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ABSTRACT
Crowdsourcing is an important tool, e.g., in computational
linguistics and computer vision, to efficiently label large
amounts of data using nonexpert annotators. The indivi-
dual annotations collected need to be aggregated into a sin-
gle collective annotation. The hope is that the quality of
this collective annotation will be comparable to that of a
traditionally sourced expert annotation. In practice, most
scientists working with crowdsourcing methods use simple
majority voting to aggregate their data, although some have
also used probabilistic models and treated aggregation as a
problem of maximum likelihood estimation. The observa-
tion that the aggregation step in a collective annotation ex-
ercise may be considered a problem of social choice has only
been made very recently. Following up on this observation,
we show that the axiomatic method, as practiced in social
choice theory, can make a contribution to this important do-
main and we develop an axiomatic framework for collective
annotation, focusing amongst other things on the notion of
an annotator’s bias. We complement our theoretical study
with a discussion of a crowdsourcing experiment using data
from dialogue modelling in computational linguistics.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence; J.5 [Arts and Humanities]: Linguistics
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Crowdsourcing; Annotation; Computational Social Choice

1. INTRODUCTION
Many fields of science and engineering rely on the availability
of annotated data, e.g., images labelled with object names
for computer vision or part-of-speech annotations of words
in text corpora for computational linguistics. Traditionally,
such annotations have been provided by small numbers of
experts, each labelling large amounts of data. Today, the
availability of crowdsourcing technologies makes it possible
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to instead collect annotations from large numbers of individ-
uals, who may not be experts and who may each only anno-
tate a small subset of a given dataset. This new technology
offers spectacular opportunities but also raises methodolog-
ical questions. To produce a definitive annotation of the
data we need to aggregate the individual annotations pro-
vided by the participants in a crowdsourcing exercise. The
most common approach is to label a given item with the cat-
egory chosen most often by the individuals. This method is
usually referred to as majority voting and is often combined
with some form of quota requirement [4, 15].

A more sophisticated approach is to use unsupervised
methods from machine learning. By using an individual
annotator’s agreement with the choices made by the full
population of annotators, we can estimate certain param-
eters relating to her competence and then weight her vote
accordingly [14, 16]. Such maximum likelihood estimation
methods can give good results, but they also do not easily
lend themselves to a principled reflection on the rule of ag-
gregation implemented. A useful perspective that does per-
mit such reflection is to consider aggregating crowdsourced
data as a problem of social choice [6].

Social choice theory is the systematic study of methods
of aggregating information provided by individuals into a
collective view of that information, with the study of vot-
ing rules (aggregating voter preferences to obtain election
winners) being the best-known example. In social choice
theory, aggregators have been analysed both in terms of the
axioms (formal renderings of normative desiderata) they sat-
isfy and as maximum likelihood estimators given certain as-
sumptions on the nature of the noisy signals regarding an
assumed ground truth received by the individuals [18]. In
the crowdsourcing literature, on the other hand, only the
maximum likelihood estimation perspective has been con-
sidered. Our aim in this paper is to address this imbalance
and to initiate an axiomatic analysis of aggregation methods
that can be applied in the context of crowdsourcing.

The remainder of the paper is organised as follows. Sec-
tion 2 presents our formal model for collective annotation.
In Section 3 we adapt several axioms from other areas of so-
cial choice to collective annotation and in Section 4 we use
these axioms to prove two characterisation results. Section 5
is devoted to the notion of bias: we formulate axioms for ag-
gregation methods that can handle annotator bias and we
define four particularly natural representatives of the class
of methods we characterise. In Section 6 we test these meth-
ods using data on dialogue modelling in computational lin-



guistics collected through crowdsourcing. Finally, Section 7
reviews related work and Section 8 concludes.

2. THE MODEL
In this section we introduce our formal model for collective
annotation. We also define a number of domain restrictions
regarding the space of possible annotations collected.

2.1 Group Annotations
Let N be an infinite set of agents (which we shall also refer
to as annotators or individuals). This represents the (for all
practical purposes unlimited) set of individuals that may, in
principle, be recruited to take part in an annotation exercise.
Furthermore, let J be a finite set of items and let K be
a finite set of categories (possibly including a ‘don’t know’
category). A finite number of agents annotate some of the
items by assigning categories to them. This results in a finite
group annotation A ⊆ N×J×K. Read (i, j, k) ∈ A as agent i
annotating item j with category k.1

For a given group annotation A and sets N ′ ⊆ N , J ′ ⊆ J ,
and K′ ⊆ K, we refer to subsets of A obtained by means of
relevant restrictions like this:

A �N ′, J ′,K′ := {(x, y, z) ∈ A | x ∈ N ′, y ∈ J ′, z ∈ K′}

Various liberties will be taken with this notation. These
include omitting set brackets for single elements, and omit-
ting whole sets when, say, N ′ = N . Thus, for instance,
A � j = {(x, y, z) ∈ A | y = j} is the set of annotations
concerning item j.

We also introduce the following notation to extract rele-
vant information from sets of tuples A ⊆ N×J×K:

agt(A) := {i | (i, j, k) ∈ A}
itm(A) := {j | (i, j, k) ∈ A}
cat(A) := {k | (i, j, k) ∈ A}

Combining our notation for restriction and extraction, we
can succinctly express complex concepts, e.g., the set of cat-
egories used by agent i is cat(A � i).

