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Abstract

In both individual and collective decision making, the space
of alternatives from which the agent (or the group of agents)
has to choose often has a combinatorial (or multi-attribute)
structure. We give an introduction to preference handling
in combinatorial domains in the context of collective deci-
sion making, and show that the considerable body of work on
preference representation and elicitation that AI researchers
have been working on for several years is particularly rel-
evant. After giving an overview of languages for compact
representation of preferences, we discuss problems in voting
in combinatorial domains, and then focus on multiagent re-
source allocation and fair division. These issues belong toa
larger field, known as computational social choice, that brings
together ideas from AI and social choice theory, to investigate
mechanisms for collective decision making from a computa-
tional point of view. We conclude by briefly describing some
of the other research topics studied in computational social
choice.

Introduction

Individual decision making is mostly guided by the agent’s
preferences over her possible decisions. Similarly, groupde-
cision making is guided by the preferences of the agents in
the group. For instance, when a group of autonomous agents
need to agree on an allocation of resources among them-
selves, then each individual will judge the outcome accord-
ing to their own preferences and they will have to transmit
parts of these preferences (possibly indirectly and possibly
reluctantly so) to their peers in the process of negotiation.
Also, to be able to assess whether the negotiation outcome
should be considered a “good” allocation (say, whether it re-
flects a fair agreement) requires knowledge of the individual
preferences. Similarly, when voting on a proposition or for
a candidate, the ballot submitted by each individual reflects
some aspect of their own preferences and the voting protocol
in place is charged with aggregating these preferences intoa
decision that (we hope) constitutes a good reflection of the
collective will of the population.
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Collective Decision Making
The classical discipline concerned with the study of mech-
anisms for collective decision making issocial choice the-
ory (Arrow, Sen, & Suzumura 2002). Much work in the
field has concentrated on normative questions and on estab-
lishing abstract results regarding the possibility of designing
mechanisms meeting certain requirements. For instance, a
seminal result in the field, Arrow’s Impossibility Theorem,
shows that there can exist no preference aggregation mech-
anism that would simultaneously satisfy a small number of
natural requirements (e.g., the aggregation function should
not be dictatorial). Computational concerns, however, have
mostly been neglected: What is the computational complex-
ity of the mechanisms proposed by social choice theorists?
What are the appropriate algorithmic techniques for these
problems? What happens if the number of alternatives to
choose from becomes very large?

Such considerations have given rise to an interdisciplinary
research effort at the interface of AI and computer science
with social choice theory, sometimes dubbedcomputational
social choice. On the one hand, computational social choice
is concerned with the application of techniques developed in
computer science, such as complexity analysis or algorithm
design, to the study of social choice mechanisms, such as
voting procedures or fair division algorithms. On the other
hand, computational social choice seeks to import concepts
from social choice theory into AI and computing. For in-
stance, social welfare orderings originally developed to ana-
lyze the quality of resource allocations in human society are
equally well applicable to problems in multiagent systems
or network design.

Combinatorial Domains
Known methods for collective decision making and classical
results from social choice theory may not always be appli-
cable when the number of alternatives from which to choose
is large. This is particularly true when the set of alternatives
has acombinatorial structure. Examples include negotia-
tion over indivisible goods (where the number of bundles
an agent may obtain is exponential in the number of goods)
or the election of a committee (where the number of pos-
sible committees is exponential in the number of seats to
be filled). For such combinatorial problems, the mere rep-
resentation of the preferences of individuals over different



alternatives becomes a non-trivial problem. Here methods
for preference representation and elicitation developed in AI
can make an important contribution.

Below we are going to review some of the languages for
compact representation of preferences that are good candi-
dates for modeling problems of collective decision making
in combinatorial domains. We are then going to focus on
two classes of collective decision making problems where
the space of alternatives has a combinatorial structure. The
first one is the problem ofvoting in combinatorial domains.
Electing a committee rather than a single candidate is a typ-
ical example for this problem. The second one ismultia-
gent resource allocation, the problem of finding a suitable
division of goods among several agents. This is of course
a problem that has been studied in multiagent systems and
AI for some time. Here we are going to specifically high-
light concepts form the social choice and welfare economics
literature, which provides useful definitions for what should
be considered a fair allocation of goods. We conclude by
mentioning some of the other topics that have recently been
addressed in the computational social choice literature.

