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1 Introduction: back and forth between algebra and model theory 

Algebra and model theory are complementary stances in the history of logic, and their 

interaction continues to spawn new ideas, witness the interface of First-Order Logic and 

Cylindric Algebra. This chapter is about a more specialized contact: the flow of ideas 

between algebra and modal logic through ‘guarded fragments’ restricting the range of 

quantification over objects. Here is some general background for this topic. For a start, 

the connection between algebra and model theory is rather tight, since we can view 

universal algebra as the equational logic part of standard first-order model theory. As an 

illustration, van Benthem 1988 has a purely model-theoretic proof of Jónsson’s 

Theorem characterizing the equational varieties with distributive lattices of congruence 

relations, a major tool of algebraists. Deeper connections arise in concrete cases with 

categorial dualities, such as that between BAOs and the usual relational models of 

modal logic. An important example is the main theorem in Goldblatt & Thomason 1974 

characterizing the elementary modally definable frame classes through their closure 

under taking generated sub-frames, disjoint unions, p-morphic images, and anti-closure 

under ultrafilter extensions. Its original proof goes back and forth between algebras and 

frames, in order to apply Birkhoff’s characterization of equational varieties. Later on, 

van Benthem 1993 gave a purely model-theoretic proof, replacing trips into algebraic 

territory by the use of ω–saturated models. Even so, the trade between algebra and logic 

remains interesting, even when it is not a matter of applying concrete theorems, but 

exporting more general ideas. The present chapter is a case in point. So-called 

relativization started as a technique for generalizing relational and cylindric algebra, 

while also, in some cases, ‘defusing’ the undecidability of these systems. But as we 

shall see, mainly based on van Benthem 1996A, Andréka, van Benthem & Németi 

1998, van Benthem 2005, it has traveled well into standard logic and model theory. 
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2 From CRS and relational algebra to modal arrow logic 

 
2.1 Relativization: technique and motivation 
 
Relativization Relativization in relational algebra restricts the available pairs on an 

underlying set Y to some subset, i.e., some largest binary relation U, not necessarily the 

full product Y x Y. Computation of values for complex algebraic terms still proceeds via 

the usual operations of complementation, union, composition, etc. but with their clauses 

relativized to work inside the set U. In particular, with compositions, we have a clause  
 

x R ; S y iff there exist pairs (x, z), (z, y) ∈ U such that x R z and z S y.  
 
This extension of the set of models leaves several base laws of relational algebra valid, 

while others become invalid: Associativity (R  S) ; T = R ; (S ; T)) is a typical example. 

Crucially, in this contraction process, the set of algebraic validities becomes decidable. 

But if we impose additional conditions on the relation U, then undecidability may re-

appears. For instance, if we require transitivity, relational algebra is undecidable again: 

the set of available pairs then looks ‘too much’ like the full Cartesian product Y x Y. For 

further details, we refer to Németi 1985, 1995 as well as several chapters in this Book. 

The system CRS, another product of the well-known ‘Budapest School’ of Hajnal 

Andréka, Ístvan Németi and their students develops analogous ideas for all of cylindric 

algebra, with similar effects – and it, too, has generated a large subsequent literature (cf. 

Venema 1991, Marx 1995, Mikulas 1995, Marx & Venema 1997, Venema 2006).  

 
These ideas have counterparts in logic, and they have been influential in several ways. 

Relativization in relational algebra suggests a modal perspective where transitions are 

now viewed as objects in their own right (‘arrows’), in addition to points or states, while 

algebraic terms now correspond to modal formulas defining properties of transitions. 

For the development of this ‘Arrow Logic’, cf. van Benthem 1991, Venema 1991, 1996. 

Likewise, CRS has influenced logical systems, in particular ‘cylindric modal logic’ 

(Venema 1995) and ‘first-order dependence logic’ (van Benthem 1997B), where gaps in 

the total space of variable assignments model the important phenomena of dependence 

and independence between variables, that have come to the fore recently with many 

authors (van den Berg 1996, Hodges 2001, Väänänen 2007). Both lines from algebra to 

logic, arrow logic and dependence logics, will be discussed in this chapter.  
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Generalized models Extending original classes of models for logics to manipulate their 

properties is widespread. The famous move from ‘standard models’ to ‘general models’ 

in Henkin 1949 turns the complex system of second-order logic into an axiomatizable 

two-sorted first-order logic (van Benthem & Doets 1983). Such moves are most 

attractive when they get an independent motivation. For relational algebra and cylindric 

algebra, this is provided by what van Benthem 1996A called ‘content versus wrappings’ 

in logical modeling. Intuitively, the core calculus of action embodied in relational 

algebra seems simple, and undecidability comes as a surprise. Thus, we want to find a 

semantics that gives just the bare bones of action, while additional effects of ‘standard 

set-theoretic modeling’ are separated out as negotiable decisions of formulation that 

engender the undecidability. This theme underlies the systems presented in this chapter. 

 
Fragments But there is also a quite different technical way of viewing relativization as 

a general logical device. Already Wadge 1975 showed how relational algebra can be 

axiomatized smoothly by using explicit pair notation (x, y) : R, making transitions 

explicit as objects, which suggests viewing it as a fragment of first-order logic. Now it 

is a well-known result of Tarski’s that standard relational algebra translates into the 

undecidable 3-variable fragment of first-order logic, through clauses such as  
 

R ; S (x, y) ↔ ∃ z (R(x, z) ∧ S(z, y))  
 
which typically use existential quantification over objects in the domain. But the clause 

in our earlier description replaces this by another syntactic format, namely 
 

R ; S (x, y) ↔ ∃ z (U(x, z) ∧  U(z, y) ∧ R(x, z) ∧ S(z, y))  
 
Thus, we end up inside a sub-language of the 3-variable fragment, where patterns of 

quantification are restricted or ‘guarded’ in some way by atomic formulas. Similar 

points hold for CRS and first-order dependence logics, and the result there is that we 

end up in a sub-language of full first-order logic known as the Guarded Fragment.  

 
In this paper, we will develop this fragment view as well, and eventually, we will also 

address the following fundamental question about our presentation so far. What is the 

relation between the two lines of (a) taking a logical language and extending its class of 

models, and (b) retaining the original model class while restricting the language? 
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2.2 Arrow logic in a nutshell 
 
Motivation: core content versus wrappings Relational algebra is a calculus of transition 

relations modeling actions in general. But then its undecidability raises an issue, since 

basic action does not seem to involve high complexity. We want a dynamic core logic 

avoiding spurious complexity of ‘wrappings’: accidents of formulation. This motivates 

Arrow Logic (van Benthem 1991, Venema 1991, 1996), inspired by the CRS version of 

relational algebra, taking transitions seriously as objects in their own right. 

