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1 Introduction

In (Löwe and Müller, 2008), we discuss the traditional modal view of (propo-
sitional) mathematical knowledge that reduces knowledge claims of the form
“S knows that p” to the ability of S to produce a formal derivation of p.
We argue that such a modal definition of knowledge cannot be given in a
context-insensitive way and that the (now contextually determined) modal-
ity will have to be interpreted with respect to skills of the subject S. When
looking at actual knowledge attributions in mathematics, it becomes clear
that the access to proof that is purportedly behind mathematical knowledge,
has to be of a dispositional nature: nobody has current conscious or physical
access to proofs of all, or even of a small fraction of, the items of mathe-
matical knowledge that can be truthfully attributed to her. This modal or
dispositional element is present in many other accounts of knowledge, e.g.,
in Aristotle’s conception of knowledge as a ἕξις (Cat. 8).

The crucial question is how to make this modalization precise. Our
analysis (Löwe and Müller, 2008, p. 104) rests the modalization on the
notion of “mathematical skill”:

S knows that p iff S’s current mathemati-
cal skills are sufficient to produce the form of
proof or justification for p required by the ac-
tual context.

(‡)

Skill is both a modal notion (what somebody is able to do even while not
doing it) and has an empirical side (skills can be tested). Skill levels can
be characterised independently of any conceptual models for mathematical
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knowledge. Mathematical practice affirms that the concept of mathemati-
cal skill is well entrenched as it is customary to comment on students’ or
researchers’ skills, and it is often possible to rank people with respect to
their skills. Skills are tested in exams and job talks, and it may well be
that the aim of mathematics education is best characterised not as instill-
ing mathematical knowledge, but as teaching mathematical skills. In the
mentioned paper we do not discuss this in detail, but instead refer to the
Dreyfus-Dreyfus model of skill acquisition as a semi-formal theory of skill
levels and relegate a more detailed discussion to future work. In this pa-
per, we provide the necessary background and continue the discussion from
(Löwe and Müller, 2008).

In § 2, we shall give a general discussion of the role of skills in epistemo-
logy, specializing to the Dreyfus-Dreyfus model of skills in § 3. The original
applications of the Dreyfus-Dreyfus model were (relatively) homogeneous
skills such as car driving (Dreyfus and Dreyfus, 1986, p. 24) and playing
chess (p. 25). Mathematics is much more multi-faceted; in fact, we propose
to see mathematics as involving a professional skill. There is a well-known
treatment of a professional (set of) skills using the Dreyfus-Dreyfus model,
viz. Benner’s (1984) treatment of nursing skills which we discuss in detail in
§ 4. After having seen the example of nursing, we return to mathematical
skills in § 5, asking a number of questions with very few concrete answers.
In our concluding § 6, we summarize the discussion of this paper.

2 Skills

It is sometimes claimed that mathematical knowledge is mostly proposi-
tional knowledge: knowledge that, e.g., a specific mathematical proposition
p is true or false; and it is this type of knowledge that we have investi-
gated (Löwe and Müller, 2008). Rav (1999) has argued that mathematics
is not really about knowing the truth values of theorems (“knowing that”),
but about knowing the techniques and ideas behind their proofs (“knowing
how”). Rather than viewing this as a strict dichotomy, we are interested
mostly in the role of skills—knowing how—for propositional mathematical
knowledge.

Skills aren’t new to the philosophical scene. Ryle (1949, Chap. 2) has
famously argued for the separation of knowing how (which he uses synony-
mously with “skill”) from knowing that. Ryle’s overall aim is to fight the
“intellectualist doctrine which tries to define intelligence in terms of the
apprehension of truths, instead of the apprehension of truths in terms of
intelligence” (Ryle, 1949, p. 27). He claims that intellectualism is implicit
in much of philosophy, but that “ ‘[i]ntelligent’ cannot be defined in terms
of ‘intellectual’ or ‘knowing how ’ in terms of ‘knowing that ’ ” (p. 32). If a
reduction of one to the other has any chance of success, it should be the
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other way round—but here also a danger lurks. Skill is a modal notion and
thus close to dispositions, but human know-how is different from physical
dispositions like the solubility of sugar, which can (arguably) be tested by
uniform behavior in specific conditions.1 This creates a problem for a direct
reduction of knowing that to knowing how:

