
Formalizing Unsolvability Certificates for Automated Planning in Lean 4

MSc Thesis (Afstudeerscriptie)

written by

Amos Nicodemus

under the supervision of Dr Gregor Behnke and Dr Malvin Gattinger, and submitted to the

Examinations Board in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:

January 9th, 2026 Dr Benno van den Berg (chair)

Prof Dr Ulle Endriss

Dr Ronald de Haan

Dr Gregor Behnke (supervisor)

Dr Malvin Gattinger (supervisor)

Abstract

The objective of classical planning is to find a sequence of actions which leads from an initial state to a

goal. Several solvers for automatically solving these planning problems exist, which either return a

plan (such a sequence of actions) or state that no plan exists. In the latter case, we would want to

verify that in fact there does not exist a plan, which can be done using certificates of unsolvability.

Recently, two certificate systems have been developed, namely inductive certificates [19, 12] and a

rule based proof system [18, 12]. The simplest version of an inductive certificate is a set of states that

is closed under taking actions and contains the initial state but no goal state. The rule based proof

system consists of rules to reason about sets of dead states, where a state is dead if no plan traverses

the state.

Eriksson has implemented a validator based on this proof system in C++ [14]. Like any other software,

this validator can have bugs, hence it would be useful to have a formally verified validator. The goal of

the thesis is to implement a validator in Lean 4 for this proof system.

Contents

1 Introduction 3

1.1 Automated Planning . 4

1.2 Certificates . 6

1.3 Certificates for Automated Planning . 7

1.3.1 Representing Sets of States . 7

1.3.2 Inductive Certificates . 10

1.3.3 Proof System . 11

1.3.4 Certificates of Optimality . 16

1.3.5 Reduction to Model Checking . 17

1.3.6 Implementations . 17

1.4 Lean 4 . 18

2 Implementation in Lean 4 20

2.1 Planning Tasks . 22

2.1.1 Core . 22

2.1.2 Basic . 25

2.1.3 Parser . 26

2.2 Inductive Certificates and Proof System . 27

2.2.1 InductiveCertificate . 27

2.2.2 Prerequisites from Formalism . 30

2.2.3 ProofSystem . 30

2.3 State Set Formalisms . 34

2.3.1 Formula . 34

2.3.2 BDD, Horn and Mods . 38

2.3.3 Formalism . 39

2.3.4 StateSetFormalism . 43

2.4 Certificates and their Validation . 45

2.4.1 Certificate . 45

2.4.2 Parser . 48

2.4.3 SetExpr . 48

2.4.4 Naive Attempt for Verifying the Syntactic Rules 51

2.4.5 Constraint . 52

2.4.6 BasicRules . 55

1

2.4.7 ValidCertificate . 60

2.4.8 ToDerivation . 62

2.4.9 Validator . 65

3 Discussion 66

3.1 Bug in Helve . 66

3.2 Theorem 23 revisited . 67

3.3 Future work . 68

4 Conclusion 69

Bibliography 70

A Appendices 73

A.1 Full definition of Derivation . 73

A.2 Format for Certificate Parser . 75

2

Chapter 1

Introduction

In classical planning the objective is to find a sequence of actions which leads from an initial state

to a goal. Like many problems in modern computer science, state-of-the-art algorithms to find such

a sequence of actions can be very complex. As any other software, solvers (i.e. implementations of

these algorithms) can, and often will, contain bugs. The most direct way to avoid any bugs, is to

implement the solvers in a formal language like Lean 4 or Isabelle/HOL and formally prove that they

are correct. Unfortunately, this approach has some disadvantages: it is time-consuming, state-of-the-art

solvers are difficult to formalize, a formalized solver will inevitably be less efficient due to the overhead

of formalization, and formalized implementations are less flexible since modifications also require to

modify the proof.

A more successful approach is to let solvers output a certificate which can be used by an independent

validator to verify that the output is correct [3]. While this approach does not ensure that the solvers

don’t contain any bugs, it can ensure that the output of the solvers is correct for specific instances,

and it can help to discover bugs. Of course the validator programs themselves are not immune to bugs,

but the validators are often less complex and therefore easier to formally verify. Eriksson, Röger and

Helmert developed a proof system for certifying unsolvability of classical planning problems [18, 12].

The goal of this thesis is to implement a validator for these certificates in Lean 4 and to formally prove

its correctness.

Lean is an interactive proof assistant and functional programming language based on dependent type

theory [26]. As a proof assistant, Lean 4 provides an interactive environment with powerful tactics. It

features Mathlib, one of the fastest growing libraries for mathematics covering a wide range of topics [4].

At the same time, Lean 4 is a feature-rich functional programming language which can be compiled

into efficient C code. This combination is essential for implementing a formally verified program and

makes Lean a well-suited language for this thesis.

In this introductory chapter we first discuss the relevant basic notions in automated planning in

Section 1.1. Next will have a look at certificates and certificate systems for automated planning in

particular in Section 1.2 and Section 1.3. For the latter, Sections 1.3.1 to 1.3.3 focus on the background

needed for thesis, and Sections 1.3.4 to 1.3.6 discuss some related work. Finally, in Section 1.4 we will

give an overview of the basic syntax of Lean 4.

3

(a) Solvable configuration (b) Unsolvable configuration

Figure 1.1: Two starting configurations for rush hour. In (b) the square in front of the red car will
always be blocked by the cyan car, preventing the red car from moving to the exit. The solvable
configuration is taken from [31].

1.1 Automated Planning

Informally, a planning problem consists of an initial state, a collection of actions which can be used to

alter the current state and a goal that we want to achieve.

Example 1 (Rush Hour). As an example, consider the game of Rush Hour1. The starting point of

the game is a 6× 6 grid with one exit and several cars of length two and trucks of length three placed

on the grid, as shown in Figure 1.1. The cars and trucks can move forwards or backwards (but not

sideways) if the space in front of or to the back of the car is unoccupied. The goal is to find a sequence

of moves which gets the red car out of the grid.

Formally, planning problems are usually described in the STRIPS formalism [20]. The definitions used

here are based on those of Eriksson’s PhD thesis [12].

Definition 2 (state). Given a set of propositional variables V , a state is a subset s ⊆ V . We use

“state set” to denote sets of states.

Informally, a state s contains all the variables that are true, whereas the variables in V \ s are false.

Definition 3 (goal state). Given a set of propositional variables V and a goal description G ⊆ V , a

state s ⊆ V is a goal state iff G ⊆ s.

Definition 4 (action). An action is a quadruple a = ⟨pre(a), add(a),del(a), cost(a)⟩, where pre(a),

add(a) and del(a) are subsets of a set of propositional variables V and cost(a) ∈ N0. Here pre(a) is

the precondition of a, add(a) are the adding effects of a and del(a) are the deleting effects of a. The

cost of a cost(a) is not relevant for unsolvability, and therefore we will often omit it.

1Rush Hour is manufactured by ThinkFun [9].

4

Definition 5 (STRIPS planning task). A STRIPS planning task is a quadruple Π =
〈
V Π, AΠ, IΠ, GΠ

〉
where

– V Π is a finite set of propositional variables,

– AΠ is a finite set of actions for the set V Π,

– IΠ ⊆ V Π is the initial state

– GΠ ⊆ V Π is the goal description.

The set of all states (that is, the power set of V Π) is denoted by SΠ and the set of all goal states is

denoted by SΠ
G. We write ∥Π∥ for the size of the description of Π.

Example 6 (Rush Hour continued). A possible way to model Rush Hour as a STRIPS planning task

is to use the propositional variables

– at(C,X, Y) for every car/truck C and position (X,Y) (with 1 ≤ X ≤ 6 and 1 ≤ Y ≤ 6) indicating

whether C is at (X,Y),

– free(X,Y) for every position (X,Y) indicating where (X,Y) is unoccupied, and

– solved indicating whether the red car has left the maze.

For every car C and every position (X,Y) with 3 ≤ X ≤ 6 and 1 ≤ Y ≤ 6 we have an action

move right(C,X, Y) with

– preconditions at(C,X − 2, Y), at(C,X − 1, Y) and free(X,Y),

– adding effects at(C,X, Y) and free(X − 2, Y), and

– deleting effects at(C,X − 2, Y) and free(X,Y).

Similarly, we define actions move left, move up and move down for moving the cars in the other

directions, and we do the same for all trucks. Finally, we have an action exit with

– preconditions at(red car, 5, 4) and at(red car, 6, 4),

– adding effects solved, free(5, 4) and free(6, 4), and

– deleting effects at(red car, 5, 4) and at(red car, 6, 4).

The initial state contains at(C,X, Y) iff position (X,Y) is occupied by car/truck C in the initial

configuration, it contains free(X,Y) iff no car/truck occupies position (X,Y) in the initial configuration,

and it does not contain solved. The goal is {solved}.

This is of course not the only way of modelling Rush Hour, as one could for example drastically reduce

the number of variables and actions by specializing the description for a specific initial configuration.

5

Definition 7 (action application). An action a is applicable in a state s iff pre(a) ⊆ s. Assuming that

a is applicable in s, applying a to s results in the successor state s[a] := (s \ del(a)) ∪ add(a).

A sequence of actions π = ⟨a1, . . . , an⟩ is applicable in s iff ai is applicable in s[a1] · · · [ai−1] for all

1 ≤ i ≤ n. Instead of s[a1] · · · [an] we will usually write s[π].

A state s′ is called reachable from a state s iff there exists a sequence of actions π = ⟨a1, . . . , an⟩ such
that π is applicable in s and s′ = s[π]. If s′ is reachable from IΠ, then we also say that s′ is reachable.

Definition 8 (plan). Given a planning task Π and a state s, a sequence of actions π = ⟨a1, . . . , an⟩ is
a plan for s iff π is applicable in s and s[π] is a goal state. A plan for IΠ is also called a plan for Π or

a plan (if Π is clear from the context).

Definition 9 (solvable and unsolvable). Let Π be planning task. A state s ∈ SΠ is solvable iff a plan

for s exists, otherwise s is unsolvable. A planning task Π is solvable if a plan for Π exists, otherwise Π

is unsolvable.

Definition 10 (progression). Let Π be a planning task and let S ⊆ SΠ be a state set. For an action

a ∈ AΠ, the progression of S with a is defined to be the set S[a] := {s[a] | s ∈ S, a is applicable in s}.
For a set of actions A ⊆ AΠ, the progression of S with A is the set S[A] :=

⋃
a∈A S[a]. We also say

that S[AΠ] is the progression of S.

Definition 11 (regression). Let Π be a planning task and let S ⊆ SΠ be a state set. For an action a ∈
AΠ, the regression of S with a is defined to be the set [a]S :=

{
s′ ∈ SΠ

∣∣ a is applicable in s′, s′[a] ∈ S
}
.

For a set of actions A, the regression of S with A is the set [A]S :=
⋃

a∈A[a]S. We also say that [AΠ]S

is the regression of S.

1.2 Certificates

Combinatorial solvers like automated planners can make various claims P (I, x⃗) about a problem

instance I. For example, the claim solution(I, S) states that S is a solution for I, unsolvable(I) that I
has no solution, and optimal(I, S, c) that the solution S with cost c is an optimal solution for I. As
motivated in the introduction of this chapter, certificate systems are a useful way to validate that

these statements are correct (according to the semantics of interest). On an abstract level, a certificate

system consists of three components:

1. a theoretical framework,

2. extensions in the solvers themselves, which enable them to generate the certificates, and

3. validators that can validate the certificates generated by the solvers.

For the theoretical framework we are interested in different properties, which are listed below. While

this list is based on certificates of unsolvability and optimality for automated planning [19, 28, 10],

they are also relevant for other combinatorial problems.

6

Definition 12 (certificate criteria). Let P (I, x⃗) be a statement about an instance I for some combin-

atorial problem, possibly using parameters x⃗. Then a certificate system for P should have the following

properties:

– Soundness: If a certificate for the statement P (I, x⃗) exists, then P (I, x⃗) holds.

– Completeness: If P (I, x⃗) is true, then a certificate for P (I, x⃗) exists.

– Efficient generation: The generation of the certificates should incur at most a polynomial overhead

for the solver.

– Efficient verification: The time complexity of validating a certificate should be polynomial in its

size.

– Generality : The generation of certificates can be efficiently implemented for a wide range of

algorithms, rather than being limited to a specific implementation or a specific method for solving

planning problems.

For the purpose of thesis we will focus on implementing a validator (third component) and proving the

soundness and completeness properties of the theoretical framework. Although we aim to make this

validator efficient, we will not focus on verifying that the certificates are efficiently verifiable, nor will

we discuss their generality or how the certificates can be efficiently generated.

1.3 Certificates for Automated Planning

There are three main verification problems related to classical planning, namely verifying that a plan

is correct (which implies that the planning problem is solvable), verifying that a planning problem

is unsolvable and verifying that a plan is optimal. For verifying plans, the plan itself serves as the

obvious certificate [1]. At the time of writing, two formalisms for certifying unsolvability have been

proposed, namely inductive certificates [19, 12] and a proof system [18, 12], which will be discussed in

Section 1.3.2 and Section 1.3.3. Since both systems work with large sets of states, we first have a look

at different formalisms to represent these sets in Section 1.3.1. Section 1.3.4 discusses three certificate

systems for optimality and Section 1.3.5 discusses an alternative approach to certification by reducing

planning problems to model checking. Finally, in Section 1.3.6 we have a look at the implementations

of all these certificate systems.

1.3.1 Representing Sets of States

For every formalism R, we assume a set of propositional variables V , which is ordered by a strict

total order ≺. Each R-formula (i.e. a formula represented in the formalism R) is associated with a

set of variables vars(φ), which contains at least the variables occurring in φ (and possibly also other

variables). We write ∥φ∥ for the size of (the representation of) φ. In what follows a literal is a variable

(positive literal) or its negation (negative literal). A clause is a disjunction of literals, a cube is a

conjunction of literals, a CNF formula is a conjunction of clauses and a DNF formula is a disjunction

of cubes. We are interested in the following four formalisms to represent sets of states, which are

discussed in more detail in [12, Section 3.2].

7

v1

v2

v3

⊤⊥

Figure 1.2: A BDD formula representing the formula (v1∧v2)∨¬v3 with variable ordering v1 ≺ v2 ≺ v3.
The dashed arrows correspond with the assignment false, and the solid arrows with the assignment
true.

– BDDs: A Reduced Ordered Binary Decision Diagram [6] (ROBDD, or BDD for short) uses a

rooted, directed, acyclic graph to represent a formula φ. An example is shown in Figure 1.2.

The graph has two terminal nodes ⊤ and ⊥. Every other node n is associated with a variable

vn ∈ vars(φ), and has two outgoing edges, corresponding to the assignment of “true” and “false”

to the variable vn. ROBDDs are reduced in the sense that all redundant nodes (i.e. nodes where

both outgoing edges go to the same node) are removed, and all isomorphic subgraphs are merged.

They are ordered in the sense that for every edge (n, n′) we have vn ≺ vn′ . To decide whether

an assignment I is a model of φ we traverse the BDD starting at the root by choosing for each

node n the outgoing edge corresponding to I(vn) until we reach one of the terminal nodes. If

this node is ⊤, then I is a model of φ, and if it is ⊥ then I is not a model of φ.

– Horn formulas: Horn formulas are CNF-formulas where every clause contains at most one

positive literal (there is no limit on the number of negative literals). An example of a Horn

formula is (¬v1 ∨ ¬v3 ∨ ¬v4) ∧ (¬v1 ∨ v2).

– 2CNF formulas: A 2CNF formula is a CNF-formula where every clause contains at most two

literals. The formula (v1 ∨ ¬v3) ∧ (v1 ∨ v2) ∧ ¬v4 is an example of a 2CNF formula.

– MODS (Explicit Enumeration): A MOD formula φ is a DNF formula where every cube

contains all variables of vars(φ) either positively or negatively (but not both, so each cube is

consistent). All cubes of φ are required to be disjoint, i.e. for all cubes ci and cj it holds that

ci ∧ cj ≡ ⊥. A MODS formula can be seen as an enumeration of partial models over the variables

vars(φ). Note that the first paper [19] did not use this formalism yet and that [18] described the

less general explicit sets, where vars(φ) is always equal to the set of variables of the planning task.

An example of a MODS-formula with variables {v1, v3, v4} is (v1 ∧ v3 ∧ ¬v4) ∨ (¬v1 ∧ ¬v3 ∧ ¬v4).

For each of the two certificate systems, the authors describe which operations are needed to be able

to efficiently verify the certificates, and for each of the formalisms they discuss which operations are

supported efficiently. We are interested in operations listed by Definition 13. This list is based on

Section 3.2.1 in [12], but we replaced the operations validity (VA) and consistency (CO) by ⊤C and

⊥C since this will lead to fewer cases during validation, and we removed model enumeration (ME)

and model count (CT) because we will not use these operations.

8

Definition 13 (operations on formulas).

– Model testing (MO): Given an R-formula φ and an assignment I, decide whether I |= φ holds.

The assignment I must assign a value to all variables of φ, i.e. vars(φ) ⊆ dom(I).

– Clausal entailment (CE): Given an R-formula φ and a clause γ, decide whether φ |= γ holds.

– Implicant (IM): Given an R-formula φ and a cube δ, decide whether δ |= φ holds.

– Sentential entailment (SE): Given two R-formula φ and ψ, decide whether φ |= ψ holds.

– Bounded conjunction (∧BC): Given two R-formulas φ and ψ, construct an R-formula representing

φ ∧ ψ.

– General conjunction (∧C): Given R-formulas φ1, . . . φn, construct an R-formula representing

φ1 ∧ · · · ∧ φn.

– Bounded disjunction (∨BC): Given two R-formulas φ and ψ, construct an R-formula representing

φ ∨ ψ.

– General disjunction (∨C): Given R-formulas φ1, . . . φn, construct an R-formula representing

φ1 ∨ · · · ∨ φn.

– Negation (¬C): Given an R-formula φ, construct an R-formula representing ¬φ.

– Conjunction of literals (CL): Given a cube δ, construct an R-formula representing δ.

– Bot (⊥C): Construct an R-formula representing ⊥.

– Top (⊤C): Construct an R-formula representing ⊤.

– Renaming (RN): Given an R-formula φ and an injective variable renaming r : vars(φ) → V ′,

construct the formula φ[r], where φ[r] is the formula we obtain replacing each variable v in φ by

r(v).

– Renaming consistent with order (RN≺): Given an R-formula φ and a monotone injective variable

renaming r : vars(φ)→ V ′, construct the formula φ[r].

– Transform to CNF (toCNF): Given an R-formula φ, construct an equivalent CNF formula.

– Transform to DNF (toDNF): Given an R-formula φ, construct an equivalent DNF formula.

Table 1.1 shows which operations each formalism supports efficiently, meaning that the operation can

be performed in time polynomial in the size of the given formulas. See [12] for a discussion of each

operation for every formalism. For ⊥C and ⊤C note that BDD can represent ⊤ and ⊥ by the graph

containing only the terminal node ⊥ or ⊤. Horn and 2CNF can represent ⊥ and ⊤ by the conjunction

of one empty clause and the empty conjunction respectively, and MODS can represent them by the

empty disjunction and the disjunction containing one empty cube respectively.

9

BDD Horn 2CNF MODS

MO yes yes yes yes
CE yes yes yes yes
IM yes yes yes yes
SE yes yes yes yes
∧BC yes yes yes yes
∧C no yes yes no†

∨BC yes no no no†

∨C no no no no†

¬C yes no no no
CL yes yes yes yes
⊥C yes yes yes yes
⊤C yes yes yes yes
RN no yes yes yes
RN≺ yes yes yes yes
toCNF no yes yes yes
toDNF no no no yes

Table 1.1: Overview of operations that are efficiently supported for each of the formalisms. Entry
“no†” means that the operations are efficiently supported if all involved formulas have the same set of
variables (but not in the general case). Adapted from Table 3.1 in [12].

1.3.2 Inductive Certificates

Intuitively an inductive set is a set of states, which once entered cannot be left again.

Definition 14 (inductive set). Let Π =
〈
V Π, AΠ, IΠ, GΠ

〉
be a STRIPS planning task, then a set of

states S ⊆ SΠ is inductive in Π iff S[AΠ] ⊆ S. If Π is clear from the context we just say that S is

inductive.

The notion of an inductive set can be used to express that a planning problem is unsolvable. Indeed, if

there is an inductive set which contains the initial state, but no goal state, then it is impossible to

leave this inductive set and therefore one can never reach a goal state.

Definition 15 (inductive certificate). Given a STRIPS planning task Π, an inductive certificate for a

state s ∈ SΠ is a set S ⊆ SΠ such that

– s ∈ S,

– S ∩ SΠ
G = ∅,

– S is inductive in Π.

An inductive certificate for the initial state IΠ is also called an inductive certificate for Π. If a formalism

R is used to represent the set S, then the certificate is also called an inductive R-certificate.

For any state s, the set of all states reachable from s is inductive. Furthermore, it is the smallest

inductive set containing s. Note that s is solvable iff there exists a reachable goal state, hence this

immediately implies soundness and completeness for inductive certificates, as defined in Definition 12.

10

Theorem 16 (soundness and completeness). Let Π be a STRIPS planning task. There exists an

inductive certificate for a state s ∈ SΠ iff s is unsolvable. There exists an inductive certificate for Π iff

Π is unsolvable.

Proof. See Theorem 4.3 in [12].

Theorem 17. If R efficiently supports the operations MO, CE, SE, ∧BC, CL and RN≺ from

Definition 13, then inductive R-certificates φ for Π can be verified in polynomial time in ∥φ∥ and ∥Π∥.

Proof. See Theorem 4.4 in [12].

In particular this implies that inductive certificates using BDD’s, Horn formulas, 2CNF formulas and

MODS are all efficiently verifiable. While the two results above are nice theoretical properties, it can

be computationally challenging to construct and verify inductive certificates. To make constructing

certificates easier Eriksson, Röger and Helmert also introduce disjunctive and conjunctive certificates

[19, 12]. These certificates consist of a family of state sets F such that respectively
⋃

S∈F S and
⋂

S∈F S

are inductive certificates. They then introduce r-disjunctive and r-conjunctive certificates as a special

form of disjunctive and conjunctive certificates. Here r ∈ N0 is a parameter which ensures that the

certificates can be verified in polynomial time when r is fixed.

Eriksson, Röger and Helmert describe how inductive certificates, r-disjunctive or r-conjunctive certific-

ates can be generated in explicit and symbolic blind search, in forward heuristic search with various

heuristics (delete relaxation, critical path, pattern database, linear merge and shrink and landmarks)

and the Trapper algorithm [19]. Additionally, the clause-learning algorithm by Steinmetz and Hoffmann

[32] is able to generate 1-disjunctive certificates [12]. Since different heuristics sometimes require

different formalisms to represent the state sets, it is not always possible to combine information from

multiple heuristics into one certificate, compromising the generality criterium of Definition 12. The

proof system described in the next section aims to overcome this shortcoming.

