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Abstract

In a binary aggregation problem, a group of voters
each express yes/no choices regarding a number of
possibly correlated issues and we are asked to de-
cide on a collective choice that accurately reflects
the views of this group. A good collective choice
will minimise the distance to each of the individ-
ual choices, but using such a distance-based aggre-
gation rule is computationally intractable. Instead,
we explore a class of aggregation rules that select
the most representative voter in any given situation
and return that voter’s choice as the collective out-
come. Two such rules, the average-voter rule and
the majority-voter rule, are particularly attractive.
We analyse their social choice-theoretic properties,
their algorithmic efficiency, and the extent to which
they are able to approximate the ideal defined by
the distance-based rule. We also discuss the rele-
vance of our results for the related framework of
preference aggregation.

1 Introduction
Multiple AI applications now make use of collective deci-
sion making technologies. Examples range from multiagent
planning, to crowdsourcing and human computation, to col-
laborative filtering for recommender systems, to rank aggre-
gation for search engines, to coordination and resource al-
location in multiagent systems. Several formal frameworks
have been proposed in the literature on computational social
choice [Chevaleyre et al., 2007; Brandt et al., 2013] to study
these problems. The best known such frameworks are voting
theory, in which a choice is made from a set of alternatives
given the preferences of a group of agents, and preference ag-
gregation, in which several preferences are aggregated into a
single collective preference order [Arrow et al., 2002]. Re-
lated frameworks dealing with information other than prefer-
ences are belief merging [Konieczny and Pino Pérez, 2002]
and judgment aggregation [List and Puppe, 2009].

Here we focus on a setting in which individuals make
yes/no choices on several binary issues and we need to aggre-
gate this information into a collective view. This framework
is known to be general enough to subsume both preference

aggregation and judgment aggregation [Grandi and Endriss,
2011]. Consider this example with three issues and 41 voters:

Issue: 1 2 3
20 voters: 0 1 1
10 voters: 1 0 1
11 voters: 1 1 0

What would be a good collective choice? A natural ap-
proach is to minimise a notion of distance from the indi-
vidual choices to get the best compromise. This idea has
been used in preference aggregation [Kemeny, 1959], be-
lief merging [Konieczny and Pino Pérez, 2002], and judg-
ment aggregation [Pigozzi, 2006; Miller and Osherson, 2009;
Lang et al., 2011]. In our example, the distance-based rule
would suggest the combination (1, 1, 1), as it minimises the
(Hamming) distance to the individual ballots: there are 41
disagreements (each voter disagrees on exactly one issue).
But now suppose that (1, 1, 1) is not a feasible outcome
(maybe, due to a budget constraint, we can accept at most
two out of three proposals). If some outcomes are excluded,
then distance-based aggregation quickly becomes highly in-
tractable [Hemaspaandra et al., 2005; Endriss et al., 2012].

To tackle this problem, we propose to hold on to the idea
of minimisation, but to restrict the space of outcomes consid-
ered during minimisation to the individual choices provided.
That is, we propose to look for the most representative voter
and to return that voter’s ballot as the outcome. In our ex-
ample, a natural choice would be any of the voters voting
(0, 1, 1). The distance of this choice to the individual ballots
is 42 (21 voters disagree on 2 issues each), i.e., this solution
is only marginally worse than the solution returned by the full
distance-based rule, and it is optimal if (1, 1, 1) is infeasible.

We focus on two natural selection methods: the average-
voter rule (selecting the voter who is closest to the “vector
of averages”) and the majority-voter rule (selecting the voter
who is closest to the outcome of the simple majority rule).
Despite their simplistic definition, these rules turn out to be
surprisingly attractive aggregation methods. They have very
low computational complexity, they have interesting social
choice-theoretic properties, they are guaranteed to never pro-
duce an inconsistent outcome, they can easily be explained to
voters, and they are good approximations of the ideal defined
by the much more complex distance-based rule.

In Section 2 we introduce our formal model and Section 3



is a comparison of the average-voter rule and the majority-
voter rule. We then focus on the extent to which these rules
can approximate the ideal of the distance-based rule in Sec-
tion 4, and we compare our findings to known results in pref-
erence aggregation in Section 5. Section 6 concludes.