 
Models and language Intuitively, binary relations denote sets of arrows. Think of 'arcs' 

in multi-graphs, 'transitions' for dynamic procedures in computer science, or 

'preferences'. Arrows may have internal structure beyond ordered pairs <source state, 

target state>: several arrows may share one input-output pair, but also certain pairs 

may not be instantiated by an arrow. This motivates the following abstract notion: 
 
Definition Arrow Frames. 

Arrow Frames F = (A, C3, R2, I1) have objects A ('arrows') with predicates C3 x ,yz (x is 

a 'composition' of y, z), R2 x, y (y is a 'reverse' of x), I1 x (x is an 'identity' arrow).         ■ 
 
Arrow frames do not identify transitions with ordered pairs of states. Distinct arrows 

may have the same pair <input, output>, and not every such pair need have an arrow. 

Indeed, CRS-algebra suggests that arrows be ordered pairs, while giving up the idea that 

all ordered pairs are available. The resulting arrow frames need not be full Cartesian 

products of some state space. An even more radical version comes from category 

theory, with objects and morphisms. Let arrows be functions f: A→B inducing ordered 

pairs <A, B> of 'source' and 'target'. Then, the relation C expresses the partial function 

of composing maps, while reversal R holds between a map and its inverse, if available. 

Quite different interpretations and applications may be found in Kurtonina 1995, which 

analyzes composition of linguistic expressions in the ‘Lambek Calculus’ of categorial 

grammar in arrow logic. Andréka & Mikulas 1993 relate this back to relational algebra. 
 
Language and truth definition Arrow frames F support a modal language that analyzes 

Relational Algebra. Arrow Models M add a propositional valuation V, and one can then 

interpret a matching modal propositional language defining properties of arrows using 

two modalities reflecting the basic 'ordering operations' of relational algebra:  
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 M, x |=  p iff x ∈ V(p) 

 M, x |= ¬φ iff not M, x |= φ 

 M, x |= φ&ψ iff M, x |= φ  and  M, x |= ψ 

 M, x |= φ•ψ iff there exist y, z with C x, yz and M, y |= φ, M, z |=ψ 

 M, x |= φˇ iff there exists y with R x, y and M, y |= φ•ψ 

 M, x |= Id iff I x  
 
Eventually, one can introduce more expressive modal operators into this vocabulary.  

 
Modal logic The minimal logic of arrow models is an obvious counterpart of its mono-

modal version, whose key principles are the following axioms of Modal Distribution: 
 
 (φ1∨φ2) • ψ ↔ (φ1•ψ) ∨ (φ2•ψ) 

 φ • (ψ1∨ψ2) ↔ (φ•ψ1) ∨ (φ•ψ2) 

 (φ1∨φ2)ˇ ↔ φ1ˇ ∨ φ2ˇ 

 
A completeness theorem is provable here along standard lines, using Henkin models, 

with the usual techniques as explained, e.g., in Blackburn, de Rijke & Venema 2000. 

The minimal logic is also decidable, again using a standard technique such as filtration. 

 
2.3     Arrow logic and relational algebra via modal correspondence 
 
Landscape of arrow axioms and frame correspondence On top of this minimal system, 

one can analyze axioms from Relational Algebra via constraints on arrow frames via 

frame correspondences. This analysis reveals a whole landscape of options. We only 

state results here, all of them follow by standard correspondence techniques using the 

‘Sahlqvist form’ of the relevant axioms (cf. Blackburn, de Rijke & Venema 2000): 

 
Example Laws for Arrow Reversal. 
 

(1) ¬(φ)ˇ → (¬φ)ˇ     iff ∀x ∃y R x, y 

(2) (¬φ)ˇ → ¬(φ)ˇ     iff ∀xyz: (R x, y & R x, z)  → y=z  
 
Together, these axioms make the binary relation R a unary function r of 'reversal'.   

Then the 'double conversion' axiom makes the function r idempotent:   
 

 (3) (φ)ˇˇ  ↔  φ  iff    ∀x r(r(x)) = x                          ■  
 
With this notation, the following axioms connect reversal and composition: 
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Example Arrow Composition Triangles. 
 

 (4) (φ•ψ)ˇ →  ψˇ•φˇ iff ∀xyz:  C x, yz → C r(x), r(z)r(y) 

(5) φ • ¬(φˇ•ψ) → ¬ψ iff ∀xyz:  C x, yz → C z, r(y)x 
 
Together (2), (4), (5) imply the further interchange law ∀xyz:  C x, yz → C y, xr(z). 

Moreover, there is actually a more elegant form of axiom (5) without negation: 
 
 φ & (ψ•χ)  →  ψ • (χ & (ψˇ•φ))                 ■ 
 
Finally, the propositional constant Id constrains 'identity loops'. 
 
Example Identity Arrows. 
 

 (6) Id → Idˇ iff ∀x:  I x → I r(x) 

(7) Id•φ → φ iff ∀xyz: (I y & C x, yz) → x=z              ■ 

 
CRS-style core logic In our correspondence analysis of the basic axioms of Relational 

Algebra, some constraints come out as purely universal, making no demands on the 

supply of arrows. These seem the true core of action or computation. Universal frame 

constraints express laws for composition, converse and identity of arrows that lack 

existential import: by purely universal first-order sentences over arrow frames.  
 
Fact The complete logic of arrow models satisfying all universal frame constraints  

valid in Relational Algebra is the set of validities for concrete CRS-style pair  

arrow models where arrows are ordered pairs – and the only change from  

standard models for relational set algebras is the limited supply of pairs.  
 
This is easy to see. By contrast, existential constraints force the arrow set to become 

more like full Cartesian spaces, i.e., the standard models leading to undecidability. 
 
Remark Associativity is existential. 

One perhaps counter-intuitive feature of this analysis concerns Associativity for 

composition. Its frame condition is existential, requiring regroupings of transitions: 
 

 (8a) (φ•ψ)•χ  →  φ•(ψ•χ)   iff   ∀xyzuv: ( C x, yz & C y, uv) →   

      ∃w: (C x, uw & C w, vz) ) 

(8b) and likewise in the opposite direction. 
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Now Associativity is often considered a useful core feature of dynamic logics: different 

orders of composition are equivalent. In contrast, CRS-style arrow logic distinguishes 

different ways of 'chunking' parts, while Associativity can lead to undecidability. 

