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Abstract. This paper gives a survey of expressivity and complexity of
normal modal logics for reasoning about cooperation and preferences.
We identify a class of notions expressing local and global properties rel-
evant for reasoning about cooperative situations involving agents that
have preferences. Many of these notions correspond to game- and social
choice-theoretic concepts. We specify what expressive power is required
for expressing these notions. This is done by determining whether they
are invariant under certain relevant operations on different classes of
Kripke models and frames. A large class of known extended modal lan-
guages is specified and we show how the chosen notions can be expressed
in fragments of this class. In order to determine how demanding reason-
ing about cooperation is in terms of computational complexity, we use
known complexity results for extended modal logics and obtain for each
local notion an upper bound on the complexity of modal logics expressing
it.

1 Introduction

Cooperation of agents is a major issue in many fields such as computer science,
economics and philosophy. The conditions under which coalitions are formed can
occur in various situations involving multiple agents. A single airline company
could e.g. not afford the cost of an airport runway whereas a group of compa-
nies can. More generally, agents can decide to form groups in order to share
complementary resources or because as a group they can achieve better results
than individually. Modal logic (ML) frameworks for reasoning about coopera-
tion, mostly focus on what coalitions can achieve. In Coalition Logic (CL) [1],
this is done by using modalities of the form [C]φ saying that “the coalition C has
a joint strategy to ensure that φ”. The semantics of CL is based on neighbor-
hood models but it has recently been shown how it can be simulated on Kripke
models [2].
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Another crucial concept for reasoning about interactive situations is that of
preferences. It has also received considerable attention from modal logicians (see
[3] for a survey). Recent works (e.g. [4, 5]) propose different mixtures of coopera-
tion logics and preference logics and argue for it as the right system for reasoning
about cooperation. Indeed, in cooperation logics, many concepts from game the-
ory (GT) and social choice theory are commonly encountered. Depending on
the situations to be modelled, different bundles of notions are important. The
ability to express these notions – together with good computational behavior –
make a logic appropriate for reasoning about the situations under consideration.

Rather than proposing a new logical framework, with specific expressivity
and complexity, we identify how social-choice and game-theoretical notions are
demanding for MLs in terms of expressivity and computational complexity. We
identify notions relevant for describing interactive situations and give satisfi-
ability and validity invariance results as well as definability results for them,
identifying the natural (extended) modal languages needed depending on the
class of frames actually considered and the particular bundle of notions of in-
terest. We draw some consequences about the complexity of reasoning about
cooperation in ML. Our results apply to logics interpreted on Kripke structures
using a preference relation for each agent and a relation for each coalition. There
are various interpretations for the coalition relation. The pair (x, y) being in the
relation for coalition C can e.g. mean:

1. Coalition C considers y as being at least as good as x.
2. If the system is in state x, for C it would be at least as good if it was in y.
3. If she can switch the state of the system from x to y, C might/would do it.
4. C can submit a request such that if it is the first one received by the server

while the state is in x, then the state of the system will change from x to y.
5. When the system is in state x, C considers it possible that it is in state y.
6. If the system is in state x, C would choose y as the next state.

We immediately stress that whenever the basic relation is interpreted as
the possibility to bring the system in a different state, we will be dealing with
scenarios in which agents take actions sequentially (e.g. with a server treating
requests in a first arrived, first served manner) rather than simultaneously (as
in ATL or CL e.g.). In some very special cases - e.g. for turn-based [6] or locally
dictatorial [1] frames - the two approaches coincide. However we would like to
stress that the two approach are first of all complementary. Our main focus in
this paper is on concepts bridging both powers and preferences and we think
the same analyze should be provided for powers themselves in e.g. ATL style.
These two analyses could latter be combined in an interesting way. Finally an
important alternative interpretation of the coalition relation is that of group
preferences, in which case ATL models can simply be merged with the models
we will consider. We return to this issue at the end of the next section.

The paper is structured as follows. Sect. 2 introduces three classes of models
of cooperative situations that our results will be about. In Sect. 3, we introduce
local and global notions indicating local properties of a system and global prop-
erties that characterize classes of frames, respectively. They are motivated by



ideas from game theory and social choice theory. We study the expressive power
required to express the local notions (resp. to define the global properties) in
Sect. 6 (resp. Sect. 7) by giving invariance results for relevant operations and
relations between models (resp. frames). Sect. 4 completes this work by intro-
ducing a large class of well-known extended modal languages and giving explicit
definitions of both local and global notions within fragments of them. Moreover,
we present the complexity results model checking and satisfiability for these
languages and thereby give upper bounds for the complexity of logics that can
express the notions we introduce. Finally, we conclude in Sect. 9.

2 The Models

As mentioned, our aim is to study how demanding certain game- and social
choice-theoretical concepts are in terms of expressive power and computational
complexity. The answer of course depends on the models we choose. We consider
three classes of models. Due to the models’ simplicity, there are many suitable
interpretations, which gives our results additional significance. In what follows,
we refer to a frame as the relational part of a model. For simplicity, we introduce
the latter and assume that the domain of the valuation is given by a countable
set of propositional letters PROP and a countable set of nominals NOM. We focus
on model theory and postpone the discussion of formal languages to Sect. 4.

Definition 1 (N-LTS). A N-LTS (Labeled Transition Systems indexed by a finite
set of agents N) is of the form 〈W, N, { C→ | C ⊆ N}, { ≤i | i ∈ N}, V 〉, where
W 6= ∅, N = {1, . . . , n} for some n ∈ IN, C→⊆W×W for each C ⊆ N, ≤j⊆W×W
for each j ∈ N, and V : PROP ∪ NOM→ ℘W , |V (i)| = 1 for each i ∈ NOM.

W is the set of states, N a set of agents and w
C→ v says that coalition C

can change the state of the system from w into v. As mentioned above, other
interpretations are of course possible, and we will sometimes refer to different
interpretations. w ≤i v means that i finds the state v at least as good as the
state w. w ∈ V (p) means that p is true at state w. A standard assumption is that
agents’ preferences are total pre-orders (TPO). Let TPO-N-LTS denote the class of
N− LTSs in which for each i ∈ N, ≤i is a TPO. Finally, we consider models in
which the strict preference relation is an explicit primitive.

Definition 2 (S/TPO− N− LTS). Define S/TPO− N− LTS as models of the form
〈W, N, { C→ | C ⊆ N}, { ≤i | i ∈ N}, { <i | i ∈ N}, V 〉,which extend
TPO− N− LTS models by an additional relation <i⊆ W × W for each i ∈ N
with the constraint that for each i ∈ N, w <i v iff w ≤i v and v 6≤i w.

Depending on the interpretation one is willing to give to C→, it might either be
enriched or replaced by either effectivity functions (CL), or actions and outcome
functions, or more generally transition functions in ATL style. In the latter sense,
computing powers of coalitions would different and would not reduce in the



general case to relations on the state space. As mentioned before, we leave a full
analysis of powers in such settings to future work. In particular, there would be
two way to go. Either drawing on the recently well-understood model-theory of
neighborhood semantics [7] or on a normal simulation of CL [2]. Generally, we
can expect the expressive power to depend on wether powers of coalitions are
taken as primitives or computed from individual powers.

