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Abstract. This paper discusses models of set theory without the Axiom of
Choice. We investigate all possible patterns of the cofinality function and the
distribution of measurability on the first three uncountable cardinals. The
result relies heavily on a strengthening of an unpublished result of Kechris: we
prove (under AD) that there is a cardinal κ such that the triple (κ, κ+, κ++)
satisfies the strong polarized partition property.

1. Introduction

In ZFC, small cardinals such as ℵ1, ℵ2, and ℵ3 cannot be measurable, as mea-
surability implies strong inaccessibility; they cannot be singular either, as successor
cardinals are always regular. So, in ZFC, these three cardinals are non-measurable
regular cardinals. But both of the mentioned results use the Axiom of Choice, and
there are many known situations in set theory where these small cardinals are either
singular or measurable: in the Feferman-Lévy model, ℵ1 has countable cofinality
(cf. [Jec03, Example 15.57]), in the model constructed independently by Jech and
Takeuti, ℵ1 is measurable (cf. [Jec03, Theorem 21.16]), and in models of AD, both
ℵ1 and ℵ2 are measurable and cf(ℵ3) = ℵ2 (cf. [Kan94, Theorem 28.2, Theorem
28.6, and Corollary 28.8]). Simple adaptations of the Feferman-Lévy and Jech and
Takeuti arguments show that one can also make ℵ2 or ℵ3 singular or measurable,
but is it possible to control these properties simultaneously for the three cardinals
ℵ1, ℵ2 and ℵ3?

In this paper, we investigate all possible patterns of measurability and cofinality
for the three mentioned cardinals. Combinatorially, there are exactly 60 (= 3 ×
4× 5) such patterns: ℵ1 can be measurable, regular non-measurable, or singular (3
possibilities); ℵ2 can be measurable, regular non-measurable, or have cofinality ℵ1

or ℵ0 (4 possibilities); and ℵ3 can be measurable, regular non-measurable, or have
cofinality ℵ2, ℵ1, or ℵ0 (5 possibilities). Out of these 60 patterns, 13 are impossible
for trivial reasons: for instance, if ℵ1 is singular, then ℵ2 cannot have cofinality ℵ1,
as cofinalities always must be regular cardinals.
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For these patterns, we shall use the labels M and ℵn, standing for “measurable”
and “non-measurable and cofinality ℵn”, respectively, and write

[ x1 / x2 / x3 ]

for the statement “ℵ1 has property x1, ℵ2 has property x2, and ℵ3 has property x3”.
For technical reasons, we shall assume that all measurable cardinals carry a normal
ultrafilter. In all of our constructions of models, this will be the case; this slightly
non-standard definition does make a difference for lower bounds. We discuss this
in somewhat more detail in §9.

We shall go through all 60 possible patterns and prove 47 of them to be consistent
from the appropriate large cardinal axioms, and 13 of them to be inconsistent.
Instead of proving a ridiculously large number of results, we have arranged the
paper as follows: in § 2 we shall provide some basic tools for forcing in the ZF
context, some of them using polarized partition properties. These tools will allow
us to look at the 47 consistent patterns as a graph reducing all cases to eight base
cases in § 3. In §§ 4 and 5, we prove the consistency of all base cases. In the former
section, we use techniques from forcing and large cardinals; in the latter, we rely
on AD (and in particular, on certain polarized partition properties that hold under
AD).

The main polarized partition property we use is a generalization of an unpub-
lished theorem of Kechris from the 1980s (cf. [AH86, p. 600]). In this paper, we
give a proof of (a slightly stronger version of) Kechris’ result (§ 6) and generalize it
to higher exponents (§§ 7 and 8), as needed in our applications in § 5.

Finally, in § 9, we shall summarize upper and lower consistency strength bounds
of all 60 patterns.

2. A Toolkit

In this section, we list a number of basic forcing facts, the main definitions of
polarized partition properties and some facts about AD on which our analysis rests.

2.1. Forcing facts.

Theorem 1. If V |= ZF+“κ is a measurable cardinal”, Pκ is Př́ıkrý forcing for κ,
and G is Pκ-generic over V, then in the generic extension V[G], cf(κ) = ℵ0, any
cardinal having cofinality κ in V now has cofinality ℵ0, and the cofinalities and
measurability of all other cardinals are unchanged.

Proof. This is [Apt96, Lemmas 1.2, 1.3 and 1.5]. q.e.d.

Theorem 2. If V |= ZF+“ℵ1 is measurable”, Add(ω, ω1) is the partial order
for adding ω1 many Cohen reals, and G is Add(ω, ω1)-generic over V, then in
the generic extension V[G], ℵ1 is regular but non-measurable and cofinalities and
measurability of all other cardinals are unchanged.

Proof. The fact that ℵ1 becomes non-measurable is a special case of the general
ZF-result (due to Ulam) that if κ injects into 2λ for some λ < κ, then there cannot
be a κ-complete ultrafilter on κ (cf. [Kan94, Theorem 2.8]). Obviously, the ω1-
sequence of Cohen reals produces an injection of ω1 into 2ω. Since Add(ω, ω1) is
canonically well-orderable and |Add(ω, ω1)| = ℵ1, the proof that all cardinals and
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cofinalities are preserved is the same as when AC is true. Since |Add(ω, ω1)| = ℵ1,
the argument given in the proof of [AH86, Lemma 2.1] shows that the measurability
of all cardinals greater than ℵ1 is preserved. q.e.d.

Theorem 3. If V |= ZFC+“κ < λ are measurable cardinals”, then for x3 ∈
{ℵ0,ℵ1,ℵ2,ℵ3,M}, there is a symmetric submodel Nx3 satisfying [M /ℵ2 / x3 ].
If x3 6= M, only one measurable cardinal is needed in V.

Proof. We sketch the proof of Theorem 3. Without loss of generality, we assume
that GCH holds in V. Let G0 be Col(ω,<κ)-generic over V, where for ρ < ζ, ρ a
regular cardinal, ζ a cardinal, Col(ρ,<ζ) is the Lévy collapse of all cardinals less
than ζ to ρ. For H which is Col(ρ,<ζ)-generic over V and ξ ∈ (ρ, ζ) a cardinal, let
H�ξ be all elements of H which are members of Col(ρ,<ξ). Let G1 be Col(κ+, <γ)-
generic over V, where γ is either κ+ω, κ+κ, κ+η for η = κ+, or λ. We write
HDV(X) for the class of sets hereditarily V-definable with a parameter from X.
Consider the symmetric model Nx3 := HDV({G0�δ ; δ ∈ (ω, κ) and δ is a cardinal}∪
{G1�δ ; δ ∈ (κ+, γ) and δ is a cardinal}). Since in V, there is a κ+ sequence
of subsets of κ, standard arguments show that Nx3 is a model for [M /ℵ2 /ℵ0 ],
[M /ℵ2 /ℵ1 ], [M /ℵ2 /ℵ2 ], or [M /ℵ2 /M ], for γ either κ+ω, κ+κ, κ+η for η =
κ+, or λ respectively. Since in V, there is a κ+ sequence of subsets of κ and a κ++

sequence of subsets of κ+, Nx3 := HDV({G0�δ ; δ ∈ (ω, κ) and δ is a cardinal}) is
a model for [M /ℵ2 /ℵ3 ]. Clearly, the only time a second measurable cardinal is
needed in the construction is for the pattern [M /ℵ2 /M ]. q.e.d.

Theorem 4. Suppose i ∈ ω. Let V |= ZF + “κ is a limit cardinal” + “λ :=
κ+i”. Let G be Col(ω,<κ)-generic over V. Consider the model M obtained by
symmetrically collapsing κ to ℵ1, i.e., the model M := HDV({G�δ ; δ ∈ (ω, κ) and
δ is a cardinal}). Then the following hold:

(i) If V |= “λ is measurable”, then M |=“λ = ℵi+1 is measurable”.
(ii) If V |= “cf(λ) = κ+j for some j ≤ i”, then M |= “cf(λ) = ℵj+1”.

Proof. Since V |= “Col(ω,<κ) is canonically well-orderable and |Col(ω,<κ)| = κ”,
(i) follows from the argument given in the proof of [AH86, Lemma 2.1], the fact
that κ = ℵ1 in M , and the fact that cardinals at and above κ are preserved to
M ; (ii) follows from the fact that κ = ℵ1 in M and the fact that cardinals and
cofinalities at and above κ are preserved to M . q.e.d.

2.2. Polarized partition properties. Fix a strictly increasing triple (κ0, κ1, κ2)
of cardinals and an ordinal δ ≤ κ0. We say a function f : 3 × δ → On is a block
function if κi−1 < f(i, α) < κi for i ∈ 3 (and κ−1 := 0), and we say it is increasing
if f(i, α) < f(i, β) whenever α < β. We denote the set of increasing block functions
by IBFδ. If ~H = (H0,H1,H2) is a tuple such that Hi ⊆ κi (for i ∈ 3), we define a
subset F ~H ⊆ IBFδ by

f ∈ F ~H,δ : ⇐⇒ for all α ∈ δ and i ∈ 3, we have f(i, α) ∈ Hi.

If P ⊆ IBFδ is a partition of all increasing block functions into two disjoint sets,
we call a triple ~H δ-homogeneous for P if either F ~H,δ ⊆ P or F ~H,δ ∩ P = ∅.
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For Ramsey-type partition properties, we also define the set IBF<δ :=
⋃
α<δ IBFα,

and for a partition P ⊆ IBF<δ, we say that a tuple ~H is <δ-homogeneous for P
if for all α < δ, either F ~H,α ⊆ P or F ~H,α ∩ P = ∅.

Definition 5. The polarized partition property

(κ0, κ1, κ2) → (κ0, κ1, κ2)δ

is the statement that for every partition P , there is a δ-homogeneous tuple ~H with
|Hi| = κi. If δ = κ0, we call it the strong polarized partition property.1 The
Ramsey-type polarized partition property

(κ0, κ1, κ2) → (κ0, κ1, κ2)<δ

is the statement that for every partition P , there is a <δ-homogeneous tuple ~H
with |Hi| = κi. Polarized partition properties with pairs of cardinals instead of
triples are defined analogously.2

Lemma 6. Suppose that (κ0, κ1, κ2) → (κ0, κ1, κ2)κ0 and κ0 > ℵ1. Then the
following hold:

(i) (κ1, κ2) → (κ1, κ2)κ0 , and
(ii) (κ1, κ2) → (κ1, κ2)<ω1 .

Proof. Claim (i) is trivial. Claim (ii) follows by the standard methods developed
by Kleinberg for the standard partition relations [Kle70, Lemmas 1.3 and 1.4] that
easily transfer to the polarized case (as mentioned in [AHJ00, Facts 4.3 through
4.7]): (κ1, κ2) → (κ1, κ2)κ0 implies (κ1, κ2) → (κ1, κ2)ω1+ω1 , from which we get
(κ1, κ2) → (κ1, κ2)ω1

2ω1 , the partition relation for partitions into 2ℵ1 many sets.
From this, we get (κ1, κ2) → (κ1, κ2)<ω1 by coding. q.e.d.

As is the case for ordinary partition relations, the polarized partition property is
equivalent to a c.u.b. version. A block function f is said to be of uniform cofinal-
ity ω if there is a function g : 3×δ×ω → On such that f(i, α) = sup{g(i, α, n) ; n ∈
ω}, and g is strictly increasing in the last argument. We say that a block function f
is of the correct type if it is increasing, everywhere discontinuous, and of uniform
cofinality ω. We write CTFδ for the functions of the correct type. If P ⊆ CTFδ, we
call a triple ~H δ-c.u.b.-homogeneous if either F ~H,δ∩CTFδ ⊆ P or F ~H,δ∩P = ∅.

Definition 7. We say (κ0, κ1, κ2)
c.u.b.−→ (κ0, κ1, κ2)δ if for every partition P ⊆

CTFδ, there is a triple ~C = (C0, C1, C2) such that Ci is a closed unbounded set in
κi (for i ∈ 3) and ~C is δ-c.u.b.-homogeneous.

Fact 8. For any δ ≤ κ0 < κ1 < κ2, we have that (κ0, κ1, κ2)
c.u.b.−→ (κ0, κ1, κ1)δ

implies (κ0, κ1, κ2) → (κ0, κ1, κ1)δ. Also, (κ0, κ1, κ2) → (κ0, κ1, κ1)ω·δ implies
(κ0, κ1, κ2)

c.u.b.−→ (κ0, κ1, κ1)δ.

Proof. The easy argument can be found in [Jac08, Lemma 3.3]. q.e.d.

1Note that this terminology differs from that of [AHJ00].
2Note that as in [AHJ00, Definition 4.11], these definitions are equivalent to the partition

theoretic ones found in [AHJ00, Definition 4.1sq].
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2.3. Magidor-like forcing. In [Hen83], Henle introduced Magidor-like forcing for
controlling the cofinalities of cardinals in choiceless contexts in the presence of
partition properties. Assuming that κ→ (κ)<δ and that δ is a regular, uncountable
cardinal, Magidor-like forcing changes the cofinality of κ to δ without adding any
bounded subsets to κ (thereby preserving the fact that κ is a cardinal; cf. [Hen83,
Proposition 1.3]). We define the set Pδ,κ by

Pδ,κ = {〈s, x〉 ; s ∈ [κ]<δ, x ∈ [κ]κ,
⋃
s <

⋂
x}.

We use 〈x〉 to denote {ωq ; q ∈ [x]κ}, where ωq = {
⋃
n<ω q(α+ n) ; α < κ}.

The partial ordering for Pδ,κ is now defined by saying that 〈s′, x′〉 extends 〈s, x〉
if and only if s ⊆ s′, 〈x′〉 ⊆ 〈x〉, and s′ \ s = ωt for some t ∈ [x]<δ. For p ∈ Pδ,κ, we
denote the coordinates of p by p0 and p1, i.e., p = 〈p0, p1〉.

This was generalized in [AHJ00, §6] to the context of polarized partition prop-
erties. In the following, we shall need two preservation results from [AHJ00]:

Lemma 9 (Initial segment preservation). If (κ0, κ1, κ2) → (κ0, κ1, κ2)κ0 , then after
forcing with Pκ0,κ2 , we still have (κ0, κ1) → (κ0, κ1)κ0 .

Proof. This follows from the proof of [AHJ00, Proposition 6.3]. q.e.d.

Lemma 10 (Countable final segment preservation). If (κ0, κ1) → (κ0, κ1)<ω1 and
γ < κ0 is regular, then after forcing with Pγ,κ0 , the relation κ1 → (κ1)<ω1 remains
true.

Proof. This follows from the proof of [AHJ00, Proposition 6.4]. q.e.d.

2.4. The Axiom of Determinacy and Suslin Cardinals. Let us recall some
basic definitions from descriptive set theory. By a boldface pointclass Γ we mean
a collection of sets of reals closed under continuous preimages. For a pointclass Γ
we let Γ̆ denote the dual pointclass Γ̆ := {A ; ωω\A ∈ Γ}. A pointclass Γ is
called selfdual if Γ = Γ̆, and non-selfdual otherwise. If Γ is non-selfdual, we can
define ∆ := Γ ∩ Γ̆. We say that a non-selfdual pointclass Γ has the separation
property (in symbols: Sep(Γ)) if any two disjoint sets in Γ can be separated by a
set in ∆. In general, at most one of Γ and Γ̆ can have the separation property. In
[Ste81b], Steel proved that AD implies that one of the two does. From now on in
this section, we shall assume AD.

The class of pairs of non-selfdual pointclasses (Γ, Γ̆) (i.e., Γ 6= Γ̆) such that one
of them is closed under ∃ωω

has order type

Θ := sup{α; there is a surjection from ωω onto α}.

We call these the Lévy pointclasses. Let (Γα, Γ̆α) be the αth such pair. If one of
them is not closed under ∀ωω

, the other one is. If this is the case, we let Σ1
α be the

one that isn’t. If both of them are closed under ∀ωω

, let Σ1
α be the one with the

separation property. As usual, Π1
α := (Σ1

α)̆ . In [KSS81, §4], the authors proposed
a classification of these pointclasses. They fall into four types of “projective like
hierarchies” which are distinguished by the closure properties of the pointclass at
the base of the hierarchy (this is recalled after Proposition 13 below). For example,
if cf(α) = ω, then Σ1

α is at the base of a type I hierarchy. In this case Σ1
α is the
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collection of sets which can written as a countable union of sets each of which is in
Σ1
β for some β < α. These pointclasses play a particularly important role in the

arguments of §§6–8.
As usual, a set of reals A is called λ-Suslin if there is a tree T ⊆ (ω×λ)<ω such

that A = p[T ] := {x ; ∃y ∈ λω((x, y) ∈ [T ])}. We write S(λ) for the pointclass of
all λ-Suslin sets. These pointclasses are closed under ∃ωω

, and thus show up in our
list mentioned in the last paragraph. A cardinal κ is called a Suslin cardinal if
S(κ)\

⋃
λ<κ S(λ) 6= ∅.

We give the well-known Kunen-Martin theorem (cf. [Kec78, Theorem 3.11]) with
its proof, as the general idea of this proof will be used repeatedly in our results of
§§6–8.

Theorem 11 (Kunen-Martin). Let ≺ be a κ-Suslin wellfounded relation on ωω.
Then the rank of ≺ is less than κ+.

