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Abstract. The problem of merging several ontologies has important ap-
plications in the Semantic Web, medical ontology engineering, and other
domains where information from several distinct sources needs to be in-
tegrated in a coherent manner. We propose to treat ontology merging as
a problem of social choice, i.e., as a problem of aggregating the input of a
set of individuals into an adequate collective decision, and we show how
to apply the methodology of social choice theory in this new domain.
We do this for the case of ontologies that are modelled using description
logics. Specifically, we formulate a number of desirable properties for on-
tology merging procedures, we identify the incompatibility of some of
these properties, and we define and analyse several concrete procedures.

1 Introduction

Merging a number of ontologies originating from different sources is a pressing
problem in applications ranging from medical informatics to the Semantic Web
[13, 6]. We propose to add a new perspective to this problem by treating it as
a problem of social choice. Social choice theory (SCT) is a branch of economic
theory that deals with the design and analysis of mechanisms for aggregating
opinions of individual agents to arrive at a basis for a collective decision [7]. A
typical example is voting. In the context of ontology merging, we may think of the
provider of each ontology as a voter, and these voters try to “elect” a collective
ontology that adequately and fairly represents the information provided by each
of them.

As an example, imagine a possible Semantic Web scenario. Suppose several
sources provide different encyclopedia entries of the same word. Naturally, en-
cyclopedias might differ with respect to the information provided, the degree of
exhaustiveness attained, or the aspects chosen as relevant. Of course, there might
be conflicts about the views provided by the different sources. We might imag-
ine an agent who is searching the web for a given definition who is interested in
knowing an answer that best represents the class of encyclopedias he has access
to, rather than checking each source by itself. This problem is clearly related
to the problem of aggregating several points of view into a collective point of
view, where we do not have enough information to discriminate the reliability of
the various sources. With respect to such a scenario, the kind of axioms usually
discussed in SCT are relevant, because they provide precise definitions of the
idea of collective information.



Our aim in this paper is to make the idea of viewing ontology merging as a
problem of social choice precise by providing a suitable formal framework for its
analysis and to propose a number of simple procedures that fit this framework,
together with an initial analysis of some of their most fundamental properties.
We concentrate on high-level properties that are broadly related to “fairness”
and we restrict attention to what one might want to call “coarse” merging: the
ontology to be constructed will be a list of some of the formulas included in the
individual ontologies. We do not deal with “fine” merging, where we might also
want to construct entirely new formulas from those provided by the individuals.
We use ontologies expressed in a simple description logic [1] as an example,
although the choice of logic is in fact not critical to our proposal.

In the remainder of this paper we shall use the term ontology aggregation to
refer to our specific approach based on SCT, to distinguish it from the broader
and established research area of ontology merging.

What we propose is closely related to judgment aggregation (JA), a branch
of SCT that deals with the aggregation of individual judgments regarding the
truth or falsehood of a set of interrelated propositions modelled as formulas of
propositional logic [10]. The main points of interest of our proposal from the
viewpoint of the JA literature are the following:

(1) First, the agenda, i.e., the set of formulas which may or may not be accepted
by individuals, is not closed under complementation (which is a standard
assumption in JA).

(2) Second, we operate under an open world assumption, meaning that an agent’s
failure to explicitly include a formula in her ontology does not necessarily
mean that she rejects the truth of that formula.

(3) Third, description logical ontologies make a separation between terminologi-
cal and assertional knowledge, and this conceptual distinction can guide the
aggregation process (cf. the discussion of “premises” and “conclusions” in
the JA literature).

The problem of modelling ontology change is of course a very general and protean
task, dealing with a vast number of interrelated phenomena such as updating
after new information has arrived, revision, or debugging for inconsistencies [6].
Contributions to ontology merging range from sophisticated engineering solu-
tions (see e.g. [13]) to works in mathematical logic. Applications of AGM belief
revision to ontology merging and debugging have been discussed, for instance,
by [14]. However, even though the connections between SCT and belief merging
are clearly recognised in AI [8], this methodology seems not yet to have been
applied to ontology merging.

