
Preference Representation with Weighted Goals:
Expressivity, Succinctness, Complexity

Joel Uckelman∗ and Ulle Endriss
ILLC, University of Amsterdam

Plantage Muidergracht 24
1018 TV Amsterdam, The Netherlands
{juckelma,ulle}@illc.uva.nl

Abstract

The representation of preferences of agents is a central fea-
ture in many AI systems. In particular when the number of
alternatives to be considered may become large, the use of
compact preference representation languages is crucial. The
framework of weighted propositional formulas can be used to
define several such languages. The central idea is to associate
numerical weights with goals specified in terms of proposi-
tional formulas, and to compute the utility value of an alter-
native as the sum of the weights of the goals it satisfies. In this
paper, we analyze several properties of languages defined by
weighted goals: their expressivity, the relative succinctness
of different sublanguages, and the computational complexity
of finding the best alternative with respect to a given utility
function expressed in terms of weighted goals.

Introduction
Many problems in AI require the representation of and rea-
soning about the preferences of agents. The alternatives over
which agents need to express a preference often have a com-
binatorial structure. This can, for example, be observed in
resource allocation with indivisible goods and in combina-
torial auctions (Cramton, Shoham, & Steinberg 2006). The
combinatorial nature of such problems makes succinct rep-
resentation of agent preferences important (Coste-Marquis
et al. 2004; Lang 2004; Chevaleyre, Endriss, & Lang 2006;
Nisan 2006).

To see the importance of preference representation lan-
guages, consider bidding in a combinatorial auction. A com-
binatorial auction is one where bidders may place bids on
bundles, and not just single goods. In the most general case,
each bidder may submit a bid for each subset of the set of
items on auction, and the items are distributed according
to some criterion, such as maximizing the revenue for the
auctioneer. Already, this description presents two problems:
First, the number of subsets of goods is exponential in the
number of goods, which is a problem for both the bidders
and for the auctioneer; and second, the award criterion is a
maximization problem, which is a problem for the auction-
eer. In the first case, bidders are faced with having to ex-
amine each of exponentially many subsets in order to assign

∗This research was supported by a Marie Curie Early Stage Re-
search fellowship from the GloRiClass project (MESST-CT-2005-
020841).

values to them, and, should the bidders succeed at that, the
auctioneer must then attempt to use this mountain of data
to determine the outcome of the auction. It will be little
consolation for the auctioneer to have an efficient winner-
determination algorithm in this case, as his input will be ex-
ponential! Neither expressing nor computing with explicit
representations is feasible for any but the smallest sets of
items. In the second case, that of the award criterion, we are
usually charged with accepting bids so as to maximize some
quantity, be it auctioneer revenue, social welfare, or some-
thing else. Explicit representations of bids do not lend them-
selves to efficient computation, for reasons already stated:
They are too long.

Of course, the story changes radically when we no longer
insist on explicit representations of bids (or, more generally,
of utility functions). An agent’s total explicit bid, composed
of an atomic bid for each subset, may well have structure
which we can exploit for devising a shorter representation.
A trivial example, but one which illustrates the point, is that
of the bidder who gives a value ofe1 to every nonempty
set of goods. Withn goods, an explicit representation of
this bid—i.e., one which lists every subset with the value
the bidder places on it—will of course have a length on the
order of2n, but intuitively we could have a constant-length
nonexplicit representation of this bid, as

∀X ⊃ ∅, u(X) = e1

(or, as we just said in words, “the bidder gives a value ofe1
to every nonempty set of goods”). The insight here is that
bids may have internal structure which we can be exploit in
order to produce concise, and therefore more manageable,
representations of those bids.

The representation given in our example, while concise,
is too ad hocto be generally useful. If we permit any sort
of mathematical expression for defining a bid, we may get
short representations in most cases, but be faced with such
syntactical variety that our computer will be unable to cope
with them all. Hence, there is a need for concise representa-
tions, not just on their own, butin a well-defined language.
Just as the structure of bids makes concise representations
possible, the structure of the bidding language makes com-
putation with the bids possible. For a summary of bidding
languages, see (Nisan 2006); for a summary of winner de-
termination algorithms, see (Lehmann, Müller, & Sandholm
2006).

Here we study a particular class of languages for repre-
senting preferences: utility functions represented as sets of
weighted goals, called goal bases. The central idea is to as-
sociate numerical weights with goals specified in terms of
propositional formulas, and to compute the utility value of
an alternative as the sum of the weights of the goals it satis-
fies, an idea which originates in penalty logic (Pinkas 1991;
Lang 2004). The class of all goal bases (our sets of weighted
goals) forms a bidding language. Further bidding languages
may be formed by placing restrictions on the kinds of goal
bases which are admissible. The structure of goal bases sug-
gests certain sorts of restrictions, namely on the syntactical
form of the goals and on the weights. It is important to un-
derstand the properties of these languages, both in their own
right and so we may identify which languages have poten-
tial applications. Already the expressive power of many such
languages are known, for which see (Chevaleyre, Endriss, &
Lang 2006).

