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Abstract. We introduce a general framework for measuring the
degree of diversity in the preferences held by the members of a
group. We formalise and investigate three specific approaches within
that framework: diversity as the range of distinct views held, diver-
sity as aggregate distance between individual views, and diversity as
distance of the group’s views to a single compromise view. While
similarly attractive from an intuitive point of view, the three ap-
proaches display significant differences when analysed using both
the axiomatic method and empirical studies.

1 INTRODUCTION
Preferences are ubiquitous in AI [5, 12]. Examples for application
domains include recommender systems, planning, and configuration.
Of particular interest is the case of preference handling in multiagent
systems, where several agents each have their own individual prefer-
ences and we need to take decisions that are appropriate in view of
such a profile of preferences. The normative, mathematical, and algo-
rithmic aspects of this problem are studied in the field of (computa-
tional) social choice [3]. In social choice, preferences are taken to be
linear orders over a finite set of alternatives. As is well known, many
of the most interesting phenomena in social choice are in fact rare
events. For example, while the notorious Condorcet Paradox man-
ifests itself in around 25% of all theoretically possible preference
profiles for 5 alternatives and a large number of voters, empirical
studies suggest that it plays hardly any role in real-world elections of
the same size [11, 17]. Another example is the fact that many of the
computational hardness results for the strategic manipulation prob-
lem in voting rely on a very narrow basis of worst-case scenarios,
while the vast majority of problem instances are in fact easy [18].

This divergence can be explained by the fact that the prefer-
ence profiles we encounter in practice exhibit a certain amount of
structure. The classical approach to modelling such structure are
domain restrictions, the best known example of which is single-
peakedness [9]. Yet, while an unconstrained model of social choice
arguably is too broad, domain restrictions are often too narrow to
accurately describe preference profiles that occur in practice. In this
paper, we propose the exploration of a middle way. Our starting point
is the basic idea that the less diverse the preferences in a profile are,
the easier it should be to come to a mutually acceptable decision. For
example, in the most extreme case where all agents share the exact
same preference order, it will be trivial to make collective decisions.
Vice versa, the more diversity we find in a profile, the more we should
expect to encounter paradoxes, i.e., situations in which different so-
cial choice-theoretic principles would lead to opposing conclusions.

Our first contribution is to propose a formal model of preference
diversity. At the centre of this model is the notion of preference
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diversity index (PDI): a function mapping profiles to nonnegative
numbers, with 0 denoting perfect agreement amongst all agents. The
model does not commit to one specific interpretation of the term di-
versity. Rather, we use it to formalise three concrete interpretations:
diversity as the range of distinct views held (support-based PDI),
diversity as aggregate distance between individual views (distance-
based PDI), and diversity as distance of the group’s views to a single
compromise view (compromise-based PDI).

We formulate several intuitively appealing properties of PDI’s as
axioms and classify our concrete indices in terms of which of these
axioms they satisfy. We also provide an example for an impossibility
result, showing that certain axioms are mutually incompatible, and a
characterisation result, showing how one concrete PDI is fully de-
termined by a certain combination of axioms. On the practical side,
we have conducted a range of experiments that shed additional light
on our PDI’s. In particular, we explore how the differences between
synthetically generated preference data and data sampled from a real
election profile manifest themselves in terms of the distribution of
diversity over profiles. We also confirm that the likelihood for unde-
sirable social choice-theoretic effects increases with diversity.

In Section 2 we introduce our model of preference diversity and
define several specific PDI’s. Section 3 is devoted to the axiomatic
analysis of diversity and Section 4 presents our experimental results.
We conclude with a discussion of related work in Section 5 and a
brief outlook on other approaches to defining PDI’s in Section 6.

2 MEASURING PREFERENCE DIVERSITY
In this section we introduce the concept of preference diversity index
(PDI) and then define several concrete such indices.

2.1 Basic terminology and notation
Let X be a finite set of m alternatives. We model preferences as
(strict) linear orders over the set of alternatives (recall that a linear or-
derR is a binary relation that is irreflexive, transitive, and complete).
We write L(X ) for the set of all preference/linear orders overX . The
position of x ∈ X in R ∈ L(X ) is posR(x) = |{y ∈ X | yRx}|.

