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Abstract. Krull dimension measures the depth of the spectrum Spec(R) of a commutative
ring R. Since Spec(R) is a spectral space, Krull dimension can be defined for spectral spaces.
Utilizing Stone duality, it can also be defined for distributive lattices. For an arbitrary
topological space, the notion of Krull dimension is less useful. Isbell [23] remedied this by
introducing the concept of graduated dimension. In this paper we propose an alternate
concept, that of localic Krull dimension of a topological space, which has its roots in modal
logic. This is done by investigating the concept of Krull dimension for closure algebras
and Heyting algebras, which formalize the notions of powerset and open set algebras of
topological spaces [30, 31, 35]. We compare localic Krull dimension to other well-known
dimension functions, and show that it can detect topological differences between topological
spaces that Krull dimension is unable to detect. We also investigate applications of localic
Krull dimension to modal logic. We prove that for a T1-space to have a finite localic Krull
dimension can be described by an appropriate generalization of the well-known concept of a
nodec space. These considerations yield topological completeness and incompleteness results
in modal logic that we examine in detail.

1. Introduction

For a commutative ring R, let Spec(R) be the set of prime ideals of R topologized with the
Zariski topology. As usual, we refer to Spec(R) as the spectrum of R. The Krull dimension
of R is defined as the supremum of the lengths of chains in (Spec(R),⊆). This notion is of
fundamental importance in commutative algebra and algebraic geometry (see, for example,
[14, Ch. 8]). Since Spec(R) is a spectral space, where the inclusion on prime ideals is the
specialization order of the Zariski topology, we can define the Krull dimension of a spectral
space X as the supremum of the lengths of chains in the specialization order of X. By Stone
duality [36], spectral spaces are dual to distributive lattices, which paves the way to defining
the Krull dimension of a distributive lattice L as the supremum of the lengths of chains in
(Spec(L),⊆), where Spec(L) is the Stone dual of L. For different characterizations of the
Krull dimension of distributive lattices see [4, 18, 19, 7, 8] and the references therein. If a
distributive lattice L is a frame or locale (that is, a topological space without points), then
a convenient characterization of the Krull dimension of L can be found in [2, Thm. 6.9].

If we define the Krull dimension of an arbitrary topological space X by means of the
specialization order of X, then to quote Isbell [23], the result is “spectacularly wrong for the
most popular spaces, vanishing for all non-empty Hausdorff spaces; but it seems to be the
only dimension of interest for the Zariski spaces of algebraic geometry.” Isbell remedied this
by proposing the definition of graduated dimension. In this article we propose a different
approach. We define the localic Krull dimension of a topological space X as the Krull
dimension of the locale Ω(X) of all open subsets of X. As we will see, this definition turns
out to be more refined. For example, every nonempty Stone space has Krull dimension and

2010 Mathematics Subject Classification. 06E25; 06D20; 06D22; 03B45; 54F45; 54B17.
Key words and phrases. Krull dimension; topological space; locale; Heyting algebra; closure algebra;

modal logic.
1



2 GURAM BEZHANISHVILI, NICK BEZHANISHVILI, JOEL LUCERO-BRYAN, JAN VAN MILL

graduated dimension 0. On the other hand, for each n (including∞), there is a Stone space
X such that the localic Krull dimension of X is n. Thus, localic Krull dimension provides
more refined classification of Stone spaces, and this extends to spectral spaces and beyond.

Instead of working with the locale Ω(X), we could work with the powerset algebra ℘(X)
equipped with the closure operator or its dual interior operator. Then the locale Ω(X) can
be realized as the fixed points of the interior operator. This line of research was developed
by McKinsey and Tarski in their classic paper [30]. It gives rise to the concept of a closure
algebra, which is a pair A = (A,C), where A is a Boolean algebra and C : A→ A is a unary
function satisfying Kuratowski’s axioms for closure.

In this article we introduce and develop the theory of Krull dimension for closure al-
gebras. We prove that the Krull dimension of a closure algebra coincides with the Krull
dimension of its open elements. Thus, the localic Krull dimension of a topological space X
can alternatively be defined as the Krull dimension of the closure algebra (℘(X),C).

This approach has a number of logical applications. Closure algebras serve as algebraic
models of Lewis’ well-known modal logic S4 (see, e.g., [35]). For each n ≥ 1, there is a
modal formula ϕn that is satisfied in a closure algebra A iff the Krull dimension of A is
≤ n. Therefore, for each n ≥ 1, adding ϕn to S4 yields the modal logic S4n, which is the
logic of all closure algebras of Krull dimension ≤ n. This yields that S4n is the logic of all
topological spaces whose localic Krull dimension is ≤ n.

We generalize the well-known concept of a nodec space to that of an n-discrete space, and
prove that if X is a T1-space, then the localic Krull dimension of X is ≤ n iff X is n-discrete.
As was shown in [1], the modal logic of nodec spaces is the well-known Zeman logic S4.Z. For
each n ≥ 1, we generalize the Zeman logic S4.Z to the n-Zeman logic S4.Zn, and show that
S4.Zn is a proper extension of S4n. From this we derive that S4n is topologically incomplete
for any class of T1-spaces. In fact, we show that no logic in the interval [S4n,S4.Zn) is the
logic of any class of T1-spaces. On the other hand, for each n ≥ 1, we construct a countable
crowded ω-resolvable Tychonoff space Zn of localic Krull dimension n such that S4.Zn is the
logic of Zn.

The article is organized as follows. Section 2 recalls the basic definitions, notation, and
terminology used for closure algebras and Heyting algebras, as well as some connections
between these classes of algebras. We also review Esakia duality for these classes of algebras.
In Section 3 we define the Krull dimension of a closure algebra in two ways, externally and
internally. The main result of Section 3 shows that the two definitions are equivalent, and
also demonstrates multiple equivalent conditions characterizing Krull dimension of a closure
algebra. In Section 4 we define external and internal Krull dimension of Heyting algebras,
and show that they are equivalent. We connect the Krull dimension of Heyting algebras with
that of closure algebras, and exhibit equivalent conditions characterizing the Krull dimension
of a Heyting algebra.

In Section 5 we introduce the localic Krull dimension of an arbitrary topological space X,
and provide equivalent conditions characterizing finite (nonnegative) localic Krull dimension
of X, some of which require us to develop a topological version of the Jankov-Fine formulas
[24, 20]. We also compare localic Krull dimension to other well-known dimension functions.
In Section 6 we generalize the notion of a discrete closure algebra to that of an n-discrete clo-
sure algebra, and characterize dually when a closure algebra is n-discrete. We also generalize
the well-known Zeman formula to a family of formulas we call the n-Zeman formulas zemn,
and show that zemn characterizes n-discrete closure algebras. We conclude the section by
showing that each logic S4.Zn obtained by adding zemn to S4 has the finite model property.
In Section 7 we introduce n-discrete topological spaces. We prove that being n-discrete is a
topological property that is defined by zemn, and show that S4.Zn is the logic of n-discrete
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spaces. In addition, we prove that a T1-space is n-discrete iff its localic Krull dimension is
≤ n, thus yielding topological incompleteness results. The section culminates by showing
that each logic S4.Zn is the logic of a single countable crowded ω-resolvable Tychonoff space
of localic Krull dimension n.

2. Closure algebras and Heyting algebras

Definition 2.1. A closure operator on a Boolean algebra A is a unary function C : A→ A
satisfying Kuratowski’s axioms:

• a ≤ C(a);
• CC(a) ≤ C(a);
• C(a ∨ b) = C(a) ∨C(b);
• C(0) = 0.

A closure algebra is a pair A = (A,C), where A is a Boolean algebra and C is a closure
operator on A. As usual, if C is a closure operator on A, then its dual interior operator is
defined by I(a) = −C(−a) for each a ∈ A.

A typical example of a closure algebra is the powerset algebra of a topological space X;
that is, the pair AX = (℘(X),CX), where ℘(X) is the powerset of X and CX is closure in X.
By the McKinsey-Tarski representation theorem [30], every closure algebra is represented as
a subalgebra of AX for some topological space X.

There is another representation of closure algebras due to Jónsson-Tarski [25] and Kripke
[28], which is central to modal logic. Recall that a Kripke frame is a pair F = (W,R), where
W is a set and R is a binary relation on W . Kripke frames provide relational semantics of
modal logic [3, 6]. Those Kripke frames where the relation is reflexive and transitive provide
relational semantics of Lewis’ well-known modal system S4. This is why Kripke frames
with reflexive and transitive relations are often referred to as S4-frames. Given an S4-frame
F = (W,R) and A ⊆ W , let

R−1[A] = {w ∈ W | ∃a ∈ A with wRa}.
Then the powerset algebra AF = (℘(W ),CR) is a closure algebra, where CR(A) = R−1[A].
Moreover, every closure algebra is represented as a subalgebra of AF for some S4-frame F.

There is a close connection between the McKinsey-Tarski and Kripke representations.
Suppose F = (W,R) is an S4-frame. Call U ⊆ W and R-upset if w ∈ U and wRv imply
v ∈ U (R-downsets are defined dually). Let τR be the collection of all R-upsets of F. Then
τR is a topology on W in which every w ∈ W has a least open neighborhood

R[w] := {v ∈ W | wRv}.
Such topological spaces are called Alexandroff spaces, and can alternatively be described as
the topological spaces in which intersections of arbitrary families of opens are open. Thus,
S4-frames correspond to Alexandroff spaces.

In [16] Esakia put together Stone duality for Boolean algebras with Kripke representation
of closure algebras to obtain a full duality for closure algebras. By Esakia duality, the cate-
gory of closure algebras is dually equivalent to the category of Esakia spaces (aka descriptive
S4-frames).

Definition 2.2. A Stone space is a zero-dimensional compact Hausdorff space, and an Esakia
space is an S4-frame F = (W,R) such that W is equipped with a Stone topology satisfying

• R[w] is closed;
• U clopen implies R−1[U ] is clopen.
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The dual Esakia space of a closure algebra A is the pair A∗ = (W,R), where W is the
Stone space of A and

wRv iff (∀a ∈ A)(a ∈ v ⇒ C(a) ∈ w).

The dual closure algebra of an Esakia space F = (W,R) is the closure algebra F∗ =
(Clop(W ),CR), where Clop(W ) is the Boolean algebra of clopen subsets of W and

CR(U) = R−1[U ] and hence IR(U) = W \R−1[W \ U ].

Then β : A→ A∗
∗ and ε : E → E∗∗ are isomorphisms, where

β(a) = {w ∈ W | a ∈ w} and ε(w) = {U ∈ Clop(W ) | w ∈ U}.

In the finite case, the topology on an Esakia space becomes discrete, and we identify finite
Esakia spaces with finite S4-frames.

Let A be a closure algebra and A∗ be the Esakia space of A. As is customary, we adopt
topological terminology and call a ∈ A closed if a = C(a), open if a = I(a), dense if C(a) = 1,
and nowhere dense if IC(a) = 0. The following is well known (and easy to see):

• a is closed iff β(a) is a clopen R-downset in A∗;
• a is open iff β(a) is a clopen R-upset in A∗;
• a is dense iff CRβ(a) = W ;
• a is nowhere dense iff IRCRβ(a) = ∅.

The relativization of A to a ∈ A is the closure algebra Aa whose underlying set is the
interval [0, a], the meet and join in Aa coincide with those in A, the complement of b ∈ Aa

is given by a − b, and the closure of b is given by Ca(b) = a ∧ C(b). It follows that the
interior of b ∈ Aa is given by Ia(b) = a ∧ I(a → b). If A = AX is the powerset algebra of a
topological space X and Y ⊆ X, then the relativization of A to Y is the powerset algebra
AY of the subspace Y of X.1 The relativization Aa is realized dually as the restriction of R
to the clopen subspace β(a) of A∗. In order to describe dually a connection between nowhere
dense elements and relativizations, we recall the notion of an R-maximal point.

Definition 2.3. Let F = (W,R) be an S4-frame, U ⊆ W , and w ∈ U . Then w is an R-
maximal point of U provided wRu and u ∈ U imply uRw. We denote the set of R-maximal
points of F by maxR(F).