Similar points are known from categorial logics (van Benthem 1996B, Chapter 12).     ■ 

 
2.4 Arrow logic over pair models 
 
Axiomatics Here is a complete axiomatization for the logic of pair arrow models with 

the obvious definitions for composition, reversal and identity (Marx 1995):  
 
Theorem The following set of principles is complete for pair arrow models: 

(1) the minimal arrow logic, (2) converse is an idempotent function, (3)  

identity laws Id ↔ Id • Id, Id ↔  Idˇ, φ & id → φˇ, Id • φ ↔ φ,  φ • Id ↔ φ,   

φ  • ¬ φˇ → ¬ Id, (4) ‘triangle laws’ φ • ¬(φˇ•ψ) → ¬ψ,  ¬(φ•ψˇ) •ψ → ¬φ,  

(5) the limited associativity principles ((φ & Id)•ψ)•χ  ↔  (φ & Id)•(ψ•χ),  

((φ • (ψ& Id))•χ  ↔  φ•((ψ& Id)•χ), (φ •ψ)•(χ& Id)  ↔  φ•(ψ•(χ& Id)). 
 
Further pleasant properties of this system include decidability and Craig interpolation. 

Many further results are in Marx 1995, Mikulas 1995, while Marx & Venema 1997 is 

an excellent general source, also referencing the seminal work of the Budapest group. 

 
Language extensions: dynamic arrow logic Pair arrow logic retains its nice properties 

when we extend its vocabulary with a universal modality, or other operators. These 

moves exemplify a program of trading deductive strength for expressive power. One 

important extension yields Dynamic Arrow Logic, with an infinitary operator for 

composition similar to the crucial Kleene iteration of propositional dynamic logic:  
 
 M, x  |= φ*      iff     x can be C-decomposed into some finite sequence  

    of arrows satisfying φ in M. 
 
Defined in this way, φ* satisfies the following simple laws that yield the system DAL: 
 
  (9) φ  →   φ* 

(10) φ*• φ*  →   φ* 

(11) if |– φ →  α and |– α•α →  α, then |– φ* →  α 
 
Theorem (van Benthem 1994) DAL is complete for its intended interpretation.  
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Remark: dynamic logic as two-sorted arrow logic. One can mirror dynamic logic more 

closely by combining arrow logic with a modal logic of states. This involves operators 

of test ? from propositions to programs, and domain <> from programs to propositions. 

These are non-homogeneous distributive modalities correlating states and arrows:  
 
 M, x |= φ ?    iff there exists some s with T x, s and M, s  |=  φ   

 M, x |= <π>       iff there exists some x with D s, x and M, x  |=  π   
 
Intuitively, the relation T x, s says that x is an identity arrow for the point s, while D s, x 

says that s is a left end-point of the arrow x. Via frame correspondences, axioms on ?, 

<> impose special connections between T and D. For instance, <φ?> ↔ φ expresses the 

conjunction of ∀s ∃x: D s, x & Tx, s and ∀sx: Ds, x → ∀ s':  T x, s' → s=s'.            ■ 

 
2.5  A fragment view? 

In Section 1, we claimed that generalized semantics may sometimes be reinterpreted as 

a move to restricted syntax. Indeed, Arrow Logic or CRS-versions of relational algebra, 

may be translated into fragments of first-order logic involving guarded quantification. 

But we will explain this connection only later on, in Section 4 below. 

 
3 From CRS to general assignment models for first-order logic 
 
3.1 The core mechanics of first-order semantics, a modal perspective 
 
The main recursion The standard semantics for predicate logic has this key clause: 
 
 M, α  |=  ∃x φ  iff  for some  d ∈ |M|:  M, αxd |= φ  
 
The key is the use of variable assignments α that decompose quantified statements with 

free variables in their matrix. But looking at the usual truth definition, a compositional 

semantics for first-order quantification only needs the following abstract core pattern: 
 
 M, α  |=  ∃x φ    iff for some  β : Rxαβ  and  M, β |= φ  
 
Here, assignments α, β become abstract states, and the concrete relation α =x β – which 

held between α and αxd –become just any binary relation Rx. This involves poly-modal 

models M = (S, {Rx}x∈VAR, I) with S a set of states, Rx a binary update relation for each 

variable x, and I an interpretation function giving truth values to atomic formulas Px, 

Rxy, ... in each state α. Thus existential quantifiers ∃x become existential modalities 



 9  

<x>. This abstract semantics has an independent appeal: first-order evaluation is an 

informational process that changes computational states, as in the ‘dynamic semantics’ 

of Groenendijk & Stokhof 1991, Veltman 1996. First-order logic then becomes a 

dynamic logic with a special choice of atoms and no explicit compound programs.  
 
‘Deconstruction’ From this modal point of view, standard semantics arises by insisting 

on three additional mathematical choices, not enforced by the core semantics: 
 
  (a)  States are identified with variable assignments,  

(b)  Update between states must be the specific relation =x, and  

(c)  All assignments in the function space  DVAR are available to evaluation.   
 
The former are issues of implementation, the latter a strong existence assumption. 

(Actually, standard first-order logic needs only locally finite assignments.) Henceforth, 

we shall regard these further choices as negotiable. In fact, it is often felt that tricks like 

making predicates sets of tuples should be orthogonal to the nature of logical validity.  
 
Minimal logic Our modal semantics validates the minimal poly-modal logic with  
 

• all classical Boolean propositional laws 

• Modal Distribution:  ∀x (φ → ψ) →  (∀x φ → ∀x ψ) 

• Modal Necessitation:  if  |– φ, then  |– ∀x φ 

• a definition of ∃x φ as ¬∀x¬ φ  
 
This logic is complete, and has the usual properties of first-order logic, such as Craig 

interpolation or the Los-Tarski preservation theorem. One can now usefully pursue 

standard first-order model theory in tandem with its modal counterpart. For instance, 

consider modal bisimulations for these models, relating states making the same atoms 

true, with zigzag conditions for the relations Rx. Specializing these to standard models 

leads to the standard notion of potential isomorphism (de Rijke 1993, van Benthem 

1996B, van Benthem & Bonnay 2008). And in all this, the modal system is decidable. 
 
Landscapism The modal perspective suggests a landscape below standard predicate 

logic, with a minimal modal logic at the base, ascending to standard semantics via 

frame constraints. In particular, this landscape contains decidable sublogics of predicate 

logic, sharing its desirable meta-properties. Thus, the ‘undecidability of predicate logic’ 

largely reflects mathematical accidents of its Tarskian modeling, encoding set-theoretic 



 10  

facts about function spaces DVAR – beyond the core logic of quantification and variable 

assignment. We shall explore this view of first-order semantics, including richer 

languages. Abstract core models support new distinctions between various forms of 

quantification (‘monadic’ and ‘polyadic’) that get collapsed in standard predicate logic. 