If we have a range of different languages available which
can all represent the target class of utility functions, what
further criteria should we use to discriminate among them?
Our formalism permits the definition of a wide range of lan-
guages; the long-term goal is to determine which languages
are best for which purposes. Several criteria suggest them-
selves:

• Expressivity: Not all goal base languages are equally ex-
pressive, nor do all applications require full expressivity.
For example, it may be known beforehand that all bidders
in an auction have decreasing marginal utility. Excess ex-
pressivity tends to be undesirable because highly expres-
sive languages are computationally harder, so in such a
situation we should like to use a bidding language which
expresses just the utility functions bidders are likely to
have. In order to make such a determination, we need to
know what utility functions are expressible in which lan-
guages; even better would be to find properties of utility
functions which correspond precisely to natural restric-
tions on goal bases.

• Succinctness: Not all goal base languages provide
equally concise representations of utility functions which
they jointly express. Here again, if it is known before-
hand that agents will have utility functions of a certain
sort, then we may benefit by selecting a language where
those utility functions have efficient representations.

• Complexity: Problems such as finding an optimal state
are easier in some goal base languages than in others.
The problem of finding an optimal state for one goal base
(which we call MAX -UTILITY) differs little from that of
finding an optimal state across multiple goal bases, and
is therefore closely related to the problem of winner de-
termination for processes like combinatorial auctions. If
one language has easier decision or search problems than
another, this could be a factor in selecting it for some ap-
plication.

Ideally, we would find a fully expressive, maximally suc-
cinct, computationally trivial goal base language and use
that in all applications. As there is (demonstrably) no such
beast, we must strike a balance between expressivity and

succinctness on one hand, and complexity on the other in
any potential application. In order to make such compar-
isons, we must examine the properties of particular goal base
languages. Without such results, application designers can-
not make informed decisions about which languages are best
for their applications. It is for this purpose that we present
numerous results for a range of these languages, in hopes of
clarifying which languages are interesting.

In this paper, we concentrate on two of these properties:
comparative succinctness and the computational complex-
ity of finding an optimal alternative. The remainder of this
paper is structured as follows: In the next section we list
the relevant basic definitions surrounding the specification
of utility functions over combinatorial domains by means of
weighted propositional formulas. The body of this paper is
devoted to the analysis of various restrictions on weighted
goals and the languages which arise from them. We first
consider the so-called uniqueness property, which assesses
whether a language is tight in the sense of having only a sin-
gle way of specifying any given utility function. In the fol-
lowing section, we examine the expressivity of one natural
language, conjunctions of atoms with positive weights. We
next consider the relative succinctness of several languages,
and finally examine the complexity of finding models which
maximize utility within particular languages.

Preliminaries
Here we introduce utility functions, goal bases, and
weighted formulas, along with the definitions of various
properties of utility functions.

Definition 1 (Utility Functions and Models). A utility func-
tion is a mappingu : 2PS → R, wherePS is a fixed, finite
set of propositional variables. Amodelis a setM ⊆ PS.

Definition 2 (Weighted Formulas and Goal Bases). A
weighted formulais a pair(ϕ, w) whereϕ is a propositional
formula in the languageLPS andw ∈ R. A goal baseis a
setG = {(ϕi, wi)}i of weighted satisfiable formulas. The
utility functionuG generated by the goal baseG is

uG(M) =
∑

{wi : (ϕi, wi) ∈ G andM |= ϕi}

for eachM ∈ 2PS . The set of formulas used in a goal base
G is For(G) = {ϕ : (ϕ, a) ∈ G}.

For present purposes, we restrict formulas to contain only
the connectives¬, ∧, and∨.

Definition 3 (Goal Base Summation). If G, G′ are goal
bases, then

G ⊕ G′ = {(ϕ,
∑

(ϕ,a)∈G

a +
∑

(ϕ,b)∈G′

b) : ϕ ∈ For(G ∪ G′)}

NB: ⊕ does notcombine formulas which are semantically
equivalent but syntactically distinct. E.g.,{(p, 1)} ⊕ {(p ∧
p, 1)} 6= {(p, 2)}.

Definition 4 (Goal Base Size). Let G be a goal base. Then
thesizeof G (written size(G)) is defined as the number of
occurrences of propositional variables in the formulas ofG.

Definition 5 (Restrictions). Call H ⊆ LPS a restriction on
the language of a goal base, andH ′ ⊆ R a restriction of the
weights of a goal base. Then defineU(H, H ′) as the class
of utility functions which may be generated by goal bases
meeting those restrictions.

Specifically, we consider these restrictions on formulas:

• An atomis a member ofPS.
• A literal is an atom or its negation.
• A clauseis a (possibly empty) disjunction of literals.
• A cubeis a (possibly empty) conjunction of literals.
• A positiveX is a formula of typeX free of negations.
• A Horn formulais a clause with≤ 1 positive disjunct.
• A k-formula is a formula with≤ k binary connectives.

When applied to weights, the restrictionsall and posi-
tive refer to weights inR and R+, respectively. E.g.,
U(positive 42-clauses, positive) is the class of utility func-
tions representable by goal bases containing only positively-
weighted clauses of at most 42 atoms. Further, we consider
these properties of utility functions:

• u is normalizediff u(∅) = 0.
• u is nonnegativeiff u(X) ≥ 0 for all X .
• u is monotoniciff u(X) ≥ u(Y) for all X ⊇ Y .
• u is modulariff

u(X ∪ Y) = u(X) + u(Y) − u(X ∩ Y) for all X, Y .
• u is supermodulariff

u(X ∪ Y) ≥ u(X) + u(Y) − u(X ∩ Y) for all X, Y .

