
Parameterized Complexity Results for Agenda

Safety in Judgment Aggregation

Ulle Endriss1, Ronald de Haan2,∗, Stefan Szeider2,∗

1 Institute for Logic, Language and Computation, University of Amsterdam
2 Institute of Information Systems, Vienna University of Technology

Abstract

Many problems arising in computational social choice are of high computational
complexity, and some are located at higher levels of the Polynomial Hierarchy. We
argue that a parameterized complexity analysis provides a lot of insight about the
factors contributing to the complexity of these problems, and can lead to practically
useful algorithms. As a case study, we consider the problem of agenda safety in
judgment aggregation, consider several natural parameters for this problem, and
determine the parameterized complexity for each of these. Our analysis is aimed at
obtaining fixed-parameter tractable (fpt) algorithms that use a small number of calls
to a SAT solver. We hope that this work may initiate a structured parameterized
complexity investigation of problems arising in the field of computational social
choice that are located at higher levels of the Polynomial Hierarchy. A by-product
of our case study is the development of complexity-theoretic techniques to provide
lower bounds on the number of SAT calls needed by fpt-algorithms to solve certain
problems.

1 Introduction

The field of computational social choice studies the interface of social choice theory and
computer science. In particular, it is concerned with investigating properties of computational
tasks related to procedures for collective decision making. Some of these computational tasks
have a computational complexity that is ‘beyond NP’, and are thus considered to be highly
intractable (cf. [2, 10, 24, 25]). We argue that the complexity analysis of problems arising in
computational social choice that are ‘beyond NP’ benefits from a parameterized complexity
approach [16, 17, 20, 32]. Recent advances in parameterized complexity theory [23] enable
an investigation of the restrictions that allow an encoding of problems ‘beyond NP’ into the
Boolean satisfiability problem (SAT). With the success that modern SAT solving algorithms
have had in many practical settings over the last two decades [29, 34], this might lead to
practically useful algorithms for problems that are traditionally considered to be highly
intractable.

As a case study to underpin our argument, we consider the computational complexity of
the problem of agenda safety, which is a computational problem that arises in the domain
of judgment aggregation. Judgment aggregation studies the properties of procedures that
combine the individual judgments on a set of related propositions (the agenda) of the
members of a group into a collective judgment reflecting the views of the group as a whole
[28]. Such procedures might, in general, yield inconsistent combined judgments. Therefore,
it is useful to determine for a given agenda and a given aggregation procedure whether there
exists no combination of individual judgments such that the outcome of the procedure is
inconsistent (we say that the agenda is safe if this is the case). This is relevant, for instance,

∗Supported by the European Research Council (ERC), project 239962 (COMPLEX REASON), and the
Austrian Science Fund (FWF), project P26200 (Parameterized Compilation).

Parameter Complexity

maximum formula size (`) para-ΠP
2 -complete (Proposition 4)

maximum variable degree (d) para-ΠP
2 -complete (Proposition 6)

` + d para-ΠP
2 -complete (Proposition 6), even when

restricted to 2CNF ∩Horn

number of formulas solvable in fpt-time with f(k) many SAT calls,

with f(k) = 2O(k) (Theorem 8)
and f(k) = Ω(log k) (Theorem 19)

counterexample size ∀k∃∗-hard (Theorem 21)

Table 1: Complexity results for different parameterizations of agenda safety.

in the setting of multi-agent systems where agents need to coordinate their beliefs, intentions
and actions repeatedly [36]. The problem of agenda safety is complete for the second level of
the Polynomial Hierarchy (PH) [18], and is thus ‘beyond NP.’

Instances of hard computational problems that occur in practice often exhibit some
kind of structure. A classical complexity analysis is insensitive to any such structure. A
parameterized complexity analysis, on the other hand, can take into account different forms
of structure in the problem instances, by means of problem parameters. The idea underlying
parameterized complexity theory is that such parameters are expected to be small in problem
instances occurring in practice. By restricting the high complexity of a problem to the
parameter only, these structured instances of hard computational problems can often be solved
reasonably efficiently. There has been a lot of research in the field of parameterized complexity
over the last two decades (cf. [9]). Most of this research is aimed at problems that are in NP.
Recently, tools have been developed to analyze the parameterized complexity of problems
that are located higher in the PH [22, 23]. The paradigm of parameterized complexity has
been used to examine many problems in computational social choice (cf. [3, 4, 5, 15]).

Contributions. Concretely, we investigate what kind of structure helps to decrease the
computational complexity of the problem of agenda safety for the majority rule. We do this by
studying several natural parameterizations of the problem. The main concept of tractability
that we have in mind is based on algorithms that run efficiently for small parameter values,
and that use only a small number of SAT calls (depending on the parameter value only).
This notion of tractability is motivated by the enormous practical success of modern SAT
solvers [8, 21, 29, 34]. For precise definitions, we refer to Section 2.

Several parameterizations that we consider correspond to syntactic restrictions on the
agenda (i.e., bounds on the size of formulas, bounds on variable occurrence, and bounds
on the number of formulas). Another parameterization corresponds to a bound on the
size of counterexamples (to the logical characterization of agenda safety), and is similar to
parameterizations that have been applied successfully in other domains [6, 7]. An overview
of complexity results for these parameterizations can be found in Table 1.

This parameterized complexity analysis allows us to pinpoint exactly what aspects of
the problem play what role in the high computational complexity of the problem, and it
helps to determine what algorithmic approach is best suited to solve the problem in practical
settings. We hope that this work can help initiate a structured parameterized complexity
investigation of problems arising in the field of computational social choice that are located
at higher levels of the PH.

As a by-product of our case study we develop complexity-theoretic techniques to provide
lower bounds on the number of SAT calls needed by fpt-algorithms to solve certain problems.

These techniques are based on novel parameterized complexity classes, related to the Boolean
Hierarchy.

2 Preliminaries

In this section, we formally define the problem of agenda safety and we provide a logical
characterization of the problem for a particular aggregation procedure. Moreover, we define
notions from classical and parameterized complexity theory that we will need in our analysis.

Propositional Logic and Agenda Safety. A literal is a propositional variable x or a
negated variable ¬x. For literals l ∈ {x,¬x}, we let Var(l) = x denote the variable occurring
in l. A clause is a finite set of literals, not containing a complementary pair x, ¬x, and is
interpreted as the disjunction of these literals. We let ⊥ denote the empty clause. A formula
in conjunctive normal form (CNF) is a finite set of clauses, interpreted as the conjunction
of these clauses. We define the size ||ϕ|| of a CNF formula ϕ to be

∑
c∈ϕ |c|; the number

of clauses of ϕ is denoted by |ϕ|. For a CNF formula ϕ, the set Var(ϕ) denotes the set
of all variables x such that some clause of ϕ contains x or ¬x. We say that a clause is a
Horn clause if it contains at most one positive literal; a CNF formula is a Horn formula
if it contains only Horn clauses. We let the degree of a CNF formula ϕ be the maximum
number of times that any variable x ∈ Var(ϕ) occurs in ϕ. We define the degree of a set Φ
of CNF formulas to be the maximum number of times that any variable x ∈ Var(Φ) occurs
in Φ. We use the standard notion of (truth) assignments α : Var(ϕ)→ {0, 1} for Boolean
formulas and truth of a formula under such an assignment. We let SAT denote the problem
of deciding whether a given propositional formula is satisfiable, and we let UNSAT denote its
co-problem, i.e., deciding whether a given formula is unsatisfiable. For every propositional
formula ϕ, we let ∼ϕ denote the complement of ϕ, i.e., ∼ϕ = ¬ϕ if ϕ is not of the form ¬ψ,
and ∼ϕ = ψ if ϕ is of the form ¬ψ.

An agenda is a finite nonempty set Φ of formulas that does not contain any
doubly-negated formulas and that is closed under complementation. Moreover, if Φ =
{ϕ1, . . . , ϕn,¬ϕ1, . . . ,¬ϕn} is an agenda, then we let B(Φ) = {ϕ1, . . . , ϕn} denote the base
of the agenda Φ. A judgment set J for an agenda Φ is a subset J ⊆ Φ. We call a judgment
set J complete if ϕ ∈ J or ∼ϕ ∈ J for all ϕ ∈ Φ; we call it complement-free if for all ϕ ∈ Φ
it is not the case that both ϕ and ∼ϕ are in J ; and we call it consistent if there exists
an assignment that makes all formulas in J true. Let J (Φ) denote the set of all complete
and consistent subsets of Φ. We call a sequence J ∈ J (Φ)|N | of complete and consistent
subsets a profile. A (resolute) judgment aggregation procedure for the agenda Φ and the set
of individuals N is a function F : J (Φ)|N | → 2Φ. An example is the majority rule Fmaj,
where ϕ ∈ Fmaj(J) if and only if ϕ occurs in the majority of judgment sets in J , for all ϕ ∈ Φ.
We call F complete, complement-free and consistent, if F (J) is complete, complement-free
and consistent, respectively, for every J ∈ J (Φ)n. An agenda Φ is safe with respect to a
class of aggregation procedures F , if every procedure in F is consistent when applied to
profiles of judgment sets over Φ. We say that an agenda Φ satisfies the median property
(MP) if every inconsistent subset of Φ has itself an inconsistent subset of size at most 2. An
agenda Φ is safe for the majority rule if and only if Φ satisfies the MP [18, 31]. There exist
similar properties that characterize agenda safety for other aggregation procedures [18].