The remainder of the paper is organised as follows. In Section 2, we define
a formal framework for ontology aggregation in description logics. In Section 3,
we then define a number of axioms (i.e., desirable properties) that a specific
aggregation procedure may or may not satisfy. Finally, in Section 4, we present a
number of such procedures based on simple principles and discuss to what extent
they satisfy the axioms defined earlier. We conclude with a brief discussion of
possible directions for future work.



2 A Framework for Ontology Aggregation

We first define our framework for aggregating ontologies expressed in a descrip-
tion logic with a common alphabet. We begin by recalling some basic notation
and terminology from description logics.

2.1 Preliminaries: Description Logics

Description logics are languages for knowledge representation with a formal syn-
tax and semantics that balance expressive power as dictated by applications
with computational efficiency requirements. The best known and mostly widely
used basic description logic is ALC. Our approach is not tied to any particular
description logic, but for reasons of clarity of exposition we shall restrict atten-
tion to ALC. The following review of the basics of description logics and ALC is
fairly succinct; for full details we refer to the literature [1].

The language of ALC is based on an alphabet consisting of atomic concepts,
role names, and object names. The set of concept descriptions is generated by
the following grammar (where A represents atomic concepts and R role names):

C ::= A | ¬C | C u C | C t C | ∀R.C | ∃R.C

A TBox is a finite set of formulas of the form A v C and A ≡ C (where A is an
atomic concept and C a concept description). It is used to store terminological
knowledge regarding the relationships between concepts. An ABox is a finite set
of formulas of the form A(a) (“object a is an instance of concept A”) and R(a, b)
(“objects a and b stand to each other in the R-relation”).1 It is used to store
assertional knowledge regarding specific objects. The semantics of ALC is de-
fined in terms of interpretations that map each object name to an element of its
domain, each atomic concept to a subset of the domain, and each role name to a
binary relation on the domain. The truth of a formula in such an interpretation
is defined in the usual manner [1]. For instance, ∀R.C is true in a given interpre-
tation at point a if all elements related to a via (the interpretation of) R belong
to the (interpretation of) C. A set of (TBox and ABox) formulas is satisfiable if
there exists an interpretation in which they are all true. A consequence relation
|= is defined on top of this semantics in the standard way.

2.2 Ontology Aggregators

Let us now fix a particular alphabet. This induces a fixed finite set of ABox
formulas (but the set of TBox formulas is infinite). Let us fix a finite set L of
ALC formulas over this alphabet that includes all ABox formulas that can be

1 Note that limiting the ABox to “atomic” formulas is not a restriction, as A may be
given a complex definition in the TBox.



expressed.2 We call L the agenda and any set O ⊆ L an ontology.3 Any such
ontology O can be divided into a TBox OT and an ABox OA. We denote the set
of all those ontologies that are satisfiable by On(L). Also recall that the closure
of a set of formulas Φ ⊆ L is the set of all formulas that logically follow from
those in Φ. It is denoted by Cl(Φ) := {ϕ ∈ L | Φ |= ϕ}.

Let N = {1, . . . , n} be a finite set of agents (or individuals, or experts). Each
agent i ∈ N provides a satisfiable ontology Oi ∈ On(L). An ontology profile
O = (O1, . . . , On) ∈ On(L)N is a vector of such ontologies, one for each agent.
We write NO

ϕ := {i ∈ N | ϕ ∈ Oi} for the set of agents including ϕ in their
ontology under profile O.

The question we shall address in this paper is how to best aggregate an
ontology profile into a single collective ontology. That is, our object of study are
ontology aggregators.

Definition 1 (Ontology aggregators). An ontology aggregator is a function
F : On(L)N → 2L mapping any profile of satisfiable ontologies to an ontology.

Observe that, according to this definition, the ontology we obtain as the outcome
of an aggregation process need not be satisfiable. Of course, we will be partic-
ularly interested in ontology aggregators that are satisfiable, i.e., aggregators F
for which F (O1, . . . , On) is satisfiable whenever all Oi are.

