
Reduction of Economic Inequality
in Combinatorial Domains

Ulle Endriss
Institute for Logic, Language and Computation

University of Amsterdam
ulle.endriss@uva.nl

ABSTRACT
Criteria for measuring economic inequality, such as the
Lorenz curve and the Gini index, are widely used in the
social sciences but have hardly been explored in Multia-
gent Systems, even though the significance of other concepts
from fair division is widely accepted in the field. In a de-
parture from the standard model used in Economics, we
apply inequality criteria to allocation problems with indi-
visible goods, i.e., to the kind of problem typically analysed
in Multiagent Systems. This gives rise to the combinato-
rial optimisation problem of computing an allocation that
reduces inequality with respect to an initial allocation (and
the closely related problem of minimising inequality), for a
chosen inequality measure. We define this problem, we dis-
cuss the computational complexity of various aspects of it,
and we formulate a generic approach to designing modular
algorithms for solving it using integer programming.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent Systems; J.4 [Social and Behavioral
Sciences]: Economics

General Terms
Theory, Economics

Keywords
Fair Division, Inequality, Computational Complexity

1. INTRODUCTION
Many applications studied in Artificial Intelligence involve
the design of mechanisms for dividing resources amongst a
group of agents. One important criterion for assessing the
fairness of a mechanism is the level of economic equality
it can ensure. If it produces outcomes under which every
agent experiences the same level of utility, then we speak
of perfect equality. In all other cases, allocations exhibit
some level of inequality, which raises the question of how to
measure inequality and then how to reduce or minimise it.

Appears in: Proceedings of the 12th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2013), Ito, Jonker, Gini, and Shehory (eds.), May,
6–10, 2013, Saint Paul, Minnesota, USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Inequality criteria have been widely used in the social sci-
ences, ranging from Economics [32], to Geography [23], to
Public Health [17]. In contrast to this, even though some
recent work in Multiagent Systems (as well as Artificial Intel-
ligence and Electronic Commerce) has emphasised the im-
portance of economic fairness (see, e.g., [6, 12, 22]), con-
cepts specifically pertaining to inequality have largely been
neglected in these disciplines. As argued in detail by Cheva-
leyre et al. [8], given the broad spectrum of agent-based
applications, we need to be able to use different types of
system objectives, including those that make explicit refer-
ence to fairness. For instance, a user may only agree to let
a software agent negotiate on her behalf in a given system,
if the designer of that system can provide guarantees re-
garding bounds on inequality the participating agents may
be subjected to. Here we want to take a first step towards
closing this gap by developing the foundations of inequality
reduction in a way that is relevant to Multiagent Systems,
focussing on computational and representational issues.

While the theoretical literature on inequality has dealt
with axiomatic characterisations and the practical literature
has calculated and interpreted inequality indices for various
types of data, here we formulate inequality reduction as a
combinatorial optimisation problem: Given a set of goods
and the preferences of a group agents, how can we com-
pute an allocation of goods to agents that reduces, or even
minimises, inequality? We formulate the relevant problems,
discuss their complexity, and provide algorithms for solving
them. Along the way, we pay special attention to the choice
of language for representing agent preferences.

In Section 2 we introduce our model of fair division, in-
cluding fairness criteria and preference representation lan-
guages. In terms of fairness criteria, we cover the Pigou-
Dalton principle, the Lorenz curve, and the most impor-
tant inequality indices, namely the Gini index, the Robin
Hood index, and the family of Atkinson indices. In terms of
languages, we use the XOR-language and the OR-language
familiar from combinatorial auctions, as well as languages
based on weighted propositional formulas. Our complexity
results are given in Section 3, while Section 4 shows how to
formlate modular algorithms based on integer programming.
Section 5 discusses related work and Section 6 concludes.

2. THE MODEL
In this section we introduce the formal model for fair division
we shall be working with, drawing on both the literature on
measuring economic inequality [2, 36, 25] and the literature
on preference representation (see, e.g., [16]).



2.1 Allocation of Indivisible Goods
Let N = {1, . . . , n} be a finite set of agents and let G be a
finite set of goods. An allocation is a function A : N → 2G

with A(i) ∩ A(j) = ∅ for any i 6= j, mapping agents to
the bundles of goods they receive. That is, the goods are
indivisible (each good is to be allocated to a single agent in
its entirety) and the use of a good cannot be shared amongst
more than one agent. If A(1) ∪ · · · ∪ A(n) = N , then A is
called a complete allocation; otherwise it is called a partial
allocation. Below, we shall use the letters A, A′ for complete
and P for partial allocations. When an allocation is not
specifically referred to as being partial, then it is understood
to be complete. We say that the allocation A extends the
partial allocation P if A(i) ⊇ P (i) for all agents i ∈ N .

Each agent i ∈ N is equipped with a utility function
ui : 2G → Q, mapping any possible bundle she might
receive to the value she assigns to it. We shall restrict
attention to utility functions u that are normalised (that
is, u(∅) = 0) and monotonic (that is, X ⊆ Y implies
u(X) 6 u(Y )). A utility function u is called additive in
case u(X) =

∑
x∈X u({x}) for every bundle X ⊆ G—note

that this is an assumption that we usually will not make.
We use ui(A) as a shorthand for ui(A(i)). Every alloca-

tion A induces a utility vector u(A) = (u1(A), . . . , un(A)) ∈
Qn as well as an ordered utility vector u∗(A) ∈ Qn, which is
obtained from u(A) by rearranging its elements in ascend-
ing order. That is, while u1(A) is the utility experienced by
the first agent under allocation A, u∗1(A) is the utility of the
poorest agent for the same allocation.

