6 74.5 86.0 83.5

LoRA* 0.826% 69.8 79.9 79.5 83.6 82.6 79.8 64.7 81.0 77.6

DoR A 0.427% 72.0 83.1 79.9 89.1 83.0 84.5 71.0 81.2 80.5

DoRA* 0.838% 71.8 83.7 76.0 89.1 82.6 83.7 68.2 824 79.7

Llama2 SMT? 0.840% 72.0 83.8 80.8 93.3 82.8 86.7 74.0 81.0 81.8
(7B) NeuroAda 0.404% 73.6 86.5 81.1 94.8 87.8 89.1 75.9 85.6 84.3
DiReFT* 0.031% 68.2 834 79.8 93.4 83.1 84.6 70.3 79.4 80.3

LoReFT* 0.031% 66.6 81.8 79.3 93.4 82.6 83.0 70.2 80.8 79.7

NeuroAda 0.020% 714 82.8 79.8 93.3 84.0 854 70.1 81.2 81.0

Arithmetic Reasoning
MulAri GSMS8K AddSub AQuA SinEq SVAMP MAWPS Avg.

GPT-3.5,758" - - 83.8 56.4 853 38.9 88.1 69.9 - 70.4
Series* 1.953% 92.8 333 80.0 15.0 83.5 52.3 - 59.5

Parallel” 3.542% 94.5 353 86.6 18.1 86.0 49.6 - 61.7

LoRA* 0.826% 95.0 37.5 83.3 18.9 84.4 52.1 - 61.9

SMT? 0.860% 915 342 85.8 23.6 84.6 53.6 - 62.2

SMT? 1.260% 93.4 35.6 86.8 24.2 853 54.8 - 63.4

LLaMA NeuroAda 0.404% 96.0 36.5 92.4 22.0 94.1 53.2 - 68.4
(7B) PrefT* 0.039% - 24.4 - 142 - 38.1 63.4 35.0
DiReFT* 0.031% — 20.5 — 21.3 - 39.9 68.1 37.5

LoReFT! 0.031% - 21.6 - 224 - 43.6 69.5 393

NeuroAda 0.020% — 30.3 - 22.8 — 48.9 71.7 4.9

Series* 1.586% 93.0 44.0 80.5 22.0 87.6 50.8 - 63.0

Parallel* 2.894% 94.3 433 83.0 20.5 89.6 55.7 - 64.4

LoRA* 0.670% 94.8 47.5 87.3 18.5 89.8 54.6 - 65.4

LLaMA NeuroAda 0.327% 97.5 43.9 92.2 21.7 93.9 61.4 - 71.4
(13B) PrefT* 0.031% - 311 - 15.7 - 41.4 66.8 38.8
DiReFT* 0.025% — 32.1 - 232 - 51.2 76.1 46.7

LoReFT! 0.025% — 355 - 234 — 54.6 81.8 48.8

NeuroAda 0.016% - 43.0 - 25.6 — 56.7 83.6 52.2

DiReFT* 0.031% - 26.4 - 23.6 - 48.4 71.8 42.6

LLaMA2  LoReFT* 0.031% - 26.2 - 18.5 - 46.7 76.9 42.1

(7B) NeuroAda 0.020% — 36.1 — 228 - 52.1 82.4 48.4
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2019c)) and decoder-only (LLaMA (Touvron et al., 2023b; Touvron, 2023)) models
up to 13B parameters. We benchmark against strong PEFT baselines, including Bit-
Fit (Zaken et al., 2021), prefix-tuning (Li and Liang, 2021), adapters (He et al., 2021b),
LoRA (Hu et al., 2022b), DoRA (Liu et al., 2024c), SMT (He et al., 2024), RED (Wu
et al., 2024b), DiReFT, and LoReFT (Wu et al., 2024c). Following LoReFT, all models
use torch.bfloat16 and run on a single NVIDIA A100 or H1I00 GPU.

Our comparison considers not only benchmark performance but also parameter
efficiency. To demonstrate the robustness of our method under varying parameter budget
constraints, we categorize all baseline methods into two groups based on the proportion
of trainable parameters: those with > 0.1% and those with < 0.1%. Note that these two
groups differ by orders of magnitude in the number of trainable parameters, allowing
us to assess performance across both relatively high and extremely low parameter
budgets. We then compare our NeuroAda against these baselines under comparable
levels of parameter efficiency to ensure a fair and meaningful evaluation. Specifically,
we select the top-1 and top-20 input connections per neuron for matching the budget of
the two groups, resulting in 0.016% and 0.327% trainable parameters on LLaMA-13B,
respectively.

5.5.1 Commonsense reasoning

Following the experimental protocol of (Hu et al., 2023a), we fine-tune LLaMA-7B/13B,
LLaMA2-7B, and LLaMA3-8B on COMMONSENSE170K, a composite dataset consist-
ing of eight commonsense reasoning tasks, as described in Appendix C.1. Then, We
evaluate each task on its test set and compare our results with baselines from Hu et al.
(2023a), as well as DoRA (Liu et al., 2024¢), DiReFT, LoReFT (Wu et al., 2024¢), and
SMT (He et al., 2024) under the same setting.

Hyperparameter tuning Inspired by Wu et al. (2024¢), we use COMMONSENSE 15K,
a subset of COMMONSENSE170K, to perform hyperparameter search. The search space
is detailed in Table 15. Specifically, we split COMMONSENSE15K into training and
validation sets, as described in Section 5.4. Our hyperparameter search is conducted
only on LLaMA-7B, and the best-performing configuration on the validation set is
subsequently applied to all other models, including LLaMA-7B/13B, LLaMA2-7B, and
LLaMA3-8B, for training on COMMONSENSE170K.

Results As shown in Table 5.2, our NeuroAda achieves state-of-the-art performance
under both parameter budget regimes (> 0.1% and < 0.1%). Notably, under the higher
parameter budget setting, NeuroAda outperforms all baselines by a considerable margin.
For example, its average accuracy surpasses the second-best baseline, SMT, by 4%. In
addition, NeuroAda remains effective even under the lower parameter budget setting,
consistently outperforming other baselines in this regime.
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5.5.2 Arithmetic reasoning

Following Hu et al. (2023a) and Wu et al. (2024c), we fine-tune LLaMA-7B/13B,
LLaMA2-7B, and LLaMA3-8B on MATH10K, a composite dataset comprising seven
arithmetic reasoning tasks, and evaluate each task separately. The dataset details are
provided in Appendix C.4.

Hyperparameter tuning Following Wu et al. (2024¢), we perform hyperparameter
search on the LLaMA-7B model using the GSM8K dataset, which is split into training
and validation sets as in Wu et al. (2024c¢). The best-performing configuration on the
validation set is then applied to all models, including LLaMA-7B/13B, LLaMA2-7B,
and LLaMA3-8B‘‘for training on the MATH10K dataset. The full hyperparameter
search space is provided in Table 14 in Appendix.

Results As shown in Table 5.2, NeuroAda consistently achieves the highest average
accuracy across all model sizes and parameter budgets. Under a higher parameter
budget (e.g., 0.327% on LLaMA-13B), it outperforms all baselines by a clear margin.
For example, NeuroAda outperforms the second-best baseline, LoRA, by 6%, while
using even fewer trainable parameters. Even under extremely low budgets (e.g., 0.020%
on LLaMAZ2-7B), NeuroAda remains competitive and surpassing other low-budget
baselines by up to 6% with even fewer trainable parameters.

5.5.3 Natural language understanding

We evaluate the effectiveness of our method on the GLUE benchmark (Wang et al.,
2019a), a widely used suite of sequence classification tasks for evaluating natural
language understanding (NLU), using the ROBERTa-base model. To ensure fair com-
parison, we follow the training, evaluation, and hyperparameter tuning procedures in
Wau et al. (2024c¢).

Results We report the result in table 12 in the Appendix due to the space limitation. It
shows NeuroAda achieves the highest average score across both moderate (0.2674%)
and extreme low-budget (0.0297%) regimes. Compared to LoRA (0.239%), it improves
the average GLUE score by +0.7. Under the extreme budget, it surpasses LoReFT
by +0.8, RED by +0.7, and DiReFT by +1.8, despite using fewer parameters. No-
tably, NeuroAda achieves the best score on 6 out of 8 tasks in the low-budget setting,
demonstrating its strong generalization even with minimal adaptation capacity.

5.6 Conclusion

This paper introduced NeuroAda, a featherlight and scalable fine-tuning framework
that activates each neuron’s potential through top-k magnitude-based weight selection.
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By inheriting the performance benefits of sparse tuning and the memory efficiency of
addition-based methods, NeuroAda avoids structural modifications, runtime masking,
and full-gradient computation. Its static selection of high-magnitude weights per neuron
enables task-agnostic, fine-grained adaptation with significantly reduced memory and
computational overhead. Empirical results across diverse reasoning and language un-
derstanding tasks show that NeuroAda surpasses strong adaptation baselines, achieving
robust generalization under an extremely few number of trainable parameters and tight
memory budgets.

5.7 Limitations

While NeuroAda demonstrates strong empirical performance across diverse tasks and
architectures, our current evaluation is limited to models up to 13 billion parameters
(LLaMA-13B). We anticipate that the benefits of our method may further amplify at
larger scales, but assessing its efficacy on models beyond 13B remains an important
direction for future work. Evaluating scalability and stability under extreme model sizes
is critical for deployment in real-world, high-capacity systems.






Chapter 6

Sparse Training for Gradient Conflict
Mitigation in MTL

Chapter Highlights In addition to single-task adaptation, we explore joint multi-
task learning (MTL) from the perspective of sparse training, which presents a greater
challenge compared to single-task learning. One of the common issues in multi-task
learning is the occurrence of gradient conflicts, which can lead to competition among
different tasks during joint training. This competition often results in improvements in
one task at the expense of deterioration in another. In this chapter, we systematically
investigate the occurrence of gradient conflicts across various methods and propose a
strategy to reduce such conflicts through sparse training. Our extensive experiments
demonstrate that sparse training effectively mitigates gradient conflicts and results in
superior performance. Furthermore, sparse training can be seamlessly integrated with
gradient manipulation techniques, thereby enhancing their effectiveness.

6.1 Introduction

Attaining the status of a generalist agent necessitates addressing multiple tasks within a
unified architecture, thereby emphasizing the significance of multi-task learning (MTL)
(Zhang and Yang, 2021), which involves concurrently acquiring proficiency in multiple
tasks and striving for superior overall performance compared to learning these tasks
separately.

The primary concern for MTL lies in the phenomenon of task competition when the
model is jointly trained by optimizing the average loss across all tasks. As a result, a
subset of tasks demonstrates superior performance while others remain sub-optimized
compared to their individual learning counterparts. One of the reasons behind it, from
an optimization perspective, is gradient conflict (GC) (Yu et al., 2020), wherein the
direction and magnitude of gradients between tasks differ significantly. This can result
in the average gradient biasing towards optimizing one task while providing relatively
smaller and sometimes even negative optimization for other tasks when updating the
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Figure 6.1: The average occurrence percentage of gradient conflict over epochs (all
epochs/last 50% epochs) during training on the SAM model with NYUv2 datasets is
evaluated using various methods, including joint training and gradient manipulation
techniques.

network (Liu et al., 2023a; Yu et al., 2020).

Numerous works have employed the gradient manipulation method to directly or
indirectly adjust the gradients of tasks to mitigate the issue of gradient conflict in
tasks. The former involves direct alteration of task gradients through manually designed
criteria when conflicts arise (Chen et al., 2020e; Liu et al., 2021a; Yu et al., 2020), while
the latter modifies task gradients by adjusting weights of loss for each task (Liu et al.,
2023a, 2021c; Navon et al., 2022; Sener and Koltun, 2018). Although these methods
effectively modify the gradients conflicting with each other, they do not decrease the
occurrence of conflicting gradients during training (Shi et al., 2023).

A simple approach to mitigate the occurrence of conflicting gradients is to convert
those layers in which gradient conflict frequently arises into task-specific layers, thereby
reducing the likelihood of gradient conflicts within the remaining shared layers (Shi
et al., 2023). However, this strategy introduces additional modules and disrupts the
internal structure of the original model, resulting in increased computational costs.
Furthermore, identifying frequently conflicting layers adds extra computational costs.
This becomes prohibitively expensive as the model size continues to expand, and thus
prompting our fundamental inquiry:

(Q) Is there a universally applicable approach to proactively mitigate the occurrence
of gradient conflicts as well as preserve architectural integrity for MTL?

To tackle this issue, we propose a novel perspective on mitigating gradient conflict
in MTL, termed Sparse Training (ST), wherein a subset of parameters from the original
model are selected to learn multiple tasks simultaneously while keeping the remaining
parameters frozen. The intuition behind this lies in the reduction of a high-dimensional
optimization problem to a low-dimensional one, which effectively alleviates the opti-
mization complexity. Moreover, restricting the gradient updates of individual tasks to
influence only a subset of parameters, rather than all parameters, effectively reduces
potential interference between tasks.

Our key findings demonstrate that ST can effectively reduce the incidence of gradi-
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ent conflict, particularly during the later stages of training, as illustrated in Figure 6.1.
A summary of our contributions is as follows: i) We provide a novel perspective, sparse
training, for proactively reducing the incidence of gradient conflict during training while
keeping the architecture intact; ii) Sparse training can be easily applied to improve
various gradient manipulation methods by reducing the occurrence the gradient conflict
over different datasets and architectures; iii) In addition to conventional research that
primarily focuses on smaller models (MTAN (Liu et al., 2019b) and SegNet (Badri-
narayanan et al., 2017)), we provide a comprehensive assessment of larger pre-trained
models, including SAM (Chen et al., 2023), ViT (Dosovitskiy et al., 2020b), Swin
Transformer (Liu et al., 2021d), using various gradient manipulation techniques, such
as PCGrad (Yu et al., 2020), CAGrad (Liu et al., 2021a), GradDrop (Chen et al., 2020e),
MGDA (Sener and Koltun, 2018), IMTL-G (Liu et al., 2021¢) and NashMTL (Navon
et al., 2022), to stimulate research in the field of sparse training for MTL. Our findings
demonstrate that as the model size increases, the issue of gradient conflict becomes more
exacerbated, as shown in Figure 6.5a, underscoring the significance of investigating the
gradient conflict in large-scale models.

6.2 Related work

Multi-task optimization for MTL The recent works (Chen et al., 2020e; Liu et al.,
2023a, 2021a,c; Navon et al., 2022; Sener and Koltun, 2018; Yu et al., 2020) have
achieved impressive results in addressing task imbalance issues in MTL by directly
or indirectly modifying conflicting task gradients. Specifically, some works (Chen
et al., 2020e; Liu et al., 2021a; Yu et al., 2020) propose to form a new update gradient
at each training step by directly altering gradients based on certain criteria. Other
works (Kendall et al., 2018; Liu et al., 2023a, 2021c; Navon et al., 2022; Sener and
Koltun, 2018) learn dynamic loss scale to balance different tasks during training, and
thus indirectly altering the gradient of tasks. However, these methods only address GC
when it occurs and do not proactively prevent it. In this paper, we sparsely train an MTL
model, effectively reducing the incidence of GC.

Training with subset of parameters Several methods have already been proposed
in single-task learning. Some of them select a subset of parameters based on a certain
pre-defined rule, such as gradient (Fu et al., 2023; Zhang et al., 2023d) and magnitude
of parameters (Lagunas et al., 2021). In addition to selecting parameters by hand design,
the works in (Mostafa and Wang, 2019; Sanh et al., 2020; Xu et al., 2021) automatically
select the subset of parameters through optimization. Although sparse training has
been extensively investigated in single-task learning, its application in MTL remains
relatively unexplored. Sun et al. (2020) and Calandriello et al. (2014) learn to share
information between tasks using a sparse model instead of sparse training. Differently,
we research the gradient conflict via the sparse training perspective.
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Figure 6.2: Visualization of gradients change for different methods. g; and g; are two
conflicting gradients, and the green arrow is the actual update vector. The process of
sparse training can be interpreted as performing an orthographic/coordinate projection
of conflicting gradients onto the subspace defined by the selected parameters, resulting
in better alignment of the projected gradients.

6.3 Approach

6.3.1 Background

Multi-task learning (MTL) aims to learn multiple tasks simultaneously within a

single model. Formally, given {7;}?:1 tasks (> 2) and a model © with parameters

© = (Osha, Osep)> Where Ogp, and ., are shared parameter with all tasks and task-specific
t T . . . .

parameters Og, = {Hsep} ., respectively, the commonly used optimization method for

MTL (referred to as Joint Train) is based on computing the average loss across all tasks

with equal weights:

0" = arg m@in L(O), (6.1)
1 T
c@y:a%m%g:TE:gwmﬁQ) (6.2)
t=1

where each task ¢ is associated with a corresponding loss function £ (6gpa, 0%,,)-

Gradient conflict (GC) However, optimizing all tasks by aggregating their losses
indiscriminately (Equation (6.2)) may lead to task competition, wherein certain tasks
demonstrate improvement while others exhibit a decline compared to training them
separately. From an optimization perspective, one of the reasons stems from conflicts in
gradients. Formally, the update of task 7; may potentially exert a detrimental impact on
another task 7;, namely:

AL; = L (Oar 0%) — L(Oshas 07 (6.3)

sep)ﬂ

Osna = Osna — 0, (6.4)
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where g; = Vo L;(Osha, éep) is the gradient of loss on task 7; with respect to 6, and
« is the learning rate. After the first-order Taylor approximation, Equation (6.3) can
be expressed as —ag; - g; + o(«a). Gradient conflict arises when g; - g; < 0, leading to
AL; > 0, indicating that task 7; has a detrimental impact on task 7;. Following (Yu
et al., 2020), we provide the definition of gradient conflict:

6.3.1. DEFINITION (Gradient Conflict). If cos ¢;; < 0, where ¢;; is the angle between
gradients of two tasks g; and g; (i # j), then g; and g, are deemed to exhibit gradient
conflict.

Gradient manipulation To alleviate the issue of gradient conflict, gradient manipu-
lation methods adjust conflicting gradients based on specific criteria and utilize these
modified gradients for model updating. Instead of updating the model on the average
gradient in Equation (6.1) and Equation (6.2):

T
1
Vesha£<@) = T Z Vgsha‘ct(eshaﬁ 926[))7 (6'5)
t=1

the gradients of all tasks in gradient manipulation methods are modified as follows:

T
1
veshaﬁgm(@) - T Z thQShaﬁt(eshay esep)g (6.6)
t=1
Wy = f (Vesha£17 e 7v95ha£T> (6'7)

where w; can be either pre-defined or dynamically computed for tasks via f and thus
achieve the aim of adjusting the task gradient (Chen et al., 2020e; Liu et al., 2023a,
2021a,c; Navon et al., 2022; Sener and Koltun, 2018; Yu et al., 2020). However, the
results of our experiment suggest that these methods can only modify gradients when
conflicts occur, rather than proactively reducing the occurrence of GC during training,
compared with Joint Train, as shown in Figure 6.1.

6.3.2 Sparse training for multi-task learning

In this study, we investigate the gradient conflict commonly observed in multi-task
learning from a novel perspective: sparse training, which selectively trains only a subset
of the model parameters as opposed to full parameter training. This perspective is based
on the intuition that by converting a high-dimensional space optimization problem into
a lower-dimensional one, the complexity of optimization can be effectively reduced.
Additionally, by limiting the impact of gradient updates to only a subset of parameters
for each task instead of all parameters, potential interference between tasks can be
mitigated.
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Sparse training (ST) entails the initial parameter selection from the original model,
and then updating only these parameters while keeping other parameters fixed during
model training. To clarify potential misunderstandings regarding ST—often confused
with sparse networks, where parameters are abandoned for model compression—we pro-
vide the following definition to ensure consistency and ease of understanding throughout
this paper.

6.3.2. DEFINITION (Sparse Training). Given a model © and a binary mask matrix M
indicating whether parameters in © are selected, where M & RI®IxI®I Ar. e {0,1}
and M,; = 0 (Vi # j), the model is updated by © = © — aMVL(0). We define this
training strategy as sparse training.

Typically, the model architecture in multi-task learning includes a shared encoder as
a feature extractor with task-specific decoders for multiple tasks. Therefore, sparse
training is used in the encoder, and full parameters training for the decoders. We detail
how the mask is computed in section Section 6.3.4. We now apply sparse training
for multi-task learning (Joint Train). The visualization of the gradient change can be
viewed in Figure 6.2 and the update with the reformulated gradient from Equation (6.5)
is as follows

T
- 1
Oana = Ouha = V0,1, £(0) = bana = M= > Vi L1Ouna, Oley). (6.8)

sep
t=1

Combination with gradient manipulation methods The application of sparse train-
ing can be seamlessly and effectively extended to improve various gradient manipulation
methods in MTL. The update with the reformulated gradient from Equation (6.6) is as
follows

T
R 1
esha = esha - VOShaLgm<@) = esha - M? ; wtvﬁsha[’t(eshaa ngp)- (69)

6.3.3 Theoretical analysis for sparse training

After introducing sparse training into MTL, the optimization objective in Equation (6.1)
can be formed:

O = argmin £(©), s.t. [[(I = M)(0sna - )2 =0, (6.10)

where 0 is the initialized original model for ¢ and I is identity matrix. According to

Lagrangian duality, Equation (6.10) can be reformulated as:
L :m(_)inmgxﬁ(@wwl—M)(esha—egfga)u? (6.11)
This can be transformed to optimize the upper bound L of regularized problem:

L, = m@inc(@) + [[(I — M) (Ogpa — 05 )|1* < L. (6.12)

sha
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Please see the supplemental material for proof. Fu et al. (2023) demonstrates that Equa-
tion (6.12) has better stability and smaller generalization bound than only optimizing
Equation (6.1), resulting in better performance.

6.3.4 Parameter selection per neuron (PSN)

Several promising sparse training methods exist for single-task learning, but they
are either time-consuming, requiring mask updates at each iteration (Mostafa and
Wang, 2019; Sanh et al., 2020; Xu et al., 2021), or memory-intensive due to gradient
calculations for all parameters (Fu et al., 2023; Zhang et al., 2023d). In MTL, where
multiple tasks are trained simultaneously, time efficiency is crucial. Thus, we adopt a
one-time selection method, choosing parameters before training and keeping the mask
fixed throughout. We consider the following two aspects for selection, magnitude of the
parameter and involvement of all neurons in the network.

The magnitude of parameters Several studies have focused on model compression
through the elimination of parameters with lower magnitudes (Frankle and Carbin,
2018; Han et al., 2015b). This highlights the significance of parameters with larger
magnitudes in neural networks, which is consistent with our experimental findings (See
Figure 6.5¢). The intuition behind this phenomenon lies in the fact that parameters with
larger magnitudes exert a greater influence on altering neuron activation states through
the activation function, wherein a neuron becomes active once the input surpasses a
predefined threshold. Therefore, we exclusively select parameters with the highest
magnitude for training multiple tasks.

The involvement of all neurons A simple idea is to select a certain proportion of
parameters with the highest magnitude from the neural network (NN), but this may
prevent some neurons from being engaged during training and hinder effective model
training due to the dependence of the NN state on neuron activation. Motivated by
studies highlighting distinct roles for different components in NN (Fan et al., 2020;
Wang et al., 2021a; Zhang et al., 2023d), we posit that engaging all neurons is crucial for
effective model training. The rationale is that each neuron within the network possesses
the inherent capability to finely adjust its activation state, thereby effectively adapting
the overall NN state to the tasks, especially for learning multiple tasks simultaneously.
Our experiments further substantiate this assertion, as shown in Figure 6.5c.

PSN By integrating the two aspects, we select the top-K connections
(weight/parameters) with the highest magnitude among all input connections for each
neuron in the network (Please see Figure 6.3 for top-1 example). This approach fa-
cilitates the training process for fitting tasks by ensuring that every neuron possesses
activation potential, while parameters with higher magnitudes facilitate easier activation
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o O

Figure 6.3: PSN. Top-1 highest-magnitude parameter among all input connections of
each neuron is selected.

of neurons. In this paper, sparse training refers to using this method to select parameters
and training the selected parameter, unless otherwise specified.

6.4 Experiments

Our experiments are conducted on comprehensive MTL benchmarks to evaluate the
effectiveness of sparse training. First, we investigate if sparse training reduces gradient
conflict. Subsequently, we examine its impact on performance across various MTL
setups. The more details of the experiment are provided in Appendix D.4.

6.4.1 EXPERIMENTAL SETUP

Dateset Our MTL datasets are categorized into three groups: i) Dense prediction tasks:
NYUv2 (Couprie et al., 2013): An indoor scene understanding dataset containing 1449
RGBD images with per-pixel labels across 13 classes, including semantic segmentation,
depth estimation, and surface normal prediction. CityScapes (Cordsts et al., 2016): 5000
street-view RGBD images with per-pixel annotations for 7-class semantic segmentation
and depth estimation. ii) Multiple binary-classification tasks: CelebA (Liu et al., 2015):
200,000 facial images of 10,000 celebrities, each with 40 binary attributes for facial
features. We use the first 10 attributes for 10 binary classification tasks due to limited
computation. iii) Multiple multi-class classification tasks: VTAB (Zhai et al., 2019):
Containing 24 image understanding tasks with 1000 training examples per task. We
use four tasks from it to create two multi-task benchmarks: Clevr: Simple 3D shapes
with counting and depth prediction tasks. SmallNORB: Arttificial objects with object
azimuth and camera elevation prediction tasks.
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Baseline We evaluate our approach using various baselines including 1) single-task
learning (STL): Each task is trained independently; ii) Joint Train: Training all tasks
with average task loss; and 6 gradient manipulation methods including 3 direct and
3 indirect modification techniques. The former includes: iii) PCGrad: Projecting
each task gradient onto the normal plane of other tasks (Yu et al., 2020); iv) CAGrad:
Enhancing the optimization of average loss by explicitly regulating the minimum
decrease across tasks (Liu et al., 2021a); and v) GradDrop: Stochastically dropping
specific dimensions of the gradients based on their level of conflict. The latter includes
vi) MGDA: Identifying the same descent direction for each task (Sener and Koltun,
2018); vii) IMTL-G: Determining the update direction by ensuring equal projections on
gradients (Liu et al., 2021c¢); viii) NashMTL: Treating MTL as a bargaining game to
optimize all tasks (Navon et al., 2022).

Model We experiment with several architectures including: i) CNN-based: MTAN
(Liu et al., 2019b) incorporates an attention mechanism into the SegNet (Badrinarayanan
et al., 2017). ii) Transformer-based. SAM (Kirillov et al., 2023b) is a strong visual
foundation model for segmentation. ViT-B/16 (Dosovitskiy et al., 2020b) and Swin
Transformer (Liu et al., 2021d) are vision classification models pre-trained on Ima-
geNet21K (Deng et al., 2009). All experiments were conducted on pre-trained SAM,
ViT and Swin (except for randomly initialized MTAN), unless otherwise specified.

Evaluation i) Relative task drop (Am%). Following (Maninis et al., 2019), we
evaluate the MTL overall performance for a baseline b by computing the average
performance drop against STL s over {7;}., tasks and K7, metrics for each 7;:
Am% = (3, KLTt ST (= 1) (MF — MF)/M¥) x 100 where M, M* are the
value of metrics k evaluated with b and s respectively. &, = 1 if the MP* is higher
the better and O otherwise. ii) Average incidence of GC (p%). We evaluate the ex-
tent of gradient conflict for a baseline by calculating the average incidence of GC
over epochs during training. Given 7' tasks, £ epochs, and I iterations per epoch,
p% = o7 25:1 Zfil(Ngc/Na”) x 100, where N, and N, represent the number of
occurrence of gradient conflicts between two tasks for all task combinations (g) and
the number of the combinations in each iteration during training, respectively.

6.4.2 Incidence of gradient conflict

We train a MTL model using the Joint Train and 6 state-of-the-art gradient manipulation
techniques including PCGrad, CAGrad, GradDrop, MGDA, IMTL-G and NashMTL
and then introduce our sparse training strategy to these methods. Throughout the
training process, we record instances of GC between any two tasks among all tasks
for each training iteration and then calculate the average incidence of GC both over all
epochs and the last 50% epochs. The observations of the SAM model on the NYU-v2
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dataset are provided below. Similar results on other datasets and models are shown in
Appendix D.6, Appendix D.6, Appendix D.6 and Appendix D.6.

Gradient manipulation methods cannot effectively reduce the incidence of gradient
conflict The gradient manipulation methods (Chen et al., 2020e; Liu et al., 2023a,
2021a,c; Navon et al., 2022; Sener and Koltun, 2018; Yu et al., 2020) aim to modify
conflicting gradients that are prevalent during the joint training of MTL. As shown in
Table 6.1, the average incidence of GC using Joint train is 31.89% across all training
epochs and 35.85% over the last 50% epochs. The incidence of GC cannot be effectively
reduced by any gradient magnitude methods compared with the Joint train, as shown
in Figure 6.1 and Table 6.1. The reason is that these methods can only make the
conflicting gradients not conflict when the GC occurs, rather than proactively prevent
the occurrence of GC. The incidence of GC is even exacerbated by these methods,
particularly MGDA showing a significant increase of 8.55% compared to Joint Train.
Notably, these findings are consistent with (Shi et al., 2023), where they provide the
distribution of the angles between the two task gradients.

Sparse training effectively decreases the occurrence of gradient conflict As shown
in Table 6.1, after combining sparse training with all methods, including Joint Train and
gradient manipulation methods, the average incidence of gradient conflict is effectively
reduced over all epochs. For example, ST in Joint Train reduced the incidence over
all epochs by 5.56%. The phenomenon of gradient conflict reduction is consistently
observed in nearly every training epoch, as illustrated in Figure 6.4, which further
demonstrates the effectiveness of ST for decreasing gradient conflict. In addition, all
methods with ST exhibit a greater improvement in the average incidence of gradient
conflict during the last 50% epochs compared to all epochs, which implies a greater
level of prevention of gradient conflict with the progress of sparse training. For instance
of NashMTL, there is a threefold improvement in the average incidence of gradient
conflict during the last 50% epochs compared to all epochs.

6.4.3 Performance on diverse benchmarks

It is natural to investigate whether reducing gradient conflict during training through
sparsity can enhance performance on common benchmarks. In this section, we present
diverse benchmarks to demonstrate the effectiveness of ST.

Sparse training improves the performance for all state-of-the-art methods The
performance of Joint Train and all gradient manipulation methods is consistently im-
proved by sparse training, as demonstrated in Table 6.2 for NYU-v2 benchmarks. Specif-
ically, sparse training not only enhances overall task performance but also improves
individual task performance for the majority of methods. For example, in Table 6.2,
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Average incidence of GC (%)

Methods
All epochs  Last 50% epochs
Joint Train  31.89 35.85
w/ ST 26.33 (5.56) 29.14 (6.71)
PCGrad  33.69 38.70
w/ ST 30.33 (3.36) 33.46 (5.24)
CAGrad 34.26 39.97
w/ ST 31.50 (2.76) 34.68 (5.29)
GradDrop 33.56 38.45
w/ ST 30.95 (2.61) 33.93 (4.52)
MGDA  40.44 44.77
w/ ST 40.05 (0.39) 42.34(2.43)
IMTL-G  32.15 37.13
w/ ST 28.45 (3.70) 31.34(5.79)
NashMTL 36.67 39.58
w/ ST 35.51 (1.16) 35.48 (4.10)

Table 6.1: Average incidence of GC between tasks for different methods. We compute
the average incidence of GC over all epochs and the last 50% epochs during training
SAM on NYUv2. The improvement by sparse training is provided in (e).

Joint Train demonstrates improvements across all individual tasks through sparse train-
ing. Similarly, as shown in Table 6.3, all methods exhibit notable improvements by
sparse training on CelebA, Clevr, SmalINORB and CityScapes benchmarks.

Effectiveness on both pre-trained and randomly initialized models Our study
primarily focuses on the sparse training for large pre-trained models, because leveraging
prior knowledge from these models can be beneficial for MTL and our experimental
results demonstrate that larger models exhibit a more severe gradient conflict, as shown
in Figure 6.5a. However, in order to ensure a fair comparison with related works
that manipulate gradients in small and randomly initialized models, we also conduct
experiments under the same setting as theirs to further demonstrate the effectiveness of
sparse training. As shown in Table 6.3, we observe that even for the small randomly
initialized models, the performance of joint training and all gradient manipulation
methods is improved by sparse training. Please see Table 20 and Table 25 for the
detailed results in the Appendix.

Generalization on different architectures and MTL tasks To evaluate the gen-
eralization across diverse architectures and MTL tasks, we conducted experiments
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Figure 6.4: The incidence of GC between tasks during training SAM on NYUv2
dataset. The top and bottom figures are Joint Train and PCGrad respectively. Please see
Figure 14 in Appendix D.6 for more results on other gradient manipulation methods.

on both CNN-based models and transformer-based models with varying visual MTL
capabilities. Specifically, our MTL tasks encompassed visual classification (CelebA,
Clevr and SmallNORB) and visual dense prediction (NYU-v2 and CityScapes). For
the former, we utilized Swin Transformer and ViT as backbones for multiple binary
classification tasks (Table 6.3) and two multi-class classification tasks (Table 6.3, and
Table 24 in Appendix), respectively. The latter involved predicting dense masks for
each task, necessitating an encoder-decoder structure to generate corresponding masks.
We explored two types of structures: a symmetrical encoder-decoder structure with a
CNN-based model, e.g. MTAN (Table 6.3, and Tables 20 and 25 in Appendix) and an
asymmetric structure with a heavy-weight encoder and a light-weight decoder using a
transformer-based model, e.g. SAM (Table 6.2 in Appendix). As shown in these tables,
the efficacy of sparse training in improving all baselines across various architectures
and MTL tasks underscores its robust generalization capability.

6.4.4 Ablation study

The larger the model, the more severe gradient conflicts. In this paper, we focus
more on investigating the gradient conflict in the pre-trained large models as larger
models demonstrated a more severe phenomenon of gradient conflict. This can be
observed in Figure 6.5a, where Swin/Tiny demonstrates significantly less gradient
conflict compared to Swin/Base and Swin/Large. It is worth noting that although larger
models tend to experience more severe gradient conflicts, this does not necessarily lead
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Segmentation Depth Surface Normal
Methods . o o Am% |
mloU+ Pix Acct AbsErr| RelErr| ‘ngleDistance| Within £°
Mean Median 11.25 22.5 30
STL 58.62 79.20 0.3810 0.1553  19.29 12.64  46.37 72.19 80.73 —

Joint Train ~ 59.09 79.61 0.3348 0.1360  22.34 16.33 3546 64.02 7520  6.763
w/ ST 60.03 79.96 0.3320 0.1353  21.98 1592  36.69 64.92 75.82 5.314

PCGrad 59.18 80.12 0.3258 0.1323  21.81 15.72  36.92 6549 76.26  4.584
w/ ST 59.37 80.33 0.3272 0.1330  21.53 15.39  38.02 66.09 76.71  3.741

CAGrad 99.78 80.16 0.3215 0.1305 19.92 13.40  43.87 7047 79.59 —1.816
w/ ST 60.33 80.20 0.3232 0.1306  19.74 13.20 4442 71.04 80.02 —2.423

GradDrop ~ 59.02 79.80 0.3283 0.1321  22.03 1595  36.42 6490 75.79  5.323
w/ ST 59.74 80.32 0.3278 0.1322 21.81 15.63  37.40 6550 76.15  4.329

MGDA 37.43 67.58 0.4427 0.1810 19.23  12.61 46.43 72.35 80.87 9.162
w/ ST 41.60 69.96 0.4414 0.1778 19.22 12.61 4644 7229 80.80 7.791

IMTL-G 60.64 80.29 0.3324 0.1348  19.85 13.37 4392 70.78 79.9 —1.537
w/ ST 60.35 80.18 0.3347 0.1350  19.65 13.15  44.66 71.25 80.20 —1.955

NashMTL  59.42 80.20 0.3303 0.1341  19.90 13.39 4386 70.65 79.72 —1.295
w/ ST 59.36 79.98 0.3278 0.1323  19.63 13.02  45.06 71.31 80.15 —2.384

Table 6.2: The test performance on NYU-v2 dataset training on SAM model. The green
cell color indicates that sparse training improves the performance of joint training or
gradient manipulation methods. The best result is highlighted in bold.

to inferior performance compared to smaller models with milder gradient conflicts.
This discrepancy can be attributed to differences in model capacity and the prior
knowledge embedded through pre-training. Nevertheless, this observation underscores
the importance of exploring methods to mitigate gradient conflicts in larger models.
Within the same model architecture and size, reducing gradient conflicts has been shown
to improve performance, as evidenced by works such as (Liu et al., 2021a; Yu et al.,
2020). Addressing severe gradient conflicts in larger models may thus unlock their full
potential, enabling better utilization of their capacity and capabilities.