Uniqueness
In this section we consider, in gross terms, how many ways
there are to represent a given utility function in some se-
lected classes of goal bases. In particular, we are going to
define what it means for a language to have auniquerepre-
sentation for any utility function it can express. This is an
interesting property, because it suggests that the language in
question is parsimonious in its expressivity. The uniqueness
property is also of great interest from a technical perspec-
tive, as it can be useful for establishing (negative) results on
the relative succinctness of different languages (as will be
discussed in the section on succinctness).

Definition 6. A utility functionu is representedin a lan-
guageL if there exists a goal baseG ∈ L such thatu = uG.
A utility functionu is uniquely representedin a languageL
if for every maximal pairwise nonequivalent set of formu-
las Φ meeting the restrictions ofL, there is a unique goal
baseG such thatFor(G) ⊆ Φ and uG = u. (Note that
some weights inG may be zero.) A languageL is said to
haveunique representationsif everyu represented inL is
uniquely represented.

The problem of determining whether a utility functionu
has a unique representation in a given languageL amounts
to examining the system of linear equations which describes
u in L. A languageL has|L/≡| = m distinct nonequivalent
formulas, and over a set of atomsPS there are2|PS| = n
states. Each statei ∈ 2PS defines a constraint

ai1w1 + ... + aimwm = bi

whereaij ∈ {0, 1}, depending on formula clausej is true in
statei; andbi = u(Xi), whereXi is the set of true atoms in
statei. Taken together as matricesAx = b, we have:









a11 · · · a1n

a21 · · · a2n

...
. . .

...
am1 · · · amn

















w1

w2

...
wn









=









b1

b2

...
bm









That is, thewi are the weights, thebi are the values of the
utility function, and theaij mark which formulas are true in
which states. Ifn = m, i.e., if the number of formulas in
the language overPS equals the number of states overPS,
thenA will be square. This makes available to us a well-
known fact from linear algebra,viz. that the determinant of
the square matrixA is nonzero only when the system has a
single, unique solution (Anton 1994, Theorem 2.3.6).

Proposition 1. U(positive clauses, all) has unique repre-
sentations.

Proof. Suppose thatG contains only positive clauses and
generatesun, wheren = |PS|. We can write one constraint
for each state except∅, so we have2n − 1 constraints. (The
constraint for∅ can be omitted, since all positive clauses
are false in that case.) We have the clause

∨

X for each
nonemptyX ⊆ PS, so also2n − 1 distinct nonequivalent
clauses, and hence2n − 1 variables for weights.

Enumerate the positive clauses such that the indexj codes
for the positive clauseϕj =

∨

{pk : j &2k 6= 0}, where ‘&’
stands forbitwise conjunction. E.g.,ϕ7 = p0 ∨ p1 ∨ p2,
because7 = 20 + 21 + 22. Then, letaij = 1 if i & j 6= 0,
andaij = 0 otherwise. This setsaij = 1 iff clausej is true
in statei. In other words, each row ofAn is a state, and the
ones in a row mark the positive clauses which are true in that
state.

Now observe thatA1 = [1] andAn+1 is a block matrix

An+1 =























0

An

... An

0
0 . . . 0 1 1 . . . 1

1

An

... 1

1























where1 is a matrix of the appropriate size, with every el-
ement a1. The additional rows inAn+1 (overAn) are for
states in whichpn, the new variable, is true. The middle
row is the state where onlypn is true, and from there down
pn is true in every state. With respect to the other vari-
ables, the states in the bottom half repeat the states in the
top half. The additional columns inAn+1 are for positive
clauses which containpn. The middle column is forpn,
the degenerate positive clause formed by that variable alone,
and the columns thereafter repeat the first2n−1−1 columns
with pn as an additional disjunct. Therefore, the upper left
and upper right blocks repeatAn since no state there makes
pn true; the lower left block repeatsAn since no clause there

containspn; and the lower right block is all ones because
every state and clause there containspn.

Clearly, det(A1) = 1. Suppose thatdet(An) 6= 0 To
show thatdet(An+1) 6= 0, we will twice use the following
fact about determinants of block matrices:

Fact 1. For the block matrix
[

A B
C D

]

,

det

[

A B

C D

]

= det(A) det(D − CA
−1

B)

whereA is m× m, B is m × n, C is n × m andD is n× n.

SliceAn+1 into blocks like so
0

A = An

... An = B

0
0 . . . 0 1 1 . . . 1

1

C = An

... 1 = D

1

and note thatA = An = A−1
n (because theAi are symmetric

about their main diagonal). Further,

CA
−1 =

[

0 . . . 0
An

]

A
−1 =

[

0 . . . 0
I

]

CA
−1

B =

[

0 . . . 0
I

]







0
... An

0






=







0 . . . 0
... An

0







D − CA
−1

B = 1 −







0 . . . 0
... An

0






=







1 . . . 1
... 1 − An

1







whereI and1 are an identity matrix and a matrix of ones,
respectively, of the appropriate sizes.

Next, sliceD − CA
−1

B into blocks like so
A′ = 1 1 . . . 1 = B′

1

C′ =
... 1 − An = D′

1

and by the Fact, we have that

det(D − CA
−1

B) = det







1 . . . 1
... 1 − An

1







= det(A′) det(D′ − C
′
A
′−1

B
′)

= det [1] det(1 − An −







1
...
1






[1] [1 . . . 1])

= det(1 − An − 1)

= det(−An)

= − det(An)

Applying the Fact a second time, we have thatdet(An+1) =

det(An) det(D−CA
−1

B) = − det(An)2 = −1 6= 0, which
completes the induction.

