Preference Representation with Weighted Goals:
Expressivity, Succinctness, Complexity

Joel Uckelmant and Ulle Endriss
ILLC, University of Amsterdam
Plantage Muidergracht 24
1018 TV Amsterdam, The Netherlands
{j uckel ng, ulle}@IIc.uva.nl

Abstract

The representation of preferences of agents is a central fea
ture in many Al systems. In particular when the number of
alternatives to be considered may become large, the use of
compact preference representation languages is crudid. T
framework of weighted propositional formulas can be used to
define several such languages. The central idea is to associa
numerical weights with goals specified in terms of proposi-
tional formulas, and to compute the utility value of an alter
native as the sum of the weights of the goals it satisfies.ién th
paper, we analyze several properties of languages defined by
weighted goals: their expressivity, the relative succiess

of different sublanguages, and the computational comyiexi

of finding the best alternative with respect to a given wtilit
function expressed in terms of weighted goals.

Introduction

Many problems in Al require the representation of and rea-
soning about the preferences of agents. The alternatias ov

values to them, and, should the bidders succeed at that, the
auctioneer must then attempt to use this mountain of data
to determine the outcome of the auction. It will be little
consolation for the auctioneer to have an efficient winner-
determination algorithm in this case, as his input will be ex
ponential! Neither expressing nor computing with explicit
representations is feasible for any but the smallest sets of
items. In the second case, that of the award criterion, we are
usually charged with accepting bids so as to maximize some
quantity, be it auctioneer revenue, social welfare, or some
thing else. Explicit representations of bids do not lendrthe
selves to efficient computation, for reasons already stated
They are too long.

Of course, the story changes radically when we no longer
insist on explicit representations of bids (or, more gelhgra
of utility functions). An agent’s total explicit bid, comped
of an atomic bid for each subset, may well have structure
which we can exploit for devising a shorter representation.
A trivial example, but one which illustrates the point, isith

which agents need to express a preference often have a com-of the bidder who gives a value &1 to every nonempty

binatorial structure. This can, for example, be observed in
resource allocation with indivisible goods and in combina-

torial auctions (Cramton, Shoham, & Steinberg 2006). The
combinatorial nature of such problems makes succinct rep-
resentation of agent preferences important (Coste-Marqui

et al. 2004; Lang 2004; Chevaleyre, Endriss, & Lang 2006;

Nisan 2006).

To see the importance of preference representation lan-
guages, consider bidding in a combinatorial auction. A com-
binatorial auction is one where bidders may place bids on
bundles, and not just single goods. In the most general case
each bidder may submit a bid for each subset of the set of
items on auction, and the items are distributed according
to some criterion, such as maximizing the revenue for the
auctioneer. Already, this description presents two pnoiste
First, the number of subsets of goods is exponential in the
number of goods, which is a problem for both the bidders

and for the auctioneer; and second, the award criterion is a

maximization problem, which is a problem for the auction-
eer. In the first case, bidders are faced with having to ex-

amine each of exponentially many subsets in order to assign

*This research was supported by a Marie Curie Early Stage Re-
search fellowship from the GloRiClass project (MESST-@D2-
020841).

set of goods. Withm goods, an explicit representation of
this bid—i.e., one which lists every subset with the value
the bidder places on it—will of course have a length on the
order of2”, but intuitively we could have a constant-length
nonexplicit representation of this bid, as
VX D0, u(X)==<1

(or, as we just said in words, “the bidder gives a valu€f
to every nonempty set of goods”). The insight here is that
bids may have internal structure which we can be exploit in
order to produce concise, and therefore more manageable,
'representations of those bids.

The representation given in our example, while concise,
is tooad hocto be generally useful. If we permit any sort
of mathematical expression for defining a bid, we may get
short representations in most cases, but be faced with such
syntactical variety that our computer will be unable to cope
with them all. Hence, there is a need for concise representa-
tions, not just on their own, buh a well-defined language
Just as the structure of bids makes concise representations
possible, the structure of the bidding language makes com-
putation with the bids possible. For a summary of bidding
languages, see (Nisan 2006); for a summary of winner de-
termination algorithms, see (Lehmann, Miller, & Sandholm
2006).

Here we study a particular class of languages for repre- succinctness on one hand, and complexity on the other in
senting preferences: utility functions represented as ckt any potential application. In order to make such compar-
weighted goals, called goal bases. The central idea is to as-isons, we must examine the properties of particular goa bas
sociate numerical weights with goals specified in terms of languages. Without such results, application designers ca
propositional formulas, and to compute the utility value of not make informed decisions about which languages are best
an alternative as the sum of the weights of the goals it satis- for their applications. It is for this purpose that we presen
fies, an idea which originates in penalty logic (Pinkas 1991; numerous results for a range of these languages, in hopes of

Lang 2004). The class of all goal bases (our sets of weighted
goals) forms a bidding language. Further bidding languages
may be formed by placing restrictions on the kinds of goal

bases which are admissible. The structure of goal bases sug-

gests certain sorts of restrictions, namely on the syrdalcti
form of the goals and on the weights. It is important to un-
derstand the properties of these languages, both in their ow
right and so we may identify which languages have poten-
tial applications. Already the expressive power of manyhsuc
languages are known, for which see (Chevaleyre, Endriss, &
Lang 2006).