LetN = {1, . . . , n} be a finite set of voters (or agents). A profile
R = (R1, . . . , Rn) ∈ L(X )n is a vector of preference orders, one
for each voter. We write NR

x�y = {i ∈ N | xRy} for the set of
voters who in profile R say that they prefer x over y. The support of
a profile R = (R1, . . . , Rn) is the set of preference orders occurring
in it: SUPP(R) = {R1}∪· · ·∪{Rn}. We call a profile R unanimous
if |SUPP(R)| = 1, i.e., if it is of the form (R, . . . , R).

2.2 Preference diversity orderings and indices
Given two profiles R and R′ (both with n voters expressing pref-
erences over m alternatives), we want to be able to make judgments



about which of them we consider more diverse. Recall that a weak
order is a binary relation that is reflexive, transitive, and complete.

Definition 1. A preference diversity order (PDO) is a weak order <
declared on the space of preference profiles L(X )n that respects
R < (R, . . . , R) for all R ∈ L(X )n and all R ∈ L(X ).

That is, any PDO is required to classify unanimous profiles as being
minimally diverse (and any two such profiles are equally diverse).
We write � for the strict part of <, and ∼ for its indifference part.

Definition 2. A preference diversity index (PDI) is a function ∆ :
L(X )n → R+∪{0}, mapping profiles to the nonnegative reals, that
respects ∆(R, . . . , R) = 0 for any R ∈ L(X ).

Let max(∆) = max{∆(R) | R ∈ L(X )n}. We say that a PDI ∆ is
normalised if it maps any given profile to the interval [0, 1], and the
maximum of 1 is reached for at least one profile, i.e., max(∆) = 1.
Every given PDI ∆ gives rise to a normalised PDI ∆′ by stipulating
∆′(R) = ∆(R)/max(∆) for every profile R ∈ L(X )n.

A PDI ∆ induces a PDO <∆, by stipulating R <∆ R′ if and only
if ∆(R) > ∆(R′) for any two profiles R,R′ ∈ L(X )n. Observe
that, as ∆ is required to map any unanimous profile to 0, any such
profile will be correctly placed at the bottom of the corresponding
PDO <∆ (i.e., the two definitions match). Every PDO < (and thus
every PDI) defines a partitioning of L(X )n into equivalence classes
w.r.t. ∼. We can think of these equivalence classes as the possible
levels of diversity. Let the dimension of a PDI/PDO be the number of
equivalence classes it defines (for fixed n and m).

2.3 Specific preference diversity indices
We now introduce three specific approaches to defining PDI’s. The
first approach is based on the idea that diversity may be measured
in terms of the number of distinct views represented within a group.
In its simplest form, this means that we count the number of distinct
preference orders in a profile. This leads to the simple support-based
PDI ∆supp with ∆supp(R) = |SUPP(R)|−1 (we subtract 1 to ensure
∆supp(R, . . . , R) = 0). We can generalise this idea and count the
number of distinct ordered k-tuples of alternatives appearing in a
profile. The number of such tuples in one preference order is

(
m
k

)
.

Let Lk(X ) denote the set of ordered k-tuples of alternatives.

Definition 3. For a given k 6 m, the support-based PDI ∆`=ksupp maps
any given profile R ∈ L(X )n to the following value:

∆`=ksupp(R) = |{T ∈ Lk(X ) | T ⊆ Ri for some i ∈ N}| −
(
m
k

)
For example, ∆`=2

supp counts the number of ordered pairs at least one
agent accepts (above and beyond

(
m
k

)
). Note that ∆supp ≡ ∆`=msupp .

Our second approach is based on the idea that diversity is related
to the distances between the individual views held by the members
of a group. We first require a notion of distance between two single
preference orders R and R′, i.e., a function δ : L(X )× L(X )→ R
meeting the familiar axioms for distances (nonnegativity, identity of
indiscernibles, symmetry, and the triangle inequality). The following
are all standard definitions that are widely used in the literature [6, 8]:

• Kendall’s tau: K(R,R′) = 1
2
· (|R \R′|+ |R′ \R|)

• Spearman’s footrule: S(R,R′) =
∑
x∈X |posR(x)− posR′(x)|

• Discrete distance: D(R,R′) = 0 if R = R′, and = 1 otherwise

WhenR andR′ are linear orders, our definition forK is equivalent to
the more commonK(R,R′) = 1

2
· |{(x, y) | xRy and yR′x}|. Note

that we divide by 2 to ensure we count ordered pairs, not merely pairs
of alternatives. To lift distances between pairs of voters to distances
between the members of a group, we can use any aggregation opera-
tor Φ : Rn×n→ R (that is nondecreasing, associative, commutative,
and has identity element 0), such as max or Σ (sum).