It is well known (see, e.g., [17, Sec. III.2]) that in an Esakia space F = (W,R), the set
maxR(F) is a closed R-upset, and for each w ∈ W there is v ∈ maxR(F) such that wRv.

Lemma 2.4. Let A be a closure algebra and A∗ be its Esakia space. Suppose a ∈ A and
d ∈ Aa. Then d is nowhere dense in Aa iff β(d)∩maxQβ(a) = ∅, where Q is the restriction
of R to β(a).

Proof. Since A∗ is an Esakia space and β(a) is clopen in A∗, it is well known (see, e.g., [17,
Sec. III.2]) that F = (β(a), Q) is also an Esakia space. As maxQβ(a) is a Q-upset of β(a),
the condition β(d) ∩ maxQβ(a) = ∅ is equivalent to CQ[β(d)] ∩ maxQβ(a) = ∅, which in
turn is equivalent to IQCQ[β(d)] ∩maxQβ(a) = ∅. Since IQCQ[β(d)] is a Q-upset of β(a),
the last condition is equivalent to IQCQ[β(d)] = ∅. Therefore, β(d) ∩ maxQβ(a) = ∅ iff
β(IaCad) = ∅, which is equivalent to d being nowhere dense in Aa. �

We next turn to Heyting algebras, which are closely related to closure algebras [31, 35].

1Despite subscript being used to denote both a relativization of a closure algebra A and the powerset
algebra of a space X, there is no ambiguity when A = AX because (AX)Y = AY .



TOPOLOGICAL AND LOGICAL EXPLORATIONS OF KRULL DIMENSION 5

Definition 2.5. A Heyting algebra is a bounded implicative lattice; that is, a bounded
distributive lattice such that ∧ has a residual → satisfying

x ≤ a→ b iff a ∧ x ≤ b.

If A is a closure algebra, then H(A) := {Ia | a ∈ A} is a Heyting algebra. Conversely, if
H is a Heyting algebra, then the free Boolean extension B(H) of H can be equipped with
a closure operator C so that A(H) := (B(H),C) is a closure algebra, H is isomorphic to
H(A(H)), and A(H(A)) is isomorphic to a subalgebra of A (see, e.g., [35, Sec. IV.1 and IV.3]
or [17, Sec. II.2 and II.5]).

As with closure algebras, a typical example of a Heyting algebra is the Heyting algebra
HX of all opens of a topological space X, and every Heyting algebra is represented as a
subalgebra of HX for some topological space X [31, 35].

Another representation of Heyting algebras is by means of R-upsets of S4-frames, but
since R-upsets do not distinguish between points that are R-related to each other, we may
restrict ourselves to those S4-frames that are in addition antisymmetric. This extends to
Esakia duality between Heyting algebras and partially ordered Esakia spaces [16].

Define an equivalence relation on an S4-frame F = (W,R) by setting

w ∼ v iff wRv and vRw.

As is customary, we call equivalence classes of ∼ R-clusters.
If A is a closure algebra and A∗ is the dual of A, then the dual H(A)∗ of H(A) is obtained

by modding out A∗ by the equivalence relation ∼. Conversely, if H is a Heyting algebra,
then the dual A(H)∗ of A(H) is isomorphic to the dual H∗ of H (see, e.g., [17, Sec. III.4]).

We conclude this preliminary section by a brief discussion of relativizations of Heyting
algebras. Let H be a Heyting algebra and a ∈ H. The relativization of H with respect to a
is the Heyting algebra Ha whose underlying set is the interval [a, 1] and the meet, join, and
implication in Ha coincide with those in H. If H = HX is the Heyting algebra of all opens
of a topological space X and U is an open subset of X, then the relativization of H with
respect to U is isomorphic to the Heyting algebra of all opens of the subspace X \ U .

3. Krull dimension of closure algebras

In this section we define the Krull dimension of a closure algebra A via chains in the
Esakia space of A. We relate this definition to the concept of depth of an Esakia space,
which plays an important role in modal logic. The main result of the section is a pointfree
characterization of the Krull dimension of A without accessing the Esakia space of A.

For an S4-frame F = (W,R), we write w~Rv provided wRv and vR�w. We call a finite

sequence {wi ∈ W | i < n} an R-chain provided wi ~Rwi+1 for all i, and define the length of
the R-chain {wi ∈ W | i < n} to be n− 1. Note that we allow the empty R-chain which has
length −1.

Definition 3.1. Let A be a closure algebra. Define the Krull dimension kdim(A) of A as
the supremum of the lengths of R-chains in A∗. If the supremum is not finite, then we write
kdim(A) =∞.

The definition of the length of an R-chain that we have adopted has its roots in algebra.
Modal logicians have used a similar concept of depth of a frame F = (W,R). But in modal
logic the length of an R-chain {wi ∈ W | i < n} is typically defined to be n. This notion
of length is always one more than the notion of length in algebra. The difference is whether
we count the number of R-links in the R-chain (as algebraists do) or the number of points
in the R-chain (as modal logicians do). Therefore, the Krull dimension of A is one less
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than the depth of A∗ (provided the Krull dimension of A is finite). Thus, kdim(A) = n iff
depth(A∗) = n + 1 for n ∈ ω. It is expressible by a modal formula whether depth(A∗) is
bounded by n.

Definition 3.2. For n ≥ 1, consider the formulas:

bd1 = ♦�p1 → p1,

bdn+1 = ♦ (�pn+1 ∧ ¬bdn)→ pn+1.

The modal language is interpreted in a closure algebra A = (A,C) by assigning to each
propositional letter an element of A, letting the classical connectives disjunction and negation
be the Boolean join and complement in A, and letting the modal diamond be the closure C.
For a modal formula ϕ, we say ϕ is satisfiable in A provided ϕ is interpreted as 1 for some
assignment of the propositional letters. We say ϕ is valid in A, written A � ϕ, whenever ϕ
is 1 under all assignments of the letters. The following lemma is well known (see, e.g., [6,
Prop. 3.44]).

Lemma 3.3. Let A be a nontrivial closure algebra and n ≥ 1. Then depth(A∗) ≤ n iff
A � bdn.

We next describe when kdim(A) ≤ 0. Recall that A is trivial if 0 = 1, it is discrete if C
is the identity function, and it is an S5-algebra (or monadic algebra) if a ≤ IC(a) for all
a ∈ A. If A∗ is the Esakia space of A then it is well known that A is trivial iff A∗ = ∅, that
A is discrete iff R is the identity, and A is an S5-algebra iff R is an equivalence relation.

Lemma 3.4. Let A be a closure algebra.

(1) kdim(A) = −1 iff A is the trivial algebra.
(2) kdim(A) ≤ 0 iff A is an S5-algebra.
(3) kdim(A) = 0 iff A is a nontrivial S5-algebra.
(4) If A is discrete, then kdim(A) ≤ 0.

Proof. (1) Suppose A is trivial. Then A∗ = ∅, so the only R-chain in A∗ is the empty chain
whose length is −1. Therefore, kdim(A) = −1. Conversely, if kdim(A) = −1, then every
R-chain in A∗ has length −1, and hence is the empty chain. Thus, A∗ = ∅, and so A is the
trivial algebra.

(2) Suppose A is an S5-algebra. Then R is an equivalence relation, so there are no

w, v ∈ A∗ with w~Rv. Therefore, every R-chain in A∗ has length ≤ 0. Thus, kdim(A) ≤ 0.
Conversely, suppose kdim(A) ≤ 0. Then every R-chain in A∗ has length ≤ 0. Therefore, if
xRy, then it cannot be the case that yR�x. Thus, R is symmetric, and so A is an S5-algebra.

(3) This follows from (1) and (2).
(4) This follows from (2) since every discrete algebra is an S5-algebra. �

Remark 3.5.
(1) Since not every S5-algebra is discrete, the converse of Lemma 3.4(4) does not hold.
(2) Suppose A is a subalgebra of AX for some topological space X. If A consists of clopen

subsets of X, then A is discrete, and hence kdim(A) ≤ 0.

By Lemma 3.4, whether the Krull dimension of A is ≤ 0 can be determined internally in
A, without accessing A∗. The goal of the remainder of this section is to develop a pointfree
description of the Krull dimension of A that does not require the Esakia space of A. In fact,
we will prove that kdim(A) can be defined recursively as follows.

Definition 3.6. The Krull dimension kdim(A) of a closure algebra A can be defined as
follows:
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(1) kdim(A) = −1 if A is the trivial algebra,
(2) kdim(A) ≤ n if kdim(Ad) ≤ n− 1 for every nowhere dense d ∈ A,
(3) kdim(A) = n if kdim(A) ≤ n and kdim(A) 6≤ n− 1,
(4) kdim(A) =∞ if kdim(A) 6≤ n for any n = −1, 0, 1, 2, . . . .

To show that Definitions 3.1 and 3.6 are equivalent requires some preparation. For now we
refer to Definition 3.1 as the external Krull dimension and to Definition 3.6 as the internal
Krull dimension of A.

Lemma 3.7. Let A be a closure algebra, a ∈ A, and d ∈ Aa. If d is nowhere dense in Aa,
then d is nowhere dense in A.

Proof. Set u = IC(d). Then u is open, so

Ia(a ∧ u) = a ∧ I(a→ (a ∧ u)) = a ∧ I(a→ u) ≥ a ∧ I(u) = a ∧ u.
Therefore, a∧ u is open in Aa. Moreover, a∧ u ≤ a∧C(d) = Ca(d). Thus, a∧ u ≤ IaCa(d).
Since d is nowhere dense in Aa, we obtain a ∧ u = 0. This yields d ∧ u = 0 as d ≤ a.
Therefore, d ≤ −u. Since −u is closed, we obtain C(d) ≤ −u, giving C(d) ∧ u = 0. Thus,
u = 0, and hence d is nowhere dense in A. �

Definition 3.8. For a1, . . . , an+2 ∈ A, define:

d1 = CIa1 − a1 and e1 = C(Ia2 ∧ d1),
...

...
dn+1 = C(Ian+1 ∧ dn)− an+1 and en+1 = C(Ian+2 ∧ dn+1).

Clearly dn+2 = C(Ian+2 ∧ dn+1)− an+2 = en+1 − an+2, so dn+2 ≤ en+1. It is also straight-
forward to see that if we interpret pi as ai, then since � is interpreted as I and ♦ as C, the
formula ¬bdn is interpreted as dn, and the antecedent of bdn+1 as en.

Lemma 3.9. Let A be a closure algebra, a1, . . . , an+2 ∈ A, and di, ei be defined as in Defi-
nition 3.8.

(1) d1 and e1 are nowhere dense in A.
(2) Ian+2 ∧ dn+1 is nowhere dense in Aen.
(3) en+1 and dn+2 are nowhere dense in Aen.

Proof. (1) We have

IC(d1) = IC(CIa1 − a1) ≤ I(CIa1 − Ia1) = ICIa1 −CIa1 ≤ CIa1 −CIa1 = 0.

Therefore, d1 is nowhere dense in A. This yields that Ia2 ∧ d1 is nowhere dense in A. Thus,
e1 = C(Ia2 ∧ d1) is nowhere dense in A.

(2) Since en is closed in A, we have Cen(a) = C(a) for all a ≤ en. To see that Ian+2∧dn+1 is
nowhere dense in Aen , let u be open in Aen with u ≤ C(Ian+2∧dn+1). We set u′ = u∧ Ian+1.
Then u′ is open in Aen and u′ ≤ an+1, so

u′ ∧ Ian+2 ∧ dn+1 = u′ ∧ Ian+2 ∧ (en − an+1) ≤ u′ ∧ (en − an+1) = u′ − an+1 = 0.

Therefore, u′ ∧ C(Ian+2 ∧ dn+1) = 0. This together with u′ ≤ u ≤ C(Ian+2 ∧ dn+1) yields
that u′ = 0. Thus, u∧ Ian+1 = 0, and so u∧ Ian+1 ∧ dn = 0. But Ian+1 ∧ dn is dense in Aen ,
giving that u = 0. Consequently, Ian+2 ∧ dn+1 is nowhere dense in Aen .