Epistemologists, among others, often fall into the trap of expecting
dispositions to have uniform exercises. For instance, when they recog-
nise that the verbs ‘know’ and ‘believe’ are ordinarily used dispo-
sitionally, they assume that there must therefore exist one-pattern
intellectual processes in which these cognitive dispositions are actu-
alised. Flouting the testimony of experience, they postulate that,
for example, a man who believes that the earth is round must from
time to time be going through some unique proceeding of cognising,
‘judging’, or internally re-asserting, with a feeling of confidence, ‘The
earth is round’. (Ryle, 1949, p. 44)

The role of triggering conditions or, more generally, the role of actual
performance for skill assessment is certainly more diverse.

Dreyfus and Dreyfus affirm Ryle’s point that “know-how is not accessi-
ble to you in the form of facts and rules” (Dreyfus and Dreyfus, 1986, p. 16).
From this observation they draw the important conclusion that the genesis
of skills contains the key to a better understanding of know-how.2 Conse-
quently, they choose to focus their investigation on a phenomenologically
detailed study of skill acquisition.

3 The Dreyfus-Dreyfus model of skills

The philosopher Hubert Dreyfus and the mathematician Stuart Dreyfus pro-
pose their five-step skill acquisition model in their book Mind over Machine
(Dreyfus and Dreyfus, 1986), which itself forms an important contribution
to the discussion about symbolic Artificial Intelligence in the 1980s. Their
model is grounded in phenomenological observations about the acquisition
of various human skills, on the one hand, and in philosophical theories
about human practices going back to Heidegger, Merleau-Ponty and the
late Wittgenstein (Dreyfus and Dreyfus, 1986, p. 11).

Dreyfus and Dreyfus discern five skill steps in the development of skills
in humans—stressing, of course, that not everyone acquiring a skill will nec-
essarily reach the highest, expert level (Dreyfus and Dreyfus, 1986, Chap. 1;
summary p. 50):

1As the discussion about so-called ceteris paribus laws and “finkish dispositions” in
philosophy of science shows, this assumption about testing may have to be qualified.

2Ryle also makes an observation that points in this direction: “Learning how or
improving in ability is not like learning that or acquiring information” (Ryle, 1949, p. 59).
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1. Novice. Application of context-free rules through information process-
ing.

2. Advanced Beginner. Application of rules, also based on perceived
similarity with prior examples.

3. Competence. Application of a hierarchical procedure of decision-
making (“problem solving”; p. 26).

4. Proficiency. Deep involvement, experiencing situations from a per-
spective (“holistic similarity recognition”; p. 28); decisions grounded
analytically.

5. Expertise. No need for rules. “[E]xperts don’t solve problems and don’t
make decisions; they do what normally works” (p. 30f.).

It is part of Dreyfus and Dreyfus’s argument against symbolic AI that explic-
itly rule-based schemes, even if rules include heuristics polled from human
experts, will never allow computer programs to advance to proficiency or
expertise. According to them, higher skill levels are only reached through re-
peated in situ experience. The Dreyfus-Dreyfus skill model is a situational
model offering “no context-free criteria to identify persons as possessing
talents or traits indicative of expertise” (Benner, 1984, p. 15).

Note that Hubert Dreyfus (2001) extends the Dreyfus-Dreyfus skill model
by two further levels called Mastery and Practical Wisdom. We shall fo-
cus mostly on the original five-level model and only mention some issues of
Mastery in our concluding § 6.

We have chosen to focus on the Dreyfus-Dreyfus skill model because it
is general, explicit, and empirically grounded. However, despite the fact
that Stuart Dreyfus himself is a mathematician, that model has not been
applied to the case of mathematics itself.3 Early applications of the model
were skills or skill sets that are clearly delineated such as playing chess
and driving a car (or, slightly more complex, the education of airplane
pilots: Dreyfus and Dreyfus, 1977). Car-driving and chess are skills that
are needed in specific situations; there is a fairly clear distinction to be
made between the skills involved in such settings and more general enabling
conditions or auxiliary skills. For instance, your car-driving skill can be
assessed independently from your competence in using the CD player in the
car, even though handling of the CD player is something that is typically
done by drivers. Or, in the case of chess, a world class chess player needs to
travel to tournaments and many everyday skills (such as booking flights and
hotels) are required for this, but we feel confident in completely separating
this from the chess-playing skill of an individual: if the world champion of

3Hubert Dreyfus, personal communication, June 2003.
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chess did not know how to book a flight or a hotel, this would not affect the
level of his or her skill.