Effortless search for the number of trainable parameters. We explore the effect of
trainable parameter numbers for ST. The results in Figure 6.5b show that the pre-trained
model (SAM) and the randomly initialized model (MTAN) have different optimal
trainable parameter numbers. MTAN requires ~60% of the parameters, while SAM
needs only ~30%, leveraging information from the pre-trained model. In our paper,
most of the experiments use these proportions for ST and achieve better results (please
see Table 17 in Appendix D.4 for the detailed number). Additionally, ST offers a
wide range of trainable parameter options that outperform Joint Train, which implies
that hyperparameter search for the number of trainable parameters becomes effortless.
Specifically, both models have a ~40% probability of yielding superior outcomes.
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CelebA Clevr SmallNORB NYU-v2 CityScapes
Methods AmY% | Counting  Depth

(F) _ (Top11) (Top17)

Am% | AmY% | Am% | Am% |

STL — 58.64 57.68 — — — —
Joint Train 3.12 54.86 54.68 5.84 10.70 5.59 26.87
w/ ST 2.03 61.80 54.81 —0.21 10.11 2.49 17.48
PCGrad 1.70 49.01 53.39 11.93 9.99 3.97 19.96
w/ ST 1.42 59.01 55.29 1.75 9.71 1.98 19.22
CAGrad 1.96 49.33 53.67 11.41 10.50 0.20 16.26
w/ ST 1.23 58.51 55.27 2.19 10.22 -2.76 8.88
GradDrop 1.18 49.02 52.88 12.36 11.73 3.58 20.34
w/ ST 0.83 58.87 94.07 2.94 10.76 1.38 17.45
MGDA —0.41 49.56 55.97 9.22 10.15 1.38 6.91
w/ ST -1.08 58.23 56.91 1.02 9.79 -3.18 3.17
IMTL-G 0.97 54.99 54.51 5.87 10.19 -0.76 10.65
w/ ST 0.19 61.05 56.73 -1.24 10.15 -3.18 7.10
NashMTL 3.59 47.04 93.07 13.89 10.84 -4.04 6.68
w/ ST 3.22 58.61 54.97 2.37 9.57 -5.11 3.99

Table 6.3: The test performance on CelebA, Clevr, SmalINORB, NYU-v2 and
CityScapes dataset. CelebA is trained on Swin Transformer. Clevr and SmalINORB
are trained on ViT. NYU-v2 and CityScapes are trained on MTAN. We only present
Am% for limited space. Please see Table 20, Table 25 and Table 24 for detailed results
in supplemental materials. The green cell color indicates that sparse training improves
the performance of joint training or gradient manipulation methods. The best result is
highlighted in bold.

Effectiveness for both higher magnitude and neural-level selection. We investigate
various parameter selection approaches: Random: Randomly selecting parameters
from the network; Global: Choosing parameters with the highest magnitude from the
whole network instead of the input connections of each neuron in the network (Ours);
Reverse: Selecting parameters with the lowest magnitude among input connections of
each neuron. For a fair comparison, we maintain the same selected number. The results
in Figure 6.5¢ indicate that higher magnitude values are superior to lower ones (Ours >
Reverse). Furthermore, it is crucial to evenly select parameters from the entire network
(Ours > Random > Global), as Ours ensure that the parameters of input connection for
each neuron are selected, and Random guarantees an equal proportion of parameters
is selected in each block of the network, whereas this is not the case for Global (see
Figure 13 for detailed statistics in Appendix).
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Figure 6.5: Ablation study for Joint Train with NYU-v2 dataset. (a) The average
incidence of GC during joint training on different sizes of Swin transformers. Please
see the numerical statics for all epochs in Table 21 in Appendix D.6. (b) The different
number of trainable parameters for MTAN and SAM models. (c) Different sparse
methods training on SAM. Metrics for all tasks are min-max normalized. Please see
Table 18 for detailed results in Appendix D.6.

6.5 Conclusion

In this paper, the occurrence of gradient conflict in multi-task learning is extensively
investigated from a novel perspective: sparse training. Extensive experiments demon-
strate that sparse training transferring high-dimensional space into low-dimensional
space effectively reduces the incidence of gradient conflict during training while pre-
serving the integrity of the original model. Furthermore, combining sparse training with
other gradient manipulation methods significantly improves performance for multi-task
learning.






Chapter 7

Cross-modal Information Flow in Multimodal
LLMs

Chapter Highlights The recent advancements in auto-regressive multimodal large
language models (MLLMs) have demonstrated promising progress for vision-language
tasks. However, little is currently known about the inner working mechanism of MLLMs
and how linguistic and visual information interact within these models. In this chapter,
we aim to fill this gap by examining the information flow between different modalities—
language and vision—in MLLMSs. Specifically, given an image-question pair as input,
we investigate where in the model and how the visual and linguistic information are
combined to generate the final prediction. Through experiments conducted with a series
of models from the LLaVA series, we gain a new and comprehensive understanding of
the spatial and functional aspects of image and language processing within MLLMs.
This perspective not only facilitate future research into multimodal information localiza-
tion and editing but also provides valuable insights for the development of more general
and robust multimodal models in the future.

7.1 Introduction

Multimodal large language models (MLLMs) (Bai et al., 2023a; Dai et al., 2023; Li et al.,
2023a; Liu et al., 2024a,b) have demonstrated notable performance across a wide range
of vision-language tasks, which is largely attributed to the combination of powerful
auto-regressive large language models (Touvron et al., 2023a; Zhang et al., 2022b;
Zheng et al., 2023) and visual encoders (Dosovitskiy et al., 2020a; Fang et al., 2023;
Radford et al., 2021b). Specifically, LLMs generate responses based on both visual and
linguistic inputs where visual representations extracted from an image encoder precede
the word embeddings in the input sequence. Despite the successful performance and
wide applicability of MLLMs, there is still a lack of understanding of their internal
working mechanisms at play when solving multimodal tasks. Acquiring deeper insights
into these mechanisms could not only enhance the interpretability and transparency
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Figure 7.1: Illustration of the internal mechanism of MLLMs when solving multimodal
tasks. From bottom to top layers, the model first propagates general visual information
from the whole image into the linguistic hidden representation; next, selected visual
information relevant to answering the question is transferred to the linguistic represen-
tation; finally, the integrated multimodal information within the hidden representation
of the question flows to last position facilitating the final prediction. In addition, the
answers are initially generated in lowercase form and then converted to uppercase for
the first letter.

(Nanda et al., 2023; Olah, 2024) of these models but also pave the way for developing
more efficient and robust models for multimodal interactions.

Some initial studies have begun to explore the internal states corresponding to
external behaviors of MLLMs, focusing on specific aspects such as information storage
in the model’s parameters (Basu et al., 2024), reflecting undesirable content generation
through logit distributions of the generated tokens (Zhao et al., 2024), the localiza-
tion and evolution of object-related visual information (Neo et al., 2024; Palit et al.;
Schwettmann et al., 2023), the localization of safety mechanism (Xu et al., 2024) and
the reduction of redundant visual tokens (Zhang et al., 2024a). However, the informa-
tion flow between the two modalities within MLLMs remains poorly-understood, thus
prompting our main question: Where in the model and how is visual and linguistic in-
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formation integrated within the auto-regressive MLLMs to generate the final prediction
in vision-language tasks?

To address this question, we investigate the interaction of different modalities by
locating and analyzing the information flow (Elhage et al., 2021) between them, across
different layers. Our focus is on the task of visual question answering (VQA), a popular
multimodal task, where the answer is generated by MLLMs based on the input image
and the corresponding question. Specifically, we aim to reverse engineer the information
flow between the two modalities at inference time, by selectively inhibiting specific
attention patterns between tokens corresponding to visual and linguistic inputs and by
observing the resulting changes in the performance of the answer prediction.

In modern auto-regressive MLLMs, which employ Transformer decoder-only ar-
chitecture (Vaswani et al., 2017b), the attention layer is the sole module enabling
communication between hidden representations corresponding to different positions
of the input. To inhibit cross-modal information flow, we therefore adopt an attention
knockout approach, proposed by Geva et al. (2023). We use it to block attention edges
connecting different types of hidden representations (e.g. image and question) at specific
transformer layers.

We apply this method to a range of MLLMs from the LLaVA series, including
LLaVA-1.5-7b, LLaVA-1.5-13b (Liu et al., 2024a), LLaVA-v1.6-Vicuna-7b (Liu et al.,
2024b) and Llama3-LLaVA-NEXT-8b (Imm, 2024) and a number of diverse question
types in VQA, as shown in Table 7.1. Our experiments focus on the following research
questions: (1) How is the (more general) visual information from the whole image fused
with the linguistic information in the question? (2) How is the more targeted visual
information (i.e. specific image regions directly relevant to answering the question)
integrated with linguistic information from the question? and (3) In what ways do the
linguistic and visual components of the input contribute to the final answer prediction?
To answer these questions we conduct a series of experiments, blocking information
flow between (1) the input positions corresponding to the whole image to the different
parts of the question; (2) the input positions corresponding to image regions containing
objects relevant to answering the question, to the question; (3) the input positions
corresponding to the image and the question to the final prediction, across different
layers of the MLLM.

Our results reveal that in MLLMs, visual information undergoes a two-stage inte-
gration into the language representation within the lower-to-middle layers: first in a
comprehensive manner, and subsequently in a more targeted fashion. This integrated
multimodal representation is then propagated to the hidden representations in the subse-
quent layers, ultimately reaching the last position for generating an accurate response.
The visualization of this mechanism is shown in Figure 7.1. To the best of our knowl-
edge, ours is the first paper to elucidate the information flow between the two modalities
in auto-regressive MLLMSs. It thus contributes to enhancing the transparency of these
models and provides novel and valuable insights for their development.
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7.2 Related work

MLLMs multimodal large language models have demonstrated remarkable perfor-
mance across a wide range of vision-language tasks, which is largely attributed to the
development of the auto-regressive large language models. The representative MLLMs
(Bai et al., 2023a; Dai et al., 2023; Li et al., 2023a, 2024; Liu et al., 2024a,b, 2023b)
consist of an image encoder (Dosovitskiy et al., 2020a; Fang et al., 2023; Radford et al.,
2021b) and a powerful decoder-only large language model (Touvron et al., 2023a; Zhang
et al., 2022b; Zheng et al., 2023). The visual and linguistic information are integrated
in original LLM. In this paper, we will investigate this inner working mechanism of
multimodal information processing into these models.

Interpretability of multimodal models The interpretability of multimodal models
has attracted a great deal of attention in the research community. Works in (Cao et al.,
2020; Frank et al., 2021a) treat the model as a black box, analyzing input—output
relationships to interpret the behavior of models, such as comparing the importance
of different modalities (Cao et al., 2020) and the different modalities’ contribution
to visual or textual tasks (Frank et al., 2021a). The works from (Aflalo et al., 2022;
Chefer et al., 2021a; Lyu et al., 2022; Stan et al., 2024) aim to explain predictions by
tracing outputs to specific input contributions for a single sample, including through
merging the attention scores (Aflalo et al., 2022; Stan et al., 2024), using gradient-based
methods (Chefer et al., 2021a) or model disentanglement (Lyu et al., 2022). Additionally,
some works (Dahlgren Lindstrom et al., 2020; Hendricks and Nematzadeh, 2021; Salin
et al., 2022) adopt a top-down approach, probing learned representations to uncover
high-level concepts, such as visual-semantics (Dahlgren Lindstrom et al., 2020), verb
understanding (Hendricks and Nematzadeh, 2021), shape and size (Salin et al., 2022).
In contrast, our work focuses on the model‘‘s internal processing mechanisms when
solving multimodal tasks.

Mechanistic interpretability of MLLMs Mechanistic interpretability (Nanda et al.,
2023; Olah, 2024) is an emerging research area in NLP, aiming to reverse-engineer
detailed computations within neural networks. While it has gained attraction in NLP,
research in the multimodal domain remains limited. Palit et al. introduced a causal
tracing tool for image-conditioned text generation on BLIP (Li et al.), marking one
of the few early efforts in this area. Several initial studies have started to explore
the internal states of MLLMs by linking external behaviours to specific mechanisms,
such as information storage in model parameters (Basu et al., 2024), undesirable
content generation reflected in the logit distributions of the first generated token (Zhao
et al., 2024), localization and evolution of object-related visual information (Neo et al.,
2024; Palit et al.; Schwettmann et al., 2023), safety mechanism localization (Xu et al.,
2024), and reducing redundant visual tokens (Zhang et al., 2024a). However, research
offering a comprehensive understanding of the internal mechanisms behind multimodal
information integration in MLLMs is still lacking. This paper makes an important first
step towards filling this gap.
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7.3 Tracing information flow in MLLMs

The focus of this paper is on auto-regressive multimodal large language models, which
consist of an image encoder and a decoder-only language model, as shown in Figure 7.2.
The image encoder transforms images into representations that the language model can
take as input, while the language model integrates these visual cues with any provided
text, generating responses one word at a time. Often, these components are initialized
from a pre-trained image encoder (e.g. CLIP-ViT-L-336px (Radford et al., 2021b) ) and
a large language model (e.g. Llama 2 (Touvron et al., 2023a)) respectively. Since the
interaction between modalities only occurs in the decoder-only transformer, our analysis
centers around it and we refer to it as MLLM for brevity unless otherwise specified.

7.3.1 Background: MLLMs

Input The input to an MLLM typically comprises image and text features, with
the image features being initially extracted from an image encoder and the text being
encoded through word embeddings. Formally, an image x is evenly split into fixed-
size patches and encoded by an image encoder to obtain /Ny, visual patch features
V = [vz]f\; Y,V € R¢. Similarly, the text ¢, consisting of N tokens, is embedded into
representations through a lookup table of word embeddings, resulting in the text input
T = [t;] Z]\iTl, t; € R By concatenation of V' and T, the multimodal input sequence
I=[v,...vn,,t...tn,] € RV*? where N = Ny + Nr, is fed into MLLM.

Hidden representation The input sequence is fed into the MLLM, where the hidden
representation at each token position is encoded across L transformer layers. Each layer
primarily consists of two modules: a masked multi-head attention (MHAT) followed by
a fully connected feed-forward network (FFN) (Vaswani et al., 2017b). For conciseness,
we have excluded the bias terms and layer normalization, as they are not crucial for
our analysis. Formally, the hidden representation h¢ € R? in the position i of the input
sequence at layer ¢ can be expressed as

h! =hi"' +a + ff, (7.1)

where af € R? and f/ € R? are the outputs of MHAT and FFN modules at layer
¢, respectively. h{ represents a vector in the input I with position of i. All hidden

representations at layer ¢ corresponding to the whole input I can be denoted by H* =
[R]i, € RV

MHAT The masked multi-head attention (MHAT) module in each transformer layer ¢
contains four projection matrixes: Wé, Wi, W W, € R4, For the multi-head at-
tention, the input H*~" is first projected to query,key and value: Q° = H"'W), K' =
H'W, V! = H'W{. Then the projected query, key and value matrices are
evenly split along the columns to H different heads: {Q“/}/L, {K“/}IL, {VH}IL e
RN, respectively. After splitting W} into {Wé’j }szl € R, we follow works
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Figure 7.2: The typical architecture of multimodal large language model. It consists of
an image encoder and a decoder-only large language model in which the multimodal
information is integrated. We omitted the projection matrix for the visual patch feature
as it is nonessential for our analysis.

in (Dar et al., 2022; Elhage et al., 2021; Geva et al., 2023) to represent the output of
MHAT A’ = [a!]¥, € RV*? at layer / as the sum of the output from different heads

H
A=) AYVEIW (7.2)
j=1
' 0,5 ( TG\ T '
A — softmax | CIET L e (7.3)
Vd/H

where M/ is a strictly upper triangular mask for A%/ for j-th head at layer ¢. For an
auto-regressive transformer model, M%7 is used to guarantee that every position of
the input sequence cannot attend to succeeding positions and attends to all preceding
positions. Therefore, for the element M ftj with the coordinate (s, ) in M%7,

; —oo ift > s,
M5 = , (7.4)
’ 0 otherwise.

FFN FFN computes the output representation through
fi =W o(Wh(al+h™)) (7.5)

where W/ € R4 and W5 € R%>*4 are projection matrices with inner-dimensionality
dg, and o is a nonlinear activation function.
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Output The hidden representation h; corresponding to the last position N of the
input sequence at final layer L is projected by an unembedding matrix E € RVI*¢ and
finally the probability distribution over all words in the vocabulary V is computed by

Py = softmax (Eh}), (7.6)

where the word with the highest probability in Py is the final prediction.

7.3.2 Attention knockout

In this paper, we mainly investigate the interaction between different modalities by locat-
ing and analyzing the information flow between them. We adopt a reverse-engineering
approach to trace the information flow. Specifically, by intentionally blocking specific
connections between different components in the computation process, we trace the
information flow within them by observing changes in the probability of final prediction.

In MLLMs, the attention module (MHAT) is the only module, which has the function
of communication between different types of hidden representation corresponding to
different positions in the input sequence. Therefore, we intentionally block the attention
edges between hidden representations at different token positions (termed as attention
knockout) to trace the information flow between them. We take inspiration from the
work of (Geva et al., 2023), where the authors use attention knockout to assess how
the factual information is extracted from a single-modality LLLM by evaluating the
contribution of certain words in a sentence to last-position prediction. We extend this
method to multimodal research by not only examining the contribution of each modality
to the last-position prediction but also the transfer of information between different
modalities.

Intuitively, when blocking the attention edge connecting two hidden representa-
tions corresponding to different positions of the input sequence leads to a significant
deterioration in model performance, it suggests that there exists functionally impor-
tant information transfer between these two representations. Therefore, we locate the
information flow between different hidden representations corresponding to different
positions of the input sequence, such as visual inputs, linguistic inputs, and the last
position in the input sequence (the position of answer prediction), by blocking the
attention edge between them in the MHAT module and observing the resulting decline
in performance as compared to the original model with an intact attention pattern.

Formally, in order to prevent information flow from the hidden representations
h! with position s in the source set S (e.g. all positions of visual tokens in the input
sequence) to the hidden representations h! with position ¢ in the target set T (e.g. all
positions of linguistic tokens in the input sequence) at a specific layer ¢ < L, we set the
corresponding element M ft] in M*J to —oo and the updated Equation (7.4) is

(7.7)

st T

¢j )—oo if(t>s)or(sinSandtinT),
0 otherwise.
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Structural Semantic Open/ Image
type Type Binary Example
ChooseAttr | Choose Attribute Open

Name Question Example Answer Num.

What was used to make the door, wood or metal? Wood 1000
ChooseCat | Choose Category Open Which piece of furniture is striated, bed or door? Bed 1000
ChooseRel | Choose Relation Open Is the door to the right or to the left of the bed?  Right 964

CompareAttr| Compare Attribute Open What is common to the bike and the dog? Color 570
LogicalObj | Logical Object Binary E Are there either women or men that are running? No 991

QueryAttr | Query Attribute Open In which part of the image is the dog? Left 1000

Table 7.1: Different types of questions in our VQA dataset. The questions are catego-
rized based on two dimensions: structure and semantics. The structural types define
the question format, including: Choose for selecting between alternatives, Compare for
comparisons between objects, Logical for logical inference, and Query for open-ended
questions. The semantic types focus on the subject matter, covering Object existence,
and Attribute, Category, Relation of objects. Additionally, questions are labeled as
Open for open-ended queries or Binary for yes/no answers. The dataset is derived from
the GQA dataset (Hudson and Manning, 2019). Due to space limitations, we present
two images, noting that 50% of question samples in our dataset have unique images.

This prevents the token position in the target set from attending to that in the source set
when MLLM generates the predicted answer.

7.4 Experimental setting

Setup Our paper investigates the inner working mechanism of MLLMs , focusing on
visual question answering (VQA). Typically, the VQA setup involves an image and a
corresponding question about this image, which the model needs to answer. We first
investigate where the information from different modalities (image and textual question)
is processed in MLLMs, and then how it is integrated within the model. Finally, we
explore how the MLLM makes the final decision using this multimodal information.

Tasks and data We collect our data from the validation set of GOA dataset (Hudson
and Manning, 2019). GQA is a dataset designed to support visual reasoning and
compositional question-answering, offering the semantic and visual richness of real-
world images. It is derived from the Visual Genome dataset, which includes detailed
scene graph structures (Krishna et al., 2017). In GQA, the questions are categorized
through two dimensions: structure and semantics. The former defines the question
format (5 classes) and the latter refers to the semantic information for the main subject
of the question (5 classes). The answers to these questions consist of only one word
or phrase, which is easy to evaluate. Based on the two dimensions, the questions in
GQA are categorized into 15 groups. We exclude most groups that consist of simple
binary questions (yes/no) and demonstrate poor performance on the model investigated
in this paper. Finally, we select 6 out of 15 groups (4 structural and 4 semantic classes)
in which their performance is higher than 80% in average performance, as shown
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in Table 7.1. The difficulty of our selected groups ranges from simple multimodal
perception tasks to more complex multimodal reasoning. For example, ChooseAttr and
ChooseCat ask about basic object attributes and categories for one object in the image,
ChooseRel and QueryAttr involve spatial reasoning, and CompareAttr and LogicalObj
require more challenging comparisons and logical reasoning between two objects in
the image. For each selected group, we sample an average of 920 image-question pairs
that are correctly predicted by most models used in this paper. For each model, we only
use correctly predicted samples for analysis (Each model achieves an accuracy greater
than 95% on the dataset we collected). More details about the dataset and the process
of collection can be found in Appendix E.1.

Format Formally, given an image ¢ and a question q (the question may contain answer
options os = [0l, 02]), the model is expected to generate the answer a in the last position
of the input sequence. In addition, the correct one in the options is referred to as the
true option (0;) while the other ones are denoted as the false option (of). Since the
image, question and options might contain multiple input tokens, we use I, Q, O,, O to
represent the set of input positions corresponding to image, question, true option and
false option, respectively.

Evaluation We quantify the information flow between different input parts by eval-
uating the relative change in the probability of the answer word which is caused by
blocking connections between different input parts (attention knockout). Formally, given
an image-question pair, the MLLM generates the answer a with the highest probability
p1 from the output distribution Py defined in Equation (7.6). After applying attention
knockout at specific layers, we record the updated probability p, for the same answer a as
in p;. The relative change in probability, p.%, is calculated as p.% = ((pa—p1)/p1)*x100.
In this paper, attention knockout is applied to each transformer layer (within a defined
window) individually and evaluate their respective p. values.

Models We investigate the current state-of-the-art and open-source multimodal large
language models from the LLaVA series: LLaVA-1.5-7b, LLaVA-1.5-13b (Liu et al.,
2024a), LLaVA-v1.6-Vicuna-7b (Liu et al., 2024b) and Llama3-LLaVA-NEXT-8b (Imm,
2024), which achieve state-of-the-art performance across a diverse range of 11 tasks
including GQA. These models are trained on similar publicly available data but with
different architectures and model sizes, which allows us to explore cross-modal interac-
tion and processing over different architectures and minimize interference of unknown
factors from training data. All these models have the same image encoder (CLIP-ViT-L-
336px (Radford et al., 2021b)) but with different LLM: Vicuna-v1.5-7b (Zheng et al.,
2023) with 32 layers (transformer blocks) in LLaVA-1.5-7b and LLaVA-v1.6-Vicuna-7b,
Vicuna-v1.5-13b (Zheng et al., 2023) with 40 layers in LLaVA-1.5-13b and Llama3-8b
(Dubey et al., 2024b) with 32 layers in Llama3-LLaVA-NEXT-8b, where Vicuna-v1.5
is the standard and dense transformer architecture (Vaswani et al., 2017b) and Llama3
adopts grouped query attention (Ainslie et al., 2023). In terms of image processing,
LLaVA-1.5-7b and LLaVA-1.5-13b directly feed the original fixed-length image patch
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features from the image encoder into the LLM as input tokens. In contrast, LLaVA-v1.6-
Vicuna-7b and Llama3-LLaVA-NEXT-8b employ a dynamic high-resolution technique,
which dynamically adjusts image resolution, resulting in variable-length image patch
features with higher resolution. Due to space limitations, we will primarily present the
results for the model LLaVA-1.5-13b in the subsequent sections of this paper, while
similar findings for other models are presented in Appendix E.S.

7.5 Contribution of different modalities to the final pre-
diction

For a successful answer prediction for the task of VQA, the MLLM will process the
input image-question pair [¢, ¢] and generate the final answer from the output layer of
the model corresponding to the last position. We first investigate whether the different
modalities directly contribute to the final prediction.

Experiment 1 For each layer ¢ in the MLLM, we block the target set (the last position)
from attending to each source set (I or Q) respectively at the layers within a window of
k = 9 layers around the /-th layer', and measure the change in the probability of the
correct answer word. The last position means N-th position in the input sequence and
it is also the first generated sub-word for the predicted answer. Typically, the answers
contain a single word or phrase, which might sometimes be tokenized into several
sub-word tokens. Therefore, we also conduct the same experiment and observe the
probability change at the final generated sub-word of the predicted answer. Both the
first and final generated sub-words yield similar results. Thus, we present all the results
of the first generated sub-words in the main body of the paper, with details on the final
sub-words provided in Appendix E.3.

Observation 1: the contribution to the prediction at the last position is derived from
other input components, rather than the input itself at this position. First of all,
as an auto-regressive model, it is assumed that the input generated from preceding steps
at the final position already encompasses the crucial information required for predicting
the correct answer. However, as shown in Figure 7.3, when we block the attention edge
from the last position to itself (Last - Last), there is negligible change observed in the
probability of final prediction. This implies that the input at the last position does not
encompass crucial information for the final prediction of the model. The prediction is,
therefore, mainly influenced by other parts of the input sequence.

Observation 2: The information from the question positions plays a direct and
predominant role in influencing the final prediction. As shown in Figure 7.3,
blocking attention from the last position to the hidden representations in QQ (Question
- Last) results in significant reduction in prediction probabilities across all six tasks.

'We experimented with different values of k, as described in Appendix E.2, and observed similar
trends as in the analysis we present in this section.
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Figure 7.3: The relative changes in prediction probability on LLaVA-1.5-13b with six
VQA tasks. The Question—+ Last, Image— Last and Last- Last represent preventing
last position from attending to Question, Image and itself respectively.

For example, in the ChooseAttr task, this decreases the prediction probability by up
to ~ 30%. This highlights the critical flow of information from Q to the last position,
directly affecting the final prediction. It is worth noting that this information flow pattern
is observed primarily in the middle layers, where performance reductions consistently
occur across all six tasks. In contrast, information from the image positions (II) does not
directly and significantly impact the final prediction in most tasks, except for QueryAttr,
where a slight information flow from I to the last position is observed. However, this
direct influence is negligible compared to its indirect effects, discussed below. The
additional experiment about the information flow between different parts of question,
such as options os and object words, and last position can be found in Appendix E.6.

Experiment 2 As the MLLM is auto-regressive and the input format is image followed
by the guestion in our setting, the information from the image (I) can propagate to the
positions of the guestion (Q), but not the other way around. To establish whether this
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Figure 7.4: The relative changes in prediction probability when blocking attention edges
from the question positions to the image positions on LLaVA-1.5-13b with six VQA
tasks.

indeed occurs, for each layer ¢, we block Q from attending to I with the same window
size (k = 9) around the /-th layer and observe the change in the probability of the
answer word at the last position as above.

Observation: Information flow from the image positions to question positions
occurs twice As shown in Figure 7.4, blocking the question positions from attending
to the image positions leads to a reduction in prediction probability. This is visible
in lower layers, in two different parts of the model. We first observe a sharp drop
in layers ~ 0 — 4 and then a second smaller drop around 10th layer. This indicates
a two-stage integration process of visual information into the representations of the
question. In the first drop, attention knockout reduces the prediction probability by an
average of ~ 60% across all six tasks. In the second drop, tasks such as ChooseAttr,
ChooseCat, ChooseRel, and QueryAttr show another average reduction of ~ 21%
while CompareAttr and LogicalObj exhibit smaller decreases. Despite the variability
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in the magnitude of the reduction, the layers responsible for information flow remain
consistent across all tasks, which is also observed during the first drop. The additional
experiment about the information flow between image and different parts of question,
such as option os and object words, can be found in Appendix E.6.

Overall information flow Given the input sequence: image and qguestion with the
corresponding sets of positions I and (Q respectively, the MLLM first propagates infor-
mation twice from the image positions to the guestion positions in the lower-to-middle
layers of the MLLM. Subsequently, in the middle layers, the information flows from
the question positions to the last position for the final prediction. Overall, this reveals
the existence of distinct and disjoint stages in the computation process of different
layers in MLLM, where critical information transfer points from different positions
corresponding to different modalities are observed to influence the final predictions of
the model. These findings are also observed in the other three MLLMs (Appendix E.5).

7.6 How is the linguistic and visual information inte-
grated?

The results of the above analysis suggest a two-stage integration process of the two
modalities within an MLLM. In this section, we further investigate how the information
about specific visual and linguistic concepts is integrated across these two stages.

Experiment To investigate how the model uses the image to answer the question,
we conducted attention knockout experiments at the level of individual objects and
individual words. The dataset used in the paper consists of questions targeting specific
objects and each object is annotated with the bounding box for a certain image region.
Based on whether an image patch includes the corresponding bounding boxes (objects),
we divide the input image patch features V' into two groups: V; corresponding to
the patches containing the objects mentioned in the question, and V,, containing the
remaining patches. Then, for each layer ¢, we use the same attention knockout method
to block the target set Q from attending each source set, L, and Iy, corresponding
to the position of Vi and Vi, in the input sequence respectively, at the layers with a
window of £ = 9 layers around the /-th layer, and observe the change in the probability
of the correct answer word.

Observation: Shifting focus from comprehensive representation to specific regions
of interest As illustrated in Figure 7.5, blocking the attention edges between the
position of Vi and the question (related image patches—+question) and between the
position of Vi, and the question (other image patches—question) appear to account
for the two performance drops observed in Figure 7.4, individually. Specifically, other
image patches—+question clearly results in a significant and predominant reduction in
prediction probability during the first stage of cross-modal integration, while related
image patches—+question plays a dominant role at the second stage. It is noteworthy
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Figure 7.5: The relative changes in prediction probability on LLaVA-1.5-13b with six
VQA tasks. Related Image Patches—question and Other Image Patches—+question
represent blocking the position of guestion from attending to that of different image
patches, region of interest and remainder, respectively.

that both types of cross-modal information transfer occur in similar layers within the
MLLM across all six tasks. Even for the CompareAttr and LogicalObj tasks, although
slight changes in probability are observed during the second stage, the layers in which
this happens remain consistent with those of the other tasks. This suggests in the lower
layers, the model integrates the information from the whole image into the question
positions building a more generic representation. And it is only in the later layers, that
the model starts to pay attention to the specific regions in the image relevant to the
question, fusing the more fine-grained linguistic and visual representations. The other
MLLMs also present similar results as shown in Appendix E.S5. The additional more fine-
grained analysis on intervention of the attention edge between object words in question
and image region can be found in Appendix E.6. Moreover, we find compared with
LLaVA-1.5-13b, the model LLaVA-1.5-7b with smaller size has less information flow
from the position of Vg, to that of question in the first stage, as shown in Appendix E.5.
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Figure 7.6: The probability of the answer word at the last position across all layers in
LLaVA-1.5-13b with six VQA tasks. Capitalized Answer and Noncapitalized Answer
represent the answer word with or without the uppercase of the initial letter, respectively.
As the tasks of ChooseAttr, ChooseCat and ChooseRel contain false option, we also
provide the probability of it.

7.7 How is the final answer generated?

Experiment To track the process of answer generation in the MLLM, motivated by
the approach of logit lens (Nostalgebraist), we monitor the probability of the correct
answer from the hidden representations at the last position of the input sequence across
all layers. Formally, for each layer ¢ at the last position N, we use the unembedding
matrix E (as defined in Equation (7.6)) to compute the probability distribution over the
entire vocabulary V:

Py, = softmax (EhY), (7.8)

where the probability of the target answer word w, is given by the corresponding entry
in PY, denoted as Pj(w,). As the tokenizer in most MLLMs distinguishes the case
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of the word, especially the initial letter of the word, we monitor the probability of
the answer word with both those starting with uppercase (Capitalized Answer) and
lowercase letters (Noncapitalized Answer).

Observation 1: The model is able to predict the correct answer starting at the layer
immediately following multimodal integration As illustrated in Figure 7.6, the
probability of the answer word with a lowercase initial letter (Noncapitalized Answer)
rises sharply from near 0 to a range of ~20% to ~70% across the six VQA tasks, around
the model’s middle layers. This implies that the model rapidly acquires the capability
to predict correct answers in these middle layers, where the phase of multimodal
information integration has just fully completed (see Figure 7.5) and the multimodal
information is still transforming from guestion position to last position (see Figure 7.3).

Observation 2: Semantic generation is followed by syntactic refinement As shown
in Figure 7.6, across all VQA tasks, the probability of Noncapitalized Answer starts to
gradually decrease to nearly zero after an increase in middle layers. In contrast, the
probability of Capitalized Answer remains low in the initial layers following 20th but
starts to increase in subsequent layers. This indicates the model has already semantically
inferred the answer by about halfway through layers and in the higher layers, the model
starts to refine the syntactic correctness of the answer. Similar findings on other models
are shown in Appendix E.5.

7.8 Conclusion

In this paper, we unveil the inner working mechanisms of auto-regressive multimodal
large language models in handling multimodal tasks. Our experiments reveal that differ-
ent multimodal tasks exhibit similar processing patterns within the model. Specifically,
when provided with an input consisting of an image and a question, within the lower-
to-middle layers, the model initially propagates the overall image information into the
hidden representations of the question in the lower layers and then the model selectively
transfers only the question-relevant image information into the hidden representations
of the question, facilitating multimodal information integration. In the middle layers,
this integrated multimodal information is propagated to the hidden representation of the
last position for the final prediction. In addition, we find that the answers are initially
generated in lowercase form in middle layers and then converted to uppercase for the
first letter in higher layers. These findings enhance the transparency of such models,
offering new research directions for better understanding the interaction of the two
modalities in MLLMs and ultimately leading to improved model designs.
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Conclusions

This dissertation focused on three challenges from the domains of language and vision,
individually and in combination: integrating commonsense knowledge to enhance
reasoning ability in multimodal systems, developing efficient adaptation methods for
large foundation models (both vision and large language models), and improving the
transparency of multimodal large language models (MLLMs).

Part I: Commonsense Knowledge Enhanced Multimodal Reasoning

In Chapter 3, we investigated the integration of commonsense knowledge into multi-
modal models by proposing the CK-Transformer framework. CK-Transformer effec-
tively incorporates relevant commonsense knowledge into visual object representations,
thereby enhancing the reasoning capabilities of multimodal models for the referring ex-
pression comprehension (REC) task. Extensive experimental results demonstrated that
CK-Transformer significantly improves performance, particularly in scenarios requiring
the comprehension of commonsense knowledge, such as social, temporal, and physical
commonsense.

Insights and prospects The successful integration of commonsense knowledge via
the CK-Transformer underscores the critical role that explicit knowledge plays in closing
the reasoning gap of current multimodal models. Key insights indicate that traditional
multimodal architectures predominantly rely on superficial pattern recognition, which
significantly limits their reasoning capabilities in real-world scenarios that inherently re-
quire commonsense understanding. Incorporating structured or non-structured common-
sense knowledge directly into visual object representations provides a robust approach
to enable deeper, human-like inferential reasoning. Looking forward, the deficiency
in commonsense reasoning capabilities primarily originates from existing pre-training
methodologies, which predominantly rely on image-caption pairs to learn modality
alignment while overlooking the commonsense knowledge essential for complex tasks.
Therefore, future research should prioritize developing novel pre-training paradigms
that implicitly embed commonsense knowledge within model representations, thereby
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enabling models to effectively leverage this knowledge to enhance reasoning capabilities
in downstream tasks without requiring explicit knowledge integration during inference.
Additionally, extending commonsense-enhanced reasoning to a broader spectrum of
multimodal tasks beyond referring expression comprehension, such as video under-
standing tasks and human-machine collaborative scenarios, holds significant potential
for improving the real-world applicability and robustness of multimodal systems.

Part 11: Efficient Adaptation

For efficient adaptation of large foundation models, we introduced a new paradigm
for parameter-efficient fine-tuning in Chapter 4. Our method, termed Gradient-based
Parameter Selection (GPS), differs from existing approaches by selectively fine-tuning
only a minimal subset of a pretrained model’s parameters based on gradient significance,
without adding any additional parameters. Empirical evaluations showed that GPS
achieves comparable or superior performance to full fine-tuning across various vision
tasks, including image classification and semantic segmentation.

Building upon this foundation, in Chapter 5, we extended our efficient fine-tuning
approach to natural language processing tasks. Considering the dramatic increase in
size and computational requirements of large language models compared to vision
models, we proposed NeuronAda, a featherlight, scalable, and task-agnostic fine-tuning
framework. NeuronAda further reduces training memory and time relative to GPS
and eliminates the necessity for preliminary gradient computations. Experimental val-
idations across multiple natural language generation and understanding benchmarks
demonstrated that NeuronAda outperforms strong baselines, delivering robust general-
ization with exceptionally few trainable parameters (less than 0.01%) under stringent
memory constraints.

Further exploration of efficient adaptation strategies in multi-task and multilin-
gual scenarios was presented through the sparse training perspective in Chapter 6.
Comprehensive experiments revealed that sparse training effectively reduces gradient
conflicts between tasks by transforming high-dimensional parameter spaces into lower-
dimensional ones, all while preserving the integrity of the original model. Moreover,
combining sparse training with other gradient manipulation strategies significantly
enhanced performance in multi-task learning scenarios.

Insights and prospects Our investigation into parameter-efficient fine-tuning (PEFT)
methods highlights the efficacy of sparse training through selective parameter updates
without structural augmentation as a scalable, fine-grained, and memory-efficient PEFT
strategy for adapting large-scale models. Both GPS and NeuroAda leverage the inherent
representational capacity of pretrained networks by updating only a minimal yet seman-
tically influential subset of the original parameters. Crucially, these methods introduce
neuron-wise parameter selection, which activates each neuron’s potential contribution to
downstream task adaptation during the fine-tuning process. This approach offers a more
fine-grained alternative to conventional layer-level or module-level tuning, achieving
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task specialization through neuron-level intervention. These findings further suggest a
conceptual shift in the understanding of fine-tuning: rather than expanding a model‘‘s
capacity via the addition of new components (e.g. LoRA, Adapter), adaptation can be
framed as the reconfiguration of existing representational capacity within the model.
From this perspective, fine-tuning becomes a process of selectively reactivating and
steering the internal semantics encoded in pretrained neurons, thus achieving efficient
adaptation without inflating the model‘‘s parameter footprint.

For future work, the proposed sparse fine-tuning strategy holds strong potential
for extension to continual learning and lifelong adaptation scenarios, owing to its
minimal parameter update requirements. In such settings, parameter selection strategies
could be dynamically updated to reflect evolving task distributions or domain shifts,
potentially enabling efficient and stable model adaptation over time without catastrophic
forgetting. In addition, while current parameter selection in NeuroAda relies on static
heuristics such as weight magnitude or gradient value, learning-to-select approaches
where the selection mask is jointly optimized or guided by meta-learning signals may
offer further gains in both efficiency and performance. Exploring such methods could
enable adaptive selection schemes that better account for task difficulty, data availability,
or model capacity.