Proof. Let T be a tree on ω×ω×κ with ≺ = p[T ]. Let U be the wellfounded tree
consisting of finite ≺-decreasing sequences (x0, . . . , xn), that is, xn ≺ · · · ≺ x1 ≺ x0.
It is easy to see that ≺ and U have the same rank. To each ~x = (x0, . . . , xn) ∈ U
assign π(~x) = (x0�n+ 1, . . . , xn�n+ 1, `(x1, x0)�n+1, . . . `(xn, xn−1)�n+1), where
`(y, z) ∈ κω is the leftmost branch of Ty,z. If ~y extends ~x, we view π(~y) as extending
π(~x) in a natural way. The map π is order-preserving from U into a wellfounded
relation on a set in bijection with κ. Thus the rank of ≺ must be less than κ+.

q.e.d.

In [Ste83, Theorem 4.3], Steel identifies (assuming V=L(R)) the pointclasses
S(κ) in the list of Σ1

αs and Π1
αs and calculates their Suslin cardinals. For instance,

if κR is the least non-hyperprojective ordinal3, we have S(κR) = Π1
κR = IND, and

κR is a Suslin cardinal as witnessed by the inductive sets.

Proposition 12. If AD holds, then there are weakly inaccessible Suslin cardinals.

Proof. As just mentioned, Steel’s analysis of scales in L(R) shows that κR is
a Suslin cardinal. In [KKMW81, Theorem 3.1], the authors show that it is in
fact weakly Mahlo. Note that κR is by no means the only (or smallest) weakly
inaccessible Suslin cardinal (cf. [Ste81a, Theorem 3.1]). q.e.d.

By the work of [KKMW81] mentioned in the proof of Proposition 12, the analysis
of the scale property of pointclasses is closely connected to partition properties. Our
results from §7 and §8 can be seen as an extension of this work. In the following
overview, we follow [Jac08, p. 295–297]:

For a selfdual pointclass ∆, we let o(∆) := sup{|A|W ; A ∈ Γ} and δ(∆) :=
sup{α ; there is a ∆-prewellordering of length α}. Note that (under AD) if ∆ is
closed under ∃ωω

and finite intersections, then o(∆) = δ(∆) [KSS81, Theorem
2.3.1]. Let us fix the increasing enumeration of all Suslin cardinals 〈κα ; α < Ξ〉.
Note that ZF + AD does not fix the value of Ξ: the Suslin cardinals could be
unbounded below Θ (in this case, every set has a scale and thus by a result of

3Here, IND is the pointclass of inductive sets, and the pointclass HYP := IND ∩ IND˘ is

the class of hyperprojective sets. All three mentioned pointclasses are closed under ∃ωω
and ∀ωω

,
and we have Sep(IND )̆.
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Woodin [Kan94, Theorem 32.23], ADR holds) or there could be a largest Suslin
cardinal. It is enough for the results of this paper to consider the Suslin cardinals
in L(R), i.e., 〈κα ; α < (δ2

1)
L(R)〉. Here [Ste83] gives a complete analysis of the

Suslin cardinals. We note though that the main partition result we prove in §8 only
uses AD.

We recall some facts about the classification of projective-like hierarchies and
how this pertains to Suslin cardinals. The facts we review below are sufficient for
the results of this paper. The reader can consult [Ste81a] and [Ste83] for more
details. We note that the latter paper assumes V=L(R). Although we don’t need
it for the results of this paper, [Jac09] presents the theory of the Suslin cardinals
from just AD.

Following [Ste81a] consider

D := {o(∆) ; ∆ is selfdual and closed under ∧, ∃ω
ω

}.

Clearly, D consists of limit ordinals and is closed unbounded in Θ. Each α ∈ D
corresponds to the base of a projective-like hierarchy. If cf(α) = ω this is called a
type I hierarchy. In this case the Wadge degree of rank α is selfdual and consists
of a countable join of sets of lower Wadge rank. We let Σα

0 in this case be the
collection of countable unions of sets of Wadge rank below α. We let Πα

0 be the
dual class, and define Σα

n, Πα
n for n > 0 as usual. This defines the projective-like

hierarchy. In this case, Σα
0 , Πα

1 , etc. have the prewellordering property. These
classes will be particularly important for the arguments of §§6–8. If cf(α) > ω, the
Wadge pair (Γ, Γ̆) of rank α is non-selfdual. By [Ste81a], exactly one of Γ, Γ̆, say
Γ̆, has the separation property, and this class is closed under ∃ωω

. If this pointclass
is not also closed under ∀ωω

we are in type II if Γ is not closed under ∨ and in type
III if Γ is closed under ∨. We call Γ in these cases the Steel pointclass at the
base of the hierarchy. If Γ is closed under real quantification then we are in type
IV (in this case the projective-like hierarchy is built up by applying quantifiers to
Γ∧ Γ̆). This analysis of the projective-like hierarchies does not depend on the scale
property, and assumes just AD.

We now specialize to the Suslin cardinals and Suslin pointclasses. We say the
λth Suslin cardinal κλ is a limit Suslin cardinal if λ is a limit ordinal, and otherwise
a successor Suslin cardinal (so a successor Suslin cardinal may be a limit cardinal).
First we recall that [Ste83] shows that the Suslin cardinals form a closed set in L(R)
(with largest element (δ2

1)
L(R)). More generally, Steel and Woodin have shown that

the Suslin cardinals are closed below Θ assuming AD+, and closed below their
supremum assuming just AD. So we have:

Proposition 13. If λ is a limit ordinal, then κλ is a limit of Suslin cardinals.

If κ = κλ is a limit Suslin cardinal, then ∆ :=
⋃
ρ<κ S(ρ) is selfdual and closed

under ∧, ∃ωω

, and so o(∆) ∈ D. As discussed above, ∆ sits at the base of a
projective-like hierarchy in one of four possible types. In [Ste83], Steel identifies
the pointclasses S(κ) among the Σ1

α and Π1
α and in fact determines the scaled Lévy

classes among the Σ1
α, Π1

α (assuming V=L(R)). We recall some of the consequences
in terms of the possible hierarchy types. In all cases, κ = o(∆) = δ(∆).

Type I: In this case cf(κ) = cf(λ) = ω. If we let, as above, Σα
0 (where

α = o(∆) = κ) be the collection of countable unions of sets in ∆, then
Σα

0 , Πα
1 , etc. have the scale property. κ+ is a Suslin cardinal, and a Πα

1
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scale on a Πα
1 -complete set has norms of length κ+. We have S(κ) = Σα

1

and S(κ+) = Σα
2 .

Type II or III: In this case, let Γ be the Steel class defined above. So,
∆ = Γ ∩ Γ̆, and Γ is closed under ∧, ∀ωω

. Then S(κ) = ∃ωω

Γ, and
Scale(Γ), Scale(S(κ)) hold.

Type IV: In this case, the pointclasses Γ, Γ̆ of Wadge degree κ are closed
under real quantification. Let Γ be such that Γ̆ has the separation prop-
erty. Then Scale(Γ), and S(κ) = Γ.

If κ is a regular limit Suslin cardinal, then [Ste81a, Theorem 2.1] shows that
Γ (as in the above hierarchy descriptions) is closed under ∨. Thus, we are in
type III or IV. Finally, the analysis of [Ste83, Theorem 4.3] shows that a successor
Suslin cardinal is either a successor cardinal or has cofinality ω. Thus, a weakly
inaccessible Suslin cardinal κλ must be a limit Suslin cardinal (and so λ = κ).

Summarizing, our inaccessible Suslin cardinal κ is a limit of Suslin cardinals,
and S(κ) has the scale property. In fact, S(κ) = ∃ωω

Γ, where Γ is a non-selfdual
pointclass with o(Γ) = κ, Γ is closed under ∀ωω

, ∧, ∨, and Scale(Γ). It is possible
that Γ = S(κ) if we are in the case of a Type IV hierarchy. We again note that
these results can be obtained from just AD (cf. [Jac09]).

We fix a Γ-complete set P (which exists by Wadge’s Lemma for all non-selfdual
pointclasses under AD) and let {ϕn}n∈ω be a (regular) Γ-scale on P . An inspection
of the standard argument shows that we have the following boundedness condition
(as Γ is a boldface pointclass with the prewellordering property and closed under
∀ωω

and finite unions): any ∆ = Γ∩ Γ̆ subset A of P is bounded in the codes, that
is, sup{ϕx(x) ; n ∈ ω, x ∈ A} < κ.

Our results from §§7 and 8 have to be understood in the context of proofs of
partition properties for δ(∆) for highly closed pointclasses. For instance, consider
the following example theorem as listed in [Jac08, Theorem 3.10]:

Theorem 14. Let Γ be non-selfdual, closed under ∀ωω

and finite unions, and with
the prewellordering property. Define ∆ := Γ ∩ Γ̆. If ∃ωω

∆ ⊆ ∆, then δ(∆) has
the strong partition property.

Note that if κ is an inaccessible Suslin cardinal and Γ is the pointclass defined
as above, then Γ satisfies all of the requirements of Theorem 14, and therefore
δ(∆) = κ has the strong partition property. Our results are extensions of this
observation.

The fact that κ has the strong partition property immediately implies that the
ω-cofinal measure µ := Cωκ on κ is a normal ultrafilter (cf. [Kle70, Theorem 2.1]).

Finally, we recall one more result, due to Martin (cf. [Kec78, Theorem 3.7]) in
the AD theory of pointclasses which will be used frequently later. For the sake of
completeness, we sketch the proof.

Theorem 15 (Martin). Let Γ be a non-selfdual pointclass closed under ∀ωω

, ∧,
∨, and assume pwo(Γ). Let δ = δ(∆) (where ∆ = Γ∩ Γ̆). Then ∆ is closed under
unions and intersections of length < δ.

Proof. Assume the contrary, and let ρ < δ be least such that some ρ union,
say A =

⋃
α<ρAα, of sets in ∆ that is not in ∆. Easily, ρ is regular. We may

assume the Aα are strictly increasing. Since ρ < δ, there is a ∆-prewellordering
of length ρ. The coding lemma then shows that A ∈ Γ̆ (since Γ̆ is closed under
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∃ωω

). By assumption, A ∈ Γ̆ −∆. Define a norm ϕ of length ρ on A by ρ(x) =
least α such that x ∈ Aα. This is a Γ̆ norm on A, which shows that Γ̆ has the
prewellordering property, a contradiction since for pointclasses Γ0 closed under
∧, ∨ we have the chain of implications pwo(Γ0) ⇒ Red(Γ0) ⇒ Sep(Γ̆0) and the
separation property cannot hold on both sides of a non-selfdual pointclass. To see
that ϕ0 is a Γ̆-norm, notice that the corresponding norm relation <∗ can be written
as x <∗ y ↔ ∃α < ρ (x ∈ Aα ∧ y /∈ Aα). So, <∗ is a ρ union of sets in ∆, and the
coding lemma again shows that <∗ is in Γ̆. A similar computation works for ≤∗,
showing ϕ is a Γ̆-prewellordering on A. q.e.d.

3. Reducing to base cases

Recall the 60 patterns mentioned in §1. A pattern [ x1 / x2 / x3 ] is called trivially
inconsistent if there are 0 ≤ k < i < j ≤ 3 such that xi = ℵk and xj = ℵi. For
example, [ℵ0 /ℵ1 /M ] is trivially inconsistent. This is because ℵ1 is singular, but
cf(ℵ2) = ℵ1, which is obviously impossible. A simple combinatorial calculation
shows that there are 13 trivially inconsistent patterns. These are the patterns 13,
18, 33, 38, 44, 49, 51, 52, 53, 54, 55, 58, and 59 in our table of § 9. The remaining
47 patterns will be split into graphs according to the following rules:

• If P = [ x1 / x2 / x3 ] is a pattern with xi = M, and P ′ = [ y1 / y2 / y3 ] is a
pattern with yi = ℵ0 and for j 6= i,

yj =
{

xj if xj 6= ℵi, and
ℵ0 if xj = ℵi,

then there is an edge from P to P ′. This corresponds to a forcing extension
with Př́ıkrý forcing according to Theorem 1.

• There is an edge from [M / x2 / x3 ] to [ℵ1 / x2 / x3 ]. This corresponds to
a forcing extension adding ω1 many Cohen reals according to Theorem 2.

Because of Theorems 1 and 2, if P is consistent and there is an edge from P to
P ′, then P ′ is consistent. This allows us to reduce the consistency of patterns to
the patterns that are top elements in the graph. We shall now list all components
of this graph:

Base Case #1: [M /M /M ].

[M /M /M ]

sshhhhhhhhhhhhhhhhhhh

xxqqqqqqqqqqq

�� &&MMMMMMMMMMM

[ℵ0 /M /M ]

�� &&MMMMMMMMMM
[M /ℵ0 /M ]

xxqqqqqqqqqq

&&MMMMMMMMMMM
[M /M /ℵ0 ]

xxqqqqqqqqqqq

��

[ℵ1 /M /M ]

�� &&MMMMMMMMMM

[ℵ0 /ℵ0 /M ]

&&MMMMMMMMMM
[ℵ0 /M /ℵ0 ]

��

[M /ℵ0 /ℵ0 ]

xxqqqqqqqqqqq
[ℵ1 /ℵ0 /M ]

��

[ℵ1 /M /ℵ0 ]

xxqqqqqqqqqq

[ℵ0 /ℵ0 /ℵ0 ] [ℵ1 /ℵ0 /ℵ0 ]
9



The component of the graph reachable from the pattern [M /M /M ] covers 12
of our patterns, the ones numbered 1, 5, 16, 20, 21, 25, 36, 40, 41, 45, 56, and 60
in our table.

Base Case #2: [M /M /ℵ3 ].

[M /M /ℵ3 ]

xxqqqqqqqqqq

�� &&MMMMMMMMMM

[ℵ0 /M /ℵ3 ]

��

[M /ℵ0 /ℵ3 ]

xxqqqqqqqqqq

&&MMMMMMMMMM
[ℵ1 /M /ℵ3 ]

��
[ℵ0 /ℵ0 /ℵ3 ] [ℵ1 /ℵ0 /ℵ3 ]

The component of the graph reachable from the pattern [M /M /ℵ3 ] covers 6
of our patterns, the ones numbered 2, 17, 22, 37, 42, and 57. None of these was
included in the component of Base Case #1.

Base Case #3: [M /M /ℵ2 ].

[M /M /ℵ2 ]

xxqqqqqqqqqq

�� &&MMMMMMMMMM

[ℵ0 /M /ℵ2 ]

��

[M /ℵ0 /ℵ0 ]

xxqqqqqqqqqq

&&MMMMMMMMMM
[ℵ1 /M /ℵ2 ]

��
[ℵ0 /ℵ0 /ℵ0 ] [ℵ1 /ℵ0 /ℵ0 ]

The component of the graph reachable from the pattern [M /M /ℵ2 ] covers 6
of our patterns, the ones numbered 3, 20, 23, 40, 43, and 60. Of these, three were
not included in the components of Base Cases #1 and #2.

Base Case #4: [M /M /ℵ1 ].

[M /M /ℵ1 ]

xxqqqqqqqqqq

�� &&MMMMMMMMMM

[ℵ0 /M /ℵ0 ]

��

[M /ℵ0 /ℵ1 ]

xxqqqqqqqqqq

&&MMMMMMMMMM
[ℵ1 /M /ℵ1 ]

��
[ℵ0 /ℵ0 /ℵ0 ] [ℵ1 /ℵ0 /ℵ1 ]

The component of the graph reachable from the pattern [M /M /ℵ1 ] covers 6
of our patterns, the ones numbered 4, 19, 24, 39, 45, and 60. Of these, four were
not included in the components of Base Cases #1 through #3.
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Base Cases #5a-d: [M /ℵ2 / x3 ].

[M /ℵ2 /M ]

xxqqqqqqqqqq

�� &&MMMMMMMMMM

[M /ℵ2 /ℵ1 ]

�� &&MMMMMMMMMM
[ℵ0 /ℵ2 /M ]

��

[M /ℵ2 /ℵ0 ]

xxqqqqqqqqqq

&&MMMMMMMMMM
[ℵ1 /ℵ2 /M ]

��
[ℵ1 /ℵ2 /ℵ1 ] [ℵ0 /ℵ2 /ℵ0 ] [ℵ1 /ℵ2 /ℵ0 ]

[M /ℵ2 /ℵ2 ]

�� &&MMMMMMMMMM
[M /ℵ2 /ℵ3 ]

xxqqqqqqqqqq

��
[ℵ0 /ℵ2 /ℵ2 ] [ℵ1 /ℵ2 /ℵ2 ] [ℵ0 /ℵ2 /ℵ3 ] [ℵ1 /ℵ2 /ℵ3 ]

This base case splits into four subcases, Base Case #5a [M /ℵ2 /M ], Base Case
#5b [M /ℵ2 /ℵ3 ], Base Case #5c [M /ℵ2 /ℵ2 ], and Base Case #5d [M /ℵ2 /ℵ1 ].
The components of the graph reachable from the patterns [M /ℵ2 / x3 ] cover 14 of
our patterns, the ones numbered 6, 7, 8, 9, 10, 26, 27, 28, 29, 30, 46, 47, 48, and
50, none of which was included in the components of Base Cases #1 through #4.

Base Case #6: [M /ℵ1 /M ].

[M /ℵ1 /M ]

xxqqqqqqqqqq

�� &&MMMMMMMMMM

[ℵ0 /ℵ0 /M ]

��

[M /ℵ1 /ℵ0 ]

xxqqqqqqqqqq

&&MMMMMMMMMM
[ℵ1 /ℵ1 /M ]

��
[ℵ0 /ℵ0 /ℵ0 ] [ℵ1 /ℵ1 /ℵ0 ]

The component of the graph reachable from the pattern [M /ℵ1 /M ] covers 6
of our patterns, the ones numbered 11, 15, 31, 35, 56, and 60. Of these, four were
not included in the components of Base Cases #1 through #5.

