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Abstract
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1 Introduction and purpose

The topological interpretation is one of the oldest semantics for modal lan-
guages. Reading the modal box as an interior operator, one can easily show
that the modal logic S4 is complete with respect to arbitrary topological
spaces. But there are classical results with much more mathematical con-
tent, such as McKinsey and Tarski’s beautiful theorem that S4 is also the
complete logic of the reals, and indeed of any metric separable space without
isolated points. Even so, the topological interpretation has always remained
something of a side-show in modal logic and intuitionistic logic, often tucked
away in notes and appendices. The purpose of this paper is to take it one
step further as a first stage in a program of independent interest, viz. the
modal analysis of space – showing how one can get more generality, as well
as some nice new questions. In particular, this paper contains (a) a mod-
ern analysis of the modal language as a topological formalism in terms of
‘topo-bisimulation’ (continuing [1]), (b) a number of connections between
topological models and Kripke models, (c) a new proof of McKinsey and
Tarski’s Theorem (inspired by [17]), (d) an analysis of special topological
logics on the reals, pointing toward a landscape of spatial logics above S4,
and finally (e) an extension to richer modal languages of space, and their
increased expressive power.

2 Modal language and topological semantics

2.1 Language and axioms

Let us first set the scene where we will operate. The basic language L of
propositional modal logic is composed of

• a countable set of proposition letters,

• boolean connectives ¬, ∨, ∧, →,

• modal operators 2, 3.

The standard axiomatization of our central logic S4 is

2(ϕ→ ψ)→ (2ϕ→ 2ψ) (K)
2ϕ→ 22ϕ (4)
2ϕ→ ϕ (T)

Modus Ponens and Necessitation are the only rules of inference:

ϕ→ ψ ϕ

ψ
MP

ϕ

2ϕ
N

For a closer fit to topological reasoning, however, it is better to work with
an equivalent axiomatization of S4:
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2> (N)
(2ϕ ∧2ψ)↔ 2(ϕ ∧ ψ) (R)
2ϕ→ ϕ (T)
2ϕ→ 22ϕ (4)

Modus Ponens and Monotonicity are the only rules of inference:

ϕ→ ψ ϕ

ψ
MP

ϕ→ ψ

2ϕ→ 2ψ
M

As we shall see in a moment, these principles are valid in all topological
spaces when we let formulas range over sets of points, with the Booleans as
the obvious set operations, modal box as interior and dually, modal diamond
as closure. On top of this base set, further modal axioms can be used
to express more special topological properties. E.g., an additional ‘axiom’
2ϕ↔ ϕ would say that each set is open, meaning that the spaces satisfying
it have the discrete topology.

2.2 Topological completeness

The first semantic completeness proof for S4 did not use the by now dom-
inant relational modal models, which go back to Kanger, Hintikka, and
Kripke in the 1950s. It was actually an earlier spatial completeness argu-
ment of [16], in terms of the following notions. Recall that a topological
space is a pair 〈W, τ〉, where W is a non-empty set and τ a collection of
subsets of W satisfying the following three conditions:

• ∅,W ∈ τ ,

• if U, V ∈ τ , then U ∩ V ∈ τ ,

• if {Ui}i∈I ∈ τ , then
⋃
i∈I Ui ∈ τ .

Let Int(X) and X be the topological interior and closure operators of 〈W, τ〉
respectively. It is well-known (cf. [13]) that these satisfy the following
clauses for all X,Y ⊆W :

Int(W ) = W ∅ = ∅
Int(X ∩ Y ) = Int(X) ∩ Int(Y ) X ∪ Y = X ∪ Y
Int(X) ⊆ X X ⊆ X
Int(X) ⊆ IntInt(X) X ⊆ X,

Moreover, there is a duality Int(X) = W −W −X, and a topological space
can also be defined in terms of an interior operator, or a closure operator
satisfying the above four clauses.

McKinsey and Tarski defined a valuation ν of formulas of L into 〈W, τ〉
by putting
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• ν(P ) ⊆W ,

• ν(¬ϕ) = W − ν(ϕ),

• ν(ϕ ∨ ψ) = ν(ϕ) ∪ ν(ψ),

• ν(ϕ ∧ ψ) = ν(ϕ) ∩ ν(ψ),

• ν(ϕ→ ψ) = (W − ν(ϕ)) ∪ ν(ψ),

• ν(2ϕ) = Int(ν(ϕ)),

• ν(3ϕ) = ν(ϕ).

In definitions and arguments in this paper, we will often economize, and
leave out the clauses for disjunction, implication and modal diamond, as
these are automatic from the others. Now, call a triple M = 〈W, τ, ν〉 a
topological model. A formula ϕ is said to be true in such a model M if
ν(ϕ) = W , and we say that ϕ is topologically valid if it is true in every
topological model. Referring to the second axiomatization of S4, which
highlights the interior operator, one easily sees its soundness:

If S4 ` ϕ, then ϕ is topologically valid.

McKinsey and Tarski’s pioneering achievement [16] was a proof of com-
pleteness (for a new proof, see Section 4 below):

If ϕ is topologically valid, then S4 ` ϕ.

Hence, for a modal logician, the topological semantics is adequate for
S4, or – the other side of the same coin: for a topologist, S4 axiomatizes
the algebra of the interior operator completely.

2.3 The semantics amplified

In the rest of this paper, we will use the more modern format for a modal
semantics. Given a topological model M = 〈W, τ, ν〉, we state what it means
for a given formula ϕ to be true in a point w:

• w |= P iff w ∈ ν(P ),

• w |= ¬ϕ iff not w |= ϕ,

• w |= ϕ ∧ ψ iff w |= ϕ and w |= ψ,

• w |= 2ϕ iff (∃U ∈ τ)(w ∈ U and (∀v ∈ U)(v |= ϕ)),

and hence also
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• w |= 3ϕ iff (∀U ∈ τ)(w ∈ U ⇒ (∃v ∈ U)(v |= ϕ)).

This semantics for the modal language looks different from the usual
one, where models have a binary accessibility relation between points, and
w |= 2ϕ if ϕ is true in all relational successors of w. Nevertheless, there are
strong analogies, which we will sketch in Section 3. Indeed, all basic notions
from relational Kripke models make sense for the topological semantics, too.
Here are two typical examples that we shall need further on.