2.3 Example

A simplistic example for an ontology aggregator is F with F (O) := O1∪· · ·∪On,
which simply returns the union of the individuals ontologies. Of course, this
will usually not be a good choice, as F clearly is not a satisfiable aggregator.
Another simple natural choice is the majority rule: accept a formula if and only
if a majority of the agents do. This can also lead to unsatisfiable outcomes, as we
can easily simulate the doctrinal paradox familiar from JA [10]. Suppose three
agents share a common TBox with two formulas:

C3 v C1 u C2 C4 v ¬C3

Furthermore, suppose the three ABoxes are as follows:

C1(a) C2(a) C3(a) C4(a)
Agent 1 yes yes yes no
Agent 2 yes no no yes
Agent 3 no yes no yes
Majority yes yes no yes

Even though all individual ontologies are satisfiable, the ontology obtained by
applying the majority rule is not.

2 The finite set of TBox formulas in L might be all TBox formulas of a certain max-
imum length or the union of all TBox formulas that a given population of agents
choose to include in their TBoxes.

3 In the literature, the term “ontology” is sometimes restricted to terminological
knowledge; here we use it in this broader sense.



3 Properties of Ontology Aggregators

We now define a number of properties that a given ontology aggregator may or
may not satisfy. Most of these properties relate, in one way or another, to the
“fairness” of the aggregation process and are directly inspired by properties of
voting rules, JA rules, and other types of aggregators commonly defined in SCT
[7, 10]. As in SCT, we refer to these properties as axioms.

3.1 Syntactic Axioms

We first define a number of axioms that are “syntactic” in the sense that they
relate to the formulas that occur explicitly in the ontologies of individual agents
or in the collective ontology. We will later contrast this with “semantic” ax-
ioms that also make reference to the formulas that can be inferred from those
ontologies.

The axiom of unanimity postulates then when all individual ontologies in-
clude ϕ, then so should the collective ontology. This clearly is a desirable property
in any kind of domain. An aggregator F is anonymous if it is symmetric wrt.
individual ontologies. This is appropriate if we have reasons to treat all agents
equally. In the social choice literature the axiom of anonymity is usually moti-
vated in terms of fairness considerations, which may or may not be relevant in
the context of ontology aggregation, depending on the application at hand. But
treating all agents equally is also justified, for instance, if we simply do not have
any information regarding the reliability of individual agents. F is independent if
inclusion of ϕ in the collective ontology only depends on the pattern of its inclu-
sion in the individual ontologies and is independent from which other formulas
may or may not have been included. Independence is a more demanding axiom
that the previous two; whether or not it should be imposed certainly is debat-
able. Finally, F is monotonic if additional support for a collectively accepted
formula will never lead to it being rejected. This, again, is a property that we
would usually (though maybe not always) like to see satisfied, certainly in cases
where it is reasonable to assume that every agent has at least some degree of
reliability. The four axioms introduced so far are formalised as follows:

– Unanimity: F is called unanimous if O1∩· · ·∩On ⊆ F (O) for every profile
O ∈ On(L)N .

– Anonymity: F is called anonymous if for any profile O ∈ On(L)N and any
permutation π : N → N we have that F (O1, . . . , On) = F (Oπ(1), . . . , Oπ(n)).

– Independence: F is called independent if for any ϕ ∈ L and profiles O,O′ ∈
On(L)N , we have that ϕ ∈ Oi ⇔ ϕ ∈ O′i for all i ∈ N implies ϕ ∈ F (O)⇔
ϕ ∈ F (O′).

– Monotonicity: F is called monotonic if for any i ∈ N , ϕ ∈ L, and O,O′ ∈
On(L)N with Oj=O

′
j for all j 6= i, we have that ϕ ∈ O′i \Oi and ϕ ∈ F (O)

imply ϕ ∈ F (O′).



A further important axiom from the literature is neutrality, which, intuitively,
requires all formulas to be treated symmetrically. In fact, there are a number of
possible interpretations of this notion, including these:

– Neutrality: F is called neutral if for any ϕ,ψ ∈ L and O ∈ On(L)N we
have that ϕ ∈ Oi ⇔ ψ ∈ Oi for all i ∈ N implies ϕ ∈ F (O)⇔ ψ ∈ F (O).

– Acceptance-Rejection Neutrality: F is called acceptance-rejection neu-
tral if for any ϕ ∈ L and O ∈ On(L)N we have that ϕ ∈ Oi ⇔ ψ 6∈ Oi for
all i ∈ N implies ϕ ∈ F (O)⇔ ψ 6∈ F (O).

