Institute for Language, Logic and Information

AN OREY SENTENCE FOR
PREDICATIVE ARITHMETIC

Marianne Kalsbeek

ITLI Prepublication Series
X-89-01

(838

University of Amsterdam

nstitute for Language, Logic and Information
 Instituut voor Taal, Logica en Informatie

AN OREY SENTENCE FOR
PREDICATIVE ARITHMETIC

Marianne Kalsbeek
Department of Mathematics and Computer Science
University of Amsterdam

Received January 1989 Master's Thesis, supervisors A. Visser and D.H.J. de Jongh

Correspondence to:

Faculteit der Wiskunde en Informatica Faculteit der Wijsbegeerte
(Department of Mathematics and Computer Science) or (Department of Philosophy)
Roetersstraat 15 ' Grimburgwal 10

1018WB Amsterdam 1012GA Amsterdam

Contents

§0 Introduction 1

§1 A formalization of the notion tableau 10
§2 Search for an infinite branch in a systematic tableau 24
§3 A formalization of the model existence lemma for finite theories 37
§4 The model existence lemma for infinite theories 50
§5 A provability priciple for IAg+ Q1 o7
§6 An Orey sentence for IAg+ Q1 61
References 65
Acknowledgements

I am grateful to Albert Visser, who provided the ideas for many of the
theorems and proofs of this paper. I would like to thank Dick de Jongh,
for his stimulating presence, and for introducing me to the subject of
bounded arithmetic. I would like to thank also Michiel van Lambalgen,
who spent a lot of effort in reading and criticizing the various drafts
of this paper.

§0 Introduction

This master's thesis is a study in the field of bounded arithmetic.
Systems of bounded arithmetics are relatively small subsystems of PA
which contain at least

(1) basic axioms concerning the defining properties of O, the successor
function, addition and multiplication. Hence bounded arithmetics are
extensions of Robinson's arihmetic Q.

In addition they may contain

(2) the scheme of induction restricted to Ap-formulae, i.e. formulae
with only quantifiers of the form Ix<t, Vx<t (with t a term in the
language of the theory) or even a subclass of this class of formulae;
(3) defining axioms for [xI, which gives the length of the binary
representation of x;

(4) defining axioms for the binary ‘'smash' function 3#¥, where
x#y=2lyl | or an equivalent of this function. (The relation 2/X'lyl =z
can be defined by a Ag-formula y(x,y,z).)

(5) an axiom expressing the totality of exponentiation. (In Pudl4k [83b]
it is shown that the relation x¥Y=2z can be expressed by a Ag-formula.)
If the theory contains Ag-induction and axioms expressing the totality
of 3¢ resp. exponentiation, then it proves Ag(#)- resp. Ag(exp)-
induction.

Bounded arithmetic is interesting for various reasons.

In the first place, there are strong connections, which we shall not
explore here, between bounded arithmetic and complexity theory.
Secondly, an interesting part of metamathematics and proof theory can
be formalized in bounded arithmetic, for example, the incompleteness
theorems are provable. Here the smash function plays an important
role: it enables us to execute substitutions.

Moreover, bounded arithmetic is interesting from a philosophical point
of view. In this paper we will prove some technical results which shed
some light on a philosophical question concerning bounded arithmetic.

A vigorous and rather radical advocate of the philosophical advantages
of bounded arithmetic (without exponentiation) over and above PA is
Edward Nelson in his book Predicative Arithmetic [86]. His position is
finitistic. Thus he does not accept the existence of the set of natural
numbers. He considers exponentiation unacceptable, because it is an
idealized construction. He rejects the induction principle (for formulae
that are not A,), because he considers it to be impredicative: "The
induction principle assumes that the natural number system is given"
(Nelson [86, p.1] and he goes as far as to doubt the consistency of PA.
He proposes to work in theories that are interpretable in Q, which is
very weak and does not contain induction. Bounded arithmetic
consisting of (1), (2), (3) and (4) is interpretable in Q with methods
initiated by Solovay and further developed by Wilkie and Pudlédk (see
Pudlék [83]). The interpretations involved are of a very simple type:
they only involve relativization of quantifiers. Nelson baptizes theories
that are interpretable by relativization in Q Predicative Arithmetics:

"We would like to have have a formula A in the language of Q
be a theorem of Predicative Arithmetic if and only if Q[A] is
interpretable in Q. Perhaps this is possible, but I do not
know the answer to the following compatibility problem: if
Q[A] and QI[B] are interpretable in Q, then is Q[A,B]
interpretable in Q7"

In this paper we will give a strong argument against the robustness of
the concept of Predicative Arithmetic. We will show that there exists
an Orey sentence for Q, i.e. a sentence G such that both Q+G and Q+ G
are interpretable in Q. We will show this by the following means. A
substantial part of this paper will be devoted to the proof of various
formalized versions of the model existence lemma for tableau
provability in Buss's theory 512. A simple application of two theorems
of Paris and Wilkie [87] then provides us with the Orey sentence.

A theory is tableau consistent if none of the tableaux for this theory
closes. The model existence lemma for tableau provability says: if a
theory is tableau consistent then there is a model for this theory. This

model can be constructed from a tableau for the theory. '

In paragraph 1 we will give an intensional (in the sense of Feferman)
formalization of the notion tableau in the theory 512; here we will
heavily rely on the arithmetizations developed in Buss [86].

In paragraph 2 we show how to construct initial segments of the
leftmost consistent branch of a tableau. These initial segments
provide us with an interpretation of the axioms of a finite relational
theory A in 512 plus the tableau consistency of A. It will be shown that
this interpretation also serves to interpret the theorems of A.

In paragraph 3 we will then prove formalized versions of the results of
paragraph 2.

In paragraph 4 it is shown that the results of the paragraphs 2 and 3
also hold in case the theory A is infinitely axiomatized.

In paragraph 5 we will use the results of the paragraph 3 and 4 to
derive a provability principle of bounded arithmetic.

In paragraph 6, one of the results of paragraph 4 is used to construct
an Orey sentence for bounded arithmetic, and we will dicuss there
whether this constitutes a negative solution of the compatibility
problem for bounded arithmetic.

The remainder of this introduction is devoted to a description of 812 .
We will informally describe the predicates and functions defined in
Buss [86] (modulo some minor modifications) that we will need for the
formalizations.

52

is the theory containing

(1) the basic axioms concerning the definitions of 0, the successor
function, addition, multiplication, Ixl, |3x] and #; (|3x] is the 'shift
right' function; it is equal to the entier of -;-x. For a complete list of
these axioms, see Buss [86, pp. 30,31])

(2) a weak type of induction for a restricted class of functions of the
polynomial time hierarchy, viz. PIND for Z?—formulae.

PIND is the following type of induction:

©(0) A Vx (@(3x]) = ©(x) - Vx @(x). |

To determine the class in the polynomial time hierarchy to which a
formula belongs the number of alternations of bounded quantifiers (i.e.
quantifiers of the form Ix <y, Vx<y) of the formula is counted.

A formula is Ag if it contains only sharply bounded quantifiers, i.e
quantifiers of the form 3x <lyl, Vx <lyl.

A formula @ is Z, if it is Ao or if it is of the form Ix<y g, Ix<Llyl y,
or Vx<lyl y, where g is 21

A formula @ is TT, if it is Ao or if it is of the form Vx<y g, I3x<lyl y,
or Vx<lyl g, where g is TI1

And similarly for Z, and 11,, fori>1.

A formula is A': with respect to 812 if it is, provably in 812, equivalent
to some Z?-formula and to some n?-formula.

The LIND axioms are induction axioms of the following type:
@(0) A Vx (@(x) » @(Sx)) —» Vx @(lx]).
812 proves LIND for 22— and Tl?-formulae, and PIND for H':-formulae.
Moreover, 812 proves the following type of minimalization for At;-
formulae @, which we will call inimization:
<lyl @(x,y) = 3x<lyl (@(x,y) A Vz<x T1¢(z,y)).
Tms follows easily with PIND:
Let @ be A‘}.
Then w(y) = 3x<lyl @(x,y) = Ix<lyl (@(xy) A Vz<x T1p(z,y)) is
At{, hence also Z,, so we can apply PIND ony.
Reason in 812. Clearly y(0).
Suppose w(L%y_l).
Suppose 3x <lyl @(x,y). From the basic axioms we know that
Iyl=l|_-;-y_|l+1, hence either 3x < -%y_]l @(x,y) or
e(lyl,y) A YVz<lylm(z,y).
In the first case, the induction hypothesis provides us with a
minimal x, in the second case lyl is minimal.