A scenario is a triple 〈N ,G,U〉, where N is a set of agents,
G is a set of goods, and U is a vector of utility functions over
subsets of G, one for each agent in N .

The model described here is widely used in Computer Sci-
ence, e.g., for combinatorial auctions [9] and other forms of
multiagent resource allocation [8], except that there is no
monetary component here. An important difference between
this model and the model used in the Welfare Economics lit-
erature, which deals with income distributions rather than
the allocation of indivisible goods [25], is that in our case
the space of feasible utility vectors is “sparse”. For example,
given an allocation that induces the utility vector (3, 32, 4),
we cannot assume that it will necessarily be possible to find
an allocation with utilities (13, 13, 13). In other words, util-
ity is not transferable. As we shall see, this means that some
of the results from the literature do not apply to our model.

2.2 Measuring Inequality
We now want to compare alternative allocations in terms of
the inequality exhibited by the utility vectors they generate.
For example, which should we rate as being more equal,
(1, 2, 8, 9) or (1, 3, 5, 11)? When there are just two agents, it
is clear what inequality reduction means: the difference in
utility between the two agents should reduce. If we combine
this with a weak efficiency requirement, namely that average
utility should not be diminished in the process, then we
obtain the concept of a Pigou-Dalton transfer [10, 30].

Definition 1. A move from allocation A to allocation A′

is called a Pigou-Dalton transfer if there are two agents
i, j ∈ N such that the following conditions are satisfied:

(i) A(k) = A′(k) for all k ∈ N \{i, j};
(ii) |ui(A)− uj(A)| > |ui(A′)− uj(A′)|;

(iii) ui(A) + uj(A) 6 ui(A
′) + uj(A

′).

That is, only i and j are affected, inequality is reduced, and
total utility is not diminished. The Pigou-Dalton principle
says that any Pigou-Dalton transfer should be considered as
reducing (or at least not increasing) inequality.1

A useful representation of the distribution of wealth in a
given society is the Lorenz curve [24]. It charts k against
the cumulative utility of the k poorest agents.

Definition 2. For any allocation A and any agent
k ∈ N , let Lk(A) :=

∑k
i=1 u

∗
i (A). Then the vector

(L1(A), . . . , Ln(A)) is called the Lorenz curve of A.

That is, Lk(A) is the sum of the utilities of the k poorest
agents under A. L1(A) is known as the egalitarian social
welfare of A and Ln(A) is the utilitarian social welfare of
A [25]. The mean utility of A is µ(A) := Ln(A)/n. Intu-
itively, the closer the Lorenz curve is to the line of perfect
equality k 7→ k · µ(A), the less inequality there is in society.
We write L(A) < L(A′) if Lk(A) 6 Lk(A′) for all agents
k ∈ N and that inequality is strict in at least one case. If
L(A) < L(A′), then allocation A is said to be Lorenz dom-
inated by A′; and a move from A to A′ is called a Lorenz
improvement. An allocation that is not Lorenz dominated
by any other allocation is called Lorenz optimal.

Analogously, allocation A is said to be Pareto dominated
by A′ if no agent is worse off in A′ and at least one of them is
better off (i.e., if ui(A) 6 ui(A

′) for all agents i and ui(A) <
ui(A

′) for at least one of them). Pareto improvements and
Pareto optimal allocations are defined accordingly. Pareto
optimality encodes a very basic efficiency requirement.

Clearly, Pigou-Dalton transfers and Pareto improvements
are also Lorenz improvements. In the setting with transfer-
able utility, furthermore every Lorenz improvement can be
implemented as a sequence of Pigou-Dalton transfers and
Pareto improvements [25, Lemma 2.3] While the same is
not true in the context of allocating indivisible goods [12,
Section 6.2], this connection nevertheless underlines the sig-
nificance of the Lorenz curve for judging the quality of allo-
cations when both inequality aversion and efficiency are at
stake. Yet, Lorenz domination only offers a partial ranking
of allocations; for allocations with intersecting Lorenz curves
we need additional criteria to differentiate between them.

An inequality index is a function mapping allocations (or,
equivalently: utility vectors) to the interval [0, 1], with 0
representing perfect equality and 1 representing complete in-
equality. The Gini index is the most widely used inequality
index [14]. It is defined as the ratio of (1) the area between
the line of perfect equality and the Lorenz curve and (2) the
full area below the line of perfect equality.

Definition 3. The Gini index of allocation A is
defined as follows:

G(A) :=

∑n
k=1 k · µ(A)− Lk(A)∑n

k=1 k · µ(A)

Another widely used inequality index is the maximum rela-
tive mean deviation, also known as the Robin Hood index. It
is attractive due to its simplicity and has been re-invented
a number of times [18]. It is defined as the ratio of (1) the
maximum distance between the line of perfect equality and
the Lorenz curve and (2) the mean utility.
1In the standard definition, condition (iii) requires equality
of total utility [25]. Our definition maintains the spirit of
the original Pigou-Dalton principle and is more appropriate
for a framework without transferable utility.



Definition 4. The Robin Hood index of allocation A
is defined as follows:

H(A) :=
1

µ(A)
·max{k · µ(A)− Lk(A) | k ∈ N}

Another interpretation of the Robin Hood index is this: Call
an agent rich if her utility exceeds the mean utility, and
poor otherwise. Then the Robin Hood index is equal to the
proportion of total utility we need to move from rich to poor
agents to make the two groups equally well off on average.

While the Gini and the Robin Hood index are widely used
and based on plausible geometric properties of the Lorenz
curve, they do not directly reflect any normative value judge-
ments. Atkinson [2] pioneered the design of inequality in-
dices in terms of social welfare orderings, for which axioma-
tisations reflecting such normative judgments are available.
A social welfare ordering (SWO) is a complete order de-
clared on the space of utility vectors, and thereby also on
the set of allocations [25]. Examples include the utilitarian
SWO (ranking allocations in terms of the sum of utilities
they generate), the egalitarian SWO (ranking them in terms
of minimum utility), and the Nash SWO (ranking them in
terms of the product of utilities).

