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Abstract. Various methods exists in the literature for denoting the con-
figuration of a Turing Machine. A key difference is whether the head
position is indicated by some integer (mathematical representation) or is
specified by writing the machine state next to the scanned tape symbol
(intrinsic representation).
From a mathematical perspective this will make no difference. How-
ever, since Turing Machines are primarily used for proving undecidabil-
ity and/or hardness results these representations do matter. Based on a
number of applications we show that the intrinsic representation should
be preferred1.

1 The Turing Machine model

Given the nature of the meeting I expect that the dummies mentioned in my
title will not be present in the audience. Still I believe that it is useful to start
with a description of the Turing Machine model as we are supposed to know it.

The simplest version of the Turing machine is defined in mathematical terms
by a tuple M = 〈K,Σ,P, q0, qf , b,∆〉. The machine has only a single one-
dimensional tape, with tape alphabet Σ, and a set of internal states K. The
program P of the finite control consists of a set of quintuples 〈q, s, q′, s′,m〉 ∈
K × Σ × K × Σ × ∆. Here the set ∆ = {L, 0, R} denotes the set of possible
head moves : Left, stay put or Right . The meaning of this quintuple is: if in
state q the head is scanning symbol s then print symbol s′, perform move m and
proceed to state q′. The states q0 and qf are two special elements in K denoting
the initial and the final state respectively. The symbol b is a special tape symbol
called blank which represents the contents of a tape-cell which never has been
scanned by the head.

In this single tape model there is no special input or output tape. The input
is written on the unique tape in the initial configuration with the unique head
scanning the leftmost input symbol. When started the computation will perform
applicable instructions on the configuration up to the point in time where some
termination condition is satisfied (if such a configuration arises at all). Vari-
ous termination conditions are used in the literature. Absence of an applicable

1 to appear in G. Gotlob & J Stuller eds., Proceedings SOFSEM 2012, Springer LNCS



instruction is a possible termination condition, but one can also use specially
designed halting states to which one can ascribe a quality of being accepting or
rejection. Another possibility is to modify the instruction format allowing the
state from the machine to disappear, leaving a configuration consisting of tape
symbols only.

If one wants the single tape model to produce output one obtains such output
by an ad-hoc convention from the final configuration (for example, the output
consists of all non-blank tape symbols written to the left of the head in the final
configuration).

Note that if we denote configurations of the single tape machine in the format
$Σ∗KΣ∗$, with the state symbol written in front of the currently scanned tape
symbol, the transitions between two successive configurations are described by a
very simple context sensitive grammar. In this grammar one includes for example
for the instruction 〈q, s, q′, s′, R〉 the production rules (qst, s′q′t) for every t ∈ Σ,
together with the rule (qs$, s′q′b$) for the blank symbol b. Similar rules encode
the behaviour of left-moving instructions or instructions where the head doesn’t
move.

Aside from this basic model there are various more extended models con-
taining multiple tapes, multiple heads on a single tape, semi-infinite tapes, multi
dimensional tapes, or extensions of the instruction repertoire by allowing heads
on the same tape to jump to each other’s position in constant time. In the multi
tape version there can be special tapes reserved for the input or output, subject
to special restrictions like right moving heads only, no printing on input and no
rewriting of any previously printed symbol on the output.

Fact is that all these models are equivalent from the perspective of Theoret-
ical Computer Science; they all satisfy the Invariance Thesis stating that they
simulate each other with polynomial time and constant factor space overheads.
For a more detailed discussion of the issues involved I refer to my chapter in the
1990 Handbook of Theoretical Computer Science [24] .

Turing and his model

Given the large number of variations of the Turing Machine model, one might
consider to go back to the master himself, and accept the definition given in his
1936 paper [21] to be the official one. This approach, however, is not going to
work.

Turing’s original paper reads as the work of an engineer or programmer avant
la lettre, rather than that of a mathematician or logician. He starts with an
intuitive description and justification (which is expanded upon in a later section
of the paper). The model he describes is more general than the standard models
in the literature since he allows a finite sequence of atomic instructions rather
than a single atomic step to be the action provoked by a state-tape symbol
observation. The reader should observe here that for Turing a configuration
means such a state-tape symbol pair; what we call a configuration (also called
instantaneous description) is called a full configuration by Turing. In the paper
Turing proceeds by outlining a macro-language allowing for iterated instructions



in order to perform the required sweeps, copying actions, and searches for symbol
occurrences which are found in all explicit programs for this device.

The model as presented is actually a linearisation of a two track single tape
model where one track is used for the real data (digits 0 and 1) and the other
track is used for auxiliary symbols called markers.