If we have a range of different languages available which
can all represent the target class of utility functions, wwha
further criteria should we use to discriminate among them?
Our formalism permits the definition of a wide range of lan-
guages; the long-term goal is to determine which languages
are best for which purposes. Several criteria suggest them-
selves:

e Expressivity: Not all goal base languages are equally ex-
pressive, nor do all applications require full expresgivit
For example, it may be known beforehand that all bidders
in an auction have decreasing marginal utility. Excess ex-
pressivity tends to be undesirable because highly expres-
sive languages are computationally harder, so in such a
situation we should like to use a bidding language which
expresses just the utility functions bidders are likely to
have. In order to make such a determination, we need to
know what utility functions are expressible in which lan-
guages; even better would be to find properties of utility
functions which correspond precisely to natural restric-
tions on goal bases.

Succinctness: Not all goal base languages provide
equally concise representations of utility functions viic
they jointly express. Here again, if it is known before-
hand that agents will have utility functions of a certain
sort, then we may benefit by selecting a language where
those utility functions have efficient representations.

Complexity: Problems such as finding an optimal state

are easier in some goal base languages than in others.

The problem of finding an optimal state for one goal base
(which we call Max-UTILITY) differs little from that of
finding an optimal state across multiple goal bases, and
is therefore closely related to the problem of winner de-

clarifying which languages are interesting.

In this paper, we concentrate on two of these properties:
comparative succinctness and the computational complex-
ity of finding an optimal alternative. The remainder of this
paper is structured as follows: In the next section we list
the relevant basic definitions surrounding the specificatio
of utility functions over combinatorial domains by means of
weighted propositional formulas. The body of this paper is
devoted to the analysis of various restrictions on weighted
goals and the languages which arise from them. We first
consider the so-called uniqueness property, which assesse
whether a language is tight in the sense of having only a sin-
gle way of specifying any given utility function. In the fol-
lowing section, we examine the expressivity of one natural
language, conjunctions of atoms with positive weights. We
next consider the relative succinctness of several langgiag
and finally examine the complexity of finding models which
maximize utility within particular languages.

Preliminaries

Here we introduce utility functions, goal bases, and
weighted formulas, along with the definitions of various
properties of utility functions.

Definition 1 (Utility Functions and Models)A utility func-
tion is a mapping: : 27 — R, wherePS is a fixed, finite
set of propositional variables. modelis a setM C PS.
Definition 2 (Weighted Formulas and Goal Bases)
weighted formulas a pair (¢, w) whereyp is a propositional
formula in the languag&€rs andw € R. A goal bases a
setG = {(yi,w;)}; of weighted satisfiable formulas. The
utility functionu¢ generated by the goal bagéis

ua(M) = {w; : (gi,w;) € GandM |= ¢;}
for eachM € 27S. The set of formulas used in a goal base
GisFor(G) ={¢: (¢,a) € G}.

For present purposes, we restrict formulas to contain only
the connectives, A, andv.

Definition 3 (Goal Base Summation)lif G,G’ are goal
bases, then

GG ={(p, Z a+ Z b) : p € For(GUG")}

termination for processes like combinatorial auctions. If
one language has easier decision or search problems than

another, this could be a factor in selecting it for some ap- NB: @& does notcombine formulas which are semantically
plication. equivalent but syntactically distinct. E.d(p, 1)} @ {(p A

Ideally, we would find a fully expressive, maximally suc- b, 1)_}_3_& {(,2)}-)

cinct, computationally trivial goal base language and use Definition 4 (Goal Base Size)Let G be a goal base. Then
that in all applications. As there is (demonstrably) no such thesizeof G (written size(G)) is defined as the number of
beast, we must strike a balance between expressivity and occurrences of proposmonal variables in the formulagbf

(p,a)€CG (p,b)EG’

Definition 5 (Restrictions) Call H C Lps a restriction on wherea;; € {0, 1}, depending on formula clauges true in
the language of a goal base, aiii C R a restriction of the states; andb; = u(X;), whereX; is the set of true atoms in
weights of a goal base. Then defid€H, H') as the class statei. Taken together as matricés = b, we have:

of utility functions which may be generated by goal bases

meeting those restrictions. 2 R by

Specifically, we consider these restrictions on formulas: a?l a2_" qu = 2

e An atomis a member oPS. ' ' ' '

e A literal is an atom or its negation. dm1 =t Gmnd LWn brm

e A clauseis a (possibly empty) disjunction of literals. That is, thew, are the weights, thé; are the values of the

e A cubeis a (possibly empty) conjunction of literals. utility function, and theu;; mark which formulas are true in

e A positiveX is a formula of typeX free of negations. which states. Ifh = m, i.e., if the number of formulas in