At first sight, LIND, PIND and inimization seem rather unwieldy.
However, properties of numbers needed for the arithmetization of
syntax, can be proven in 512 by considering the binary representation of
numbers. It turns out that PIND, which can be conceived of as going
from a string of O's and 1's of length n to a string of length n+1,
(instead of going from a number to its successor, as is done normally
in induction) is appropriate for proving the needed properties.

A function f is Z?—definable if it is defined by: f(x)=y = A(x,y),
where (1) A 23, and

(2) 312 F Vx 3y <t A(x,y) for some term t, and

(3)S% F Vx Vy Vz (Alxy) A Alx,2) - y=2).
A?-predicates containing function symbols for Zg-definable functions
are still A},
Buss shows that it is possible to define At:-predicates and Zt:—
definable functions in 512 in an inductive manner, by socalled p-
inductive definitions. Predicates and functions defined in this way are
intensionally correct: 512 proves their properties.

we will now give an informal description of the A?-predicates and 23-
definable functions we will frequently use in this paper. For precise
definitions, see Buss [86, pp.37-50, pp.116-118, p.126]

In 812 segences can be coded, and the predicate Seq(x) expresses that
X is @ sequence. Addition of an element z to a sequence x is indicated
by x*z. We get the sequence containing one element x by taking O*x.
Concatenation of two sequences x and y is written as x*¥*y.
Concatenation is more or less multiplication.

"The number of elements of a sequence x is given by Len(x). Due to
the special features of the coding, Ixl is much larger than Len(x).

There is a p-function for sequences: g(0,x) gives the number of
elements in the sequence x; B(i,x) gives the ith element of x, provided
that i <Len(x); if i>Len(x) then p(i,x)=x+1. If we concatenate a new
element to a sequence, then this will be the last element of the
resulting sequence.

We tacitly assume that all sequences are UniqSeq (see Buss [86,
p.481), in order to have the following property of sequences:

Sy F Seq(x) A Seqly) A Vi<Len(x) (p(i,x)=p(i,y) = x=y).

wWe will frequently use this property when we apply inimization to
prove that two sequences which both satisfy a certain A?—property,
must be equal. ‘

SubSeq(i,j+1,x) gives the subsequence of x which contains the ith
until the jth element of x in the order in which they occur in x.

For reasons of readability, we will indicate codes with "" instead of
names, for instance, we will write "(" instead of Buss's LParen, and
even "(37 for "("*"37, etc.

If @(z,x,y) is At,' then we can Z':-define a function f(x) such that f(x)
has as value the number of z <|xl such that @(z,x,y). f will be denoted
as (#z <Ixl) @(z,x,y).

Trees
A tree is coded by a sequence with two special symbols [and]

which denote the structure of the tree:

a In the tree a[bldlc], b and ¢ are the direct successors, or
b ¢ sons of a, which is the root of this tree, and d is the only
d son of b. a is the father of b and c. d and c are the Jeaves of

this tree. b is the first son of a, or the sonposition of b is
1, and the sonposition of c is 2. a has two sons, or the valence of a is 2,
whereas the valence of b is 1 and the valence of d is 0. The depth of a
is 0, the depth of b and c is 1, and the depth of d is 2.
[is coded by 0, and] is coded by 1;
albldlc] is coded by the sequence x=<a+2, 0, b+2, 0, d+2, 1, c+2, 1>.
The addition of the 2's is nessecary to be able to differentiate in the
code of the tree between the symbols [and] and the nodes, which are
by definition coded by a number > 2.
Because x is a sequence, we indicate the elements of x by their
position in the sequence x. For example, for the nodes we have:
Father(3,x)=1, Father(?,x)=1, Father(5,x)=3;
Valence(1,x)=2, Valence(5,x)=0;
Depth(5,x)=2, (but also: Depth(6,x)=2);
SonPos(3,1,x)=1;
Further we have:
Leaf(i,x) = Valence(i,x)=0,
Rootp(x)=a, |
Depth(x) is the maximum of Depth(i,x).
If a tree x is non-branching, i.e. if the valences of all nodes is 1, or O,
then x has one leaf, namely, if Depth(x)=n, the Len(x)=nth element of x.
For example: in a[b[c[d]]], which has depth 3, the 7th element, d, is the
leaf.

Pairing function

In 512 we can define the standard pairing function by
P(x,y)=z = 2z=(x+y)2+3x+y.

This is indeed the bijective pairing function, because
812 F Vxy 3lz P(x,y)=z and

812 F Vz 3lxy P(x,y)=2z.

So if we define

m1(2)=x = 3y P(x,y)=2z, and

Ta(z)=y = Ix P(x,y)=2,

then 11 and T2 are (Z?—defined) functions in 512.

Canonical terms
Under the provability predicate (see below) we use canonical terms
instead of the standardly used numerals. These are defined inductively
by :

Io=0

Iok = S50 Ik

Iok+1 = S30-I¢+S0.
The advantage of these canonical terms over standard numerals s(klo
is that the length of the canonical term Iy is proportional to the length
of k, whereas the length of a standard numeral s(klo is proportional to
k. The code of Ixis a Z?-definable function.

Formal system for predicate logic

In this paper we will use a different formal system from the one Buss
uses. We have axiom schemes

@ - (¢ - @)

(> (p > 8) » ((p>y) > (p—8))

(M- y)-> (Tg->y) - @)

Vx@(x) — @(t), t a term free for the variable x in @(x)
Vx(p = y) - (@ - Vxy), x not free in @

(@ - Vxy) - Vx(@ - y), x not free in @

equality axioms.

The derivation rules are Modus Ponens and generalization.

Provability predicates

We will use provability predicates as they are defined in Paris and
Wilkie [87]. A proof will be a sequence of formulae. If the theory T is
Zg—axiomatized, the provability predicate Provrt is Z'i.

With this provability predicate, 5%, is Z;-complete :
if @ is 35, then S, F @©(x) - Provs'("@(Iy)7).
Also, Prov satisfies the Lob-conditions:
if T is 3)-axiomatized and T F S, then
T = 512 F Provr("@™)
T FProvr("@™) = Provy("Provy("@™)")
TFProvi("@ — ¢™) = (Provi("@") — Provy("y™)).
Thus we also have, for @ is Z':,
SLF@— Y= 55F@— Provs)("y”).

Cuts, Initials, Inductivity

A formula @(x), with x free in @, is called inductive for the theory T
if
T F @(0) A Vx(p(x) = @(x+1)).
Note that if T contains induction for the class of formulae to which ¢
belongs, then the inductivity of @ implies T F Vx(x).

A formula @(x), with x free in @, is a cut for the theory T, if @ is
inductive for T and closed under <, i.e. if
T F @(0) A Vx(p(x) = @(x+1)) A Vx (@g(x) » Vz<x (@(2)).
We will sometimes write xe @ instead of @(x) if @ is a cut.
If @ is inductive for T and T contains minimalization axioms for the
class of formulae to which ¢ belongs, then ¢ is also a cut.

A formula @(x), with x free in @ is an initial for T if @ is a cut for
T and @ is closed under + and -, i.e. if
TF @(0) A Vx(p(x) = @(x+1)) A Vx (@(x) » Vz<x (@(2))

A VxVy (@p(x) A @ly) - @(x+y) A @(x-y)).

With the methods initiated by Solovay (see, for instance, Pudiak [83a],
Paris and Wilkie [87] or Nelson [86]), every cut can be closed under +, -
and . There exist however cuts that cannot be closed under
exponentiation (see Paris and Dimitracopoulos [82]).
we will indicate cuts and initials with capitals, for instance with I or
J.

we will write, if [and J are cuts or initials for T,
IcJif T F Vx(I(x) - J(x)); and if IcJ we will also say: I is below J.