Definition 4. For a given distance δ : L(X ) × L(X ) → R and
aggregation operator Φ : Rn×n→ R, the distance-based PDI ∆Φ,δ

dist
maps any given profile R ∈ L(X )n to the following value:

∆Φ,δ
dist (R) = Φ(δ(Ri, Ri′) | i, i′ ∈ N with i < i′)

That is, we first compute the n(n−1)/2-vector of pairwise distances
δ(Ri, Ri′) and then apply Φ to that vector. The PDI ∆Σ,K

dist , for in-
stance, measures diversity as the sum of the Kendall tau distances
between all pairs of preferences in a profile. In this paper, we will
largely focus on Φ = Σ and the effect of varying δ.

The idea underlying our third approach is to measure diversity
as a group’s accumulated distance to a compromise view. For in-
stance, for a given profile R, we may compute its majority graph
MG(R) = {(x, y) | |NR

x�y| > n
2
} and then measure the distance

of the individual preferences to the compromise view represented by
MG(R). To measure the distance between a preference order and
a compromise view, we will use the Kendall tau distance, although
in principle also other distances could be used. Observe that K, as
defined above, is a meaningful notion of distance between any two
binary relations on X , not just linear orders. We refer to functions
mapping profiles to binary orders (representing compromise views)
as social welfare functions (SWF), which is a slight generalisation of
the common use of the term in social choice theory [10].

Definition 5. For a given SWF F : L(X )n → 2X×X and aggre-
gation operator Φ : Rn×n→ R, the compromise-based PDI ∆Φ,F

com

maps any given profile R ∈ L(X )n to the following value:

∆Φ,F
com (R) = Φ(K(Ri, F (R)) | i ∈ N )

Thus, ∆Σ,MG
com , for instance, computes the sum of the distances of the

individual preferences to the majority graph. Besides F = MG, we
can use voting rules, e.g., the Borda rule [10], to define a compro-
mise. Under Borda, each voter i gives as many points to x as there
are other alternatives below x in i’ranking; the Borda score of x is
the sum of those points. This induces a SWF that for any given pro-
file R returns the weak order Bor(R) = {(x, y) | BordaScore(x) >
BordaScore(y)}. Thus, the PDI ∆max,Bor

com computes the maximal dis-
tance of any individual preference order to the ranking we obtain
when we order alternatives in terms of their Borda score.2

3 AXIOMATIC ANALYSIS
In this section we motivate and formalise desirable properties that a
specific manner of measuring preference diversity may or may not
satisfy. That is, in the parlance of social choice theory [10], we in-
troduce a number of axioms for preference diversity. We formulate
these axioms in terms of PDO’s rather than PDI’s, i.e., we axioma-
tise the ordinal notion of “being more diverse than”, rather than the
cardinal notion of having a particular degree of diversity. The reason
for this choice is that, while some details of the numerical representa-
tion of degrees of diversity is bound to be arbitrary, relative diversity

2 Beware that this approach does not result in a well-defined PDI for every
possible voting rule: e.g., if we rank alternatives in terms of their plurality
score [10], for a unanimous profile (R, . . . , R), we obtain a weak order of
depth 2 rather than R, meaning that (R, . . . , R) will not be mapped to 0.



judgments should not and need not be. Our axioms will nevertheless
apply to PDI’s indirectly, given that every PDI induces a PDO.

We then use our axioms to organise the space of concrete ways of
measuring preference diversity introduced earlier. We will also see
that not all combinations of axioms can be satisfied together.

3.1 Axioms
Our first axiom is a basic symmetry requirement w.r.t. voters.

Axiom 1. A PDO < is anonymous if, for every permutation σ :
N → N , we have (R1, . . . , Rn) ∼ (Rσ(1), . . . , Rσ(n)).

The statement above is understood to apply to all preference pro-
files (R1, . . . , Rn). For the sake of readability, we shall keep such
universal quantification over profiles implicit also in later axioms.
Our next axiom, neutrality, postulates symmetry w.r.t. alternatives.
For any permutation τ : X → X on alternatives and any preference
order R ∈ L(X ), define τ(R) = {(x, y) | τ(x)Rτ(y)}.