 
3.2 From modal state models to general assignment models  

To recapitulate, we have just re-interpreted first-order logic as a modal logic on a much 

more general class of abstract modal state models  
 

M = (S, {Rx}x∈VAR, I)  
 
with S a set of 'states', Rx a binary accessibility relation between states for each variable 

x, and I an interpretation function giving a truth value to each atomic formula in each 

state s. This is a huge extension of standard semantics, where no domain of 'individual 

objects' need now be present underpinning the states. Quantifiers became modalities:   
 

M, s  |= ∃xφ      iff  for some t: Rxst and M, t |= φ.  
 
More concrete is the following halfway house, an intermediate semantics that retains 

assignments as the state space – just taking away the existential assumption of 'fullness' 

from standard Tarski models for first-order logic.  

 
Definition  General assignment models. 

A general assignment model is an ordered pair (M, VV) with M a standard first-order 

model with domain D and interpretation function I, and VV  any non-empty set of 

assignments on M, i.e., a subset of DVAR. The first-order language is interpreted as 

usual, now at triples M, VV, s with s∈V – with the following clause for quantifiers: 
 
 M, VV, s |= ∃x φ   iff for some t∈VV: s =x t and M, VV, t |= φ 
 
Here =x is the standard relation between assignments of identity up to x-values.          ■ 
 
Remark: independent motivations The ‘gaps’ in general assignment models are not just 

a trick for lowering complexity: they may be seen as modeling the natural phenomenon 

of dependencies between variables. Changes in value for one variable x may induce, or 

at least be correlated with, changes in value for another variable y. Hintikka & Sandu 

1997, Hodges 2001, Väänänen 2007 are other recent approaches to dependence in logic. 
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Also, van Benthem & Martinez 2008 point out how the above modal perspective on 

dependence given here may also be related to the analysis of constraint-based 

information flow in situation semantics (cf. Barwise & Seligman 1995, Mares 2003). 

 
3.3  Complete base logic  

The complete set of validities for the new semantics is still well-behaved: 
 
Theorem The logic of general assignment models is completely axiomatized  

by the standard axioms for the poly-modal version of the logic S5 plus 

all atomic 'locality principles'  (¬)Px → ∀y (¬)Px with x∩y =∅. 
 
This complete logic 'CRS' has been much studied (excellent sources are Németi 1995, 

Marx & Venema 1997). The completeness proof involves various representation 

arguments. Some results from van Benthem 1996B, Sections 9.8 and 9.9, give the 

flavour. Let x, y be finite sequences of variables. The notation Rx denotes the sequential 

composition of accessibility relations Rx as they occur in their given order in x. 
  
Theorem  An abstract modal frame (S, {Rx}x∈VAR) is isomorphic to the frame of  

a general assignment model iff the Rx are equivalence relations satisfying two  

'Path Principles' (a) if s Rz1 t, ..., s Rzk t, and the only variable occurring in all  

z1, ..., zk is x, then s Rx t, (b) if no variable occurs in all of z1, ..., zk, then s=t. 
  
Less is needed if we are content with a weaker equivalence than isomorphism: 
  
Theorem A finite modal model is bisimilar to a general assignment  

model if and only if its accessibilities are all equivalence relations. 
  
Typically not universally valid in arbitrary modal models are the following principles: 
 

(i) [u/y]ψ → ∃yψ      with u free for y in ψ   Existential Generalization 

(ii) φ(x) → ∀yφ(x)      with no y free in φ(x)     Full Locality 
 
Viewed positively again, these failures reflect the special handling of variables in 

models where not all assignments need be available. All of x, y, z, ... then acquire a sort 

of 'individuality', due to interactions with other variables. As we said earlier, variables 

can now have or lack dependencies, which again gives them a certain individuality. 
 
CRS is also decidable, using modal filtration techniques. We omit details here.  
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3.4  Language extensions 

General assignment models do not just make first-order logic weaker. They also support 

an enrichment, in supporting new vocabulary reflecting distinctions that could not yet 

be seen in standard first-order logic. Examples are irreducibly polyadic quantifiers ∃x 

binding tuples of variables x, with the following truth condition: 
 
 M, VV, s |= ∃x φ   iff for some t∈VV: s =x t and M, VV, t |= φ 
 
This time, =x is identity between assignments up to values for all the variables in x.  In 

standard first-order logic, the notation ∃xy•φ is just short-hand for ∃x∃yφ or ∃y∃xφ in 

any order. But in GAM-semantics, these two expressions are no longer equivalent, as 

not all 'intermediate assignments' for x- or y-shifts need be present – and they are both 

non-equivalent to ∃xy, as defined just now. Moreover, one can also interpret single or 

polyadic substitution operators directly in this style (cf. Venema 1994): 
 
 M, VV, s |= [y/x] φ   iff s[x:=s(y)]∈VV &  M, VV, s[x:=s(y)]|= φ 

 
3.5 General semantics for non-first-order fixed-point  languages 

General assignment models also suggest new perspectives on non-first-order systems, in 

particular fixed-point logics of computation and action in general. Consider the fixed-

point version LFP(FO) of first-order logic (Ebbinghaus & Flum 1995). This language 

extends the usual inductive formation rules for first-order syntax with an operator  
 

µP, x• φ(P, Q, x)  
 
where P may occur only positively in φ(P, Q, x), and x is a tuple of variables of the 

right arity for P. The relevant predicates are the smallest fixed-points of the following 

monotone set operation on predicates in any given model M: 
 
 FM

φ  = λP• {d in M | (M, P), d |= φ(P, Q)} 
 
With the fixed-point theorems underpinning this system, we see a process of successive 

approximation for the predicate P that involves changing assignments through ordinal 

stages. In this process, the full space DVAR is usually taken for granted, may depend on 

the available assignments, and thus, in our present terms, the 'relativized' version of 

LFP(FO) is worth exploring. We make a few observations (cf. van Benthem 2005). 
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The syntax for formulas φ in the language LFP(FO) now needs a bit more care, since 

variables are less 'anonymous' in general assignment models, as we noted before. In 

particular, when defining a predicate µP, x• φ(P, Q, x), the particular variables x matter. 

This suggests we are only defining values for the specific atom Px, whereas variants 

such as Py must be viewed as substitution instances [y/x]Px. With this understanding, 

we can give a definition of semantic evaluation as before. 
 
Definition GAM fixed-point evaluation. 

Formulas φ in the above language induce the following map in general assignment 

models (M, VV) with some given assignment s for the free variables  in φ:  
 
 F M, s

φ  = λP• {d in M | s[x:= d]∈VV & (M, P), s[x:= d] |= φ(P, Q)} 
 
Smallest and greatest fixed-points are then defined as usual.            ■ 
 
Example  Transitive closure of guard predicates. 