Part III: Transparency

Finally, in Chapter 7, we investigated transparency and interpretability in multimodal
large language models (MLLMs) using attention knockout methods to systematically ex-
amine internal mechanisms of popular decoder-only autoregressive multimodal architec-
tures from a perspective of the information flow between different-modality information.
Our analysis disclosed a structured and sequential integration of linguistic and visual
information: lower-to-middle layers first propagate general image information into
the question representations and subsequently selectively transport question-relevant
image details. This integrated multimodal information is then transferred to the hidden
representation of the final prediction position in the middle layers. Additionally, we
observed that answers are initially generated in lowercase at intermediate layers before
capitalization occurs at higher layers. These insights substantially advance our under-
standing of MLLM operations, enhancing model interpretability and offering valuable
guidance for developing trustworthy multimodal Al systems.

Insights and prospects This study provided critical insights into their internal op-
erational dynamics, notably the sequential and structured multimodal information
integration process. We discovered that monomodal and multimodal representations
evolve in the multimodal large language model using a layer-wise manner, transitioning
from general to task-specific integration, thereby refining our understanding of model
reasoning processes. Observing capitalization and answer generation at distinct layers
further highlights nuanced yet systematic behaviors, demonstrating how internal model
states progressively refine predictions. Prospectively, deeper interpretability studies are
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encouraged, focusing on layer-wise and neuron-level analyses to unravel finer-grained
interaction patterns between modalities. Additionally, applying these interpretability in-
sights to refine model architectures or training processes could significantly contribute to
the development of more transparent, trustworthy, and accountable multimodal systems
suitable for sensitive or safety-critical applications.
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Appendices

A Appendix to Chapter 3

A.1 Referring expression comprehension

Early approaches to REC use joint embedding of image and language by the combination
of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs),
and predict the target object that has the maximum probability given an input expression
and an image (Hu et al., 2016; Mao et al., 2016; Zhang et al., 2018a). In order to model
different types of information encoded in input expression (subject appearance, location,
and relationship to other objects), subsequent work used modular (attention) networks,
to “match” the input to corresponding regions in the image, predicting as the target the
region with the highest matched score (Hu et al., 2017; Yu et al., 2018).

A.2 UNITER

UNITER is trained using four pre-training tasks, Masked Language Modeling (MLM),
Masked Region Modeling (MRM), Image—Text Matching (ITM), and Word—Region
Alignment (WRA), on four large-scale image—text datasets, COCO (Lin et al., 2014),
Visual Genome (Krishna et al., 2016), Conceptual Captions (Sharma et al., 2018), and
SBU Captions (Ordonez et al., 2011). This enables UNITER to capture fine-grained
alignments between images and language. The architecture of UNITER is similar to
BERT (Devlin et al., 2018) apart from the input and the output. Specifically, the input
consists of an image (a set of visual region candidates), a sentence and [CLS] token,
and they respectively lead to different outputs, i.e. vision output, language output and
cross-modality output on the top of UNITER.
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A.3 Input embedding

Same with UNITER, we extract the input embeddings E,,;, consisting of an image and
a text embedding corresponding to the object candidate / and text (an expression e or a
fact f;) respectively.

Image embedding The image embedding E; is computed by summing three types
of embeddings: visual feature embedding, visual geometry embedding and modality
segment embedding. We first extract the visual features V = {vy,vs,...,v,} for all
candidates using Faster R-CNN (pooled Rol features), and build a geometry feature
G={g,.8,,8,} for all candidates, where g, is a 7-dimensional vector consisting of
the geometry information of the bounding box corresponding to candidate ¢;, namely
normalized top, left, bottom, right coordinates, width, height, and area, denoted by
g = [z1,yl,22,y2,w,h,w * h]. Visual feature embeddings and visual geometry
embeddings are generated by mapping the visual features and the geometry features
into the same vector space through a fully connection layer fc:

E; = LN(fe(V) + fe(G) + M) ()

where LN is the layer normalization layer and M is the modality segment embedding
for the image input (like segment embedding for two sentence in BERT model).

Text embedding Similarly, the text embedding E+ is computed based on three dif-
ferent types of embeddings: token embedding, position embedding and modality em-
bedding (Normally there is a fourth embedding, sentence segment embedding similarly
to BERT, but, in our task, both expressions and facts consist of one sentence only and
so only the first sentence segment embedding is used). Similar to BERT (Devlin et al.,
2018), the text W = {wy, wy, ..., w,, } is first tokenized by WordPieces (Wu et al., 2016),
which are then built into token embeddings T = {¢,, 1., ..., t,} and position embeddings
P={p,,p,,....,p,} according to their position in the text sequence.

Er = LN(T+ P+ My) (2)

where M7 is the modality segment embedding for the text input.

Input embedding The final input embedding E,,, is computed by concatenating
image embedding E; and text embedding E:

E;., = [E;, E7] (3)

A.4 Datasets

We use the KB-Ref dataset (Wang et al., 2020b) aiming at evaluating the task of referring
expression comprehension based on commonsense knowledge. KB-Ref consists of
43,284 expressions for 1,805 object categories on 16,917 images, as well as a knowl-
edge base of key—value (category—fact) pairs collected from three common knowledge
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Figure 1: Accuracy across a varying number of facts (top-K).

resources: Wikipedia, ConceptNet (Speer et al., 2017b) and WebChild (Tandon et al.,
2017b)). KB-Ref is split into a training set (31,284 expressions with 9,925 images), a
validation set (4,000 expressions with 2,290 images) and a test set (8,000 expressions
with 4,702 images).

We furthermore introduce commonsense knowledge into traditional tasks/datasets
of referring expression comprehension, namely RefCOCO, RefCOCOg and RefCOCO+
!, The datasets are devised from the MSCOCO image dataset (Lin et al., 2014) but differ
in the types of expressions and object candidate settings. Specifically, RefCOCO+ does
not allow the use of absolute location words in the expressions, and most expressions
focus on the appearance of the objects. The expressions in RefCOCOg are longer and
contain more descriptive words. RefCOCO and RefCOCO+ contain more objects of
the same category within an image.

A.5 Experimental settings

We extract image region features using Faster R-CNN with ResNet-101 (Ren et al.,
2015) which was pre-trained on Visual Genome (Krishna et al., 2016) using object and
attribute annotations (Anderson et al., 2018). For bounding box detection, we keep the
bounding boxes with at least 0.2 confidence score indicating the extent of detection. In
the CK-T, the hidden layer dimension is 768 and the number of multi-head attention
heads is 12. The models are trained using Adamw (Loshchilov and Hutter, 2017) with a
learning rate of 6e~° and a batch size of 64 on Titan RTX GPUs. Our CK-Transformer
has 120M parameters in total where fact-aware classifier has 34M and bi-modal encoder
has 86M. As for UNITER model, we use same setting with UNITER-base, except for
using Nvidia Apex? for speeding up training. The efficiency of our model is effected
by the number of facts. Specifically, we train our CK-Transformer 10000 steps and a
batch per step, which takes 2.5, 3, 3.5, 7 days with the number of facts: 3, 5, 10, 20

Ifollowing Apache License 2.0
Zhttps://github.com/NVIDIA/apex
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Figure 2: Accuracy across a varying number of fact-aware classifier block (M).

respectively. The CK-Transformer trains 3.8, 2.8, 2.1, 0.7 sample in average per second
and tests 8.3, 7.3, 6.6, 1.1 sample per second.

A.6 Impact of CK-T structure

We explore the impact in performance on KB-Ref as we vary the number of top-K
facts (K) and fact-aware classifier block (M) on the development set. We first keep the
number of the fact-aware classifier block constant and set it to 1 to experiment with
different values for K from 1 to 20. As shown in Figure 1, as K increases, performance
starts to improves with a peak at K=5 before starting to gradually decrease performance.

In the second experiment, we keep K constant and set it to 3 and explore the effect
of varying values for M. We observe that the highest accuracy is achieved with with
top-3 facts and 2 integrator layers as shown in Figure 2.

A.7 Introducing facts in traditional REC tasks based on detection

The results of introducing facts in traditional REC tasks based on detected bbxes and
categories are shown in Table 1. Compared to result based on ground-truth bbxes and
categories (Table 3.3), the improvement on models based on detection is less or even
worse than the models without facts.

A.8 McNemar Test

We also report the statistical significance for accuracy (shown in Table 3.3) on the tasks
of RefCOCOs. Specifically, we conduct the McNemar Test between models before
and after introducing facts, on the test set of RefCOCO, RefCOCO+ and RefCOCOg,
respectively. As shown in Table 2, as for Test set on RefCOCOg and Test A on
RefCOCO p-value = 1.19¢—08 and p-value = 0.049 (< 0.05)respectively, which means
the proportion of errors is statistically significantly different after introducing facts as
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Accuracy (%)
Task Ugrgc Intro Facts
Val? 81.15 81.06

légf'co Test A% 86.85 86.87
Test B 7448  73.97
Vall 7474  74.68
Ref- Test A° 81.05  80.70
COCO+ '

Test BY  65.88 66.07
Ref- Val? 74.49 74.69
COCOg¢g Test? 75.24 74.86

Table 1: Introducing facts into RefCOCO, RefCOCO+ and RefCOCOg based on
detection (d).

McNemar Test
Task (p-value)
Test A 0.049
RefCOCO 1B 0.905
Test A 0.297
RefCOCO+ 1B 0.966
RefCOCOg Test 1.19e—08

Table 2: The McNemar Test between models before and after introducing facts on the
tasks of RefCOCOs.

compared to before. However, the change in the proportion of errors after introducing
facts on other tasks (Test B on RefCOCO, Test A and Test B on RefCOCO+) is not
statistically significant. This is reasonable, as the error from detection will affect the
fact search (we first retrieve facts using the category) and thus more error information is
introduced into CK-Transformer, which make the performance worse.

A.9 Example searched fact using different methods

As shown in Figure 3, there are several facts which are selected from three different
fact search methods: CK-Transformer, CK-T-Uw/olmage and CK-T-Word2Vec. As we
can see in the Table, normally the facts of CK-Transformer model (green) is the best
relevant with the referring expression (blue) and the facts in CK-T-Word2Vec model is
the worst relevant with the expression.
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the
the

Exp: The tool under
mouse can improve
usability of the mouse

Exp: The tall building has
instr-ucments on the upper
exterior walls that used as a
reference to find out the time.

Exp: The most important part
of the tree with branches and
leaves

Chapter 9. Appendices

Exp: An access point as an
underground public utility.

Fact: A mousepad enhances
the usability of the mouse
compared to using a mouse
directly on a table.

Fact: Clock towers are a
specific type of building which
houses a turret clock and has
one or more clock faces on the
upper exterior walls.

Fact: The trunk is the most
important part of the tree for
timber production.

Fact: Manholes are often used
as an access point for an un-
derground public utility, all-
owing inspection, mainten-
ance, and system upgrades.

Fact (Uw/oImage): A mouse-
pad is a surface for placing and
moving a computer mouse.

Fact (Uw/oImage): The tower
has four clock faces, two of
which are in diameter, at about
high.

Fact (Uw/oImage): An auto-
mobile has a trunk.

Fact (Uw/olmage): A man-
hole is an opening to a confin-
ed space such as a shaft, utility
vault, or large vessel.

Fact (Word2Vec): Mousepad
on the mouse.

Fact (Word2Vec): Before the
middle of the twentieth
century, most people did not
have watches, and prior to the
18th century even home clocks
were rare.

Fact (Word2Vec): A trunk is
an example of a box.

Fact (Word2Vec): These
covers are traditionally made
of metal, but may be con-
structed from precast concrete,
glass reinforced plastic or
other composite materials.

Figure 3: Example fact search process (using the top-1 fact) for different search methods:
CK-T (green), CK-T-Uw/olmage (orange) and CK-T-Word2Vec (yellow).
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B Appendix to Chapter 4

B.1 Details of experiments
Baseline description

Vision Transformer (ViT) As a transformer-based visual model, ViT (Dosovitskiy
et al., 2020b) has been widely adopted in various visual tasks. Most of the experiments
are conducted on pre-trained ViT architecture in this paper. Given an input image
I € REXWX3 ‘before feeding the image into the Transformer, the image is partitioned
into M patches and appended a [CLS] token for classification purposes, resulting in
final input # € RM+D*d where d is the dimension of the features. The Transformer
typically consists of multiple blocks and each block contains a Multi-head Attention
layer (MHA) and two MLP layers(Vaswani et al., 2017a).

Adapter Work in (Houlsby et al., 2019) proposed the Adapter method, which inserts
multiple trainable layers (termed as Adapter) into the pre-trained Transformer encoder.
Only the Adapter is updated during the fine-tuning stage. These layers can be inserted
after either the Multi-head Attention layer or the MLP layer. Adapter comprises two
projection matrices, one W %" for dimension reduction and the other 1/ for feature
reconstruction to the original dimension. Specifically, given the input z € R(M+1)xd,
the output of the Adapter is

y = [Wup (b (Wdown SCT)}T (4)

where W' ¢ R¥*d_Jydown ¢ Rdxd" (where d' < d ), and ¢ is a nonlinear activation
function.

Prompt Visual prompt tuning (VPT) introduces learnable parameters (z.e., prompts)
into the input space (Jia et al., 2022a). When fine-tuning downstream tasks, the backbone
is fixed, and just tuning these prompts. Formally, the given input z € R(M+1xd jg

concatenated with m introduced prompts p € R™*?. The final combined input is

' = [z;p] )

where 2/ € RIM+1+m)xd wi]] be feed into the Transformer. There are two versions of
VPT, namely VPT-shallow and VPT-deep. The former introduces learnable prompts
solely into the input space of the first layer, whereas the latter integrates them into each
layer’s input space.

Scale and shift feature SSF attempts to scale and shift the features between the layers
of the pre-trained model by adding a linear transform layer (Lian et al., 2022). During
fine-tuning the downstream tasks, only the linear transform layers are updated while the
backbone remains frozen. The transform layer consists of two components, scale factor
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Figure 4: Different number of connections with highest gradient value among all input
connections per neuron, such as (a) selecting only one input connection per neuron. (b)
two input connections are selected per neuron.

Dataset Params. (M) Conne.s ‘ Dataset Params. (M) Conne.s | Dataset Params. (M) Conne.s
CUB-200-2011 0.47 2 Pets 0.23 1 DMLab 0.20 1
NABirds 1.35 10 SVHN 0.20 1 KITTI/distance 0.20 1
Oxford Flowers 0.29 1 Sun397 0.55 1 dSprites/loc 0.21 1
Stanford Dogs 0.30 1 Patch Camelyon 0.30 2 dSprites/ori 0.21 1
Stanford Cars 1.07 10 EuroSAT 0.20 1 SmalINORB/azi 0.21 1
CIFAR-100* 0.29 1 Resisc45 0.24 1 SmallINORB/ele 0.20 1
Caltech101 0.29 1 Retinopathy 0.20 1 CIFAR-100 0.58 5
DTD 0.24 1 Clevr/count 0.30 1 CIFAR-100 (Swin) 0.82 5
Flowers102 0.29 1 Clevr/distance 0.20 1 CIFAR-100 (ConvNeXt) 0.78 5

Table 3: The number of learnable parameters and connections across all tasks.
CIFAR-100* is a subset of CIFAR-100 in VTAB benchmark. In bracket is the model
architecture, without bracket represents the one fine-tuned on ViT-B/16. Params. means
the learnable parameters and the Conne. represents the number of selected input con-
nections for each neuron in the network.

v € R and shift factor 5 € R, for feature transformation. To be specific, given the
input € R(M+1x4_the output is calculated by

y=70x+p (6)

where y € RIM+Dxd ) ig the dot product.

The number of parameters on different tasks

For each neuron in the network, our GPS method selected at least one of the connections
(weight or parameter) with the highest gradient value, among the input connections
of the neuron, as shown in Figure 4a. For downstream tasks that need more learnable
parameters to better fit the data, such as those tasks with dissimilar data distributions
from the upstream dataset (such as NABirds) or larger amounts of data (such as CIFAR-
100), our method can be easily extended by introducing more learnable parameters.
Specifically, for each neuron, we can select multiple input connections with the highest
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Figure 5: The number of learnable parameters with the different number of connections
on VIT-B/16, Swin and Convnext archite. The learnable parameters do not contain the
task-specific head.

gradient values instead of limiting them to just one, as shown in Figure 4b. Table 3 show
the detailed statics on the number of parameters that are selected in our paper. For most
of the tasks in this paper, we just select one of the connections. We also explore the
relationship between the number of connections and the number of learnable parameters.
As shown in Figure 5, with the increase in the number of selected connections with the
highest gradient value among the input connections per neuron, the number of learnable
parameters linear ascent.

Parameters distribution of Net selection

In contrast to our approach, a simple approach is to select the parameters for a specific
task by selecting a certain percentage of parameters with the highest gradient from
the entire network (He et al., 2023a). However, as shown in Figures 6a to 6e, most
of the selected parameters are located in the upper layers, specifically block 12 and
block 11. As a result, the network is primarily focused on fine-tuning abstract features
while lacking the ability to fine-tune detailed information from shallower layers. Our
approach addresses this challenge by carefully selecting the input connections for each
individual neuron, resulting in our selected parameters being evenly distributed on the
whole network, as shown in Figure 6f.



108 Chapter 9. Appendices

block10 block? blocks block10

blocks blocks
block
plocke block blocks blockll o e
blockil blocks e 4% % block?
% block? block3 -
5% 20% 4 blocks
i 2% blocks % blocks
s o “ e
% blocks
. 5% blocka
oc
block2
T boce | bl
1% blockl 2500 blocky
16%
block1l
36%
51% ss%
block12
block12 block12
blocks  blocks
block? bock s block10 blocka blocks
blocks oc _—
oc
a% % block2 plocks blocks 8% blockz
block P % plocke
o o 24% ™ block? %
% blocks
% blocks
block10 o Y ek blocks blockl
blocks 8% %
blockz
Block
% %
block? block12
16%
block11 8% %
3%
5% blocks % block1l
block12
block12 blocks block10

Figure 6: Distribution of the parameter over the whole network ViT-B/16 on 6 FGVC
datasets (CUB-200-2011, Oxford Flowers, Stanford Dogs, Stanford Cars and NABirds).
Selecting the 1% parameters with the highest gradient value from the whole network,
instead of our method selecting at least one of the connections among all input connec-
tions per neuron. In contrast to this method, our GPS has the same distribution over
different downstream tasks (f).
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Dataset ImageNet | ImageNet | ImageNet | ImageNet
Method -IK(M | -AM R €W
Full (Jiaetal,2022a) | 83.58 | 3449 | 5129 | 4647
Linear (Jia et al., 2022a) 82.04 33.91 52.87 46.91
Bias (Zaken et al., 2021) 82.74 42.12 55.94 41.90
Adapter (Houlsby et al., 2019) | 82.72 4221 54.13 42.65
VPT-Shallow (Jia et al., 2022a) |  82.08 30.93 53.72 46.88
VPT-Deep (Jia et al., 2022a) 82.45 39.10 53.54 43.10
SSF (Lian et al., 2022) 83.10 45.88 56.77 41.47
GPS | 8391 | 4611 | 57.00 | 42.04

Table 4: Performance comparisons on the ImageNet with different model architectures.

B.2 Additional experiments
Robustness and OOD datasets

In addition to standard classification tasks, we further analyze the robustness and OOD
generalization ability of GPS. Based on the Imagenet-A, ImageNet-R, and ImageNet-C
datasets, we first fine-tune the model on ImageNet-1K, and then test the fine-tuned
model on the three datasets respectively. The results are shown in Table 4. GPS not
only achieves the best performance on the standard ImageNet-1K classification task
but also achieves good performance in robustness and generalization tests. Among
them, GPS achieves the best results on ImageNet-A and ImageNet-R, outperforms the
previous optimal SSF by 0.23%, reflecting the strong stability and generalization ability
of our method. On ImageNet-C, GPS performs slightly worse, lagging behind SSF,
but still higher than addition-based Adapter and VPT. This result indicates that our
method can quickly adapt to the data distribution of downstream tasks, but it needs to
be improved in anti-interference.

More experiments on different architecture

As mentioned in the main body of our paper, our method is model-agnostic, we further
compare GPS with other fine-tuning methods across ViT-B/16, Swin-B, and ConvNeXt-
B architectures on the ImageNet-1k (Deng et al., 2009) and CIFAR-100 (Krizhevsky
et al., 2009) datasets.

CIFAR-100 As shown in Table 6, unlike FGVC and VTAB, GPS and other efficient
tuning methods have difficulty in achieving competitive performance as full tuning
on CIFAR-100. This may be due to that CIFAR-100 contains more training data,
allowing all parameters of the entire model to be adequately trained, which seriously
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W CUB-200 NABrids Oxford Stanford Stanford | Mean Mean Mean
Method -2011 Flowers  Dogs Cars Acc. Params. (M) Params. (%)
ViT-B/16 + Full 87.3 82.7 98.8 89.4 84.5 88.54 85.98 100.00
ViT-B/16 + Linear 85.3 75.9 97.9 86.2 51.3 79.32 0.18 0.21
ViT-B/16 + SSF 89.5 85.7 99.6 89.6 89.2 90.72 0.39 0.45
ViT-B/16 + GPS (Ours) 89.9 86.7 99.7 92.2 90.4 91.78 0.66 0.77
Swin-B + Full 90.7 89.8 99.5 88.9 93.2 92.42 86.98 100.00
Swin-B + Linear 90.6 86.8 99.2 88.3 74.6 87.90 0.24 0.28
Swin-B + SSF 90.5 88.4 99.7 88.7 90.4 91.54 0.49 0.56
Swin-B + GPS (Ours) 90.8 88.9 99.7 92.7 90.7 92.56 0.83 0.95
ConvNeXt-B + Full 91.2 90.4 99.6 89.9 94.1 93.04 87.81 100.00
ConvNeXt-B + Linear 90.6 86.9 99.3 89.7 73.5 88.00 0.24 0.28
ConvNeXt-B + SSF 90.8 89.0 99.7 90.4 92.5 92.48 0.50 0.56
ConvNeXt-B + GPS (Ours) 91.0 89.6 99.7 93.7 92.6 93.32 0.79 0.90

Table 5: Performance comparisons on FGVC benchmark with different model architec-
tures.

ViT-B/16 | Swin-B | ConvNeXt-B
Acc. Params.(%) | Acc. Params.(%) | Acc. Params.(%)
Full (Jia et al., 2022a) 93.82 100.00 ‘ 93.85 100.00 ‘ 94.14 100.00

Linear (Jia et al., 2022a) 88.70 0.09 89.27 0.12 89.20 0.12
Bias (Zaken et al., 2021) 93.39 0.21 92.19 0.28 92.80 0.27

Adapter (Houlsby et al., 2019) | 93.34 0.36 92.49 0.38 92.86 0.52
VPT-Shallow (Jia et al., 2022a) | 90.38 1.07 90.02 0.15 - -
VPT-Deep (Jia et al., 2022a) | 93.17 1.43 92.62 0.81 - -

SSF (Lian et al., 2022) 93.99 0.33 93.06 0.43 93.45 0.42

GPS (Ours) 19402 068 9355 096 |9358 090

Architecture ‘

Table 6: Performance comparisons on the CIFAR-100 with different model architectures.

reduces the advantages of efficient fine-tuning methods. However, GPS still outperforms
all previous parameter-efficient tuning methods (Bias, Adapter, VPT, and SSF) and
reduces the gap with full fine-tuning to less than 0.5% on all architectures, which further
demonstrates the adaptability of our approach to different models.

ImageNet-1k Similar to the results on CIFAR-100, ImageNet-1K contains more
training data, which makes it harder for parameter-efficient fine-tuning algorithms to
achieve the same accuracy as full fine-tuning, as shown in Table 7. However, GPS still
outperforms full fine-tuning by 0.33% on ViT structure, and outperforms the previous
SOTA method SSF on Swin and ConvNeXct structures respectively, which further shows
the generalization of GPS to different model structures.

FGVC As mentioned in the main body of our paper, our method achieves the best
result on FGVC benchmark. Table 5 shows the full results of Table 4.4 in the main body.
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| ViT-B/16 | Swin-B | ConvNeXt-B
‘ Acc. Params.(%)‘ Acc. Params.(%)‘ Acc. Params.(%)
Full (Jia et al., 2022a) 83.58  100.00 | 8520  100.00 |85.80  100.00

Linear (Jia et al., 2022a) 82.04 0.89 83.25 1.17 84.05 1.16
Bias (Zaken et al., 2021) 82.74 1.00 83.92 1.32 84.63 1.31

Adapter (Houlsby et al., 2019) | 82.72 1.16 83.82 1.43 84.49 1.54
VPT-Shallow (Jia et al., 2022a) | 82.08 1.06 83.29 1.19 - -

VPT-Deep (Jiaetal., 2022a) | 82.45 1.42 83.44 1.85 - -

SSF (Lian et al., 2022) 83.10 1.12 84.40 1.47 84.85 1.44

GPS (ours) | 83.91 137 | 8443 1.96 | 84.87 1.90

Architecture

Table 7: Performance comparisons on the ImageNet-1k with different model architec-
tures.

Among all three model architectures, GPS consistently outperforms all other baselines,
demonstrating its model-agnostic advantage.

Data-efficient tuning

Recent advances in large foundation model fine-tuning have shown considerable promise
in reaching state-of-the-art performance on various tasks. However, in order to reach
high accuracy, these methods often need significant volumes of training data, which may
be time-consuming and costly to obtain. Here we demonstrate that our method is data
efficient, that is, with such a few-shot setting, our method requires only a small amount
of training data for tuning to achieve outstanding results that other approaches do not.
Specifically, we fine-tune the ViT-B/16 by selecting only k samples for each class in
the ImageNet dataset to form a few-shot training set. The value of k and the accuracy
of predicted results are illustrated in Figure 7, which demonstrates the excellent data
efficiency of our method especially in extreme cases like k=1.

Random seed for impacts of different selection schemes and ablations

We conduct experiments with three random seeds to investigate the robustness of our
method. As shown in Table 8, Our parameter selection method significantly outperforms
the other methods with small randomness. Table 8 is a supplementary of Table 4.6 in
the main body of our paper.

Relationship between the size of the dataset and tunable parameters.

Our consistent finding is that the accuracy drops as the number of parameters rises for
all experiments (different dataset sizes), and most of them achieve optimal results using
only 0.37% parameters, as shown in Figure 9.
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Figure 7: The performance comparison of different fine-tuning methods under k values
for each class on ImageNet dataset. Our method is always above the curve of the others.

The advantage of our approach is particularly evident in extreme cases where data is
extremely scarce (e.g., k=1).

‘ CUB NAbirds Flowers Cars Dogs
@ Net 86.86 = 0.21 86.55+0.03 99.62 £ 0.01 89.65=£0.12 91.32 £0.07
Layer 87.30 £ 0.13 86.79 £0.08 99.64 £0.01 90.03 £0.13 91.90 +£0.11

Net Random 86.60 £0.10 8598 £0.07 99.61 £0.01 89.10£0.12 91.34 +0.12
(b) | Neuron Random | 87.17 £ 0.15 86.02 £0.10 99.62 £0.01 89.52+0.23 91.82 £0.23

Magnitude 8729 £0.12 8599 +£0.08 99.62+0.00 89.29 £0.02 91.30 £ 0.02
(c) ‘ Head+CE ‘ 87.05+0.19 86.20+0.14 99.64 £0.01 89.25+0.09 91.29 +0.01
GPS ‘ 88.07 £ 0.11 86.64 £0.03 99.69 = 0.01 90.10 +0.10 92.30 + 0.10

Table 8: Impacts of different selection schemes and ablations. (a) Different selection
levels. (b) Different selection criteria. (c) Different ways to calculate gradients.

Data scale needed for parameter selection.

Benchmark datasets are relatively small, such as VTAB (19 tasks) with only 1000 sam-
ples each, so we used full train set to compute gradients. Additionally, our experiments
demonstrate selected parameters from random limited samples significantly overlap
with those from the full dataset, and yield similar accuracy: 93.8% =+ 0.097, as shown
in Figure 8.

The performance with different sizes of pre-trained models.

We investigate the performance of GPS on ViT model with different scales (small, base,
large and huge). As shown in Table 9, the performance of our method remains stable
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Figure 8: Different number of samples for parameter selection on Cifar-100 that contains
100 classes and 500 images per class. Overlap: the ratio of parameters selected using
a limited amount of data to those selected using the entire dataset. The red number
at the top: the accuracy (%) trained on the full training dataset and just tuning the
corresponding selected parameters.
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Figure 9: Performance with different dataset sizes (N shot per class) and number of

selected parameters on CUB task.

Models ‘Vit—Small Vit-Base Vit-Large Vit-Huge

SSF 88.47 90.72 91.54 78.75
GPS (Ours) 89.95 91.78 92.21 90.01

Table 9: Performance comparisons on FGVC with different scales of the pre-trained
model. The number in the table is the mean accuracy over tasks in FGVC (5 tasks).

when scaling up to larger models, while SSF experiences a significant drop on Vit-H.
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Method \ Adapter ~ VPT-Shallow VPT-Deep SSF GPS(ours)
# Params. | 2Ldd nd nlLd mLd 0
#FLOPs | 2N2Ldd" 2n(2N?+n)d 2n(2N?+n)Ld mN?Ld 0

Table 10: Extra parameters (params.) and FLOPs on ViT over PEFT methods. The
dimension and number of input tokens are d and N? (N x N patches). Adapter projects
features from d to d’ (2dd’ extra params.). VPT inserts n prompts (nd extra params.).
SSF adds a linear coefficient (md extra params.). L: number of layers. GPS does not
introduce any parameters.

Computational cost for parameter selection

The cost is minimal compared to the training process as it only involves computing
gradients without any parameter updates. For CUB example, selection only takes
30s, which 1s negligible compared to the overall training process (3960s). Addition-
ally, our experiments demonstrate that using just a few mini-batches is sufficient to
achieve comparable results to employing the full dataset, which could further reduce
the computational cost as shown in Figure 8.

FLOPS.

The FLOPS measures computer performance, but you may have meant FLOPs. GPS
does not introduce any extra parameters, resulting in no increased computation compared
to other PEFT methods as shown in Table 10.

B.3 Visualizations
Semantic segmentation

As mentioned in the main body of our paper, our approach demonstrates highly promis-
ing results in the field of semantic segmentation. We apply our method on the pre-trained
strong segmentation model (SAM) (Kirillov et al., 2023a) and fine-tune on a medical
segmentation task — polyp segmentation (Jha et al., 2020a). Here, we present more case
visualizations, which could directly show the effectiveness of our method, as shown in
Figure 10.

Distribution of selected parameters across various tasks

As we select different subsets of parameters from the original model for different
downstream tasks, a normal question is how different the distribution of the selected
parameters is across different tasks. we test on Vit-B/16 with 6 downstream tasks
from VTAB (two from Natural, two from Specialized and the other two from Struc-
tured). As shown in Figure 11, the chosen parameters exhibit a tendency towards
2/3 shared parameters and 1/3 task-specific parameters, despite the dissimilar data
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Figure 10: The Visualization Result of Polyp Segmentation. Here GT means ground
truth. As illustrated in this figure, although SAM and other methods can identify some
polyp structures in the image, the result is not accurate. By using GPS, our approach
elevates the performance with SAM.

distribution of downstream tasks. This is due to our selection scheme, which makes
the parameters evenly distribute on the whole network and thus the parameters from
shallow layers tend to share parameters as similar findings from the field of multi-task
learning (Karimi Mahabadi et al., 2021; Pfeiffer et al., 2020a; Sung et al., 2022).
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Figure 11: The overlap of the selected parameters across different tasks. Overlap is
determined based on parameter position. If selected parameters share the same position
in the network, they are considered to have overlap. We test on the ViT-B/16 with
following tasks: (a) Cifar100 and Caltech101; (b) Eurosat and Resisc45; (c) Clevr/count
and Dsprites/loc; (d) Cifar100, Eurosat and Clevr/count.

(a) Linear Probing (b) SSF (c) GPS (ours) (d) Full fine-tuning

Figure 12: t-SNE visualization of different fine-tuning methods, including linear probing,
SSF, GPS, full fine-tuning.

Feature distribution

On the NABirds datasets, we use t-SNE to visualize the feature distribution of different
fine-tuning methods. The results of all comparison methods are obtained based on
the ViT-B/16 pre-trained on ImageNet-21k. The visualization results are illustrated
in Figure 12. Feature clustering results using our GPS are superior to those with linear
probing, SSF, and full fine-tuning.

B.4 Details of the evaluation datasets

The statistic of all datasets used in this paper is shown in Table 11.

Image classification

FGVC Fine-Grained Visual Classification (FGVC) benchmark includes 5 downstream
tasks, which are CUB-200-2011 (Wah et al.), NABirds (Van Horn et al., 2015), Oxford
Flowers (Nilsback and Zisserman, 2008), Stanford Dogs (Khosla et al., 2011) and
Stanford Cars (Gebru et al., 2017). Each one contains more than 100 classes and a few
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Dataset Description #Classes Train Val Test
Fine-Grained Visual Classification (FGVC)
CUB-200-2011 (Wah et al.) Bird recognition 200 5,394 600 5,794
NABirds (Van Horn et al., 2015) Bird recognition 555 21,536 2,393 24,633
Oxford Flowers (Nilsback and Zisserman, 2008) Flower recognition 102 1,020 1,020 6,149
Stanford Dogs (Khosla et al., 2011) Dog recognition 120 10,800 1,200 8,580
Stanford Cars (Gebru et al., 2017) Car classification 196 7,329 815 8,041
Visual Task Adaptation Benchmark (VTAB-1k) (Zhai et al., 2019)
CIFAR-100 (Krizhevsky et al., 2009) 100 10,000
Caltech101 (Fei-Fei et al., 2006) 102 6,084
DTD (Cimpoi et al., 2014) 47 1,880
Flowers102 (Nilsback and Zisserman, 2008) Natural 102 800/1000 200 6,149
Pets (Parkhi et al., 2012) 37 3,669
SVHN (Netzer et al., 2011) 10 26,032
Sun397 (Xiao et al., 2010) 397 21,750
Patch Camelyon (Veeling et al., 2018) 2 32,768
EuroSAT (Helber et al., 2019) - 10 5,400
Resisc45 (Cheng et al., 2017) Specialized 45 80071000200 ¢34
Retinopathy (Graham, 2015) 5 42,670
Clevr/count (Johnson et al., 2017) 8 15,000
Clevr/distance (Johnson et al., 2017) 6 15,000
DMLab (Beattie et al., 2016) 6 22,735
KITTI/distance (Geiger et al., 2013) 4 711
dSprites/location (Matthey et al., 2017) Structured 16 800/1000 200 73,728
dSprites/orientation (Matthey et al., 2017) 16 73,728
SmallINORB/azimuth (LeCun et al., 2004) 18 12,150
SmallINORB/elevation (LeCun et al., 2004) 9 12,150
General Image Classification Datasets
CIFAR-100 (Krizhevsky et al., 2009) General images 100 50,000 - 10,000
ImageNet-1K (Deng et al., 2009) & 1,000 1,281,167 50,000 150,000
Robustness and Out-of-Distribution Datasets
ImageNet-A (Hendrycks et al., 2021b) 200 - - 7,500
ImageNet-R (Hendrycks et al., 2021a) Robustness & OOD 200 - - 30,000
ImageNet-C (Hendrycks and Dietterich, 2019) 1,000 - - 7550,000
Cross-domain Semantic Segmentation Dataset
Kvasir-SEG (Jha et al., 2020a) Polyp Segmentation 2 880 - 120

Table 11: Detailed statistics of the datasets evaluated on our work. We follow the
VPT (Jia et al., 2022a) for train/val split. This table is partially borrowed from VPT(Jia

et al., 2022a) and SSF (Lian et al., 2022).

thousand images. We directly use the public splits if one contains, otherwise, we follow

the splits in (Jia et al., 2022a).

VTAB-1k Visual Task Adaptation Benchmark (Zhai et al., 2019) contains 19 visual
classification tasks which are grouped into 3 sets: (1) Natural — tasks with natural
images captured by standard cameras; (2) Specialized — tasks with images captured
via specialized equipment, e.g., medical camera or satellite sensor; (3) Structured —
tasks with images synthesized from simulated environments, which require geometric
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comprehension like object counting and depth estimation. Each one contains only 1000
training examples while a large number of test images (i.e. over 20,000 on average).

CIFAR-100 CIFAR-100 (Krizhevsky et al., 2009) is a widely used general image clas-
sification task. It contains 50,000 training and 10,000 test images with 100 categories.

ImageNet-1K ImageNet-1K (Deng et al., 2009) is the most commonly utilized subset
of ImageNet for object classification, encompassing 1000 classes and featuring a training
set of 1,281,167 images, a validation set of 50,000 images, and a test set of 100,000
images.

Semantic segmentation

Polyp segmentation We select kvasir-SEG (Jha et al., 2020b) for polyp segmentation
task. We follow the settings in Medico automatic polyp segmentation® task at mediaeval
2020 (Jha et al., 2020a) with a train-valid ratio of 880:120.

Robustness and OOD

ImageNet-A ImageNet-A (Hendrycks et al., 2021b) contains 200 classes, which is
selected from ImageNet-1K (1000 classes). All samples are real-world adversarial
samples that caused the ResNet model to produce erroneous classifications.

ImageNet-R ImageNet-R (Hendrycks et al., 2021a) contains art, graffiti, sculptures,
tattoos, toys, cartoons, paintings, embroidery, deviantart, graphics, patterns, plastic
objects, origami, plush objects, sketches, and video game renditions from ImageNet
classes.

ImageNet-C ImageNet-C (Hendrycks and Dietterich, 2019) is an open-source collec-
tion of algorithmically generated corruptions, such as blur and noise, that have been
applied to the ImageNet test set.