Let R be a SWO. Then for every allocation A there exists
a value ũR(A) ∈ Q such that R is indifferent between the
vectors (ũR(A), . . . , ũR(A)) and (u1(A), . . . , un(A)). That
is, if we want to create a situation where all agents enjoy
identical levels of utility and that is socially as desirable as
A, then we have to give utility ũR(A) to each agent.

Definition 5. The Atkinson index (based on the social
welfare ordering R) of allocation A is defined as follows:

IR(A) := 1− ũR(A)

µ(A)

Under some technical restrictions (see, e.g., [36]), we can
assume 0 6 ũR(A) 6 µ(A), i.e., IR is a well-formed in-
equality index. For example, for the Nash SWO we obtain

INash(A) = 1 −
n
√∏

i∈N ui(A)

µ(A)
and for the egalitarian SWO

we get Iegal(A) = 1 − mini∈N ui(A)

µ(A)
. The utilitarian SWO is

not a good choice if we are interested in measuring inequal-

ity, as we get Iutil(A) = 1 − µ(A)
µ(A)

= 0 for any A. That is,

the utilitarian SWO is completely insensitive to inequality.

2.3 Preference Representation Languages
Before we can start thinking about algorithms for reducing
inequality we have to decide how to represent the utility
functions of the agents. So far we have only said that a util-
ity function is a function ui : 2G → Q. We could represent
ui explicitly as a list of pairs of bundles B ⊆ G and values
ui(B), but that would be highly wasteful.

Instead we will work with a number of well-known prefer-
ence representation languages (see, e.g., [8, 26, 39]):

• XOR-language: An atomic bid is a pair 〈S,w〉, where
S ⊆ G and w ∈ Q+. An XOR-bid is an expression of
the form 〈S1, w1〉xor · · · xor 〈Sm, wm〉. It defines the
utility function u : X 7→ max{wi | X ⊇ Si}.
• OR-language: An OR-bid is a combination of atomic

bids 〈S1, w1〉or · · · or 〈Sm, wm〉. It defines the func-
tion u : X 7→ maxX1]···]Xm⊆X

∑
{{wi | Xi ⊇ Si}}.2

2We use X ] Y to denote the disjoint union of two sets and
{{· · ·}} for multisets.

• Identify G with a set of propositional variables. A goal-
base G = {(ϕi, wi)}i is a set of weighted goals, where
ϕi is a propositional formula over G and wi ∈ Q. G in-
duces the utility function u : X 7→

∑
{{wi | X |= ϕi}},

where X |= ϕi means that ϕi is true in the model
corresponding to the set X (i.e., variable p is true if
p ∈ X). Various restrictions are possible: e.g., formu-
las ϕi might be restricted to literals or clauses, and
weights wi to positive numbers.

The XOR-language was introduced by Sandholm [34] in the
context of modelling bids in combinatorial auctions. It can
express all normalised monotonic utility functions, and only
those [26, Proposition 9.2]. On the downside, it is only
slightly more compact than the explicit representation (the
only advantage is the built-in monotonicity assumption).
The OR-language is the “traditional” language for bidding
in combinatorial auctions. It is not fully expressive, but can
only encode utility functions without substitutatbilities [26,
Proposition 9.1]. The language of weighted goals was in-
troduced by Pinkas [31], under the name of penalty logic.
For combinatorial auctions, it has been argued to be supe-
rior to XOR/OR-type languages by Boutilier and Hoos [5]
and it has been used extensively in computational studies
of fair division (see, e.g., [6]). The full language can ex-
press all utility functions (see, e.g., [39, Corollary 3.7]) and
the language of non-tautological negation-free formulas with
positive weights expresses precisely the class of normalised
monotonic utility functions [39, Theorem 3.11].

The most basic task concerning a language for represent-
ing utility functions is to compute the value of the repre-
sented function for a given bundle of goods.

Definition 6. Given the representation of utility func-
tion u in language L, a bundle B ⊆ G, and a bound K ∈ Z,
the EvalUtil problem asks whether u(B) > K.

For most languages, EvalUtil is (and should be!) easy.

Fact 1. EvalUtil can be decided in polynomial time for
the XOR-language and any weighted goal language.

Proof. Immediate: for the XOR-language this is a sim-
ple look-up; for weighted goals we need to solve a linear num-
ber of model checking problems for propositional logic.

The OR-language is unusual in the sense that already this
most basic task is intractable.

Fact 2. EvalUtil is NP-complete for the OR-language.

Proof. By reduction from Set Packing [13].3

3. COMPLEXITY RESULTS
In this section we define two decision problems that are rel-
evant to the broader goal of computing allocations with low
levels of inequality, and we analyse their complexity.

3It is well-known that the winner determination problem for
combinatorial auctions is NP-hard under the OR-language
[33], and it is easy to see that the standard reduction applies
even when there is just a single bidder—in which case the
winner determination problem is equivalent to EvalUtil.



3.1 Pigou-Dalton Improvements
We first discuss the problem of deciding whether a given
allocation admits a Pigou-Dalton transfer.

Definition 7. Given a scenario 〈N ,G,U〉, an alloca-
tion A, and a partial allocation P , the Pigou-Dalton Im-
provement problem asks whether there exists an allocation
A′ extending P such that (A,A′) is a Pigou-Dalton transfer.