2.2 Domain Restrictions
It is sometimes useful (and appropriate) to assume certain
domain restrictions. We call a group annotation A complete
if every agent annotating any item at all has actually anno-
tated all items, i.e., if A � i, j 6= ∅ for all (i, j) ∈ agt(A)×J .
A is category-exclusive if no agent annotates the same item
with more than one category, i.e., if |A � i, j| 6 1 for all
(i, j) ∈ N×J . Finally, A is item-covering if each item is
annotated at least once, i.e., if A � j 6= ∅ for all j ∈ J .

Throughout this paper, we shall assume that all group
annotations involved are category-exclusive. This is also the
most common scenario in practice: most crowdsourcing ex-
ercises will require annotators to choose exactly one category

1Compare this to the standard notation used in social choice the-
ory: Usually, to model an aggregation problem such as this, we
would first define what kind of information an agent can supply
(e.g., a preference order, or in our case an annotation of some of
the items), and then define the input to the aggregation prob-
lem, called the profile, as a vector of such individual pieces of
information, one for each agent. We could have followed this ap-
proach also here [6]. However, as we are specifically interested in
incomplete annotations, where distinct agents will typically an-
notate very different (small) parts of the data, our notation is
much more flexible than the standard, agent-centric, approach.

(possibly ‘don’t know’ ) for any item they are presented with.
At the same time, it is important to note that there are ex-
ceptions. For instance, one of the steps in taxonomy creation
tasks via crowdsourcing consists in showing annotators an
item (e.g., a piece of text or a picture) and n labels and
asking them to select all labels that apply to the item [4].

Item-coverage is a very weak restriction. It can always be
assumed by definition, by simply removing any items from
J that have not actually been annotated. However, it will
not be necessary to make this assumption here.

Completeness, finally, is a much more demanding restric-
tion, which we usually do not want to impose (although we
will study complete annotations as an extreme case). In-
deed, in practice it would be very costly to collect an anno-
tation from every agent on every item.

2.3 Aggregators
An aggregator is a function F : 2N×J×K

<ω → 2J×K , mapping
any given group annotation (i.e., any given finite subset of
N×J×K) to a single annotation (i.e., to a subset of J×K),
associating every item with a (possibly empty, and ideally
singleton) set of categories. We refer to F (A) as the col-
lective annotation obtained as the result of aggregating the
information in group annotation A. An example for an ag-
gregator is the simple plurality rule:2

SPR : A 7→ {(j, k?) ∈ J×K | k? ∈ argmax
k∈cat(A�j)

|A � j, k|}

That is, when given a group annotation A, the SPR returns
an annotation in which each item j is annotated with the
category chosen most often for j (note that |A � j, k| is the
number of agents choosing category k for item j in A). In
case of a (multi-way) tie, j is annotated with all categories
receiving maximal support. In case j has not been annotated
at all in A, it will not get annotated in SPR(A) either.3

We extend our notation for restriction of and extraction
from group annotations to collective annotations. For in-
stance, itm(F (A) � k) is the set of items annotated with
category k in the collective annotation returned by F .

3. FUNDAMENTAL AXIOMS
Next, we introduce several axioms that encode simple struc-
tural (usually desirable) properties of an aggregator F .

Unless explicitly stated to the contrary, all our axioms
apply to all group annotations A, all agents i and i′, all items
j and j′, and all categories k and k′ (to improve readability,
this kind of quantification is often left implicit).

3.1 Outcome Restrictions
Our first group of axioms impose basic constraints on the
outcome of an aggregation. Let us call an aggregator F deci-
sive if it assigns a single category to every item: |F (A � j)| =
1 for all items j ∈ J . In case A is not item-covering, this is
an unreasonably demanding requirement (as it requires us
to choose a category also for items that have not been anno-
tated by anyone). This consideration leads to our next defi-

2This rule is often referred to as simple majority rule, although
strictly speaking that term should be restricted to scenarios with
only two possible categories. Note that if we were to drop our
assumption of category-exclusivity, then the SPR would become
a form of (item-wise) approval voting [3].
3In this case, cat(A � j) = ∅. We take the argmax-operator over
the empty set as returning the empty set.



nition: F is weakly decisive if |F (A � j)| = min{1, |A � j|} for
all items j ∈ J , i.e., if it always assigns a single category—
unless the item in question has not been annotated at all (in
which case it remains unannotated also in the outcome).

Furthermore, let us call F nontrivial if it does not leave
items unannotated for which there is at least one individual
annotation: |F (A) � j| > 0 whenever |A � j| > 0. That is,
weak decisiveness implies nontriviality.

Observe that the SPR, for instance, is nontrivial, but nei-
ther decisive nor weakly decisive: there may be ties.

3.2 Unanimity and Related Properties
Unanimity is a fundamental principle requiring that any de-
cision supported by all members of a community should be
implemented. There are several variants of this principle
that are of interest here, including at least these two:

• F is unanimous if it is the case that, whenever there
exists a set K′ ⊆ K such that cat(A � i, j) = K′ for all
agents i ∈ N , then also cat(F (A) � j) = K′.4

• F is grounded if cat(F (A) � j) ⊆ cat(A � j).

That is, groundedness expresses a ‘no new categories’ re-
quirement: no item should be annotated with a category
that has not been used by at least one individual for that
item (and items that have not been annotated at all should
not get assigned any category during aggregation).