B.5 Extended related work
Visual parameter efficient fine-tuning

In the field of computer vision, current work endeavors to pre-train larger models (Devlin
etal., 2018; Dosovitskiy et al., 2020b; Liu et al., 2021d; Radford et al., 2021b; Zhou et al.,
2021, 2022) on extensive datasets, followed by fine-tuning diverse downstream tasks
to achieve superior performance and faster convergence. Conventional arts set all the
network parameters learnable and adapt them to the target tasks. However, as foundation
models become increasingly large and the number of downstream tasks increases, it
becomes impractical due to the significant computational and storage requirements that
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it entails. Parameter-efficient fine-tuning (PEFT) methods are proposed to alleviate such
a burden, which tunes only a tiny portion of the parameters. The general PEFT can be
categorized into addition-based and selection-based methods.

Addition-based methods introduce additional parameters to the pre-trained backbone.
Adapter methods keep most of the parameters in the model frozen and update only small-
scale injected parameters. Bottleneck-structured adapters (Bapna et al., 2019; Houlsby
et al., 2019; Pfeiffer et al., 2020a,b; Rebuffi et al., 2017; Riicklé et al., 2020; Stickland
and Murray, 2019; Sung et al., 2022; Wang et al., 2020c; Zhang et al., 2021b) adopt
a residual pathway to leverage both original and task-specific knowledge by learning
down-projection and up-projection with a nonlinear activation. Others (Mahabadi et al.,
2021) propose a hyper-network to generate model weights or decompose the dense
weighted matrix into the low-rank matrix to reduce parameters (Karimi Mahabadi
et al., 2021). Instead of introducing extra modules, prompt methods (Ding et al.,
2021; Gao et al., 2020; Hu et al., 2021b; Ju et al., 2022; Li and Liang, 2021; Liu
et al., 2023d, 2022b) wrap the input with context. A representative work VPT (Jia
et al., 2022a) prepend learnable prompts to the input tokens before feeding it into each
Transformer block. VPT includes two variants VPT-Shallow and VPT-Deep associated
with the number of inserted layers. VPT-Shallow simply prepends prompts to the first
transformer layer while VPT-Deep prepends prompts to all the layers. However, it*‘s
inflexible when applying the method to new tasks since it relies on hand-crafted prompt
length selection. Apart from the adapter and prompt tuning, a recent study SSF (Lian
et al., 2022) introduces two learnable vectors to scale and shift the feature map in each
transformer operation and achieves promising results. These extra parameters will lead
to a substantial increase in computational overhead and hinder the rate of convergence.
Our method solves these issues without adding parameters or changing the network
topology so it can effectively alleviate such problems.

Selection-based methods (Guo et al., 2020a; Zaken et al., 2021; Zhao et al., 2020)
do not introduce any new parameters but directly select part of the parameters to be
optimized without modifying the intrinsic architecture of the model. Bitfit (Zaken
et al., 2021) only fine-tunes bias vectors in the pre-trained model. Other methods only
fine-tune the top-K layers (Houlsby et al., 2019) or the last linear layer (Jia et al., 2022a)
with other layers freeze. Despite efficiency, they suffer a significant accuracy drop
compared to the full fine-tuning since the manually specified parameters tend to be a
non-optimal solution. Our gradient-based parameter selection method falls into this
category. Since the gradient can serve as a tool for determining parameter significance,
our method is intuitive but surprisingly effective.

Subset network training

Standard pruning technique (Gale et al., 2019; Han et al., 2015a,b; Kruschke and Movel-
lan, 1991; Li et al., 2016a; Wen et al., 2016) naturally uncovers subnetworks whose
initializations made them capable of training effectively. The lottery ticket hypoth-
esis (Frankle and Carbin, 2018) articulate that subnetworks can reach test accuracy
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comparable to the original network. Drawing from the theory, fine-tuning methods
based on subset network are widely studied. SpotTune (Guo et al., 2019) designs a
policy network to make routing decisions for subset networks. Child-tuning (Xu et al.,
2021) iteratively updates a subset of parameters by masking out the gradients of the
non-child network during the backward process. However, the computing overhead
led by hyper networks or iterative parameter selection makes none of these methods
parameter-efficient. We fix the position of parameters that will be updated by simple
gradient weights sorting before training which makes our method parameter efficient.

B.6 Disscussion

Why sub-network? There is a lot of research in the field of neural network pruning,
where researchers aim to identify the importance of the parameters in a network and
eliminate some unnecessary parameters without performance deterioration (about 90%
parameters of the model are pruned) (Chen et al., 2020a; Cun et al., 1990; Li et al.,
2016b; Prasanna et al., 2020). Motivated by this, we posit the existence of a sub-
network containing crucial parameters that can be fine-tuned for optimal performance
on downstream tasks.

Magnitude or gradient? In contrast to the approaches of identifying the importance
of the parameters in (Chen et al., 2020a; Cun et al., 1990; Li et al., 2016b; Prasanna et al.,
2020), which rely on weight magnitude to determine parameter importance, our method
identifies parameter importance based on gradient values. An important difference
between gradient and magnitude is that the gradient-based method is task-specific, as
the gradient is calculated by the backpropagation of the loss for a specific task, while
the magnitude-based method use a set of same parameters for all downstream tasks.
However, our ablation study in the main body has shown gradient-based method perform
bwtter and the Figure 11 also show that each task has it own task-specific parameters.

B.7 Limitations and societal impacts

Limitations Several studies (Karimi Mahabadi et al., 2021; Pfeiffer et al., 2020a;
Sung et al., 2022) have demonstrated that certain similar tasks can be optimized together
through parameter sharing, resulting in improved performance across all individual
tasks. However, our work focuses on selecting distinct parameters for various tasks.
Although we already tune affordable parameters, we do not fully exploit the potential
of parameter sharing across different tasks. Therefore, we posit that our work can be
extended to a multitask setting, where tasks share tuning parameters and thus further
reduce the total number of learnable parameters.

Societal impacts Our method can effectively fine-tune pre-trained models for down-
stream tasks by adjusting less than 1% of the network’s parameters. This is particularly
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beneficial when dealing with large pre-trained models and multiple downstream tasks,
as it saves computational resources, memory costs, and reduces carbon emissions. Our
approach maintains the model’s original structure without introducing any additional
parameters during both the training and inference stages, distinguishing it from other
methods. However, similar to other fine-tuning approaches, our method relies on a
pre-trained model. If this upstream pre-trained model is trained on illicit data, it may
also violate the use of fine-tuning methods.
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C Appendix to Chapter 5

C.1 Datasets

Our experiments primarily target both natural language understanding (NLU) and
natural language generation (NLG) tasks. Specifically, we evaluate commonsense
reasoningand arithmetic reasoning for NLG task and GLUE for NLU task.

Commonsense Reasoning

We evaluate the our method on eight widely-used datasets that span various forms of
open-ended question answering:

* BoolQ(Clark et al., 2019a): a yes/no question-answering dataset composed of
naturally occurring questions. Following prior work, we remove the associated
passages to focus solely on the question context.

* PIQA(Bisk et al., 2020): designed to test physical commonsense, this dataset
requires selecting the most plausible action in a given hypothetical situation.

* SIQA(Sap et al., 2019): targets social commonsense by asking models to reason
about human actions and their social consequences.

* HellaSwag(Zellers et al., 2019b): involves selecting the most coherent sentence
completion given a narrative context, emphasizing grounded commonsense infer-
ence.

* WinoGrande(Sakaguchi et al., 2021), inspired by the Winograd Schema Chal-
lenge(Levesque et al., 2012), tests pronoun resolution in context, requiring fine-
grained commonsense reasoning.

* ARC-Easy (ARC-e)(Clark et al., 2018): a benchmark of multiple-choice elemen-
tary science questions with relatively straightforward reasoning.

* ARC-Challenge (ARC-c)(Clark et al., 2018): a more difficult subset of ARC
designed to be resistant to simple co-occurrence-based solutions.

* OpenBookQA (OBQA) (Mihaylov et al., 2018): a knowledge-intensive QA
dataset requiring multi-hop reasoning across both textual context and external
knowledge.

We adopt the same experimental protocol as described in Hu et al. (2023a), ag-
gregating the training sets of the above datasets into a unified corpus referred to as
COMMONSENSE170K. Fine-tuning is conducted on this joint dataset, and evaluation is
performed on the individual test sets of each benchmark. Detailed dataset statistics and
simplified training examples are also available in Hu et al. (2023a).
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Arithmetic reasoning

We train and evaluate our method using seven benchmark datasets that span a diverse
range of mathematical word problem domains:

* AddSub(Hosseini et al., 2014), a dataset composed of elementary arithmetic
problems involving addition and subtraction.

* AQuA(Ling et al., 2017), which presents algebraic word problems in a multiple-
choice format.

* GSMS8K(Cobbe et al., 2021), consisting of grade-school math problems that
require multi-step reasoning.

* MAWPS(Koncel-Kedziorski et al., 2016), a collection of math word problems
with varied linguistic and arithmetic complexity.

* MultiArith(Roy and Roth, 2015), featuring problems that demand reasoning
through multiple arithmetic steps.

* SingleEq(Koncel-Kedziorski et al., 2015), which includes math problems that
can be solved by formulating a single equation of varying complexity.

* SVAMP (Patel et al., 2021), designed to test a model‘‘s robustness to structural
variations in math problem formulations by rephrasing original problems in a
challenging way.

* MAWPS (Koncel-Kedziorski et al., 2016) is a collection of math word problems
of varying complexity, involving basic arithmetic operations such as addition,
subtraction, multiplication, and division. Each instance is annotated with both the
natural language problem and its corresponding symbolic equation, facilitating
studies in semantic parsing and numerical reasoning.

We follow the experimental design of Hu et al. (2023b), which also provides dataset
statistics and representative examples for each benchmark. Our training is conducted on
a unified dataset‘‘MATH10K*‘which comprises training samples from four datasets:
GSMS8K, MAWPS, MAWPS-single, and AQuA. Following (Wu et al., 2024c), we
compare our method with LoReFT and DiReFT on four tasks: GSM8K, MAWPS,
SVAMP and AQuA and with other baselines on all above tasks except for MAWPS Hu
et al. (2023b).

Natural language understanding

Following the evaluation protocol established by Wu et al. (2024b), we ensure a fair
assessment on the GLUE validation set by partitioning it into two subsets. One subset,
determined using a fixed random seed, is reserved for in-training evaluation, while the
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other is used exclusively for final testing. After each training epoch, we evaluate the
model on the in-training subset and select the checkpoint with the best performance
across all epochs for testing. For datasets with relatively large validation sets (i.e., QQP,
MNLI, and QNLI), we randomly sample 1,000 instances for in-training evaluation.
For smaller datasets, we use 50% of the validation data for this purpose. As for the
evaluation metrics, we adopt the Matthews correlation coefficient for CoLA, the Pearson
correlation coefficient for STS-B, and classification accuracy for the remaining tasks.
For MNLI, we report results on the matched subset only.

C.2 Results on natural language understanding tasks

Table 12: Performance comparison with existing PEFT methods on RoBERTa-base for
the GLUE benchmark. *Most baseline results are taken from Wu et al. (2024b). The
result is presented as the mean with standard deviation (SD) over five runs with different
random seeds. TResults are from Wu et al. (2024c¢) as it shares the same experimental
setting with Wu et al. (2024b). For a fair comparison, our NeuroAda also follows the
same setting.

Model PEFT Params (%) Accuracy (1) (SD)
MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B  Avg.
FT 100% 87.3(0.30) 94.40006) 87.900.01) 62.4320) 92.500.22) 91.7(0.19) 78.3(3200 90.6(059) 85.6
Adapter* 0.318% 87~0([)v28) 933(0.40) 884(154) 60-9(3.09) 92'5(0.02) 90-5(0,(18) 765(2.26) 90'5(().35) 85.0
LoRA* 0.239% 86.6(0.23) 93.90.49) 88.7(076) 59.7(a36) 92:6(0.10) 904(0.08) 753279 903051y 84.7
AdaPtCTFNN* 0.239% 87.1 (0.10) 930(0.05) 88‘8(1.38) 585(1.69) 92~0(0.28) 90‘2(007) 777(1.93) 90~4(0.31) 84.7
RoBERTa NeuroAda 0.2674% 87.7(012) 94.3(0,]0) 89.7(0,]3) 56.1(0_09) 920(0.18) 90.2(023) 82.0(0,03) 91.0(0123) 854
Base  BitFit* 0.080% 84.7(00s) 94.00s7) 88157 54.0@or) 91.0005) 873002 698151 895035 823
RED* 0.016% 8390014y 93.9031) 8920008y 61.00206) 90.70.35) 87.2017) 78.02.06) 90.4(0.32) 84.3
DiReFT 0.015% 82.5(.22) 92.6(0.76) 88.3(123) 58.6(1.99) 91.3(0.19) 86.4(027) 7640145y 89.3(056) 83.2
LoReFT 0.015% 83.1¢026) 93.4(0.61) 8920262) 60.40260) 91.200.25) 87.4(023) 79.0276) 90.0029) 84.2
NeuroAda 0.0297% 85.1(009) 94'3(0.16) 90.7(0}07) 59.8(0_12) 92.1(0‘12) 88.1(()‘24) 79.1(0,23) 90.7(0110) 85.0

we evaluate our NeuroAda on the GLUE for natural language understanding tasks.
The results are shown in table 12.

C.3 Results of commonsense and math reasoning on LLaMA3-8B

The results of commonsense reasoning and math reasoning are shown in Table 13

C.4 Hyperparameters
Hyperparameter tuning and decoding strategy

Arithmeric reasoning Following Wu et al. (2024c), we adopt their training and
validation splits of the GSM8K dataset. Models are trained on the training set, and
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Table 13: Performance comparison with existing PEFT methods on eight commonsense
reasoning datasets and seven arithmetic reasoning datasets on model LLaMA3-8B.
*Most baseline results are taken from Hu et al. (2023a). 'Results are from Wu et al.
(2024c), ¥ results are taken from He et al. (2024) and *results are from Liu et al. (2024c),
as they share the same experimental setting with Hu et al. (2023a). For a fair comparison,
our NeuroAda is also trained for 3 epochs to align with these baselines. *When 3-epoch
results are not available in the original paper, we re-trained the baselines using the
official code and their reported best hyperparameters. All results for our method are
averaged over three runs with different random seeds. Our method selects the top-20
and top-1 input connections per neuron for the high-budget and low-budget parameter
groups, respectively.

Model PEFT Params (%) Accuracy (1)

Commonsense Reasoning
BoolQ PIQA SIQA  HellaS. WinoG. ARC-e ARC-c OBQA Avg.

LoRA* 0.700% 70.8 85.2 79.9 91.7 84.3 84.2 71.2 79.0 80.8

DoR A 0.361% 74.5 88.8 80.3 95.5 84.7 90.1 79.1 87.2 85.0

DoRA* 0.710% 74.6 89.3 79.9 95.5 85.6 90.5 80.4 85.8 85.2

Llama3 SMT* 0.710% 75.7 88.4 81.4 96.2 88.2 92.7 83.2 88.6 86.8
(8B) NeuroAda 0.343% 75.0 89.3 83.0 96.5 89.2 93.0 82.9 89.6 87.3
DiReFT* 0.026% 73.0 89.8 81.4 96.1 87.8 92.3 79.9 85.4 85.7

LoReFT* 0.026% 72.9 89.1 81.7 96.1 88.0 92.0 80.1 85.0 85.6
NeuroAda 0.017% 71.7 84.9 81.4 93.9 85.4 88.8 77.0 83.8 83.4

Arithmetic Reasoning
MulAri GSMSK AddSub AQuA SinEq SVAMP MAWPS Avg.

DiReFT* 0.026% — 57.2 — 30.1 — 68.6 87.8 60.9
LLaMA3 LoReFT* 0.026% — 56.9 — 24.8 — 70.9 88.2 60.2
(8B) NeuroAda 0.017% - 63.7 - 26.4 — 75.0 88.7 63.5

hyperparameters are selected based on performance on the validation set. All hyperpa-
rameters are tuned using LLaMA-7B, and the resulting configuration is directly applied
to LLaMA-13B, LLaMA2-7B, and LLaMA3-8B without additional tuning. We use a
maximum sequence length of 512 tokens during training and hyperparameter tuning,
and generate up to 32 new tokens during inference. Table 14 summarizes the full
hyperparameter search space.

Dataset MATH10K is annotated with language model-generated chain-of-thought
reasoning steps. In the tasks, models are required to generate a chain of thought (Wei
et al., 2022) before producing the final answer. The included tasks are AddSub (Hosseini
et al., 2014), AQuA (Ling et al., 2017), GSM8K (Cobbe et al., 2021), MAWPS (Koncel-
Kedziorski et al., 2016), MultiArith (Roy and Roth, 2015), SingleEq (Koncel-Kedziorski
etal., 2015), and SVAMP (Patel et al., 2021). See Appendix C.1 for detailed descriptions
of each task. For fair comparison, we follow both evaluation settings used in prior
work. Specifically, Wu et al. (2024c) report results on GSM8K, AQuA, SVAMP, and
MAWPS, while Hu et al. (2023b) evaluate on MultiArith, GSM8K, AddSub, AQuA,
SingleEq, and SVAMP. We compare our method with theirs under both settings to
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Table 14: Hyperparameter search space for the LLaMA-7B model using our NeuroAda
on the validation set of the GSM8K. The best-performing settings are underlined for
selecting top-1 and wavy underline for selecting top-20 parameters per neuron in the
model. Greedy decoding (without sampling) is used throughout the hyperparameter
tuning process.

Hyperparameters (LLaMA-7B on GSM8K)

Optimizer AdamW
LR {6x107%,9%x 1074, 1x1073,3x1073,6x1073,9x 1073, 1x1072,3x1072 }
Weight decay {0}
LR scheduler Linear
Batch size {8, 16, 32}
Warmup ratio {0.00, 0.06, 0.10}
Epochs {3}
Top-k {1, 20}

ensure a comprehensive and fair evaluation.

Commonsense reasoning Motivated by Wu et al. (2024c), we perform hyperpa-
rameter tuning on COMMONSENSE 15K, a subset of the full COMMONSENSE170K
benchmark. Details of the search space are provided in Table 15. We divide COMMON-
SENSE15K into training and validation splits using a ratio 7:3. Hyperparameter tuning
is conducted exclusively on LLaMA-7B, and the optimal configuration identified on the
validation set is reused for all other models, including LLaMA-7B/13B, LLaMA2-7B,
and LLaMA3-8B, during training on the full COMMONSENSE 170K dataset.

For the commonsense reasoning benchmark, we adopt greedy decoding without
sampling, as the task requires multi-token classification. In contrast, for the arithmetic
reasoning benchmark, we follow the decoding setup used by Hu et al. (2023b), em-
ploying a higher decoding temperature of 0.3. This change is made to avoid instability
issues caused by near-zero token probabilities, which can lead to decoding errors in the
HuggingFace implementation when using beam search.

Dataset Our comparative experiments are primarily conducted on LLaMA-7B, using
two lightweight reasoning datasets to enable rapid evaluation and comparison: COM-
MONSENSE 15K for commonsense reasoning and GSM8K for arithmetic reasoning.
COMMONSENSE1 5K is a subset of the larger COMMONSENSE 170K dataset, originally
partitioned by Hu et al. (2023b). (1) COMMONSENSE 170K comprises eight common-
sense reasoning tasks, including BoolQ (Clark et al., 2019a), PIQA (Bisk et al., 2020),
SIQA (Sap et al., 2019), HellaSwag (Zellers et al., 2019b), WinoGrande (Sakaguchi
etal., 2021), ARC-e, ARC-c (Clark et al., 2018), and OBQA (Mihaylov et al., 2018),
as detailed in Appendix C.1. All examples are presented as multiple-choice questions,
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Table 15: Hyperparameter search space for the LLaMA-7B model using our NeuroAda
on the validation set of the COMMONSENSE15K. The best-performing settings are
underlined for selecting top-1 and wavy underline for selecting top-20 parameters
per neuron in the model. Greedy decoding (without sampling) is used throughout the
hyperparameter tuning process.

Hyperparameters (LLaMA-7B on COMMONSENSE15K)

Optimizer AdamW
LR {7x107%,9%x107%,2x1073,4x1073,6x 1073, 8x 1073, 1x1072,2x 1072 }
Weight decay {0}
LR scheduler Linear
Batch size {8, 16, 32}
Warmup ratio {0.00, 0.06, 0.10}
Epochs {3}
Top-k {1,20}

where the model is required to directly output the correct option without generating
intermediate rationales. We adopt the prompt template from Hu et al. (2023b), with
an additional string normalization step (removal of leading and trailing whitespace).
We split COMMONSENSE 15K into training and validation sets using a 7:3 ratio for our
experiments. (2) GSM8K(Cobbe et al., 2021) dataset comprises grade-school-level
arithmetic word problems that require multi-step reasoning to arrive at the correct
answer. In contrast to COMMONSENSE1 5K, solving GSMS8K typically involves gen-
erating a chain-of-thought (Wei et al., 2022) prior to producing the final answer. We
adopt the same prompt template as used in Hu et al. (2023b).

Natural language understanding. Following Wu et al. (2024c), we perform hyper-
parameter tuning for each GLUE task individually using both RoBERTa-base. Hy-
perparameters are selected based on performance on a held-out validation set with a
fixed random seed of 42. To obtain the final results, we evaluate the models using
four additional unseen seeds: 43, 44, 45, 46. We adopt the evaluation protocol of Wu
et al. (2024b). For QQP with RoBERTa-large, due to observed stochasticity across
repeated runs with the same seed, we report the best result from three trials for each
seed. As noted by Wu et al. (2024b), the evaluation results on RTE are unstable due to
the dataset‘s small size. We follow their approach and adjust the set of random seeds
accordingly to ensure fair comparison. Additionally, we replace one or two random
seeds for CoLA to improve evaluation stability.

Preliminary Analysis We compare the mask-based method‘‘which applies binary
masks to zero out the gradients of unselected (frozen) parameters* ‘with the addition-
based method, which introduces new trainable parameters to bypass the selected ones,



128 Chapter 9. Appendices

Table 16: Hyperparameter search space for the LLaMA-7B model using our NeuroAda
on the validation set of the GSM8K and COMMONSENSE 15K for different number
of trainable parameters. Greedy decoding (without sampling) is used throughout the
hyperparameter tuning process.

Hyperparameters on LLaMA-7B for different number of trainable parameters

Optimizer AdamW
LR {6x107°,9x107°, 5% 1074, 7x 1074, 9% 1074, 3x 1073, 6x1073,9x 1073, 1x 1072 }
Weight decay {0}
LR scheduler Linear
Batch size {16}
Warmup ratio {0.06}
Epochs {3}
Top-k {1510 2050 100 300 500}

rather than tuning them directly, for the purpose of sparse fine-tuning. This comparison
is conducted across three dimensions: effectiveness, GPU memory usage, and training
efficiency. We further investigate the effectiveness of the proposed addition-based
method, NeuroAda, which is designed to ensure that all neurons in the network retain
the potential to update their activation states during fine-tuning. To this end, we analyze
the proportion of neurons actively involved in the tuning process and evaluate various
parameter selection strategies for determining which neurons are activated.

To ensure a fair comparison between the addition-based and mask-based approaches,
as well as across different parameter selection strategies, we conduct a hyperparameter
search over a range of learning rates for each experiment using the training set. The
optimal configuration is selected based on performance on the validation set. This step
is essential, as PEFT methods are generally sensitive to the choice of learning rate (Wu
et al., 2024¢). The complete hyperparameter search space is provided in Table 16.

C.5 Advantages of NeuroAda

NeuroAda significantly reduces the backward computation costs with four core ad-
vantages. (1) It achieves mask-free sparsity by statically selecting top-k weights per
neuron and storing only a compact set of BF16 deltas and integer indices. This avoids
the memory and compute overhead associated with dynamic binary masks commonly
used in gradient-based sparse methods, as quantified in Table 5.1. (2) It requires no
warm-up or task-specific signal: the magnitude-based selection operates entirely
offline and consistently across tasks, eliminating the need for gradient accumulation
or adaptive heuristics. (3) It ensures neuron-level coverage by allocating trainable
updates to every row of the weight matrix. This guarantees that all neurons participate
in learning and avoids the dead filter problem often observed in block- or layer-wise
pruning. (4) It introduces no inference-time overhead: the sparse update tensor A is
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merged into the original weights post-training, preserving the model’s structure, runtime
efficiency, and compatibility with standard inference stacks.

C.6 Algorithm

NeuroAda follows a three-phase procedure designed for efficiency, simplicity, and
compatibility with standard inference infrastructure. As shown in Algorithm 1, the
process begins with an offline selection phase, where the top-k highest-magnitude
weights are identified per neuron based on the pretrained weight matrix. This static
selection removes the need for gradient-based importance scoring or dynamic masking
during training.

During training, only the selected top-k coordinates per neuron are updated, with all
other parameters kept frozen. This enables mask-free, neuron-wise sparse adaptation
that significantly reduces gradient computation and optimizer state memory. Crucially,
NeuroAda performs updates directly over a small number of stored deltas, requiring no
structural changes or auxiliary layers.

After training, the sparse deltas are merged into the frozen weights via an in-place
update, resulting in a model that retains its original structure and supports efficient,
standard inference. This design ensures minimal runtime overhead while offering strong
adaptation capabilities through fine-grained parameter selection.
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Algorithm 1: NeuroAda: Sparse top-k£ neuron-wise adaptation with merge-
compatible updates.

Input: pretrained weight matrix ® € R%u*din_ top-k budget k < dy, training
mini‘‘batches {(x,y)}, learning-rate 7
Output: adapted model with merged weights ®+ A

Phase 1: Offline Top-% Selection;
foreachi =1,...,d,, do

// row = neuron

‘ // store k index positions Ii<—TopK(|<I>i’;|, k:)

end
Phase 2: Sparse Training (mask-free);
For each neuron 7, initialize A; 7, < 0;
foreach mini-batch (x,y) do
// forward pass;
h—(2+A)x;
compute loss L(h,y);
// backward:
foreachi =1,...,d,, do
9i < Va1 L
Az, —=1n9i
end

end
Phase 3: One-shot Merge and Inference;
foreachi=1,...,d,, do
D7, < Piz, + Aizs
end
Delete A from memory.;
# PyTorch (illustrative)
y = F.linear (x, merged.weight,

bias)

update only selected entries;
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D Appendix to Chapter 6

In this supplemental material, we provide extra details about the content in the main
body of the paper. First, we provide detailed proof for Equation (6.12) in Appendix D.1.
Then, we discuss the limitations of our work in Appendix D.2. Moreover, the broader
impacts of our research are discussed in Appendix D.3. In addition, we present all
hyperparameters and experiment settings in Appendix D.6 for a better understanding of
the experiments and reproduction to the readers. We also provide the extended related
works in Appendix D.5. Finally, the additional experiment results are demonstrated in
Appendix D.6, which further indicate the effectiveness of our proposed method and the
consistency with the claim in the main body of the paper.

D.1 Proof for Equation

We provide the proof for Equation (6.12). According to Lagrangian duality, Equa-
tion (6.10) can be reformulated as:

L :m@inmgxﬁ(@) + A = M)(Osha — 02 1P

sha
> maxmin £(8) + (1 = M) (O — 031,) 11
> m@inﬁ(@) + (1 = M) (Osna — 02|17

where ) is the Lagrangian multiplier.

D.2 Limitations

Due to the limited computational resources, we employ grid searches in the Joint train
method to determine the optimal hyperparameter for the number of trainable parameters,
which is then utilized across all gradient manipulation methods. However, it is possible
that these methods may benefit from a more optimized hyperparameter selection for the
number of trainable parameters. Furthermore, sparse training can effectively mitigate
gradient conflicts between tasks in MTL by reducing the dimensionality of parameter
space and limiting their impact on updates between tasks. The regularization constitutes
one of the theory’s reasons. Nevertheless, we anticipate that our future research will
contribute to a deeper comprehension of multi-task learning and subsequently enhance
the performance of MTL.

D.3 Broader Impacts

The nature of our research does not directly contribute to societal impact; however,
like any machine learning paper, it has the potential to adversely affect society through
automation and job displacement. While it is challenging to predict specific risks,
similar to any technology, inadequate regulation may lead to an exacerbation of social
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Pre-trained model Random initialized model
Method SAM Swin ViT MTAN
NYU-v2 CelebA Clevr SmalINORB NYU-v2  CityScapes
Joint Train w/ ST 30.97 37.60 29.38 29.38 62.19 76.02
PCGrad w/ ST 30.97 37.60 29.38 19.63 62.19 76.02
CAGrad w/ ST 30.97 72.85 29.38 29.38 62.19 76.02
GradDrop w/ ST 30.97 49.58 29.38 29.38 62.19 76.02
MGDA w/ ST 30.97 37.60 29.38 29.38 62.19 62.19
IMTL-G w/ ST 30.97 37.60 29.38 29.38 62.19 62.19
NashMTL w/ ST 30.97 37.60 29.38 29.38 62.19 83.48
FAMO w/ ST 30.97 37.60 29.38 29.38 62.19 62.19

Table 17: Number of trainable parameters. The values in the table are expressed as
percentages (%). As we select Top-K input parameters among all input connections
for each neuron, therefore the same K might lead to different percentages of trainable
parameters for different models. For example, K=300 results in 30.97% in SAM,
37.60% in Swin, and 29.38% in ViT for the pre-trained model.

and economic inequality. The positive aspect lies in the potential environmental impact
of our work, as multi-task learning enables information sharing among tasks, thereby
reducing data requirements and further minimizing energy consumption during training.

D.4 Detailed experiment setting
Number of trainable parameters

We provide the number of trainable parameters for all experiments conducted in our
paper. As shown in Table 17, most of them have the same percentage of trainable
parameters within a model across different methods. In addition, in general, we can
observe that sparse training for the pre-trained model needs ~30% while that for random
initialized model needs ~60%.

Implementation details

Following the work of Nash (Navon et al., 2022), we apply all gradient manipulation
techniques to the gradients of the shared weights. We set the hyperparameter c of
CAGrad to 0.4, as it has been reported to yield optimal performance for NYUv2
and Cityscapes datasets (Liu et al., 2021a). The experiments were conducted on the
A100 80G GPU. Typically, training with SAM using NYU-v2 and Swin with CelebA
requires approximately 1 day for a gradient manipulation method. Training ViT with
SmallNORB takes around 18 minutes for a gradient manipulation method, while training
ViT with Clevr takes about 30 minutes. On the other hand, training MTAN with NYU-
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v2 demands roughly 18 hours for a gradient manipulation method, whereas training
MTAN with CityScapes necessitates approximately 12 hours.

SAM, ViT, Swin For all methods, including single-task learning, the gradient manip-
ulation method, and our sparse training, we employed a batch size of 3 and searched for
the optimal learning rate from the set {2e-4, 5e-5}, and then the best results are reported.
The reason is that we find the optimal learning rate for sparse training is bigger than
that for full parameters training. Therefore, for most methods, the optimal learning rate
for sparse training is 2e-4 and that for the full parameters training is Se-5. we also use
data augmentations for all methods, following (Liu et al., 2021a). The batch size used is
set to be 3 for NYUv2 dataset, and 256 for CelebA, and 128 for SmalINORB and Clevr.

MTAN Following the works in (Liu et al., 2021a; Navon et al., 2022), we incorporate
data augmentations during training for both Joint Train method and all gradient manipu-
lation methods. Each method is trained for 200 epochs with an initial learning rate of
0.0001, which is then reduced to 0.00005 after 100 epochs. For Multi-Task Learning
(MTL) methods, we utilize a Multi-Task Attention Network (MTAN) (Liu et al., 2019b)
based on SegNet architecture proposed by (Badrinarayanan et al., 2017). Similar to
previous studies (Liu et al., 2021a), the STL baseline refers to training task-specific Seg-
Net models. The batch size used is set to be 2 for NYUv2 dataset and 8 for CityScapes
dataset respectively. To align with prior research on MTL including (Badrinarayanan
etal., 2017; Liu et al., 2021a; Yu et al., 2020), we report the test performance averaged
over the last 10 epochs.

D.5 Extended related work

Multi-task learning Multi-task learning (Zhang and Yang, 2021) aims to improve
the overall performance of all tasks. In this work, we focus on a conventional setup of
multi-task learning (Vandenhende et al., 2021): given a single input, multi-task models
perform different and related predictions, such as segmentation, depth and surface
normal. In other words, the input is shared by different tasks. In this paper, we roughly
divide existing MTL into two categories:

1) Multi-task optimization. Recent works (Chen et al., 2020e; Liu et al., 2023a,
2021a,c; Navon et al., 2022; Sener and Koltun, 2018; Yu et al., 2020) provide impres-
sive results in solving the task imbalance during optimization. The rationale behind
these works is that re-weighting all task gradients or losses helps multi-task models
reduce conflicting gradients among tasks (Liu et al., 2021a; Sener and Koltun, 2018).
Specifically, some works (Chen et al., 2020e; Liu et al., 2021c; Sener and Koltun, 2018)
propose to form a new update gradient at each optimization by linearly combining task
gradients. Other works (Kendall et al., 2018; Liu et al., 2023a) learn dynamic loss
scale to balance different tasks during training. However, it is challenging to scale
up most existing optimization works to giant foundation models due to non-trivial
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Segmentation Depth Surface Normal
Angle Distance | Within £° 1
Mean Median 11.25 225 30

Random  59.85 80.09 0.3357 0.1359 22.17  16.12  36.08 64.50 7556 6.014
Global 59.53 79.38 0.3380 0.1373  22.32 16.32  35.62 63.93 75.16 6.855
Reverse  59.35 79.57 0.3417 0.1396  22.31 16.25  35.98 64.07 75.16  6.960

Ours 60.03 79.96 0.3320 0.1353  21.98 15,92 36.69 64.92 75.82 5314

Methods Am% |

mloU 1 Pix Acct AbsErr| Rel Err ]

Table 18: Different sparse training methods on SAM model with NYU-v2 datasets.

computational and memory costs. In this paper, we propose a neuron-based parameter
selection to sparsely fine-tune the pre-trained model, which boosts the performance of
most optimization methods.

i1) Multi-task architecture In this branch, multi-task methods design different archi-
tectures to improve the exchanging or sharing of information among tasks (Vandenhende
et al., 2021). Regarding where tasks interact, multi-task architectures are separated
into encoder-focused and decoder-focused. The former shares the information in the
encoder by the transformation of activations among tasks (Misra et al., 2016), learnable
task-specific attention modules (Liu et al., 2019b), branching networks for similar
tasks (Guo et al., 2020b) and so on. The latter recursively uses task predictions to im-
prove overall performance (Xu et al., 2018; Zhang et al., 2018b, 2019). However, these
architectures still suffer from the task imbalance issue during multi-task optimization.
In this paper, our work focuses on boosting multi-task optimization. As one of the
multi-task optimization methods, our method can seamlessly generalize to different
backbone models.

Training with subset of parameters several methods already proposed in single-
task learning. several methods select a subset of parameters based on a certain pre-
defined rule, such as gradient (Fu et al., 2023; Zhang et al., 2023d) and magnitude
of parameters (Lagunas et al., 2021). In addition to selecting parameters by hand
design, (Mostafa and Wang, 2019; Sanh et al., 2020; Xu et al., 2021) automatically
select the subset of parameters through optimization. Although sparse training has been
extensively investigated in single-task learning, its application in multi-task learning
remains relatively unexplored. (Calandriello et al., 2014; Sun et al., 2020) learning
to share information between tasks using a sparse model. Differing from them, in
this paper, we systematically research the gradient conflict via the sparse training
perspective.

D.6 Detailed experiment results

In this section, we provide the detailed experiment results conducted in the main body
of our paper, including the average incident of gradient conflict, the incident of gradient
conflict for all epochs, and visualization of the gradient conflict for Joint Train and all
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Figure 13: The distribution of selected trainable parameters for different sparse training
methods over different blocks. The experiments are conducted on SAM model with
NYU-v2 dataset.

gradient manipulation methods.

Ablation study

The detailed results for various sparse methods are provided in Table 18, which is the
full version of Figure 6.5c. It can be observed that, with the exception of Pix Acc in
segmentation, our sparse method outperforms other methods. In addition, we provide
the distribution of the selected parameters using different sparse training over different
blocks of the model. As shown in Figure 13, the parameters selected by our sparse
training method and Random are evenly distributed over the whole network. As for
Global selecting the parameters with the highest magnitude, the distribution of selected
parameters is largely different over different blocks

NYU-v2 on SAM

The incidence of gradient conflict for Joint Train and gradient manipulation method
over all epochs are shown in Figure 14, which is the full version of Figure 6.4 in the
main body of the paper.

NYU-v2 on MTAN

We also conduct experiments on MTAN with NYU-v2 dataset. MTAN is a random
initialized model. As we can see in Table 19, even for the random initialized model,
sparse training can also reduce the incidence of gradient conflict. The visualization
of the occurrence of gradient conflict for each epoch is shown in Figure 16 and the
average incidence of gradient conflict across all epochs for different methods is shown
in Figure 15. As for the performance of the overall tasks on NYU-v2, the sparse training
improves not only the overall performance (Am%) but also the performance of each task
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Average incidence of GC (%)

Methods
All epochs  Last 50% epochs
Joint Train  36.01 39.87
w/ ST 33.86 (2.15) 36.45(3.42)
PCGrad 35.71 39.51
w/ ST 34.05 (1.66) 37.25(2.26)
CAGrad 37.21 40.93
w/ ST 34.14 (3.07) 37.04 (3.89)
GradDrop 36.37 39.71
w/ ST 34.42 (1.95) 37.10(2.61)
MGDA  37.76 42.1
w/ ST 37.15(0.61) 41.25(0.85)
IMTL-G 37.14 41.22
w/ ST 35.81 (1.33) 39.17 (2.05)
NashMTL 37.19 40.79
w/ ST 35.83 (1.36) 39.0 (1.79)

Table 19: Average incidence of gradient conflict between tasks over epochs for different
methods. The improvement by sparse training is provided in (e). We calculate the
average incidence of gradient conflict over all epochs and the last 50% epochs during
training MTAN on NYUv2.

for all methods including Joint Train and all gradient manipulation methods, as shown
in Table 20. In addition, following (Navon et al., 2022), we conduct the experiments
three times with three different seeds. The mean ° std is presented in Table 20, we can
observe that the sparse training is robust to the random seed.