In the case of mathematics, this separation is more difficult: while we
think that booking flights or hotels are not parts of the skill set that de-
fines a mathematician (after all, we know research mathematicians who do
not go to conferences), this is much less clear for being able to write up
proofs intelligibly or to explain proofs to graduate students, etc. (for more
discussion, see § 5.1 below).

Later applications of the Dreyfus-Dreyfus skill model have been dealing
with skills more complex than car-driving and chess. Examples of this are
the famous studies on nursing by Patricia Benner (cf. § 4) and Flevbjerg’s
studies on social workers (Flyvbjerg, 2001). In order to provide a back-
ground for our discussions about mathematical skills, we shall discuss the
prototypical case of nursing in more detail in the following section.

4 Nursing

Patricia Benner’s analysis of the professional skills of nursing in terms of the
five-level Dreyfus-Dreyfus model of skills (Benner, 1984) has been called one
“among the most sustained, thoughtful, deliberate, challenging, empower-
ing, influential, empirical [. . .], and research-based bodies of nursing scholar-
ship” (Darbyshire, 1994, p. 760). Her approach has had a substantial influ-
ence on the practice of teaching nursing, as witnessed by a number of papers
published in the 2001 commemorative edition of the 1984 book (cf. Gordon,
2001; Huntsman et al., 2001; Ullery, 2001; Fenton, 2001; Dolan, 2001). An
overview of the impact of Benner’s study can be found in (Brykczynski,
2006).

Benner (1984) gave a detailed description of the five stages in the learn-
ing of nursing skills based on paired interviews, individual interviews, and
participant observation. She covers the stages of Novice (Benner, 2001,
pp. 20–22), Advanced Beginner (pp. 22–25), Competence (pp. 25–27), Pro-
ficiency (pp. 27–31), and Expert (pp. 31–36), including implications for
teaching of nursing students at the particular levels.4

Note that since the Dreyfus-Dreyfus model is a situational model, you
cannot expect criteria to determine the skill level of a nurse in an objective,
context-independent way. Rather, the study exhibits examples of behaviour
and insight indicative of particular skill levels.5

4For instance, for advanced beginners she notes that “their nursing care needs to be
backed up by nurses” (Benner, 2001, p. 25) and for proficient nurses, she concludes that
they “are best taught by the use of case studies” and that “the proficient performer is
best taught inductively” (p. 30).

5Cf. (Benner, 2001, p. 15): “No attempt was made to classify the nurses themselves
according to proficiency levels”.
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As we have argued above, nursing is a good example for what we aim to
do in § 5 as it is a much richer activity than the one-dimensional examples
of chess playing or car driving. Benner identifies a number of skill sets that
are all part of the skills of a nurse, including providing comfort (Benner,
2001, § 4) and interpretation for patients (§ 5), diagnostics (§ 6), situation
management (§ 7), medication (§ 8), quality control (§ 9), and organization
(§ 10). The notion of a skilled nurse is related, ultimately, to a nurse’s job
description, which has developed historically. We are not concerned here
with a natural kind of human beings, nurses, of which there are more and
less skilled ones. Rather, we are assessing human beings who have chosen
a specific profession, as more or less skilled as required by the (historically
and sociologically contingent and changing) requirements of that profession.
Nursing skills are professional skills.

Not every highly skilled nurse will be equally good at all of these skill
sets. We can imagine highly accomplished nurses with decades of experience
who are not very good at particular parts of the job description. This is
why the Dreyfus-Dreyfus model should not be seen as assigning skill levels
to individuals but to performance patterns in a given situation.6 We shall
see this phenomenon in more detail in the case of mathematical skills in the
next section.