The reason for including P in Definition 7 is that this ensures
that the search problem of computing A′ can be reduced
to a polynomial number of instances of the decision prob-
lem about the existence of A′ formulated above.4 Hence,
any complexity result concerning Pigou-Dalton Improve-
ment will be directly relevant to the corresponding search
problem (which is what interests us in practice).

The complexity of Pigou-Dalton Improvement de-
pends on the language used to represent utility functions.

Proposition 3. Pigou-Dalton Improvement can be
decided in polynomial time when the XOR-language is used.

Proof. An exhaustive search, which is polynomial for
the XOR-language, will produce the desired result: Let A
be the current allocation and P the partial allocation we are
asked to extend. For a particular pair of agents, i and j,
we can check whether a Pigou-Dalton transfer is possible by
going through the list of atomic bids for i and j and, for each
pair of atomic bids Si, Sj , checking whether (1) Si ∩Sj = ∅,
(2) Si, Sj ⊆ A(i) ∪ A(j), (3) Si ⊇ P (i) and Sj ⊇ P (j), and
(4) their weights satisfy the Pigou-Dalton conditions. This
can clearly be done in polynomial time. As the number of
pairs of agents is quadratic, the problem is in P.

This simple algorithm will not work for compact represen-
tation languages. For compact languages, we usually can-
not just go through all relevant bundles. Going through all
bundles would take an exponential amount of time. We now
show that we cannot do much better than that, for any of
the compact representation languages we have considered.

Proposition 4. Pigou-Dalton Improvement is NP-
hard for the OR-language.

Proof. By reduction from EvalUtil for the OR-
language. Let Bidu be an OR-bid representing utility func-
tion u. To check whether there exists a bundle B with
u(B) > K (i.e., whether u(G) > K for the full set of
goods G), construct the following two-agent instance of
Pigou-Dalton Improvement. Let Ω be a number that is
greater than the sum of all weights in Bidu, let ε be a number
than is lower than any of those weights, and let x be a new
good not in G. Agent 1 has the OR-bid Bidu or 〈{x},Ω〉.
Agent 2 has the OR-bid 〈G,K−ε〉or 〈{x},Ω〉. Let A0 be
the allocation that assigns x to agent 1 and all of G to
agent 2. The utility vector of A0 is (Ω,K−ε). Clearly, the
only chance of finding a Pigou-Dalton transfer is to give
item x to agent 2 and all of G to agent 1, resulting in an
allocation with the utility vector (u(G),Ω). Hence, there
exists a Pigou-Dalton transfer iff u(G) > K.

4By a standard argument [29, Example 10.3], we can com-
pute A′ using O(n · |G|) calls to a Pigou-Dalton Improve-
ment oracle by instantiating the allocation P item-by-item.

In view of Fact 2, this is not a surprising result. We stress
that Proposition 4 only establishes NP-hardness, not NP-
completeness. We do not know whether the problem is in
NP and it is in fact conceivable that it might not be. The
reason is—roughly speaking—that verifying whether a move
from A to A′ is a Pigou-Dalton transfer not only requires
checking that A′ has at least a certain quality, but also that
A has at most a certain quality.5

What about other languages? Take the weighted goal
language where all formulas are required to be atoms. This
is a very limited language, which can only express addi-
tive utility functions [39, Corollary 3.8]. Consider a sce-
nario with just two agents who have the same utility func-
tion (represented by the same set of weighted atoms) and
an allocation A allocating all goods to agent 1. Now sup-
pose we do not just want to know whether there exists a
Pigou-Dalton improvement over A, but whether there exists
one that reduces inequality to below a given threshold K.
In other words, we are asking: given a vector of numbers
(w1, . . . , wm) ∈ Nm, is there an index set S ⊆ {1, . . . ,m}
such that |

∑
i∈S wi −

∑
i 6∈S wi| < K? But this is the

well-known NP-hard Partition problem [13]. Hence, decid-
ing Pigou-Dalton Improvement with quality guarantees
(in the above sense) is NP-hard. This intractability result
immediately extends to more expressive weighted goal lan-
guages as well.

Whether also the plain Pigou Dalton Improvement
problem is NP-hard for the language of weighted atoms
is an open question. It might seem immediately obvious
that it should be NP-hard (so let us see why it might not
be). A natural attempt at an NP-hardness proof would
make use of the following variant of the Partition prob-
lem, which we call Better Partition: we are given a vec-
tor (w1, . . . , wm) ∈ Nm and an index set S ⊆ {1, . . . ,m} and
ask whether there exists a“better” index set S′ ⊆ {1, . . . ,m}
such that |

∑
i∈S′ wi −

∑
i 6∈S′ wi| < |

∑
i∈S wi −

∑
i6∈S wi|.

There is no immediate reduction from Partition to Bet-
ter Partition: For instance, if K < 1 (i.e., when we are
looking for a perfect partition), then we might have to solve
an exponential number of Better Partition instances be-
fore reaching that perfect partition (if each step only reduces
the difference by 1 and the sum of weights is exponential in
the size of the problem encoding). Also the fact that Par-
tition can be ε-approximated in polynomial time for any
arbitrarily small ε (see, e.g., [29, Theorem 13.5]) does not
help, because there might still be an exponential number
of improvement steps between the solution found by an ap-
proximation algorithm and the optimum. An intuitive rea-
son why Better Partition might be tractable is this: if S
corresponds to a very uneven partition, then it will be easy
to improve on it and to find S′; while if S already is a very
good partition, then it is at least conceivable that a smart
algorithm could exploit the information that S represents a
high-quality approximation (note that the K in Partition
does not provide any such helpful information).