With all his flexibility there is an extension generally accepted today which
is explicitly rejected: the use of nondeterminism. In the beginning of section 2
Turing considers ambiguous configurations where the machine has a choice but
such a choice should be made by an external operator. As argued elsewhere [17]
nondeterminism became an accepted notion only in the 1950-ies presumably in
order to obtain the desired characterisations in Automata Theory.

The more restricted model which allows atomic actions only is introduced
for the purpose of constructing the Universal Turing Machine. This construction
then opens the way for the famous results on the unsolvability of the Halting
problem and the undecidability of the Hilbert Calculus. These sections read
almost like a research plan outline, the details of which can be found in later
textbooks like Kleene [9]

Using the model

Why is the Turing Machine model so popular in Computer Science? It is not
because of its close resemblance to real computers, since the Random Access
Machine provides us with an idealised but more realistic model. It is also not
popular because it is easy to write programs for Turing Machines. If you have
ever taught a basic Theory class you will know that programming exercises on
a Turing machine are very easy to state, but turn out to be rather cumbersome
to solve, and boring to grade.

Instead I believe that the main reasons are that the model is very easy to
understand and yet it is a model with universal computational power. Consider-
ing its conceptual simplicity it is hard to believe at first sight that the model is
universal. But as it turns out it is not to hard to prove that (after having made
the right choice of representation) one can simulate real computations as given
by Kleene schemes of recursive functions, as well as alternative models of com-
putation. The hardest part of proving the equivalence of the standard universal
computational models after all is creating the coding mechanisms in Arithmetic
(using Gödel numberings) in order to show that recursive function schemes can
simulate symbol manipulating devices like Turing Machines.

There are a number of deep results on solving actual problems on Turing
Machines. My favourite examples are the Hennie-Stearns oblivious simulation of
multi tape machines on two tapes [6], Slisenko’s algorithms for recognizing palin-
dromes [16] and related string properties in real-time, and the the oblivious real-
time minimal space simulation of a finite collection of counters by Vitányi [27].
However the dominant use of the Turing Machine model in Theory are negative
results: Undecidability and/or Hardness results. Due to the undecidability of the
Halting problem we can derive that every formal system capable of coding Tur-
ing machine computations in such a way that termination of these computations



becomes expressible within the system will inherit this curse of undecidability.
Similarly any formalism which can express the fact that some Turing Machine
computation terminates within a given number of steps will have a satisfiability
or validity problem which can’t be solved in much less steps, provided this ex-
pression is sufficient succinct. It is in the context of the construction of this type
of reductions that the advantage of the combinatorial simplicity of the Turing
Machine model (particularly in its most simple form: the single tape version)
become prominent.

Reductions as sketched above are a main topic in Theoretical Computer Sci-
ence. They are used as a tool for measuring the complexity of various problems.
A problem A is reduced to a problem B if there exists some explicit, efficient and
sufficiently succinct procedure for transforming instances of problem A into one
(or several) instances of problem B such that solving the obtained B-instances
will provide an effective answer to the original A-instance. The standard use of
such a reduction is to show that problem B is difficult, by reducing some prob-
lem A to B where it is already known that A is difficult. But how do we know
already that problem A is hard? This knowledge arises from the fact that we
(or someone else) has previously reduced some other hard problem to A. This
chain of reductions must originate in some problem generally accepted to be
hard, and that role is played by termination problems on Turing Machines. It
is therefore useful to single out these reductions which start with problems on
Turing Machines; I will call them Master Reductions.

Representing Machine Configurations

In this presentation I will illustrate that, in order to obtain really efficient Master
Reductions, one more ingredient is required: the choice of the right representation
of Machine configurations.

A Turing Machine configuration is fully described by its three components:
the state of the machine, the complete contents of the machine tapes, and the
positions of the reading heads on the various tapes. Hence for a Mathemati-
cian it is evident how to represent this configuration: a tuple containing these
three components is all we need, so the representation will become an object like
< q, x1x2 . . . xk, i > with q denoting the state, x1x2 . . . xk denoting the tape con-
tents and i denoting the head position. However, we have already encountered
the more graphical representation which has become standard in our community.
It is a representation where the state is inserted in the string of tape symbols, pre-
ceding the scanned symbol, or alternatively, printed above or below the scanned
symbol (but this will make the printing and/or typesetting much harder). In our
example configuration the representation will become x1x2 . . . qxi . . . xk ; more-
over in order to make explicit where the used segment of the tape begins and
ends this representation frequently is extended using endmarkers, resulting in a
string like $x1x2 . . . qxi . . . xk$.

