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Université Paul Sabatier, Toulouse

Received 26 September 2008, revised 26 January 2009, accepted ???
Published online ???

Key words Preference representation, computational complexity, computational social choice.

We analyze the expressivity, succinctness, and complexity of a family of languages based on weighted propo-
sitional formulas for the representation of utility functions. The central idea underlying this form of preference
modeling is to associate numerical weights with goals specified in terms of propositional formulas, and to com-
pute the utility value of an alternative as the sum of the weights of the goals it satisfies. We define a large
number of representation languages based on this idea, each characterized by a set of restrictions on the syntax
of formulas and the range of weights. Our aims are threefold. First, for each language we try to identify the
class of utility functions it can express. Second, when different languages can express the same class of utility
functions, one may allow for a more succinct representation than another. Therefore, we analyze the relative
succinctness of languages. Third, for each language we study the computational complexity of the problem of
finding the most preferred alternative given a utility function expressed in that language.
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1 Introduction

Preferences play an important role in many areas. Whenever someone needs to make a decision or choose
between several alternatives, their choices will be guided by their preferences over the alternatives available
to them. Similarly, when a group needs to make a decision, that decision should be informed by a suitable
aggregation of the individual preferences of its members. Preferences are therefore at the core of social choice
theory [1], which studies mechanisms for collective decision making; and computational aspects of preference
representation are central to the field of computational social choice [2].

We can distinguish ordinal from cardinal preferences. An ordinal preference is a binary relation over the
domain of alternatives, which is typically assumed to be transitive and complete, although this need not be the
case. Such an ordinal preference relation allows us to check whether one alternative is “better” than another.
Cardinal preferences are utility functions mapping alternatives to a suitable scale, often the reals. When the
number of alternatives that we need to rank or over which we need to define a utility function is relatively
small, then the choice of language for representing preferences is not crucial. However, the set of alternatives
often has a combinatorial structure. For instance, if we need to decide on an allocation of (indivisible) goods to
agents, then each agent will have preferences over the alternative subsets they may receive, the number of which
is exponential in the number of goods. Similarly, when we elect the members of a committee, the number of
alternative constellations is exponential in the number of seats available. In general, a combinatorial domain is the

∗ This paper is based on and extends work presented at the 10th International Conference on Principles of Knowledge Representation
and Reasoning (KR-2006) and the AAAI-2007 Workshop on Preference Handling for Artificial Intelligence. The work of Joel Uckelman
was supported by a GLoRiClass fellowship funded by the European Commission (Early Stage Research Training Mono-Host Fellowship
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Cartesian product of several finite domains (often binary domains). Choosing an alternative from a combinatorial
domain means choosing a value for each dimension of the domain. It is these kinds of situations in which we
require languages that allow for a compact representation of preferences.

Several such languages have been developed and analyzed in the literature, both for the representation of utility
functions and for the representation of ordinal preference relations. Languages for the succinct representation of
ordinal preferences include formalisms for making ceteris paribus statements, which range from very expressive
languages [3] to syntactical restrictions such as CP-nets [4], where a weaker expressivity is compensated for
by the availability of efficient elicitation and optimization techniques. They also include languages based on
conditional logics, prioritized logics, and prioritized constraint satisfaction problems (see e.g., Lang [5] for an
overview). Languages for the succinct representation of utility functions include graphical models [6, 7, 8,
9], decision trees [10], valued constraint satisfaction problems [11], and bidding languages for combinatorial
auctions [12, 13, 14].

In this paper we analyze languages for the representation of utility functions based on weighted propositional
formulas, or weighted goals for short, an approach which originates in penalty logic [5, 15]. This family of
languages is suitable for modeling preferences over combinatorial domains that are the Cartesian product of
several binary domains, each represented by a propositional variable. The central idea is to associate numerical
weights with goals specified in terms of propositional formulas, and to compute the utility value of an alternative
as a function of the weights of the goals it satisfies. For example, the weighted goal (p ∧ q, 4) expresses that
our decision maker ascribes a value of 4 to making both p and q true. Similarly, (¬r, 7) means that making r
false has value 7. There are several different ways in which we could aggregate the weights of the goals satisfied
by an alternative to compute the utility of that alternative. In this paper we concentrate on what is arguably the
most natural choice for such an aggregation operator, namely summation, though maximization is also a viable
alternative [16, 17]. We note here that weighted goals can also be used to model ordinal preferences, for instance
by interpreting weights as indicators for the relative importance of goals and by ranking alternatives in terms of
the most important goal they violate [5, 18]. However, in the present paper we are only interested in modeling
utility functions.

Weighted goals are a framework for defining an entire family of languages. The choice of aggregator is one
choice that we need to make. A further choice concerns the range of formulas that we wish to admit as goals.
For instance, we may not want to allow for negation or we may only permit formulas that do not exceed a certain
length. Finally, we could impose restrictions on the range of weights to be used. For instance, we may allow
weights to be drawn from the reals, the positive reals, or even just very small sets such as {0, 1}. Each choice
of aggregator, restriction on formulas, and restriction on weights gives rise to a different language, and we can
study and compare their properties.

In this paper we investigate three important properties of such languages: expressivity, succinctness, and
complexity. We briefly introduce each of these here:

• Expressivity: Can our language of choice represent all functions belonging to a given class of utility func-
tions which interests us? Not all languages are equally expressive and not all applications require full ex-
pressivity. Excess expressivity is often undesirable, because highly expressive languages tend to be compu-
tationally more demanding to reason about. We are interested in correspondence results between languages
and classes of functions. For instance, a very simple result which we present shows that the language we
obtain by restricting formulas to literals can express all modular utility functions, and only those. An inter-
esting property closely related to expressivity is uniqueness of representation. A language has the uniqueness
property with respect to a given class of utility functions if it has no more than one way of representing any
function from that class. Syntactically rich languages often lack the uniqueness property, which may be
considered wasteful.

• Succinctness: How much space do we require to encode a given utility function in a given language? If two
languages can both express all functions from a given class of utility functions of interest, but one can do
so using less space than the other, then the former language may be preferred. In fact, this definition is too
restrictive. We will call language L at least as succinct as language L′ if any utility function expressible in
both languages can be expressed in L without a significant (that is, super-polynomial) increase in size over
its representation in L′. If there is at least one family of functions for which the best representation in L′ is
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exponentially larger than it is inL, thenL is strictly more succinct thanL′. IfL′ has the uniqueness property,
then this kind of result is particularly easy to prove, as it is sufficient to provide a concrete representation
in L′.

• Complexity: What is the computational complexity of certain tasks, such as comparing two alternatives or
finding a most preferred alternative, when preferences are expressed in a given language? We will define
the MAX-UTIL problem, the decision problem of checking whether there exists an alternative that exceeds
a particular given utility level K (this problem is of course closely related to the problem of finding an
alternative that maximizes utility, hence the name). As we shall see, the complexity of MAX-UTIL ranges
from linear to NP-complete, depending on the language.

Other important properties of preference representation languages, which we shall not address in this paper, are
cognitive relevance and elicitation friendliness. The former concerns the proximity of the formal representation
language to the way in which humans represent their preferences. Elicitation is the process of constructing a
representation of a preference structure by querying a decision maker, and some languages may fare better than
others in this respect.

The remainder of this paper is organized as follows: Section 2 introduces the framework of weighted goals for
the representation of utility functions. We also briefly discuss alternative languages, in particular the family of
so-called OR/XOR bidding languages developed in the area of combinatorial auctions. Each of the subsequent
sections is devoted to a property of representation languages. Section 3 takes up the question of which utility
functions are representable in any given language. In Section 4, we compare languages as to their space efficiency,
and in Section 5 we consider the complexity of answering some queries on goalbases.

2 Languages

In this section we define the languages for representing utility functions that are the object of study in this paper
and introduce some basic notation. We also briefly discuss related work. (More related work is reviewed in the
conclusion.)

2.1 Basic Definitions and Notation

We are interested in utility functions declared over combinatorial domains that are the Cartesian product of
several binary domains. A generic representation of this kind of domain is the set of all possible models for
propositional formulas over a fixed language with a finite number of propositional variables (the dimensionality
of the combinatorial domain).

Definition 2.1 (Utility Functions and Models) A utility function is a mapping u : 2PS → R, where PS is a
fixed, finite set of propositional variables. A model is a set M ∈ 2PS . We write PSn to indicate that |PS| = n.

Let LPS be the language of propositional logic over PS. In principle, we may allow any kind of propositional
connective. The technical results in this paper apply to formulas that contain only the connectives ¬, ∧, and ∨.
We comment briefly on the use of additional connectives in the conclusion.

Definition 2.2 (Weighted Goals and Goalbases) A weighted goal is a pair (ϕ,w), where ϕ is a formula in the
language LPS and w ∈ R. A goalbase is a finite multiset G = {(ϕi, wi)}i of weighted goals.