As an example, we consider the discursive dilemma, which concerns an agenda that is
not safe for the majority rule. Consider the agenda Φdd = {p,¬p, q,¬q, (p → q),¬(p →
q)}. Moreover, consider the profile J = (J1, J2, J3), where J1 = {p, q, (p → q)}, J2 =
{p,¬q,¬(p→ q)}, and J3 = {¬p,¬q, (p→ q)}. Clearly, Fmaj(J) = {p,¬q, (p→ q)}, which
is inconsistent. In other words, Φdd is not safe for the majority rule. Also, Φdd does not

satisfy the MP, as it contains a subset Fmaj(J) ⊆ Φ that is inconsistent, but that itself
contains no inconsistent subset of size 2. Intuitively, for each agenda that does not satisfy
the MP, a similar discursive dilemma can be constructed, where the majority rule is forced to
include an inconsistent subset (of size larger than 2), whereas the individual profiles remain
consistent.

In this paper, we consider several parameterizations of the following decision problem,
which is shown to be ΠP

2 -complete [18]. For our results, we will use the fact that deciding
safety of an agenda Φ for the majority rule is equivalent to checking whether Φ satisfies the
median property. In fact, the technical details behind our results involve only this alternative
characterization.

Agenda-Safetymaj

Instance: An agenda Φ.
Question: Is Φ safe for the majority rule?

The Boolean and Polynomial Hierarchies. There are many natural decision problems
that are not contained in the classical complexity classes P or NP. The Boolean Hierarchy
(BH) [11, 12, 26] consists of a hierarchy of complexity classes BHi for all i ≥ 1. Each class BHi

can be characterized as the class of problems that can be reduced to the problem BHi-Sat,
which is defined inductively as follows. The problem BH1-Sat consists of all sequences (ϕ),
where ϕ is a satisfiable propositional formula. For even i ≥ 2, the problem BHi-Sat consists
of all sequences (ϕ1, . . . , ϕi) of propositional formulas such that both (ϕ1, . . . , ϕi−1) ∈
BH(i−1)-Sat and ϕi is unsatisfiable. For odd i ≥ 2, the problem BHi-Sat consists of all
sequences (ϕ1, . . . , ϕi) of propositional formulas such that (ϕ1, . . . , ϕi−1) ∈ BH(i−1)-Sat
or ϕi is satisfiable. The class BH2 is also denoted by DP, and the problem BH2-Sat is also
denoted by SAT-UNSAT.

The Polynomial Hierarchy (PH) [30, 37, 39, 33] consists of a hierarchy of complexity
classes, including the classes ΣP

i , for all i ≥ 0. The class ΣP
2 already contains the entire BH.

We give a characterization of these classes based on the satisfiability problem of various
classes of quantified Boolean formulas. A (prenex) quantified Boolean formula is a formula
of the form Q1X1Q2X2 . . . QmXmψ, where each Qi is either ∀ or ∃, the Xi are disjoint sets
of propositional variables, and ψ is a Boolean formula over the variables in

⋃m
i=1Xi. The

quantifier-free part of such formulas is called the matrix of the formula. Truth of such
formulas is defined in the usual way. We let ψ[α] denote the formula obtained from ψ by
instantiation variables by their truth values given by a (partial) truth assignment α. For
each i ≥ 1 we define the following decision problem.

QSati
Instance: A quantified Boolean formula ϕ = ∃X1∀X2∃X3 . . . QiXiψ, where Qi is
a universal quantifier if i is even and an existential quantifier if i is odd.
Question: Is ϕ true?

For each nonnegative integer i ≥ 0, the complexity class ΣP
i is the class of problems that

can be reduced to QSati in polynomial time [37, 39]. The ΣP
i -hardness of QSati holds

already when the matrix of the input formula is restricted to 3CNF for odd i, and restricted
to 3DNF for even i. Note that the class ΣP

0 coincides with P, and the class ΣP
1 coincides

with NP. For each i ≥ 1, the class ΠP
i is defined as co-ΣP

i .

Parameterized Complexity. We introduce some core notions from parameterized com-
plexity theory that we will use in this paper. For an in-depth treatment we refer to other
sources [16, 17, 20, 23, 32]. A parameterized problem L is a subset of Σ∗ × N for some finite

alphabet Σ. For an instance (I, k) ∈ Σ∗ × N, we call I the main part and k the parameter.
The following generalization of polynomial time computability is commonly regarded as
the tractability notion of parameterized complexity theory. A parameterized problem L is
fixed-parameter tractable if there exists a computable function f and a constant c such that
there exists an algorithm that decides whether (I, k) ∈ L in time O(f(k)||I||c), where ||I||
denotes the size of I. Such an algorithm is called an fpt-algorithm, and this amount of time
is called fpt-time. FPT is the class of all fixed-parameter tractable parameterized decision
problems. If the parameter is constant, then fpt-algorithms run in polynomial time where
the order of the polynomial is independent of the parameter. This provides a good scalability
in the parameter in contrast to running times of the form ||I||k, which are also polynomial
for fixed k, but are already impractical for, say, k > 3. By XP we denote the class of all
problems L for which it can be decided whether (I, k) ∈ L in time O(||I||f(k)), for some fixed
computable function f .

Parameterized complexity also generalizes the notion of polynomial-time reductions.
Let L ⊆ Σ∗×N and L′ ⊆ (Σ′)∗×N be two parameterized problems. An fpt-reduction from L
to L′ is a mapping R : Σ∗ × N→ (Σ′)∗ × N from instances of L to instances of L′ such that
there exist some computable function g : N→ N such that for all (I, k) ∈ Σ∗ × N: (i) (I, k)
is a yes-instance of L if and only if (I ′, k′) = R(I, k) is a yes-instance of L′, (ii) k′ ≤ g(k),
and (iii) R is computable in fpt-time. Similarly, we call reductions that satisfy properties (i)
and (ii) but that are computable in time O(||I||f(k)), for some fixed computable function f ,
xp-reductions.

Parameterized complexity theory also offers complexity classes corresponding to classes in
the Polynomial Hierarchy. Let C be a classical complexity class, e.g., NP. The parameterized
complexity class para-C is then defined as the class of all parameterized problems L ⊆ Σ∗×N,
for some finite alphabet Σ, for which there exists an alphabet Π, a computable function f :
N→ Π∗, and a problem P ⊆ Σ∗ ×Π∗ such that P ∈ C and for all instances (x, k) ∈ Σ∗ × N
of L we have that (x, k) ∈ L if and only if (x, f(k)) ∈ P . Intuitively, the class para-C consists
of all problems that are in C after a precomputation that only involves the parameter [19].

In particular, the class para-NP contains those parameterized problems that can be
fpt-reduced to a single instance of SAT. Another class containing problems that can be
considered fpt-reducible to SAT is the class para-DP, based on the classical complexity
class DP = {L1 ∩ L2 : L1 ∈ NP, L2 ∈ co-NP }. An instance of a parameterized problem in
para-DP can be solved in fpt-time by firstly reducing it to an instance of the problem SAT-
UNSAT = { (ϕ1, ϕ2) : ϕ1 ∈ SAT, ϕ2 ∈ UNSAT }, and then solving this resulting instance by
invoking a SAT oracle twice.

In addition to many-one fpt-reductions to SAT, we are also interested in Turing fpt-
reductions. A Turing fpt-reduction from a problem P to SAT is an fpt-algorithm that has
access to a SAT oracle and that decides P . We are mainly interested in fpt-algorithms that
only use a small number of queries to the SAT oracle (SAT calls). We let FPTNP[f(k)] denote
the class of all parameterized problems P for which there exists an fpt-algorithm that decides
if (x, k) ∈ P by using at most f(k) many SAT calls, for some computable function f .

On the other hand, para-ΣP
2 -hardness can be employed to provide evidence against the

existence of fpt-reductions to SAT. However, for many interesting parameterized problems
for which we want to investigate the (non-)existence of fpt-reductions to SAT, hardness for
para-ΣP

2 cannot be used. The class para-ΣP
2 contains problems that cannot be reduced to

SAT in polynomial time if the parameter value is a constant (unless the Polynomial Hierarchy
collapses at the first level), i.e., problems in para-ΣP

2 do not allow an xp-reduction to SAT.
Since many problems we are interested in do allow such xp-reductions to SAT, it is unlikely
that these problems can be shown to be hard for the complexity class para-ΣP

2 .
Recent work in parameterized complexity theory has resulted in complexity classes

that can be used to provide evidence for the non-existence of fpt-reductions to SAT also

para-ΣP
2 para-ΠP

2

para-NP para-co-NP

para-∆P
2

FPTNP[f(k)] = BH(level)

para-DP

∃k∀∗ ∀k∃∗

W[1] co-W[1]
FPT = para-P

Figure 1: Parameterized complexity classes relevant to the results in this paper. Arrows
indicate inclusion relations. For a definition of the classes W[1] and co-W[1], we refer to
other sources [16, 17, 20].

for problems that do allow an xp-reduction to SAT [23]. The parameterized complexity
class ∀k∃∗ consists of all parameterized problems that can be fpt-reduced to the following
variant of quantified Boolean satisfiability that is based on truth assignments of restricted
(Hamming) weight (the Hamming weight of an assignment is the number of variables that it
assigns to 1).

∀k∃∗-WSat
Instance: A quantified Boolean formula ϕ = ∀X.∃Y.ψ, and an integer k.
Parameter: k.
Question: Is it the case that for all truth assignments α to X with weight k there
exists an assignment β to Y such that the assignment α ∪ β satisfies ψ?

For any problem in ∀k∃∗ there exists an xp-reduction to SAT. However, there is evidence
that problems that are hard for ∀k∃∗ do not allow an fpt-reduction to SAT [22, 23]. Many
natural parameterized problems from various domains are complete for the class ∀k∃∗, and
for none of them an fpt-reduction to SAT has been found. If there exists an fpt-reduction to
SAT for any ∀k∃∗-complete problem then this is the case for all ∀k∃∗-complete problems.
For an overview of parameterized complexity classes that are relevant to the results in this
paper, we refer to Figure 1. For a more detailed discussion on this topic, we refer to previous
work in parameterized complexity [23].