(3) By (2), Ian+2 ∧ dn+1 is nowhere dense in Aen . Therefore, en+1 = C(Ian+2 ∧ dn+1) is
nowhere dense in Aen . Thus, dn+2 = en+1 − an+2 is nowhere dense in Aen . �

The next lemma concerns the internal Krull dimension of a closure algebra.

Lemma 3.10. Let A be a closure algebra.
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(1) For a ∈ A, we have kdim(Aa) ≤ kdim(A).
(2) kdim(A) ≤ n iff kdim(Ad) ≤ n− 1 for every closed nowhere dense d ∈ A.

Proof. (1) If kdim(A) = ∞, then there is nothing to prove. Suppose kdim(A) = n. Let
d ∈ Aa be nowhere dense in Aa. By Lemma 3.7, d is nowhere dense in A. Since kdim(A) = n,
we see that kdim(Ad) ≤ n− 1. Because (Aa)d = Ad, we conclude that kdim(Aa) ≤ n. Thus,
kdim(Aa) ≤ kdim(A).

(2) One implication is trivial. For the other, let d be nowhere dense in A. Then C(d) is
closed and nowhere dense in A. Therefore, kdim(AC(d)) ≤ n− 1. Thus, (1) yields

kdim(Ad) = kdim((AC(d))d) ≤ kdim(AC(d)) ≤ n− 1.

Consequently, kdim(A) ≤ n. �

We next recall the notion of an Esakia morphism between Esakia spaces.

Definition 3.11. Suppose F = (W,R) and G = (V,Q) are Esakia spaces.

(1) A map f : W → V is a p-morphism provided CRf
−1(v) = f−1(CQ{v}) for all v ∈ V .

(2) An Esakia morphism is a continuous p-morphism f : W → V .

It is well known (see, e.g., [17, Sec. IV.3]) that Esakia morphisms correspond dually to
closure algebra homomorphisms; that is, h : A → B is a closure algebra homomorphism iff
h∗ : B∗ → A∗ is an Esakia morphism, where h∗(w) = h−1(w). Moreover, h is 1-1 (resp. onto)
iff h∗ is onto (resp. 1-1).

The modal language is interpreted in an Esakia space F by interpreting the modal formulas
in the dual closure algebra F∗. Consequently, a modal formula ϕ is satisfiable (resp. valid,
written F � ϕ) in F exactly when ϕ is satisfiable (resp. valid) in F∗.

We call F rooted if there is r ∈ W with W = R[r]. We refer to r as a root of F. In general,
r is not unique. Let F = (W,R) be a finite rooted S4-frame. It is well known [24, 20] that
with F we can associate the Jankov-Fine formula χF, which satisfies the following property:

χF is satisfiable in an Esakia space G iff there is an Esakia space E

and Esakia morphisms F
f←− E

g−→ G such that f is onto and g is 1-1.

Let Fn = (Wn, R) be the n-element chain, where Wn = {w0, . . . , wn−1} and wiRwj iff
j ≤ i; see Figure 1.

wn−1•
wn−2•

w0•
w1•

...

Figure 1. The n-element chain.

We are ready to characterize the internal Krull dimension of a closure algebra.

Theorem 3.12. Let A be a nontrivial closure algebra and n ≥ 1. The following are equiva-
lent:

(1) kdim(A) ≤ n− 1.
(2) There does not exist a sequence e0, . . . , en of nonzero closed elements of A such that

e0 = 1 and ei+1 is nowhere dense in Aei for each i ∈ {0, . . . , n− 1}.
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(3) A � bdn.
(4) depth(A∗) ≤ n.
(5) A � ¬χFn+1.
(6) F∗n+1 is not isomorphic to a subalgebra of a homomorphic image of A.

(7) There do not exist an Esakia space G and Esakia morphisms Fn+1
f←− G

g−→ A∗ such
that f is onto and g is 1-1.

(8) F∗n+1 is not isomorphic to a subalgebra of A.
(9) Fn+1 is not an image of A∗ under an onto Esakia morphism.

Proof. (1)⇒(2): Induction on n. Let n = 1. Since A is nontrivial, kdim(A) ≤ 0 yields
kdim(A) = 0. Therefore, for any nowhere dense d in A, we have kdim(Ad) = −1, so Ad

is trivial, and hence d = 0. Thus, A has no nonzero closed nowhere dense elements, as
required. Next let n > 1 and kdim(A) ≤ n − 1. Suppose there is a sequence e0, . . . , en of
nonzero closed elements of A such that e0 = 1 and ei+1 is nowhere dense in Aei for each
i ∈ {0, . . . , n− 1}. Then e1, . . . , en is a sequence of nonzero closed elements of Ae1 such that
ei+1 is nowhere dense in Aei for each i ∈ {1, . . . , n−1}. By the induction hypothesis, applied
to Ae1 , we have kdim(Ae1) > n− 1. Since e1 is nowhere dense in A with kdim(Ae1) > n− 1,
we conclude that kdim(A) > n. This contradicts (1).

(2)⇒(3): If A 6� bdn, then there exist a1, . . . , an ∈ A such that dn 6= 0, where dn is defined
as in Definition 3.8. Put e0 = 1 and an+1 = 1. Let e1, . . . , en be defined as in Definition 3.8.
Then

en = C(Ian+1 ∧ dn) = C(I1 ∧ dn) = C(dn) ≥ dn 6= 0.

Therefore, e0, . . . , en is a sequence of nonzero closed elements in A such that e0 = 1 and, by
Lemma 3.9, ei+1 is nowhere dense in Aei for each i ∈ {0, . . . , n− 1}.

(3)⇒(1): Suppose that kdim(A) > n − 1. We define a decreasing sequence b0, . . . , bn of
closed elements in A such that bi+1 is nowhere dense in Abi and kdim(Abi+1

) > (n−1)−(i+1).
Set b0 = 1. If bi is already defined with kdim(Abi) > (n− 1)− i, then by Lemma 3.10, there
is a closed nowhere dense bi+1 of Abi such that kdim(Abi+1

) > (n− 1)− (i+ 1). Noting that
kdim(Abn) > (n− 1)− n = −1, it follows that Abn is not trivial, and hence bn 6= 0.

Let ai = −bi and let di be defined as in Definition 3.8. We show that for each i we have
bi = di. If i = 1, then since b1 is nowhere dense in A, we have

b1 = 1 ∧ b1 = (−ICb1) ∧ b1 = CI(−b1) ∧ −(−b1) = CIa1 − a1 = d1.

Next suppose that bi = di, and show that bi+1 = di+1. Since ai+1 is open in A, bi+1 is nowhere
dense in Abi , and bi is closed in A, we have

bi+1 = bi ∧ bi+1 = C(bi − bi+1) ∧ bi+1 = C(bi − bi+1)− (−bi+1)

= C(ai+1 ∧ bi)− ai+1 = C(Iai+1 ∧ di)− ai+1 = di+1.

Thus, dn = bn 6= 0. Since ¬bdn is interpreted in A as dn, we conclude that A refutes bdn.
(3)⇔(4)⇔(8): This is well known; see, e.g., [29, Lem. 2].
(5)⇔(7): This is the Jankov-Fine Theorem.
(6)⇔(7): This follows from Esakia duality.
(6)⇒(8): This is obvious.
(8)⇔(9): This follows from Esakia duality.
(4)⇒(7): This is obvious since onto Esakia morphisms do not increase the depth. �

As an immediate consequence, we obtain:

Corollary 3.13. The internal and external Krull dimensions of a closure algebra coincide,
and so Definitions 3.1 and 3.6 are equivalent.
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4. Krull dimension of Heyting algebras

We next study Krull dimension of Heyting algebras. As with closure algebras, we first
define Krull dimension of Heyting algebras externally and then provide an equivalent internal
definition of it. We also show that Krull dimensions of a closure algebra A and the associated
Heyting algebra H(A) of opens of A coincide.

Definition 4.1. Let H be a Heyting algebra. Define the Krull dimension kdim(H) of H as
the supremum of the lengths of R-chains in H∗. If the supremum is not finite, then we write
kdim(H) =∞.

Lemma 4.2.
(1) If A is a closure algebra, then kdim(A) = kdim(H(A)).
(2) If H is a Heyting algebra, then kdim(H) = kdim(A(H)).

Proof. (1) Since H(A)∗ is obtained from A∗ by modding out R-clusters, we see that the cor-
responding R-chains in A∗ and H(A)∗ have the same length. Thus, kdim(A) = kdim(H(A)).

(2) This is obvious since H∗ is isomorphic to (A(H))∗. �

As with closure algebras, the concept of Krull dimension of a Heyting algebra H is closely
related to that of the depth of H. It is well known that whether the depth of H is ≤ n is
described by the following formulas in the language of intuitionistic logic.

Definition 4.3. For n ≥ 1, consider the formulas:

ibd1 = p1 ∨ ¬p1,
ibdn+1 = pn+1 ∨ (pn+1 → ibdn) .

The intuitionistic language is interpreted in a Heyting algebra H by assigning to propo-
sitional letters elements of H and by interpreting conjunction, disjunction, implication, and
negation as the corresponding operations of H. The next lemma is well known (see, e.g., [6,
Prop. 2.38]).

Lemma 4.4. Let H be a nontrivial Heyting algebra and n ≥ 1. Then depth(H∗) ≤ n iff
H |= ibdn.

To characterize the Krull dimension of a Heyting algebra internally, we require some
preparation. We call an element a of a Heyting algebra H dense if ¬a = 0.

Lemma 4.5. Let H be a Heyting algebra, a ∈ H, and b ∈ Ha. If b is dense in Ha, then b is
dense in H.

Proof. Since b is dense in Ha and a is the bottom of Ha, we have b → a = a. Therefore,
¬b = b→ 0 ≤ b→ a = a. On the other hand, a ≤ b implies ¬b ≤ ¬a. Thus, ¬b ≤ a∧¬a = 0,
and hence b is dense in H. �

Lemma 4.6. Let A be a closure algebra and let a ∈ A be open. Then a is dense in H(A) iff
−a is nowhere dense in A.

Proof. Since a is open, −a is closed. Therefore,

a is dense in H(A) iff ¬a = 0

iff I(−a) = 0

iff IC(−a) = 0

iff −a is nowhere dense.

�
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We are ready to give an internal recursive definition of the Krull dimension of a Heyting
algebra.

Definition 4.7. The Krull dimension kdim(H) of a Heyting algebra H can be defined as
follows:

kdim(H) = −1 if H is the trivial algebra,
kdim(H) ≤ n if kdim(Hb) ≤ n− 1 for every dense b ∈ H,
kdim(H) = n if kdim(H) ≤ n and kdim(H) 6≤ n− 1,
kdim(H) =∞ if kdim(H) 6≤ n for any n = −1, 0, 1, 2, . . . .

The next two results concern the internal definition of the Krull dimension.

Lemma 4.8. Let H be a Heyting algebra and let a ∈ H. Then kdim(Ha) ≤ kdim(H).

Proof. If kdim(H) = ∞, then there is nothing to prove. Suppose kdim(H) = n. Let b ∈ Ha

be dense in Ha. By Lemma 4.5, b is dense in H. Since kdim(H) = n, we see that kdim(Hb) ≤
n−1. Because (Ha)b = Hb, we conclude that kdim(Ha) ≤ n. Thus, kdim(Ha) ≤ kdim(H). �

Theorem 4.9.
(1) If A is a closure algebra, then kdim(A) = kdim(H(A)).
(2) If H is a Heyting algebra, then kdim(H) = kdim(A(H)).

Proof. (1) By Theorem 3.12, kdim(A) ≥ n iff there is a sequence e0, . . . , en of nonzero closed
elements of A such that e0 = 1 and ei+1 is nowhere dense in Aei for each i ∈ {0, . . . , n− 1}.
By [2, Thm. 6.9], kdim(H(A)) ≥ n iff there is a sequence 1 > b1 > · · · > bn > 0 in H(A)
such that bi−1 is dense in H(A)bi for each i ∈ {1, . . . , n}. The two conditions are equivalent
by Lemma 4.6. The result follows.