Consider the fixed-point formula φ = µP, x• Qx ∨ ∃ y [y/x]Px. Its approximation 

sequence as defined above starts with the empty set for P, and it ends by stage ω, where 

iteration of the map F M, s
 φ  produces nothing new. Here are some stages: 

 
P0  =  ∅ 

P1  =  {d | s[x:=d]∈VV & (M, P0), s[x:= d]|= Qx ∨ ∃ y [y/x]Px}  

=  {d | s[x:=d]∈VV & Q(d)} 

P2 =  {d | s[x:=d]∈VV & (M, P1), s[x:= d]|= Qx ∨ ∃ y [y/x]Px} 

  = {d | s[x:=d]∈VV & (Q(d) ∨  for some object e: 

 s[x:=d][y:=e]∈VV   & s[x:=e][y:=e]∈ V V  & Q(e))} 
 
Iteratively, one computes the set of all objects d for which there is an object e satisfying 

Q reachable from d in the transitive closure of the following relation:  
 

Rs ab    iff  s[x:=a][y:=b], s[x:=b][y:=b] ∈VV.                   ■ 
 
We forego further details here – but note how these fixed-point computations bring to 

light the hidden dependency structure of the relevant general model. 
 
Theorem  LFP(FO) is decidable over general assignment models. 
 



 14  

Proof  This follows from Grädel’s result on the decidability of the fixed-point version 

LFP(GF) of the Guarded Fragment in Section 4 below. The translation guard given 

there from arbitrary formulas to guarded ones easily extends to a language with added 

fixed-point operators. Next, translations are inside the language of LFP(GF), and fixed-

point evaluation must stay inside the set of tuples satisfying the guard relation R.         ■  

 
What this brief exploration suggests are far more general uses for general assignment 

models in the abstract model theory for arbitrary extensions of first-order logic. 

 
4 Basics of the Guarded Fragment 
 
Next, we look at the other way of importing relativization into logic, through the syntax 

of suitably chosen fragments of standard logical languages. The system that follows 

arose from a combination of two sources. One was cylindric relativized set algebra and 

its generalized models for first-order logic, the other reflection on what makes modal 

logic tick as a source of decidable well-behaved fragments of first-order logic (van 

Benthem 1995). The two ways of thinking came together in the following large 

sublanguage of first-order logic, which again has an independent intuitive motivation. 

 
4.1 Guarded syntax 

The Guarded Fragment of Andréka, van Benthem & Németi 1998 is a decidable part of 

first-order syntax with a semantic philosophy: quantifiers only access the total domain 

of individual objects 'locally' by means of predicates over objects. But there is more to 

the ambitions of guarding as a method, as will become clear in due course. 

 
Here are some syntactic preliminaries. In what follows, mostly for convenience, we 

consider only first-order languages with predicate symbols and variables: no function 

symbols or identity predicates occur. But we do allow polyadic quantifiers ∃xφ, ∀xφ 

over tuples of variables x, with their obvious interpretation, which resembles the 

polyadic quantifiers discussed earlier in connection with general assignment models.  

Even though we can rewrite these in terms of successive single first-order quantifiers, 

we may not be able to do so inside the fragments we are studying. We also use polyadic 

simultaneous substitutions [u/y]φ that need not reduce to iterated single substitutions. 

These are taken in the standard syntactic sense that substitution is performed provided 

the u are free for the y. If not, some suitable alphabetic variant is taken first for φ.   
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Our key idea is that objects y can only be introduced relative to given objects x, as 

expressed by a 'guard atom' G(x, y) where objects can occur in any order and 

multiplicity – and that the subsequent statement refers only to those guarded x, y. 

 
Definition  Guarded Formulas. 

Guarded formulas are all those constructed according to the syntax rules 
 
 atoms Px | ¬ | ∨ | ∃y (G(x, y) & φ(x, y))  
 
Here, bold-face x, y indicate finite tuples of variables, and G is a predicate letter.         ■ 

 
Clearly, the well-known ‘standard translation’ takes basic modal logic into first-order 

formulas lying inside the Guarded Fragment, and the same is true for many other modal 

languages in the literature. For further illustrations and applications, see van Benthem 

2001, which also considers guarded patterns in modal neighbourhood semantics. 

 
4.2 Decidability of GF via quasi-models 

The initial motivating result was that guarding quantifiers leads to decidability. 
 
Theorem  GF is decidable. 
 
The proof of Theorem 1 is worth stating here in outline, for the general ideas involved. 
 
Proof The first observation is that truth of first-order formulas in any model is 

witnessed in some finite syntactic object, called a 'quasi-model'. Let formula φ be true 

in standard model M. Let V be the finite set of variables occurring in φ – free or bound. 

In effect, we are inside a finite-variable fragment of first-order logic here. Next, we 

restrict attention to the finite set Subφ consisting of φ and its sub-formulas, while also 

closing under simultaneous substitutions [u/y] using only variables in V, that do not 

change syntactic forms. This is feasible because of the following simple observation, 

provable by some syntactic manipulation: 
 
Lemma    Finite-variable fragments are closed under simultaneous substitutions. 
 
Now each variable assignment s on M verifies a set Δs of formulas from Subφ with 

special properties, that we call a type. Note that any model realizes at most finitely 

many types. A 'quasi-model' is a finite set of types with some properties and mutual 

relations that obviously hold if the source is indeed some model M.  
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Definition     Quasi-models. 

Let F be the finite set of all formulas of length ≤ |φ| that use only variables from V. 

Note that φ∈F and F is closed under taking sub-formulas and the above 'alphabetic 

variants' used with substitutions.  An F-type is a subset Δ of F which satisfies 
 

 (a)  ¬ψ∈Δ           iff    not ψ∈Δ    whenever  ¬ψ ∈F 

(b)  ψ∨ξ ∈Δ           iff    ψ ∈Δ  or  ξ ∈Δ  whenever  ψ∨ξ ∈F 

(c)   [u/y]ψ ∈Δ      only if ∃yψ ∈Δ    whenever  ∃yψ ∈F 
 
Next, we write Δ =y Δ' if Δ, Δ' share the same formulas with all their free variables 

disjoint from y. A quasi-model  is a set of F–types S such that 
 

 (d) for each Δ∈S and each formula ∃yψ ∈Δ,  

there is a type Δ' ∈S with ψ ∈Δ' and Δ =y Δ'.  
 
We say that φ holds in a quasi-model if φ∈Δ for some Δ in this quasi-model.            ■ 
 
Clearly, this definition justifies the following assertion: 
 
Lemma  If a first-order formula has a model, it is true in some quasi-model.   
 
The converse is not true for all first-order formulas, but it does hold for GF. 
 
Lemma  If a guarded formula has a quasi-model, then it has a standard model. 
 