1.3.3 Proof System

The basic idea behind the proof system has been introduced in [18], but it has been significantly

reworked in Eriksson’s PhD thesis [12], therefore we will use the latter. The motivation behind the

proof system is to give the prover more flexibility and to make composite reasoning possible. This is

achieved by introducing a natural deduction style proof system with basic statements and derivation

steps. The basic statements allow us to establish basic knowledge about the specific planning problem

which can easily be verified. The derivation steps operate on a purely syntactic level, which makes

them easy to verify, and allow us to derive knowledge from previously derived knowledge. The key

concept used in the proof system are dead states, which are states that are not part of any plan.

Definition 18 (dead state and dead state set). A state s is dead if no plan traverses s, i.e. there is no

plan π = ⟨a1, . . . , an⟩ such thats = I[a1] · · · [ai] for some 0 ≤ i ≤ n.2 A set of states is dead iff all its

elements are dead.

2The definition in [12] uses 1 ≤ i ≤ n, but this does not match the informal definition, and it would allow the initial
state do be dead even though a plan exists (in contradiction with Theorem 5.1 in [12]).

11

Equivalently, dead states can be defined as states that are not reachable (i.e. there is no path from I

to the state) or not solvable (i.e. there is no path from the state to any goal state), or both. Note that

the initial state of a planning problem Π is dead iff Π is unsolvable. Since deciding whether a planning

problem is (un)solvable is PSPACE-complete [7], the problem of deciding whether a state is dead is

also PSPACE-complete.

However, in many cases it is easier to decide whether states are dead, and the proof system allows to

incrementally prove that sets of states are dead.

Definition 19 (proof system: types). The proof system uses the following types:

State set variables: XR ::=
{
IΠ

}
| SΠ

G | ∅ | φR

State set literals: LR ::= XR | XR

Action set expressions: A ::= AΠ | a | (A ∪A)
State set expressions: SR ::= XR | SR | (SR ∪ SR) | (SR ∩ SR) | SR[A] | [A]SR
Set expressions: E ::= SR | A

Here φR is a set explicitly given by an R-formula, and a is any action in AΠ. We will also write S

instead of SR if the formalism is irrelevant, and we write E, E′ or E′′ instead of Z : E to denote an

object of type E.

In [12] it is not clear whether XR refers to XR or φR, hence we modify the definition slightly to remove

this ambiguity.3

All basic statements are of the form S ⊆ S′ or A ⊆ A′, but since these statements need to be verified

by the validator, only some specific instances of the statement S ⊆ S′ are allowed, ensuring that this

can be done efficiently without losing too much generality. Remember from Table 1.1 that not all

formalisms efficiently support ∧C, and none of the formalisms efficiently supports ∨C. For this reason

a parameter r is used below to bound the size of unions and intersections, which ensures that the basic

statements can still be efficiently verified.

Definition 20 (proof system: basic statements). The following basic steps can be used as premises in

the proof system:

B1
⋂

LR∈L LR ⊆
⋃

L′
R∈L′ L′

R with |L|+ |L′| ≤ r

B2 (
⋂

XR∈X XR)[A] ∩
⋂

LR∈L LR ⊆
⋃

L′
R∈L′ L′

R with |X |+ |L|+ |L′| ≤ r

B3 [A](
⋂

XR∈X XR) ∩
⋂

LR∈L LR ⊆
⋃

L′
R∈L′ L′

R with |X |+ |L|+ |L′| ≤ r

B4 LR ⊆ L′
R′

B5 A ⊆ A′

For the derivation steps we follow the conventions used by [12] and write S ⊑ S′ instead of S ⊆ S′

to stress that the rules operate on a purely syntactic level. For the same reason we also write S ⊔ S′

instead of S ∪ S′ and S ⊓ S′ instead of S ∩ S′. Note the for the syntax of the proof system, S ⊑ S′ and

3Additionally, [12] only defines the negation of state set variables (not of state set expressions), even though the
syntactic rules use S and not X. While it does not seem to be useful in the current proof system to work with the
negation of composite sets, there is nothing that forbids it either, hence we add it to the definition of SR (instead of
replacing S by X).

12

S ⊆ S′ are still considered to be the same expression, so the basic statements can be used as premises

for the derivation steps.

Definition 21 gives an overview of the derivation steps of the proof system. It would lead us too far to

discuss all of them, but let us briefly motivate CI and CG (for a motivation of the rules related to

dead states, see [12, Section 5.2.1]). If the initial state is dead, then there is no plan going through the

initial state, but since the initial state is the first state of any plan for Π, this means that no plan for

Π exists, thus Π is unsolvable. Similarly, if all goal states are dead, then there is no plan containing

any goal state, so since the last state of every plan for Π has to be a goal state, there are no plans for

Π, making Π unsolvable.

Definition 21 (proof system: derivation steps). The following rules can be used to derive that states

are dead:

Empty set Dead ED∅ dead

Union Dead S dead S′ dead
UD

S ⊔ S′ dead

Subset Dead
S′ dead S ⊑ S′

SD
S dead

Progression Goal
S[AΠ] ⊑ S ⊔ S′ S′ dead S ⊓ SΠ

G dead
PG

S dead

Progression Initial
S[AΠ] ⊑ S ⊔ S′ S′ dead

{
IΠ

}
⊑ S

PI
S dead

Regression Goal
[AΠ]S ⊑ S ⊔ S′ S′ dead S ⊓ SΠ

G dead
RG

S dead

Regression Initial
[AΠ]S ⊑ S ⊔ S′ S′ dead

{
IΠ

}
⊑ S

RI
S dead

The following rules allow us to derive that a task is unsolvable:

Conclusion Initial

{
IΠ

}
dead

CI
Π unsolvable

Conclusion Goal
SΠ
G dead

CG
Π unsolvable

The rules below follow from basic set theory and allow us to reason about state and action set

expressions:

Union Right UR
E ⊑ (E ⊔ E′)

Union Left UL
E ⊑ (E′ ⊔ E)

Intersection Right IR
(E ⊓ E′) ⊑ E

Intersection Left IL
(E′ ⊓ E) ⊑ E

DIstributivity DI
((E ⊔ E′) ⊓ E′′) ⊑ ((E ⊓ E′′) ⊔ (E′ ⊓ E′′))

13

Subset Union
E ⊑ E′′ E′ ⊑ E′′

SU
(E ⊔ E′) ⊑ E′′

Subset Intersection
E ⊑ E′ E ⊑ E′′

SI
E ⊑ (E′ ⊓ E′′)

Subset Transitivity
E ⊑ E′ E′ ⊑ E′′

ST
E ⊑ E′′

The last group of rules allows us to reason about progressions and regressions:

Action Transitivity
S[A] ⊑ S′ A′ ⊑ A

AT
S[A′] ⊑ S′

Action Union
S[A] ⊑ S′ S[A′] ⊑ S′

AU
S[A ⊔A′] ⊑ S′

Progression Transitivity
S[A] ⊑ S′′ S′ ⊑ S

PT
S′[A] ⊑ S′′

Progression Union
S[A] ⊑ S′′ S′[A] ⊑ S′′

PU
(S ⊔ S′)[A] ⊑ S′′

Progression to Regression
S[A] ⊑ S′

PR
[A]S′ ⊑ S

Regression to Progression
[A]S′ ⊑ S

RP
S[A] ⊑ S′

The inference rules in Definition 21 are relatively easy to verify, since we only need to check that

the premises and the conclusion match syntactically. On the contrary, for the basic statements from

Definition 20 we need to verify that they hold semantically. For B5 this is easy, because A and A′

are either the set of all actions, or the number of actions they represent is linear in the size of the

representation. Verification of the statements B1-B4 is more complicated, and we refer to Eriksson’s

PhD thesis [12] for the full explication.

Theorem 22. The statement B1 can be validated in time polynomial in the total size of the involved

formulas if R efficiently supports one of the following:

– SE, ∧BC, ∨BC, ⊥C and ⊤C

– toCNF, CE, ∧BC and ⊤C

– toDNF, IM, ∨BC and ⊥C

Proof. This follows from Theorem 5.5 in [12]. We replace VA by IM (with the empty cube) or SE

and ⊤C, and CO by CE (with the empty clause) or SE and ⊥C. Note that if the formalism supports

toCNF and CE, or toDNF and IM, then SE is not needed, as is argued in the proof of Theorem 5.5.

After this, for each of the three options above there is a supported option in each of the cells in the

table of Theorem 5.5.

For BDDs we can use the first case of Theorem 22 to verify B1, and for Horn, 2CNF and MODS the

second case.

14

Theorem 23. The statements B2 and B3 can be validated in time polynomial in the total size of the

involved formulas if R efficiently supports one of the following:

– SE, ∧BC, ∨BC, CL, ⊥C and RN≺

– toCNF, CE, ∧BC, CL, and RN≺

Proof. This follows from Theorem 5.6 in [12]. Again, for each of the two options one can find a

supported option in each of the cells in the table of Theorem 5.5, when replacing CO by CE or SE

and ⊥C. Assuming that X is non-empty, one can argue that the left-hand-side of (5.3) and (5.4) is

always non-empty, so ⊤C (or VA) is not needed.

For BDDs the first case of Theorem 23 is used to verify B2 and B3, whereas for Horn, 2CNF and

MODS the second one is used.

Theorem 24. If R = R′, then B4 can be verified efficiently using SE. Otherwise, if R ̸= R′ the

statement B4 with can be validated in time polynomial in ∥LR∥ and ∥L′
R′∥ for the case in the first

column if R and R′ support one of the options in the second column efficiently.

R R′

φR ⊆ ψR′ toDNF IM

CE toCNF

φR ⊆ ψR′ toCNF IM

IM toCNF

φR ⊆ ψR′ toDNF CE

CE toDNF

φR ⊆ ψR′ IM toDNF

toCNF CE

If R and/or R′ supports ¬C and φR and/or ψR′ occurs, then the case can also be reduced to φR ⊆ ψR′ .

Proof. This follows from Theorem 5.7 in [12]. In Theorem 5.7 each of the cases has additional options

using the operations ME and MO, which can only used when one of the formalisms is MODS (at

least when it comes to the formalisms we are interested in). However, all cases with MODS can also be

done efficiently using toDNF or toCNF, so for simplicity we use those. Furthermore, this avoids the

complications discussed in the proof of Theorem 5.7 when φR and ψR′ have different sets of variables,

so in these cases it is likely more efficient to use the options listed here.

If R or R′ is MODS, then we can always efficiently validate B4 by using toDNF or toCNF for MODS

and IM or CE for the other formalism. If R and R′ are BDD, Horn or 2CNF (with R ̸= R′), then

φR ⊆ ψR′ (third case) cannot be validated efficiently, as this would require that R or R′ efficiently

supports toDNF or R′ efficiently supports ¬C and toCNF. Similarly, φR ⊆ ψR′ (first case) cannot

be efficiently validated if R is Horn or 2CNF and R′ is BDD, and φR ⊆ ψR′ (fourth case) cannot be

efficiently validated if R is BDD and R′ is Horn or 2CNF. Other cases are efficiently supported by

using toCNF for Horn or 2CNF.

15

Inductive certificates can be translated into proof trees in the proof system.

Theorem 25. Given an inductive R-certificate for Π, it is possible to construct derivation in the proof

system in linear time. This proof can be verified using the operations MO, CE, SE, ∧BC, CL, RN≺

from Definition 13.

Proof. See Theorem 5.8 in [12].

There are similar reductions for r-disjunctive and r-conjunctive certificates; albeit with different

operations and a higher time complexity. Completeness of the inductive certificates (Theorem 16)

together with this reduction implies that the proof system is also complete. Soundness of the proof

system follows from the correctness of all individual rules.

Theorem 26 (soundness and completeness). Let Π be a STRIPS planning task. There exists a proof

of unsolvability of Π in the proof system iff Π is unsolvable.

Proof. See Theorem 5.9 in [12].

All planning algorithms that can generate inductive certificates can also generate proofs in the proof

system, since we can use the reduction to translate the inductive certificates to proofs. For several

of these formalisms Eriksson also discusses more efficient methods to generate the certificates [12].

Additionally, Eriksson, Röger and Helmert argue that the proof system allows combining information

from multiple heuristics in heuristic search, and that both the algorithm described by Steinmetz and

Hoffmann [32] and the algorithm described by Alcázar and Torralba [2] can generate proofs in the

proof system [18]. Eriksson and Helmert [15] have extended the proof system with rules that integrate

UNSAT certificates, and they showed that the Property Directed Reachability algorithm [33] can

generate certificates in this extended proof system. They also showed that a variant of the algorithm

that does not make SAT-calls can generate certificates in the original proof system.

1.3.4 Certificates of Optimality

At the time of writing three certificates for optimality have been introduced: compilation to unsolvability

[28], an adaptation of the proof system discussed in Section 1.3.3 [28] and an approach using pseudo-

Boolean proofs [10].

In the first approach [28, “Compilation to Unsolvability”] the planning task Π is compiled into a

modified planning task Πx which also keeps track of the cost, and ensures the cost of plans is less than

x, where x ∈ N. To verify that a plan with cost x is optimal, it is then sufficient to verify that the plan

is valid and that Πx is unsolvable. While this approach is sound, complete and efficiently verifiable, it

is not always possible to efficiently generate the certificates. The reason for this is that, while the size

of Πx is linear in x, exploring the state-space of Πx can incur an exponential overhead in x.

The second approach [28, “Optimality Proof System”] replaces the rules about dead states in Defini-

tion 21 by rules to reason about lower bounds on the cost of plans though states. This approach is

also sound and complete, but according to Mugdan, Christen and Eriksson the other three criteria of

Definition 12 don’t have clear-cut answers.

16

The third approach [10] uses an invariant φ to make an overapproximation of the reachable state-cost

pairs (i.e. a pair of a state and a cost to reach that state from the initial state). Here, a certificate to

show that the optimal solution has cost at least B consists of

– an invariant φ over state-cost pairs (s, c),

– a proof that the state-cost pair (IΠ, 0) satisfies φ,

– a proof that for every goal state s and cost c < B, (s, c) does not satisfy φ, and

– a proof that if (s, c) satisfies φ and a is an action applicable in s with c + cost a < B, then

(s[a], c+ cost(a)) also satisfies φ.

The invariant is represented by a circuit where the gates evaluate pseudo-Boolean constraints. This

approach has been shown to be sound, complete and efficiently verifiable. Certificates can be efficiently

generated when using A∗ with hmax or pattern base-heuristics. The authors expect that the certificates

can be efficiently generated for other approaches as well.

1.3.5 Reduction to Model Checking

Recently, Wang and Abdulaziz formally verified an encoding from temporal planning problems (which

includes the STRIPS formalism we use) to network of timed automata in Isabelle/HOL [36]. This

encoding reduces the planning problem to checking whether there is a model for this network of timed

automata, which can be solved using a certified model checker. There is an existing formally verified

validator for these certificates that can be used to verify the correctness of the output of the solver.

This approach gives similar correctness guarantees as the formally verified validator we implement.

However, it cannot be used to certify existing planning algorithms, since they cannot produce these

certificates.

1.3.6 Implementations

Several plan validators have been implemented, most notably VAL in C++ [25], INVAL in Lisp [23]

and a formally verified validator in Isabelle/HOL by Abdulaziz and Lammich [1]. All these validators

read the planning description in PDDL format [21, 30].

There are C++ implementations of validators for the inductive certificates [13], the proof system for

unsolvability certificates [14, 13], the optimality certificates using the compilation to unsolvability

certificates [27] and the proof system for optimality certificates [14, 27]. For all these certificate

systems Fast-Downward [24] has been extended to generate the certificates. Additionally, for the

unsolvability proof system there are also extensions for SymPA [34, 22] and an implementation with

the hC-based clause-learning algorithm [32, 13], which are both based on Fast-Downward. Furthermore,

an implementation of Property Directed Reachability (without SAT-calls) has been extended to output

proofs [17]. For verifying these proofs, the C++ implementation of the proof system for unsolvability

certificates has been extended to support dual-Horn formulas for representing state-sets [16]. All

implementations use Fast-Downward to parse the planning task in PDDL format, ground the problem

and output a description of the problem in STRIPS, which is then used as input problem for the

validator.

17

This is reasonable for a first implementation of the certificates, since the theoretical framework has

been developed in STRIPS. It is however not acceptable for a fully formalized version, because this

assumes that the grounding by Fast-Downward and conversion to STRIPS are correctly implemented

in Fast-Downward. Therefore, to have a fully formalized version, one would have to implement a

formalized grounder which grounds the PDDL description and verifies that it is equivalent to the

STRIPS version. The plan validator in Isabelle/HOL has such a grounder, but it might be hard to

integrate this grounder in Lean.

At the time of writing, there is no implementation for the optimality certificates based on pseudo-

Boolean proof logging. An advantage of this certificate system is that the main part of the proofs can

be verified by a pseudo-Boolean proof checker like VeriPB [35, 5] or the formally verified CakePB [8].

1.4 Lean 4

Lean 4 is an interactive proof assistant and functional programming language based on the Calculus of

Inductive Constructions [26]. In this section we give a quick overview of the basic syntax of Lean 4.

Types in Lean can be constructed using inductive definitions. As an example, the definition of natural

numbers in this syntax can be seen below. The terms of the type Nat are Nat.zero, Nat.succ Nat.zero,

Nat.succ (Nat.succ Nat.zero), and so on.

inductive Nat : Type

| zero : Nat

| succ : Nat → Nat

The type Nat has two constructors Nat.zero and Nat.succ. For types having only one constructor, it

can be more convenient to use the structure syntax. This can for example be used to define a structure

Point with two coordinates of type α. Given two terms a and b of type α, Point.mk a b will be a term

of type Point α, and we can obtain its components using (Point.mk a b).x and (Point.mk a b).y.

Here, α can be any type, so for example Point.mk 0 1 will have type Point N, since 0 and 1 have type

N.

structure Point (α : Type) where

x : α

y : α

To define functions we use the keyword def, as shown below. The curly brackets around the parameter

α in Point.swap indicate it is an implicit parameter, so we can call these functions using add_one 3 or

Point.swap x when x has type Point α for some type α. For the latter Lean also allows the notation

x.swap.

def add_one (n : Nat) : Nat := n + 1

def Point.swap {α : Type} (p : Point α) : Point α := Point.mk p.y p.x

Leans type syntax is quite flexible, and it allows omitting type annotation if the type system can infer

the types. The function Point.swap from above could for example also be written as follows:

18

def Point.swap’ {α} (p : Point α) := Point.mk p.y p.x

Likewise, definitions can be used to define types. In the next chapter we will often work with natural

numbers smaller than a given number n. These can be defined as the subtype of natural numbers i

which satisfy the proposition i < n, as done in Fin and the equivalent Fin’ with full type signature.

For subtypes, we can use the methods Subtype.val and Subtype.prop to get the original value and the

property, so if i is an element of Fin n, then i.val is the underlying natural number and i.prop gives

a proof of i.val < n.

def Fin n := { i : N // i < n }

def Fin’ (n : N) : Type := { i : N // i < n }

Propositions like i < n or a = b ↔ b = a have type Prop and can be proven by constructing a term of

type i < n or a = b ↔ b = a. Instead of having to provide this term explicitly, the keyword by can be

used to enter tactic mode, where tactic commands can be used to prove the goal incrementally. In the

example below the tactic tauto (short for tautology) immediately proves the goal a = b ↔ b = a.

theorem Eq.symm {α} (a b : α) : a = b ↔ b = a :=

by tauto

Lean 4 also has keywords lemma which works the same as theorem and abbrev which works like def, but

additionally instructs Lean to always unfold the definition. The last feature we want to highlight are

type classes, which allow defining polymorphic functions that can be overloaded. For example, Lean

provides a type class Membership with method mem, where the purpose of the class is to provide the

notation a ∈ s as a shorthand for mem s a. What it exactly means that a is a member of s depends on

the type of s and a, and can be specified by declaring an instance for the class Mem, as is done below

for lists. Here, List.Mem defines what it means to be a member of a list using an inductively defined

proposition, where the first case states that the head of a list is a member of the list, and the second

one that any member of the tail is a member of the list.

class Membership (α γ : Type) where

mem : γ → α → Prop

inductive List.Mem (a : α) : List α → Prop

| head (as : List α) : Mem a (a :: as)

| tail (b : α) {as : List α} : Mem a as → Mem a (b :: as)

instance {α} : Membership α (List α) where

mem as a := List.Mem a as

19

Chapter 2

Implementation in Lean 4

In this chapter we discuss the formalization of the proof system and a formalized validator for this

proof system. The full Lean 4 code can be found on GitHub1. On multiple occasions we will make

the distinction between runtime and proof time. Code that is used at proof time is only used during

verification of the validator as a whole, and it is not executed during validation of a specific certificate.

On the other hand, code that is used at runtime can be executed during validation, and should therefore

be efficient.

Figure 2.1 shows the dependency graph of the project and Table 2.1 shows the number of lines of some

files. Because of time constraints the implementation has not been finished, therefore some files still

contain sorries (a sorry is a placeholder for a missing proof or term in Lean 4). In particular, the

following still need to be implemented:

– Verification of the basic rule B4, this is the sorry in BasicRules.

– The different formalisms for representing state sets have not yet been implemented. This explains

the sorries in Bdd, Horn and in Mods. Helve, the C++ implementation of the proof system by

Eriksson [14], does not contain an implementation for 2CNF. We use the same format for parsing

the certificates as Helve, and therefore there is no file for 2CNF-formulas yet. Still, the plan is to

extend this format and implement 2CNF once the other formalisms have been implemented.

– In the file Certificate.Parser, the parsers for state sets in the different formalisms are missing.

Our implementation contains two versions of the proof system, one that is nicer for theoretical purposes,

and one suited for actually validating certificates. The first version closely resembles the definitions of

Section 1.3.3, and is used to prove completeness and soundness of the system. It is implemented in the

file ProofSystem. The second version is implemented in the file Certificate and follows the format

of the certificates used in Helve.

In the remainder of this chapter we will explain the different files in more detail. When referencing files

we will drop the extension .lean and the folder Validator, so we will write PlanningTask.Parser (or

even Parser if the folder is clear from the context) instead of Validator.PlanningTask.Parser.lean.

We will only briefly discuss the files Basic and Error. Basic defines additional functionality for

1https://github.com/AmosNico/validator/tree/Master-Thesis

20

https://github.com/AmosNico/validator/tree/Master-Thesis

Figure 2.1: The dependency graph containing all files of the project. The nodes represent files, and the
surrounding boxes different subfolders of the project. An arrow from file A to file B means that file A
is imported by file B. The green files with checkmarks don’t contain any “sorry”, whereas the red files
with question marks still contain sorries.