Proposition 1. Any nontrivial aggregator that is
grounded must also be unanimous.

Proof. Suppose all agents agree on category k for item j.
By nontriviality, our aggregator F must annotate j with one
or more categories. By groundedness, they can only include
categories chosen by at least one agent. But k is the only
such category.5 Hence, F must choose (only) k for j.

All of the aggregators to be discussed in this paper are
grounded (and thus also unanimous).6

3.3 Independence and Symmetry Properties
Our intuitively most demanding axiom is independence: F
is item-independent if F (A)�j = F (A�j) for all j ∈ J . That
is, F is item-independent if we can determine the category
(or categories) to assign to a given item j by only considering
the individual annotations for j.

Two standard axioms in social choice theory are
anonymity and neutrality. Anonymity imposes a symme-
try requirement on individuals (they should all be treated
the same). Neutrality has several possible interpretations in
our context: neutrality w.r.t. items means that two items
annotated in exactly the same way in the input should also
receive the same annotation in the output; neutrality w.r.t.
categories means that categories should be treated symmet-
rically (e.g., if a certain group of agents choosing category k
is sufficient for k to win for a given item, then the same

4Note that if A is category-exclusive, then K′ will be a singleton.
5Note that here we use our assumption of category-exclusiveness.
6It is not inconceivable that one might want to violate grounded-
ness: Suppose the available categories are ‘good’, ‘medium’, and
‘bad’ ; and suppose that half of the agents chose ‘good’ for a given
item and the other half chose ‘bad”. Then we might want our ag-
gregator to return ‘medium’. But defining such an aggregator in a
principled manner requires taking the semantics of the categories
into account, which is beyond the scope of this paper.

should be true for category k′). We formulate all these prop-
erties as symmetry requirements:7

• F is agent-symmetric if F (σ(A)) = F (A) for all per-
mutations σ : N → N and all group annotations A.

• F is item-symmetric if F (σ(A)) = σ(F (A)) for all per-
mutations σ : J → J and all group annotations A.

• F is category-symmetric if F (σ(A)) = σ(F (A)) for all
permutations σ : K → K and all group annotations A.

For the definitions above, permutations σ on one component
of a tuple are extended to full tuples in the natural manner,
e.g., σ(A) = {(σ(i), j, k) | (i, j, k) ∈ A} for σ : N → N . Note
that in our definition of agent-symmetry (i.e., of anonymity)
we do not need to apply σ on the righthand side, because
the set F (A) does not refer to agents at all. It is not difficult
to see that the SPR satisfies all four axioms above.

Proposition 2. The four axioms of item-independence,
agent-symmetry, item-symmetry, and category-symmetry
are mutually independent.

Proof (sketch). Given that the SPR satisfies all four
axioms, to show independence of one axiom w.r.t. the other
three, it suffices to identify an aggregator that violates the
former but satisfies the latter three. We demonstrate this
for the case of item-symmetry. Suppose there are two items
(say, 1 and 2). Consider the aggregator F that will assign all
those categories to item 1 that were chosen, for that item, by
an odd number of agents, and all those categories to item 2
that were chosen, for that item, by an even number of agents.
F is item-independent (you can decide the outcome for a
given item by only looking at the input for that item), agent-
symmetric (all agents are treated the same), and category-
symmetric (for a given item, all categories are awarded using
the same rule). However, F clearly violates item-symmetry,
as items 1 and 2 will receive different collective annotations
in case their individual annotations are the same.

3.4 Monotonicity Properties
Intuitively speaking, if we accept a given category k for a
given item j, then if that category receives additional sup-
port, we should still accept it.

We say that F is monotonic if (j, k) ∈ F (A) implies
(j, k) ∈ F (A ∪ {(i, j, k)}). Later we shall require a slightly
stronger form of monotonicity, inspired by the seminal work
of May [13], which in addition stipulates that in case k was
a tied winner for j, after receiving additional support k will
become the sole winner. Formally, F satisfies positive re-
sponsiveness if k ∈ cat(F (A) � j) and (i, j, k) 6∈ A together
imply cat(F (A ∪ (i, j, k)) � j) = {k}. That is, when cate-
gory k is selected for item j and then agent i, who has not
previously annotated j at all, now also annotates j with k,
then k should become the sole collective annotation for j.

4. CHARACTERISATION RESULTS
In this section, we present two characterisation results. The
first is a characterisation of the SPR in terms of some of our
axioms. The second is an axiomatic characterisation of the
class of all aggregators that can be defined in terms of an
assignment of weights to individual annotations.
7The need to distinguish between different forms of neutrality has
also be recognised in binary (and judgment) aggregation. Specifi-
cally, for the special case of two categories, what we call category-
symmetry has been called domain-neutrality before [9].



4.1 The Simple Plurality Rule
Recall the definition of the SPR: it selects those categories
for a given item j that are tied for having been selected most
often by the agents (with the one exception that items not
annotated at all are also not annotated in the outcome).

Theorem 3. An aggregator is nontrivial, item-in-
dependent, agent-symmetric, category-symmetric, and pos-
itively responsive if and only if it is the simple plurality rule.