The topological semantics is local in that the truth value of a formula at
a point w only depends on what happens inside the open neighborhoods of
that point. More precisely, consider any topological model M with a point w
inside, which lies in some open set U . Now define the obvious restriction of
M to a topological model M |U by taking U for the new universe, letting the
open sets be all the old open sets inside U , and putting ν ′(P ) = ν(P ) ∩ U .
It is easy to show by induction on formulas that

w |= ϕ in M iff w |= ϕ in M |U .

Thus, e.g., to determine truth values for modal formulas at a point w on the
real line, we only need to know how the model behaves in arbitrarily small
open neighborhoods around w. Or conversely, we can change the model at
a distance from a point w, without affecting the original truth values.

Our second illustration concerns the proper semantic invariance for our
modal language. The connection between M and M |U is a special case of a
more general model relation investigated at length in [1], including versions
in terms of Ehrenfeucht-Fraisse games.

Definition 2.1 (topological bisimulation) Suppose two topological
models 〈X, τ, ν〉, 〈X ′, τ ′, ν ′〉 are given. A topological bisimulation is a non-
empty relation ∼⊆ X ×X ′ such that if x ∼ x′ then

(base): x ∈ ν(P ) iff x′ ∈ ν ′(P ) (for any variable P )

(forth condition): if x ∈ U ∈ τ then
(∃U ′ ∈ τ ′)(x′ ∈ U ′ & (∀y′ ∈ U ′)(∃y ∈ U)(y ∼ y′))

(back condition): if x′ ∈ U ′ ∈ τ ′ then
(∃U ∈ τ)(x ∈ U & (∀y ∈ U)(∃y′ ∈ U ′)(y ∼ y′)).

As an example, the identity relation on U is a topo-bisimulation between
the above models M and M |U . This also shows that the preceding defini-
tion does not require totality: some points need not have links at all. But
much rougher ‘contractions’ and ‘twists’ are also possible. In general, topo-
bisimulation is a coarse notion of similarity between topological spaces, much
less fine-grained than homeomorphism or homotopy. But it is just right for
the expressive power of the modal language:
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Fact 2.2 If ∼ is a topo-bisimulation between two models M , N such that
s ∼ t, then s, t satisfy the same modal formulas.

The statement of true versions of converse results is a much more delicate
matter (cf. [7] and [10]). Here we give just one simple illustration:

Fact 2.3 If two worlds s and t satisfy the same modal formulas in two finite
models M , N , then there exists a topo-bisimulation between these models
which connects s with t.

2.4 Extended modal languages

One striking feature of modern modal logic, which differs from earlier phases,
is the use of languages with additional modal operators. This is an obvi-
ous move when thinking about modal languages for describing topological
structure: one may want to express more than just the bare facts of interior
and closure, while still sticking to the perspicuity of S4 and its ilk. Here
is one simple extension. One can add a universal modality Uϕ expressing
that ϕ holds in all worlds of the model, and a dual existential modality Eϕ
expressing that ϕ holds in at least one world. This allows us to express new
topological properties, such as connectedness:

Recall that a topological space 〈W, τ〉 is said to be connected if W can
not be represented as the union of two disjoint open sets. As was shown
independently in [19] and in [1], the ‘defining’ formula of connectedness is:

U(3P → 2P )→ (UP ∨ U¬P ).

Note that connectedness is not definable in our basic language, as its fail-
ures are not invariant for topo-bisimulation. But one can easily strengthen
topo-bisimulations to deal with this richer modal language, and one can also
extend the logic S4 to a complete system for it, adding amongst others the
axioms of S5 for U , E. We will return to such expressive extensions in
Section 7.2. For more extensive information, cf. [4, 19, 1].

3 Topological spaces and Kripke models

The purpose of this section is a link-up with the better-known world of
‘standard’ semantics for modal logic. At the same time, this comparison in-
creases our understanding of the ‘topological content’ of modal logic. What
follows can be safely skipped by readers who already know, or do not care.

3.1 The basic connection

The standard Kripke semantics for S4 is a particular case of its more gen-
eral topological semantics. Recall that an S4-frame (henceforth ‘frame’, for
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short) is a couple 〈W,R〉, where W is a non-empty set and R a quasi-order
(transitive and reflexive) on W . Call a set X ⊆ W upward closed if w ∈ X
and wRv imply v ∈ X.

Fact 3.1 Every frame 〈W,R〉 induces a topological space 〈W, τR〉, where τR
is the set of all upward closed subsets of 〈W,R〉.

It is easy to check that τR is a topology on W , and that the closure and
interior operators of 〈W, τR〉 are respectively R−1(X) and W−R−1(W−X),
where R−1(w) = {v ∈W : vRw} and R−1(X) =

⋃
w∈X R

−1(w), for w ∈W ,
X ⊆ W . Indeed, τR is a rather special topology on W : for any family
{Xi}i∈I ⊆ τR, we have

⋂
i∈I Xi ∈ τR. Such spaces are called Alexandroff

spaces, in which every point has a least neighborhood. In frames, the least
neighborhood of a point w is evidently {v ∈ W : wRv}, which is usually
denoted by R(w).

Conversely, every topological space 〈W, τ〉 naturally induces a quasi-
order Rτ defined by putting

wRτv iff w ∈ {v} iff w ∈ U implies v ∈ U , for every U ∈ τ .

This is called the specialization order in the topological literature. Again
it is easy to check that Rτ is transitive and reflexive, and that every open set
of τ is Rτ -upward closed. Moreover, Rτ is anti-symmetric iff 〈W, τ〉 satisfies
the T0 separation axiom (that is, any two different points are separated by
an open set). Hence Rτ is a partial order iff 〈W, τ〉 is a T0-space.

Combining the two mappings, R = RτR , τ ⊆ τRτ , and τ = τRτ iff 〈W, τ〉
is an Alexandroff space. Indeed, wRτRv iff w ∈ {v} iff w ∈ R−1(v) iff wRv.
Also, as every open set of τ is Rτ -upward closed, τ ⊆ τRτ . Finally, τ = τRτ
iff every Rτ -upward closed set belongs to τ iff every point of W has a least
neighborhood in 〈W, τ〉 iff 〈W, τ〉 is an Alexandroff space.