A last methodological comment: when analyzing the expressivity required by
certain local notions, we consider the three class of models to see how the choice
of models affects the invariance results. We now turn to the notions playing the
central role in the paper.

3 The Notions

First, we consider two components of reasoning about cooperative interaction:
what coalitions of agents can achieve together and what individuals prefer. From
these two elements, more elaborated notions can be built. We consider natural
counterparts of social choice- and game theoretical notions and are interested
in local and global notions. Local notions are properties of a particular state
in a particular system. Formally, they are properties of pointed models M, w.
Global notions are properties of classes of systems: we are interested in the
class of frames some property characterizes. W.r.t to content, we distinguish
between notions describing coalitional power and those describing preferences.
There are also combinations of both kinds of notions, such as stability and
effectivity concepts.
3.1 Power of Coalitions. What global constraints about what coalitions
can achieve? w C→ v means “C can achieve the state v at w”. Recall also other
possible interpretations.
Local Notions. Considering the power of a coalition at a given state, the most
basic expression PowL1 says that a group has the ability to achieve a state
satisfying some proposition. Interesting properties concerning the power of a
group include the relation between the coalitional powers of different groups
(PowL3) and the contribution of a single agent to a group’s power, e.g. an agent
can be needed in order to achieve something (PowL2).

– PowL1. Coalition C can achieve a state where p is true.
∃x(w C→ x ∧ P (x))

– PowL2. Only coalitions containing i can achieve a p-state.∧
C⊆N\{i}(∀x(w C→ x→ ¬P (x)))

– PowL3. Coalition C can force every state that coalition D can force.
∀x(w C→ x↔ w

D→ x)

Global Notions. Global properties of coalitional power include general prop-
erties such as the property that each coalition can achieve exactly one result
(PowG1), and coalition monotonicity (PowG3), which says that if a coalition
can achieve some result, then also every superset of that coalition can achieve it.



In various contexts, the power of a group can depend on its size; the condition
that certain results can only be achieved by coalitions containing the majority of
agents (PowG2) occurs in many situations involving processes of decision mak-
ing in groups. PowG4 and PowG5 say that some coalition C is very powerful
compared to other coalitions: Any group of agents not contained in C cannot
achieve anything (PowG4) or cannot achieve anything that C cannot achieve
(PowG5).

– PowG1. Determinacy for coalition-relation, i.e. in any state each coalition
can achieve exactly one state.∧
C⊆N ∀x∃y(x C→ y ∧ ∀z(x C→ z → z = y))

– PowG2. Only coalitions containing a majority of N can achieve something.
∀x(

∧
C⊆N,|C|< |N|2

(¬∃y(w C→ y)))
– PowG3. Coalition monotonicity, i.e. if for C and D, C ⊆ D, then RC ⊆ RD.
∀x(

∧
C⊆N

∧
D⊆N,C⊆D(∀y(x C→ y → x

D→ y)))
– PowG4. If RC[w] 6= ∅, then for any coalition D such that C∩D = ∅, RD[w] = ∅.
∀x

∧
C⊆N(((∃y(x C→ y))→

∧
D⊆N\C ¬∃z(x

D→ z)))
– PowG5. If RC[w] 6= ∅, then for any D such that C ∩ D = ∅, RD[w] ⊆ RC[w].
∀x

∧
C⊆N(((∃y(x C→ y))→

∧
D⊆N\C ∀z(x

D→ z → x
C→ z)))

3.2 Preferences. What do agents prefer? What are suitable global constraints
on preferences? w ≤i v (w <i v) means “i finds v at least as good (a.l.a.g.) as
w” (“i strictly prefers v over w”).
Local Notions. First of all, we can distinguish between strict and nonstrict
preferences. The most basic preference relation that we consider is that of being
“at least as good”. Alternatively, we can also look at the relation “at least as
bad” (PrefL4). Agents’ preferences over states can also be seen as being based
on preferences over propositions [8]. PrefL8 (PrefL10) says the truth of a given
proposition is a sufficient (necessary) condition for an agent to prefer some state.

– PrefL1. There is a state that i finds at least as good where p is true.
∃x(w ≤i x ∧ P (x))

– PrefL2. There is a state that i strictly prefers where p is true.
∃x(w ≤i x ∧ ¬(x ≤i w) ∧ P (x))

– PrefL3.There is a state that all agents find a.l.a.g and that at least one
strictly prefers.
∃x(

∧
i∈N(w ≤i x) ∧

∨
j∈N ¬(x ≤j w))

– PrefL4. There is a state that i finds at least as bad where p is true.
∃x(x ≤i w ∧ P (x))

– PrefL5. There is a state that i finds strictly worse where p is true.
∃x(x ≤i w ∧ ¬(w ≤i x) ∧ P (x))

– PrefL6. i finds a state at least as good as the current one iff j does.
∀x(w ≤i x↔ w ≤j x)

– PrefL7. There is a state that only i finds a.l.a.g. as the current state.
∃x(w ≤i x ∧

∧
j∈N\{i} ¬(w ≤j x))



– PrefL8. i finds every p-state at least as good as the current one.
∀x(P (x)→ w ≤i x)

– PrefL9. i strictly prefers every p-state over the current one.
∀x(P (x)→ (w ≤i x ∧ ¬(x ≤i w)))

– PrefL10. i considers only p-states to be as least as good as the current one.
∀x(w ≤i x→ P (x))

– PrefL11. i strictly prefers only p-states over the current one.
∀x((w ≤i x ∧ ¬(x ≤i w))→ P (x))

Global Notions. In order to ensure that the intuitive idea of preferences is cap-
tured, usually several conditions for the preference relation are required. These
conditions include reflexivity for non-strict preferences and additionally transi-
tivity and completeness (trichotomy being its analogue for strict preferences). In
some situations, it can also be appropriate to require determinacy and thereby
model the property that for each alternative there is exactly one that is at least
as good (PrefG8).

– PrefG1. “at least as good as” is reflexive.
∀x(

∧
i∈N(x ≤i x))

– PrefG2. “at least as good as” is transitive.
∀x∀y∀z(

∧
i∈N((x ≤i y ∧ y ≤i z)→ x ≤i z))

– PrefG3. “at least as good as” is complete.
∀x∀y(

∧
i∈N(x ≤i y ∨ y ≤i x))

– PrefG4. “at least as good as” is a total pre-order.
Conjunction of the two previous formulas.

– PrefG5. “strictly better than” is transitive.
∀x∀y∀z(

∧
i∈N((x ≤i y ∧ ¬(y ≤i x) ∧ y ≤i z ∧ ¬(z ≤i y))→ (x ≤i z ∧ ¬(z ≤i

x))))
– PrefG6. “strictly better than” is trichotomous 1 .
∀x∀y(

∧
i∈N((x ≤i y ∧ ¬(y ≤i x)) ∨ (y ≤i x ∧ ¬(x ≤i y)) ∨ x = y))

– PrefG7. “strictly better than” is a strict total order 2 .
Conjunction of the previous two formulas.