Preferences in Combinatorial Domains
Collective decision making in combinatorial domains first
and foremost requires modeling the preferences of individ-
ual decision-makers over alternatives with a combinatorial
structure. In our discussion of preference representationlan-
guages, we start by listing some natural requirements for
such languages. Following this general discussion, we are
going to describe informally, for the sake of illustration,a
couple of concrete languages that have been proposed in
the literature, and so-called bidding languages developedfor
transmitting preferences in the context of combinatorial auc-
tions.

Desirable Properties
When choosing (or designing) a language for representing
preferences, there are at least the following five objectives
to be considered: (high) expressive power, relative succinct-
ness, (low) complexity, elicitation-friendliness, and cogni-
tive appropriateness. We shall briefly elaborate on each one
of these here.

Concerningexpressive power, a first question to ask is
whether the chosen representation language can in fact rep-
resent all the preference structures we are interested in. As
expressive power will have to be balanced with other con-
siderations, such as complexity and succinctness of repre-
sentation, the most expressive languages are not always the
most attractive ones. If possible, we may want to design our
languages so as to be able to exactly express the preference
structures of interest, and no others. Also, some languages
have more than one way of expressing some particular struc-
tures, while others have a unique representation for any pref-
erence structure they can express.

If we have two or more languages at our disposal that
can all express the preference structures of interest, we may
ask which language has moresuccinctrepresentations. We
would like to be able to encode a preference structure in as

little space as possible. This point is particularly important
for preferences over combinatorial domains. Formally, we
say that languageL is at least as succinct as languageL′,
with respect to a given class of preference structures if and
only if any preference structure from that class that can be
expressed inL′ can also be expressed inL without a sig-
nificant (that is, super-polynomial) increase in size. Coste-
Marquis et al. (2004), for example, study the expressive
power and relative succinctness of some logic-based lan-
guages for representing ordinal preferences.

Third, for any given language, we can analyze thecom-
putational complexityof various related tasks. Such tasks
include, for instance, finding a non-dominated alternative,
checking whether an alternative is preferred to another one,
whether an alternative is non-dominated, or whether all non-
dominated alternatives satisfy a given property. (An alterna-
tive is said to be dominated if there is another alternative that
is preferred to the former.) Such complexity results can pro-
vide hints as to the practical usability of certain languages.

Another criterion to consider iselicitation-friendliness:
How difficult is it to elicit the preferences of an agent so as
to represent them in a given language? This covers both elic-
itation of preferences from a human user and the design of
algorithms for eliciting those parts of a preference structure
from a software agent that are actually relevant to the task
at hand. The topic ofpreference elicitationis discussed in
detail in two other contributions to this special issue (Brazi-
unas & Boutilier 2008; Pu & Chen 2008).

As a final point we mention the issue ofcognitive rele-
vance. Arguably, preference representation languages that
resemble the way humans think about preferences have
some advantages, for instance in terms of elicitation from
a human subject. By its very nature, this parameter is some-
what more difficult to assess than the other issues mentioned
before.

Types of Languages
We do not have the space for giving an exhaustive list of lan-
guages for modeling preferences in combinatorial domains
here, so we attempt only a rough taxonomy and then de-
scribe two languages in more detail.

A first dichotomy deals with the nature of the preferences
represented: some languages are tailored to compactly rep-
resentcardinal preferences (utility functions) while others
are meant to representordinal preferences (preference re-
lations). A second dichotomy is concerned with the nature
of the language itself. Some of these languages aregraph-
ical, for instance CP-nets (see below) or GAI-nets (Braz-
iunas & Boutilier 2008): they consist of a structural part
that expresses the links between variables, and a “table” part
containing the local preferences. Some other languages are
based on propositional logic (or possibly a fragment of it):
prioritized goals, distance-based goals, weighted goals,bid-
ding languages for combinatorial auctions (see below), and
conditional logics of preference. Lang (2004) gives a survey
of logical languages for compact preference representation.
Finally, some languages are domain-specific (for instance,
they may be tailored for expressing bids in auctions), while
others are not.