Proof. Clearly, the SPR meets all five axioms. For
the opposite direction, first observe that item-independence
means that it is sufficient to prove the claim for the case
of a single annotated item j. Then agent-symmetry im-
plies that F (A) � j, the collective annotation of j, must
be computable from the |A � j, k|’s alone, i.e., considering
only the cardinalities of the sets of agents choosing a given
category for j. Furthermore, due to category-symmetry, if
|A � j, k| = |A � j, k′| for two categories k, k′ ∈ K, then we
must have (j, k) ∈ F (A)⇔ (j, k′) ∈ F (A).

Now let F be an arbitrary aggregator that satisfies our five
axioms. We need to exclude two possible scenarios where F
would differ from the SPR (the scenario of a plurality-winner
losing, and that of a plurality-loser winning):

• Suppose k+ ∈ argmaxk∈K |A � j, k| and
∣∣A � j, k+∣∣ 6= 0.

Then (j, k+) ∈ SPR(A). For the sake of contradiction,
assume (j, k+) 6∈ F (A). By our characterisation above,
no other category k′ with |A � j, k′| =

∣∣A � j, k+∣∣ may
then be in cat(F (A) � j) either. Still, by nontriviality,
F (A) � j 6= ∅. So pick any k ∈ cat(F (A) � j). Then
keep adding new agents i providing the single annota-
tion (i, j, k) to the group annotation, until k+ and k are
used equally often to label j. By positive responsive-
ness, after the first such addition, k becomes the only
category labelling j in the outcome, and this remains
the case until the end. At that point we have reached
a situation in which k and k+ are chosen equally of-
ten, but have a different status in the outcome. This
contradicts our characterisation above, i.e., we have
derived our contradiction.

• Now suppose
∣∣A � j, k−∣∣ < ∣∣A � j, k+∣∣, i.e., (j, k−) 6∈

SPR(A). For the sake of contradiction, assume
(j, k−) ∈ F (A). By positive responsiveness, if we add
one more agent choosing k−, then k− will become the
only winning category for j. This remains the case if
we keep on adding such agents until k− and k+ have
equal support. But then we have a contradiction with
our earlier characterisation, which would require that
either both or none of k− and k+ are winning.

Hence, F must coincide with the SPR in all cases.

For the special case of exactly two categories (i.e., for binary
aggregation) and under the domain restriction of complete
annotations, Theorem 3 is, essentially, a known result [9]. If
we furthermore restrict ourselves to annotations of a single
item, then we obtain a variant of May’s Theorem [13].

Interestingly, while the SPR satisfies item-symmetry, this
axiom is not required for our characterisation. Rather, it is
entailed by the other axioms (see also Proposition 2).

We stress that Theorem 3 relies on our assumption of
category-exclusivity. A natural direction for future work
would be to search for a similar characterisation result with-
out this assumption. We expect that it will be possible to do

so by looking for a suitable generalisation of known axioma-
tisations of approval voting with a variable electorate [7, 17].

4.2 Weighted Plurality Rules
We now want to generalise the SPR and consider weighted
plurality rules. For instance, we may have high confidence
in the competence of agent 1 and want to give her a higher
weight than the other agents. Or we may want to give her
a higher weight as far as the annotation of items 1–10 are
concerned, on which she is an acknowledged expert. Or,
in case we observe that agent 2 annotates 90% of all items
with category 20, we may want to lower her weight for those
instances. In general, we may assign a distinct weight to any
triple (i, j, k), and this weight may depend on any feature
of the group annotation A we are given. That is, in the
most general case, a weighted plurality rule will be defined
in terms of a weight function wt:

wt : 2N×J×K
<ω → (N×J×K → R+

0 )

We write wtA for wt(A), the function from individual anno-
tations (i, j, k) to weights, as pinpointed by group annota-
tion A. The weighted plurality rule Fwt with weight func-
tion wt is defined as follows:

Fwt : A 7→ {(j, k?) ∈ J×K | k? ∈ argmax
k∈cat(A�j)

∑
i∈agt(A�j,k)

wtA(i, j, k)}

That is, category k? will be chosen for item j if k? maximises
the weighted sum we get when we add up the weights for
every individual annotation of j with a given category, using
the weights prescribed by wt. As for the SPR, in case no
agent annotates j at all, Fwt(A) � j will be empty. Observe
how Fwt reduces to the SPR in case wt ≡ 1.

We say that F is a weighted plurality rule if there exists
a weight function wt such that F ≡ Fwt. Note that any
aggregator that is a weighted plurality rule can be defined
in terms of many different weight functions; in particular,
we have Fwt ≡ Fc·wt for any constant c ∈ R+.

Theorem 4. An aggregator is nontrivial and grounded if
and only if it is a weighted plurality rule.

Proof. First, Fwt is certainly nontrivial and grounded for
any choice of wt. This follows immediately from the proper-
ties of the argmax-operator. For the other direction, take an
arbitrary nontrivial and grounded aggregator F . We need
to devise a function wt such that F ≡ Fwt. By nontriviality,
if F (A) � j = ∅, then there are no annotations containing
j, so any weight function gives the correct (empty) set of
outcomes. We only need to ensure that, if F (A) � j 6= ∅,
then the weight function returns the correct outcomes.

Fix an order � on N . Define wtA(i, j, k) := 1 if (j, k) ∈
F (A) and i is the �-first agent in N with (i, j, k) ∈ A.
Note that there must be at least one such agent, because
of groundedness (if not, we could not have (j, k) ∈ F (A)).
Define all other weights to be 0. Then the sum of weights
for (j, k) will be 1 exactly when we want (j, k) to be part of
the outcome, and 0 otherwise.