NYU-v2 on Swin

In order to investigate how the incidence of gradient conflict changes with varying
model sizes, we conduct experiments on Swin/Tiny, Swin/Base and Swin/Large through
the Joint Train. As depicted in Table 21, there is an observed increase in the incidence
of gradient conflict as the model size increases. Additionally, the performance of tasks
improves as the model size increases Table 22.

CelebA on Swin

Following (Navon et al., 2022), we train CelebA on Swin for only 30 epochs, because
there are many more tasks in this dataset compared with other datasets, which leads to a
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Segmentation Depth Surface Normal
Methods o Dicts o Am% |
mloU 1 Pix Acc 1 Abs Err | Rel Err | Angle Distance | Within £° 1
Mean Median 11.25 22.5 30
STL 38.30 63.76 0.6754 0.2780 25.01 19.21 30.14 57.20 69.15 -
Joint Train ~ 39.29 65.33 0.5493 0.2263 28.15 23.96 22.09 47.50 61.08 5.59
w/ ST 41.04 (‘0.28) 66.05 (‘0.12) 0.5417 (‘0.0008) 0.2232 (‘0.0011) 27.40(‘0.05) 22.90(‘0.12) 23.58(‘0.13) 49.59(‘0.14) 63.01(‘0.09) 2.49(‘0.11)
PCGrad  38.06 64.64 0.5550 0.2325 27.41 22.80 23.86 49.83 63.14 3.97
w/ ST 40.49 (‘0.32) 66.17(‘0.23)  0.5441 (‘0.0023) 0.2264 (‘0.0030) 27.09 (‘0.08) 22.55(‘0.03) 24.22(‘0.12) 50.34(‘0.17) 63.63(‘0.12) 1.98(‘0.12)
CAGrad  39.79 65.49 0.5486 0.2250 26.31 21.58 25.61 52.36 65.58 0.20
w/ ST 39.93(°0.33)  66.19(‘0.16)  0.5299(‘0.0025)  0.2097(‘0.0038)  25.71(°0.02) 20.70(‘0.03) 26.86(‘0.13) 54.22(‘0.15) 67.30(‘0.13) -2.76(‘0.10)
GradDrop ~ 39.39 65.12 0.5455 0.2279 27.48 22.96 23.38 49.44 62.87 3.58
w/ ST 40.84(°0.35)  66.84(‘0.24)  0.5288(‘0.0021)  0.2209(‘0.0021)  27.18(‘0.03) 22.56(‘0.07) 24.10(‘0.11) 50.33(‘0.14) 63.67(‘0.13) 1.38(‘0.12)
MGDA 3047 59.90 0.6070 0.2555 24.88 19.45 29.18 56.88 69.36 1.38
w/ ST 32.42(°0.41) 61.61(°‘0.21)  0.5851(°0.0015)  0.2239 (‘0.0032) 24.35(°0.02) 18.61(‘0.03) 31.14(‘0.12) 58.63(‘0.15) 70.62(‘0.13) -3.09(‘0.14)
IMTL-G ~ 39.35 65.60 0.5426 0.2256 26.02 21.19 26.20 53.13 66.24 -0.76
w/ ST 40.73(°0.33)  66.00(°0.17)  0.5219(‘0.0015)  0.2100(°0.0021)  25.6(‘0.05)  20.64(‘0.04) 26.81(‘0.16) 54.38(°0.15) 67.49(°0.12) -3.18(‘0.11)
NashMTL  40.13 65.93 0.5261 0.2171 25.26 20.08 28.40 55.47 68.15 -4.04

w/ ST 39.75(°0.21)  66.45(°0.05)  0.5156(°0.0006)  0.2121(°0.0009) 24.96(°0.01) 19.80(‘0.05) 28.80(‘0.11) 56.20(‘0.10) 68.93(°0.09) -5.11(*0.07)

Table 20: The test performance on NYU-v2 dataset training on MTAN model, involving
three tasks: semantic segmentation, depth estimation and surface normal. The result
is the mean over three random seeds (std is presented in (* ®). The green cell color
indicates that sparse training improves the performance of joint training or gradient
manipulation methods. The best result is highlighted in bold.

Model / Size Average incidence of GC (%)

Swin / Tiny 37.42
Swin / Base 40.34
Swin / Large 41.84

Table 21: The average incidence of gradient conflict across all epochs during joint
training with NYU-v2 on different sizes of Swin transformer.

significant increase in computation. As we can observe in Table 23, most of the methods
including Joint Train and gradient manipulation methods can be improved by sparse
training in terms of average incidence of gradient conflict between tasks over epochs. It
is noted that the improvement by sparse training here is not significant, which is because
of the limited training epoch. Specifically, as shown in Table 6.1 and Table 19, our
sparse training improves more for later epochs. As for the performance of CelebA on
Swin, please refer to Table 6.3. The visualization for the occurrence of gradient conflict
for each epoch and average incidence of gradient conflict over all epochs for different
methods, including Joint Train and all gradient manipulation methods, are shown in
Figure 17 and Figure 18

SmallNORB on ViT

SmalINORB is a much more difficult benchmark compared to other benchmarks in this
paper. It comprises artificial objects observed under varying conditions and includes
two tasks: object azimuth and camera-elevation prediction. As shown in Table 24, even
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Segmentation Depth Surface Normal
Angle Distance | Within t° 1
Mean Median 11.25 225 30

Swin/Tiny ~ 55.22 76.54 0.3746 0.1542 2747 2170  27.81 52.40 64.05
Swin/Base  59.60 79.16 0.3419 0.1388  25.88 19.74  31.23 56.24 67.32
Swin/Large  61.34 80.28 0.3321 0.1345  25.09 1873  33.05 58.12 68.86

Model

mloU T Pix AccT AbsErr| RelErmr]

Table 22: The test performance on NYU-v2 dataset jointly training on Swin models.

for the STL, the Top 1 accuracy only achieves ~30%, therefore, we use Top 5 as an
extra metric here. We observed that even for this difficult task, sparse training can still
achieve better performance compared with Joint Train and all gradient manipulation
methods.

CityScapes on MTAN

We also conduct experiments on MTAN with CityScapes dataset. MTAN is a random
initialized model. As we can see in Table 26, even for the random initialized model,
sparse training can also reduce the incidence of gradient conflict. The reduction in the
incidence of gradient conflict for CityScapes is observed to be comparatively smaller
than that for NYU-v2. This discrepancy can be attributed to the fact that CityScapes,
which involves only two tasks, has a lower likelihood of encountering gradient conflicts
between tasks compared to NYU-v2, which encompasses three tasks. The visualization
of the occurrence of gradient conflict for each epoch is shown in Figure 19 and the
average incidence of gradient conflict across all epochs for different methods is shown in
Figure 20 . As for the performance of the overall tasks on CityScapes, the sparse training
improves all methods including Joint Train and all gradient manipulation methods, as
shown in Table 25.

FAMO

FAMO (Liu et al., 2023a) is an approximation method for gradient manipulation by
using the history of loss to compute the current task weight. We also try our sparse
training with FAMO on NYU-v2, CelebA, Clevr, SmallORB datasets with ViT, SAM,
MTAN and Swin models. As shown in Table 27, Table 29, ?? and Table 28, even for
the approximation method, sparse training method achieves the best results and further
show the effectiveness of our sparse training methods.



D. Appendix to Chapter 6

139

Average incidence of GC (%)

Methods
All epochs Last 50% epochs
Joint Train 48.78
w/ ST 46.96 (0.65) 48.48 (0.30)
PCGrad 50.83
w/ ST 4724 (1.24) 48.88 (1.95)
CAGrad 50.23
w/ ST 48.33 (-0.12)  50.40(-0.17)
GradDrop 48.72
w/ ST 47.13 (0.23)  48.57 (0.15)
MGDA 45.65
w/ ST 4430 (0.26)  44.26(1.39)
IMTL-G 47.77
w/ ST 45.03 (1.86)  46.32(1.45)
NashMTL 47.67
w/ ST 46.78(0.05)  47.34(0.33)

Table 23: Average incidence of gradient conflict between tasks over epochs for different
methods. The improvement by sparse training is provided in (e). We calculate the
average incidence of gradient conflict over all epochs and the last 50% epochs during

training Swin on CelebA.
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Figure 14: The number of occurrence gradient conflictions between tasks during training
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Figure 15: The average occurrence percentage of gradient conflict over epochs (all
epochs/last 50% epochs) during training on MTAN model with NYU-v2 datasets was
evaluated using various methods, including joint training and gradient manipulation
techniques.

Object Azimuth  Camera Elevation
Toplt TopS51T Toplt TopS5St
STL 32.92 70.06  36.56 94.67 —

Joint Train ~ 28.01 67.05 29.84 89.75 10.70
w/ ST 27.33 68.35 30.73 89.87 10.11

PCGrad 28.79  67.85 30.10 88.44 9.99
w/ ST 27539  67.92 31.18 90.18 9.71

CAGrad 28.72 68.42 29.33 87.93 10.50
w/ ST 28.59 68.21 29.82 88.37 10.22

GradDrop  27.50 66.13 29.86 88.50 11.73
w/ ST 28.34  67.79 29.52 88.38 10.76

MGDA 30.82 70.13 27.29 86.16 10.15
w/ ST 28.28 68.88 30.01 89.47 9.79

IMTL-G 29.57 69.92 28.51 86.74 10.19
w/ ST 27.65 69.09 30.01 89.66 10.15

NashMTL  27.02 66.88 30.83 89.74 10.84
w/ ST 28.17  67.93 31.01 89.35 9.57

Methods AmY% |

Table 24: The test performance on SmalINORB dataset trained on ViT. The green
cell color indicates that sparse training improves the performance of joint training or
gradient manipulation methods. The best result is highlighted in bold.
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Figure 16: The number of occurrence gradient conflictions between tasks during tuning
MTAN on NYUv2 dataset.
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Figure 18: The average occurrence percentage of gradient conflict over epochs (all
epochs/last 50% epochs) during training on Swin model with CelebA datasets was
evaluated using various methods, including joint training and gradient manipulation
techniques.

Methods Segmentation Depth Am% |
mloU 1+ Pix AccT AbsErr| RelErr]
STL 77.61 94.15 0.0122 35.68 —

Joint Train  78.14 94.29 0.0174 59.21 26.87
w/ ST 78.34 94.34 0.0143 55.00 17.48

PCGrad 77.79 94.21 0.0155 51.99 19.96
w/ ST 77.79 94.26 0.0160 51.99 19.22

CAGrad 76.82 93.70 0.0138 53.74 16.26
w/ ST 77.20 94.01 0.0150 39.85 8.88

GradDrop  77.91 94.28 0.0154 55.58 20.34
w/ ST 78.34 94.38 0.0163 48.95 17.45

MGDA 69.91 92.17 0.0124 40.68 6.91
w/ ST 68.38 91.91 0.0128 33.19 3.17

IMTL-G 77.55 94.10 0.0135 47.17 10.65
w/ ST 75.75 93.98 0.0138 40.16 7.10

NashMTL  77.51 94.22 0.0152 36.36 6.68
w/ ST 76.87 94.09 0.0148 33.30 3.99

Table 25: The test performance on CityScapes dataset training on MTAN model. The
green cell color indicates that sparse training improves the performance of joint training
or gradient manipulation methods. The best result is highlighted in bold.
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Average incidence of GC (%)

Methods
All epochs  Last 50% epochs
Joint Train  39.72 40.99
w/ ST 38.79 (0.93) 40.02 (0.97)
PCGrad  39.98 41.06
w/ ST 38.66(1.32) 39.97(1.09)
CAGrad  39.39 40.94
w/ ST 37.77(1.62) 39.42(1.52)
GradDrop 39.32 40.72
w/ ST 39.03(0.29) 40.12(0.60)
MGDA  36.37 39.69
w/ ST 36.14(0.23)  39.38(0.31)
IMTL-G  37.72 39.51
w/ ST 36.83(0.89) 38.72(0.79)
NashMTL 38.40 40.69
w/ ST 38.04(0.36) 40.26(0.43)

Table 26: Average incidence of gradient conflict between tasks over epochs for different
methods. The improvement by sparse training is provided in (e). We calculate the
average incidence of gradient conflict over all epochs and the last 50% epochs during
training MTAN on CityScapes.

Segmentation Depth Surface Normal
Methods . o AmY% |
mloU 1T Pix AcctT AbsErr| RelErr] Angle Distance | Within ° 1
Mean Median 11.25 225 30
FAMO 57.64 78.59 0.3574 0.1463  19.396 12.846 45.61 71.87 80.59 —0.5669
w/ ST 57.68 78.79 0.3520 0.1430  19.279 12.711 46.12 72.06 80.72 —1.353

Table 27: The test performance on NY U-v2 dataset training on SAM model. The green
cell color indicates that sparse training improves the performance of joint training or
gradient manipulation methods. The best result is highlighted in bold.
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Figure 19: The number of occurrence gradient conflictions between tasks during tuning
MTAN on CityScapes dataset.



D. Appendix to Chapter 6 147

S

A Baseline (All epochs) Ml Baseline w/ ST (All epochs) M Baseline (Last 50% epochs) Ml Baseline w/ ST (Last 50% epochs)

SN

=

Average incidence of GC (%)

SR

(=]

Joint Train PCGrad CAGrad GradDrop MGDA IMTL-G NashMTL

Figure 20: The average occurrence percentage of gradient conflict over epochs (all
epochs/last 50% epochs) during training on MTAN model with CityScapes datasets was
evaluated using various methods, including joint training and gradient manipulation
techniques.

CelebA Clevr NYU-v2

Methods ~ Am% | Counting Depth — \ o/ = A0

(FI) (Topl?) (Topl?)
FAMO 2.35 55.83 56.80 3.16 -4.10
w/ ST 2.32 62.57 56.04 <193 -446

Table 28: The test performance on CelebA, Clevr and NYU-v2 dataset. CelebA is
trained on Swin Transformer and Clevr is trained on ViT. NYU-v2 is trained on MTAN.
The green cell color indicates that sparse training improves the performance of joint
training or gradient manipulation methods. The best result is highlighted in bold.

Segmentation Depth Surface Normal

Methods . o
mloU+ Pix Acct AbsErr| Rel Err | Angle Distance | Within ¢° 1
Mean Median 11.25 22.5 30

FAMO 38.88 64.90 0.5474 0.2194 25.06 19.57 2921 56.61 6898  -4.10
w/ ST 37.85 65.27 0.5543 0.2215 25.09 19.15 30.03 57.49 69.52 -4.46

Am% |

Table 29: The test performance on NYU-v2 dataset training on MTAN model. The
green cell color indicates that sparse training improves the performance of joint training
or gradient manipulation methods. The best result is highlighted in bold.
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\Object Attribute Category Relation Global

Verify 86.21%  83.00% - 87.82% 95.56%

Query - 71.20% 62.88%  52.84% 55.74%

Choose - 90.17% 92.03%  87.19% 96.76%

Logical 88.92%  76.17% - - -

Compare - 71.23% - - -
Table 31: The accuracy of the validation set of GQA dataset(Hudson and Manning,
2019) on LLaVA-1.5-13b (Liu et al., 2024a). and represent binary (yes/no)
and open question respectively. represents that this category contains both binary

and open questions.

E Appendix to Chapter 7

E.1 Dataset collection

We collect our data from the validation set of the GQA dataset (Hudson and Manning,
2019), which is designed for visual reasoning and compositional question-answering.
Derived from the Visual Genome dataset (Krishna et al., 2017), GQA provides real-world
images enriched with detailed scene graphs. Questions in GQOA dataset are categorized
along two dimensions: structure (5 classes, defining question formats) and semantics
(5 classes, specifying the main subject‘‘s semantic focus). Structural classes include:
(1) verify (yes/no questions), (2) query (open questions), (3) choose (questions with
two alternatives), (4) logical (logical inference), and (5) compare (object comparisons).
Semantic classes are: (1) object (existence questions), (2) attribute (object properties
or positions), (3) category (object identification within a class), (4) relation (questions
about relational subjects/objects), and (5) global (overall scene properties like weather
or location). Based on the combination of these two dimensions, the questions in GQA
are categorized into 15 groups, as shown in Table 31.

We select 6 out of 15 groups according to the following steps. First, we exclude the
verify type, as it is quite simple and involves only straightforward binary questions (e.g.,
”’Is the apple red?””). Then we focus on types with an average accuracy above 80% on
LLaVA-1.5-13b model (Liu et al., 2024a), retaining ChooseAttr, ChooseCat, ChooseRel,
and LogicalObj. ChooseGlo is excluded due to its limited sample size in the validation
set of GOA (only 556 instances). After that, to enhance question-type diversity, we
select high-performing subtypes (accuracy>80%) in CompareAttr and QueryAttr from
the GQA dataset. Specifically, we use the positionQuery subtype for spatial-relation
questions in QueryAttr and the twoCommon subtype for comparing common attributes
between two objects in CompareAttr. Finally, for each type of the six selected types,
we sample at most 1000 data that are predicted correctly on model LLaVA-1.5-13b from
the validation set of GQA resulting in our final data in this paper, as shown in Table 7.1.
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Figure 21: The relative changes in prediction probability on LLaVA-1.5-13b with the
tasks of ChooseAttr for different window size. The Question—+ Last and Image—+ Last
represent preventing last position from attending to Question and Image respectively.

E.2 Informaion flow for different window size k

In the main body of the paper, we use a window size £ = 9 for an easier analysis of the
internal working mechanism of the multimodal large language models when performing
multimodal tasks. We present the relative change in probability on LLaVA-1.5-13b
and the task of ChooseAttr with different window sizes of k = 1,3,5,7,9,11, 15. The
resulting information flow between different parts of the input sequence (image and
question) and last position, and between image and question are shown in Figure 21
and Figure 22, respectively. Overall, the observations on the information flow are
consistent across different window sizes k. Specifically, the critical information flow
from question to last position occurs in the middle layers while the critical information
flow from image to last position is not observed across different window sizes, as shown
in Figure 21. For critical information from image to question, the two different critical
information flows are observed across different window sizes where both occur in
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Figure 22: The relative changes in prediction probability when blocking attention edges
from the qguestion positions to the image positions on LLaVA-1.5-13b with the tasks of
ChooseAttr for different window sizes.

lower layers and sequentially follow each other, as illustrated in Figure 22. In addition,
we observe that as the window size increases, the two information flows gradually
merge into one, which is because the larger window encompasses layers involved in
both information flows. Moreover, the decrease in the prediction probability becomes
more pronounced with the increase of the value £. This is expected, as blocking more
attention edges in the computation hinders the model’s ability to properly contextualize
the input.

E.3 Changes in probability of the last sub-word generation

In this paper, the answer in our used dataset normally contains one word or one phrase,
which might result in several sub-word tokens. In the main body of the paper, we
present the relative change in probability of the first generated sub-word while the
final generated sub-words also yield similar results. Specifically. we conduct the
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Figure 23: The relative changes in prediction probability for the final generated sub-
word of the answer on LLaVA-1.5-13b with six VQA tasks. The Question—+ Last,
Image— Last and Last—+ Last represent preventing last position from attending to
Question, Image and itself respectively.

same experiments as in the main body of the paper: six tasks (ChooseAttr, ChooseCat,
ChooseRel, LogicalObj, QueryAttr and CompareAttr) on LLaVA-1.5-13b model. Instead
of calculating the relative change in probability for the first generated sub-word token,
we calculate that for the final generated sub-word token of the correct answer word. As
shown in Figure 23, Figure 24 and Figure 25, the information flow from different parts
of the input sequence (image and question) to last position, from image to question
and from different image patches (related image patches and other image patches) to
question are consistent with the observations in Figure 7.3, Figure 7.4 and Figure 7.5 in
the main body of the paper.
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Figure 24: The relative changes in prediction probability for the final generated sub-
word of the answer when blocking attention edges from the question positions to the
image positions on LLaVA-1.5-13b with six VQA tasks.

E.4 Constructing multimodal semantic representations

We have investigated how multimodal information is integrated through the MHAT
module in Section 7.6. We now take a closer look at how the multimodal semantic
representation is constructed.

Experiment To identify which module in the transformer contributes to the formula-
tion of multimodal semantic information within hidden representations, we employ a
module knockout approach to evaluate the significance of individual transformer mod-
ules. As shown in Equation (7.1), the hidden representation at layer ¢ is computed by
adding af and f/ to h{ ™', where a! and f! are derived from the MHAT (Equation (7.2))
and MLP (Equation (7.5)) modules, respectively. This allows us to determine which
module contributes to constructing semantic information by selectively zeroing out the
outputs of MHAT or MLP—two additive modules in the transformer layer. Specifically,
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Figure 25: The relative changes in prediction probability for the final generated sub-word
of the answer on LLaVA-1.5-13b with six VQA tasks. Related Image Patches— question
and Other Image Patches—question represent blocking the position of question from at-
tending to that of different image patches, region of interest and remainder, respectively.

for each layer /, we intervene by setting a! or £ (i € Q) to zero across 9 consecutive
layers {¢' }?,‘EK{HS’L}. We then measure the importance of constructing multimodal
semantic information by observing the semantic change of the hidden representation
corresponding to question position QQ at the final layer L. Our focus on layer L is
inspired by Geva et al. (2023), who highlight that semantic information peaks in the
final layer. We follow Wang et al. (2023), who evaluate the semantic content of a hidden
representation using top-k words from this representation. We estimate semantic content
using the top-10 words predicted from each hidden representation in Q, derived from
Equation (7.6), where h%; is replaced by h% (i € Q). We then quantify the change
in semantic content of hidden representation resulting from our interventions using
Jaccard Similarity:

W, N W

J(W,, W;) = W, UW,|

(7)
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Figure 26: The Jaccard similarity between the predicted words of the original model and
those of the intervened model, with the MLP and MHAT modules removed individually

(LLaVA-1.5-13b).

where W, and W, denote the sets of 10 - |Q| predicted words from the original and
intervened models, respectively.

Observation: The MLP module plays a greater role in constructing semantic
representations compared to the MHAT Module As shown in Figure 26 for model
LLaVA-1.5-13b, removing the MLP module severely impacts semantic representation,
reducing average Jaccard Similarity across six tasks by ~90% when MLP is removed
in the first layer and ~25% in the last layer. In contrast, removing the MHAT module
has a smaller effect, with reductions of ~60% and ~10% at the first and last layers,
respectively. This highlights the MLP module‘‘s important role in generating multi-
modal semantic representations. These results align with the findings from (Dai et al.,
2022; Geva et al., 2021; Meng et al., 2022), who demonstrate that factual information is
primarily stored in the MLP module, emphasizing its contribution to enriching semantic
information. This is also observed in the model LLaVA-1.5-7b, as shown in Figure 27.
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Figure 27: The Jaccard similarity between the predicted words of the original model and
those of the intervened model, with the MLP and MHAT modules removed individually

(LLaVA-1.5-7D).

E.S5 Experiments on other models

We conduct the same experiments (six VQA task types) as in the main body of the
paper with the other three models. Six VQA task types include (ChooseAttr, ChooseCat,
ChooseRel, LogicalObj, QueryAttr and CompareAttr). The other three models include
LLaVA-1.5-7b, LLaVA-v1.6-Vicuna-7b and Llama3-LLaVA-NEXT-8b.

LLaVA-1.5-7b

LLaVA-1.5-7b is a small version of LLaVA-1.5-13b presented in the main body of the
paper. It contains 32 transformer blocks (layers) instead of 40 layers in LLaVA-1.5-13b.
The information flow from different parts of the input sequence (image and question) to
last position, from image to question and from different image patches (related image
patches and other image patches) to question, as shown in Figure 28, Figure 29 and
Figure 30 respectively, are consistent with the observations for the LLaVA-1.5-13b
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Figure 28: The relative changes in prediction probability on LLaVA-1.5-7b with six
VQA tasks. The Question—+ Last, Image— Last and Last- Last represent preventing
last position from attending to Question, Image and itself respectively.

model, as shown in Figure 7.3, Figure 7.4 and Figure 7.5 respectively, in the main
body of the paper. Specifically, the model first propagates critical information twice
from the image positions to the guestion positions in the lower-to-middle layers of
the MLLM. For the twice multimodal information integration, the first one focuses
on producing the generative representations over the whole image while the second
one tends to construct question-related representation. Subsequently, in the middle
layers, the critical multimodal information flows from the question positions to the
last position for the final prediction. The difference between the two models is the
magnitude of reduction in the probability when blocking the attention edge between
image and question. In model LLaVA-1.5-7b, the first drop is rather smaller than that
in model LLaVA-1.5-13b. However, this does not conflict with our conclusion that the
information flows from image to question twice and one after the other in the main body
of the paper. Moreover, the probability change of the answer word across all layers as
shown in Figure 31 is also consistent with the result in Figure 7.6 in the main body of
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Figure 29: The relative changes in prediction probability when blocking attention edges
from the question positions to the image positions on LLaVA-1.5-7b with six VQA tasks.

the paper. Specifically, the model first generates the answer semantically in the middle
layers and then refines the syntactic correctness of the answer in the higher layers.

LLaVA-v1.6-Vicuna-7b

LLaVA-v1.6-Vicuna-7b has the similar architecture with LLaVA-1.5-13b in the main
body of the paper. The difference between them includes the layer number and the
the way processing image patch features. The LLaVA-v1.6-Vicuna-7b has 32 layers
versus 40 layers in LLaVA-1.5-13b. LLaVA-1.5-13b directly feeds the original fixed-
length image patch features from the image encoder into the LLM as input tokens. In
contrast, LLaVA-v1.6-Vicuna-7b employs a dynamic high-resolution technique, which
dynamically adjusts image resolution, resulting in variable-length image patch features
with higher resolution. Specifically, the higher resolution is implemented by splitting
the image into grids and encoding them independently.

The information flow from different parts of the input sequence (image and question)
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Figure 30: The relative changes in prediction probability on LLaVA-1.5-7b with six VQA
tasks. Related Image Patches—+>question and Other Image Patches— question represent
blocking the position of question from attending to that of different image patches,
region of interest and remainder, respectively.

to last position, from image to question and from different image patches (related image
patches and other image patches) to question, as shown in Figure 32, Figure 33 and
Figure 34 respectively, are consistent with the observations for the LLaVA-1.5-13b
model, as shown in Figure 7.3, Figure 7.4 and Figure 7.5 respectively, in the main
body of the paper. Specifically, the model first propagates critical information twice
from the image positions to the guestion positions in the lower-to-middle layers of
the MLLM. For the dual-stage multimodal information integration, the first stage
emphasizes generating holistic representations of the entire image, while the second
stage focuses on constructing representations that are specifically aligned with the given
question. Subsequently, in the middle layers, the critical multimodal information flows
from the question positions to the last position for the final prediction. Moreover, the
probability change of the answer word across all layers as shown in Figure 35 is also
consistent with the result in Figure 7.6 in the main body of the paper. Specifically, the
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Figure 31: The probability of the answer word at the last position across all layers in
LLaVA-1.5-7b with six VQA tasks. Capitalized Answer and Noncapitalized Answer
represent the answer word with or without the uppercase of the initial letter, respectively.
As the tasks of ChooseAttr, ChooseCat and ChooseRel contain false option, we also
provide the probability of it.

model first generates the answer semantically in the middle layers and then refines the
syntactic correctness of the answer in the higher layers.

Llama3-LLaVA-NEXT-8b

Llama3-LLaVA-NEXT-8b has quiet different architecture with LLaVA-1.5-13b in the
main body of the paper. The difference between them includes the layer number, the way
of processing image patch features, and the attention mechanism. The Llama3-LLaVA-
NEXT-8b has 32 layers verse 40 layers in LLaVA-1.5-13b. LLaVA-1.5-13b directly feeds
the original fixed-length image patch features from the image encoder into the LLM as
input tokens. In contrast, Llama3-LLaVA-NEXT-8b employs a dynamic high-resolution
technique, which dynamically adjusts image resolution, resulting in variable-length
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Figure 32: The relative changes in prediction probability on LLaVA-v1.6-Vicuna-7b
with six VQA tasks. The Question—+ Last, Image— Last and Last—+ Last represent
preventing last position from attending to Question, Image and itself respectively.

image patch features with higher resolution. Specifically, the higher resolution is
implemented by splitting the image into grids and encoding them independently. As
for the attention mechanism, LLaVA-1.5-13b use a standard and dense transformer
architecture (Vaswani et al., 2017b) while Llama3-LLaVA-NEXT-8b adopts grouped
query attention (Ainslie et al., 2023) where the queries are grouped and the queries in
the same group has shared key and value.

The information flow from different parts of the input sequence (image and question)
to last position, from image to question and from different image patches (related image
patches and other image patches) to question, as shown in Figure 36, Figure 37 and
Figure 38 respectively, are consistent with the observations for the LLaVA-1.5-13b
model, as shown in Figure 7.3, Figure 7.4 and Figure 7.5 respectively, in the main body
of the paper. Although the information flow from image to question in Figure 37 appears
to exhibit only a single drop, the Figure 38 reveals that, in lower layers, the information
flow from Other Image Patches to the question play a dominant role compared to that



E. Appendix to Chapter 7 161

—— Image » Question

=)

0

=)

5

o

-10

o

-15

-20

)
S

[

=3

<
=3

=

Change in probability (%)
Change in probability (%)
Change in probability (%)

IS
S
S
S
&
S

10 20 30 o 10 20 30 10 20 30

Layer Layer Layer
(a) ChooseAttr (b) ChooseCat (c) ChooseRel

- W [

=)
=)

o
=

[V S N VE R )
S S o o°
IS )
S S

o
>

=N O
> S

>

Change in probability (%)
Change in probability (%)

Change in probability (%)

©
S
3
S
-
S

10 20 30 o 10 20 30 o 10 20 30

Layer Layer Layer-
(d) CompareAttr (e) LogicalObj (f) QueryAttr

S5

Figure 33: The relative changes in prediction probability when blocking attention edges
from the question positions to the image positions on LLaVA-v1.6-Vicuna-7b with six
VQA tasks.

from Related Image Patches to question and in following layers, information flow
from Related Image Patches to question are more notable than that form Other Image
Patches to question. This observation indicates that the model still has a two-stage
multimodal information integration process. Specifically, in the first stage, the model
focuses on generating holistic representations of the entire image. In the second stage, it
refines these representations to align them more closely with the specific given question.
Subsequently, in the middle layers, the critical multimodal information flows from the
question positions to the last position for the final prediction. Moreover, the probability
changes for the Capitalized Answer across all layers, as illustrated in Figure 39, align
closely with the results in the main body of the paper while no such pattern is observed
for the Noncapitalized Answer. This suggests that the model generates the syntactically
correct answer directly, without a distinct intermediate step of semantic generation
followed by syntactic correction. A potential explanation for this behavior is that when
Llama3 generates an answer to a given question, it first outputs a ‘“\n‘‘ token, which
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Figure 34: The relative changes in prediction probability on LLaVA-v1.6-Vicuna-7b with
six VQA tasks. Related Image Patches—+question and Other Image Patches—question
represent blocking the position of guestion from attending to that of different image
patches, region of interest and remainder, respectively.

may act as a cue to produce an answer word starting with an uppercase letter.

E.6 The fine-grain analysis for information flow

In the main body of the paper, we primarily focus on analyzing the information flow
between one specific combination of (image, question, and last position) for analyzing
the multimodal information integration. In this section, we will further investigate the
information flow between fine-grain parts of the input sequence, including the guestion
without options, true option, false option, objects in the question, guestion without
objects, related image patches and other image patches. We also use the same attention
knockout method to block the attention edge between them to investigate the information
flow between them.
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Figure 35: The probability of the answer word at the last position across all layers in
LLaVA-v1.6-Vicuna-7b with six VQA tasks. Capitalized Answer and Noncapitalized
Answer represent the answer word with or without the uppercase of the initial letter,
respectively. As the tasks of ChooseAttr, ChooseCat and ChooseRel contain false
option, we also provide the probability of it.

Different parts of the question to the last position

In the tasks of ChooseAttr, ChooseCat and ChooseRel, for each layer ¢, we block last
position from attending to different parts of question, including question without options,
true option, false option, with the same window size (k = 9) around the /-th layer and
observe the change in the probability of the answer word at the last position. In the
tasks of CompareAttr LogicalObj and QueryAttr, we conduct the same operations with
the above tasks except for blocking last position from attending to objects or question
without objects as these tasks do not contain options in the question.

As shown in Figure 40 (a), (b) and (c), for the tasks of ChooseAttr, ChooseCat and
ChooseRel, the true option and false option flowing the information to the last position
occur in similar layers (higher layers) in the model. When blocking last position from
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Figure 36: The relative changes in prediction probability on llama3-llava-next-8b
with six VQA tasks. The Question—+ Last, Image—+ Last and Last—+ Last represent
preventing last position from attending to Question, Image and itself respectively.

attending true option, the probability obtain a reduction, while blocking last position
from attending false option increases the probability of the correct answer word. The
increase is reasonable because the question without the false option becomes easy for
the modal. For the tasks of ChooseAttr and ChooseCat, in the information flowing
to last position, the options play a dominant role while question without options only
results in a small reduction for the probability fo the correct answer word. In contrast,
for the ChooseRel task, the true option does not significantly reduce the probability of
the correct answer word. This may stem from the format of the ChooseRel questions,
where the options are positioned in the middle of the question, rather than at the end as
in the ChooseAttr and ChooseCat tasks. As a result, the options in ChooseRel are less
effective at aggregating the complete contextual information of the question within an
auto-regressive transformer decoder. Consequently, the flow of information from the
option to the final position becomes less critical in determining the correct answer.

As the questions in our dataset target one or more specific objects in the image,
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Figure 37: The relative changes in prediction probability when blocking attention edges
from the question positions to the image positions on llama3-llava-next-8b with six
VQA tasks.

we also conduct experiments on blocking last position from attending to objects or
question without objects. As shown in Figure 40 (d), (e) and (f), the critical information
from the objects does not directly transfer into the last position compared to that form
question without objects to last position. This implies that the objects might affect the
final prediction in an indirect way.

Different parts of the question to different parts of the question

In the tasks of ChooseAttr, ChooseCat and ChooseRel, for each layer ¢, we block
options from attending to question without options with the same window size (k = 9)
around the /-th layer and observe the change in the probability of the answer word. In
the tasks of CompareAttr and LogicalObj, we conduct the same operations with the
above tasks except for blocking objects from attending to question without objects.
As shown in Figure 41 (a), (b) and (c), for the tasks of ChooseAttr, ChooseCat
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Figure 38: The relative changes in prediction probability on /lama3-llava-next-8b with
six VQA tasks. Related Image Patches—+question and Other Image Patches—question
represent blocking the position of guestion from attending to that of different image
patches, region of interest and remainder, respectively.

and ChooseRel, the information flow from question without options to true option
occurs in similar transformer layers with that from guestion without options to false
option. We also observe that these indirect information flows from question without
options to false option occur before the information flow from options to last position
as shown in Figure 40. This indicates that the information of the question is aggregated
into the options in lower layers and then the information in options is transferred to
the last position for the prediction of the final answer in higher layers. For the tasks
of CompareAttr and LogicalObj, we observe that the information flow from guestion
without objects to objects occurs in lower layers.
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Figure 39: The probability of the answer word at the last position across all layers
in llama3-1lava-next-8b with six VQA tasks. Capitalized Answer and Noncapitalized
Answer represent the answer word with or without the uppercase of the initial letter,
respectively. As the tasks of ChooseAttr, ChooseCat and ChooseRel contain false

option, we also provide the probability of it.

Image to different parts of question

In the tasks of ChooseAttr, ChooseCat and ChooseRel, for each layer ¢, we block
attention edge between image and different parts of question, including question without
options, true option and false option, with the same window size (K = 9) around the
(-th layer and observe the change in the probability of the answer word. In the tasks of
CompareAttr, LogicalObj and QueryAttr, we carry out the same operations as in the
above tasks except for blocking the edge of the attention between image and question
without objects or objects respectively.

As illustrated in Figure 42, the overall information flow from image to different
parts of the question aligns consistently with the information flow from the image to the
entire question, as depicted in Figure 7.4 in the main body of the paper. Specifically, two
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Figure 40: The relative changes in prediction probability on LLaVA-v1.5-13b with six
VQA tasks. Preventing Last Position from attending to different parts of Question, such
as True Option, False Option, Objects in question, Question without Options, Question
without Objects, both NTrue Option and False Option together.

distinct flows are from the image to the question. Notably, however, different parts of the
question exhibit varying magnitudes of probability change, especially in the second-time
drop in probability, which may be because different kinds of questions have different
attention patterns to the image. For example, during the second-time drop in probability,
in the tasks of ChooseAttr and ChooseCat, the image information does not transfer
to false option while it transfers much more information to true option. However,
this pattern isn’t observed in the task of ChooseRel, where most image information is
transferred into question without options and objects.

Other image patches to different parts of question

In the tasks of ChooseAttr, ChooseCat and ChooseRel, for each layer ¢, we block
attention edge between other image patches and different parts of question, including
question without options, true option, false option, objects and question without objects,
with the same window size (k = 9) around the /-th layer and observe the change in the
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Figure 41: The relative changes in prediction probability on LLaVA-v1.5-13b with six
VQA tasks. Preventing information flow from Question without Option to Options and
from Question without Objects to Objects.

probability of the answer word. In the tasks of CompareAttr, LogicalObj and QueryAttr,
we conduct the same operations with the above tasks except for blocking attention edge
between other image patches and question without objects or objects respectively.

As shown in Figure 43, the information flow from other image patches to different
parts of the question for all six tasks consistently aligns the flow observed from other
image patches to the entire question, as illustrated in Figure 7.5 in the main body of
the paper. Specifically, the information flow dominantly occurs in the first-time drop

in the probability in the lower layers, regardless of which part of the guestion is being
blocked.