We now describe in more details two typical languages
that are commonly used and which are, to some extent, rep-
resentative of the whole variety of languages. The first is a
language for ordinal preferences; the second is a language
for cardinal preferences.

CP-nets
Conditional preference networks, orCP-nets, are a language
for specifying preferences based on the notion of conditional
preferential independence (Boutilieret al. 2004). Formally,
a CP-netis a pair consisting of adirected graphG whose
vertices are the variables and a collection ofconditional
preference tables, one for each variable. The table for vari-
ableX contains, for each instantiation of its parent variables
in G, a preference relation on the value domain ofX. Con-
sider the following CP-net over the two binary variablesX

andY, with possible valuesx, x̄ for X andy, ȳ for Y:

X Y Z

graphG

x ≻ x̄
x : y ≻ ȳ
x̄ : ȳ ≻ y

xy : z ≻ z̄
xȳ : z ≻ z̄
x̄y : z ≻ z̄
x̄ȳ : z̄ ≻ z

conditional preference tables

The directed graphG means that the agent’s preference over
the values ofX is unconditional, and that her preference
over the values ofY (resp.Z) is fully determined given the
value ofX (resp. the values ofX andY). The local pref-
erence tables express preferences between the values of a
variable, everything else being equal (ceteris paribus). For
instance, in the table forY, the itemx : y ≻ ȳ means that
whenx is true, theny is preferred tōy for any fixed value
of Z. Therefore, in the preference relation expressed by the
CP-net, we havexyz ≻ xȳz andxyz̄ ≻ xȳz̄. The pref-
erence relation induced by the CP-net is then the transitive
closure of all these preference items directly induced from
the conditional preference tables:

xyz
ր
ց

xȳz

xyz̄

ց
ր

xȳz̄ → x̄ȳz̄ → x̄ȳz → x̄yz → x̄yz̄

In much of the literature, the graphG is assumed to be
acyclic. Under this assumption, the induced preference rela-
tion is a strict partial order possessing a dominating element.

CP-nets are not fully expressive, because some preference
relations are not expressible by CP-nets. On the positive
side, preferences expressed as CP-nets are easy to elicit,
provided that the graphG is known and possesses a small
enough number of edges. To see informally how succinct
they are, notice that the space needed to specify a CP-net is
exactly the cumulated size of its tables, whereas the explicit
representation of the preference relation is always exponen-
tially large. Finally, optimization queries are computation-
ally easy, provided thatG is acyclic.

Combinatorial Auction Bidding Languages
Combinatorial auctions are auctions in which the auctioneer
is offering not just one but a whole set of goods for sale. Po-
tential buyers can make bids for subsets of this set of goods

and the auctioneer has to choose which of the bids to ac-
cept. So-called bidding languages are used to allow agents to
communicate bids (in other words, their preferences) to the
auctioneer. While strategic considerations may cause agents
not to report theirtrue preferences, this issue is not relevant
from the viewpoint of preferencerepresentation. Preference
structures here are valuation functions mapping bundles of
goods to prices. They are usually assumed to be monotonic.

We briefly review the core ideas from the OR/XOR-
family of bidding languages (Nisan 2006). Bids are ex-
pressed as combinations of atomic bids of the form〈S, p〉,
wherep is the amount the bidder is prepared to pay for the
bundle of goodsS. In the OR-language, the valuation of a
bundle is taken to be the maximal value that can be obtained
when computing the sum overdisjointbids for subsets of the
bundle. For instance, consider the following bid:

〈{a}, 2〉 OR 〈{b}, 2〉 OR 〈{c}, 3〉 OR 〈{a, b}, 5〉

This expresses that the bidder is willing to pay $2 fora or b
alone, $3 forc alone, $5 for botha andb, and $8 for the full
set. The OR-language is not fully expressive as it cannot
represent submodular valuations. For example, there is no
way to specify that you would only want to pay $7 for the
full set.

In the XOR-language, atomic bids are taken to be mu-
tually exclusive. In this case, the valuation of a bundle is
simply the highest value offered for any of its subsets. The
XOR-language can express any monotonic valuation func-
tion (provided it maps the empty bundle to 0). On the down-
side, it is typically not very succinct for interesting classes
of valuations, as it essentially amounts to enumerating all
bundles with non-zero valuation. For instance, the simple
valuation function that maps each bundle to its cardinality
can be expressed using a linear number of OR-bids, but re-
quires exponential space in the XOR-language. It is also
possible to combine the OR and the XOR operator to obtain
bidding languages with better expressiveness and succinct-
ness properties than the pure OR- and XOR-languages.