+ A Hom ormulis aclausewi: | posive dsanct. 1S a1sge ens e the numberof s o,
* A k—formgla Sa formula withs & b'”f"‘“_’ connectwes.. known fact from linear algebraiz. that the determinant of
When applied to weights, the restrictiordl and posi- the square matrixA is nonzero only when the system has a
tive refer to weights inR and R™, respectively. E.g., single, unique solution (Anton 1994, Theorem 2.3.6).

U (positive 42-clausepositive is the class of utility func-
tions representable by goal bases containing only pobitive
weighted clauses of at most 42 atoms. Further, we consider
these properties of utility functions:

Proposition 1. U(positive clausesll) has unique repre-
sentations.

Proof. Suppose that; contains only positive clauses and

e uis normalizedff u(0) = 0. generates,,, wheren = |PS|. We can write one constraint
e u is nonnegativeff «(X) > 0 forall X. for each state excefft so we have™ — 1 constraints. (The
e v is monotonidff u(X) > u(Y)forall X D Y. constraint for() can be omitted, since all positive clauses
e w is modulariff are false in that case.) We have the claljys& for each
WX UY)=u(X)+ulY)—uXnY)forall X,Y. nonemptyX C PS, so also2" — 1 distinct nonequivalent
e u is supermodulaiff clauses, and hen@® —1 variables for weights. _
WX UY) > u(X) +u(Y) —u(XNY)forall X, Y. Enumerate the positive clauses such that the indmdes
- ’ for the positive clause; = \/{py. : j & 2% # 0}, where &’
Uniqueness stands forbitwise conjunction. E.g.io7 = po V p1 V pa,

, _ N becausg = 2° + 2! + 22, Then, leta;; = 1if i & j # 0,
In this section we consider, in gross terms, how many ways anda;; = 0 otherwise. This sets;; = 1 iff clausej is true
there are to represent a given utility function in some se- j, statjez'. In other words. each rojvv &, is a state, and the

lected classes of goal bases. In particular, we are going 10 ones in a row mark the positive clauses which are true in that
define what it means for a language to hawenajuerepre- state.

sentation for any utility function it can express. This is an Now observe that; = [1] andA,,_; is a block matrix
interesting property, because it suggests that the lareginag
guestion is parsimonious in its expressivity. The uniqssne r 0 7
property is also of great interest from a technical perspec- .
tive, as it can be useful for establishing (negative) reswit An : An
the relative succinctness of different languages (as vell b 0

discussed in the section on succinctness). Apt1= 10 ... 0 } ... 1

Definition 6. A utility functionw is representedn a lan-
guagec if there exists a goal basg € £ such thatu = ug. A, : 1

A utility functionu is uniquely representeid a languagel 1

if for every maximal pairwise nonequivalent set of formu-) .
las ® meeting the restrictions of, there is a unique goal ~ wherel is a matrix of the appropriate size, with every el-

baseG such thatFor(G) C ® andug = u. (Note that ~ emental. The additional rows i\, (overA,) are for

some weights iy may be zero.) A languagg is said to states in whictp,,, the new variable, is true. The middle
haveunique representatioriteveryu represented inc is row is the state where only, is true, and from there down
uniquely represented. pn IS true in every state. With respect to the other vari-

ables, the states in the bottom half repeat the states in the
top half. The additional columns iA,,; are for positive
clauses which contaip,,. The middle column is fop,,

the degenerate positive clause formed by that variablesalon
and the columns thereafter repeat the fifst' — 1 columns

with p,, as an additional disjunct. Therefore, the upper left
and upper right blocks repeat, since no state there makes
a1 W1 +F ... + GimWy, = b; py, true; the lower left block repeafs, since no clause there

The problem of determining whether a utility functian
has a unique representation in a given languagenounts
to examining the system of linear equations which describes
uwin L. AlanguageC has|L/=| = m distinct nonequivalent
formulas, and over a set of atorsS there are2/”Sl = n
states. Each staiec 27 defines a constraint

containsp,,; and the lower right block is all ones because
every state and clause there contaips

Clearly, det(A;) = 1. Suppose thatlet(A,) # 0 To
show thatdet(A,,11) # 0, we will twice use the following
fact about determinants of block matrices:

Fact 1. For the block matrix 2 B,

A B _
C D} = det(A) det(D — CA™'B)

whereAism x m,Bism x n,Cisn x mandD isn x n.