Base Case #7: [M /ℵ1 /ℵ3 ].

[M /ℵ1 /ℵ3 ]

xxqqqqqqqqqq

&&MMMMMMMMMM

[ℵ0 /ℵ0 /ℵ3 ] [ℵ1 /ℵ1 /ℵ3 ]

The component of the graph reachable from the pattern [M /ℵ1 /ℵ3 ] covers 3
of our patterns, the ones numbered 12, 32, and 57. Of these, two were not included
in the components of Base Cases #1 through #6.
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Base Case #8: [M /ℵ1 /ℵ1 ].

[M /ℵ1 /ℵ1 ]

xxqqqqqqqqqq

&&MMMMMMMMMM

[ℵ1 /ℵ1 /ℵ1 ] [ℵ0 /ℵ0 /ℵ0 ]

The component of the graph reachable from the pattern [M /ℵ1 /ℵ1 ] covers 3
of our patterns, the ones numbered 14, 34, and 60. Of these, two were not included
in the components of any of the other base cases.

By our earlier remarks, it is enough to show the consistency of the eight base cases
in order to prove the consistency of all patterns that are not trivially inconsistent.
Note that in some cases, the graph will not give us the optimal consistency strength
upper bounds. For instance, the ZFC-pattern [ℵ1 /ℵ2 /ℵ3 ] shows up in Base Case
#5b and is obtained from the large cardinal pattern [M /ℵ2 /ℵ3 ] by forcing. For
more on upper and lower bounds, cf. § 9.

4. Base Cases #2, #5, and #7

In this section, we handle three of the base cases. These three are proved con-
sistent with techniques from forcing with large cardinals and do not rely on either
polarized partition properties or AD.

Base Cases #5a-d are just Theorem 3 and do not need any large cardinals beyond
the ones explicitly mentioned in the pattern that is created. The other cases in this
section will be proved consistent from large cardinal assumptions by forcing in
the following two theorems. None of these proofs is new. They all use published
techniques and essentially consist of proof inspection to check that the relevant
properties hold in the situation in which we are interested.

Theorem 16 (Woodin). If there are κ < λ such that κ is supercompact and λ is
measurable, then there is a model in which Base Case #2 holds (i.e., [M /M /ℵ3 ]).

Proof. This theorem is discussed in [AH86, p. 591]. Theorem 1 of that paper is
a generalization of Woodin’s result. Suppose V |= ZFC + “κ < λ are such that κ
is supercompact and λ is measurable”. Let P0 be supercompact Radin forcing as
defined in [AH86, p. 592sq ], with κ playing the role of κ1 and λ playing the role of
κ2. Let P1 = Col(ω,<κ), and let P = P0 × P1. Let G be P -generic over V, and
take N as the choiceless inner model of [AH86, Theorem 1] defined with respect to
G. By suitably modified versions of [AH86, Lemmas 1.1 through 1.4], N |= ZF+
“κ = ℵ1 is measurable via the club filter” + “λ = ℵ2 is measurable”. By the
appropriate version of [AH86, Lemma 1.2], N |= “λ+ = ℵ3 = (λ+)V”. Therefore,
since V ⊆ N and V contains a λ+ sequence of subsets of λ, N does as well. This
means that N |= “λ+ = ℵ3 is not measurable”. q.e.d.

Theorem 17. If there is a supercompact cardinal, then there is a model of Base
Case #7 (i.e., [M /ℵ1 /ℵ3 ]).

12



Proof. This construction is essentially the same as in the proof of Theorem
16. Suppose V |= ZFC + GCH+ “κ < λ are such that κ is supercompact and
λ = κ+κ”. Again, let P0 be supercompact Radin forcing as in the proof of Theorem
16. Let P1 = Col(ω,<κ), and let P = P0 × P1. A similar argument as in the
proof of Theorem 16, using GCH to show that λ can be symmetrically collapsed to
become ℵ2, yields that the symmetric model N is such that N |= ZF + “κ = ℵ1

is measurable via the club filter” + “λ = ℵ2 is singular of cofinality κ = ℵ1” +
“λ+ = ℵ3 is not measurable”.

q.e.d.

5. Base Cases #1, #3, #4, #6, and #8

In this section, we shall handle Base Cases #1, #3, #4, #6, and #8, all under
the assumption that there is a model of AD. Among these, Base Case #3 is a
special case since this is the famous AD-pattern:

Theorem 18 (Solovay-Martin). Assume AD. Then ℵ1 and ℵ2 are measurable
cardinals and cf(ℵ3) = ℵ2.

Proof. Cf. [Kan94, Theorems 28.2, 28.6 and Corollary 28.8]. q.e.d.

For the next three of these base cases, we need a polarized partition property,
relying heavily on the main theorem of § 8.

Theorem 19. Assume AD. Then there is a limit cardinal κ such that the polarized
partition property

(κ, κ+, κ++) → (κ, κ+, κ++)κ

holds.

Proof. By Proposition 12, there are weakly inaccessible Suslin cardinals. Now the
result follows from our Theorem 41. q.e.d.

Theorem 20. If there is a model of AD, then there is a model of Base Case #4
(i.e., [M /M /ℵ1 ]).

Proof. Using Theorem 19, we start with a limit cardinal κ such that (κ, κ+, κ++) →
(κ, κ+, κ++)κ. By the proof of Lemma 6, for γ = κ, γ = κ+, or γ = κ++, γ →
(γ)<ω1 . From this, it easily follows that γ → (γ)ω+ω, so by [Kle70, Theorem 2.1],
κ, κ+, and κ++ are all measurable. Forcing with Magidor-like forcing Pκ,κ++ , we
obtain a model in which cf(κ++) = κ and the polarized partition relation (κ, κ+) →
(κ, κ+)κ still holds (by the initial segment preservation from Lemma 9). Now we
can collapse κ symmetrically to become ℵ1 and apply Theorem 4 to obtain our
result. q.e.d.

Theorem 21 (Apter-Henle 1986). If there is a model of AD, then there is a model
of Base Case #1 (i.e., [M /M /M ]).
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Proof. Cf. [AH86, Theorem 2]. The authors used (a slightly weaker version
of) Kechris’ Theorem 24, listed as “personal communication” without a proof in
[AH86]. q.e.d.

Theorem 22. If there is a model of AD, then there is a model of Base Case #6
(i.e., [M /ℵ1 /M ]).

Proof. Again, from Theorem 19, we start with a limit cardinal κ such that
(κ, κ+, κ++) → (κ, κ+, κ++)κ, and get with Lemma 6 the Ramsey-like property
(κ+, κ++) → (κ+, κ++)<ω1 . Forcing with Magidor-like forcing Pκ,κ+ preserves the
measurability of κ, as it does not add bounded subsets of κ+. Furthermore, by the
weak final segment preservation from Lemma 10, we preserve κ++ → (κ++)<ω1 , so
κ++ stays measurable. By construction, we also have cf(κ+) = κ. Now, we can
collapse κ symmetrically to become ℵ1 and apply Theorem 4 to obtain our result.

q.e.d.

For Base Case #8, we rely on the methods of [AHJ00].

Theorem 23. If L(R) |= AD, then there is a model of Base Case #8 (i.e.,
[M /ℵ1 /ℵ1 ]).

Proof. Suppose V is a model of V = L(R) and AD. We use the model N con-
structed and investigated in [AHJ00, §8] (in particular, [AHJ00, Theorem 8.1]) and
applied in [AHJ00, Theorem 11.1]. In this model, which is a symmetric submodel
of a forcing extension of V , ℵ2 and ℵ3 have cofinality ℵ1. Further, by [AHJ00,
Proposition 6.2 and Lemma 8.2], N and V have the same bounded subsets of ℵ1.
Thus, since V |=“ℵ1 is measurable”, N |=“ℵ1 is measurable” as well. This means
that N is as desired. q.e.d.

6. Kechris’ Theorem

In this section, we shall prove Kechris’ theorem, announced in the 1980s, but
not published. The proofs of our extensions of this theorem in §§7 and 8 build on
this proof and will use definitions from this section.

Theorem 24. Assume AD and let κ be a weakly inaccessible Suslin cardinal. Then
for all ϑ < ω1 we have (κ, κ+, κ++) → (κ, κ+, κ++)ϑ.

Throughout this section, κ will be a weakly inaccessible Suslin cardinal (which
exists by Proposition 12). Note that by Fact 8 it doesn’t matter whether we are
using the standard or the c.u.b. version of the partition property, and we shall freely
switch between them.

Partition property proofs under AD always follow the same lines as abstracted
by Tony Martin (cf. [Kec78, Lemma 11.1] and [Jac09, Theorem 2.3.4]): to show
κ → κλ we must find a sufficiently good coding of the functions f : λ → κ. This
involves identifying a Lévy pointclass Γ and a coding map ϕ : ωω → P(λ× κ) with
certain coding relations being in ∆. In this paper we shall use Martin’s method
directly, so the reader need not be familiar with these general results.
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In our setting, we have already identified the pointclass Γ in our discussion
in §2.4: it is the (Steel) pointclass forming the lowest level of the projective-like
hierarchy containing S(κ). We have seen that this pointclass has the required
properties: S(κ) = ∃ωω

Γ has the scale property. The pointclass Γ (possibly Γ =
S(κ)) is scaled, non-selfdual, closed under ∀ωω

and finite intersections and unions.
We fixed a Γ-complete set P and a regular Γ-scale {ϕn}n∈ω on P which allows
boundedness arguments. In the following, P and ϕ will be used to code ordinals
less than κ. Since we also want to code higher ordinals, we shall have to come up
with a means of coding for these (in §6.2).

By µ, we denote the the ω-cofinal measure on κ (which is an ultrafilter by
Theorem 14). We shall show that [α 7→ α+]µ = κ+ and that δ := [α 7→ α++]µ =
κ++. The first claim can be proved directly (Lemma 29), after which we shall show
the following auxiliary theorem:

Theorem 25. (κ, κ+, δ) → (κ, κ+, δ)ϑ for all ϑ < ω1.

It follows immediately from Theorem 25 that δ → (δ)ϑ for all ϑ < ω1. In
particular, δ is regular. By showing that κ+ < δ ≤ κ++ (Claim 34), we establish
that δ = κ++, thus proving Theorem 24.

6.1. Countable unions of <α-Suslin sets. An ordinal α < κ is called ~ϕ-strongly
reliable if for all β < α, we have sup{ϕn(x) ; n ∈ ω ∧ ϕ0(x) ≤ β} < α. Let C ⊆ κ
be a c.u.b. set contained in the ~ϕ-strongly reliable ordinals. Without loss of gen-
erality, we may assume that C is contained in the Suslin cardinals. The relation
R(x, y) ↔ x, y ∈ P ∧ϕ0(x) ≤ ϕ0(y) is in Γ, and so admits a Γ-scale ~σ (with norms
into κ). By boundedness, we may assume C has the property that for all α ∈ C
and β < α, if R(x, y) and ϕ0(x) ≤ ϕ0(y) ≤ β, then supn σn(x, y) < α. Let Cω
denote the elements of C of cofinality ω.

As in §2.4, for α ∈ Cω, let Σα
0 denote the pointclass of countable unions of

sets which are in
⋃
{S(β) ; β < α}. Thus, Scale(Σα

0 ). Define Σα
n, Πα

n from Σα
0 as

usual. Then Scale(Πα
1 ), and Σα

1 is the pointclass of α-Suslin sets. From the Coding
Lemma and the Kunen-Martin Theorem 11 it follows that α+ is the supremum of
the lengths of the Σα

1 prewellorderings, and is the supremum of the lengths of the
Σα

1 wellfounded relations. In particular, α+ is regular.
The pointclass Σα

1 behaves sufficiently similar to Σ1
1 to allow proving the follow-

ing result (by essentially the same argument as is used in the countable partition
property of ℵ1, cf. [Kec78, Theorem 11.2]):

Theorem 26. For all ϑ < ω1, we have α+ → (α+)ϑ.

Applying [Kle70, Theorem 2.1] again, we get that the ω-cofinal normal measure
µα := Cωα+ on α+ is an ultrafilter. We shall use this measure in Lemma 33 and its
proof.

As we shall need to do arguments about α uniformly, we check in the next result
that the assignment of scales and universal sets is uniform:

Lemma 27. There is a function α 7→ (Aα, ~ρα) which assigns to each α ∈ Cω a
universal Σα

0 set Aα and a Σα
0 scale ~ρα = {ραn}n∈ω on Aα with norms into α.

Furthermore, there is a function α 7→ (Bα, V α) which assigns to such α a universal
Σα

1 set Bα and a tree V α on ω × α with Bα = p[V α]. Finally, there is a function
α 7→ (Qα, ~ψα) which assigns to such α a universal Πα

1 set and a Πα
1 -scale ~ψ on Qα.
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Proof. For α ∈ Cω let Rα = {〈x, y〉 ; x, y ∈ P ∧ ϕ0(x) ≤ ϕ0(y) < α}. From
the definition of C, Rα can be written as an α union of sets each of which is <α-
Suslin. Thus, Rα ∈ Σα

0 . Since Rα is a prewellordering of length α, it cannot be
<α Suslin. Define Aα = {〈τ, z〉 ; ∃n((τ(z))n ∈ Rα)}, where we view every real τ
as a strategy for II in an integer game in some standard manner, and τ(z) is the
result of applying τ to z. Clearly Aα ∈ Σα

0 . Moreover, since Rα has Wadge degree
at least α, it follows easily that Aα is Σα

0 -universal. We define, uniformly in α, a
tree Uα with Aα = p[Uα]. Define (s, (α0, . . . , αn)) ∈ Uα iff

(i) α0 > max{α1, . . . , αm}, and α0 < α.
(ii) α1 ∈ ω
(iii) There is a 〈τ, z〉 ∈ ωω extending s such that if (τ(z))α1 = 〈x, y〉, then

σi(x, y) = αi+2 for all i ≤ n− 2 (~σ is the scale on R as above).
From the closure properties of C it follows that Aα = p[Uα]. Let then {ρ̄αn}
be the semi-scale derived from the Suslin representation Uα, and let {ραn} be

the corresponding scale. Since each ρ̄αn maps into α, so does ραn, using property (i)
in the definition of Uα [In passing from the semi-scale to the scale we can take
ραn(w) = |(ρ̄α0 (w), . . . , ρ̄αn(w))|≺, where ≺ is lexicographic ordering on the set on
n+ 1 tuples satisfying (i).] To see that ~ρα is a Σα

0 -scale, it is enough to show that
the semi-scale {ρ̄αn} is a Σα

0 semi-scale, since Σα
0 is closed under ∧,∨. However,

each of the norm relations <∗
n, ≤∗

n corresponding to the norm ρ̄αn can be written a
an α union of <α-Suslin sets. For example, for <∗

0 we have: z <∗
0 w iff there is a

β < α such that (Uα�β)z is ill-founded and (Uα�β)w is wellfounded . Since Uα�β
and its complement are <α-Suslin (since α is a limit of Suslin cardinals), the claim
follows.

Define Bα by Bα(〈τ, z〉) ↔ ∃w ∀n Rα(τ(z, w, n)). Since Σα
1 is closed under ∃ωω

and countable unions and intersections, Bα ∈ Σα
1 . Since Rα has Wadge degree at

least α, it is easy to check that Bα is universal for Σα
1 . The tree Uα projecting to Aα

easily gives a tree V α projecting to Bα (as in the proof that Suslin representations
are closed under ∃ωω

and ∀ω). Finally, we can defineQα byQα(w) ↔ ∀z Aα(〈w, z〉),
and use periodicity to transfer the Σα

0 scale on Aα to a Πα
1 scale on Qα. q.e.d.

6.2. Coding of ordinals below κ, κ+ and δ. The coding of elements of κ is
completely standard: A real x will code an ordinal below κ iff x ∈ P . In this case,
x codes the ordinal |x| = ϕ0(x). We let P0 = P be the set of codes of ordinals
below κ.

In order to code ordinals less than κ+, we need a tree T+ on ω × κ which we
shall use in our coding of the ordinals. For the definition of T+, we need a number
of auxiliary objects: W , T2, and U .

Let W = {w ∈ ωω ; ∀n (w)n ∈ P}. Define the norm ψ on W by ψ(w) =
sup{ϕ0((w)n) ; n ∈ ω}. It is easy to see that ψ is a Γ-norm on the set W ∈ Γ. If
we define a tree T2 on ω × κ by (s, (α0, . . . , αn)) ∈ T2 iff there is a w extending s
such that

w ∈W ∧ ∀i ≤ n (ϕi0((w)i1) = αi),
then p[T2] = W . For α ∈ C with cf(α) = ω we also have that p[T2�α] = Wα :=
{w ∈W ; ψ(w) ≤ α}.

Furthermore, we define a tree U on (ω)4×κ×κ as follows (we recycle the notation
here; U has nothing to do with the trees Uα above). As a motivation, it is helpful
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to think of the first two coordinates of U in the definition that follows as defining
reals x, y with x ∈ W and y defining a Σψ(x)

1 relation via the universal set Bψ(x)

from Lemma 27. Define (s, t, u, v, ~α, ~β) ∈ U iff there are x, y, z, w ∈ ωω extending
s, t, u, v such that:

(i) z codes the reals z0, z1, . . . , w codes w0, w1, . . . , and for each i, n ∈ ω the
subsequence γj = α〈i,n,j〉 of the ~α satisfies the following. View y as coding
a Lipschitz integer strategy for II, and set ri = 〈y(〈zi, zi+1〉), wi〉. Let
b = (ri)n. Then (b,~γ) ∈ [T~σ], where T~σ is the tree of the scale ~σ on R.