5This combination of positive and negative requirements is
reminiscent of DP, the complexity class of languages that are
the intersection of a language in NP and a language in coNP
[29]. This suggests that Pigou-Dalton Improvement for
the OR-language might be DP-hard (though not necessarily
in DP). What we can say with certainty is that the problem
is in ∆p

2, the class of problems that can be solved with a
polynomial number of calls to an NP-oracle [29].



We are able to prove the following intriguing result:6

Proposition 5. Pigou-Dalton Improvement cannot
be decided in polynomial time when the language of weighted
atoms is used, unless NP = coNP.

Proof. In case there are exactly two agents with the
same additive utility function, our problem is equivalent to
the Better Partition problem defined above. So let us
show that Better Partition cannot be decided in poly-
nomial time, unless NP = coNP. First, observe that the
problem No Perfect Partition, i.e., the problem of de-
ciding whether a given set of numbers cannot be partitioned
into two subsets with equal sums, is coNP-hard.

Now, for the sake of contradiction, suppose there exists a
polynomial algorithm Alg that replies YES iff a given par-
tition can be improved upon. We can use Alg to prove that
No Perfect Partition must be in NP: We need to show
that when someone claims that the answer to a given No
Perfect Partition instance should be YES and provides
a suitable certificate, then we can verify the correctness of
that certificate in polynomial time. A suitable certificate
would be a partition of the set of numbers into two sub-
sets that minimises the difference of their sums. To verify
correctness (i.e., to verify that indeed no perfect partition
exists), we first check that the difference in sums is indeed
non-zero (this is easy) and then that it cannot be improved
upon (which is exactly the problem Alg can decide in poly-
nomial time). Hence, No Perfect Partition is in NP.

In summary, we have shown that there exists a coNP-
hard problem (namely No Perfect Partition) that is in
NP. But this means that coNP ⊆ NP. This in turn would
immediately imply NP = coNP, so we are done.

Note that Proposition 5 does not imply that Pigou-Dalton
Improvement for the language of weighted atoms is NP-
hard (but the problem is easily seen to be in NP). So this
really is a problem that very much sits at the borderline of
the tractable and the intractable.

3.2 Lorenz Improvements
We now turn to computing Lorenz improvements. The cor-
responding decision problem is defined as follows.

Definition 8. Given a scenario 〈N ,G,U〉, an alloca-
tion A, and a partial allocation P , the Lorenz Improve-
ment problem asks whether there exists an allocation A′ ex-
tending P such that L(A) < L(A′).

Unsurprisingly, this is intractable for the OR-language:

Proposition 6. Lorenz Improvement is NP-complete
for the OR-language.

Proof. NP-hardness is proved by reduction from Set
Packing, similarly to Fact 2. We omit the details for lack
of space. We postpone arguing for NP-membership (which,
in view of Footnote 5, is not obvious) to Section 4.4.

We now also get an intractability result for XOR:

Proposition 7. Lorenz Improvement is NP-complete
for the XOR-language.
6I’m indebted to Harry Buhrman, Bruno Loff and Leen
Torenvliet for the main insight at the heart of this result; see
also their work on approximations of knapsack problems [7].

Proof. NP-membership is immediate. We show NP-
hardness by a reduction from the problem of deciding
whether, for a given K, there exists an allocation with utili-
tarian social welfare > K, which is known to be NP-hard for
the XOR-language [19, Theorem 12.1]. Suppose we are given
an instance of the latter problem. Now add one additional
agent to the problem, with a single atomic bid 〈G,K−ε〉,
where ε is smaller than any of the differences we can con-
struct from the weights used in the bids of the original agents
(e.g., if all original weights are integers, then we can set
ε := 0.5). The question of whether an allocation with social
welfare > K exists is not affected by this addition.

Let A be the allocation where all goods are given to the
new agent. As all other agents have utility 0 in A, the social
welfare of A is Ln(A) = K−ε. The crucial insight now is
the fact that, for any allocation A′, we have L(A) < L(A′)
if and only if A′ has strictly higher social welfare than A,
i.e., if K 6 Ln(A′). This completes the reduction.

Our proof of NP-hardness above is very general. It extends
to any preference representation language L for which utili-
tarian social welfare optimisation is NP-hard—and remains
hard when we assume that all agents have normalised utility
functions. This is the case for many weighted goal languages
[38, p. 121]. We state this result explicitly for a few partic-
ularly important languages:7

Proposition 8. Lorenz Improvement is NP-complete
for any of the following languages: the language of posi-
tively weighted 2-cubes; the language of positively weighted
2-clauses; the language of negation-free 2-cubes; the lan-
guage of negation-free 2-clauses; and the language of pos-
itively weighted non-tautological negation-free 3-cubes.

Proof. NP-hardness follows from results by Uckel-
man [38] on NP-hardness of utilitarian social welfare optimi-
sation for these languages together with the proof technique
used to establish Proposition 7. NP-membership is immedi-
ate for any weighted goal language (by Fact 1).

For weighted atoms, on the other hand, utilitarian social
welfare optimisation is easily seen to be polynomial (simply
allocate each good to the agent assigning the highest weight
to it), i.e., our technique does not apply here.

Finally, observe that for any language for which Lorenz
Improvement is NP-hard the corresponding problem
Lorenz Optimality, i.e., the problem of deciding whether
a given allocation is Lorenz optimal, must be coNP-hard
(because deciding Lorenz optimality amounts to deciding
whether there exists no Lorenz improvement).

4. COMPUTING FAIR ALLOCATIONS
In this section we show how to formulate the most important
problems of inequality reduction in combinatorial domains
in the language of integer programming [35].8 That this is
possible in principle is clear, as every problem in NP can be
embedded into integer programming [28]. Our contribution
is to show how to do this in a simple and modular manner
that allows us to easily change either the inequality measure

7Recall that a k-clause is a disjunction of at most k literals
and a k-cube is a conjunction of at most k literals.
8We shall assume familiarity with integer programming (for
an introduction see, e.g., [37]).



employed or the preference representation language used.
Providing an integer programming formulation means that
powerful off-the-shelf tools can be used to solve medium-size
instances of these problems in practice—although further
optimisation will certainly be required in the future.