In the sequel I will call representations of the first kind Mathematical Repre-
sentations, whereas those of the second kind will be called Intrinsic Represen-
tations.



Given a sequence of successive configurations which occur during some com-
putation, one can represent this section of the computation simply by the se-
quence of their encodings. However, a much clearer representation is obtained
by writing these configurations below each other thus giving rise to the so called
time-space diagram representation of the computation. Both representations can
be used for this purpose.

If the mathematical representation is used it is evident what a proper allign-
ment of these configurations should be: the content of some tape square may
change, but the square itself maintains its identity. So each column in the di-
agram corresponds to a single fixed tape cell. To the left of the diagram one
writes the state symbol and an index of the position of the tape head, which
index also indicates the unique region in the diagram where during the transition
connecting the two configurations changes may occur.

If we use the intrinsic representation we face the problem that the state
symbol requires an additional position which moreover wanders through the
configuration during the computation. One can solve this problem by introducing
extra empty columns in the time-space diagram used only for storing the state
symbol if the head arrives at that position. The easiest solution is to combine
the state symbol and the scanned tape symbol into a pair which becomes a new
symbol in an extended alphabet. Now the tape cells remain within their column
in the diagram and yet the effect of the transition becomes entirely local.

There exist also versions of the time-space diagram where the state sym-
bol/head position remains in a fixed column, while the tape symbols are moving
around. This diagram illustrates a version of the machine where the head re-
mains fixed but the tape moves; something which is not very realistic given the
fact that the tape is supposed to be infinite.

In the literature one finds also some intermediate representation which I
will call the Semi-Intrinsic Representation. Here the state symbol is written
before the sequence of tape symbols, but the scanned tape cell is indicated by
some marker (an arrow preceding the scanned symbol, or the scanned symbol is
underlined).

I believe that the first time the advantage of the use of an intrinsic repre-
sentation was explicitly mentioned in the literature is in a simple lemma (2.14)
on page 38 in the thesis of Larry Stockmeyer [19]. Stockmeyer introduces for his
standard model (the nondeterministic multi tape version with input and output
tape) a version of the mathematical representation (page 20). Later he introduces
the single tape version as a ”technical useful model”, and for encoding configu-
rations of the latter model he uses a version of the intrinsic representation (page
34-35).

The lemma states that there exists some compatibility relation between
triplets of the symbols used in the time-space diagram such that one row repre-
sents a proper successor configuration of the row above it, if and only if all triplet
pairs formed by three successive symbols in the same position in the two rows be-



long to this compatibility relation2. So consider three successive symbols in some
row and the three symbols below it; if it is always the case that these triplets are
compatible then the entire diagram describes a segment of the computation of
our machine. Moreover, this compatibility relation is completely determined by
the program of our machine. Note that this locality condition does not hold for
the semi-intrinsic representation, since the state symbol information is located
at a distance.

I now can state the thesis I want to discuss in this presentation: For the
construction of Master Reductions the Intrinsic Representation is by far more
useful than the Mathematical Representation. Stated otherwise: if you are looking
for a Master reduction, use the intrinsic representation and life will be easy.

In the sequel of this paper we will illustrate the advantage of the intrinsic
representation in relation to the following topics. We first reconsider the relation
between machine computations and grammar derivations on which the funda-
mental characterisation of the Chomsky Hierarchy in basic Automata theory is
based. Next we consider the two most common versions of a master reduction
for the class NP: the Cook-Levin reduction to Satisfiability and the reduction
to tiling problems. We discuss how Stockmeyer used his locality lemma in or-
der to prove hardness results in the theory of (Extended) Regular Expressions.
The final part of the paper illustrates the importance of the intrinsic configura-
tion for proving that various models for Parallel Computation satisfy the Parallel
Computation Thesis which states that such models recognize in polynomial time
exactly what sequential models recognize in polynomial space. I hope that these
examples which seem harder if not impossible to perform using a mathematical
representation will convince the audience of the validity of my thesis.

2 The Chomsky Hierarchy and the corresponding
Automata

The core topic of an undergraduate course on Automata Theory is to provide a
proof of the machine based characterisations of the four levels of the Chomsky
Hierarchy: Regular Grammars vs. Finite Automata, Context Free Grammars
vs. Push Down Machines, Context Sensitive Grammars vs. Linear Bounded Au-
tomata and finally Unrestricted Grammars vs. Turing Machines.