The upshot of all this is a one-to-one correspondence between quasi-
ordered sets and Alexandroff spaces, and between partially ordered sets and
Alexandroff T0-spaces. Since every finite topological space is an Alexandroff
space, this immediately gives a one-to-one correspondence between finite
quasi-ordered sets and finite topological spaces, and finite partially ordered
sets and finite T0-spaces.

There is also a one-to-one correspondence between continuous maps and
order preserving maps, as well as open maps and p-morphisms. Indeed, let
two topological spaces 〈W1, τ1〉 and 〈W2, τ2〉 be given. Recall that a function
f : W1 → W2 is continuous if f−1(V ) ∈ τ1 for every V ∈ τ2. Moreover, f
is open if it is continuous and f(U) ∈ τ2 for every U ∈ τ1. It is well-
known that f is continuous iff f−1(X) ⊆ f−1(X), and that f is open iff
f−1(X) = f−1(X), for every X ⊆W2.

Next, for two quasi-orders 〈W1, R1〉 and 〈W2, R2〉, f : W1 → W2 is said
to be order preserving if wR1v implies f(w)R2f(v), for w, v ∈ W1. f is a
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p-morphism if it is order preserving, and in addition f(w)R2v implies that
there exists u ∈W1 such that wR1u and f(u) = v, for w ∈W1 and v ∈W2.
It is well-known that f is order preserving iff R−1

1 f−1(w) ⊆ f−1R−1
2 (w), and

that f is a p-morphism iff R−1
1 f−1(w) = f−1R−1

2 (w), for every w ∈W2.
Putting this together, one easily sees that f is monotone iff f is contin-

uous, and that f is p-morphism iff f is open.
As an easy consequence we obtain that the category ATop of Alexandroff

spaces and continuous maps is isomorphic to the category Qos of quasi
ordered sets and order preserving maps, and that the category ATop+ of
Alexandroff spaces and open maps is isomorphic to the category Qos+ of
quasi ordered sets and p-morphisms.

Similarly, the category ATopT0
of Alexandroff T0-spaces and continuous

maps is isomorphic to the category Pos of partially ordered sets and order
preserving maps, and the category ATop+

T0
of Alexandroff T0-spaces and

open maps is isomorphic to the category Pos+ of partially ordered sets and
p-morphisms.

In the finite case we get that the category FinTop of finite topologi-
cal spaces and continuous maps is isomorphic to the category FinQos of
finite quasi ordered sets and order preserving maps, and that the category
FinTop+ of finite topological spaces and open maps is isomorphic to the
category FinQos+ of finite quasi ordered sets and p-morphisms.

Similarly, the category FinTopT0
of finite T0-spaces and continuous maps

is isomorphic to the category FinPos of finite partially ordered sets and order
preserving maps, and the category FinTop+

T0
of finite T0-spaces and open

maps is isomorphic to the category FinPos+ of finite partially ordered sets
and p-morphisms.

3.2 Analogies qua topics

The tight connection between modal frames and topological spaces explains
the earlier-mentioned analogies in their semantic development, such as lo-
cality and invariance for bisimulation. It may be extended to include other
basic modal topics, such as correspondence theory [6]. Likewise, the mod-
ern move toward extended modal languages makes equally good sense for
the topological interpretation. Many natural topological notions need extra
modal power for their definition: good examples are the basic separation
axioms. We just saw that, among the quasi orders, partial orders corre-
spond to topological spaces satisfying the T0 separation axiom. But this
difference does not show up in our basic modal language: S4 is complete
with respect to arbitrary partial orders. Defining separation axioms requires
various expressive extensions of the modal base language.

Finally, in a more technical sense, there still seems a vast difference. The
format of the topological interpretation looks more complex than the usual
one which quantifies over accessible worlds only. For, it involves a second-
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order quantification over sets of worlds, plus a first-order quantification over
their members. But this difference is more apparent than real, because
the quantification is over open sets only, and we may plausibly think of
topological models as two-sorted first-order models with separate domains
of ‘points’ and ‘opens’. To bring this out more directly, one might also
use an alternative ‘bi-modal language’ with two separate modalities: <U>
(“for some open neighborhood of the current point”), [x] (“for all points in
the current open set”). (Cf. [15, 12, 1] for this decomposition.) On this
approach, however, the base logic is no longer S4!

4 General Completeness

The preceding section shows that standard modal models are a particular
case of a more general topological semantics. Hence, the known complete-
ness of S4 plus the topological soundness of its axioms immediately give
us general topological completeness. Even so, we now give a direct model-
theoretic proof of this result. It is closely related to the standard modal
Henkin construction, but with some nice topological twists. (Compare [11]
for the quite analogous case of modal ‘neighborhood semantics’.)

4.1 The main argument

Soundness is immediate, and hence we move directly to completeness. Call
a set Γ of formulas of L (S4–)consistent if for no finite set {ϕ1, . . . , ϕn} ⊆ Γ
we have that S4 ` ¬(ϕ1 ∧ · · · ∧ ϕn). A consistent set of formulas Γ is
called maximally consistent if there is no consistent set of formulas properly
containing Γ. It is well-known that Γ is maximally consistent iff, for any
formula ϕ of L, either ϕ ∈ Γ or ¬ϕ ∈ Γ, but not both. Now we define a
topological space out of maximally consistent sets of formulas.

Definition 4.1 (canonical topological space) The canonical topologi-
cal space is the pair SL = 〈WL, τL〉, where:

• WL is the set of all maximally consistent sets Γmax;

• τL is the set generated by arbitrary unions of the following basic sets
BL = {2̂ϕ : ϕ is any formula }, where ϕ̂ =def {Γmax ∈ WL : ϕ ∈
Γmax}. In other words, basic sets are the families of the form: Uϕ =
{Γmax ∈WL : 2ϕ ∈ Γmax}.

Let us first check that SL is indeed a topological space.

Lemma 4.2 BL forms a basis for the topology.

Proof. We only need to show the following two properties:
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• For any Uϕ, Uψ ∈ BL and any Γmax ∈ Uϕ ∩Uψ, there is Uχ ∈ BL such
that Γmax ∈ Uχ ⊆ Uϕ ∩ Uψ;

• For any Γmax ∈WL, there is Uϕ ∈ BL such that Γmax ∈ Uϕ.