2 The Model
In this section we recall the framework of binary aggrega-
tion with integrity constraints [Grandi and Endriss, 2010;
2011], which we shall be working with. It is a variant of
both binary aggregation with explicitly specified feasible sets
[Dokow and Holzman, 2010] and judgment aggregation [List
and Puppe, 2009], and all of our results can easily be trans-
lated into these other frameworks as well. Besides introduc-
ing the basic framework, we also define several aggregation
rules and state some of their fundamental properties.

2.1 Basic Definitions
Let I = {1, . . . ,m} be a finite set of issues. We want to
model collective decision making problems where a group of
voters have to jointly decide for which issues to choose “yes”
and for which to choose “no”. A ballot B is an element of
{0, 1}m, which associates each issue with either a 1 (“yes”)
or a 0 (“no”). We write bj for the jth element of ballot B.

In general, not every element of {0, 1}m might be a feasi-
ble or rational choice. For instance, if the issues are projects
that may or may not get funded, then a budget constraint
might mean that no outcome with more than, say, five 1’s
is feasible. We shall assume that the same constraints apply
both to the individual ballots and to the outcomes of aggrega-
tion. The range of rational ballots (and thus of feasible out-
comes) can be specified in different ways. In most work on
binary aggregation they are given explicitly (see, e.g., Dokow
and Holzman [2010]). In (formula-based) judgment aggrega-
tion constraints are implicit in the notion of consistency of a
judgment set [List and Puppe, 2009]. Here we represent the
set of rational ballots in a compact way by means of a for-
mula in a propositional language [Grandi and Endriss, 2010;
2011]. Formally, let PS = {p1, . . . , pm} be a set of propo-
sitional symbols, one for each issue in I. An integrity con-
straint is a formula IC ∈ LPS, where LPS is obtained from
PS by closing under the standard propositional connectives
(¬, ∧, ∨,→,↔). Let Mod(IC) ⊆ {0, 1}m denote the set of
models of IC, i.e., the set of rational ballots satisfying IC.

Let N = {1, . . . , n} be a finite set of voters (we shall as-
sume n > 2 throughout). A profile is a vector of rational
ballots B = (B1, . . . , Bn) ∈ Mod(IC)n, one for each voter.
We write bi,j for the jth element of ballot Bi, the ith element
of profile B. The support of a profile B = (B1, . . . , Bn) is
the set of all ballots that occur at least once within B:

SUPP(B) = {B1} ∪ · · · ∪ {Bn}.
An (irresolute) aggregation rule F : {0, 1}m×n → 2{0,1}

m

is
a function that associates with every profile B a non-empty
set of collective ballots F (B). That is, the outcome of ag-
gregation is a set of elements of the same type as our ballots,
which is why we use the term ballot also to refer to outcomes.

An example of an aggregation rule is the majority rule,
which accepts an issue if a majority of the voters accept it.

There are two possible definitions for this rule: the weak
majority rule defined as W-Maj(B)j = 1 iff |{i ∈ N |
bi,j = 1}| > dn2 e, and the strict majority rule defined as
S-Maj(B)j = 1 iff |{i ∈ N | bi,j = 1}| > dn+1

2 e.
Observe that both rules are resolute, i.e., the collective out-
come is always a single binary ballot. We define the ma-
jority rule Maj as the irresolute aggregation rule that out-
puts the union of the strict and the weak majority outcome:
Maj(B) = {W-Maj(B)} ∪ {S-Maj(B)}.

In the presence of an integrity constraint, a rule may some-
times output an irrational ballot from a rational profile. Con-
sider for instance the following example, in which the in-
tegrity constraint IC = pC ↔ pA ∧ pB forces individuals to
accept issueC if and only if the first two issues are accepted:1

Issue: A B C

1 voter: 0 1 0
1 voter: 1 0 0
1 voter: 1 1 1

Maj: 1 1 0

We call an aggregation rule collectively rational wrt. an in-
tegrity constraint IC if all ballots in F (B) satisfy IC when-
ever B is composed of rational ballots, i.e., whenever all Bi

satisfy IC. Most paradoxes studied in social choice theory can
be viewed as failures of collective rationality wrt. a suitable
integrity constraint [Grandi, 2012].