An interesting alternative is to simulate XOR-bids by
means of OR-bids. The idea is to introduce so-calleddummy
items, which have no function other than making bundles
mutually exclusive. For instance, to express that the set
{a, b, c} in our earlier example should be valued at $7,
we could add the dummy itemd to obtain〈{c, d}, 3〉 and
〈{a, b, d}, 5〉, and to bid in addition on〈{a, b, c}, 7〉. This
bidding language, known as the OR∗-language, is as expres-
sive as the XOR-language.

Another approach to designing bidding languages has
been to use propositional formulas describing desirable
combinations of goods as bids and to allow arbitrary sub-
formulas of these formulas to be annotated with prices
(Boutilier & Hoos 2001). Such languages belong to a more
general family of languages that make use of formulas of
propositional logic to characterize desirable aspects of the
alternatives to be decided upon and to pair these formulas
with numerical weights indicating their importance (see for
instance (Chevaleyre, Endriss, & Lang 2006) for expressiv-
ity and succinctness results regarding such languages).



Voting in Combinatorial Domains
In many contexts, a group of voters has to make a common
decision on several possibly related issues. For instance,
imagine a set of friends have to agree on a common menu
to be composed of a first course, a main course, a dessert,
and a wine. Some of them may have preferential dependen-
cies, for instance, they may prefer white wine if the main
course is fish, and red wine otherwise. Another example
would be that the inhabitants of some local community have
to make a joint decision over several related issues of local
interest, for instance, to decide whether some new public fa-
cility such as a swimming pool or a tennis court should be
built. Such elections are calledmultiple referenda. A third
example are committee elections. Suppose the members of
an association have to elect a steering committee, composed
of a president, a vice-president and a treasurer. In such sit-
uations, voters typically have preferential dependencies, for
instance they would not like the president and the treasurer
to be close friends (nor enemies).

Multiple Election Paradoxes
As soon as voters have preferential dependencies between
issues, it is generally a bad idea to decompose a vote prob-
lem onp issues into a set ofp smaller problems, each one
bearing on a single issue, because this can give rise to “mul-
tiple election paradoxes”. Such paradoxes have been studied
by a number of authors (Brams, Kilgour, & Zwicker 1998;
Benoit & Kornhauser 1999; Lacy & Niou 2000).

Consider the following example. A joint decision has to
be made about whether or not to build a new swimming pool
(S or S̄) and a new tennis court (T or T̄ ). Assume that the
preferences of voters 1 and 2 areST̄ ≻ S̄T ≻ S̄T̄ ≻ ST ,
those of voters 3 and 4 arēST ≻ ST̄ ≻ S̄T̄ ≻ ST , and
those of voter 5 areST ≻ ST̄ ≻ S̄T ≻ S̄T̄ .

The first complication in this example is that voters 1 to
4 will feel ill at ease when asked to report their projected
preference on{S, S̄} and{T, T̄}. Only voter 5 knows that
whatever the other voters’ preferences about{S, S̄} (resp.
{T, T̄}), she can vote forT (resp. S) without any risk of
experiencing regret. Experimental studies suggest that most
voters tend to report their preferences optimistically in such
situations; for instance, voters 1 and 2 would likely reporta
preference forS overS̄.

The second problem (the paradox itself) is that under this
assumption that voters report optimistic preferences, theout-
come will beST , which isthe worst outcome for all but one
voter. How can such paradoxes be avoided? Reformulating
the question in a more constructive way: how should a vote
on related issues be conducted?

Possible Solutions
We can list five ways of proceeding, each of which has its
own pitfalls. The first four work at the global level, where
voters vote for combinations of values, while the last one
works at the local level (via a decomposition of the prob-
lem).

Solution 1 is to ask voters to report their entire preference
relation explicitly on the set of alternatives, and then apply
any fixed voting rule.

