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Abstract. Suppose a number of agents each provide us with a di-
rected graph over a common set of vertices. Graph aggregation is
the problem of computing a single “collective” graph that best rep-
resents the information inherent in this profile of individual graphs.
We consider this aggregation problem from the point of view of so-
cial choice theory and ask what properties shared by the individual
graphs will transfer to the graph computed by a given aggregation
procedure. Our main result is a general impossibility theorem that
applies to a wide range of graph properties.

1 INTRODUCTION
Suppose a group of agents each supply us with a particular piece of
information and we want to aggregate this information into a col-
lective view to obtain a good overall representation of the individ-
ual views provided. This may be interpreted as a problem of social
choice. In classical social choice theory (SCT) the objects of aggre-
gation have been preference orders on a set of alternatives [2, 21].
More recently, the same methodology has also been applied to other
types of information, notably beliefs [16], judgments [17], ontolo-
gies [20], taxonomic models used for classification [3], and rankings
provided by Internet search engines [10].

Here we consider the problem of graph aggregation, i.e., the prob-
lem of devising methods to aggregate the information inherent in a
profile of individual (directed) graphs, one for each agent, into a sin-
gle collective graph. Given that a preference order is a special kind of
directed graph, graph aggregation may be viewed as a direct generali-
sation of classical preference aggregation. This is a useful generalisa-
tion, because also several other problem domains in which aggrega-
tion is relevant are naturally modelled as graphs. For instance, some
authors have studied the aggregation of the graphs underlying ab-
stract argumentation frameworks [6, 9, 22]. Others have considered
the aggregation of incomplete transitive relations to account for the
bounded rationality of agents expressing preferences [19]. Special
instances of the graph aggregation problem have also been studied in
work on the aggregation of judgments regarding causal relations be-
tween variables [5] and the design of voting agendas for multi-issue
elections based on individually reported preferential dependencies
between issues [1]. Finally, graph aggregation is also at the core of
recent work on the aggregation of different logics [23]. However, a
general account of the graph aggregation problem as such has so far
been missing. Our goal here is to bridge this gap.

While graph aggregation is more general than preference aggrega-
tion, it is (in some sense) less general than judgment aggregation [17]
or binary aggregation [8, 12]: just like classical preference aggrega-
tion, graph aggregation can—in principle—be embedded into these
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frameworks. For a given problem domain, it is important to find the
right level of abstraction, and graphs appear to be a particularly use-
ful level of abstraction for a wide range of problems.

The question we ask in this paper is what properties shared by the
individual graphs will transfer to the collective graph returned by a
given aggregator. For example, if we aggregate individual graphs by
computing their union (i.e., if we include an edge from x to y in our
collective graph if at least one of the individual graphs includes that
edge), then it is not difficult to verify that the property of reflexivity
will transfer while that of transitivity will not. Thus, if all individual
graphs are reflexive, then so is their union, while there are transitive
graphs the union of which is not transitive. We say that the union rule
is collectively rational w.r.t. reflexivity, but not w.r.t. transitivity.

Collective rationality is an important concept in SCT. In prefer-
ence aggregation an aggregator is called collectively rational if it en-
sures transitivity and completeness of the preference structure pro-
duced [2]. In judgment aggregation it refers to aggregators that en-
sure logically consistent outcomes [17]. Work in binary aggregation
has generalised beyond these domain-specific uses of the term and
considered collective rationality w.r.t. arbitrary properties [12].

Besides introducing a formal framework for graph aggregation,
our main contribution in this paper is to prove a very general impos-
sibility theorem. Arrow’s classical result for preference aggregation
states that no aggregator meeting certain basic axiomatic require-
ments can possibly be collectively rational w.r.t. both transitivity and
completeness [2]. We show that the same kind of result applies to a
wide range of other properties of graphs. Rather than proving our re-
sult for a specific combination of graph properties, we introduce three
meta-properties and show that collectively rational aggregation is im-
possible for any combination of properties that are instances of these
meta-properties. For instance, both transitivity and the so-called Eu-
clidean properties are instances of the meta-property of “implicative-
ness”, as they all stipulate that the inclusion of one type of edge is
implied by the inclusion of certain other edges.