2.2 The Distance-Based Rule
The Hamming distance between two ballots B =
(b1, . . . , bm) and B′ = (b′1, . . . , b

′
m) is defined as the num-

ber of issues on which they differ:

H(B,B′) = |{j ∈ I | bj 6= b′j}|

For example, H((1, 0, 0), (1, 1, 1)) = 2. The Hamming dis-
tance between a ballot B and a profile B is the sum of the
Hamming distances between B and the ballots in B:

H(B,B) =
∑
i∈N

H(B,Bi)

Let S and S′ be sets of ballots. By a slight abuse of notation,
we writeH(S,B) for {H(B,B)) | B ∈ S}, andH(S,B) 6
H(S′,B) iff max(H(S,B)) 6 min(H(S′,B)).

Definition 1. Given an integrity constraint IC, the distance-
based rule DBRIC is the following function:

DBRIC(B) = argmin
B∈Mod(IC)

∑
i∈N

H(B,Bi)

Thus, winning ballots under the DBRIC are rational ballots
that minimise disagreement with the individual ballots. Note
that the DBRIC is collectively rational by definition (out-
comes are chosen from Mod(IC)). Also note that the defin-
tion of the distance-based rule is dependent on the IC.

Fact 1. If IC = >, then DBRIC = Maj.

1In the literature on judgment aggregation, this example is known
as the discursive dilemma [List and Puppe, 2009].



That is, if the IC does not restrict the set of ballots, the out-
come of the DBR coincides with that of the majority rule.

The DBRIC has good social choice-theoretic properties,
and—in its preference aggregation version known as the Ke-
meny rule [Kemeny, 1959]—is one of the most studied ag-
gregation rules. However, it has a prohibitively high com-
putational complexity: winner determination is Θp

2-complete
[Hemaspaandra et al., 2005; Endriss et al., 2012].

2.3 Rules based on Representative Voters
A simple idea to reconcile distance minimisation with algo-
rithmic efficiency is to restrict the search for a representative
collective view to the set of ballots submitted by the individ-
uals. This gives rise to a class of aggregation rules known as
generalised dictatorships [Grandi and Endriss, 2010]. Rules
in this class are collectively rational for every possible IC, and
no rule outside this class has this desirable property. Furthe-
more, they satisfy certain desirable social choice-theoretic ax-
ioms, notably unanimity and neutrality [Grandi and Endriss,
2011]. Still, not all such rules are “good” rules: a (proper)
dictatorship that chooses as collective outcome the ballot of
the same voter in all profiles is certainly not a desirable rule.
The problem of selecting the most representative voter is thus
crucial to obtaining interesting rules in this class.

How should we select this “most representative voter” for
a given profile? There arguably are two natural choices:
Definition 2. The average-voter rule is the aggregation rule
that selects those individual ballots that minimise the Ham-
ming distance to the profile:

AVR(B) = argmin
B∈SUPP(B)

H(B,B)

Definition 3. The majority-voter rule is the aggregation rule
that selects those individual ballots that minimise the Ham-
ming distance to one of the majority outcomes:
MVR(B) = argmin

B∈SUPP(B)

min{H(B,B′) | B′ ∈ Maj(B)}

Both of these rules are generalised dictatorships. They com-
bine the idea of selecting a most representative voter with the
basic principles at the heart of the Kemeny rule [1959] and
the Slater rule [1961], respectively, in preference aggrega-
tion. The judgment aggregation rules corresponding to Ke-
meny and Slater, respectively, have been called prototype and
endpoint by Miller and Osherson [2009].

3 Comparing the AVR and the MVR
In this section we compare our two rules based on representa-
tive voters, the AVR and the MVR. While their definitions are
very similar, they can result in radically different outcomes.
Example 1. Consider a scenario with 5 issues and 23 voters:

Issue: 1 2 3 4 5
1 voter: 0 1 1 1 1

2 voters: 1 0 0 0 0
10 voters: 0 1 1 0 0
10 voters: 0 0 0 1 1

Maj: 0 0 0 0 0
MVR: 1 0 0 0 0
AVR: 0 1 1 0 0
AVR: 0 0 0 1 1

That is, there are two AVR-winners and each of them differs
with the unique MVR-winner on a majority of the issues. It is
interesting to compare these outcomes with the vector of “av-
erage votes” ( 2