3 Parameterized Complexity Results

We start with showing that we can restrict our attention to agendas containing only formulas
in CNF. We show how to transform any agenda Φ to an agenda Φ′, containing only formulas
in CNF (and their negations), that is safe if and only if Φ is safe, where the size of Φ′ is
polynomial in the size of Φ.

Lemma 1. Let ϕ be a propositional formula. We can construct a CNF formula ϕ′ such
that Var(ϕ′) ⊇ Var(ϕ) and for each truth assignment α : Var(ϕ) → {0, 1} we have that α
satisfies ϕ if and only if there exists an assignment β : (Var(ϕ′)\Var(ϕ))→ {0, 1} such that
the assignment α ∪ β satisfies ϕ′.

Proof (idea). The idea of the proof is to transform ϕ into a CNF formula ψ by using the well-
known Tseitin transformation [38]. For each subformula χ of ϕ we add a fresh variable xχ,
and we construct the clauses of ψ in such a way that the truth value of xχ in any satisfying

assignment of ψ corresponds to the truth value of χ, for each subformula χ. A full proof can
be found in the appendix.

Proposition 2. Let Φ be an agenda with base B(Φ) = {ϕ1, . . . , ϕn}. We can construct
in polynomial time an agenda Φ′ with base B(Φ′) = {ϕ′1, . . . , ϕ′n} such that each ϕ′i is in
CNF and any subset Ψ = {ϕi1 , . . . , ϕim1

,¬ϕj1 , . . . ,¬ϕjm2
} of Φ is consistent if and only

if Ψ′ = {ϕ′i1 , . . . , ϕ
′
im
,¬ϕ′j1 , . . . ,¬ϕ

′
jm2
} is consistent.

Proof. Let Φ be an agenda with base B(Φ) = {ϕ1, . . . , ϕn}. By Lemma 1, we can transform
in polynomial time each ϕi to a suitable CNF formula ϕ′i. Because we can introduce
fresh variables for constructing each ϕ′i, we can assume without loss of generality that
for each 1 ≤ i < i′ ≤ n it is the case that (Var(ϕ′i)\Var(ϕi)) ∩ (Var(ϕ′i′)\Var(ϕi′)) = ∅.
Let Ψ = {ϕi1 , . . . , ϕim1

,¬ϕj1 , . . . ,¬ϕjm2
} be an arbitrary subset of Φ. We claim that Ψ is

consistent if and only if Ψ′ = {ϕ′i1 , . . . , ϕ
′
im1

,¬ϕ′j1 , . . . ,¬ϕ
′
jm2
} is consistent. A full proof of

this claim can be found in the appendix.

Thus, the problem Agenda-Safetymaj is ΠP
2 -hard even for the following restricted case.

Corollary 3. The problem Agenda-Safetymaj is ΠP
2 -hard even when restricted to agen-

das Φ whose base B(Φ) contains only CNF formulas.

Intuitively, the above results show that, using additional auxiliary variables, each agenda
can be rewritten into another agenda that contains only formulas in CNF (or their negation)
that are equivalent (with respect to satisfiability) to the formulas in the original agenda.

3.1 Syntactic restrictions on the agenda

We consider the following parameterizations of the agenda safety problem that correspond
to syntactic restrictions on the agenda Φ. We parameterize on the size of formulas ϕ ∈ Φ,
on the maximum number of times any variable occurs in Φ (i.e., the degree of Φ), and on
the number of formulas occurring in Φ.

Agenda-Safetymaj(formula size)
Instance: An agenda Φ.
Parameter: ` = max{ |ϕ| : ϕ ∈ Φ }.
Question: Is Φ safe for the majority rule?

Agenda-Safetymaj(degree)
Instance: An agenda Φ containing only CNF formulas.
Parameter: The degree d of Φ.
Question: Is Φ safe for the majority rule?

Agenda-Safetymaj(degree + formula size)
Instance: An agenda Φ containing only CNF formulas, where ` = max{ |ϕ| : ϕ ∈
B(Φ) }, and where d is the degree of Φ.
Parameter: `+ d.
Question: Is Φ safe for the majority rule?

Agenda-Safetymaj(agenda size)
Instance: An agenda Φ.
Parameter: |Φ|.
Question: Is Φ safe for the majority rule?

The assumption that the size of formulas in an agenda is small corresponds to the expectation
that the separate statements that the individuals are judging are in a sense atomic, and
therefore of bounded size. The supposition that the degree of an agenda is small corresponds
to the expectation that each proposition that occurs in the statements to be judged occurs
only a small number of times. The assumption that the number of formulas in the agenda is
small is based on the fact that the individuals need to form an opinion on all formulas in the
agenda.

Agendas with small formulas and small degree. We start by showing that parame-
terizing on (the sum of) the maximum formula size and the degree of the agenda Φ does
not decrease the complexity of deciding whether the agenda is safe, even when (the base
of) Φ contains only formulas in 2CNF ∩Horn. Intuitively, these restrictions on the form
and size of the formulas in the agenda do not rule out the complex interactions between the
formulas in the agenda that involve many formulas simultaneously, and that give rise to the
ΠP

2 -hardness of the problem.

Proposition 4. Agenda-Safetymaj(formula size) is para-ΠP
2 -complete.

Proof. Membership in para-ΠP
2 follows from the ΠP

2 -membership of Agenda-Safetymaj.
We show para-ΠP

2 -hardness by giving a polynomial-time reduction from ∀∃-Sat(3CNF) to
the problem {x : (x, c) ∈ Agenda-Safetymaj(formula size) }, where c is bounded by the
size of formulas of the form ¬((¬x1 ∨ ¬x2 ∨ ¬x3) ∧ ¬z). This reduction is a modified variant
of a reduction given by Endriss et al. [18, Lemma 11]. Let ϕ = ∀X.∃Y.ψ be an instance
of ∀∃-Sat, where ψ = c1 ∧ · · · ∧ cm is in 3CNF, and where X = {x1, . . . , xm}. We may
assume without loss of generality that none of the ci is a unit clause. We construct the
agenda Φ = {x1,¬x1, . . . , xn,¬xn, (c1 ∧ ¬z1),¬(c1 ∧ ¬z1), . . . , (cm ∧ ¬zm),¬(cm ∧ ¬zm)},
where Z = {z1, . . . , zm} is a set of fresh variables. We claim that Φ satisfies the median
property if and only if ϕ is true. A proof of this claim can be found in the appendix.

Next, using the following technical lemma, a proof of which can be found in the appendix,
and the reduction given in the proof of Proposition 4, we get para-ΠP

2 -completeness of
Agenda-Safetymaj(degree + formula size).

Lemma 5. The problem ∀∃-Sat(3CNF) is ΠP
2 -hard even when restricted to instances ϕ =

∀X.∃Y.ψ where each x ∈ X occurs at most 2 times in ψ and each y ∈ Y occurs at most 3
times in ψ.

Proposition 6. The parameterized problems Agenda-Safetymaj(degree + formula size)
and Agenda-Safetymaj(degree) are para-ΠP

2 -complete.

We now show hardness even for the case where all formulas are in Horn ∩ 2CNF.

Proposition 7. Agenda-Safetymaj(degree + formula size) is para-ΠP
2 -hard even when

restricted to agendas Φ such that all formulas ϕ ∈ B(Φ) are in Horn ∩ 2CNF.

Proof. We consider the reduction used to show Proposition 6, which is described in detail in
the proof of Proposition 4. The agenda Φ that we constructed contains only formulas of the
form xi or their negation, and formulas of the form (ci ∧ ¬zi), where ci is a clause, or their
negation. Clearly, the formulas xi and ¬xi are (equivalent to formulas) in Horn∩ 2CNF. It
suffices to show that each formula ϕ ∈ Φ with ϕ = (ci ∧ ¬zi) is equivalent to a formula ϕ′ ∈
Horn ∩ 2CNF. Let ci = (li1 ∨ li2 ∨ li3). Observe that (ci ∧ ¬zi) = ((li1 ∨ li2 ∨ li3) ∧ ¬zi) ≡
(li1∨¬zi)∧ (li2∨¬zi)∧ (li3∨¬zi). Thus, we can construct Φ in such a way that B(Φ) contains
only formulas in Horn ∩ 2CNF.

Agendas with few formulas. Next, we parameterize the agenda safety problem on the
number of formulas occurring in the agenda. We will show that instances (x, k) of the
problem Agenda-Safetymaj(agenda size) can be solved by an fpt-algorithm that uses f(k)
many SAT calls. Intuitively, the fpt-algorithm that we construct will exploit the fact that
the agenda only contains few formulas, by considering all possible inconsistent subsets of the
agenda, and using a SAT solver to verify that these all have an inconsistent subset of size at
most 2. In particular, we will prove the following result.

Theorem 8. There exists an algorithm that decides Agenda-Safetymaj(agenda size) in
fpt-time using at most 2O(k) SAT calls, where k is the parameter value.

Moreover, we give evidence that this is the best one can do, i.e., there exists no fpt-
algorithm that uses a significantly smaller number of SAT calls, assuming some widely believed
complexity-theoretic assumptions (Theorem 19). We will need some formal machinery to
prove the latter result.

In order to perform our lower-bound analysis, we will consider two parameterized com-
plexity classes: FPTNP[f(k)] and BH(level). We defined the class FPTNP[f(k)] above. We

note that it is straightforward to verify that FPTNP[f(k)] is closed under fpt-reductions. Next,
to define the class BH(level), we consider the following parameterized decision problem, that
is based on the canonical problems BHi-Sat of the classes BHi in the Boolean Hierarchy.

BH(level)-Sat
Instance: a positive integer k and a sequence (ϕ1, . . . , ϕk) of propositional formulas.
Parameter: k.
Question: is it the case that (ϕ1, . . . , ϕk) ∈ BHk-Sat?