Goals are typically required to be satisfiable formulas, but for the languages studied in this paper this does not
affect expressive power (whether unsatisfiable formulas are allowed could potentially affect complexity, and we
comment on this issue in Section 5). When a particular goalbase is under consideration, we write wϕ to mean the
weight of formula ϕ in that goalbase. For(G) is the set of formulas in G.

Definition 2.3 (Generated Utility Functions) A goalbaseG and an aggregation function F : 2R → R generate
a utility function uG,F mapping each model M ⊆ PS to uG,F (M) = F ({w : (ϕ,w) ∈ G and M |= ϕ}).

In this paper, we restrict ourselves to F = Σ, the summation function, and often omit F hereafter. In particular,
this means that

uG(M) =
∑

{wi : (ϕi, wi) ∈ G and M |= ϕi},
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which is to say that the value of a model is the sum of weights of formulas made true in that model. For example,
if PS = {p, q, r}, then the goalbaseG1 = {(p∨q∨r, 2), (p∧q, 1), (p∧r, 1), (q∧r, 1), (p∧q∧r,−2)} generates
the utility function u : X 7→ min(3, 2·|X|).

Definition 2.4 (Goalbase Equivalence) Two goalbases G and G′ are equivalent with respect to an aggregation
function F (written G ≡F G′) iff they define the same utility function. That is, G ≡F G′ iff uG,F = uG′,F .

Goalbases provide a framework for defining different languages for representing utility functions. Any re-
striction we might impose on goals (e.g., we may only want to allow clauses as formulas) or weights (e.g., we
may not want to allow negative weights) and any choice we make regarding the aggregator F gives rise to a
different language. An interesting question then is whether there are natural goalbase languages (defined in terms
of natural restrictions) such that the utility functions they generate enjoy simple structural properties. (This is
indeed the case, as seen in Section 3.3.)

Definition 2.5 (Languages and Classes of Utility Functions) Let Φ ⊆ LPS be a set of formulas, W ⊆ R
a set of weights, and F an aggregation function. Then L(Φ,W, F ) is the set of goalbases formed by formulas
in Φ with weights from W to be aggregated by F , and U(Φ,W, F ) is the class of utility functions generated
by goalbases belonging to L(Φ,W, F ). More generally, we write U(L) to mean the class of utility functions
generated by goalbases in the language L.

As mentioned before, we treat the case where F = Σ in this paper, and hereafter omit F from our notation
where it causes no ambiguity.

Regarding weights, we will study the restriction to the positive reals (R+) as well the general case (R). For
complexity questions we will restrict attention to the rationals (Q). The next definition summarizes the types of
restrictions we consider for formulas.

Definition 2.6 (Types of Formulas) We define the following types of formulas:

• An atom is a member of PS.

• A literal is an atom or its negation.

• A clause is a disjunction of literals.

• A cube is a conjunction of literals.

• A positive X is a satisfiable formula of type X that con-
tains no negations.

• A strictly positive X is a non-tautologous positive X .

• A k-X is an X with at most k occurrences of atoms.

When discussing positive clauses, positive cubes, and positive formulas, we frequently abbreviate these to
pclauses, pcubes, and pforms, respectively. Additionally, we call strictly positive cubes and strictly positive
formulas spcubes and spforms, respectively. (The term spclauses is redundant because every positive clause is fal-
sifiable.) Atoms are 1-spclauses, 1-spcubes, and 1-spformulas (and also 1-pclauses, 1-pcubes, and 1-pformulas),
while literals are 1-clauses, 1-cubes, and 1-formulas. Clauses, cubes, and formulas are ω-clauses, ω-cubes, and
ω-formulas, respectively, which is to say that the formulas may be of any finite length.1 Note that

∧
∅ = > and∨

∅ = ⊥, from which follows that > is the unique 0-pcube and ⊥ the unique 0-clause. The notation X + >
indicates the set of formulas X ∪ {>} (e.g., pclauses +> is the set containing all pclauses along with >).

2.2 Related Languages

Goalbase languages and variations thereof have been considered in many places and used for a number of appli-
cations, sometimes under a different name [5, 13, 15, 16, 18, 19, 20, 21, 22].

Boutilier and Hoos [13], for instance, suggest a variant of L(pforms,R+,Σ) as a means for communicating
bids in a combinatorial auction. There are two differences between their language and L(pforms,R+,Σ). First,
they also allow for the logic connective XOR, which we do not consider here. Including additional connectives
can improve succinctness, and so is attractive from a pragmatic point of view, but it does not make an important
difference as far as the basic principles of the approach are concerned. Second, Boutilier and Hoos [13] also
allow for weights to be assigned to subformulas of goals. The utility of a set of goods is then computed as the
sum of the weights of all the subformulas satisfied. This does allow us to express some utility functions more
concisely, but it does not affect succinctness in the technical sense to be defined later in this paper (to be precise,
goalbase size decreases by at most a quadratic factor), nor does it affect the expressivity of the language.

1 Strictly speaking, we should write, e.g., (< ω)-cubes instead of ω-cubes, but we abuse notation for the sake of brevity and because all
formulas are assumed to be finite in length.
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Another important group of languages for modeling cardinal preferences are the OR/XOR family of bidding
languages for combinatorial auctions [12]. While these languages also use logical connectives, the connectives
are interpreted differently there. In the OR language, a set of atomic bids 〈B, p〉, each consisting of a bundle of
goods and a price, is taken to represent a function that maps any set of goods X to the maximal sum of prices
that is achievable by accepting any set of non-overlapping bids so that X covers all the goods mentioned in those
accepted bids. The OR language is often the basis for bidding languages used in practice. A problematic feature of
this language is that even the basic evaluation problem—the problem of computing the value assigned to a given
set of goods according to the bid expression of a single bidder—is NP-hard. In contrast to this, the evaluation
problem clearly is easy for any of our goalbase languages: given a modelX and a goalbaseG, computing uG(X)
only requires one model checking operation for each goal in G.

In the XOR language [12, 14], the auctioneer may accept at most one atomic bid per bidder. This means that
the value of a set of goods X is the highest price attached to any of its subsets within the atomic bids submitted.
This is equivalent to L(pcubes,R+,max) in our framework. A disadvantage of this language is that it is not
concise for most interesting classes of valuation functions. Finally, combinations of XOR and OR (such as
OR-of-XORs) have also been considered in the literature.

3 Expressivity

The language restrictions introduced in the previous section allow us to define a host of different languages.
In this section we study the expressivity of these languages. We first state some simple equivalences between
goalbases. We then define the notion of a language having unique representations and establish two uniqueness
results. Finally, we prove a number of correspondence results that allow us to (almost) fully classify the languages
identified with respect to the classes of utility functions they define.

3.1 Equivalences

Recall that two goalbases G and G′ are equivalent (G ≡Σ G′) if they generate the same utility function (i.e., if
uG = uG′ ). The following equivalences are, for convenience, stated as they are used later on, and not necessarily
in their most general form.

Fact 3.1 Given a goalbase G, formulas ϕ,ϕ1, . . . , ϕk, ψ, χ, and weight w ∈ R, the following equivalences
hold:

G ∪ {(ϕ ∧ ¬ψ,w)} ≡ G ∪ {(ϕ,w), (ϕ ∧ ψ,−w)} (1)

G ∪ {(ϕ ∨ ¬ψ,w)} ≡ G ∪ {(>, w), (ϕ,w), (ϕ ∨ ψ,−w)} (2)

G ∪ {(ϕ ∧ (ψ ∨ χ), w)} ≡ G ∪ {(ϕ ∧ ψ,w), (ϕ ∧ χ,w), (ϕ ∧ ψ ∧ χ,−w)} (3)

G ∪ {(ϕ ∨ (ψ ∧ χ), w)} ≡ G ∪ {(ϕ ∨ ψ,w), (ϕ ∨ χ,w), (ϕ ∨ ψ ∨ χ,−w)} (4)

G ∪ {(ϕ1 ∧ · · · ∧ ϕk, w)} ≡ G ∪ {(¬ϕ1 ∨ · · · ∨ ¬ϕk,−w), (ψ,w), (¬ψ,w)} (5)

G ∪ {(ϕ1 ∨ · · · ∨ ϕk, w)} ≡ G ∪ {(¬ϕ1 ∧ · · · ∧ ¬ϕk,−w), (ψ,w), (¬ψ,w)} (6)

G ∪ {(>, w)} ≡ G ∪ {(ϕ,w), (¬ϕ,w)} (7)

All of the above are easily verified by considering all possible combinations of truth values for ϕ,ψ, χ.

3.2 Uniqueness

Some languages have a unique way of expressing a given utility function, while others allow for several alternative
representations. The next definition makes this notion of uniqueness precise.