We start out by specifying constraints that allow us to im-
plement a solution to the Lorenz Improvement problem,
and then show how to combine this with objective func-
tions based on inequality indices. For ease of presentation,
we present algorithms for the XOR-language first, and then
briefly comment on extensions to other languages.

While inequality reduction for the allocation of indivisible
goods with compactly represented preferences has not been
discussed in the literature before, we are able to rely on
familiar techniques from work on inequality minimisation for
additive utilities (see, e.g., [27]) and welfare optimisation in
combinatorial domains, particularly work on combinatorial
auctions (see, e.g., [1, 4]).

4.1 Lorenz Improvements, XOR-language
Suppose all agents express their utility functions using the
XOR-language, and suppose the current allocation is A. We
want to define a set of linear inequalities that constrain a
possible follow-up allocation A′ to be a Lorenz improvement
over A. We will associate A with a vector of binary decision
variables x (already instantiated, as A is given) and we will
associate A′ with another vector of binary decision variables
y (to be instantiated). If a partial allocation P fixing some
of the assignments of goods in A′ is already given, then we
instantiate the corresponding elements of y accordingly. For
expository convenience, assume each agent has supplied the
same number of atomic bids m.

Let 〈Sij , wij〉 be the jth atomic bid of agent i. Introduce a
vector y of binary decision variables consisting of three types
of variables: yij ∈ {0, 1} with yij = 1 if and only if the jth
atomic bid of agent i is accepted under A′; yki ∈ {0, 1} with
yki = 1 if and only if agent i is on position k in the ordered
utility vector for A′; and ykij ∈ {0, 1} with ykij = 1 if and

only if both yij = 1 and yki = 1. That is, y determines
allocation A′, and it also encodes the poor-to-rich ordering
on the agents under that allocation.

The following constraints ensure the instantiation of ykij is

consistent with the choices made for yij and yki .

(∀i, k 6 n,∀j 6 m) ykij 6 yij (1)

(∀i, k 6 n,∀j 6 m) ykij 6 yki (2)

(∀i, k 6 n,∀j 6 m) ykij > yij + yki − 1 (3)

The next constraint comes from the XOR-language: at most
one atomic bid per agent can be accepted.

(∀i 6 n)
∑
j6m

yij 6 1 (4)

To ensure the poor-to-rich ordering is a proper ordering we
stipulate that for every position k there is exactly one agent i
and that for every agent i there is exactly one position k.

(∀k 6 n)
∑
i6n

yki = 1 (5)

(∀i 6 n)
∑
k6n

yki = 1 (6)

To improve readability, we define a “macro” to refer to ele-

ments of the ordered utility vector corresponding to y:

(∀k 6 n) u∗k(y) :=
∑

i6n,j6m

ykij · wij

Now we can formulate a constraint that ensures that the
poor-to-rich ordering is consistent with actual utilities.

(∀k 6 n−1) u∗k(y) 6 u∗k+1(y) (7)

Here is a second macro, which we use to refer to elements of
the Lorenz curve for the allocation corresponding to y:

(∀k 6 n) Lk(y) :=
∑
`6k

u∗` (y)

Lk(x) is defined analogously. So far, we have ensured that
y represents a feasible allocation together with a correct
ordering of the agents. Now suppose that the other set of
binary decision variables, x, has been instantiated so as to
correctly represent A and the ordered utility vector for A.
Here are the constraints for checking L(A) < L(A′):

(∀k 6 n) Lk(x) 6 Lk(y) (8)∑
k6n

Lk(x) <
∑
k6n

Lk(y) (9)

This completely describes the problem Lorenz Improve-
ment. Note that there is no objective function to be max-
imised here. If we are only interested in finding some Lorenz
improvement, we can simply“maximise”a constant function,
subject to constraints (1)–(9).

4.2 Objective Functions, XOR-language
Given our program for Lorenz improvements, we can choose
any objective function to maximise some quantity over y to
search for the “best” Lorenz improvement within the set of
feasible improvements. For instance, we may wish to max-
imise the sum of utilities, subject to the chosen allocation
(y) representing a Lorenz improvement over the status quo
(x). This amounts to making Ln(y) the objective function,
which is equivalent to the winner determination problem in
combinatorial auctions [9], for which integer programming
implementations are available for the XOR-language [19].

Here we show instead how to compute the best allocation
according to either the Gini index or the Robin Hood index,
from the set of allocations that Lorenz dominate the status
quo. Our approach is rather general and can be adapted to
other inequality indices as well. Recall Definition 5, which
shows how to translate an SWO into an inequality index. We
can take the reverse approach. Take any inequality index I.
Together with u (determining, amongst other things, µ),
I induces a function WI : 2G → Q:

WI(A) = (1− I(A)) · µ(A)

We can think of WI as a collective utility function (CUF),
mapping each allocation to a single value [25]. The corre-
sponding SWO (ranking allocations in terms of those values)
again induces the Atkinson index I. The better an alloca-
tion in terms of WI , the less inequality it exhibits according
to I, and vice versa. If we apply this technique to the Gini
index, we obtain this CUF:

WG(A) =
2

n(n+ 1)
·
n∑
k=1

Lk(A)



That is, the higher
∑n
k=1 Lk(A), the lower the Gini index

of A. Now it is straightforward to implement optimisation
wrt. the Gini index. Given an initial allocation, represented
by x, the following integer program computes an allocation
with minimal Gini index from the set of allocations that
Lorenz dominate x, when the XOR-language is used:

maximise
∑n
k=1 Lk(y)

subject to constraints (1)-(9)

The solution is given by y: if yij = 1, then give all the goods
in Sij to agent i.