det [

SliceA,, 1 into blocks like so

0
A= A, : A, =B
0
0 01 1 il
1
C= A, : 1 =D
1

and note thaA = A,, = A (because thé; are symmetric
about their main diagonal). Further,

o fo .01 [0 ... 0
e e N
. [0 0
CA B—[| } AL T A,
0 0
0 ... 0] [t 1
—1 .
D-CA"B=1-1: A, |=|i 1-4A,
0 1

wherel and1 are an identity matrix and a matrix of ones,
respectively, of the appropriate sizes.
Next, sliceD — CA~'B into blocks like so
A=[T]1 ... 1]=H8
1

C=|:| 1-A, |=D
1
and by the Fact, we have that

1 ... 1
det(D— CA™'B) =det |1 1_A,

1

= det(A") det(D" —

= det [1] det(1 — A, —

=det(1—-A, —1)
= det(—A,)
= —det(A,)

Applying the Fact a second time, we have that(A,,+1) =
det(A,,) det(D—CA™'B) = — det(A,)? = —1 # 0, which
completes the induction.

Having shown thadet(A,,) is nonzero, it follows that the
system has exactly one solution. Therefafés the unique
positive-clause generator af,. O

Naturally, many languages lack the uniqueness property.
The next result states two examples.

Proposition 2. U(clausesall) and Z/(Horn,all) lack
unigque representations.

Proof. The utility functionu(X) = 1if p ¢ X andu(X) =
0 otherwise, can be represented in Horn claus€$-as, 1) }
O

or{(T, 1)a (p7 _1)}

Finally, we mention here tha¥(positive cubegll) also
has unique representations. This may be shown using the
same method as in the proof of Proposition 1. Alterna-
tively, we can give an inductive argument that the weight of
each cube is uniquely determined, starting with the weight
for T, then those for atoms, and so on (Chevalsstral.
2004). The same also follows from the close relationship be-
tween the language based on positive cubes aniidieus
inversion which is itself uniquely determined (Rota 1964;
Grabisch 1997).

Expressivity and Correspondence

A central property to be analyzed for any preference rep-
resentation language is iexpressivity The expressivity

of weighted propositional formulas for representing tili
functions has been studied at length by Chevalaral.
(2006): Without restrictions on either goals or weiglasy
utility function can be specified. Full expressive power can
also be retained if we restrict goals to either cubes or elaus
or even just positive cubes. A restriction to positive ckzsJs
on the other hand, forces utility functions to be normalized
Literals can generate any modular function, and only those,
while k-formulas correspond to so-callédadditive utility
functions (Grabisch 1997). Finally/ (positive positive is
exactly the class of nonnegative monotonic utility funoto
Here we prove one further result along these lines:

Proposition 3. U/ (positive cubegositivg is equal to the
class of nonnegative monotomc UtI|ItP/ functiansuch that
forall X, u(X) > >y u(Y X\Y|+1,

Proof. First, notice thatvp y = u(Y) — 3,y wp z, and

_sozy_cx WAy = ZYCX(u(Y)_—ZZCY wp z). Expand-
ing weights all the way down gives us

Y wpy = Y w(Y)- ()X
YCX YCX

which we will use in both directions.

(=) Suppose that € U/ (positive cubegositive.

e u IS nonnegative since all weights are positive.

e 1 iS monotonic: FixA C PS, z € PS.

uw(AU{z}) = Z w/\XZZw/\X:U(A)

XCAU{z} XCA

since2# C 24Y{=} and allw,, > 0.
o u(X) =Y youY) (—1)FWIHL 4 (X) = wp x +

dyvex WAY =WAX+D yex u(Y)-(=1)XWIH and
QUA4X > 0

(«=) Suppose that, satisfies all three properties. L&t
be the unique representation afin positive cubes, and
wa x an arbitrary weight inG. wa x + >y cx way =
u(X) by definition, andu(X) > >y -y wa y by the third
property. Sowa x + Y yvcx WAY = D ycx WAY I-€.,
wp x > 0. Therefore, all weights irG- are positive (since
we do not count zero weights as being part(®f and so
u € U(positive cubegpositive. O

Observe how the second part of the proof relies on the

U(L) is the set of utility functions representable in the lan-
guageL. Rep,(U) is the set ofL-representation®f the
utility functions in the set/. L./ is theexpressive inter-
sectionof the language® and £’ as represented ig. It is
easy to see that given any two goal-base langudgesiL’,
Lng andLy, . are equally expressive.

Definition 8. £ < £’ (L' is at least as succinct a8) iff
there exist a functiotf : £, — L[, and a polynomiap
such thatG = f(G) andsize(f(G)) < p(size(G)) for all
GeLap.