(ii) For each i, n ∈ ω we have (using the notation immediately above) if δj =
β〈i,n,j〉 then δ0 ∈ ω and (〈(b)1, xδ0〉, ~δ′) ∈ [T~σ], where ~δ′ = (δ1, δ2, . . . ).

Let us explain the idea behind the definition of U : the objects w, ~α, ~β are
attempting to witness that the z0, z1, . . . form a decreasing sequence in the Σψ(x)

1

relation coded by y, as in the proof of the Kunen-Martin Theorem 11. The relation
coded by y is the set of (c, d) such that ∃w ∀n 〈y(〈c, d〉), w〉n = (e, f) ∈ Rψ(x)

(where R is as in the proof of Lemma 27). The ~β ordinals witness that the various
f reals satisfy ϕ0(f) < ϕ0((x)n) for some n, and so (e, f) ∈ Rψ(x).

Lemma 28. Suppose that x ∈ W , ψ(x) ∈ C, and y codes a wellfounded relation
A in Σψ(x)

1 . Then Ux,y is wellfounded. Furthermore, |Ux,y�ψ(x)| ≥ |A|.

Proof. If (z, w, ~α, ~β) ∈ [Ux,y], then for each i, A(zi, zi+1), where A is the Σψ(x)
1

relation coded by y: A(c, d) ↔ ∃w ∀n 〈y(〈c, d〉), w〉n = (e, f) ∈ Rψ(x) The ~β
witness that the various (e, f) are in Rψ(x). So, as the Kunen-Martin Theorem 11,
this produces an infinite decreasing chain through A, a contradiction.

For any c, d such thatA(c, d), we can find a w such that for all n, if 〈y(〈c, d〉), w〉n =
(e, f), then supj σj(e, f) < ψ(x) and supj σj(f, xk) < ψ(x) for any k such that
ϕ0(xk) > ϕ0(f). This follows from the closure properties of C and the fact that
ψ(x) ∈ C. The proof of the Kunen-Martin Theorem 11 then shows that Ux,y�ψ(x)
has rank at least |A|. q.e.d.

We note that it is important for the following argument that for x, y as in the
statement of Lemma 28 that the entire tree Ux,y is wellfounded (not just Ux,y�ψ(x)).

Finally, we can now define the tree T+ on (ω)2 × κ × (ω)4 × κ × κ such that
(a, b,~γ, s, t, u, v, ~α, ~β) ∈ T+ if and only if (b,~γ) ∈ T2, (s, t, u, v, ~α, ~β) ∈ U , and there
are σ, r, x, y extending a, b, s, t, respectively, such that σ(r) = 〈x, y〉. We may
identify T+ with a tree on ω × κ by identifying the last coordinates with a single
coordinate (i.e., taking a reasonable bijection between ω×κ× (ω)4×κ×κ and κ).
We furthermore fix a reasonable bijection between κ and κ<ω. We assume (without
loss of generality) that our c.u.b set C is closed under both of these bijections.

Coding ordinals below κ+. A code for an ordinal below κ+ will be a pair (x, σ)
where x ∈ P and thus codes an ordinal |x| = ϕ0(x) below κ, and σ ∈ ωω such that
T+
σ is wellfounded. Using our bijection between κ and κ<ω, we can ask for the rank

of an ordinal ξ < κ in the tree T+
σ ; we write |T+

σ (ξ)| for this. Given a pair (x, σ), we
now consider the map f : κ→ κ defined by α 7→ |(T+

σ �α)(|x|)|. Using the ω-cofinal
normal measure µ := Cωκ on κ, we now define |(x, σ)| := [f ]µ. We let P1 be the set
of codes of ordinals below κ+. The next lemma shows that this works.

Lemma 29. {|(x, σ)| ; (x, σ) ∈ P1} = κ+. Also, κ+ = [α 7→ α+]µ.
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Proof. Suppose (x, σ) ∈ P1, and let f = fx,σ be given by f(α) = |T+
σ �α(|x|)| for

all α > |x|. If g : κ → κ is such that ∀∗µα g(α) < f(α), then ∀∗µα ∃β < α g(α) =
|tσ�α(β)|. By normality of µ we may fix β < κ, and fix x′ ∈ P0 coding β, such
that ∀∗µα g(α) = |(T+

σ �α)(|x′|)|. So, [g]µ = |(x′, σ)|. So, the ordinals coded by
P1 form an initial segment of the ordinals. This argument also shows that there
is a map from κ = [α 7→ α]µ onto |(x, σ)|, namely β 7→ [α 7→ |T+

σ �α(β)|]µ. So,
{|(x, σ)| ; (x, σ) ∈ P1} ≤ κ+.

If ≺ is a wellorder of κ, let f≺ be given by f≺(α) = |≺�α| < α+. If |≺| = |≺′|,
then there is a c.u.b. subset of κ on which f≺ and f≺′ agree. Also, if |≺| < |≺′|,
then there is a c.u.b. set on which f≺(α) < f≺′(α). This gives an order-preserving
map from κ+ into [α 7→ α+]µ. So, [α 7→ α+]µ ≥ κ+.

Suppose γ = [f ]µ where f(α) < α+ for all α < κ. Consider the following game
Gf

Player I r(0) r(1) r(2) ...
Player II x(0) x(1) x(2) ...

y(0) y(1) y(2) ...

where player I plays out a real r ∈ ωω and player II plays out reals x, y. We
interpret the real r as coding countably many reals {(r)i ; i ∈ ω} and x as coding
{(x), ; i ∈ ω}. Let i be least, if it exists, such that (r)i /∈ P0 or (x)i /∈ P0. Player I
loses if ri /∈ P0. Assume then that (r)i, (x)i ∈ P0 for all i. Thus, x ∈ W . Recall
ψ(x) = supi |(x)i|. Player II then wins iff ψ(x) ≥ ψ(r) and y codes a Σψ(x)

1

wellfounded relation Ay of rank > f(ψ(x)).
Player I cannot have a winning strategy σ, for suppose σ were winning for

player I. Note that {(r)0 ; r ∈ σ[ωω × ωω]} ⊆ P0. By boundedness, let α0 ∈ C be
such that α0 > sup{|(r)0| ; r ∈ σ[ωω × ωω]}. Fix a real x0 ∈ P0 with |x0| = α0.
Note then that {r1 ; r ∈ σ[{(x, y) ; (x)0 = x0} ⊆ P0. By boundedness, fix α1 > α0

in C with α1 > sup{|(r)1| ; r ∈ σ[{(x, y) ; (x)0 = x0}. Continuing, we define αi,
and xi for all i. Let x ∈ ωω be the real with (x)i = xi for all i. Let α = supi αi.
Clearly, α ∈ C. By the coding lemma, there is a Σα

1 wellfounded relation, say coded
by the real y, of length greater than f(α). If player II plays x and y, then player II
defeats σ, a contradiction.

Let now σ be a winning strategy for player II in Gf . First note that T+
σ is

wellfounded. For a branch (r,~γ, x, y, z, w, ~α, ~β) ∈ [T+
σ ] would give r ∈W (witnessed

by ~γ) and so x ∈W and ψ(x) ≥ ψ(r) as σ(r) = 〈x, y〉 and σ is winning for player II.
Also, y codes a Σψ(x)

1 wellfounded relation Ay of rank at least f(ψ(x)). z would
however give a decreasing chain in Ay, a contradiction. Next note that there is a
c.u.b. D ⊆ κ such for all α ∈ D and r ∈ W with ψ(r) = α, if σ(r) = 〈x, y〉, then
ψ(x) = ψ(r). This follows by a boundedness argument similar to the above. We
may assume D ⊆ C. For α ∈ D with cf(α) = ω, let r ∈ W with ψ(r) = α. If
σ(r) = 〈x, y〉, then w ∈ W and ψ(x) = ψ(r) = α. Thus, y codes a Σα

1 wellfounded
relation Ay of rank at least f(α). From Lemma 28 it follows that |T+

σ �α| > f(α).
So, [f ]µ ≤ [α 7→ |T+

σ �α|]µ. It follows that for some x ∈ P that [f ]µ = |(x, σ)|. So,
[α 7→ α+]µ ≤ {|(x, σ)| ; (x, σ) ∈ P1} ≤ κ+. q.e.d.

Coding ordinals below δ. We use a variation T++ of the tree T+ above. The
tree T++ will be defined exactly as T+ except we use a tree U ′ in place of U . In
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order to define U ′, we need an auxiliary tree V2. In Lemma 31, we shall construct
a tree V which is then refined to V2 in Lemma 32.

First, recall from Lemma 27 that there is a function α 7→ (Qα, ~ψα), for α ∈ Cω,
where Qα is a universal Πα

1 set, and ~ψα is a (regular) Πα
1 -scale on Qα. Note that

the norms ψαn map into α+, since α+ is the supremum of the lengths of the Σα
1

wellfounded relations.
We need the following technical lemma.

Lemma 30. There is a continuous function c : ωω × ωω → ωω such that for all
x ∈W , β ≥ ψ(x), and y ∈ ωω we have that c(x, y) ∈ Qβ iff there is no z such that
for all n, we have Bψ(x)(〈y, 〈zn, zn+1〉〉). Here, Bψ(x) and Qβ are as in Lemma 27.

Proof. We have (the first line below defines E):

E(x, y) ↔ ¬∃z ∀i Bψ(x)(〈y, 〈zi, zi+1〉〉)

↔ ¬∃z ∀i ∃w ∀n Rψ(x)(y(〈zi, zi+1〉, w, n))

↔ ¬∃u ∀m Rψ(x)(y(〈(u0)m0 , (u0)m0+1〉, (u1)m0 ,m1))

↔ ¬∃〈u, v〉 ∀m (R(a, b) ∧R(b, xv(m))),

where
a = a(y, u,m) = (y(〈(u0)m0 , (u0)m0+1〉, (u1)m0 ,m1))0,

b = b(y, u,m) = (y(〈(u0)m0 , (u0)m0+1〉, (u1)m0 ,m1))1.

We use here the fact that (for all j) R(a, b) ∧ R(b, xj) holds iff Rψ(x)(a, b) ∧
Rψ(x)(b, xj) iff Rβ(a, b) ∧Rβ(b, xj). We therefore have

E(x, y) ↔ ¬∃t = 〈u, v〉 ∀m (Rβ(a, b) ∧Rβ(b, xv(m)))

↔ ¬∃t ∀m Rβ(c0(x, y)(c1(x, y), t,m))

↔ Qβ(c(x, y))

where c(x, y) = 〈c0(x, y), c1(x, y)〉 and c0, c1 are continuous functions such that
c0(x, y) is a strategy for II satisfying c0(x, y)(c1(x, y), t,m) = 〈a(y, u, m2 ), b(y, u, m2 )〉
if m is even and c0(x, y)(c1(x, y), t,m) = 〈b(y, u, m2 ), xv(m)〉 if m is odd. We may
take c1(x, y) = 〈x, y〉, and then easily get a continuous c0 satisfying this equation.

q.e.d.

Lemma 31. There is a tree V on ω × ω × κ× κ such that (x, y) ∈ p[V ] iff x ∈W
and y codes a Σψ(x)

1 wellfounded relation. Furthermore, if x ∈ W , ψ(x) ∈ C, and
y codes a wellfounded Σψ(x)

1 relation, then there is a β < ψ(x)+ such that Vx,y�β
is illfounded. In fact, for any α ∈ C with cf(α) = ω, and any A ∈ Σα

1 consisting of
pairs (x, y) such that x ∈W , ψ(x) ≤ α, and y codes a wellfounded Σψ(x)

1 relation,
there is a β < α+ such that A ⊆ p[V �β].

Proof. Define (s, t, ~α, ~β) ∈ V iff

(i) β0 ∈ C and β0 > max{~α, ~β}.
(ii) (s, ~α) ∈ T2.
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(iii) There are x, y extending s, t such that βi = ψβ0
i (c(x, y)) for 1 ≤ i < lh)s),

where {ψβ0
i } is the scale on Qβ0 from Lemma 27 and c is the continuous

function of Lemma 30.
It is clear that V has the desired properties from Lemma 30. For the last property

claimed, we use the fact that {ψαi } is a Πα
1 -scale, and so every Σα

1 subset of Qα is
bounded in these norms.

q.e.d.

The next lemma is a small variation of the previous one, allowing y to code
countably many wellfounded relations instead of just one.

Lemma 32. There is a tree V2 on ω × ω × κ× κ such that (x, y) ∈ p[V ] iff x ∈W
and for all n, (y)n codes a Σψ(x)

1 wellfounded relation. Furthermore, if x ∈ W ,
ψ(x) ∈ C then there is a c.u.b. D ⊆ α+ such that for all γ ∈ D and all y such that
for all n, (y)n codes a wellfounded Σψ(x)

1 relation of length less than γ, Vx,y�γ is
illfounded.

Proof. The tree V2 is constructed as V except that in (iii) we require that
βi = ψβ0

i0
(c(x, (y)i1)). Given α ∈ C with cf(α) = ω, define D ⊆ α+ as fol-

lows. For β < α+, let Bα,β = {(x, y) ; x ∈ W ∧ ψ(x) ≤ α ∧ y codes a Σα
1

wellfounded relation of length ≤ β}. Since ∆α
1 is closed under <α+ unions and

intersections (by the usual Martin argument), it follows that Bα,β ∈ ∆α
1 . Let

g(α, β) = sup{ψαn(c(x, y)) ; (x, y) ∈ Bα,β} < α+ by boundedness. Let D be the
c.u.b. sets of points below α+ which are closed under g. q.e.d.

We define (s, t, u, ~α, ~β, v, a, b, ~γ, ~δ) ∈ U ′ iff there are x, τ, w, y, z, w extending
s, t, u, v, a, b, respectively, such that

(i) (s, u, ~α, ~β) ∈ V2

(ii) τ(w) = y

(iii) (s, v, a, b, ~γ, ~δ) ∈ U . Here U is as in Lema 28.
We now define the tree T++ on ω2 × κ× ω3 × κ2 × ω3 × κ2 consisting of tuples

(c, d, ~η, s, t, u, ~α, ~β, v, a, b, ~γ, ~δ) such that there are σ, r, x, τ extending c, d, s, t such
that:

(i) σ(r) = 〈x, τ〉
(ii) (d, ~η) ∈ T2.
(iii) (s, t, u, ~α, ~β, v, a, b, ~γ, ~δ) ∈ U ′.

Let us explain the definition of T++: The first coordinate of the tree T++

produces a strategy σ. We intend for σ to be a strategy such that when player I
plays r ∈ W , then σ(r) = 〈x, τ〉 where x ∈ W and ψ(x) ≥ ψ(r). The object τ
is also a strategy which we intend to do the following. If player I plays a w such
that for all n, (w)n codes a Σψ(x)

1 wellfounded relation (so w codes the ordinal
supn{|(w)n|}, where |(w)n| means the rank of the relation coded by (w)n), then
τ(w) = y codes a wellfounded relation in Σψ(x)

1 . Finally, T++ attempts to produce
an infinite decreasing chain in the relation coded by y, as in the Kunen-Martin
Theorem 11.

For the following result, remember that µα is the ω-cofinal measure on α+ which
exists by Theorem 26.
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Lemma 33. For all α ∈ Cω we have jµα(α+) = α++.

Proof. The proof follows by a Kunen tree argument, as in the proof for the odd
projective ordinals. It is also a special case of the argument given below. Briefly,
define the tree K on ω2×α+×ω3×α2 by: (s, t, ~α, u, v, w, ~β,~γ) ∈ K iff there are τ ,
w, and y extending s, t, u such that τ(w) = y, (t, ~α) ∈ V̄ , and (t, u, v, w, ~β,~γ) ∈ U .
Here V̄ is a tree such that p[V̄ ] is the set of w such that for all n, (w)n codes a Σα

1

wellfounded relation, and there is a c.u.b. D ⊆ α+ such that for all β ∈ D there
is a w ∈ p[V̄ �β] such that for all n, (w)n has rank |(w)n| < β and supn |(w)n| = β
(we can take V̄ to be a section of the tree V2 from Lemma 32).

If F : α+ → α+, consider the game where player I plays out w, player II plays
out y, and player II wins iff whenever for all n, (w)n codes a Σα

1 wellfounded
relation, then y codes a Σα

1 wellfounded relation of length > f(|w|, where |w| is
the supremum of the lengths of the relations coded by the (w)n. By boundedness,
player II has a winning strategy σ for the game. For any β ∈ D with cf(β) = ω we
have f(β) < |V̄σ�β|. This shows [f ]µα < α+, and so jµα(α+) ≤ α++. The lower
bound follows from the embedding argument given earlier (the second paragraph
of the proof of Lemma 29). q.e.d.

Claim 34. [α 7→ α++]µ ≤ κ++.

Proof. Fix f : κ → κ such that for all α, f(α) < α++. Consider the game Gf
defined as follows:

Player I r(0) r(1) r(2) ...
Player II x(0) x(1) x(2) ...

τ(0) τ(1) τ(2) ...