– PrefG8. Determinacy for “at least as good as”, i.e. exactly one successor.
∀x(

∧
i∈N(∃y(w ≤i y ∧ ∀z(x ≤i z → z = y))))

So far, we focussed on preferences of individuals. A natural question in social
choice is how to aggregate individual preferences into group preferences. This
question can be considered in our framework by interpreting C→ as a preference
relation for each C ⊆ N. We now consider how group preferences arise from the
preferences of individuals:

– PrefG9. C finds a state a.l.a.g. as the current one iff all its members do.
∀x∀y(

∧
C⊆N(x

C→ y ↔
∧
i∈C x ≤i y))

– PrefG10. — iff at least one of its members does.
∀x∀y(

∧
C⊆N(x

C→ y ↔
∨
i∈C x ≤i y))

1 A relation R is trichotomous if for every x, y we have that xRy or yRx or x = y
2 A strict total order is an irreflexive, transitive and trichotomous relation.



– PrefG11. — iff a majority of its members do.
∀x∀y(

∧
C⊆N(x

C→ y ↔
∨

D⊆C,|D|> |C|2
(
∧
i∈D x ≤i y)))

3.1 Simple combinations of the preceding concepts. We start with a
conceptually and historically important social-choice theoretic notion: that of
a dictator. An agent d is a dictator of the system under consideration if the
preferences of the group exactly mimic the preferences of d. (Note that an even
stronger notion of a dictator is obtained by interpreting C→ as an achievement
relation, in which case if there is a dictator d, anybody can only do what d likes.)
We introduce the notion of local dictator as a dictator who controls one state in
the system. The usual notion of the dictator is the obvious generalization to all
states of the system. A definition follows:

Definition 3 (Local Dictatorship).

– An agent i is a weak local dictator at w iff any coalition C prefers v at w
only if i thinks that v is at least as good as w.

– An agent i is a strong local dictator at w iff any coalition C prefers v at w
only if i thinks that v is strictly better than w.

We also introduce natural combinations of powers and preferences. The first
notion e.g. describes the fact that the coalition C could do something useful for
i (in some cases giving i an incentive to participate in it.) and the third notion
characterizes the situations (pointed models) in which a unanimously desired
state remains unachievable.

Local Notions

– PPL1. C can achieve a state that i finds at least as good as the current one.
∃x(w C→ x ∧ w ≤i x)

– PPL2. C can achieve a state that all i ∈ D find a.l.a.g. as the current one.
∃x(w C→ x ∧

∧
i∈D w ≤i x)

– PPL3. There is a state that all agent prefers but no coalition can achieve it.
∃x((

∧
i∈N w ≤i x) ∧

∧
C⊆N ¬(w C→ x))

– PPL4. C can achieve all states that agent i finds a.l.a.g. as the current one.
∀x(w ≤i x→ w

C→ x)
– PPL5. C can achieve all states that i strictly prefers over the current one.
∀x((w ≤i x ∧ ¬(x ≤i w))→ w

C→ x)
– PPL6. i is a weak local dictator.
∀x(w C→ x→ w ≤i x)

– PPL7. i is a strong local dictator.
∀x(w C→ x→ (w ≤i x ∧ ¬(x ≤i w)))

Global Notions. The first notion is a natural constraints on the powers
of a coalition: a coalition can achieve a state iff it does something good for all
its agents - otherwise they would not take part in the collective action (even so
the agent might be indeed needed). PPG3 is one of the conditions of Arrow’s



impossibility theorem.PPG4 reflects a notion of individual rationality that says
that you would not join a coalition if you don’t win something by doing so.
Sometimes the requirement is generalized to every sub-coalition and/or weaken
to “not joining if you lose something”. (See for example the definition of the core
of the a coalitional game in [9] (Definition 268.3). PPG5 applies to system in
which an agent is indispensable to achieving anything: an unique capitalist in a
production economy or a unique server can be typical examples. (Note that the
agent does not need not be unique.)

– PPG1.Coalitions can only achieve states that all its members consider at
least as good as the current one.
∀x∀y

∧
C⊆N(x

C→ y →
∧
i∈C(x ≤i y))

– PPG2. One agent is a weak local dictator in every state (dictator).∨
i∈N ∀x∀y(x C→ y → x ≤i y)

– PPG3. There is no dictator.
¬(

∨
i∈N ∀x∀y(x C→ y → x ≤i y))

– PPG4. If agent i can achieve some state that he strictly prefers then for any
C containing i it holds that whenever C− {i} cannot achieve some state but
C can, then i strictly prefers that state over the current one.∧
i∈N ∀x(∃y(x

{i}→ y ∧ x ≤i y ∧ ¬(x ≤i y)) →
∧

C⊆N,i∈C(∀z(x
C→ z ∧ ¬(x

C\{i}→
z))→ (x ≤i z ∧ ¬(z ≤i x))))

– PPG5. Only coalitions containing i can achieve something.
∀x

∧
C⊆N\{i} ¬∃y(x C→ y)

– PPG6. In each state, there is some i such that any coalition containing i
can achieve exactly the same states as it can without i.

∀x(
∨
i∈N

∧
C⊆N,i∈C ∀y(x C→ y ↔ x

C\{i}→ y))
– PPG7. For any agent, there is some state in which coalitions not containing

this agent cannot achieve any state.∧
i∈N ∃x(

∧
C⊆N,i∈C ¬∃y(x C→ y))

3.1 Efficiency and Stability Notions

In our setting, it is natural to interpret our state space as possible social states or
allocations of goods. In general, an important criterion from welfare economics is
to discriminate “good” from “bad” states in terms of efficiency. The idea is that
if we can change the allocation or social state and make an agent happier without
making anyone else less happy then we are using resources more efficiently and
it is socially desirable to do so. For example PrefL3 in this respect means that
the current state is not efficient – we say that there is a state that is a Pareto-
improvement of it. If no state Pareto-improves the current one, we say that it is
Pareto-efficient. Importing the notion of Pareto-efficiency into our framework is
straightforward and we distinguish three different variations of it.

Definition 4 (Pareto-efficiency). A state will be said to be

– weakly Pareto-efficient iff there is no state that everyone strictly prefers.



– Pareto-efficient iff there is no state such that everyone considers it to be at
least as good and at least one agent thinks it is strictly better.

– strongly Pareto-efficient iff no state is at least as good for everyone.

Equilibrium concepts in game theory characterize stable states: Considering
what the other agents are doing in equilibrium I don’t have an incentive to do
something that would make us leave this stable state. Generalizing this idea, a
state of a system can be thought of as stable if no agent has an incentive to
make the system transit to another state, i.e. no agent can make the system
transit in a state she prefers. We can think in this way of strategy profiles in
a strategic game as assigning roles or task to the different agents. Two profiles

x = (s∗−i, s
∗
i ), y are related by

{i}→ iff i can unilaterally change role (strategy)
to s′i in the next repetition of the game and y = (s∗−i, s

′
i). As an example, the

stability of a state where an agent provides the public good on his own depends
on whether he cares enough about the public good to provide it on his own.
Formally, a state will be said to be stable if there is no other state that an agent
can achieve alone and strictly prefers. Given the close correspondence to Nash
equilibria (see e.g. [9]), we use the names Nash-stability, and Nash-cooperation
stability for its group version.