Having shown thatdet(An) is nonzero, it follows that the
system has exactly one solution. ThereforeG is the unique
positive-clause generator ofun.

Naturally, many languages lack the uniqueness property.
The next result states two examples.

Proposition 2. U(clauses, all) and U(Horn, all) lack
unique representations.

Proof. The utility functionu(X) = 1 if p /∈ X andu(X) =
0 otherwise, can be represented in Horn clauses as{(¬p, 1)}
or {(⊤, 1), (p,−1)}.

Finally, we mention here thatU(positive cubes, all) also
has unique representations. This may be shown using the
same method as in the proof of Proposition 1. Alterna-
tively, we can give an inductive argument that the weight of
each cube is uniquely determined, starting with the weight
for ⊤, then those for atoms, and so on (Chevaleyreet al.
2004). The same also follows from the close relationship be-
tween the language based on positive cubes and theMöbius
inversion, which is itself uniquely determined (Rota 1964;
Grabisch 1997).

Expressivity and Correspondence
A central property to be analyzed for any preference rep-
resentation language is itsexpressivity. The expressivity
of weighted propositional formulas for representing utility
functions has been studied at length by Chevaleyreet al.
(2006): Without restrictions on either goals or weights,any
utility function can be specified. Full expressive power can
also be retained if we restrict goals to either cubes or clauses,
or even just positive cubes. A restriction to positive clauses,
on the other hand, forces utility functions to be normalized.
Literals can generate any modular function, and only those,
while k-formulas correspond to so-calledk-additive utility
functions (Grabisch 1997). Finally,U(positive, positive) is
exactly the class of nonnegative monotonic utility functions.
Here we prove one further result along these lines:

Proposition 3. U(positive cubes, positive) is equal to the
class of nonnegative monotonic utility functionsu such that
for all X , u(X) ≥

∑

Y ⊂X u(Y) · (−1)|X\Y |+1.

Proof. First, notice thatwV

Y = u(Y) −
∑

Z⊂Y wV

Z , and
so

∑

Y ⊂X wV

Y =
∑

Y ⊂X(u(Y)−
∑

Z⊂Y wV

Z). Expand-
ing weights all the way down gives us

∑

Y ⊂X

wV

Y =
∑

Y ⊂X

u(Y) · (−1)|X\Y |+1

which we will use in both directions.
(=⇒) Suppose thatu ∈ U(positive cubes, positive).

• u is nonnegative since all weights are positive.

• u is monotonic: FixA ⊆ PS, x ∈ PS.

u(A ∪ {x}) =
∑

X⊆A∪{x}

wV

X ≥
∑

X⊆A

wV

X = u(A)

since2A ⊆ 2A∪{x} and allwϕ ≥ 0.
• u(X) ≥

∑

Y ⊂X u(Y) · (−1)|X\Y |+1: u(X) = wV

X +
∑

Y ⊂X wV

Y = wV

X +
∑

Y ⊂X u(Y)·(−1)|X\Y |+1, and
wV

X ≥ 0.

(⇐=) Suppose thatu satisfies all three properties. LetG
be the unique representation ofu in positive cubes, and
wV

X an arbitrary weight inG. wV

X +
∑

Y ⊂X wV

Y =
u(X) by definition, andu(X) ≥

∑

Y ⊂X wV

Y by the third
property. SowV

X +
∑

Y ⊂X wV

Y ≥
∑

Y ⊂X wV

Y , i.e.,
wV

X ≥ 0. Therefore, all weights inG are positive (since
we do not count zero weights as being part ofG) and so
u ∈ U(positive cubes, positive).

Observe how the second part of the proof relies on the
uniqueness property of the language of positive cubes (see
previous section), and also the fact that, without a restriction
to positive weights, the language of positive cubes in known
to be fully expressive (Chevaleyre, Endriss, & Lang 2006).

To date, the important property of (normalized mono-
tonic) supermodularity has escaped a precise characteriza-
tion in terms of restrictions on weighted goals. Proposition
3 indicates that a corresponding language lies between
U(positive cubes, positive) and U(positive cubes, all).
Moreover, it is possible thatU(positive cubes, positive)
could serve as an approximation of the class of supermodu-
lar utility functions.

Succinctness
In this section, we consider the relative succinctness of lan-
guages. If two languages are equally expressive, then the
one with shorter representations is preferable, other things
being equal. Intuitively, one language is more succinct than
another if for every representation in the second, there is
an equivalent but shorter representation in the first. Suc-
cinctness results are much easier to come by when the less
succinct language has unique representations, since in those
cases we can be assured that there is no as-yet-undiscovered
representation more efficient than the one we have. As a
result, all of the succinctness results presented here relyon
uniqueness results presented above.

The succinctness definition given in Chevaleyreet al.
(2006) does not permit the comparison of languages which
differ in expressive power; however, this restriction is un-
necessary and it might occasionally be useful to compare the
succinctness of such languages within their areas of expres-
sive overlap. The following definitions provide the concepts
and notation for doing so.