If there is a least i such that (r)i or (x)i is not in P0, then player I wins iff (r)i ∈
P0. Suppose then that r, x ∈ W , that is, for all n, (r)n ∈ P0 ∧ (x)n ∈ P0. Let
α = ψ(x) = supn ϕ0((x)n). Then player II wins provided τ is a strategy with the
following properties. There is a g : α+ → α+ such that if for all n, (w)n codes a Σα

1

wellfounded relation, then σ(w) codes a Σα
1 wellfounded relation of length > g(|w|),

and also [g]µα
≥ f(α). Here |w| is the supremum of the lengths of the wellfounded

relations coded by the (w)n.
The usual boundedness argument and Lemma 33 (and its proof) show that

player I cannot have a winning strategy for Gf . Let σ be a winning strategy for
player II in Gf . Inspecting the definition of T++ shows that T++

σ is wellfounded.
There is a c.u.b. C2 ⊆ C such that if player I plays r ∈ W with ψ(r) = α ∈ C2,
then σ(r) = 〈x, τ〉 where x ∈ W and ψ(x) = α. Let α ∈ C2 with cf(α) = ω.
Fix r ∈ W with ψ(x) = α, and let σ(r) = 〈x, τ〉. Then there is a c.u.b. D ⊆ α+

such that for β ∈ D with cf(β) = ω, there is a w such that for all n, (w)n codes
a Σα

1 wellfounded relation, supn |(w)n| = β, and (V2)x,w�β is illfounded. Also, for
such β and w, τ(w) = y codes a Σα

1 wellfounded relation of length > g(β), where
[g]µα

> f(α). It follows that for such α that [β 7→ T++
σ �β]µα

> f(α).
From the normality of the measures µα it follows that if [f ′]µ < [f ]µ, then there

is a function h such that h(α) < α+ and f ′(α) = [β 7→ T++
σ �β(h(α))| for almost all

α. This shows that [f ]µ is a wellordering of [α 7→ α+]µ = κ+. So, [f ]µ < κ++. So,
[α 7→ α++]µ ≤ κ++. q.e.d.
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Let δ = [α 7→ α++]µ. We have shown δ ≤ κ++. The lower bound will follow
from the fact that δ is regular, which follows from the partition property δ → (δ)ϑ

for ϑ < ω1 which follows from the polarized partition property we show below.

We are finally in the position to code ordinals below δ. Such a code is a triple
of the form (x, σ1, σ2), where x ∈ P0, T+

σ1
is wellfounded, and T++

σ2
is wellfounded.

Let P2 be the set of codes for ordinals below δ.
Since (x, σ1) ∈ P1, it determines a function h with h(α) < α+ almost everywhere.

The triple then codes the ordinal [f ]µ where f(α) = [β 7→ |T++
σ2

�β(h(α)|]µα .

Lemma 35. Every ordinal below δ is coded by a triple in P2.

Proof. Clear from the proof of Claim 34. q.e.d.

6.3. Proof of Theorem 25. Let P be a partition of the block functions from
3 × ω · ϑ to (κ, κ+, δ). Fix a bijection π : ω · ϑ → ω. Let ≺π be the corresponding
wellordering of ω.An ordinal j < ω ·ϑ can be identified with a pair j = (i, n) where
i < ϑ and n < ω, using lexicographic ordering on the pairs. We shall frequently
pass back and forth from this identification.

Consider the following game G, where player I plays out a real 〈x, y, z〉, and
player II plays out the real 〈x′, y′, z′〉. If there is an j < ω ·ϑ such that (x)π(j) /∈ P0

or (x′)π(j) /∈ P0, then player I wins iff for the least such j we have that (x)π(j) ∈ P0.
Suppose then that for all j < ω · ϑ, (x)π(j) and (x′)π(j) are in P0. In this case, x
and x′ each determine a function from ω · ϑ to κ. Namely, x codes the function
F̄x(j) = |(x)π(j)|. Likewise, x′ codes the function F̄x′ . So, together they produce a
function F = Fx,x′ : ϑ→ κ given by F (i) = supn max{F̄x(i, n), F̄x′(i, n)}.

Suppose next that there is an α < κ such that one of the following holds.
(a) There is a j < ω · ϑ such that either T+

(y)π(j)
�α or T+

(y′)π(j)
�α is illfounded.

(b) There is a β < α+ and a j < ω · ϑ such that either T++
(z)π(j)

�β or T++
(z′)π(j)

�β

is illfounded.
Let α < κ be least such that (a) or (b) above holds. If (a) holds, let j be least

such that (a) holds for α and this j. In this case, Player I wins provided T+
(y)π(j)

is wellfounded. If (a) does not hold at α, but (b) does, let (β, j) be lexicograph-
ically least such that (b) holds. Player I wins in this case provided T++

(z)π(j)
�β is

wellfounded.
Suppose finally that neither (a) nor (b) hold for all α < κ. Then each of y, y′

determine a block function from (ω ·ϑ)×κ to κ. Namely, for α ∈ C and j < ω ·ϑ, let
ḡy(= |T+

(y)π(j)
�α|. Likewise, y′ determines the block function ḡy′ . Together, they de-

termine the block function g : ϑ× κ→ κ by g(α, i) = supn max{ḡy(α, j), ḡy′(α, j)},
where j = (i, n). Finally, g determines a function G = Gy,y′ : ϑ → κ+ by G(i) =
[α 7→ g(α, i)]µ.

In a similar fashion, each of z, z′ determine block functions h̄z, h̄z′ . For α ∈ C,
β < α+, and j < ω · ϑ, let h̄z(α, β, j) = |T++

(z)π(j)
�β|. Similarly define h̄z′ . Together

they determine a block function h defined by: for α ∈ C, β < α+, and i < ϑ,
let h(α, β, i) = supn max{h̄z(α, β, j), h̄z′(α, β, j)}, where j = (i, n). Finally, h
determines a function H = Hz,z′ : ϑ→ δ given by H(i) = [α 7→ [β 7→ h(α, β, i)]µα ]µ.

Finally in this case we say Player II wins the run of the game iff P(F,G,H) = 1.
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Suppose without loss of generality that Player II has a winning strategy τ (the
case where player I has a winning strategy is slightly easier). We define first a c.u.b.
set C0 ⊆ κ. For each η < κ and j < ω · ϑ, let

Aη,j = {(x, y, z) ; ∀j′ ≤ j ((x)π(j′) ∈ P0 ∧ ϕ0((x)π(j′)) ≤ η}.

Clearly Aη,j ∈ ∆ (recall Γ is the Steel pointclass of Wadge rank κ). Since τ is
winning for Player II, if (x, y, z) ∈ Aη,j , and τ(x, y, z) = (x′, y′, z′), then ∀j′ ≤
j ((x′)π(j′) ∈ P0) and by boundedness

ρ0(η, j) := sup{ϕ0((x′)π(j′)) ; (x′, y′, z′) ∈ τ [Aη,j ] ∧ j′ ≤ j} < κ.

Let C0 ⊆ C be c.u.b. and closed under ρ0.
We next define a c.u.b. C1 ⊆ κ+. For α ∈ C0 with cf(α) = ω, η < α+, and

j < ω · ϑ, let

Aα,η,j ={(x, y, z) ; ∀j ((x)π(j) ∈ P0 ∧ ϕ0((x)π(j)) < α)

∧ ∀α′ < α ∀β < (α′)+ ∀j (T+
(y)π(j)

�α and T++
(z)π(j)

�β are wellfounded)

∧ ∀j′ ≤ j (|T+
(y)π(j′)

�α| ≤ η)}.

Since τ is winning for player II, if (x, y, z) ∈ Aα,η,j and τ(x, y, z) = (x′, y′, z′) then
x′ ∈W and ϕ0((x′)π(j)) < α for all j. Furthermore, since Aα,η,j ∈ ∆α

1 , we have by
boundedness that

ρ1(α, η, j) := sup{|T+
(y′)π(j′)

�α| ; j′ ≤ j ∧ (x′, y′, z′) ∈ τ [Aα,η,j ]} < α+.

Construct (uniformly in α) sets Dα ⊆ α+ which are c.u.b. and closed under (η, j) 7→
ρ1(α, η, j). Let E1 ⊆ κ+ be the set of [f ]µ such that ∀∗µα f(α) ∈ Dα. Let F1 ⊆ κ+

be the set of limit points of ordinals of the form [α 7→ |T+
x �α|]µ where T+

x is
wellfounded. F1 is c.u.b. in κ+ from Lemma 29. Clearly E1 is also c.u.b. in κ+.
Let C1 = E1 ∩ F1.

Finally, we define a c.u.b C2 ⊆ δ. For α ∈ C0 with cf(α) = ω, β, η < α+, and
j < ω · ϑ, let

Aα,β,η,j ={(x, y, z) ; ∀j ((x)π(j) ∈ P0 ∧ ϕ0((x)π(j)) < α)

∧ ∀α′ < α ∀β < (α′)+ ∀j (T+
(y)π(j)

�α and T++
(z)π(j)

�β are wellfounded)

∧ ∀j |T+
(y)π(j)

�α| < β ∧ ∀(β′, j′) ≤lex (β, j) (|T++
(z)π(j)

�β| ≤ η)}.

We have Aα,β,η,j ∈ ∆α
1 . Since τ is winning for Player II, for each (x, y, z) ∈ Aα,β,η,j ,

if τ(x, y, x) = (x′, y′, z′) then ∀(β′, j′) ≤lex (β, j) T++
(z′)π(j′)

�β is wellfounded. By
boundedness,

ρ2(α, β, η, j) := sup{|T++
(z′)π(j′)

�β| ; (x′, y′, z′) ∈ τ [Aα,β,η,j ] ∧ j′ ≤ j} < α+.

Let Eα be a c.u.b. subset of α+ closed under ρ2. Let Eα2 ⊆ α++ be the c.u.b. set
of all [f ]µα where ran(f) ⊆ Eα. Let E2 ⊆ δ be the c.u.b. set of all [g]µ where
g(α) ∈ Eα2 for α < κ. E2 is c.u.b. in δ from from the definition of δ. Let F2 be the
c.u.b. subset of δ consisting of limits of points of the form [α 7→ [β 7→ |T++

x �β|]µα ]µ
where T++

x is wellfounded. From Claim 34, F2 is c.u.b. in δ. Let C2 = E2 ∩ F2.
Let C ′

0 be the set of limit points of C0, and likewise for C ′
1, C

′
2. To finish, we

show the following.

Claim 36. (C ′
0, C

′
1, C

′
2) is homogeneous for P.

23



Proof. Suppose (F,G,H) is a block function from 3 × ϑ into (C ′
0, C

′
1, C

′
2) of the

correct type (since ϑ is countable, this just means that F , G, H are increasing,
discontinuous, and have range in points of cofinality ω).

Let F̄ : ω · ϑ → κ be increasing and induce F , that is, F (i) = supj<ω·(i+1) F̄ (j)
for all i < ϑ. Let x ∈ ωω be such that for all j < ω · ϑ, (x)π(j) ∈ P0 and
ϕ0((x)π(j)) = F̄ (j).

Let Ḡ : ω · ϑ→ κ+ be increasing and induce G, that is G(i) = supj<ω·(i+1) Ḡ(j)
for all i < ϑ. We may assume Ḡ has range in C1. Since C1 ⊆ F1, for each j < ω · ϑ
we may get a yj ∈ ωω (using countable choice) such that T+

yj
is wellfounded and

Ḡ(j) = [α 7→ |T+
yj

�α|]µ. Let y ∈ ωω be such that for all j < ω·ϑ we have (y)π(j) = yj .
Let H̄ : ω · ϑ → δ be increasing and induce H. We may assume H has range

in C2. Since C2 ⊆ F2, for each j < ω · ϑ there is a zj ∈ ωω such that T++
zj

is
wellfounded and H̄(j) = [α 7→ [β 7→ |T++

zj
�β|]µα

]µ. Let z ∈ ωω be such that for all
j < ω · ϑ we have (z)π(j) = zj .

Let (x′, y′, z′) = τ(x, y, x). Recall we identify ω · ϑ with lexicographic order on
pairs (i, n) where i < ϑ and n ∈ ω. Since x ∈ W and τ is winning for Player II,
it follows that x′ ∈ W as well. Let F̄x′ : ω · ϑ → κ be the function determined by
x′, that is, F̄x′(j) = |(x′)π(j)|. Since ran(F̄x) ⊆ C0, it follows from the definition of
C0 that F̄x′(i, n) < F̄x(i, n + 1) < F̄ (i) for all i < ϑ. So, for each i < ϑ we have
supn max{F̄x(i, n), F̄x′(i, n)} = F (i). Thus the function Fx,x′ jointly produced by
x and x′ is equal to F .

Consider next y and y′. For all j < ω · ϑ we have that T+
(y)π(j)

and T++
(z)π(j)

are
wellfounded. Let α0 = supi<ϑ F (i) = supj<ω·ϑ F̄ (j). Let ḡy be the block function
determined by y. That is, for α ∈ C0 and j < ω · ϑ, ḡy(α, j) = |T+

(y)π(j)
�α|. For

µ almost all α the function ḡαy (j) = ḡy(α, j) is increasing. Let gαy be the function
induced by ḡαy , that is, gαy (i) = supn ḡαy (j) where j = (i, n). For µ almost all α, gαy
has range in the limit points of Dα (as defined above in the construction of C1).
Say M1 ⊆ C0 is this measure one set. Consider any α ∈ M1 with α > α0. Then
for any j < ω · ϑ we have that (x, y, z) ∈ Aα,η,j where η = ḡαy (j) < gαy (i) (where
again j = (i, n)). It follows from the definition of Dα that |T+

(y′)π(j)
�α| < gαy (i) as

well. So, if ḡαy′ is the function determined by y′ (i.e., ḡαy′(j) = |T+
(y′)π(j)

�α|), then ḡαy′

and ḡαy both induce the function gαy . It follows that the function Gy,y′ they jointly
produce is equal to G.

Consider finally z and z′. For α ∈ M1, β < α+, and j < ω · ϑ, let h̄αz (β, j) =
|T++

(z)π(j)
�β|. Since H̄ is increasing and induces H, it follows from the definition of

z that if j′ < j then ∀∗µα ∀∗µα
β h̄αz (β, j′) < h̄αz (β, j). This imolies that there is a µ

measure one set M ′
2 ⊆ M1 such that for α ∈ M ′

2 there is a c.u.b. C ⊆ α+ which is
closed under h̄αz and such that the map (β, j) 7→ h̄αz (β, j) is order-preserving when
restricted to pairs with β ∈ C, cf(β) = ω. Also, from the definition of E2 there is
a µ measure one set M2 ⊆M ′

2 such that for α ∈M2 we have that there is a c.u.b.
C ⊆ α+ such that for β ∈ C with cf(β) = ω we have in addition that for all i < ϑ
that supn hαz (β, j) ∈ Eα2 , where j = (i, n).

Consider now α ∈ M2 with α > α0 (α0 as above). Fix a c.u.b. C ⊆ α+ as
with the two properties specified immediately above. Let β ∈ C with cf(β) = ω
and β > sup gαy (j). For such β, if j < ω · ϑ and η = hαz (β, j), then from the
definition of Aα,β,η,j we see that (x, y, z) ∈ Aα,β,η,j . From the definition of Eα2 it
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follows that hαz′(β, j) < suphαz (β, j′) where j = (i, n), and the supremum ranges
over j′ = (i, n′). It follows that the function H̄z′ induces the function H, that is,
H = Hz,z′ . Since τ is winning for Player II, we have that P(F,G,H) = 1 and we
are done. q.e.d. (Claim 36)

We have proved the claim, and this finishes the proof of Theorem 25 (and thus the
proof of Theorem 24).

7. A polarized partition property with higher exponents

We now improve Theorem 24 from countable exponents to arbitrary exponents
ϑ < κ. The setup is the same as in the proof of Theorem 24: we have the (Steel)
pointclass Γ ⊆ S(κ) forming the lowest level of the projective-like hierarchy con-
taining S(κ) which is scaled, non-selfdual, closed under ∀ωω

and finite intersections
and unions, and let ∆ = Γ ∩ Γ̆.

Theorem 37. Assume AD. Let κ be a weakly inaccessible Suslin cardinal. Then
for all ϑ < κ we have (κ, κ+, κ++) → (κ, κ+, κ++)ϑ.

Proof. We fix ϑ < κ, and fix a prewellordering � ∈ ∆ of length ω ·ϑ. We shall use
the coding lemma to code functions from ω · ϑ to κ. We again identify the ordinals
below ω · ϑ with the pairs (i, n) ordered lexicographically, where i < ϑ and n < ω.
We shall also use the trees T+ and T++ from the proof of Theorem 24.

Fix a pointclass Γ0 ⊆ ∆ which is non-selfdual, is closed under ∃ωω

, has the
prewellordering property, and contains the prewellordering �. Fix a Γ0-universal
set U . Without loss of generality we may assume dom(�) = ωω. Let |a| denote the
rank of a ∈ ωω in �. For x ∈ ωω, we say x codes a function at j < ω · ϑ provided

(i) ∀a (|a| = j → ∃b U(x, a, b))
(ii) ∀a, a′, b, b′ (U(x, a, b) ∧ U(x, a′, b′) ∧ |a| = |a′| = j → (b, b′ ∈ P0 ∧ ϕ0(b) =

ϕ0(b′))
We say x codes a function from ω ·ϑ to κ (or just say x codes a function) if x codes
a function at j for all j < ω · ϑ.

Recall that if S is a tree, we write S(γ) to denote the subtree of S consist-
ing of points in S below γ (we are identifying ordinals with finite tuples here for
convenience).

Fix now a partition P of the block functions from 3×ϑ to (κ, κ+, κ++). Consider
the game G where player I plays out the real 〈x, y, u, z, v, w〉 and player II plays
out the real 〈x′, y′, u′, z′, v′, w′〉. Suppose first that there is a least j < ω · ϑ+ such
that x or x′ does not code a function at j. In this case, player II wins iff x does
not code a function at j. Suppose next that both x and x′ code functions. If there
is a least j such that y or y′ does not code a function at j, player II again wins
iff y does not code a function at j. Likewise, if all of x, y, x′, y′ code functions and
there is a least j such that z or z′ doesn’t code a function at j, player II wins iff z
doesn’t code a function at j.