Proving these characterisations (once the required mathematical concepts
have been introduced) requires a proof in two directions: one must show that
the machine can simulate the grammar, and conversely that the machine com-
putations can be simulated by grammar rules.

One may look therefore into the influence of the choice of representation
of machine configurations on the proofs of these characterisations. It is evident
that the intrinsic representation for this purpose is the right tool: individual
transitions are fully described by context sensitive rules involving no more than

2 note that Stockmeyer speaks in this lemma about a compatibility function, but in
his language functions are partial and multivalued so he intends this to be a relation



three symbols on the left hand side (two symbols if the state symbol is paired
with the scanned tape symbol - the second symbol is required for moving the
head).

Given this insight the characterization of the type-0 languages becomes al-
most trivial. Turing machines are symbol manipulators, so it is not difficult -
given some grammar - to write a Turing Machine program which starts out writ-
ing the start symbol, performing substitutions allowed by the grammar until the
resulting string appears. The Turing machine can erase (or insert) symbols by
shifting parts of the tape contents one square to the left (right). Conversely,
given the fact that the machine configurations are derived by means of context
sensitive rules, it is easy to construct a grammar which first generates an initial
configuration and subsequently simulates the Turing Machine computation to-
wards its accepting state. Since in this final configuration a substantial number
of auxiliary symbols still may remain written on the tape, a final cleanup sweep
where the undesired symbols are erased is required.

A similar proof will work for the context sensitive grammars vs. the linear
bounded automata. However the prohibition of erasing rules requires a careful
treatment of the boundary markers of the tape segment containing the input.
These boundary markers are required since the machine must be capable of
feeling the end of the tape, while on the other hand the machine is not allowed
to leave the input string. This problem can be solved by pairing the end marker
with the first(last) symbol and rewriting these marked symbols at the end of the
production.

A comparable verbatim simulation between the machine configurations and
the intermediate phrases of the derivation process is not possible for the two
remaining cases of the context free and regular languages. The main reason is
that in the grammar based world during the generation process only the initial
part of the generated word is present, whereas the complete word exists already
at the start of the machine computation.

One can however preserve the flavour of such a simulation. The problem is
resolved by removing from the machine configuration the part of the input word
which still has te be read in the future. The configuration consists of the part of
the input already read (the part of the output already generated) followed by a
machine state (nonterminal symbol). For the context free case this machine state
is paired with the topmost stack symbol and the remaining stack symbols are
concatenated in reverse order (paired up with the intermediate machine state
attained when that stack symbol is eventually removed).

As is well known the choice freedom on the grammar side results in the
machines becoming nondeterministic. This nondeterminism subsequently can be
eliminated in the regular grammar case and for the unrestricted Turing Ma-
chines. For the context free grammar case nondeterminism has been shown to
be required, whereas its necessity for the linear bounded machines is known as
the famous LBA problem which still is unsolved.

We conclude that the intrinsic representation is used in Automata Theory
as we know it today. This is not a formal proof that we can’t build a version



of Automata Theory based on the mathematical representation, but let me just
observe that I have never encountered such a treatment in the literature.

3 Master reductions for NP

The two master reductions which I will investigate in this section are the Cook-
Levin reduction to a version of the Satisfiability problem for Propositional Logic
and the reduction based on Tilings.

Propositional logic is a language which is extremely flexible if you want to
state properties of finite combinatorial structures, provided you are willing to
introduce a sufficiently large collection of propositional variables. In the Cook-
Levin reduction these variables encode the complete time-space diagram of an
accepting Turing machine computation on the given input. The reduction is
performed in such a way that it establishes a one-one correspondence between
accepting computations and satisfying assignments of these propositional vari-
ables.

Let some language L in NP be accepted by some nondeterministic Turing
Machine M in polynomial time. That means that for some input string x it holds
that x belongs to L if and only if we can find a time-space diagram of size T by T
which describes an accepting computation according to M where T is moreover
bounded by P (|x|) for some fixed polynomial P . The time-space diagram is
encoded using propositional variables p[i, j, k] expressing that at position < i, j >
in the diagram symbol σk is written.

The Cook-Levin formula is the conjunction of a collection of sub-formula’s
which express the required properties of the diagram like

1. At every position in the diagram some symbol is written
2. At every position in the diagram at most a single symbol is written
3. The diagram starts with the encoding of the initial configuration on the

input x
4. The diagram terminates in some accepting configuration (which can be

tweaked to be unique if one desires it to be so)
5. successive rows in the diagram are connected by legal transitions of the

machine M

If the intrinsic representation is used we know (by Stockmeyer’ lemma) that
the last condition can be expressed by enforcing the local compatibility condition
on all 3 by 2 sub-windows in the diagram. This can be expressed by writing some
clause excluding an illegal combination of symbols within such a window for all
illegal combinations and all proper positions of this window in the diagram (a
nice way of expressing this condition if one aims at obtaining a Cook-Levin
formula in Conjunctive Normal Form).