21

File Lines of Code

Certificate.BasicRules 783
StateSetFormalism.Formula 771
Certificate.Constraint 605
Certificate.ToDerivation 571
Core 411
Total 6281

Total Helve 7866

Table 2.1: The lines of code for the four longest files, the files in the core and the total number of
lines. The core consists of the files which together guarantee the correctness of the validator, being
PlanningTask.Core, PlanningTask.Parser and Validator. Note that these numbers also include
lines with documentation, which varies widely among files. As a reference, the total number of lines of
Helve is also shown.

List, Array and Set that is not in Mathlib. Error implements error handling for the validator and

the parsers. The files in the folder PlanningTask, defining the STRIPS formalism, are discussed in

Section 2.1. Next, Section 2.2 describes files InductiveCertificate and ProofSystem which define

the simple inductive certificates and the proof system, and prove their soundness and completeness.

In Section 2.3 the folder StateSetFormalism implementing the formalisms for representing states is

discussed. Finally, Section 2.4 explains the folder Certificate and the main file Validator which

implement the functionality for validating the certificates.

2.1 Planning Tasks

The folder PlanningTask contains three files related to the formalization of planning tasks:

– Core formalizes the definition of a STRIPS planning task, and the definition of what it means to

be unsolvable. It contains all definitions essential for the correctness of the validator.

– Basic contains additional definitions about planning tasks that are not essential for the correctness

of the validator, like progression and regression. Additionally, it gives various lemmas to work

with the definitions in Core and Basic.

– Parser implements a parser for STRIPS planning problems.

We will go over the files one by one to discuss the most important features and some design choices.

2.1.1 Core

There are multiple ways to formalize the definitions in Section 1.1. For example, we could formalize

actions (Definition 4) as follows:

abbrev Variable := N

structure VarSet (V : Finset Variable) where

set : Finset Variable

property : set ⊆ V

22

structure Action V where

pre : VarSet V

add : VarSet V

del : VarSet V

cost : N

While this definition stays close to Definition 4, it has the disadvantage that VarSet is not actually a

set, so if we want to state that vars1 ⊆ vars2 for two elements of VarSet, then we would either have

to define ⊆ for VarSet or use vars1.set ⊆ vars2.set instead. To avoid this issue we can use a type to

represent the set of all variables V. A simple choice is Fin n, so the variables are 0, 1, . . . , n− 1.

abbrev VarSet (n : N) := Finset (Fin n)

structure Action n where

pre : VarSet n

add : VarSet n

del : VarSet n

cost : N

This formalization is convenient for reasoning, but it is still not optimal to use in an actual validator,

as it would be slightly more efficient to just represent the preconditions in a sorted List. An additional

reason is that there is no easy way to print a Finset, as this would require ordering its elements in

some way. Therefore, the validator uses a version of VarSet using a subtype of List to actually store

the preconditions and the adding and deleting effects. To reason about VarSet we use Set instead of

Finset, since Set is slightly easier to work with, and the use of the finite type Fin n already guarantees

that the sets are finite.

abbrev VarSet n := Set (Fin n)

abbrev VarSet’ n := { vars : List (Fin n) // vars.Sorted (· < ·) }

def convertVarSet {n} (V : VarSet’ n) : VarSet n :=

V.val.toFinset

structure Action n where

name : String

pre’ : VarSet’ n

add’ : VarSet’ n

del’ : VarSet’ n

cost : N
deriving Repr, DecidableEq

namespace Action

def pre {n} (a : Action n) : VarSet n := convertVarSet a.pre’

def add {n} (a : Action n) : VarSet n := convertVarSet a.add’

def del {n} (a : Action n) : VarSet n := convertVarSet a.del’

end Action

23

Similarly, other concepts like states (Definition 2), sets of actions and STRIPS planning tasks (Defini-

tion 5) themselves are implemented, with separate methods for verifying and theoretical purposes. As

before, the primed versions are used at runtime and the unprimed versions only at proof time.

abbrev Actions n := Set (Action n)

abbrev Actions’ n := List (Action n)

abbrev State n := Set (Fin n)

abbrev State’ n := BitVec n

abbrev States n := Set (State n)

def convertState {n} (s’ : State’ n) : State n :=

{ i | s’[i] }

structure STRIPS n where

varNames : Vector String n

actions’ : Actions’ n

init’ : State’ n

goal’ : VarSet’ n

deriving Repr

namespace STRIPS

def actions {n} (pt : STRIPS n) : Actions n :=

List.toFinset pt.actions’

def init {n} (pt : STRIPS n) : State n :=

convertState pt.init’

def GoalState {n} (pt : STRIPS n) (s : State n) : Prop :=

convertVarSet pt.goal’ ⊆ s

end STRIPS

We use bit vectors to represent states during verification because of their high performance. In the case

of STRIPS.actions’ it is impossible to use Set or Finset during verification, because the certificates

identify the actions by their array index. For goal states it makes more sense to use a Prop as a

primitive for theoretical purposes. We continue with the formalized definitions for applicability and

successor states.

abbrev Applicable {n} (s : State n) (a : Action n) : Prop :=

a.pre ⊆ s

abbrev Successor {n} (a : Action n) (s s’ : State n) : Prop :=

Applicable s a ∧ s’ = (s \ a.del) ∪ a.add

For Successor, we could also use a definition which, given a state s, an action a and a proof of

Applicable s a, returns the successor state (s \ a.del) ∪ a.add. However, the definition above is

easier to work with because it naturally contains the requirement of applicability (otherwise we would

have to supply a proof every time we talk about the successor state). We finish this section with the

formalization of paths in the state-space, plans and unsolvability of states and planning tasks.

24

inductive Path {n} (pt : STRIPS n) : State n → State n → Type

| empty s : Path pt s s

| cons a {s1} s2 {s3}

(ha : a ∈ pt.actions) (succ : Successor a s1 s2) (π : Path pt s2 s3) : Path pt s1 s3

structure Plan {n} (pt : STRIPS n) (s : State n) where

last : State n

path : Path pt s last

goal : pt.GoalState last

abbrev UnsolvableState {n} (pt : STRIPS n) (s : State n):=

IsEmpty (Plan pt s)

abbrev Unsolvable {n} (pt : STRIPS n) :=

UnsolvableState pt pt.init

2.1.2 Basic

The file Basic starts by implementing some functionality related to paths. Note that Path.cons in

the definition of Path extends paths at the front. This is needed when we want to prove something

by structural induction on a path where the last state is fixed, for example because it is a goal state

(e.g. InductiveCertificate.soundness’ on page 28 and progression_aux2) or when we need to access

the second state of the path (e.g. regression_aux3). However, sometimes we need to append a state

at the end (e.g. InductiveCertificate.completeness’, see page 29) or we need to do induction where

the first state is fixed (e.g. because it is the initial state like in regression_aux3). For these cases it is

useful to have a definition which extends paths at the back, as follows:

def Path.snoc {n} {pt : STRIPS n} a {s1} s2 {s3} (ha : a ∈ pt.actions)

(π : Path pt s1 s2) (succ : Successor a s2 s3) : Path pt s1 s3 :=

match π with

| empty s => cons a s3 ha succ (empty s3)

| cons a’ s4 ha’ succ’ π’ =>

let π’’ := snoc a s2 ha π’ succ

cons a’ s4 ha’ succ’ π’’

The name snoc comes from reading cons backwards. To make Path.snoc more usable, the file provides

a lemma Path.snocCases which allows doing cases on Path.empty and Path.snoc and a lemma allowing

to convert a path constructed by cons to a path constructed by snoc. Additionally, the file contains

definitions of the length of paths (Path.length), the concatenation of two paths (Path.append), mem-

bership of states in paths (Path.Mem) and multiple lemmas to work with these definitions. We will

highlight Path.Mem and the lemma Path.split, which can be used to split a path at a given state on

the path.

2https://github.com/AmosNico/validator/blob/12646dc3f866a3fac0720b4319a003ecbacef608/Validator/

ProofSystem.lean#L172
3https://github.com/AmosNico/validator/blob/5366bb69a0db48ea5b7ae5cadaee9c17a38ba6bb/Validator/

ProofSystem.lean#L232

25

https://github.com/AmosNico/validator/blob/12646dc3f866a3fac0720b4319a003ecbacef608/Validator/ProofSystem.lean#L172
https://github.com/AmosNico/validator/blob/12646dc3f866a3fac0720b4319a003ecbacef608/Validator/ProofSystem.lean#L172
https://github.com/AmosNico/validator/blob/5366bb69a0db48ea5b7ae5cadaee9c17a38ba6bb/Validator/ProofSystem.lean#L232
https://github.com/AmosNico/validator/blob/5366bb69a0db48ea5b7ae5cadaee9c17a38ba6bb/Validator/ProofSystem.lean#L232

def Path.Mem {n} {pt : STRIPS n} {s1 s2} (s : State n) : (π : Path pt s1 s2) → Prop

| empty s’ => s = s’

| cons _ _ _ _ π => s = s1 ∨ Mem s π

instance {n} {pt : STRIPS n} {s1 s2} : Membership (State n) (Path pt s1 s2) where

mem π s := Path.Mem s π

lemma Path.split {n} {pt : STRIPS n} {s1 s2 s} (π : Path pt s1 s2) (h : s ∈ π) :

Nonempty (Path pt s1 s × Path pt s s2) := . . .

Intuitively, it would make sense to make Path.split a definition returning the two paths instead of a

lemma, but the lemma suffices for our purposes and is slightly easier to implement. When the specific

path itself is irrelevant, we can use the notion of reachability instead.

abbrev Reachable {n} (pt : STRIPS n) (s s’ : State n) : Prop :=

Nonempty (Path pt s s’)

The file also contains definitions for the set of all goal states, the progression of a set of actions

(STRIPS.progression, Definition 10) and regression of a set of actions (STRIPS.regression, Definition 11).

Recall that the set of variables is defined as the type Fin n, therefore the states are exactly the elements

of Set (Fin n) (i.e. State n). For progression and regression, we first define the progression and

regression of a single action and then take the union over all actions in the given set A. Finally, there

are multiple lemmas describing monotonicity of STRIPS.progression and STRIPS.regression and their

interaction with membership, unions and each other, which we will not describe here.

namespace STRIPS

def goal_states {n} (pt : STRIPS n) : States n :=

{ s | pt.GoalState s }

def progression’ {n} (_ : STRIPS n) (S : States n) (a : Action n) : States n :=

{ s | ∃ s’ ∈ S, Successor a s’ s }

def progression {n} (pt : STRIPS n) (S : States n) (A : Actions n) : States n :=

{ s | ∃ a ∈ A, s ∈ progression’ pt S a }

def regression’ {n} (_ : STRIPS n) (S : States n) (a : Action n) : States n :=

{ s | ∃ s’ ∈ S, Successor a s s’ }

def regression {n} (pt : STRIPS n) (S : States n) (A : Actions n) : States n :=

{ s | ∃ a ∈ A, s ∈ regression’ pt S a }

end STRIPS

2.1.3 Parser

The file Parser contains some general parsing functions and a parser for STRIPS planning tasks. The

parser is a combinatorial parser built using the lean4-parser library [11]. The planning task should be

provided in a separate file in the format below, which is the same format as Helve uses.

26

begin_atoms: <#atoms>

<atom 0>

<atom 1>

. . . (names of all atoms, one on each line)

end_atoms

begin_init

<initital state atom index 0>

<initital state atom index 1>

. . . (indexes of atoms that are true in initial state, one on each line)

end_init

begin_goal

<goal atom index 0>

<goal atom index 1>

. . . (indexes of atoms that are true in goal, one on each line)

end_goal

begin_actions: <#actions>

begin_action

<action_name>

cost: <action_cost>

PRE: <precondition atom index 0>

ADD: <added atom index 0>

DEL: <deleted atom index 0>

. . . (more PRE, ADD and DEL in any order, one on each line)

end_action

. . . (more actions)

end_actions

While the STRIPS formalism is widely used for theoretical purposes, the more expressive PDDL

formalism is used for representing planning tasks in practice [21, 30]. Additionally, as an intermediate

format when solving planning problems, the SAS+ format [29] is often used. The format above is

non-standard, which means that solvers need to output the description of the planning task themselves.

As discussed in Section 1.3.6, this is not ideal. In the future it would be better to be able to parse

planning tasks in the PDDL format, or at least the SAS+ format.

2.2 Inductive Certificates and Proof System

The files InductiveCertificate and ProofSystem define inductive certificates and the certificates

in the proof system of unsolvability and prove their soundness and completeness. Note that these

definitions are only used at proof time, not at runtime. Later, in Section 2.4.8, we will relate the

content of ProofSystem to the certificates used at runtime.

2.2.1 InductiveCertificate

The file starts by defining inductive sets (Definition 14) and inductive certificates (Definition 15):

27

abbrev InductiveSet {n} (pt : STRIPS n) (S : States n) :=

pt.progression S pt.actions ⊆ S

abbrev InductiveCertificateState {n} (pt : STRIPS n) (s : State n) (S : States n) :=

s ∈ S ∧ (∀ s ∈ S, ¬ pt.GoalState s) ∧ InductiveSet pt S

abbrev InductiveCertificate {n} (pt : STRIPS n) (S : States n) :=

InductiveCertificateState pt pt.init S

Next up are the proofs of soundness and completeness, which we will discuss in more detail. We first

prove the statement for inductive certificates of an arbitrary state s in soundness’, and use this to

prove soundness for the initial state in soundness.

The proof starts by introducing the hypotheses hs : s ∈ S, h1 : ∀ s ∈ S, ¬ pt.GoalState s and

h2 : InductiveSet pt S, corresponding to the conditions in InductiveCertificateState. Recall from

Section 2.1.1 that UnsolvableState pt s is defined as the inductive type IsEmpty (Plan pt s), hence

we can use the tactic constructor to apply the constructor of IsEmpty to the goal. This changes the

goal to ∀ (a : Plan pt s), False. We introduce and decompose the plan in the goal, giving us a state

s’, a path π from s to s’ and a proof h3 that s’ is a goal state. The goal now becomes False, which

means that we need to show that the hypotheses lead to a contradiction. We do this by structural

induction on the path π. If the path is empty, then s and s’ are the same state, and the combination

of h1, hs and h3 leads to a contradiction. In the inductive case it suffices to show that s2 ∈ S by

the induction hypothesis ih : s2 ∈ S → pt.GoalState s3 → False combined with h3. Since S is an

inductive set (by the hypothesis h2), it is sufficient to show that s2 is in the progression of S with the

actions pt.actions. Finally, this follows from the lemma mem_progression_of_successor which states

that if s1 ∈ S a ∈ A and Successor a s1 s2, then s2 is in the progression of S with A.

theorem soundness’ {n} {pt : STRIPS n} {s S} :

InductiveCertificateState pt s S → UnsolvableState pt s :=

by

rintro ⟨hs, h1, h2⟩
constructor

rintro ⟨s’, π, h3⟩
induction π with

| empty s’ => exact h1 s’ hs h3

| @cons a s1 s2 s3 ha h π ih =>

refine ih ?_ h3

show s2 ∈ S

apply h2

exact mem_progression_of_successor hs ha h

theorem soundness {n} {pt : STRIPS n} {S} :

InductiveCertificate pt S → Unsolvable pt :=

soundness’

28

For the proof of completeness’ below, the hypothesis h1 states that no plan for the state s exists

(i.e. ∀ (a : Plan pt s), False). We show that this implies that the set of states reachable form s

is an inductive certificate. The tactic simp simplifies the goal and split_ands splits all conditions

from InductiveCertificateState into separate goals. First we need to show Reachable s s, which

follows immediately by the lemma reachable_self. Next, we need to show that none of the reachable

states is a goal state, which in Lean corresponds to the goal ∀ (s’ : State n) (π : Path pt s

s’), ¬pt.GoalState s’. To prove this, we assume that π is a path from s to a goal state s’ with

h3 : pt.GoalState s’. By h1 it is sufficient to give a plan for s, for which we can use π and h3.

Lastly, we need to show that the set of reachable states is inductive, i.e. from h : s’ ∈ pt.progression

{s’ | Reachable pt s s’} pt.actions we need to prove that s’ is reachable from s. After simplification,

the hypothesis h yields an action a, a state s’’ and hypotheses h2 : Reachable pt s s’’ and h3 :

Successor a s’’ s’. From h2 we obtain a path from s to s’’, which we can combine with h3 to obtain

a path from s to s’ showing that s’ is reachable from s.

theorem completeness’ {n} {pt : STRIPS n} {s} :

UnsolvableState pt s → ∃ S, InductiveCertificateState pt s S :=

by

unfold UnsolvableState

rintro ⟨h1⟩
use { s’ | Reachable pt s s’ }

simp [InductiveCertificateState]

split_ands

· exact reachable_self s

· intro s’ π h3

apply h1

exact Plan.mk s’ π h3

· intro s’ h

simp_all [STRIPS.progression, STRIPS.progression’]

rcases h with ⟨a, ha, s’’, h2, h3⟩
obtain π : Path pt s s’’ := Classical.choice h2

constructor

show Path pt s s’

exact Path.snoc a s’’ ha π h3

theorem completeness {n} {pt : STRIPS n} :

Unsolvable pt → ∃ S, InductiveCertificate pt S :=

completeness’

Initially States n was defined as Finset (State n). For the overall project it hardly made a difference

whether this definition uses Set or Finset, except for the line use { s’ | Reachable pt s s’ } in

completeness’. The use of Finset required showing that Reachable pt s s’ is decidable, which

essentially requires constructing the set of all reachable states. This was done by taking the union of

the sets expand pt {s} k for all k ∈ N, where expand pt S k contains all states that are reachable in k

steps from a state in S. While this construction is not needed any more, it can still be found at the

end of the file.

29

2.2.2 Prerequisites from Formalism

While ProofSystem depends on Formalism (as can be seen in Figure 2.1), it makes more sense to first

discuss ProofSystem. For now, it is sufficient to know that there is a class Formalism pt R stating

that the type R can be used as a formalism for the planning task pt and that Formalism.toStates pt R

returns the set of states corresponding to the formula. This is then used to inductively define which

sets of states are state set variables and state set literals, as in Definition 19.

inductive IsVariable {n} (pt : STRIPS n) R [Formalism pt R] : States n → Prop

| empty : IsVariable pt R ∅
| init : IsVariable pt R {pt.init}

| goal : IsVariable pt R pt.goal_states

| explicit (φ : R) : IsVariable pt R (Formalism.toStates pt φ)

inductive IsLiteral {n} (pt : STRIPS n) R [Formalism pt R] : States n → Prop

| pos {S} : IsVariable pt R S → IsLiteral pt R S

| neg {S} : IsVariable pt R S → IsLiteral pt R (Sc)

Using IsVariable and IsLiteral we can define finite unions of state set literals, and finite intersections

of state set variables and state set literals, which are used in the basic rules B1-B3. Lastly, we define

the propositions IsProgrInter and IsRegrInter defining which state sets have the format used in the

left-hand-side of the rules B2 and B3. Here separate cases are used to also allow the intersection⋂
LR∈L LR to be empty.

inductive IsLiteralUnion {n} (pt : STRIPS n) R [Formalism pt R] : States n → Prop

| single {S} : IsLiteral pt R S → IsLiteralUnion pt R S

| union {S S’} : IsLiteralUnion pt R S → IsLiteralUnion pt R S’ →
IsLiteralUnion pt R (S ∪ S’)

inductive IsVariableInter {n} (pt : STRIPS n) R [Formalism pt R] : States n → Prop

| single {S} : IsVariable pt R S → IsVariableInter pt R S

| inter {S S’} : IsVariableInter pt R S → IsVariableInter pt R S’ →
IsVariableInter pt R (S ∩ S’)

inductive IsProgrInter {n} (pt : STRIPS n) R [Formalism pt R] : States n → Prop

| empty {S A} : IsVariableInter pt R S → IsProgrInter pt R (pt.progression S A)

| inter {S S’ A} : IsVariableInter pt R S → IsLiteralInter pt R S’ →
IsProgrInter pt R (pt.progression S A ∩ S’)

2.2.3 ProofSystem

We start by defining dead states and dead state sets, as in Definition 18.

abbrev DeadState {n} (pt : STRIPS n) (s : State n) : Prop :=

∀ plan : Plan pt pt.init, s /∈ plan.path

abbrev Dead {n} (pt : STRIPS n) (S : States n) : Prop :=

∀ s ∈ S, DeadState pt s

30

Next we define a type for derivations in the proof system, based on Definition 20 and Definition 21.

Below we only show a selection of the rules, the full definition can be found in Appendix A.1. We use

a shallow embedding, meaning that existing types and functions in Lean (such as ⊆ and ∪) are used

for representing the syntax of the proof system. The alternative would be to use a deep embedding,

where we would use custom types for representing the syntax. The latter is more powerful because it

allows reasoning about the syntax, but it would require explicitly defining the syntax and its semantics,

whereas for the shallow embedding we can use the existing semantics in Lean 4.

An element of Derivation pt conclusion is a proof tree in the proof system, where the conclusion of

the proof tree is conclusion. For the basic rules the constructors require that the conclusion of the

rule holds semantically. We use the inductive definitions from the previous section to limit the sets S

and S’ to the correct format for the rules B1-B4. The rules from basic set theory are polymorphic, so

technically they are not restricted to sets of states or actions.

Note that Derivation uses Type 1 instead of Type in its type declaration, which is the universe above

Type is Leans type hierarchy. This is needed because the constructors for the rules B1-B4 depend on

the type R and those for the rules from basic set theory depend on the type α.

inductive Derivation {n} (pt : STRIPS n) : (conclusion : Prop) → Type 1

| B2 R [Formalism pt R] {S S’} :

IsProgrInter pt R S →
IsLiteralUnion pt R S’ →
(S ⊆ S’) →
Derivation pt (S ⊆ S’)

| B5 (A A’ : Actions n) : A ⊆ A’ → Derivation pt (A ⊆ A’)

| UD S S’ :

Derivation pt (Dead pt S) →
Derivation pt (Dead pt S’) →
Derivation pt (Dead pt (S ∪ S’))

| PG S S’ :

Derivation pt (pt.progression S pt.actions ⊆ S ∪ S’) →
Derivation pt (Dead pt S’) →
Derivation pt (Dead pt (S ∩ pt.goal_states)) →
Derivation pt (Dead pt S)

| CI : Derivation pt (Dead pt {pt.init}) → Derivation pt (Unsolvable pt)

| CG : Derivation pt (Dead pt pt.goal_states) → Derivation pt (Unsolvable pt)

| UR {α} (E E’ : Set α) : Derivation pt (E ⊆ E ∪ E’)

| PT S S’ S’’ A :

Derivation pt (pt.progression S A ⊆ S’’) →
Derivation pt (S’ ⊆ S) →
Derivation pt (pt.progression S’ A ⊆ S’’)

. . .