Of course, the class of weighted plurality rules is huge and
includes many unattractive aggregators. In the sequel, we
will focus on a specific class of weighted rules with intuitively
appealing features. Thanks to Theorem 4, when discussing
such rules, we may switch freely between, on the one hand,
descriptions of aggregators themselves and, on the other,
descriptions of the weight functions defining them.



5. BIAS CORRECTION
Annotator bias is a common problem, not only in crowd-
sourcing, but also in traditionally sourced expert annota-
tions. For instance, an annotator may have misunderstood
the instructions given, she may use a faulty heuristic to make
annotations quickly, or she may be an outright spammer sim-
ply annotating all or most items with the same category. In
this section, we want to give a basic axiomatic account of the
phenomenon of bias, complementing the growing amount of
work on probabilistic models of bias [2, 16].

We want to distinguish bias from mere lack of reliability:
an agent who is biased towards a certain category will sys-
tematically overuse that category, an agent who is biased
against a category will systematically underuse it, while an
agent that is merely unreliable will not display such a clear
pattern in their mistakes. Still, bias is more than the agent
in question just often (or rarely) using a given category; if a
category is highly prevalent in the data to begin with (which
to a certain extent will be reflected by the frequency with
which it is chosen by other annotators), then a heavy use of
that category does not necessarily constitute a mistake.

As we saw in Section 3.4, the axiom of monotonicity con-
strains the outcomes of an aggregator w.r.t. two neighbour-
ing group annotations that only differ in terms of a single
individual annotation. There are also other situations where
the addition (or the exchange) of a single individual annota-
tion can provide additional support for the currently winning
category for a given item. We will now identify several of
them that relate to the notion of bias.

5.1 Category Prevalence and Scarcity
Consider the following scenario:

Suppose our aggregator has assigned category k to
item j. Now we observe an agent i′ (not involved
in the annotation of j) annotating item j′ (different
from j) with k. This provides additional evidence
that k is a common category: the prevalence of cate-
gory k has increased. Thus, we should have increased
confidence in any agent i who chose k for j (more
specifically, we should have increased confidence in
her recall for items of category k). Hence, we should
certainly keep our collective annotation of k for j.

Similarly, if agent i′ were to delete an annotation using cate-
gory k′ (different from k), then k′ would become more scarce,
and again our confidence in any agent choosing k should in-
crease. These considerations lead to two new axioms:

• F is prevalence-sensitive if (j, k)∈F (A) implies (j, k) ∈
F (A ∪ {(i′, j′, k)}) for i′ 6∈ agt(A � j), j 6= j′.

• F is scarcity-sensitive if (j, k) ∈ F (A ∪ {(i′, j′, k′)})
implies (j, k)∈F (A) for i′ 6∈ agt(A � j), j 6= j′, k 6= k′.

5.2 Category Overuse and Underuse
Now consider this scenario:

Suppose on current evidence our aggregator has as-
signed category k to item j, and agent i was one of
the annotators who labelled j with k. Now we ob-
serve agent i annotating a different item j′ with a
different category k′. This extra evidence suggests
that i is less biased towards k (more specifically, we
should have increased confidence in her precision as
far as k is concerned). Thus, after our observation
the aggregator should still assign k to item j.

That is, adding a k′-annotation is evidence for k′-overuse,
which should increase our confidence in k-choices. Similarly,

if i deletes one of her k-annotations elsewhere, then this sug-
gests an underuse of k, and our confidence in her k-choices
should again increase. We formulate two axioms:

• F is overuse-sensitive if (j, k) ∈ F (A) implies (j, k) ∈
F (A ∪ {(i, j′, k′)}) for (i, j, k) ∈ A, i 6∈ agt(A � j′),
j 6= j′, k 6= k′.

• F is underuse-sensitive if (j, k) ∈ F (A ∪ {(i, j′, k)})
implies (j, k) ∈ F (A) for (i, j, k) ∈ A, i 6∈ agt(A � j′),
j 6= j′.

It could be argued that these last two axioms are too strong.
Consider the second one: as i deletes her k-annotation
of j′, not only does her use of k decrease (which we ar-
gued should increase our confidence into her remaining k-
annotations), but at the same time k becomes more scarce
in general, which should decrease our confidence in non-k
choices made by other agents. We may not wish to com-
mit to one of these two effects necessarily outweighing the
other. The following variants of our axioms account for this
point. They are designed to apply to pairs of group annota-
tions in which the overall number of k-annotations (i.e., the
prevalence/scarcity of k) remains constant:

• F is weakly overuse-sensitive if (j, k) ∈ F (A ∪
{(i′, j′, k′)}) implies (j, k) ∈ F (A ∪ {(i, j′, k′)}) for
(i, j, k) ∈ A, i 6= i′, i′ 6∈ agt(A � {j, j′}), j 6= j′, k 6= k′.

• F is weakly underuse-sensitive if (j, k) ∈ F (A ∪
{(i, j′, k)}) implies (j, k) ∈ F (A ∪ {(i′, j′, k)}) for
(i, j, k) ∈ A, i 6= i′, i′ 6∈ agt(A � {j, j′}), j 6= j′.