It is not difficult to design a Cook-Levin formula in case the Mathematical
Representation is used. In this case the state and the head position are denoted
outside the diagram but we can introduce additional variables s[i, l] expressing
at time i the machine is in state ql and h[i, j] expressing at time i the head is



located at position j. The Cook-Levin formula now will include additional clauses
expressing that at every time the state and head position are uniquely deter-
mined. The revised correctness conditions require that at some distance from the
head position nothing changes and that the changes in the direct neighbourhood
of the head positions conform to the given program. Details can be found in any
textbook containing a full proof of the Cook-Levin result.

The question becomes whether there is an advantage here of using the in-
trinsic representation. I claim there is; it is recognized by a simple estimation of
the size of the Cook-Levin formula’s obtained.

For both representations the number of variables required is O(T 2K) where
K is some constant equal to the number of symbols which may occur in the
time-space diagram. The number of additional state and head variables required
for the Mathematical representation are of order O(TK) and O(T 2) respectively,
and these numbers are small compared to the number of variables used for the
diagram anyhow.

However if we consider the size of the various sub-formula’s one observes
that the five conditions in case we use the intrinsic representation are of sizes
O(T 2K), O(T 2K2),O(T ), O(T ) and O(T 2K6) respectively. However, when using
the mathematical representation, the additional formula expressing the fact that
the head always resides at a single position turns out to be of size O(T 3) which
is a factor T larger than all the other contributions and becomes the dominant
term in the size estimate of the resulting formula in propositional logic(note that
K is determined by the program only and is independent of the length of the
input).

Hence the penalty for using the mathematical representation in the Cook-
Levin result is that the size of the formula produced by the reduction becomes cu-
bic rather than quadratic in the running time of the simulated machine. Yet, this
unnecessary overhead has not prevented well known authors, including Cook [2]
and Garey & Johnson [4] to use the mathematical representation for their proof
of the Cook-Levin Theorem.

Tiling reductions

The tiling reduction, used for NP-reductions originally by Levin [10] and Harry
Lewis [11, 12] is based on covering a region of the plane using square tiles which
are divided in four triangles each being coloured. Tiles are to be selected from
a fixed catalogue of tile types, and may not be rotated or reflected. When two
tiles are placed adjacently (horizontally or vertically) the colours along a shared
edge must be equal. Boundary conditions are enforced by fixing colours at the
boundary of the region to be tiled; alternatively one can assign a first move to
the devil by placing a single tile somewhere in the plane and demanding that
the tiling must be extended to the full region.

Tilings allow a direct encoding of a time-space diagram if the Intrinsic Repre-
sentation is used. The successive configurations appear encoded in colours along
horizontal lines of the tiled region. We need tile types which express that a tape
symbol is passed unchanged from one configuration to the next one. Other tile



types express directly the instructions of the program. A third class of tile types
allows some tape symbol to become scanned in the next configuration if the head
enters from an adjacent column. One must however restrict the Turing Machine
program in order to ensure that the machine when moving to some state q can’t
move in both directions, since this would allow the creation and/or annihilation
of phantom pairs of heads in the time-space diagram simulated by the tiling.

A more detailed description of the construction and its use can be found
in [22, 25]. The nice properties of the tiling reduction are that there is a com-
plete separation between the encoding of the Turing Machine Program (which
determines the catalogue of tile types) and the input (which is encoded in the
boundary condition). If we allow the boundary condition to be specified in some
more succinct form (I.E., if we can express the size of the boundary rather than
listing all edge segments) the reduction shows hardness for higher complexity
classes like PSPACE and NEXPTIME . Chlebus [3] has shown how alternat-
ing Turing Machines can be reduced to a two player game version of the Tiling
problem.

As mentioned the tiling reduction works nicely for the intrinsic represen-
tation. It is not to difficult to design a tiling simulation for the semi-intrinsic
representation (one uses signals transmitting the state information through a
horizontal line) but I never have seen a simulation starting from the mathemati-
cal representation, which would require some internal mechanism for performing
binary to unary conversion of numbers to start with.

Starting with the tiling reduction as a master reduction problems like Sat-
isfiability but also Knapsack like problems are easily reached by further reduc-
tions [14]. But also a Hilbert 10 reduction can be obtained [22, 25] 3.