Related image patches to different parts of question

In the tasks of ChooseAttr, ChooseCat and ChooseRel, for each layer ¢, we block the
attention edge between Related image patches and different parts of question, including
question without options, true option, false option, objects and question without objects,
with the same window size (kK = 9) around the /-th layer and observe the change
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Figure 42: The relative changes in prediction probability on LLaVA-v1.5-13b with six
VQA tasks. Blocking the information flow from Image to different parts of the question,
including True Option, False Option, Objects in question, Question without Objects,
Question without Options.

in the probability of the answer word. In the tasks of CompareAttr, LogicalObj and
QueryAttr, we conduct the same operations with the above tasks except for blocking the
attention edge between Related image patches and question without objects or objects
respectively.

The observations of the overall information flow from related image patches to
different parts of the question for all six tasks shown in Figure 44 consistently align
the flow observed from related image patches to the entire question, as illustrated in
Figure 7.5 in the main body of the paper. Specifically, the information flow dominantly
occurs in the second-time drop in the probability in the lower-to-middle layers (around
10th). However, there are some parts of guestion that don’t obtain the information
followed from the related image patches. For example, the objects in the task of
ChooseCat, or false option and true option in the task of ChooseRel.
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Figure 43: The relative changes in prediction probability on LLaVA-v1.5-13b with six
VQA tasks. Blocking the information flow from Other Image Patches to different parts
of the question, including True Option, False Option, Objects in question, Question
without Objects, Question without Options.

E.7 The influence of images on the semantics of Questions

We already know that the image information is integrated into the representation corre-
sponding to the position of question. To investigate whether the image affects the final
semantics of the guestion, for each layer ¢, we prevent the question from attending to
the question, with the same window size (k = 9) around the /-th layer and observe the
change of semantics of the questtion in the final layer. The semantics of the question is
evaluated by the Jaccard Similarity as in Appendix E.4.

As illustrated in Figure 45, the Jaccard Similarity demonstrates a significant decline
in the lower layers, resembling the behaviour observed in layers where information
flows from the image to the question. This pattern highlights the critical role of image
information in constructing the final multimodal semantic representation.
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Figure 44: The relative changes in prediction probability on LLaVA-v1.5-13b with six
VQA tasks. Blocking the information flow from Related Image Patches to different parts
of the question, including True Option, False Option, Objects in question, Question
without Objects, Question without Options.

E.8 Difference with unimodal LILLM

To compare the information flow in LLMs and MLLMs, we replace the image with
dense captions (obtained from VG dataset (Krishna et al., 2017)) and analyze the
resulting information flow. As shown in Figure 46 (first two figures), we observe that
information flow from the question to last position primarily occurs in middle layers
which is consistent with MLLLMs. However, in LL.Ms, information flow from dense
captions to the last position in lower layers differs from MLLMs where almost no
information flow is observed from the image. This suggests that captions and questions
follow distinct processing stages, aligning with findings from Geva et al. (2023), which
identify separate stages of information flow in attribute extraction tasks within LLMs.
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LLaVA-1.5-13b and those of the intervened model blocking question from attending to
image on the task of ChooseAttr.

E.9 More complex tasks

Since the main focus of our paper is the interaction between modalities, we evaluate
tasks where cross-modal alignment plays a crucial role, while excluding those requiring
external knowledge for reasoning to minimize confounding factors and ensure a more
precise analysis. Nevertheless, to further validate our findings, we extend our experi-
ments to two additional factual multimodal tasks, OKVQA (Marino et al., 2019) and
AOKVQA (Schwenk et al., 2022) involving more complex, fact-based reasoning re-
quiring external commonsense and world knowledge. Figure 47 shows the results align
with our findings, i.e. from lower to higher layers: a two-stage multimodal integration,
information flow from question to last positions and semantic generation and syntactic
refinement.

E.10 Attention sink

The work in (Darcet et al., 2024) shows high-norm image patch tokens hold global rather
than local information, we analyze the distribution of token norms over our dataset
and identify a threshold of 57, as shown in Figure 48. Excluding patches exceeding
57 (3.3 out of 576 patches per image on average), we split the remaining patches into
two groups and replicate the experiments from our paper (Section 7.6). As shown in
Figure 49, the results across six tasks remain consistent with our original findings.



174 Chapter 9. Appendices

& &
S o0 =
0
b -10 B\'
< 20 < 0
Na) M)
e 30 e 30
o a¥
g 40 g 4
£ -50 &
2 ChooseCat 2050 ChooseAttr
g -60 Question » Last E 60 Question » Last
O DenseCaptions + Last O DenseCaptions + Last

4
S
]

4
S

0 10 20 30 40 0 10 20 30 40

Layer Layer

Figure 46: The information flow from dense captions or questions to the last position in
unimodal LLM: vicunal.5-13b, the initial LLM in LLaVA1.5-13b (MLLM). They are
tested on ChooseCat (left) and ChooseAttr (right) tasks.

100
0 —— Noncapitalized Answer

\ e Capitalized Answer

80

O N e

60

Probability (%)

20 Question » Last
Image » Last —— Related Image Patches » Question

e Last Last

Change in probability (%)
Change in probability (%)
Change in probability (%)

—— Image » Question Other Image Patches # Question
o 10 20 30 40 o 10 20 30 40 o 10 20 30 40 0 10 20 30 40

Layer Layer Layer Layer

=4 —— Noncapitalized Answer
\’/ e Capitalized Answer
80

3

Probability (%)

Question » Last

-10 Image » Last —— Related Image Patches » Question

Change in probability (%)

Change in probability (%)
Change in probability (%)

e Last= Last

12 10 20 30 40 80 10 20 30 40 5% 10 20 30 40

Layer Layer Layer

= Image » Question Other Image Patches # Question

Figure 47: The information flow and answer word tracking on factual datasets:
AOKVQA (first line), OKVQA (second line)



E. Appendix to Chapter 7 175

Frequency (log scale)

50 100 150 200 250
L2 Norm

Figure 48: Distribution of image patch norms.

20 20 20

225 -25 25

ChooseCat

-30 e Related Image Patches » Question

ChooseAttr

-30 e Related Image Patches # Question

ChooseRel

=30 === Related Image Patches + Question

Change in probability (%)
Change in probability (%)
Change in probability (%)

Other Image Patches » Question Other Image Patches # Question Other Image Patches » Question

33 10 20 30 40 3 10 20 30 40 3 10 20 30 40
Layer Layer Layer
0 _—T
-10
20

-30

-40
25

CompareAttr

== Related Image Patches » Question

LogicalObj

-30 == Related Image Patches » Question

-30 QueryAttr

-50 e Related Image Patches +» Question

Change in probability (%)
Change in probability (%)
Change in probability (%)

Other Image Patches # Question Other Image Patches # Question Other Image Patches # Question

760(] 10 20 30 40 735() 10 20 30 40 740() 10 20 30 40

Layer Layer Layer

Figure 49: Information flow from image patches (related/other), excluding those with
high norms, to question position on six VQA tasks.






Bibliography

2024. Imms-lab/llama3-llava-next-8b ¢ hugging face. https://huggingface.
co/lmms—-lab/llama3-1lava-next—-8b. Accessed: 2024-11-13.

Amina Adadi. 2021. A survey on data-efficient algorithms in big data era. Journal of
Big Data, 8(1):24.

Estelle Aflalo, Meng Du, Shao-Yen Tseng, Yongfei Liu, Chenfei Wu, Nan Duan, and
Vasudev Lal. 2022. Vl-interpret: An interactive visualization tool for interpreting
vision-language transformers. In Proceedings of the IEEE/CVF Conference on
computer vision and pattern recognition, pages 21406-21415.

Rishabh Agarwal, Levi Melnick, Nicholas Frosst, Xuezhou Zhang, Ben Lengerich,
Rich Caruana, and Geoffrey E Hinton. 2021. Neural additive models: Interpretable
machine learning with neural nets. Advances in neural information processing
systems, 34:4699-4711.

Arash Ahmadian, Saurabh Dash, Hongyu Chen, Bharat Venkitesh, Zhen Stephen
Gou, Phil Blunsom, Ahmet Ustiin, and Sara Hooker. 2023. Intriguing properties of

quantization at scale. Advances in Neural Information Processing Systems, 36:34278—
34294.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron,
and Sumit Sanghai. 2023. Gqa: Training generalized multi-query transformer models
from multi-head checkpoints. arXiv preprint arXiv:2305.13245.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, lain Barr, Yana
Hasson, Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al.
2022. Flamingo: a visual language model for few-shot learning. Advances in Neural
Information Processing Systems, 35:23716-23736.

David Alvarez-Melis and Tommi S Jaakkola. 2017. A causal framework for explain-
ing the predictions of black-box sequence-to-sequence models. arXiv preprint
arXiv:1707.01943.

177


https://huggingface.co/lmms-lab/llama3-llava-next-8b
https://huggingface.co/lmms-lab/llama3-llava-next-8b

178 BIBLIOGRAPHY

Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson, Stephen
Gould, and Lei Zhang. 2018. Bottom-up and top-down attention for image captioning
and visual question answering. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 6077-6086.

Alan Ansell, Ivan Vuli¢, Hannah Sterz, Anna Korhonen, and Edoardo M Ponti.

2024. Scaling sparse fine-tuning to large language models. arXiv preprint
arXiv:2401.16405.

Anna Arias-Duart, Victor Gimenez-Abalos, Ulises Cortés, and Dario Garcia-Gasulla.
2023. Assessing biases through visual contexts. Electronics, 12(14):3066.

Shahin Atakishiyev, Mohammad Salameh, Hengshuai Yao, and Randy Goebel. 2024.
Explainable artificial intelligence for autonomous driving: A comprehensive overview
and field guide for future research directions. IEEE Access.

Matan Avitan, Ryan Cotterell, Yoav Goldberg, and Shauli Ravfogel. 2024. What
changed? converting representational interventions to natural language. arXiv e-
prints, pages arXiv—2402.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normalization.
arXiv preprint arXiv:1607.06450.

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. 2017. Segnet: A deep con-
volutional encoder-decoder architecture for image segmentation. /EEE transactions
on pattern analysis and machine intelligence, 39(12):2481-2495.

Nooshin Bahador. 2025. Mechanistic interpretability of fine-tuned vision transformers
on distorted images: Decoding attention head behavior for transparent and trustworthy
ai. arXiv preprint arXiv:2503.18762.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Jun-
yang Lin, Chang Zhou, and Jingren Zhou. 2023a. Qwen-VL: A Versatile Vision-
Language Model for Understanding, Localization, Text Reading, and Beyond.
ArXiv:2308.12966 [cs].

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang
Lin, Chang Zhou, and Jingren Zhou. 2023b. Qwen-vl: A versatile vision-language
model for understanding, localization, text reading, and beyond.

Sriram Balasubramanian, Samyadeep Basu, and Soheil Feizi. 2024. Decomposing
and interpreting image representations via text in vits beyond clip. arXiv preprint
arXiv:2406.01583.

Yamini Bansal, Preetum Nakkiran, and Boaz Barak. 2021. Revisiting model stitching to
compare neural representations. Advances in neural information processing systems,
34:225-236.


http://arxiv.org/abs/2308.12966
http://arxiv.org/abs/2308.12966
http://arxiv.org/abs/2308.12966
http://arxiv.org/abs/2308.12966

BIBLIOGRAPHY 179

Hang Bao, Li Dong, and Furu Wei. 2021. Beit: Bert pre-training of image transformers.
In International Conference on Learning Representations (ICLR).

Ankur Bapna, Naveen Arivazhagan, and Orhan Firat. 2019. Simple, scalable adaptation
for neural machine translation. arXiv preprint arXiv:1909.08478.

Brian R Bartoldson, Bhavya Kailkhura, and Davis Blalock. 2023. Compute-efficient
deep learning: Algorithmic trends and opportunities. Journal of Machine Learning
Research, 24(122):1-77.

Samyadeep Basu, Martin Grayson, Cecily Morrison, Besmira Nushi, Soheil Feizi,
and Daniela Massiceti. 2024. Understanding information storage and transfer in
multi-modal large language models. arXiv preprint arXiv:2406.04236.

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. 2017.
Network dissection: Quantifying interpretability of deep visual representations. In

Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 6541-6549.

Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright,
Heinrich Kiittler, Andrew Lefrancq, Simon Green, Victor Valdés, Amir Sadik, et al.
2016. Deepmind lab. arXiv preprint arXiv:1612.03801.

Nora Belrose, Zach Furman, Logan Smith, Danny Halawi, Igor Ostrovsky, Lev McKin-
ney, Stella Biderman, and Jacob Steinhardt. 2023a. Eliciting latent predictions from
transformers with the tuned lens. arXiv preprint arXiv:2303.08112.

Nora Belrose, David Schneider-Joseph, Shauli Ravfogel, Ryan Cotterell, Edward Raff,
and Stella Biderman. 2023b. Leace: Perfect linear concept erasure in closed form.
Advances in Neural Information Processing Systems, 36:66044—66063.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. 2022. BitFit: Simple Parameter-
efficient Fine-tuning for Transformer-based Masked Language-models. In Proceed-
ings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 1-9, Dublin, Ireland. Association for Computational
Linguistics.

Leonard Bereska and Efstratios Gavves. 2024. Mechanistic Interpretability for Al
Safety — A Review. ArXiv:2404.14082.

Kartikeya Bhardwaj, Nilesh Pandey, Sweta Priyadarshi, Viswanath Ganapathy, Shreya
Kadambi, Rafael Esteves, Shubhankar Borse, Paul Whatmough, Risheek Garrepalli,
Mart van Baalen, et al. 2024. Sparse high rank adapters. Advances in Neural
Information Processing Systems, 37:13685-13715.


https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-short.1
http://arxiv.org/abs/2404.14082
http://arxiv.org/abs/2404.14082

180 BIBLIOGRAPHY

Ning Bian, Xianpei Han, Bo Chen, and Le Sun. 2021. Benchmarking knowledge-
enhanced commonsense question answering via knowledge-to-text transformation.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages
12574-12582.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. 2020. PIQA: Reasoning
about physical commonsense in natural language. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages 7432-7439.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
2020. Language models are few-shot learners. Advances in neural information
processing systems, 33:1877-1901.

Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. 2022. Discover-
ing latent knowledge in language models without supervision. arXiv preprint
arXiv:2212.03827.

Daniele Calandriello, Alessandro Lazaric, and Marcello Restelli. 2014. Sparse multi-

task reinforcement learning. Advances in neural information processing systems,
217.

Jiezhang Cao, Jincheng Li, Xiping Hu, Xiangmiao Wu, and Mingkui Tan. 2022. To-
wards interpreting deep neural networks via layer behavior understanding. Machine
Learning, 111:1159-1179.

Jize Cao, Zhe Gan, Yu Cheng, Licheng Yu, Yen Chun Chen, and Jingjing Liu. 2020.
Behind the Scene: Revealing the Secrets of Pre-trained Vision-and-Language Models.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 12351 LNCS:565-580. ArXiv:
2005.07310 ISBN: 9783030585389.

Nicolas Carion et al. 2020. End-to-end object detection with transformers. In European
Conference on Computer Vision (ECCV).

Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie Elhadad.
2015. Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-
day readmission. In Proceedings of the 21th ACM SIGKDD international conference
on knowledge discovery and data mining, pages 1721-1730.

Niladri S Chatterji, Behnam Neyshabur, and Hanie Sedghi. 2019. The intriguing
role of module criticality in the generalization of deep networks. arXiv preprint
arXiv:1912.00528.

Hila Chefer, Shir Gur, and Lior Wolf. 2021a. Generic Attention-model Explainability for
Interpreting Bi-Modal and Encoder-Decoder Transformers. pages 397-406. ArXiv:
2103.15679.


https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1911.11641
https://doi.org/10.1007/978-3-030-58539-6_34
https://doi.org/10.1109/iccv48922.2021.00045
https://doi.org/10.1109/iccv48922.2021.00045

BIBLIOGRAPHY 181

Hila Chefer, Shir Gur, and Lior Wolf. 2021b. Transformer interpretability beyond
attention visualization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 782—791.

Jun Chen, Han Guo, Kai Yi, Boyang Li, and Mohamed Elhoseiny. 2022. Visualgpt:
Data-efficient adaptation of pretrained language models for image captioning. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 18030-18040.

Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and
Baobao Chang. 2024. An Image is Worth 1/2 Tokens After Layer 2: Plug-and-Play
Inference Acceleration for Large Vision-Language Models. ArXiv:2403.06764 [cs].

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang
Wang, and Michael Carbin. 2020a. The lottery ticket hypothesis for pre-trained bert
networks. ArXiv, abs/2007.12223.

Tianrun Chen, Lanyun Zhu, Chaotao Ding, Runlong Cao, Shangzhan Zhang, Yan Wang,
Zejian Li, Lingyun Sun, Papa Mao, and Ying Zang. 2023. Sam fails to segment
anything? — sam-adapter: Adapting sam in underperformed scenes: Camouflage,
shadow, and more.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020b. A
simple framework for contrastive learning of visual representations. In Proceedings
of ICML.

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan,
Yu Cheng, and Jingjing Liu. 2020c. Uniter: Universal image-text representation
learning. In European conference on computer vision, pages 104—120. Springer.

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan,
Yu Cheng, and Jingjing Liu. 2020d. Uniter: Universal image-text representation
learning. In European Conference on Computer Vision, pages 104—120.

Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong, Henrik Kretzschmar, Yuning
Chai, and Dragomir Anguelov. 2020e. Just pick a sign: Optimizing deep multitask
models with gradient sign dropout. Advances in Neural Information Processing
Systems, 33:2039-2050.

Gong Cheng, Junwei Han, and Xiaogiang Lu. 2017. Remote sensing image scene
classification: Benchmark and state of the art. Proceedings of the IEEE, 105(10):1865—
1883.

Kyunghyun Cho, Bart Van Merri‘nboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase representa-
tions using rnn encoder-decoder for statistical machine translation. In Proceedings of
EMNLP.


http://arxiv.org/abs/2403.06764
http://arxiv.org/abs/2403.06764
http://arxiv.org/abs/2304.09148
http://arxiv.org/abs/2304.09148
http://arxiv.org/abs/2304.09148

182 BIBLIOGRAPHY

Rochelle Choenni, Dan Garrette, and Ekaterina Shutova. 2022. Data-Efficient Cross-
Lingual Transfer with Language-Specific Subnetworks. ArXiv:2211.00106 [cs].

Mircea Cimpoi, Subhransu Maji, lasonas Kokkinos, Sammy Mohamed, and Andrea
Vedaldi. 2014. Describing textures in the wild. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3606-3613.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins,
and Kristina Toutanova. 2019a. BoolQ: Exploring the surprising difficulty of natural
yes/no questions. In Proceedings of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 2924-2936, Minneapolis, Minnesota.
Association for Computational Linguistics.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D Manning. 2019b.
What does bert look at? an analysis of bert’s attention. arXiv preprint
arXiv:1906.04341.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa

Schoenick, and Oyvind Tafjord. 2018. Think you have solved question answering?
Try ARC, the AI2 reasoning challenge. arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz
Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. 2021.
Training verifiers to solve math word problems. arXiv:2110.14168.

Arthur Conmy, Augustine N. Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and
Adri‘ Garriga-Alonso. 2023. Towards Automated Circuit Discovery for Mechanistic
Interpretability. ArXiv:2304.14997 [cs].

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler,
Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. 2016. The cityscapes
dataset for semantic urban scene understanding. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 3213-3223.

Camille Couprie, Cl‘ment Farabet, Laurent Najman, and Yann LeCun. 2013. Indoor
semantic segmentation using depth information.

Ian Covert, Scott Lundberg, and Su-In Lee. 2021. Explaining by removing: A unified
framework for model explanation. Journal of Machine Learning Research, 22(209):1-
90.

Y. L. Cun, J. S. Denker, and S. A. Solla. 1990. Optimal brain damage. Advances in
neural information processing systems 2.


http://arxiv.org/abs/2211.00106
http://arxiv.org/abs/2211.00106
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://doi.org/10.48550/arXiv.2304.14997
https://doi.org/10.48550/arXiv.2304.14997
http://arxiv.org/abs/1301.3572
http://arxiv.org/abs/1301.3572

BIBLIOGRAPHY 183

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. 2023.
Sparse autoencoders find highly interpretable features in language models. arXiv
preprint arXiv:2309.08600.

Leonardo L Custode and Giovanni lacca. 2023. Evolutionary learning of interpretable
decision trees. IEEE Access, 11:6169-6184.

Adam Dahlgren Lindstrom, Johanna Bjorklund, Suna Bensch, and Frank Drewes. 2020.
Probing multimodal embeddings for linguistic properties: the visual-semantic case.
In Proceedings of the 28th International Conference on Computational Linguistics,
pages 730-744, Barcelona, Spain (Online). International Committee on Computa-
tional Linguistics.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. 2022.
Knowledge Neurons in Pretrained Transformers. ArXiv:2104.08696 [cs].

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao,
Weisheng Wang, Boyang Li, Pascale Fung, and Steven Hoi. 2023. Instruct-
BLIP: Towards General-purpose Vision-Language Models with Instruction Tuning.
ArXiv:2305.06500 [cs].

Guy Dar, Mor Geva, Ankit Gupta, and Jonathan Berant. 2022. Analyzing transformers
in embedding space. arXiv preprint arXiv:2209.02535.

Timoth ‘e Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. 2024. Vision
Transformers Need Registers. ArXiv:2309.16588 [cs].

Joe Davison, Joshua Feldman, and Alexander Rush. 2019. Commonsense knowledge
mining from pretrained models. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pages 1173-1178, Hong Kong,
China. Association for Computational Linguistics.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Editing factual knowledge in
language models. arXiv preprint arXiv:2104.08164.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248-255. leee.

Jiaqi Deng, Zonghan Wu, Huan Huo, and Guandong Xu. 2025. A comprehensive survey
of knowledge-based vision question answering systems: The lifecycle of knowledge
in visual reasoning task. arXiv preprint arXiv:2504.17547.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. 2024. Qlora:
Efficient finetuning of quantized llms. Advances in Neural Information Processing
Systems, 36.


https://doi.org/10.18653/v1/2020.coling-main.64
http://arxiv.org/abs/2104.08696
http://arxiv.org/abs/2305.06500
http://arxiv.org/abs/2305.06500
https://doi.org/10.48550/arXiv.2309.16588
https://doi.org/10.48550/arXiv.2309.16588
https://doi.org/10.18653/v1/D19-1109
https://doi.org/10.18653/v1/D19-1109

184 BIBLIOGRAPHY

Tim Dettmers and Luke Zettlemoyer. 2019. Sparse networks from scratch: Faster
training without losing performance. arXiv preprint arXiv:1907.04840.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert:
Pre-training of deep bidirectional transformers for language understanding. In Pro-
ceedings of NAACL-HLT.

Bhuwan Dhingra, Jeremy R Cole, Julian Martin Eisenschlos, Daniel Gillick, Jacob
Eisenstein, and William W Cohen. 2022. Time-aware language models as temporal
knowledge bases. Transactions of the Association for Computational Linguistics,
10:257-273.

Ning Ding, Shengding Hu, Weilin Zhao, Yulin Chen, Zhiyuan Liu, Hai-Tao Zheng, and
Maosong Sun. 2021. Openprompt: An open-source framework for prompt-learning.
arXiv preprint arXiv:2111.01998.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su,
Shengding Hu, Yulin Chen, Chi Min Chan, and Weize and Chen. 2023. Parameter-
efficient fine-tuning of large-scale pre-trained language models. Nature Machine
Intelligence, 5(3):220-235.

Xiao Ding, Kuo Liao, Ting Liu, Zhongyang Li, and Junwen Duan. 2019. Event
representation learning enhanced with external commonsense knowledge. arXiv
preprint arXiv:1909.05190.

Saket Dingliwa, Ashish Shenoy, Sravan Bodapati, Ankur Gandhe, Ravi Teja Gadde, and
Katrin Kirchhoff. 2022. Domain prompts: Towards memory and compute efficient
domain adaptation of asr systems.

Yinpeng Dong, Hang Su, Jun Zhu, and Bo Zhang. 2017. Improving interpretability
of deep neural networks with semantic information. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 4306-4314.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2020a. An Image is Worth 16x16
Words: Transformers for Image Recognition at Scale. ArXiv: 2010.11929.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, et al. 2020b. An image is worth 16x16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929.


http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2010.11929

BIBLIOGRAPHY 185

Alexey Dosovitskiy and Thomas Brox. 2016. Inverting visual representations with
convolutional networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4829-48377.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravanku-
mar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez,
Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell,
Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano,
Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve,
Gabrielle Lee, Georgia Lewis Anderson, Graeme Nail, Gregoire Mialon, Guan Pang,
Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jade
Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah,
Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng
Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,
Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Va-
suden Alwala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin
Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla,
Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz
Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat,
Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar
Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie
Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal,
Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Olivier
Duchenne, Onur ‘elebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Va-
sic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh
Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy,
Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohit
Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross
Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa,
Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan
Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang,
Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Col-
lot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov,
Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan,
Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vladan Petrovic, Wei-



186 BIBLIOGRAPHY

wel Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong
Wang, Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue
Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Pa-
pakipos, Aaditya Singh, Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam Shajnfeld,
Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma,
Alex Boesenberg, Alex Vaughan, Alexei Baevski, Allie Feinstein, Amanda Kallet,
Amit Sangani, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew
Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Franco,
Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf
Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie
Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni,
Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt
Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Changhan Wang, Changkyu
Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph
Feichtenhofer, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, Danny Wy-
att, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana
Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling,
Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Erik
Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk,
Feng Tian, Firat Ozgenel, Francesco Caggioni, Francisco Guzm‘n, Frank Kanayet,
Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory Sizov, Guangyi, Zhang,
Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha,
Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman,
Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena Veliche, Itai Gat, Jake
Weissman, James Geboski, James Kohli, Japhet Asher, Jean-Baptiste Gaya, Jeff
Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul,
Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard,
Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou
U, Karan Saxena, Karthik Prasad, Kartikay Khandelwal, Katayoun Zand, Kathy
Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kun Huang, Kunal
Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A,
Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich,
Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Maria Tsimpoukelli,
Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Gro-
shev, Maxim Naumov, Maya Lathi, Meghan Keneally, Michael L. Seltzer, Michal
Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad
Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White,
Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich
Laptev, Ning Dong, Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart,
Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji,



BIBLIOGRAPHY 187

Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant
Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi
Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah
Hogan, Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty Rinott,
Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha
Sidorov, Satadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun
Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shiva
Shankar, Shuqiang Zhang, Shugiang Zhang, Sinong Wang, Sneha Agarwal, Soji
Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve
Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara
Best, Thilo Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews,
Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez,
Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, V ‘tor Albiero, Vlad Ionescu,
Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang,
Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaofang Wang,
Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu, Xinbo Gao, Yanjun Chen, Ye Hu,
Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu,
Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick,
Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. 2024a. The Llama 3 Herd of Models.
ArXiv:2407.21783.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al.
2024b. The llama 3 herd of models. arXiv preprint arXiv:2407.21783.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan,
Shauna Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen,
Roger Grosse, Sam McCandlish, Jared Kaplan, Dario Amodei, Martin Wattenberg,
and Christopher Olah. 2022. Toy models of superposition. Transformer Circuits
Thread. Https://transformer-circuits.pub/2022/toy,, odel /index.html.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben
Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma,
Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones,
Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack
Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. 2021. A mathematical frame-
work for transformer circuits. Transformer Circuits Thread. Https://transformer-
circuits.pub/2021/framework/index.html.

Allyson Ettinger. 2020. What bert is not: Lessons from a new suite of psycholinguistic
diagnostics for language models. Transactions of the Association for Computational
Linguistics, 8:34-48.


http://arxiv.org/abs/2407.21783

188 BIBLIOGRAPHY

Fenglei Fan, Jinjun Xiong, Mengzhou Li, and Ge Wang. 2020. On interpretability of
artificial neural networks: A survey. IEEE Transactions on Radiation and Plasma
Medical Sciences, 5:741-760.

Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell Wu, Xinggang Wang, Tiejun
Huang, Xinlong Wang, and Yue Cao. 2023. Eva: Exploring the limits of masked
visual representation learning at scale. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 19358-19369.

Li Fei-Fei, Robert Fergus, and Pietro Perona. 2006. One-shot learning of object categories.
IEEE transactions on pattern analysis and machine intelligence, 28(4):594-611.

Stella Frank, Emanuele Bugliarello, and Desmond Elliott. 2021a. Vision-and-Language or
Vision-for-Language? On Cross-Modal Influence in Multimodal Transformers. pages
9847-9857. ArXiv: 2109.04448 ISBN: 9781955917094.

Stella Frank, Emanuele Bugliarello, and Desmond Elliott. 2021b. Vision-and-language
or vision-for-language? on cross-modal influence in multimodal transformers. arXiv
preprint arXiv:2109.04448.

Jonathan Frankle and Michael Carbin. 2018. The lottery ticket hypothesis: Finding sparse,
trainable neural networks. arXiv preprint arXiv:1803.03635.

Jonathan Frankle and Michael Carbin. 2019. The lottery ticket hypothesis: Finding sparse,
trainable neural networks. 7th International Conference on Learning Representations,
ICLR 2019. ArXiv: 1803.03635.

Zihao Fu, Haoran Yang, Anthony Man-Cho So, Wai Lam, Lidong Bing, and Nigel Collier.
2023. On the effectiveness of parameter-efficient fine-tuning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37, pages 12799-12807.

Trevor Gale, Erich Elsen, and Sara Hooker. 2019. The state of sparsity in deep neural
networks. arXiv preprint arXiv:1902.09574.

Jingying Gao, Qi Wu, Alan Blair, and Maurice Pagnucco. 2023a. Lora: A logical reasoning
augmented dataset for visual question answering. Advances in Neural Information
Processing Systems, 36:30579-30591.

Peng Gao*, Shijie Geng*, Renrui Zhang*, Teli Ma, Rongyao Fang, Yongfeng Zhang,
Hongsheng Li, and Yu Qiao. 2021. Clip-adapter: Better vision-language models with
feature adapters. IJCV 2023.

Peng Gao, Jiaming Han, Renrui Zhang, Ziyi Lin, Shijie Geng, Aojun Zhou, Wei Zhang,
Pan Lu, Conghui He, Xiangyu Yue, et al. 2023b. Llama-adapter v2: Parameter-efficient
visual instruction model. arXiv preprint arXiv:2304.15010.


https://doi.org/10.18653/v1/2021.emnlp-main.775
https://doi.org/10.18653/v1/2021.emnlp-main.775
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635

BIBLIOGRAPHY 189

Tianyu Gao, Adam Fisch, and Danqgi Chen. 2020. Making pre-trained language models
better few-shot learners. arXiv preprint arXiv:2012.15723.

Tianyu et al. Gao. 2021. Simcse: Simple contrastive learning of sentence embeddings.
Proceedings of EMNLP.

Manas Gaur, Kalpa Gunaratna, Vijay Srinivasan, and Hongxia Jin. 2022. Iseeq: In-
formation seeking question generation using dynamic meta-information retrieval and
knowledge graphs. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pages 10672—10680.

Timnit Gebru, Jonathan Krause, Yilun Wang, Duyun Chen, Jia Deng, and Li Fei-Fei. 2017.
Fine-grained car detection for visual census estimation. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 31.

Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. 2013. Vision meets
robotics: The kitti dataset. The International Journal of Robotics Research, 32(11):1231-
1237.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir Globerson. 2023. Dissecting Re-
call of Factual Associations in Auto-Regressive Language Models. ArXiv:2304.14767

[cs].

Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav Goldberg. 2022. Transformer
feed-forward layers build predictions by promoting concepts in the vocabulary space.
arXiv preprint arXiv:2203.14680.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. 2021. Transformer feed-
forward layers are key-value memories. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing. Association for Computational
Linguistics.

Nicholas Goldowsky-Dill, Chris MacLeod, Lucas Sato, and Aryaman Arora. 2023. Local-
izing model behavior with path patching. arXiv preprint arXiv:2304.05969.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and harness-
ing adversarial examples. In International Conference on Learning Representations
(ICLR).

Ben Graham. 2015. Kaggle diabetic retinopathy detection competition report. University
of Warwick, pages 24-26.

Benjamin Graham et al. 2021. Levit: A vision transformer in convnet’s clothing for faster
inference. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV).


http://arxiv.org/abs/2304.14767
http://arxiv.org/abs/2304.14767
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446

190 BIBLIOGRAPHY

Jian Guan, Fei Huang, Zhihao Zhao, Xiaoyan Zhu, and Minlie Huang. 2020. A knowledge-
enhanced pretraining model for commonsense story generation. Transactions of the
Association for Computational Linguistics, 8:93—-108.

Yang Guan, Yangang Ren, Qi Sun, Shengbo Eben Li, Haitong Ma, Jingliang Duan,
Yifan Dai, and Bo Cheng. 2022. Integrated decision and control: Toward interpretable
and computationally efficient driving intelligence. IEEE transactions on cybernetics,
53(2):859-873.

Demi Guo, Alexander M Rush, and Yoon Kim. 2020a. Parameter-efficient transfer learning
with diff pruning. arXiv preprint arXiv:2012.07463.

Pengsheng Guo, Chen-Yu Lee, and Daniel Ulbricht. 2020b. Learning to branch for multi-
task learning. In International conference on machine learning, pages 3854-3863.
PMLR.

Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen Grauman, Tajana Rosing, and
Rogerio Feris. 2019. Spottune: transfer learning through adaptive fine-tuning. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 4805-4814.

Song Han, Huizi Mao, and William J Dally. 2015a. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149.

Song Han, Jeff Pool, John Tran, and William Dally. 2015b. Learning both weights and
connections for efficient neural network. Advances in neural information processing
systems, 28.

Michael Hanna, Ollie Liu, and Alexandre Variengien. 2023. How does gpt-2 compute
greater-than?: Interpreting mathematical abilities in a pre-trained language model.
Advances in Neural Information Processing Systems, 36:76033-76060.

Trevor J Hastie. 2017. Generalized additive models. Statistical models in S, pages
249-307.

Haoyu He, Jianfei Cai, Jing Zhang, Dacheng Tao, and Bohan Zhuang. 2023a. Sensitivity-
aware visual parameter-efficient tuning. arXiv preprint arXiv:2303.08566.

Haoyu He, Jianfei Cai, Jing Zhang, Dacheng Tao, and Bohan Zhuang. 2023b. Sensitivity-
Aware Visual Parameter-Efficient Tuning. ArXiv:2303.08566 [cs].

Haoze He, Juncheng Billy Li, Xuan Jiang, and Heather Miller. 2024. Sparse Matrix in
Large Language Model Fine-tuning. ArXiv:2405.15525 [cs].


http://arxiv.org/abs/2303.08566
http://arxiv.org/abs/2303.08566
https://doi.org/10.48550/arXiv.2405.15525
https://doi.org/10.48550/arXiv.2405.15525

BIBLIOGRAPHY 191

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neu-
big. 2021a. Towards a unified view of parameter-efficient transfer learning. ArXiv,
abs/2110.04366.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig.
2021b. Towards a unified view of parameter-efficient transfer learning. arXiv preprint
arXiv:2110.04366.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020a. Momentum
contrast for unsupervised visual representation learning. In Proceedings of CVPR.

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. 2017. Mask r-cnn. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV).

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning
for image recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

Kaiming He et al. 2022. Masked autoencoders are scalable vision learners. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. 2020b. Deberta: Decoding-
enhanced bert with disentangled attention. arXiv preprint arXiv:2006.03654.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. 2019. Eurosat: A
novel dataset and deep learning benchmark for land use and land cover classification.

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
12(7):2217-2226.

Roee Hendel, Mor Geva, and Amir Globerson. 2023. In-context learning creates task
vectors. arXiv preprint arXiv:2310.15916.

Lisa Anne Hendricks and Aida Nematzadeh. 2021. Probing image-language transformers
for verb understanding. In Findings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 3635-3644, Online. Association for Computational
Linguistics.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan
Dorundo, Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. 2021a. The
many faces of robustness: A critical analysis of out-of-distribution generalization. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
8340-8349.

Dan Hendrycks and Thomas Dietterich. 2019. Benchmarking neural network robustness
to common corruptions and perturbations. arXiv preprint arXiv:1903.12261.


https://doi.org/10.18653/v1/2021.findings-acl.318
https://doi.org/10.18653/v1/2021.findings-acl.318

192 BIBLIOGRAPHY

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. 2021b.
Natural adversarial examples. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 15262—-15271.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic models.
In Advances in Neural Information Processing Systems, pages 6840—6851.

Sepp Hochreiter and J‘rgen Schmidhuber. 1997. Long short-term memory. Neural
Computation, 9(8):1735“1780.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate Kushman. 2014.
Learning to solve arithmetic word problems with verb categorization. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 523-533, Doha, Qatar. Association for Computational Linguistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Larous-
silhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. Parameter-efficient
transfer learning for nlp. In International Conference on Machine Learning, pages
2790-2799. PMLR.

Jeremy Howard and Sebastian Ruder. 2018. Universal language model fine-tuning for text
classification. In Annual Meeting of the Association for Computational Linguistics.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. 2021a. Lora: Low-rank adaptation of large language
models. arXiv preprint arXiv:2106.09685.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. 2022a. Lora: Low-rank adaptation of large language
models. International Conference on Learning Representations.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. 2022b. LoRA: Low-rank adaptation of large language
models. In The Tenth International Conference on Learning Representations, ICLR
2022, Virtual Event.

Ronghang Hu, Jacob Andreas, Trevor Darrell, and Kate Saenko. 2018. Explainable
neural computation via stack neural module networks. In Proceedings of the European
conference on computer vision (ECCV), pages 53—69.

Ronghang Hu, Marcus Rohrbach, Jacob Andreas, Trevor Darrell, and Kate Saenko. 2017.
Modeling relationships in referential expressions with compositional modular networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 1115-1124.


https://doi.org/10.3115/v1/D14-1058
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

BIBLIOGRAPHY 193

Ronghang Hu, Huazhe Xu, Marcus Rohrbach, Jiashi Feng, Kate Saenko, and Trevor
Darrell. 2016. Natural language object retrieval. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4555-4564.