Definition 3.1 A utility function u is represented in a language L if there exists a goalbase G ∈ L such that
u = uG. A utility function u is uniquely represented (modulo formula equivalence) in a language L if, given
a set of formulas Φ containing one representative formula for each formula equivalence class in L (except ⊥),
there is a unique goalbase G such that For(G) = Φ and uG = u. (Note that some weights in G may be zero.) A
language L is said to have unique representations if every u represented in L is uniquely represented.
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L(cubes,R), for instance, does not have unique representations: The two goalbases {(>, 3), (p, 2)} and
{(p ∧ q, 5), (p ∧ ¬q, 5), (¬p ∧ q, 3), (¬p ∧ ¬q, 3)} both define the same utility function (for PS = {p, q}).

Theorem 3.2 L(pcubes,R) has unique representations.

P r o o f. Given any utility function u, the weight of each positive cube is uniquely determined: We must have
w> = u(∅), because > is the only positive cube satisfied by ∅, and furthermore wV

X = u(X) −
∑

Y⊂X wV
Y

for any nonempty set X .

The recursive definition of the weights given in the proof of Theorem 3.2 can be turned into a direct rule for
computing weights by using the so-called Möbius inversion [23, 24]:

wV
X =

∑
Y⊆X

(−1)|X\Y | · u(Y ) (8)

Theorem 3.3 L(pclauses,R) has unique representations.

P r o o f. Let u be any utility function represented by positive clauses with weights wW
X (with nonempty sets

X ⊆ PS). Then for any Y ⊆ PS, u(Y ) must be equal to the sum of the weights wW
X for which X and Y have

a nonempty intersection:

u(Y ) =
∑

X∩Y 6=∅

wW
X =

∑
∅⊂X⊆PS

wW
X −

∑
∅⊂X⊆PS\Y

wW
X = u(PS) −

∑
∅⊂X⊆PS\Y

wW
X

This shows that each weight wW
X is uniquely determined: For singletons X = {p}, by setting Y = PS \ {p} in

above equation, we obtain wp = u(PS)− u(PS \ {p}). For general sets X , using Y = PS \X , we then obtain
wW

X = u(PS)− u(PS \X)−
∑

∅⊂X′⊂X wW
X′ .

Now, unraveling the recursive definition of the weights given in the proof above, we can also provide a direct
rule for computing weights in L(pclauses,R), similar to the Möbius inversion:

wW
X =

∑
Y⊆X

(−1)|X\Y |+1 · u(PS \ Y ) (9)

Furthermore, we have the following corollary because no positive clause is a tautology:

Corollary 3.4 L(pclauses +>,R) has unique representations.

3.3 Correspondences

We now address the following question: What class of utility functions can we model using a given language?
As much as possible we will strive for exact characterization results that establish the correspondence between a
natural goalbase language and a commonly used class of utility functions.

An important class of utility functions are the k-additive functions [24]. Let PS(k) be the set of all subsets
of PS with at most k elements. A utility function u is k-additive if there exists a mapping m : PS(k) → R
such that u(X) =

∑
{m(Y ) : Y ⊆ X and Y ∈ PS(k)} for each set X ⊆ PS. The concept of k-additivity has

been applied in various places, including fuzzy measure theory [24], combinatorial auctions [25], and distributed
multiagent resource allocation [26]. For example, if the variables in PS are used to model whether an agent owns
certain resources, then k-additive utility functions naturally model situations where synergies among different
resources are restricted to bundles of at most k elements.

For the next proof, and indeed much of the paper, we will make frequent use of the fact that whenever Φ ⊆ Φ′

and W ⊆W ′, then U(Φ,W ) ⊆ U(Φ′,W ′).

Theorem 3.5 U(k-pcubes,R), U(k-cubes,R), U(k-pclauses +>,R), U(k-clauses,R), U(k-pforms,R),
and U(k-forms,R) are equal to the class of all k-additive utility functions.
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P r o o f. Inspection of the definition of k-additivity shows that it is simply a notational variant of the language
based on positive cubes of length ≤ k. That is, U(k-pcubes,R) is the class of all k-additive utility functions. By
language inclusion, we have the following:

U(k-cubes,R) ⊆ U(k-forms,R) ⊇ U(k-clauses,R)

⊆ ⊆ ⊆

U(k-pcubes,R) ⊆ U(k-pforms,R) ⊇ U(k-pclauses +>,R)

Taken together, equivalences (1) and (3) from Fact 3.1 can be used to transform any goalbase in L(k-forms,R)
into an equivalent goalbase in L(k-pcubes,R). (Use (3) to eliminate all disjunctions, then (1) to elimi-
nate all negations. While these equivalences add more formulas, they never add longer formulas.) Thus,
U(k-pcubes,R) = U(k-forms,R).

Equivalences (2) and (4) from Fact 3.1 can be used to transform any goalbase in L(k-forms,R) into an equiva-
lent goalbase inL(k-pclauses +>,R). (Use (4) to eliminate all conjunctions, then (2) to eliminate all negations.)
Thus, U(k-pclauses,R) = U(k-forms,R). In summary, we see that each of the six classes must be equal to the
class of k-additive functions.

The next lemma clarifies the effect that the ability to express tautologies in a language has on the class of
utility functions that can be defined. Roughly speaking, any utility function u expressible in a language based on
strictly positive formulas must be normalized, i.e., will satisfy u(∅) = 0.

The (affine) translation tc of a utility function u is the map such that tc(u(X)) = u(X) + c for all X ⊆ PS.
A property P is invariant under translation if, for all utility functions u, c ∈ R, and X ⊆ PS, u has property P
iff tc(u) has property P .

Lemma 3.6 Fix Φ as a strictly positive set of formulas and P a property of utility functions which is invariant
under translation. Then U(Φ,W ) is the class of normalized utility functions with property P iff U(Φ ∪ {>},W )
is the class of utility functions with property P .

P r o o f. (⇒) Suppose that U(Φ,W ) is the class of normalized utility functions with property P . First, we
show that every uG ∈ U(Φ ∪ {>},W ) has property P : Fix uG ∈ U(Φ ∪ {>},W ). G \ {(>, w) : w ∈
W} ∈ L(Φ,W ) and so uG\{(>,w):w∈W} has property P by hypothesis. uG = tw(uG\{(>,w):w∈W}) and so by
invariance uG has property P .

Next, we show that every u with property P is in U(Φ ∪ {>},W ): Fix u with property P . tu(∅)(u) is
normalized and has property P by invariance, so tu(∅)(u) ∈ U(Φ,W ) by hypothesis. Let G represent tu(∅)(u) in
L(Φ,W ). Then G ∪ {(>, u(∅))} ∈ L(Φ ∪ {>},W ) and uG∪{(>,u(∅))} = u.

(⇐) Suppose that U(Φ ∪ {>},W ) is the class of utility functions with property P . First, we show that every
uG ∈ U(Φ,W ) is normalized and has property P : Fix uG ∈ U(Φ,W ). Normalization follows due to Φ being
strictly positive. G∪{(>, w)} ∈ L(Φ ∪ {>},W ) for anyw ∈W , and by hypothesis uG∪{(>,w)} has property P .
uG∪{(>,w)} = tw(uG), and so by invariance has property P .

Next, we show that every normalized uwith property P is in U(Φ,W ): Fix u normalized and with property P .
For any w ∈ W , tw(u) has property P by invariance and so is in U(Φ ∪ {>},W ). Let G represent tw(u) in
L(Φ ∪ {>},W ). Since Φ is strictly positive, (>, w) ∈ G. Then uG\{(>,w)} = t−1

w (tw(u)) = u, and so
u ∈ U(Φ ∪ {>},W ).

Next we explore the class of k-additive utility functions for specific values of k. It is a well-known fact that
any utility function is k-additive for some k ∈ N (certainly for k = |PS|). (This is why we refer to general
functions as ω-additive.) Our next result is therefore an immediate corollary of Theorem 3.5.

Corollary 3.7 U(pcubes,R), U(cubes,R), U(pclauses +>,R), U(clauses,R), U(pforms,R), and
U(form,R) are equal to the class of all utility functions.

Another special case of interest is the class of 1-additive utility functions, better known as the modular utility
functions. An alternative way of characterizing this class is to define a utility function u as modular if u(X∪Y ) =
u(X) + u(Y ) − u(X ∩ Y ) for all sets X,Y ⊆ PS. Modular utility functions are very simple and have limited
expressive power. Nevertheless they are frequently used in applications, e.g., in work on modeling negotiation
between autonomous software agents [27].
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Corollary 3.8 U(literals,R) and U(atoms +>,R) are the class of all modular utility functions, and
U(atoms,R) is the class of all normalized modular utility functions.

P r o o f. The set of 1-pcubes is equal to the set of atoms together with >. Therefore, by Theorem 3.5,
U(atoms +>,R) is the class of all modular functions. The class of 1-cubes is equal to the class of literals
together with >. But by equivalence (7) of Fact 3.1, literals alone have the same expressive power as literals
together with >. Hence, again by Theorem 3.5, U(literals,R) is the class of all modular functions. The fact that
U(atoms,R) is the class of all normalized modular utility functions follows from Lemma 3.6.