The remainder of the paper is organised as follows. The formal
framework of graph aggregation is defined in Section 2. Section 3
is devoted to our general impossibility theorem. Finally, Section 4
concludes and suggests possible directions for future work.3

2 GRAPH AGGREGATION
Fix a finite set of vertices V. A (directed) graph G = 〈V,E〉 based
on V is defined by a set of edges E ⊆ V ×V . We write xEy for
(x, y) ∈ E. As V is fixed, G is in fact fully determined by E. We
therefore refer to sets of edges E ⊆ V ×V simply as graphs. Table 1
lists some well-known properties of graphs.4

3 An early version of this work has been presented at COMSOC-2012 [11].
4 The rightmost column of Table 1 specifies which properties are contagious,

implicative, and disjunctive, respectively (see Section 3.2).



PROPERTY FIRST-ORDER CONDITION C/I/D

Reflexivity ∀x.xEx −−−
Irreflexivity ¬∃x.xEx −−−
Transitivity ∀xyz.(xEy ∧ yEz → xEz) + +−
Right Euclidean ∀xyz.(xEy ∧ xEz → yEz) + +−
Left Euclidean ∀xyz.(xEy ∧ zEy → zEx) + +−
Seriality ∀x.∃y.xEy −−+
Completeness ∀xy.[x 6= y → (xEy ∨ yEx)] −−+
Connectedness ∀xyz.[xEy ∧ xEz → (yEz ∨ zEy)] + + +
Negative Trans. ∀xyz.[xEy → (xEz ∨ zEy)] +−+

Table 1. Common properties of directed graphs.

For example, a weak order is a directed graph that is reflexive,
transitive, and complete.

Let N be a finite set of (two or more) individuals. Each individ-
ual i ∈ N specifies a graph Ei ⊆ V ×V, giving rise to a profile
E = (E1, . . . , En). NE

e := {i ∈ N | e ∈ Ei} denotes the set
of individuals accepting edge e under profile E. An aggregator is
a function F : (2V×V )n → 2V×V , mapping any such profile into a
single collective graphE. An example is the majority rule, accepting
a given edge if and only if more than half of the individuals accept it.

Example 1 (Preferences). An example for a graph aggregation prob-
lem is preference aggregation as classically studied in SCT [2]. In
this context, vertices are interpreted as alternatives and the graphs
considered are weak orders on these alternatives. Our aggregators
then reduce to so-called social welfare functions.

Example 2 (Knowledge). If we think of V as a set of possible
worlds, then a graph on V that is reflexive and transitive (and pos-
sibly also symmetric) can be used to model an agent’s knowledge:
(x, y) being an edge means that, if x is the true current world, then
our agent will consider y a possible world [14]. If we aggregate the
graphs of several agents by taking their intersection, then the re-
sulting collective graph represents the distributed knowledge of the
group. If, on the other hand, we aggregate by taking the transitive
closure of the union of the individual graphs, then we obtain a model
of the group’s common knowledge.

Recall that we have assumed that every individual specifies a graph
on the same set of vertices V . For both of our examples above this
is a natural assumption to make, but in general we might also be
interested in aggregating graphs defined on different sets of vertices.
Observe that in this case our framework is still applicable, as we may
think of V as the union of all the individual sets of vertices (with each
individual only providing edges involving “their” vertices).

2.1 Axioms: Properties of graph aggregators
Adopting the axiomatic method familiar from SCT [21], we can char-
acterise certain classes of aggregators in terms of axioms, i.e., intu-
itively appealing properties. The first such axiom is an independence
condition that requires that the decision of whether or not a given
edge e should be part of the collective graph should only depend on
which of the individual graphs include e. This corresponds to well-
known axioms in preference and judgment aggregation [2, 17].

Definition 1. F is independent of irrelevant edges (IIE) if NE
e =

NE′
e implies e ∈ F (E)⇔ e ∈ F (E′).

That is, if exactly the same individuals accept e under profiles E and
E′, then e should be part of either both or none of the corresponding

collective graphs. The definition above applies to all edges e ∈ V×V
and all pairs of profiles E,E′ ∈ (2V×V )n. We shall leave this kind
of universal quantification implicit also in later definitions.

The fundamental economic principle of unanimity requires that an
edge should be accepted by the group if all individuals in it accept it.

Definition 2. F is unanimous if F (E) ⊇ E1 ∩ · · · ∩ En.

A requirement that, in some sense, is dual to unanimity is to ask that
the collective graph should only include edges that are part of at least
one of the individual graphs. In the context of ontology aggregation
this axiom has been called groundedness [20].

Definition 3. F is grounded if F (E) ⊆ E1 ∪ · · · ∪ En.

The remaining two axioms are standard desiderata and closely mod-
elled on their counterparts in the field of judgment aggregation [17].

Definition 4. F is anonymous if F (E) = F (Eπ(1), . . . , Eπ(n)) for
any permutation π : N → N .