Suppose next that x, y, z, x′, y′, z′ all code functions from ω ·ϑ to κ. We let f̄x, f̄y,
etc. denote these functions. Let α ∈ Cω be the least ordinal, if it exists, such that
one of the following holds.

(a) There is a j < ω · ϑ such that either T+
u �α(f̄y(j)) or T+

u′�α(f̄y′(j)) is
illfounded.
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(b) There is a j < ω · ϑ such that either T+
v �α(f̄z(j)) or T+

v′ �α(f̄z′(j)) is
illfounded.

(c) There is a β < α+ and a j < ω · ϑ such that either T++
w �β(|T+

v �α(f̄z(j))|)
or T++

w′ �β(|T+
v′ �α(f̄z′(j))|) is illfounded.

Suppose first such an α exists. If (a) holds, let j be least such that either
T+
u �α(f̄y(j)) or T+

u′�α(f̄y′(j)) is illfounded. Player II then wins iff T+
u �α(f̄y(j)) is

illfounded. If (a) does not hold, but (b) holds, then let j be least such that either
T+
v �α(f̄z(j)) or T+

v′ �α(f̄z′(j)) is illfounded. Player II then wins iff T+
v �α(f̄z(j)) is

illfounded. If (a) and (b) do not holds but (c) holds, then let (β, j) be the lexico-
graphically least pair witnessing (c). Player II then wins iff T++

w �β(T+
v �α(f̄z(j)))

is illfounded.
Finally, if no such α exists, then let F = Fx,x′ be the function jointly produced

by f̄x and f̄x′ . That is, F̄ (i) = supn max{f̄x(i, n), f̄x′(i, n)} for all i < ϑ.
Let ḡy,u be the block function defined as follows. For α ∈ Cω and j < ω · ϑ, let

ḡy,u(α, j) = |T+
u �α(fy(j))|. Likewise define ḡy′,u′ using y′ and u′. Let Ḡy,u be the

function from ω ·ϑ to κ+ represented by ḡy,u. That is, Ḡy,u(j) = [α 7→ ḡy,u(α, j)]µ.
Likewise define Ḡy′,u′ . Finally, let G = Gy,u,y′,u′ : ϑ → κ+ be the function they
jointly produce: G(i) = supn max{Ḡy,u(i, n), Ḡy′,u′(i, n)}.

Let h̄z,v,w be the block function defined as follows. For α ∈ Cω, β < α+,
and j < ω · ϑ, let h̄z,v,w(α, β, j) = |T+

w �β(|T+
v �α(f̄z(j))|). Notice we may write

this as h̄z,v,w(α, β, j) = |T+
w �β(ḡz,v(α, j))|. Similarly define h̄z′,v′,w′ using z′, v′,

w′. Let H̄z,v,w : ω · ϑ → κ++ be the function represented by h̄z,v,w. That is,
H̄z,v,w(j) = [α 7→ [β 7→ h̄z,v,w(α, β, j)]µα

]µ. Let H = Hz,v,w,z′,v′,w′ : ϑ → κ++ be
the function they jointly produce: H(i) = supn max{H̄z,v,w(i, n), H̄z′,v′,w′(i, n)}.

Player II then wins the run of the game G provided P(F,G,H) = 1.
Suppose without loss of generality that player II has a winning strategy τ for G.

We define c.u.b. sets C ′
0, C

′
1, C

′
2 in κ, κ+, κ++ respectively which are homogeneous

for P. The argument is similar to that of Theorem 24, so we shall concentrate on
the differences.

We first define C0 (C ′
0 will be the set of limit points of C0). For each η < κ and

j < ω · ϑ, Let

Aη,j = {c = 〈x, y, u, z, v, w〉 ; ∀j′ ≤ j (x codes a function at j′ ∧ fx(j′) ≤ η)}.

Clearly Aη,i ∈ ∆. Since τ is winning for player II, if c ∈ Aη,i, and τ(c) =
〈x′, y′, u′, z′, v′, w′〉, then for all j′ ≤ j, fx′ codes a function at j′. By bounded-
ness,

ρ(η, j) := sup{fx′(j′) ; 〈x′, y′, u′, z′, v′〉 ∈ τ [Aη,j ] ∧ j′ ≤ j} < κ.

Let C0 ⊆ C be c.u.b. and closed under f .
We next define C1. For η < κ, η ∈ C0, with cf(η) > ϑ (for convenience), α ∈ Cω,

α > η, j < ω · ϑ, and δ < α+, let

Aη,α,j,δ ={c = 〈x, y, u, z, v〉 ; x, y, z code functions ∧ (∀j f̄x(j), f̄y(j), f̄z(j) ≤ η)

∧ ∀(α′, j′) ≤lex (α, j) |T+
u �α′(f̄y(j′)| ≤ δ

∧ ∀α′ < α ∀β′ < (α′)+ ∀j′ < ω · ϑ
T++
w �β′(|T+

v �α′(f̄z(j′))|) is wellfounded}.
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Let c′ = 〈x′, y′, u′, z′, v′, w′〉 = τ(c), where c = 〈x, y, u, z, v, w〉 ∈ Aη,α,j,δ. From
the second and third conjuncts in the above definition it follows that the least α′

such that (a), (b), or (c) holds for c, c′ is at least α. Furthermore, the second con-
junct gives that (a) does not hold at α for all j′ ≤ j. It follows that T+

u′�α′(fy′(j′))
is wellfounded for all (α′, j′) ≤lex (α, j). For η, α, j, δ as above, define

ρ1(η, α, j, δ) = sup{T+
u′�α(fy′(j′)) ; j′ ≤ j ∧ c′ = 〈x′, y′, u′, z′, v′〉 ∈ τ [Aη,α,j,δ]}.

Claim 38. ρ1(η, α, j, δ) < α+.

Proof. We define a Σα
1 wellfounded relation of length at least ρ1(η, α, j, δ). Since

Σα
1 = S(α), it then follows that ρ1(η, α, j, δ) < α+. In defining this relation we

again for convenience think of the elements of T+ as ordinals rather than tuples of
ordinals. Define a relation S by letting

(b,u, s)S(b′, u′, s′) ↔ b = b′ ∧ u = u′ ∧ ∃c ∈ Aη,α,j,δ ∃y ∃j′ ≤ j ∃a
[τ(c)1 = y ∧ τ(c)2 = u ∧ |a| = j′ ∧ U(y, a, b) ∧ (b ∈ P0 ∧ ϕ0(b) ≤ η) ∧ s, s′ ∈ P0

∧ ϕ0(s), ϕ0(s′) < α ∧ (ϕ0(s) <T+
u �α ϕ0(s′) <T+

u �α ϕ0(b))]

where <T+
u �α refers to the Kleene-Brouwer ordering on the tree T+

u �α. From the
above remarks we have that S is wellfounded. From the coding lemma, T+�α is Σα

1

in the codes (relative to P0�α). Also, Aη,α,j,δ ∈ ∆α
1 using the closure of ∆α

1 under
<α+ unions and intersections (for the last conjunct in the definition of Aη,α,j,δ note
that if wellfounded |T++

w �β′(|T+
v �α′(f̄z(j′))|)| must have rank less that (α′)+ < α).

Since also η < α, it follows that S ∈ Σα
1 , and we are done. q.e.d.

We let Cα1 be the set of ordinals below α+ closed under the ρ1 function. Let
C1 ⊆ κ+ be the set of [G]µ where G(α) ∈ Cα1 for µ almost all α.

The definition of C2 is similar to that of C1. For η < κ, η ∈ C0, with cf(η) > ϑ,
α ∈ Cω, α > η, j < ω · ϑ, and β, δ < α+, let

Aη,α,j,β,δ ={c = 〈x, y, u, z, v, w〉 ; x, y, z code functions ∧ (∀j f̄x(j), f̄y(j), f̄z(j) ≤ η)

∧ ∀α′ ≤ α ∀j′ < ω · ϑ |T+
u �α′(f̄y(j′)| ≤ δ

∧ ∀α′ ≤ α ∀j′ < ω · ϑ |T+
v �α′(f̄z(j′)| ≤ δ

∧ ∀α′ < α ∀β′ < (α′)+ ∀j′ < ω · ϑ
T++
w �β′(|T+

v �α′(f̄z(j′))|) is wellfounded

∧ ∀(β′, j′) ≤lex (β, j) |T++
w �β′(|T+

v �α(f̄z(j′))|)| ≤ δ}.

It again follows that Aη,α,j,β,δ ∈ ∆α
1 . Suppose c′〈x′, y′, u′, z′, v′, w′〉 = τ(c) where

c = 〈x, y, u, z, v, w〉 ∈ Aη,α,j,β,δ. Since x, y, z all define functions taking values below
η, and since η ∈ C0 it follows that x′, y′, z′ also all code functions below η (for y′,
z′ we use also that cf(η) > ϑ so that sup(f̄y), sup(f̄z) are also below η). From
the second, third, and fourth conjuncts in the definition of Aη,α,j,β,δ and the fact
that τ is winning for player II it follows that the least α′ such that (a), (b), or (c)
holds at α′ is ≥ α. Also, from the second conjunct it follows that (a) cannot hold
at α. From the third conjunct it follows that (b) cannot hold at α. From the last
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conjunct it then follows that for all β′ < α+ and j′ with (β′, j′) ≤lex (β, j) that
T++
w′ �β′(|T+

v′ �α(f̄z′(j′))|) is wellfounded.
For η, α, β, j, δ as in the definition of Aη,α,j,β,δ define

ρ2(η, α, β, j, δ) = sup{|T++
w′ �β′(|T+

v′ �α(f̄z′(j′))|)| ; (β′, j′) ≤lex (β, j)

∧ c′ = 〈x′, y′, u′, z′, v′〉 ∈ τ [Aη,α,β,j,δ]}.
Analogous to Claim 38 we have:

Claim 39. ρ2(η, α.β.j, δ) < α+.

Proof. The proof follows from a computation as in Claim 38, using the fact that
|β| = α, so T++�β is isomorphic to a tree on α. q.e.d.

For α ∈ Cω, let now Cα2 be the c.u.b. subset of α+ consisting of points closed
under the ρ2 function. Let Dα ⊆ α++ be the c.u.b. set of ordinals of the form [h]µα
where ran(h) ⊆ Dα

2 . Finally, let C2 ⊆ κ++ the the c.u.b. set of ordinals of the form
[H]µ where H(α) ∈ Dα for µ almost all α.

We now show that the c.u.b. sets C ′
0, C

′
1, C

′
2 are homogenous for the given

partition P. Fix a block function (F,G,H) from 3×ϑ to (C ′
0, C

′
1, C

′
2) of the correct

type. Let F̄ , Ḡ, H̄ from 3×ω ·ϑ to (κ, κ+, κ++) be increasing and induce (F,G,H).
From the coding lemma, let x be such that x codes a function at j for all j < ω ·ϑ

and such that f̄x = F̄ .
Since κ+ is regular by Theorem 24, sup(G) < κ+. Let u be such that T+

u is
wellfounded and [α 7→ |T+

u �α|]µ > sup(G). Let g̃ : ω · ϑ → κ be defined as follows.
For j < ω ·ϑ, let ḡ(j) be the ordinal less than κ such that ∀∗µα [α 7→ |Tu�α(ḡ(j))|]µ =
Ḡ(j). This is well-defined by the normality of µ and the definition of u. Let y be
such that y codes the function g̃ (i.e., for all j < ω · ϑ, y codes a function at j, and
the value coded at j is g̃(j)).

Since κ++ is also regular by Theorem 24, sup(H) < κ++. From the previous
section there is a real w such that T++

w is wellfounded and such that [α 7→ [β 7→
|T++
w �β]µα

]µ > sup(H). Define a function ` : ω · ϑ → κ+ as follows. For j < ω · ϑ,
let `(j) < κ+ be the ordinal represented by α 7→ `(j, α) with respect to µ, where
for almost all α ∈ Cω we have:

H(j) = [α 7→ [β 7→ |T++
w �β(`(j, α))|]µα ]µ.

This is well-defined from the definition of w and the fact that each µα is normal.
Let z, v be the reals corresponding to ` just as y, u correspond to ḡ. So, z codes a
function f̄z from ω · ϑ to κ, and T+

v is wellfounded.
Consider the run of the game where player I plays c = 〈x, y, u, z, v, w〉, and

player II responds with c′ = τ(c) = 〈x′, y′, u′, z′, v′, w′〉. Let η be the least point in
C0 greater than max{sup(fx), sup(fy), sup(fz)} which has cofinality greater than ϑ.
Since f̄x = F̄ has range in C0, it follows that x′ also codes a function f̄x′ : ω ·ϑ→ κ,
and the first function they jointly produce, namely,

Fx.x′(i) = sup
n

max{f̄x(i, n), f̄x′(i, n)}

is equal to F .
Consider now α > η in Cω. For such α and any j = (i, n) < ω · ϑ, let δ =

|T+
u �α(f̄y(j)| < α+. An easy argument shows, as in the proof of the last section,
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that there is a µ measure one set of α such that the map j 7→ |T+
u �α(f̄y(j)| is

increasing, and we may assume α is in this set. By definition we have c ∈ Aη,α,j,δ.
Thus, c′ ∈ τ [Aη,α,j,δ]. Hence T+

u′�α(f̄y′(j)) is wellfounded and |T+
u′�α(f̄y′(j))| ≤

ρ1(η, α, j, δ).

Claim 40. For µ almost all α and all i < ϑ, supn ḡy,u(i, n) ∈ Cα1 .

Proof. We have ran(G) ⊆ C ′
1. If for almost all α there is an i < ϑ for which this

fails, them by the κ-completeness of µ we could fix a i which witnessed the failure
for almost all α. Now, G(i) = supn Ḡ(i, n) is represented with respect to µ by the
function α 7→ supn ḡy,u(α, (i, n)).

So, for µ almost all α, supn ḡy,uu(α, (i, n)) ∈ (Cα1 )′. q.e.d.

It follows that ρ1(η, α, j, δ) < supn ḡy,u(α, (i, n)) = gy,u(α, i), where j = (i,m)
for some m. Thus, for µ almost all α we have that for all i < ϑ that

sup
n

max{ḡy,u(α, (i, n)), ḡy′,u′(α, (i, n))} = gy,u(α, i).

It follows that the second function Gy,u,y′,u′ the players jointly produce is equal to
G.

By a similar argument, the third function Hz,v,w,z′,v′,w′ they jointly produce is
equal to H. Here we consider α > η and β < α+ such that β > supj ḡy,u(α, j),
and β > supj ḡz,v(α, j). For such α, β we have that c ∈ Aη,α,j,β,δ where δ =
h̄z,v,w(α, β, j). We assume here that α is in the µ measure one set such that the
function (β, j) 7→ h̄z,v,w(α, β, j) is order-preserving when restricted to a c.u.b. C ⊆
α+ (as in the proof of the previous section). An easy argument as above shows that
we may assume that for µ almost all α, and for µα almost all β, and all i < ϑ that
supn h̄z,v,w(α, β, (i.n)) ∈ Cα2 . Thus, ∀∗µα ∀∗µα

β ∀i < ϑ (supn h̄z′,v′,w′(α, β, (i, n)) =
supn h̄z,v,w(α, .β, (i, n))). It follows that Hz,v,w,z′,v′,w′ = H. Since τ is winning for
Player II it follows that P(F,G,H) = 1, and we are done. q.e.d.

8. The strong polarized partition property

In this section, we now prove the optimal result which was used in the applica-
tions in §5.

Theorem 41. Assume AD. Let κ be a weakly inaccessible Suslin cardinal. Then
(κ, κ+, κ++) → (κ, κ+, κ++)κ.

The proof of Theorem 41 is again similar to that of the previous results, and we
again use the trees T+ and T++ from before. Let P denote the given partition of
the block functions of the correct type from (κ, κ, κ) to (κ, κ+, κ++).

We now code functions from κ to κ using the uniform coding lemma (cf.
[KKMW81]). Let U ⊆ ωω × ωω be universal for the syntactic class Σ1(Q) where
Q is a binary predicate symbol. Recall A ∈ Σ1(Q) if A(x) ↔ A′(x0, x) ↔
∃y (B(x, y) ∧ ∀n Q((y)n)) where B ∈ Σ1

1. So, we may define the universal set
U by: Uz(x, y) ↔ ∃w (S(z, 〈x, y〉, w) ∧ ∀n Q((w)n)), where S is universal for Σ1

1.
Recall P is our Γ-complete set, and {ϕm} a Γ-scale on P (with norms onto

κ). Let Pα = {x ∈ P ; |x| = α} be the set of codes for α < κ. Also, R is the
prewellordering on P given by ϕ0, so R ∈ Γ. For α < κ, recall also Rα = {(x, y) ∈
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R ; ϕ0(y) < α} is the restriction of R to reals of norm less than α. Let R′
α be the

restriction of R to reals of norm ≤ α.
Let {ρn} be a Γ-scale on R, and let ρα (or ρ′α) denote its restriction to Rα (or

R′
α). For any α < κ, ρα is a ∆-scale on Rα (similarly for ρ′α). Uniformly in α,

the scale ρ′α induces a scale on U(R′
α). This gives, uniformly in α, a uniformizing

relation U(R′
α) ∈ ∆ (uniformizing on the last coordinate) of U(R′

α). In fact, U(R′
α)

is in the projective hierarchy containing R′
α.