Now, (N) implies that 2> ∈ Γmax, for any Γmax. Hence WL = 2̂> and
the second item is satisfied. As for the first item, thanks to (R), one can
easily check that ̂2(ϕ ∧ ψ) = 2̂ϕ ∩ 2̂ψ. Hence Uϕ ∩ Uψ ∈ BL, and so BL is
closed under finite intersections: whence the first item is satisfied. q.e.d.

Next we define the canonical topological model.

Definition 4.3 (Canonical topological model) The canonical topolog-
ical model is the pair ML = 〈SL, νL〉, where:

• SL is the canonical topological space;

• νL(P ) = {Γmax ∈ XL : P ∈ Γmax}.

The valuation νL equates truth of a proposition letter at a maximally
consistent set with its membership in that set. We now show this harmony
between the two viewpoints lifts to all formulas.

Lemma 4.4 (Truth lemma) For all modal formulas ϕ,

ML, w |=L ϕ iff w ∈ ϕ̂.

Proof. Induction on the complexity of ϕ. The base case was just described.
The case of the Booleans follows from the following well-known identities
for maximally consistent sets:

• ¬̂ϕ = WL − ϕ̂;

• ϕ̂ ∧ ψ = ϕ̂ ∩ ψ̂.

The interesting case is that of the modal operator 2. We do the two
relevant implications separately, starting with the easy one.
⇐ ‘From membership to truth.’ Suppose w ∈ 2̂ϕ. By definition, 2̂ϕ is

a basic set, hence open. Moreover, thanks to axiom (T), 2̂ϕ ⊆ ϕ̂. Hence
there exists an open neighborhood U = 2̂ϕ of w such that for any v ∈ U ,
v ∈ ϕ̂, and by the induction hypothesis, ML, v |=L ϕ. Thus ML, w |=L 2ϕ.
⇒ ‘From truth to membership.’ Suppose ML, w |=L 2ϕ. Then there

exists a basic set 2̂ψ ∈ BL such that w ∈ 2̂ψ and for all v ∈ 2̂ψ, ML, v |=L
ϕ. By the induction hypothesis, ∀v ∈ 2̂ψ, v ∈ ϕ̂: i.e., 2̂ψ ⊆ ϕ̂. But this
implies that the logic S4 can prove the implication 2ψ → ϕ. (If not, then
there would be some maximally consistent set containing both 2ψ and ¬ϕ.)
But then we can prove the implication 22ψ → 2φ, and hence, using the
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S4 transitivity axiom, 2ψ → 2φ. It follows that 2̂ψ ⊆ 2̂φ, and hence the
world w belongs to 2̂φ. q.e.d.

Now we can clinch the proof of our main result.

Theorem 4.5 (Completeness) For any set of formulas Γ,

if Γ |=L ϕ then Γ `S4 ϕ.

Proof. Suppose that Γ 6`S4 ϕ. Then Γ ∪ {¬ϕ} is consistent, and by the
Lindenbaum Lemma it can be extended to a maximally consistent set Γmax.
By the Truth Lemma, ML,Γmax |=L ¬ϕ, whence Γmax 6|=L ϕ, and we have
constructed the required counter-model. q.e.d.

4.2 Topological comments

Let us now look at some topological aspects of this construction. In proving
the box case of Truth Lemma, we did not use the standard modal argument,
which crucially invokes the distribution axiom of the minimal modal logic.
Normally, one shows that, if a formula 2φ does not belong to a maximally
consistent set Γ, then there exists some maximally consistent successor set
of Γ containing ¬ϕ. This is not necessary in the topological version at
this stage. We only needed the reflexivity and transitivity axioms, plus
the Lindenbaum Lemma on maximally consistent extensions. The modal
distribution axiom still plays a crucial role, but that was at the earlier stage
of verifying that we had really defined a topology. This different way of
‘cutting the cake’ provides an additional proof-theoretic explanation why S4
is the weakest axiom system complete for topological semantics. Moreover,
the divergence with the ‘standard’ argument explodes the prejudice that one
single ‘well-known’ interpretation for a language must be the only natural
one.

Comparing our construction with the standard modal Henkin model for
S4 〈WL, RL, |=L〉, the basic sets of our topology SL are RL-upward closed.
Hence every open of SL is RL-upward closed, and SL is weaker than the
topology τRL corresponding to RL. In particular, our canonical topological
space is not an Alexandroff space.

Here are some further topological aspects of the above construction.
First, it is worthwhile to compare Stone’s famous construction which uses
the alternative basis {ϕ̂ : ϕ any formula}, yielding a space which we denote
by 〈WL, τS〉. It is well-known that 〈WL, τS〉 is homeomorphic to the Cantor
space – and so, up to homeomorphism, 〈WL, τS〉 is compact, metric, 0-
dimensional, and dense-in-itself. The basis of our topology, however, was
the sub-family {2̂ϕ : ϕ any formula}. Now every subtopology of one that is
compact and dense-in-itself is also compact and dense-in-itself. Therefore,
we get these same properties for our canonical topological space. But we
can be more precise than this.
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Fact 4.6 The canonical topology is actually intersection of the Kripke and
Stone topologies.

In other words, τL = τRL ∩ τS . Indeed, since τL ⊆ τRL and τL ⊆ τS ,
obviously τL ⊆ τRL ∩ τS . Conversely, since every base set ϕ̂ of Stone’s
topology is RL-upward closed iff ϕ̂ = 2̂ψ for some ψ, τRL ∩ τS ⊆ τL, and
τL = τRL ∩ τS .

One can also connect modal formulas and topological properties more
directly, by giving a direct proof of the fact that SL is compact and dense-
in-itself. The former fact goes just as for the Stone space, but we display it
for the sake of illustration.

Lemma 4.7 SL is compact.

Proof. Suppose otherwise. Then there is a family {2̂ψi}i∈I ⊆ BL such
that

⋃
i∈I 2̂ψi = WL, and for no finite subfamily {2̂ψi1 , . . . , 2̂ψin} we have

2̂ψi1 ∪ · · · ∪ 2̂ψin = WL. Let Γ = {¬2ψi}i∈I .

Claim 4.8 Γ is consistent.