L~L,L <L andL 1 £ (tobe read asqually succingt

less succingtandincomparablé are defined from< in the

standard way. This definition permits us to compare the suc-

cinctness of languages which differ in expressivity. (eti

that languages with no overlap in their expressivity would

be considered equally succinct according to this definition
Cubes and clauses are natural languages for represent-

ing common utility functions, particularly those which eon

fer bonuses or penalties for combinations of items (cubes:

uniqueness property of the language of positive cubes (see Boardwalkand Park Place, or assawdhd battery), or those

previous section), and also the fact that, without a restric
to positive weights, the language of positive cubes in known
to be fully expressive (Chevaleyre, Endriss, & Lang 2006).
To date, the important property of (hormalized mono-
tonic) supermodularity has escaped a precise characteriza
tion in terms of restrictions on weighted goals. Propositio
3 indicates that a corresponding language lies between
U(positive cubegositivg and U(positive cubegll).
Moreover, it is possible that/(positive cubegositive
could serve as an approximation of the class of supermodu-
lar utility functions.

Succinctness
In this section, we consider the relative succinctnessrof la

guages. If two languages are equally expressive, then the

one with shorter representations is preferable, otheigthin
being equal. Intuitively, one language is more succinabtha
another if for every representation in the second, there is
an equivalent but shorter representation in the first. Suc-

cinctness results are much easier to come by when the less

succinct language has unique representations, sincese tho

which reward good-enough options but give an additional
bonus for specificity (clauses: turning a Phillips screwhwit

a slotted or Phillips screwdriver works, but turning a Rpsl
screw with a Phillips screwdriver is better). Here, we com-
pare the relative succinctness of cubes and clauses amd thei
positive restrictions.

Proposition 4. U (positive cubesall) < U/ (cubesall).
Proof. (Chevaleyre, Endriss, & Lang 2006, Prop. 13).00
Proposition 5. U (positive clausesll) < U(clausesall).

Proof. Clearly U(positive clausesll) < U(clausesall),
since every positive clause is a clause. Consider the fam-
ily of utility functions u,, : 2{P1--r»} — R where

un(X) = {
u, may be represented in clauses as

{(T 0, (\/{-p:pePs},-1)}

1 fX=PS
0 otherwise

cases we can be assured that there is no as-yet-undiscovereghe |ength of which increases linearly with w,, may be

representation more efficient than the one we have. As a
result, all of the succinctness results presented hereorely
unigueness results presented above.

The succinctness definition given in Chevalegteal.
(2006) does not permit the comparison of languages which
differ in expressive power; however, this restriction is- un
necessary and it might occasionally be useful to compare the
succinctness of such languages within their areas of expres
sive overlap. The following definitions provide the coneept
and notation for doing so.

Definition 7. Let £ be a language for (i.e., a class of) goal
bases. We define:

o UL)={uc:GeL}
e Rep,(U) ={G € L:ug €U}
o Logt = Repo(U(L) NU(L))

represented in positive clauses as

{(\/ X,wyx):0CXCPS}
1 if | X]is odd

wvx = {—1 if | X| is even
Proof that thavy, x define the correct utility function: First,
let () and (5, be the number of even and odd subsets
of n, respectively.(..) = (,50): For oddn, every even-

sized subseX has a unique odd-sized compleméhtand
vice versa. For even, notice that(}) = (771) + (".").

SO (o4d) = Zo;édsdn (=0 +E++("

(T4 (T 4O + (5 e () () =

n—2 n—1

where

Socien_i ("71) =271, which is exactly half of the sub-
sets. Next, suppose for purposes of this proofthah = 0,
even thoughr is not a positive clause. Now,

u(PS) = 1: (23) = (P3), i.e., there are equal numbers
of even and odd sized subsetsfa$, with a corresponding
nonzero weight for each exceptThus(P3) —((23)-1) =
1 is the difference between the number of nonzero odd-sized
and even-sized weights. Since all odd-sized weightslare
and all nonzero even-sized weights arg, 1 is also thesum
of all even- and odd-sized weights.

u(X) =0, X C PS: The active weights are those, y

for which X N'Y # (. There are2”5\X inactive weights
(now includingwy,), half of which are for odd-sized dis-

junctions (7S\X) = (P$)X)). Since the total number of

even- and odd-sized weights are equal, we have also that
(25) — (5) = (Z5) — (PSi), which are the total
number of active even- and odd-sized weights, respectively
Sincef) is inactive, the sums of active even- and odd-sized
weights are opposite, and so together sum to 0.

Thus all2™ — 1 positive clauses receive nonzero weights.
By Proposition 1, this representation is unique; its lerigth
creases exponentially witih Hence over normalized utility
functions (the expressive overlapfpositive clausesll)
andi{(clausesall)), clauses are strictly more succinct than
positive clauses. O

Here we show that positive cubes and positive clauses
(with arbitrary weights) are incomparable with respect to
succinctness:

Proposition 6.
U (positive cubesall) L U(positive clausesll).