For α < κ, let α′ < κ be the least reliable ordinal ≥ α (with respect to the
scale {ϕn} on P ). We let G : κω → ωω be the Lipschitz continuous generic coding
function from the Kechris-Woodin theory of generic codes for uncountable ordinals
(cf. [KW08] for the theory of generic codes). This means G has the following
properties. For all s ∈ κω, G(s) ∈ P . Also, for all α < κ, and any s ∈ (α′)ω

enumerating an honest set S ⊆ α′, |G(αas)| = α. Here (and throughout this
section) |z| denotes ϕ0(z). For α < κ, we say that comeager many x ∈ Pα have
property B (where B ⊆ ωω), written ∀∗x ∈ Pα B(x), if player II has a winning
strategy in the game where players I and II play si ∈ (α′)<ω and player II wins the
run iff G(αasa

0 s
a
1 · · · ) ∈ B. If B is Suslin and co-Suslin, then this game is Suslin

and co-Suslin as well, and hence determined (cf. [KKMW81, Theorem 2.5]). We
also write ∀∗s ∈ (α′)ω to denote that player II has a winning strategy in the game
where I and II play si ∈ (α′)<ω to produce s = sa

0 s
a
1 s2 · · · .

We code functions from κ to κ using the uniform coding lemma as follows. For
any f : κ → κ there is a real x such that for all α < κ, the set Ux(Rα) codes f�α.
That is, Ux(Rα)(a, b) iff ϕ0(a) < α, b ∈ P , and ϕ0(b) = f(ϕ0(a)). We say x codes
a function at α if Ux(R′

α) satisfies:

(i) For all a, |a| = α implies that there is some b with Ux(R′
α)(a, b).

(ii) For all a, a′, b, and b′, we have that (Ux(R′
α)(a, b) ∧ Uz(R′

α)(a′, b′) ∧ |a| =
|a′| = α→ |b| = |b′|) holds.

We code functions from κ to κ+ as follows. Given y ∈ ωω, and given δ < α ∈ C0,
we say y is good at (δ, α) if for comeager many a ∈ Pδ, there is a (unique) b such
that Uy(R′

δ)(a, b), and for this b we have that T+
b �α is wellfounded. We let gy(δ, α)

be the least ordinal <α+ such that for comeager many a ∈ Pδ, and b as above,
|T+
b �α| ≤ gy(δ, α). This is welldefined using the fact that cf(α+) > ω and the

additivity of category.
We say y is good at α ∈ Cω if y is good at (δ, α) for all δ < α. If y is good

at α for µ almost all α ∈ Cω, then y codes the function Gy : κ → κ+ defined by
Gy(δ) = [α 7→ gy(δ, α)]µ.

We code functions from κ to κ++ as follows. Given z ∈ ωω, δ < α ∈ Cω and
β < α+, we say z is good at (δ, α, β) if for for comeager many a ∈ Pδ, if Uz(R′

δ)(a, b),
then T++

b �β is wellfounded. We let hz(δ, α, β) be the least ordinal < α+ such that
for comeager many a ∈ Pδ, and b as above, |T++

b �β| ≤ hz(δ, α, β). We say z is good
at (α, β) if for all δ < α we have that z is good at (δ, α, β). We say z is good at α if
for all δ < α and all β < α+, z is good at (δ, α, β). If for µ almost all α ∈ Cω and
µα almost all β < α+ we have that z is good at (α, β), then z codes the function
Hz : κ→ κ++ given by

Hz(δ) = [α 7→ [β 7→ gz(δ, α, β)]µα ]µ.
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Consider the game G where player I plays out reals (x, y, z) and player II plays
out (x′, y′, z′). Let α < κ be the least ordinal, if one exists, such that one of the
following holds.

(1) For some δ < α we have that y or y′ is not good (δ, α).
(2) For some δ < α and β < α+ we have that z or z′ is not good at (δ, α, β).
(3) x or x′ does not code an ordinal at α.

Suppose first that an α < κ satisfying (1), (2), or (3) exists, and let α be the
least such. First we check to see if case (1) holds at α. If so, then player II wins the
run iff for the least δ as in (1) we have that y is not good at (δ, α). Suppose next
that case (1) does not hold at α. Then we check case to see if case (2) holds at α.
If so, and if (β, δ) is the lexicographically least pair as in (2), then player II wins
the run iff z is not good at (δ, α, β). Suppose next that (1) and (2) do not hold
at α, but case (3) holds. Player II then wins provided x does not code an ordinal
at α.

Finally, suppose that there is no α < κ satisfying (1), (2), or (3). So, x, x′,
both code functions fx, fx′ from κ to κ. Let F : κ→ κ be defined from fx and fx′

as usual, that is, F (β) = supj<ω·(β+1) max{fx(j), fx′(j)}. Similarly, y and y′ code
functions Gy, Gy′ from κ to κ+. These determine the function G : κ → κ+ in the
usual way. Likewise, z and z′ determine Hz, Hz′ : κ→ κ++ which then determine
H : κ→ κ++.

Player II then wins the run of the game iff P(F,G,H) = 1. Suppose without loss
of generality that player II has a winning strategy τ for the game, and we define
homogeneous sets C0 ⊆ κ, C1 ⊆ κ+, and C2 ⊆ κ++.

For η1, η2 < κ, let A(η1, η2) be the set of (x, y, z) satisfying the following:

(a) y is good at α for all α ≤ η1.
(b) z is good at α for all α ≤ η1.
(c) x codes a function at all α ≤ η1 and fx(α) ≤ η2.

A straightforward computation using the closure of ∆ under quantifiers shows
that A(η1, η2) ∈ ∆. From the definition ofG, if (x, y, z) ∈ A(η1, η2) and (x′, y′, z′) =
τ(x, y, z), then x′ codes a function at all α ≤ η1. By boundedness (since Γ is closed
under ∧, ∨), it follows that

ρ0(η1, η2) := sup{fx′(α) ; α ≤ η1 ∧ (x′, y′, z′) ∈ τ [A(η1, η2)]} < κ.

Let C0 ⊆ κ be a c.u.b. subset closed under ρ0.
For α ∈ Cω, δ < α, and η < α+, Let A(δ, α, η) be the set of (x, y, z) satisfying:

(a) y and z good at all α′ < α, and for all α′ < α x codes a function at α′

with fx(α′) < α.
(b) For all δ′ ≤ δ, y is good at (δ′, α) and gy(δ′, α) ≤ η.

Lemma 42. For δ < α ∈ Cω, ifX(x, y) ∈ Σα
1 , thenX ′(x) ↔ ∀∗s ∈ (δ′)ω X(G(s), y)

is also in Σα
1 .

Proof. Write X(x, y) ↔ ∃z Y (x, y, z) where Y ∈ Πα
0 . Fix a non-selfdual pointclass

Γ0 closed under ∃ωω

, ∧, ∨ contained within <α-Suslin and which has prewellorder-
ings of length at least δ′ (the least reliable ≥ δ). Using the coding lemma, we code
strategies on δ′ by reals. We then have:
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z ∈ X ′ ↔ ∃w[w codes a strategy τw : (δ′<ω)ω → (δ′<ω)ω × ωω × ωω

∧ ∀(s, y, z) a run according to τw, Y (G(s), y, z)]

Saying w codes a strategy is projective over Γ0, as is coding a run according to
τw. Since D ∈ Πα

0 , it follows that X ′ is Σα
1 . q.e.d.

Claim 43. A(δ, α, η) ∈ ∆α
1 .

Proof. The set B = {w ; |T+
w �α| ≤ η} is in ∆α

1 . Since ∆α
1 is closed under <α+

unions and intersections (Theorem 15), it is enough to show that A′ = A′(δ, α, η)
is ∆α

1 , where

z ∈ A′ ↔ ∀∗a ∈ Pδ ∃b (Uz(R′
δ)(a, b) ∧ |T+

b �α| ≤ δ).

It is enough, by a symmetrical argument, to show that A′ ∈ Σα
1 . This follows

immediately from Lemma 42. q.e.d.

If y ∈ A(δ, α, η) and y′ = τ(y), then y′ is good at (δ, α). This follows from the
winning conditions for player II in the game G, specifically the fact that case (1) is
considered at stage α first.

Claim 44. sup{gy′(α, δ) ; y′ ∈ τ [A(δ, α.η)]} < α+.

Proof. The supremum in question has length bounded by the length of the following
ordering:

y1 ≺ y2 ↔ (y1, y2 ∈ τ [A(δ, α, η)]) ∧ ∃s0 ∈ (δ′)<ω ∀∗s1 ∈ (δ′)ω ∀∗s2 ∈ (δ′)ω

∃b1, b2 (Uy1(R
′
δ)(G(s), b1) ∧ (Uy2(R

′
δ)(G(sa

0 s), b2) ∧ |T
+
b1

�α| < |T+
b2

�α|))
It follows from Lemma 42 that � ∈ Σα

1 provided we show that there is a Σα
1

relation S(b1, b2) which when restricted to pairs such that T+
b1

�α and T+
b2

�α are
wellfounded correctly computes the relation |T+

b1
�α| ≤ |T+

b2
�α|. To see this, let Γn

be a sequence of non-selfdual pointclasses closed under ∃ωω

, ∧, ∨ of Wadge ranks
cofinal in α. Let Un be universal sets for Γn. Let ψn be a Γn prewellordering of
length αn where supn αn = α. Each real z codes the relation Rz ⊆ α × α given
by Rz =

⋃
nR

n
z where Rnz is the relation on αn defined by (α, β) ∈ Rnz iff there

are u and v such that ψn(u) = α, ψn(v) = β, and Un((z)n, u, v). From the coding
lemma, every relation on α is coded in this manner by some z. We can then say that
S(b1, b2) holds iff there is a z such that Rz is an order-preserving map from T+

b1
�α to

T+
b1

�α. Using the closure of ∆α
1 under <α unions and intersections (Theorem 15),

it is straightforward to verify that S ∈ Σα
1 . q.e.d. (Claim 44)

Let now
ρ1(δ, α, η) = sup{gy′(α, δ) ; y′ ∈ τ [A(δ, α.η)]}.

Let C ′
1(α) be the c.u.b. subset of α+ of points closed under ρ1. Let C ′

1 = [α 7→
C ′

1(α)]µ, so C ′
1 is a c.u.b. subset of κ+. Let C ′′

1 be a c.u.b. subset of κ+ so that
between any two elements ρ1 = [f ]µ < [g]µ = ρ2 of C ′′

1 , there is a b ∈ ωω such that
T+
b is wellfounded and ∀∗µα f(α) < |T+

b �α| < g(α). Let C1 = C ′
1 ∩ C ′′

1 .
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Lastly, we define C2 ⊆ κ++. For δ < α ∈ Cω, and β < η < α+, let A(δ, α, β, η)
be the set of (x, y, z) satisfying:

(a) y and z good at all α′ < α, and for all α′ < α x codes a function at α′

with fx(α′) < α.
(b) y is good at (δ′, α) for all δ′ < α, and gy(δ′, α) < β.
(c) For all (β′, δ′) ≤lex (β, δ), z is good at (β′, δ′) and hz(δ′, α, β′) ≤ η.

A computation as in the proof of Claim 43 shows that A(δ, α, β, η) ∈ ∆α
1 . If

(x, y, z) ∈ A(δ, α, β, η) and (x′, y′, z′) = τ(x, y, z), then from the winning conditions
on G it follows that z′ is good at (δ, α, β). A computation as in Claim 44 shows
that

ρ2(δ, α, β, η) := sup{hz′(α, δ, β) ; z′ ∈ τ [A(δ, α.β, η)]} < α+

Let C ′
2(α) be c.u.b. in α+ and closed under ρ2. Let C ′

2 be those ρ < κ++ such that
ρ = [α 7→ [β 7→ `(α, β)]µα ]µ where `(α, β) ∈ C ′

2(α). An easy argument shows that
C ′

2 is c.u.b. in κ++. Let C ′′
2 be c.u.b. in κ++ such that between any two ordinals

ρ1 < ρ2 of C ′′
2 , there is a z such that T++

z is wellfounded and ρ1 < [α 7→ [β 7→
|T++
z �β| < ρ2. From the proof of Claim 34 it follows that such a C ′′

2 exists. Let
C2 = C ′

2 ∩ C ′′
2 .

Suppose now that (F,G,H) are block functions of the correct type into the block
c.u.b. sets (C0, C1, C2), and we show that P(F,G,H) = 1.

Let F̄ : ω · κ→ C0 induce F , and let x code the function F̄ , that is, x is good at
all α < κ and fx = F̄ .

Let Ḡ : ω · κ → C1 induce G. There is a function ḡ which induces Ḡ in the
following sense. ḡ(δ, α) is defined for all δ < α ∈ Cω, and ḡ(δ, α) < α+. Also,
Ḡ(δ) = [α 7→ ḡ(δ, α)]µ for all δ < κ. From the normality of µ, we may assume
without loss of generality that ḡ(δ, α) ∈ C ′

1(α) for all α ∈ Cω and that for all α ∈ Cω
that δ 7→ ḡ(δ, α) is strictly increasing. We code (some) c.u.b. subsets of κ by reals
as follows. Say σ is a code if for all w ∈ P , σ(w) ∈ P . In this case, let Cσ be the
c.u.b. subset of κ closed under σ, that is, Cσ = {α ; ∀w (w ∈ P<α → σ(w) ∈ P<α)}.
An easy boundedness argument shows that Cσ is actually c.u.b. in κ. Also, an easy
Solovay game argument shows that every c.u.b. C ⊆ κ contains a subset of the
form Cσ. Since Ḡ has range in C ′′

1 , for each δ < κ there are reals w such that T+
w

is wellfounded and ∀∗µα ḡ(δ, α) ≤ |T+
w �α| < ḡ(δ + 1, α). For each δ < κ, let Ḡ′(δ)

be the least ordinal between Ḡ(δ) and Ḡ(δ + 1) which is of the form [α 7→ |T+
w �α]µ

for some w with T+
w wellfounded. There is a function ḡ′, with ḡ′(δ, α) defined for

δ < α ∈ Cω, such that for all δ < κ we have Ḡ′(δ) = [α 7→ ḡ′(δ, α)]µ and for all α,
δ 7→ ḡ′(δ, α) is increasing. Also, we may assume ḡ(δ, α) ≤ ḡ′(δ, α) < ḡ(δ + 1, α) for
all δ < α ∈ Cω.

From the uniform coding lemma, let y ∈ ωω be such that:
(1) For all δ < κ and all a ∈ Pδ, there is a (unique) 〈b, c〉 such that Uy(R′

δ)(a, 〈b, c〉).
(2) For all a ∈ Pδ and 〈b, c〉 such that Uy(R′

δ)(a, 〈b, c〉), T
+
b is wellfounded and

[α 7→ |T+
b �α|]µ = Ḡ′(δ).

(3) For such a, b, c we have that Cc codes a c.u.b. subset of κ such that for all
α ∈ Cc ∩ Cω we have that |T+

b �α| = ḡ′(δ, α) (where δ = |a| as above).
For δ < α ∈ Cω, let

`(δ, α) = sup{|c(x)| ; ∃a, b, x (a ∈ Pδ ∧ Uy(R′
δ)(a, 〈b, c〉) ∧ x ∈ P<α}.

By boundedness, `(δ, α) < κ. Let E ⊆ κ be a c.u.b. subset closed under `. For all
α ∈ E ∩ Cω we have that y is (δ, α) good and gy(δ, α) = ḡ′(δ, α) for all δ < α.
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In a similar manner, we let H̄ : κ → κ++ induce H, and let h̄ be defined for
δ < α ∈ Cω and β < α+ and such that for all δ < ω · κ, H̄(δ) = [α 7→ [β 7→
h̄(δ, α, β)]µα ]µ. We may assume that for all α < κ that (β, δ) 7→ h̄(δ, α, β) is
increasing (with respect to lexicographic order), and h̄(δ, α, β) ∈ C ′′

2 (α) for all
δ < α ∈ Cω and β < α+. For δ < ω · κ, let H̄ ′(δ) < H̄(δ + 1) be least such that for
some w ∈ ωω, T++

w is wellfounded and H̄ ′(δ) = [α 7→ [β 7→ [|T++
w �β|]µα ]µ. An easy

argument shows that there is a h̄′ such that for all δ < α ∈ Cω and β < α+ we
have h̄(δ, α, β) < h̄′(δ, α, β) < h̄(δ + 1, α, β), and for each δ there is a real w such
that T++

w is wellfounded and ∀∗µα ∀∗µα
β h̄′(δ, α, β) = |T++

w �β|. We say a pair (σ,w)
codes a measure one set if σ codes a c.u.b. subset Cσ of κ (as above) and T++

w is
wellfounded. We let A(σ,w) = {(α, β) ; α ∈ Cσ ∧∀γ < β (|T++

w �γ| < β)}. Using the
tree T++ it follows that if A has measure one in the sense that ∀µα ∀∗µα

β (α, β) ∈ A,
then there is a (σ,w) with A(σ,w) ⊆ A. From the uniform coding lemma, fix a real
z such that:

(1) For all δ < ω · κ and all a ∈ Pδ, there is a (unique) 〈b, c, d〉 such that
Uz(R′

δ)(a, 〈b, c, d〉).
(2) For all a ∈ Pδ and 〈b, c, d〉 such that Uz(R′

δ)(a, 〈b, c, d〉), T
++
b is wellfounded

and [α 7→ [β 7→ |T++
b �β|]µα ]µ = H̄ ′(δ).

(3) For such a, b, c, d we have that (c, d) codes a measure one set A(c,d) such
that for all (α, β) ∈ A(c,d) we have that |T+

b �β| = h̄′(δ, α, β) (where again
δ = |a| ).

For δ < α ∈ D0 define:

`1(δ, α) = sup{|c(x)| ; ∃a, b, d (a ∈ Pδ ∧ Uz(R′
δ)(a, 〈b, c, d〉) ∧ x ∈ P<α}.