We show that the proof system is sound by induction (or technically by recursion) on the rules of

Derivation. For the basic rules the correctness follows immediately, since the conclusion of the rule is

an argument of the constructors. Soundness of other rules (in particular PG, PI, RG and RI) is a bit

more difficult, and the for these rules auxiliary lemmas are used (which we will not discuss here). We

will have a closer look at the soundness proof for the rules UD and CI.

31

For UD, we first apply the tactic simp, which changes the goal into ∀ (s : State n), s ∈ S ∨ s ∈
S’ → DeadState pt s. The tactic intro s hs adds the state s and the hypothesis s ∈ S ∨ s ∈ S’

to the environment en changes the goal into DeadState pt s. We distinguish cases based on hs, and

in both cases we use the soundness of the subderivations d1 and d2 to change the goal in s ∈ S and

s ∈ S’ respectively. These goals correspond to hypotheses hs’, which we obtained after splitting cases

based on hs.

For CI the tactic constructor is used to change the goal into ∀ (a : Plan pt pt.init), False. By

using the soundness of the subderivation we know that the initial state is dead. Then simp is used

with the definition of Dead and the lemma Path.first_mem (which states that s1 ∈ π for every path

π : Path pt s1 s2) to rewrite the hypothesis h into ∀ (a : Plan pt pt.init), False. This can then

be used to solve the goal.

theorem Derivation.soundness {n} {pt : STRIPS n} {conclusion} : (d : Derivation pt

conclusion) → conclusion

| B2 _ _ _ h => h

| UD S S’ d1 d2 =>

by

simp [Dead]

intro s hs

cases hs with

| inl hs’ =>

apply d1.soundness

exact hs’

| inr hs’ =>

apply d2.soundness

exact hs’

| PG S S’ d1 d2 d3 =>

by

apply progression_goal

· exact d1.soundness

· exact d2.soundness

· exact d3.soundness

| CI d =>

by

constructor

have h : DeadState pt pt.init :=

d.soundness pt.init (by simp)

simp [DeadState, Path.first_mem] at h

exact h

| UR E E’ => by simp

. . .

For completeness, we first show that any inductive certificate S can be transformed to a derivation in

the proof system. The derivation constructed in Derivation.fromInductiveCertificate corresponds to

the proof tree in Figure 2.2. For the basic rules we use an instance Formalism pt (States n) defined

in Formalism.

32

B2
S[AΠ] ⊆ S UR

S ⊆ S ∪ ∅
ST

S[AΠ] ⊆ S ∪ ∅ ED∅ dead

ED∅ dead
B1

S ∩ SΠ
G ⊆ ∅

SD
S ∩ SΠ

G dead
PG

S Dead
B1{

IΠ
}
⊆ S

SD{
IΠ

}
dead

CI
Π unsolvable

Figure 2.2: A derivation in the proof system that can be constructed given an inductive certificate S.
The three conditions in Definition 15 are used for showing that the basic statements hold.

open IsLiteral IsVariable in

def Derivation.fromInductiveCertificate {n} {pt : STRIPS n} {S} :

InductiveCertificate pt S → Derivation pt (Unsolvable pt)

| ⟨h1,h2,h3⟩ =>

by

apply CI

· apply SD {pt.init} S

· apply PG S ∅
· apply ST (pt.progression S pt.actions) S (S ∪ ∅)
· apply B2 (States n)

· exact IsProgrInter.empty <| IsVariableInter.single <| explicit S

· exact IsLiteralUnion.single <| pos <| explicit S

· exact h3

· exact UR S ∅
· exact ED

· apply SD (S ∩ pt.goal_states) ∅
· exact ED

· apply B1 (States n)

· exact IsLiteralInter.inter

(IsLiteralInter.single <| pos <| explicit S)

(IsLiteralInter.single <| pos <| goal)

· exact IsLiteralUnion.single <| pos <| empty

· simp [Set.eq_empty_iff_forall_notMem, STRIPS.goal_states]

exact h2

· apply B1 (States n)

· exact IsLiteralInter.single <| pos <| init

· exact IsLiteralUnion.single <| pos <| explicit S

· simp [h1]

To show that the proof system is complete, we need to prove that there is a derivation in the proof system

if the planning task is unsolvable. By the reduction above it is sufficient to give an inductive certificate,

and for this we use the completeness of inductive certificates which we showed in Section 2.2.1.

theorem completeness {n} {pt : STRIPS n} :

Unsolvable pt → Nonempty (Derivation pt (Unsolvable pt)) :=

by

intro h

constructor

apply fromInductiveCertificate

exact Classical.choose_spec (InductiveCertificate.completeness h)

33

2.3 State Set Formalisms

The folder StateSetFormalism implements functionality for working with the different formalisms

discussed in Section 1.3.1. It contains the following files:

– Formula formalizes definitions for concepts like literals, clauses and CNF-formulas. It provides

type classes for formulas over the variables Fin n and for the operations from Definition 13.

– Bdd will provide the instances needed for working with BDDs.

– Horn will implement Horn formulas and the operations needed for working with Horn formulas.

– Mods will implement the MODS formalism and the operations for working with MODS formulas.

– Formalism makes the connection between formulas and sets of states. It contains various

definitions and lemmas that are used for the verification for the basic rules, like state set variables,

state set literals and their unions and intersections.

– StateSetFormalism enables case distinctions on the different formalism, and provides wrapper

functions for types in Formalism.

As mentioned in the introduction of this chapter, the formalisms themselves have not yet been

implemented. For this reason we will only briefly look at the files BDD, Horn and MODS.

2.3.1 Formula

The file Formula starts by giving some definitions related to VarSet’ (which we will not discuss),

assignments of variables (Model) and partial assignments (PartialModel). The name (Partial)Model

indicates that these types are mainly used to indicate which assignments satisfy a given formula. Model is

only used at proof time, whereas PartialModel is also used at runtime in some operations and in MODS,

which explains why PartialModel uses bit vectors and Model does not. Below, PartialModel.models

gives all assignments to which the given partial assignment can be expanded.

abbrev Model n := Fin n → Prop

abbrev Models n := Set (Model n)

abbrev PartialModel {n} (V : VarSet’ n) := BitVec V.val.length

def PartialModel.models {n} {V : VarSet’ n} (M : PartialModel V) : Models n :=

{ M’ | ∀ i : Fin V.val.length, M’ ⟨V.val[i], by simp⟩ ↔ M[i] }

Next, literals are defined, where we use the pair (i, true) to represent the positive literal for the

variable i and (i, false) for the negation of i. Literal.models defines the models of the given literal

(i.e. the assignments making the literal true), and Literals.mem_models characterizes these models.

After unfolding the definition of Literal.models using simp, the tactic split is used to split the goal

into a goal for positive literals and one for negative literals, which can then both be solved using simp.

abbrev Literal n := Fin n × Bool

def Literal.models {n} : Literal n → Models n

| (i, true) => { M | M i }

| (i, false) => { M | ¬M i }

34

lemma Literal.mem_models {n} (l : Literal n) M : M ∈ l.models ↔ (M l.1 ↔ l.2) :=

by

simp [models]

split

all_goals simp

Similarly, clauses, cubes, CNF-formulas and DNF-formulas are defined, here we highlight the definition

for clauses and models of clauses. The attribute @[simp] tells Lean that the lemma should be

automatically used in the simp tactic if applicable.

abbrev Clause n := List (Literal n)

def Clause.models {n} (γ : Clause n) : Models n :=

{ M | ∃ l ∈ γ, M ∈ l.models }

@[simp]

lemma Clause.mem_models {n} (γ : Clause n) M :

M ∈ γ.models ↔ ∃ l ∈ γ, M ∈ l.models :=

by simp [Clause.models]

The type class Formula requires each type of formulas R to be equipped with two operations vars,

which should return the variables of a given formula, and models, which should give the models for

each formula. To ensure that an element φ of type R only depends on variables in Formula.vars φ,

models_equiv_right asserts that if two assignments match on the variables in Formula.vars φ, then

the second is a model of φ if the first one is. Formula.models_equiv turns this implication into a logical

equivalence, which is often easier to use.

class Formula n (R : Type) where

vars : (φ : R) → VarSet’ n

models : (φ : R) → Formula.Models n

models_equiv_right (φ : R) (M M’ : Formula.Model n) :

(∀ i ∈ (vars φ).val, M i = M’ i) → M ∈ models φ → M’ ∈ models φ

lemma Formula.models_equiv {n} {R} [h : Formula n R] {φ : R} {M M’ : Model n}

(h1 : ∀ i ∈ (h.vars φ).val, M i = M’ i) : M ∈ h.models φ ↔ M’ ∈ h.models φ :=

by . . .

The main part of the file Formula are type classes for the operations of Definition 13. For each of the

operations the type signature is provided and a statement of what it means for this operation to be

correct. If a specific formalism efficiently supports an operation it should have an instance for the type

class, where the first method contains the implementation for the specific formalism and the second on

a proof that this specific implementation is correct. For example, ClausalEntailment requires a method

entails, which given a formula φ and a clause γ returns whether φ |= γ. The field entails_correct

ensures that entails behaves as we would expect, i.e. entails φ γ is true if all models of φ are also

models of γ. Note that Bot.bot_correct requires that the set of variables associated with bot is empty,

whereas Top does not require this for top. Later we want to use Bot for constructing the empty set of

states (which is needed for the proof system, see Definition 19), and as we will see in Section 2.3.3 it

can be important which variables are not used in a state set expression.

35

class Top n R [F : Formula n R] where

top : R

top_correct : F.models top = Set.univ

class Bot n R [F : Formula n R] where

bot : R

bot_correct : F.models bot = ∅ ∧ F.vars bot = VarSet’.empty

class ClausalEntailment n R [F : Formula n R] where

entails : (φ : R) → (γ : Clause n) → Bool

entails_correct {φ γ} : entails φ γ ↔ F.models φ ⊆ γ.models

class Implicant n R [F : Formula n R] where

entails : (δ : Cube n) → (φ : R) → Bool

entails_correct {δ φ} : entails δ φ ↔ δ.models ⊆ F.models φ

class SententialEntailment n R [F : Formula n R] where

entails : (φ ψ : R) → Bool

entails_correct {φ ψ} : entails φ ψ ↔ F.models φ ⊆ F.models ψ

class BoundedConjuction n R [F : Formula n R] where

and : R → R → R

and_correct {φ ψ} : F.models (and φ ψ) = F.models φ ∩ F.models ψ

class BoundedDisjunction n R [F : Formula n R] where

or : R → R → R

or_correct {φ ψ} : F.models (or φ ψ) = F.models φ ∪ F.models ψ

The methods BoundedConjuction.and and BoundedDisjunction.or are binary, but the classes also

provide methods for obtaining the conjunction and disjunction of a list of formulas, as is shown below

for BoundedConjuction. Note that an efficient implementation for and does not imply that andList is

efficient. If for example the size of and φ ψ is of the order ∥φ∥ · ∥ψ∥, then the size of andList l can be

exponential in the length of l.

namespace BoundedConjuction

def andList {n} {R} [Formula n R] [Top n R] [h : BoundedConjuction n R] : List R → R

| [] => Top.top n

| [φ] => φ

| φ :: ψ :: tail => h.and φ (h.andList (ψ :: tail))

lemma andList_correct {n} {R} [F : Formula n R] [Top n R] [h : BoundedConjuction n R] {l} :

models (h.andList l) = { M | ∀ φ ∈ l, M ∈ F.models φ } :=

by . . .

end BoundedConjuction

The next two type classes correspond to the operations CL and RN≺. From a theoretical point of

view it would make most sense to implement CL in terms of Cube, but for efficiency we use VarSet’.

Remember that VarSet’ is defined as the subtype { vars : List (Fin n) // vars.Sorted (· < ·) },

36

which ensures that there are no duplicate variables and that the variables are ordered. Since we

already represent sets of variables as VarSet’ elsewhere, and in Mods we would convert the conjunction

into a PartialModel, it makes most sense to implement the operation like this. For RN≺, rename

should replace the variables in Formula.vars φ by the variables in vars’, where the definition of

VarSet’ ensures that this substitution is monotone. The lemma mem_rename_models gives an alternative

formulation for the correctness of rename in terms of renameModel. Currently, rename_correct is only

used to prove mem_rename_models, so depending on which formulation is easier to prove when working

with the specific formalisms, the former might be replaced by the latter.

class OfPartialModel n R [F : Formula n R] where

ofPartialModel : (V : VarSet’ n) → PartialModel V → R

ofPartialModel_correct {V M} :

F.models (ofPartialModel V M) = M.models ∧ F.vars (ofPartialModel V M) = V

class Renaming n R [F : Formula n R] where

rename : (φ : R) → (vars’ : VarSet’ n) → vars’.val.length = (F.vars φ).val.length → R

rename_correct {φ vars’ h} :

F.vars (rename φ vars’ h) = vars’ ∧
F.models (rename φ vars’ h) = { M | ∃ M’ ∈ F.models φ,

∀ i : Fin vars’.val.length, M vars’.val[i] ↔ M’ (F.vars φ).val[i] }

def Renaming.renameModel {n}

(V V’ : VarSet’ n) (h : V’.val.length = V.val.length) (M : Model n) : Model n :=

fun i 7→
match V.val.finIdxOf? i with

| none => M i

| some j => M (V’.val[j]’(by omega))

lemma Renaming.mem_rename_models {n R} [F : Formula n R] [Renaming n R] {φ vars’ h M} :

M ∈ F.models (rename φ vars’ h) ↔ renameModel (F.vars φ) vars’ (by simp [h]) M ∈
F.models φ :=

by . . .

The last two type classes are ToCNF and ToDNF, allowing us to convert a formula to an equivalent

CNF- or DNF-formula. For the verification of B1-B3 we don’t just need to convert one formula to

a CNF-formula, but a disjunction of formulas to one CNF-formula. This requires first converting

every formula to a CNF-formula, and then converting the resulting disjunction of CNF-formulas into

one CNF-formula using distributivity of ∨ over ∧. Note that the size of the resulting formula can be

exponential in the number of original formulas, motivating the restrictions on the number of conjuncts

and disjuncts in Definition 20. In Lean this operation is implemented in disjunctionToCNF, and there is

an analogous definition doing the same for converting a conjunction of formulas into one DNF-formula.

class ToCNF n R [F : Formula n R] where

toCNF : R → CNF n

toCNF_correct {φ} : (toCNF φ).models = F.models φ

37

class ToDNF n R [F : Formula n R] where

toDNF : R → DNF n

toDNF_correct {φ} : (toDNF φ).models = F.models φ

def ToCNF.disjunctionToCNF {n} {R} [Formula n R] [ToCNF n R] (l : List R) : CNF n :=

(l.map toCNF).multiply

lemma ToCNF.disjunctionToCNF_correct {n} {R} [F : Formula n R] [h : ToCNF n R] {φs} :

(disjunctionToCNF φs).models = { M | ∃ φ ∈ φs, M ∈ F.models φ } :=

by . . .

2.3.2 BDD, Horn and Mods

Currently, only the definition for the MODS formalism is finished, together with its instance for Formula

and the one for OfPartialModel. A MODS-formula consists of a set of variables and a disjunction

of partial models over these variables, which is represented by a list of the type PartialModel from

page 34.

structure MODS n where

vars : VarSet’ n

mods : List (PartialModel vars)

deriving DecidableEq, Repr

namespace MODS

def models {n} (φ : MODS n) : Models n :=

{ M | ∃ M’ ∈ φ.mods, M ∈ PartialModel.models M’ }

instance {n} : Formula n (MODS n) where

vars φ := φ.vars

models := models

models_equiv_right := by

simp [models, PartialModel.models]

grind

For MODS, OfPartialModel is one of the operations to that is easy to implement. Here, it serves

as an example of what the instances should eventually look like. Most operations currently use

sorry-placeholders, as is shown below for SententialEntailment.

instance {n} : OfPartialModel n (MODS n) where

ofPartialModel V M := ⟨V, [M]⟩
ofPartialModel_correct := by

simp [Formula.models, models, Formula.vars]

instance {n} : SententialEntailment n (MODS n) where

entails φ ψ := sorry

entails_correct := sorry

We will briefly discuss how we plan to implement the other formalisms when discussing future work in

Section 3.3.

38

2.3.3 Formalism

We will use the operations implemented in Formula to verify the rules B1-B4. The obvious way to

represent a set of states for a planning task Π is to use a formula over the variables of the planning task

V Π. While this works for the rules B1 and B4, we cannot represent the progression and regression

needed in B2 and B3 this way. For these rules we additionally need primed versions of the variables

in V Π, and we need to be able to replace a given subset of variables in V Π by their primed version.

At the end of the section we will explain in more detail why we need this. Since the BDD-formalism

only supports RN≺ and not RN (see Table 1.1), we will use 2 · i for representing the variable i, and

2 · i+ 1 for representing its primed version. The file starts by defining these translations, which are

shown below. We omit the lemmas about these definitions.

def Fin.toUnprimed {n} : Fin n → Fin (2 * n) :=

fun i 7→ ⟨2 * i.val, by omega⟩
def Fin.toPrimed {n} (i : Fin (2 * n)) (h : Even i.val) : Fin (2 * n) :=

⟨i.val + 1, by grind⟩

namespace Validator.VarSet’

abbrev IsUnprimed {n} (V : VarSet’ (2 * n)) : Prop :=

∀ i ∈ V.val, Even i.val

def toUnprimed {n} (V : VarSet’ n) : VarSet’ (2 * n) :=

. . .

def unprimedVars n : VarSet’ (2 * n) :=

let vars := List.ofFn Fin.toUnprimed

have h : vars.Sorted (· < ·) := by

simp [vars, List.Sorted, Fin.toUnprimed]

⟨vars, h⟩
end VarSet’

When translating a model to a state (which is implemented by unprimedState below), we look at the

behaviour of the model on the unprimed variables. If the model assigns the value True to the unprimed

variable corresponding to i (i.e. 2 · i), then i is in the state, and otherwise it is not. The lemma

exists_model_of_state essentially shows that this translation is surjective.

namespace Formula.Model

def unprimedState {n} (M : Model (2 * n)) : State n :=

{ i | M i.toUnprimed }

lemma exists_model_of_state {n} s : ∃ M : Model (2 * n), s = M.unprimedState :=

by

let M : Model (2 * n) := fun i => ⟨i / 2, by omega⟩ ∈ s

use M

simp [M, Model.unprimedState, Fin.toUnprimed]

end Formula.Model

We finally get to the class Formalism, which we already used for the basic rules in ProofSystem. The

class builds on the class Formula (2 * n) R, where the variables in Formula should be interpreted as

described above. Additionally, it provides a method toStates, which by default takes the models of

39

the given formula, and transforms them to states using Model.unprimedState. While it is allowed to

give a different implementation, toStates_eq enforces that this implementation is still equal to the

default implementation.

class Formalism {n} (pt : STRIPS n) R extends Formula (2 * n) R where

toStates (φ : R) : States n := (Formula.models φ).image Model.unprimedState

toStates_eq (φ : R) : toStates φ = (Formula.models φ).image Model.unprimedState := by

simp

We only override this default implementation for the following instance, which is used in Section 2.2.3

for Derivation.fromInductiveCertificate. The reason for overriding the default implementation is to

allow that Formalism.toStates S reduces directly to S for any state set S.

@[simp]

instance {n} {pt : STRIPS n} : Formalism pt (States n) where

vars _ := VarSet’.unprimedVars n

models φ := { M | M.unprimedState ∈ φ }

models_equiv_right := by

. . .

toStates := id

toStates_eq φ := by

ext s

have ⟨M, hM⟩ := Model.exists_model_of_state s

simp

grind

The largest part of the files consists of definitions and lemmas for state set variables, state set literals,

and unions and intersections of state set literals and state set variables. The names of some of these

definitions match the names in Formula, but they have difference namespaces. For example, the full

name of the type Literal in Formula is Validator.Formula.Literal, whereas the full name of the type

Literal which we will use for state set literals is Validator.Formalism.Literal. The definitions from

Formula are only used for defining the different operations and implementing them for the different

formalisms, whereas the types defined here are used for the verification of the basic rules (Definition 20).

Below the keyword variable is used to declare n, pt and R implicit variables, which means that they

will be implicitly added to type declarations if needed.

In contrast to Definition 19, where we had separate cases for the constant sets
{
IΠ

}
, SΠ

G and ∅,
here state set variables only have one constructor for R-formulas. If needed, constant sets will be

transformed to R-formulas, so they are also covered by this case.

namespace Formalism

variable {n} {pt : STRIPS n} {R}

abbrev Variable (pt : STRIPS n) (R : Type) [Formalism pt R] := R

namespace Variable

def models [Formalism pt R] : Variable pt R → Models (2 * n) :=

Formula.models

40

abbrev vars [Formalism pt R] : Variable pt R → VarSet’ (2 * n) :=

Formula.vars

def toStates [Formalism pt R] : Variable pt R → States n :=

Formalism.toStates pt

@[simp]

instance [F : Formalism pt R] : Membership (Fin (2 * n)) (Variable pt R) where

mem x i := i ∈ x.vars.val

end Variable

For each of the concepts described in this file we will also define an unprimed version, which requires

that all variables associated with the involved formulas are unprimed. This version is used to make

the connection with the type Model, as illustrated by the lemma mem_models_iff_of_eq_unprimedState.

Ironically, the lemma does not use UnprimedVariable but Variable combined with the hypothesis

x.vars.IsUnprimed, because the statement M ∈ x.val.models ↔ M’ ∈ x.val.models would be more

difficult to use.

abbrev UnprimedVariable (pt : STRIPS n) (R : Type) [F : Formalism pt R] :=

{ x : Variable pt R // x.vars.IsUnprimed }

lemma UnprimedVariable.mem_models_iff_of_eq_unprimedState [Formalism pt R]

{x : Variable pt R} {M M’ : Model (2 * n)} :

x.vars.IsUnprimed → M.unprimedState = M’.unprimedState →
(M ∈ x.models ↔ M’ ∈ x.models) := . . .

