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Abstract. Social choice theory is the study of mechanisms for collec-
tive decision making. While originally concerned with modelling and
analysing political decision making in groups of people, its basic princi-
ples, arguably, are equally relevant to modelling and analysing the kinds
of interaction taking place in a multiagent system. In support of this po-
sition, I review examples from three strands of research in social choice
theory: fair division, voting, and judgment aggregation.

1 Introduction

Multiagent systems are systems composed of several autonomous agents, e.g.,
computer programs or robots, that interact with each other in a variety of ways,
including coordination, cooperation, and competition. There are clear parallels
to the ways in which individual people interact with each other as members of
our society. It therefore is not surprising that formalisms and methods developed
in the social and economic sciences, originally intended for the purposes of mod-
elling and analysing humans and human society, have found rich applications
also in the field of autonomous agents and multiagent systems.

A relatively recent example for this phenomenon is social choice theory, the
study of mechanisms for collective decision making [1]. In this short paper I want
to review some of the basic ideas developed in social choice theory and argue for
their relevance to multiagent systems.

Social choice theory is usually considered part of economic theory, although
besides economists also political scientists, philosophers, and mathematicians
have contributed significantly to its development as a discipline. More recently,
social choice theory, and specifically computational social choice [4, 2], has also
become a hot topic in computer science and artificial intelligence, with many
new conceptual and technical contributions coming from this community.

To sketch the scope of social choice theory, particularly in view of possible
applications in multiagent systems, it is useful to consider it side by side with
two neighbouring disciplines, namely decision theory and game theory. Decision
theory provides us with tools to model and analyse the decision-making capa-
bilities of a single intelligent agent. For an agent to make a decision it needs to
understand how its actions will impact on the state of the world around it and it
needs to realise its own preferences over these possible alternative states of the
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world, so as to be able to choose the best action. That is, decision theory is the
right framework when we want to model a single agent vis à vis nature. Once
we zoom in on nature and want to specifically model the fact that part of nature
consists of other agents taking their own decisions, we enter the realms of game
theory. This is the right framework to work in when, still taking the perspective
on an individual agent, we want to model that agent’s strategic behaviour vis à
vis other agents. That is, while decision theory considers one agent at a time,
game theory is concerned with such an agent’s interactions with other agents.
Social choice theory, finally, goes one step further in that direction and is con-
cerned with such a group of interacting agents as a whole. In social choice theory
we ask questions such as “what is good for this group?”, while we ask “what is
good for this agent?” in decision theory and “how can this agent do well, given
that others try too?” in game theory.

In the remainder of this paper I will briefly review three technical frameworks
for social choice theory that model different aspects of collective decision making:
deciding on a fair allocation of resources to agents, making a choice affecting all
agents in view of their individual preferences, and aggregating the judgments of
different agents regarding a number of logically related statements to come to a
consistent view that appropriately reflects the position taken by the group as a
whole. In other words, I will review the frameworks of fair division (Section 2),
voting (Section 3), and judgment aggregation (Section 4).

2 Fair Allocation of Resources

Resource allocation plays a central role in multiagent systems research. For one,
the problems people try to address by designing a multiagent system often just
are problems of resource allocation (e.g., applications in electronic commerce).
But also for other types of applications we often have to solve a resource allo-
cation problem (e.g., allocating computing resources to different agents) along
the way before our agents are in a position to solve the problem they have been
designed to address.

Many resource allocation problems can be modelled as follows. We have a
set of agents N = {1, . . . , n} and a set of (indivisible) goods G = {g1, . . . , gm}.
Each agent i ∈ N is equipped with a utility function ui : 2G → R, mapping
sets of goods to real numbers indicating the value the agent assigns to the set
in question. An allocation is a function A : N → 2G, mapping each agent to a
set of goods, that respects A(i) ∩ A(j) = ∅ for all i 6= j ∈ N , i.e., no item may
be assigned to more than one agent.

The question then arises: what is a good allocation? The answer most fre-
quently given in the context of multiagent systems is that it should be an allo-
cation that maximises the sum of individual utilities. That is, it should be an
allocation A that maximises

∑
i∈N ui(A(i)), the utilitarian social welfare of A.