23 ,
11
23 ,

11
23 ,

11
23 ,

11
23 ), showing for each issue the

proportion of voters who chose 1 rather than 0. This demon-
strates that—with 11

23 being close to 1
2—the choices made for

issues 2–5 are relatively uncritical, while the choice made for
issue 1 is not. Also note that the distance to the profile is 48
for each of the AVR-winners and 65 for the MVR-winner.
In Example 1 the AVR produced outcomes that were closer
to the profile than the outcome produced by the MVR. This
is not a coincidence, but true for every profile B:
Fact 2. H(AVR(B),B) 6 H(MVR(B),B) for all B.
Recall that this means that the worst AVR-winner is at least as
close to the profile as the best MVR-winner (in fact, all AVR-
winners are equally close). Fact 2 follows immediately from
the definition of AVR-winners as the set of those ballots that
minimise the distance to the profile—together with the fact
that the MVR also selects from the set of individual ballots.

So, if we are interested in minimising the distance to the
input profile, then the AVR is superior to the MVR. On the
other hand, the computational complexity of computing win-
ners is lower for the MVR than for the AVR:
Fact 3. Winner determination for the MVR is in O(mn).
Fact 4. Winner determination for the AVR is inO(mn log n).
For the MVR, we can compute the majority outcome in
O(mn). We need a further O(mn) steps to compare each
of the n ballots on each of the m issues with that majority
outcome. For the AVR, we first compute, for each issue, the
number of voters choosing 1 in O(mn). Then for each of the
n individual ballots B, we check how far the vector n · B
is from that vector of sums, on each of the m issues. The
additional complexity in the case of the AVR is due to the
fact that, for each issue, we have to work with numbers that
require up to O(log n) bits to be represented.

A third way of comparing two rules is to use normative ar-
guments. Next we identify a normatively appealing property
(i.e., an axiom in the language of social choice theory) that is
satisfied by the AVR but not by the MVR. The axiom in ques-
tion is closely related to the reinforcement axiom (often, if
somewhat untowardly, referred to as consistency) introduced
by Young in his work on the characterisation of the positional
scoring rules in classical voting theory [Young, 1975].

Suppose two electorates N = {1, . . . , n} and N ′ =
{1, . . . , n′} each vote on the same set of issues I, resulting in
the profiles B and B′. Further suppose we use an aggregation
rule that is well-defined for any number of voters. Then, if a
particular ballot wins both under B and B′, we should expect
it to also win under B ⊕ B′ = (B1, . . . , Bn, B

′
1, . . . , B

′
n′),

i.e., when the two electorates vote together in the same elec-
tion. Let us make this intuitive idea precise:
Definition 4. An aggregation rule F satisfies reinforcement
if for any two profiles B and B′ with SUPP(B) = SUPP(B′)
and F (B)∩F (B′) 6=∅we have F (B⊕B′)=F (B)∩F (B′).
Reinforcement is certainly a desirable property: if two groups
independently agree that a certain outcome is best, we would
expect them to uphold this choice when choosing together.



Proposition 5. The AVR satisfies reinforcement.

Proof. We shall make use of the fact that for any ballotB and
any two profiles B and B′, the following holds:

H(B,B) +H(B,B′) = H(B,B ⊕B′) (1)

Take any two profiles B and B′ with SUPP(B) = SUPP(B′)
and AVR(B) ∩ AVR(B′) 6= ∅. We need to show that
AVR(B ⊕B′) = AVR(B) ∩ AVR(B′).

For the first direction, let B? ∈ AVR(B) ∩ AVR(B′). By
Equation (1), as B? minimises both H(B,B) and H(B,B′)
amongst allB, it must also minimiseH(B,B⊕B′). In other
words, B? ∈ AVR(B ⊕B′).