Below are the definitions of Literal, Variables, Literals, and their unprimed versions. For Literals

and UnprimedLiterals the first list contains all positive literals and the second all negative ones.

abbrev Literal (pt : STRIPS n) R [Formalism pt R] :=

Variable pt R × Bool

abbrev UnprimedLiteral (pt : STRIPS n) R [Formalism pt R] :=

UnprimedVariable pt R × Bool

abbrev Variables (pt : STRIPS n) R [Formalism pt R] :=

List (Variable pt R)

abbrev UnprimedVariables (pt : STRIPS n) R [Formalism pt R] :=

List (UnprimedVariable pt R)

abbrev Literals (pt : STRIPS n) R [Formalism pt R] :=

Variables pt R × Variables pt R

abbrev UnprimedLiterals (pt : STRIPS n) R [Formalism pt R] :=

UnprimedVariables pt R × UnprimedVariables pt R

The file contains to many definitions and lemmas to discuss them all, hence we will only highlight a

few. For Literal there are methods for getting the models and the states, based on those of Variable

we saw above. Variables and Literals have functions returning the states when interpreting the

collection as a union or intersection, which are shown below for Variables. Note that these definitions

41

work with Variable.models and not Variable.states, since we also need to take the primed variables

into account. For UnprimedLiteral, UnprimedVariables and UnprimedLiterals there are methods val

for converting the types to Literal, Variables and Literals respectively. These methods implicitly

use Subtype.val (which is used for UnprimedVariable) for the conversion.

def Variables.inter [F : Formalism pt R] (X : Variables pt R) : States n :=

{ s | ∃ M : Model (2 * n), M.unprimedState = s ∧ ∀ x ∈ X, M ∈ x.models }

def Variables.union [F : Formalism pt R] (X : Variables pt R) : States n :=

{ s | ∃ M, M.unprimedState = s ∧ ∃ x ∈ X, M ∈ x.models }

def UnprimedVariables.val [Formalism pt R] : UnprimedVariables pt R → Variables pt R :=

fun X 7→ X

There are multiple lemmas for working with these unions and intersections, below we show some of

those for Variables. For both of these lemmas, one of the lists of variables needs to be unprimed. In

the first case the left-hand-side of the equivalence talks about states, and the right-hand-side about

models. Because X2 is unprimed, the value of the primed variables of M is irrelevant for deciding whether

∃ x ∈ X2, M ∈ x.val.models, which is crucial for the lemma to hold.

Similarly, suppose that both X1 and X2 would have type Variable in the second lemma. Then

for every state s in X1.inter ∩ X2.inter, there are models M1 and M2 with M1.unprimedState = s,

M2.unprimedState = s, M1 ∈ x.models for all variables x ∈ X1 and M2 ∈ x.models for all variables

x ∈ X2. However, these models M1 and M2 could differ on the primed variables, and therefore s /∈ (X1

++ X2).inter. If X2 is unprimed, the lemma mem_models_iff_of_eq_unprimedState we discussed on

page 41 can be used to conclude from M1.unprimedState = M2.unprimedState that M1 ∈ x.val.models

for all x ∈ X2, and therefore s ∈ (X1 ++ X2.val).inter.

lemma UnprimedVariables.inter_subset_union_iff_models [F : Formalism pt R]

(X1 : Variables pt R) (X2 : UnprimedVariables pt R) :

X1.inter ⊆ X2.val.union ↔
(∀ M, (∀ x ∈ X1, M ∈ F.models x) → ∃ x ∈ X2, M ∈ x.val.models) :=

by . . .

@[simp]

lemma UnprimedVariables.inter_variables_append [Formalism pt R]

{X1 : Variables pt R} {X2 : UnprimedVariables pt R} :

(X1 ++ X2.val).inter = X1.inter ∩ X2.val.inter :=

by . . .

Unions and intersections of UnprimedLiterals can be stated in terms of UnprimedVariables using the

lemmas below. Again these lemmas don’t work for Literals, for similar reasons as the previous lemmas.

@[simp low]

lemma UnprimedLiterals.union_val [Formalism pt R] {L : UnprimedLiterals pt R} :

L.val.union = L.1.val.union ∪ L.2.val.interc :=

by . . .

42

@[simp low]

lemma UnprimedLiterals.inter_val [Formalism pt R] {L : UnprimedLiterals pt R} :

L.val.inter = L.1.val.inter ∩ L.2.val.unionc :=

by . . .

As mentioned in the introduction of this section, we need to be able to replace the unprimed variables

corresponding to a given set of variables with their primed version. The definitions below define

this using the Renaming class from page 37. The lemma mem_inter_toPrimed already indicates how

UnprimedVariables.toPrimed will be used when verifying B2 and B3. Recall from Section 2.1.2 that the

progression of a state set S through an action a is formalized as { s | ∃ s’ ∈ S, Successor a s’ s }.

The primed variables are used to represent the variables in s’ where s and s’ differ (or potentially

differ), corresponding to the variables in V below. For the variables where s and s’ are guaranteed to

be the same (i.e. the variables not in V), we use the unprimed variables.

def UnprimedVariable.toPrimed [Formalism pt R] [Renaming (2 * n) R]

(x : UnprimedVariable pt R) (V : VarSet’ n) : Variable pt R := . . .

def UnprimedVariables.toPrimed [F : Formalism pt R] [Renaming (2 * n) R]

(X : UnprimedVariables pt R) (V : VarSet’ n) : Variables pt R :=

X.map (UnprimedVariable.toPrimed · V)

lemma UnprimedVariables.mem_inter_toPrimed [F : Formalism pt R] [Renaming (2 * n) R]

{X : UnprimedVariables pt R} {V s} : s ∈ (toPrimed X V).inter ↔
∃ s’ ∈ X.val.inter, ∀ i /∈ V.val, i ∈ s’ ↔ i ∈ s :=

by . . .

2.3.4 StateSetFormalism

For the verification of the basic rules we need to be able to make a case distinction on the formalism

that is used to represent the formula. It is not possible to make a case distinction based on which types

have an instance for Formalism, hence we define an inductive type StateSetFormalism for representing

the different options. The method type is used to link the different options with the actual type used

for representing the state sets.

inductive StateSetFormalism

| bdd

| horn

| mods

deriving DecidableEq

abbrev StateSetFormalism.type {n} (_ : STRIPS n) : StateSetFormalism → Type

| bdd => BDD (2 * n)

| horn => Horn (2 * n)

| mods => MODS (2 * n)

43

The file contains instances of Formalism for BDD, Horn, and MODS. Since all these types already have

instances for Formula, and the additional methods from Formalism have default implementations, these

instances follow immediately. Next, there is a wrapper instance for Formalism pt (R.type pt). There

are similar wrapper instances for the operations Bot, OfPartialModel and Renaming from Section 2.3.1,

since these operations are needed in places where it is not necessary to perform a case distinction on

the formalisms.

instance BDD.instFormalism {n} {pt : STRIPS n} : Formalism pt (BDD (2 * n)) where

instance Horn.instFormalism {n} {pt : STRIPS n} : Formalism pt (Horn (2 * n)) where

instance MODS.instFormalism {n} {pt : STRIPS n} : Formalism pt (MODS (2 * n)) where

instance {n} {pt : STRIPS n} : {R : StateSetFormalism} → Formalism pt (R.type pt)

| bdd => BDD.instFormalism

| horn => Horn.instFormalism

| mods => MODS.instFormalism

Furthermore, the file contains wrapper types around the types from the previous section, whose purpose

is making the type signatures in Section 2.4.6 less convoluted.

variable {n} (pt : STRIPS n) (R : StateSetFormalism)

abbrev UnprimedVariable’ :=

UnprimedVariable pt (R.type pt)

abbrev UnprimedLiteral’ :=

UnprimedLiteral pt (R.type pt)

abbrev Variables’ :=

Variables pt (R.type pt)

abbrev UnprimedVariables’ :=

UnprimedVariables pt (R.type pt)

abbrev UnprimedLiterals’ :=

UnprimedLiterals pt (R.type pt)

StateSetFormalism concludes with functions to construct the unprimed variables corresponding to ∅,
{pt.init} and pt.goal_states. The variables for {pt.init} and pt.goal_states are constructed using

the operation OfPartialModel, and the one for ∅ is constructed using Bot, as shown below.

def mkEmpty (pt : STRIPS n) R : UnprimedVariable’ pt R :=

⟨bot (2 * n), by simp [bot_correct]; exact VarSet’.isUnprimed_empty⟩

@[simp]

lemma toStates_mkEmpty (pt : STRIPS n) R : (mkEmpty pt R).val.toStates = ∅ :=

by

simp [mkEmpty, Variable.toStates_eq, Variable.models, bot_correct]

44

2.4 Certificates and their Validation

The validator itself can be divided into the following five parts:

1. A structure for representing the certificate.

2. A parser to parse the certificate into this representation.

3. A low-level definition of what it means for the certificate to be valid.

4. A validator which checks whether the stored certificate satisfies the definition of validity. Running

the validator should either result in a reason why the certificate is not valid, or in a proof that it

is valid.

5. A translation from a proof that a certificate is valid to the Derivation type discussed in Sec-

tion 2.2.3. From the soundness of Derivation it follows that an accepted certificate implies that

the corresponding planning task is unsolvable.

These parts are implemented in the different files of the folder Certificate:

– Certificate defines the representation of the certificates.

– Parser contains a parser for parsing the certificates.

– SetExpr defines what it means for action set expressions and state set expressions to be valid,

and it implements functions for verifying whether they are valid.

– Constraint defines constraints, which can be used to define what it means for knowledge to be

valid and to verify whether a given piece of knowledge is valid. It also gives various constraints

that will be used for the syntactic rules.

– BasicRules defines the constraints for the basic rules.

– ValidCertificate gives the constraints for the syntactic rules and defines what it means for a

certificate to be valid.

– ToDerivation gives a translation from a proof that a certificate is valid to an element of

Derivation.

Finally, the main file Validator combines the STRIPS parser, the parser for the certificates and the

verification of the certificates into one validator.

2.4.1 Certificate

Each line of the certificate is either an action set, a state set or a piece of knowledge. Each line is

assigned a natural number as its ID, which is unique in its category (so an action set can have the

same ID as a state set, but no two state sets have the same ID). Naturally such a certificate can be

stored in three arrays (Helve uses deques in C++), where each type of statement has its own array,

and the IDs correspond with the indices in the arrays. In Helve there are no restrictions on the indices

(only that each ID is unique for the given category), but we will require that the IDs for each category

start with 0 and increment by one. In Helve, it was sufficient to test whether an ID is defined every

45

time an element of the array is accessed, but for the definition of validity we also need to have a proof

that certain indices are valid. Without the additional requirement it would be more difficult to do this.

The file starts by defining action set expressions and state set expressions following the input format

defined in Helve, which is similar to the types defined in Definition 19. Below, ActionSetExpr.enum

uses a list of references to actions in the planning task pt (without bounds proof), instead of one

single action like in Definition 19. The arguments in ActionSetExpr.union, and the second arguments

of StateSetExpr.progr and StateSetExpr.regr are action set IDs. The other natural numbers in

StateSetExpr are state set IDs.

inductive ActionSetExpr : Type

| enum : List N → ActionSetExpr

| union : N → N → ActionSetExpr

| all : ActionSetExpr

inductive StateSetExpr {n} (pt : STRIPS n) : Type

| empty : StateSetExpr pt

| init : StateSetExpr pt

| goal : StateSetExpr pt

| bdd : UnprimedVariable pt (BDD (2 * n)) → StateSetExpr pt

| horn : UnprimedVariable pt (Horn (2 * n)) → StateSetExpr pt

| mods : UnprimedVariable pt (MODS (2 * n)) → StateSetExpr pt

| neg : N → StateSetExpr pt

| inter : N → N → StateSetExpr pt

| union : N → N → StateSetExpr pt

| progr : N → N → StateSetExpr pt

| regr : N → N → StateSetExpr pt

For the knowledge statements we use separate inductive definitions for each kind of knowledge.

This makes it easier to check whether a piece of knowledge is for example dead knowledge, and

to assign a semantic meaning to the rules, as this can then be defined for each kind of knowledge.

Note that in contrast to Derivation (see Section 2.2.3), the rules from basic set theory have been

split in separate rules for state sets and action sets. Since intersections are not defined for action

set expressions, not all of these rules have a variant for action sets. The natural number in the

type signature of DeadKnowledge is the ID of the state set that is dead, and the natural numbers in

StateSubsetKnowledge/ActionSubsetKnowledge are the IDs of the state/action set expressions E and

E′ in the corresponding statement E ⊆ E′. The natural numbers after the colons are the knowledge

IDs of the premises of the rule. From now on, we will use Ai, Si and Ki (and their variations) for

denoting actions set IDs, state set IDs and knowledge IDs respectively.

inductive DeadKnowledge : N → Type

| ED Si : DeadKnowledge Si

| UD Si: N → N → DeadKnowledge Si

| SD Si: N → N → DeadKnowledge Si

| PG Si: N → N → N → DeadKnowledge Si

| PI Si: N → N → N → DeadKnowledge Si

| RG Si: N → N → N → DeadKnowledge Si

| RI Si: N → N → N → DeadKnowledge Si

46

inductive StateSubsetKnowledge : N → N → Type

| B1 Si S’i : StateSubsetKnowledge Si S’i

| B2 Si S’i : StateSubsetKnowledge Si S’i

| B3 Si S’i : StateSubsetKnowledge Si S’i

| B4 Si S’i : StateSubsetKnowledge Si S’i

| URS Si S’i : StateSubsetKnowledge Si S’i

| ULS Si S’i : StateSubsetKnowledge Si S’i

| IRS Si S’i : StateSubsetKnowledge Si S’i

| ILS Si S’i : StateSubsetKnowledge Si S’i

| DIS Si S’i : StateSubsetKnowledge Si S’i

| SUS Si S’i : N → N → StateSubsetKnowledge Si S’i

| SIS Si S’i : N → N → StateSubsetKnowledge Si S’i

| STS Si S’i : N → N → StateSubsetKnowledge Si S’i

| AT Si S’i : N → N → StateSubsetKnowledge Si S’i

| AU Si S’i : N → N → StateSubsetKnowledge Si S’i

| PT Si S’i : N → N → StateSubsetKnowledge Si S’i

| PU Si S’i : N → N → StateSubsetKnowledge Si S’i

| PR Si S’i : N → StateSubsetKnowledge Si S’i

| RP Si S’i : N → StateSubsetKnowledge Si S’i

inductive ActionSubsetKnowledge : N → N → Type

| B5 Ai A’i : ActionSubsetKnowledge Ai A’i

| URA Ai A’i : ActionSubsetKnowledge Ai A’i

| ULA Ai A’i : ActionSubsetKnowledge Ai A’i

| SUA Ai A’i : N → N → ActionSubsetKnowledge Ai A’i

| STA Ai A’i : N → N → ActionSubsetKnowledge Ai A’i

inductive UnsolvableKnowledge

| CI : N → UnsolvableKnowledge

| CG : N → UnsolvableKnowledge

inductive Knowledge

| dead Si : DeadKnowledge Si → Knowledge

| actionSubset Ai A’i : ActionSubsetKnowledge Ai A’i → Knowledge

| stateSubset Si S’i : StateSubsetKnowledge Si S’i → Knowledge

| unsolvable : UnsolvableKnowledge → Knowledge

The certificate itself is defined as a structure containing three arrays with the action set expressions,

state set expressions and pieces of knowledge, as described in the beginning of the section.

structure Certificate {n} (pt : STRIPS n) where

actions : Array ActionSetExpr

states : Array (StateSetExpr pt)

knowledge : Array Knowledge

47

2.4.2 Parser

Each line of the certificate is expected to either be an action set expression, a state set expression, a

piece of knowledge or a comment (starting with #). The format for the state set expressions, action

set expression and knowledge closely resembles the definitions from the previous section, therefore we

will not discuss them in detail here, but a description can be found in Appendix A.2. Note that the

parsers for BDDs, Horn formulas and MODS have not yet been implemented.

2.4.3 SetExpr

We start with the definitions for validity of ActionSetExpr and StateSetExpr. This involves mostly

stating that the mentioned action set IDs and state set IDs are within bounds of the certificate C. To

ensure that the certificate does not contain cyclic dependencies, we enforce the stronger condition that

action sets can only reference action sets with a lower ID, and similar for state sets. This works since

the action sets never reference state sets, so cyclic references between action sets and state sets are not

possible.

def Certificate.validActionSetExpr (C : Certificate pt) (Ai : Fin C.actions.size) : Prop :=

match C.actions[Ai] with

| ActionSetExpr.enum as => ∀ a ∈ as, a < pt.actions’.length

| ActionSetExpr.union A’i A’’i => A’i < Ai ∧ A’’i < Ai

| ActionSetExpr.all => True

def Certificate.validStateSetExpr (C : Certificate pt) (Si : Fin C.states.size) : Prop :=

match C.states[Si] with

| StateSetExpr.empty => True

| StateSetExpr.init => True

| StateSetExpr.goal => True

| StateSetExpr.bdd φ => True

| StateSetExpr.horn φ => True

| StateSetExpr.mods φ => True

| StateSetExpr.neg S’i => S’i < Si

| StateSetExpr.inter S’i S’’i => S’i < Si ∧ S’’i < Si

| StateSetExpr.union S’i S’’i => S’i < Si ∧ S’’i < Si

| StateSetExpr.progr S’i Ai => S’i < Si ∧ Ai < C.actions.size

| StateSetExpr.regr S’i Ai => S’i < Si ∧ Ai < C.actions.size

For checking whether the action and state set expressions are valid, we need the following two types

which are defined in the file Error. Result either contains an error of type Error (which is also defined

in the file Error), or a subtype containing a value a of type α and a proof that p a holds. The type can

be used if we want to return some data (for example an ID) during verification, while simultaneously

ensuring that the property p hold for this data (for example that the given ID is within bounds). The

type Result’ can be used if we only want to verify some property, without returning data. Here Unit

is a type which contains only one element ().

abbrev Result.{u} (α : Type u) (p : α → Prop) :=

Except Error { a // p a }

abbrev Result’ (p : Prop) :=

Result Unit (fun _ 7→ p)

48

The file SetExpr contains various definitions for verifying bounds and throwing error messages, which

we will not discuss. Below are two other definitions, which are used to combine verification of different

properties and to verify the validity of ActionSetExpr.enum. For verify_and we use that Except (and

therefore Result’) is a monad, which enables the convenient do-notation.

def verify_and {p1 p2} (res1 : Result’ p1) (res2 : Result’ p2) : Result’ (p1 ∧ p2) := do

let ⟨(), h1⟩ ← res1

let ⟨(), h2⟩ ← res2

return ⟨(), And.intro h1 h2⟩

def verifyActionsEnum (pt : STRIPS n) (as : List N) : Result’ (∀ a ∈ as, a <

pt.actions’.length) :=

if h : ∀ a ∈ as, a < pt.actions’.length then

return ⟨(), h⟩
else

throwUnvalid s!"Not all given actions ids exist in the planning task.\

The following action ids are out of bound:\n{as.filter (· < pt.actions’.length)}"

These functions are then combined to verify that the actions set expression with the given ID is valid,

as shown below. Here verify_action_bounds Ai A’i has type Result’ (A’i < Ai). The verification of

the state set expressions is similar.

def Certificate.verifyActionSetExpr (C : Certificate pt) (Ai : Fin C.actions.size) :

Result’ (C.validActionSetExpr Ai) :=

by

unfold validActionSetExpr

cases C.actions[Ai] with

| enum as => exact verifyActionsEnum pt as

| union A’i A’’i =>

exact verify_and (verify_action_bounds Ai A’i) (verify_action_bounds Ai A’’i)

| all => exact pure ⟨(), True.intro⟩

Next we use the definitions of validity of action set expressions and state set expressions to define an

intermediate version of validity for certificates, where only the set expressions need to be valid.

structure validSets (C : Certificate pt) : Prop where

validActions : ∀ Ai, C.validActionSetExpr Ai

validStates : ∀ Si, C.validStateSetExpr Si

This definition can then be used to construct the set of actions or states for a given state set ID or action

set ID. These constructions will be needed to semantically define what it means for the basic rules to

be valid, and in Section 2.4.8 to translate the certificates to Derivation. Below we show a selection of

the cases in the definition. For the formulas in the formalisms we use the method Variable.toStates

from Section 2.3.3. The have expressions with the bounds are used to show termination of the function,

and by the tactic omega for proving that the IDs are valid.

49

def getStates {C : Certificate pt} (hC : C.validSets) (Si : Fin C.states.size) : States n :=

have h := hC.validStates Si

match heq : C.states[Si] with

| StateSetExpr.empty => ∅
| StateSetExpr.init => {pt.init}

| StateSetExpr.goal => pt.goal_states

| StateSetExpr.bdd φ => φ.val.toStates

| StateSetExpr.union S’i S’’i =>

have : S’i < Si ∧ S’’i < Si := by

simp_all [Certificate.validStateSetExpr]

hC.getStates ⟨S’i, by omega⟩ ∪ hC.getStates ⟨S’’i, by omega⟩
| StateSetExpr.progr S’i Ai =>

have h’ : S’i < Si ∧ Ai < C.actions.size := by

simp_all [Certificate.validStateSetExpr]

pt.progression (hC.getStates ⟨S’i, by omega⟩) (hC.getActions ⟨Ai, h’.2⟩)
. . .

In contrast to the state set expressions, the variant for action set expressions is also used at runtime to

verify the rule B5. For this reason we first define a version getActions’ which collects the action IDs

(i.e. the indices of the actions in pt.actions’). This version is used at runtime. getActions translates

this list of action IDs to a set of actions, and will only be used at proof time.

abbrev ActionIds (pt : STRIPS n) :=

List (Fin pt.actions’.length)

abbrev ActionIds.toActions (A : ActionIds pt) : Actions n :=

(A.map (pt.actions’[·])).toFinset

def getActions’ {C : Certificate pt} (hC : C.validSets)

(Ai : Fin C.actions.size) : ActionIds pt :=

. . .

def getActions {C : Certificate pt} (hC : C.validSets) (Ai : Fin C.actions.size) :

Actions n :=

(getActions’ hC Ai).toActions

For all constructors except for ActionSetExpr.enum, the file also gives lemmas for simplifying these

definitions, below we highlight the one for StateSetExpr.union. The tactic split makes a separate

goal for each of cases in the definition getStates and adds a hypothesis stating that C.states[Si] is

matches the corresponding case. For all constructors except union this leads to a contradiction with h,

and for union the two sides of the equality in the goal match.

lemma getStatesUnion {C : Certificate pt} (hChypothesis : C.validSets)

(Si S’i S’’i : Fin C.states.size)

(h : C.states[Si]? = some (StateSetExpr.union S’i S’’i)) :

hC.getStates Si = hC.getStates S’i ∪ hC.getStates S’’i :=

by

rw [getStates]

split

all_goals simp_all

50

2.4.4 Naive Attempt for Verifying the Syntactic Rules

One of the earlier attempts for verifying the syntactic rules uses the same approach as the action

and state set expressions. As an example, the definition of validity for the rule UD is shown below.