Axiom 2. A PDO < is neutral if, for every permutation τ : X → X ,
we have (R1, . . . , Rn) ∼ (τ(R1), . . . , τ(Rn)).

Our next axiom says that no two profiles should be judged as being
of equal diversity, unless anonymity and neutrality force us to do so.

Axiom 3. A PDO < is strongly discernible if R ∼ R′ implies R =
(τ(R′σ(1)), . . . , τ(R′σ(n))) for some σ : N → N and τ : X → X .

Strong discernability is a demanding requirement. Intuitively speak-
ing, it excludes PDO’s with a low dimension. The next axiom is much
weaker (and implied by strong discernability). It only requires the
bottom level to be distinct from the others.

Axiom 4. A PDO < is weakly discernible if R being unanimous and
R′ not being unanimous together imply R′ � R.

One possible position to take would be to say that diversity should be
a function of the variety of views taken by members of a society, but
that it should not depend on the frequency with which any particular
such view is taken. That is, one might argue, the level of diversity of
a profile should only depend on its support.

Axiom 5. A PDO < is support-invariant if SUPP(R) = SUPP(R′)
implies R ∼ R′.

Observe that support-invariance implies anonymity. A different po-
sition to take would be to say that every single preference order mat-
ters. That is, it should not be possible to determine the level of diver-
sity of a profile by only inspecting a proper subset of its elements.

Axiom 6. A PDO < is nonlocal if for every profile R =
(R1, . . . , Rn) ∈ L(X )n and every voter i ∈ N there exists an order
R′ ∈ L(X ) such that R 6∼ (R1, . . . , Ri−1, R

′, Ri+1, . . . , Rn).

Our next axiom is adopted from the literature on ranking opportunity
sets for measuring freedom of choice [16]. For any profile R for n
voters and individual preferenceR, let R⊕R = (R1, . . . , Rn, R) be
the profile for n+1 voters we obtain by adding R to the first profile.3

Axiom 7. A PDO < is independent if it is the case that R < R′ if
and only if R⊕R < R′⊕R for every two profiles R,R′ ∈ L(X )n

and every preference R 6∈ SUPP(R) ∪ SUPP(R′).

3 Note that, strictly speaking, Axiom 7 speaks about a family of PDO’s (one
for each n), even if it does not directly compare profiles of different size.

Finally, we consider two possible definitions of monotonicity. What
they have in common is that they identify situations in which one or
more voters change their preferences by moving closer to the views
of the rest of the group, which intuitively should reduce diversity.
First, suppose a single voter abandons her own preference order and
instead adopts the preferences of one of the other voters.

Axiom 8. A PDO < is monotonic if R < R′ whenever there exist
j, k ∈ N such that R′j = Rk and R′i = Ri for all i 6= j.

Observe that our monotonicity axiom implies support-invariance: if
SUPP(R) = SUPP(R′), then we can move from R to R′ (and vice
versa) via a sequence of monotonicity-moves.

Now suppose one or several voters each swap two adjacent alter-
natives x and y in their preference orders. Under what circumstances
should we consider such a move as having reduced diversity?

Axiom 9. A PDI < is swap-monotonic if R < R′ holds when-
ever there exist alternatives x, y ∈ X such that |NR

x�y| > |NR
y�x|,

NR′
x�y = N , and NR

w�z = NR′
w�z for all {w, z} 6= {x, y}.

That is, (a) before the move from R to R′ there is a (possibly weak)
majority for x � y, (b) after the move all voters agree on x � y,
and (c) no other relative rankings change in the process. The axiom
says that such a move decreases (or at most maintains) diversity. This
axiom is relatively weak: it only applies if every voter either already
ranks x above y, or if she ranks y directly above x and thus has the
opportunity to swap them without affecting other rankings.

3.2 Results
Which PDO’s satisfy which axioms? First, there is a group of three
very weak axioms that will be satisfied by any reasonable PDO. In
particular, as is easy to check, they are satisfied by the three specific
families of PDO’s defined in Section 2.3.