We then define the parameterized complexity class BH(level) to be the class of all pa-
rameterized problems that can be fpt-reduced to the problem BH(level)-Sat. In other
words, the class BH(level) consists of all parameterized problems P for which there exists
an fpt-reduction that reduces each instance (x, k) of P to an instance of some problem in
the f(k)-th level of the Boolean Hierarchy, for some computable function f . As we will

see below, the classes FPTNP[f(k)] and BH(level) coincide. Moreover, we will show that
Agenda-Safetymaj(agenda size) is complete for this class. We begin with showing the
upper bound on the number of SAT calls needed to solve Agenda-Safetymaj(agenda size).

Proposition 9. Agenda-Safetymaj(agenda size) is in co-BH(level).

Proof. We provide an fpt-algorithm that takes an instance Φ of
Agenda-Safetymaj(agenda size) with |Φ| = k and produces f(k) many in-
stances x1, . . . , xf(k) of co-SAT-UNSAT such that Φ ∈ Agenda-Safetymaj(agenda size) if
and only if {x1, . . . , xf(k)} ⊆ co-SAT-UNSAT.

Let Φ be an agenda with B(Φ) = {ϕ1, . . . , ϕk}. Let C denote the set of all complement-
free subagendas Φ′ ⊆ Φ that are of size at least 3. Clearly, |C| = 2O(k). We know that Φ
satisfies the MP if and only if for all Φ′ ∈ C holds that either (1) Φ′ is satisfiable, or (2)
there exists some Φ′′ ⊆ Φ′ of size 2 that is unsatisfiable.

Firstly, for each Φ′ = {ψ1, . . . , ψ`} ∈ C, we construct an instance I(Φ′) = (ψ1, ψ2) of
co-SAT-UNSAT such that (ψ1, ψ2) ∈ co-SAT-UNSAT if and only if either (1) Φ′ is satisfiable
or (2) there exists some Φ′′ ⊆ Φ′ of size 2 that is unsatisfiable. For any 1 ≤ i < j ≤ ` and
any propositional formula ϕ, we let ϕ(i,j) denote a copy of ϕ where each variable x ∈ Var(ϕ)
is replaced with a copy x(i,j) indexed by the pair (i, j). We define ψ1 =

∧
ϕ∈Φ′ ϕ, and

ψ2 =
∧

1≤i<j≤` (ψ
(i,j)
i ∧ ψ(i,j)

j). It is straightforward to verify that I(Φ′) satisfies the required
properties.

We now straightforwardly get that Φ ∈ Agenda-Safetymaj(agenda size) if and only
if { I(Φ′) : Φ′ ∈ C } ⊆ co-SAT-UNSAT. Also, we know that |C| = f(k) = 2O(k) for a suitable

computable function f . We know that the conjunction of f(k) many instances of co-SAT-
UNSAT can be reduced in polynomial time to an instance of co-BH2f(k)-Sat [11].

The following lemma allows us to use this membership result to obtain the upper bound we
are after.

Lemma 10. Let P be a parameterized problem that is contained in BH(level). Then there
exists an algorithm A that decides P in fpt-time using at most f(k) many SAT calls, where k
is the parameter value and f is some computable function.

Proof. We construct an algorithm that decides whether (x, k) ∈ P . Since P ∈ BH(level),
we know that there exists an fpt-reduction R that reduces any instance (x, k) of P to
an instance R(x, k) = (x′, k′) of BH(level)-Sat. We know that x′ = (ϕ1, . . . , ϕk′), and
that k′ ≤ g(k) for some computable function g. The algorithm, given an instance (x, k),
firstly computes (x′, k′). Then, for each 1 ≤ i ≤ k′, it decides whether ϕi is satisfiable
by a single SAT call. Since (x′, k′) corresponds to a Boolean combination of statements
concerning the satisfiability of the formulas ϕi, the algorithm can then decide in fpt-time
whether (x′, k′) ∈ BH(level)-Sat.

Proof of Theorem 8. The result directly follows from the proofs of Proposition 9 and
Lemma 10. Moreover, the obtained algorithm decides Agenda-Safetymaj(agenda size)
in time O(n · 2k) by making O(2k) many queries to a SAT solver consisting of formulas of
size O(n · k2), where n is the input size and k is the parameter value.

Next, we will pursue the lower bound. We start with identifying an easier hardness result,
which we will then extend to a hardness result for the class co-BH(level).

Lemma 11. Agenda-Safetymaj(agenda size) is para-co-DP-hard.

Proof. We prove hardness for para-co-DP by giving a polynomial-time reduction from SAT-
UNSAT to co-Agenda-Safetymaj, such that the resulting instance is an agenda of constant
size. Let (ϕ1, ϕ2) be an instance of SAT-UNSAT. We construct the agenda Φ with B(Φ) =
{ψ1, ψ2, ψ3} by letting ψ1 = r1 ∧ p1 ∧ ϕ1, ψ2 = r2 ∧ p2, and ψ3 = r3 ∧ ((p1 ∧ p2) → ϕ2),
where {r1, r2, r3, p1, p2} are distinct fresh variables not occurring in ϕ1 nor in ϕ2. We claim
that Φ does not satisfy the MP if and only if (ϕ1, ϕ2) ∈ SAT-UNSAT. A proof of this claim
can be found in the appendix.

Proposition 12. Agenda-Safetymaj(agenda size) is co-BH(level)-hard.

Proof. We give an fpt-reduction from BH(level)-Sat to co-Agenda-Safetymaj(agenda size).
For the sake of simplicity, we assume that k ≥ 2 is even. Let the sequence (ϕ1, . . . , ϕk)
specify an instance of BH(level)-Sat. We know that we can construct in polynomial time
an sequence of formulas (ϕ1, ψ1, . . . , ϕ`, ψ`), where ` = k/2, such that (ϕ1, . . . , ϕk) ∈ BHk-
Sat if and only if for some 1 ≤ i ≤ ` it holds that (χi, ψi) ∈ BH2-Sat = SAT-UNSAT [11].

Now, for each 1 ≤ i ≤ `, we can use the reduction in the proof of Lemma 11 to construct
in polynomial time an agenda Φi of constant size such that Φi does not satisfy the median
property if and only if (χi, ψi) ∈ SAT-UNSAT. Moreover, we can ensure that the agendas Φi
are variable-disjoint. We now construct the agenda Φ =

⋃
1≤i≤` Φi. We claim that Φ does

not satisfy the median property if and only if (χi, ψi) ∈ SAT-UNSAT for some 1 ≤ i ≤ `.
We know this latter condition holds if and only if our original instance (ϕ1, . . . , ϕk) ∈ BHk-
Sat. Moreover, since |Φ| = O(k), we obtain a correct fpt-reduction. A proof of this claim
can be found in the appendix.

Corollary 13. Agenda-Safetymaj(agenda size) is co-BH(level)-complete.

Now that we have established that Agenda-Safetymaj(agenda size) is hard for the class
co-BH(level), we will investigate what this result tells us about the number of SAT calls
needed by any fpt-algorithm that decides the problem Agenda-Safetymaj(agenda size).
For this, it will be convenient to show that BH(level) = co-BH(level). Consider the following

lemma, which allows us to relate FPTNP[f(k)] to BH(level). A proof of the lemma can be
found in the appendix.

Lemma 14. Let P be a parameterized problem and let A be an algorithm that decides P in
fpt-time using at most g(k) many SAT calls, where k is the parameter value and g is some
computable function. Then there exists an fpt-reduction that reduces an instance (x, k) of P
to an instance (x′, k′) of BH(level)-Sat, where k′ ≤ 2g(k)+1.

Theorem 15. FPTNP[f(k)] = BH(level)

Proof. Since FPTNP[f(k)] is closed under complement, the result follows directly from Lem-
mas 10 and 14.

Moreover, this also allows us to relate BH(level) and co-BH(level).

Corollary 16. BH(level) = co-BH(level).

This now immediately gives us the following characterization of the complexity of
Agenda-Safetymaj(agenda size).

Corollary 17. Agenda-Safetymaj(agenda size) is FPTNP[f(k)]-complete and BH(level)-
complete.

We will now use the BH(level)-hardness of Agenda-Safetymaj(agenda size), to ob-
tain lower bounds on the number of SAT calls needed by any fpt-algorithm to solve
Agenda-Safetymaj(agenda size).

Proposition 18. Let P be any BH(level)-hard problem. Then P is not solvable by an
fpt-algorithm that uses only O(1) many SAT calls, unless the Polynomial Hierarchy collapses.

Proof. Assume that P is solvable by an fpt-algorithm that uses only c many SAT calls, where c
is a constant. We will show that the PH collapses. Since P is BH(level)-hard, we know that
there exists an fpt-reduction R1 from BH(level)-Sat to P . Then, by Lemma 14, there exists
an fpt-reduction R2 from P to BH(level)-Sat, that reduces any instance (x′, k′) of P to an
instance (x′′, k′′) of BH(level)-Sat, where k′′ ≤ 2c+1. Then, the composition R of R1 and R2

is an fpt-reduction from BH(level)-Sat to itself such that any instance (x, k) of BH(level)-
Sat is reduced to an equivalent instance (x′′, k′′) of BH(level)-Sat, where k′′ ≤ m = 2c+1.
We can straightforwardly modify this reduction to always produce an instance (x′′,m) of
BH(level)-Sat, by adding trivial instances of SAT to the sequence x′′.

We now show that the Boolean Hierarchy collapses to the m-th level, where m = 2c+1.
Let y be an instance of BHm+1-Sat. We can then see the reduction R as a polynomial-time
reduction from BHm+1-Sat to BHm-Sat: the fpt-reduction R runs in time f(k) · nO(1),
and since k = m+ 1 is a constant, the factor f(k) is constant. From this we can conclude
that BHm = BHm+1. Thus, the BH collapses, and consequently the PH collapses [12, 26].