Proof. Suppose otherwise. Then there is a finite number of formulas
¬2ψ1, . . . ,¬2ψn ∈ Γ such that S4 ` ¬(¬2ψ1 ∧ · · · ∧ ¬2ψn). Hence S4 `
2ψ1 ∨ · · · ∨2ψn. But then 2̂ψ1 ∪ · · · ∪ 2̂ψn = WL, which is a contradiction.
q.e.d.

Since Γ is consistent, it can be extended to a maximally consistent set
Γmax. Obviously ¬2ψi ∈ Γmax for any i ∈ I. Hence Γmax ∈ ¬̂2ψi for any
i ∈ I. Since ¬̂2ψi = WL − 2̂ψi, Γmax ∈ WL − 2̂ψi for any i ∈ I. Hence
Γmax ∈ WL −

⋃
i∈I 2̂ψi, which contradicts our assumption. Thus, SL is

compact. q.e.d.

Lemma 4.9 SL is dense-in-itself.

Proof. Suppose there was an isolated point w in SL. Then there is a
formula 2ϕ with 2̂ϕ = {w}. This means 2ϕ ∈ w and for any ψ, ψ ∈ w iff
S4 ` 2ϕ→ ψ, which is obviously a contradiction – since we are working in
a language with infinitely many propositional letters. q.e.d.

Corollary 4.10 S4 is the logic of the class of all topological spaces which
are compact and dense-in-itself.

Still, the canonical topological space SL is neither 0-dimensional nor
metric (it is not even a T0-space). So, SL is not homeomorphic to the
Cantor space. In the next section, we will show how to get completeness of
S4 with respect to the Cantor space by a different route.
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4.3 Finite spaces suffice

We conclude with an observation that is important for later arguments.
The whole construction in the completeness proof would also work if we
restricted attention to the finite language consisting of the initial formula
and all its subformulas. All definitions go through, and our arguments never
needed to go beyond it. This means that we only get finitely many maximally
consistent sets, and so non-provable formulas can be refuted on finite models,
whose size is effectively computable from the formula itself. (Note however
that the obtained finite model won’t necessarily be dense-in-itself.)

Corollary 4.11 S4 has the effective finite model property w.r.t. the class
of topological spaces.

Incidentally, this also shows that validity in S4 is decidable, but we forego
such complexity issues in this paper.

The resulting models have some interesting topological extras. Consider
any finite modal frame F = 〈W,R〉. We define some auxiliary notions. For
any w ∈ W , let C(w) = {v ∈ W : wRv & vRw}. Call a set C a cluster
if it is of the form C(w) for some w: the cluster generated by w. C(w) is
simple if C(w) = {w}, and proper otherwise. w ∈ W is called minimal if
vRw implies wRv for any v ∈ W . A cluster C is minimal if there exists a
minimal w ∈W such that C = C(w). Next, call F rooted if there is w ∈W
such that wRv for any v ∈ W : w is then a root of F . This w need not be
unique: any point from C(w), the initial cluster of F , will do.

Evidently, a finite Kripke frame F is rooted iff it has only one mini-
mal cluster. Topologically, this property is related to the earlier notion of
connectedness. We said in Section 2.4 that a topological space 〈W, τ〉 is
connected if its universe cannot be written as a union of two disjoint open
sets. 〈W, τ〉 is well-connected if W = U ∪ V implies W = U or W = V ,
for any U, V ∈ τ . Obviously well-connectedness is a stronger notion than
connectedness. It corresponds to 〈W,Rτ 〉 being rooted. For this observe
that, dually, well-connectedness can be stated as follows:

For any two closed subsets C and D of 〈W, τ〉, C ∩ D = ∅ implies either
C = ∅ or D = ∅.

Lemma 4.12 A finite Kripke frame is rooted iff the corresponding topolog-
ical space is well-connected.

Proof: Suppose 〈W,R〉 is a rooted Kripke frame with a root w, and 〈W, τR〉
the corresponding topological space. Let X1 and X2 be closed sets of 〈W, τR〉
such that X1∩X2 = ∅. By an easy dualization of the notions of Section 3.1,
a set X ⊆W is topologically closed iff it is downward closed in the ordering,
that is u ∈ X and vRu imply v ∈ X, for any u, v ∈W . Now if both X1 and
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X2 are non-empty, then w belongs to both of them, which is a contradiction.
Hence one of them should be empty, and 〈W, τR〉 is well-connected.

Conversely, suppose 〈W,R〉 is not rooted. Then there are at least two
different minimal clusters C1 and C2 in W . Since C1 and C2 are minimal
clusters, they are downward closed, and hence closed in 〈W, τR〉. Moreover,
since they are different, C1 ∩ C2 = ∅. Hence 〈W, τR〉 is not well-connected.
q.e.d.

This allows us to improve on Corollary 4.11.

Theorem 4.13 S4 is the logic of finite well-connected topological spaces.

Proof: It suffices to observe the following. If a modal formula has a counter-
example on a finite Kripke model, it fails in some point there. But then by
standard ‘Locality’, it also fails in the submodel generated by that point
and its relational successors, which is rooted – and hence transforms into a
well-connected topological space. q.e.d.

Again, there is a downside to such an upgraded completeness result.
What it also means is that the basic modal language cannot define such a
nice topological property as well-connectedness. As we saw in Section 2.4,
the definition of connectedness requires introduction of additional modali-
ties. So does well-connectedness.

Finally, let us mention that for refuting non-theorems of S4 it is enough
to restrict ourselves to the class of those finite rooted models whose every
cluster is proper. As we already mentioned in Section 3.1, having only simple
clusters topologically corresponds to the T0 separation axiom, which in finite
case is equivalent to the TD separation axiom (every point is obtained as
intersection of an open and a closed sets). Consequently, having only proper
clusters would topologically correspond to the fact that no point can be
obtained as intersection of an open and a closed sets. Call spaces with this
property essentially non-TD. Then we can improve a little bit on Theorem
4.13:

Theorem 4.14 S4 is the logic of finite well-connected essentially non-TD
topological spaces.