Proof. U(positive clausesll) £ U(positive cubesall):
The family of utility functionsu,,(X) = 1if X # () and
u,(X) = 0 otherwise, is represented uniquely and linearly
as{(\/PS,1)} in positive clauses.wp x = (—1)*in

Lemma 1. If Leupes € P OF Lejauses © P, Leuves © U or
LelausesC ¥, and®, ¥ C LeybesU Lelauses thenld (@, all) ~
U, all).

Proof. Suppose thar € U/(®, all). Enumeratéy;,w;) €
G. We construct an equivalent goal base LetGy = G,

(Gi \ {(wi, wi)})
U {(ﬁ(pia _wi)7 (Tv wz)}
G

and letG’ = G\g.

The transformation produces an equivalent goal base: By
(Chevaleyre, Endriss, & Lang 2006, Lemma®),= G+
foralli,s0G =G =Gy = ... = Gig-1 = G| = G'.

The transformation produces a goal base in the appropri-
ate language: Suppose that ®. At minimum,¥ contains
either every clause or every cube.dfis a clause, themy
is a cube, and vice versa. Hence at least ong ahd—¢
are in¥. T is both a cube A) and a clausep(V —p), so
T € ¥ regardless. Thu&”’ € U(¥T, all).

The transformation produces a goal base as succinct as the
original: If ¢ is a cube, therp requires the same number of
atoms and binary connectives as-gs (written as a clause);
similarly, if ¢ is a clause. The only increase in size between
G andG’ can come from the addition &f, so we have that
6’| < |G| + 1.

Thereforel/(®,all) = U(T,all). By the same argument
U(D,all) <U(T,all). SoU(D,all) ~ U(T,all). O

From this, it follows that there can be no gain in succinct-
ness by adding clauses to a cubes language with arbitrary
weights, or vice versa.

Gi+1 = If ©i §é L

otherwise

Complexity
In this section, we analyze the effect that restrictionsaal g
bases have on the complexity of answering questions about
the utility functions they represent, focusing specificalh
the problem Mx-UTILITY —finding a model which pro-

positive cubes, so the unique representation there assignsyces maximal utility, expressed as a decision problem.

nonzero weights to alt” — 1 positive cubes.

U(positive clausesll) ¥ U(positive cubesall): Let
un,(X) be the same family of utility functions as in Propo-
sition 5. wu,(X) is represented uniquely and linearly as
{(APS,1)} in positive cubes, but the representation in pos-
itive clauses is exponential, as shown in Proposition 5.

The fact that (positive cubesall) and
U(positive clausesll) are incomparable in terms of
succinctness indicates that these two classes are be=d suit
to representing very different kinds of utility function@s
mentioned above, positive cubes seem good for awarding
bonuses for completing sets, while positive clauses seem
good for awarding bonuses for acquiring the first item in a
set.) Given their incomparable sublanguages, the follgwin
result is surprising:

Proposition 7. U (cubesall) ~ ¢/(clausesall).

Proof. Follows immediately from Lemma 1.

Definition 9. The decision probledvlAx-UTILITY (H, H')
is defined as: Given a goal base¢ € U/(H, H') and an
integer i, check whether there is a model € 27 where
ug(M) > K.

MAX-UTILITY is clearly in NP for the unrestricted lan-
guage, since whethei; (M) > K is polynomially check-
able, and is NP-complete via a reduction fromakBAT
(Garey & Johnson 1979). Mx-UTILITY for U/ (literals, all)
and U (positive positive is polynomial. (Respectively:
Make p true iff w, > w-, for each atomp; and make
all atoms true.) Generally, however,A-UTILITY is NP-
complete for languages which permit both positive and neg-
ative weights or both positive and negative literals.

Proposition 8. MAX-UTILITY (k-cubespog is NP-
complete fork > 2.

Proof. The decision problem Mx k-CONSTRAINT SAT is
defined as: Given a sétof k-cubesinPS and an integek,
check whether there is a model € 27¢ which satisfies at

leastK of the k-cubes inC. MAX-UTILITY (k-cubespos O

is a weighted version of Mx k-CONSTRAINT SAT, which

is NP-complete fork > 2 (Ausiello et al. 1999, LO12, If M’ is amodel iNPS UPS, let M = M’ \ PS. By the
Appendix B). O Lemma, we have that every model optimal fqf: will con-
tain exactly one of: andz for all z € PS. (If M’ contains
both z and z, it could gain at least 1 utility by removing
both; if M’ has neither, it could gain at least 1 utility by

Proposition 9. MAX-UTILITY (k-Horn,pos is NP-
complete foik > 2.

Proof. This is a weighted version of Mx HORN 2-SAT, adding one.) Call a modél/’ in PS U PS full if for every

which is NP-complete (Jaumard & Simeone 1987, Proposi- = € PS eitherz € M’ orz € M’, andbivalentif for every

tion 3.1). 0 x € PSeitherz ¢ M’ orz ¢ M’'. WheneveM' is full and
- -) bivalent,M will be a model inPS.