Solution 2 consists in asking voters to report only a small
part of their preference relation (for instance, their their k
most preferred outcomes, wherek is a small number) and
apply a voting rule that needs this information only. The plu-
rality rule, for instance, which chooses the candidate ranked
first by the highest number of voters, is such a rule.

Solution 3 consists in limiting the number of possible
combinations that voters may vote for.

Solution 4 requires each voter to express her preferences
as an input in some fixed compact representation language,
and then applies a fixed voting rule to the profile consisting
of the preference relations induced by the voters’ inputs.

Finally, Solution 5 imposes a partitioning of the domain
and requires the voters to vote separately on each issue, ei-
ther simultaneously or sequentially (in the latter case, the
outcome of the vote on one issue is revealed to the voters
before they vote on subsequent issues).

Let us now analyze these five proposals. Solution 1 works
only if the number of issues is very small. Suppose we have
10 binary issues.Then voters surely would not want to bother
spending a few hours (and lots of energy) enumerating2

10

alternatives! Solution 2 requires little communication, but
this is its only merit, as it is likely to give catastrophic re-
sults as soon as the number the issues is not very small. For
instance, using the plurality rule when the number of issues
is significant and the number of voters is small could well
result in a situation where no outcome gets more than one
vote, in which case plurality would give an extremely poor
(namely entirely random) result. Solution 3, advocated by
Bramset al. (1998), presents the chairperson with a very
problematic choice and introduces a strong level of arbitrari-
ness. Solution 4, also known as “combinatorial vote” (Lang
2004), presents two difficulties: first, the language has to be
elicitation-friendly; and second, the complexity of comput-
ing the outcome is very high in most cases.

Solution 5 has been first supported by Lacy and
Niou (2000), who show that if the voters’ preferences are
separable (which means that each voter’s preference on the
values of an issue is independent from the outcome on
other issues), then the approach is safe. However, sep-
arability is a very demanding assumption that is unlikely
to be met in practice. Several recent papers (Lang 2007;
Xia, Lang, & Ying 2007) impose a much weaker domain
restriction than separability under which sequential voting
can be applied “safely”: informally, the condition should be
that each time a voter is asked to report his preferences on
a single issues or a small set of issues, these preferences do
not depend on the values of the issues that have not been de-
cided yet. Formally, this can be expressed as the following
condition: there is a linear orderO = X1 > . . . > Xp on
the set of issues such that for every voterv and everyj, the
preferences ofv on Xj are preferentially independent from
Xj+1, . . . ,Xp givenX1, . . . ,Xj−1. If this property is sat-
isfied, thensequential voting rulescan be defined in the fol-
lowing way. Letr1, . . . , rn be voting rules on the domains
of X1, . . . ,Xn respectively. Then thesequential composi-
tion of r1, . . . , rn is defined as follows: first, since all voters
have unconditional preferences over the values ofX1, r1 can
be applied to these preferences aboutX1 so as to make a de-



cision on the value ofX1; then, given this valued1 chosen
for X1, voters have well-defined preferences over the values
of X2 that are independent ofX3, . . . ,Xn, thereforer2 is
applied to these local preferences overX2, and so on. In or-
der to compute the outcome of these sequential voting rules
we do not need to know the voters’ full preference relations:
it suffices for each voter to express a CP-net, with the condi-
tion that the dependency graph of the CP-nets isacyclicand
common to all voters.

As an example, consider two binary variablesX andY,
with the orderingX > Y. Each local rule is the plural-
ity rule (which, since domains are binary, coincides with the
majority rule). Consider seven voters, three of whom ex-
press the preference relation̄xy ≻ x̄ȳ ≻ xȳ ≻ xy, two
xy ≻ xȳ ≻ x̄ȳ ≻ x̄y and twoxȳ ≻ xy ≻ x̄y ≻ x̄ȳ.
The voters’ preferences over the values ofX are first elicited
(which is easy, since, by assumption, these preferences are
unconditional). Since four voters out of seven preferx to x̄,
the decisionX = x is taken. Now, voters are asked about
their preferences on the values ofY givenX = x. Given
X = x, five voters out of seven prefer̄y to y, therefore the
decisionY = ȳ is taken and the final decision isxȳ.