Proof: Suppose a modal formula ϕ has a counter-example on a finite rooted
Kripke model M = 〈W,R, |=〉. Then replacing every cluster of W by an n-
element cluster, where n is the maximum among the sizes of the clusters
of W , we obtain a new frame 〈W ′, R′〉. Obviously 〈W,R〉 is a p-morphic
image of 〈W ′, R′〉. This allows us to define |=′ on 〈W ′, R′〉 so that ϕ has
also a counter-example on M ′ = 〈W ′, R′, |=′〉. Now every cluster of W ′ is
proper, hence 〈W ′, R′〉 transforms into a well-connected essentially non-TD
topological space. q.e.d.
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5 Completeness on the reals

As early as 1944, McKinsey and Tarski proved the following beautiful result,
which is an expansion of a completeness theorem by Tarski for intuitionistic
propositional logic from 1938:

Theorem 5.1 (McKinsey-Tarski) S4 is the complete logic of any metric
separable dense-in-itself space.

Most importantly, this theorem implies completeness of S4 with respect
to the real line R. It also implies completeness of S4 with respect to the
Cantor space C.

Our paper does not present any startling new results improving on this
theorem. It rather takes a systematic look at its proof, and what it achieves.
The original algebraic proof in [16] was very complex, the later more topolog-
ical version in [18] is not much more accessible. Recently, Mints [17] replaced
these by a much more perspicuous model-theoretic construction, extending
earlier ideas of Beth and Kripke to get faster completeness of S4 with respect
to the Cantor space. We generalize its model-theoretic structure, using the
topo-bisimulations of Section 2, and also provide a modification for com-
pleteness on the reals.

Our strategy in the following subsections starts from the standard modal
completeness for S4 involving counter-examples on finite rooted models,
and then exhibits a topo-bisimulation resulting in “tree-like” topological
model homeomorphic to the Cantor space C. We then show how to extract
completeness of S4 with respect to the reals from the completeness of S4
with respect to C.

5.1 Cantorization

Our starting point is an arbitrary modal formula which is not provable in
S4. We have already seen that such a non-theorem can be refuted on a
finite rooted Kripke model. Now we will show how to transform the latter
into a counterexample on the Cantor space C. Our technique is selective
unraveling, a refinement of the technique of unraveling in modal logic.

Suppose M = 〈W,R, |=〉 is a finite rooted model with a root w. Our goal
is to select those infinite paths ofM which are in a one-to-one correspondence
with infinite paths of the full infinite binary tree T2. In order to give an easier
description of our construction, we assume that every cluster of W is proper.
This can be done by Theorem 4.14. Now start with a root w, and announce
(w) as a selective path. Then if (w1, . . . , wk) is already a selective path,
introduce a left move by announcing (w1, . . . , wk, wk) as a selective path;
and introduce a right move by announcing (w1, . . . , wk, wk+1) as a selective
path if wkRwk+1 and wk 6= wk+1. (Since we assumed that every cluster of
W is proper, such wk+1 will exist for every wk.)

15



To make this idea precise, we need some definitions. For u, v ∈ W , call
v a strong successor of u if uRv and u 6= v. Write SSuc(u) for the set of all
strong successors of u. Since we assumed that every cluster of W is proper,
SSuc(u) 6= ∅ for every u ∈W . Suppose v1, . . . , vn is a complete enumeration
of SSuc(u) for every u ∈W . Now define a selective path of W recursively:

1 (w) is a selective path;

2 If (w1, . . . , wk) is a selective path of length k, then (w1, . . . , wk, wk+1)
is a selective path of length k + 1, where wk+1 = wk;

3 If (w1, . . . , wk) is a selective path of length k, then (w1, . . . , wk, wk+1)
is a selective path of length k+1, where wk+1 = vi with i ≡ k(mod n);1

4 That’s all.

Denote by Σ the set of all infinite selective paths of W . For a finite
selective path (w1, . . . , wk), let

B(w1,...,wk) = {σ ∈ Σ : σ has an initial semgnet (w1, . . . , wk)}.

Define topology τΣ on Σ by introducing

BΣ = {B(w1,...,wk) : (w1, . . . , wk) is a finite selective path of W}

as a basis.
To see that BΣ is a basis, observe that B(w) = Σ, and that

B(w1,...,wk) ∩B(v1,...,vm) =


B(w1,...,wk) if (v1, . . . , vm) is an initial segment

of (w1, . . . , wk),
B(v1,...,vm) if (w1, . . . , wk) is an initial segment

of (v1, . . . , vm),
∅ otherwise.

In order to define |=Σ note that every infinite selective path σ of W either
gets stable or keeps cycling. In other words, either σ = (w1, . . . , wk, wk, . . . ),
or σ = (w1, . . . , wn, wn+1, . . . ), where wi belongs to some cluster C ⊆W for
i > n. In the former case we say that wk stabilizes σ, and in the latter –
that σ keeps cycling in C. Now define |=Σ on Σ by putting

σ |=Σ P iff


wk |= P if wk stabilizes σ,

ρ(C) |= P if σ keeps cycling in C ⊆W, where ρ(C) is some
arbitrarily chosen representative of C.

1In other words, wk+1 is the first strong successor of wk in the complete enumeration of
SSuc(wk) which has not appeared in any selective path of length k; if all strong successors
of wk have already appeared in one of selective paths of length k, then we start over
again and put wk+1 to be the first strong successor of wk in the complete enumeration of
SSuc(wk).
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All we need to show is that 〈Σ, τΣ〉 is homeomorphic to the Cantor space,
and that MΣ = 〈Σ, τΣ, |=Σ〉 is topo-bisimilar to the initial M . In order to
show the first claim, let us recall that the Cantor space is homeomorphic to
the countable topological product of the two element set 2 = {0, 1} with the
discrete topology. So, C ∼= 2ω with the subbasic sets for the topology being
U =

∏
i∈ω Ui, where all but one Ui coincide with 2, or equivalently with the

basic sets for the topology being U =
∏
i∈ω Ui, where all but finitely many

Ui coincide with 2.
To picture the Cantor space, one can think of the full infinite binary tree

T2: starting at the root, one associates 0 to every left-son of a node and
1 to every right-son. Then the points of the Cantor space are the infinite
branches of T2.

Proposition 5.2 〈Σ, τΣ〉 is homeomorphic to C.