We will also consider the following theories:

IAg+ Q1

is the theory containing Q, the induction scheme for Ag-formulae, and
an axiom (indicated as £21) expressing the totality of the function xixl,
This function has the same growth rate as #, and the functionality of
one of them implies the functionality of the other. Therefore we can
identify the two. IAg+ Q1 is the system of Paris and Wilkie [87].
IAo+ 1 is interpretable in Q. (For proofs see Pudlék [83al, Paris and
Wilkie [87].)

Clearly 1Ap+21 F 512.

IAg+EXP

Is the theory containing Q, the induction scheme for Ag-formulae, and
an axiom expressing the totality of exponentiation.

There is a large gap between IAg+Q1 and IAg+EXP. IAg+EXP is not
interpretable in Q, whereas IAp+ Q1 is. Also IAg+EXP and
IAg+Q1+Con(IAg+Q4) are interpretable into each other (see Visser
[88]), even though IAg+EXP ¥ Con(IAg+S1) (see paragraph 5).

§1 A formalization of the notion tableau

In the construction of tableaux for finitely axiomatized relational
theories we will proceed as follows:
A tableau is a finite tree in which all nodes are sequences coding finite
sets of formulae. The root of a tableau is a node which contains axioms
of the theory. Successors of a node X are constructed by applying one of
the five tableau rules, respectively:

Definition 1.1

T := for any formula 171 in X, @ may be added;

« := for any formula 71(@ — y) in X, one may add ¢ and T1y;

B1:= for any formula @ — in X, 7(may be added;

B2:= for any formula @ — ¢ in X, ¢ may be added;

3 := for any formula 3x@ in X, @(c[3x@x]) may be added;

& := for any formula T13xy in X, 7¢(c[0]) may be added,
and for any formula 3x@ in X such that @(c[3x@x]) is in X,
one may add Ty(c[3xepx]) to X.

If an immediate successor of a node X is the result of applying B4 for a
formula @ — g, then X has a second immediate successor, which is the
result of applying B2 for @ — y, i.e., the tableau splits in X (and vice
versa: if X has a Bg-successor for a formula @ — g, than X also has a
B1-successor for the same formula).

It is admissible for a node to be the same as its predecessor, but a
node which is closed, i.e. contains an atomic formula and its negation,
does not have successors.

A systematic tableau will be a tableau in which the rules defined above
are applied in the following fixed order: T, «, B1/B2, 3, §. Moreover,
these rules are applied to all formulae they can be applied to, except
for the B rule which is applied to an appropriately chosen implication
of the node to which B is applied, i.e. in a systematic tableau we apply
the following set of rules:

10

Definition 1.2

T := add, for all formulae 171 @ in X, @;

o := add, for all formulae T(@ — W) in X, @ and Ty;

B1:= add, for a systematically chosen formula @ — ¢ in X for which
neither 7@, nor ¢ is in X, 71 @;

B2:= add, for a systematically chosen formula @ — ¢ in X for
which neither 7@, nor ¢ is in X, ¢;

3 :=add, for all formulae 3x¢@ in X, @(c[Ixpx]);

& := add, for all formulae T13xy in X, and add for all 3x@ in X such
that @(c[3xex]) is in X, T yw(c[Ixex]) to X;
and add for all formulae 1 3xy in X, 7y(cl0]) to X.

Clearly, a systematic tableau is a tableau.

A tableau is closed if all its end nodes (leaves) are closed. A closed
tableau from AU ™1 @ is a tableau proof of @ from A; such a tableau is
also called a tableau proof of 1 from AU ™.

A theory A is tableau consistent if there are no proofs of 1L from A.

For infinite theories we also admit successors resulting from the
application of the rule

EX := add a finite number of axioms of A to X.

In a systematic tableau for an infinite theory after each application of
arule from the set t, o, B1/B2, ¥, 4, EX is applied in a systematic way.
We will make this more precise in paragraph 3, when we discuss
theories which have infinitely many axioms.

To prove the formalization of the model existence lemma in 812, we
arithmetize the notions of tableau and systematic tableau, using A': -

1

predicates and Zﬁ—definable functions. We use the notations and

conventions of Buss [86]. We will also use the following predicates:

I(x,y), which expresses that x and y are sequences, and x is an initial
subsequence of y; yS,x, which expresses the sequence y to be a
subsequence of the sequence Xx; z €x, which expresses z to be a subset
of X; zex, which expresses z to be an element of the sequence coded by
x; ze(i,w), which expresses that w is a tree of which the ith element
codes a sequence containing z as one of its elements; ORD(x), which

expresses X to be a sequence of which the elements are ordered
according to size; Node(i,w), which expresses w to be a tree and g(i,w)
a node of w.

These predicates are defined as follows:

Definition 1.3

I(x,y) = 3t <Len(y) (x=SubSeq(1, t+1,y))

yepx = 3i,j<Len(x) (y=SubSeq(i+1, j+1, x))

ZeX Seq(x) A Ji<Len(x) (z=p(i+1,x))

zex = Seq(z) A Seqg(x) A Vi(tez -tex)

ze(i,w) = (Tree(w) A i<Len(w) A ze(p(i+1,w)=2)

Node(i,w) = Tree(w) A i=0 A B(i,w)>2

ORD(x) = Seq(x) A Vi,j<Len(x) (1<i<j<Len(x) —» B(i,x)<p(j,x)

Clearly, I(x,y), yEpx, zex and ze(i,w) are A':-predicates, and so are
Jz(ze(i,w) A @(2)), Vz(ze(i,w) - @(2)), 3z(zex A @(z)), and

Vz(zex — @(z)), if @ is A?. Also zEX is Aﬁ'.

We will also write Vzex @(z) and 3zex @(z) for Vz(zex — @(z)) and
3z (zex A @(z)); and we will also write 3ze(i,w) @(z) for 3z(ze(i,w) A
@(z)) and Vz(i,w) @(z) for Vz(ze(i,w) = @(2)).

We have the following lemma.

Lemma 1.4
Vz Vx (ORD(x) — 3ly (ORD(y) A Vi(tey & tex V t=2)))

Proof

Suppose ORD(x).

If zex, then take y=x.

If z¢x, then Vtex (t <2) v i< Len(x) (B(i+1,x) > 2).

In the first case, take y=x * z.

In the second case we have, by inimization, a minimal such i. Then take
y=(SubSeq(1, i+1, x) * z) ** SubSeq(i+1, Len(x)+1, x).

In both cases, Y is ordered and unique. R

12

We also define a function which gives us, in case x is an initial
sequence of the sequence y, the part of y which comes after the last
element of x:
Tail(y,x)=2z = (I(x,y) A z=SubSeq(Len(x)+1, Len(y)+1, y))

vV (I(x,y) A 2=0)
Tail(y,x) is Z?-defined, and from the fact that SubSeq(-,-) is a function
follows that Tail is a function.

We assume A to be a relational theory, L to be the language of A, L* to
be L plus all special constants for existential formulae inL*.

The special constant for an existential formula coded by x will be
defined as (0 * 14) ** x ; we also admit the special constant (0 * 14 *
0) , which we need in case we deal with a branch of a tableau in which
no existential formulae occur.

To be able to use special constants in formulae we simultaneously
define predicates Term*, AtForm®*, Form*, and EForm, using Buss'
theorem [86, p.119] on p-inductive definability of A?—predicates.
Form™* differs from Buss' predicate Fmla in the following aspects: The
only logical symbols occurring in Form* are 3, 7 and —; Form™* does
not admit codes for ((3x <t)g) but only codes for ((Ix)(x <tA@)) and
for ((3x)@); the reason for this is that in the construction of tableaux
from A we are not interested in deciding which class of the polynomial
hierarchy the formulae occurring in the tableaux belong to; Moreover,
Term*, AtForm*, Form*, and EForm allow the use of special constants
in the construction of formulae and terms.