Preference Aggregation
So far we have focused onvoting. While a voting rule out-
puts a single candidate, anaggregation functionoutputs a
collective preference relation or utility function. Ideally, if
the voters’ preferences are represented in some language,
we would like the output to be represented in the same lan-
guage: for instance, we would want to aggregate a collection
of GAI-nets into a GAI-net (Gonzales, Perny, & Queiroz
2006), or similarly for CP-nets (Rossi, Venable, & Walsh
2004).

Multiagent Resource Allocation and Fair
Division

Another important application domain that has attracted a
great deal of attention in computer science and AI in re-
cent years is multiagent resource allocation (Chevaleyreet
al. 2006). Different variants have been studied, but a typi-
cal setting involves a set of indivisible goods that need to be
distributed among a set of agents. Typically, goods exhibit
different kinds of synergies between them and cannot be
considered independently without risking undesirable out-
comes. This means that agents have to express preferences
over a combinatorial domain. Specifically, the number of
bundles of goods an agent might receive is exponential in
the number of goods. The allocation mechanism that has
being studied most is that ofcombinatorial auctions, where
the efficiency criterion used to evaluate the quality of an al-
location is typically the revenue of the auctioneer.

Multiagent resource allocation shares some obvious sim-
ilarities with voting in combinatorial domains: agents re-
port preferences on several alternatives (here, possible al-
locations of goods to agents), and a collective decision has
to be taken on the allocation that should be selected as the
outcome of the procedure. Conitzer (2008) discusses some
of these similarities between voting and resource allocation

(focusing on combinatorial auctions, as one class of alloca-
tion procedures) in detail. It is useful though, to also empha-
size some of the distinctive features of resource allocation
problems, as opposed to voting. Among these are the lack
of so-calledexternalities, the fact thatpaymentsmay enter
the process, and the consideration offairnessrequirements.

Regarding the first of these, in the context of resource al-
location problems, agents are mostly assumed to only worry
abouttheir ownbundle of resources, and to be indifferent
to what the others receive. This is known as the “no exter-
nalities” assumption. In other words, in the context of an
election, all voters are asked to express a preference over
the same set of alternatives, while in multiagent resource al-
location they only express preferences regarding their own
lot. Solving a resource allocation problem by having agents
vote on possible allocations and then applying a voting rule
would be conceivable in theory, but it would also be unnec-
essarily complex.

A second distinctive feature is that allocation problems
often include a monetary component that is not found in
voting. Including the possibility for monetary payments be-
tween agents enlarges the range of possible deals that can be
made and, using techniques from mechanism design, such
payments can also be used to give agents incentives to truth-
fully reveal their preferences.

As mentioned above, a third distinctive feature of resource
allocation is the consideration of fairness issues. More gen-
erally speaking, there is a whole range of different (eco-
nomic) efficiency and fairness criteria that we may wish to
apply to assess the quality of an allocation of resources to
agents. The distinction between fairness and efficiency cri-
teria is best illustrated with an example.

Fairness and Efficiency

The allocation of Earth observation satellite images provides
a real-world illustrative example where indivisible goods
have to be allocated to a group of agents. The cost of space
projects is so high that they usually need to be co-funded
by several agents (countries or large companies). When
the satellite is eventually in space circling the Earth, we are
faced with the problem of how to allocate images to the par-
ties who funded the project. Each agent can request any
number of images to be taken, but for technical reasons not
all of these requests can be satisfied. How should we decide
which photos to take?

On the one hand,efficiencyconsiderations suggest that
we should aim at maximizing the overall number of pictures
taken. On the other hand,fairnessrequirements may dic-
tate that we cannot always disappoint the same agent, even
if this reduces the total number of requests that can be sat-
isfied. For instance, we may wish to ensure that, over time,
each agent receives a return on investments that is at least
roughly proportional to their financial contribution. Social
choice theory and welfare economics (Arrow, Sen, & Suzu-
mura 2002) have produced a host of mathematically precise
criteria to formally assess efficiency and fairness. Some of
these have been exploited in AI for some time, while others
are less well-known in this community.