Definition 7. LetL be a language for (i.e., a class of) goal
bases. We define:

• U(L) = {uG : G ∈ L}
• RepL(U) = {G ∈ L : uG ∈ U}
• L∩L′ = RepL(U(L) ∩ U(L′))

U(L) is the set of utility functions representable in the lan-
guageL. RepL(U) is the set ofL-representationsof the
utility functions in the setU . L∩L′ is theexpressive inter-
sectionof the languagesL andL′ as represented inL. It is
easy to see that given any two goal-base languagesL andL′,
L∩L′ andL′

∩L are equally expressive.

Definition 8. L � L′ (L′ is at least as succinct asL) iff
there exist a functionf : L∩L′ → L′

∩L and a polynomialp
such thatG ≡ f(G) and size(f(G)) ≤ p(size(G)) for all
G ∈ L∩L′ .

L ∼ L′,L ≺ L′, andL ⊥ L′ (to be read asequally succinct,
less succinct, andincomparable) are defined from� in the
standard way. This definition permits us to compare the suc-
cinctness of languages which differ in expressivity. (Notice
that languages with no overlap in their expressivity would
be considered equally succinct according to this definition.)

Cubes and clauses are natural languages for represent-
ing common utility functions, particularly those which con-
fer bonuses or penalties for combinations of items (cubes:
BoardwalkandPark Place, or assaultandbattery), or those
which reward good-enough options but give an additional
bonus for specificity (clauses: turning a Phillips screw with
a slotted or Phillips screwdriver works, but turning a Phillips
screw with a Phillips screwdriver is better). Here, we com-
pare the relative succinctness of cubes and clauses and their
positive restrictions.

Proposition 4. U(positive cubes, all) ≺ U(cubes, all).

Proof. (Chevaleyre, Endriss, & Lang 2006, Prop. 13).

Proposition 5. U(positive clauses, all) ≺ U(clauses, all).

Proof. Clearly U(positive clauses, all) � U(clauses, all),
since every positive clause is a clause. Consider the fam-
ily of utility functions un : 2{p1,...,pn} → R where

un(X) =

{

1 if X = PS

0 otherwise

un may be represented in clauses as

{(⊤, 1), (
∨

{¬p : p ∈ PS},−1)}

the length of which increases linearly withn. un may be
represented in positive clauses as

{(
∨

X, wW

X) : ∅ ⊂ X ⊆ PS}

where

wW

X =

{

1 if |X | is odd
−1 if |X | is even

Proof that thewW

X define the correct utility function: First,
let

(

n
even

)

and
(

n
odd

)

be the number of even and odd subsets
of n, respectively.

(

n
even

)

=
(

n
odd

)

: For oddn, every even-
sized subsetX has a unique odd-sized complementX̄, and
vice versa. For evenn, notice that

(

n
k

)

=
(

n−1
k−1

)

+
(

n−1
k

)

,
so

(

n
odd

)

=
∑

0≤i≤n
i odd

(

n
i

)

=
(

n
1

)

+
(

n
3

)

+ · · · +
(

n
n−1

)

=
(

n−1
0

)

+
(

n−1
1

)

+
(

n−1
2

)

+
(

n−1
3

)

+ · · ·+
(

n−1
n−2

)

+
(

n−1
n−1

)

=

∑

0≤i≤n−1

(

n−1
i

)

= 2n−1, which is exactly half of the sub-
sets. Next, suppose for purposes of this proof thatwW

∅ = 0,
even though⊤ is not a positive clause. Now,

u(PS) = 1:
(

PS
even

)

=
(

PS
odd

)

, i.e., there are equal numbers
of even and odd sized subsets ofPS, with a corresponding
nonzero weight for each except∅. Thus

(

PS
odd

)

−(
(

PS
even

)

−1) =
1 is the difference between the number of nonzero odd-sized
and even-sized weights. Since all odd-sized weights are1
and all nonzero even-sized weights are−1, 1 is also thesum
of all even- and odd-sized weights.

u(X) = 0, X ⊂ PS: The active weights are thosewW

Y

for which X ∩ Y 6= ∅. There are2PS\X inactive weights
(now includingwW

∅), half of which are for odd-sized dis-

junctions (
(

PS\X
even

)

=
(

PS\X
odd

)

). Since the total number of
even- and odd-sized weights are equal, we have also that
(

PS
even

)

−
(

PS\X
even

)

=
(

PS
odd

)

−
(

PS\X
odd

)

, which are the total
number of active even- and odd-sized weights, respectively.
Since∅ is inactive, the sums of active even- and odd-sized
weights are opposite, and so together sum to 0.

Thus all2n − 1 positive clauses receive nonzero weights.
By Proposition 1, this representation is unique; its lengthin-
creases exponentially withn. Hence over normalized utility
functions (the expressive overlap ofU(positive clauses, all)
andU(clauses, all)), clauses are strictly more succinct than
positive clauses.

Here we show that positive cubes and positive clauses
(with arbitrary weights) are incomparable with respect to
succinctness:

Proposition 6.
U(positive cubes, all) ⊥ U(positive clauses, all).