The key fact is that quasi-models can be 'unraveled' to tree-like standard models without 

affecting truth values of guarded formulas in their set F: details of the proof are in 

Andréka, van Benthem & Németi 1998. Decidability of GF now follows because we 

can test satisfiability for arbitrary (loosely) guarded formulas φ by testing for the 

existence of a quasi-model for φ whose size is effectively bounded by the length of φ.  ■ 

 
This decision procedure can be adapted easily to give an optimal complexity result 

(Grädel 1999B). Satisfiability is 2EXPTIME-complete for guarded formulas, and it is 

EXPTIME–complete for GF with a fixed bound on the arities of predicates. 

 
4.3 Other meta-properties 

The Guarded Fragment was meant to serve several purposes at once. On the one hand 

its complexity is low enough to be decidable, while it is expressive enough to generalize  
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most common modal languages. This demonstrates the balance sought in all good 

modal-like languages. Another desirable feature concerns its meta-theory.  
 
Basic modal logic resembles first-order logic in all its meta-properties, partly thanks to 

its having a generalization of modal bisimulation. Let a partial isomorphism be a finite 

one-to-one partial map between models which preserves relations both ways. In any 

model M, call a set X of objects guarded if there is a relation symbol R, say k–ary, and 

objects a1, ..., ak∈M (possibly with repetitions) with RM(a1, ..., ak) and X = {a1, ..., ak}.  
 
Definition   Guarded Bisimulations. 

A guarded bisimulation is a non-empty set F of finite partial isomorphisms between 

two models M and N that satisfies the following two back-and-forth conditions for any  

f:X→Y in F: (i) for any guarded Z⊆M, there is a g∈F with domain Z such that g and f 

agree on the intersection X∩Z, (ii) for any guarded W⊆N, there is a g∈F with range W 

such that the inverses g–1 and f–1 agree on Y∩W.               ■ 
 
The point of this definition shows in semantic invariance for guarded bisimulation: 
 
Fact  Let F be a guarded bisimulation between models M and N with f∈F.  

For all guarded formulas φ and variable assignments α into the domain  

of f, we have that M, α |= φ  iff  Ν , f o α |= φ. 
 
The following result closely follows an analogue for modal logic and bisimulation. 
 
Theorem Let φ be any first-order formula. The following two assertions are equivalent: 

 (a) φ is invariant for guarded bisimulations, (b) φ is equivalent to a GF formula. 
 
Techniques based on this invariance establish even meta-properties of GF that do not 

follow from just being a sublanguage of first-order logic, such as Craig Interpolation, 

Beth Definability, and the standard model-theoretic preservation theorems. GF shares 

this good behaviour to a large extent, witness the Los–Tarski theorem for GF-formulas 

that are preserved under taking sub-models given in Andréka, van Benthem & Németi 

1998. Cf. also van Benthem 2001 on GF as an instrument for finding out 'what makes 

modal logic tick'. But subsequent work has shown that the picture is somewhat mixed: 
 
Theorem Beth Definability holds but Craig Interpolation fails for GF. Interpolation  

remains valid when we view guard predicates as part of the logical vocabulary.   
 
Proofs are in Hoogland, Marx & Otto 1999, and in Hoogland & Marx 2002.  
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4.4 Excursion: quasi-models per se 

The methods around GF may have a broader spin-off. In particular, quasi-models are a 

mix of modal filtration, semantic tableaus for first-order logic, and the 'mosaics' of 

algebraic logic. Right now, mosaics – introduced in Németi's 1986 dissertation, with 

Németi 1995 as a more up-to-date reference – seem the method of choice for proving 

decidability in modal and algebraic logics. But quasi-models may also be appreciated 

on their own. First, a quasi-model for some initial formula φ  is a modal model Mφ for a 

first-order language as it stands. The types are the worlds, there are accessibility 

relations =x  of agreeing on all formulas having no free variables in x, and for atoms, 

V(Δ, Px) =1 iff Px∈Δ. The following Truth Lemma  is then easily proved by induction: 
 
Lemma  For all α∈SUBφ, and all types Δ  in Mφ, M, Δ |= α  iff α∈Δ. 
 
Thus, quasi-models are models by themselves, and this may lead to new links between 

modal and first-order logic. Modal models may be related to quasi-models modulo 

forms of bisimulation (van Benthem 1996B). Still, having a quasi-model – finite by 

definition – does not imply having a finite standard model. It is easy to find a quasi-

model for the formula ∀xyz((Rxy & Ryz) → Rxz) & ∀x ∃y Rxy & ∀x ¬Rxx which only 

has infinite models. In fact, having a quasi-model need not imply standard satisfiability 

at all. The predicate-logically inconsistent formula  ∃x ∃y Rxy & ¬∃y ∃x Ryx is clearly 

satisfiable in the general assignment model M with domain {1, 2}, relation {<1, 2>}, 

and just one admissible assignment s, viz. {(x, 1), (y, 2)}. This model also satisfies the 

earlier Existential Generalization and Full Locality. The single type of M induced by s 

is therefore a quasi-model for ∃x ∃y Rxy & ¬∃y ∃x Rxy. This 'inconsistency' in a set of 

types may seem strange – but it also shows that quasi-models are intriguing structures. 

 
4.5 Extensions 

GF is not yet the end of the road. Analyzing the earlier proof of decidability, van 

Benthem 1997A noticed that it goes through for the following extension. 
 
Definition Loosely guarded formulas extend the syntax of GF by allowing a 

conjunction of atoms γ(x, y) instead of G(x, y) in the quantifier clause, provided each 

variable from y co-occurs with each variable from x, y in at least one atom of γ(x, y). 

This yields the Loosely Guarded Fragment LGF.                   ■ 
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The point here is that the guarding of objects does not take place all at once, but two-

by-two. This suffices for several earlier results: 
 
Theorem Both LGF and its fixed-point extension are decidable. 
 
As an application, modal logics like that of temporal Since and Until are decidable, 

since their truth conditions are typically loosely guarded (van Benthem 1997A, 2001). 

For instance, UNTIL pq is defined by the LGF-formula  
 

∃x < y & ∀z((x < z ∧ z < y) → Qz)).  
 
Another striking application is the decidability of the earlier complete logic of pair 

arrow models. The translation in Section 2 that relativized to the ‘top relation’ U does 

not take formulas ‘(x, y): R’ into GF itself, but it does take them into LGF! 

 
Next, by way of contrast, consider the first-order property of transitivity, which can lead 

to undecidable fragments of FOL. It has ‘one guard too few’:  
 

∀xyz((x < z ∧ z < y) → x < y)) 

 
Next, consider non-first-order extensions, like we had before in Sections 2, 3. A striking 

positive result concerns the extension LFP(GF) of GF with fixed-point operators µ, ν: 
 
Theorem (Grädel 1999C)     LFP(GF) is decidable. 
 
By contrast, validity for the fixed-point extension LFP(FO) of full first-order logic is of 

high non-arithmetical complexity, as it can define the natural numbers categorically. 