Possibly the best known efficiency criterion isPareto op-
timality: it stipulates that the chosen agreement should be
such that no alternative agreement would be better for some
agents without being worse for any of the others. A stronger
requirement would be to ask for an allocation with maxi-
mal utilitarian social welfare, the sum of utilities of the in-
dividual agents. The classical counterpart to utilitarianism
is egalitarianism: maximizingegalitarian social welfarere-
quires choosing an allocation that would maximize the util-
ity of the agent worst off. A refinement of this concept is
the so-calledleximin-ordering: here we first try to maxi-
mize the well-being of the poorest agent; once this option
has been exhausted we turn to maximizing the well-being of
the second poorest agent, and so forth. Another interesting
fairness criterion isenvy-freeness:if possible, we would like
to find an allocation such that no agent would rather have a
bundle that has been allocated to any of its peers. Envy-free
allocations do not always exist, in which case we may, for
instance, choose to aim at minimizing the number of envious
agents or the degree of envy experienced by any one agent.

One type of problem that has been investigated in re-
cent work is the computational hardness of finding an al-
location of resources that is optimal according to one of
these social criteria. Typically, these problems are difficult.
Sometimes, but not always, putting severe restrictions on
the range of preference structures can offer an escape route
though. For instance, finding an allocation that maximizes
utilitarian social welfare is known to be NP-hard in gen-
eral (it corresponds to the SET-PACKING problem), but it
becomes easy if all agents have additively separable pref-
erences. On the other hand, maximizing egalitarian social
welfare remains NP-hard even in this seemingly simple case.
Questions related to envy-freeness give rise to particularly
interesting computational questions (Liptonet al. 2004;
Bouveret & Lang 2008).

Centralized vs. Distributed Allocation
We can distinguish different types of allocation procedures,
depending on whether they are centralized or distributed. An
example for the former are combinatorial auctions. Here, a
single auctioneer is in charge of the “winner determination
problem”: determining the allocation of goods and fixing
the prices at which the bundles should be sold. Solving this
problem is equivalent to finding an allocation with maximal
utilitarian social welfare, which we have seen before to be
NP-hard in the general case. Still, in recent years several
algorithms have been developed that perform well in prac-
tice. Also, for many real-world applications, preferences
structures often exhibit some regularities that make the prob-
lem tractable even in theory (Lehmann, Müller, & Sandholm
2006).

A different perspective on the same application problem
can be taken if we assume that no central agent is dedicated
to the elicitation of the others’ preferences and to the com-
putation of an optimal outcome. Under that view, agents
negotiate locally, by accepting or rejecting deals proposed
by some other agents (with or without side payments), until
a stable situation is reached (when no more deals are pos-
sible). A possible criterion to apply what deals should be

considered acceptable is for each agent to insist on animme-
diatebenefit to themselves (such agents are said to be my-
opic). Additionally, we may also put structural restrictions
on deals (how many agents, or goods, can be involved in a
given exchange). Such restrictions put severe limitationson
what can achieved in a negotiation system.

For instance, under the assumption of myopic rational-
ity, an agent holding two resources and valuing this bundle
as “useful” would never give one of them to another agent
valuing the same bundle as “extremely useful” if single re-
sources are completely useless to both of them. If the sys-
tem only allows deals involving a single resource at a time,
it could remain stuck in such a local optimum. On the other
hand, if no structural restrictions are present, the negotiation
among such rational agents is known to always converge to
an allocation with maximal utilitarian social welfare, if side
payments are allowed (Sandholm 1998).

An important question is then to characterize, for a given
restriction on possible deals, what restrictions on preference
structures still allow us to guarantee convergence of the sys-
tem to a global optimum. This question may be asked for
a range of different social optimality criteria, such as max-
imal utilitarian/egalitarian social welfare, Pareto optimality,
or envy-freeness. In general, when nothing is assumed re-
garding the agents’ preference structures, the highest struc-
tural complexity of deals is required (if convergence is possi-
ble at all), which is of little practical interest of course.Un-
fortunately, some basic natural restrictions, such as mono-
tonicity, tend not to help: it may still be possible that some
specific negotiation scenario would require a very complex
deal to reach an optimal allocation. A challenging question
is then to identify the class of preference structures that fits
a given protocol restriction, in the sense that it still allows
a guarantee of this convergence property. In other words:
given a class of deals allowed under some negotiation proto-
col and a suitable efficiency or fairness criterion for assess-
ing the quality of allocations, can we identify conditions on
the preferences of the negotiating agents that would guaran-
tee that any sequence of acceptable deals would be bound
to converge to an allocation that is optimal under the cho-
sen criterion? Endrisset al. (2006) discuss the problem of
convergence in distributed resource allocation in detail.