Definition 5 (Nash-stability). A state will be said to be

– Nash-stable iff there is no state that an agent i strictly prefers and that i can
achieve alone.

– strongly Nash-stable iff there is no state that an agent i finds it a.l.a.g. and
that i alone is able to achieve.

– Nash-cooperation stable iff there is no state v and coalition such C that every
i ∈ C strictly prefers v and C can achieve v.

– strongly Nash-cooperation stable iff there is no state v and coalition C such
that every i ∈ C finds v a.l.a.g. and C can achieve v.

Local Notions

– EF1.The current state is weakly Pareto-efficient.
¬∃x(

∧
i∈N(w ≤i x ∧ ¬(x ≤i w)))

– EF2. The current state is Pareto-efficient.
¬∃x((

∧
i∈N w ≤i x) ∧

∨
j∈N ¬(x ≤i w))

– EF3. The current state is strongly Pareto-efficient.
¬∃x(

∧
i∈N w ≤i x)

– ST1. The current state is Nash stable.
¬∃x(

∨
i∈N(w

{i}→ x ∧ w ≤i x ∧ ¬(x ≤i w)))
– ST2. The current state is strongly Nash stable.

¬∃x(
∨
i∈N(w

{i}→ x ∧ w ≤i x))
– ST3. The current state is Nash-cooperation stable.
¬∃x(

∨
C⊆N(w

C→ x ∧
∧
i∈C(w ≤i x ∧ ¬(x ≤i w))))

– ST4. The current state is strongly Nash-cooperation stable.
¬∃x(

∨
C⊆N(w

C→ x ∧
∧
i∈C w ≤i x))



4 Languages

As it will be clearer from the invariance results in the next section, Basic Modal
Language will generally be too weak for reasoning about cooperation. On the
other hand any notion expressible in the first-order correspondence language
is expressible in the hybrid language H(E,@, ↓) [10]. Amongst temporal logics,
boolean modal logics and the various hybrid logics, there are are well-understood
fragments. We introduce these all these Extended Modal Languages at once
as a “super” logic.

Syntax. The syntax of this “super” logic is recursively defined as follows:
α ::= ≤j | C | υ | α−1 | ?φ | α;α | α ∪ α | α ∩ α | α
φ ::= p | i | x | ¬φ | φ ∧ φ | 〈α〉φ | Eφ | @iφ | @xφ | ↓x.φ | 8 α 8 φ |
where j ∈ N, C ∈ ℘(N)−{∅}, p is an element of a countable set of propositional

letters PROP, i is an element of the countable set of nominals NOM and x ∈ SVAR,
for SVAR being a countable set of variables.
Semantics. A valuation now maps propositional letters to subsets of the domain
and nominals to singleton subsets. Given a N− LTS, a program α is interpreted
on a relation as indicated on the left side. Formulas are interpreted together with
an assignment g : SVAR→W as indicated on the right side.

R≤i = ≤i M, w, g  p iff w ∈ V (p)

RC =
C→ M, w, g  i iff w ∈ V (i)

Rυ = W ×W M, w, g  x iff w = g(x)
Rβ−1 = {(v, w)|wRβv} M, w, g  φ ∧ ψ iffM, w, g  φ and M, w, g  ψ
R?φ = {(w,w) | w  φ} M, w, g  ¬φ iffM, w, g 6 φ
Rβ;γ = {(v, w)|∃x : vRβxRγw} M, w, g  〈α〉φ iff ∃v : wRαv and M, v, g  φ
Rβ∪γ = Rβ ∪Rγ M, w, g, Eφ iff ∃v ∈W M, v, g  φ
Rβ∩γ = Rβ ∩Rγ M, w, g, @iφ iffM, v, g  φ where V (i) = {v}
Rβ = (W ×W )−Rβ M, w, g, @xφ iffM, g(x), g  φ

Rα∗ =
S
n∈IN0(Rα)n M, w, g,↓x.φ iffM, w, g[x := w]  φ

M, w, g  8 α 8 φ iff wRαv whenever M, v, g  φ

Expressive Power Tree. The least expressive modal language we consider is
ML(N), which is of similarity type 〈(C)C⊆N, (≤i)i∈N〉. Its natural extensions go
along two lines: adding program constructs and new operators. ML(N,∩, i) e.g.
refers to the logic with language:

α ::= ≤j | C | α ∩ α φ ::= p | i | ¬φ | φ ∧ φ | 〈α〉φ.
As language inclusion implies expressive power inclusion, we only indicate (some)
non-obvious facts of inclusions in this space of modal languages. L ≤ L′ says “L′
is at least as expressive as L”.

Fact 1.ML(N,∪, ; , ?) ≤ML(N). Fact 5.ML(N, ) ≤ML(N, ↓, E, x).
Fact 2.ML(N,@, i) ≤ML(N, E, i). Fact 6.ML(N, −1) ≤ML(N, ↓, E, x).
Fact 3.ML(N,∩) ≤ML(N, ↓,@, x). Fact 7.ML(N, E) ≤ML(N, ).
Fact 4.ML(N, 8 8) ≤ML(N, ).



Expressivity of modal logics is usually characterized by invariance results. The
following section gives the basic definitions and background results.

5 Invariance of Modal Languages: Background Results

We start by introducing some relations between models. Let τ be a finite modal
similarity type involving only binary relations. Let M = 〈W, (Rk)k∈τ , V 〉 and
M′ = 〈W ′, (R′k)k∈τ , V ′〉 be two models of similarity type τ .

Definition 6 (Bisimulations). A bisimulation between M and M′ is a non-
empty binary relation Z ⊆W ×W ′ fulfilling the following conditions:
AtomicHarmony For every p ∈ PROP, wZw′ implies w ∈ V (p) iff w′ ∈ V ′(p).
Forth ∀k ∈ τ , if wZw′ & Rkwv then ∃v′ ∈W ′ s.t. R′kw

′v′ & vZv′.
Back ∀k ∈ τ , if wZw′ & R′kw

′v′ then ∃v ∈W s.t. Rkwv & vZv′.

We briefly describe the other bisimulations (see [10] for details). Intuitively, ∩-
Bisimulations (resp. CBisimulations) require that Back and Forth salso hold for
the intersection (resp. the converse) of the relations, while H-Bisimulations ex-
tend AtomicHarmony to nominals. TBisimulations (resp.H(@)-bisimulations) are
total 3 bisimulations (resp. total H-Bisimulations), and H(E)-Bisimulations are
H-Bisimulations matching states “with the same name”. Let us define bounded
morphisms, generated subframes and disjoint unions.

Definition 7 (BM). f : W → W ′ is a bounded morphism from M to M′ iff:
AtomicHarmony For every p ∈ PROP, w ∈ V (p) iff f(w) ∈ V ′(p).
R− homomorphism ∀k ∈ τ , if Rkwv then R′f(w)f(v).
Back ∀k ∈ τ , if R′kf(w)v′ then ∃v ∈W s.t. f(v) = v′ and Rkwv.