Because in our set-up we do not distinguish between different sorts of
variables, we can use the codes Buss uses for the class of bounded
variables to encode the relation symbols of L: we encode the relation
symbol Rj (i>1) from L by 14+i-4. We assume for simplicity that all
Rj are unary, and define Rel(x) as 3t >0 (x=14+4-t). We will write
Var(x) instead of FVar(x).

We simultaneously define in 812 the unary Ab,—predicates Term*,
AtForm*, Form™* and EForm by the following p-inductive definition:

13

Definition 1.5

(1) T Term*(0).

(2) If Seq(x) and Len(x)=1 and Var(g(1,x)) then Term*(x).

(3) If Seq(x) and p(1,x)=14 and ;
EForm(SubSeq(2, Len(x)+1, x)) V (Len(x)=2 A B(2,x)=0),
then Term*(x).

(4) If x is not required to be Term* by the above conditions then x is:
not Term*.

(5) TAtForm*(0).

(6) If Rel(x) and Term*(y) then
AtForm*((0 * "(" *x) ** (y * ")7))

(?) If xis not required to be AtForm™* by the above conditions, then x
is not AtForm*.

(8) 'Form*(0)

(9) If AtForm™*(x) then Form™*(x)

(10) If Form*(x) then Form™*((Q0 * (7)) **(x*")"))

(11) If Form*(x) and Form*(y) then
Form*((0 * "(7) *%(x* "> 7) ** (y *x M)7))

(12) If Form*(x) and Var(z) then
Form*(0 * "((I %xz%x")7*x (x x r)7))

(13) If x is not required to be Form* by the above conditions then x
is not Form*

(14) If Form*(x) and Var(z) then
EForm(Q * "((37 *® z *7)" xx (x % 7)7))

(15) If x is not required to be EForm by the above conditions then x is
not EForm.

For legibility's sake, we stated this definition in a rather informal
way. An industrious reader, curious for the formal statement of this
definition, would readily observe that in fact two more predicates are
simultaeously defined, namely one expressing x to be an implication,
and one expressing that x is the negation of a *formula, and that
Form*(x) is defined as: Form®*(x) iff x is an atomic formula
(AtForm*(x)) or x is a negation of a *formula or x is an implication of
*formulae or x is an existential formula. We will now give a list of
definitions concerning formulae which we will need in the sequel. Each
predicate defined in this list is A':; moreover, of this list NOT(x) is

14

equivalent (in 512) to the predicate expressing x to be a negation which
was defined in the p-inductive definition of Form* and IMP is
equivalent to the predicate which expresses that its subject is an
implication.

Definition 1.6

NEG(x,y) = Form*(y) A x=(0 * "(77) *x (y * 7)7)
NOT(x) = Jac, x (Form*(a) A NEG(x,a))
Pos(x)=y =~ = NEG(x,y) V (y=0 A TTForm™*(x))
DNeg(x,y) = Jac, y (NEG(x,a) A NEG(a,y))

DN(x) = Jacp x (DNeg(x,a))

IMPL(x,y,z) = Form*(y) A Form*(z)
A x=(0* T(7) %% (y* 7)) xx(z%r)7)

IMP(x) = Ja,bcp x (IMPL(x,a,b))
NEGImp(x,y,z) = 3ac, x (NEG(x,a) A IMPL(a,y,z))
NIMP(x) = Ja,bg,, x (NEGImp(x,a,b))
NEForm(x) = NOT(x) A EForm(Pos(x))

The importance of the observations made above is the following. Buss
shows in [86], Theorem 2, pp. 123,124, that 812 can prove theorems
involving p-inductively defined predicates. Inspection of this theorem
and of the formal version of Definition 1.5 shows that we can prove the
following lemma:

Lemma 1.7 “Unique Reading Lemma"
1.5% F Vx (Form*(x) —» AtForm*(x) v IMP(x) V NOT(x) vV EForm(x))
2. 512 F Vx (Form*(x) A AtForm*(x) —
TIMP(x) A TINOT(x) A 71 EForm(x)))

3. 812 F Vx (Form*(x) — Seq(x))
4.55 F Vx (Form*(x) — (8(1,x)="(" A g(Len(x), x)=")")
5. 812 F Vx (Form*(x) —» _

(#t <Len(x)) (B(t+1,x)="(")

= (#t<Len(x)) (B(t+1,x)=")")
6.55 Vx,a,b,y,z (IMPL(x,a,b) A IMPL(x,y,z) = a=y A b=2)
?. 812 F Vx,y,z (NEG(x,y) A NEG(x,z) — y=2).

15

It will be clear that 2. of this lemma is just one instance of the
disjointness of the predicates AtForm®*(x), IMP(x), NOT(x), and
EForm(x) that are provable in 812.

We need the two last statements of this lemma for the following
reason: for the application of the tableau rules «, B4, and B2, we need
to be able to get T¢@ and ¢ from an implication @—y, and @ and Ty
from (@ —). Define the following Ag—predicates:

Definition 1.8
Con(x) =y
NAnt(x)=y

3ag, x (IMPL(x,a,y)) V (IMP(x) A y=0)
Jac, x 3IbS, Y (IMPL(x,b,a) A NEG(y,b))
V (T1IMP(x) A y=0)
NConN(x) =y = 3a,bs, x (NEGImp(x,a,b) A NEG(y,b))
V (TINIMP(x) A y=0)
AntN(x)=y = 3ag, x (NEGImp(x,y,a)) v (TINIMP(x) A y=0)

These predicates readily give us Zg-definable functions Con(x),
NAnt(x), NConN(x), NConN(x): existence is clear, and unicity is provided
for by Lemma 1.7.

We can define a A?-predicate SC(x) which expresses that its subject is
a special constant and a binary Aﬁ-predicate SpeCon(x)=y which
expresses that y is the special constant belonging to the existential
formula x if x is EForm, and y is O otherwise.

Definition 1.9
SC(x) = Seq(x) A p(1,x)=14

A [(Len(x)=2 A B(2,x)=0) vV EForm(SubSeq(2, Len(x)+1, x))]
SpeCon(x)=y = (EForm(x) A y=<14,x>) V(TIEForm(x) A y=0)

Since it is easily seen that 812 proves existence and uniqueness of
SpeCon(x), we can consider SpeCon as a Zﬁ-definable function.

We will also need the following A?;predicates:

Var0oc(y,i,x), which expresses that x is Form*, and the ith element of x
is the variable y, and this is not inside a special constant, i.e.
VarOc(y,i,x) describes an in some sense ‘real’ occurrence of y in x.

16

17

QVar(y,i,x) expresses that the variable y occurs on the ith place in the
formula x directly preceded by the code of an existential quantifier.
BVar(y,i,x) expresses that the variable y occurs bounded by an
existential quantifier on the ith place in the formula x.

FVar(x) expresses that the variable y occurs free on the ith place in
the formula x.

Deg(x)=y, expresses that either x is Form™* and y is the number of
logical symbols occurring in x, or x is not a *formula and y is Ix|+1.

Definition 1.10

VarOc(y,i,x) = Var(y) A Form*(x) A i>0 A B(i,x)=y

A T3jk (j<i<k<Len(x) A SC(Subseq(j+1,k+1,x))))

Var0c(y,i,x) A (i=1,x)="3"

VarOc(y,i,x) A 71QVar(x)

A 3jk<Len(x) (j+3< i<k A Form*(SubSeq(j,k+1,x))
AB(j+2,x)="3" A B(j+3,x)=Y)))

FVar(y,i,x) = VarOc(y,i,x) A 71QVar(x) A T1BVar(y,i,x)

Qvar(x)
BVvar(y,i,x)

Deg(x) =y = (Form*(x)
A y= (#t <Len(x))
((B(t,X)=r3.‘ \% B(t,X)=r—l" \V, B(t‘x)="_)")
A T3jk (j<t<k<Len(x) A SC(Subseq(j,k,x)))))
V (TFForm*(x) A y=Ixl+1)

Theorem 7 of Buss [86, p.46] shows that Deg(x) is a Zbrdefinab]e
function which takes as its value the number of logical symbols
occurring in x outside the special constants if x is Form™, and takes
value |x|+1 if x is not Form*. Lemma 1.7 shows that

Sy F Vx (Form*(x) — (Deg(x)=0 & AtForm*(x)))

Now we are ready to define A?-—predicates expressing that a collection
of formulae is the result of applying one of the systematic tableau
rules t,o,B1/B2.3.4, to some other collection of formulae. An example:
if x is a sequence of *formulae, and y the result of application of T to
X, then y is a sequence of *formulae which can be divided in two parts:

y contains x as an initial subsequence, and the other part (1) contains
all "™ for which (a) "T171@™ is in x and (b) "¢ is not in x; and (2) it
contains these "@" in order of size; (3) it contains nothing else.