Fact 1. Every PDO induced by a PDI of the form ∆`=ksupp , ∆Φ,δ
dist , or

∆Φ,F
com with k ∈ {1, . . . ,m}, Φ ∈ {Σ,max}, δ ∈ {K,S,D}, and

F being an anonymous and neutral SWF is anonymous, neutral, and
weakly discernible.

At the other extreme, the axiom of strong discernability is not satis-
fied by any of our specific PDO’s. The following impossibility result
illustrates the overly demanding character of this axiom.

Proposition 2. For m > 2 and n > m!, no PDO can be both
support-invariant and strongly discernable.

Proof. We first derive an upper bound on the dimension of any PDO
that is support-invariant. The number of possible preference orders
is m!. A support-invariant PDO has to determine the level of a given
profile R based on SUPP(R) alone. There are 2m! − 1 nonempty
subsets of the set of all possible preferences, i.e., there are at most
2m! − 1 possible sets of support. Hence, the maximal dimension of
any support-invariant PDO is 2m! − 1.

Next, we derive a lower bound on the dimension of any PDO that
is strongly discernable. There are (m!)n distinct profiles. Let us first
partition this space into clusters of profiles such that any two profiles
that are reachable from one another via a permutation on agents are
placed into the same cluster. There are

((
m!
n

))
=
(
m!+n−1

n

)
such

clusters:4 for each of the m! possible preferences we have to decide

4 Recall from basic combinatorics that
((n
k

))
=

(n+k−1
k

)
is the number of

solutions to the equation x1 + · · · + xn = k in nonnegative integers.



how many agents should hold that preference, with the total num-
ber of agents adding up to n. Let us now again partition this space of
clusters into larger clusters, such that any two profiles reachable from
each other via a permutation of alternatives are also in the same clus-
ter. The number of these clusters is the lowest possible dimension
of any PDO that is strongly discernible. Computing this number is
a demanding combinatorial problem that has been studied, amongst
others, by Eğecioğlu [7]. Closed formulas are known only for certain
special cases. However, for our purposes a lower bound is sufficient.
There are m! possible permutations of the alternatives. Hence, each
of the large clusters can contain at most m! of the small clusters.
Thus,

((
m!
n

))
/m! is a lower bound on the number of clusters.((

m!
n

))
m!

=
m! + n− 1

n
× m! + n− 2

n− 1
× · · · × m! + 1

2

>
m! +m!

m! + 1
× m! +m!− 1

m!
× · · · × m! + 1

2

The denominator of the leftmost factor is equal to the numerator of
the rightmost one. So we can rewrite as

∏m!
i=2

m!+i
i

. Now, all of the
m!−1 factors of this product are at least equal to 2. The first one
(with i = 2) furthermore is at least equal to 4 (for m > 2). Hence,((
m!
n

))
/m! > 2m!. This concludes the proof, as it shows that the

upper bound is strictly smaller than the lower bound derived.

Our next result is a characterisation of the simple support-based
PDO, i.e., the PDO induced by ∆`=msupp . That is, this is the PDO <
defined as R < R′ if and only if |SUPP(R)| > |SUPP(R′)|. As
we shall see in Section 5, this result is closely related to a classical
theorem on ranking opportunity sets due to Pattanaik and Xu [16].

Proposition 3. A PDO is support-invariant, independent, and
weakly discernible if and only if it is the simple support-based PDO.

Proof (sketch). First, observe that the simple support-based PDO
clearly satisfies all three axioms. For the other direction, let < be any
PDI that is support-invariant, independent, and weakly discernible.
We need to show that R < R′ if and only if |SUPP(R)| >
|SUPP(R′)|. This is equivalent to proving the following two claims:

(1) |SUPP(R)| = |SUPP(R′)| implies R ∼ R′.
(2) |SUPP(R)| = |SUPP(R′)|+ 1 implies R � R′.

We shall make repeated use of the following fact: By support invari-
ance, for every profile R and every preference R ∈ SUPP(R), there
exists a profile R′ of the same size that has the same support and in
which R occurs exactly once.