Definition 5. F is neutral if NE
e =NE

e′ implies e∈F (E)⇔e′∈F (E).

Anonymity and neutrality are basic symmetry requirements w.r.t.
individuals and edges, respectively. An extreme form of violating
anonymity is to use an aggregator that is dictatorial in the sense that
a single individual can determine the shape of the collective graph.

Definition 6. F is dictatorial if there exists an individual i?∈N (the
dictator) such that e∈F (E)⇔ e∈Ei? for every edge e ∈ V ×V .

An aggregator F that is not a dictatorship for any of the individuals is
called nondictatorial. Sometimes we are only interested in the prop-
erties of an aggregator as far as the nonreflexive edges e = (x, y)
with x 6= y are concerned. Specifically, we call F NR-neutral if
NE

(x,y) = NE
(x′,y′) implies (x, y) ∈ F (E) ⇔ (x′, y′) ∈ F (E) for

all x 6= y and x′ 6= y′; and we call F NR-nondictatorial if there
exists no i? ∈ N such that (x, y) ∈ F (E) ⇔ (x, y) ∈ Ei? for all
x 6= y. That is, NR-neutrality is slightly weaker than neutrality and
NR-nondictatoriality is slightly stronger than nondictatoriality.

2.2 Collective rationality
In this paper, we want to analyse to what extent aggregators can en-
sure that a given property that is satisfied by each of the individual
graphs is preserved during aggregation.

Definition 7. F is collectively rational (CR) w.r.t. graph property P
if F (E) satisfies P whenever all of the individual graphs in E do.

Example 3 (Collective rationality). Suppose three individuals each
provide us with a graph over the same set of four vertices:
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If we apply the majority rule, then we obtain a graph where the only
edges are those connecting the upper three vertices with themselves.
That is, the majority rule is not CR w.r.t. seriality, as each individual
graph is serial, but the collective graph is not.

For some graph properties, collective rationality is easy to achieve,
as the following simple possibility results demonstrate.

Proposition 1. Any unanimous aggregator is CR w.r.t. reflexivity.



Proof. If every individual graph includes all edges of the form
(x, x), then unanimity ensures the same for the collective graph.

Proposition 2. Any grounded aggregator is CR w.r.t. irreflexivity.

Proof. If no individual graph includes the edge (x, x), then ground-
edness ensures the same for the collective graph.

3 A GENERAL IMPOSSIBILITY THEOREM
An impossibility result states that it is not possible to devise an aggre-
gator that satisfies certain axioms and that is also CR w.r.t. a certain
combination of properties of the structures being aggregated (which
in our case are graphs). In this section, we will prove a powerful im-
possibility result for graph aggregation.

3.1 Arrow’s Theorem
The prime example of an impossibility result is Arrow’s Theorem for
preference aggregation [2]. It states that there exists no nondictato-
rial, Paretian, and independent aggregator mapping profiles of weak
orders over three or more alternatives to collective weak orders. We
can reformulate this result in our framework for graph aggregation:

For |V | > 3, there exists no nondictatorial, unanimous,
grounded, and IIE aggregator that is CR w.r.t. reflexivity, tran-
sitivity, and completeness.

Note that we have translated Arrow’s (weak) Pareto condition (if ev-
ery individual ranks x strictly above y, then so should the collective)
to a combination of unanimity and groundedness. In fact, in the con-
text of the other requirements, Pareto efficiency implies both of these
properties (so our version is at least as strong as Arrow’s Theorem).
In the sequel, we will sometimes refer to aggregators that are unani-
mous, grounded, and IIE as Arrovian aggregators.

3.2 Winning coalitions
As is well understood in SCT, impossibility theorems in preference
aggregation heavily feed on the notion of independence (in our case
IIE). Observe that an aggregator F satisfies IIE if and only if for each
edge e ∈ V ×V there exists a set of winning coalitionsWe ⊆ 2N

such that e ∈ F (E)⇔ NE
e ∈ We. That is, F accepts e if and only

if exactly the individuals in one of the winning coalitions for e do.
Imposing additional axioms on F corresponds to restrictions on the
associated family of winning coalitions {We}e∈V×V :

• If F is unanimous, thenN ∈ We for any edge e.
• If F is grounded, then ∅ 6∈ We for any edge e.
• If F is (NR-)neutral, thenWe = We′ for any two (nonreflexive)

edges e and e′.