5.3 The Space of Bias-Correcting Rules
We are now ready to offer a definition of bias, by means
of fixing a class of aggregators that are able to correct for
bias. First, we want any such aggregator to satisfy the ax-
ioms regarding prevalence/scarcity and (the weak variants
of) over/underuse defined above. Second, we want any such
aggregator to satisfy all of the fundamental axioms defined
in Section 3—with the sole exception of item-independence,
which is in direct conflict with the basic idea of using in-
formation gathered for one item to improve the aggregation
outcome for another item.8 That is,

F is a bias-correcting rule (BCR) if it is
nontrivial, grounded, agent-symmetric, item-
symmetric, category-symmetric, monotonic,
prevalence-sensitive, scarcity-sensitive, weakly
overuse-sensitive, and weakly underuse-sensitive.

The space of BCR’s is not small: we may vary the signifi-
cance we ascribe to the different components of bias (preva-
lence, scarcity, overuse, underuse) and we may vary the de-
gree to which we are willing to violate the independence
axiom. By Theorem 4, any BCR must be a weighted plu-
rality rule, so we can define any such rule in terms of a
suitable weight function. In previous work [6], we have
(for the case of binary categories) identified what arguably
are three of the most natural representatives of the class
of BCR’s; here we generalise these definitions and add a

8One additional, very minor, exception is that we use monotonic-
ity rather than the slightly more demanding positive responsive-
ness (because we do not want to insist on even the weakest form
of additional support to necessarily have the power to break ties,
e.g., when that support comes from a highly biased annotator).



Diff difference-based BCR 1 + Freq(k)− Freqi(k)
Rat ratio-based BCR Freq(k)/Freqi(k)
Com complement-based BCR 1 + 1/|K| − Freqi(k)
Inv inverse-based BCR 1/Freqi(k)

Table 1: Weights used for canonical BCR’s.

fourth rule. To define these rules, we use the global fre-

quency Freq(k) := |A�k|
|A| of category k to measure preva-

lence and scarcity, and we use the individual frequency

Freqi(k) := |A�i,k|
|A�i| of agent i in using category k to mea-

sure over- and underuse.9 Our four rules are defined in
Table 1 in terms of the corresponding weight function by
fixing the weight assigned to annotation (i, j, k).10 That is,
the difference-based BCR, for instance, is the aggregator Fwt

with wtA : (i, j, k) 7→ 1 + Freq(k)− Freqi(k).
It is not difficult to verify that all four rules meet all the

axioms defining the class of BCR’s.
The weight functions of all four rules are monotonically

decreasing in the individual frequencies; Diff and Rat are
also monotonically increasing in the global frequencies. The
functions of Table 1 are particularly simple functions with
these monotonicity properties; hence our claim that our four
rules are natural representatives of the class of BCR’s.

For Diff and Rat, if an agent’s individual frequency for
category k is equal to the global frequency of k, then her
weight for k is 1, i.e., in this case the rules coincide with the
SPR. Com and Inv coincide with Diff and Rat, respectively,
in case the global frequencies of all categories are the same,
i.e., in case Freq(k) = 1

|K| for all k ∈ K. Indeed, the simpler

rules (ignoring Freq(k)) may be preferred, if we do not want
to assume that it is possible to estimate the gold standard
frequency of a category from its observed global frequency
in the group annotation.

Next, we show how two simple axioms (on weight func-
tions) allow us to neatly separate our four rules:

• Call F agent-independent if there exists a weight func-
tion wt with F ≡ Fwt that satisfies the following prop-
erty for all A and all (i, j, k):

wtA(i, j, k) = wtA�i(i, j, k)

Com and Inv satisfy agent-independence, while Diff
and Rat do not. That is, for the former two we can
calculate the weight given to (i, j, k) by only consid-
ering the annotations of agent i, while for the latter
two we also need to take the annotations of the other
agents into account (to compute Freq(k)).11

• Call F weight-bounded if there exist a weight function
wt with F ≡ Fwt and a constant c ∈ R+ such that the
following property holds for all A and all (i, j, k):

wtA(i, j, k) 6 c

Both Diff and Com are weight-bounded with c = 2.
Rat and Inv, on the other hand, are not weight-

9We shall assume |A| 6= 0. Although |A � i| = 0 for some i ∈ N ,
we will never need to compute the individual frequency for those i.

10The rule Com had originally been defined using weights 1 −
Freqi(k) [6]. Arguably, adding 1/|K| is a more natural choice,
e.g., it ensures that Com and Diff coincide when the global fre-
quencies of all categories are the same.

11An alternative way of separating Com/Inv from Diff/Rat would
be the non-weak variants of overuse- and underuse-sensitivity.

bounded. For Inv, if agent i annotates item j with
k and all other items with k′, then Freqi(k) = 1

|J| ,

i.e., the weight for (i, j, k) will be |J |, which is not
bounded from above. For Rat, if i annotates j with
k and all other items with k′, while all other agents

annotate all items with k, then Freq(k) = (|I|−1)·|J|+1
|I|·|J|

and Freqi(k) = 1
|J| , i.e., (i, j, k)’s weight is in Ω(|J |).

A rule that is not weight-bounded allows an agent to have
an arbitrarily strong influence on the collective annotation of
one item (albeit at the expense of losing influence on many
other items), while weight-bounded rules put clear limits on
such trade-off effects.