The first notion of neutrality is the one that we shall adopt here. It says that if
two formulas enjoy the same pattern of acceptance—in the same profile—then
either both should be accepted or both should be rejected. The second axiom
is closer to the original neutrality axiom in voting theory proposed by [11]. It
says that if those patterns of acceptance are complementary, then exactly one
of the two formulas should be accepted. The reason we do not believe that
acceptance-rejection neutrality is appropriate for ontology aggregation is that it
makes the implicit assumption that not explicitly including a formula into one’s
knowledge base amounts to actively rejecting the validity of that formula. This
is an appropriate assumption in JA, but not here.4

We also propose three axioms that are specific to ontology aggregation and
that do not have a counterpart in standard SCT or JA. The first is groundedness:
a formula should only occur in the collective ontology if it is included in at least
one of the individual ontologies, i.e., if it is an element of O1 ∪ · · · ∪ On, the
support of a given profile (O1, . . . , On). In standard JA, due to the assumption
that agendas are closed under complementation (and that each agent will accept
either ϕ or its complement), groundedness is implied by unanimity (with consis-
tency) and does not require a separate axiom. The second axiom we propose is
exhaustiveness: it should not be possible to add any formula from the support to
the collective ontology without rendering the latter unsatisfiable. In other words,
we should “exhaust” the supply of formulas in the support when building the
collective ontology—as long as we do not create any inconsistencies this way.
This axiom is desirable if we assume that all information supplied by individuals
is (potentially) useful information and if we do not take an agent’s omission of
a particular formula in their ontology as a vote against that formula. That is,
exhaustiveness is closely related to the open world assumption. Our third axiom
is group closure, a weaker version of exhaustiveness: any formula in the support
that is logically entailed by the collective ontology should in fact be part of that
ontology. We now state these additional axioms formally:

– Groundedness: F is called grounded if F (O) ⊆ O1 ∪ · · · ∪ On for every
profile O ∈ On(L)N .

4 Dietrich and List [3] use the name “acceptance-rejection neutrality” for a slightly
different axiom: for any ϕ ∈ L and O,O′ ∈ On(L)N , we have that ϕ ∈ Oi ⇔ ψ 6∈ O′

i

for all i ∈ N implies ϕ ∈ F (O) ⇔ ψ 6∈ F (O′). Arguably, this is closer to an
(in)dependence axiom, as it makes reference to two profiles.



– Exhaustiveness: F is called exhaustive if there exists no satisfiable set
Φ ⊆ O1 ∪ · · · ∪On with F (O) ⊂ Φ for any profile O ∈ On(L)N .

– Group Closure: F is called group-closed if there exists no set Φ ⊆ O1 ∪
· · · ∪On with F (O) |= Φ and F (O) ⊂ Φ for any profile O ∈ On(L)N .

All of the above axioms are natural requirements, but we stress that we do not
impose them in general. Some may be more desirable than others for any given
problem domain (but all should certainly be considered).

We are now in a position to make our objection to the axiom of acceptance-
rejection neutrality more precise:

Proposition 1. Any ontology aggregator that satisfies acceptance-rejection neu-
trality violates exhaustiveness.

Proof. Any acceptance-rejection neutral aggregator cannot accept both ϕ and
ψ when ϕ ∈ Oi ⇔ ψ 6∈ Oi for all i ∈ N . But if each is accepted by at least
one agent, and if each is logically independent from all other formulas in the
support, then an exhaustive aggregator must accept them both. �

3.2 Semantic Axioms

For many applications, the agents providing individual ontologies will not only be
worried about the formulas included in the collective ontology but also about the
formulas that can be inferred from that ontology. This distinction has also been
discussed by Flouris et al. [5] in terms of implicitly and explicitly represented
knowledge. We therefore formulate semantic variants of the axioms above in
which we refer to the closures of ontologies rather than the ontologies themselves.
Note that the existing literature on JA only deals with what we have called
syntactic axioms above.

Here we only spell out the precise formulation of the semantic variants of the
aforementioned axioms for some of them. The remaining ones can be adapted
following the same pattern.