Grädel 1999A also determines the computational complexity for  LFP(GF). 
 
As a small application, the preceding result explains the validity of many modal logics 

over transitive models, even though transitivity by itself is dangerously non-guarded. 

Instead of working over transitive models, take models with arbitrary binary relations. 

Then a modality for a special transitive relation becomes an iteration modality for the 

transitive closure of the given arbitrary relation, which can be defined inside LFP(GF). 
 
4.6 Border line: confluence 

A useful alternative way of understanding the guarding technique looks ‘from above’. 

What expressive resources will typically lead to un-decidability? Here is a natural 

comparison with a related, though subtly different fragment of first-order logic.  
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Bounding versus guarding Bounded formulas have all their quantifiers relativized to an 

atomic predicate, as in the ubiquitous pattern ∃x: x∈y in set theory. Feferman & Kreisel 

1969 show that the characteristic semantic feature of bounded first-order formulas is 

their invariance for generated sub-models. The Bounded Fragment BF differs from the 

Guarded Fragment in allowing the more general format of quantification 
 

∃y (G(x, y) & φ(x, y, z)) 
 
where the formula at the end may contain new free variables. BF is undecidable, but it 

has applications in arithmetic and set theory, as a way of defining 'absolute' properties 

not affected by the difference between standard models and generalized models. Ten 

Cate 2005 has a modern treatment with new results, including the one that BF equals 

the first-order definable part of basic modal logic with added propositional quantifiers. 

Finally, van Benthem 2005 shows how, following Montague 1970, Gallin 1975, 

bounding serves as a general technique for lowering complexity in second-order logic. 
 
Tiling problems, grid structure, and confluence One way of seeing that BF is 

undecidable is by noting that it can define the following geometrical Tiling Problem. 

Let a finite set of ‘tiles’ be given, with colours on each of their four sides. ‘Matching 

tiles’ have the same colours on adjacent sides. Now the Tiling Problem asks: 
 

Can we cover the whole plane N x N with matching tiles from the given set? 
 
Fact The Tiling Problem is undecidable. 
 
Tiling has the same complexity as the Non-Halting Problem: deciding if a given Turing 

machine will keep computing forever on given input. (To see the Π0
1-complexity, note 

that one can tile a plane iff one can tile all finite sub-planes, and use Koenig’s Lemma.) 

Indeed, the two problems are equivalent, as one can code successive tape contents as 

horizontal rows, with the vertical sequence as the ‘computation’. It is essential here that 

positions on successive rows can be compared in the right way, and this is what the grid 

structure of N x N does. Since tiling problems are easier to encode than Turing machine 

computations, they have gained popularity as a way of showing high complexity. 
 
Now it is easy to show the undecidability of first-order logic. Consider a set T of square 

tiles {t1, ..., tm}, TP is the task of putting one tile on each point in the grid N x N giving 
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adjacent edges the same colour. We can reduce this task effectively to a satisfiability 

problem in first-order logic, by constructing a formula φT with the following property: 
 
Fact   φT is satisfiable iff the given set T can tile the INxIN-plane.  
 
The formula φT is constructed as follows. We choose unary predicates Pt for each tile t, 

and binary relations NORTH and EAST for moving around in the grid, whose one-step 

immediate successor versions are NORTH+, EAST+. Now we write up what tiling 

amounts to. Note that the ‘adjacent colours’ condition just amount to giving an ordering 

from tiles to a finite set of ‘fitting tiles’ in each direction. More concretely, each point 

then has to satisfy the following properties, involving only finite formulas in total: 
 

(a) the exhaustive finite disjunction T of all tiling predicates Pt,  

 (b) (Ptx ∧ NORTH+xy) → ‘disjunction of all Pt’ with t’ fitting to the north’(y), 

     (Ptx ∧ EAST+xy) → ‘disjunction of all Pt’ with t’ fitting to the east’(y), 

(c) NORTH, EAST are transitive irreflexive relations with successors, 

(d)∀xyz: (NORTH+xy ∧ EAST+yz) → ∃u: (EAST+xu ∧ NORTH+uz), 

(e) there is a unique initial point for the whole structure.  
 
We prefix a universal quantifier to make sure it holds everywhere in the model. 
 
It is clear how to satisfy φT given a tiling. But also conversely, if φT is satisfiable at 

some point s in a grid-like model M, we can use the unary predicates Pt in M to tile the 

plane IN x IN. Working from the origin, first read off the tiling for the initial point, and 

then proceeding inductively, tile in triangles, using the grid property of the model to 

place the next edge in such a way that no conflicts arise in the placement pattern.         ■ 
 
The preceding reduction shows that satisfiability for first-order logic is undecidable, 

since the Tiling Problem is. Now, the crucial feature behind this reduction is the grid 

structure, defined by the confluence property (d). While this formula employs bounded 

quantifiers, putting it in BF, it is typically not in GF or even LGF: not all pairs of 

objects come with an atomic bound, witness the case of y and z. This is significant. Grid 

structure tends to involve high complexity, a fact also known from modal logics where 

combining two modalities for two relations which satisfy a commutation axiom 

expressing grid structure (Halpern & Vardi 1989, van Benthem & Pacuit 2006).  
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Remark Trees versus Grids. 

By contrast, many ordinary modal logics are decidable since their semantics is based on 

trees rather than grids, and then we are in the realm of Rabin’s Theorem saying that the 

complete monadic second-order logic over a countable tree with finitely many 

successor relations plus the relation of ‘precedence’ between nodes is decidable.          ■ 
 
5 Two perspectives: fragments or generalized semantics 

Now we need to compare GAM-semantics for FOL with standard semantics for GF. 
 
5.1 Restricted syntax versus generalized semantics 

Giving each quantifier a guard is a syntactic restriction banning unbounded quantifiers.  

In this sense, GF is a fragment of FOL. But there is also another perspective, where this 

move rather represents a semantic generalization. We now assume that quantification 

will normally take place in 'structured domains', where access from one group of objects 

to another must go via some connecting relation R of some appropriate arity. Binary 

modal accessibility is a typical example. Standard models are the special case with R 

the universal relation. Informally, then, there seems to be an analogy between  
 

(a) using guarded formulas over standard models, and  

(b) using arbitrary first-order formulas over suitably generalized models.  
 
We will now show how these two approaches are equivalent in our setting. 

 
5.2 Reducing GAM logic to GF 

The following result is proved in Andréka, van Benthem & Németi 1998, Section 5.  
 
Definition  Guarded translation. 

Consider a k–variable first-order language L{x1, ..., xk}, with R a new k–ary predicate. 