5.4 Complete Annotations
We conclude our discussion of the axiomatics of BCR’s with
an intriguing result showing that for the special case of com-
plete annotations and binary categories (i.e., for |K| = 2),
the difference-based BCR reduces to the SPR.12

Proposition 5. For binary categories, if all agents an-
notate all items, then Diff and SPR return the same result.

Proof. Let K = {0, 1}. Category 1 will win for a given
item j under Diff if and only if the following holds:∑
i∈agt(A�j,1)

1 +
|A � 1|
|A| −

|A � i, 1|
|A � i| >

∑
i∈agt(A�j,0)

1 +
|A � 0|
|A| −

|A � i, 0|
|A � i|

Using |A�0|
|A| = 1− |A�1|

|A| and |A�i,0|
|A�i| = 1− |A�i,1|

|A�i| (i.e., using the

fact that there are exactly two categories, with no possibility
of abstaining), we rewrite:∑
i∈agt(A�j,1)

1 +
|A � 1|
|A| −

|A � i, 1|
|A � i| >

∑
i∈agt(A�j,0)

1− |A � 1|
|A| +

|A � i, 1|
|A � i|

Pushing all terms involving |A�1|
|A| to the left and all those

involving |A�i,1|
|A�i| to the right, we get:

|A � j, 1|+ |A � j| · |A � 1|
|A| > |A � j, 0| +

∑
i∈agt(A�j)

|A � i, 1|
|A � i|

If we can simplify this further to |A � j, 1| > |A � j, 0|, i.e.,
to the winning condition for 1 under the SPR, then we are
done. That is, we are done if we can show:

|A � j| · |A � 1|
|A| =

∑
i∈agt(A�j)

|A � i, 1|
|A � i|

As every agent annotates every item exactly once, we have
agt(A�j) = N , |A � j| = |N |, |A � i| = |I|, and |A| = |N | · |I|.
Hence, we can rewrite as follows:

|A � 1| =
∑
i∈N

|A � i, 1|

But this is immediately seen to be true, so we are done.

This result illustrates that aggregation problems with highly
incomplete profiles are qualitatively different from the more
commonly studied case in which all individuals are asked ex-
actly the same questions: rules that are not distinguishable
in the latter case may differ greatly in the former.

12The same is not true for Rat, Com, or Inv.



SPR Com Inv Diff Rat

Overall .857 .870 .877 .867 .870
Yes-No .86/.98 .87/.98 .91/.91 .84/.98 .84/.99

Wh .87/1.0 .87/1.0 .94/.98 .87/1.0 .87/1.0
Declarative .92/.75 .88/.77 .84/.77 .89/.78 .92/.77
Rhetorical .90/.42 .88/.49 .72/.73 .91/.44 .91/.47

Table 2: Observed agreement with the gold standard
and precision/recall per category for different rules.

6. CASE STUDY
In this section, we report on the results of an experimental
case study in which we have tested the BCR’s of Table 1.

6.1 Data Collected
To carry out this study, we created a new dataset of crowd-
sourced annotations using the Switchboard Corpus [8]—a
corpus of telephone conversations that includes a gold stan-
dard annotation assigning a dialogue act type (such as as-
sert, answer, reject) to each utterance [10]. We restricted
ourselves to four types of question dialogue acts: yes-no
questions (e.g., “Do you sell your projects?”), wh-questions
(e.g., “What area do you live in?”), declarative questions
(e.g., “I was wondering if all vans did that.”), and rhetor-
ical questions (e.g., “How high are the taxes going to be
when my children are my age? That’s the scary thing.”).

We extracted 300 questions from the corpus, 35% of which
were tagged as yes-no in the gold standard annotation, 30%
as wh, 20% as declarative, and 15% as rhetorical. We then
used Amazon’s Mechanical Turk (AMT) to collect 10 non-
expert annotations for each of the 300 items. Each item
consisted of a short dialogue fragment such as the one below
and the AMT workers were asked to classify the highlighted
question using one of the four question categories.

A: You know, because he’s had all this room to run in.
B: Well, how did he get out?
A: He dug a hole under the fence.
B: Oh, boy.

A total of 63 AMT workers took part in the annotation task,
each of them annotating between 10 items (24 annotators)
and 200 items (only one annotator). Amongst the nonex-
pert annotations, the relative frequencies per category were
approximately 37% for yes-no, 34% for wh, 18% for declar-
ative, and 11% for rhetorical questions.

6.2 Results
We then applied our four bias-correcting rules to this data
and compared their performance to the SPR. The results
are shown in Table 2. The first row shows the overall ob-
served agreement with the gold standard. We can see that
all BCR’s outperform the SPR. (There were 7 ties for the
SPR, which we count as disagreements.) The remaining
rows show precision and recall for each category.13

We can see that the AMT workers tend to overuse the
most prevalent categories (yes-no and wh), resulting in high
recall but lower precision. In contrast, the less frequent cat-
egories (declarative and rhetorical) tend to be underused,
resulting in high precision but low recall. Note that Inv,
the only rule that is both agent-independent and weight-
unbounded, is distinct from the other rules in that it has

13The precision of rule F for category k is the proportion of items
classified as k by F on which the gold standard agrees. The recall
of F for k is the proportion of items classified as k by the gold
standard for which F returns k as well.

a substantially higher recall for rhetorical questions (73%).
This can be explained by two features of the data collected:
First, the AMT workers displayed a common bias against la-
belling items as rhetorical questions, rather than just some
individual annotators displaying an individual bias. There-
fore, agent-dependent rules such as Diff and Rat that at-
tempt to temper the effects of the individual frequencies ob-
served by relating them to the corresponding global frequen-
cies result in outcomes that tend towards the SPR outcome.
Agent-independent rules, on the other hand, correctly dis-
count votes for high-frequency categories also in this case.
Second, while some rhetorical questions were easy to recog-
nise and received clear majorities for all rules, others were
particularly hard to spot and only had a chance of winning if
a few strong annotators were able to turn around majorities.
This is only possible for weight-unbounded rules.