For the remainder of this section we consider languages where the set of weights is restricted to the positive
reals. Clearly, the utility functions that can be so expressed will be nonnegative, i.e., u(X) ≥ 0 for all X ⊆ PS.
The question is whether we can express all nonnegative utility functions in this manner.

Theorem 3.9 U(cubes,R+) and U(form,R+) are the class of all nonnegative utility functions.

P r o o f. Clearly every u ∈ U(form,R+) (and hence also every u ∈ U(cubes,R+)) is nonnegative. For the
converse, suppose that u is nonnegative. Then define

G =
{(∧

M ∧
∧
{¬p : p ∈ PS \M}, u(M)

)
: M ⊆ PS and u(M) 6= 0

}
and observe that uG = u and that G contains only positively-weighted cubes.

That is, general formulas as well as cubes are fully expressive over nonnegative utility functions when weights
are required to be positive. As we shall see next, the same is not true for clauses.

Theorem 3.10 U(clauses,R+) is a proper subset of all nonnegative utility functions.

P r o o f. L(clauses,R+) ⊂ L(form,R+), so by Theorem 3.9, U(clauses,R+) contains only nonnegative util-
ity functions. The utility function u over PS = {p, q} with u({p, q}) = 1 and u(X) = 0 for any X 6= {p, q}
demonstrates that the inclusion is strict. The following five constraints must be satisfied for there to be a
G ∈ L(clauses,R+) which represents u:

wp + wq + wp∨q + w¬p∨q + wp∨¬q + wp∨¬p = 1 (10)
wp + w¬q + wp∨q + wp∨¬q + w¬p∨¬q + wp∨¬p = 0 (11)
w¬p + wq + wp∨q + w¬p∨q + w¬p∨¬q + wp∨¬p = 0 (12)

w¬p + w¬q + w¬p∨q + wp∨¬q + w¬p∨¬q + wp∨¬p = 0 (13)
wϕ ≥ 0 for all clauses ϕ (14)

Together, constraints (11), (12), (13), and (14) force wϕ = 0 for every clause ϕ, contradicting (10).

L(clauses,R+) seems not to characterize a natural class of functions. For (strictly) positive formulas with
positive weights, on the other hand, we do obtain nice correspondences. A utility function u is monotone if, for
all X,Y ⊆ PS, u(X) ≤ u(Y ) whenever X ⊆ Y .

Theorem 3.11 U(spforms,R+) is the class of all normalized monotone utility functions.

P r o o f. No strictly positive formula is a tautology, so every u ∈ U(spforms,R+) is normalized, and because
all weights and formulas are positive, it is also monotone.

For the converse: Let u be an arbitrary normalized monotone utility function. We construct a G ∈
L(spforms,R+) for which uG = u as follows. Define a sequence of utility functions u1, . . . , un so that

uk(X) = max{u(X ′) : X ′ ⊆ X and |X ′| ≤ k}.

In this way, u1 = maxa∈X u({a}) and un = u. Additionally, we define u0(X) = 0 for all X , for convenience.
Observe that we can use the these ui to decompose u such that u =

∑n
k=1(uk−uk−1), and so if we can construct

a goalbase for each uk − uk−1, then the union of those goalbases will be a goalbase for u. Hereafter, we will
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abbreviate uk − uk−1 to u∗k. To construct Gk, a goalbase for u∗k, let X0 = ∅ and 〈X1, . . . , X(n
k)〉 be the set of

size-k subsets of PS, ordered so that u∗k(Xi) ≤ u∗k(Xj) for i < j. Then let

Gk =

{((n
k)∨

j=i

∧
Xj , u

∗
k(Xi)− u∗k(Xi−1)

)
: 1 ≤ i ≤

(
n
k

)}

from which it can easily, though tediously, be checked that uGk
= u∗k. (For example, if PS = {a, b, c} and

u(a) ≤ u(b) ≤ u(c), then G1 = {(a∨ b∨ c, u(a)), (b∨ c, u(b)−u(a)), (c, u(c)−u(b))}. View items a, b, and c
as substitutes, but with b conferring a bonus over a, and c a further bonus over b. This is the structure which can
be seen in G1. Higher-order Gis capture this same idea, but for sets of items larger than singletons.)

Finally, let G =
⋃n

k=1Gk. Now uG = u, since for each k, uGk
= u∗k and

∑n
k=1 u

∗
k = un = u. Finally,

observe that every formula in G is strictly positive; and all the weights u∗k(Xi) − u∗k(Xi−1) are nonnegative by
virtue of the ordering declared over the Xi.

Note that in the preceding theorem, we could also add nonnegative as a property, because normalization and
monotonicity together imply nonnegativity. An application of Lemma 3.6 yields the following corollary.

Corollary 3.12 U(pforms,R+) is the class of all nonnegative monotone utility functions.

A utility function u is supermodular if u(X ∪ Y ) ≥ u(X) + u(Y ) − u(X ∩ Y ) for all X,Y ⊆ PS.
Supermodularity (and its counterpart, submodularity, defined below) are widely used concepts in the economics
literature [28]. Supermodularity seems not to correspond directly to a natural goalbase language, but we can
characterize a large subclass.

Theorem 3.13 U(pcubes,R+) is the class of all nonnegative utility functions satisfying the constraint∑
Y⊆X(−1)|X\Y | · u(Y ) ≥ 0 for all X ⊆ PS.

P r o o f. That U(pcubes,R+) is the class of all nonnegative utility functions satisfying
∑

Y⊆X(−1)|X\Y | ·
u(Y ) ≥ 0 immediately follows from the fact that the weight of any positive cube is determined by the Möbius
inversion as stated in equation (8).

Note that the property corresponding to U(pcubes,R+) implies nonnegativity, monotonicity, and super-
modularity. Nonnegativity and monotonicity follow from Corollary 3.12. For supermodularity, suppose that
G ∈ L(pcubes,R+). Then

uG(X ∪ Y ) =
∑

Z⊆X∪Y

wV
Z =

∑
Z⊆X

wV
Z +

∑
Z⊆Y

wV
Z −

∑
Z⊆X∩Y

wV
Z +

∑
Z⊆X∪Y
Z*X,Y

wV
Z

≥
∑

Z⊆X

wV
X +

∑
Z⊆Y

wV
Z −

∑
Z⊆X∩Y

wV
Z = uG(X) + uG(Y )− uG(X ∩ Y ),

which is equivalent to the supermodularity condition.
The utility function u : X 7→ max(1, |X|) shows that there are supermodular utility functions that are not

in U(pcubes,R+). As can easily be checked, if PS = {p, q, r}, then expressing u in terms of positive cubes
requires the use of a negative weight: wp∧q∧r = −1. The previous theorem holds also for U(spcubes,R+) if
“nonnegative” is replaced with “normalized”.

The dual of the supermodularity property is submodularity. A utility function u is submodular if u(X ∪Y ) ≤
u(X) + u(Y )− u(X ∩ Y ) for all X,Y ⊆ PS.

Theorem 3.14 U(pclauses,R+) is the class of all nonnegative utility functions satisfying the constraint∑
Y⊆X(−1)|X\Y |+1 · u(PS \ Y ) ≥ 0 for all X ⊆ PS.

P r o o f. Follows from the fact that weights of positive clauses are determined by equation (9).
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Note that the property corresponding to U(pclauses,R+) implies monotonicity, normalization, and sub-
modularity. Normalization and monotonicity follow from Theorem 3.11. To show submodularity, let G ∈
L(pclauses,R+) and let X,Y ⊆ PS . For positive clauses ϕ, X ∪ Y |= ϕ together with X 6|= ϕ implies
Y |= ϕ. Furthermore, X 6|= ϕ implies X ∩ Y 6|= ϕ. Therefore:

{(ϕ,w) ∈ G : X ∪ Y |= ϕ and X 6|= ϕ} ⊆ {(ϕ,w) ∈ G : Y |= ϕ and X ∩ Y 6|= ϕ}

As all the weights w are positive, we immediately obtain the required inequality characterizing submodularity,
namely uG(X ∪ Y )− uG(X) ≤ uG(Y )− uG(X ∩ Y ).

An example which confirms that not all submodular utility functions belong to U(pclauses,R+) is the func-
tion u : X 7→ min(2, |X|) for PS = {p, q, r}. On the one hand, u is submodular, on the other we must
have wp∨q∨r = −1 if we are to express u using positive clauses. The previous theorem holds also for
U(pclauses +>,R+) if “normalized” is replaced with “nonnegative”.

The kind of functions characterized by Theorem 3.13 are also known as belief functions, while those charac-
terized by Theorem 3.14 are known as plausibility functions (when the functions are restricted to [0, 1]) [29, 30].

3.4 Summary

Our correspondence results are summarized in Table 1. We have not analyzed the interplay of bounding the
length of formulas and restricting weights to positive reals in detail. By Theorem 3.5, any language restricting
the length of formulas to at most k atoms can only generate k-additive utility functions. The opposite direction
is less clear. While inspection of the proofs of Theorems 3.13 and 3.14 show that these results extend to the
k-additive case in the expected manner, this is not so for Theorems 3.9 and 3.11. For instance, we do not know
whether U(k-cubes,R+) is the class of all nonnegative k-additive functions or only a subclass thereof.