– Semantic Unanimity: F is called semantically unanimous if Cl(O1)∩· · ·∩
Cl(On) ⊆ Cl(F (O)) for every profile O ∈ On(L)N .

– Semantic Groundedness: F is called semantically grounded if Cl(F (O)) ⊆
Cl(O1) ∪ · · · ∪ Cl(On) for every O ∈ On(L)N .

– Semantic Exhaustiveness: F is called semantically exhaustive if there
exists no satisfiable set Φ ⊆ Cl(O1) ∪ · · · ∪ Cl(On) with Cl(F (O)) ⊂ Φ for
any O ∈ On(L)N .

That is, semantic unanimity, for instance, is satisfied if whenever each individual
ontology suffices to infer some formula ϕ, then ϕ should also be derivable from the
collective ontology. We believe that all of our semantic properties are generally
desirable properties and system designers should be interested in satisfying these
axioms—with one exception: semantic groundedness. This axiom postulates that
only formulas derivable from at least one individual ontology should be derivable.



This will rarely be a reasonable requirement. On the contrary, we would hope
that by combining the information provided by several agents we are able to
make new inferences that were not possible before aggregation. For comparison,
note that syntactic groundedness is perfectly reasonable, at least for what we
have called coarse merging above (for fine merging, we do want to be able to
construct new formulas).

An interesting feature of our model is that it allows for stating precisely the
relationship between implicitly and explicitly represented knowledge, namely by
investigating relationship between syntactic and the semantic axioms. So, what
is the relative strength of a syntactic axiom and its semantic variant? For una-
nimity, for instance, we can show that the syntactic version does not entail the
semantic version, nor vice versa. First, consider this example, showing that there
are syntactically unanimous aggregators that are not semantically unanimous:
Suppose three agents share a common TBox including the formulas C ≡ D and
D ≡ E, and suppose the ABox of the first agent includes only C(a), the sec-
ond only D(a), and the third only E(a). Now the majority rule will produce an
empty ABox. This violates semantic unanimity, as C(a) can be inferred from
all three individual ABoxes, but not from the collective ABox. However, the
majority rule clearly is (syntactically) unanimous. Second, a trivial counterex-
ample shows that semantically unanimous aggregators need not be syntactically
unanimous: Consider the aggregator F mapping any input to a fixed unsatisfi-
able ontology, such as {C ≡ D u ¬D,C(a)}. F is not syntactically unanimous,
but it is semantically unanimous (as we can infer anything from a contradictory
ontology). Still, intuitively, semantic unanimity is the (much) stronger property.
This intuition can be confirmed for “well-behaved” aggregators:

Proposition 2. Any satisfiable and exhaustive ontology aggregator that is se-
mantically unanimous is unanimous.

Proof. Take any F that is satisfiable, exhaustive, and semantically unanimous.
Now pick any formula ϕ and any profile O such that ϕ ∈ O1 ∩ · · · ∩ On. By
satisfiability of F , the outcome F (O) is satisfiable and so is its deductive closure.
For the sake of contradiction, assume ϕ 6∈ F (O). ϕ ∈ O1 ∩ · · · ∩ On implies
ϕ ∈ Cl(O1)∩· · ·∩Cl(On). Thus, by semantic unanimity, ϕ ∈ Cl(F (O)). That is,
there exists a formula in the support (namely ϕ) that could be added to F (O)
without rendering the set unsatisfiable. But this violates exhaustiveness, and we
are done. �

Similar connections between syntactic and semantic variants can be established
for the other axioms.

4 Procedures for Ontology Aggregation

We now define a number of simple procedures for ontology aggregation and
discuss some of their properties, including both the extent to which they can
guarantee that collective ontologies will be satisfiable and the extent to which



they satisfy some of the axioms introduced earlier. We stress that these pro-
cedures are not sophisticated enough to be employed for real-world ontology
aggregation. Rather, our intent is to provide a catalogue of basic procedures
that can serve as building blocks for constructing more sophisticated procedures
in the future. Fully understanding the properties of these basic procedures is a
necessary step towards designing more advanced procedures.