While the CUF corresponding to the Gini index has been
extensively discussed in the literature [3, 40], a CUF corre-
sponding to the Robin Hood index appears not to have been
formulated before. Applying the same approach as above,
we obtain:

WH(A) = min{Lk(A)− (k − 1) · µ(A) | k ∈ N )}

Again, the Atkinson index induced by WH is precisely the
Robin Hood index and optimising wrt. WH means minimis-
ing inequality according to the Robin Hood index. Turning
WH into an objective function for an integer program is
less immediate than for WG. Here we give a solution based
on mixed integer programming, making use of a non-integer
variable z. The following set of constraints forces z to be at
most as large as WH for the allocation corresponding to y:

(∀k 6 n) z 6 Lk(y)− (k − 1) · Ln(y)

n
(10)

Now the following program computes an allocation with
minimal Robin Hood index from the set of allocations that
Lorenz dominate x, when the XOR-language is used:

maximise z
subject to constraints (1)-(10)

Solutions are extracted as before.

4.3 Other Representation Languages
If we want to use a different preference representation lan-
guage, we have to change constraint (4), encoding the XOR-
condition, and we have to change the macro for computing
u∗k(y). While we must omit the details for lack of space, we
note that this is easily possible for both the OR-language
and weighted goals. Indeed, for both languages, the winner
determination problem for combinatorial auctions has been
formulated as an integer program, and such an implementa-
tion necessitates both the encoding of the relevant language
constraint and the definition of the utility experienced by
any given agent under the solution allocation. For the OR-
language this is standard [19]; for weighted goals we refer to
Boutilier [4], who gives an integer program for a notational
variant of the language of weighted goals used in this paper.

As a final remark, we note that the number of decision
variables used in our implementation is linear in the size
of the representation on agent preferences, albeit quadratic
in the number of agents. The latter is due to the need of
encoding the ordering of agents inherent in the definition of
the Lorenz curve, and this appears impossible to avoid.

4.4 Relation to Complexity Results
Given that any problem expressible as an integer program
(without an objective function) is in NP [28], the fact that

we can encode Lorenz Improvement for the OR-language
completes our proof of Proposition 6.

We do not know of a general method for encoding Pigou-
Dalton Improvement in integer programming. The prob-
lematic issue is that the absolute-value function | · | (see Def-
inition 1) is nonlinear. For any variant of Pigou-Dalton
Improvement that is in NP there clearly are ways around
this difficulty (because every problem in NP can be mapped
into integer programming), but our discussion in Footnote 5
suggests hat this might be impossible for the OR-language.

5. RELATED WORK
In related work, Lesca and Perny [20] give (mixed) integer
programming formulations for two fair division problems,
one of which is that of finding an allocation that minimises
the Gini index (the other is related to the Choquet integral).
A crucial difference wrt. our model is that they assume util-
ity functions to be additive, i.e., each agent assigns a value
to each good and an agent’s utility of a bundle is the sum
of the values she assigns to the goods in that bundle. The
intractability of the problems studied by Lesca and Perny
stems from the fact that they impose volume constraints
limiting the number of goods an agent might receive.

Also all other algorithmic work on inequality reduction we
are aware of, such as the contributions of Ogryczak [27] and
of Golden and Perny [15], make the same assumption of util-
ity functions being additive. That is, in those works there
is no compact preference representation involved, which is a
defining feature of our approach, and which is of crucial sig-
nificance for fair allocation problems with indivisible goods,
which is the most widely studied scenario in Multiagent Sys-
tems [8]. Other related work discusses conditions under
which negotiation in a multiagent system will converge to
an allocation that is Lorenz optimal [12].

The complexity of computing fair allocations for other
fairness criteria is analysed, amongst others, by Lipton et
al. [22] and Bouveret and Lang [6]. In analogy to our results
on the complexity of Lorenz Improvement, the problem
of recognising Pareto improvements is known to be NP-hard
for both the language of weighted negation-free k-cubes (also
known as the k-additive form) and a language based on
straight-line programs, while the corresponding problem of
deciding Pareto optimality is coNP-hard [8, 11].

6. CONCLUSION
We have formulated the task of reducing (or minimising)
economic inequality as a combinatorial optimisation prob-
lem when several indivisible goods need to get allocated
to a group of agents. We have then discussed complexity-
theoretic and algorithmic questions that arise in this setting.
Particularly the conceptually simple notion of Pigou-Dalton
transfer nicely demonstrates the complexity-theoretic sub-
tleties involved when switching from one problem represen-
tation to another, an effect that is not typical for complex-
ity results in multiagent resource allocation [8]. We also
hope that our modular integer programming formulation
will prove useful to those who wish to apply the theoreti-
cal concepts discussed here in practice.

Specific technical contributions aside, a declared aim of
this paper is to bring the important topic of measuring eco-
nomic inequality to the attention of a broader section of the
research community in Multiagent Systems.



An interesting direction for future work would be to cover
a wider spectrum of representation languages to complete
the picture of complexity results presented here. It is also
important to experiment with practical implementations of
our algorithms. Relevant data sets on which to run those
experiments would have to be developed in parallel with re-
fining the algorithms. A possible starting point are existing
approaches for generating high-quality test data for combi-
natorial auctions [21].

Acknowledgements. I would like to thank the audience of
the 4th MARA Get-Together held in Paris in June 2010 for
feedback on an early version of this paper and Leen Toren-
vliet for enlightening discussions on knapsack problems.