Definition 8 (Generated Submodel). We say that that M′ is a generated
submodel (GSM) of M iff W ′ ⊆W , ∀k ∈ τ , R′k = Rk ∩ (W ′ ×W ′), ∀p ∈ PROP ,
V ′(p) = V (p) ∩ (W ′ ×W ′) and if w ∈W ′ and Rwv then v ∈W ′.

Definition 9 (Disjoint Unions). Let (Mj)j∈J be a collection of models with
disjoint domains. Define their disjoint union

⊎
jMj = 〈W,R, V 〉 as the union

of their domains and relations, and define for each p ∈ PROP, V (p) :=
⋃
j Vj(p).

Definition 10 (Invariance). A property of pointed models Φ(X, y) is invari-
ant under λ-Bisimulations iff whenever there exists a λ-bisimulation Z between
M and M′ such that (w,w′) ∈ Z, then Φ(M, w′) holds iff Φ(M′, w′) holds.
Invariance for other operations is defined similarly.

The three following (classical) results gives a good idea of the respective
expressive power of certain extended modal languages. We recall them to be
selfcontained. For details and examples, the reader is referred to [11, 10].

3 Z ⊆W ×W ′ is total iff ∀w ∈W ∃w′ ∈W ′ .wZw′ & ∀w′ ∈W ′ ∃w ∈W .wZw′.



Theorem. [12] Let φ(x) be a formula of the first-order correspondence language
with at most one free variable. The following are equivalent:

1. φ(x) is invariant under bisimulations

2. φ(x) is equivalent to the standard translation of a modal formula

Theorem. [13, 14] Let φ(x) be a formula of the first-order correspondence lan-
guage with at most one free variable. The following are equivalent:

1. φ(x) is invariant under taking generated submodels

2. φ(x) is equivalent to the standard translation of a formula of ML(N, ↓,@, x)

Theorem. [15] A first-order definable class of frames is modally definable iff
it is closed under taking bounded morphic images, generated subframes, disjoint
unions and reflects ultrafilter extensions.

The reader might now like to see immediately how the notions can be defined
in extended modal languages and go directly to Sect. 8. Of course, the choice
of the languages is only justified once we have determined the required expres-
sive power both to express the local notions and to define the class of frames
corresponding to the global ones. Thus we start by doing so in the next section.

6 Invariance Results: Satisfiability

Satisfiability invariance results for the three classes of pointed models defined in
Sect. 2 follow. A “Y” in a cell means that the row notion is invariant under the
column operation.



6.1 Results for the General Case

Bis CBis ∩-Bis TBis H-Bis H(@)-Bis H(E)-Bis BM GSM DU

[PowL1] Y Y Y Y Y Y Y Y Y Y
[PowL2] Y Y Y Y Y Y Y Y Y Y
[PowL3] N N N N N N N N Y Y
[PrefL1] Y Y Y Y Y Y Y Y Y Y
[PrefL2] N N Y N N N N N Y Y
[PrefL3] N N N N N N N N Y Y
[PrefL4] N Y N N N N N N N(2) Y
[PrefL5] N N N N N N N N N Y
[PrefL6] N N N N N N N N Y Y
[PrefL7] N N N N N N N N Y Y
[PrefL8] N N N N N N N N N N
[PrefL9] N N N N N N N N N N
[PrefL10] Y Y Y Y Y Y Y Y Y Y
[PrefL11] N N N N N N N N Y Y

[PPL1] N N Y N N N N N Y Y
[PPL2] N N Y N N N N N Y Y
[PPL3] N N N N N N N N Y Y
[PPL4] N N N N N N N N Y Y
[PPL5] N N N N N N N N Y Y
[PPL6] N N N N N N N Y Y Y
[PPL7] N N N N N N N N Y Y
[EF1] N N N N N N N N Y Y
[EF2] N N N N N N N N Y Y
[EF3] N N Y N N N N N Y Y
[ST1] N N N N N N N N Y Y
[ST2] N N N(1) N N N N N Y Y
[ST3] N N N N N N N N Y Y
[ST4] N N Y N N N N N Y Y

Comments. Most of our notions are not invariant under bisimulations. Thus,
the basic modal language 4 is not expressive enough to describe our local notions
(without further restrictions on the class of frames). Invariance under BM often
fails; some failures are due to intersections of relations, but as ∩-Bis also fails
quite often, this cannot be the only reason. Invariance under GSM however holds
in many cases; its (rare) failures occur for properties with backward looking
features. This is good news for expressivity: we can expect definability in the
hybrid language with ↓-binder 5 . However, we cannot expect decidability since
the satisfiability problem of the bounded fragment 6 is highly undecidable.
Finally, the results are the same for hybrid and basic bisimulations. This is
no suprise: roughly speaking, at the level of local satisfaction, to exploit the

4 of similarity type 〈{ C→ | C ⊆ N}, { ≤i | i ∈ N}〉
5 [14, 13] have proved that all notions definable in the first-order correspondence lan-

guage that are invariant under GSM are equivalent to a formula of the bounded frag-
ment, i.e. to a formula of the hybrid language with ↓-binder (which are notational
variants).

6 Equivalent to the hybrid language with ↓-binder.



expressive power of nominals, the notions would have to refer explicitly to some
state. Here are two representative results.
Representative Proofs for the General Case

Proposition 1. On the class N− LTS, ST2 is not invariant under ∩-bisimulation.

Proof. Let M = 〈{w, v}, {1, 2}, { C→ |C ⊆ {1, 2}}, {≤1,≤2}, V 〉, where w
{1,2}→

v, w ≤1 v, v ≤1 w,w ≤2 v, V (p) = {w, v}. Let M′ = 〈{s, t, u}, {1, 2}, { C→ ′|C ⊆
{1, 2}}, {≤′1,≤′2}, V ′〉, where s

{1,2}→ ′t, u
{1,2}→ ′t, s ≤′1 t, u ≤′1 t, t ≤′1 u, s ≤′2 t, u ≤′2

t, V ′(p) = {s, t, u}. Then, M, w  ST2 and M′, s 1 ST2 because s
{1,2}→ ′t and

s <′1 t, s <
′
2 t. Moreover, Z = {(w, s), (w, u), (v, t)} is a ∩-bisimulation. ut

Proposition 2. On N− LTS, PrefL4 is not invariant under GSM.

Proof. LetM = 〈{w, v}, {1}, { C→ |C ⊆ {1}} = ∅, {≤1}, V 〉, where v ≤1 w, V (p) =
{v}. Then,M, w  PrefL4 because v ≤1 w and v ∈ V (p). But for the submodel
M′ generated by {w}, M′, w 1 PrefL4 since v is not contained in M′. ut

6.2 Results for the Total Pre-orders (TPO) Case

Overview of the Results. This table shows rows that differ from the table for
the general case. The entries that differ are in boldface.