(2) Since H is isomorphic to H(A(H)), we have kdim(H) = kdim(H(A(H)). By (1),
kdim(H(A(H))) = kdim(A(H)). Thus, kdim(H) = kdim(A(H)). �

As a consequence we obtain:

Corollary 4.10. The external and internal definitions of the Krull dimension of a Heyting
algebra coincide, so Definitions 4.1 and 4.7 are equivalent.

Proof. Apply Corollary 3.13, Lemma 4.2, and Theorem 4.9. �

Let Ln be the (n + 1)-element linear Heyting algebra. Then (Ln)∗ is isomorphic to the
n-element chain Fn shown in Figure 1. Let χ(Ln) be the Jankov formula of Ln. Another
immediate consequence of our results is the following:

Corollary 4.11. Let H be a nontrivial Heyting algebra and n ≥ 1. The following are
equivalent:

(1) kdim(H) ≤ n− 1.
(2) There does not exist a sequence 1 > b1 > · · · > bn > 0 in H such that bi−1 is dense in

Hbi for each i ∈ {1, . . . , n}.
(3) H � ibdn.
(4) depth(H∗) ≤ n.
(5) H � ¬χ(Ln+1).
(6) Ln+1 is not isomorphic to a subalgebra of a homomorphic image of H.
(7) Ln+1 is not isomorphic to a subalgebra of H.
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5. Localic Krull dimension of topological spaces

As we pointed out in the introduction, it is inadequate to define the Krull dimension of
a topological space X as the supremum of the lengths of chains in the specialization order
of X. The previous two sections suggest that a more adequate definition would result by
working with the Krull dimension of either AX or HX . Since HX is the Heyting algebra of
opens of AX , by Lemma 4.2 (or Theorem 4.9), kdim(AX) = kdim(HX). Because HX is the
locale of opens of X, we refer to this new concept as the localic Krull dimension of X.

Definition 5.1. Define the localic Krull dimension ldim(X) of a topological space X as
the Krull dimension of HX (equivalently, as the Krull dimension of AX); that is, ldim(X) =
kdim(HX) = kdim(AX).

Remark 5.2. It is immediate from the results of the previous section that the localic Krull
dimension of a topological space X can be defined recursively as follows:

ldim(X) = −1 if X = ∅,
ldim(X) ≤ n if ldim(D) ≤ n− 1 for every nowhere dense subset D of X,
ldim(X) = n if ldim(X) ≤ n and ldim(X) 6≤ n− 1,
ldim(X) =∞ if ldim(X) 6≤ n for any n = −1, 0, 1, 2, . . . .

Lemma 5.3. If Y is a subspace of X, then ldim(Y ) ≤ ldim(X).

Proof. By Lemma 3.10(1), ldim(Y ) = kdim(AY ) ≤ kdim(AX) = ldim(X). �

Lemma 5.4. ldim(X) ≤ n iff for every closed nowhere dense subset D of X we have
ldim(D) ≤ n− 1.

Proof. Apply Lemma 3.10(2). �

To obtain an analogue of Theorem 3.12 for localic Krull dimension, we require an analogue
of the Jankov-Fine theorem for topological spaces. Let F = (W,R) be a finite rooted S4-
frame and choose any enumeration of W = {wi | i < n} in which w0 is a root of F. We recall
[20] that the Jankov-Fine formula χF associated with F is the conjunction of the following
formulas:

(1) p0,
(2) �(p0 ∨ · · · ∨ pn−1),
(3) �(pi → ¬pj) for distinct i, j < n,
(4) �(pi → ♦pj) whenever wiRwj, and
(5) �(pi → ¬♦pj) whenever wiR�wj.

The modal language is interpreted in a topological space X by interpreting it in the
powerset algebra AX . Consequently, a modal formula ϕ is satisfiable (resp. valid, written
X � ϕ) in X exactly when ϕ is satisfiable (resp. valid) in AX . If ϕ is satisfiable at x ∈ X,
then we write x � ϕ. An interior map between topological spaces X, Y is a continuous
open map f : X → Y . We call Y an interior image of X if there is an onto interior map
f : X → Y . The next lemma generalizes [20, Lem. 1] to topological spaces.

Lemma 5.5. Let X be a topological space. Then χF is satisfiable in X iff F is an interior
image of an open subspace of X.

Proof. First suppose that F is an interior image of an open subspace U of X, say via f : U →
F. Let pi be interpreted as Ai := f−1(wi) when i < n and as Ai := ∅ when i ≥ n. Since
A0 = f−1(w0) 6= ∅, there is x ∈ U with x � p0. We show that x � χF. As A0∪· · ·∪An−1 = U
and x ∈ U , we see that x � �(p0 ∨ · · · ∨ pn−1). Suppose i 6= j. Because Ai ∩ Aj = ∅,
we see that x � �(pi → ¬pj). Suppose wiRwj. Then wi ∈ CR{wj}, so since f is interior,



TOPOLOGICAL AND LOGICAL EXPLORATIONS OF KRULL DIMENSION 13

Ai = f−1(wi) ⊆ f−1CR{wj} = CUf
−1(wj) = CAj, where CU denotes closure in the subspace

U . Therefore, x � �(pi → ♦pj). Finally, suppose wiR�wj. Then {wi} ∩ CR{wj} = ∅. As
f is interior, this yields f−1(wi) ∩ CUf

−1(wj) = ∅. Thus, Ai ∩ CUAj = ∅, which gives
x � �(pi → ¬♦pj). Consequently, χF is satisfiable at x in X.

Conversely suppose that χF is satisfied at some x ∈ X by interpreting pi as Ai ⊆ X. Set

U = I

(⋃
i<n

Ai

)
∩

⋂
0≤i 6=j<n

I ((X \ Ai) ∪ (X \ Aj))

∩
⋂

wiRwj

I ((X \ Ai) ∪CAj) ∩
⋂

wiR�wj

I ((X \ Ai) ∪ (X \CAj))

Then U is open and nonempty since x ∈ A0 ∩ U . Define f : U → F by setting f(y) = wi
provided y ∈ Ai (for i < n). To see that f is well defined, let y ∈ Ai ∩ Aj. Then y /∈
X \C(Ai ∩Aj) = I((X \Ai)∪ (X \Aj)). Therefore, it follows from the definition of U that
i = j, and so f is well defined.

To see that f is onto, since w0 is a root of F, we have w0Rwj, and so U ⊆ (X \A0)∪CAj
for all j < n. Recalling that x ∈ A0 ∩ U , we get x ∈ CAj for each j < n. As U is open and
contains x, we have U ∩ Aj 6= ∅ for each j < n. Thus, f is onto.

Finally, to see that f is interior, it is sufficient to show that f−1(CR{wj}) = CUf
−1(wj)

for each j < n. Suppose y ∈ f−1(CR{wj}). Then f(y)Rwj. Assuming f(y) = wi, we
have y ∈ Ai and y ∈ (X \ Ai) ∪ CAj, giving y ∈ CAj. So y ∈ CUAj = CUf

−1(wj).
Conversely, suppose y /∈ f−1(CR{wj}). Then f(y)R�wj. Assuming f(y) = wi, we have
y ∈ Ai and y ∈ (X \ Ai) ∪ (X \ CAj), yielding y ∈ X \ CAj. Thus, y 6∈ CAj, and hence
y /∈ CUAj = CUf

−1(wj). Consequently, f is interior, and hence F is an interior image of an
open subspace of X. �

The next theorem is an analogue of Theorem 3.12 for localic Krull dimension, and is the
main result of this section.

Theorem 5.6. Let X 6= ∅ and n ≥ 1. Let Fn+1 be the (n+ 1)-element chain. The following
are equivalent:

(1) ldim(X) ≤ n− 1.
(2) There does not exist a sequence E0, . . . , En of nonempty closed subsets of X such that

E0 = X and Ei+1 is nowhere dense in Ei for each i ∈ {0, . . . , n− 1}.
(3) X � bdn.
(4) X � ¬χFn+1.
(5) Fn+1 is not an interior image of any open subspace of X.
(6) Fn+1 is not an interior image of X.

Proof. (1)⇔(2)⇔(3): This follows from the equivalence of Items (1), (2), and (3) of Theo-
rem 3.12, Definition 5.1, the correspondence between relativizations and subspaces, and the
fact that X and AX validate exactly the same modal formulas.

(4)⇔(5): We have X � ¬χFn+1 iff χFn+1 is not satisfiable in X. This, by Lemma 5.5, is
equivalent to Fn+1 not being an interior image of any open subspace of X.

(5)⇒(6): This is obvious.
(6)⇒(2): Suppose there is a sequence E0, . . . , En of nonempty closed subsets of X such

that E0 = X and Ei+1 is nowhere dense in Ei for each i ∈ {0, . . . , n−1}. We show that Fn+1

is an interior image of X. Let En+1 = ∅. Define f : X → Wn+1 by f(x) = wi if x ∈ Ei \Ei+1

for i ≤ n. Clearly f is well-defined and onto since {Ei \ Ei−1 | i ≤ n} is a partition of X.
Moreover, C(Ei \ Ei+1) = Ei since Ei is closed in X and Ei+1 is nowhere dense in Ei for



14 GURAM BEZHANISHVILI, NICK BEZHANISHVILI, JOEL LUCERO-BRYAN, JAN VAN MILL

i ≤ n. Thus,

f−1(CR{wi}) = f−1 ({wi, . . . , wn}) =
⋃n

j=i
(Ej \ Ej+1) = Ei = C(Ei \ Ei+1) = Cf−1(wi).

Consequently, f is an onto interior map, and hence Fn+1 is an interior image of X.
(1)⇒(5): Suppose there is an open subspace Y of X and an onto interior map f : Y →

Fn+1. For each i < n+ 1, put Ei = f−1(CR{wi}) 6= ∅. Since f is interior, each Ei is closed
in Y . Therefore, for i < n, we have

IEi
CEi

(Ei+1) = IEi
(Ei+1) = Ei \CEi

(Ei \ Ei+1) = Ei \CY (Ei \ Ei+1)

= Ei \CY f
−1(wi) = Ei \ f−1(CR{wi}) = Ei \ Ei = ∅.

So Ei+1 is nowhere dense in Ei. Moreover, E0 = f−1(CR{w0}) = Y . Thus, there is a sequence
E0, . . . , En of nonempty closed subsets of Y such that E0 = Y and Ei+1 is nowhere dense in
Ei for each i ∈ {0, . . . , n− 1}. Since Items (1) and (2) are equivalent, ldim(Y ) > n− 1. By
Lemma 5.3, ldim(X) ≥ ldim(Y ) > n− 1. �

We next compare localic Krull dimension to other well-known dimension functions. We
recall that if X is a regular space, then the Menger-Urysohn dimension of X is denoted by
ind(X), if X is a Tychonoff space, then the Čech-Lebesgue dimension of X is denoted by
dim(X), and if X is a normal space, then the Brouwer-Čech dimension of X is denoted by
Ind(X) (see, e.g., [15, Ch. 7] for a detailed account of these three dimension functions). Also,
for a spectral space X, let kdim(X) denote the Krull dimension of X, and for a T0-space X,
let gdim(X) denote Isbell’s graduated dimension of X [23].

Lemma 5.7. Let X be a topological space.

(1) If X is a spectral space, then kdim(X) ≤ ldim(X).
(2) If X is a T0-space, then gdim(X) ≤ ldim(X).
(3) If X is a regular space, then ind(X) ≤ ldim(X).
(4) If X is a normal space, then Ind(X) ≤ ldim(X) and dim(X) ≤ ldim(X).

Proof. (1) The Krull dimension of a spectral space X can be defined as the supremum of the
lengths of chains in the specialization order R of X. Since ε : X → (AX)∗ is an R-embedding,
the supremum of the lengths of chains in the specialization order of X can be no larger than
the supremum of the lengths of chains in (AX)∗. The result follows.