The above lower bound holds for any BH(level)-hard problem. We can improve this
bound for the particular case of Agenda-Safetymaj(agenda size).

Theorem 19. Deciding whether (x, k) ∈ Agenda-Safetymaj(agenda size) is not solvable
by an fpt-algorithm that uses o(log k) many SAT calls, unless the Polynomial Hierarchy
collapses.

Proof (idea). The proof is analogous to the proof of Proposition 18. Since we know in addition
that there exists an fpt-reduction from Agenda-Safetymaj(agenda size) to BH(level)-Sat
that increases the parameter value (only) exponentially, the argument from the proof of
Proposition 18 gives us a lower bound of O(log k) many SAT calls. A full proof can be found
in the appendix.

3.2 Restricting attention to small counterexamples

Another commonly identified “hidden” structure in problem instances is a restriction on
the size of counterexamples. Many computational problems ask for the non-existence of a
particular counterexample, and many of such problems show a decrease in complexity if
attention can be restricted to counterexamples of a particular bounded size only.

One prominent example of a decrease in complexity induced by a restriction on the size
of counterexamples is the method of Bounded Model Checking [6, 7]. In a nutshell, model
checking is the problem of verifying whether a model of a system meets a given specification.
This problem finds applications in a myriad of domains. A commonly used formalization is
the problem of deciding whether a given transition systems satisfies a specification given
in the form of a linear-time temporal logic (LTL) formula. This variant of the problem
is PSPACE-complete (cf. [1, 13]). The problem is equivalent to deciding whether there
exists no path (potentially of exponential length) in the transition system that serves as
a counterexample to the specification. If the size of such counterexamples to consider is
bounded (by an upper bound given in the input), the complexity of the problem decreases to
NP [6, 7]. This result has been successfully applied in practice, by implementing algorithms
that iteratively search for counterexamples of increasing size (cf. [6]). In the worst-case, an
exponential number of iterations is needed, but in many instances occurring in practice,
small counterexamples can be found efficiently this way.

A natural question to investigate is whether we could apply a similar approach to deciding
whether an agenda is safe for the majority rule. In order to do so, we would like to get an
improvement in the computational complexity for the case where the size of counterexamples
is bounded. Therefore, we consider the following parameterized variant of the median
property problem, where the parameter measures the size of subset of the agenda that we
need to consider.

Agenda-Safetymaj(counterexample size)
Instance: An agenda Φ, and an integer k.
Parameter: k.
Question: Does every inconsistent subset Φ′ of Φ of size k have itself an inconsistent
subset of size at most 2?

Assuming that counterexamples to the MP are small in practice corresponds to the supposition
that whenever several statements together imply another statement, this latter statement is
already implied by a small number of the former statements. In other words, the interaction
between statements is, in a sense, local.

This problem is also related to agenda safety for supermajority rules. A supermajority
rule accepts any proposition in the agenda if and only if a certain supermajority of the
individuals, specified by a threshold q ∈ (1

2 , 1], accepts the proposition. Supermajority rules

always produce consistent outcomes if the threshold is greater than k−1
k , where k is the size

of the largest minimally inconsistent subset of the agenda (cf. [14, 27]).
Unfortunately, it turns out that this parameterization does not lead to a significant

(practically exploitable) improvement in the computational complexity. In order to prove
this, we will need the following lemma, a proof of which can be found in the appendix.

Lemma 20. Let (ϕ, k) be an instance of ∀k∃∗-WSat. In polynomial time, we can construct
an instance (ϕ′, k) of ∀k∃∗-WSat with ϕ′ = ∀X.∃Y.ψ, such that: (1) (ϕ, k) ∈ ∀k∃∗-WSat if
and only if (ϕ′, k) ∈ ∀k∃∗-WSat; (2) for every assignment α : X → {0, 1} of weight m > k,
the formula ∃Y.ψ[α] is false; and (3) for every assignment α : X → {0, 1} of weigth m < k,
the formula ∃Y.ψ[α] is true.

Theorem 21. Agenda-Safetymaj(counterexample size) is ∀k∃∗-hard.

Proof. In order to show ∀k∃∗-hardness we provide an fpt-reduction from ∀k∃∗-WSat
to Agenda-Safetymaj(counterexample size). Let (ϕ, k) be an instance of ∀k∃∗-WSat,
where ϕ = ∀X.∃Y.ψ is a quantified Boolean formula, X = {x1, . . . , xn}, and k is a positive
integer. We may assume without loss of generality that ϕ satisfies properties (2) and (3)
described in Lemma 20. We define the agenda Φ = {x1,¬x1, . . . , xn,¬xn, (ψ ∧ z),¬(ψ ∧ z)},
where z is a fresh variable. We claim that for all assignments α : X → {0, 1} of weight k it is
the case that ∃Y.ψ[α] is true if and only if every inconsistent subset Φ′ of Φ of size k + 1 has
itself an inconsistent subset of size 2. A proof of this claim can be found in the appendix.

Intuitively, restricting attention to only possible counterexamples of size k, still leaves a
search space of O(nk) many possible counterexamples (where n is the input size). Moreover,
since there is no restriction on the agenda, searching this space for a counterexample (or
verifying that no such counterexample exists) is computationally hard.

4 Conclusion

We provided a parameterized complexity analysis of the problem of agenda safety for the
majority rule in judgment aggregation, with the aim of obtaining fpt-reductions to SAT. We
identified several negative cases, and one positive case, where the safety of the agenda can be
decided in fpt-time using a small number of SAT calls. Moreover, for this positive case, we
identified lower bounds on the number of SAT calls needed to solve the problem in fpt-time.

We hope that the initial results obtained in this paper prove to be the kick-off of a
structured parameterized complexity investigation of problems in the field of computational
social choice that are located at higher levels of the PH. Concretely, for the problem studied
in this paper, additional parameters related to treewidth and backdoors could be considered
(these notions have been applied successfully in many parameterized complexity analyses).
In addition, it would be interesting to study the problem of agenda safety for other judgment
aggregation procedures [18].

References

[1] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT Press,
2008.

[2] Dorothea Baumeister, Felix Brandt, Felix A. Fischer, Jan Hoffmann, and Jörg Rothe.
The complexity of computing minimal unidirectional covering sets. Theory Comput.
Syst., 53(3):467–502, 2013.

[3] Dorothea Baumeister, Gábor Erdélyi, and Jörg Rothe. How hard is it to bribe the
judges? A study of the complexity of bribery in judgment aggregation. In Proceedings
of the Second International Conference on Algorithmic Decision Theory (ADT 2011),
Piscataway, NJ, USA, October 26-28, 2011., volume 6992 of Lecture Notes in Computer
Science, pages 1–15. Springer, 2011.

[4] Nadja Betzler, Robert Bredereck, Jiehua Chen, and Rolf Niedermeier. Studies in
computational aspects of voting – a parameterized complexity perspective. In Hans L.
Bodlaender, Rod Downey, Fedor V. Fomin, and Dániel Marx, editors, The Multivariate
Algorithmic Revolution and Beyond - Essays Dedicated to Michael R. Fellows on the
Occasion of His 60th Birthday, volume 7370 of Lecture Notes in Computer Science,
pages 318–363. Springer Verlag, 2012.

[5] Nadja Betzler, Jiong Guo, and Rolf Niedermeier. Parameterized computational com-
plexity of Dodgson and Young elections. Information and Computation, 208(2):165–177,
2010.

[6] Armin Biere. Bounded model checking. In Armin Biere, Marijn Heule, Hans van Maaren,
and Toby Walsh, editors, Handbook of Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications, pages 457–481. IOS Press, 2009.

[7] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic
model checking without BDDs. In Rance Cleaveland, editor, Tools and Algorithms for
Construction and Analysis of Systems, 5th International Conference, TACAS ’99, Held
as Part of the European Joint Conferences on the Theory and Practice of Software,
ETAPS’99, Amsterdam, The Netherlands, March 22-28, 1999, Proceedings, volume 1579
of Lecture Notes in Computer Science, pages 193–207. Springer Verlag, 1999.

[8] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of
Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications. IOS
Press, 2009.

[9] Hans L. Bodlaender, Rod Downey, Fedor V. Fomin, and Dániel Marx, editors. The
Multivariate Algorithmic Revolution and Beyond – Essays Dedicated to Michael R.
Fellows on the Occasion of His 60th Birthday, volume 7370 of Lecture Notes in Computer
Science. Springer, 2012.

[10] Sylvain Bouveret and Jérôme Lang. Efficiency and envy-freeness in fair division of
indivisible goods: Logical representation and complexity. J. Artif. Intell. Res., 32:525–
564, 2008.

[11] Jin-yi Cai, Thomas Gundermann, Juris Hartmanis, Lane A. Hemachandra, Vivian
Sewelson, Klaus W. Wagner, and Gerd Wechsung. The Boolean hierarchy I: Structural
properties. SIAM J. Comput., 17(6):1232–1252, 1988.

[12] Richard Chang and Jim Kadin. The Boolean hierarchy and the polynomial hierarchy: a
closer connection. SIAM J. Comput., 25:169–178, 1993.

[13] Edmund M. Clarke, Daniel Kroening, Joël Ouaknine, and Ofer Strichman. Completeness
and complexity of bounded model checking. In Bernhard Steffen and Giorgio Levi,
editors, Verification, Model Checking, and Abstract Interpretation, 5th International
Conference, VMCAI 2004, volume 2937 of Lecture Notes in Computer Science, pages
85–96. Springer, 2004.

[14] Franz Dietrich and Christian List. Judgment aggregation by quota rules: Majority
voting generalized. J. of Theoretical Politics, 19(4):391–424, 2007.