4.1 The Majority Rule

We have already introduced the majority rule informally. Formally, it is defined
as follows:

Definition 2 (Majority rule). The majority rule is the ontology aggregator
M with M(O) = {ϕ ∈ L | |NO

ϕ | > n
2 } for all O ∈ On(L)N .

We have seen that the majority rule can produce unsatisfiable collective ontolo-
gies. Following Endriss et al. [4], we call L safe for a given aggregator F if F (O)
is satisfiable for any profile O ∈ On(L)N . We will now identify necessary and
sufficient conditions for the safety of L under the majority rule.

Adapting the terminology from JA [10], we recall that an agenda L satisfies
the median property if and only if every unsatisfiable set X ⊆ L contains itself
an unsatisfiable set Y with cardinality at most 2. Now a simple reformulation of
a known result due to Nehring and Puppe shows that an agenda L is safe for the
majority rule if and only if it satisfies the median property [12, 10, 4]. This result
can be refined if we put restrictions on the range of profiles on L that we consider.
Description logical ontologies suggest a natural restriction of this kind due to
the division of knowledge into the TBox and the ABox. Suppose we restrict
attention to profiles with a common TBox: all agents agree on the TBox but
still need to aggregate their ABoxes. Fix such a TBox T . We say that L satisfies
the T -median property if and only if for every set of ABox formulas X ⊆ LA such
that T ∪X is unsatisfiable there exists a set Y ⊆ X with cardinality at most 2
such such T ∪ Y is also unsatisfiable. We obtain the following characterisation:

Proposition 3. The majority rule will return a satisfiable ontology for any pro-
file with a common TBox T if and only if the agenda L satisfies the T -median
property.

Proof. One direction is proved by the doctrinal paradox we have seen earlier.
For the other direction, assume the T -median property holds but M(O) is un-
satisfiable. By definition of the majority rule, the TBox of M(O) is exactly the
common TBox T . Thus, by the T -median property, there must be a set Y of
ABox formulas in M(O) with |Y | 6 2 such that T ∪ Y is unsatisfiable. First, Y
cannot be empty as that would mean that T is unsatisfiable, contradicting our
assumption that individual ontologies are satisfiable. Second, |Y | = 1 is also not
possible, as that would mean that at least one individual ontology must have
included that one formula in Y (together with T ), which would again contra-
dict our assumption that individual ontologies are satisfiable. So suppose that



|Y | = 2 with Y = {ϕ,ψ}. These formulas could only have been accepted by M
if |NO

ϕ | > n
2 and |NO

ψ | > n
2 . But this means that at least one agent must have

accepted both ϕ and ψ (and T ). This again contradicts the assumption that
individual ontologies are satisfiable. �

In fact, from a purely technical point of view, we can prove the same kind of result
for any division of the agenda into two disjoint sets: those formulas on which
there is certain agreement (here the TBox) on those on which there is not (here
the ABox). For any such division we can formulate a weakened version of the
median property (relative to the first) and prove a corresponding (strengthened)
characterisation theorem. In the context of ontology aggregation, we argue, such
a division is particularly natural.

4.2 Quota Rules

We can generalise the idea underlying the majority rule and accept a formula for
the collective ontology whenever the number of agents who do so meet a certain
quota. This gives rise to the family of quota rules:

Definition 3 (Quota rules). Let q ∈ [0, 1]. The quota rule with quota q is the
ontology aggregator Fq with Fq(O) = {ϕ ∈ L | |NO

ϕ | > q ·n} for all O ∈ On(L)N .

We could also generalise further and allow different quotas for different formulas;
Dietrich and List [2] make a distinction between general and uniform quota rules.
Observe that we obtain the majority procedure for q = 1

2 + ε for any positive
ε < 1

n . Also observe that for q 6 1
n the aggregator Fq simply returns the union

of all individual ontologies.
We have seen earlier that the majority rule violates semantic unanimity. In

fact, any quota rule does, unless we lower the quota so far as to obtain the trivial
union aggregator:

Proposition 4. A quota rule with quota q for n agents is semantically unani-
mous if and only if q 6 1

n .