This certainly will be the right objective function to optimise in certain con-
texts. For example, if the utility experienced by each agent represents monetary
revenue generated by that agent and as system designers we collect this revenue
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from all our agents, then what we are interested in is indeed the sum of indi-
vidual utilities. But if the agents represent individual clients that make use of a
multiagent platform we provide, then we may have rather different objectives.
We may, for instance, wish to guarantee that individual agents are treated in a
fair manner, so as to improve the user experience of our clients. Social choice
theory offers a number of useful definitions for how to make the vague notion of
fairness precise in the context of resource allocation [14]:

– We could look for an allocation A that maximises the egalitarian social
welfare min{ui(A(i)) | i ∈ N}, i.e., the utility of the agent that is worst off.

– Alternatively, we could maximise the Nash social welfare
∏
i∈N ui(A(i)),

which may be considered a compromise between the utilitarian and the egal-
itarian point of view, as it sanctions both increases in total efficiency and
reallocations from rich to poor agents.

– Or we could look for an allocation A that is envy-free, i.e., where ui(A(i)) >
ui(A(j)) for all i, j ∈ N , meaning that every agent i values the set A(i) of
goods assigned to it no less than the set A(j) assigned to any other agent j.

Elsewhere, my coauthors and I have argued for a systematic exploitation of
the rich variety of fairness criteria developed in the classical literature on social
choice theory as design objectives for multiagent systems [3].

An important class of fairness criteria that is not yet widely used in multia-
gent systems are inequality indices, quantifying the degree of economic inequality
in a group of agents (see [6] for an introduction aimed at computer scientists).

3 Voting

Voting is a framework for choosing a best alternative from a given set of available
alternatives, given the preferences of a group of voters over these alternatives.
The classical example is that of political elections, where the alternatives are
the candidates standing for election and voters express their preferences on the
ballot sheet. But voting rules can also be used in many other contexts, including
multiagent systems. For example, the alternatives may be different plans avail-
able to a group of agents to execute together, and each agent may have their own
preferences over alternative plans, determined by the information and reasoning
capabilities available to them.

Social choice theory provides a simple mathematical framework for modelling
the process of voting. Its ingredients are a set of agents N = {1, . . . , n} (the
voters), a set of alternatives X = {x1, . . . , x`}, and one preference order �i for
each agent i ∈ N . Every such preference order �i is taken to be a strict linear
order on X (i.e., a binary relation that is irreflexive, transitive, and complete).
We write L(X) for the set of all such linear orders. A voting rule is a function
F : L(X)n → 2X \ {∅}, mapping any given profile of preference orders (one for
each agent) to a nonempty set of winning alternatives (due to the possibility of
ties we cannot be sure to always obtain a single winner).

Voting theory provides many different such rules [16]. To exemplify the range,
let us define two of them here:
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– Under the Borda rule, every alternative obtains ` − k points whenever a
voter ranks that alternative in position k in her preference ordering. Thus,
if there are 10 alternatives, then your most preferred alternative receive 9
points from you, your second most preferred alternative receives 8 points,
and so forth. The alternative with the most points wins.

– Under the Copeland rule, we elect the alternative that wins the largest num-
ber of pairwise majority contests against other alternatives (with half a point
awarded for a draw).

Observe that the so-called plurality rule, under which every voter can nominate
one alternative and the alternative with the most nominations wins the election,
also fits into this framework. The reason is that we can think of it as the rule
under which the alternative ranked on top most often wins. The plurality rule is
the rule used in most political elections, but it does in fact have many undesirable
properties. For example, in the scenario below, z wins under the plurality rule,
yet every alternative other than z is preferred to z by a strict majority:

2 agents: x � y � z
2 agents: y � x � z
3 agents: z � x � y

Observe that both the Borda rule and the Copeland rule will instead elect the
intuitively “right” winner, namely x.