4 Succinctness

In this section, we consider how space efficient languages are relative to one another. In order to do so, we first
provide a definition of goalbase size so that we have grounds for comparison.

Definition 4.1 (Formula Length and Goalbase Size) The length of a formula ϕ is the number of occurrences
of atoms it contains. The size of a weighted goal (ϕ,w) is the length of ϕ plus the number of bits needed to store
w (that is, logw bits). The size of a goalbase G, written as size(G), is the sum of the sizes of the weighted goals
in G.

Often we consider families of utility functions {un}n∈N where n = |PSn|. Suppose that we have a corre-
sponding family of goalbases {Gn}n∈N for which un = uGn . Unless the number of bits required to represent
the weights in Gn grows superexponentially in n, the size contributed by the weights can be safely ignored when
considering how size(Gn) grows with n, since log cp(n) is polynomial in n for fixed constants c and polynomials
p. Every family of utility functions considered here has weights which are independent of n, and so we disregard
the size of the weights in our succinctness results. (Superexponential growth in weights affects all languages
equally.)

Frequently one language contains shorter representations of some utility functions than does another language.
Here we offer a definition of relative succinctness to make this notion precise. This definition is similar to ones
given by Cadoli et al. [31] and Coste-Marquis et al. [18]. Because we wish to compare languages which differ
in expressive power, we define succinctness over only the expressive overlap of the languages being compared.
This leads to some counterintiutive results for languages with little expressive overlap and makes the comparative
succinctness relation intransitive, but it also permits us to make comparisons where the expressive overlap is
substantial, though not total.

Definition 4.2 (Succinctness) Let L(Φ,W, F ) and L(Ψ,W ′, F ′) be goalbase languages and U a class of
utility functions for which every member is expressible in both languages. Then L(Φ,W, F ) �U L(Ψ,W ′, F ′)
iff there exists a function f : L(Φ,W, F ) → L(Ψ,W ′, F ′) and a polynomial p such that for all G ∈ L(Φ,W, F ),
if uG,F ∈ U then uG,F = uf(G),F ′ and size(f(G)) ≤ p(size(G)).

Read L �U L′ as: L′ is at least as succinct as L over the class U . When L′ is strictly more succinct than
L—that is, in no case are representations more than polynomially worse, and in at least one case, they are
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Expressivity

Each node represents one lan-
guage, and an arrow from one
node to another indicates that
the tail language is included in
the head language. Within each
node, the expressivity of the
language is given, according to
the key below:

1 1-additive (modular)
k k-additive
ω ω-additive (general)
n normalized
+ nonnegative
m monotone
? plausibility function
† belief function
⊂ proper subset of
⊆ subset of

Where ⊆ (or ⊂) is indi-
cated, the language represents
a (proper) subset of the class
of utility functions with the
given properties. In all other
cases, the language represents
exactly the class of utility func-
tions with the given properties.
The x-axis (increasing to the
right) is the cubes axis, along
which allowable cubes grow
from length 1 up to ω; the y-
axis (increasing into the page)
is the clauses axis, also run-
ning from 1 to ω. The z-axis
(decreasing upward) is the pos-
itivity axis and has three steps:
strictly positive, positive, and
general. Each language in the
lower graph is a sublanguage
of the corresponding language
with general weights in the up-
per graph, but we have omitted
these arrows for clarity.

Table 1 Summary of Expressivity Results

super-polynomially better in L′—we write L ≺U L′. When we have nonstrict succinctness in both directions,
we write L ∼U L′; when we have nonstrict succinctness in neither direction, i.e., incomparability, we write
L ⊥U L′. Whenever a succinctness relation appears unsubscripted (i.e., without an explicit class of comparison),
then implicitly U = {uG,F : G ∈ L} ∩ {uG′,F ′ : G′ ∈ L′}, which is the expressive intersection of L and L′.
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Fact 4.1 For all languages L1, L2, L3:

1. If L1 ⊆ L2, then L1 � L2.

2. If L1 � L2 and L3 ⊆ L1, then L3 � L2.

3. If L1 ⊆ L2 ⊆ L3 and L1 ≺ L2 � L3, then L1 ≺ L3.

4. If L1 ⊥ L2 and L1 ∪ L2 ⊆ L3, then L1,L2 ≺ L3.

5. If L1 ∼ L2 and U(L1) = U(L2), then L1 � L3 iff L2 � L3, where � ∈ {∼,�,�,�,≺,⊥}.

Note that Fact 4.1.2 is useful contrapositively also, for deriving � results for superlanguages. For Fact 4.1.3, it
would be inadequate to require that L1 � L2 ≺ L3 instead, since it could happen that L1 is too small to represent
the utility functions which cause L2 ≺ L3. Fact 4.1.5 expresses the notion that if two languages are equal in
succinctness and expressivity, then they stand in the same succinctness relation with any third language.

In the rest of this section, we prove many pairwise succinctness results in order to have as full a picture as
possible of the qualities of the languages introduced in Section 3. All known succinctness results among these
languages are summarized in Table 2 at the end of this section.

4.1 Some Basic Succinctness and Equivalence Results

Many succinctness and equivalence results can be arrived at merely by knowing the expressivity of the languages
being compared and the basic properties of the succinctness relation contained in Fact 4.1.

Theorem 4.3 For any fixed k, arbitrary set of formulas Ψ, and arbitrary sets of weights W and W ′: If
Φ ⊆ k-forms, then L(Φ,W ) � L(Ψ,W ′).

P r o o f. There are only O(nk) formulas of length k or less, and so any utility function u representable in
L(Φ,W ) cannot have a representation more than polynomially larger than the best one in L(forms,R). Hence,
L(Φ,W ) � L(forms,R). Furthermore, L(forms,R) ⊇ L(Ψ,W ′), and so by Fact 4.1.2 we have that L(Φ,W ) �
L(Ψ,W ′).

From Theorem 4.3, it follows that all k-languages are pairwise equally succinct. For example,
L(k-spcubes,R) ∼ L(k-forms,R+).

Next, we establish the relationships between positive and strictly positive languages:
Lemma 4.4 If Φ is a strictly positive set of formulas, then L(Φ,W ) ∼ L(Φ ∪ {>},W ).

P r o o f. L(Φ,W ) � L(Φ ∪ {>},W ) by inclusion. For the converse: Fix G ∈ L(Φ ∪ {>},W ). If G does
not contain >, then G ∈ L(Φ,W ) also. If G contains >, combine all occurrences (>, w1), . . . , (>, wk) into a
single (>,

∑k
i=1 wi). If

∑k
i=1 wi = 0, then remove> to again produce a goalbase in both languages. If instead>

now has nonzero weight, then uG is not representable in L(Φ,W ), since uG is not normalized and by Lemma 3.6
only normalized utility functions can be represented using strictly positive formulas (let P be the null property).
Therefore, any u representable in both languages has exactly the same representations in both.

Theorem 4.5 L(pforms,W ) ∼ L(spforms,W ), L(pcubes,W ) ∼ L(spcubes,W ′), and
L(pclauses +>,W ) ∼ L(pclauses,W ′).

P r o o f. When W = W ′, the result is a direct consequence of Lemma 4.4, giving us the first equivalence. By
Theorem 3.2, L(pcubes,R) has unique representations, from which follows that its sublanguages do also, and so
any utility function representable in both L(pcubes,W ) and L(spcubes,W ′) has the same representation in both,
yielding the second equivalence. By Corollary 3.4, the same holds for L(pclauses +>,W ) and L(pclauses,W ′),
giving the third equivalence.

Theorem 4.6 L(spcubes,R+) ∼ L(pclauses,R+).

P r o o f. Every utility function expressible in L(spcubes,R+) is supermodular, while every utility function
expressible in L(pclauses,R+) is submodular. Let u be such a utility function. The only nonnegative utility
functions which are both supermodular and submodular are modular, and so the spcubes representation of u is in
1-spcubes and the pclauses representation is in 1-pclauses. Since 1-spcubes and 1-pclauses are just atoms, u has
the same representation in both L(spcubes,R+) and L(pclauses,R+).
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4.2 Equivalence via Goalbase Translation

It is sometimes possible to show that two languages are equally succinct by applying a size-preserving translation
to the goalbases in both directions.

Lemma 4.7 Let Φ and Ψ be sets of formulas. If Φ ⊇ cubes or Φ ⊇ clauses, Ψ ⊇ cubes or Ψ ⊇ clauses, and
Φ ∪Ψ ⊆ cubes ∪ clauses, then L(Φ,R) ∼ L(Ψ,R).