For the other direction, let B? ∈ AVR(B ⊕B′). For the
sake of contradiction, suppose B? 6∈ AVR(B) ∩ AVR(B′).
W.l.o.g., let B? 6∈ AVR(B). Choose any B ∈ AVR(B) ∩
AVR(B′). As B? is in the support of both B and B′, i.e., as
B did beat (did draw with) B? for B (for B′) we get:

H(B,B) < H(B?,B)

H(B,B′) 6 H(B?,B′)

But together with Equation (1), applied first to B and then to
B?, this yields H(B,B ⊕B′) < H(B?,B ⊕B′). Thus, B
beats B? for profile B⊕B′ under the AVR, i.e., B? does not
win and we have obtained a the required contradiction.

Proposition 6. The MVR violates reinforcement.

Proof. We construct a counterexample. Consider the follow-
ing two elections on 5 issues, with 12 voters each. Each of
them has a single majority winner:

Issue: 1 2 3 4 5
1 voter: 1 1 1 1 1

2 voters: 1 1 0 0 0
3 voters: 0 1 1 1 0
1 voter: 0 1 1 0 1

3 voters: 1 0 1 1 0
2 voters: 1 0 1 0 1

Maj: 1 1 1 1 0

Issue: 1 2 3 4 5
1 voter: 1 1 1 1 1

2 voters: 1 1 0 0 0
1 voter: 0 1 1 1 0

3 voters: 0 1 1 0 1
2 voters: 1 0 1 1 0
3 voters: 1 0 1 0 1

Maj: 1 1 1 0 1

For the first election, the individual ballots that are clos-
est to the majority outcome, i.e., the MVR-winners, are
(1, 1, 1, 1, 1), (0, 1, 1, 1, 0) and (1, 0, 1, 1, 0). They all have
distance 1 to the majority outcome. For the second elec-
tion the MVR-winners are (1, 1, 1, 1, 1), (0, 1, 1, 0, 1) and
(1, 0, 1, 0, 1), again with distance 1. That is, the intersec-
tion of the two sets of winners is nonempty and includes only
(1, 1, 1, 1, 1). Therefore, if the MVR were to satisfy rein-
forcement, the only winner of the election we obtain if we
join the two electorates should also be (1, 1, 1, 1, 1). This is
an election with 24 voters:

Issue: 1 2 3 4 5
2 voters: 1 1 1 1 1
4 voters: 1 1 0 0 0
4 voters: 0 1 1 1 0
4 voters: 0 1 1 0 1
5 voters: 1 0 1 1 0
5 voters: 1 0 1 0 1

Maj: 1 1 1 0 0

The distance between the majority outcome and (1, 1, 1, 1, 1)
is 2, while the distance between the majority outcome and
(1, 1, 0, 0, 0) is only 1. Hence, (1, 1, 1, 1, 1) cannot be an
MVR-winner; thus, the MVR violates reinforcement.

Hence, whenever we consider reinforcement an important
property, we should prefer the AVR over the MVR.

4 Approximation Results
If we consider the distance to the profile a crucial parameter
when assessing quality of an election outcome, then the DBR
is an optimal aggregation rule. But due to its high complexity,
it may not be a viable choice in practice. In this section we
analyse to what extent aggregation rules based on the selec-
tion of a representative voter can approximate the DBR.

Definition 5. Let F and F ′ be aggregation rules. Then F
is said to be an α-approximation of F ′ if H(F (B),B) 6
α · H(F ′(B),B) for every profile B.

Recall that F (B) and F ′(B) are sets of winning outcomes
that need not be singletons. Given our conventions on no-
tation, above inequality means that the worst F -winner has
a distance to the profile that is at most α times the distance
from the best F ′-winner to the profile. F is a strict α-
approximation of F ′ if the above inequality is strict (except
when the second distance is zero).

Our main goal in this section will be to show that both the
AVR and the MVR are strict 2-approximations of the DBRIC,
for any integrity constraint IC. We will also see that this
bound cannot be improved further, neither for these two rules
nor for any other generalised dictatorship that we might wish
to use to approximate the DBR. To put our main result in
context, let us first establish a very basic bound.

Proposition 7. Every generalised dictatorship F is (at least)
an (n−1)-approximation of every other aggregation rule F ′.

Proof (sketch). It is easy to see that the worst case is one
where n − 1 voters submit the same ballot B, 1 voter sub-
mits a ballot B that differs from B on every single issue, the
generalised dictatorship F returns B, and F ′ returns B. As
in this case H(B,B) = m and H(B,B) = m · (n− 1), we
obtain the bound claimed.