Recall that neutrality does not feature in Arrow’s Theorem. As we
shall see soon, the reason is that the same restriction on winning
coalitions is already enforced by collective rationality w.r.t. transitiv-
ity. This is an interesting link between a specific collective rationality
requirement and a specific axiom. In the literature, this fact is often
called the Contagion Lemma [21], although the connection to neu-
trality is not usually made explicit. The same kind of result can also
be obtained for other graph properties with a similar structure. Let
us now develop a definition for a class of graph properties that will
allow us to derive neutrality.

3.3 Contagious properties
It will be useful to think of a graph property P , such as transitivity
or reflexivity, as a subset of 2V×V (the set of all graphs over the set of
vertices V ). For two disjoint sets of edges S+ and S− and a graph
property P , let P [S+, S−] = {E ∈ P | S+ ⊆ E and S− ∩E = ∅}
denote the set of graphs in P that include all of the edges in S+ and
none of those in S−. We start with a technical definition.

Definition 8. Let x, y, z, w ∈ V . A graph property P ⊆ 2V×V is
xy/zw-contagious if there exist two disjoint sets S+, S− ⊆ V ×V
such that (i) for every graph E ∈ P [S+, S−] it is the case that
(x, y) ∈ E implies (z, w) ∈ E and (ii) there exist graphs E0, E1 ∈
P [S+, S−] with (z, w) 6∈ E0 and (x, y) ∈ E1.

Part (i) of Definition 8 says that, if you accept edge (x, y), then you
must also accept edge (z, w)—at least if the side condition of you
also accepting all the edges in S+ but none of those in S− is met.
That is, the property of contagiousness may be paraphrased as the
formula [

∧
S+ ∧¬

∨
S−]→ [xEy → zEw]. Part (ii) is a richness

condition that says that you have the option of accepting neither or
both of (x, y) and (z, w). It requires the existence of a graph E0

where neither (x, y) nor (z, w) are accepted, and the existence of a
graph E1 where both (x, y) and (z, w) are accepted.

Contagiousness w.r.t. two given edges will be useful for our pur-
poses if those two edges stand in a specific relationship to each other.

Definition 9. A graph property P ⊆ 2V×V is contagious if it satisfies
at least one of the three conditions below:

(i) P is xy/yz-contagious for all triples of vertices x, y, z ∈ V .
(ii) P is xy/zx-contagious for all triples of vertices x, y, z ∈ V .
(iii) P is xy/xz-contagious and xy/zy-contagious for all x, y, z∈V .

That is, Definition 9 covers pairs of edges where (i) the second edge
is a successor of the first edge, where (ii) the second edge is a pre-
decessor of the first edge, and where (iii) the two edges share either
a starting point or an end point. This covers all cases of two edges
meeting in one point. As will become clear in the proof of Lemma 4,
case (iii) differs from the other two, as only one of these two types
of connections would not be sufficient to “traverse” the full graph.

Fact 3. For |V | > 3, transitivity, the two Euclidean properties, nega-
tive transitivity, and connectedness are contagious graph properties.

Proof. Let us first consider the property of being right Euclidean. It
satisfies condition (i) of Definition 9. To prove this, we will show
that the right-Euclidean property is xy/yz-contagious for all triples
x, y, z ∈ V . Let S+ = {(x, z)} and S− = ∅, i.e., P [S+, S−] is the
set of all graphs containing (x, z). Condition (i) of Definition 8 is
met: any graph in P [S+, S−] contains (x, z); therefore, by the right-
Euclidean property (y, z) needs to be accepted whenever (x, y) is.
Condition (ii) is also satisfied. Let E0 be the graph only containing
the single edge (x, z), and let E1 be the graph containing exactly the
three edges (x, y), (y, z), and (x, z). Both graphs are right-Euclidean
and, since they include (x, z), they also belong to P [S+, S−].

An alternative way to see that the right-Euclidean property is con-
tagious is to observe that it is equivalent to the formula [xEz] →
[xEy → yEz], with all variables universally quantified. Similarly,
the left-Euclidean property, which can be rewritten as [zEy] →
[xEy → zEx], is contagious by condition (ii). Connectedness can
be rewritten as [xEz ∧ ¬zEy] → [xEy → yEz] and thus satisfies
condition (i). Transitivity satisfies condition (iii), as we can rewrite
it as either [yEz] → [xEy → xEz] or [zEx] → [xEy → zEy].



Negative transitivity, finally, can be rewritten as either [¬(zEy)] →
[xEy → xEz] or [¬(xEz)] → [xEy → zEy] and thus also sat-
isfies condition (iii). For all these cases, the richness conditions are
easily verified to hold as well.