(2) Recall that Isbell’s graduated dimension of a T0-space X is the least n such that some
lattice basis of HX is a directed union of finite topologies of Krull dimension n. Suppose the
Isbell dimension of X is n. The lattice of all opens HX is a directed union of finite topologies
τi since the variety of distributive lattices is locally finite. Because the Krull dimension of
each τi is ≥ n, we see that ldim(X) ≥ n, as desired.

(3) Induction on n ≥ −1. The base case is clear since ind(X) = −1 iff X = ∅, which
happens iff ldim(X) = −1. For the inductive step, suppose ldim(X) = n. If Y is closed and
nowhere dense in X, then ldim(Y ) ≤ n − 1. By the inductive hypothesis, ind(Y ) ≤ n − 1.
Because the boundary of an open set is (closed and) nowhere dense in X, it follows that the
boundary B of any open subset of X has ind(B) ≤ n− 1. Thus, ind(X) ≤ n.

(4) Let X be normal. Replacing each occurrence of ind in the proof of (3) by Ind yields
Ind(X) ≤ ldim(X). By [15, Thm. 7.2.8], dim(X) ≤ Ind(X) ≤ ldim(X). �

Remark 5.8. It remains open whether dim(X) ≤ ldim(X) for any Tychonoff space X.

We next calculate the localic Krull dimension of some well-known spaces.

Example 5.9.
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(1) It follows from the celebrated McKinsey-Tarski theorem [30] that every finite rooted
S4-frame is an interior image of any separable crowded metrizable space. Let R,
C, and Q denote the real line, the Cantor discontinuum, and the rational line, re-
spectively. It follows from Theorem 5.6 that each of R, C,Q has infinite localic Krull
dimension.

(2) Let n ≥ 1. It is well known that the n-element chain is an interior image of the
ordinal ωn, and that the (n + 1)-element chain is not an interior image of ωn. By
Theorem 5.6, ldim(ωn) = n− 1.

(3) A reasoning similar to (2) yields that ldim(ωn + 1) = n and ldim(ωω + 1) =∞. Since
these ordinals are compact, and hence Stone spaces, we obtain the examples alluded
to in the introduction.

For T1-spaces there is an alternate description of localic Krull dimension, which is based
on an appropriate generalization of the concept of a nodec space. In the next section we
first generalize the concept of a discrete closure algebra to that of an n-discrete closure
algebra, and show that n-discrete closure algebras can be characterized by an appropriate
generalization of the well-known Zeman formula in modal logic. We then use these results
in Section 7 to give an alternate description of localic Krull dimension for T1-spaces.

6. n-discrete algebras and n-Zeman formulas

Definition 6.1. Let A be a closure algebra.

(1) Call A 0-discrete if A is discrete.
(2) For n ≥ 1, call A n-discrete if Aa is (n− 1)-discrete for each nowhere dense a ∈ A.

Let F = (W,R) be an Esakia space. Set

M1 = maxR(W ) and Mn+1 = maxR

(
W \

n⋃
i=1

Mi

)
for n ≥ 1.

Note that M1 is always closed, and if n > 1, then Mn could be empty.
We will freely use the well-known fact that if U, V are disjoint closed subsets of W such

that U is an R-upset and V is an R-downset, then there is a clopen R-upset containing U
and disjoint from V .

Definition 6.2. Let F = (W,R) be an Esakia space and let U ⊆ W .

(1) We call w ∈ U an R-minimal point of U if u ∈ U and uRw imply wRu.
(2) We call w a strictly minimal point of U if u ∈ U and uRw imply u = w.

Clearly every strictly minimal point is R-minimal, but the converse is not true in general.
We let minR(F) denote the set of R-minimal points and min(F) the set of strictly minimal
points of F.

Theorem 6.3. A closure algebra A is n-discrete iff depth(A∗) ≤ n+1 and Mn+1 ⊆ min(A∗).

Proof. Suppose that A is n-discrete. Let A∗ = (W,R). First we show that depth(A∗) ≤ n+1.

If not, then there exist w0, . . . , wn+1 ∈ W such that wi+1
~Rwi for i ≤ n. We build inductively

a decreasing sequence of clopen R-downsets A0, . . . , An+1 of A∗ such that wi /∈ Ai+1, wi+1 ∈
Ai+1, and Ai+1 ∩ maxR(Ai) = ∅. Let A0 = W . Suppose Ai is already constructed. Since

wi+1
~Rwi, we have wi+1 /∈ R[maxR(Ai) ∪ {wi}]. Therefore, there is a clopen R-downset Ai+1

such that Ai+1 ⊆ Ai, wi+1 ∈ Ai+1, and Ai+1∩R[maxR(Ai)∪{wi}] = ∅. Let a0, . . . , an+1 ∈ A
be such that β(ai) = Ai for i ≤ n + 1. Since Ai+1 ∩maxR(Ai) = ∅, Lemma 2.4 yields that
ai+1 is nowhere dense in Aai . Because A is n-discrete, Aai is (n− i)-discrete for each i ≤ n.
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So Aan is 0-discrete, and hence discrete. As an+1 is nowhere dense in Aan , we must have
an+1 = 0. But this is a contradiction since wn+1 ∈ An+1 = β(an+1). Thus, depth(A∗) ≤ n+1.

Next we show that Mn+1 ⊆ min(A∗). If not, then there are distinct w, v ∈Mn+1 such that

wRv and vRw. Let w0, . . . , wn−1 ∈ W be such that wi ∈ Mi+1 for i ≤ n − 1 and wi+1
~Rwi

for i < n − 1. Set wn := w and wn+1 := v. Then wn ~Rwn−1. Let A0, . . . , An be the clopen
R-downsets of A∗ constructed above for the sequence w0, . . . , wn. Since wn 6= wn+1 there
is clopen An+1 of A∗ such that wn /∈ An+1, wn+1 ∈ An+1, and An+1 can be chosen so that
An+1 ∩maxR(An) = ∅. Let a0, . . . , an+1 ∈ A be such that β(ai) = Ai. The same argument
as above yields that ai+1 is nowhere dense in Aai for i ≤ n. Since A is n-discrete, Aan is
discrete, so an+1 = 0, contradicting to wn+1 ∈ An+1 = β(an+1). Thus, Mn+1 ⊆ min(A∗), as
desired.

Conversely, suppose that A is not n-discrete and depth(A∗) ≤ n+1. We show that Mn+1 6⊆
min(A∗). Since A is not n-discrete, there is a sequence of closed elements a0, . . . , an ∈ A such
that a0 = 1, ai+1 is nowhere dense in Aai for i < n, and Aan is not discrete. Let Ai := β(ai)
for i ≤ n. Then each Ai is a clopen R-downset and Lemma 2.4 gives Ai+1 ∩maxR(Ai) = ∅
for i < n. As Aan is not discrete, there is a ∈ Aan such that a 6= Ca. Therefore, there
is w ∈ CRβ(a) \ β(a). Thus, there is v ∈ β(a) such that wRv. Clearly w, v are distinct.
We build w0, . . . , wn+1 as follows. Set wn+1 := w and wn := v. As a ≤ an, we see that
wn ∈ An. Suppose wi has already been chosen in Ai for 1 ≤ i ≤ n. Since Ai ⊆ Ai−1,
there is wi−1 ∈ maxR(Ai−1) such that wiRwi−1. As ai is nowhere dense in Aai−1

, we have

wi /∈ maxR(Ai−1), so wi ~Rwi−1. Therefore,

wn+1Rwn ~Rwn−1 ~R · · · ~Rw1
~Rw0.

Since depth(A∗) ≤ n + 1, we must have wnRwn+1. Thus, wn, wn+1 ∈ Mn+1, and hence
Mn+1 6⊆ min(A∗). �

In order to axiomatize n-discrete closure algebras, we generalize the Zeman formula

zem = �♦�p→ (p→ �p)

as follows.

Definition 6.4. For n ≥ 1, let

zemn = �(� (�pn+1 → bdn)→ pn+1)→ (pn+1 → �pn+1).

We call zemn the n-Zeman formula.

As we saw in Section 3, if we interpret pi as ai ∈ A, then ¬bdn is interpreted as dn.
Therefore, � (�pn+1 → bdn) is interpreted as −C(Ian+1 ∩ dn) = −en.

Lemma 6.5. Suppose {bn | n ∈ ω} is a family of closed elements of A such that b0 = 1 and
bn+1 is nowhere dense in Abn. For n ≥ 1, set an = −bn. Then en = dn = bn, where en and
dn are defined as in Definition 3.8.

Proof. We show by induction on n ≥ 1 that dn = bn. If n = 1, then as b1 is closed and
nowhere dense in A, we see that a1 is open and dense in A. So

d1 = CIa1 − a1 = Ca1 − a1 = 1− a1 = b1.

For the inductive step, notice that bn − bn+1 is dense in Abn because bn+1 is nowhere dense
in Abn . Therefore, C(bn − bn+1) = bn. Since an+1 is open in A, we have

dn+1 = C(Ian+1 ∧ dn)− an+1 = C(an+1 ∧ bn)− an+1

= C(bn − bn+1)− an+1 = bn − an+1 = bn ∧ bn+1 = bn+1.
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Finally,
en = C(Ian+1 ∧ dn) = C(an+1 ∧ bn) = C(bn − bn+1) = bn.

�

Suppose that A is a closure algebra and A∗ = (W,R) is its Esakia space. For a1, . . . , an+1 ∈
A, let dn and en be defined as in Definition 3.8. Set Dn = β(dn) and En = β(en). If we
interpret pi as β(ai), then Dn is the interpretation of ¬bdn and W \En is the interpretation
of � (�pn+1 → bdn).

Lemma 6.6. Suppose A is a closure algebra and A∗ = (W,R) is the Esakia space of A. Let
n ≥ 1, a1, . . . , an ∈ A, dn is as in Definition 3.8, and Dn = β(dn). Then (

⋃n
i=1Mi)∩Dn = ∅.

Proof. Set Ai = β(ai). First suppose that n = 1 and w ∈ M1 ∩ D1. Then w ∈ M1 and
w ∈ D1 = CRIR(A1) \ A1. Therefore, there is v ∈ IR(A1) with wRv. Since w ∈ M1 and
wRv, we see that vRw. Thus, as v ∈ IR(A1), we have w ∈ A1. The obtained contradiction
proves that M1 ∩D1 = ∅.

Next suppose that (
⋃n
i=1Mi) ∩Dn = ∅ and w ∈

(⋃n+1
i=1 Mi

)
∩Dn+1. Then w ∈

⋃n+1
i=1 Mi

and w ∈ CR(IRAn+1 ∩ Dn) \ An+1. Therefore, there is v ∈ IRAn+1 ∩ Dn with wRv. From
v ∈ Dn it follows that v /∈

⋃n
i=1Mi, so v ∈Mn+1. But then w ∈Mn+1, so vRw. This together

with v ∈ IR(An+1) yields w ∈ An+1, a contradiction. Thus,
(⋃n+1

i=1 Mi

)
∩Dn+1 = ∅. �

Therefore, Lemma 6.6 yields that
⋃n
i=1Mi is always contained in the interpretation of bdn.

Theorem 6.7. Let A be a nondiscrete closure algebra, A∗ = (W,R) be its Esakia space, and
n ≥ 1. Then A is n-discrete iff A � zemn.

Proof. By Theorem 6.3, A is n-discrete iff depth(A∗) ≤ n + 1 and Mn+1 ⊆ min(A∗). Thus,
it is sufficient to prove that A � zemn iff depth(A∗) ≤ n+ 1 and Mn+1 ⊆ min(A∗).