Proof. U(positive clauses, all) ⊀ U(positive cubes, all):
The family of utility functionsun(X) = 1 if X 6= ∅ and
un(X) = 0 otherwise, is represented uniquely and linearly
as {(

∨

PS, 1)} in positive clauses.wV

X = (−1)|X| in
positive cubes, so the unique representation there assigns
nonzero weights to all2n − 1 positive cubes.
U(positive clauses, all) ⊁ U(positive cubes, all): Let

un(X) be the same family of utility functions as in Propo-
sition 5. un(X) is represented uniquely and linearly as
{(

∧

PS, 1)} in positive cubes, but the representation in pos-
itive clauses is exponential, as shown in Proposition 5.

The fact that U(positive cubes, all) and
U(positive clauses, all) are incomparable in terms of
succinctness indicates that these two classes are best suited
to representing very different kinds of utility functions.(As
mentioned above, positive cubes seem good for awarding
bonuses for completing sets, while positive clauses seem
good for awarding bonuses for acquiring the first item in a
set.) Given their incomparable sublanguages, the following
result is surprising:

Proposition 7. U(cubes, all) ∼ U(clauses, all).

Proof. Follows immediately from Lemma 1.

Lemma 1. If Lcubes ⊆ Φ or Lclauses ⊆ Φ, Lcubes ⊆ Ψ or
Lclauses⊆ Ψ, andΦ, Ψ ⊆ Lcubes∪ Lclauses, thenU(Φ, all) ∼
U(Ψ, all).

Proof. Suppose thatG ∈ U(Φ, all). Enumerate(ϕi, wi) ∈
G. We construct an equivalent goal baseG′. Let G0 = G,

Gi+1 =







(Gi \ {(ϕi, wi)})

∪{(¬ϕi,−wi), (⊤, wi)} if ϕi /∈ Ψ

Gi otherwise

and letG′ = G|G|.
The transformation produces an equivalent goal base: By

(Chevaleyre, Endriss, & Lang 2006, Lemma 1),Gi ≡ Gi+1

for all i, soG = G1 ≡ G2 ≡ ... ≡ G|G|−1 ≡ G|G| = G′.
The transformation produces a goal base in the appropri-

ate language: Suppose thatϕ ∈ Φ. At minimum,Ψ contains
either every clause or every cube. Ifϕ is a clause, then¬ϕ
is a cube, and vice versa. Hence at least one ofϕ and¬ϕ
are inΨ. ⊤ is both a cube (

∧

∅) and a clause (p ∨ ¬p), so
⊤ ∈ Ψ regardless. ThusG′ ∈ U(Ψ, all).

The transformation produces a goal base as succinct as the
original: If ϕ is a cube, thenϕ requires the same number of
atoms and binary connectives as as¬ϕ (written as a clause);
similarly, if ϕ is a clause. The only increase in size between
G andG′ can come from the addition of⊤, so we have that
|G′| ≤ |G| + 1.

Therefore,U(Φ, all) � U(Ψ, all). By the same argument
U(Φ, all) � U(Ψ, all). SoU(Φ, all) ∼ U(Ψ, all).

From this, it follows that there can be no gain in succinct-
ness by adding clauses to a cubes language with arbitrary
weights, or vice versa.

Complexity
In this section, we analyze the effect that restrictions on goal
bases have on the complexity of answering questions about
the utility functions they represent, focusing specifically on
the problem MAX -UTILITY —finding a model which pro-
duces maximal utility, expressed as a decision problem.

Definition 9. The decision problemMAX -UTILITY (H, H ′)
is defined as: Given a goal baseG ∈ U(H, H ′) and an
integerK, check whether there is a modelM ∈ 2PS where
uG(M) ≥ K.

MAX -UTILITY is clearly in NP for the unrestricted lan-
guage, since whetheruG(M) ≥ K is polynomially check-
able, and is NP-complete via a reduction from MAX SAT
(Garey & Johnson 1979). MAX -UTILITY for U(literals, all)
and U(positive, positive) is polynomial. (Respectively:
Make p true iff wp > w¬p for each atomp; and make
all atoms true.) Generally, however, MAX -UTILITY is NP-
complete for languages which permit both positive and neg-
ative weights or both positive and negative literals.

Proposition 8. MAX -UTILITY (k-cubes, pos) is NP-
complete fork ≥ 2.

Proof. The decision problem MAX k-CONSTRAINT SAT is
defined as: Given a setC of k-cubes inPS and an integerK,
check whether there is a modelM ∈ 2PS which satisfies at

leastK of thek-cubes inC. MAX -UTILITY (k-cubes, pos)
is a weighted version of MAX k-CONSTRAINT SAT, which
is NP-complete fork ≥ 2 (Ausiello et al. 1999, LO12,
Appendix B).

Proposition 9. MAX -UTILITY (k-Horn, pos) is NP-
complete fork ≥ 2.

Proof. This is a weighted version of MAX HORN 2-SAT,
which is NP-complete (Jaumard & Simeone 1987, Proposi-
tion 3.1).

Proposition 10. MAX -UTILITY (positivek-cubes, all) is
NP-complete fork ≥ 2.

Proof. MAX -UTILITY (k-cubes, pos) is NP-complete for
k ≥ 2; MAX -UTILITY (k-cubes, all) contains it for any
fixed k and so is NP-complete also. We exhibit a
polynomial reduction of MAX -UTILITY (k-cubes, all) to
MAX -UTILITY (positivek-cubes, all). Given a goal base
G ∈ U(k-cubes, all), constructG′ as follows:

1. For each(
∧

X, w) ∈ G:
(a) LetX ′ = {x : x ∈ X} ∪ {x̄ : ¬x ∈ X}.
(b) Put(

∧

X ′, w) ∈ G′
0.