P r o o f. Suppose that G ∈ L(Φ,R). Enumerate (ϕi, wi) ∈ G. We construct an equivalent goalbase G′. Let

G0 = G

Gi+1 =

{
(Gi \ {(ϕi, wi)}) ∪ {(¬ϕi,−wi), (>, wi)} if ϕi /∈ Ψ
Gi otherwise

and let G′ = G|G|.
The transformation produces an equivalent goalbase: By equivalences (5) and (6) from Fact 3.1, Gi ≡ Gi+1

for all i, so G = G1 ≡ G2 ≡ · · · ≡ G|G|−1 ≡ G|G| = G′.
The transformation produces a goalbase in the appropriate language: Suppose that ϕ ∈ Φ. The set Ψ contains

at least every clause or every cube. If ϕ is a clause, then ¬ϕ is (equivalent to) a cube, and vice versa. Hence
at least one of ϕ and ¬ϕ are in Ψ. > is both a cube (

∧
∅) and a clause (p ∨ ¬p), so > ∈ Ψ regardless. Thus

G′ ∈ L(Ψ,R).
The transformation produces a goalbase as succinct as the original: If ϕ is a cube, then ϕ requires the same

number of atoms and binary connectives as as ¬ϕ (written as a clause); similarly, if ϕ is a clause. The only
increase in size between G and G′ can come from the addition of >, so we have that |G′| ≤ |G|+ 1.

Therefore, L(Φ,R) � L(Ψ,R). By the same argument L(Φ,R) � L(Ψ,R). So L(Φ,R) ∼ L(Ψ,R).

Theorem 4.8 L(cubes,R) ∼ L(clauses,R).

P r o o f. Follows immediately from Lemma 4.7.

4.3 Strict Succinctness and Incomparability by Counterexample

The most straightforward method for showing that one language is not more succinct than another is to produce
a family of utility functions whose representations grow exponentially in one but merely polynomially in the
other. Here we define two families of utility functions which will be used repeatedly for demonstrating strict
succinctness and incomparability results.

Definition 4.9 Let u∀n and u∃n be the utility functions over PSn where

u∀n(X) =

{
1 if X = PS
0 otherwise

and u∃n(X) =

{
1 if X 6= ∅
0 otherwise.

Theorem 4.10

L(pclauses,R),L(pclauses +>,R) ≺ L(clauses,R)

L(spcubes,R),L(pcubes,R) ≺ L(cubes,R)

P r o o f. L(pcubes,R) � L(cubes,R) since every pcube is a cube. Consider the family of utility functions
u∃n, which may be represented in cubes as{

(>, 1),
(∧

{¬p : p ∈ PS},−1
)}

the length of which increases linearly with n. u∃n may be represented in pcubes as

{(∧
X,wV

X

)
: ∅ ⊂ X ⊆ PS

}
where wV

X =

{
1 if |X| is odd

−1 if |X| is even.
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Every pcube except > receives a nonzero weight, and and by Theorem 3.2 this representation is unique. For any
n, 2n − 1 pcubes are weighted, so the size of the representation increases exponentially with n.

For L(pclauses +>,R) ≺ L(clauses,R), replace “∃”, “∧”, “pcubes”, “cubes”, and “Theorem 3.2” in the
above proof with “∀”, “∨”, “pclauses +>”, “clauses”, and “Theorem 3.3”, respectively.

Theorem 4.11 L(pcubes,R),L(spcubes,R) ⊥ L(pclauses,R),L(pclauses +>,R).

P r o o f. (⊀) The family of utility functions u∃n is represented uniquely and linearly as {(
∨
PS, 1)} in

pclauses. When representing u∃n in pcubes, the weights wV
X = (−1)|X|+1, so the unique representation there

assigns nonzero weights to 2n − 1 distinct pcubes.
(�) The family of utility functions u∀n is represented uniquely and linearly as {(

∧
PS, 1)} in pcubes, but the

representation in pclauses is exponential, as shown in the proof of Theorem 4.10.

Theorem 4.12

L(pclauses,R),L(pclauses +>,R) � L(spcubes,R+),L(pcubes,R+)

L(spcubes,R),L(pcubes,R) � L(pclauses,R+),L(pclauses +>,R+)

P r o o f. The first part is demonstrated by the u∀n family of functions, the second part by the u∃n family.

Corollary 4.13

L(spcubes,R) ≺ L(forms,R) L(pclauses,R) ≺ L(forms,R)

L(pcubes,R) ≺ L(forms,R) L(pclauses +>,R) ≺ L(forms,R)

P r o o f. Immediately from Fact 4.1.3 and Theorem 4.10.

Corollary 4.14

L(spcubes,R) ≺ L(pforms,R) L(pclauses,R) ≺ L(pforms,R)

L(pcubes,R) ≺ L(pforms,R) L(pclauses + >,R) ≺ L(pforms,R)

P r o o f. Immediately from Fact 4.1.4 and Theorem 4.11.

4.4 Strict Succinctness, Nonconstructively

It is difficult to demonstrate that a language which lacks unique representations is less succinct than another
language, because the exhibition of a single exponentially growing family of utility functions (as above) does not
preclude the existence of better representations in the same language. Here, we take a nonconstructive approach
to produce the following strict succinctness result:

Theorem 4.15 L(cubes,R) ≺ L(forms,R).
To prove this theorem, we will introduce the Fourier transform on Boolean domains, using the same notation

as in [32]. Then, to apply the Fourier transform on cubes, we will need two lemmas. The first one will show how
the size of cubes relates to their degree. The second lemma will show that a function which approximates parity
accurately necessarily has a high degree.

For each S ⊆ PS, the parity function χS : 2PS → {−1, 1} is defined as χS(X) = (−1)|S∩X|. Because
these functions form an orthonormal basis for the space of real functions on 2PS , any function f : 2PS → R can
be represented as a linear combination with respect to this basis. This is known as the Fourier-Walsh expansion:

f(X) =
∑

S⊆PS

f̂(S)χS(X),

where the f̂(S) ∈ R are the Fourier coefficients, which are computed as follows:

f̂(S) =
1
2n

∑
X⊆PS

f(X)χS(X)
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for all S ⊆ PS. The degree of a function f is the cardinality of the largest subset of S with a nonzero Fourier
coefficient: deg(f) = max{|S| : f̂(S) 6= 0}.

Lemma 4.16 If G ∈ L(k-cubes,R), then the degree of uG will be at most k.

P r o o f. Let us first show the lemma under the condition that G contains a single cube of at most k literals.
Let y ∈ PS be any variable not present in that cube. For all S ⊆ PS such that y ∈ S, the Fourier coefficients
ûG(S) are the following:

ûG(S) =
1
2n

∑
X⊆PS, y /∈X

uG(X)χS(X) +
1
2n

∑
X⊆PS, y∈X

uG(X)χS(X)

=
1
2n

∑
X⊆PS\{y}

χS(X)
(
uG(X)− uG(X ∪ {y})

)
= 0.

Therefore, if ûG(S) 6= 0 then S contains only variables present in the cube, thus |S| ≤ k. Thus, the degree of uG

is at most k. Suppose now that G contains more than one cube. Then, uG can be seen as a linear combination
of utilities each generated by single cubes. Because the Fourier transform is linear (in other words, if f = g + h

then f̂ = ĝ + ĥ), the degree of uG is also bounded by k.

The next lemma is familiar from the literature on bounding the complexity of Boolean circuits. The proof is
inspired by the lecture notes of L. Trevisian [33, Lemma 4].

Lemma 4.17 There are some constants c > 0 and n0 > 0 (such constants are completely independent from n)
such that, if n ≥ n0, then given any function g : 2PS → R that agrees with the parity function χPS on at least 3

4

of 2PS , the degree of g will be at least c
√
n.

P r o o f. Let g : 2PS → R be a function that agrees with χPS on at least a 3
4 fraction of 2PS . Let t be the

degree of g. Let A = {X ⊆ PS | g(X) = χPS(X)}, which by definition has the property |A| ≥ 3
42n where

n = |PS|. Clearly, for any S ⊆ PS and X ∈ A, we have χS(X) = χPS(X)χPS\S(X) = g(X)χPS\S(X).
Note that the function χS(X) has a degree equal to |S|, but can be replaced overA by g(X)χPS\S(X), which has
a degree of at most t+n−|S|. Consequently, any function χS overAwith |S| ≥ n

2 can be replaced by its Fourier-
Walsh expansion, which is a linear combination over the set of functions F = {χS′ | S′ ⊆ PS, |S′| ≤ t+ n

2 }.
The Fourier transform guarantees that any function f : A → R can be written as a linear combination over

{χS | S ⊆ PS}. But because each of these functions χS overA can itself be decomposed overF , f : A→ R can
be written as a linear combination over F as follows: f(X) =

∑
S⊆PS, |S|≤t+ n

2
αS · χS(X), with αS ∈ R. The

number of αS coefficients is
∑t+ n

2
k=0

(
n
k

)
. However, because the set of functions f : A→ R forms a vector space

over the reals of dimension |A|, the number of αS coefficients must be at least 3
42n. This leads to the inequality∑t+ n

2
k= n

2

(
n
k

)
≥ 2n

4 which, after applying Stirling’s approximation and some basic formula manipulation, becomes
t = Ω(

√
n).