[15] Britta Dorn and Ildikó Schlotter. Multivariate complexity analysis of swap bribery.
Algorithmica, 64(1):126–151, 2012.

[16] R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in Computer
Science. Springer Verlag, New York, 1999.

[17] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer Verlag, 2013.

[18] Ulle Endriss, Umberto Grandi, and Daniele Porello. Complexity of judgment aggregation.
J. Artif. Intell. Res., 45:481–514, 2012.

[19] Jörg Flum and Martin Grohe. Describing parameterized complexity classes. Information
and Computation, 187(2):291–319, 2003.

[20] Jörg Flum and Martin Grohe. Parameterized Complexity Theory, volume XIV of Texts
in Theoretical Computer Science. An EATCS Series. Springer Verlag, Berlin, 2006.

[21] Carla P. Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman. Satisfiability
solvers. In Handbook of Knowledge Representation, volume 3 of Foundations of Artificial
Intelligence, pages 89–134. Elsevier, 2008.

[22] Ronald de Haan and Stefan Szeider. Fixed-parameter tractable reductions to SAT. In
Uwe Egly and Carsten Sinz, editors, Proceedings of the 17th International Symposium
on the Theory and Applications of Satisfiability Testing (SAT 2014) Vienna, Austria,
July 14–17, 2014, Lecture Notes in Computer Science. Springer, 2014. To appear.

[23] Ronald de Haan and Stefan Szeider. The parameterized complexity of reasoning
problems beyond NP. In Chitta Baral, Giuseppe De Giacomo, and Thomas Eiter,
editors, Principles of Knowledge Representation and Reasoning: Proceedings of the
Fourteenth International Conference, KR 2014, Vienna, Austria, July 20-24, 2014.
AAAI Press, 2014. To appear.

[24] Edith Hemaspaandra, Lane A. Hemaspaandra, and Jörg Rothe. Exact analysis of
Dodgson elections: Lewis Carroll’s 1876 voting system is complete for parallel access to
NP. J. of the ACM, 44(6):806–825, 1997.

[25] Edith Hemaspaandra, Holger Spakowski, and Jörg Vogel. The complexity of Kemeny
elections. Theoretical Computer Science, 349(3):382–391, 2005.

[26] Jim Kadin. The polynomial time hierarchy collapses if the Boolean hierarchy collapses.
SIAM J. Comput., 17(6):1263–1282, December 1988.

[27] Christian List. The theory of judgment aggregation: an introductory review. Synthese,
187(1):179–207, 2012.

[28] Christian List and Clemens Puppe. Judgment aggregation: A survey. In Handbook of
Rational and Social Choice. Oxford University Press, 2009.

[29] Sharad Malik and Lintao Zhang. Boolean satisfiability from theoretical hardness to
practical success. Communications of the ACM, 52(8):76–82, 2009.

[30] Albert R. Meyer and Larry J. Stockmeyer. The equivalence problem for regular
expressions with squaring requires exponential space. In SWAT, pages 125–129. IEEE
Computer Soc., 1972.

[31] Klaus Nehring and Clemens Puppe. The structure of strategy-proof social choice - part
I: General characterization and possibility results on median spaces. J. of Economic
Theory, 135(1):269–305, 2007.

[32] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in
Mathematics and its Applications. Oxford University Press, Oxford, 2006.

[33] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[34] Karem A. Sakallah and João Marques-Silva. Anatomy and empirical evaluation of
modern SAT solvers. Bulletin of the European Association for Theoretical Computer
Science, 103:96–121, 2011.

[35] Jörg Siekmann and Graham Wrightson, editors. Automation of reasoning. Classical
Papers on Computer Science 1967–1970, volume 2. Springer Verlag, 1983.

[36] Marija Slavkovik. Judgment Aggregation for Multiagent Systems. PhD thesis, University
of Luxembourg, 2012.

[37] Larry J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science,
3(1):1–22, 1976.

[38] G. S. Tseitin. Complexity of a derivation in the propositional calculus. Zap. Nauchn.
Sem. Leningrad Otd. Mat. Inst. Akad. Nauk SSSR, 8:23–41, 1968. English translation
reprinted in [35].

[39] Celia Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical Computer
Science, 3(1):23–33, 1976.

Ulle Endriss
Institute for Logic, Language and Computation
University of Amsterdam
Amsterdam, The Netherlands
Email: ulle.endriss@uva.nl

Ronald de Haan
Institute of Information Systems
Vienna University of Technology
Vienna, Austria
Email: dehaan@kr.tuwien.ac.at

Stefan Szeider
Institute of Information Systems
Vienna University of Technology
Vienna, Austria
Email: stefan@szeider.net

ulle.endriss@uva.nl
dehaan@kr.tuwien.ac.at
stefan@szeider.net

Appendix: Proofs

Proof of Proposition 1. Assume without loss of generality that ϕ contains only the con-
nectives ∧ and ¬. Let Sub(ϕ) denote the set of all subformulas of ϕ. We let Var(ϕ′) =
Var(ϕ) ∪ { zχ : χ ∈ Sub(ϕ) }, where each zχ is a fresh variable. We then define ϕ′ to be the
formula χϕ ∧

∧
χ∈Sub(ϕ) σ(χ), where we define the formulas σ(χ), for each χ ∈ Sub(ϕ) as

follows:

σ(χ) =

(zl → l) ∧ (l→ zl) if χ = l is a literal,

(zχ → ¬zχ′) ∧ (zχ′ → ¬zχ) if χ = ¬χ′, and

(zχ → zχ1
) ∧ (zχ → zχ2

) ∧ (¬zχ1
∨ ¬zχ2

→ ¬zχ) if χ = χ1 ∧ χ2.

Let α : Var(ϕ) → {0, 1} be an arbitrary truth assignment. We claim that α satisfies ϕ
if and only if there exists an assignment β : (Var(ϕ′)\Var(ϕ)) → {0, 1} such that α ∪ β
satisfies ϕ′. Define the assignment β′ as follows. For each χ ∈ Sub(ϕ), we let β(zχ) = 1 if
and only if α satisfies χ. Clearly, if α satisfies ϕ, then α ∪ β′ satisfies ϕ′. Conversely, for
any assignment β : (Var(ϕ′)\Var(ϕ)) → {0, 1} that does not coincide with β′, clearly, the
assignment α ∪ β does not satisfy some clause of ϕ′. Moreover, if α ∪ β′ satisfies ϕ′, then α
satisfies ϕ.

Proof of Proposition 2 (continued). We prove that Ψ is consistent if and only if Ψ′ =
{ϕ′i1 , . . . , ϕ

′
im1

,¬ϕ′j1 , . . . ,¬ϕ
′
jm2
} is consistent.

(⇒) Let α : Var(Ψ) → {0, 1} be an assignment that satisfies all formulas in Ψ. By
construction of the formulas ϕ′i, by Lemma 1, and by the fact that for each 1 ≤ i < i′ ≤ n it
is the case that (Var(ϕ′i)\Var(ϕi)) ∩ (Var(ϕ′i′)\Var(ϕi′)) = ∅, we know that there exists an
assignment β : (Var(Ψ′)\Var(Ψ))→ {0, 1} such that α ∪ β satisfies all formulas in Ψ.

(⇐) Conversely, assume that there exists an assignment α : Var(Ψ′)→ {0, 1} that satisfies
all formulas in Ψ′. Then, by construction of the formulas ϕ′i, we know that Var(Ψ′) ⊆ Var(Ψ).
Now, by Lemma 1, we know that α satisfies all formulas in Ψ as well.

Proof of Proposition 4 (continued). We prove that Φ satisfies the median property if and
only if ϕ is true.

(⇒) Suppose that ϕ is false, i.e., there exists some α : X → {0, 1} such that ∀Y.¬ψ[α]
is true. Let L = {xi : 1 ≤ i ≤ n, α(xi) = 1 } ∪ {¬xi : 1 ≤ i ≤ n, α(xi) = 0 }. We know
that α is the unique assignment to the variables in X that satisfies L. Now consider Φ′ =
L ∪ {(c1 ∧ z1), . . . , (cm ∧ zm)}.

We firstly show that Φ′ is inconsistent. We proceed indirectly and assume that Φ′ is
consistent, i.e., there exists an assignment β : Y ∪ Z → {0, 1} such that α ∪ β satisfies Φ′.
Then α∪β must satisfy each ci. Therefore, β satisfies ψ[α], which contradicts our assumption
that ∀Y.¬ψ[α] is true. Therefore, we can conclude that Φ′ is inconsistent.

Next, we show that each subset Φ′′ ⊆ Φ′ of size 2 is consistent. Let Φ′′ ⊆ Φ′ be
an arbitrary subset of size 2. We distinguish three cases: either (i) Φ′′ = {li, lj} for
some 1 ≤ i < j ≤ n; (ii) Φ′′ = {li, (cj ∧ ¬zj)} for some 1 ≤ i ≤ n and some 1 ≤ j ≤ m; or
(iii) Φ′′ = {(ci ∧¬zi), (cj ∧¬zj)} for some 1 ≤ i < j ≤ m. In case (i), clearly Φ′′ is consistent.
In case (ii) and (iii), Φ′′ is consistent because ci and cj are not unit clauses.