For convenience we also define t(i,j,w) and «(i,j,w), etc., which
express that in case w is a tree with nodes i and j, t resp. « is applied
to node i, which results in node j.

Definition 1.11
t(x,y) = FormSeq (x) A FormSeq(y) A I(x,y)
A ORD(Tail(y,x))
A Ytex (teTail(y,x) & 3zex (DNeg(z,t) A tgx))

t(i,j,w) = t(pli,w)=2, B(j,w)=2)

FormSeq (x) A FormSeq(y) A I(x,y)
A ORD(Tail(y,x)) A VteTail(y,x) (tex)
AVtex (NIMP(t) —
Ja,zey 3bg,t (NEGImp(t,a,b)) A NEG(z,b))!
AVZzeTail(y,x) 3tex 3a,bs,t (NIMP(t)
A [INEGImp(t,z,b)2 v (NEGImp(t,a,b) A NEG(z,b))]))1

o(x,y)

o(i,j,w) = alp(i,w)=2, p(j,w)=2)

Comment:ad 1. t="1(a—b) and z= —b;
ad 2. t="1(z-Db);

In paragraph 2 we will show that 812 F Vx 3ly t(x,y), and the like for
the tableau rule « and the other tableau rules which we will define in
this paragraph. ‘

We define ternary A?—predicates B1(x,y,t) and po(x,y,t), in which t, if it
is an implication occurring in x, is split up under the condition that
neither the negation of its antecedent, nor its consequent occurs in x.

Definition 1.12
“B1(x,y,t) = FormSeq (x) A FormSeq(y) A I(x,y)
A [{tex A IMP(t) A [((NAnt(t)ex Vv Con(t)ex) A x=y)
V (T(NAnt(t)ex v Con(t)ex) A NAnt(t)ey)l}
v {(tgx v TIMP(t)) A x=Yy}]

18

B2(x,y,t) = FormSeq (x) A FormSeq(y) A I(x,y)
A [{tex A IMP(1) A [((NANnt(t)ex Vv Con(t)ex) A x=Y)
V (T(NAnt(t)ex v Con(t)ex) A Con(t)ey)]}
V {(tgx v TTIMP(t)) A x=y}]

We will use these definitions to define predicates g1(i,j,w) and
Bo(i,j,w) which express that the node j of a tree w is the systematic
B1- respectively pp-successor of the node i of w, in the following
sense. If w is a tree, consider the depth k of node i in w. There are
unique a and z such that k=a+5-z and a<3. There is a unique t such
that t is mq(z). Then Bq(i,j,w) c.q. Bo(i,j,w) is true iff gq c.q. po is
applied to (g(i,w)=2, B(j,w)=2, t).

The reason that we define the p-rules in such a cumbersome way will
be explained in paragraph 2.

Definition 1.13

B1(i,j,w) = Tree(w) A 3k <lwl 3t <k (k=Depth(i,w) A t=T1(k=2/5))
A B1(B(i,w)=2, p(j,w)=2, 1))

B2(i,j,w) = Tree(w) A 3k <Iwl 3t <k (k=Depth(i,w) A t=m1(k=2/5))
A B2(pli,w)=2, B(j,w)=2, t))

To define A?—predicates expressing the application of the rules 3y and &
we need to be able to talk about the variable which is bound by the
outermost existential quantifier in an existential formula. We define
such variables by the zt{-definable function EVar :

EVar(x)=y = (EForm(x) A y=g(4,x)) V (TEForm(x) A y=0).

Moreover, we need a function which gives us @ in the formula ((3x)¢).
If we define the binary A?—predicate

B(x)=y = y=5ubSeq(6, Len(x), x),

then an easy verification shows that B(x) is the S'z-definable function
we looked for.

We also need a S’z-defined substitution function Sub (slightly different
from the substitution function Buss defines in [86, p.130]) which
replaces all free occurrences of a variable in a formula by a sequence,
for instance by a special constant. We take for Sub(v,x,z) the function
that satisfies the following predicate:

19

Definition 1.14
Sub(v,x,z)=Yy = {Seq(v) A Var(x) A Form*(z)
A [([3i< Len(2) (FVar(x,i,z)
A Len(y) = Len(z) +
+ (Len(v)=1)-(##i<Len(z))(FVar(x,i,z)
A Vj<Len(z)3k< Len(y) (k=j+
+ (Len(v)=1)-(#i< j)FVar(x,i,z)
A (B(j+1,2)=x VvV BVar(x,j+1,2) V QVar(x,j+1,z)
- Blk+1,y)=(j+1,2))
A (B(j+1,2)=x A FVar(x,j+1,2)
— Vi<Len(v) (B(t+k+1,y)=p(t+1,v))))]
v (T3i< Len(z) (FVar(x,i,z) A y=2)1}
v {(7Seq(v) Vv Var(x) v 7/Form*(z)) A y=0}

1 . .
S, proves uniqueness and existence of Sub(v,x,z); moreover,
512 F (Var(v) v SC(v)) A Var(x) A Form*(z) —» Form*(Sub(v,x,z))

Now we are able to describe the y and & rule:

Definition 1.15
3(x,y) = FormSeq(x) A FormSeq(y) A I(x,y)
A ORD(Tail(y,x)) A VteTail(y,x) (t¢x)
A Yzex (EForm(z) — 3tey (t=Sub(SpeCon(z), EVar(z), B(z))))
A VteTailly,x) 3zex (EForm(z)
A t=5ub(SpeCon(z), EVar(z), B(z))))

&(x,y) = FormSeq (x) A FormSeq(y) A I(x,y)
A ORD(Tail(y,x)) A VteTail(y,x) (tegx)
A Yzex Yvex (NEForm(z) A EForm(v)
— [3w,zex (w=Sub(SpeCon(v), EVar(v), B(v))
— 3tey Iscpt (s=Sub(SpeCon(v), EVar(Pos(z)), B(Pos(2)))
A NEG(t,s))])
A Vzex [NEForm(z)
— 3tey Iscpt (s=Sub(SpeCon(0), EVar(Pos(z)), B(Pos(z)))

20

A NEG(t,s)])
A {VteTailly,x)
{3scpt ([3zex Ivex Iwex (NEForm(z) A EForm(v)
A w=3Sub(SpeCon(v), EVar(v), B(v))
A s=5ub(SpeCon(v), EVar(Pos(z)), B(Pos(z)))
A NEG(t,s))]
vV [3zex (NEForm(z) A s=Sub(SpeCon(0), EVar(z), B(2))
A NEG(t,s)I)}))}

&(i,j,w) = &(p(i,w)=2, (j,w)=2)
Furthermore we define when a sequence of formulae is closed or open:

Definition 1.16

Closed(x) = FormSeq(x)A 3z,uex (AtForm*(z) A NEG(u,z))
Closed(i,w) = Tree(w) A Closed(p(i,w)=2)

Open(x) FormSeq(x) A T1Closed(x)

Open(i,w) = Tree(w) A Open(p(i,w)=2)

Using these definitions we now are able to construct a predicate
adequately expressing x to be a systematic tableau from a theory A.

We assume A to be axiomatized by finitely many closed formulae. Let
t4, .., tx be the codes for the axioms of A. We take the Ag-predicate
A(x) as follows:

Definition 1.17
A(x) = Seq(x) A Len(x)=k A Vi<k (i=0 - (i, x)=tj).

I.e., A(x) expresses x to be a sequence which contains the axioms of A
in a certain fixed order and contains nothing else. Gf course, there is a
standard number N such that A(N) and 812 proves that there is exactly
one x such that A(x).