Proof (sketch). First, it is easy to check that if the quota is at most 1
n , then

semantic unanimity holds. To see that the axiom does not hold as soon as q >
1
n , consider the following example. All agents agree on the same TBox {C1 ≡
C2, C2 ≡ C3, . . . , Cn−1 ≡ Cn} and, for each i ∈ N , the ABox of agent i consists of
the single formula Ci(a). Then C1(a) can be inferred from each agent’s ontology,
but it will not be accepted if q > 1

n . �

Quota-based rules are (syntactically) anonymous, neutral, independent and
monotonic [2]. We can strengthen Proposition 4 and show that anonymity and
independence together with semantic unanimity are sufficient to single out the
trivial union aggregator:

Proposition 5. If F is anonymous, independent and semantically unanimous,
then F (O) = O1 ∪ · · · ∪On for any O ∈ On(L)N .



Proof (sketch). By a standard argument [9, 4], if F is anonymous and indepen-
dent, then there exists a family of functions {gϕ : N → {0, 1}}ϕ∈L such that
ϕ ∈ F (O) if and only if gϕ(|{i ∈ N | ϕ ∈ Oi}|) = 1. That is, whether of not
ϕ is accepted only depends on the number of agents accepting ϕ. Now, using a
similar construction as in the proof of Proposition 4, we can show that seman-
tic unanimity forces us to accept a formula as soon as any positive number of
individual agents do. �

4.3 A Support-Based Procedure

The next aggregation procedure we introduce works as follows: we order the
formulas in terms of the number of agents supporting them; we then accept for-
mulas in decreasing order, but drop any formula that would render the ontology
constructed thus far unsatisfiable. To decide which of two formulas with the
same number of agents supporting it to try first, we introduce a priority rule
� mapping each profile O to a strict linear order �O on L such that ϕ �O ψ
implies |NO

ϕ | > |NO
ψ | for all ϕ,ψ ∈ L.

Definition 4 (Support-based procedure). Given a priority rule �, the
support-based procedure with � is the ontology aggregator SBP� mapping any
profile O ∈ On(L)N to SBP�(O) := Φ for the unique set Φ ⊆ L for which ϕ ∈ Φ
if and only if

(i) NO
ϕ 6= ∅ and

(ii) {ψ ∈ Φ | ψ �O ϕ} ∪ {ϕ} is satisfiable.

We can also define an irresolute aggregator that returns the set of all ontolo-
gies obtained by some choice of priority rule: SBP(O) := {O | SBP�(O) =
O for some �}.

The SBP clearly satisfies the axioms of anonymity, monotonicity, grounded-
ness (due to condition (i)), and exhaustiveness (due to condition (ii)). Neutrality
is violated by virtue of having to fix a priority rule �. Independence is also vio-
lated (because ϕ may cease to be accepted if a formula it is contradicting receives
additional support).

Several variants and generalisations of the SBP are possible and interesting.
For instance, we can replace � as defined above with any other function map-
ping each profile O to a linear order �O on L. Each choice of � corresponds
to a different greedy procedure that attempts to accept as many formulas as
possible without violating satisfiability in order of priority as specified by �ϕ.
For instance, a priority rule � for which ϕ �O ψ holds whenever NO

ϕ ⊇ NO
ψ

does but not necessarily whenever |NO
ϕ | > |NO

ψ | does will be appropriate to
aggregate ontologies from sources with different degrees of reliability (i.e., when
the violation of anonymity is acceptable). Another attractive variant would be
a semantic SBP, where we define � in terms of {i ∈ N | Oi |= ϕ} instead of
NO
ϕ . That is, under this procedure we accept formulas (supported by at least

one agent) in order of priority defined in terms of the number of agents who
were able to infer those formulas from their own ontologies (but not necessarily
included them explicitly).



4.4 A Distance-Based Procedure

In voting theory, many voting rules can be defined using a notion of distance.
The well-known Kemeny rule is a natural example [7]. Similar ideas have also
been used in belief merging [8].