We are now ready to prove a powerful lemma showing that any Ar-
rovian aggregator that is CR w.r.t. a contagious graph property must
be neutral (at least as far as nonreflexive edges are concerned).

Lemma 4. For |V | > 3, any unanimous, grounded, and IIE aggre-
gator that is CR w.r.t. a contagious graph property is NR-neutral.

Proof. We will first establish a generic result for collective rational-
ity w.r.t. xy/zw-contagiousness. Let x, y, z, w ∈ V . Take any graph
property P that is xy/zw-contagious and take any aggregator F that
is unanimous, grounded, IIE, and CR w.r.t. P . Let {We}e∈V×V be
the family of winning coalitions associated with F . We want to show
that W(x,y) ⊆ W(z,w). So let C ∈ W(x,y). Let S+, S− ⊆ V ×V
and E0, E1 ∈ P [S+, S−] be defined as in Definition 8. Consider a
profile E in which the individuals in C propose graph E1 and all
others propose E0. That is, all individuals accept the edges in S+,
none accept any of those in S−, exactly the individuals in C accept
edge (x, y), and exactly those in C also accept (z, w). Now con-
sider the collective graph F (E). By unanimity S+ ⊆ F (E), by
groundedness S− ∩ F (E) = ∅, and finally (x, y) ∈ F (E) due
to C being a winning coalition for (x, y). By collective rationality,
F (E) ∈ P and thus also F (E) ∈ P [S+, S−]. But then, due to
xy/zw-contagiousness of F (E), we get (z, w) ∈ F (E). As it was
exactly the individuals in C who accepted (z, w), coalition C must
be winning for (z, w), i.e., C ∈ W(z,w), and we are done.

We are now ready to prove the lemma. Take any graph property
P that is contagious and take any aggregator F that is unanimous,
grounded, IIE, and CR w.r.t. P . Let {We}e∈V×V be the family of
winning coalitions associated with F . We need to show that there
exists a uniqueW ⊆ 2N such thatW = We for every nonreflexive
edge e. By unanimity, the setsWe are not empty. Consider any three
vertices x, y, z ∈ V and any coalition C ∈ W(x,y). We will show
that C is also winning for both (y, z) and (y, x). If we can show this
for any x, y, z, then we are done, as we can then repeat the same
method several times until all nonreflexive edges are covered.

For each of the three possible ways in which P can be contagious
(see Definition 9), we will use different instances of our generic re-
sult for xy/zw-contagiousness above. First, if P is contagious by
virtue of condition (i), then we can use xy/yz-contagiousness to get
C ∈ W(y,z) and its instance xy/yx-contagiousness (with z := x)
to obtain also C ∈ W(y,x). Second, if P is contagious due to
condition (ii), we use xy/yx-contagiousness to get C ∈ W(y,x),
and then yx/zy-contagiousness to get C ∈ W(z,y) and zy/yz-
contagiousness to get C ∈ W(y,z).

Third, suppose P is contagious by virtue of condition (iii).
We first use xy/zy-contagiousness to obtain C ∈ W(z,y) and
then zy/zx-contagiousness to get C ∈ W(z,x). From the latter,
via zx/yx-contagiousness we get C ∈ W(y,x). Finally, yx/yz-
contagiousness then entails C ∈ W(y,z). Hence, we obtain the re-
quired transfer from one edge (x, y) to both its successor (y, z) and
its inverse (y, x) in all three cases, and our proof is complete.

Figure 1 provides an illustration of a specific instance of the main
argument in the proof of Lemma 4 when the right-Euclidean prop-
erty is considered, which is xy/yz-contagious by Fact 3. We have
S+ = {(x, z)} and S− = ∅. E1 is the graph that accepts all three
edges (x, y), (y, z) and (x, z), andE0 acceps only edge (x, z). Con-
sider profile E, in which the individuals in C choose E1 and all

x

z

y

N

C

C

Figure 1. CR w.r.t. the right-Euclidean property implies neutrality.

others choose E0. That is, the individuals in C accept (x, y) and
(y, z), while (x, z) is accepted by all individuals inN . By unanimity,
(x, z) must be accepted, and due to C ∈ W(x,y) also (x, y) should
be accepted. We can now conclude, since F is CR w.r.t. the right-
Euclidean property, that (y, z) should also be accepted, and hence
that C ∈ W(y,z). It is then sufficient to consider all triples to obtain
neutrality over all (nonreflexive) edges.

3.4 Implicative and disjunctive properties
Our next goal is to prove a modular result that derives an impossi-
bility from a combination of two types of graph properties. We first
introduce these new meta-properties.