We are now in position to prove Theorem 4.15.

P r o o f. (Theorem 4.15.) In the first part of the proof, we will show that the function χPS can be polynomially
represented in L(forms,R), and in the second part, we will show that this is not the case for L(cubes,R). Let
us prove the first part. It is known that the parity function can be written as a Boolean AND/OR formula ϕparity

containing at most n2 literals [34, p. 100]. We can then build the goalbase G = {(>,−1), (ϕparity, 2)} which
generates χPS with a polynomial number of literals.

Let us now prove the second part. More precisely, we will show that in order to represent χPS in L(cubes,R),
at least 2Ω(

√
n) cubes are required. Consider a goalbaseG = {(ϕi, αi)}i where ϕi are cubes (possibly containing

negative literals). Let Glow be all the pairs (ϕi, αi) of G such that the number of literals in ϕi is strictly lower
than c

√
n, where the constant c is being chosen as in Lemma 4.17. Let Ghigh = G \ Glow. Let uGlow be the

utility function generated by Glow. Together with Lemma 4.16, we can now apply Lemma 4.17 which implies
that uGlow disagrees with χPS on at least a 1

4 fraction of 2PS . In order for uG to compute the parity function, the
cubes of Ghigh must compensate the errors made by those of Glow on this 1

4 fraction of 2PS , but we will show
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that this compensation requires a very large number of cubes. Let us thus evaluate the fraction of 2PS which can
be affected by the cubes of Ghigh. Because each cube has at least c

√
n literals, at most 2n−c

√
n interpretations

will be affected by each of these cubes. Thus, to affect 1
4 fraction of 2PS , Ghigh will need to have at least

2n

4
2n−c

√
n = 2c

√
n−2 cubes.

Corollary 4.18 L(clauses,R) ≺ L(forms,R).

P r o o f. Follows immediately from Theorems 4.8 and 4.15, Fact 4.1.5, and Corollary 3.7.

Elkind et al. [22] give a succinctness result in their Example 1 and Theorem 1 which compares the basic
marginal contribution nets (MC-nets) of Ieong and Shoham [21] with general MC-nets. Because basic MC-nets
are effectively goalbases in L(cubes,R) and general MC-nets are goalbases in L(forms,R), we can adapt their
proof to arrive at another nonconstructive succinctness result:

Theorem 4.19 L(cubes,R+) ≺ L(forms,R+).

P r o o f. L(cubes,R+) � L(forms,R+) by inclusion. For strict succinctness: Enumerate PS2n =
{x1, x2, . . . , x2n−1, x2n} and define the family of utility functions

u2n(X) =

{
1 if x2i−1 ∈ X or x2i ∈ X, for all 1 ≤ i ≤ n

0 otherwise.

The goalbase {((x1 ∨ x2) ∧ · · · ∧ (x2n−1 ∨ x2n), 1)} represents u2n ∈ L(spforms,R+) linearly.
Because u2n is nonnegative, it has a representation G ∈ L(cubes,R+). If (ϕ,w) ∈ G and w > 0, then

for each 1 ≤ i ≤ n, ϕ contains at least one of x2i−1 and x2i as a literal: Suppose otherwise, and let X be a
state where X |= ϕ but x2i−1 and x2i are false. Then u2n(X) ≥ w since G contains no negative weights; but
u2n(X) = 0, and so w = 0, contrary to assumption. Next, consider the states X where u2n(X) = 1 and for any
state Z ⊂ X , u2n(Z) = 0. For any two such minimal nonzero states X,Y , they must differ on at least two atoms
p, q. (If X and Y differed on only one atom, then X ⊂ Y or Y ⊂ X , contradicting minimality.) Therefore, every
(ϕ,w) ∈ G such that X |= ϕ contains a literal p but not q and vice versa for every (ψ,w′) ∈ G such that Y |= ψ.
Since each minimal state has at least one (ϕ,w) which is true there but in no other minimal state, and there are
2n such minimal states, |G| ≥ 2n, and so size(G) ∈ O(2|PS|).

Note that the bulk of this proof shows that L(spforms,R+) � L(cubes,R+). This, combined with the contra-
positive of Fact 4.1.2, produces many of the � results seen in Table 2.

4.5 Summary

Our succinctness results are summarized in Table 2. The table contains many more results than are proved in
the text, but in all cases these are straightforward consequences of results which do appear in the text. (E.g.,
L(spcubes,R) ≺ L(clauses,R).) There are many open questions (any cell which contains neither ≺, �, nor
∼ has something yet to be resolved). All open questions involve at least one language which lacks unique
representations. Most cases in which nothing is known involve a language which uses positive formulas or general
formulas. We suspect that resolving these questions will require difficult proofs, as the one for Theorem 4.15
which shows that L(cubes,R) ≺ L(forms,R).

Finally, it is worth noting that ∼ is intransitive, due to the succinctness relation being defined over languages
which may differ in expressivity. E.g., L(atoms,R) is equally succinct as any other language, so L(atoms,R) ∼
L1 and L(atoms,R) ∼ L2, but it is still possible that L1 � L2.
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L(forms,R,Σ) � � � � � � � � � � � � � � � � � ∼
L(clauses,R,Σ) � � � � � � � � � � ∼ ∼
L(cubes,R,Σ) � � � � � � � � � � ∼
L(pforms,R,Σ) � � � � � � � � � ∼ � � ∼
L(pclauses +>,R,Σ) � ∼ � � ∼ � � � ⊥ ∼ ≺ ⊥ ∼
L(pcubes,R,Σ) ∼ � � ∼ � � � � ∼ ⊥ ≺ ∼
L(spforms,R,Σ) � � � � � � � � � ∼
L(pclauses,R,Σ) � ∼ � � ∼ � � � ⊥ ∼
L(spcubes,R,Σ) ∼ � � ∼ � � � � ∼
L(forms,R+,Σ) � � � � � � � � ∼
L(clauses,R+,Σ) � � � � ∼
L(cubes,R+,Σ) � � � � � � ∼
L(pforms,R+,Σ) � � ∼ � � ∼
L(pclauses +>,R+,Σ) ∼ ∼ � ∼ ∼
L(pcubes,R+,Σ) ∼ ∼ � ∼
L(spforms,R+,Σ) � � ∼
L(pclauses,R+,Σ) ∼ ∼
L(spcubes,R+,Σ) ∼

Table 2 Summary of Succinctness Results. Entries to be read row first. Empty cells are open questions.

5 Complexity

In this section, we analyze the effect that restrictions on goalbases have on the complexity of answering questions
about the utility functions they represent, focusing specifically on the problem MAX-UTIL—finding a model
which produces maximal utility, expressed as a decision problem.2

Definition 5.1 (MAX-UTIL) The decision problem MAX-UTIL(Φ,W, F ) is defined as: Given a goalbase
G ∈ L(Φ,W, F ) and an integer K, check whether there is a model M ∈ 2PS where uG(M) ≥ K.

MAX-UTIL is clearly in NP for the unrestricted language, since whether uG(M) ≥ K is polynomially check-
able, and is NP-hard via a reduction from MAXSAT [36]. In this section, we consider the difficulty of MAX-UTIL
for more restrictive languages. Note that if we permit goalbases to contain unsatisfiable formulas, then MAX-
UTIL trivializes to SAT, since deciding the problem in the general case will involve determining what (if any)
models make a formula true. Therefore, in the cases where we show NP-completeness, we do so even in the case
where goalbases contain only satisfiable formulas. In contrast, in the cases where we show that MAX-UTIL ∈ P,
we do so without this restriction. As above, we deal only with F = Σ as our aggregator, and so omit F in what
follows.

2 For all of the languages we consider, solving the decision problem MAX-UTIL will involve constructing a satisfying allocation, if one
exists. It is possible to construct classes of goalbases where MAX-UTIL can be solved trivially, and yet it is not trivial to find a satisfying
allocation. Uckelman and Witzel [35] give an alternate formulation of MAX-UTIL in which the decision and function problems do not come
apart in this way.
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5.1 Hardness Results

We first present results on languages for which MAX-UTIL is still NP-hard, despite the restrictions imposed.

Theorem 5.2 MAX-UTIL(k-cubes,Q+) is NP-complete for k ≥ 2, even if goalbases contain only satisfiable
formulas.

P r o o f. The decision problem MAX k-CONSTRAINT SAT is defined as: Given a set C of k-cubes in PS
and an integer K, check whether there is a model M ∈ 2PS which satisfies at least K of the k-cubes in C.
MAX-UTIL(k-cubes,Q+) is a weighted version of MAX k-CONSTRAINT SAT, which is NP-complete for k ≥ 2
[37, LO12, Appendix B].

In the remaining NP-completeness results, we do not state that formulas need be satisfiable, as these languages
do not contain unsatisfiable formulas.

Theorem 5.3 MAX-UTIL(k-clauses,Q+) is NP-complete for k ≥ 2.