5 Mathematical skills

In the mathematics education literature, Ryle’s distinction of knowing that
and knowing how has been embraced as a fundamental dichotomy for math-
ematical epistemology, and has given rise to a number of related (and yet
subtly different) dichotomies for mathematical skills. We find examples
in Sfard’s structural vs. operational duality,7 in Anderson’s declarative vs.
procedural distinction,8 and in the notions of functional and predicative
thinking in the work done at the Osnabrück Institut für kognitive Mathe-

6Compare the recent proposal of applying the Dreyfus-Dreyfus model for the pro-
fession of infection preventionists by Marx (2009). Here, the skill levels are objective
and context-invariant properties of the individuals; e.g., “The Infection Preventionist-
Competent would have more experience (> 2 years) and be certified in Infection Control
(CIC) OR have a Masters or Doctorate in a healthcare field, > 6 months experience and
be certified in Infection Control (CIC)” (p. E157). This is clearly not in line with the
set-up of the Dreyfus-Dreyfus skill model and no such attempt should be made for the
case of mathematics.

7Cf. (Sfard, 1991, p.4): “whereas the structural conception is static, [. . .], instan-
taneous, and integrative, the operational is dynamic, sequential, and detailed.” Sfard
stresses that there is no dichotomy between the structural and the operational approach,
but rather a duality of “inseparable, though dramatically different, facets of the same
thing” (Sfard, 1991, p. 9).

8Cf. (Anderson, 1993, p. 18): “Intuitively, declarative knowledge is factual knowledge
that people can report or describe, whereas procedural knowledge is knowledge people
can only manifest in their performance.”
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matik by Cohors-Fresenburg, Schwank, and their collaborators (Schwank,
2003). Combining the two sides of the duality, we also find the notion of
procept (a combination of ‘process’ and ‘concept’) in (Gray and Tall, 1994).

A lot of interesting educational and empirical research has come out of
these dichotomies and dualities, e.g., proposals for supporting certain tal-
ents of students based on the functional vs. predicative distinction (Cohors-
Fresenborg and Schwank, 1992) or studies using eye-tracking as an indicator
for such talent focus (Cohors-Fresenborg et al., 2003). However, we do not
think that the classification of mathematical skill into a very small number
of basic mathematical aptitudes is appropriate for the analysis that we are
aiming for here.

We shall approach the issue of mathematical skills and their role in
mathematical knowledge by studying three interrelated questions:

1. What kind of skills are mathematical skills? What is their principle
of unity? Are they linked to the mathematical profession, or are they
rather a type of natural skills?

2. How are mathematical skills individuated? Is it useful to distinguish
mathematical skills very finely, in line with the division of the subject
itself, or is there an overarching principle of unity?

3. How are mathematical skills measured and assessed? Which indicators
are employed in practice; what makes mathematical skills empirically
accessible?

We shall pursue these issues, in the above order, in sections 5.1 through 5.3.

5.1 What kind of skills are mathematical skills?
When we talk about skills, we group them according to different principles,
the spectrum ranging from purely task-related clustering (e.g., when assess-
ing someone’s skill at repairing bicycles or driving a car) to clusters that
can lay a claim to resonating with some natural subdivision of the activ-
ities of a human being (when, e.g., assessing someone’s musical skills, or
her skills at bringing people together). The latter skills seem to be more
strongly associated with the notion of talent than the former ones. Further
subdivisions in all these areas are possible and sometimes useful, according
to demands set by the context (e.g., even a skilled bicycle mechanic may be
poor at some specific task like adjusting the headlights).

Where do mathematical skills lie in the above spectrum? Both extremes
of the spectrum have a certain appeal. In a somewhat romantic fashion
that pervades the public image of research mathematics, propounded by
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popular culture,9 one may picture mathematical skills as a combination
of different natural talents ranging from an analytical mindset to powerful
visual intuition. At the other extreme, one may view mathematical skills
simply as the skills a research mathematician needs for his or her job, which
would mean, in most cases, that filling in one’s travel expense declarations
and LATEX typesetting are as much part of the deal as are finding and
checking proofs.