We first prove claim (1) by induction on k = |SUPP(R)|. If k = 1,
then both profiles are unanimous and we are done. Now assume the
claim holds for k and consider two profiles R and R′ with support
of size k+1. First, suppose R and R′ share at least one preference
R. W.l.o.g., assume R occurs exactly once in each of them. Let R̂
be the rest of R and let R̂′ be the rest of R′, i.e., R = R̂ ⊕ R,
R′ = R̂′ ⊕R, and R 6∈ SUPP(R̂)∪ SUPP(R̂′). As R̂ ∼ R̂′ by the
induction hypothesis, we thus obtain R ∼ R′ from the left-to-right
direction of the independence axiom. In case R and R′ do not share
any single preference R, this construction is not applicable. In this
case, let R be a preference with single occurrence in R and let R̂
be such that R = R̂ ⊕ R. Now consider R′ and R̂ ⊕ R′ for some
R′ ∈ SUPP(R′). These two profiles do share a preference, so we
have R′ ∼ R̂ ⊕ R′. We can then repeat the same argument for R
and R̂⊕R′, which also share a preference, and obtain R ∼ R̂⊕R′.
Thus, R ∼ R′ follows in all cases.

For claim (2), we can use the same technique. For the base case
of the induction we now use weak discernability to show that R �
R′ when |SUPP(R)| = 2 and |SUPP(R′)| = 1. For the induction
step we now use the right-to-left direction of independence (which is
equivalent to the left-to-right direction for � rather than <).

We stress that the crucial axiom in this last result is independence. In
particular, support-invariance only says that a profile’s diversity must
be computable from its support, but it does not say that the support’s
cardinality needs to play any role in this process.

So far we have discussed our weakest and our most restrictive ax-
ioms. The remaining axioms tend to be satisfied by some reasonable
PDO’s and not by others, which means that they are helpful in struc-
turing the space of all reasonable PDO’s. For the main specific PDI’s
considered in this paper (and, more precisely, for the PDO’s they in-
duce), Table 1 summarises which of them satisfy which axioms. In
the interest of space, we do not include proofs for the claims made in
the table, but in most cases these claims are relatively easy to verify.
Note that in some cases we state a sufficient (not always necessary)
condition for a particular PDI to satisfy a particular axiom. For ex-
ample, swap-monotonicity is satisfied by a compromise-based PDI
if the SWF it is based on satisfies the Pareto principle and Arrow’s
independence of irrelevant alternatives [10]. Strong discernability is
omitted from the table, as it is not satisfied by any of our PDI’s.

∆̀ =k
supp ∆Σ,δ

dist ∆max,δ
dist ∆Σ,F

com ∆max,F
com

Support-invar. X × X × ×

Nonlocality n 6 k! X × X ×

Independence k = m × × × ×

Monotonicity X × X × ×

Swap-monoton. X δ = K δ = K F is Arrovian

Table 1. Classification of PDI’s in terms of axioms.

4 EXPERIMENTAL ANALYSIS
In this section, we report on an experimental analysis of our PDI’s.
The experiments conducted fall into two classes. In the first kind of
experiment we draw profiles from a given distribution and plot di-
versity values against the frequency of drawing profiles with these
values. In the second kind, we investigate to what extent increas-
ing diversity correlates with an increase of unwanted social choice-
theoretic effects, such as the existence of Condorcet cycles.

Our findings are relative to the distribution over preference pro-
files from which we sample. We use two distributions. The first is
the synthetic distribution generated by the impartial culture assump-
tion (IC). This is the assumption that every possible profile is equally
likely to occur. Despite its well-known limitations [17], this is the
most widely used assumption in experimental work on social choice
theory and serves as a useful base line. To generate the second dis-
tribution we have sampled from the (second) AGH Course Selection
dataset available from PREFLIB, an online library of datasets con-
cerning preferences [13]. This is a dataset with the complete prefer-
ences of 153 students regarding 7 course modules, collected at AGH
University of Science and Technology, Kraków, in 2004. We have
generated profiles by choosing, uniformly at random, 50 individual
preferences regarding the first 5 courses.