P r o o f. MAX-UTIL(2-clauses,Q+) is a weighted version of the well-known NP-complete problem MAX
2-SAT [36], and hence is contained in MAX-UTIL(k-clauses,Q+) for k ≥ 2.

Theorem 5.4 MAX-UTIL(k-spcubes,Q) is NP-complete for k ≥ 2.

P r o o f. We show NP-hardness for k = 2 by reduction from MAX 2-SAT [36], using a construction previously
employed to show NP-hardness of the winner determination problem in combinatorial auctions when bids are
encoded using k-additive functions [26]. Let S be a set of 2-clauses and let K ≤ |S|. MAX 2-SAT asks whether
there exists a subset S′ of S with |S′| = K that is satisfiable. We construct a goalbase G as follows:

• For any positive clause (p ∨ q) ∈ S, add the weighted goals (p, 1), (q, 1), and (p ∧ q,−1) to G.

• For any clause (p ∨ ¬q) ∈ S with one negative literal, add (>, 1), (q,−1), and (p ∧ q, 1) to G.

• For any clause (¬p ∨ ¬q) with two negative literals, add (>, 1) and (p ∧ q,−1) to G.

Clearly, there exists a satisfiable S′ ⊆ S with |S′| = K iff there exists a model M such that uG(M) ≥ K.
We are not yet done, because G is not a goalbase in strictly positive cubes. Let G′ be the result of removing all
occurrences of (>, 1) from G. If d is the number of nonpositive clauses in S, then uG′(M) = uG(M) − d for
any model M . Hence, MAX 2-SAT for S will succeed iff there exists a model M such that uG′(M) ≥ K − d.
Therefore, MAX-UTIL(2-spcubes,Q) must be at least as hard as MAX 2-SAT.

Theorem 5.5 MAX-UTIL(k-pclauses,Q) is NP-complete for k ≥ 2.

P r o o f. The proof works by reduction from MAX 2-SAT, just as for Theorem 5.4, except that now we con-
struct G as follows:

• For any clause of the form p ∨ q, we simply add (p ∨ q, 1) to G.

• For any clause of the form p ∨ ¬q, we add (>, 1), (p, 1), and (p ∨ q,−1) to G.

• For any clause of the form ¬p ∨ ¬q, we add (>, 1), (p,−1), (q,−1), and (p ∨ q, 1) to G.

As > is not a positive clause, we must eliminate all occurrences of (>, 1) in the same way as we did in the proof
of Theorem 5.4.
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5.2 Easiness Results

For two languages (and all their sublanguages) we can obtain easiness results.

Theorem 5.6 MAX-UTIL(pforms,Q+) ∈ P.

P r o o f. Since all weights are positive, whichever state makes the most formulas true is optimal. Because
all formulas in the language are positive, we are guaranteed that every formula we encounter is satisfiable. In
particular, the state PS, in which all atoms are true, makes every positive formula true, and hence PS is al-
ways an optimal state. (In fact, PS is the maximal optimal state. There might also be optimal states making
fewer atoms true.) This means that the algorithm which checks whether u(PS) ≥ K decides every instance of
MAX-UTIL(pforms,Q+); furthermore, finding the value of any single state is linear.

Theorem 5.7 MAX-UTIL(literals,Q) ∈ P.

P r o o f. Fix a goalbase G ∈ L(literals,Q). Keep for each atom p a number ∆p, the difference between the
sum of p’s positive occurrences and sum of p’s negative occurrences seen so far. (Initially ∆p = 0.) Iterate over
the formulas in G, updating the deltas as we go. (Thus, on seeing (¬p, 5), we subtract 5 from ∆p.) On reaching
the end of the goalbase, define a model M = {p : ∆p > 0}. M will be the minimal optimal model. (The
maximal optimal model is {p : ∆p ≥ 0}.) This algorithm is linear in the sum of the size of the goalbase and
PS.

5.3 Summary

To summarize the results in this section, Theorems 5.2, 5.3, 5.4, and 5.5 show that MAX-UTIL is NP-complete
for any language which containsL(2-pclauses,Q), L(2-spcubes,Q), L(2-cubes,Q+), orL(2-clauses,Q+). This
covers every language mentioned in this paper except L(pforms,Q+) and L(literals,Q) and their sublanguages,
which are all in P.

6 Conclusion

We have examined the properties of various goalbase languages for representing utility functions, concentrating
on (1) the expressivity of different languages by characterizing the classes of utility functions they can represent;
(2) the relative succinctness of pairs of languages over their expressive intersection; and (3) the computational
complexity of finding the most preferred alternative when a utility function is encoded using a goalbase language
(the MAX-UTIL problem). Our results can provide useful guidelines for application designers to help them select
a preference representation language with the appropriate characteristics.

Concerning the complexity of the MAX-UTIL problem, we have been able to offer a complete picture by clas-
sifying all languages that can be defined in our framework as rendering MAX-UTIL either NP-complete or trivial.
For expressivity our results are close to being complete: Many goalbase languages directly correspond to natural
classes of utility functions, independently used in many different fields. Only for a handful of languages our
results are either not complete characterizations (e.g., Theorem 3.10) or the characterizing property is somewhat
artificial (e.g., Theorem 3.13). Finally, we have been able to establish a good number of relative succinctness
results and we have presented different techniques for deriving such results. Here, however, there still remain
some open questions. Maybe the most interesting of these concerns the relative effect, in terms of succinctness,
of dropping either negation or one of the two binary connectives. For instance, it would be particularly interesting
to establish the relative succinctness of, say, positive formulas and general cubes. Answering one or two of the
remaining open questions would most likely allow us to resolve most of the others as well.

Our results cover languages that can be constructed by restricting the range of logical connectives permitted
to a subset of {¬,∧,∨}. Other connectives one might want to consider are implication (→), equivalence (↔),
and exclusive disjunction (XOR). Interestingly, none of our results would be affected if we were (1) to enrich
the syntax of positive (k-)formulas to permit also ↔ and (2) to enrich the syntax of general (k-)formulas to
involve any of these three connectives. For expressivity and complexity results, this is immediately clear. For
succinctness results, this is also immediately clear as far as → is concerned, because translating implications
into clauses does not change formula size. This is not the case for ↔ and XOR. Still, also here our succinctness
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results are not affected, because all results involving either positive or general formulas state that these are at least
as succinct as the language they are being compared to, which will still be the case after we have enriched the
syntax.

We have mentioned several other frameworks for defining utility functions (and more generally, preference
structures) in the introduction and in Section 2.2. A similar analysis as given in this paper (also covering ex-
pressivity, succinctness and complexity) of goalbase languages based on the aggregator F = max, where the
utility of an alternative is given by the weight of the most “important” goal it satisfies, is available elsewhere
[17]. Lafage and Lang [16] discuss the definition of utility functions in terms of weighted goals from an ax-
iomatic point of view, for different aggregators F . Coste-Marquis et al. [18] address expressivity, succinctness
and complexity questions for ordinal preference structures generated by weighted goals. Nisan [12] gives a num-
ber of expressivity and succinctness results for OR/XOR bidding languages. Ieong and Shoham [21] use what is
effectively L(cubes,R,Σ) for representing the value of a coalition in coalitional games (a bundle is a coalition
and the atoms are the coalition members), and provide some algorithms for computing core membership, core
nonemptiness, and Shapley value. Elkind et al. [22] refine this work by showing that the Shapley value can be
efficiently calculated for the sublanguage of L(cubes,R,Σ) where all formulas are read-once.

There are several promising directions in which to develop this work further. One of these concerns resolving
the remaining open succinctness questions, as mentioned above. Another interesting question concerns the com-
plexity of choosing an alternative that is optimal for a group of agents. There are several variants of this problem.
One would be to study the complexity of applying different voting rules to a profile of individual preferences,
expressed in a compact representation language. Some initial research in this direction has been reported else-
where, under the heading of combinatorial vote [5]. A second variant of the problem would be to partition the set
of propositional variables amongst the agents. This induces one model for each of them (the variables “given”
to an agent are set to true, all others to false). We can then investigate the complexity of finding a partition that
maximizes collective utility for a group of agents. There are different interpretations of the notion of collective
utility [28]. For instance, we may seek to find a partition that maximizes the sum of individual utilities (utilitari-
anism) or we may wish to choose a solution that leaves the weakest agent as well off as possible (egalitarianism).
It is not difficult to see that most natural questions of this kind would give rise to problems for which the corre-
sponding decision problem is certainly within NP. If the MAX-UTIL problem is already NP-hard, then hardness
will naturally transfer to the collective optimization problem as well. So the most interesting questions here con-
cern maximizing collective utility with respect to preference representation languages for which the individual
optimization problem is easy. This question has been investigated elsewhere [17] for goalbase languages with
the aggregator F = max. Finally, it would be interesting to explore further the use of goalbase languages for the
representation of coalitional games. Existing work [21, 22] has demonstrated their applicability in this context,
but so far only a small number of languages have actually been used there.
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