Shengding Hu, Ning Ding, Huadong Wang, Zhiyuan Liu, Jingang Wang, Juanzi Li, Wei
Wu, and Maosong Sun. 2021b. Knowledgeable prompt-tuning: Incorporating knowl-
edge into prompt verbalizer for text classification. arXiv preprint arXiv:2108.02035.

Shengding Hu, Zhen Zhang, Ning Ding, Yadao Wang, Yasheng Wang, Zhiyuan Liu, and
Maosong Sun. 2022c. Sparse structure search for parameter-efficient tuning.

Zhigiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing
Xu, Soujanya Poria, and Roy Lee. 2023a. LLM-Adapters: An Adapter Family for
Parameter-Efficient Fine-Tuning of Large Language Models. In Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing, pages 5254—
5276, Singapore. Association for Computational Linguistics.

Zhigiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu,
Soujanya Poria, and Roy Lee. 2023b. LLM-adapters: An adapter family for parameter-
efficient fine-tuning of large language models. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pages 5254-5276, Singapore.
Association for Computational Linguistics.

Drew A Hudson and Christopher D Manning. 2019. Gqa: A new dataset for real-world vi-
sual reasoning and compositional question answering. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 6700-6709.

Andrew lIlyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, and Aleksander
Madry. 2019. Adversarial examples are not bugs, they are features. In Advances in
neural information processing systems, pages 125-136.

Sergey loffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International Conference on
Machine Learning, pages 448-456.

Ahmet Iscen, Jeffrey Zhang, Svetlana Lazebnik, and Cordelia Schmid. 2020. Memory-
efficient incremental learning through feature adaptation. In Computer Vision—-ECCV
2020: 16th European Conference, Glasgow, UK, August 2328, 2020, Proceedings,
Part XVI 16, pages 699-715. Springer.

Hamish Ivison, Noah A Smith, Hannaneh Hajishirzi, and Pradeep Dasigi. 2022. Data-
efficient finetuning using cross-task nearest neighbors. arXiv preprint arXiv:2212.00196.

Saachi Jain, Hannah Lawrence, Ankur Moitra, and Aleksander Madry. 2022. Distilling
model failures as directions in latent space. arXiv preprint arXiv:2206.14754.


http://arxiv.org/abs/2206.07382
https://doi.org/10.18653/v1/2023.emnlp-main.319
https://doi.org/10.18653/v1/2023.emnlp-main.319
https://doi.org/10.18653/v1/2023.emnlp-main.319
https://doi.org/10.18653/v1/2023.emnlp-main.319

194 BIBLIOGRAPHY

Sarthak Jain and Byron C Wallace. 2019. Attention is not explanation. arXiv preprint
arXiv:1902.10186.

Debesh Jha, Steven A. Hicks, Krister Emanuelsen, H‘vard Johansen, Dag Johansen,
Thomas de Lange, Michael A. Riegler, and P‘l Halvorsen. 2020a. Medico multimedia
task at mediaeval 2020: Automatic polyp segmentation.

Debesh Jha, Pia H Smedsrud, Michael A Riegler, Pal Halvorsen, Thomas de Lange, Dag
Johansen, and Havard D Johansen. 2020b. Kvasir-seg: A segmented polyp dataset. In
International Conference on Multimedia Modeling, pages 451-462. Springer.

Chao Jia, Yinfei Yang, Yi-Ting Xia, et al. 2021. Scaling up visual and vision-language
representation learning with noisy text supervision. In International Conference on
Machine Learning (ICML).

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath
Hariharan, and Ser-Nam Lim. 2022a. Visual prompt tuning. In Computer Vision-ECCV
2022: 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings,
Part XXXIII, pages 709-727. Springer.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath
Hariharan, and Ser-Nam Lim. 2022b. Visual Prompt Tuning. ArXiv:2203.12119 [cs].

Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham Neubig. 2020. How can we know
what language models know? Transactions of the Association for Computational
Linguistics, 8:423-438.

Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zit-
nick, and Ross Girshick. 2017. Clevr: A diagnostic dataset for compositional language
and elementary visual reasoning. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2901-2910.

Sonia Joseph. 2023. Vit prisma: A mechanistic interpretability library for vision trans-
formers. https://github.com/soniajoseph/vit—-prisma.

Chen Ju, Tengda Han, Kunhao Zheng, Ya Zhang, and Weidi Xie. 2022. Prompting visual-
language models for efficient video understanding. In Computer Vision—-ECCV 2022:
17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part
XXXV, pages 105-124. Springer.

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. 2021. Compacter:
Efficient low-rank hypercomplex adapter layers. Advances in Neural Information
Processing Systems, 34:1022—-1035.

Adilbek Karmanov, Dayan Guan, Shijian Lu, Abdulmotaleb El Saddik, and Eric Xing.
2024. Efficient test-time adaptation of vision-language models. In Proceedings of the


http://arxiv.org/abs/2012.15244
http://arxiv.org/abs/2012.15244
http://arxiv.org/abs/2203.12119
https://github.com/soniajoseph/vit-prisma

BIBLIOGRAPHY 195

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14162—
14171.

Nora Kassner and Hinrich Schiitze. 2020. Negated and misprimed probes for pretrained
language models: Birds can talk, but cannot fly. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pages 7811-7818, Online.
Association for Computational Linguistics.

Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and Tamara Berg. 2014. Referitgame:
Referring to objects in photographs of natural scenes. In Proceedings of the 2014
conference on empirical methods in natural language processing (EMNLP), pages
787-798.

Alex Kendall, Yarin Gal, and Roberto Cipolla. 2018. Multi-task learning using uncer-
tainty to weigh losses for scene geometry and semantics. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 7482—7491.

Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Fei-Fei Li. 2011. Novel
dataset for fine-grained image categorization: Stanford dogs. In Proc. CVPR workshop
on fine-grained visual categorization (FGVC), volume 2. Citeseer.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola,
Aaron Maschinot, Ce Liu, and Dilip Krishnan. 2020. Supervised contrastive learning.
ArXiv, abs/2004.11362.

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas,
and Rory Sayres. 2018. Interpretability Beyond Feature Attribution: Quantitative
Testing with Concept Activation Vectors (TCAV). ArXiv:1711.11279 [stat].

Siwon Kim, Jinoh Oh, Sungjin Lee, Seunghak Yu, Jaeyoung Do, and Tara Taghavi. 2023.
Grounding counterfactual explanation of image classifiers to textual concept space. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 10942-10950.

Yoon Kim. 2014. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura
Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr
Dollér, and Ross Girshick. 2023a. Segment anything. arXiv:2304.02643.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura
Gustafson, Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al.


https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.48550/arXiv.1711.11279
https://doi.org/10.48550/arXiv.1711.11279

196 BIBLIOGRAPHY

2023b. Segment anything. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 4015-4026.

Tasonas Kokkinos. 2017. Ubernet: Training a universal convolutional neural network
for low-, mid-, and high-level vision using diverse datasets and limited memory. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 6129-6138.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, and
Siena Dumas Ang. 2015. Parsing algebraic word problems into equations. Trans-
actions of the Association for Computational Linguistics, 3:585-597.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Ha-
jishirzi. 2016. MAWPS: A math word problem repository. In Proceedings of the
2016 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 1152—1157, San Diego, California.
Association for Computational Linguistics.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki Markus Asano. 2023. Vera: Vector-
based random matrix adaptation. arXiv preprint arXiv:2310.11454.

Mathias Kraus, Daniel Tschernutter, Sven Weinzierl, and Patrick Zschech. 2024. In-

terpretable generalized additive neural networks. European Journal of Operational
Research, 317(2):303-316.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz,
Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. 2016. Visual
genome: Connecting language and vision using crowdsourced dense image annotations.
arXiv preprint arXiv:1602.07332.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz,
Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. 2017. Visual
genome: Connecting language and vision using crowdsourced dense image annotations.
International journal of computer vision, 123:32-73.

Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features from
tiny images.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classification
with deep convolutional neural networks. Advances in Neural Information Processing
Systems.

John K Kruschke and Javier R Movellan. 1991. Benefits of gain: Speeded learning and
minimal hidden layers in back-propagation networks. IEEE Transactions on systems,
Man, and Cybernetics, 21(1):273-280.


https://doi.org/10.1162/tacl_a_00160
https://doi.org/10.18653/v1/N16-1136

BIBLIOGRAPHY 197

Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. 2022.
Fine-tuning can distort pretrained features and underperform out-of-distribution. arXiv
preprint arXiv:2202.10054.

Biagio La Rosa, Roberto Capobianco, and Daniele Nardi. 2023. A self-interpretable
module for deep image classification on small data. Applied Intelligence, 53(8):9115—
9147.

Francois Lagunas, Ella Charlaix, Victor Sanh, and Alexander M Rush. 2021. Block
pruning for faster transformers. arXiv preprint arXiv:2109.04838.

Anna Langedijk, Hosein Mohebbi, Gabriele Sarti, Willem Zuidema, and Jaap Jumelet.
2023. Decoderlens: Layerwise interpretation of encoder-decoder transformers. arXiv
preprint arXiv:2310.03686.

Sebastian Lapuschkin, Stefan Wildchen, Alexander Binder, Grégoire Montavon, Wojciech
Samek, and Klaus-Robert Miiller. 2019. Unmasking clever hans predictors and assessing
what machines really learn. Nature communications, 10(1):1096.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324.

Yann LeCun, Fu Jie Huang, and Leon Bottou. 2004. Learning methods for generic object
recognition with invariance to pose and lighting. In Proceedings of the 2004 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, 2004.
CVPR 2004., volume 2, pages 1I-104. IEEE.

Hector Levesque, Ernest Davis, and Leora Morgenstern. 2012. The Winograd Schema
Challenge. In Proceedings of the Thirteenth International Conference on Principles of
Knowledge Representation and Reasoning.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed,
Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2019. Bart: Denoising sequence-
to-sequence pre-training for natural language generation, translation, and comprehen-
sion. Proceedings of ACL.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. 2016a. Pruning
filters for efficient convnets. arXiv preprint arXiv:1608.08710.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. 2016b. Pruning
filters for efficient convnets. ArXiv, abs/1608.08710.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. 2023a. BLIP-2: Bootstrapping
Language-Image Pre-training with Frozen Image Encoders and Large Language Models.
ArXiv: 2301.12597.


https://cdn.aaai.org/ocs/4492/4492-21843-1-PB.pdf
https://cdn.aaai.org/ocs/4492/4492-21843-1-PB.pdf
http://arxiv.org/abs/2301.12597
http://arxiv.org/abs/2301.12597

198 BIBLIOGRAPHY

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. BLIP: Bootstrapping Language-
Image Pre-training for Unified Vision-Language Understanding and Generation. Tech-
nical report.

Junnan Li, Ramprasaath Selvaraju, Shuang Zhang, et al. 2022a. Blip: Bootstrapped
language-image pretraining for unified vision-language understanding and generation.
In NeurlIPS.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg.
2023b. Inference-time intervention: Eliciting truthful answers from a language model.
Advances in Neural Information Processing Systems, 36:41451-41530.

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, and Kai-Wei Chang. 2019.
Visualbert: A simple and performant baseline for vision and language. arXiv preprint
arXiv:1908.03557.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: Optimizing continuous prompts for
generation. arXiv preprint arXiv:2101.00190.

Yanwei Li, Yuechen Zhang, Chengyao Wang, Zhisheng Zhong, Yixin Chen, Ruihang Chu,
Shaoteng Liu, and Jiaya Jia. 2024. Mini-gemini: Mining the potential of multi-modality
vision language models.

Yizhe Li, Huazheng Zhang, Yuwei Wang, and Dong Guo. 2022b. Diffusion-lm improves
controllable text generation. arXiv preprint arXiv:2211.15089.

Dongze Lian, Daquan Zhou, Jiashi Feng, and Xinchao Wang. 2022. Scaling & shifting your
features: A new baseline for efficient model tuning. arXiv preprint arXiv:2210.08823.

Dongze Lian, Daquan Zhou, Jiashi Feng, and Xinchao Wang. 2023. Scaling & Shifting
Your Features: A New Baseline for Efficient Model Tuning. ArXiv:2210.08823 [cs].

Baohao Liao, Yan Meng, and Christof Monz. 2023a. Parameter-efficient fine-tuning
without introducing new latency. arXiv preprint arXiv:2305.16742.

Baohao Liao, Shaomu Tan, and Christof Monz. 2023b. Make pre-trained model reversible:
From parameter to memory efficient fine-tuning. Advances in Neural Information
Processing Systems, 36.

Tom Lieberum, Matthew Rahtz, Janos Kramér, Neel Nanda, Geoffrey Irving, Rohin Shah,
and Vladimir Mikulik. 2023. Does circuit analysis interpretability scale? evidence from
multiple choice capabilities in chinchilla. arXiv preprint arXiv:2307.09458.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollar, and C Lawrence Zitnick. 2014. Microsoft coco: Common objects in
context. In European conference on computer vision, pages 740-755. Springer.


https://github.
https://github.
http://arxiv.org/abs/2403.18814
http://arxiv.org/abs/2403.18814
http://arxiv.org/abs/2210.08823
http://arxiv.org/abs/2210.08823

BIBLIOGRAPHY 199

Xinyu Lin, Wenjie Wang, Yongqi Li, Shuo Yang, Fuli Feng, Yinwei Wei, and Tat-Seng
Chua. 2024. Data-efficient fine-tuning for llm-based recommendation. In Proceedings
of the 47th international ACM SIGIR conference on research and development in
information retrieval, pages 365-374.

Zhaojiang Lin, Andrea Madotto, and Pascale Fung. 2020. Exploring versatile gen-
erative language model via parameter-efficient transfer learning. arXiv preprint
arXiv:2004.03829.

Zihao Lin, Samyadeep Basu, Mohammad Beigi, Varun Manjunatha, Ryan A. Rossi, Zichao
Wang, Yufan Zhou, Sriram Balasubramanian, Arman Zarei, Keivan Rezaei, Ying Shen,
Barry Menglong Yao, Zhiyang Xu, Qin Liu, Yuxiang Zhang, Yan Sun, Shilong Liu,
Li Shen, Hongxuan Li, Soheil Feizi, and Lifu Huang. 2025. A Survey on Mechanistic
Interpretability for Multi-Modal Foundation Models. ArXiv:2502.17516 [cs].

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. 2017. Program induc-
tion by rationale generation: Learning to solve and explain algebraic word problems.
arXiv:1705.04146.

Bo Liu, Yihao Feng, Peter Stone, and Qiang Liu. 2023a. Famo: Fast adaptive multitask
optimization.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. 2021a. Conflict-averse
gradient descent for multi-task learning. Advances in Neural Information Processing
Systems, 34:18878-18890.

Haokun Liu, Derek Tam, Mohammed Mugeeth, Jay Mohta, Tenghao Huang, Mohit
Bansal, and Colin Raffel. 2022a. Few-Shot Parameter-Efficient Fine-Tuning is Better
and Cheaper than In-Context Learning. ArXiv:2205.05638 [cs].

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. 2024a. Improved baselines with
visual instruction tuning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 26296-26306.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae
Lee. 2024b. Llava-next: Improved reasoning, ocr, and world knowledge.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. 2023b. Visual Instruction
Tuning. ArXiv:2304.08485 [cs].

Haotian Liu et al. 2023c. Llava: Large language and vision assistant. ArXiv.

Jiacheng Liu, Alisa Liu, Ximing Lu, Sean Welleck, Peter West, Ronan Le Bras, Yejin Choi,
and Hannaneh Hajishirzi. 2021b. Generated knowledge prompting for commonsense
reasoning. arXiv preprint arXiv:2110.08387.


https://doi.org/10.48550/arXiv.2502.17516
https://doi.org/10.48550/arXiv.2502.17516
https://arxiv.org/abs/1705.04146
https://arxiv.org/abs/1705.04146
http://arxiv.org/abs/2306.03792
http://arxiv.org/abs/2306.03792
https://doi.org/10.48550/arXiv.2205.05638
https://doi.org/10.48550/arXiv.2205.05638
https://llava-vl.github.io/blog/2024-01-30-llava-next/
http://arxiv.org/abs/2304.08485
http://arxiv.org/abs/2304.08485

200 BIBLIOGRAPHY

Liyang Liu, Yi Li, Zhanghui Kuang, J Xue, Yimin Chen, Wenming Yang, Qingmin Liao,
and Wayne Zhang. 2021c. Towards impartial multi-task learning. In International
Conference on Learning Representations.

Nelson F Liu, Matt Gardner, Yonatan Belinkov, Matthew E Peters, and Noah A Smith.
2019a. Linguistic knowledge and transferability of contextual representations. arXiv
preprint arXiv:1903.08855.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham
Neubig. 2023d. Pre-train, prompt, and predict: A systematic survey of prompting
methods in natural language processing. ACM Computing Surveys, 55(9):1-35.

Sheng Liu, Haotian Ye, Lei Xing, and James Zou. 2023e. In-context vectors: Making in
context learning more effective and controllable through latent space steering. arXiv
preprint arXiv:2311.06668.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang,
Kwang-Ting Cheng, and Min-Hung Chen. 2024c. DoRA: Weight-decomposed low-rank
adaptation. arXiv:2402.09353.

Shikun Liu, Edward Johns, and Andrew J Davison. 2019b. End-to-end multi-task learning
with attention. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 1871-1880.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang.
2022b. P-tuning: Prompt tuning can be comparable to fine-tuning across scales and
tasks. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 61-68.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019¢c. RoBERTa: A robustly
optimized BERT pretraining approach. arXiv:1907.11692.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and
Baining Guo. 2021d. Swin transformer: Hierarchical vision transformer using shifted
windows. In Proceedings of the IEEE/CVF international conference on computer vision,

pages 10012-10022.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and
Saining Xie. 2022c. A convnet for the 2020s. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 11976—11986.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and
Saining Xie. 2022d. A ConvNet for the 2020s. ArXiv:2201.03545 [cs].


https://arxiv.org/abs/2402.09353
https://arxiv.org/abs/2402.09353
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2201.03545

BIBLIOGRAPHY 201

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. 2015. Deep learning face
attributes in the wild. In Proceedings of the IEEE international conference on computer
vision, pages 3730-3738.

Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. 2019. Vilbert: Pretraining task-
agnostic visiolinguistic representations for vision-and-language tasks. arXiv preprint
arXiv:1908.02265.

Adriano Lucieri, Muhammad Naseer Bajwa, Stephan Alexander Braun, Muhammad Imran
Malik, Andreas Dengel, and Sheraz Ahmed. 2020. On interpretability of deep learning
based skin lesion classifiers using concept activation vectors. In 2020 international
Jjoint conference on neural networks (IJCNN), pages 1-10. IEEE.

Kexin Luo, Guanci Yang, Yang Li, Shangen Lan, Yang Wang, Ling He, and Binqi Hu.
2024. Croup and pertussis cough sound classification algorithm based on channel
attention and multiscale mel-spectrogram. Biomedical Signal Processing and Control,
91:106073.

Maria Lymperaiou and Giorgos Stamou. 2024. A survey on knowledge-enhanced multi-
modal learning. Artificial Intelligence Review, 57(10):284.

Yiwei Lyu, Paul Pu Liang, Zihao Deng, Ruslan Salakhutdinov, and Louis-Philippe
Morency. 2022. Dime: Fine-grained interpretations of multimodal models via dis-
entangled local explanations. In Proceedings of the 2022 AAAI/ACM Conference on Al,
Ethics, and Society, pages 455-467.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Henderson.
2021. Parameter-efficient multi-task fine-tuning for transformers via shared hypernet-
works. arXiv preprint arXiv:2106.04489.

Aravindh Mahendran and Andrea Vedaldi. 2015. Understanding deep image representa-
tions by inverting them. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 5188-5196.

Kevis-Kokitsi Maninis, Ilija Radosavovic, and lasonas Kokkinos. 2019. Attentive single-
tasking of multiple tasks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1851-1860.

Junhua Mao, Jonathan Huang, Alexander Toshev, Oana Camburu, Alan L Yuille, and Kevin
Murphy. 2016. Generation and comprehension of unambiguous object descriptions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
11-20.



202 BIBLIOGRAPHY

Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. 2019.
OK-VQA: A Visual Question Answering Benchmark Requiring External Knowledge.
ArXiv:1906.00067 [cs].

Samuel Marks, Can Rager, Eric J Michaud, Yonatan Belinkov, David Bau, and Aaron
Mueller. 2024. Sparse feature circuits: Discovering and editing interpretable causal
graphs in language models. arXiv preprint arXiv:2403.19647.

Loic Matthey, Irina Higgins, Demis Hassabis, and Alexander Lerchner. 2017. dsprites:
Disentanglement testing sprites dataset.

Kevin Meng, David Bau, Alex J Andonian, and Yonatan Belinkov. 2022. Locating and
editing factual associations in GPT. In Advances in Neural Information Processing
Systems.

Otniel-Bogdan Mercea, Alexey Gritsenko, Cordelia Schmid, and Anurag Arnab. 2024.
Time-memory-and parameter-efficient visual adaptation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5536-5545.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. 2018. Can a suit
of armor conduct electricity? A new dataset for open book question answering.
arXiv:1809.02789.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Dis-
tributed representations of words and phrases and their compositionality. In Advances
in neural information processing systems, pages 3111-3119.

Marvin Minsky. 2000. Commonsense-based ai. In Communications of the ACM, vol-
ume 43, pages 65-66.

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. 2016. Cross-stitch
networks for multi-task learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 3994-4003.

Sameh K Mohamed, Aayah Nounu, and Vit Novacek. 2021. Biological applications of
knowledge graph embedding models. Briefings in bioinformatics, 22(2):1679-1693.

Milad Moradi and Matthias Samwald. 2021. Evaluating the robustness of neural language
models to input perturbations. arXiv preprint arXiv:2108.12237.

Marius Mosbach, Vagrant Gautam, Toméas Vergara-Browne, Dietrich Klakow, and Mor
Geva. 2024. From insights to actions: The impact of interpretability and analysis
research on nlp. arXiv preprint arXiv:2406.12618.

Hesham Mostafa and Xin Wang. 2019. Parameter efficient training of deep convolutional
neural networks by dynamic sparse reparameterization. In International Conference on
Machine Learning, pages 4646—4655. PMLR.


https://doi.org/10.48550/arXiv.1906.00067
https://openreview.net/forum?id=-h6WAS6eE4
https://openreview.net/forum?id=-h6WAS6eE4
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789

BIBLIOGRAPHY 203

Keerthiram Murugesan and Jaime Carbonell. 2017. Self-paced multitask learning with
shared knowledge. arXiv preprint arXiv:1703.00977.

Moin Nadeem, Anna Bethke, and Siva Reddy. 2020. Stereoset: Measuring stereotypical
bias in pretrained language models. arXiv preprint arXiv:2004.09456.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. 2023.
Progress measures for grokking via mechanistic interpretability. arXiv preprint
arXiv:2301.05217.

Muhammad Muzammal Naseer, Kanchana Ranasinghe, Salman H Khan, Munawar Hayat,
Fahad Shahbaz Khan, and Ming-Hsuan Yang. 2021. Intriguing properties of vision
transformers. Advances in Neural Information Processing Systems, 34:23296-23308.

Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron, Kenji Kawaguchi, Gal
Chechik, and Ethan Fetaya. 2022. Multi-task learning as a bargaining game.

Daniel Neil, Joss Briody, Alix Lacoste, Aaron Sim, Paidi Creed, and Amir Saffari. 2018.
Interpretable graph convolutional neural networks for inference on noisy knowledge
graphs. arXiv preprint arXiv:1812.00279.

Clement Neo, Luke Ong, Philip Torr, Mor Geva, David Krueger, and Fazl Barez. 2024.
Towards interpreting visual information processing in vision-language models. arXiv
preprint arXiv:2410.07149.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
2011. Reading digits in natural images with unsupervised feature learning.

Maria-Elena Nilsback and Andrew Zisserman. 2008. Automated flower classification
over a large number of classes. In 2008 Sixth Indian Conference on Computer Vision,
Graphics & Image Processing, pages 722-729. 1IEEE.

Yulei Niu, Hanwang Zhang, Zhiwu Lu, and Shih-Fu Chang. 2019. Variational con-
text: Exploiting visual and textual context for grounding referring expressions. /[EEE
transactions on pattern analysis and machine intelligence, 43(1):347-359.

Nostalgebraist. interpreting GPT: the logit lens. https://www.lesswrong.com/
posts/AcKRB8wDpdaN6véeru/interpreting-gpt—-the-logit-lens.

Chris Olah. 2024. Mechanistic interpretability, variables, and the importance of
interpretable bases. https://www.transformer-circuits.pub/2022/
mech—-interp-essay. Accessed: 2024-10-20.

OpenAl. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774.

Vicente Ordonez, Girish Kulkarni, and Tamara Berg. 2011. Im2text: Describing images
using 1 million captioned photographs. Advances in neural information processing
systems, 24:1143-1151.


http://arxiv.org/abs/2202.01017
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.transformer-circuits.pub/2022/mech-interp-essay
https://www.transformer-circuits.pub/2022/mech-interp-essay

204 BIBLIOGRAPHY

Koyena Pal, Jiuding Sun, Andrew Yuan, Byron C Wallace, and David Bau. 2023. Fu-
ture lens: Anticipating subsequent tokens from a single hidden state. arXiv preprint
arXiv:2311.04897.

Vedant Palit, Rohan Pandey, Aryaman Arora, and Paul Pu Liang. Towards Vision-
Language Mechanistic Interpretability: A Causal Tracing Tool for BLIP.

Emilio Parisotto, Lei Jimmy Ba, and Ruslan Salakhutdinov. 2016. Actor-mimic: Deep
multitask and transfer reinforcement learning. In International Conference on Learning
Representations.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. 2012. Cats and
dogs. In 2012 IEEE conference on computer vision and pattern recognition, pages
3498-3505. IEEE.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. 2021. Are NLP models really able to
solve simple math word problems? In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 2080-2094, Online. Association for Computational Linguistics.

Fabio Petroni, Tim Rocktéschel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, Alexander H
Miller, and Sebastian Riedel. 2019a. Language models as knowledge bases? arXiv
preprint arXiv:1909.01066.

Fabio Petroni, Tim Rocktischel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yux-
iang Wu, and Alexander Miller. 2019b. Language models as knowledge bases? In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 2463-2473, Hong Kong, China. Association for Computa-
tional Linguistics.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé, Kyunghyun Cho, and Iryna Gurevych.
2020a. Adapterfusion: Non-destructive task composition for transfer learning. arXiv
preprint arXiv:2005.00247.

Jonas Pfeiffer, Andreas Riicklé, Clifton Poth, Aishwarya Kamath, Ivan Vuli¢, Sebastian
Ruder, Kyunghyun Cho, and Iryna Gurevych. 2020b. Adapterhub: A framework for
adapting transformers. arXiv preprint arXiv:2007.07779.

Sai Prasanna, Anna Rogers, and Anna Rumshisky. 2020. When bert plays the lottery,
all tickets are winning. In Conference on Empirical Methods in Natural Language
Processing.

John G. Proakis and Dimitris G. Manolakis. 1992. Digital signal processing: Principles,
algorithms, and applications.


https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/D19-1250

BIBLIOGRAPHY 205

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger,
and Ilya Sutskever. 2021a. CLIP: Learning Transferable Visual Models From Natural
Language Supervision. ArXiv: 2103.00020.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. 2021b.
Learning transferable visual models from natural language supervision. In International
conference on machine learning, pages 8748-8763. PMLR.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving
language understanding by generative pre-training. OpenAl.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
2019. Language models are few-shot learners. arXiv preprint arXiv:2005.14165.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the limits of transfer
learning with a unified text-to-text transformer. Journal of Machine Learning Research.

Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey
Dosovitskiy. 2021. Do vision transformers see like convolutional neural networks?
Advances in Neural Information Processing Systems, 34:12116-12128.

Amrutha Varshini Ramesh, Vignesh Ganapathiraman, Issam H Laradji, and Mark Schmidt.
2024. Blockllm: Memory-efficient adaptation of llms by selecting and optimizing the
right coordinate blocks. arXiv preprint arXiv:2406.17296.

Jiahua Rao, Zifei Shan, Longpo Liu, Yao Zhou, and Yuedong Yang. 2023. Retrieval-based
knowledge augmented vision language pre-training. In Proceedings of the 31st ACM
International Conference on Multimedia, pages 5399-5409.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. 2017. Learning multiple
visual domains with residual adapters. Advances in neural information processing
systems, 30.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn: Towards real-
time object detection with region proposal networks. Advances in neural information
processing systems, 28:91-99.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. ” why should i trust you?”
explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining, pages 1135-1144.

Robin Rombach et al. 2022. High-resolution image synthesis with latent diffusion mod-
els. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).


http://arxiv.org/abs/2103.00020
http://arxiv.org/abs/2103.00020

206 BIBLIOGRAPHY

Subhro Roy and Dan Roth. 2015. Solving general arithmetic word problems. In Proceed-
ings of the 2015 Conference on Empirical Methods in Natural Language Processing,
pages 1743—-1752, Lisbon, Portugal. Association for Computational Linguistics.

Andreas Riicklé, Gregor Geigle, Max Glockner, Tilman Beck, Jonas Pfeiffer, Nils Reimers,
and Iryna Gurevych. 2020. Adapterdrop: On the efficiency of adapters in transformers.
arXiv preprint arXiv:2010.11918.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. 1986. Learning
representations by back-propagating errors. Nature, 323:533°°536.

Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins,
James Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia
Hadsell. 2015. Policy distillation. arXiv preprint arXiv:1511.06295.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. 2017. Dynamic routing between
capsules. Advances in neural information processing systems, 30.

Devendra Singh Sachan and Graham Neubig. 2018. Parameter sharing methods for
multilingual self-attentional translation models. arXiv preprint arXiv:1809.00252.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. 2021. Wino-
Grande: An adversarial Winograd Schema Challenge at scale. Communications of the
ACM, 64(9):99-106.

Mansi Sakarvadia, Arham Khan, Aswathy Ajith, Daniel Grzenda, Nathaniel Hudson,
André Bauer, Kyle Chard, and Ian Foster. 2023. Attention lens: A tool for mechanisti-

cally interpreting the attention head information retrieval mechanism. arXiv preprint
arXiv:2310.16270.

Emmanuelle Salin, Badreddine Farah, St‘phane Ayache, Benoit Favre, Emmanuelle Salin,
Badreddine Farah, St‘phane Ayache, Benoit Favre Are Vision-language Trans, and
Probing Perspective. 2022. Are Vision-Language Transformers Learning Multimodal
Representations? A probing perspective. Proceedings of the 36th AAAI Conference on
Artificial Intelligence.

Victor Sanh, Thomas Wolf, and Alexander Rush. 2020. Movement pruning: Adaptive
sparsity by fine-tuning. Advances in neural information processing systems, 33:20378—
203809.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. 2019.
Social IQa: Commonsense reasoning about social interactions. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-1IJCNLP),
pages 4463-4473, Hong Kong, China. Association for Computational Linguistics.


https://doi.org/10.18653/v1/D15-1202
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://doi.org/10.18653/v1/D19-1454

BIBLIOGRAPHY 207

Dustin Schwenk, Apoorv Khandelwal, Christopher Clark, Kenneth Marino, and Roozbeh
Mottaghi. 2022. A-OKVQA: A Benchmark for Visual Question Answering using World
Knowledge. ArXiv:2206.01718 [cs].

Sarah Schwettmann, Neil Chowdhury, Samuel Klein, David Bau, and Antonio Torralba.
2023. Multimodal Neurons in Pretrained Text-Only Transformers. In 2023 IEEE/CVF
International Conference on Computer Vision Workshops (ICCVW), pages 2854-2859,
Paris, France. IEEE.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi
Parikh, and Dhruv Batra. 2017. Grad-cam: Visual explanations from deep networks via
gradient-based localization. In Proceedings of the IEEE international conference on
computer vision, pages 618-626.

Ozan Sener and Vladlen Koltun. 2018. Multi-task learning as multi-objective optimization.
Advances in Neural Information Processing Systems, 31.

Uri Shaham, Maha Elbayad, Vedanuj Goswami, Omer Levy, and Shruti Bhosale.
2022. Causes and cures for interference in multilingual translation. arXiv preprint
arXiv:2212.07530.

Claude E. Shannon. 1948. A mathematical theory of communication. The Bell System
Technical Journal, 27:379°°423, 623°°656.

Lloyd S Shapley et al. 1953. A value for n-person games.

Lee Sharkey, Dan Braun, and Beren Millidge. 2022. Taking features out of superposition
with sparse autoencoders. In Al Alignment Forum, volume 8, pages 15-16.

Lee Sharkey, Bilal Chughtai, Joshua Batson, Jack Lindsey, Jeff Wu, Lucius Bushnagq,
Nicholas Goldowsky-Dill, Stefan Heimersheim, Alejandro Ortega, Joseph Bloom,
Stella Biderman, Adria Garriga-Alonso, Arthur Conmy, Neel Nanda, Jessica Rumbelow,
Martin Wattenberg, Nandi Schoots, Joseph Miller, Eric J. Michaud, Stephen Casper,
Max Tegmark, William Saunders, David Bau, Eric Todd, Atticus Geiger, Mor Geva,
Jesse Hoogland, Daniel Murfet, and Tom McGrath. 2025. Open Problems in Mechanistic
Interpretability. ArXiv:2501.16496 [cs].

Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. 2018. Conceptual
captions: A cleaned, hypernymed, image alt-text dataset for automatic image captioning.
In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2556-2565.

Shufan Shen, Junshu Sun, Xiangyang Ji, Qingming Huang, and Shuhui Wang. 2024.
Expanding sparse tuning for low memory usage. arXiv preprint arXiv:2411.01800.


https://doi.org/10.48550/arXiv.2206.01718
https://doi.org/10.48550/arXiv.2206.01718
https://doi.org/10.1109/ICCVW60793.2023.00308
https://doi.org/10.48550/arXiv.2501.16496
https://doi.org/10.48550/arXiv.2501.16496

208 BIBLIOGRAPHY

Guangyuan Shi, Qimai Li, Wenlong Zhang, Jiaxin Chen, and Xiao-Ming Wu. 2023. Recon:
Reducing conflicting gradients from the root for multi-task learning. arXiv preprint
arXiv:2302.11289.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. 2017a. Learning important
features through propagating activation differences. In International conference on
machine learning, pages 3145-3153. PMIR.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. 2017b. Learning important
features through propagating activation differences. In International Conference on
Machine Learning.

Vered Shwartz. 2021. Commonsense reasoning for natural language processing. Accessed:
2025-04-25.

Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556.

Shashwat Singh, Shauli Ravfogel, Jonathan Herzig, Roee Aharoni, Ryan Cotterell, and
Ponnurangam Kumaraguru. 2024. MiMiC: Minimally modified counterfactuals in the
representation space. arXiv:2402.09631.

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. 2017.
Smoothgrad: removing noise by adding noise. arXiv preprint arXiv:1706.03825.

Weixi Song, Zuchao Li, Lefei Zhang, Hai Zhao, and Bo Du. 2023. Sparse is enough in
fine-tuning pre-trained large language models. arXiv preprint arXiv:2312.11875.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017a. Conceptnet 5.5: An open
multilingual graph of general knowledge. In Proceedings of AAAL.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017b. Conceptnet 5.5: An open
multilingual graph of general knowledge. In Thirty-first AAAI conference on artificial
intelligence.

Pablo Sprechmann, Siddhant M Jayakumar, Jack W Rae, Alexander Pritzel, Adria Puig-
domenech Badia, Benigno Uria, Oriol Vinyals, Demis Hassabis, Razvan Pascanu,
and Charles Blundell. 2018. Memory-based parameter adaptation. arXiv preprint
arXiv:1802.10542.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller.
2015. Striving for simplicity: The all convolutional net. In International Conference on
Learning Representations (ICLR) Workshop.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. 2014. Dropout: a simple way to prevent neural networks from overfitting. The
journal of machine learning research, 15(1):1929-1958.


https://veredshwartz.blogspot.com/2021/01/commonsense-reasoning-for-natural.html#definition
https://arxiv.org/abs/2402.09631
https://arxiv.org/abs/2402.09631

BIBLIOGRAPHY 209

Gabriela Ben Melech Stan, Raanan Yehezkel Rohekar, Yaniv Gurwicz, Matthew Lyle
Olson, Anahita Bhiwandiwalla, Estelle Aflalo, Chenfei Wu, Nan Duan, Shao-Yen
Tseng, and Vasudev Lal. 2024. Lvlm-intrepret: An interpretability tool for large
vision-language models. arXiv preprint arXiv:2404.03118.

Asa Cooper Stickland and Iain Murray. 2019. Bert and pals: Projected attention layers
for efficient adaptation in multi-task learning. In International Conference on Machine
Learning, pages 5986-5995. PMLR.

Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya Sachan. 2023. A mechanistic inter-
pretation of arithmetic reasoning in language models using causal mediation analysis.
arXiv preprint arXiv:2305.15054.

Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, and Jifeng Dai. 2019.
Vl-bert: Pre-training of generic visual-linguistic representations. arXiv preprint
arXiv:1908.08530.

Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, and Jifeng Dai. 2020.
Vl-bert: Pre-training of generic visual-linguistic representations. In arXiv preprint
arXiv:1908.08530.

Yusheng Su, Xiaozhi Wang, Yujia Qin, Chi-Min Chan, Yankai Lin, Zhiyuan Liu, Peng Li,
Juanzi Li, Lei Hou, Maosong Sun, et al. 2021. On transferability of prompt tuning for
natural language understanding. arXiv preprint arXiv:2111.06719.

Tianxiang Sun, Yunfan Shao, Xiaonan Li, Pengfei Liu, Hang Yan, Xipeng Qiu, and
Xuanjing Huang. 2020. Learning sparse sharing architectures for multiple tasks. In
Proceedings of the AAAI conference on artificial intelligence, volume 34, pages 8936—
8943.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic attribution for deep
networks. In International conference on machine learning, pages 3319-3328. PMLR.