Definition 10. A graph property P ⊆ 2V×V is implicative if there
exist two disjoint sets S+, S− ⊆ V ×V and three distinct edges
e1, e2, e3 ∈ V × V \ (S+ ∪ S−) such that (i) for every graph
E ∈ P [S+, S−] it is the case that e1, e2 ∈ E implies e3 ∈ E
and (ii) there exist graphs E0, E1, E2, E3 ∈ P [S+, S−] with
E0∩{e1, e2, e3} = ∅,E1∩{e1, e2, e3} = {e1},E2∩{e1, e2, e3} =
{e2}, and {e1, e2, e3} ⊆ E3.

Part (i) expresses that all graphs with property P (that also in-
clude all edges in S+ and none from S−) must satisfy the formula
e1 ∧ e2 → e3. Part (ii) is a richness condition saying that accept-
ing/rejecting any combination of e1 and e2 is possible and that e3
need not be accepted unless both e1 and e2 are. Observe that Def-
inition 10 has an existential form, i.e., we simply need to find two
subsets S+ and S− for the precondition, and three edges e1, e2
and e3 that satisfy the two requirements (i) and (ii). This meta-
condition for graph properties may be paraphrased as the formula
[
∧
S+ ∧ ¬

∨
S−]→ [e1 ∧ e2 → e3].

Fact 5. For |V | > 3, transitivity, the two Euclidean properties, and
connectedness are implicative graph properties.

Proof (sketch). Let V = {v1, v2, v3, . . .}. To see that transitivity
satisfies Definition 10, choose S+ = S− = ∅, e1 = (v1, v2), e2 =
(v2, v3), and e3 = (v1, v3). Transitivity implies that if both e1 and e2
are accepted, then also e3 should be accepted. All remaining accep-
tance/rejection patterns of e1, e2, and e3 are possible, in accordance
with condition (ii). The proofs for the Euclidean properties are sim-
ilar. Rewriting connectedness as [¬yEz] → [xEy ∧ xEz → zEy]
shows that it is implicative as well.

Note that implicativeness is a very weak requirement: even transitiv-
ity restricted to a single triple of edges is sufficient to satisfy it.

Definition 11. A graph property P ⊆ 2V×V is disjunctive if there
exist two disjoint sets S+, S− ⊆ V × V and two distinct edges
e1, e2 ∈ V × V \ (S+ ∪ S−) such that (i) for every graph
E ∈ P [S+, S−] we have e1 ∈ E or e2 ∈ E and (ii) there exist
two graphs E1, E2 ∈ P [S+, S−] with E1 ∩ {e1, e2} = {e1} and
E2 ∩ {e1, e2} = {e2}.



Part (i) ensures that all graphs with property P (that meet the pre-
condition of including all edges in S+ and none from S−) satisfy the
formula e1 ∨ e2. Part (ii) is a richness condition ensuring that there
are at least two graphs that each include only one of e1 and e2. Ob-
serve that Definition 11 also has an existential form, and that it may
be paraphrased as the formula [

∧
S+ ∧ ¬

∨
S−]→ [e1 ∨ e2].

Fact 6. For |V | > 3, completeness, connectedness, seriality, and
negative transitivity are disjunctive graph properties.

Proof. Let V = {v1, . . . , vm}. For completeness, choose S+ =
S− = ∅, e1 = (v1, v2), and e2 = (v2, v1) to see that the conditions
are satisfied. For connectedness, choose S+ = {(v1, v2), (v1, v3)},
S− = ∅, e1 = (v2, v3), and e2 = (v3, v2). For seriality,
choose S+ = ∅, S− = {(v1, v1), (v1, v2), . . . , (v1, vm−2)}, e1 =
(v1, vm−1), and e2 = (v1, vm). For negative transitivity, choose
S+ = ∅, S− = {(v1, v3)}, e1 = (v1, v2), and e2 = (v3, v2).

Table 1 summarises which of our standard graph properties are con-
tagious, implicative, and disjunctive, respectively.

3.5 Impossibility of graph aggregation
We now prove a first version of our main impossibility result, initially
under the additional assumption of neutrality. We do this by proving
that the set of winning coalitions corresponding to any aggregator
that meets certain conditions is an ultrafilter [7].

Definition 12. An ultrafilterW on a setN is a collection of subsets
ofN satisfying the following three conditions:

(i) ∅ 6∈ W
(ii) C1, C2 ∈ W implies C1 ∩ C2 ∈ W (closure under intersection)
(iii) C orN \C is inW for any C ⊆ N (maximality)

In SCT, the ultrafilter method has first been used by Kirman and Son-
dermann [15] to prove Arrow’s Theorem, and it has also found ap-
plications in judgment aggregation [13]. The following result applies
to graph properties that are both implicative and disjunctive, e.g., the
property of being both transitive and complete.