Note that in validUD we use existential quantifiers to assert that the state set expression C.states[S1i]

is constructed using the constructor StateSetExpr.union. The same approach is used to express

that C.knowledge[K1i] and C.knowledge[K2i] are pieces of dead knowledge stating that the state set

expressions with IDs Si and S’i are dead. The hypotheses hK1i and hK2i are used implicitly for the

array accesses C.knowledge[K1i] and C.knowledge[K2i].

abbrev validUD (C : Certificate pt) (Ki : Fin C.knowledge.size) (S1i K1i K2i : N) : Prop :=

K1i < Ki ∧ K2i < Ki ∧ ∃ hK1i : K1i < Ki, ∃ hK2i : K2i < Ki,

∃ Si S’i, C.states[S1i]? = StateSetExpr.union Si S’i ∧
∃ K1 : DeadKnowledge Si, C.knowledge[K1i] = Knowledge.dead K1 ∧
∃ K2 : DeadKnowledge S’i, C.knowledge[K2i] = Knowledge.dead K2

For verifying whether a piece of UD-knowledge is valid, we first verify the bounds, then we verify that

the given state set expression is a union using verify_states_union, and finally we check that the two

premises are correct using verify_knowledge_dead (which is not shown here). In verify_states_union

we use the Result type defined on page 48 to return the IDs S’i and S’’i of the left and right state set

expression, together with a proof that C.states[Si]? = StateSetExpr.union S’i S’’i.

def verify_states_union (C : Certificate pt) (Si : N) :

Result (N × N) (fun (S’i, S’’i) 7→ C.states[Si]? = StateSetExpr.union S’i S’’i) :=

match C.states[Si]? with

| some (StateSetExpr.union S’i S’’i) => pure ⟨(S’i, S’’i), by simp⟩
| some S => throw s!"The state set #{Si} is expected to be a union, but it is {S}."

| none => throw (state_out_of_bounds Si)

def verifyKnowledge (C : Certificate pt) (Ki : Fin C.knowledge.size) :

Result’ (C.validKnowledge Ki) :=

by

unfold validKnowledge

cases heq : C.knowledge[Ki] with

| @dead Si K =>

apply verify_and (verify_state_bounds C.states.size Si)

cases K with

| UD K’i K’’i => exact do

let ⟨(), h1⟩ ← verify_knowledge_bounds Ki K’i

let ⟨(), h2⟩ ← verify_knowledge_bounds Ki K’’i

let ⟨(S’i, S’’i), h3⟩ ← verify_states_union C Si

let ⟨(), h4⟩ ← verify_knowledge_dead C ⟨K’i, by simp at h1; omega⟩ S’i

let ⟨(), h5⟩ ← verify_knowledge_dead C ⟨K’’i, by simp at h2; omega⟩ S’’i

return ⟨(), by simp_all⟩
. . .

. . .

The existential quantifiers inside the definition of validUD pose an additional challenge, because we

will have to eliminate them when transforming the proof of validity into a Derivation in Section 2.4.8.

51

This can be done by converting the existential quantification into a subtype, as shown below for

StateSetExpr.union. In the proof we make a case distinction on C.states[Si], and for all cases except

union this leads to a contradiction with the given hypothesis h, since elements constructed using

different constructors cannot be equal.

def stateUnionOfExists (C : Certificate pt) (Si : Fin C.states.size)

(h : ∃ S’i S’’i, C.states[Si]? = StateSetExpr.union S’i S’’i) :

{p : N × N // C.states[Si] = (StateSetExpr.union p.1 p.2)} := by

cases h : C.states[Si]

all_goals simp_all

case union S’i S’’i =>

exact ⟨(S’i, S’’i), by simp⟩

While the approach works for UD, eliminating the existential quantifiers becomes a lot harder for

more complicated syntactic rules (e.g. PG), which need nested existential quantifiers. There was a

brief attempt with writing custom tactics to eliminate the existential quantifiers, but without much

success. Ultimately, a more elegant solution was chosen, which is discussed in the next section.

2.4.5 Constraint

Instead of writing separate definitions for validity, verification and elimination of the existential

quantifiers, we can also group these definitions into one structure. While we still need to implement

the three operations separately on a low level (like checking bounds, or checking that the state set

expression of a given ID is a union), we will only need to combine the different components once for

each rule. Furthermore, the elimination of the existential quantifiers becomes a lot more manageable.

The structure Constraint shown below provides this functionality. The parameter α in the type

signature is the type of the data that the constraint should return. For example, in the case of checking

that the state set expression with a given ID is a union, this would be N × N, for the IDs of the left

and right state sets. The field prop contains the proposition that the returned data should satisfy,

and verify’ specifies how this should be checked. When actually verifying the certificate the method

verify is used, which gives an optional error message if the constraint is not valid. Validity is defined

by valid, and the field elim_exists is used to turn the existential quantifier in valid into a subtype.

The additional requirement ∀ a’, prop a’ → a’ = a states that there exists only one element of type

α satisfying the requirement, which is needed for combining constraints.

structure Constraint (α : Type) : Type where

prop : α → Prop

verify’ : Result α prop

elim_exists :

(∃ a, prop a) → {a // prop a ∧ ∀ a’, prop a’ → a’ = a}

message : Option String := none

namespace Constraint

abbrev valid {α} (h : Constraint α) : Prop :=

∃ a, h.prop a

def verify {α} (h : Constraint α) : Result α (h.prop) :=

withErrorMessage h.message h.verify’

52

The constraint for checking whether the state set with ID Si is a union of states is shown below. Here

elim_exists_2 is a macro for eliminating existential quantifiers when the constructor for the input

argument C.states[Si]? has two arguments. The functions for error handling are defined in the file

StateSetExpr, but we did not discuss them in more detail.

def isStateUnion (C : Certificate pt) (Si : N) : Constraint (N × N) where

prop := fun (S’i, S’’i) 7→ C.states[Si]? = some (StateSetExpr.union S’i S’’i)

verify’ :=

match C.states[Si]? with

| some (StateSetExpr.union S’i S’’i) => pure ⟨(S’i, S’’i), by simp⟩
| some S => StateSetConstraint.throw_unexpected Si "a union of states" S

| none => StateSetConstraint.throw_out_of_bounds Si

elim_exists := by elim_exists_2 C.states[Si]?

message := s!"Verifying that state set #{Si} is the union of two state sets"

There are similar constraints for ActionSetExpr.all, ActionSetExpr.union, and all constructors of

StateSetExpr except bdd, horn and mods. Additionally, there are constraints for dead knowledge and for

the two types of subset knowledge. Below we show the constraint for verifying that a given knowledge

ID corresponds to dead knowledge. The argument K of dead Si K is not returned because it is irrelevant

for the verification. For example, in UD we don’t need to know which rule is used to deduce that S

is dead. For the elimination of the existential quantifier, we first make a case distinction to get rid

of the Option wrapper introduced by the _[_]? notation, and then we make a case distinction on the

knowledge inside the wrapper. Since elements constructed by different constructors are never equal,

after simplification only the option corresponding to the constructor dead remains, and then we can

return its argument Si.

def isDeadKnowledge (C : Certificate pt) (Ki : N) : Constraint N where

prop := fun Si 7→ ∃ K, C.knowledge[Ki]? = dead Si K

verify’ :=

match C.knowledge[Ki]? with

| some (dead Si K) => return ⟨Si, by simp⟩
| some K => KnowledgeConstraint.throw_unexpected Ki "dead knowledge" K

| none => KnowledgeConstraint.throw_out_of_bounds Ki

elim_exists h := by

cases heq : C.knowledge[Ki]? with

| some K =>

cases K

all_goals simp_all only [Option.some.injEq, reduceCtorEq, exists_false]

rename_i Si K

exact ⟨Si, by simp_all⟩
| none => simp_all

message := s!"Verifying that knowledge #{Ki} is dead-knowledge"

The main benefit of the Constraint type is that it easily allows combining different constraints, which

is implemented the definitions below. The constraint and is used two state and verify the conjunction

of two properties, whereas the constraint seq allows nesting constraints.

53

def and {α1 α2} (h1 : Constraint α1) (h2 : Constraint α2) : Constraint (α1 × α2) where

prop := fun ⟨a1, a2⟩ 7→ h1.prop a1 ∧ h2.prop a2

verify’ := do

let ⟨a1, ha1⟩ ← h1.verify

let ⟨a2, ha2⟩ ← h2.verify

return ⟨(a1, a2), by simp_all⟩
elim_exists h0 := by

simp_all

obtain ⟨v1, hv1, h1⟩ := h1.elim_exists h0.1

obtain ⟨v2, hv2, h2⟩ := h2.elim_exists h0.2

exact ⟨(v1, v2), by simp_all⟩
infixr:70 "∧c" => and

def seq {α1 α2} (h1 : Constraint α1) (h2 : α1 → Constraint α2) : Constraint (α1 × α2)

where

prop := fun ⟨a1, a2⟩ 7→ h1.prop a1 ∧ (h2 a1).prop a2

verify’ := do

let ⟨a1, ha1⟩ ← h1.verify

let ⟨a2, ha2⟩ ← (h2 a1).verify

return ⟨(a1, a2), by simp_all⟩
elim_exists h0 := by

. . .

Lastly, the file contains a variety of constraints for checking that a value returned by a given constraint

h equals a given value Ei. The argument T is only used for error messages, to indicate whether the

constraint is comparing action or state set IDs. There are multiple variations when the constraint h

returns two arguments.

def eq (h : Constraint N) (T : SetType) (Ei : N) : Constraint Unit where

prop := fun _ 7→ h.prop Ei

verify’ := do

let ⟨E’i, h’⟩ ← h.verify’

if heq : Ei = E’i

then return ⟨(), by simp_all⟩
else T.toConstraintType.throw_not_eq Ei E’i

elim_exists := elim_exists_0

message := h.message

abbrev eqState (h : Constraint N) (Ei : N) :=

eq h SetType.States Ei

abbrev eqAction (h : Constraint N) (Ei : N) :=

eq h SetType.Actions Ei

While the actual constraints for the syntactic rules are defined in the file ValidCertificate, it only

makes sense to conclude this section with the constraint for UD. Note that the structure is similar to

that of validUD and its verification in Section 2.4.4, but this time we only need one definition, and we

don’t need to worry about eliminating existential quantifiers.

54

def constraintUD (Ki S1i K1i K2i : N) :=

knowledgeBounds Ki K1i ∧c

knowledgeBounds Ki K2i ∧c

(isStateUnion C S1i).seq fun (Si, S’i) 7→
(isDeadKnowledge C K1i).eqState Si ∧c

(isDeadKnowledge C K2i).eqState S’i

2.4.6 BasicRules

BasicRules first defines auxiliary functions that are needed for verifying the basic rules, and it

concludes with the constraints for the basic rules. The first functions are used to infer the formalism for

a given state set ID and a list of state set IDs. get_formalism’ returns the option in StateSetFormalism

(defined on page 43) corresponding to the first bdd, horn or mods state set encountered when traversing

the syntax tree for the given state set ID, or none if it does not contain any of those. The function

getFormalism does the same for a list of state set IDs, but it returns mods if no formalism has been

found. This is a relatively arbitrary choice, and it might be changed if another formalism turns out to

be more efficient.

namespace Certificate.validSets

def get_formalism’ (hC : C.validSets) (Si : Fin C.states.size) : Option StateSetFormalism :=

match heq : C.states[Si] with

| .empty => none

| .init => none

| .goal => none

| .bdd _ => bdd

| .horn _ => horn

| .mods _ => mods

| .neg S’i =>

have : S’i < Si := by

have := hC.validStates Si

simp_all [Certificate.validStateSetExpr]

hC.get_formalism’ ⟨S’i, by omega⟩
| .union S’i S’’i =>

have : S’i < Si ∧ S’’i < Si := by

have := hC.validStates Si

simp_all [Certificate.validStateSetExpr]

match hC.get_formalism’ ⟨S’i, by omega⟩ with

| none => hC.get_formalism’ ⟨S’’i, by omega⟩
| R => R

. . .

def get_formalism (hC : C.validSets) : List (Fin C.states.size) → StateSetFormalism

| [] => mods -- Fallback if all sets are constant

| Si :: tail =>

match hC.get_formalism’ Si with

| none => hC.get_formalism tail

| some F => F

55

Next up are functions which verify whether the state set expression for the given ID have the

formats defined on page 30 and return the corresponding state set variables or state set literals.

Below, get_union_literals verifies that the state set expression with ID Si is a union of state set

literals. These state set literals are returned as an element of UnprimedLiterals’ (which has been

defined on page 44). Furthermore, the function returns proofs the state set expression with ID Si

is the union of the returned state set literals, and that it has the desired format. The functions

get_variable, get_literal, get_inter_literals, get_inter_variables, get_progression_variables,

get_progression_inter, get_regression_variables and get_regression_inter all have similar func-

tionality as suggested by their names.

def get_union_literals

(hC : C.validSets) (R : StateSetFormalism) (Si : Fin C.states.size) :

Result (UnprimedLiterals’ pt R) fun L 7→
hC.getStates Si = L.val.union ∧ IsLiteralUnion pt (R.type pt) (hC.getStates Si) :=

withErrorMessage s!"Verifying that the state set #{Si} is a union of {R} literals" <|

match heq : C.states[Si] with

| .union S’i S’’i => do

have ⟨hS’i, hS’’i⟩ : S’i < Si ∧ S’’i < Si := by

have := hC.validStates Si

simp_all [Certificate.validStateSetExpr]

let ⟨L1, h1, h2⟩ ← hC.get_union_literals R ⟨S’i, by omega⟩
let ⟨L2, h3, h4⟩ ← hC.get_union_literals R ⟨S’’i, by omega⟩
have h5 : hC.getStates Si = (L1 ++ L2).val.union := by

simp only [UnprimedLiterals.val_append, Literals.union_append]

rw [← h1, ← h3]

exact hC.getStatesUnion Si ⟨S’i, by omega⟩ ⟨S’’i, by omega⟩ (by simp_all)

have h6 : IsLiteralUnion pt (type pt R) (hC.getStates Si) := by

simp_all only [UnprimedLiterals.val_append, Literals.union_append]

exact IsLiteralUnion.union h2 h4

return ⟨L1 ++ L2, h5, h6⟩
| _ => do

let ⟨l, h1, h2⟩ ← hC.get_literal R ⟨Si, by omega⟩
return ⟨UnprimedLiterals.single l, by simp_all; exact IsLiteralUnion.single h2⟩

end Certificate.validSets

As in Theorem 22, the file implements three ways to check whether the intersection of variables X1 is a

subset of the union of (unprimed) variables X2. Below we show how this is implemented using the oper-

ations from Section 2.3.1 in the case where the formalism R supports toCNF, CE, ∧BC and ⊤C. First

we construct an R-formula x1 which is equivalent to the conjunction X1 and we convert the disjunction

X2 to one CNF-formula. After this, it suffices to check that x1 entails every clause of the CNF-formula,

which can be done using CE. To show that this is correct, check_variables_subset2_correct first

rewrites the statement to a statement about models using the lemma inter_subset_union_iff_models

from page 42, which requires X2 to be unprimed. Simplifying the resulting statement using the

correctness lemmas of the operations then proves the goal.

56

def Formalism.check_variables_subset2 {R} [F : Formalism pt R]

[h1 : ClausalEntailment (2 * n) R]

[h2 : BoundedConjuction (2 * n) R] [Top (2 * n) R]

[h3 : ToCNF (2 * n) R]

(X1 : Variables pt R) (X2 : UnprimedVariables pt R) : Bool :=

let x1 := h2.andList X1

let φ := h3.disjunctionToCNF X2

φ.all (fun γ 7→ h1.entails x1 γ)

lemma Formalism.check_variables_subset2_correct {R} [F : Formalism pt R]

[h1 : ClausalEntailment (2 * n) R]

[h2 : BoundedConjuction (2 * n) R] [Top (2 * n) R]

[h3 : ToCNF (2 * n) R]

(X1 : Variables pt R) (X2 : UnprimedVariables pt R) :

check_variables_subset2 X1 X2 ↔ X1.inter ⊆ X2.val.union :=

by

rw [UnprimedVariables.inter_subset_union_iff_models]

simp [check_variables_subset2, Variable.models,

h1.entails_correct, h2.andList_correct, h3.disjunctionToCNF_correct]

Similarly, the other two methods of checking the inclusion X1.inter ⊆ X2.val.union are implemented.

The following definition and lemma decide based on the formalism which method should be used.

def StateSetFormalism.check_variables_subset (R : StateSetFormalism)

(X1 : Variables’ pt R) (X2 : UnprimedVariables’ pt R) : Bool :=

match R with

| .bdd => check_variables_subset1 X1 X2

| .horn => check_variables_subset2 X1 X2

| .mods => check_variables_subset2 X1 X2

lemma StateSetFormalism.check_variables_subset_correct (R : StateSetFormalism)

(X1 : Variables’ pt R) (X2 : UnprimedVariables’ pt R) :

check_variables_subset R X1 X2 ↔ X1.inter ⊆ X2.val.union :=

match R with

| .bdd => check_variables_subset1_correct X1 X2

| .horn => check_variables_subset2_correct X1 X2

| .mods => check_variables_subset2_correct X1 X2

Notice that the logical statements∧
φi∈L+

1

φi ∧
∧

φi∈L−
1

¬φi |=
∨

φi∈L+
2

φi ∨
∨

φi∈L−
2

¬φi and
∧

φi∈L+
1

φi ∧
∧

φi∈L−
2

φi |=
∨

φi∈L+
2

φi ∨
∨

φi∈L−
1

φi

are equivalent. We use this to translate the statement B1, which uses literals, to a statement about

variables, which can then by verified using check_variables_subset from above. The simp tactic in

checkB1_correct implicitly uses some lemmas from Section 2.3.3, including union_val and inter_val.

57

def checkB1 R (L1 L2 : UnprimedLiterals’ pt R) : Bool :=

R.check_variables_subset (L1.1 ++ L2.2).val (L2.1 ++ L1.2)

lemma checkB1_correct R {L1 L2 : UnprimedLiterals’ pt R} :

checkB1 R L1 L2 ↔ L1.val.inter ⊆ L2.val.union :=

by

simp [checkB1, check_variables_subset_correct, Set.inter_compl_subset_union_compl]

We are finally able to define the constraint for B1. The property of the constraint expresses that the

state set expressions with IDs S1i and S2i have the correct format, and it states that the state set

corresponding to S1i is a subset of the one corresponding to S2i. For the verification we first check

that S1i and S2i are valid state set IDs. Next we obtain the formalism and the literals of both sides

using the definitions discussed at the beginning of the section. Lastly, we verify semantically that the

inclusion holds using checkB1.

def constraintB1 (hC : C.validSets) (S1i S2i : N) : Constraint Unit where

prop := fun _ 7→ ∃ hS1i hS2i,

have R := hC.get_formalism [⟨S1i, hS1i⟩, ⟨S2i, hS2i⟩]
IsLiteralInter pt (R.type pt) (hC.getStates ⟨S1i, hS1i⟩) ∧
IsLiteralUnion pt (R.type pt) (hC.getStates ⟨S2i, hS2i⟩) ∧
hC.getStates ⟨S1i, hS1i⟩ ⊆ hC.getStates ⟨S2i, hS2i⟩

verify’ :=

do

let ⟨⟨⟩, hS1i⟩ ← (stateBounds’ C S1i).verify

let ⟨⟨⟩, hS2i⟩ ← (stateBounds’ C S2i).verify

let R := hC.get_formalism [⟨S1i, hS1i⟩, ⟨S2i, hS2i⟩]
let ⟨L1, h1, h2⟩ ← hC.get_inter_literals R ⟨S1i, hS1i⟩
let ⟨L2, h3, h4⟩ ← hC.get_union_literals R ⟨S2i, hS2i⟩
if h5 : R.checkB1 L1 L2 then

have h6 : hC.getStates ⟨S1i, hS1i⟩ ⊆ hC.getStates ⟨S2i, hS2i⟩ := by

simp_all only [checkB1_correct]

return ⟨(), by use hS1i, hS2i, h2, h4, h6⟩
else

throwUnvalid s!"The state set #{S1i} is not a subset of #{S2i}"

elim_exists := elim_exists_0

Note that functions get_inter_literals, get_inter_variables and checkB1 depend on the operations

defined in Section 2.3.1. Since these operations have not yet been implemented, Lean displays the

message INTERNAL PANIC: executed ’sorry’ when trying to verify B1. To make this message more

clear, the last part of verify’ has been replaced by a custom error message. The same has been done

for the constraints of the rules B2-B4.

For the rules B2 and B3, we need unprimed variables corresponding to the preconditions, the adding

effects and the deleting effects of the action with a given ID ai, as in shown for preconditions below.

Additionally, there are versions working with UnprimedVariables’ which group the adding and deleting

effects, and there is a method to get the original variables of the planning task that appear in the

adding and deleting effects.

58

def preVariable R (ai : Fin pt.actions’.length) : UnprimedVariable’ pt R :=

UnprimedVariable.ofVarset’ (R.type pt) pt.actions’[ai].pre’

def preVariables R (ai : Fin pt.actions’.length) : UnprimedVariables’ pt R :=

[preVariable R ai]

def effectVariables R (ai : Fin pt.actions’.length) : UnprimedVariables’ pt R :=

[addVariable R ai, delVariable R ai]

def effectVarSet’ (ai : Fin pt.actions’.length) : VarSet’ n :=

VarSet’.union pt.actions’[ai].add’ pt.actions’[ai].del’

To verify B2, it is sufficient to verify the statement for each action a individually, as is done in

checkB2. We use the same trick as for B1 to transform the statement about state set literals into a

statement about state set variables, which is then verified using checkB2’. For checkB2’, we start by

making the unprimed variables corresponding to the original variables in add a ∪ del a primed in X0

and preVariables R ai. From mem_inter_toPrimed on page 43 it follows that a state s is in X0’.inter

if and only if there exists a state s′ in X.val.inter with pre a ⊆ s′ which matches s on all variables not

in add a ∪ del a. If we additionally require that the effects of a hold in s, then this is equivalent with s

being in the progression of X0.val.inter with the action a. This is done in the definition of X1’, where

we also include the variables X1. Finally, we verify the inclusion X1’.inter ⊆ X2.val.union using the

same method as for B1.

def checkB2’ R (ai : Fin pt.actions’.length) (X0 X1 X2 : UnprimedVariables’ pt R) : Bool :=

let X0’ := UnprimedVariables.toPrimed (preVariables R ai ++ X0) (effectVarSet’ ai)

let X1’ := X0’ ++ (effectVariables R ai ++ X1).val

R.check_variables_subset X1’ X2

lemma checkB2’_correct {R ai} {X0 X1 X2 : UnprimedVariables’ pt R} :

checkB2’ R ai X0 X1 X2 ↔
pt.progression’ X0.val.inter pt.actions’[ai] ∩ X1.val.inter ⊆ X2.val.union :=

by . . .

def checkB2 R (X : UnprimedVariables’ pt R) (A : ActionIds pt)

(L1 L2 : UnprimedLiterals’ pt R) : Bool :=

A.all (fun ai 7→ checkB2’ R ai X (L1.1 ++ L2.2) (L2.1 ++ L1.2))

lemma checkB2_correct {R X A} {L1 L2 : UnprimedLiterals’ pt R} :

checkB2 R X A L1 L2 ↔ pt.progression X.val.inter A.toActions ∩ L1.val.inter ⊆
L2.val.union :=

by . . .