To my opinion the Tiling reduction is more suitable for educational use com-
pared to the original Cook-Levin reduction. In my classes I have always used the
example of a simple Turing Machine which increments a binary counter, a pro-
gram of 6 instructions. The resulting catalogue of tile types contains 15 types. In
1992 my institute ordered the construction of a wooden demonstration model of
the resulting puzzle to be used for educational events. I believe that it represents
the most inefficient computer in the world which was ever built. After the move
of the institute the puzzle was saved with my archives, but it is locked away in
a storage room. The puzzle is available today in digital form on the web [26].

Note also that the combined reduction to Satisfiability using the tiling reduc-
tion as an intermediate step achieves the same O(T 2) overhead which is obtained
by the direct Cook-Levin reduction in case the intrinsic representation is used.

Our conclusion is that for NP-reductions the use of the Intrinsic Represen-
tation is not an absolute requirement, but the alternatives have some disadvan-
tages.

3 this reduction was originally constructed at a workshop in Paderborn in October
1982 in response and rebuttal to a presentation by J.P. Jones who presented with
Yuri Matijasevič an improved version of the reduction of Machine termination to
the solvability of exponential Diophantine Equations based on register machines,
and claimed that such a reduction based on Turing Machines was not possible.



4 Stockmeyer and his work on regular expressions

The standard theory of Regular Expressions deals with expressions generated
by a grammar based on three types of generators and three operations. The
generators are:

1. 0 denoting the empty language
2. λ denoting the singleton language containing only the empty word
3. σ for each σ in the alphabet Σ under consideration, denoting the singleton

language containing the single letter word σ.

The operators are the + denoting union of languages, . for concatenation of
languages and ∗ denoting the Kleene star iteration operation; the ∗ operator is
monadic, whereas the + and . are binary operators.

Beyond this standard language of regular expressions a number of additional
operators are considered by Stockmeyer: 2 , denoting Squaring, I.E., concate-
nation of a language with itself, ∩ denoting intersection and ∼ denoting com-
plementation. It is known that the family of regular languages is closed under
these operators, hence, in principle, regular expressions involving such operators
can be rewritten into standard expressions. However there is no direct algebraic
method for doing so. The detour by construction of the corresponding automata
and deriving the regular expressions corresponding to these automata will pro-
duce unmanageable large expressions.

In chapter 4 of his thesis (the largest chapter in this book) Stockmeyer inves-
tigates how these additional operators affect the complexity of decision problems
on generalized Regular Expressions. Decision problems considered are:

1. NEC(φ,Σ) : does the expression φ denote the set of all possible words over
the alphabet Σ?

2. EQ(φ, ψ), INEC(φ, ψ) : do the two expressions denote the same (different)
languages?

Evidently these problems are inter-reducible, provided operators like comple-
mentation and intersection are available, but since also languages without these
operators are considered we need them all.

The hardness results in this chapter are obtained by a master reduction.
Consider a rectangular time-space diagram of an accepting computation of some
nondeterministic single tape Turing Machine. The correctness of such a diagram
is expressed by the conjunction of a number of conditions expressing syntactic
well-formedness (consisting of the right sort of symbols in the right positions),
correct start (with the intended initial configuration on the input word), correct
termination (in some final accepting configuration), and correct computation
(enforced by application of Stockmeyer’s 3 by 2 window compatibility check
throughout the diagram).

The diagram is a two dimensional object, but it can be linearised into a
string by printing all rows in the diagram behind each other, separated by a
suitable extra marker. So one might look for some generalized regular expression



describing precisely those strings which encode a correct time-space diagram.
Note that we now must enforce the additional condition that the segments in
the linearised diagram all should have the same length.

We need our expression to encode the conjunction of all the conditions which
must be enforced. This is hard to express if we don’t have the operator of inter-
section in our language. Therefore Stockmeyer migrates to the complementary
world where he constructs an expression which intends to denote all strings
which fail to encode a correct time-state diagram. The expression becomes a
Syllabus Errorum stating all possible sources of an error. This explains the use
of the decision problem NEC in his investigations: if the accepting time-space
diagram exists there exists an error-free string, and therefore the described lan-
guage will have a non-empty complement. Otherwise all strings are erroneous
and the expression will be equivalent to the language Σ∗.