For δ < α ∈ D0 and β < α+ define:

`2(δ, α, β) = sup{|T++
d �η| ; ∃a, b, c (a ∈ Pδ ∧ Uz(R′

δ)(a, 〈b, c, d〉) ∧ η < β}.

A boundedness argument as before shows that `1(δ, α) < κ. Likewise, a tree
argument shows that `2(δ, α, β) < α+.

Let D ⊆ κ be the c.u.b. set of points closed under `1. For α ∈ D ∩ Cω, let
Eα be the c.u.b. subset of α+ closed under `2. So, if α ∈ D ∩ Cω and β ∈ Eα,
then (α, β) ∈ A(c,d) for all (c, d) such that for some a ∈ Pδ, δ < α, we have
Uz(R′

δ)(a, 〈b, c, d〉).
Consider now the run of the game G where player I plays out (x, y, z) and

player II responds with τ(x, y, z) = (x′, y′, z′). First note that x, y, and z are all
fully good (with the obvious meaning). In particular x′ codes a function fx′ : κ→ κ.
For any α < ω · κ, (x, y, z) ∈ A(α, F̄ (α)). Also, A(α, F̄ (α)) ∈ ∆. So, (x′, y′, z′) ∈
τ [A(α, F̄ (α)] and therefore fx′(α) < ρ0((α), F̄ (α)) < F̄ (α+1) since F̄ has range in
C0 which is closed under ρ0. So, the function Fx,x′ jointly produced from fx and
fx′ is equal to F .

Let Ey be the c.u.b. subset of κ as defined above, the set of closure points of
` = `y. Let ḡ, ḡ′ be as in the definition of y, so ḡ(δ, α) ≤ ḡ′(δ, α) < ḡ(δ + 1, α)
for all δ < α ∈ Cω. Let also gy be the function coded by y, since y is good.
That is, gy(δ, α) is the least γ < α+ such that for comeager many a ∈ Pδ, if
Uy(R′

δ)(a, 〈b, c〉), then |T+
b �α| = gy(δ, α). So, for all α ∈ Ey ∩ Cω and δ < α

we have gy(δ, α) = ḡ′(δ, α). If α is in addition closed under the function F , then
we have that (x, y, z) ∈ A(δ, α, ḡ′(δ, α)). For such δ, α it follows that gy′(δ, α) <
`(δ, α, ḡ′(δ, α)) < ḡ(δ+1, α). So, for all δ < ω·κ, Ḡy(δ) = [α 7→ gy(δ, α)]µ and Gy′(δ)
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upper bound lower bound

Base Case #1: 1 [M /M /M ] ZF + AD ZFC + WC
Base Case #2: 2 [M /M /ℵ3 ] ZFC + SC+M ZFC + WC
Base Case #3: 3 [M /M /ℵ2 ] ZF + AD ZFC + WC
Base Case #4: 4 [M /M /ℵ1 ] ZF + AD ZFC + WC

(#1) 5 [M /M /ℵ0 ] ZF + AD ZFC + WC
Base Case #5a: 6 [M /ℵ2 /M ] ZFC + 2MC ZFC + 2MC
Base Case #5b: 7 [M /ℵ2 /ℵ3 ] ZFC + MC ZFC + MC
Base Case #5c: 8 [M /ℵ2 /ℵ2 ] ZFC + MC ZFC + MC
Base Case #5d: 9 [M /ℵ2 /ℵ1 ] ZFC + MC ZFC + MC

(#5a) 10 [M /ℵ2 /ℵ0 ] ZFC + MC ZFC + MC
Base Case #6: 11 [M /ℵ1 /M ] ZF + AD ZFC + WC
Base Case #7: 12 [M /ℵ1 /ℵ3 ] ZFC + SC ZFC + WC

13 [M /ℵ1 /ℵ2 ] 0 = 1 0 = 1
Base Case #8: 14 [M /ℵ1 /ℵ1 ] ZF + AD ZFC + WC

(#6) 15 [M /ℵ1 /ℵ0 ] ZF + AD ZFC + WC
(#1) 16 [M /ℵ0 /M ] ZF + AD ZFC + WC
(#2) 17 [M /ℵ0 /ℵ3 ] ZFC + SC+M ZFC + WC

18 [M /ℵ0 /ℵ2 ] 0 = 1 0 = 1
(#4) 19 [M /ℵ0 /ℵ1 ] ZF + AD ZFC + WC

(#1,#3) 20 [M /ℵ0 /ℵ0 ] ZF + AD ZFC + WC
(#1) 21 [ℵ1 /M /M ] ZF + AD ZFC + WC
(#2) 22 [ℵ1 /M /ℵ3 ] ZFC + MC ZFC + MC
(#3) 23 [ℵ1 /M /ℵ2 ] ZF + AD ZFC + WC
(#4) 24 [ℵ1 /M /ℵ1 ] ZF + AD ZFC + WC
(#1) 25 [ℵ1 /M /ℵ0 ] ZF + AD ZFC + WC

(#5a) 26 [ℵ1 /ℵ2 /M ] ZFC + MC ZFC + MC
(#5b) 27 [ℵ1 /ℵ2 /ℵ3 ] ZFC ZFC
(#5c) 28 [ℵ1 /ℵ2 /ℵ2 ] ZFC ZFC
(#5d) 29 [ℵ1 /ℵ2 /ℵ1 ] ZFC ZFC
(#5a) 30 [ℵ1 /ℵ2 /ℵ0 ] ZFC ZFC

Figure 1. Lower and upper bounds for the consistency strength
of patterns 1 to 30.

are both less than Ḡy(δ+1, α). So, supδ′<ω·(δ+1) max{Ḡy(δ′), Ḡy′(δ′)} = G(δ). So,
the function jointly produced by y and y′ is equal to G.

The argument for z, z′ is similar. Recall H : κ → κ++, H̄ : ω · κ → κ++, and
h̄(δ, α, β) induces H̄, that is, H̄(δ) = [α 7→ [β 7→ h̄(δ, α, β)]µα

]µ. Also, h̄′ is fixed
and h̄(δ, α, β) ≤ h̄′(δ, α, β) < h̄(δ + 1, α, β). Let Dz ⊆ κ be the c.u.b. set of points
closed under `1 as above. For α ∈ Dz ∩Cω, let Eαz ⊆ α+ be the c.u.b. set of points
closed under `2 (more precisely, the function (δ, β) 7→ `2(δ, α, β)). Consider (α, β)
such that α ∈ Ey, α ∈ Dz∩Cω, β ∈ Eαz , α is closed under F , β > supδ<α{ḡ′(δ, α)},
and for all β′ < β and δ < α, hz(δ, α, β′) < β. This set of pairs A has measure one
set with respect the iterated measure, that is, ∀∗µα ∀∗µα

β (α, β) ∈ A. For (α, β) ∈ A,
z is in the set A(δ, α, β, h̄′(δ, α, β)) for all δ < α. Since h̄ has its range in the C ′

2(α),
hz′(δ, α, β) < h̄(δ + 1, α, β). Thus, for all δ < ω · κ, H̄z(δ) and H̄z′(δ) are both less
than H̄(δ+ 1). It follows that the function jointly produced by z and z′ is equal to
H.

Since τ is winning for player II, it follows that P(F,G,H) = 1, and we are done.
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9. Summary

Figures 1 and 2 list all of the sixty patterns of measurability and cofinality for
the first three uncountable cardinals. In the first column, we list “Base Case #n”
if a pattern is one of our base cases. We list numbers in parentheses to indicate
in which of the diagrams of § 3 the pattern shows up (if at all: of course, the 13
inconsistent patterns do not show up in the diagrams).

For the purpose of listing the upper and lower consistency strength bounds of
our patterns, we define the following theories: ZFC + SC+M stands for ZFC to-
gether with the statement “There are κ < λ where κ is supercompact and λ is
measurable”; ZFC + SC stands for ZFC together with the statement “There is a su-
percompact cardinal”; ZFC+MC stands for ZFC together with the statement “There
is a measurable cardinal”; ZFC + 2MC stands for ZFC together with the statement
“There are two measurable cardinals”; ZFC+WC stands for ZFC together with the
statement “There is a Woodin cardinal”.

Upper bounds. Most of the upper bounds come directly from our consistency
proofs in Theorems 21, 16, 18, 20, 3, 22, 17, and 23 (corresponding to the eight
base cases, respectively) and the reduction diagrams as listed in § 3. In a few cases,
the upper bound for the consistency strength obtained by our reduction diagrams
is patently not optimal. In our table, we have given the optimal bounds and briefly
list these exceptional cases in the following: patterns 22 and 26 can be obtained
from a measurable cardinal by symmetrically collapsing it to the desired cardinal.
Patterns 27, 28, 29, 30, 47, 48, and 50 all share the feature that ℵ2 is regular but
non-measurable and do not involve any measurable cardinals; consequently, the
methods of Theorem 3 allow us to obtain them from ZFC. Patterns 32 and 37 only
involve one singular cardinal, and can thus be obtained from ZFC by symmetrically
collapsing a strong limit of the desired cofinality. Finally, pattern 46 is another
application of the methods of Theorem 3 that only requires one measurable cardinal.

Lower bounds. There are a number of trivial lower bounds: any pattern involving
a measurable or two measurables necessarily has ZFC+MC or ZFC+2MC as a lower
bound (by the standard L[U ] argument). For other lower bounds, our main tool is
the following theorem:

Theorem 45 (Schindler / Jensen-Steel). Suppose δ < δ+ are singular. Then there
is an inner model with a Woodin cardinal.

Proof. [Sch99, Theorem 1] proved this claim under the additional assumption
that there is some Ω > δ+ that is inaccessible and measurable in HOD. Schindler
needed this assumption to build the core model. In the meantime, Jensen and
Steel have eliminated this assumption from the construction of the core model (cf.
[JS07a, JS07b]). q.e.d.

Theorem 45 allows us to deal immediately with those patterns that have two
consecutive singular cardinals (patterns 14, 15, 19, 20, 34, 35, 39, 40, 56, 57, and
60) and get a lower bound of a Woodin cardinal. Patterns that involve κ and κ+

such that either both are measurable or one of them is measurable and the other
is singular have to be transformed into those that have two consecutive singulars
by Př́ıkrý forcing via Theorem 1. Recall that in this paper, we defined κ to be
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upper bound lower bound

(#6) 31 [ℵ1 /ℵ1 /M ] ZF + AD ZFC + WC
(#7) 32 [ℵ1 /ℵ1 /ℵ3 ] ZFC ZFC

33 [ℵ1 /ℵ1 /ℵ2 ] 0 = 1 0 = 1
(#8) 34 [ℵ1 /ℵ1 /ℵ1 ] ZF + AD ZFC + WC
(#6) 35 [ℵ1 /ℵ1 /ℵ0 ] ZF + AD ZFC + WC
(#1) 36 [ℵ1 /ℵ0 /M ] ZF + AD ZFC + WC
(#2) 37 [ℵ1 /ℵ0 /ℵ3 ] ZFC ZFC

38 [ℵ1 /ℵ0 /ℵ2 ] 0 = 1 0 = 1
(#4) 39 [ℵ1 /ℵ0 /ℵ1 ] ZF + AD ZFC + WC

(#1,#3) 40 [ℵ1 /ℵ0 /ℵ0 ] ZF + AD ZFC + WC
(#1) 41 [ℵ0 /M /M ] ZF + AD ZFC + WC
(#2) 42 [ℵ0 /M /ℵ3 ] ZFC + SC+M ZFC + WC
(#3) 43 [ℵ0 /M /ℵ2 ] ZF + AD ZFC + WC

44 [ℵ0 /M /ℵ1 ] 0 = 1 0 = 1
(#1,#4) 45 [ℵ0 /M /ℵ0 ] ZF + AD ZFC + WC

(#5a) 46 [ℵ0 /ℵ2 /M ] ZFC + MC ZFC + MC
(#5b) 47 [ℵ0 /ℵ2 /ℵ3 ] ZFC ZFC
(#5c) 48 [ℵ0 /ℵ2 /ℵ2 ] ZFC ZFC

49 [ℵ0 /ℵ2 /ℵ1 ] 0 = 1 0 = 1
(#5a,#5d) 50 [ℵ0 /ℵ2 /ℵ0 ] ZFC ZFC

51 [ℵ0 /ℵ1 /M ] 0 = 1 0 = 1
52 [ℵ0 /ℵ1 /ℵ3 ] 0 = 1 0 = 1
53 [ℵ0 /ℵ1 /ℵ2 ] 0 = 1 0 = 1
54 [ℵ0 /ℵ1 /ℵ1 ] 0 = 1 0 = 1
55 [ℵ0 /ℵ1 /ℵ0 ] 0 = 1 0 = 1

(#1,#6) 56 [ℵ0 /ℵ0 /M ] ZF + AD ZFC + WC
(#2,#7) 57 [ℵ0 /ℵ0 /ℵ3 ] ZFC + SC ZFC + WC

58 [ℵ0 /ℵ0 /ℵ2 ] 0 = 1 0 = 1
59 [ℵ0 /ℵ0 /ℵ1 ] 0 = 1 0 = 1

(#1,#3,#4,#6,#8) 60 [ℵ0 /ℵ0 /ℵ0 ] ZF + AD ZFC + WC

Figure 2. Lower and upper bounds for the consistency strength
of patterns 31 to 60.

measurable if there is a normal κ-complete ultrafilter on κ. This choice of definition
allows us to transform patterns 1, 2, 3, 4, 5, 11, 12, 16, 17, 21, 23, 24, 25, 31, 36,
41, 42, 43, and 45 into a pattern with two consecutive singulars and thus apply
Theorem 45 to get a lower bound of a Woodin cardinal.

If one insists on the ordinary definition of “κ is measurable” (i.e., “there is a
κ-complete ultrafilter on κ”), then this route is not available in general. Working
in the base theory ZF + DC, it is possible to construct a normal ultrafilter from
a κ-complete one (cf. [Jec03, Theorem 10.20]), but without additional assump-
tions, we do not know how to derive more strength than a measurable out of, say,
[ℵ0 /M /ℵ3 ].

Open Questions. We end the paper by listing some remaining open questions.
Six of the eight base cases can be obtained from a model of ZF+AD, but Base Case
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#2 appears to need (assumptions on the order of) ZFC+SC+M and Base Case #7
appears to need (assumptions on the order of) ZFC + SC.4

Question 46. Is it possible to force Base Case #2 and Base Case #7 from ZF+AD
(thus reducing the consistency strength upper bound)?

The two mentioned patterns are among 30 (out of our 60) patterns for which the
upper bound and the lower bound in consistency strength do not coincide.

Question 47. Can we determine the precise consistency strength in the cases
where upper and lower bounds do not coincide?

There are other large cardinal properties that can be exhibited by small cardinals,
such as “κ is κ+-supercompact” (under AD, ℵ1 exhibits this property (cf. [DPH78])).
Let us add another label for this property to our patterns, resulting in 4×5×6 = 120
patterns.

Question 48. Which of the 120 patterns involving cofinalities ℵ0, ℵ1, ℵ2, ℵ3,
measurability and κ+-supercompactness are consistent?

Note that a 1975 result of Martin (cf. [DPH78, § 2] for details) about the κ+-
supercompactness of κ under the assumption that both κ and κ+ carry a normal
measure produces some nontrivial restrictions for Question 48.

Now, after considering all measurability and cofinality patterns for the cardinals
ℵ1, ℵ2, and ℵ3, one could ask what happens if the same question is posed for the
first four uncountable cardinals. There are 3 × 4 × 5 × 6 = 360 such patterns for
the first four uncountable cardinals.

Question 49. Which of the 360 measurability and cofinality patterns for the first
four uncountable cardinals are consistent?

Of course, a complete answer to Question 49 would require (among other things)
a solution of one of the big open questions of the field of large cardinals without the
Axiom of Choice, viz. whether it is consistent to have four consecutive measurable
cardinals. As a consequence, we do not expect an answer to Question 49 very soon.

Slightly less ambitious would be to ask the same question not for four consecu-
tive cardinals, but for a different selection of three consecutive cardinals, e.g., the
cardinals ℵ2, ℵ3, and ℵ4. Here we would have 4× 5× 6 = 120 patterns.

Question 50. Which of the 120 measurability and cofinality patterns for the car-
dinals ℵ2, ℵ3, and ℵ4 are consistent?

However, most of the methods used in this paper to handle the case of the first
three uncountable cardinals will not work in this setting. The main reason is that
most of the proofs require symmetrically collapsing some large cardinal to be ℵ1.
This collapse is canonically well-orderable, and thus at our disposal in the choice-
free situation. The collapse of a cardinal to be ℵ2, however, is not canonically
well-orderable; consequently, the obvious analogues of our proofs will not work in
the setting of Question 50.

At this point, it might be useful to mention that some of the patterns have
alternative consistency proofs that are more likely to transfer to the situation of

4As the proof of [AH86, Theorem 1] shows, slightly weaker supercompactness hypotheses
(which are still well beyond the consistency strength of AD) actually suffice to establish Base
Case #2 and Base Case #7.
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ℵ2, ℵ3, and ℵ4. We would like to give one example: if there is a strongly compact
cardinal κ, it is possible to obtain the pattern [ℵ1 /ℵ0 /ℵ1 ] by using strongly
compact Př́ıkrý forcing. Obviously, this proof is not optimal in terms of consistency
strength (as we can get it from ZF+AD via Theorem 20). However, this proof lifts
to give a consistency proof of the pattern “ℵ2 is regular but not measurable, ℵ3 has
cofinality ℵ0, and ℵ4 has cofinality ℵ2”.5
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