Bis CBis ∩-Bis TBis H-Bis H(@)-Bis H(E)-Bis BM GSM DU

[PrefL8] N Y N N N N N N N Y*
[PrefL9] N Y N N N N N N N Y*

[ST2] N N Y N N N N N Y Y*

Comments. Except for disjoint union (DU), the restriction to the TPO case brings
only slight benefits. ∗ marks trivial invariance: the only DU of models that is
complete is the trivial one: mapping a model to itself.

Proposition 3. On TPO− N− LTS, EF1 is preserved under bounded morphisms.

Proof. Let f be a bounded morphism from M = 〈W, N, { C→ |C ⊆ N}, {≤i |i ∈
N}, V 〉 to M′ = 〈W ′, N, { C→′|C ⊆ N}, {≤′i |i ∈ N}, V ′〉. Assume that M, w  EF1
andM′, f(w) 1 EF1. Then, ∃v′ such that f(w) <′i v

′,∀i ∈ N. Then, by the back
condition of bounded morphisms, ∃v1, . . . vn ∈W such that w ≤i vi and f(vi) =
v′,∀i ∈ N. Then, for all i ∈ N : w <i vi because otherwise f(vi) = v′ ≤′i f(w),
which contradicts f(w) <i v′. Also, for every vi such that ∃i such that w <i vi,
there is some j such that w 6<j vi becauseM, w  EF1. But since ≤j is total and
f(w) 6= v′ = f(vi), we conclude that vi ≤j w. Then f(vi) = v′ ≤′j f(w), which
contradicts f(w) <′j v

′. Hence, EF1 is preserved under bounded morphisms. ut



6.3 Results for the TPO Case with Strict Preference Relation

Overview of the Results. The following table contains the rows that differ
from the ones in the table for total preorders without strict preference relation.

Bis CBis ∩-Bis TBis H-Bis H(@)-Bis H(E)-Bis BM GSM DU

[PrefL2] Y Y Y Y Y Y Y Y Y Y
[PrefL3] N N N N N N N Y Y Y
[PrefL5] N Y N N N N N N N Y
[PrefL6] N N N N N N N Y Y Y
[PrefL7] N N N N N N N Y Y Y
[PrefL11] Y Y Y Y Y Y Y Y (4) Y Y

[PPL7] N N N N N N N Y Y Y
[EF1] N N Y N N N N N Y Y
[EF2] N N Y N N N N Y Y Y
[ST1] N N Y N N N N N Y Y
[ST3] N N Y N N N N N Y Y

Comments. The failures of invariance under GSM are still present, reflecting the
fact that we do not have converse relations. By contrast, PrefL11 and PrefL2
are now invariant under bisimulation and a simple boolean modal logic with
intersection seems to have the right expressive power to talk about efficiency
and stability notions, since all of them are now invariant under ∩-Bisimulations.
A representative result follows:

Proposition 4. On S/TPO-N-LTS, PrefL11 is invariant under BM.

Proof. LetM andM′ be two S/TPO− N− LTS and assume that f is a bounded
morphism fromM toM′. Assume that the property PrefL11 does not hold for
M, w, i.e. there is a state v ∈ Dom(M) such that w <Mi v and v 6∈ VM(p). But
then by R− homomorphism, we have f(w) <M

′

i f(v) and by AtomicHarmony,
f(v) 6∈ VM

′
, and thus PrefL11 does not hold for M′, f(w). For the other

direction assume that PrefL11 is not satisfied atM′, f(w), it follows that there
is a state v′ ∈ Dom(M′) such that v′ 6∈ VM

′
(p) but then by Back there is a

state v ∈ Dom(M) such that f(v) = v′ and w <Mi v. But by AtomicHarmony,
v 6∈ VM(p) and thus PrefL11 is not satisfied at M, w, concluding our proof.

7 Closure Results for global notions: Validity

General Definitions. First, we consider bounded morphic images (BMI) of
frames. BM on frames are obtained by dropping AtomicHarmony in Definition
7. A property is preserved under BMI iff it is preserved under surjective BM.
Moreover, we consider closure under generated subframes (GSF) – the frame-
analogue to GSM (cf. Definition 8). We will also check whether properties reflect
GSF. A property φ reflects GSF if whenever for every frame F , it holds that every
GSF of F has property φ, then so does F . We also consider closure under taking
disjoint unions (DU) of frames, which are defined in the obvious way. Moreover,
we look at closure under images of bisimulation systems [10], which are families
of partial isomorphisms.



Definition 11 (Bisimulation System). A bisimulation system from a frame
F to a frame F ′ is a function Z : ℘W ′ → ℘(W × W ′) that assigns to each
Y ⊆W ′ a total bisimulation Z(Y ) ⊆W ×W ′ such that for each y ∈ Y :

1. There is exactly one w ∈W such that (w, y) ∈ Z(Y ).
2. If (w, y), (w,w′) ∈ Z(Y ), then w′ = y.

7.1 Validity Preservation Results
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[PowG1] Y Y Y Y Y [PrefG8] N Y Y Y Y
[PowG2] Y Y Y Y Y [PrefG9] N Y Y Y Y
[PowG3] Y Y Y Y Y [PrefG10] Y Y Y Y Y
[PowG4] Y Y Y Y Y [PrefG11] N(5) Y Y Y Y
[PowG5] Y Y Y Y Y [PPG1] Y Y Y Y Y
[PrefG1] Y Y Y Y Y [PPG2] Y Y N N Y
[PrefG2] Y Y Y Y Y [PPG3] N N N Y N?
[PrefG3] Y Y N N Y [PPG4] N Y Y Y Y
[PrefG4] Y Y N N Y [PPG5] Y Y Y Y Y
[PrefG5] N Y Y Y Y [PPG6] Y Y Y Y Y
[PrefG6] N Y N N Y [PPG7] Y N Y Y Y
[PrefG7] N Y N N Y

Comments. At the frame validity level, modal logic is a fragment of Monadic
Second Order Logic. That it does better at this level is thus not only an artifact
of the chosen notions.

Proposition 5. Validity of PrefG11 is not preserved under BMI.

Proof. Consider the frames F = 〈{u, v, w}, {1, 2}, { C→ | C ⊆ {1, 2}}, {≤1,≤2}〉,
with w 1→ v, w

2→ v,
{1,2}→ = ∅, w ≤1 v, w ≤2 u and F ′ = 〈{s, t}, {1, 2}, { C→ | C ⊆

{1, 2}}, {≤′1,≤′2}〉, with s
1→ t, s

2→ t,
{1,2}→ = ∅, s ≤1 t, s ≤2 t. Then f : W →

W ′, f(w) = s, f(v) = f(u) = t is a surjective BM. However, F  PrefG11 and

F ′ 1 PrefG11 because s ≤1 t, s ≤2 and it is not the case that s
{1,2}→ t.