Suppose that A � zemn. First we show that depth(A∗) ≤ n+1. If depth(A∗) > n+1, then

there are w0, . . . , wn+1 ∈ X such that wi+1
~Rwi for each i ≤ n. We build B0, . . . , Bn+1 ⊆ X

as follows. Set B0 = X. Suppose Bi is already built. Since wi+1
~Rwi, we have wi+1 /∈

R[maxR(Bi) ∪ {wi}]. Therefore, as A∗ is an Esakia space, there is an R-downset Bi+1 ⊆ W
such that Bi+1 ⊆ Bi, wi+1 ∈ Bi+1, and Bi+1 ∩ R[maxR(Bi) ∪ {wi}] = ∅. For i = 1, . . . , n,
let Ai = X \ Bi and let An+1 = X \ (Bn \ Bn+1). Let bi be such that β(bi) = Bi, and set
Ai = β(ai), Di = β(di), and Ei = β(ei).

We claim that if we interpret pi as Ai, then A∗ 6� zemn. For this it is sufficient to show
that IR(En ∪ An+1) ∩ An+1 6⊆ IR(An+1). Clearly wn+1 ∈ An+1. By Lemma 6.5, en = bn, and
hence En = Bn. Since

wn+1 ∈ X = IR(X) = IR(An+1 ∪ (X \ An+1)) = IR(An+1 ∪ (Bn \Bn+1))

⊆ IR(An+1 ∪CR(Bn \Bn+1)) = IR(An+1 ∪Bn) = IR(An+1 ∪ En),

we have that wn+1 ∈ IR(En ∪ An+1) ∩ An+1. On the other hand, since wn+1Rwn and wn /∈
An+1, we see that wn+1 /∈ IR(An+1). Thus, IR(En ∪ An+1) ∩ An+1 6⊆ IR(An+1), and hence
A∗ 6� zemn. The obtained contradiction proves that depth(A∗) ≤ n+ 1.

Next we show that Mn+1 ⊆ min(A∗). If not, then there are distinct w, v ∈ Mn+1 such
that wRv and vRw. Since w ∈ Mn+1, there are w0, . . . , wn−1 ∈ X such that wi ∈ Mi+1,
wi+1Rwi, and wRwn−1. Let wn := w and wn+1 := v. Build B0, . . . , Bn ⊆ W as above. Since
wn 6= wn+1, there is Bn+1 ⊆ W such that wn /∈ Bn+1 and wn+1 ∈ Bn+1, and Bn+1 can be
selected so that maxR(Bn) ∩ Bn+1 = ∅. For i = 1, . . . , n, let Ai = W \ Bi and let An+1 =
W \ (Bn \Bn+1). The same argument as above yields that IR(En∪An+1)∩An+1 6⊆ IR(An+1).
Therefore, A∗ 6� zemn, a contradiction. This proves that if A � zemn, then depth(A∗) ≤ n+1
and Mn+1 ⊆ min(A∗).
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Conversely, suppose that depth(A∗) ≤ n + 1 and Mn+1 ⊆ min(A∗). Let p1, . . . , pn+1 be
interpreted as a1, . . . , an+1 ∈ A. Let Ai = β(ai), Di = β(di), and Ei = β(ei). Then in A∗ the
formula bdn is interpreted asW\Dn and �(�pn+1 → bdn) is interpreted asW\En. Therefore,
to see that A satisfies zemn, it is sufficient to show that IR(En ∪ An+1) ∩ An+1 ⊆ IR(An+1).
Suppose w ∈ IR(En∪An+1)∩An+1 and wRv. Then w ∈ An+1 and v ∈ En∪An+1. If v ∈ En,
then v ∈ CR(IRAn+1 ∩ Dn). So there is u ∈ IRAn+1 ∩ Dn such that vRu. By Lemma 6.6,
u /∈

⋃n
i=1Mi. Thus, u ∈Mn+1 ⊆ min(A∗), yielding w = v = u. Consequently, v ∈ An+1, and

hence w ∈ IR(An+1), as desired. �

Let S4n := S4 + bdn and S4.Zn := S4 + zemn. It is well known (see, e.g., [6, Thm. 8.85])
that every normal extension of S4n has the finite model property.

Theorem 6.8.
(1) S4n+1 ( S4.Zn.
(2) S4.Zn has the finite model property.

Proof. (1) Suppose A � S4.Zn. By Theorem 6.7, depth(A∗) ≤ n + 1. Therefore, by Theo-
rem 3.12, A � S4n+1. Thus, S4n+1 ⊆ S4.Zn. To see that the inclusion is proper, consider
the finite S4-frame F depicted in Figure 2. Since depth(F) = n + 1, we see that F satisfies
S4n+1. On the other hand, as Mn+1 = {r1, r2} 6⊆ ∅ = min(F), the frame F does not satisfy
S4.Zn.

•
•

�
 �	
•
• •

...

w1

w2

wn

r1 r2

Figure 2. An S4n+1-frame F that is not an S4.Zn-frame.

(2) Follows from (1) since every normal extension of S4n has the finite model property. �

7. n-discrete spaces and topological completeness of S4.Zn

In this section we use the results of the previous section to generalize the concept of a
discrete space to that of an n-discrete space. We show that a T1-space X is 1-discrete iff
X is nodec, and more generally, X is n-discrete iff ldim(X) ≤ n. This yields a number of
topological incompleteness results in modal logic. The main result of the section is the con-
struction of a countable crowded ω-resolvable Tychonoff space Zn of localic Krull dimension
n such that S4.Zn is the logic of Zn.

Definition 7.1. A nonempty topological space X is called n-discrete provided AX is n-
discrete.

Remark 7.2. It follows that X is 0-discrete iff X is discrete, and for n ≥ 1, X is n-discrete
iff every nowhere dense subset of X is (n− 1)-discrete.

Remark 7.3. Let X be a nonempty nondiscrete space. By Theorem 6.7, X is n-discrete iff
X � zemn.
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Remark 7.4. Let X be a nonempty Alexandroff space and let R be the specialization order
of X. Then F := (X,R) is an S4-frame. Since X and F satisfy the same modal formulas,
by Remark 7.3, X is n-discrete iff F � zemn. Moreover, a slightly simplified version of the
proof of Theorem 6.7 yields that F � zemn iff depth(F) ≤ n + 1 and Mn+1 ⊆ min(F). This,
in particular, implies that each S4.Zn is a canonical logic. In fact, since by Theorem 6.8(2),
S4.Zn has the finite model property, S4.Zn is the logic of finite n-discrete Alexandroff spaces.

Recall that a space is nodec if every nowhere dense set is closed. It is well known (see,
e.g., [10]) that a space is nodec iff every nowhere dense set is closed and discrete. As follows
from [1], the Zeman formula zem defines the class of nodec spaces, and S4.Z = S4 + zem is
the logic of the class of nodec spaces.

Lemma 7.5. Let X be a T1-space.

(1) ldim(X) ≤ 0 iff X is discrete.
(2) ldim(X) ≤ 1 iff X is nodec.

Proof. (1) If X is discrete, then the only nowhere dense subset of X is ∅. Therefore,
ldim(X) ≤ 0. Conversely, if X is not discrete, then there is x ∈ X such that {x} is not
open, so I{x} = ∅. Since X is T1, we see that IC{x} = I{x} = ∅, so {x} is nowhere dense.
Thus, ldim(X) > 0.

(2) Suppose X is nodec. Let D be an arbitrary nowhere dense subspace of X. Then
D is closed and discrete. Since X is T1, so is D. Therefore, by (1), ldim(D) ≤ 0. Thus,
ldim(X) ≤ 1. Conversely, if X is not nodec, then there is a nowhere dense subspace D of X
which is not closed. Therefore, CD is a nowhere dense subspace of X which is not discrete.
By (1), ldim(CD) > 0. Thus, ldim(X) > 1. �

Lemma 7.6. S4.Z = S4.Z1.

Proof. By Remark 7.4 and Lemma 7.5, S4.Z1 is the logic nodec spaces. By [1, Thm. 4.6],
the same is true of S4.Z. Thus, S4.Z = S4.Z1. �

Theorem 7.7. Let X be a T1-space and n ∈ ω. Then ldim(X) ≤ n iff X is n-discrete.

Proof. By induction on n. The case n = 0 is Lemma 7.5(1). Suppose for every T1-space Y , we
have Y is n-discrete iff ldim(Y ) ≤ n. We show that X is (n+1)-discrete iff ldim(X) ≤ n+1.
We have ldim(X) ≤ n + 1 iff ldim(Y ) ≤ n for every nowhere dense subspace Y of X.
Since a subspace of a T1-space is a T1-space, by inductive hypothesis, this is equivalent to
every nowhere dense subspace Y of X being n-discrete. But this is equivalent to X being
(n+ 1)-discrete. �

Corollary 7.8. For n ≥ 1, no logic in the interval [S4n+1,S4.Zn) is the logic of any class
of T1-spaces.

Proof. Suppose L ∈ [S4n+1,S4.Zn) and K is a class of T1-spaces. If L is the logic of K, then
for each X ∈ K, we have X � L. Therefore, since S4n+1 ⊆ L, we have X � bdn+1. By
Theorem 5.6, ldim(X) ≤ n. As X is T1, by Theorem 7.7, X is n-discrete. By Remark 7.3,
X � zemn. Thus, S4.Zn ⊆ L, a contradiction. Consequently, L is not the logic of any class
of T1-spaces. �

On the other hand, for each n ≥ 1 we construct a countable crowded ω-resolvable Ty-
chonoff space Zn of localic Krull dimension n such that S4.Zn is the logic of Zn. The basic
building block for the construction is a countable crowded ω-resolvable Tychonoff nodec
space Y such that the remainder Y ∗ = βY \ Y contains a subspace homeomorphic to βω
which consists entirely of remote points of Y . In Section 7.1 we explain why such a building
block Y exists, in Section 7.2 we build the spaces Zn from Y , and in Section 7.3 we prove
that S4.Zn is the logic of Zn.
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7.1. The basic building block. Let X be a topological space. We recall (see Juhász [26,
27]) that a π-base of X is a collection B of nonempty open subsets of X such that every
nonempty open subset of X contains a member of B. The π-weight π(X) of X is the smallest
cardinality of such a family. We will be interested in Tychonoff spaces of countable π-weight.

For a compact Hausdorff space X, let EX be the Gleason cover of X [21, 34]. It is well
known that EX is constructed as the Stone space of the Boolean algebra of regular open
subsets of X, and hence EX is an extremally disconnected compact Hausdorff space, where
we recall that a space is extremally disconnected if the closure of each open set is open.

If ∇ ∈ EX, then
⋂
{CX(U) | U ∈ ∇} is a singleton of X, which we denote by pX(∇).

This defines a map pX : EX → X. It is well known that pX is an irreducible map; that is,
pX is an onto continuous map such that for every proper closed subset F of EX, the image
pX(F ) is a proper closed subset of X. Since pX is evidently closed, this yields that F ⊆ EX
is nowhere dense iff pX(F ) ⊆ X is nowhere dense, and that π(X) = π(EX).

Let Z be a subspace of X. A point x ∈ X \ Z is remote from Z provided x 6∈ CX(D) for
every nowhere dense subset D of Z. Observe that if x is remote from Z, then x is remote
from every subspace of Z. The following simple lemma was used in [32, 12] for constructing
various examples.

Lemma 7.9. For a T1-space X, if every x ∈ X is remote from X \ {x}, then X is nodec.

Proof. Let D be a nowhere dense subset of X and x /∈ D. Since X is a T1-space, D is
a nowhere dense subset of X \ {x}. Therefore, as x is remote from X \ {x}, we see that
x 6∈ C(D). Thus, X is nodec. �

Suppose X is a Tychonoff space. A remote point of X is a point p ∈ βX \ X that is
remote from X. In the context of Čech-Stone compactifications, remote points are very well
studied in the literature. In particular, we have:

Theorem 7.10. [5, 9] If X is a nonpseudocompact Tychonoff space with countable π-weight,
then the remainder X∗ := βX \X contains a point that is remote from X.

Here we recall that a Tychonoff space X is pseudocompact if every continuous real-valued
function on X is bounded. This result was generalized to products of such spaces in [11].