The constraint for B2 is very similar to constraintB1, and is therefore omitted. We will only briefly

discuss the rules B3-B5. The verification and constraint of B3 are very similar to those of B2. For B4,

the constraint is similar to constraintB1, with the main difference being that there are two formalism

instead of one. The method checkB4 has not yet been implemented because of time limitations. The

verification for B5 uses getActions’ (from page 50) to check that all action IDs of the left action set

are in the right action set.

59

Recall that Theorem 23 only listed two options to verify the statements B2 and B3. The reason for

this is that the corresponding proof in [12, Theorem 5.6] claimed that ∧BC is needed either way to

construct the progression (or regression). However, our formalization shows that it is possible to verify

B2 (and similarly B3) without constructing the intersection of the variables in X0 or X0’. This means

that it is possible to verify B2 and B3 without using ∧BC by choosing check_variables_subset3

(which corresponds to the third option in Theorem 22) to verify X1’.inter ⊆ X2.val.union. Therefore,

in addition of the two options in Theorem 23, B2 and B3 can also be verified using the operations

toDNF, IM, ∨BC, CL, ⊥C and RN≺.

2.4.7 ValidCertificate

The file ValidCertificate starts with the constraints for the syntactic rules. We already saw the

constraint for UD in Section 2.4.5, below we show the constraint for PI, one of the more complicated

rules. The constraint first requires that all premises have IDs smaller than Ki, after which it checks

that the state set in the conclusion is the negation of a state set Si. To check that the first premise is

of the form S[AΠ] ⊆ S ∪ S′, we first check that it has the form S2 ⊆ S3, then we check that S2 is of

the form S[A], that A is of the form AΠ and that S3 is of the form S ∪ S′. The other premises are

checked similarly.

def constraintPI (Ki S1i K1i K2i K3i : N) :=

knowledgeBounds Ki K1i ∧c

knowledgeBounds Ki K2i ∧c

knowledgeBounds Ki K3i ∧c

(isStateNeg C S1i).seq fun Si 7→
((isStateSubsetKnowledge C K1i).seq fun (S2i, S3i) 7→
(((isStateProgr C S2i).leftEqState Si).seq fun Ai 7→
isActionAll C Ai) ∧c

((isStateUnion C S3i).leftEqState Si).seq fun S’i 7→
(isDeadKnowledge C K2i).eqState S’i) ∧c

((isStateSubsetKnowledge C K3i).rightEqState Si).seq fun SIi 7→
isStateInit C SIi

The constraints for all basic rules and derivation rules are grouped in the definition below. The return

type of constraintKnowledge includes a sigma type, as the parameter α depends on the rule. Since

most rules use a combination of multiple constraints, α can be relatively complicated. Therefore, we

allow Lean to automatically infer α using the placeholder “_”.

def constraintKnowledge {C : Certificate pt} (hC : C.validSets)

(Ki : Fin C.knowledge.size) : Σ α, Constraint α :=

match C.knowledge[Ki] with

| dead Si K =>

match K with

| ED Si => ⟨_, isStateEmpty C Si⟩
| UD Si K1i K2i => ⟨_, constraintUD C Ki Si K1i K2i⟩
| SD Si K1i K2i => ⟨_, constraintSD C Ki Si K1i K2i⟩
. . .

. . .

60

Using constraintKnowledge we can finally express what it means for knowledge to be valid. We define

validity of certificates by extending the definition of validSets. Here, tovalidSets gives the underlying

structure C.validSets, which is needed for verifying the basic rules.

def validKnowledge {C : Certificate pt} (hC : C.validSets) (Ki : Fin C.knowledge.size) :

Prop :=

(constraintKnowledge hC Ki).snd.valid

structure valid (C : Certificate pt) extends C.validSets where

validKnowledge : ∀ Ki, C.validKnowledge tovalidSets Ki

The file contains various lemmas for obtaining bounds proofs from a valid certificate, like following

lemma for StateSetExpr.union:

lemma stateUnionBounds {C : Certificate pt} (hC : C.valid) (Si : Fin C.states.size)

{S’i S’’i} (h : C.states[Si]? = some (StateSetExpr.union S’i S’’i)) :

S’i < C.states.size ∧ S’’i < C.states.size :=

by

have h’ := hC.validStates Si

rcases Si with ⟨Si, hSi⟩
simp_all [Certificate.validStateSetExpr]

omega

Note that so far we did not require the certificate to actually claim that the planning task is unsolvable,

we only required that all statements are valid. IsUnsolvable below formalizes this requirement, and

verifyIsUnsolvable verifies it by checking for all knowledge statements in the certificate whether

they claim unsolvability. The optional parameter of verifyIsUnsolvable is by default initialized to

Fin.last C.knowledge.size which has value C.knowledge.size. It decrements with each recursive

function call until either a statement with constructor unsolvable has been reached, or all knowledge

statements have been checked.

abbrev IsUnsolvable : Prop :=

∃ Ki : Fin C.knowledge.size, ∃ K, C.knowledge[Ki] = unsolvable K

def verifyIsUnsolvable : optParam (Fin (C.knowledge.size + 1)) (Fin.last C.knowledge.size)

→
Result’ (IsUnsolvable C)

| 0 => throwUnvalid "Unsolvability NOT proven"

| ⟨Ki + 1, h⟩ =>

match heq : C.knowledge[Ki] with

| unsolvable K => return ⟨(), by use ⟨Ki, by omega⟩, K, heq⟩
| _ => verifyIsUnsolvable ⟨Ki, by omega⟩

To validate the certificate, first all action set expressions are validated, then all state set expressions,

followed by all knowledge expressions, and finally it is checked that the certificate claims unsolvability.

For each of the types of expressions the methods verifyAll and verifyAll’ check the expressions in

order of increasing ID. Helve uses a different approach, and verifies the expressions in the order in

which they appear in the file. This implies that action set expressions are potentially checked after

61

state set expressions and knowledge expressions and so on. Intuitively this approach makes sense, as

one can incrementally build the certificate and verify each expression before adding it. However, for a

formally verified validator this would require proving that the certificate remains valid when adding a

new valid expression to the certificate. We have tried this, and it seems doable, but we decided against

it as the current approach is simpler.

def verify : Result’ (C.valid ∧ IsUnsolvable C) :=

do

let ⟨(), h1⟩ ← verifyAll’ C.verifyActionSetExpr

let ⟨(), h2⟩ ← verifyAll’ C.verifyStateSetExpr

let hC : C.validSets := ⟨h1, h2⟩
let ⟨(), h3⟩ ← verifyAll (constraintKnowledge hC)

let ⟨(), h4⟩ ← verifyIsUnsolvable C

return ⟨(), ⟨hC, h3⟩, h4⟩

2.4.8 ToDerivation

We still need to show that Certificate.valid together with Certificate.IsUnsolvable is sufficient to

conclude that the corresponding planning task is unsolvable. We show this by making a translation

from a valid certificate to a Derivation. This requires specifying the semantic meaning of the different

types of knowledge, which is done by the following definition.

namespace Validator.Certificate.valid

def conclusion {C : Certificate pt} {hC : C.valid} (Ki : Fin C.knowledge.size) : Prop :=

match heq : C.knowledge[Ki] with

| dead Si K =>

have hSi : Si < C.states.size :=

hC.deadKnowledgeBound Ki (by use K; simp_all)

let S := hC.getStates ⟨Si, hSi⟩
Dead pt S

| actionSubset Ai A’i K =>

have hi : Ai < C.actions.size ∧ A’i < C.actions.size :=

hC.actionSubsetKnowledgeBounds Ki (by use K; simp_all)

let A := hC.getActions ⟨Ai, hi.1⟩
let A’ := hC.getActions ⟨A’i, hi.2⟩
A ⊆ A’

| stateSubset Si S’i K =>

have hi : Si < C.states.size ∧ S’i < C.states.size :=

hC.stateSubsetKnowledgeBounds Ki (by use K; simp_all)

let S := hC.getStates ⟨Si, hi.1⟩
let S’ := hC.getStates ⟨S’i, hi.2⟩
S ⊆ S’

| unsolvable _ => Unsolvable pt

62

Next, the file includes lemmas which allow simplifying this definition when the constructor for the

knowledge is known. For dead knowledge this is the following lemma:

lemma conclusionDead

{C : Certificate pt} (hC : C.valid)

(Ki : Fin C.knowledge.size) {Si : Fin C.states.size}

(h : ∃ K, C.knowledge[Ki]? = dead Si K) :

hC.conclusion Ki ↔ Dead pt (hC.getStates Si) :=

by

simp [conclusion]

split

all_goals simp_all

In what follows, we describe the translation from a valid certificate the type Derivation. Spanning 487

lines and covering 32 cases for all different rules, this is by far the longest definition of the project. Below

the following explanation we show the translation for the rule UD. After unfolding some definitions

and making a case distinction on the knowledge C.knowledge[Ki], most rules do the following:

1. If needed, rename variables to match those of the constraints.

2. Simplify the hypothesis h, containing the proof that the knowledge with ID Ki is valid, to a

statement like (C.constraintUD Ki S1i K1i K2i).valid.

3. Eliminate the existential quantifiers at h using apply Constraint.elim_exists at h.

4. Once the quantifiers are eliminated, we can use rcases to get the all IDs returned by the constraint

(for the example below these are Si and S’i), and the property about this data h’. Note that this

is not possible if the data would be existentially quantified, because existential quantifiers can

only be decomposed if the goal is a proposition, or using the axiom of choice. The latter would

make the definition non-computable, and it would be a lot more convoluted.

5. Simplify h’, and split it into different parts. In the example below hK1i, hK2i, hS1i are bounds

for IDs, hS1 is a proof of C.states[S1i]? = some (StateSetExpr.union Si S’i), hK1 is a proof for

∃ K, C.knowledge[K1i]? = some (dead Si K) and hK2 is a proof for ∃ K, C.knowledge[K2i]? =

some (dead S’i K).

6. h’ only contains bounds for the IDs of expressions decomposed during verification. If needed,

bounds for other IDs can be obtained using lemmas from ValidCertificate (Section 2.4.7).

7. If the conclusion of the rule contains a composite set expression, then we need to decompose

it using lemmas from the file SetExpr (Section 2.4.3). In the example below, the lemma

getStatesUnion is used to rewrite the goal Derivation pt (Dead pt (···.getStates ⟨S1i, ···⟩))
into Derivation pt (Dead pt (···.getStates ⟨Si, hSi⟩ ∪ ···.getStates ⟨S’i, hS’i⟩)).

8. We apply the rule from Derivation corresponding to our current rule, after which we need to give

derivations for all premises. The rule Derivation.UR is used for both StateSubsetKnowledge.URS

and ActionSubsetKnowledge.URA. The same applies for the other rules from basic set theory.

9. If the premises contain composite set expressions, we do the same as in step 7, but in the other

direction. This is not the case for UD.

63

10. We use the lemmas from above to get conclusion into the goal statement, and then we use

recursion to get a derivation with this conclusion. For the first premise in the example below

we rewrite the goal to Derivation pt (conclusion ⟨K1i, ···⟩), which we can solve by recursion

using K1i < Ki.

The process for the basic rules is a bit shorter because there are no premises and h’ contains all proofs

needed for constructing the corresponding derivation.

def toDerivation {C : Certificate pt} (hC : C.valid) (Ki : Fin C.knowledge.size) :

Derivation pt (hC.conclusion Ki) :=

by

unfold conclusion

have h := hC.validKnowledge Ki

unfold Certificate.validKnowledge constraintKnowledge at h

rcases Ki with ⟨Ki, hKi⟩
split -- cases on C.knowledge[Ki]

-- case dead Si K

case h_1 Si K heq =>

rw [heq] at h

simp_all

cases K with

| ED => . . .

| UD K1i K2i =>

rename’ Si => S1i

simp only at h

apply Constraint.elim_exists at h

rcases h with ⟨⟨⟨⟩, ⟨⟩, ⟨Si, S’i⟩, ⟨⟩, ⟨⟩⟩, ⟨h’, _⟩⟩
simp [constraintUD] at h’

rcases h’ with ⟨hK1i, hK2i, ⟨hS1i, hS1⟩, hK1, hK2⟩
have ⟨hSi, hS’i⟩: Si < C.states.size ∧ S’i < C.states.size :=

hC.stateUnionBounds ⟨S1i, hS1i⟩ hS1

rw [hC.getStatesUnion ⟨S1i, hS1i⟩ ⟨Si, hSi⟩ ⟨S’i, hS’i⟩ hS1]

apply Derivation.UD

· rw [← hC.conclusionDead ⟨K1i, by omega⟩ hK1]

exact hC.toDerivation ⟨K1i, by omega⟩
· rw [← hC.conclusionDead ⟨K2i, by omega⟩ hK2]

exact hC.toDerivation ⟨K2i, by omega⟩
. . .

. . .

For the correctness of the validator, we apply the soundness theorem for Derivation from Section 2.2.3

to the Derivation corresponding to a given valid certificate. If valid certificate states that the given

planning task is unsolvable, we can use this to conclude that the planning task is indeed unsolvable.

theorem soundness’ {C : Certificate pt} (hC : C.valid) (Ki : Fin C.knowledge.size) :

hC.conclusion Ki :=

Derivation.soundness (hC.toDerivation Ki)

64

theorem soundness {C : Certificate pt} (hC : C.valid) (h : C.IsUnsolvable) : Unsolvable pt

:=

by

rcases h with ⟨Ki, hK⟩
rw [← hC.conclusionUnsolvable Ki hK]

exact hC.soundness’ Ki

end Validator.Certificate.valid

2.4.9 Validator

The different components of the validator are combined in the file Validator. For now, we use a planning

task and certificate in the folder test, which has been copied from Helve [14]. These files are parsed

using the parsers implemented in PlanningTask.Parser (Section 2.1.3) and Certificate.Parser

(Section 2.4.2). Finally, the certificate is verified using the function Certificate.verify implemented

in Certificate.ValidCertificate (Section 2.4.7), and if it is valid the soundness lemma from

Certificate.ToDerivation (Section 2.4.8) allows us to conclude that the given planning task is

unsolvable. This definition is obviously not final, and in the future it should allow parsing planning

tasks and certificates in user-specified files.

def main : IO Unit :=

do

try

let path ← IO.currentDir

let pt_path := path / "test" / "success-task.txt"

let ⟨n, pt⟩ ← STRIPS.parse pt_path

IO.println (repr pt)

IO.println s!"initial state : {(List.finRange n).filter (pt.init’[·])}"
let certificate_path := path / "test" / "success-certificate.txt"

IO.println "Parsing the certificate"

let C ← Certificate.parse pt certificate_path

IO.println "Verifying the certificate"

match C.verify with

| .ok ⟨(), hC, h⟩ =>

have : Unsolvable pt := hC.soundness h

IO.println "The certificate is valid!"

| .error e =>

throw (IO.userError (e.show ""))

catch e =>

IO.println e

65

Chapter 3

Discussion

Given that none of the formalisms has been implemented yet, it is not possible to actually run the

validator on certificates (or at least not successfully). Therefore, it is not yet possible to evaluate the

performance of the validator and compare it to the performance of Helve. However, there are other

interesting topics to discuss. In Section 3.1 we review a critical bug that we found in Helve, and in

Section 3.2 we update Theorem 23 with the findings from Section 2.4.6. In Section 3.3 we consider

some possible directions for extending the validator.

3.1 Bug in Helve

While working on the thesis we discovered a bug in Helve [14], the C++ validator for the proof

system1. The bug occurred in the file helve/rules/basic_statements/basic_statement_5.cc, for

the verification of the basic rule B5, which is shown below. The pointer *left_set is initialized using

the identifier right_id instead of left_id.

std::unique_ptr<Knowledge> basic_statement_5(SetID left_id, SetID right_id,

std::vector<KnowledgeID> &,

const ProofChecker &proof_checker) {

std::unordered_set<size_t> left_indices, right_indices;

const ActionSet *left_set = proof_checker.get_set<ActionSet>(right_id);

const ActionSet *right_set = proof_checker.get_set<ActionSet>(right_id);

left_set->get_actions(proof_checker, left_indices);

right_set->get_actions(proof_checker, right_indices);

for (int index: left_indices) {

if (right_indices.find(index) == right_indices.end()) {

throw std::runtime_error("Statement B5 is false.");

}

}

return std::unique_ptr<Knowledge>(new SubsetKnowledge<ActionSet>(left_id,right_id));

}

1The GitHub issue for this bug can be found at https://github.com/salome-eriksson/helve/issues/2.

66

https://github.com/salome-eriksson/helve/issues/2

B2{
IΠ

}
[∅] ⊆

{
IΠ

}
∪ ∅

B5 (bug)
AΠ ⊆ ∅

AT{
IΠ

}
[AΠ] ⊆

{
IΠ

}
∪ ∅ ED∅ dead

ED∅ dead
B1{

IΠ
}
∩ SΠ

G ⊆ ∅
SD{

IΠ
}
∩ SΠ

G dead
PG{

IΠ
}
dead

CI
Π unsolvable

Figure 3.1: A derivation showing that if
{
IΠ

}
∩ SΠ

G ⊆ ∅, then the bug can be exploited to derive
that Π is unsolvable. The main idea is to use AT with the bug to derive

{
IΠ

}
[AΠ] ⊆

{
IΠ

}
∪ ∅ from{

IΠ
}
[∅] ⊆

{
IΠ

}
∪ ∅, where the latter trivially holds by the definition of progression (Definition 10).

Because of this bug, the validator will always return true when verifying B5, as it checks whether

A′ ⊆ A′ instead of checking whether A ⊆ A′. To illustrate that this is a critical bug, Figure 3.1 shows

how this bug could in theory be used to show the unsolvability of any planning task in which the initial

state is not a goal state. Helve does not accept the exact certificate corresponding to this derivation,

since it does not allow both sides of B1 and B2 to be constant, but the derivation can be modified to

work for specific planning tasks.

While this bug would probably be discovered relatively quickly in case of unexpected results, it does

illustrate that validators themselves are not immune to bugs.

3.2 Theorem 23 revisited

As discussed at the end of Section 2.4.6, the operation ∧BC is not needed to verify the rules B2-B3.

Because of this, there is an additional option for verifying these rules, which was not mentioned in

Theorem 23.

Theorem 27 (Theorem 23 revised). The statements B2 and B3 can be validated in time polynomial

in the total size of the involved formulas if R efficiently supports one of the following:

– SE, ∧BC, ∨BC, CL, ⊥C and RN≺

– toCNF, CE, ∧BC, CL, and RN≺

– toDNF, IM, ∨BC, CL, ⊥C and RN≺

As the discussion about inter_variables_append on page 42 illustrates, working with primed variables

can be quite subtle. In her PhD thesis, Eriksson interpreted these variables using Lemma 4.1 of [12],

stating the following.

Lemma. Let φ, ψ and χ be propositional formulas, and X and X ′ be propositional variables, where φ, ψ

and χ do not mention any variable from X ′. The statement (∃X.φ)∧ψ |= χ holds iff φ[X → X ′]∧ψ |= χ

does.

The format of the entailment in the lemma is the same as the one needed to verify B2 and B3, hence

there is no need to further manipulate the conjunctions with renamed variables after applying this

lemma. In Lean, it often makes more sense to break up lemmas in smaller parts. In this case it meant

trying to interpret the state set corresponding to ∃X.φ first, and then reasoning about the intersections

and inclusions later on using separate lemmas. After a few attempts, this was characterized by the

lemma mem_inter_toPrimed from Section 2.3.3, shown below.

67

lemma UnprimedVariables.mem_inter_toPrimed [F : Formalism pt R] [Renaming (2 * n) R]

{X : UnprimedVariables pt R} {V s} : s ∈ (toPrimed X V).inter ↔
∃ s’ ∈ X.val.inter, ∀ i /∈ V.val, i ∈ s’ ↔ i ∈ s := . . .

Using the lemma inter_variables_append mentioned earlier, it was possible to reduce the verification

of B2 and B3 to check_variables_subset (from page 57) without needing ∧BC. This third option of

Theorem 27 was only discovered because of the formalization.

3.3 Future work

The obvious next step for the project would be to implement the different formalisms (BDDs, Horn

formulas, 2CNF formulas and MODS) and their operations. For BDD we are planning to use the

BDD-library implemented by Yaron [38, 37]. Since this library still contains some sorry-placeholders,

we will probably first implement the other formalisms. For MODS, we will add the missing instances

for the type discussed in Section 2.3.2. For Horn formulas and 2CNF formulas we might use subtypes

of the CNF-type from Section 2.3.1, or implement new types. After this there are several possible ideas

for extending the validator.

Currently, a STRIPS description is used to read the problem description. Since this is an unconventional

format, it needs to be generated by the solvers themselves, or by Fast-Downward [24] if it is used to

ground the problem. As discussed in Section 1.3.6, this is not ideal for a fully formalized validator,

and it would be better to have a formally verified grounder. Alternatively, one could try to extend

the proof system to work with more features of the PDDL language, and directly parse the problem

description in PDDL. This might also make producing the certificates easier for algorithms which do

not fully translate the input problem to STRIPS.

Another option would be to expand the validator to also work with certificates of optimality. Out

of the three systems discussed in Section 1.3.4, the second system [28], which is also implemented

in Helve, would make the most sense, since it is already based on the proof system. Note that

the optimality certificates from [10] seem to have better efficiency guarantees, making this system

potentially more interesting. While CakePB [8] is already a formally verified pseudo-Boolean proof

checker, it is implemented in CakeML, and not in Lean. Adding support for this system to the validator

would likely require implementing a formalized pseudo-Boolean proof checker in Lean. It might be

more interesting to implement such a validator in CakeML.

68

Chapter 4

Conclusion

The goal of this thesis was to implement a formalized validator for certificates of unsolvability using the

proof system developed by Eriksson, Röger and Helmert [18, 12] in Lean 4. We discussed the relevant

background and related work in Chapter 1 and our formalization in Chapter 2. The formalization

highlights two aspects of formal verification.