8 Modal Definability

The model-theoretic results of previous sections do give us some information
about possible definability results. However, let us be more constructive and give
formulas that indeed do the job: be it for local-satisfaction or frame-definability
aims. We indicate the“best” (least expressive) language we found still being able
to express the property under consideration. Another useful indicator is that of
the computational complexity of the logic. More precisely to its satisfiability
problem (SAT). and model checking problem (MC). Since we lack the space to



discuss these issues in depth here is how we bridge our expressivity and com-
plexity results: for each local (resp. global) notion, find the least expressive logic
that is still able to express it locally (resp. define the class of frames correspond-
ing to it) and take the complexity of this logic as an upper bound. We assume
the reader to be familiar with the the classes PSPACE and EXPTIME (see [16]).
Π0

1 is a notation from the arithmetical hierarchy (see [17]). Problems in Π0
1

are undecidable but co-recursively enumerable. A typical problem establishing
Π0

1 -hardness is IN × IN tiling (see [11, 18]). We start by giving an overview of
the known complexity results of the satisfiability problem for extended modal
languages.

8.1 Satisfiability Problem for Extended Modal Languages

A piece of notation: in the following table, a language L after the lower bound
indicates that the lower bound follows from the fact the current language extends
L, and ρ← L that there is a polynomial reduction of L to the current language,
while σ → L in the Upper Bound part means that there exists a polynomial
translation of the current language to the modal language L. The first column
shows whether the satisfiability problem is decidable.

Dec. Lower Bound for SAT Upper bound for SAT

ML Y PSPACE-hard (Prenex QBF) [19] PSPACE [19, 20]
ML(∪, ; ) Y PSPACE-hard (ML) PSPACE (σ → ML)
ML( −1) Y PSPACE-hard PSPACE
ML(∩) Y PSPACE-hard (ML) PSPACE
ML(∩,∪) Y PSPACE-hard (ML) PSPACE [21]
ML(i) Y PSPACE-hard (ML) PSPACE [22]

Dec. Lower Bound for SAT Upper bound for SAT

ML(@, i) Y PSPACE-hard (ML) PSPACE (MCG 7 ) [22]
ML(E) Y EXPTIME-hard [23, 24] EXPTIME
ML(E, i) Y EXPTIME-hard (E) EXPTIME
ML( −1, E) Y EXPTIME-hard (E) EXPTIME

ML( −1, i) Y EXPTIME-hard EXPTIME
[22] Red. of M  φ 8 σ → 2VGF 9 [25]

PDL Y EXPTIME-hard (Corridor tiling)
[26]

EXPTIME (Elimination
of Hintikka Sets) [11]

ML( −1,∪, ; , ∗) Y EXPTIME-hard (PDL) EXPTIME
ML( −1,∪, ; , ∗, E) Y EXPTIME-hard (PDL) EXPTIME
ML( −1,∪, ; , ∗, E, i) Y EXPTIME-hard (PDL) EXPTIME
ML( ) Y EXPTIME-hard ρ← fragment of E EXPTIME [27, sec.5]
ML(∩, ) Y EXPTIME-hard (ML( )) EXPTIME [27, sec.5]
ML(∪, ) Y EXPTIME-hard (ML( )) EXPTIME [27, sec.5]
ML(∩,∪, ) Y EXPTIME-hard (ML( )) EXPTIME [27, sec.5]
ML(↓,@, x) N Π0

1 -hard (reduction class) [10] Π0
1

(IN× IN tiling) [28]
L1 N Π0

1 -hard (reduction class) [29] Π0
1

ML(E, ; ,∩) N Π0
1 -hard (IN× IN tiling) [11] Π0

1



8.2 Defining Local Notions

Local Formula Best Language SAT MC

PowL1 〈C〉p ML(N) PSPACE[19, 20] P
PowL2

V
C 6⊇[C]¬p ML(N) PSPACE[19, 20] P

PowL3 ↓x.[D] ↓y.@x〈C〉y ML(N, ↓,@, x) EXPTIME PSPACE[30]
PrefL1 〈≤i〉 ML(N) PSPACE P
PrefL2 ↓x.〈≤i〉(p ∧ [≤i]¬x) ML(N, ↓, x) EXPTIME PSPACE[30]
PrefL3 ↓x.〈

T
i∈N ≤i〉(

W
j∈N[≤j ]¬x) ML(N, ↓,∩, x) Π0

1 PSPACE

PrefL4 〈≤i−1〉p ML(N, ↓,@, x) PSPACE PSPACE[30]
PrefL5 ↓x.〈≤i−1〉(p ∧ [≤i−1]¬x) ML(N, ↓,−1, x) Π0

1 PSPACE
PrefL6 [(≤i ∩≤j) ∪ (≤j ∩≤i)]⊥ ML(N, ,∩) EXPTIME P[31]
PrefL7 〈≤i ∩(

T
j∈N−{i}≤j)〉> ML(N, ,∩) EXPTIME P[31]

PrefL8 8 ≤i 8p ML(N, 8 8) EXPTIME P
PrefL9 ↓x.A ↓y.(¬〈≤i〉x ∧ @x〈≤i〉y) ML(N, ↓,@, x, E) Π0

1 PSPACE[32]
PrefL10 [≤i]p ML(N) PSPACE P
PrefL11 ↓x.[≤i]([≤i]¬x → p) ML(↓, x) EXPTIME PSPACE[30]
PPL1 〈C∩ ≤i〉> ML(N,∩) PSPACE P[31]
PPL2 〈C ∩ (

T
i∈D ≤i)〉> ML(N, ,∩) EXPTIME P[31]

PPL3 〈(
T
i∈N ≤i) ∩ (

S
C⊆N

C→)〉> ML(N, ,∩) EXPTIME P[31]

PPL4 [C∩ ≤i]⊥ ML(N, ,∩) EXPTIME P[31]
PPL5 ↓x.[C∩ ≤i]〈≤i〉x ML(N ↓, , ,∩, x) Π0

1 PSPACE
PPL6

W
C⊆N[C ∩ ≤i]⊥ ML(N, ,∩) EXPTIME P[31]

PPL7 ↓x.[C] ↓ .y.(¬〈≤i〉x ∧ @x〈≤i〉y) ML(N, ↓,@, x) Π0
1 PSPACE[30]

EF1 ↓x.[
T
i∈N ≤i]

W
i∈N〈≤i〉x ML(N, ↓,∩) Π0

1 PSPACE
EF2 ¬ ↓x.〈

T
i∈N ≤i〉(

W
j∈N[≤j ]¬x) ML(N, ↓,∩) Π0

1 PSPACE

EF3 [
T
i∈N ≤i]⊥ ML(N,∩) PSPACE P[31]

ST1
V
i∈N ↓x.[i∩ ≤i]〈≤i〉x ML(N, ↓,∩) Π0

1 PSPACE
ST2

V
i∈N[i∩ ≤i]⊥ ML(N,∩) PSPACE P[31]

ST3
V

C⊆N ↓x.[C ∩ (
T
i∈C ≤i)]

W
j∈C〈≤j〉x ML(N, ↓,∩) Π0

1 PSPACE

ST4
V

C⊆N[C ∩ (
T
i∈C ≤i)]⊥ ML(N,∩) PSPACE P[31]

8.3 Defining Global Notions

First of all, we define what it means for a formula to be valid on a class of frames.

Definition 12 (Validity on a class of frames). We say that a formula φ is
valid on a class of frames F iff for any frame F ∈ F and any model M based on
F , at all states w in Dom(F), M, w  φ. We write F  φ.