Let I be the closed unit interval and let EI be the Gleason cover of I. For t ∈ I, let
X = EI \ p−1I ({t}). Since X is a dense subspace of EI, it is C∗-embedded in EI (see,
e.g., [37, Prop. 10.47]), meaning that every bounded continuous real-valued function on X
extends to EI. Therefore, by [37, Thm. 1.46], βX = EI. It is also clear that X is a
nonpseudocompact Tychonoff space with countable π-weight. Thus, by Theorem 7.10, there
is a point xt ∈ p−1I ({t}) that is remote from X.

Let D be any countable dense subset of I (e.g., D = I ∩Q). We set

Y := {xt | t ∈ D}.

Lemma 7.11. [32, 12] Y is a countable crowded extremally disconnected ω-resolvable nodec
space that is of countable π-weight.

Here we recall (see, e.g., [13]) that a partition P of a space X is dense if each D ∈ P is
dense in X, and that X is κ-resolvable if it has a dense partition of size κ. We now isolate
the crucial property of Y that makes our construction in Section 7.2 work.

Proposition 7.12. Y has a compact set of remote points that is homeomorphic to βω.

Proof. Since Y is countable, we can pick a nonempty closed Gδ-subset S of βY such that
Y ∩S = ∅. Put T = βY \S. By [37, Thm. 1.49], βT = βY and T ∗ = S. By [9, Thm. 11.1],
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we can choose a countably infinite discrete set D consisting entirely of remote points of
T every limit point of which is also a remote point of T . Observe that every point from
D is remote from Y since Y is a subspace of T . We show that D is C∗-embedded in βY
by utilizing a technique of [33]. Since D ⊆ T ∗ = S and S is closed, CD ⊆ S. Because
Y ⊆ βY \S, we see that C(D)∩ Y ⊆ C(D) \S = ∅. Therefore, D is closed in the subspace
D∪Y , which is normal since it is countable. By the Tietze Extension Theorem (see, e.g.,[15,
Thm. 2.1.8]), D is C∗-embedded in D ∪ Y , and so D is C∗-embedded in βY . This, by [37,
Thm. 1.46], yields that C(D) = βD, and hence Y has a compact set of remote points that
is homeomorphic to βω. �

7.2. The spaces Zn. Let F = (W,R) be a rooted S4-frame. We call F a tree if R is a partial
order and (∀w, u, v ∈ W )(u, v ∈ CR{w} ⇒ uRv or vRu). We will always denote the root of

a tree F by r, the R-maximal points of F by max(F), and call v a child of w provided w~Rv
and from wRuRv it follows that w = u or u = v. For n ≥ 1, let Tn denote the tree of depth
n in which all non-R-maximal points have ω children.

We call a cluster in F trivial if it is a singleton, and proper otherwise. The skeleton of F
is the partially ordered S4-frame obtained by modding out the clusters of F. We call F a
quasi-tree if the skeleton of F is a tree. A cluster of a quasi-tree F is maximal if all its points
are R-maximal, and it is the root cluster if it contains a root of F.

Let P be a partition of a space X. We call P clopen provided each A ∈ P is clopen in X.
For a cardinal κ, we consider the κ-fork depicted in Figure 3.

κ-fork

•
w0
•
w1
· · · •

wλ, λ < κ

· · ·

• rS
S
S
S

C
C
C
C

�
�
�
�

Figure 3. The κ-fork.

Lemma 7.13. The κ-fork is an interior image of a space X iff there are a closed nowhere
dense subset N of X and a clopen partition P = {Aλ | λ < κ} of the subspace X \ N such
that CA = A ∪N for each A ∈ P.

Proof. Let F = (W,R) be the κ-fork. First suppose that f : X → W is an onto interior map.
Let N = f−1(r) and Aλ = f−1(wλ). Then

CN = Cf−1(r) = f−1CR{r} = f−1(r) = N

and

ICN = IN = If−1(r) = f−1IR{r} = f−1(∅) = ∅.
Therefore, N is closed and nowhere dense in X. Clearly P = {Aλ | λ < κ} is a partition of
X \ N . Moreover, since each {wλ} is simultaneously an R-upset and an R-downset in the
subframe W \ {r}, each Aλ is clopen in X \N . Finally,

CAλ = Cf−1(wλ) = f−1(CR{wλ}) = f−1({wλ, r}) = Aλ ∪N.

Next suppose that there are a closed nowhere dense subset N of X and a clopen partition
P = {Aλ | λ < κ} of the subspace X \ N such that CA = A ∪ N for each A ∈ P . Define
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f : X → W by setting

f(x) =

{
r if x ∈ N
wλ if x ∈ Aλ

It is clear that f is a well-defined onto map. Moreover,

f−1(CR{r}) = f−1(r) = N = CN = Cf−1(r)

and
f−1(CR{wλ}) = f−1({wλ, r}) = Aλ ∪N = CAλ = Cf−1(wλ).

Thus, f is interior. �

We assume the reader is familiar with the construction of attaching spaces or adjunction
space (see, e.g., [22, pp. 12–14] or [38, pp. 65–66]). Given an indexed family of spaces Xi and
subspaces Yi ⊆ Xi, along with continuous maps fi : Yi → Z, one can form an adjunction space
which is a quotient of the topological sum

⊕
i∈I Xi in which the only nontrivial equivalence

classes are
{(yi, yj) | i, j ∈ I, yi ∈ Yi, yj ∈ Yj, fi(yi) = fj(yj)}.

When Z is a singleton, the adjunction space is often referred to as the wedge sum.
Given an equivalence relation ≡ on a set X, let [x] be the equivalence class of x ∈ X. we

call U ⊆ X saturated provided that x ∈ U implies [x] ⊆ U . Recall that open (resp. closed)
sets in a quotient space X/≡ correspond to saturated open (resp. closed) sets in X.

Using Y we recursively build the family of spaces {Zn | n ≥ 1} such that each Zn is a
subspace of Zn+1 and there is an onto interior mapping αn : Zn → Tn+1.

Base case (n = 1): Let {Yn | n ∈ ω} be a pairwise disjoint family of spaces such that
there is a homeomorphism hn : Y → Yn for each n ∈ ω. Fix y ∈ Y and set yn = hn(y). Let
Z1 be the wedge sum of {(Yn, yn) | n ∈ ω}. We identify each Yn \ {yn} with its image in Z1

and refer to the point {yn | n ∈ ω} in Z1 using the symbol y; see Figure 4. Since T2 is the
ω-fork and {y} is a closed nowhere dense subset of Z1 such that {Yn \ {yn} | n ∈ ω} is a
clopen partition of Z1 \ {y} satisfying y ∈ CZ1(Yn \ {yn}), it follows from Lemma 7.13 that
there is an onto interior mapping α1 : Z1 → T2 such that α−11 (r) = {y}.
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B
B
B
B
B
B
B
BB

�
�
�
�
�
�
�
��

•
y

Z1

• • •
y0 y1 y2

Y0 Y1 Y2

. . . -

Figure 4. Realizing Z1 as a wedge sum of the Yi.

Recursive step (n ≥ 1): Suppose Zn with the above properties is already built. Identify
Tn+1 with the subframe Tn+2 \ max(Tn+2). Enumerate max(Tn+1) as {wi | i ∈ ω}. Label
points in max(Tn+2) as wi,j where wi,j is the jth child of wi. Let αn : Zn → Tn+1 be an onto
interior map such that (αn)−1(r) = {y} where y is the point in the base case defining Z1.
Set Xi = (αn)−1(CR{wi}); see Figure 5.

Since Xi is countable, there is a continuous bijection f : ω → Xi which extends to a
continuous onto map g : βω → βXi. Up to homeomorphism, βω is a subspace of βY
such that each point in βω is a remote point of Y . Consider the quotient space Qi of βY
obtained by the equivalence relation whose only nontrivial equivalence classes are the fibers
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Figure 5. Mapping Zn onto Tn+1 viewed as a subframe of Tn+2.

of g, namely g−1(x) for each x ∈ βXi. By [15, Thm. 2.4.13] the quotient mapping of βY
onto Qi is closed. Intuitively, Qi is obtained from βY by replacing the copy of βω that ‘is
remote from Y ’ by βXi. We identify Y , βXi, and Xi with their respective images in Qi, see
Figure 6. For a nowhere dense subset N of Y , we have CβY (N) ∩ βω = ∅, so CβY (N) is
saturated, and hence CQi

(N) ∩ βXi = ∅.

••••

-
g

-
f

ω Xi
ω∗

Y Y

Y ∗

βω βXi

βY Qi

Figure 6. Identifying Y , βXi, and Xi in the quotient Qi of βY .

Viewing Y ∪Xi as a subspace of Qi, the subsets Y and Xi are complements of each other,
Y is dense, and Xi is closed and nowhere dense. Let Ai be the adjunction space of ω copies of
Y ∪Xi glued through the identity map on the copies of Xi. That is, up to homeomorphism,
Ai is the quotient of the topological sum

⋃
m∈ω(Y ∪Xi)×{m} under the equivalence relation

whose nontrivial equivalence classes are {(x,m) | m ∈ ω} for each x ∈ Xi; see Figure 7.
To facilitate defining αn+1 : Zn+1 → Tn+2 we denote the ω copies of Y in Ai by Yi,j where

j ∈ ω. We also identify Xi with its homeomorphic copy in Ai. The quotient mapping from⊕
j∈ω Yi,j ∪Xi onto Ai is closed. Thus, in Ai we have that

⋃
j∈ω Yi,j and Xi are complements

of each other,
⋃
j∈ω Yi,j is dense, and Xi is closed and nowhere dense.

We define Zn+1 as the adjunction space of the Ai for i ∈ ω through the following gluing. For
each Ai consider the inclusion mapping Ii : Xi → Zn. Glue through the equivalence relation
whose nontrivial equivalence classes are {(xi, xj) | xi ∈ Xi, xj ∈ Xj, Ii(xi) = Ij(xj)}.
Intuitively the gluing is through identifying points in Xi and Xj that are equal in Zn; see
Figure 8. Identify the Yi,j, Xi, and Zn with their images in Zn+1. Observe that Yi,j is open
in Yi,j ∪Xi and saturated in

⊕
j∈ω(Yi,j ∪Xi), hence open in Ai. Similarly, Yi,j is saturated in
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Figure 7. The adjunction space Ai obtained by gluing ω copies of Y ∪ Xi

through Xi.⊕
i∈ω Ai, and so open in Zn+1. Thus, in Zn+1 we have that

⋃
i,j∈ω Yi,j and Zn are complements

of each other,
⋃
i,j∈ω Yi,j is dense and open, and Zn is closed and nowhere dense.
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Figure 8. Attaching the Ai to obtain Zn+1.

We now extend αn : Zn → Tn+1 to αn+1 : Zn+1 → Tn+2 by setting αn+1(z) = wi,j for each
z ∈ Yi,j. Let w ∈ Tn+2. If w = wi,j ∈ max(Tn+2), then

α−1n+1(CR{wi,j}) = α−1n+1 ({wi,j} ∪CR{wi}) = α−1n+1(wi,j) ∪ α−1n (CR{wi})
= Yi,j ∪Xi = CZn+1(Yi,j) = CZn+1α

−1
n+1(wi,j).

Otherwise w ∈ Tn+1, so since αn is interior and Zn is closed in Zn+1, we have

α−1n+1(CR{w}) = α−1n (CR{w}) = CZnα
−1
n (w) = CZn+1α

−1
n+1(w).

Thus, αn+1 is interior and α−1n+1(r) = {y}.
Lemma 7.14. Let X =

⊕
i∈ω Yi. For n ∈ ω, if 0 ≤ ldim(Yi) ≤ n for each i, then ldim(X) ≤

n.

Proof. Induction on n. Base case (n = 0): ldim(Yi) = 0. Let N be nowhere dense in X.
Then Ni = N ∩ Yi is nowhere dense in Yi. Therefore, ldim(Ni) = −1, and so Ni = ∅. Thus,
N = ∅. From this it follows that ldim(N) = −1, and hence ldim(X) = 0.