The hardest error type to be described is a violation of the 3 by 2 window
compatibility relation. In the time-space diagram the symbols are written closely
together but in the linearisation they are separated by a substring whose length is
equal to the width of the diagram (up to a small additive constant). This explains
the importance of yardsticks: sub-expressions of the form ΣK for large values of
K. Since the width of the time-space diagram equals the space consumed by the
simulated computation it becomes relevant to invent succinct representations for
these yardsticks: the more succinct such a representation becomes the higher the
(nondeterministic) spacebound for which a hardness proof is obtained.

If we have no additional operators the size of the expression for a yardstick
is linear in K. Thus hardness is obtained for linear bounded automata. Please
keep in mind that at the time the thesis was written the Immerman-Szelepsényi
result [7, 20] yielding closure under complementation of nondeterministic space
bounded complexity classes had not yet been proven, whence Stockmeyer had
to navigate carefully around issues involving complementation. Today we under-
stand his result as a proof of hardness for PSPACE.

Adding the operation 2 of squaring reduces the size of the expression for a
yardstick to (O(log(K)), and hardness for NEXPSPACE is obtained (by Savitch’
result [15] NEXPSPACE = EXPSPACE). Removing the ∗ operator eliminates
the possibility to talk about arbitrary long computations, and therefore hardness
results are obtained for nondeterministic time classes (NP respectively NEXP-
TIME depending on whether squaring is available or not). The hardest part of
the theory is section 4.2 where the impact of the complementation operator is
shown: each increase by one in the complementation depth of the regular ex-
pressions allows for an exponential increase of the succinctness of the yardstick
expression. Therefore the hardness results are raised to non-elementary space
and/or time bounded complexity classes.

From our perspective the key ingredient in all constructions is the encoding
of a compatibility violation in the diagram by an expression listing the violating
pair connected by a yardstick expression. This simulation is made possible by
the use of the intrinsic representation and it must be hard if not impossible to
obtain a similar construction based on the mathematical representation.



5 The impact of the intrinsic representation on machine
models in the Second Machine Class

The Second Machine Class [23, 24] consists of those models for machines sup-
porting some form of parallel processing for which the Parallel Computation
Thesis, expressed by the equalities //PTIME = //NPTIME = PSPACE is true:
what the parallel model can do in polynomial time, deterministically or nonde-
terministically, is what can be achieved in the sequential world in Polynomial
Space.

Machine models of this nature were investigated in the 1970-ies. There are
various parallel versions of the Random Access Machines, and versions of Turing
Machines supporting parallel branching. More surprising was the discovery that
some sequential models which may operate on very large data objects also are
second machine class members: typical examples are the Vector Machines intro-
duced by Pratt and Stockmeyer [13] and the Random Access machine extended
with multiplicative instructions described by Hartmanis and Simon [5]. Also the
Alternating Turing Machine [1] belongs to this class, be it that there exists no
nondeterministic version of this device.

Proving that some device indeed satisfies the above equalities uses some
methods which by now have been well understood. The inclusion //NPTIME
⊆ PSPACE is shown by guessing an accepting computation trace of the paral-
lel device, and validating this trace using some recursive procedure which will
evaluate the state of the elementary hardware components of this device at any
time during the computation. A key argument is that the parameters of such a
recursive procedure can be written down in polynomial space.

Such a proof can be given only when the parallel model is reasonable: it can
activate in polynomial time an exponential amount of hardware (but not more)
and the nondeterminism must be Uniform (the same choices are made on all
parallel paths in the computation).

For the inclusion PSPACE⊆ //PTIME nowadays various strategies are avial-
able: one can show that the parallel device can simulate an Alternating machine,
or one can construct a Polynomial Time algorithm for the PSPACE complete
problem QBF [18]. However in the mid 1970-ies the Alternating machine had
not yet been invented and nobody had proposed the idea of exploiting the QBF
problem. The early proofs were all based on a master simulation of a PSPACE
bounded Turing machine on the parallel machine.

The idea used in this master simulation is the reduction of the existence of an
accepting computation to a connectivity problem on a huge (exponentially large)
Computation graph. This graph has all possible configurations of the Turing
Machine on the allowed amount of space as nodes, and the transitions between
these configurations as edges. The initial configuration in the graph is just some
special node, and so is the final accepting configuration (which may be assumed
to be unique). Computations become paths in this computation graph. Hence
the existence of an accepting computation is reduced to the existence of a path
connecting the start node with the target node.



This connectivity problem can be solved by computing the transitive clo-
sure of the relation given by the edges (transitions). A convenient algorithm for
computing this transitive closure uses the mathematical representation of the
Adjacency Matrix : row and column indices represent nodes (configurations) and
the presence of an edge from node i to node j is denoted by assigning the value
1 to matrix element at position < i, j > . The diagonal entries in the matrix
obtain also value 1 (every node is reachable from itself by a path of length 0).