Given that the above approximation ratio is linear in the num-
ber of voters, this is not a very attractive result. Fortunately,
we can do much better if we choose the most suitable gen-
eralised dictatorship instead. The technical core of our argu-
ment is the following result, establishing an approximation of
the majority rule by means of the MVR.2

Proposition 8. The MVR is a strict 2-approximation of Maj.

Proof. Let B be any profile. The MVR selects the individual
ballots that are closest to one of the outcomes in Maj(B).
Fix BMVR to be one of the worst ballots in MVR(B), i.e.,
an MVR-winner that is most distant from B. Note that the

2This result can also be derived using a somewhat simpler proof
based on the triangular inequality, similarly to Footnote 3. The proof
we present here arguably has the advantage of being more easily
adapted to prove other results, such as our Propositions 12 and 13.



majority outcomes in Maj(B) are all equally distant from B.
Fix BMaj to be one of those that is closest to BMVR. We have
to show thatH(BMVR,B) < 2 · H(BMaj,B).

In case the majority outcome happens to be represented in
the profile (i.e., in case BMaj ∈ SUPP(B) and thus BMaj =
BMVR), we are done, as in this case the two distances are the
same (i.e., the approximation ratio is 1). So from now on
assume BMVR 6= BMaj.

Let B be any of the ballots in B corresponding to one of
the voters that is different from the voter that providedBMVR.
We will show that B disagrees with BMVR at most twice as
often as it disagrees with BMaj, i.e., that H(BMVR, B) 6 2 ·
H(BMaj, B). By summing up for all individual ballots in the
profile we will then obtain the required approximation bound.
We partition the set of issues I into four sets:

(1) I++ = {j ∈ I | bj = bMaj
j and bj = bMVR

j }
(2) I+− = {j ∈ I | bj = bMaj

j and bj 6= bMVR
j }

(3) I−+ = {j ∈ I | bj 6= bMaj
j and bj = bMVR

j }
(4) I−− = {j ∈ I | bj 6= bMaj

j and bj 6= bMVR
j }

That is, I+−, for instance, is the set of issues on which B
agrees with the majority outcome but disagrees with the worst
MVR-winner. By definition of these sets, we can now express
one of our distances of interest as follows:

H(BMVR, B) = |I+−|+ |I−−| (2)

Let k > 1 be the number of issues on which BMaj disagrees
with BMVR. By definition of the MVR, B must disagree with
BMaj on at least k issues:

k 6 H(BMaj, B) (3)

Observe that the set of issues on which BMaj disagrees with
BMVR is the union of the set of issues I+− that BMaj agrees
on with B but B disagrees on with BMVR and the set of is-
sues I−+ thatBMaj disagrees on withB butB agrees on with
BMVR. Hence, k = |I+− ∪ I−+|. As an immediate conse-
quence, we obtain that k > |I+−|. Due to the fact that B
cannot disagree with BMaj on more issues than BMVR does
(i.e., on more than k issues), we also have k > |I−+ ∪ I−−|.
Thus, we also get k > |I−−|. We can now put together Equa-
tion (2) with the two inequalities just obtained:

H(BMVR, B) 6 2k (4)

Equations (3) and (4) together show that B will disagree with
BMVR at most twice as many times as with BMaj. This is true
for every individual ballot B other than the MVR-winner it-
self. For the latter, the disagreement with BMVR (i.e., with
itself) is zero, while it is non-zero with BMaj (recall that we
assumed BMVR 6= BMaj). Thus, overall we obtain an approx-
imation ratio that is strictly better than 2.

Corollary 9. Both the AVR and the MVR are strict 2-
approximations of the DBRIC for IC = >.

Proof. Immediate from Proposition 8 together with the fact
that the majority rule is equivalent to the DBR> (Fact 1) and
the fact that the AVR-winner is always at least as close to the
profile as the MVR-winner (Fact 2).