All experimental results presented here concern scenarios with 5
alternatives and 50 voters; the effects are similar for scenarios of sim-
ilar but different size. For each experiment we have drawn 1 million



Figure 1. Preference diversity (x-axis) against frequency (y-axis) in impartial cultures and amongst AGH students. [n = 50, m = 5]

Figure 2. Diversity for ∆Σ,K
dist / IC data (x-axis). Condorcet winners/cycles; agreement between voting rules; voter satisfaction (y-axis). [n = 50, m = 5]

profiles from the relevant distribution. However, for most PDI’s, pro-
files with very low or very high diversity have extremely low proba-
bility of occurring. For example, onlym! in (m!)n profiles are unani-
mous and thus have diversity 0 under every PDI. To be able to present
our data in an illustrative manner, we therefore apply the following
pseudo-normalisation. For a given PDI ∆ and a given sample of pro-
files, let αmin be the largest real number such that at most 1h of the
profiles have a diversity value below αmin. Analogously, let αmax be
the smallest real number such that at most 1h of the profiles have
a diversity value above αmax. We then plot the pseudo-normalised
PDI ∆′ with ∆′(R) = ∆(R)−αmin

αmax−αmin
. Note that, strictly speaking, ∆′

is not a PDI itself, as it can return values below 0. Also, as we plot
diversity values from 0 to 1 only, up to 2h of the data may not be
shown. What we gain in return is that we do not need to plot very
long tails that only represent insignificantly small amounts of data.
For all our plots, the x-axis ranges from 0 to 1.

4.1 Diversity distribution across cultures
Figure 1 shows, for both the IC and the AGH data, the relative
frequency of each diversity value for four of our PDI’s. Recall
that each plot is showing around 99.8% of the data, after pseudo-
normalisation. We can make two observations. First, all four PDI’s
result in what we judge to be reasonable frequency distributions, for
both IC and AGH: very high and very low diversity are very rare, and
there is a clear peak. Second, the AGH data results in a distribution
where the peak is further to the left than for the IC data. This is what
we would expect, and what we would want a good PDI to show: real
preference profiles have more internal structure than purely random
data, so we would expect to see less diversity. The simple support-
based PDI is least able to show this difference.

A feature of the data that, due to our pseudo-normalisation, is not
shown in Figure 1 is the number of distinct levels that the 1 million
profiles we sampled ended up in. This data is shown, for the four
PDI’s of Figure 1 and five additional ones, in Table 2. We can make
two observations. First, the support-based PDI’s and the distance-
based PDI using the max-operator make use of very few levels. This
arguably makes them less attractive than the other PDI’s. Second, the
range of levels used is generally (much) larger for the AGH data than

for the IC data (which explains the increased levels of noise for the
AGH data in Figure 1). In particular, an IC profile is very unlikely to
have very low diversity. Thus, the range of levels observed is another
criterion we can use to tell apart synthetic data and data based on real
preferences. Overall, the distance-based PDI’s using the Σ-operator
for aggregation emerge as the most useful PDI’s.

PDI IC AGH PDI IC AGH PDI IC AGH

∆̀ =m
supp 22 13 ∆Σ,D

dist 34 244 ∆Σ,Bor
com 84 85

∆̀ =2
supp 1 2 ∆Σ,S

dist 462 1170 ∆Σ,MG
com 94 88

∆̀ =3
supp 4 12 ∆Σ,K

dist 660 1561 ∆max,K
dist 2 3

Table 2. Observed number of levels (n = 50, m = 5).

4.2 Impact on social choice-theoretic effects
Intuitively speaking, the less diverse a profile, the better behaved it
should be from the perspective of social choice theory. Next, we re-
port on three experiments where we put this intuition to the test for
the PDI ∆Σ,K

dist and data generated using the IC assumption. The re-
sults are shown in Figure 2 (diversity values against percentages).

In the first experiment we have measured the frequency of observ-
ing an Condorcet cycle (a cycle in the majority graph) in a profile and
the frequency of a profile having a Condorcet winner (an alternative
that wins against any other alternative in a pairwise majority con-
test).5 Figure 2 shows that, as diversity increases, so does the prob-
ability of encountering a Condorcet cycle, while the probability of
finding a Condorcet winner decreases. This is exactly the behaviour
we would like a good PDI to display, as it helps us predict good and
bad social choice-theoretic phenomena.

The second experiment concerns the extent to which different vot-
ing rules agree on the winner for a given profile. For two irresolute
voting rules, which may sometimes return a set of tied winners, we
require a suitable definition for their degree of agreement under a
given profile. For voting rules F1 and F2, let W1 and W2 be the
sets of winners we obtain. We define their degree of agreement as

5 Note that you may observe a Condorcet cycle and still find a Condorcet win-
ner (namely, when the cycle does not occur amongst the top alternatives).



|W1∩W2|
|W1|×|W2|

. This is the probability of picking the same unique win-
ner if each voting rule were to be paired with a uniformly random
tie-breaking rule. Figure 2 shows the average degree of agreement
for profiles with a given PDI-value for three pairs of well-known vot-
ing rules [10]: Plurality/Borda, Plurality/Copeland, Borda/Copeland.
The plurality rule is widely regarded as a low-quality rule and this
shows also here, as it disagrees considerably with the other two rules.
This effect increases drastically as diversity increases.