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. 2022. Vl-adapter: Parameter-efficient
transfer learning for vision-and-language tasks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 5227-5237.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015. Going
deeper with convolutions. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1-9.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199.



210 BIBLIOGRAPHY

Hao Tan and Mohit Bansal. 2019a. Lxmert: Learning cross-modality encoder representa-
tions from transformers. arXiv preprint arXiv:1908.07490.

Hao Tan and Mohit Bansal. 2019b. Lxmert: Learning cross-modality encoder representa-
tions from transformers. In arXiv preprint arXiv:1908.07490.

Niket Tandon, Gerard de Melo, and Gerhard Weikum. 2017a. Webchild 2.0: Fine-grained
commonsense knowledge distillation. In ACL System Demonstrations, pages 115-120.

Niket Tandon, Gerard De Melo, and Gerhard Weikum. 2017b. Webchild 2.0: Fine-
grained commonsense knowledge distillation. In Proceedings of ACL 2017, System
Demonstrations, pages 115-120.

Yan Tao, Olga Viberg, Ryan S Baker, and René F Kizilcec. 2024. Cultural bias and cultural
alignment of large language models. PNAS nexus, 3(9):pgae346.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothee Lacroix, Baptiste Rozi ‘re, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien
Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and
Efficient Foundation Language Models.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine
Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan
Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David
Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj
Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan,
Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev,
Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich,
Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen
Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan,
Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. 2023a. Llama 2:
Open Foundation and Fine-Tuned Chat Models. ArXiv:2307.09288 [cs].

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine
Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan
Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David
Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj
Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan,
Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Koreneyv,
Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich,
Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,


http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288

BIBLIOGRAPHY 211

Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen
Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan,
Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. 2023b. Llama 2:
Open foundation and fine-tuned chat models.

Hugo et al. Touvron. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971.

Trieu H Trinh and Quoc V Le. 2019. Do language models have common sense?

Yi-Lin Tuan, Sajjad Beygi, Maryam Fazel-Zarandi, Qiaozi Gao, Alessandra Cervone,
and William Yang Wang. 2022. Towards large-scale interpretable knowledge graph
reasoning for dialogue systems. arXiv preprint arXiv:2203.10610.

Tsukasa Ueno and Qiangfu Zhao. 2018. Interpretation of deep neural networks based on
decision trees. In 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure
Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on
Big Data Intelligence and Computing and Cyber Science and Technology Congress
(DASC/PiCom/DataCom/CyberScilech), pages 256-261. IEEE.

Grant Van Horn, Steve Branson, Ryan Farrell, Scott Haber, Jessie Barry, Panos Ipeirotis,
Pietro Perona, and Serge Belongie. 2015. Building a bird recognition app and large
scale dataset with citizen scientists: The fine print in fine-grained dataset collection.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 595-604.

Simon Vandenhende, Stamatios Georgoulis, Wouter Van Gansbeke, Marc Proesmans,
Dengxin Dai, and Luc Van Gool. 2021. Multi-task learning for dense prediction tasks:
A survey. IEEE transactions on pattern analysis and machine intelligence, 44(7):3614—
3633.

Mukund Varma T, Xuxi Chen, Zhenyu Zhang, Tianlong Chen, Subhashini Venugopalan,
and Zhangyang Wang. 2022. Sparse winning tickets are data-efficient image recognizers.
Advances in Neural Information Processing Systems, 35:4652—4666.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017a. Attention is all you need. In
Advances in neural information processing systems, pages 5998—6008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, ‘ukasz Kaiser, and Illia Polosukhin. 2017b. Attention is All you Need. In
Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc.


https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

212 BIBLIOGRAPHY

Raja Vavekanand and Kira Sam. 2024. Llama 3.1: An in-depth analysis of the next-
generation large language model. In -.

Bastiaan S Veeling, Jasper Linmans, Jim Winkens, Taco Cohen, and Max Welling. 2018.
Rotation equivariant cnns for digital pathology. In Medical Image Computing and Com-
puter Assisted Intervention—-MICCAI 2018: 21st International Conference, Granada,
Spain, September 16-20, 2018, Proceedings, Part Il 11, pages 210-218. Springer.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron
Singer, and Stuart Shieber. 2020. Investigating gender bias in language models us-

ing causal mediation analysis. Advances in neural information processing systems,
33:12388-12401.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. 2015. Show and tell:
A neural image caption generator. In CVPR.

Denny Vrande‘i‘ and Markus Kr‘tzsch. 2014. Wikidata: A free collaborative knowledge
base. Communications of the ACM, 57(10):78-85.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The
caltech-ucsd birds-200-2011 dataset. 2011. California Institute of Technology.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R.
Bowman. 2019a. Glue: A multi-task benchmark and analysis platform for natural
language understanding.

Haofan Wang, Zifan Wang, Mengnan Du, Fan Yang, Zijian Zhang, Xia Hu Ding, Piotr
Mardziel, and Xia Hu. 2020a. Score-cam: Score-weighted visual explanations for
convolutional neural networks. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition workshops, pages 24-25.

Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. 2019b. Learning ro-
bust global representations by penalizing local predictive power. Advances in Neural
Information Processing Systems, 32.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
2022. Interpretability in the wild: a circuit for indirect object identification in gpt-2
small. arXiv preprint arXiv:2211.00593.

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou, Fandong Meng, Jie Zhou, and
Xu Sun. 2023. Label Words are Anchors: An Information Flow Perspective for Under-
standing In-Context Learning. ArXiv:2305.14160 [cs].

Peng Wang, Dongyang Liu, Hui Li, and Qi Wu. 2020b. Give me something to eat:
Referring expression comprehension with commonsense knowledge. In Proceedings of
the 28th ACM International Conference on Multimedia, pages 28-36.


http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/2305.14160
http://arxiv.org/abs/2305.14160

BIBLIOGRAPHY 213

Peng Wang, Qi Wu, Jiewei Cao, Chunhua Shen, Lianli Gao, and Anton van den Hengel.
2019c. Neighbourhood watch: Referring expression comprehension via language-
guided graph attention networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 1960-1968.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei, Xuanjing Huang, Guihong Cao, Daxin
Jiang, Ming Zhou, et al. 2020c. K-adapter: Infusing knowledge into pre-trained models
with adapters. arXiv preprint arXiv:2002.01808.

Xiang Wang, Dingxian Wang, Canran Xu, Xiangnan He, Yixin Cao, and Tat-Seng Chua.
2019d. Explainable reasoning over knowledge graphs for recommendation. In Proceed-
ings of the AAAI conference on artificial intelligence, volume 33, pages 5329-5336.

Yuqing Wang and Yun Zhao. 2023. Gemini in reasoning: Unveiling commonsense in
multimodal large language models. arXiv preprint arXiv:2312.17661.

Zifeng Wang, Shao-Lun Huang, Ercan E Kuruoglu, Jimeng Sun, Xi Chen, and Yefeng
Zheng. 2021a. Pac-bayes information bottleneck. arXiv preprint arXiv:2109.14509.

Ziteng Wang, Shao-Lun Huang, Ercan Engin Kuruoglu, Jimeng Sun, Xi Chen, and Yefeng
Zheng. 2021b. Pac-bayes information bottleneck. ArXiv, abs/2109.145009.

Zirui Wang, Zachary C. Lipton, and Yulia Tsvetkov. 2020d. On negative interference in
multilingual models: Findings and a meta-learning treatment. EMNLP 2020 - 2020
Conference on Empirical Methods in Natural Language Processing, Proceedings of the
Conference, pages 4438-4450. ArXiv: 2010.03017 ISBN: 9781952148606.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning in large language
models. Advances in Neural Information Processing Systems, 35:24824-24837.

Nathaniel Weir, Adam Poliak, and Benjamin Van Durme. 2020. Probing neural language
models for human tacit assumptions. arXiv preprint arXiv:2004.04877.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning structured
sparsity in deep neural networks. Advances in neural information processing systems,
29.

Chunyang Wu, Mark JF Gales, Anton Ragni, Penny Karanasou, and Khe Chai Sim. 2017.
Improving interpretability and regularization in deep learning. IEEE/ACM Transactions
on Audio, Speech, and Language Processing, 26(2):256-265.

Muling Wu, Wenhao Liu, Xiaohua Wang, Tianlong Li, Changze Lv, Zixuan Ling, Jianhao
Zhu, Cenyuan Zhang, Xiaoqing Zheng, and Xuanjing Huang. 2024a. Advancing
Parameter Efficiency in Fine-tuning via Representation Editing. ArXiv:2402.15179

[cs].


https://doi.org/10.18653/v1/2020.emnlp-main.359
https://doi.org/10.18653/v1/2020.emnlp-main.359
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://doi.org/10.48550/arXiv.2402.15179
https://doi.org/10.48550/arXiv.2402.15179

214 BIBLIOGRAPHY

Muling Wu, Wenhao Liu, Xiaohua Wang, Tianlong Li, Changze Lv, Zixuan Ling, Jianhao
Zhu, Cenyuan Zhang, Xiaoqing Zheng, and Xuanjing Huang. 2024b. Advancing
parameter efficiency in fine-tuning via representation editing. arXiv:2402.15179.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. 2016. Google’s
neural machine translation system: Bridging the gap between human and machine
translation. arXiv preprint arXiv:1609.08144.

Zhengxuan Wu, Aryaman Arora, Zheng Wang, Atticus Geiger, Dan Jurafsky, Christo-
pher D. Manning, and Christopher Potts. 2024c. ReFT: Representation Finetuning for
Language Models. ArXiv:2404.03592.

Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. 2010.
Sun database: Large-scale scene recognition from abbey to zoo. In 2010 IEEE computer
society conference on computer vision and pattern recognition, pages 3485-3492. IEEE.

Enze Xie et al. 2021. Segformer: Simple and efficient design for semantic segmentation
with transformers. Advances in Neural Information Processing Systems.

Biao Xu and Guanci Yang. 2025. Interpretability research of deep learning: A literature
survey. Information Fusion, 115:102721.

Dan Xu, Wanli Ouyang, Xiaogang Wang, and Nicu Sebe. 2018. Pad-net: Multi-tasks
guided prediction-and-distillation network for simultaneous depth estimation and scene
parsing. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 675-684.

Runxin Xu, Fuli Luo, Zhiyuan Zhang, Chuanqgi Tan, Baobao Chang, Songfang Huang,
and Fei Huang. 2021. Raise a child in large language model: Towards effective and
generalizable fine-tuning. arXiv preprint arXiv:2109.05687.

Shicheng Xu, Liang Pang, Yunchang Zhu, Huawei Shen, and Xueqi Cheng. 2024. Cross-
modal safety mechanism transfer in large vision-language models. arXiv preprint
arXiv:2410.12662.

Hsiu-Yu Yang and Carina Silberer. 2022. Are visual-linguistic models commonsense
knowledge bases? In Proceedings of the 29th international conference on computational
linguistics, pages 5542-5559.

Shenghao Yang, Weizhi Ma, Peijie Sun, Min Zhang, Qingyao Ai, Yiqun Liu, and Mingchen
Cai. 2024. Common sense enhanced knowledge-based recommendation with large
language model. In International Conference on Database Systems for Advanced
Applications, pages 381-390. Springer.


https://arxiv.org/abs/2402.15179
https://arxiv.org/abs/2402.15179
https://doi.org/10.48550/arXiv.2404.03592
https://doi.org/10.48550/arXiv.2404.03592
https://doi.org/10.1016/j.inffus.2024.102721
https://doi.org/10.1016/j.inffus.2024.102721

BIBLIOGRAPHY 215

Shuo Yang, Siwen Luo, Soyeon Caren Han, and Eduard Hovy. 2025. Magic-vga: Mul-
timodal and grounded inference with commonsense knowledge for visual question
answering. arXiv preprint arXiv:2503.18491.

Guy Yariv, Idan Schwartz, Yossi Adi, and Sagie Benaim. 2024. Improving visual
commonsense in language models via multiple image generation. arXiv preprint
arXiv:2406.13621.

Shuquan Ye, Yujia Xie, Dongdong Chen, Yichong Xu, Lu Yuan, Chenguang Zhu, and
Jing Liao. 2023. Improving commonsense in vision-language models via knowledge
graph riddles. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2634-2645.

LU Ying et al. 2015. Decision tree methods: applications for classification and prediction.
Shanghai archives of psychiatry, 27(2):130.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. 2014. How transferable are
features in deep neural networks? Advances in neural information processing systems,
27.

Licheng Yu, Zhe Lin, Xiaohui Shen, Jimei Yang, Xin Lu, Mohit Bansal, and Tamara L
Berg. 2018. Mattnet: Modular attention network for referring expression comprehension.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 1307-1315.

Licheng Yu, Patrick Poirson, Shan Yang, Alexander C Berg, and Tamara L Berg. 2016.
Modeling context in referring expressions. In European Conference on Computer Vision,
pages 69—85. Springer.

Licheng Yu, Hao Tan, Mohit Bansal, and Tamara L Berg. 2017. A joint speaker-listener-
reinforcer model for referring expressions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 7282-7290.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea
Finn. 2020. Gradient surgery for multi-task learning. Advances in Neural Information
Processing Systems, 33:5824-5836.

Lu Yuan, Lijuan Chen, Weizhu Chen, et al. 2021. Florence: A new foundation model for
computer vision. In Advances in Neural Information Processing Systems.

Tian Yun, Chen Sun, and Ellie Pavlick. 2021. Does vision-and-language pretraining
improve lexical grounding? arXiv preprint arXiv:2109.10246.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. 2021. Bitfit: Simple parameter-
efficient fine-tuning for transformer-based masked language-models. arXiv preprint
arXiv:2106.10199.



216 BIBLIOGRAPHY

Arman Zarei, Keivan Rezaei, Samyadeep Basu, Mehrdad Saberi, Mazda Moayeri, Priy-
atham Kattakinda, and Soheil Feizi. 2024. Understanding and mitigating compositional
issues in text-to-image generative models. arXiv preprint arXiv:2406.07844.

Matthew D Zeiler and Rob Fergus. 2014. Visualizing and understanding convolutional
networks. In European conference on computer vision, pages 818—-833. Springer.

Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin Choi. 2019a. From recognition to
cognition: Visual commonsense reasoning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6720-6731.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. 2019b. Hel-
laSwag: Can a machine really finish your sentence? arXiv:1905.07830.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. 2022. Scaling
vision transformers. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 12104—-12113.

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme,
Mario Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Doso-
vitskiy, et al. 2019. A large-scale study of representation learning with the visual task
adaptation benchmark. arXiv preprint arXiv:1910.04867.

Biao Zhang, Ankur Bapna, Rico Sennrich, and Orhan Firat. 2021a. Share or not? learning
to schedule language-specific capacity for multilingual translation. In Ninth Interna-
tional Conference on Learning Representations 2021.

Hanwang Zhang, Yulei Niu, and Shih-Fu Chang. 2018a. Grounding referring expressions
in images by variational context. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4158—4166.

Q Zhang, M Chen, A Bukharin, P He, Y Cheng, W Chen, and T Zhao. 2023a. Adaptive
budget allocation for parameter-efficient fine-tuning. preprint (2023). arXiv preprint
arXiv:2303.10512.

Renrui Zhang, Rongyao Fang, Wei Zhang, Peng Gao, Kunchang Li, Jifeng Dai, Yu Qiao,
and Hongsheng Li. 2021b. Tip-adapter: Training-free clip-adapter for better vision-
language modeling. arXiv preprint arXiv:2111.03930.

Renrui Zhang, Ziyu Guo, Wei Zhang, Kunchang Li, Xupeng Miao, Bin Cui, Yu Qiao,
Peng Gao, and Hongsheng Li. 2022a. Pointclip: Point cloud understanding by clip. In
CVPR 2022.

Renrui Zhang, Jiaming Han, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu, Hongsheng
Li, Peng Gao, and Yu Qiao. 2023b. Llama-adapter: Efficient fine-tuning of language
models with zero-init attention. /ICLR 2024.


https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/1905.07830

BIBLIOGRAPHY 217

Renrui Zhang, Xiangfei Hu, Bohao Li, Siyuan Huang, Hanqiu Deng, Hongsheng Li,
Yu Qiao, and Peng Gao. 2023c. Prompt, generate, then cache: Cascade of foundation
models makes strong few-shot learners. CVPR 2023.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott,
Sam Shleifer, Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022b. OPT: Open Pre-trained Transformer Language
Models. ArXiv:2205.01068 [cs].

Xiaofeng Zhang, Chen Shen, Xiaosong Yuan, Shaotian Yan, Liang Xie, Wenxiao Wang,
Chaochen Gu, Hao Tang, and Jieping Ye. 2024a. From Redundancy to Relevance:
Enhancing Explainability in Multimodal Large Language Models. ArXiv:2406.06579
[cs].

Yu Zhang, Peter Ti‘o, Ale‘ Leonardis, and Ke Tang. 2021c. A Survey on Neural Network
Interpretability. IEEE Transactions on Emerging Topics in Computational Intelligence,
5(5):726-742. ArXiv:2012.14261 [cs].

Yu Zhang and Qiang Yang. 2021. A survey on multi-task learning. /IEEE Transactions on
Knowledge and Data Engineering, 34(12):5586-5609.

Yunlong Zhang, Nan Chen, Yonghe Wang, Xiangdong Su, and Feilong Bao. 2025. Mul-
tilingual parameter-sharing adapters: A method for optimizing low-resource neural
machine translation. In ICASSP 2025-2025 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 1-5. IEEE.

Zhenyu Zhang, Zhen Cui, Chunyan Xu, Zequn Jie, Xiang Li, and Jian Yang. 2018b. Joint
task-recursive learning for semantic segmentation and depth estimation. In Proceedings
of the European Conference on Computer Vision (ECCV), pages 235-251.

Zhenyu Zhang, Zhen Cui, Chunyan Xu, Yan Yan, Nicu Sebe, and Jian Yang. 2019. Pattern-
affinitive propagation across depth, surface normal and semantic segmentation. In

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 4106—4115.

Zhi Zhang, Qizhe Zhang, Zijun Gao, Renrui Zhang, Ekaterina Shutova, Shiji Zhou, and
Shanghang Zhang. 2023d. Gradient-based parameter selection for efficient fine-tuning.
arXiv preprint arXiv:2312.10136.

Zhi Zhang, Qizhe Zhang, Zijun Gao, Renrui Zhang, Ekaterina Shutova, Shiji Zhou,
and Shanghang Zhang. 2024b. Gradient-based parameter selection for efficient fine-
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 28566—28577.


http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2406.06579
http://arxiv.org/abs/2406.06579
https://doi.org/10.1109/TETCI.2021.3100641
https://doi.org/10.1109/TETCI.2021.3100641

218 BIBLIOGRAPHY

Mengjie Zhao, Tao Lin, Fei Mi, Martin Jaggi, and Hinrich Schiitze. 2020. Masking as
an efficient alternative to finetuning for pretrained language models. arXiv preprint
arXiv:2004.12406.

Qinyu Zhao, Ming Xu, Kartik Gupta, Akshay Asthana, Liang Zheng, and Stephen Gould.
2024. The first to know: How token distributions reveal hidden knowledge in large
vision-language models? arXiv preprint arXiv:2403.09037.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zi Lin, Zhuohan Li, Li, and OTHERS. 2023. Judging llm-as-a-judge with
mt-bench and chatbot arena.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. 2016.
Learning deep features for discriminative localization. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2921-2929.

Daquan Zhou, Bingyi Kang, Xiaojie Jin, Linjie Yang, Xiaochen Lian, Zihang Jiang, Qibin
Hou, and Jiashi Feng. 2021. Deepvit: Towards deeper vision transformer. arXiv preprint
arXiv:2103.11886.

Daquan Zhou, Zhiding Yu, Enze Xie, Chaowei Xiao, Animashree Anandkumar, Jiashi
Feng, and Jose M Alvarez. 2022. Understanding the robustness in vision transformers.
In International Conference on Machine Learning, pages 27378-27394. PMLR.

Xiangyang Zhu, Renrui Zhang, Bowei He, Aojun Zhou, Dong Wang, Bin Zhao, and
Peng Gao. 2023. Not all features matter: Enhancing few-shot clip with adaptive prior
refinement. ICCV 2023.

Roland S Zimmermann, Thomas Klein, and Wieland Brendel. 2023. Scale alone does not
improve mechanistic interpretability in vision models. Advances in Neural Information
Processing Systems, 36:57876-57907.


http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685

Samenvatting

Op het gebied van multimodaal leren is de afgelopen jaren aanzienlijke vooruitgang
geboekt, zowel wat betreft bereikte prestaties, als de verscheidenheid van taken. Echter
blijven er nog steeds veel belangrijke uitdagingen over, zoals het integreren van ex-
terne kennis in multimodale modellen, wat snelle en effici‘nte aanpassing aan nieuwe
taken mogelijk maakt, en negatieve interferentie verminderd tijdens gezamenlijk leren.
Bovendien, ondanks de brede toepasbaarheid van deze modellen, ontbreekt er inzicht
in hun interne mechanisme, met name in hoe verschillende modaliteiten interageren
in multimodale systemen. Dit proefschrift onderzoekt deze uitdagingen vanuit het
perspectief van twee verschillende modaliteiten: taal en beeld, en hun combinatie.

Ten eerste ontwikkelen we een methode om multimodaal redeneren te verbeteren
door algemene kennis te integreren in de modellen. Dat wil zeggen, we integreren
algemene kennis over objecten in een afbeelding in de representaties van die objecten.
We evalueren deze techniek op basis van de “referring expression comprehension” taak,
waarbij het doel is om de positie van het object in de afbeelding te vinden op basis van
een taalbeschrijving en een atbeelding. Door externe kennis op te nemen, kunnen de
modellen objectfuncties en contextuele relaties afleiden, waardoor ze kunnen redeneren
over complexe sc‘nes, en niet alleen visuele en ruimtelijke aanwijzingen waar nemen.
Dit verbetert de toepasbaarheid van modellen voor realistische scenario’s die ‘‘gezond
verstand‘‘ vereisen.

Ten tweede stellen we een nieuwe ‘‘parameter-efficient fine-tuning‘‘ (PEFT) meth-
ode voor, waarmee al getrainde modellen effici‘nt aangepast kunnen worden aan nieuwe
taken. In plaats van het hele model aan te passen, verfijnt onze aanpak slechts een klein,
maar relevant deel van alle parameters. Hierdoor worden neuron excitaties gemod-
uleerd om zich effectief aan te passen aan nieuwe taken. Deze selectieve afstemming
verlaagt de vereiste computerkracht, vermindert potenti‘le gradi‘ntconflicten tussen
verschillende taken, en behoudt het model nuttige kennis die is opgedaan tijdens de
eerste trainingsronde. We tonen aan dat onze methode de prestaties in verschillende
visuele en taalkundige taken verbetert. Daarnaast introduceren we een nieuwe ‘‘sparse
training ‘ ‘-benadering waarmee voorgetrainde modellen meerdere taken tegelijk kunnen
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uitvoeren. Deze methode vergemakkelijkt het delen van relevante informatie tussen
taken tijdens het leerproces en vermindert tegelijkertijd gradi‘ntconflicten die vaak
voorkomen bij het gezamenlijk leren van meerde taken. We tonen proefondervindelijk
aan dat onze aanpak de prestaties aanzienlijk verbetert bij ‘‘dense vision prediction**
taken, wat wijst op foutbestendigheid en brede toepasbaarheid.

Ten slotte onderzoeken we het interne werkingsmechanisme van multimodale
‘‘Large Language Models‘‘ (MLLMs) bij het uitvoeren van multimodale taken, met
name hoe taalkundige en visuele informatie in deze modellen op elkaar inwerken.
Specifiek, gegeven een afbeelding en een vraag, onderzoeken we waar in het model
en hoe beeld en tekst worden gecombineerd om de uiteindelijke voorspelling te gener-
eren. Uitgebreide experimenten tonen aan dat er twee verschillende stadia zijn in
het integratie proces van deze twee modaliteiten. In de onderste lagen zet het model
eerst de meer algemene visuele kenmerken van het hele beeld om in de representaties
van (tekstuele) vraagwoorden. In de middelste lagen wordt visuele informatie over
specifieke objecten die relevant zijn voor de vraag nogmaals overgedragen naar de
juiste woordenposities van de vraag. Tot slot wordt in de hogere lagen de resulterende
multimodale representatie doorgegeven aan de laatste positie van de invoerreeks voor
de uiteindelijke voorspelling. Onze bevindingen bieden, over het geheel genomen, een
nieuw en uitgebreid perspectief op ruimtelijke en functionele aspecten van beeld- en
taalverwerking in MLLMs, wat toekomstig onderzoek naar multimodale informatie
lokalisatie en bewerking zal bevorderen.

Globaal samengevat, dit proefschrift draagt bij aan de vooruitgang van beeld- en
taalmodellen door fundamentele probleemstellingen in deze domeinen aan te pakken.
De voorgestelde oplossingen en inzichten bieden een basis voor het ontwikkelen van
meer kennisbewuste, effici‘nte en interpreteerbare multimodale kunstmatige intelligentie
systemen, toepasbaar in uiteenlopende realistische contexten.



Abstract

The area of multimodal learning has seen substantial advances in recent years, both
in terms of performance and the variety of tasks tackled. However, many important
challenges remain, including integrating external factual knowledge in multimodal
models, enabling their fast and efficient adaptation to a new task and reducing negative
interference in joint learning. Furthermore, despite the wide applicability of these
models, we still lack an understanding of their internal mechanisms, in terms of how
different modalities interact in multi-modal systems. This dissertation investigates these
challenges from the perspectives of two different modalities: language and vision, as
well as their combination.

First, we develop a method to enhance multimodal reasoning by integrating com-
monsense knowledge into the models. Specifically, we incorporate the commonsense
knowledge about objects in the image into model representations of these objects. We
evaluate this technique in the task of referring expression comprehension, where the
aim is to find the position of the object in the image from a language description and
an image. By incorporating external knowledge, the models can infer object functions
and contextual relationships, enabling them to reason about complex scenes rather than
merely perceiving visual and spatial cues, improving the applicability of models to
real-world scenarios requiring commonsense knowledge.

Second, we propose a novel parameter-efficient fine-tuning (PEFT) method for an
efficient adaptation of pre-trained models to new tasks. Instead of updating the entire
model, our approach fine-tunes only a small, relevant subset of parameters, effectively
modulating neuron activations to adapt to new tasks. This selective tuning reduces
computational demands and potentially reduces gradient conflicts between tasks and
preserves useful knowledge acquired during pretraining. We demonstrate that our
method improves performance across various vision and language tasks. On the other
hand, to enable pretrained models to efficiently handle multiple tasks at the same time,
we propose a novel sparse training approach. This method facilitates the sharing of
relevant information across tasks during the learning process while simultaneously
mitigating gradient conflicts that commonly arise in multi-task learning. Empirical
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evaluations demonstrate that our approach significantly improves performance in dense
vision prediction tasks, demonstrating robustness and wide applicability.

Lastly, we investigate the inner working mechanism of multimodal large language
models (MLLMs) when performing multimodal tasks, especially how linguistic and
visual information interact within these models. Specifically, given an image-question
pair as input, we investigate where in the model and how the visual and linguistic
information are combined to generate the final prediction. Extensive experiments
have shown that there are two distinct stages in the process of integration of the two
modalities. In the lower layers, the model first transfers the more general visual features
of the whole image into the representations of (linguistic) question tokens. In the middle
layers, it once again transfers visual information about specific objects relevant to the
question to the respective token positions of the question. Finally, in the higher layers,
the resulting multimodal representation is propagated to the last position of the input
sequence for the final prediction. Overall, our findings provide a new and comprehensive
perspective on the spatial and functional aspects of image and language processing in the
MLLMs, thereby facilitating future research into multimodal information localization
and editing.

In summary, this dissertation contributes to advancing vision and language models
by addressing fundamental challenges across these domains. The proposed solutions
and insights provide a foundation for developing more knowledge-aware, efficient, and
interpretable multi-modal Al systems, applicable to diverse tasks in real-world settings.



Titles in the ILLC Dissertation Series:

ILLC DS-2020-12: Bastiaan van der Weij
Experienced listeners: Modeling the influence of long-term musical exposure on
rhythm perception

ILLC DS-2020-13: Thom van Gessel
Questions in Context

ILLC DS-2020-14: Gianluca Grilletti
Questions & Quantification: A study of first order inquisitive logic

ILLC DS-2020-15: Tom Schoonen
Tales of Similarity and Imagination. A modest epistemology of possibility

ILLC DS-2020-16: Ilaria Canavotto
Where Responsibility Takes You: Logics of Agency, Counterfactuals and Norms

ILLC DS-2020-17: Francesca Zaffora Blando
Patterns and Probabilities: A Study in Algorithmic Randomness and Computable
Learning

ILLC DS-2021-01: Yfke Dulek
Delegated and Distributed Quantum Computation

ILLC DS-2021-02: Elbert J. Booij
The Things Before Us: On What it Is to Be an Object

ILLC DS-2021-03: Seyyed Hadi Hashemi
Modeling Users Interacting with Smart Devices

ILLC DS-2021-04: Sophie Arnoult
Adjunction in Hierarchical Phrase-Based Translation

ILLC DS-2021-05: Cian Guilfoyle Chartier
A Pragmatic Defense of Logical Pluralism

ILLC DS-2021-06: Zoi Terzopoulou
Collective Decisions with Incomplete Individual Opinions

ILLC DS-2021-07: Anthia Solaki
Logical Models for Bounded Reasoners

ILLC DS-2021-08: Michael Sejr Schlichtkrull
Incorporating Structure into Neural Models for Language Processing

ILLC DS-2021-09: Taichi Uemura
Abstract and Concrete Type Theories



ILLC DS-2021-10: Levin Hornischer
Dynamical Systems via Domains: Toward a Unified Foundation of Symbolic and
Non-symbolic Computation

ILLC DS-2021-11: Sirin Botan
Strategyproof Social Choice for Restricted Domains

ILLC DS-2021-12: Michael Cohen
Dynamic Introspection

ILLC DS-2021-13: Dazhu Li
Formal Threads in the Social Fabric: Studies in the Logical Dynamics of Multi-
Agent Interaction

ILLC DS-2021-14: ‘lvaro Piedrafita
On Span Programs and Quantum Algorithms

ILLC DS-2022-01: Anna Bellomo
Sums, Numbers and Infinity: Collections in Bolzano‘‘s Mathematics and Philosophy

ILLC DS-2022-02: Jan Czajkowski
Post-Quantum Security of Hash Functions

ILLC DS-2022-03: Sonia Ramotowska
Quantifying quantifier representations: Experimental studies, computational model-
ing, and individual differences

ILLC DS-2022-04: Ruben Brokkelkamp
How Close Does It Get?: From Near-Optimal Network Algorithms to Suboptimal
Equilibrium Outcomes

ILLC DS-2022-05: Lwenn Bussi‘re-Carae
No means No! Speech Acts in Conflict

ILLC DS-2022-06: Emma Mojet

Observing Disciplines: Data Practices In and Between Disciplines in the 19th and
Early 20th Centuries

ILLC DS-2022-07: Freek Gerrit Witteveen
Quantum information theory and many-body physics

ILLC DS-2023-01: Subhasree Patro
Quantum Fine-Grained Complexity

ILLC DS-2023-02: Arjan Cornelissen
Quantum multivariate estimation and span program algorithms



ILLC DS-2023-03: Robert Pa‘mann
Logical Structure of Constructive Set Theories

ILLC DS-2023-04: Samira Abnar
Inductive Biases for Learning Natural Language

ILLC DS-2023-05: Dean McHugh
Causation and Modality: Models and Meanings

ILLC DS-2023-06: Jialiang Yan
Monotonicity in Intensional Contexts: Weakening and: Pragmatic Effects under
Modals and Attitudes

ILLC DS-2023-07: Yiyan Wang
Collective Agency: From Philosophical and Logical Perspectives

ILLC DS-2023-08: Lei Li
Games, Boards and Play: A Logical Perspective

ILLC DS-2023-09: Simon Rey
Variations on Participatory Budgeting

ILLC DS-2023-10: Mario Giulianelli
Neural Models of Language Use: Studies of Language Comprehension and Produc-
tion in Context

ILLC DS-2023-11: Guillermo Men‘ndez Turata
Cyclic Proof Systems for Modal Fixpoint Logics

ILLC DS-2023-12: Ned J.H. Wontner
Views From a Peak: Generalisations and Descriptive Set Theory

ILLC DS-2024-01: Jan Rooduijn
Fragments and Frame Classes: Towards a Uniform Proof Theory for Modal Fixed
Point Logics

ILLC DS-2024-02: Bas Cornelissen
Measuring musics: Notes on modes, motifs, and melodies

ILLC DS-2024-03: Nicola De Cao
Entity Centric Neural Models for Natural Language Processing

ILLC DS-2024-04: Ece Takmaz
Visual and Linguistic Processes in Deep Neural Networks: A Cognitive Perspective

ILLC DS-2024-05: Fatemeh Seifan
Coalgebraic fixpoint logic Expressivity and completeness result



ILLC DS-2024-06: Jana Sot‘kov*
Isogenies and Cryptography

ILLC DS-2024-07: Marco Degano
Indefinites and their values

ILLC DS-2024-08: Philip Verduyn Lunel
Quantum Position Verification: Loss-tolerant Protocols and Fundamental Limits

ILLC DS-2024-09: Rene Allerstorfer
Position-based Quantum Cryptography: From Theory towards Practice

ILLC DS-2024-10: Willem Feijen
Fast, Right, or Best? Algorithms for Practical Optimization Problems

ILLC DS-2024-11: Daira Pinto Prieto
Combining Uncertain Evidence: Logic and Complexity

ILLC DS-2024-12: Yanlin Chen
On Quantum Algorithms and Limitations for Convex Optimization and Lattice
Problems

ILLC DS-2024-13: Jaap Jumelet
Finding Structure in Language Models

ILLC DS-2025-01: Julian Chingoma
On Proportionality in Complex Domains

ILLC DS-2025-02: Dmitry Grinko
Mixed Schur-Weyl duality in quantum information

ILLC DS-2025-03: Rochelle Choenni
Multilinguality and Multiculturalism: Towards more Effective and Inclusive Neural
Language Models

ILLC DS-2025-04: Aleksi Anttila
Not Nothing: Nonemptiness in Team Semantics

ILLC DS-2025-05: Niels M. P. Neumann
Adaptive Quantum Computers: decoding and state preparation



	Acknowledgments
	Introduction
	1.1 Part I: Commonsense Knowledge Enhanced Multimodal Reasoning
	1.2 Part II: Efficient Adaptation
	1.2.1 PartII.I: Parameter-efficient fine-tuning for task-specific adaptation
	1.2.1 PartII.II: Sparse training for efficient multitask learning

	1.3 Part III: Transparency
	List of publications
	Software and repositories

	Background
	Language, vision and vision-language encoders
	Language models
	Vision models
	Vision-language models
	The influence of computer vision and NLP on each other

	Commonsense knowledge
	Efficient adaption
	Parameter-efficient fine-tuning
	Multitask learning

	Transparency
	Interpretability
	Mechanistic interpretability
	Interpretability for different-modality models
	Mechanistic Interpretability for different-modality models


	Commonsense Knowledge Enhanced Multimodal Reasoning
	Introduction
	Related Work
	Methodology
	Image-based fact search
	Commonsense Knowledge Enhanced Transformer

	Results
	Analysis
	Conclusion
	Limitations

	Gradient-based Parameter Selection for Efficient Fine-Tuning
	Introduction
	Related work
	Approach
	Gradient-based parameter selection
	Masked fine-tuning

	Experiments
	Experimental settings
	Performance on image classification
	Semantic segmentation
	Impacts of different selection schemes
	Ablation study

	Conclusion

	GPU-Efficient Sparse Training for Parameter-Efficient Fine-Tuning
	Introduction
	Related Work
	Methodology
	Preliminaries
	Top-k selection
	Featherlight adaptation

	Neuron-wise Sparse Adaptation: Comparative Analysis
	Experiments
	Commonsense reasoning
	Arithmetic reasoning
	Natural language understanding

	Conclusion
	Limitations

	Sparse Training for Gradient Conflict Mitigation in MTL
	Introduction
	Related work
	Approach
	Background
	Sparse training for multi-task learning
	Theoretical analysis for sparse training
	Parameter selection per neuron (PSN)

	Experiments
	EXPERIMENTAL SETUP
	Incidence of gradient conflict
	Performance on diverse benchmarks
	Ablation study

	Conclusion

	Cross-modal Information Flow in Multimodal LLMs
	Introduction
	Related work
	Tracing information flow in MLLMs
	Background: MLLMs
	Attention knockout

	Experimental setting
	Contribution of different modalities to the final prediction
	How is the linguistic and visual information integrated?
	How is the final answer generated?
	Conclusion

	Conclusions
	Appendices
	Appendix to chapter:CK-Transformer
	Referring expression comprehension
	UNITER
	Input embedding
	Datasets
	Experimental settings
	Impact of CK-T structure
	Introducing facts in traditional REC tasks based on detection
	McNemar Test
	Example searched fact using different methods

	Appendix to chapter:peft
	Details of experiments
	Additional experiments
	Visualizations
	Details of the evaluation datasets
	Extended related work
	Disscussion
	Limitations and societal impacts

	Appendix to chapter:peftnlp
	Datasets
	Results on natural language understanding tasks
	Results of commonsense and math reasoning on LLaMA3-8B
	Hyperparameters
	Advantages of NeuroAda
	Algorithm

	Appendix to chapter:mtl
	Proof for Equation
	Limitations
	Broader Impacts
	Detailed experiment setting
	Extended related work
	Detailed experiment results

	Appendix to chapter:interpretability
	Dataset collection
	Informaion flow for different window size k
	Changes in probability of the last sub-word generation
	Constructing multimodal semantic representations
	Experiments on other models
	The fine-grain analysis for information flow
	The influence of images on the semantics of Questions
	Difference with unimodal LLM
	More complex tasks
	Attention sink


	Bibliography
	Samenvatting
	Abstract