A systematic tableau is a tree of which the root codes x such that A(x),
i.e. the root is x+2, and which satisfies some further requirements.

We assume A(x) to be a A':-formula adequately expressing x to be an
axiom of A, i.e. we take a(x) provably equivalent (in 512) tox=tq v.. Vv
X=1tk.

21

In a systematic tableau the (systematic) rules are applied in fixed
order: T, &, B1/B2, §, 6. So T is applied to all nodes which occur on a
depth in the tree that is 0 mod(S), etc. The B-rules are applied as
follows: if x is a node with depth 2+5-P(t,v), then split t if t is an
implication in x.

Definition 1.18
STaba(x) = Tree(x)
A Vi< Len(x) (Node(i,x) — (Leaf(i,x) vV Valence(i,x)<2)
A FormSeq(g(i,x)=2)
A Depth(i,x) =0 — A(p(i,x)=2)
A Closed(i,x) — Leaf(i,x))
A Yi,j <Len(x) ((Open(i,x) A —Leaf(i,x) A Father(j,x)=i) —
[(Depth(i,x)=0 mod(S) A Valence (i,x)=1 A T(i,j,x))
v (Depth(i,x)=1 mod(S) A Valence (i,x)=1 A «(i,j,x))
V (Depth(i,x)=2 mod(5) A Valence (i,x)=2 A SonPos(j,i,x)=1
A 3k <Len(x) (k> j A Father(k,x)=i
A B1(i,j,x) A B2a(ik,x)))
Vv (Depth(i,x)=3 mod(5) A Valence (i,x)=1 A ¥(i,j,x))
v (Depth(i,x)=4 mod(S) A Valence (i,x)=1 A &(i,j,x))]

Clearly the definition of the predicate expressing its subject to be a
(possibly non-systematic) tableau from the theory A will very much
resemble the definition of STaba. There are three differences: (1) the
root of a non-systematic tableau need not contain all axioms of A, (2)
the tableau rules need not be applied in fixed order, and (3) the tableau
rules need not be applied to all formulae they can usefully be applied
to, or, in the case of the B-rules, need not be applied to the smallest
implication. We will not bother to exactly define the predicates needed
to express application of a non-systematic tableau rule, but we will
indicate them in bold face.

22

Definition 1.19
Taba(x) = Tree(x)
A Yi<Len(x) (Node(i,x) — [(Leaf(i,x) vV Valence(i,x) <2)
A FormSeq(g(i,x)=2)
A Depth(i,x) =0 — Vze(i,x) (a(z))
A (Closed(i,x) - Leaf(i,x))1)
A Vi,j <Len(x) (Open(i,x) A TLeaf(i,x) A Father(i,j,x) —
[valence (i, x)=1 A (T(i,j,x) Vv oli,j,x) v ¥(i,j,x) v &(i,j,x))]
v [Valence (i,x)=2 A SonPos(j,i,x)=1
A 3k <Len(x) (k>1 A Father(k,x)=i A (B1(i,j,x) A B2(i,k,x))])

We also define:
ClTaba(x) = Taba(x) A Vi< Len(x) (Leaf(i,x) — Closed(i,x))
VA = T13x Cl1Taba(x)

In the sequel we will sometimes omit the subscript A if it is clear
that the theory concerned is A.

We will also use the predicate Tab(x,y) for which we use the following
modification of the definition of Taba(x): substitute in the definition
of Taba(x) the clause Depth(i,x)=0 — Vze(i,x) (a(z)) by the clause
Depth(i,x) =0 — Vze(i,x) (zey), and add a clause expressing that y is a
sequence of closed *formulae. Accordingly, the predicate Cl1Tab(x,y)
can be defined, and we will use the notation Vy for T13x Ci1Tab(x,y).

23

§ 2 Search for an infinite branch in a systematic tableau

An infinite branch in the systematic tableau for a tableau-consistent
finite theory can be found in the following way: Start with the root of
the systematic tableau, which is tableau-consistent by hypothesis; if n
nodes are already chosen, take for the n+15t node a tableau-consistent
successor of the nth node. It is not difficult to see that if a tableau
rule is applied to a tableau-consistent node, then at least one of its
direct successors is tableau-consistent. If we also demand that in
every step the leftmost tableau-consistent successor is chosen, then
this procedure gives us the leftmost infinite branch with only tableau
consistent nodes from the tableau.
We could try to execute this procedure in the following way:
For every n, take the fully developed tableau up to level n, this is the
systematic tableau in which every node that is not closed or on depth n
has a successor; then take the leftmost branch in this tableau which
has only tableau-consistent nodes. These branches will fit into each
other, thus giving us the leftmost infinite branch. The fully developed
systematic tableau can be defined as follows:
FullTab(x,n) = STab(x) A Vi<Len(x) (Depth(i,x)<n

A (Leaf(i,x) = Closed(i,x) v Depth(i,x)=n)).

we will follow a different procedure, in which we construct initial
segments of the infinite leftmost tableau-consistent branch, without
reference to the fully developed tableaux. The first step consists in
taking the root of the systematic tableau. If a branch of depth n has
been constructed, then to get the branch of depth n+1 take the leftmost
systematic tableau-consistent successor of the leaf of this branch,
that is, apply to this leaf the systematic tableau rule which 'belongs
to' n mod(5), add the result of this application to the branch of depth n,
on the understanding that, if n mod(5)=2, we add the B{-successor if it
is tableau consistent, otherwise we add the Ba-successor.

In the definition of these initial segments of the leftmost tableau-
consistent branch we use the folowing A‘:—predicate, which expresses
its subject to be a branch of the systematic tableau from A:

24

Definition 2.1
Bra(x) = Tree(x)
AVYi<Len(x) (Node(p(i,x) —
[FormSeq(p(i,x)~2)
A (Depth(i,x) =0 — A(B(i,x)=2))
A (DLeaf(i,x) —» Valence(i,x)=1)
A (Closed(i,x) — Leaf(i,x))])
AYi,j <Len(x) (Node(i,x) A Father(j,x)=i —
[(Depth(i,x)=0 mod(5) A ©(i,j,x))
v (Depth(i,x)=1 mod(5) A «(i,j,x))
v (Depth(i,x)=2 mod(5) A (B1(i,j,x) V B2(i,j,x)))
v (Depth(i,x)=3 mod(S) A ¥(i,j,x))
v (Depth(i,x)=4 mod(5) A &(i,j,x))])

We can now define, using this definition, the leftmost branch of the
systematic tableau from A with only tableau-consistent nodes:

Definition 2.2
Br(n)=x = Bra(x) A Depth(x)=n
A Vi< Len(x) (Node(i,x) - V(B(i,x)=2))
AVi,j <Len(x) {Node(i,x) A Depth(i,x)=2 mod(5)
A Father(j,x)=i — 3z <Len(x) ((Depth(i,x)=2+5.2
A T181(1,j,x)) = IV (x*NAnt(11(2))))}

Because of the occurrence of tableau consistency in several clauses of
the definition of Br(n)=x, this is not a zg—predicate, so that we cannot
hope to be able to define Br(n) as a Z?-defined function in 512.

Just as was the case with fully developed tableaux, we cannot hope to
prove in 812 that Br(n) exists for all n. This is because consecutive
application of the systematic tableau rules also requires existence of
exponentiation. For example, apply the rule & to a sequence of
formulae, say x, and let the resulting sequence be y. Then lyl is bounded
by IxI4: To get y from x we must add to x all the instantiations of
negative existential formulae in x with the special constants in x. The
number of negative existential formulae in x is bounded by Len(x), i.e.
by Ixl. The number of special constants occurring in x is also bounded by
Ixl. Hence the number of formulae that we must add to x to get y is

25

bounded by Ix|2. Let zex be T13t, let s be a special constant in x, and
let v be the result of instantiation of 7@ with s . Both z and s are
bounded by x, hence Ivl is bounded by [xI2. There are IxI2 such v, so lyl is
bounded by IxI4 (in fact it is bounded by IxI+C-Ix|2+|x|4 for some
constant C, we left out x itself and the IxI2 extra comma's and codes
for brackets and 7). The same reasoning shows that if t(x,y), then
lyl < 2-Ixl; in general, if one of the systematic taleau rules is applied to
X, then the length of the resulting y is bounded by Ix|+B-IxI2+C-IxI3 +Ix|4.
Consider the family of functions fx: z » zK. An n times repeated
application of such fg to z results in z(kM), j.e. a proof of the existence
of fi(n)(z) for all n and standard z requires existence of kN for all n.
Now if Br(n)=y, then lyl is roughly equal to the value of fi(n)X(z) for a
k> 2. This shows that, as we have shown to be the case with
FullTab(n), we can not hope to prove existence of Br(n) for all n in 812.
However, using a theorem of Pudlék, we can define Br(n) as a function
on a cut, i.e. for every element n in this cut there does exist a unique
branch with depth n.