Conclusion
Preference handling in combinatorial domains and its appli-
cation to voting and fair division problems are examples for
ongoing research efforts in the field ofcomputational social
choice. To conclude, we briefly mention some of the other
research directions that have recently been explored. As this
is a very active area with a fast growing body of literature,
we make no attempt at being comprehensive and we are only
going to cite a handful of exemplary contributions.

Much work in computational social choice applies the
tools of computational complexity theory to social choice
settings, particularly to the analysis of voting rules. For
example, while it is computationally easy to compute the
winner for most of the voting rules in regular use, there
are also rules for which this problem turns out to be com-
putationally intractable. An example is the rule proposed



by C.L. Dodgson (of “Alice in Wonderland” fame) in 1876:
elect the candidate who is closest to being able to beat each
other candidate in a pairwise competition, for a suitable
definition of “closest” (Bartholdi, Tovey, & Trick 1989b;
Hemaspaandra, Hemaspaandra, & Rothe 1997).

Computational complexity has also been suggested as a
barrier against manipulation in elections. Classical results
from social choice theory show that for any voting rule to
choose between three or more candidates that is not dicta-
torial (meaning that one voter always determines the out-
come), there will be situations in which some voters may
have an incentive to manipulate, in the sense of submitting
a ballot that does not truthfully reflect their real preferences.
For instance, if you have an inkling that your favorite can-
didate has no chance of winning, you may be tempted to
vote for your second-best choice instead. In an ideal world,
this kind of reasoning should not be necessary. So one
direction of research that is currently being pursued is to
search for voting procedures that make it computationally
hard to manipulate in this manner. While there are several
results establishing NP-hardness, beginning with the semi-
nal work of Bartholdiet al. (1989a), the most recent discus-
sion has concentrated on the question to what extent such
worst-case complexity results offer sufficient protectionin
practice, and whether or not meaningful average-case com-
plexity results are achievable (Conitzer & Sandholm 2006;
Procaccia & Rosenschein 2007). Besides manipulation in
the aforementioned sense, the complexity of other forms
of election control, e.g., by strategically entering additional
candidates into the race, has also been studied (Faliszewski
et al. 2008).

Besides computational complexity, also the theory of
communication complexity has been applied to social choice
settings (Conitzer & Sandholm 2005). How much informa-
tion needs to be exchanged to determine the winner of an
election or to support a particular negotiation protocol isof
course especially relevant in combinatorial domains. But
also in other settings it is interesting to try to quantify the
degree of privacy that can be afforded to the individuals tak-
ing part in a collective decision making process.

There have also been computational studies of so-called
cake-cutting procedures (Sgall & Woeginger 2007). Design-
ing a protocol for agents to divide a cake (a single divisible
good) between them is the canonical example for a fair divi-
sion problem. For instance, if we interpret fairness as envy-
freeness, then the problem of fairly dividing a cake between
more than three agents such that each player receives a con-
nected piece (that is, not a collection several small pieces
from different parts of the cake) is still an open problem.
Observe that, contrary to what we have discussed in this pa-
per, cake-cutting is not a combinatorial problem.

Yet another line of work aims at developing logics for
modeling social choice procedures. Just as computer scien-
tists have long been using logic to formally specify the be-
havior of computer systems, to allow automatic verification
of certain desirable properties of such systems, it appears
promising to develop suitable logics that would allow the
formal specification of social choice procedures. This line
of research is also known associal software(Parikh 2002).

For a somewhat more technical introduction to computa-
tional social choice we refer the reader to our recent survey
paper on the topic (Chevaleyreet al. 2007), which cannot
claim to be complete either, but which does reference a large
number of works for further reading. In a recentAI Maga-
zinearticle, Walsh (2007) also reviews several branches of
computational social choice (including manipulation, elici-
tation and uncertainty) that we did not discuss in detail here.
Finally, another rich source of information are the proceed-
ings of the 1st and 2nd International Workshops on Com-
putational Social Choice (COMSOC-2006 and COMSOC-
2008).
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