(⇐) Conversely, suppose that Φ does not satisfy the median property, i.e., there exists
an inconsistent subset Φ′ ⊆ Φ that itself does not contain an inconsistent subset of size 2.
We show that ϕ is false. Firstly, we show that Ψ′ = Φ′\{¬(c1 ∧ ¬z1), . . . ,¬(cm ∧ ¬zm)}
is inconsistent. We proceed indirectly, and assume that Ψ′ is consistent, i.e., there exists
an assignment γ : Var(Ψ′) → {0, 1} such that γ satisfies Ψ′. Now let Z ′ = { zi : 1 ≤ i ≤
m,¬(ci ∧ ¬zi) ∈ Ψ′ } and let γ′ : Z ′ → {0, 1} be defined by letting γ′(z) = 0 for all z ∈ Z ′.
Since Ψ′ contains no negated pairs of formulas, we know that Z ′ ∩Var(Ψ′) = ∅. Then the

assignment γ ∪ γ′ satisfies Φ′, since γ satisfies all ψ ∈ Ψ′ and γ′ satisfies all ϕ ∈ Φ′ ∩Ψ′. This
is a contradiction with our assumption that Φ′ is inconsistent, so we can conclude that Ψ′ is
inconsistent.

Now let the assignment α : X → {0, 1} be defined as follows. For each x ∈ X, we
let α(x) = 1 if x ∈ Ψ′, we let α(x) = 0 if ¬x ∈ Ψ′, and we (arbitrarily) define α(x) = 1
otherwise. We now show that ¬∃Y.ψ[α] is true. We proceed indirectly, and assume that
there exists an assignment β : Y → {0, 1} such that ψ[α ∪ β] is true. Now consider
the assignment γ : Z → {0, 1} such that γ(z) = 0 for all z ∈ Z. We claim that the
assignment α ∪ β ∪ γ satisfies Ψ′. Let χ ∈ Ψ′ be an arbitrary formula. We distinguish two
cases: either (i) χ ∈ {xi,¬xi} for some 1 ≤ i ≤ n; or (ii) χ = (ci ∧ ¬zi) for some 1 ≤ i ≤ m.
In case (i), we know that α satisfies χ. In case (ii), we know that α∪β satisfies ci, since α∪β
satisfies ψ, and since γ satisfies zi. This is a contradiction with our previous conclusion
that Ψ′ is inconsistent, so we can conclude that ¬∃Y.ψ[α] is true. From this, we know
that ∀X.∃Y.ψ is false.

Proof of Lemma 5. Let ϕ = ∀X.∃Y.ψ be an instance of ∀∃-Sat(3CNF). We construct
in polynomial time an equivalent instance ϕ′ = ∀X ′.∃Y ′.ψ′ of ∀∃-Sat(3CNF) such that
each x ∈ X ′ occurs at most 2 times in ψ′ and each y ∈ Y ′ occurs at most 3 times in ψ′.

Firstly, we construct an equivalent formula ϕ1 = ∀X.∃Y1.ψ1 such that each x ∈ X1 occurs
at most 2 times in ψ1. We do this by repeatedly applying the following transformation.
Let z ∈ X be any variable that occurs m > 3 times in ψ. We create m many copies z1, . . . , zm
of z, that we add to the set Y of existentially quantified variables. We replace each occurrence
of z in ψ by a distinct copy zi. Finally, we ensure equivalence of ψ1 and ψ by letting ψ1 =
ψ ∧ ψzequiv, where we define ψzequiv to be the conjunction of binary clauses (zi → zi+1) for
each 1 ≤ i < m, the binary clause (zm → z1), and the binary clauses (z → z1) and (z1 → z).
Repeated application of this transformation results in a formula ϕ1 that satisfies the required
properties.

Then, we transform ϕ1 into an equivalent formula ϕ2 = ∀X.∃Y2.ψ2 such that each y ∈ Y2

occurs at most 3 times in ψ2. Moreover, each x ∈ X occurs as many times in ψ2 as it did
in ψ1 (i.e., twice). We use a similar strategy as we did in the first phase: we repeatedly
apply the following transformation. Let y ∈ Y1 be any variable that occurs m > 3 times
in ψ1. We create m many copies y1, . . . , ym of y, that we add to the set Y1 of existentially
quantified variables. Then we replace each occurrence of y in ψ by a distinct copy yi. Finally,
we ensure equivalence of ψ2 and ψ1 by letting ψ2 = ψyequiv ∧ ψ1, where we define ψyequiv

to the conjunction of the binary clauses (yi → yi+1) for all 1 ≤ i < m and the binary
clause (ym → y1). Again, repeated application of this transformation results in a formula ϕ2

that satisfies the required properties.

Proof of Lemma 11 (continued). We claim that Φ does not satisfy the MP if and only
if (ϕ1, ϕ2) ∈ SAT-UNSAT.

(⇒) Assume that Φ does not satisfy the MP. Then there exists a satisfiable complement-
free subagenda Φ′ ⊆ Φ such that each subset Φ′′ ⊆ Φ′ of size 2 is satisfiable. We dinstinguish
several cases: either (i) Φ′ = B(Φ) = {ψ1, ψ2, ψ3}, or (ii) the above case does not hold and
Φ′ contains ψ1, or (iii) the above two cases do not hold.

We show that in case (i) we can conclude that (ϕ1, ϕ2) ∈ SAT-UNSAT. By assumption,
every subset Φ′′ ⊆ Φ of size 2 is satisfiable. Therefore, we can conclude that the formula ψ1

is satisfiable. Hence, ϕ1 is satisfiable. Next, we show that ϕ2 is unsatisfiable. We proceed
indirectly, and we assume that there exists some assignment α : Var(ϕ2) → {0, 1} that
satisfies ϕ2. We construct a satisfying assignment α′ : Var(Φ)→ {0, 1} for Φ, which leads to
a contradiction. We let α′ coincide with α on the variables in Var(ϕ2). Moreover, we know
that there exists some satisfying assignment β : Var(ϕ1)→ {0, 1} for ϕ1. We let α′ coincide
with β on the variables in Var(ϕ1). Finally, we let α′(x) = 1 for each x ∈ {r1, r2, r3, p1, p2}.

Clearly, α′ satisfies all formulas in Φ then. This leads to a contradiction with the fact that Φ
is unsatisfiable, and therefore we can conclude that ϕ2 is unsatisfiable.

Next, we show that case (ii) cannot occur. We know that ψ1 ∈ Φ′, and that each
subset Φ′′ ⊆ Φ of size 2 is satisfiable. Therefore, we know that ϕ1 is satisfiable. Let β :
Var(ϕ1) → {0, 1} be a satisfying assignment for ϕ1. We extend the assignment β to an
assignment β′ : Var(Φ)→ {0, 1} that satisfies Φ′. We let β′(r1) = β′(p1) = 1. If ψ2 ∈ Φ, we
let β′(r2) = β′(p2) = 1; otherwise, if ¬ψ2 ∈ Φ, we let β′(r2) = 0. If ψ3 ∈ Φ, we let β′(r3) = 1
and β′(p2) = 0; otherwise, if ¬ψ3 ∈ Φ, we let β′(r3) = 0. On the other variables, we let β′

be defined arbitrarily. Since not both ψ2 ∈ Φ and ψ3 ∈ Φ, we know that β′ is well-defined.
It is easy to verify that β′ satisfies Φ′, which is a contradiction with our assumption that Φ′

is unsatisfiable. From this we can conclude that case (ii) cannot occur.
Finally, we show that case (iii) cannot occur either. We construct an assignment β :

Var(Φ) → {0, 1} that satisfies Φ′. We know that ¬ψ1 ∈ Φ′. Let β(r1) = β(p1) = 0.
If ψ2 ∈ Φ′, we let β(r2) = β(p2) = 1; otherwise, if ¬ψ2 ∈ Φ′, we let β(r2) = 0; If ψ3 ∈ Φ′, we
let β(r3) = 1; otherwise, if ¬ψ3 ∈ Φ′, we let β(r3) = 0. It is easy to verify that β satisfies Ψ,
which is a contradiction with our assumption that Φ′ is unsatisfiable. From this we can
conclude that case (iii) cannot occur.

(⇐) Conversely, assume that ϕ1 is satisfiable and that ϕ2 is unsatisfiable. Then consider
the complement-free subagenda Φ′ ⊆ Φ given by Φ′ = B(Φ) = {ψ1, ψ2, ψ3}. Since ψ1, ψ2 |=
p1∧p2 and ϕ2 is unsatisfiable, we get that Φ′ is unsatisfiable. However, since ϕ1 is satisfiable,
we get that each subset of Φ′ of size 2 is satisfiable. Therefore, Φ does not satisfy the MP.

Proof of Proposition 12 (continued). We prove that Φ does not satisfy the median property
if and only if (χi, ψi) ∈ SAT-UNSAT for some 1 ≤ i ≤ `.

Assume that Φ does not satisfy the median property. Then there exists a subset Φ′ ⊆ Φ
that is unsatisfiable such that each Φ′′ ⊆ Φ′ of size 2 is satisfiable. Moreover, we can
assume Φ′ to be minimal with this property. Since Φ is partitioned into the variable disjoint
subsets Φi, and since Φ′ is minimal, we know that Φ′ ⊆ Φi, for some 1 ≤ i ≤ `. Then Φi does
not satisfy the median property, from which we can conclude that (χi, ψi) ∈ SAT-UNSAT.
Conversely, assume that (χi, ψi) ∈ SAT-UNSAT for some 1 ≤ i ≤ `. Then by construction
of Φi, we know that Φi does not satisfy the median property. Therefore, since Φi ⊆ Φ, we
know that Φ does not satisfy the median property.

Proof of Lemma 14. We use the algorithm A to construct an fpt-reduction from P
to BH(level)-Sat. We will use the known fact that a disjunction of m many SAT-UNSAT
instances can be reduced to a single instance of BH2m-Sat [11]. Let (x, k) be an in-
stance of P . We may assume without loss of generality that A makes exactly g(k) many
SAT calls on any input (x, k). Consider the set B = {0, 1}g(k). We interpret each se-
quence b = (b1, . . . , bg(k)) ∈ B as a sequence of answers to the SAT calls made by A; a 0
corresponds to the answer of the SAT call being “unsatisfiable” and a 1 corresponds to the
answer being “satisfiable.” For each b ∈ B, we simulate the algorithm A on input (x, k) by
using the answer specified by bi to the i-th SAT call. Let us write Ab(x, k) to denote the

simulation of A on input (x, k) where the answers to the SAT calls are specified by b. By
performing this simulation for each b ∈ B, we can determine in fpt-time the set B′ ⊆ B of
sequences b such that Ab(x, k) accepts.