When designing a decision making mechanism for a multiagent system, it is
important to refer back to the classical literature on voting theory, which has
examined many of the questions of relevance here in depth. Having said this, mul-
tiagent systems will often give rise to requirements that are somewhat different
from those arising in the context of elections amongst humans. For example, due
to the bounded rationality of autonomous software agents (and due to the fact
that we can model such bonded rationality much more precisely in such cases
than for a human agent), we may wish to drop or alter some of the classical
assumptions regarding preferences. Specifically, the assumption of completeness,
i.e., an agent’s ability to rank any two alternatives, will not always be appropri-
ate. This insight has led to work in the artificial intelligence literature on voting
with nonstandard preferences [15, 8]. In a similar vain, the alternatives that we
need to choose between in the context of multiagent systems may not always be
just simple “atomic” options, but they may come with some rich internal struc-
ture. This has lead to the research direction of voting in combinatorial domains
in computational social choice [11, 5].

Observe that, in principle, we could use voting rules also in the context of
resource allocation. If we think of the set of all possible allocations of resources
to agents as the set of alternatives, then each agent’s utility function defines its
preference relation over these alternatives.

4 Judgment Aggregation

Preferences are not the only types of structures we may wish to aggregate in a
multiagent system. Other examples include in particular individual judgments
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regarding the truth or falsehood of certain statements. Such questions have
been investigated in the literature on belief merging [10] and judgment aggre-
gation [13], as well as the closely related binary aggregation [9].

Let us briefly review the basic framework of judgment aggregation here. An
agenda is a finite set of formulas of propositional logic that is of the form Φ =
Φ+∪{¬ϕ | ϕ ∈ Φ+}, with Φ+ only including non-negated formulas. Now consider
a set of agents N = {1, . . . , n} such that each agent i ∈ N picks a judgment set
Ji ⊆ Φ that is logically consistent and that includes either ϕ or ¬ϕ for every
ϕ ∈ Φ+. Let J (Φ) be the set of all such consistent and complete judgment sets
for the agenda ϕ. An aggregator is a function F : J (Φ)n → 2Φ, mapping profiles
of such judgment sets (one for each agent) to subsets of the agenda (i.e., to
judgment sets that may or may not also be consistent and complete).

An example is the majority rule, under which we accept all those formulas
that are accepted by a majority of the agents. Unfortunately, this simple rule
is often not satisfactory, as it can lead to paradoxical outcomes. For example,
suppose that Φ+ = {p, q, p∧q}. The table below show a profile with three agents
(we assume that an agent accepts ¬ϕ if and only if it does not accept ϕ):

p q p ∧ q
Agent 1: Yes Yes Yes
Agent 2: Yes No No
Agent 3: No Yes No
Majority: Yes Yes No

Thus, even though each individual agent declares a consistent judgment set
(e.g., agent 2 claims p is true and q is false, i.e., p∧ q is also false), the majority
judgment set we obtain is inconsistent: you cannot accept both p and q but also
reject p ∧ q. There are several proposals for alternative methods of aggregation
that avoid this kind of problem, albeit often at the price of significantly increased
complexity [12]. This includes, for instance, distance-based methods where we
choose as outcome a consistent judgment set that minimises, in some sense,
the distance to the input profile. Another approach amounts to choosing from
amongst the agents one that may be considered a good representative of the
group, to then implement that agent’s advice [7].

In the same way as resource allocation problems can, in principle, be studied
as voting problems, voting can, in principle, be embedded into judgment aggre-
gation. The basic idea is to work with propositional variables of the form px�y,
acceptance of which would then signal that an agent prefers x to y.

5 Conclusion

We have reviewed three frameworks for collective decision making and discussed
their relevance to multiagent systems. Judgment aggregation and the closely
related binary aggregation are the most general amongst them: they, in principle,
allow us to aggregate any kind of information. The other two frameworks, voting
and fair division, deal with one specific type of information to be aggregated,
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namely information on the preferences of the agents. Fair division, again, is more
specific than voting, as it imposes specific constraints on the types of preferences
held by agents over alternative outcomes. Despite this relative narrowness of
scope, or maybe because of it, of the ideas discussed here, those pertaining
to resource allocation are clearly the most widely used in multiagent systems
research today. But also the others have clear potential for multiagent systems.
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