We will now define an aggregation procedure that chooses from a class of
acceptable ontologies (namely the satisfiable ones) that ontology that minimises
the sum of the distances to the individual ontologies. A common choice is the
Hamming distance: the distance between two ontologies O and O′ is the number
of formulas that are included in one and only one of O and O′. In fact, the
Hamming distance is not appropriate here, because it gives the same weight to a
formula ϕ that an agent has stated but that will not be included in the collective
ontology as to a formula ψ that she has omitted but that will be included (when
in fact the former should be much worse; indeed, she may be entirely indifferent
to the latter). That is, distances stricto sensu, which are symmetric, are not
suitable for our purposes. With a slight abuse of terminology, we shall still call
the function d : (A,B) 7→ |{ϕ | ϕ ∈ A and ϕ /∈ B}| a distance.

Definition 5 (Distance-based procedure). The distance-based procedure is
the (irresolute) ontology aggregator DBP mapping any profile O ∈ On(L)N to
the following set of satisfiable ontologies:

DBP(O) = argminO∈On(L)
∑
i∈N

d(Oi, O)

To obtain a resolute aggregator, the DBP needs to be combined with a tie-
breaking rule, which will violate either anonymity or neutrality. It also violates
independence, because O does not range over all possible ontologies. On the other
hand, it is satisfiable by construction. Note that if we choose a tie-breaking rule
that selects a maximal set (wrt. set-inclusion), then the DBP will always return
a maximally satisfiable set and thus satisfy the axiom of exhaustiveness.

4.5 Two-Stage Procedures

Finally, we briefly sketch an approach for two-stage procedures. Depending on
the application, we may give priority to terminological knowledge over asser-
tional knowledge, or vice versa, and define aggregation procedures accordingly.
This idea is closely related to two classical procedures in JA, the premise-based
procedure, where individuals vote on the premises by majority and then draw the
conclusions, and the conclusion-based procedure, where each individual draws her
own conclusions and then votes on them by majority [9]. The problem with these
procedures is that we lack a convincing general approach for how to label a given
proposition as either a premise or a conclusion. There is a significant difference
in our case: when we aggregate ontologies, we have a clear separation between
two classes of formulas by definition, namely the TBox and the ABox, so we can
avoid the problem of splitting the agenda into premises and conclusions.



Definition 6 (Assertion-based procedures). An (irresolute) assertion-
based procedure maps each profile O to the set of ontologies obtained as follows:

(1) Choose an aggregator FA restricted to ABox formulas, and let FA(O) be the
outcome.

(2) Then the TBox is defined as follows:

FT (O) = argminO∈On(L)
∑
i∈N

d(FA(O) ∪OTi , O)

An assertion-based procedure stresses the information coming from the ABox.
A natural choice for the procedure used in the first step would be the majority
rule. In the second step we then select a TBox that is satisfiable in view of the
majority ABox and that minimises the cumulative distance to the individual
TBoxes. Observe that it is possible that the collective TBox obtained in this
manner is empty. An interesting variant of this approach may be to allow agents
to revise their TBoxes themselves after the collective ABox has been fixed.

Similarly, we may want to give priority to TBox information and first aggre-
gate TBoxes, then fix a TBox, and finally aggregate ABoxes.

5 Conclusion and Future Work

We have presented a framework for aggregating individual ontologies, consisting
of both a TBox and an ABox, inspired by social choice theory. We have dis-
cussed axioms that are closely related to well-known fairness conditions and we
have introduced new axioms defining a notion of efficiency for the aggregation of
ontologies. We have then presented relevant results concerning those axioms and
several ontology aggregation procedures we introduced, discussing how they bal-
ance fairness and efficiency. We have concentrated on coarse ontology merging,
since we wanted to model the aggregation of the information actually provided
by agents, as explicitly reflected by our groundedness axiom.

Concerning future work, we believe that the social choice approach provides
useful insights also for fine merging. For example, support-based procedures
and distance-based procedures can potentially be adapted to deal with concept
merging (i.e., the construction of new TBox definitions out of definitions stem-
ming from different individual ontologies), providing further qualitative desider-
ata that can be used to select among several possible ways of building concept
definitions. We also believe that our work can provide an interesting starting
point for future research in judgment aggregation and social choice theory. On-
tologies suggest a very rich notion of agent, since they allow for representing the
preferences an agent might have over a given set of alternatives together with
her information on such alternatives and her criteria for choosing. In this sense,
our approach to ontology aggregation can lead to a richer model of collective
information and choices.
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