Inductive step (n ≥ 0): Suppose for any family of spaces {Y ′i | i ∈ ω}, if 0 ≤ ldim(Y ′i ) ≤
n for each i, then ldim(

⊕
i∈ω Y

′
i ) ≤ n. Assume 0 ≤ ldim(Yi) ≤ n + 1 for each i ∈ ω. Let N

be nowhere dense in X. Then Y ′i = N ∩ Yi is nowhere dense in Yi. Therefore, ldim(Y ′i ) ≤ n.
By the inductive hypothesis, ldim(N) ≤ n. Thus, ldim(X) ≤ n+ 1. �
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Lemma 7.15. For n ≥ 1, ldim(Zn) = n.

Proof. Since Tn+1 is an interior image of Zn, the (n + 1)-element chain is an interior image
of Zn. By Theorem 5.6, ldim(Zn) ≥ n. We show that ldim(Zn) ≤ n by induction on n ≥ 1.

Base case (n = 1): Let N be nowhere dense in Z1. Set Ni = N ∩Yi for each i ∈ ω. Then
Ni is nowhere dense in Z1. Noting Yi is a closed subspace of Z1 homeomorphic to Y (which
is a crowded T1-space), it follows that Ni is nowhere dense in Yi. Because Y is nodec, Yi is
nodec, and so Ni is closed in Yi. Let N ′ be the union of the Ni in the topological sum of the
Yi which is the preimage of the adjunction space Z1. Then N ′ is closed in the sum. Since
N ′ is the preimage of N , we see that N is closed in Z1. Therefore, Z1 is nodec. Because Z1

is a T1-space, it follows from Lemma 7.5(2) that ldim(Z1) ≤ 1.
Inductive step (n ≥ 1): Assume ldim(Zn) = n. Since Zn+1 was constructed in three

stages, our proof is also in three stages. First we show that ldim(Y ∪Xi) ≤ n+ 1, next that
ldim(Ai) ≤ n+ 1, and finally that ldim(Zn+1) ≤ n+ 1.

Stage 1: Since ldim(Zn) = n and each Xi ⊆ Zn, by Lemma 5.3, ldim(Xi) ≤ n. Also,
the (n + 1)-element chain is an interior image of Xi, giving that ldim(Xi) ≥ n. Thus,
ldim(Xi) = n.

Let N be nowhere dense in Y ∪ Xi, and set M = N ∩ Y . Then M is nowhere dense in
Y ∪Xi. Let U be an open subset of Y contained in CYM . Since Y is open in Y ∪Xi, we
have that U is open in Y ∪ Xi and is contained in CYM ⊆ CM . Because M is nowhere
dense in Y ∪Xi, we obtain U = ∅, and so M is nowhere dense in Y . Since Y is nodec, M is
closed and discrete in Y . By the construction of Y ∪Xi, each x ∈ Xi is the image of a set of
points each remote from Y , and hence CM ∩Xi = ∅. Thus, CM ⊆ Y , from which it follows
that CYM = CM . Therefore, since M is closed in Y , it is closed in Y ∪Xi. Consequently,
M is closed in N . In fact, M is clopen in N since Y is open and M = N ∩ Y . Therefore, N
is the disjoint union of M and N ∩Xi. As M is discrete, ldim(M) ≤ 0. Also, since N ∩Xi

is a subspace of Xi, we have ldim(N ∩Xi) ≤ ldim(Xi) = n. By Lemma 7.14, ldim(N) ≤ n.
Thus, ldim(Y ∪Xi) ≤ n+ 1.

Stage 2: Let N be nowhere dense in Ai. Set Nj = N ∩ Yi,j. Recalling that Yi,j ∪ Xi is
homeomorphic to Y ∪ Xi, by replacing M by Nj and Y ∪ Xi by Yi,j ∪ Xi in the proof of
Stage 1, we see that Nj is closed in Yi,j ∪ Xi and Nj ∩ Xi = ∅ for all j ∈ ω. Therefore,⋃
j∈ωNj is closed in the topological sum

⊕
j∈ω(Yi,j ∪Xi). Since

⋃
j∈ωNj is also saturated in⊕

j∈ω(Yi,j ∪Xi), it is closed in Ai, and hence closed in N . Also,
⋃
j∈ωNj = N ∩

⋃
j∈ω Yi,j is

open in N since
⋃
j∈ω Yi,j is open in Ai. Therefore, N is the disjoint union of N ∩ Xi and⋃

j∈ωNj. By Lemma 7.14, ldim
(⋃

j∈ωNj

)
≤ 1 ≤ n since ldim(Nj) ≤ ldim(Yi,j) ≤ 1. Also

ldim(N ∩ Xi) ≤ ldim(Xi) = n, so utilizing Lemma 7.14 again yields ldim(N) ≤ n. Thus,
ldim(Ai) ≤ n+ 1.

Stage 3: Let N be nowhere dense in Zn+1. Set Ni = (N ∩ Ai) \Xi. By recognizing that
Ni is realized within the discussion of Stage 2 as

⋃
j∈ωNj, we see that each Ni is closed in

Ai, and hence
⋃
i∈ωNi is closed in

⊕
i∈ω Ai. Moreover,

⋃
i∈ωNi is saturated, and so

⋃
i∈ωNi

is closed in Zn+1. Therefore,
⋃
i∈ωNi is also closed in N . But

⋃
i∈ωNi = N ∩ (Zn+1 \ Zn),

so
⋃
i∈ωNi is open in N . Thus, N is the disjoint union of N ∩ Zn and

⋃
i∈ωNi. Since

ldim(Ni) ≤ ldim(Ai \Xi) = ldim
(⊕

j∈ω Yi,j

)
≤ 1, Lemma 7.14 yields that ldim

(⋃
i∈ωNi

)
≤

1 ≤ n. Also ldim(N ∩Zn) ≤ ldim(Zn) = n, so by Lemma 7.14, ldim(N) ≤ n. Consequently,
ldim(Zn+1) ≤ n+ 1. �

7.3. Completeness. Since S4.Zn has the finite model property, S4.Zn is the logic of finite
uniquely rooted S4-frames F of depth ≤ n + 1. Since each such F can be unraveled into a
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uniquely rooted finite quasi-tree T whose depth is ≤ n+ 1, we see that S4.Zn is the logic of
uniquely rooted finite quasi-trees T of depth ≤ n+ 1.

Let Qn be the quasi-tree whose skeleton is Tn and in which the root cluster is the only
trivial cluster and all other clusters are countably infinite. Clearly identifying the clusters
yields an onto p-morphism pn : Qn → Tn. Because every uniquely rooted finite quasi-tree of
depth ≤ n+ 1 is an interior image of Qn+1, we see that S4.Zn is the logic of Qn+1. Since we
will utilize this fact, we state is as a lemma.

Lemma 7.16. S4.Zn is the logic of Qn+1.

Since ldim(Zn) = n and Zn is T1, we see that Zn |= S4.Zn. Therefore, to show that S4.Zn

is the logic of Zn, in view of Lemma 7.16, it is sufficient to prove that Qn+1 is an interior
image of Zn. The idea of the proof is to ‘fatten’ the mapping αn : Zn → Tn+1 to a mapping
Zn → Qn+1. Let Cκ be the κ-cluster as depicted in Figure 9.

Cκ

�
�

�
�•

w0
· · · •

wλ, λ < κ

· · ·

Figure 9. The κ-cluster.

Lemma 7.17. A space X is κ-resolvable iff Cκ is an interior image of X.

Proof. First suppose that X is κ-resolvable. Then there is a dense partition {Dλ : λ < κ}
of X. Define f : X → Cκ by f(x) = wλ if x ∈ Dλ. Clearly f is a well-defined onto map.
Moreover, for each λ < κ, we have:

Cf−1(wλ) = C(Dλ) = X = f−1({wλ : λ < κ}) = f−1(CR{wλ}).
Thus, f is an interior map.

Conversely, let f : X → Cκ be an onto interior map. Then {f−1(wλ) : λ < κ} is a partition
of X such that

Cf−1(wλ) = f−1(CR{wλ}) = f−1({wλ : λ < κ}) = X.

Thus, {f−1(wλ) : λ < κ} is a dense partition of X, and hence X is κ-resolvable. �

Theorem 7.18. For each n ≥ 1, S4.Zn is the logic of Zn.

Proof. As we already pointed out, in view of Lemma 7.16, it is sufficient to show that Qn+1

is an interior image of Zn. The proof is by induction on n.
Let n = 1. Let Ci be the maximal cluster in Q2 whose p2-image is wi ∈ max(T2) (here we

are using the enumeration of max(T2) as it appears in the recursive step of defining the Zn).
So Ci = p−12 (wi). Since each Yi\{yi} is an open subspace of Yi, Yi is homeomorphic to Y , and
Y is ω-resolvable, we see that each Yi \ {yi} is ω-resolvable. As Yi \ {yi} is homeomorphic to
the subspace Yi \ {y} of Z1, by Lemma 7.17, there is an onto interior map fi : Yi \ {y} → Ci.
Define f : Z1 → Q2 by

f(z) =

{
fi(z) if z ∈ Yi \ {y}
r if z = y

Since {Yi \ {y} | i ∈ ω}∪ {y} is a partition of Z1 and each fi is onto, f is a well-defined onto
map. Let w ∈ Q2. Suppose w ∈ Ci for some i ∈ ω. Then

f−1(CR{w}) = f−1(Ci ∪ {r}) = f−1i (Ci) ∪ {y}
= (Yi \ {y}) ∪ {y} = CZ1(Yi \ {y}) = CZ1f

−1(w).
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Otherwise w is the root, and so

f−1(CR{w}) = f−1(w) = {y} = CZ1{y} = CZ1f
−1(w).

Thus, f : Z1 → Q2 is an onto interior map.
Let n ≥ 1. Suppose g : Zn → Qn+1 is an onto interior map. Identify Qn+1 with the

subframe Qn+2 \ maxR(Qn+2). Let wi,j ∈ max(Tn+2) be the jth child of wi ∈ max(Tn+1)
(as in the recursive step of building the Zn). Let Ci,j be the maximal cluster in Qn+2 whose
pn+2-image is wi,j. So Ci,j = p−1n+2(wi,j). Also, let Ci be the maximal cluster in Qn+1 whose
pn+2-image is wi ∈ max(Tn+1). So Ci = p−1n+2(wi). Since each subspace Yi,j of Zn+1 is
homeomorphic to Y , we see that Yi,j is ω-resolvable. By Lemma 7.17, there is an onto
interior map fi,j : Yi,j → Ci,j. Define f : Zn+1 → Qn+2 by

f(z) =

{
fi,j(z) if z ∈ Yi,j
g(z) if z ∈ Zn

Since {Yi,j | i, j ∈ ω} ∪ {Zn} is a partition of Zn+1 and the fi,j and g are onto, f is a
well-defined onto map. Let w ∈ Qn+2. Suppose w ∈ Ci,j for some i, j ∈ ω. Because Zn is
closed in Zn+1, both g and fi,j are interior maps, and g−1CR(Ci) = Xi, we have

f−1(CR{w}) = f−1(Ci,j ∪CR(Ci)) = f−1i,j (Ci,j) ∪ g−1CR(Ci) = Yi,j ∪Xi

= CZn+1(Yi,j) = CZn+1(CYi,j(f
−1
i,j (w)) = CZn+1f

−1(w).

Otherwise w ∈ Qn+1, and so

f−1(CR{w}) = g−1(CR{w}) = CZng
−1(w) = CZn+1f

−1(w).

Thus, f : Zn+1 → Qn+2 is an onto interior map. �

As an immediate consequence, we obtain:

Corollary 7.19. For each n ≥ 1, S4.Zn is the logic of a countable crowded ω-resolvable
Tychonoff space of localic Krull dimension n.

Moreover, since S4.Z = S4.Z1, we obtain the following topological completeness for the
Zeman logic:

Corollary 7.20. S4.Z is the logic of a countable crowded ω-resolvable Tychonoff nodec
space.

That S4.Z is the logic of nodec spaces was shown in [1, Thm. 4.6], but the proof required
the use of Alexandroff nodec spaces. The above corollary strengthens this result considerably
by providing a topologically “nice” nodec space whose logic is S4.Z.
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