Modal definability has again two sides: We can look for a formula φ such that
M, w  φ iffM, w has some property, or such that F  φ iff F has the property.

7 Model Construction Game
8 global satisfaction
9 Two-Variable guarded fragment



Axiom Best Language SAT MC

PowG1
V

C⊆N((〈C〉φ → [C]φ) ∧ 〈C〉>) ML(N) PSPACE P

PowG2
V

C:|C|<|N|/2[C]⊥ ML(N) PSPACE P

PowG3
V

C⊆N(〈C〉φ → [C]φ) ML(N) PSPACE P

PowG4
V

C⊆N
V

D⊇C(〈C〉φ → 〈D〉φ) ML(N) PSPACE P

PowG5 〈C〉> →
V

D:C∩D=∅(〈D〉φ → 〈C〉φ) ML(N) PSPACE P

PrefG1 φ → 〈≤i〉φ ML(N) PSPACE P
PrefG2 〈≤i〉〈≤i〉φ → 〈≤i〉φ ML(N) PSPACE P
PrefG3 p ∧ Eq → (E(p ∧ 〈≤i〉q) ∨ E(q ∧ 〈≤i〉p)) ML(N, E) EXPTIME P[31]
PrefG4 Conjunction of the 3 previous axioms ML(N, E) EXPTIME P[31]
PrefG5 see below ML(N) PSPACE P
PrefG6

V
i∈N(@j〈≤i〉k ∨ @kj ∨ @k〈≤i〉j) ML(N,@, i) PSPACE P[30]

PrefG7 [PrefG5] ∧ [PrefG6] ∧ (
V
i∈N(j → ¬〈≤j〉j)) ML(N,@, i) PSPACE P[30]

PrefG8
V
i∈N ((〈≤i〉φ → [≤i]φ) ∧ 〈≤i〉>) ML(N) PSPACE P

PrefG9 〈C〉i↔
V
i∈C〈≤i〉i ML(N, i) PSPACE P[30]

PrefG10 〈C〉p↔
W
i∈C〈≤i〉p ML(N) PSPACE P

PrefG11 〈C〉i↔
W

D⊆C&|D|> |C|2
(
V
i∈D〈≤i〉i) ML(N, i) PSPACE P[30]

PPG1 〈C〉φ →
V
i∈N〈≤i〉p ML(N) PSPACE P

PPG2
W
i∈N A

V
C⊆N(〈C〉φ → 〈≤i〉φ) ML(N, E) EXPTIME P

PPG3
V
i∈N

W
C⊆N(≤i∪ ≤i)〈≤i ∩ C〉> ML( ,∩,∪) EXPTIME P[31]

PPG4 see below ML(N, i) PSPACE P[30]

PPG5
V

C 6⊇{i}[
C→]⊥ ML(N) PPSPACE P

PPG6 〈C〉φ →
W

D⊂C〈D〉φ ML(N) PSPACE P
PPG7

V
i∈N E

V
C 6⊇{i}[C]⊥ ML(N, E, i) EXPTIME P[30]

The two missing axioms of the previous table.∧
i∈N

(p ∧ 〈≤i〉(q ∧ ¬〈≤i〉p ∧ 〈≤i〉(r ∧ ¬〈≤i〉q)))

→ p ∧ 〈≤i〉(r ∧ ¬〈≤i〉p)
(AxPrefG5)

[p ∧ 〈{i}〉q ∧ 〈≤i〉(q ∧ 〈≤i〉¬p)] →∧
{i}⊆C⊆N

[(〈C〉r ∧
∧

D⊆C−{i}

¬〈D〉r) →

〈≤i〉(r ∧ ¬〈≤i〉p)]

(AxPPG4)

Representative definability results.

Proposition 6. PowL3 is true of M, w iff M, w, g ↓x.[D] ↓y.@x〈C〉y.

Proof. From right to left: Assume that M, w, g ↓ x.[D] ↓ y.@x〈C〉y. Then
M, w, g[x := w], [D] ↓ y.@x〈C〉y. But now assume there is a state v that
coalition D can force from w. By definition, w D→ v (1). But by (1) and semantics
of [D] then we haveM, v, g[x := w],↓y.@x〈C〉y (2). (2) and semantics of ↓gives
us M, v, g[x := w, y := v]  @x〈C〉y (3). From (3) and semantics of @x and the



fact that g(x) = w we haveM, w, g[x := w, y := v]  〈C〉y (4). But by semantics
of 〈C〉 and the fact that g(y) = v, (4) really means that w C→ v (5). Since the v
was arbitrary, it follows from (5) that at w for any state v, if D can achieve it,
then C can do so, too. But this precisely means that PowL3 is true ofM, w. ut

Theorem 1 (ten Cate [28]). The satisfiability problems for formulas inML(N, ↓
,@, x)−2 ↓2 with bounded width is EXPTIME-complete.

Proposition 7. PowL3 is expressible in an extended modal language with a
satisfiability problem in EXPTIME.

Proof. By the previous proposition, we have PowL3 is defined by ↓ x.[D] ↓
y.@x〈C〉y. But ↓x.[D] ↓ y.@x〈C〉y does contain the 2 ↓2 scheme. Thus, PowL3
is defined by a formula in ML(N, ↓,@, x) − 2 ↓ 2 (1). But by Theorem 1 the
satisfiability problem of ML(N, ↓,@, x)−2 ↓2 is in EXPTIME. ut

9 Conclusion

We identified a set of natural a set of natural notions for reasoning about coop-
eration: local notions giving properties of a state of a given system and global
notions defining a class of frames. We provided satisfiability (resp. validity) in-
variance results for these notions for a large class of operations and relations
between models (resp. frames). We also gave explicit definability results and ob-
served that defining frames for cooperation logics does not seem too demanding
in terms of expressive power, as most of the notions considered are definable in
the basic modal language. On the other hand, our results show that local notions
call for modal logics for which satisfaction is not invariant under bounded mor-
phisms. However, as long as we avoid converse modalities, interesting reasoning
about cooperation can be done within GSM-invariant modal languages. Though
this fact does not directly lead to a nice upper bound on the complexity of the
logic’s SAT(nor to its decidability), our definability results show that most of the
considered notions can (invidually) be expressed in MLs in EXPTIME. Based on
our current work, the following lines seem worth exploring:

– Since dealing with real coalitional powers is probably more natural using
neighborhood semantics, it will be useful to do the same work for modal
logics of the CL-type or of the type of one of its normal simulations [2].

– It would be interesting to obtain similar invariance results and upper bounds
on the complexity of the logics needed to encode concrete arguments from
social choice theory and (cooperative) GT, thus addressing the complexity
of actual reasoning about cooperative situations.

– In order to obtain a complete picture of the complexity of reasoning about
cooperation, we need a procedure to assess the LB of the complexity of
modal logics that can express some notion. Moreover, the complexity of some
aspects of cooperation may be captured rather by the complexity of model
checking than by that of SAT. Thus, future work also includes determining
the model checking complexity for notions that are of interest in reasoning
about cooperation.
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