First, there is the theoretical aspect, which in our case mainly consists of formalized proof for soundness

and completeness of the proof system. Additionally, the implementation showed that the operation

∧BC is not needed to verify the rules B2 and B3 as discussed in Section 3.2, resulting in a new way

of verifying these rules. We want to emphasize that the formalization played a key role in noticing this,

illustrating that formalizations can lead to new theoretical insights.

The second aspect is the computational component, consisting of the validator itself. As explained in

Section 3.1, the discovery of a critical bug in the C++ validator for the proof system highlights the

benefit of a formalized validator.

Because of time constraints, the validator itself has not been finished yet. Most importantly, the

formalisms for representing sets of states are not yet implemented. In Section 3.3 we discussed some

possible extensions of the validator that could be implemented after finishing the formalisms. For a

fully formalized validator, the grounding of the planning problem should also be formalized. This could

either be done by integrating or implementing a formalized grounder, or by extending the proof system

to work with a more general subset of PDDL. Another option would be to extend the validator to also

verify certificates of optimality.

69

Bibliography

[1] Mohammad Abdulaziz and Peter Lammich. ‘A Formally Verified Validator for Classical Planning

Problems and Solutions’. In: 2018 IEEE 30th International Conference on Tools with Artificial

Intelligence (ICTAI). 2018, pages 474–479. https://doi.org/10.1109/ICTAI.2018.00079

(cited on pages 7, 17).

[2] Vidal Alcázar and Álvaro Torralba. ‘A Reminder about the Importance of Computing and

Exploiting Invariants in Planning’. In: Proceedings of the International Conference on Automated

Planning and Scheduling 25.1 (Apr. 2015), pages 2–6. https://doi.org/10.1609/icaps.v25i1.

13708 (cited on page 16).

[3] Eyad Alkassar, Sascha Böhme, Kurt Mehlhorn and Christine Rizkallah. ‘A Framework for

the Verification of Certifying Computations’. In: Journal of Automated Reasoning 52 (2014),

pages 241–273. https://doi.org/10.1007/s10817-013-9289-2 (cited on page 3).

[4] Anne Baanen, Matthew Robert Ballard, Johan Commelin, Bryan Gin-ge Chen, Michael Rothgang

and Damiano Testa. Growing Mathlib: maintenance of a large scale mathematical library. 2025.

https://doi.org/10.48550/arXiv.2508.21593 (cited on page 3).

[5] Bart Bogaerts, Stephan Gocht, Ciaran McCreesh and Jakob Nordström. ‘Certified Dominance

and Symmetry Breaking for Combinatorial Optimisation’. In: Journal of Artificial Intelligence

Research 77 (Aug. 2023). issn: 1076-9757. https://doi.org/10.1613/jair.1.14296 (cited on

page 18).

[6] Randal Bryant. ‘Graph-Based Algorithms for Boolean Function Manipulation’. In: IEEE Trans-

actions on Computers C-35.8 (Sept. 1986), pages 677–691. https://doi.org/10.1109/TC.1986.

1676819 (cited on page 8).

[7] Tom Bylander. ‘The computational complexity of propositional STRIPS planning’. In: Artificial

Intelligence 69.1 (1994), pages 165–204. issn: 0004-3702. https://doi.org/10.1016/0004-

3702(94)90081-7 (cited on page 12).

[8] CakePB. https://gitlab.com/MIAOresearch/software/cakepb (visited on 01/08/2025)

(cited on pages 18, 68).

[9] Wikipedia contributors. Rush Hour (puzzle) — Wikipedia, The Free Encyclopedia. https :

//rushhourgame.thinkfun.com/ (visited on 29/11/2025) (cited on page 4).

[10] Simon Dold, Malte Helmert, Jakob Nordström, Gabriele Röger and Tanja Schindler. ‘Pseudo-

Boolean Proof Logging for Optimal Classical Planning’. In: CoRR abs/2504.18443 (2025). https:

//doi.org/10.48550/ARXIV.2504.18443 (cited on pages 6, 16, 17, 68).

[11] François G. Dorais, Kyrill Serdyuk and Emma Shroyer. lean4-parser. https://github.com/

fgdorais/lean4-parser (visited on 25/11/2025) (cited on page 26).

70

https://doi.org/10.1109/ICTAI.2018.00079
https://doi.org/10.1609/icaps.v25i1.13708
https://doi.org/10.1609/icaps.v25i1.13708
https://doi.org/10.1007/s10817-013-9289-2
https://doi.org/10.48550/arXiv.2508.21593
https://doi.org/10.1613/jair.1.14296
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1016/0004-3702(94)90081-7
https://doi.org/10.1016/0004-3702(94)90081-7
https://gitlab.com/MIAOresearch/software/cakepb
https://rushhourgame.thinkfun.com/
https://rushhourgame.thinkfun.com/
https://doi.org/10.48550/ARXIV.2504.18443
https://doi.org/10.48550/ARXIV.2504.18443
https://github.com/fgdorais/lean4-parser
https://github.com/fgdorais/lean4-parser

[12] Salomé Eriksson. ‘Certifying planning systems : witnesses for unsolvability’. PhD thesis. University

of Basel, 2019. https://doi.org/10.5451/unibas-007176138 (cited on pages a, 3, 4, 7–16, 20,

60, 67, 69).

[13] Salomé Eriksson. Code from the PhD thesis ”Certifying Planning Systems: Witnesses for Unsolv-

ability”. July 2019. https://doi.org/10.5281/zenodo.3355459 (cited on page 17).

[14] Salomé Eriksson. Helve. https://github.com/salome-eriksson/helve (visited on 25/06/2025)

(cited on pages a, 17, 20, 65, 66).

[15] Salomé Eriksson and Malte Helmert. ‘Certified Unsolvability for SAT Planning with Property

Directed Reachability’. In: Proceedings of the International Conference on Automated Planning

and Scheduling 30.1 (June 2020), pages 90–100. https://doi.org/10.1609/icaps.v30i1.6649

(cited on page 16).

[16] Salomé Eriksson and Malte Helmert. Code from Eriksson-Helmert, ICAPS 2020. Mar. 2020.

https://doi.org/10.5281/zenodo.3691796 (cited on page 17).

[17] Salomé Eriksson and Malte Helmert. Modified PDRplan from Eriksson-Helmert, ICAPS 2020.

Mar. 2020. https://doi.org/10.5281/zenodo.3694110 (cited on page 17).

[18] Salomé Eriksson, Gabriele Röger and Malte Helmert. ‘A Proof System for Unsolvable Planning

Tasks’. In: Proceedings of the International Conference on Automated Planning and Scheduling

28.1 (June 2018), pages 65–73. https://doi.org/10.1609/icaps.v28i1.13899 (cited on

pages a, 3, 7, 8, 11, 16, 69).

[19] Salomé Eriksson, Gabriele Röger and Malte Helmert. ‘Unsolvability Certificates for Classical

Planning’. In: Proceedings of the International Conference on Automated Planning and Scheduling

27.1 (June 2017), pages 88–97. https://doi.org/10.1609/icaps.v27i1.13818 (cited on

pages a, 6–8, 11).

[20] Richard E. Fikes and Nils J. Nilsson. ‘Strips: A new approach to the application of theorem

proving to problem solving’. In: Artificial Intelligence 2.3 (1971), pages 189–208. issn: 0004-3702.

https://doi.org/10.1016/0004-3702(71)90010-5 (cited on page 4).

[21] Malik Ghallab, Craig Knoblock, David Wilkins, Anthony Barrett, Dave Christianson, Marc

Friedman, Chung Kwok, Keith Golden, Scott Penberthy, David Smith, Ying Sun and Daniel

Weld. PDDL - The Planning Domain Definition Language. Aug. 1998 (cited on pages 17, 27).

[22] Claudia Grundke. ‘Extending SymPA with Unsolvability Certificates’. Bachelor’s thesis. University

of Basel, 2020. https://ai.dmi.unibas.ch/papers/theses/grundke-bachelor-20.pdf (cited

on page 17).

[23] Patrik Halsum. INVAL. https://github.com/patrikhaslum/INVAL (visited on 29/07/2025)

(cited on page 17).

[24] Malte Helmert. ‘The Fast Downward Planning System’. In: Journal of Artificial Intelligence

Research 26 (July 2006), pages 191–246. issn: 1076-9757. https://doi.org/10.1613/jair.1705

(cited on pages 17, 68).

[25] Richard Howey, Derek Long and Maria Fox. ‘VAL: automatic plan validation, continuous effects

and mixed initiative planning using PDDL’. In: 16th IEEE International Conference on Tools

with Artificial Intelligence. 2004, pages 294–301. https://doi.org/10.1109/ICTAI.2004.120

(cited on page 17).

[26] Leonardo de Moura and Sebastian Ullrich. ‘The Lean 4 Theorem Prover and Programming

Language’. In: Automated Deduction - CADE 28: 28th International Conference on Automated

71

https://doi.org/10.5451/unibas-007176138
https://doi.org/10.5281/zenodo.3355459
https://github.com/salome-eriksson/helve
https://doi.org/10.1609/icaps.v30i1.6649
https://doi.org/10.5281/zenodo.3691796
https://doi.org/10.5281/zenodo.3694110
https://doi.org/10.1609/icaps.v28i1.13899
https://doi.org/10.1609/icaps.v27i1.13818
https://doi.org/10.1016/0004-3702(71)90010-5
https://ai.dmi.unibas.ch/papers/theses/grundke-bachelor-20.pdf
https://github.com/patrikhaslum/INVAL
https://doi.org/10.1613/jair.1705
https://doi.org/10.1109/ICTAI.2004.120

Deduction, Virtual Event, July 12-15, 2021, Proceedings. Berlin, Heidelberg: Springer-Verlag, 2021,

pages 625–635. isbn: 978-3-030-79875-8. https://doi.org/10.1007/978-3-030-79876-5_37

(cited on pages 3, 18).

[27] Esther Mugdan, Remo Christen and Salomé Eriksson. Benchmarks, Code and Data from Mugdan

et al, ICAPS 2023. Mar. 2023. https://doi.org/10.5281/zenodo.7733612 (cited on page 17).

[28] Esther Mugdan, Remo Christen and Salomé Eriksson. ‘Optimality Certificates for Classical

Planning’. In: Proceedings of the International Conference on Automated Planning and Scheduling

33.1 (July 2023), pages 286–294. https://doi.org/10.1609/icaps.v33i1.27206 (cited on

pages 6, 16, 68).

[29] Output of the Fast Downward translator. https : / / www . fast - downward . org / latest /

documentation/translator-output-format/ (visited on 24/11/2025) (cited on page 27).

[30] Planning.wiki - The AI Planning & PDDL Wiki. https : / / planning . wiki/ (visited on

24/11/2025) (cited on pages 17, 27).

[31] Rush Hour. https://rushhourgame.thinkfun.com/ (visited on 29/11/2025) (cited on page 4).

[32] Marcel Steinmetz and Jörg Hoffmann. ‘State space search nogood learning: Online refinement of

critical-path dead-end detectors in planning’. In: Artificial Intelligence 245 (2017), pages 1–37.

issn: 0004-3702. https://doi.org/10.1016/j.artint.2016.12.002 (cited on pages 11, 16,

17).

[33] Martin Suda. ‘Property directed reachability for automated planning’. In: Journal of Artificial

Intelligence Research 50.1 (May 2014), pages 265–319. issn: 1076-9757. https://doi.org/10.

5555/2693068.2693076 (cited on page 16).

[34] Álvaro Torralba. ‘SymPA : Symbolic Perimeter Abstractions for Proving Unsolvability’. In: 2016.

https://api.semanticscholar.org/CorpusID:51735243 (cited on page 17).

[35] VeriPB. https://gitlab.com/MIAOresearch/software/VeriPB/ (cited on page 18).

[36] David Wang and Mohammad Abdulaziz. Formally Verified Certification of Unsolvability of

Temporal Planning Problems. 2025. https://doi.org/10.48550/arXiv.2510.10189 (cited on

page 17).

[37] Eshel Yaron. Binary Decision Diagrams in Lean 4. https://github.com/eshelyaron/lean4-

bdd (visited on 27/06/2025) (cited on page 68).

[38] Eshel Yaron. ‘Lean Binary Decision Diagrams’. Masters’s thesis. University van Amsterdam,

2025. https://msclogic.illc.uva.nl/theses/archive/publication/5489/Lean-Binary-

Decision-Diagrams (cited on page 68).

72

https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.5281/zenodo.7733612
https://doi.org/10.1609/icaps.v33i1.27206
https://www.fast-downward.org/latest/documentation/translator-output-format/
https://www.fast-downward.org/latest/documentation/translator-output-format/
https://planning.wiki/
https://rushhourgame.thinkfun.com/
https://doi.org/10.1016/j.artint.2016.12.002
https://doi.org/10.5555/2693068.2693076
https://doi.org/10.5555/2693068.2693076
https://api.semanticscholar.org/CorpusID:51735243
https://gitlab.com/MIAOresearch/software/VeriPB/
https://doi.org/10.48550/arXiv.2510.10189
https://github.com/eshelyaron/lean4-bdd
https://github.com/eshelyaron/lean4-bdd
https://msclogic.illc.uva.nl/theses/archive/publication/5489/Lean-Binary-Decision-Diagrams
https://msclogic.illc.uva.nl/theses/archive/publication/5489/Lean-Binary-Decision-Diagrams

Appendices

A.1 Full definition of Derivation

inductive Derivation {n} (pt : STRIPS n) : (conclusion : Prop) → Type 1

| B1 R [Formalism pt R] {S S’} :

IsLiteralInter pt R S →
IsLiteralUnion pt R S’ →
(S ⊆ S’) →
Derivation pt (S ⊆ S’)

| B2 R [Formalism pt R] {S S’} :

IsProgrInter pt R S →
IsLiteralUnion pt R S’ →
(S ⊆ S’) →
Derivation pt (S ⊆ S’)

| B3 R [Formalism pt R] {S S’} :

IsRegrInter pt R S →
IsLiteralUnion pt R S’ →
(S ⊆ S’) →
Derivation pt (S ⊆ S’)

| B4 R R’ [Formalism pt R] [Formalism pt R’] {S S’} :

IsLiteral pt R S →
IsLiteral pt R’ S’ →
S ⊆ S’ →
Derivation pt (S ⊆ S’)

| B5 (A A’ : Actions n) : A ⊆ A’ → Derivation pt (A ⊆ A’)

| ED : Derivation pt (Dead pt ∅)
| UD S S’ :

Derivation pt (Dead pt S) →
Derivation pt (Dead pt S’) →
Derivation pt (Dead pt (S ∪ S’))

| SD S S’ :

Derivation pt (Dead pt S’) →
Derivation pt (S ⊆ S’) →
Derivation pt (Dead pt S)

| PG S S’ :

Derivation pt (pt.progression S pt.actions ⊆ S ∪ S’) →
Derivation pt (Dead pt S’) →

73

Derivation pt (Dead pt (S ∩ pt.goal_states)) →
Derivation pt (Dead pt S)

| PI S S’ :

Derivation pt (pt.progression S pt.actions ⊆ S ∪ S’) →
Derivation pt (Dead pt S’) →
Derivation pt ({pt.init} ⊆ S) →
Derivation pt (Dead pt Sc)

| RG S S’ :

Derivation pt (pt.regression S pt.actions ⊆ S ∪ S’) →
Derivation pt (Dead pt S’) →
Derivation pt (Dead pt (Sc ∩ pt.goal_states)) →
Derivation pt (Dead pt Sc)

| RI S S’ :

Derivation pt (pt.regression S pt.actions ⊆ S ∪ S’) →
Derivation pt (Dead pt S’) →
Derivation pt ({pt.init} ⊆ Sc) →
Derivation pt (Dead pt S)

| CI : Derivation pt (Dead pt {pt.init}) → Derivation pt (Unsolvable pt)

| CG : Derivation pt (Dead pt pt.goal_states) → Derivation pt (Unsolvable pt)

| UR {α} (E E’ : Set α) : Derivation pt (E ⊆ E ∪ E’)

| UL {α} (E E’ : Set α) : Derivation pt (E ⊆ E’ ∪ E)

| IR {α} (E E’ : Set α) : Derivation pt (E ∩ E’ ⊆ E)

| IL {α} (E E’ : Set α) : Derivation pt (E’ ∩ E ⊆ E)

| DI {α} (E E’ E’’ : Set α) : Derivation pt ((E ∪ E’) ∩ E’’ ⊆ (E ∩ E’’) ∪ (E’ ∩ E’’))

| SU {α} (E E’ E’’ : Set α) :

Derivation pt (E ⊆ E’’) →
Derivation pt (E’ ⊆ E’’) →
Derivation pt (E ∪ E’ ⊆ E’’)

| SI {α} (E E’ E’’ : Set α) :

Derivation pt (E ⊆ E’) →
Derivation pt (E ⊆ E’’) →
Derivation pt (E ⊆ E’ ∩ E’’)

| ST {α} (E E’ E’’ : Set α) :

Derivation pt (E ⊆ E’) →
Derivation pt (E’ ⊆ E’’) →
Derivation pt (E ⊆ E’’)

| AT S S’ A A’ :

Derivation pt (pt.progression S A ⊆ S’) →
Derivation pt (A’ ⊆ A) →
Derivation pt (pt.progression S A’ ⊆ S’)

| AU S S’ A A’ :

Derivation pt (pt.progression S A ⊆ S’) →
Derivation pt (pt.progression S A’ ⊆ S’) →
Derivation pt (pt.progression S (A ∪ A’) ⊆ S’)

| PT S S’ S’’ A :

Derivation pt (pt.progression S A ⊆ S’’) →
Derivation pt (S’ ⊆ S) →
Derivation pt (pt.progression S’ A ⊆ S’’)

| PU S S’ S’’ A :

74

Derivation pt (pt.progression S A ⊆ S’’) →
Derivation pt (pt.progression S’ A ⊆ S’’) →
Derivation pt (pt.progression (S ∪ S’) A ⊆ S’’)

| PR S S’ A :

Derivation pt (pt.progression S A ⊆ S’) →
Derivation pt (pt.regression (S’c) A ⊆ Sc)

| RP S S’ A :

Derivation pt (pt.regression (S’c) A ⊆ Sc) →
Derivation pt (pt.progression S A ⊆ S’)

A.2 Format for Certificate Parser

Each line of the certificate is expected to either be an action set expression, a state set expression, a

piece of knowledge or a comment (starting with #). In what follows we use <AID>, <SID> and <KID> to

denote action set, state set and knowledge IDs respectively. The first action set expression has ID 0,

the second one 1, etc. and similar for state set expressions and knowledge.

Action set expressions have the following formats, where the action set ID after a is the ID of the

action set itself. The action IDs in the list of actions correspond with the indexes of the actions in the

STRIPS description of the planning task, see page 24.

a <AID> b <amount of actions> <list of action IDs> (list of actions)

a <AID> u <AID left> <AID right> (union of actions)

a <AID> a (set of all actions)

The possible formats for a state set expression are shown below, where the first state set ID of each

line is the ID of the state set itself:

e <SID> c e (constant empty set)

e <SID> c i (constant initial state set)

e <SID> c g (constant goal set)

e <SID> b <bdd_filename> <bdd_index> (bdd set)

e <SID> t <discription in DIMACS> (horn set)

e <SID> e <TODO> (MODS set)

e <SID> n <ID of negated state set> (negation)

e <SID> i <SID left> <SID right> (intersection)

e <SID> u <SID left> <SID right> (union)

e <SID> p <SID> <AID> (progression)

e <SID> r <SID> <AID> (regression)

Knowledge expressions can have the formats listed below. The knowledge ID after k is the ID of the

knowledge itself. For dead knowledge, the ID after d is the ID of state set that is dead, and for subset

knowledge the IDs after s are the IDs corresponding to the left and right state set. The knowledge IDs

after the rules are the IDs of the premises.

75

k <KID> d <SID> ed (empty set dead)

k <KID> d <SID> ud <KID> <KID> (union dead)

k <KID> d <SID> sd <KID> <KID> (subset dead)

k <KID> d <SID> pg <KID> <KID> <KID> (progression goal)

k <KID> d <SID> pi <KID> <KID> <KID> (progression initial)

k <KID> d <SID> sd <KID> <KID> <KID> (regression goal)

k <KID> d <SID> pg <KID> <KID> <KID> (regression initial)

k <KID> u ci <KID> (conclusion initial)

k <KID> u cg <KID> (conclusion goal)

k <KID> s <SID> <SID> urs (union right state)

k <KID> s <AID> <AID> ura (union right action)

k <KID> s <SID> <SID> uls (union left state)

k <KID> s <AID> <AID> ula (union left action)

k <KID> s <SID> <SID> irs (intersection right state)

k <KID> s <SID> <SID> ils (intersection left state)

k <KID> s <SID> <SID> dis (distributivity state)

k <KID> s <SID> <SID> sus <KID> <KID> (subset union state)

k <KID> s <AID> <AID> sua <KID> <KID> (subset union action)

k <KID> s <SID> <SID> sis <KID> <KID> (subset intersection state)

k <KID> s <SID> <SID> sts <KID> <KID> (subset transitivity state)

k <KID> s <AID> <AID> sta <KID> <KID> (subset transitivity action)

k <KID> s <SID> <SID> at <KID> <KID> (action transitivity)

k <KID> s <SID> <SID> au <KID> <KID> (action union)

k <KID> s <SID> <SID> pt <KID> <KID> (progression transitivity)

k <KID> s <SID> <SID> pu <KID> <KID> (progression union)

k <KID> s <SID> <SID> pr <KID> (progression regression)

k <KID> s <SID> <SID> rp <KID> (regression progression)

k <KID> s <SID> <SID> b1 (basic statement 1)

k <KID> s <SID> <SID> b2 (basic statement 2)

k <KID> s <SID> <SID> b3 (basic statement 3)

k <KID> s <SID> <SID> b4 (basic statement 4)

k <KID> s <AID> <AID> b5 (basic statement 5)

76

	Introduction
	Automated Planning
	Certificates
	Certificates for Automated Planning
	Representing Sets of States
	Inductive Certificates
	Proof System
	Certificates of Optimality
	Reduction to Model Checking
	Implementations

	Lean 4

	Implementation in Lean 4
	Planning Tasks
	Core
	Basic
	Parser

	Inductive Certificates and Proof System
	InductiveCertificate
	Prerequisites from Formalism
	ProofSystem

	State Set Formalisms
	Formula
	BDD, Horn and Mods
	Formalism
	StateSetFormalism

	Certificates and their Validation
	Certificate
	Parser
	SetExpr
	Naive Attempt for Verifying the Syntactic Rules
	Constraint
	BasicRules
	ValidCertificate
	ToDerivation
	Validator

	Discussion
	Bug in Helve
	thm:ps-basic:progr-regr revisited
	Future work

	Conclusion
	Bibliography
	Appendices
	Full definition of Derivation
	Format for Certificate Parser