Induction Theorem 2.3 (Pudléak [83al)
For any formula @(x) there exists a formula J, which is inductive in 512,
such that for all cuts I such that IcJ

S, F (9(0) A Vnel (g(n) » @(n+1))) > Vnel @(n).

Proof
Define J as follows:

J(x) = @(0) A Vk<x (g(k) = @(k+1)) - Vk<x @(k).
we will check that J is inductive in S'y:
55 F§(0) = ©(0), s0 S5 F J(0).
Reason in 812. Suppose J(x), and suppose @(0) A Vk<x+1 (@(k) —
@(k+1)). By hypothesis we have @(0) A Vk<x (@(k) - @(k+1)), and
J(x), so by definition of J we have Vk<x @(k). Hence @(x); by
hypothesis @(x) — @(x+1), hence Vk <x+1 @(k). Hence J(x+1).
(It is however not necessarily true that J is provably closed under <
i.e. J need not be a cut.)
Let I be a cut in 812 such that IcJ. Suppose @(0) A Vxel (@(x)
—@(x+1)). Let xeI, we will prove @(x). Because IcJ: xeJ, so (by

?

26

definition of J) @(0) A Vk<x (k) —» @(k+1)) - Vk<x @(k). By

hypothesis @(0). Let k< x. I is a cut, so it is closed under <, and xel,

hence kel. By hypothesis (k) — @(k+1). Hence Vk <x @(k), i.e., @(x).
=

We apply this theorem to the formula 3ly Br(n)=y. This gives us an
inductive formula J such that for all cuts I such that IcJ
s, F 3ly Br(0)=y A Vnel (3ly Br(n)=y — 3ly Br(n+1)=y) -

Vnel 3ly Br(n)=y.
So after closing J under <, 812 proves that if 3ly Br(n)=y is inductive
on J, then Br(n) is a function on J. The following two lemmata show
that 3ly Br(n)=y is an inductive formula of 512

Lemma 2.4
ShEF VX A (alX,Y) V 5(X,Y) VE(X,Y) V TX,Y)) - VY
SHE VX A B1(LY1,1) A B2(X.Y2,1) » VYq V VYa

Proof

Reason in 512. Suppose VX, a(X,Y) and VY. Then we can construct a
closed tableau from X in the following way: There is a closed tableau,
say p, from Y. (p might be non systematic.) The sequence coded by the
root of p, say Y’, is a subset of Y. From p we will construct a closed
tableau q which has root Y, and in which the rules will be applied to
the nodes in the same order and to the same formulas as they are
applied to in p. g will have the same form as p, and if a node n' from q
corresponds to node n from p, then the sequence coded in n is a subset
from the sequence coded in n'. It is clear how to proceed: Add, to all
nodes in p, the formulae of Y which do not occur in Y'. Clearly, for q so
constructed we have Igl <Ipl-(1+]Y]): to p we add at most Len(p) times a
set of length at most |Y]. (It is essential here that we do not demand g
to be a systematic tableau, or a tableau in which the rules for
construction of a systematical tableau are applied: in that case we
could not hope to be able to prove the existence of g in 512.)

27

The proof of existence of such q, given p, is by PIND on p in:
x<p A Tab(xy) —
3q < 2lxl-2Ixl-lyl (Tab(q) A (B(1,9)=2)=y A Len(g)=Len(x)
A Vi< Len(qg) (Node(i,q) « Node(i,x)
A Node(i,q) —
(B(i,x)=2)<=(p(i,q)=2))).

Having constructed q, let r be the tree (0 * X+2 * "[7) %% (q * "]7) r jg
a closed tableau from X: q is a tableau and «(X,Y) guarantees r to be a
tableau, and if s is a leaf in q then it is a subset of a leaf from p,
which is closed by hypothesis, so s is closed.

The same reasoning works for ¥,4,T.

Suppose VX, B1(X,Y1,t), pa(X;Y2,t) and (VY1 A T1VY2), then again we
can construct a closed tableau from X: Suppose pq and p2 are closed
tableaus from respectively Y4 and Yo, with roots U and V. Now "fill in"
p1 and p2 the same way we proceeded above, to get closed tableaux qq
and q2 with roots Yq and Y. Then (0 * X+2 * T[7) ** q4 ** (qp * "]7)
is a closed tableau from X. R

Lemma 2.5

There exist Zﬁ-definable functions t(-), «(-), g1(-,-), B2(-,-), ¥(-), &(-),
such that t(x)=y iff t(x,y) and FormSeq(x), y=0 otherwise, and
Bi(x,t)=y iff Bij(x,y,t) and FormSeq(x), y=0 otherwise, etc.

Proof

We will prove the existence part of the functionality of T by Z':-PIND
on

t<x - Iy (yl<2:1tl A (T(ty) v (TFormSeq(t) A y=0)))

For x=0 we take y=0.

Assume t<|3x]- 3y (lyl<2-Itl A (T(ty) v (TFormSeq(t) A y=0))).
Let L%x_|< s <x and FormSeq(s). Consider v=SubSeq(1, Len(s), s), i.e. v
is s minus the last element of s. We have FormSeq(v) and v<|_51x_|. By
assumption there is a w such that lwl<2:lvl A t(v,w). So v is an
initial subsequence of w.

28

Suppose TIDN(B(Len(s),s), i.e. the last element of s is not a double
negation. Let y be s ** SubSeq(Len(v)+1, Len(w)+1, w); then t(s,y) and
lyl <l2-sl.

If, on the other hand, DN(B(Len(s),s)), say b=p(Len(s),s) then let a be
such that DNeg(b,a). Now consider SubSeq(Len(v)+1, Len(w)+1, w) * a.
This sequence is not necessarily ordered. However, by Lemma 1.4, there
is an ordered sequence z such that Vk(kez < ke SubSeq(Len(v)+1,
Len(w)+1, w) * a).

Now T(s, s ** z) and Is ** z| < 2-Is|.

Unicity follows from the fact that t(xy) is A':, with inimization. For
suppose T(x,y) and t(x,z) and y=z, then there is an i such that
g(i,y)=p(i,z)

For the other tableau rules the proofs resemble the proof for T. In the
Bi functions the first variable indicates the formula sequence x to be
considered, the second the implication to be considered . =

Using the two preceding lemmata we can now prove that 3ly Br(x)=y is
an inductive formula of 512:

Lemma 2.6
Sy+VA F 3ly Br(0)=y A Vx (3ly Br(x)=y — 3ly Br(x+1)=y)

Proof

First we check that 5,+VA I 3ly Br(0)=y:

As we mentioned in paragraph 1, 512 F 3ln A(n). Moreover, 812 F
Tree(n+2) A Depth(n+2)=0, and VA implies Vn. This shows that
512+VA proves Br(0)=n+2, and that 812+VA proves uniqueness of Br(0).
Now reason in 512. Suppose there is a unique y such that y is Br(x). Let
u=Leaf(y). Then u is tableau consistent. We can construct Br(x+1) from
y, by taking the appropriate tableau successor v of u and putting [u+2]
in the tree y directly after u. To get v, we apply to u the tableau rule
which matches the depth of u in y (i.e. x). That is, take v="1(u) if x=0
mod(5). If x=2+5-2, take for v the result of the application of g1 or g2
to u and m¢(z); take for v the outcome of g4 if it is tableau consistent,
otherwise take the outcome of g2. Lemma 2.4 shows that either the
outcome of application of g1 to u is tableau consistent, or the outcome
of B2 is, because v is tableau consistent; and Lemma 2.5 shows that if

29

we take for v the outcome of application of one of the other tableau
rules to u, then also v is tableau consistent, because u is. Lemma 2.6
shows that v is unique. Now by putting [v+2] in the tree y directly
after the node that contains u we get Br(x+1). R

It will now be clear that 512 proves that Br(-) is a function on the cut J.
In the sequel we will have to restrict ourselves to an initial below J.
Close J under +, - and 2.