2. NormalizeG′
0 to [−1, 1].

3. Letδ =
∑

{|w| : (ϕ, w) ∈ G′
0}.

4. Letα = δ + 1, andβ = −3δ − 3.
5. For eachx ∈ PS, put

(x, α), (x̄, α), (x ∧ x̄, β) ∈ G′
1

6. LetG′ = G′
0 ⊕ G′

1.

Here,PS isPS with a bar over each propositional variable.

Lemma 2. Fix A ⊆ PS ∪ PS such thatx, x̄ /∈ A. Then
uG′(A∪{x, x̄}) < uG′(A) < uG′(A∪{x}), uG′(A∪{x̄}).

Proof. Note that for any two modelsM , N we have that
|uG′

0
(M) − uG′

0
(N)| ≤ δ. δ is a (not necessarily tight)

upper bound on the utility change inG′
0 between arbitrary

models. This fact is used below to bound away the terms
uG′

0
(A ∪ {x}) anduG′

0
(A ∪ {x, x̄}):

uG′(A ∪ {x}) = uG′

0
(A ∪ {x}) + uG′

1
(A ∪ {x})

= uG′

0
(A ∪ {x}) + uG′

1
(A) + w

G′

1

x

= uG′

0
(A ∪ {x}) + uG′

1
(A) + δ + 1

≥ uG′

0
(A) − δ + uG′

1
(A) + δ + 1

> uG′

0
(A) + uG′

1
(A) = uG′(A)

Similarly, uG′(A ∪ {x̄}) > uG′(A). Finally,

uG′(A ∪ {x, x̄}) = uG′

0
(A ∪ {x, x̄}) + uG′

1
(A ∪ {x, x̄})

= uG′

0
(A ∪ {x, x̄})

+ uG′

1
(A) + w

G′

1

x + w
G′

1

x̄ + w
G′

1

x∧x̄

= uG′

0
(A ∪ {x, x̄}) + uG′

1
(A) − δ − 1

≤ uG′

0
(A) + δ + uG′

1
(A) − δ − 1

< uG′

0
(A) + uG′

1
(A) = uG′(A)

If M ′ is a model inPS ∪PS, let M = M ′ \ PS. By the
Lemma, we have that every model optimal foruG′ will con-
tain exactly one ofx andx̄ for all x ∈ PS. (If M ′ contains
both x and x̄, it could gain at least 1 utility by removing
both; if M ′ has neither, it could gain at least 1 utility by
adding one.) Call a modelM ′ in PS ∪ PS full if for every
x ∈ PS eitherx ∈ M ′ or x̄ ∈ M ′, andbivalentif for every
x ∈ PS eitherx /∈ M ′ or x̄ /∈ M ′. WheneverM ′ is full and
bivalent,M will be a model inPS.

All of the operations applied in generatingG′ from G are
order-preserving over full, bivalent models: ConsiderG′

0
prior to normalization.uG′

0
(X ′) = uG(X) for all models

X . Normalization is order-preserving. Every full, bivalent
model is optimal foruG′

1
, since all full, bivalent models have

the same value (wx = wȳ andwx∧x̄ = wy∧ȳ for all x, y ∈
PS) and by the Lemma all nonfull or nonbivalent models are
strictly dominated. AddingG′

1 to G′
0 increases every atomic

weight byα, which is order-preserving; and increaseswx∧x̄

by β, which has no effect at all sincex ∧ x̄ is false on every
bivalent model. Therefore, ifuG′(X ′) < uG′(Y ′) whereX ′

andY ′ are full and bivalent, thenuG(X) < uG(Y).
Suppose thatM ′ is optimal for uG′ . It follows from

the Lemma thatM ′ is full and bivalent, and so it fol-
lows from the above thatM is optimal for uG. This
completes the reduction of MAX -UTILITY (k-cubes, all) to
MAX -UTILITY (positivek-cubes, all). GeneratingG′ from
G and recoveringM from M ′ are linear in the size ofG
andPS, respectively, so the reduction is polynomial. Hence
MAX -UTILITY (positivek-cubes, all) is NP-complete.

SinceU(positivek-cubes, all) generates the class ofk-
additive functions, Proposition 10 is closely related to a
known NP-completeness result for winner determination
in combinatorial auctions withk-additive utility functions
(Chevaleyreet al. 2004). The advantage of our method
is that it can easily be adapted to also obtain an NP-
completeness result for positive clauses:

Proposition 11. MAX -UTILITY (positivek-clauses, all) is
NP-complete fork ≥ 2.

Proof. Similar to the proof for the NP-completeness
of MAX -UTILITY (positivek-cubes, all). Given a goal
base G ∈ U(k-clauses, all), construct G′ as follows:

1. For each(
∨

X, w) ∈ G:
(a) LetX ′ = {x : x ∈ X} ∪ {x̄ : ¬x ∈ X}.
(b) Put(

∨

X ′, w) ∈ G′
0.

2. NormalizeG′
0 to [−1, 1].

3. Letδ =
∑

{|w| : (ϕ, w) ∈ G′
0}.