Proof. Suppose σ = (w1, w2, w3, . . . , wk, . . . ) ∈ Σ, where w1 = w is a root
of W . With each wk (k > 1) associate 0 if wk−1 = wk, and associate 1 if wk
is a strong successor of wk−1. Denote an element of 2 associated with wk
by g(wk) and define G : Σ→ 2ω by putting

G(w1, w2, w3, . . . , wk, . . . ) = (g(w2), g(w3), . . . , g(wk), . . . ).

It should be clear from the definition that G is a bijection. In order to
prove that it is a homeomorphism, we need to check that G is open. So,
suppose B(w1,...,wk) is a basic open set of τΣ. Then

G(B(w1,...,wk)) = {g(w2)} × · · · × {g(wk)} × 2ω

is a basic open of C, G preserves basic opens, hence preserves opens. Con-
versely, suppose U = 2k−1×{ck}×2ω, where ck = 0 or 1, is a subbasic open
of C. Then

G−1(U) =
⋃

g(wk)=ck

B(w1,...,wk),

which obviously belongs to τΣ. Thus, G is open, hence a homeomorphism.
q.e.d.

It is left to be shown that MΣ is topo-bisimilar to M . Define F : Σ→W
by putting

F (σ) =
{
wk if wk stabilizes σ,
ρ(C) if σ keeps cycling in C.

Obviously F is well-defined, and is actually surjective. (For any wk ∈W ,
F (σ0, wk, wk, . . . ) = wk, where σ0 is a (finite) selective path from w1 to wk.)
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Proposition 5.3 F is a total topo-bisimulation between MΣ = 〈Σ, τΣ, |=Σ〉
and M = 〈W,R, |=〉.

Proof. Recall from the previous section that with 〈W,R〉 is associated a
finite topological space 〈W, τR〉 (since 〈W,R〉 is rooted, 〈W, τR〉 is actually
well-connected). Let us check that F : 〈Σ, τΣ〉 → 〈W, τR〉 is open. Recall
that R(v), for v ∈W , are basic opens of τR. So, in order to check that F is
continuous, we need to show that the F inverse image of every R(v) is open
in τΣ. Observe that for any v ∈W ,

F−1(R(v)) =
⋃

k∈ω, vRwk

B(w1,...,wk),

which is an element of τΣ. Indeed, suppose σ ∈
⋃
k∈ω, vRwk B(w1,...,wk).

Then σ belongs to one of B(w1,...,wk) with vRwk. But then wkRF (σ),
which together with vRwk and transitivity of R imply that vRF (σ). So,
F (σ) ∈ R(v), and σ ∈ F−1(R(v)). Conversely, suppose σ ∈ F−1(R(v)).
Then F (σ) ∈ R(v), and vRF (σ). Now either wk stabilizes σ, or σ keeps
cycling in a cluster C. In the former case, σ = (w1, . . . , wk, wk, . . . ), where
wk = F (σ). Hence, σ ∈ B(w1,...,wk) with vRwk. In the latter case, σ =
(w1, . . . , wn, wn+1, . . . ), where wi ∈ C for i > n, and F (σ) = ρ(C). Hence,
σ ∈ B(w1,...,wn,wn+1) with vRwn+1. In either case,

F−1(R(v)) ⊆
⋃

k∈ω, vRwk

B(w1,...,wk)

. Therefore, F−1(R(v)) =
⋃
k∈ω, vRwk B(w1,...,wk), and F is continuous.

In order to show that F preserves opens, consider any basic set B(w1,...,wk)

of τΣ and show that F (B(w1,...,wk)) is open in τR. For this we show that

F (B(w1,...,wk)) = R(wk).

Suppose v ∈ F (B(w1,...,wk)). Then there exists σ = (w1, . . . , wk, . . . ) ∈
B(w1,...,wk) such that F (σ) = v. Hence wkRv. Conversely, suppose wkRv.
Consider a (finite) selective path σ0 from w1 to v containing (w1, . . . , wk) as
an initial segment. Then σ = (σ0, v, v, v, . . . ) ∈ B(w1,...,wk) and F (σ) = v.
Hence F (B(w1,...,wk)) = R(wk), which is a basic open of τR. So, F is open.

Moreover, as follows from the definition of |=Σ,

σ |=Σ P iff F (σ) |= P.

Now since every continuous and open map satisfying this condition is a
topo-bisimulation (see [1]), so is our F . q.e.d.

Theorem 5.4 S4 is complete with respect to the Cantor space.
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Proof. Suppose S46` ϕ. Then by Theorem 4.13 there is a finite rooted
Kripke model M refuting ϕ. By Theorem 4.14 we can assume that every
cluster of M is proper. By Propositions 5.2 and 5.3 there exists a valuation
|=C on the Cantor set C such that 〈C, |=C〉 is topo-bisimilar to M . Hence, ϕ
is refuted on C. q.e.d.

5.2 Counterexamples on the reals

In the previous subsection we described how selective unraveling transforms
counterexamples on a finite rooted Kripke model M into counterexamples on
the Cantor space C. In this subsection we show how to transfer counterex-
amples from M to (0, 1). As a result, we obtain a new proof of completeness
of S4 with respect to the real line.

Our strategy is similar to that in Section 5.1: we start with a non-
theorem of S4 having a counterexample on a finite rooted Kripke model
M = 〈W,R, |=〉 whose every cluster is proper. Then we construct the set Σ
of all selective paths of W , and subtract a proper subset Λ of Σ, which is
in a one-to-one correspondence with (0, 1). After that we define a topology
τΛ on Λ so that 〈Λ, τΛ〉 is homeomorphic to (0, 1) with its natural topology.
Finally, we define a valuation |=Λ on Λ, and show that 〈Λ, τΛ, |=Λ〉 is topo-
bisimilar to M . Note that since τΛ is pretty different from τΣ, the topo-
bisimulation between 〈Λ, τΛ, |=Λ〉 and M is not simply the restriction of the
topo-bisimulation between 〈Σ, τΣ, |=Σ〉 and M constructed in Section 5.1,
but rather its appropriate modification.