The translation guard takes k–variable first-order formulas φ to guarded first-order 

formulas guard(φ) by relativizing all quantifiers to one and the same atom Rx1...xk. This 

translation works for polyadic first-order quantifiers just as well as single ones – and it 

even extends to the above substitution operators, if desired. There is also a matching 

semantic operation of model expansion. Let (M, VV) be any general assignment model 

for L{x1, ..., xk} – without the new predicate R. The standard model GUARD(M, VV) is M 

viewed as a standard model, and expanded with the following interpretation:  
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R(d1, ..., dk)    iff    the assignment xi := di (1≤i≤k) is in VV .               ■ 

 
The following is easy to prove by induction on first-order formulas: 
 
Lemma     For all available assignments s  in VV ,  and all k-variable formulas φ,  

      M, VV , s  |= φ    iff  GUARD(M, VV), s |= guard(φ) 
 
Here is a reduction of GAM-semantics to the Guarded Fragment. 
 
Theorem For all first-order k-variable formulas φ,  the following are equivalent: 

 (a) φ is satisfiable in general assignment models, 

 (b) Rx1...xk ∧ guard(φ) is satisfiable in standard models. 
 
Proof From (a) to (b), the Lemma supplies the reason. For the converse, suppose that 

Rx1...xk ∧ guard(φ) has a standard model M under some variable assignment s. Now 

define a general assignment model (N, VV) by retaining only those variable assignments 

on M whose values for x1, ..., xk stand in the relation RM. These include the assignment 

s itself. Then it is easy to see that N, VV, s |= φ as with the Lemma.             ■ 
 
The translation also works directly for the full first-order language without the k-

restriction, by a slightly modified translation. The converse direction was left open in 

Andréka, van Benthem & Németi 1998. Marx 2001, van Benthem 2005 have solutions. 
 
This translation is at the same time a faithful embedding of the earlier complete logic of 

general assignment models (Section 3) into the logic of the Guarded Fragment, which 

provides another explanation of its decidability.  

 
5.3 Reducing GF to GAM logic 

We need a translation again. But this time, it is not compositional in the earlier sense. 

The reason is the earlier failure of Existential Generalization (i) and Full Locality (ii) in 

general assignment models. We need these principles for some finite set of relevant 

formulas in the proof to follow, and hence we put them into the translation. 
 
Definition  GAM translation. 

Let φ be any guarded first-order formula with a total set of variables x = x1, ..., xk. Let 

set-up(φ) be the finite conjunction of all formulas of the following form 
 
 (i)' ∀x ([u/y]ψ → ∃yψ)     where u, y ⊆ x and ψ(z) is a subformula of φ 
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(ii)' ∀x (ψ(z) → ∀y ψ(z)) where  z, y ⊆ x with z disjoint from y,  

     and ψ(z) is a subformula of φ  
 
The, not necessarily guarded, formula gam(φ) is the conjunction φ ∧ set-up(φ).           ■ 
 
In particular, the prefixed polyadic universal quantifier ∀x running over all relevant 

variables makes sure that the implications (i)', (ii)' hold throughout any general 

assignment model which has set-up(φ) true at any assignment at all.   
 
Theorem  For all guarded formulas φ, the following are equivalent: 

 (a) φ is satisfiable in standard models, 

 (b) gam(φ) is satisfiable in general assignment models. 
 
Proof   From (a) to (b), it suffices to note that any standard model for φ also satisfies 

gam(φ), since the formulas in the second conjunct are universally valid. And standard 

models are general assignment models with a full set of assignments.   
 
Next, from (b) to (a), let M, VV, s |= gam(φ). As in Section 3, this situation induces a 

quasi-model for φ. Recall that the relevant formulas are all sub-formulas of φ plus their 

alphabetic variants with variables from x. The types of the quasi-model are now all sets 

of relevant formulas true at the assignments in VV . We must check the four clauses of the 

Definition. The first two follow directly by the truth definition for Boolean operations. 

The existential generalization clause holds for all types by the truth of conjunct (i)' in 

set-up(φ). And finally, the 'witness clause' (d) for existential quantifiers in suitably 

related types holds because of the truth condition for the existential quantifier in general 

assignment models plus the true transfer condition (ii)' in set-up(φ). Thus, the given 

guarded formula φ has a quasi-model – and hence it also has a standard model.           ■ 
 
The same reasoning extends to the loosely guarded fragment LGF. Andréka & Németi 

2005 have some interesting variations and extensions. Marx 2001 proves several further 

results, including a characterization of the 'packed fragment' (a slight extension of 

LGF). This is the largest fragment of first-order logic that is insensitive between 

evaluation in standard models and models relativized to some 'tolerance relation'. 
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6 Discussion 

The two main perspectives in this chapter are generalized models and static guards. 

Given the connections in Section 5, we merely discuss a few points about the latter. 
 
The scope of guarding Guarding still has not become a general method. For instance, in 

modal logic, a lot of generality may be missed, since many results might work much 

more generally when basic modal logic is replaced by GF, the µ–calculus by LFP(GF), 

etc. Can the method of guarded fragments also be stated as a more general operation on 

logics? Van Benthem 2005 has an analysis of related methods for lowering complexity 

in second-order logic, going back to the fragment of ‘persistent formulas’ dating back to 

Orey in the 1950s (cf. Gallin 1975). These are invariant between Henkin general models 

and their associated standard models. Another challenge is guarding generalized 

quantifiers. We do not even know if the basic modal logic with a quantifier “for most 

successors of the current world” is decidable, despite partial results in Van der Hoek & 

de Rijke 1993 and Pacuit & Salame 2004. Perhaps most intriguingly, guards may help 

lower complexity in fixed-point logics, as we have seen in a number of cases.  
 
Guarding lower down? Guards make sense, not just higher up from first-order logic, 

but also lower down in restricted formalisms. Kerdiles 2001 considers a language CG of 

conceptual graphs which has only atoms, conjunction, and existential quantifiers. The 

complexity of the general consequence problem between such formulas is NP, but 

consequence between guarded CG-formulas is in P. This suggests that guarding can 

take the 'N' out of 'NP' sometimes, but the precise extent of this is unknown.    
 
Algebra and logic once more We have seen in this chapter how ideas from algebra and 

algebraic logic can influence modal logic and first-order logic. Is there also a converse 

stream? It would be nice to see which of the various model-theoretic topics in this 

chapter make sense at an algebraic level. 1 One major reason for going in this direction 

is this. With many concrete systems of modal logic being developed today (cf. the book 

van Benthem 2008), one feels that insights found there really live at some higher 

‘generic’ abstraction level that can often be brought out better in an algebraic approach.  

 

                                                 
1 For instance, it would be useful to have a better algebraic take on the fixed-point logics  

that crop up everywhere in contemporary pure and applied modal logic. 
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