What about the DBR for other integrity constraints? As it
turns out, IC = > is in fact the worst case and we can do
at least as well for any other integrity constraint. This will
follow from our next result, which shows that the stronger
the integrity constraint, the more distant the outcome of the
DBR will be from the profile. This result compares the dis-
tance to the profile achieved by the DBR for two different
integrity constraints. Observe that IC logically entails IC′ iff
Mod(IC) ⊆ Mod(IC′). That is, any profile B ∈ Mod(IC)n

that is admissible for DBRIC will also be admissible for
DBRIC′

. In other words, both the DBRIC and the DBRIC′
are

well-defined on any such B.

Lemma 10. If IC entails IC′, then H(DBRIC(B),B) >
H(DBRIC′

(B),B) for every profile B ∈ Mod(IC)n.

Proof. To prove the claim, it suffices to observe that both the
DBRIC and the DBRIC′

aim at minimising the same objective
function (namely the Hamming distance between the profile
and the winning ballot), while the DBRIC′

can select from a
larger set of candidate ballots.

We can now state our main approximation result, which
shows that the average-voter rule and the majority-voter rule,
besides having good axiomatic properties and being easy to
compute, are both good approximations of the much more
complex distance-based rule, independently from the in-
tegrity constraint used to delimit the set of feasible outcomes.

Theorem 11. Both the AVR and the MVR are strict 2-
approximations of the DBRIC for any integrity constraint IC.

Proof. By Corollary 9, both H(AVR(B),B) and
H(MVR(B),B) are strictly less than 2 · H(DBR>(B),B).
We can now use Lemma 10, together with the fact that any
formula IC logically entails>, to conclude that this last figure
is smaller than (or equal to) 2 · H(DBRIC(B),B), obtaining
the inequalities required for a strict 2-approximation.

Note that the AVR always provides a better bound than the
MVR, which, however, is easier to compute. A direct proof
of the fact that the AVR is a (non-strict) 2-approximation of
the DBRIC can also be obtained using the triangle inequality.3

Is this the best we can do? Yes, as the following example
will demonstrate, neither the AVR nor any other generalised
dictatorship can guarantee a better approximation ratio than 2.

Example 2. Let n = m, i.e., there are as many voters as
there are issues. Suppose each voter i ∈ N approves only of
issue i, i.e., we are considering the profile B with bi,i = 1 and
bi,j = 0 for i 6= j. Then the DBR> will return the outcome
B0 = (0, . . . , 0) . Here is an illustration for n = 5:

3This is a folk theorem in preference aggregation [Ailon et al.,
2008]. The proof can be sketched as follows: H(BAVR,B) =∑n

i=1 H(BAVR, Bi) 6
∑n

i=1
1
n

∑n
k=1 H(Bk, Bi) 6

∑n
i=1

1
n
·∑n

k=1[H(Bk, B
DBR) + H(BDBR, Bi)] =

1
n
· [n · H(BDBR,B) +

n · H(BDBR,B))] = 2 · H(BDBR,B).



Issue: 1 2 3 4 5
1 voter: 1 0 0 0 0
1 voter: 0 1 0 0 0
1 voter: 0 0 1 0 0
1 voter: 0 0 0 1 0
1 voter: 0 0 0 0 1

DBR>: 0 0 0 0 0

The distance between B0 and the profile is H(B0,B) = n
(one disagreement per voter). On the other hand, if we limit
ourselves to selecting one of the individual ballots as the out-
come, then the distance to the profile will be H(Bi,B) =
(n − 1) + (n − 1), whichever i ∈ N we pick. That is, the
approximation ratio for this scenario is 2 · n−1n . Hence, by
increasing n and m, we can go arbitrarily close to 2.
To summarise, at this point we know that the AVR is a strict 2-
approximation for all incarnations of the DBR and we cannot
do better than that—at least for the weakest possible integrity
constraint IC = >. However, Lemma 10 opens up the possi-
bility that better approximation ratios might be achievable for
stronger integrity constraints, and Example 2 suggests that the
worst case occurs when n = m. Indeed, under additional as-
sumptions improved bounds are possible. For lack of space,
we state the following two results without proof (the same
technique as for Proposition 8 may be used). The main in-
tuition underlying both results may be obtained by adapting
Example 2 to the situations covered by these results.