In this spectrum we lean towards viewing mathematical skills as pro-
fessional skills whose unity is defined by the job that a mathematician is
doing as a researcher. In the process of mathematical research, a lot of
skills are involved in a successful research episode: a mathematician tackles
a research question, asks the right people who give her ideas helping on her
way to the correct proofs, finally finds the proof, writes it up in a way that
she can communicate it to the experts, gives a number of seminar talks on
the proof, receives comments from peers in these talks, fixes a number of
inaccuracies and uncertainties in the proof, types a journal paper, submits
the paper, goes to international conferences reporting on the result, receives
a referee report with revisions, revises the paper, and finally publishes it.
In this overview of the mathematical research process, a number of skills
are needed that are central, others that are less central, and yet others that
are peripheral. The skills involved in finding the proof are certainly central,
but being able to communicate the proof to the experts (i.e., knowing how
the community expects proofs to be communicated) is equally important.
Giving presentations is still relatively important, but probably more dis-
pensable than the earlier mentioned skills. Being able to write a paper in a
form that is acceptable for a referee is slightly further down the scale, and
somewhere at the end of the scale we find skills such as involved in filling
in travel expense forms for the trip to the international conference. While
the extremes on this spectrum (the ones that clearly are part of the mathe-
matical research skills and the ones that clearly aren’t) are easily identified,
we do not think that an objective stable core of skills can be identified that
could usefully take the place of the profession as a unifying principle.

To illustrate this, let us give an example from actual practice. A few
years ago, the first author had an autistic student who took several ad-
vanced mathematical classes at the graduate level. The student would not
hand in homework exercises, so there was no ordinary means of assessing
the student’s understanding of the material. However, even in complicated

9In a recent episode of the TV series NUMB3RS (episode 6.01, “Hangman”, aired 25
September 2009), mathematical skill of the protagonist math professor was manifested by
being able to calculate the position of the attacker while under sniper fire. Similar topoi,
such as being able to detect hidden patterns very quickly in large amounts of unstructured
data, can be found in other mainstream movies such as “A beautiful mind” (2001). For a
detailed discussion of the public representation of mathematicians, cf. (Osserman, 2005).
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proofs, the autistic student was able to correct mistakes on the blackboard
by shouting corrections, indicating an understanding of the proofs. At the
end of the lecture, the student took a personalized exam in which he per-
formed very well on questions that essentially required a binary answer or
just an intuitive idea. He performed badly on questions that required the
student to give a proper mathematical argument, so for most contexts of
research mathematics, the autistic student described would get a low as-
sessment of skill level. We see this as an example corroborating the fact
that pure understanding for the mathematical structures under investiga-
tion is not enough to have a high level of mathematical skill if this is not
paired with the appropriate (historically and culturally determined) skills
of communicating why the insights are true.

5.2 How are mathematical skills individuated?
The granularity of mathematical skills also leaves open a spectrum of options
for analysis. The mathematical community usually puts great emphasis on
the unity of the subject, which is indeed one of the special traits of the his-
torical development of mathematics (cf. François and Van Bendegem, 2010).
Furthermore, interrelations between seemingly disconnected areas of math-
ematics are constantly discovered,10 so there is a strong empirical basis for
claiming the unity of the subject and thus, for expecting one unified notion
of mathematical skills. On the other hand, mathematicians themselves of
course differentiate when it comes to specific aspects of a colleague’s skills,
and such aspects may also be epistemically important. Classifications of
types of mathematicians have been around for a long time and are not a
result of the diversification of the mathematical field.11

10To give a famous example, consider Gerhard Frey’s 1984 observation that a solution to
the Fermat equation would yield a counterexample to the Taniyama-Shimura conjecture,
thus linking number theory to the area of elliptic curves.

11Cf., e.g., Felix Klein’s recommendations for choosing among candidates for a vacant
position in Berlin 1892, in the course of which he gives his view of the required balance
of skills in a math department: “Bei der Mannigfaltigkeit der Individualitäten kann man
ja nicht schematisieren, aber im grossen und ganzen sollten folgende Typen vorhanden
sein:

1. Der Philosoph, der von den Begriffen construirt,

2. Der Analytiker, der wesentlich mit der Formel operirt,

3. Der Geometer, der von der Anschauung ausgeht.”

(Letter dated 6 January 1892; cited after (Siegmund-Schultze, 1996); translation: “Given
the manifold of individualities one cannot press the discussion into a schema, but generally
speaking, the following types should be present: 1. The philosopher who constructs
conceptually, 2. The analyst who essentially operates with formulae, 3. The geometer
who proceeds from intuition.”)