Proposition 10. MAX-UTILITY (positivek-cubesall) is All of the operations applied in generatigy from G are

NP-complete fok > 2. order-preserving over full, bivalent models: Considé

Proof. MAX-UTILITY (k-cubespos is NP-complete for ~ Prior to normalization.ug, (X') = ug(X) for all models
k > 2, MAX-UTILITY (k-cubesall) contains it for any X. Normalization is order-preserving. Every full, bivalent
fixed & and so is NP-complete also. We exhibit a model is optimal fou¢; , since all full, bivalent models have

polynomial reduction of Mx-UTILITY (k-cubesall) to the same valueuf, = wy andwznz = wysy forall z,y €
MAX-UTILITY (positivek-cubesall). Given a goal base P<S)andby the Lemma all nonfull or nonbivalentmodels are
G € U(k-cubesall), constructy’ as follows: strictly dominated. Adding-} to G, increases every atomic
weight bya, which is order-preserving; and increases. »
; by 3, which has no effect at all sinceA 7 is false on every
1'(;0[53?,(1\?2?2 E ?;'} U{F: e X} bivalent model. Therefore, ifg/ (X') < ug/(Y') whereX’
N ; : . andY” are full and bivalent, theng (X) < ug(Y).
(b) Put(A\ X', w) € Gp. Suppose thaiM/’ is optimal for ue:. It follows from
2. NormalizeG to [—1,1]. the Lemma that)M’ is full and bivalent, and so it fol-
3. Letd = > {|w| : (p,w) € G} lows from the above thafl/ is optimal for uc. This
4. Leta=4+1,andp = -3 — 3. completes the reduction of Mk-UTILITY (k-cubesall) to
5. Foreachr € PS, put MAX-UTILITY (positivek-cubesall). Generatings’ from
(z,q), (T,a), (& AT, 8) € & G and recoverir_1gM from M’ are I_inear in the si_ze ofr
P ’ L andPS, respectively, so the reduction is polynomial. Hence
6. LetG' = G, @ G. MAX-UTILITY (positivek-cubesall) is NP-complete. [
Here,PS is PS with a bar over each propositional variable. Sincel{(positivek-cubesall) generates the class &f
Lemma 2. Fix A C PS U PS such thatz,# ¢ A. Then additive functions, Proposition 10 is glosely relateq to a
uc (AU{z, T}) <ug(A) <ug (AU{z}), ug (AU{Z}). known NP-completeness result for winner determination

in combinatorial auctions wittk-additive utility functions
Proof. Note that for any two modeld/, N we have that (Chevaleyreet al. 2004). The advantage of our method
lugy (M) —ug; (N)| < 6. ¢ is a (not necessarily tight) is that it can easily be adapted to also obtain an NP-
upper bound on the utility change @, between arbitrary =~ completeness result for positive clauses:
models. This fact is used below to bound away the terms
ugy (AU {r}) andug, (AU {z,7}):

ugr (AU {a}) = ugy (AU {a}) + ugy (AU {z})

Proposition 11. MAX-UTILITY (positivek-clausesall) is
NP-complete fok > 2.

Proof. Similar to the proof for the NP-completeness

Gi
= ugy (AU {z}) +ug (A) +ws of MAX-UTILITY (positivek-cubesall). Given a goal
=ug (AU {x}) + ugr (A)+0+1 base G € U(k-clausesall), constructG’ as follows:
> ugy(A) =6 +ug(A) +d+1 1. Foreach\/ X,w) € G:
> ugy (A) + ugy (A) = ugr(A) @ LetX' ={z:ze X}U{z: -2 € X}

(b) Put(\ X', w) € Gj.
. NormalizeGj to [-1, 1].

. Letd = {|w| : (p,w) € Gy}
. Leta = —26 — 2,andg = 34 + 3.
. Foreach: € PS, put

(x,a), (Z,0),(xVZT,0) € G

Similarly, ug/ (AU {Z}) > ug (A). Finally,
ug (AU{r, 7}) = ug, (A U{z, 7}) + ug; (AU {z, 7})
= ugy (AU{z,7})
gy (A) + i+l + s
= ugy (AU{z,7}) +ug (A) -6 -1

<ugy(A) + 6+ ug (4) -5 -1 6. Letl’ = Gy © Gy . .
As in the previous proof, construction @’ from G is
<ugy(4) +ug, (4) = uer (4) order-preserving over full, bivalent models.z {/ z is

GO WN

true in every full, bivalent model and hence the disjunc-
tive weights do not disturb the ordering.) Hence by the
same argument, MX-UTILITY (k-clausesall) reduces
polynomially to Max-UTILITY (positivek-clausesall),
and hence Mx-UTILITY (positivek-clausesall) is
NP-complete. O

Conclusion

We have examined the properties of various goal base lan-
guages. In particular, we have exhibited two which have the
unigueness property and shown their expressive power, de-
vised a framework for comparison of and compared the suc-
cinctness of representations in several languages, ameéhsho
that MAX-UTILITY, the problem of finding maximal assign-
ments, is NP-complete for several simple languages.