Proposition 7. For |V | > 3, there exists no NR-nondictatorial,
unanimous, grounded, NR-neutral, and IIE aggregator that is CR
w.r.t. any graph property that is both implicative and disjunctive.

Proof. Take any graph property P that is implicative and disjunctive,
and any aggregator F that is unanimous, grounded, NR-neutral, IIE,
and CR w.r.t. P . Due to IIE and NR-neutrality, there exists a set of
winning coalitionsW ⊆ 2N with e ∈ F (E) ⇔ NE

e ∈ W for any
nonreflexive edge e. We shall prove that the set of winning coalitions
W is an ultrafilter. Condition (i) holds, as F is grounded.

For condition (ii) we will make use of the assumption that P
is implicative. Let S+, S− ⊆ V × V ; e1, e2, e3 ∈ V × V ; and
E0, E1, E2, E3 ∈ P [S+, S−] be defined as in Definition 10. Now
take any two winning coalitions C1, C2 ∈ W . Consider a profile of
graphs E meeting P in which exactly the individuals in C1 ∩ C2

propose E3, those in C1 \ C2 propose E1, those in C2 \ C1 pro-
pose E2, and all others propose E0. Thus, exactly the individuals in
C1 accept e1, exactly those in C2 accept e2, and exactly those in
C1 ∩ C2 accept e3. Furthermore, all individuals accept S+ and all
of them reject S−. Hence, due to unanimity, all edges in S+ must be
part of the collective graph F (E), while due to groundedness, none
of the edges in S− can be part of F (E). As F is CR w.r.t. P , we get
F (E) ∈ P [S+, S−]. Now, since C1 and C2 are winning coalitions,

x y

z

C1

C2
C1 ∩ C2

x

y

N \ C C

Figure 2. The set of winning coalitions is an ultrafilter.

e1 and e2 must be part of F (E). As P is implicative, this means that
e3 ∈ F (E). Hence, C1 ∩ C2 ∈ W .

For condition (iii) we will make use of the assumption that P is
disjunctive. Let S+, S− ⊆ V ×V ; e1, e2 ∈ V ×V ; and E1, E2 ∈
P [S+, S−] be defined as in Definition 11. Now take any winning
coalition C ∈ W . Consider a profile E meeting P in which exactly
the individuals in C propose E1 and exactly those inN \C propose
E2. Recall that S+ ⊆ E1 and S+ ⊆ E2, i.e., all individuals accept
S+. Thus, due to unanimity, all of the edges in S+ must be part of the
collective graph F (E). Analogously, due to groundedness, none of
the edges in S− can be part of F (E). Thus, as F is CR w.r.t. P we
get F (E) ∈ P [S+, S−]. As P is disjunctive, this means that one of
e1 and e2 has to be part of F (E). Hence, C ∈ W or (N \C) ∈ W .

Recall that N is required to be finite. An ultrafilterW on a set N
is called principal if it is of the form W = {C ∈ 2N | i? ∈ C}
for some fixed i? ∈ N . In our setting, principality ofW corresponds
to F being dictatorial (with dictator i?) on nonreflexive edges. Now,
it is a well-known fact that every ultrafilter on a finite set must be
principal [7], which shows that F cannot be NR-nondictatorial.

Figure 2 provides an illustration of a specific instance of the main
argument in the proof of Proposition 7. To show that the set of win-
ning coalitions is an ultrafilter we need to prove that conditions (ii)
and (iii) of Definition 12 hold—condition (i) is implied by ground-
edness. For condition (ii), i.e., closure under intersection, we can
use transitivity, which is an implicative property by Fact 5. Let
e1 = (x, y), e2 = (y, z), and e3 = (x, z). Consider the profile de-
picted in the left part of Figure 2, in which exactly the individuals in
C1 accept (x, y), exactly those in C2 accept e2, and exactly those in
C1∩C2 accept (x, z). As bothC1 andC2 are winning coalitions, we
obtain that both (x, y) and (y, z) need to be collectively accepted. We
can now conclude, since F is CR w.r.t. transitivity, tha the edge (x, z)
should also be accepted, and hence also C1 ∩C2 ∈ W . To show that
W is maximal, i.e., that condition (iii) holds, we can use complete-
ness, which is a disjunctive property by Fact 6. Let e1 = (x, y) and
e2 = (y, x), and consider the profile in the right part of Figure 2, in
which exactly the individuals in C accept the edge (x, y) and exactly
those inN \C accept (y, x). As F is CR w.r.t. completeness, one of
the two edges needs to be accepted, showing that either C ∈ W or
N \C ∈ W .