Klein mentions Weierstraß and Cantor for type 1, Weber and Frobenius for type 2,
and Schwarz and Lindemann for type 3. (We should like to thank to Dirk Schlimm for
help related to this reference.)
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At the very fine-grained level, there is the division of the subject of
mathematics into subfields, e.g., according to the Mathematics Subject Clas-
sification of the American Mathematical Society (the 2010 version of this
classification is a document of 46 pages just listing the names of the sub-
areas). It makes good sense to ask, when confronted with a specific problem
in one of these areas, who is an expert in that specific field, i.e., who is a
skilled mathematician with respect to that subject. Does that mean that
there are as many variants of mathematical skills as there are subfields of
mathematics?

With respect to this spectrum, we support a unificationist stance: Mathe-
matics is one subject, and for most purposes, it makes sense to view general
mathematical skills as the pertinent level of granularity. For purposes of
assessing knowledge claims, local dimensions of skill may however also play
a role, depending on context.

Suppose that we have a given mathematical theorem p and a given con-
text and would like to know whether a mathematician S satisfies our re-
quirements for knowledge given in (‡) at the beginning of this paper. This
will require us to describe a skill level in terms of “mathematical skills” that
is sufficient for the task at hand. But if mathematical skills are so diverse,
what part of the skill set will be relevant here? We claim that this will be
given by the context and the nature of the theorem p in the same sense that
a nurse’s skill level is not an objectively defined property of a given human
being, but situationally determined.

To give an example similar to the situations described in (Löwe and
Müller, 2008) as part of the argument for the context-dependency of math-
ematical knowledge, let us consider a mathematician S and a theorem p
that is not from his immediate research area, but a closely related area, and
of which he has seen proof sketches, but never a full proof. We assume S
to be of lower skill level than expert for the relevant area of mathematics.

Scenario 1. If we are looking at a context in which only the proof idea
matters, then the cognitive access that S has to the proof sketches (by virtue
of memory) is enough to satisfy the requirements of our definition (‡), and
no skill for transforming the proof sketch into something else is needed. As
a consequence, we would conclude that S knows that p in these contexts.

Scenario 2. Other contexts (for example, research contexts in which S
needs to use parts of the details of the proof in order to generalize the proof
to a different setting) need expert level skills in order to allow S to bring the
proof sketches to which he has cognitive access to the level of detail needed
for the context. As we assumed that S is not of expert level for the relevant
area, in these contexts we would not say that S knows that p.

Scenario 3. Extending the example a bit, we can consider a context
like in the last scenario (i.e., S does not know that p); now S asks an



Skills and mathematical knowledge 275

expert to give a more detailed proof sketch, gaining cognitive access to a
new account of the proof for which a lower skill level than expert is enough
in order to allow S to transform this detailed account into the level of detail
needed for the context, thus creating knowledge.

Comparing the three scenarios in this example, we see that a lot depends
on judgments about situations of the type “given cognitive access to X, you
need skill level Y to produce a proof of type Z” or “S has skill level Y with
respect to this particular situation”. So, in order to make definition (‡)
useable in practice, we need to be able to make assessments of this type.

5.3 How are mathematical skills measured and assessed?
Directly continuing our discussion of the examples in the last section, we
consider the question: how do we assess a person’s mathematical skills? It is
of the essence of a modal or dispositional predicate that while performance
in specific circumstances may be a valid indicator, skill also transcends
recorded performance. Even a good bicycle rider may fall from her bike,
and even a skilled musician can play out of tune (cf. also the long quote
from Ryle in § 2 above).

We do not think that mathematical skills are special in this respect.
They are dispositional, but performance is an indicator. Typical exam sit-
uations show the tension inherent in this: We believe that many mathe-
maticians have experienced a situation in which they wanted to assess the
mathematical skills of a student, but were forced by exam regulations (and,
in some sense, also considerations of fairness) to give marks based solely
on performance. When a skilled student underperforms, it is not rare to
comment on the less than satisfactory grade by telling the student that one
is convinced that she can do better than that. Those are not empty words—
rather, such assessment highlights the fact that skill is dearer to most of us
than “mere” performance. Of course, performance matters—we all know
cases of people who have been promising for just a little too long. Assess-
ment of skill and assessment of performance are not independent. But, as
with many other dispositional traits, no strict statistical relationship ap-
pears to exist either.