In particular, the results permit us to offer the following
observations for application designers:

e It may be possible to approximate supermodularity with
positive cubes, or with a language very near to positive
cubes. Proposition 3 indicates that the positive cubes lan-
guage captures all but a restrictive class of supermodular
utility functions.

e There is no loss of concision when restricting a language
containing clauses and cubes with arbitrary weights to a
language containing only cubes or only clauses.

e Moving from positive clauses or cubes to general clauses
or cubes can result in greater concision, with no increase
in the complexity of MAX-UTILITY .

e Most languages are NP-complete forAMFUTILITY,
which, broadly speaking, appears to happen whenever
both positive and negative literals or both positive and
negative weights are permitted in a language.

Many avenues are open for further research. Intuitive cor-
respondence results for several common properties of util-
ity functions are unknown (sub- and supermodularity, con-
cavity and convexity), as is the precise expressivity ofsom
simple languages (clauses and positive clauses, withygsit
weights).

There is potential for the fruitful application of goal base
languages in both combinatorial auctions (as a bidding lan-
guage) and in committee elections (to extend the expressiv-
ity of voting methods). In the context of combinatorial auc-
tions, goal base languages may provide more natural ways
of expressing bids, especially when bidders’ utility fuons

can be expected to have certain properties. Some goal base

languages may also prove better than others when dealing
with preference elicitation, either for agents who must-con
struct a goal base, for agents who wish not to reveal their
complete valuation, or for tabulators who wish to solicit as
little information from agents as possible in order to do de-
termine winners (Sandholm & Boutilier 2006). In the con-
text of committee elections, these languages can provide
voters with ways of expressing (dis)synergies among can-
didates.

References

Anton, H. 1994. Elementary Linear Algebra Wiley &
Sons, seventh edition.

Ausiello, G.; Crescenzi, P.; Gambosi, G.; Kann, V,;
Marchetti-Spaccamela, A.; and Protasi, M. 1999om-
plexity and ApproximationSpringer-Verlag.

Chevaleyre, Y.; Endriss, U.; Estivie, S.; and Maudet, N.
2004. Multiagent resource allocation wikhadditive util-

ity functions. InProc. DIMACS-LAMSADE Workshop on
Computer Science and Decision Thedkpnales du LAM-
SADE 3, 83-100.

Chevaleyre, Y.; Endriss, U.; and Lang, J. 2006. Expres-
sive power of weighted propositional formulas for cardi-
nal preference modelling. IRroc. 10th Intl. Conference
on Principles of Knowledge Representation and Reasoning
(KR-2006) 145-152. AAAI Press.

Coste-Marquis, S.; Lang, J.; Liberatore, P.; and Marquis,
P. 2004. Expressive power and succinctness of proposi-
tional languages for preference representatioeroc. 9th

Intl. Conference on Principles of Knowledge Representa-
tion and Reasoning (KR-20Q0403-212. AAAI Press.

Cramton, P.; Shoham, VY.; and Steinberg, R., eds. 2006.
Combinatorial AuctionsMIT Press.

Garey, M., and Johnson, D. 1979Computers and In-
tractability: A Guide to the Theory of NP-completeness
W.H. Freeman and Co.

Grabisch, M. 1997 k-order additive discrete fuzzy mea-
sures and their representatiorfFuzzy Sets and Systems
92:167-189.

Jaumard, B., and Simeone, B. 1987. On the complexity
of the maximum satisfiability problem for Horn formulas.
Information Processing Lette5(1):1-4.

Lang, J. 2004. Logical preference representation and com-
binatorial vote Annals of Mathematics and Artificial Intel-
ligence42(1-3):37-71.

Lehmann, D.; Muller, R.; and Sandholm, T. 2006. The
winner determination problem. In Cramton et al. (2006).
297-317.

Nisan, N. 2006. Bidding languages for combinatorial auc-
tions. In Cramton et al. (2006). 215-232.

Pinkas, G. 1991. Propositional nonmonotonic reasoning
and inconsistency in symmetric neural networks Phoc.
12th Intl. Conference on Artificial Intelligence (IJCAI-
1991) Morgan-Kaufmann Publishers.

Rota, G.-C. 1964. On the foundations of combinato-
rial theory I: Theory of Mdbius functions. Zeitschrift
fur Wahrscheinlichkeitstheorie und Verwandte Gebiete
2(4):340-368.

Sandholm, T., and Boutilier, C. 2006. Preference elicita-
tion in combinatorial auctions. In Cramton et al. (2006).
233-263.