By iteratively squaring this matrix (over the Boolean algebra where 1.1 =
1 + 1 = 1) one determines which pairs of nodes in the graph are connected:
after t iterations all connections by some path of length ≤ 2t are found. Since
cycles don’t contribute to connections and the number of the nodes is bounded
by 2O(spacebound) a polynomial number of iterations is sufficient. At the end of
the computation the answer is found in the desired matrix element; the rest of
the matrix is discarded.

The details of this simulation depend on the precise model considered. Generic
tasks are the construction of some object representing a list of all integers in the
range 0 . . . 2M for some large value of M . The entries in this list represent all
possible configurations of the machine. Think of the numbers as being written
down as binary numbers and consider the resulting bit-string to be the repre-
sentation in binary of the string of symbols in the configuration. There is no
guarantee that these numbers (digit strings) satisfy reasonably syntactic condi-
tions like not containing more than one state symbol. However, getting rid of
such junk configurations is not needed; they can’t do any harm. In fact removing
them may be harmful in the sequel of the proof, because it would create gaps in
the sequence of configurations at positions which are hard to predict.

The next task is to construct the Cartesian product of this list with itself,
yielding an object storing all configuration pairs.

Given this object we must determine for all these pairs of configurations
whether they are equal or connected by a transition or not. Moreover this has to
be done in parallel, given the exponential size of this object. This is precisely the
point where it is crucial that these numbers are understood to encode configu-
rations in the intrinsic representation. Equality is easy to test but the test for a
transition requires that in the binary representation the digit block is identified
where the two strings are different. This block represents the three symbols of
Stockmeyer’ 3 by 2 window. The contents of these blocks in the two configura-
tions must obey the compatibility relation. Moreover, outside these blocks the
two configurations must be identical.

Once this test has been performed the Adjacency matrix is obtained. The
computation then can proceed by implementing the iterated multiplication of
the matrix with itself. This is yet another complex task, but it is less model
dependent.

The details of the above computation are different for parallel versions of
the Turing Machine (which is symbol manipulation oriented) and the Parallel
Random Access devices. For the RAM based models one must invoke some
mechanism which will allow an efficient method for converting numbers into bit-



strings. Inspection of the constructions proposed in the literature shows that
for all RAM based parallel models some form of string manipulation or some
mildly multiplicative operation like division by 2 is inserted in the instruction
code. Such instructions are not available in the basic RAM model - the result by
Hartmanis and Simon indicate that you can’t add to much multiplicative power
to the RAM without creating a model which is to powerful.

Our conclusion is that in these early simulations the fact that the numbers
encode configurations in the intrinsic representation is a key ingredient for the
correctness of the proof. It seems hard, if not impossible to find such a construc-
tion if the Mathematical representation is used.

6 Conclusion - is there a dragon out there ??

I hope that the examples in the preceding sections have convinced the reader that
the use of the Intrinsic Representation of Turing Machine configurations has been
the enabler for several fundamental results in Theoretical Computer Science.
The question remains whether this observation should affect our behaviour as
theoreticians. Stated otherwise: do we need to start a Crusade against the use
of the Mathematical Representation? Is there a dragon out there which should
be slayed?

While preparing this presentation I have searched the leftovers of what in the
past used to be a well equipped Mathematical Library in my institute4. Inspec-
tion of some 25 textbooks on introduction in Computer Science or Computation
Theory yielded the following results: Many authors give no formal definition of
a configuration but informally they present something resembling the intrinsic
or a semi-intrinsic representation. This also holds for the Wikipaedia page on
Turing machines. I found a formal definition of the Mathematical representation
for single tape machines only in the 1969 edition of Hopcroft and Ullman, and in
the 1981 edition of Lewis and Papadimitriou. The later authors however imme-
diately continue with a semi-intrinsic representation as an illustrative tool - no
wonder, since in this textbook a master reduction based on tilings is presented.
Other authors give the Mathematical representation for multi tape machines but
move towards the intrinsic representation for the single tape model, and that is
the model used in all the hardness and undecidability proofs. Turing himself uses
an Intrinsic representation by way of illustration. So do Kleene and Davis.

Evidently in practice our colleagues have throughout the last 70 years fol-
lowed their intuition and have made the right choice. But except for Stockmeyer
I have not found anybody who explicitly has looked into the advantages of this
decision.

The conclusion is that we can continue and live and work in peace. Dragons
remain a rare species which should be protected rather than persecuted.

4 victim of the curse of digitalisation
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