The price to pay for the good performance of Inv in recall-
ing rhetorical questions is, naturally, the drop in precision
compared to the other rules. The dual effect is that the pre-
cision for yes-no and wh is higher with Inv than with other
rules, while the recall is lower.

If we compare the performance of our rules in terms of
their F-score (the harmonic mean of precision and recall),
the most striking finding is that for rhetorical questions (the
category that AMT workers had most difficulty recognising),
all four bias-correcting rules (F-scores between 0.59 for Diff
and 0.73 for Inv) outperform the SPR (F-score 0.57).

7. RELATED WORK
The potential of using principles of social choice theory to
aggregate information obtained via crowdsourcing has been
noted before [6, 12]. Mao et al. [12], for instance, have made
proposals for identifying realistic models of distortion for
crowdsourcing experiments to be able to apply the maximum
likelihood approach of social choice theory more effectively.
They focus on aggregation problems where agents provide
rankings of possible answers and a single best answer needs
to be selected (as in classical voting theory), so their results
are not immediately relevant here. Instead, our work may be
considered a refinement of the model of (‘plain’) collective
annotation put forward in our own previous work [6].

Our model is similar to binary aggregation as studied in
(computational) social choice [5, 9]. The main difference is
the latter’s restriction to binary categories and to complete
profiles. As we have argued in Section 5.4, not assuming
completeness results in a richer landscape of aggregators.

There are also connections to voting in combinatorial do-
mains [11]. The main difference is that for the latter, ballots
(corresponding to our individual annotations) have a more
complex structure, e.g., they might be CP-nets describing an
agent’s preferences over the range of possible choices, while
in our model each agent only contributes their top choice.

We took ‘bias’ as bias for (or against) a given category, but
one could also adopt a broader perspective. This has been
done by Artstein and Poesio [2], who define bias of a group
annotation as the average variance of the frequencies for the
categories. As for Diff and Rat, this means that bias is taken
to reduce when global and individual category frequencies
become more alike. Note that the use of the concept of bias
by Artstein and Poesio is rather different from ours: they
use it to quantify the quality of a group annotation (using
so-called measures for inter-annotator agreement), while we
use it to define aggregation methods.



8. CONCLUSION
We have shown that the axiomatic method of social choice
theory can make a contribution to the study of aggregation
methods used in crowdsourcing and, more generally, in col-
lective annotation. We have done so by (1) axiomatically
characterising two base-line methods (the simple plurality
rule and the class of all rules that can be described in terms
of a weight function); by (2) proposing a class of methods,
described in terms of axioms, that are concerned with ad-
dressing annotator bias; and by (3) discussing how certain
axioms can explain the difference in performance of different
aggregators on real data.

A restriction of our model is that we assume that the cate-
gories available for use are the same for each and every item.
This may not be appropriate for certain types of annotation
tasks (although it is for many). For instance, in word-sense
labelling tasks in computational linguistics, annotators need
to choose the right sense amongst the possible senses for each
word [14, 15]. Of course, we may think of K as the union
of all sets of categories needed for all items, but this will
hardly be the most natural way of modelling the problem.
Extending our model to handle different sets of categories
for different items is possible in principle [6], but requires
great care, for instance, when defining category-symmetry.

A second restriction, which we had already discussed, is
our assumption of category-exclusivity. If we wanted to drop
this assumption, our plurality rule would become a form of
(item-wise) approval voting. Future work aimed at extend-
ing our model in this manner should carefully consider the
semantics of annotations of the same item by the same agent
with multiple categories. For example, if by choosing sev-
eral categories together an agent is expressing uncertainty
between those categories, a rule such a even-and-equal cumu-
lative voting, where the voter evenly distributes 1 point over
all approved alternatives, might seem appropriate. On the
other hand, if an annotation may belong to more than one
category and an agent is expressing this fact through their
multi-category annotation, classical approval voting (giving
1 full point to each of the chosen alternatives) would seem
more appropriate. In general, the full class of size approval
voting rules may be of interest [1].

Finally, we should stress that our bias-correcting rules are
not intended to be a ‘one-fits-all’ approach to collective an-
notation. For instance, they rely on the inherent assumption
that every annotator is sincerely trying to provide an accu-
rate annotation. This clearly is not the case in most crowd-
sourcing exercises. If we remove the most obvious spammers
from a group annotation (the agents that disagree the most
with the plurality choice, for instance), then we can easily
improve the performance of our rules. The reason is that,
while agents that, say, always choose category 1, are eas-
ily picked out by our rules, agents that simply annotate at
random are not. If there are too many agents of the latter
type, this significantly reduces the quality of the observed
global frequency as an estimator for gold standard frequency,
and thus negatively affects the performance of aggregation
methods such as Diff and Rat.
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