Finally, we have computed the average voter satisfaction under
the Borda rule. To this end, we define the satisfaction of a voter as
the number of alternatives she ranks below the Borda winner. When
normalised to percent, a unanimous profile would result in a satisfac-
tion of 100%, while a satisfaction below 50% is not possible for the
Borda rule. Figure 2 again clearly shows how voter satisfaction de-
creases with increased diversity and how it gets close to the absolute
minimum of 50% for very high (and rare) values of diversity.

5 RELATED WORK
Our model is related to the literature on freedom of choice concerned
with the ranking of alternative opportunity sets [15, 16], dealing with
questions such as whether a choice between a bike and a car pro-
vides more freedom than the choice between a red car and a blue car.
Conceptual differences aside, an important mathematical difference
between ranking opportunity sets and ranking preference profiles in
terms of diversity is that we only compare profiles of the same size,
while two opportunity sets to be compared may have different car-
dinalities. This means that no direct transfer of results is possible.
Still, a seminal result in this field, due to Pattanaik and Xu [16], has
inspired our Proposition 3. They show that the only method of rank-
ing opportunity sets satisfying three basic axioms they propose is the
method of simply counting the number of options in each set. Their
axioms are independence (of which ours is a direct translation), indif-
ference between no-choice situations requiring any two singletons to
be ranked at the same level (this requirement is part of our definition
of a PDI), and a strict monotonicity axiom comparing sets of cardi-
nality 1 and 2. The latter is not meaningful, or even expressible, in
our framework. However, our weak discernability axiom has similar
consequences. Pattanaik and Xu interpret their result as an impos-
sibility result, given that simply counting opportunities is an overly
simplistic way of measuring freedom of choice. As our empirical re-
sults suggest that the simple support-based PDI is not very attractive,
Proposition 3 may be also be considered an impossibility result.

More expressive models of diversity, such as the multi-attribute
approach of Nehring and Puppe [15] with its applications to the study
of biodiversity, are not directly comparable to our setting.

Most closely related to our model is recent work on the cohesive-
ness (or the degree of consensus) of a profile [1, 2], which is the
opposite of our notion of diversity. These studies focus on a gen-
eralisation of the Kendall tau distance, i.e., on measures based on
averaging over pairwise distances between preferences (which can
be seen as a special case of our distance-based measures) or the dual
of this definition (averaging over the differences in the support of all
possible pairs of alternatives). They also define several axioms (sim-
ilar to some of ours) that characterise this class of measures. They do
not, however, study the relationship between cohesiveness and social
choice-theoretic phenomena.

Our compromise-based PDI’s are related to distance-based ratio-
nalisations of voting rules [8, 14]. Such a rationalisation consists of a
distance measure and a notion of consensus profile (e.g., a unanimous
profile or one with a Condorcet winner): the winners are the alterna-

tives that win in the consensus profile that is closest (in terms of the
distance measure) to the actual profile. What our compromise-based
PDI’s measure is precisely such a distance to a unanimous profile.

6 CONCLUSION
We have introduced the concept of preference diversity, together with
a formal model facilitating the analysis of this concept. Besides being
of interest in its own right, we also hope that PDI’s may serve as a
useful tool for parameterising data in research on preference handling
and social choice, including applications in AI.

In the interest of space, we have focussed on three families of spe-
cific PDI’s, but there is in fact a rich landscape of additional options
that should be investigated in depth. For instance, we may count the
maximal number preferences sharing a common subpreferences of a
given length `; we may measure the maximal distance between all
preferences in a given profile and all preferences not in the profile (to
see how close a profile is to covering the full space of possibilities);
or we may measure the distance to a single-peaked profile. In fact, the
latter is a problem that already has received some attention in the lit-
erature [4]. Finally, we may use other distances and other aggregation
operators (e.g., max-of-min) than those mentioned in Section 2.3.
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