4. Letα = −2δ − 2, andβ = 3δ + 3.
5. For eachx ∈ PS, put

(x, α), (x̄, α), (x ∨ x̄, β) ∈ G′
1

6. LetG′ = G′
0 ⊕ G′

1.
As in the previous proof, construction ofG′ from G is
order-preserving over full, bivalent models. (x ∨ x̄ is

true in every full, bivalent model and hence the disjunc-
tive weights do not disturb the ordering.) Hence by the
same argument, MAX -UTILITY (k-clauses, all) reduces
polynomially to MAX -UTILITY (positivek-clauses, all),
and hence MAX -UTILITY (positivek-clauses, all) is
NP-complete.

Conclusion
We have examined the properties of various goal base lan-
guages. In particular, we have exhibited two which have the
uniqueness property and shown their expressive power, de-
vised a framework for comparison of and compared the suc-
cinctness of representations in several languages, and shown
that MAX -UTILITY , the problem of finding maximal assign-
ments, is NP-complete for several simple languages.

In particular, the results permit us to offer the following
observations for application designers:
• It may be possible to approximate supermodularity with

positive cubes, or with a language very near to positive
cubes. Proposition 3 indicates that the positive cubes lan-
guage captures all but a restrictive class of supermodular
utility functions.

• There is no loss of concision when restricting a language
containing clauses and cubes with arbitrary weights to a
language containing only cubes or only clauses.

• Moving from positive clauses or cubes to general clauses
or cubes can result in greater concision, with no increase
in the complexity of MAX -UTILITY .

• Most languages are NP-complete for MAX -UTILITY ,
which, broadly speaking, appears to happen whenever
both positive and negative literals or both positive and
negative weights are permitted in a language.
Many avenues are open for further research. Intuitive cor-

respondence results for several common properties of util-
ity functions are unknown (sub- and supermodularity, con-
cavity and convexity), as is the precise expressivity of some
simple languages (clauses and positive clauses, with positive
weights).

There is potential for the fruitful application of goal base
languages in both combinatorial auctions (as a bidding lan-
guage) and in committee elections (to extend the expressiv-
ity of voting methods). In the context of combinatorial auc-
tions, goal base languages may provide more natural ways
of expressing bids, especially when bidders’ utility functions
can be expected to have certain properties. Some goal base
languages may also prove better than others when dealing
with preference elicitation, either for agents who must con-
struct a goal base, for agents who wish not to reveal their
complete valuation, or for tabulators who wish to solicit as
little information from agents as possible in order to do de-
termine winners (Sandholm & Boutilier 2006). In the con-
text of committee elections, these languages can provide
voters with ways of expressing (dis)synergies among can-
didates.

References
Anton, H. 1994. Elementary Linear Algebra. Wiley &
Sons, seventh edition.

Ausiello, G.; Crescenzi, P.; Gambosi, G.; Kann, V.;
Marchetti-Spaccamela, A.; and Protasi, M. 1999.Com-
plexity and Approximation. Springer-Verlag.
Chevaleyre, Y.; Endriss, U.; Estivie, S.; and Maudet, N.
2004. Multiagent resource allocation withk-additive util-
ity functions. InProc. DIMACS-LAMSADE Workshop on
Computer Science and Decision Theory, Annales du LAM-
SADE 3, 83–100.
Chevaleyre, Y.; Endriss, U.; and Lang, J. 2006. Expres-
sive power of weighted propositional formulas for cardi-
nal preference modelling. InProc. 10th Intl. Conference
on Principles of Knowledge Representation and Reasoning
(KR-2006), 145–152. AAAI Press.
Coste-Marquis, S.; Lang, J.; Liberatore, P.; and Marquis,
P. 2004. Expressive power and succinctness of proposi-
tional languages for preference representation. InProc. 9th
Intl. Conference on Principles of Knowledge Representa-
tion and Reasoning (KR-2004), 203–212. AAAI Press.
Cramton, P.; Shoham, Y.; and Steinberg, R., eds. 2006.
Combinatorial Auctions. MIT Press.
Garey, M., and Johnson, D. 1979.Computers and In-
tractability: A Guide to the Theory of NP-completeness.
W.H. Freeman and Co.
Grabisch, M. 1997.k-order additive discrete fuzzy mea-
sures and their representation.Fuzzy Sets and Systems
92:167–189.
Jaumard, B., and Simeone, B. 1987. On the complexity
of the maximum satisfiability problem for Horn formulas.
Information Processing Letters26(1):1–4.
Lang, J. 2004. Logical preference representation and com-
binatorial vote.Annals of Mathematics and Artificial Intel-
ligence42(1–3):37–71.
Lehmann, D.; Müller, R.; and Sandholm, T. 2006. The
winner determination problem. In Cramton et al. (2006).
297–317.
Nisan, N. 2006. Bidding languages for combinatorial auc-
tions. In Cramton et al. (2006). 215–232.
Pinkas, G. 1991. Propositional nonmonotonic reasoning
and inconsistency in symmetric neural networks. InProc.
12th Intl. Conference on Artificial Intelligence (IJCAI-
1991). Morgan-Kaufmann Publishers.
Rota, G.-C. 1964. On the foundations of combinato-
rial theory I: Theory of Möbius functions. Zeitschrift
für Wahrscheinlichkeitstheorie und Verwandte Gebiete
2(4):340–368.
Sandholm, T., and Boutilier, C. 2006. Preference elicita-
tion in combinatorial auctions. In Cramton et al. (2006).
233–263.