The assessment of mathematical skills and of mathematical knowledge of
course go hand in hand. When claiming, as we did above, that mathematical
skills can be the key to an analysis of mathematical knowledge, we do not
claim that we have access to mathematical skills completely independently
of knowledge attributions. This seemingly circular structure is typical of
modality—cf., e.g., David Lewis’s remarks about the interrelation between
formal models giving truth conditions for counterfactuals, on the one hand,
and our intuitive assessment of counterfactuals on the other hand (Lewis,
1986, p. 43).
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In § 5.1 we have argued that mathematical skills are best viewed as
professional skills, i.e., as skills belonging to a specific, historically and so-
ciologically contingent profession, the research mathematician. Thus, per-
formance on the job is certainly another, but again defeasible, indicator of
mathematical skills.

It seems that in contexts like the ones discussed at the end of § 5.2, a
good test question whether a mathematician has the required skill level is
the following: Suppose that I have a certain type X of proof at my cognitive
disposal (e.g., a proof by testimony, a proof sketch, a handwritten proof with
gaps, etc.) and a certain skill level Y is needed to transform this into the
type Z of proof that I need in order to satisfy the definiens of (‡). In order
to assess whether a mathematician S has skill level Y , I can ask myself the
question: “Assuming that S has never heard about my problem before, if
I give him the information at my cognitive disposal (of type X), will he be
able to produce a proof of type Z?”

6 Conclusion

This paper is a specification of the general ideas starting in (Löwe and
Müller, 2008), explaining how a link can be made between the Dreyfus-
Dreyfus model of skills and our context-sensitive definition of mathematical
knowledge. It raises a large number of questions and answers few of them.
The Dreyfus-Dreyfus skill model is a situational model, not allowing for
objective characterizations of individuals in terms of levels, but rather de-
scribing typical behaviour of individuals at certain levels of expertise in
particular situations.

We have proposed that mathematical skill should be seen as a profes-
sional skill, largely delineated by the skills necessary for being a mathemat-
ical researcher, certainly a culturally and historical determined notion.12

For each given knowledge assessment context, we need to determine which
parts of the professional skill set are relevant. Certain parts of the skill set
(the ones we called peripheral, such as booking flights to conferences) will
almost certainly never of be relevance in mathematical knowledge claims;
but we doubt that there is a clear definition of which part of the professional
skill set forms the stable epistemological core.

12One of the consequences of this general perspective is that the set of skills that make
a good mathematician can change. Some researchers in automated deduction claim that
25 years from now, proofs will not be checked by referees anymore, but mathematicians
will write their proofs in codes checkable by automated theorem checkers. If they are
right (witness the December 2008 issue of the Notices of the American Mathematical
Society on formal proof for some indication of momentum gathering), it may become a
central mathematical skill to be versatile in HOL programming, as much as it is now a
central skill in mathematical physics to be able to use Mathematica or in statistics to
use R.
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We have also given examples of how the skill levels would be used in
research situations, but the largest part of the empirical project remains:
providing an empirical basis (similar to the empirical basis that Benner
provided for the area of nursing) that allows us to identify various levels
of expertise in research mathematicians. This is a long-term project and
will require a lot of observation of research mathematicians in the style of
Heintz (2000) and Greiffenhagen (2008). We hope that this paper can serve
as a stepping stone for these investigations to come.

To close this paper, we would like to mention the issue of “Mastery”. In
this paper, we have based the discussion on the five-level Dreyfus-Dreyfus
skill model, not on its extension that includes the level of Mastery (Dreyfus,
2001). Since mathematics is sometimes closer to an art than to a trade, and
issues such as creativity can play a vital role, extending the five-level model
by the additional level of Mastery seems particularly fitting for the case of
mathematics. In mathematics, as in music or art, we run into situations
that are difficult for the empirical researcher: there are very few people
who understand the most complicated proofs in mathematics; there are
very few people who can give us an insight into how the minds of the top-
researchers of a field work; some of the best mathematicians claim theorems
whose proofs are essentially uncheckable by anyone else.13 If we want to get
behind these epistemological conundra, a theory of Mastery could certainly
help, in the same sense that it helps to understand singular phenomena in
music and art.

However, we believe that currently, we first need to understand the levels
of expertise of the non-exceptional research mathematicians (as part of the
five-level skill model) before we move on to the more puzzling and exotic
realms of exceptional talent and skill.
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