We are now ready to state and prove our main result:

Theorem 8. For |V | > 3, there exists no NR-nondictatorial, unani-
mous, grounded, and IIE aggregator that is CR w.r.t. any graph prop-
erty that is contagious, implicative, and disjunctive.

Proof. Immediate from Proposition 7, after an initial application of
Lemma 4 to obtain NR-neutrality.

Implicativeness and disjunctiveness are much less demanding prop-
erties than contagiousness. Thus, beyond Theorem 8, Proposition 7
is of some interest in its own right, as it it applies to an even wider
range of aggregation problems—provided we are willing to accept
neutrality as an a priori requirement rather than a derived property.



3.6 Applications

Theorem 8 applies to many different classes of graphs. Let us briefly
discuss some examples.

Arrow’s Theorem, as stated in Section 3.1, is an immediate con-
sequence of Theorem 8: First, recall that transitivity is both conta-
gious and implicative, and completeness is disjunctive. Second, the
additional requirement of being CR w.r.t. reflexivity does not affect
the logical strength of the theorem, as we know from Proposition 1
that every unanimous aggregator is CR w.r.t. reflexivity. Finally, re-
quiring NR-nondictatoriality rather than just nondictatoriality is not
a restriction, as the two properties coincide when all input graphs
are reflexive. Observe that by the same kind of argument, and us-
ing Proposition 2, we also immediately obtain a variant of Arrow’s
Theorem for strict (i.e., irreflexive) linear orders.

By exchanging transitivity and completeness for other graph prop-
erties that together cover contagiousness, implicativeness, and dis-
junctiveness (see Table 1), we can generate any number of varia-
tions of Arrow’s Theorem (e.g., there exists no NR-nondictatorial
Arrovian aggregator that is CR w.r.t. the right Euclidean property
and seriality). One property, connectedness, stands out for having all
three meta-properties. Thus, there exists no NR-nondictatorial Arro-
vian aggregator that is CR w.r.t. connectedness.

Theorem 8 also implies a recent result by Pini et al. [19], a vari-
ant of Arrow’s Theorem for preorders, i.e., for preferences that need
not be complete. Besides transitivity, they require the collective pref-
erence order to have one element that is weakly preferred (or dis-
preferred) to all other elements. This is a clear example for a (very
minimalist) disjunctive property, i.e., Theorem 8 applies directly.

In work on belief merging, Maynard-Zhang and Lehman [18] sug-
gest an approach to circumvent Arrow’s Theorem by (a) replacing
completeness by negative transitivity (which they call modularity)
and (b) weakening the independence axiom. In the discussion of their
result, they stress the significance of both of these changes. However,
our analysis clearly shows that replacing completeness by negative
transitivity alone has no effect on Arrow’s impossibility, as negative
transitivity is also a disjunctive property. Hence, the crucial source
for the possibility result of Maynard-Zhang and Lehman must be
their modification of the independence axiom.

4 CONCLUSION

We have argued that graph aggregation is an important problem with
several potential applications and we have introduced a simple for-
mal framework to study this problem. We have then proved a general
impossibility theorem that generalises Arrow’s Theorem for prefer-
ence aggregation to the case of graph aggregation and that can be in-
stantiated for many different combinations of properties of graphs—
rather than just transitivity and completeness (the properties featur-
ing in Arrow’s Theorem). In doing so, we have refined the ultrafilter
method, clearly relating how certain features of graph properties cor-
respond to, first, the neutrality axiom and, second, the two ultrafilter
properties of closure under intersection and maximality.

In the long run, we believe that such fundamental results have the
potential to contribute to the solution of practical problems arising
in some of the application domains mentioned in the introduction,
e.g., argumentation studies, as well as others, e.g., social networks
or multiagent systems. But, as we have been able to demonstrate, al-
ready now our results can be applied to better understand phenomena
in certain areas, including in particular recent work in AI.

An interesting direction for future work that we have begun to

explore is to study collective rationality w.r.t. graph properties ex-
pressed in terms of formulas of modal logic [4]. The semantics
of modal logic suggests two novel notions of collective rationality.
While the standard notion of collective rationality corresponds to the
frame-validity of formulas being preserved under aggregation, we
may also consider the cases of preservation of truth in a model or
truth at a specific world in a model.
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