The following lemma shows, among other things, that Br(-) defines a
unique branch along the initial J.

Lemma 2.7
512 F Br(n)=y A ze(i,y) —» zeLeaf(y)
512 F J(n) A Jm) A n<m A Br(n)=y A Br(m)=2z A te(i,y) - teleaf(z)

Proof
By inspection of the definitions of Tree and Br(n)=y it is easy to verify
that |
812 F n<m A Br(n)=y A Br(m)=z -
Br(m)=SubSeq(1, Len(y)=n+1, y) ** SubSeq(Len(y)=n+1, Len(z)+1, 2).
Moreover, Br(n) is a function on J, so that
512 F J(n) A J(m) An<m A Br(n)=y A Br(m)=z —
z=5ubSeq(1, Len(y)=n+1, y) ** SubSeq(Len(y)=n+1, Len(z)+1, 2).
(Note that we need J(n) and J(m) here: we cannot apply inimization
because Br(m)=z is not a A?-predicate.)
This immediately gives us
(1 8% F Jn) A J(m) A n<m A Brin)=y A Br(m)=z —
(xe(i,y) — xe(i,2)).
Using the fact that Bra (Definition 2.1) is Aﬁ we can show that 512
proves that if a formula occurs in a node on a branch of the systematic
tableau, it will occur in all its successors:
(2) 512 F Bra(y) A ze(i,y) - Vj<Len(y) (j>i A Node(j,y) — ze(j,y).
Reason in 512: Suppose Bra(y) and ze(i,y) and suppose there is a j>i
such that Node(j,y) and z¢(j,y). Then by inimization there is a minimal
such j. Let k> i be the father of j in y. Then by minimality of j, ze(k,y),

30

and because fathers and sons in y are linked by the tableau rules, we

have I(p(k,y)=2), B(j,y)=2), which implies ze(j,y). Contradiction.

Combination of (1), (2) and the fact that, by definition of Br(-), 812

proves Br(n)=y — Bra(y), we get 812 F Bra(y) A ze(i,y) - zelLeaf(y)

512 F Br(n)=y A ze(i,y) — zeleaf(y)

Sy F J(n) A Jim) A n<m A Br{n)=y A Br(m)=2z A te(iy) - teleaf(2).
X

Now that we have a unique branch along the initial J we are almost
ready to define an interpretation. We first define a predicate K(x)
which expresses that x occurs somewhere on this branch, and a
predicate D(x) which expresses that x is EForm and occurs somewhere
on the branch, or x is O and is used as a special constant somewhere on
the branch. K will be used as the basis of the translation, and D will be
the domain of the interpretation.

Definition 2.8
K(x) = J(x) A 3n(Jn) A xeLeaf(Br(n)))
D(x) = (EForm(x) A K(x)) v x=0

We will need the following property of the set of formulae occurring in
the infinite tableau consistent branch on J, which was called the
Hintikka-property by Smullyan [68]:

Lemma 2.9
S5 DNeg(x,y) A K(x) — K(y);
sy F IMP(x) A K(x) = (K(NANt(x)) v K{Cons(x)));
Sy F NIMP(x) A K(x) = (K(AtN(x)) A K(NConN(x)));
812 F EForm(x) A K(x) — K(Sub(SpeCon(x), EVar(x), B(x));
S5 - NEForm(x) A K(x) —
Vz [D(z) = 3y 3t (t=Sub(SpeCon(z), EVar(x), B(x)) A NEG(y,t)
A K(y)l.

Proof
Reason in 812.

Suppose K(x) and DNeg(x,y). By definition of K we have J(x), there is
an n such that J(n), there is a unique z such that z=Br(n) and for this z
we have xelLeaf(z). If DNeg(x,y), then y < x; J is closed under <, so we

31

have J(y). Remember that in branches of a systematic tableau as
defined in Definition 2.1 the rule T is applied to nodes occurring on
depth 0 mod(S). There is an m such that n<m < n+4 and m=0mod(5). J
is closed under successor, so J(m) and Jim+1), which imply 3lv
v=Br(m) and 3lw w=Br(m+1). By Lemma 2.8, xeLeaf(v). From the
definition of Br(-) it follows that w is the result of applying the
systematic T rule to the leaf of v and adding the result to v. Hence if x
is the double negation of y, y will be in the leaf of w.

Suppose IMP(x) and K(x). Then J(x) and there is an neJ such that
xeLeaf(Br(n). NAnt(x) and Cons(x) are smaller than x, so both are in J.
We need some stage m in J in which, according to the definition of Br,
the implication x is dealt with. Take m=2+5-P(x,n), where P is the
pairing function. From the definition of P, and from the fact that J is
closed under + and -, it follows that meJ.

Suppose EForm(x) and K(x). Let n be such that J(n), let z be Br(n)
with xeLeaf(z). From the definition of K we have J(x). Let m be such
that m=3 mod(5) and n<m<n+4. Then J(m) and J(m+1). Let v be
Br(m), then xeLeaf(v). Now let w be Br(m+1). Leaf(w) is the result of
applying the systematic & rule to the leaf of v, hence Sub(SpeCon(x),
EVar(x), B(x)) is in Leaf(w). From the fact that xeJ and that J is closed
under , we see that Sub(SpeCon(x), EVar(x), B(x))e J.

We leave the verification of the other clauses of this lemma to the
reader. 2

Another fact that we will need is that every axiom of A provably
occurs on the branch along J:

Lemma 2.10
If @ is an axiom of A, then 512+VA FK(Te™).

Proof

Let @ be an axiom of A. We will show that SHL+VA F J("@™) A 3n (J(n)
A "@ eLeaf(Br(n))).

Let m be the standard number such that A(m), i.e. m is the sequence
which contains the codes of the axioms of A. A(m) and "¢@ " em are true
A?-formulae, S0 512 proves A(m) and "¢ em. 812 proves that m+2 is the
code of a tree whose depth is 0, and VA implies Vm. Hence 812+VA

32

33

proves Br(0)=m+2 A "@ elLeaf(m+2). Because J is a cut in 812+VA,
812+VA proves J(0). "@" is a standard number, so 512+VA proves
J("e™). &

We will now, in three consecutive steps, define an interpretation based
on K and D.

Definition 2.11
For every unary predicate R in the language L define the valuation (-)K’
as follows:

R(x)K' = K("R(cly])™) if y is an existential formula from L*
and x codes y,
K("R(c[0])") if x=0,
0=50 if not EForm(x) and xs=0.

We introduce for convenience the following notation:

We will write R[x] for R(-) instantiated with the special constant for x
if x is EForm or O; and

"RIx]™ for "(Rc*x*")",

@(X) indicates that X =x1, ..., xp are the free variables occurring in ¢

@[X] will be the obvious generalization of R[x] to formulae, i.e. replace

in @ all occurrences of Rx, if x is free in @, by RIx].

We define a translation (-)K' of formulae inL* inductively as follows:
on atomic formulae (-)K' is as defined above;

("@)K'=T1¢K';
(@)K=k - yk';
((3) @)K =((IxN(D(x) A @K")).

Define the translation (-)K as follows:

if X1, ..., Xp are the free variables occurring in @, then (writing D(X)
for D(x1) A ... A D(xp))

@(X)K = D(X) - @(X)K',

(This completes Definition 2.11)

Clearly the domain of this translation is not empty, because O is in it
(Definition 2.8).

The translation (-)K provides us with an interpretation of the axioms
of the finite theory A in 812+ VA, that is the followi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>