Recall that we have seen that the precise approximation
ratio is 2 · n−1n . It is possible to show that the approximation
ratio can alternatively be expressed in terms of m alone. In
most real-world applications n will be much larger than m,
which makes the following result attractive:
Proposition 12. If n > m, then the AVR and the MVR are
α-approximations of the DBRIC with α = 2 · m−1m for any IC.
For integrity constraints that are equivalent to cubes, i.e., con-
junctions of literals (without repeated or complementary lit-
erals), we obtain an even better approximation ratio:
Proposition 13. If n > m and if IC is a cube of length k, then
the AVR and the MVR are α-approximations of the DBRIC

with α = 2 · m−k−1m−k .

5 An Application to Preference Aggregation
Next we show how our approach yields new approximation
results for the Kemeny rule in preference aggregation. This
problem has been the subject of several publications: Dwork
et al. [2001] present a 2-approximation, Ailon et al. [2008]
use a randomised process to obtain an 11

7 -approximation, and
Kenyon-Mathieu and Schudy [2007] provide a PTAS for this
optimisation problem, i.e., a polynomial algorithm which,
given an instance of the problem and a positive number ε,
returns a (1 + ε)-approximation of the optimum.

Preference aggregation can be viewed as an instance of bi-
nary aggregation by devising a suitable integrity constraint:
issues are propositions of the form pa�b, and IC encodes the
properties of linear orders [Grandi and Endriss, 2011].4 Our

4For instance, to model transitivity, IC has to include conjuncts
of the form pa�b∧pb�c → pa�c for all triples of alternatives a, b, c.

approximation results thus transfer to the framework of pref-
erence aggregation, showing that the AVR and the MVR both
are strict 2-approximations of the Kemeny rule. While a 2-
approximation result using (the equivalent of) the AVR was
previously known [Ailon et al., 2008], we have strengthened
this result by showing that the approximation is strict. The
MVR, to the best of our knowledge, has never been consid-
ered for preference aggregation. It is a strict 2-approximation
of the Kemeny rule that is computable in linear time.

Thus, while there are sharper approximation results in the
literature specific to the problem of preference aggregation,
both the AVR and the MVR are attractive as they have very
low computational complexity and as they have a natural in-
terpretation as rules based on the selection of the most repre-
sentative voter, while the procedures used to obtain a PTAS
are algorithmically interesting but do not lead to the defini-
tion of normatively appealing aggregation rules. The AVR
and the MVR arguably are also easy to explain, which will be
relevant for elections involving human voters.

6 Conclusion
We have argued that simple aggregation rules that return the
proposal made by the most representative voter as the out-
come of a collective decision making process have surpris-
ingly attractive properties. We have developed our results
in the framework of binary aggregation with integrity con-
straints, but they immediately extend to other binary aggrega-
tion frameworks and to judgment aggregation as well.

We have focussed on two representative-voter rules: the
average-voter rule, which may be considered the result of
combining the representative-voter idea with the principle un-
derlying the Kemeny rule familiar from preference aggrega-
tion; and the majority-voter rule, which does the correspond-
ing thing for the Slater rule. Besides Kemeny and Slater, there
is a third preference aggregation rule that naturally extends
to binary aggregation, namely Tideman’s method of Ranked
Pairs [Tideman, 1987; Zavist and Tideman, 1989]: Under
this rule, we accept choices for the issues in the order of
the strength of the majorities supporting them, unless doing
so would violate the IC. In judgment aggregation, this rule
has been proposed under the names of ranked-agenda rule
[Lang et al., 2011] and support-based procedure [Porello and
Endriss, 2011]. Winner determination for Tideman’s rule is
intractable in the general case [Brill and Fischer, 2012] and
it is thus interesting to study the approximation ratio of its
representative-voter version.

More generally speaking, for any aggregation rule that
selects from the set of all feasible outcomes according to
some notion of optimality, we may define a corresponding
representative-voter rule by restricting the search space to the
individual ballots. Such rules represent good compromises
between algorithmic considerations and the need for princi-
pled methods of aggregation. The extent to which these rules
can approximate more complex ones opens up a wide range
of interesting questions for future work. These questions may
be studied for binary aggregation and for restricted domains
such as preference aggregation, where intractability results
for optimality-based rules are widespread [Hudry, 2012].
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[Konieczny and Pino Pérez, 2002] S. Konieczny and
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