7. REFERENCES
[1] A. Andersson, M. Tenhunen, and F. Ygge. Integer

programming for combinatorial auction winner
determination. In Proc. ICMAS-2000, 2000.

[2] A. B. Atkinson. On the measurement of inequality.
Journal of Economic Theory, 2:244–263, 1970.

[3] C. Blackorby and D. Donaldson. Measures of relative
equality and their meaning in terms of social welfare.
Journal of Economic Theory, 18(1):59–80, 1978.

[4] C. Boutilier. Solving concisely expressed combinatorial
auction problems. In Proc. AAAI-2002, 2002.

[5] C. Boutilier and H. H. Hoos. Bidding languages for
combinatorial auctions. In Proc. IJCAI-2001, 2001.

[6] S. Bouveret and J. Lang. Efficiency and envy-freeness
in fair division of indivisible goods: Logical
representation and complexity. JAIR, 32:525–564,
2008.

[7] H. Buhrman, B. Loff, and L. Torenvliet.
Approximation algorithms and hardness of
approximation for knapsack problems. Manuscript,
CWI and University of Amsterdam, 2012.

[8] Y. Chevaleyre, P. E. Dunne, U. Endriss, J. Lang,
M. Lemâıtre, N. Maudet, J. Padget, S. Phelps, J. A.
Rodŕıguez-Aguilar, and P. Sousa. Issues in multiagent
resource allocation. Informatica, 30(1):3–31, 2006.

[9] P. Cramton, Y. Shoham, and R. Steinberg, editors.
Combinatorial Auctions. MIT Press, 2006.

[10] H. Dalton. The measurement of the inequality of
incomes. The Economic Journal, 30(119):348–361,
1920.

[11] P. E. Dunne, M. Wooldridge, and M. Laurence. The
complexity of contract negotiation. Artif. Intell.,
164(1–2):23–46, 2005.

[12] U. Endriss, N. Maudet, F. Sadri, and F. Toni.
Negotiating socially optimal allocations of resources.
JAIR, 25:315–348, 2006.

[13] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-completeness. Freeman, 1979.

[14] C. Gini. Variabilitá e Mutabilitá. C. Cuppini, Bologna,
1912.

[15] B. Golden and P. Perny. Infinite order Lorenz
dominance for fair multiagent optimization. In Proc.
AAMAS-2010, 2010.

[16] J. Goldsmith and U. Junker. Preference handling for
artificial intelligence (editorial). AI Magazine,
29(4):9–12, 2008.

[17] B. P. Kennedy, I. Kawachi, and D. Prothrow-Stith.
Income distribution and mortality: Cross sectional
ecological study of the Robin Hood index in the
United States. BMJ, 312:1004–1007, 1996.

[18] Y. Kondor. An old-new measure of income inequality.
Econometrica, 39(6):1041–1042, 1971.

[19] D. Lehmann, R. Müller, and T. Sandholm. The
winner determination problem. In Cramton et al. [9].

[20] J. Lesca and P. Perny. LP solvable models for
multiagent fair allocation problems. In Proc.
ECAI-2010, 2010.

[21] K. Leyton-Brown and Y. Shoham. A test suite for
combinatorial auctions. In Cramton et al. [9].

[22] R. Lipton, E. Markakis, E. Mossel, and A. Saberi. On
approximately fair allocations of indivisible goods. In
Proc. ACM EC-2004, 2004.

[23] L. Long and A. Nucci. The Hoover index of
population concentration: A correction and update.
The Professional Geographer, 49(4):431–440, 1997.

[24] M. O. Lorenz. Methods of measuring the
concentration of wealth. Publications of the American
Statistical Association, 9(70):209–219, 1905.

[25] H. Moulin. Axioms of Cooperative Decision Making.
Cambridge University Press, 1988.

[26] N. Nisan. Bidding languages for combinatorial
auctions. In Cramton et al. [9].

[27] W. Ogryczak. Inequality measures and equitable
approaches to location problems. European Journal of
Operational Research, 122(2):374–391, 2000.

[28] C. H. Papadimitriou. On the complexity of integer
programming. JACM, 28(4):765–768, 1981.

[29] C. H. Papadimitriou. Computational Complexity.
Addison-Wesley, 1994.

[30] A. C. Pigou. Wealth and Welfare. Macmillan, London,
1912.

[31] G. Pinkas. Reasoning, nonmonotonicity and learning
in connectionist networks that capture propositional
knowledge. Artif. Intell., 77(2):203–247, 1995.

[32] M. Ravallion and S. Chen. Measuring pro-poor
growth. Economic Letters, 78(1):93–99, 2003.

[33] M. H. Rothkopf, A. Pekec̆, and R. M. Harstad.
Computationally manageable combinational auctions.
Management Science, 44(8):1131–1147, 1998.

[34] T. Sandholm. Algorithm for optimal winner
determination in combinatorial auctions. Artif. Intell.,
135(1–2):1–54, 2002.

[35] A. Schrijver. Theory of linear and integer
programming. John Wiley & Sons, 1986.

[36] A. Sen. On Economic Inequality. Oxford University
Press, 1973.

[37] Y. Shoham and K. Leyton-Brown. Multiagent
Systems. Cambridge University Press, 2009.

[38] J. Uckelman. More than the Sum of its Parts:
Compact Preference Representation over
Combinatorial Domains. PhD thesis, ILLC, University
of Amsterdam, 2009.

[39] J. Uckelman, Y. Chevaleyre, U. Endriss, and J. Lang.
Representing utility functions via weighted goals.
Mathematical Logic Quarterly, 55(4):341–361, 2009.

[40] J. Weymark. Generalized Gini inequality indices.
Mathematical Social Sciences, 1(4):409–430, 1981.