We know that A accepts (x, k) if and only if the “correct” sequence of answers is contained
in B′, in other words, A accepts (x, k) if and only if there exists some b ∈ B′ such that for
each bi it holds that if bi = 0 then ψi is unsatisfiable, and if bi = 1 then ψi is satisfiable,
where ψi denotes the formula used for the i-th SAT call made by Ab(x, k). For each b ∈ B′,
we construct an instance I(b) = (ϕ1, ϕ0) of SAT-UNSAT that is a yes-instance if and only if
the above condition holds for sequence b, as follows. Let (ψ1, . . . , ψg(k)) be the propositional
formulas that Ab(x, k) uses for the SAT calls, i.e., ψi corresponds to the formula used for the

i-th SAT call of Ab(x, k). We may assume without loss of generality that the formulas ψi are
variable disjoint, i.e., for each 1 ≤ i < i′ ≤ g(k), it holds that Var(ψi) ∩ Var(ψi′) = ∅. We
construct the instance (ϕ1, ϕ0) as follows:

C1 = { 1 ≤ i ≤ g(k) : bi = 1 };
ϕ1 =

∧
j∈C1

ψj ;

C0 = { 1 ≤ i ≤ g(k) : bi = 0 }; and
ϕ0 =

∨
j∈C0

ψj ;

It is straightforward to verify that I(b) ∈ SAT-UNSAT if and only if b corresponds to the
“correct” sequence of answers for the SAT calls made by A, i.e., for each bi with bi = 0 it
holds that ψi is unsatisfiable, and for each bi with bi = 1 it holds that ψi is satisfiable.

We constructed ` many instances I(b1), . . . , I(b`) of SAT-UNSAT, for some ` ≤ 2g(k),
such that the algorithm A accepts the instance (x, k), and thus (x, k) ∈ P , if and only if
there exists some 1 ≤ i ≤ ` such that I(b`) ∈ SAT-UNSAT. In other words, we reduced our
original instance (x, k) of P to a disjunction of ` ≤ 2g(k) many instances of SAT-UNSAT.
We know that such a disjunction can be reduced to an instance of BH2`-Sat [11]. This
completes our fpt-reduction from P to BH(level).

Proof of Theorem 19. Assume that Agenda-Safetymaj(agenda size) is solvable by an
fpt-algorithm that uses h(k) = o(log k) many SAT calls. We show that the BH collapses,
and thus that consequently, the PH collapses. By Proposition 12, we know that BH(level)-
Sat can be fpt-reduced to the problem Agenda-Safetymaj(agenda size) in such a way
that the parameter value k increases at most linearly to h′(k) = O(k). By Lemma 14, we
know that Agenda-Safetymaj(agenda size) can be fpt-reduced to BH(level)-Sat in such a
way that the resulting parameter value k′ is bounded by a function h′′(k) = 2O(k), where k
is the original parameter value. We can now combine these fpt-reductions to obtain a
polynomial-time reduction that witnesses the collapse of the BH. We know that there exists
some integer ` such that h′′(h′(h(`))) = `′ < `. Applying the composing the fpt-reductions
gives us a polynomial-time reduction from the problem BH`-Sat to the problem BH`′ -Sat.
Since `′ < `, this shows that the BH collapses to the `′-th level. Since a collapse of the BH
implies a collapse of the PH [26, 12], the result follows.

Proof of Lemma 20. Let (ϕ, k) be an instance of ∀k∃∗-WSat, with ϕ = ∀X.∃Y.ψ. We
construct the instance ϕ′ = ∀X.∃Y ∪ Z.ψ′ as follows. We define the set Z of variables by
letting Z = { zx,i : x ∈ X, 1 ≤ i ≤ k }. Intuitively, these variables keep track of how many
variables in X are set to true. We define the formula ψ′ = ψZproper∧(ψZfew∨ψ), where ψZproper =∧
x∈X

∨
1≤i≤k zx,i ∧

∧
1≤i≤k

∧
x,x′∈X,x 6=x′(¬zx,i ∨ ¬zx′,i) ∧

∧
x∈X

∧
1≤i<i′≤k(¬zx,i ∨ ¬zx,i′),

and ψZfew =
∨

1≤i≤k
∧
x∈X ¬zx,i. The formula ψZproper enforces that for any x ∈ X that is set

to true, there must be some 1 ≤ i ≤ k such that zx,i is set to true as well. Moreover, it
enforces that for each x ∈ X there is at most one 1 ≤ i ≤ k such that zx,i is true, and for
each 1 ≤ i ≤ k, there is at most one x ∈ X such that zx,i is true. The formula ψZfew is true if
and only if there exists some 1 ≤ i ≤ k such that zx,i is false for all x ∈ X.

It is now straightforward to verify that for each assignment α : X → {0, 1} it holds
that (i) if α has weight k, then ∃Y ∪Z.ψ′[α] is true if and only if ∃Y.ψ[α] is true, (ii) if α has
weight less than k, then ∃Y ∪ Z.ψ′[α] is always true, and (iii) if α has weight more than k,
then ∃Y ∪ Z.ψ′[α] is never true.

Proof of Theorem 21 (continued). We show that for all assignments α : X → {0, 1} of
weight k it is the case that ∃Y.ψ[α] is true if and only if every inconsistent subset Φ′ of Φ of
size k + 1 has itself an inconsistent subset of size 2.

(⇒) Assume that there exists an inconsistent subset Φ′ of Φ of size k + 1 that has itself
no inconsistent subset of size 2. It is straightforward to see that for no ϕ ∈ Φ, Φ′ contains
both ϕ and ∼ϕ. If Φ′ does not contain (ψ ∧ z), we can easily satisfy Φ′ by setting z to
false and satisfying all literals in Φ′. Therefore, (ψ ∧ z) ∈ Φ′. We show that Φ′ contains
exactly k positive literals xj for some 1 ≤ j ≤ m. We proceed indirectly, and assume the
contrary, i.e., that Φ′ contains at most k − 1 many positive literals xj for some 1 ≤ j ≤ m.
Let L = Φ′ ∩ X. Consider the assignment α : X → {0, 1} such that α(x) = 1 if and
only if x ∈ Φ. Clearly, α has weight strictly less than k. Therefore, we know that there
exists an assignment β : Y → {0, 1} such that α ∪ β satisfies ψ. Additionally, consider the
assignment γ : {z} → {0, 1} such that γ(z) = 1. Then α∪β∪γ satisfies Φ′, which contradicts
our assumption that Φ′ is inconsistent. From this we can conclude that |Φ′ ∩X| = k.

Now, again consider the assignment α : X → {0, 1} such that α(x) = 1 if and only if x ∈ Φ.
Clearly, α has weight k. We show that the formula ∃Y.ψ[α] is false. We proceed indirectly,
and assume that there exists an assignment β : Y → {0, 1} such that α ∪ β satisfies ψ.
Consider the assignment γ : {z} → {0, 1} such that γ(z) = 1. It is straightforward to
verify that α ∪ β ∪ γ satisfies Φ′, which contradicts our assumption that Φ′ is inconsistent.
Therefore, we conclude that ∃Y.ψ[α] is false, and thus that it is not the case that for all
assignments α : X → {0, 1} of weight k it is the case that ∃Y.ψ[α] is true.

(⇐) Assume that there exists an assignment α : X → {0, 1} of weight k such that ¬∃Y.ψ[α]
is true. Let L = {xi : 1 ≤ i ≤ n, α(xi) = 1 }. Consider the subagenda Φ′ = L ∪ {(ψ ∧ z)}.
We show that Φ′ is inconsistent. We proceed indirectly, and assume that there exists an
assignment β : X ∪ Y ∪ {z} → {0, 1} that satisfies Φ′. Clearly, β(xi) = 1 for all xi ∈ L.
We show that β(x) = 0 for all x ∈ X\L. We proceed indirectly, and assume the contrary,
i.e., β(x) = 1 for some x ∈ X\L. Then the restriction of β to the variables in X has
weight m > k. Therefore, since for all assignments β′ : X → {0, 1 } of weight strictly larger
than k the formula ∃Y.ψ[β′] is false, we know that β does not satisfy ψ. From this we can
conclude that β(x) = 0 for all x ∈ X\L. We then know that the restriction β|X of β to the
variables in X has weigth k. Also, since (ψ ∧ z) ∈ Φ, we know that β satisfies ψ. This is
a contradiction with our assumption that ¬∃Y.ψ[β|X] is true. Therefore, we know that β
cannot exist, and thus that Φ′ is inconsistent.

We now show that each subset Φ′′ of Φ′ of size 2 is consistent. Let Φ′′ ⊆ Φ′ be an arbitrary
subset of size 2. We distinguish two cases: either (i) Φ′′ = {xi, xj} for some 1 ≤ i < j ≤ n,
or (ii) Φ′′ = {xi, (ψ ∧ z)} for some 1 ≤ i ≤ n. In case (i), clearly Φ′′ is consistent. In
case (ii), we get that Φ′′ is consistent by the fact that for every assignment α : X → {0, 1} of
weight m < k the formula ∃Y.ψ[α] is true. This completes our proof that Φ′ does not satisfy
the median property.

	Introduction
	Preliminaries
	Parameterized Complexity Results
	Syntactic restrictions on the agenda
	Restricting attention to small counterexamples

	Conclusion