Recall from Section 5.1 that in selective unraveling we had three different
types of selective branches: going infinitely to the left, infinitely to the
right, or infinitely zigzagging. Also recall that a selective branch σ is going
infinitely to the left if σ = (w1, . . . , wk, wk, . . . ); σ is going infinitely to the
right if σ = (w1, . . . , wn, wn+1, . . . ), where wk+1 is a strong successor of wk
for any k ≥ n; and finally, σ is zigzagging if σ = (w1, . . . , wn, wn+1, . . . ),
where there are infinitely many k ≥ n with wk+1 = wk, and there are also
infinitely many k ≥ n with wk+1 being a strong successor of wk.

In order to transfer counterexamples from M to (0, 1), in the definition
of selective unraveling we need to restrict ourselves only to those branches
which are either going infinitely to the left or are infinitely zigzagging. In
other words, we define a real path of W to be a selective path of W which
is either going infinitely to the left or is infinitely zigzagging.

Denote by Π the set of all real infinite paths of W . So, Π is the subset of
the set Σ of all selective infinite paths of W consisting of all selective paths
going infinitely to the left or infinitely zigzagging. Hence, Π is in a one-to-one
correspondence with the set of those infinite branches of the infinite binary
tree T2 which either have 0 from some node on or are infinitely zigzagging.

This correspondence sets desired connection between Π and (0, 1). To see
this recall the dyadic representation of a number from [0, 1]. Let x ∈ [0, 1].
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To construct an infinite branch α = (an)n∈ω of T2 representing x observe
that either x ∈ [0, 1

2 ] or x ∈ [1
2 , 1]. In the former case put a1 = 0 and in

the latter case put a1 = 1. Assume x ∈ [0, 1
2 ]. Then either x ∈ [0, 1

4 ] or
x ∈ [1

4 ,
1
2 ]. Again in the former case put a2 = 0 and in the latter case put

a2 = 1. Continuing this process, we will get an infinite branch α = (an)n∈ω
of T2 representing x.

Note that there are two ways for the dyadic representation of 1
2 : either

as (0, 1, 1, 1, . . . ) or as (1, 0, 0, 0, . . . ). In general, there are two ways for the
dyadic representation of any number m

2n ∈ [0, 1] (m,n ∈ ω, 0 < m < 2n):
either as (a1, . . . , ak, 1, 0, 0, 0, . . . ) or as (a1, . . . , ak, 0, 1, 1, 1, . . . ). Therefore,
if we throw away all infinite branches of T2 having 1 from some node on
plus (0, 0, 0, . . . ), we obtain a one-to-one correspondence between (0, 1) and
the remaining infinite branches of T2. Hence, there exists a one-to-one cor-
respondence between (0, 1) and Λ = Π− {(w,w,w, . . . )}.

Suppose (w1, . . . , wk−1, wk, wk, . . . ) ∈ Λ (wk−1 6= wk) represents m
2n ∈

(0, 1). Also suppose

C(w1,...,wk) = {λ ∈ Λ : the initial segment of λ is (w1, . . . , wk)}.

(Observe that C(w1,...,wk) = B(w1,...,wk) ∩ Λ.)
In order to transfer topological structure of (0, 1) to Λ observe that

the family {(m2n ,
m+1
2n ) : m,n ∈ ω, 0 < m + 1 < 2n} forms a basis for

the topology on (0, 1), and that the subset of Λ representing (m2n ,
m+1
2n ) is

D(w1,...,wk) = C(w1,...,wk) − {(w1, . . . , wk−1, wk, wk, . . . )}.
Hence, if we define topology τΛ on Λ by introducing

{D(w1,...,wk) : (w1, . . . , wk) is a finite selective path of Λ}

as a basis, the following obvious fact holds:

Fact 5.5 (Λ, τΛ) is homeomorphic to (0, 1).

Now we define |=Λ on Λ, and show that there exists a topo-bisimulation
between (Λ, τΛ, |=Λ) and M .

In order to define |=Λ observe that either λ ∈ Λ gets stable or it keeps
cycling. In other words, either λ = (w1, . . . , wk−1, wk, wk, . . . ), or λ =
(w1, . . . , wn, wn+1, . . . ), where wi belongs to some cluster C ⊆W , for i > n.
In the former case we say that wk stabilizes λ, and in the latter – that λ
keeps cycling in C. Now define |=Λ on Λ by putting

λ |=Λ P iff


wk−1 |= P if wk stabilizes λ,

ρ(C) |= P if λ keeps cycling in C ⊆W, where ρ(C) is
some arbitrarily chosen representative of C.

Finally define a function F : Λ→W by putting
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F (λ) =
{
wk−1 if wk stabilizes λ,
ρ(C) if λ keeps cycling in C.

Proposition 5.6 F is a total topo-bisimulation between MΛ = 〈Λ, τΛ, |=Λ〉
and M = 〈W,R, |=〉.

Proof. Obviously F is well-defined, and is actually surjective. (For any
wk ∈W , F (w1, . . . , wk, wk+1, wk+1, . . . ) = wk, where (w1, . . . , wk) is a finite
selective path from w1 to wk, and wk+1 is a strong successor wk. Note
that wk+1 exists, since every cluster of W is proper.) Let us check that
F : 〈Λ, τΛ〉 → 〈W, τR〉 is open. Recall that R(v), for v ∈W , are basic opens
of τR. So, in order to check that F is continuous, we need to show that the
F inverse image of every R(v) is open in τΛ. Observe that for any v ∈W ,

F−1(R(v)) =
⋃

k∈ω, vRwk

D(w1,...,wk),

which is an element of τΛ. Indeed, suppose λ ∈
⋃
k∈ω, vRwk D(w1,...,wk).

Then λ belongs to one of D(w1,...,wk) with vRwk. Now λ ∈ D(w1,...,wk)

implies wkRF (λ), which together with vRwk and transitivity of R yield
vRF (λ). Hence, F (λ) ∈ R(v), and λ ∈ F−1(R(v)). Conversely, sup-
pose λ ∈ F−1(R(v)). Then F (λ) ∈ R(v), and vRF (λ). Now either λ is
going infinitely to the left or is infinitely zigzagging. In the former case,
λ = (w1, . . . , wk, wk+1, wk+1, . . . ), where wk = F (λ). Hence, λ ∈ D(w1,...,wk)

with vRwk. In the latter case, λ = (w1, . . . , wn, wn+1, wn+2, . . . ), where
F (λ) ∈ C(wn+1). Hence, λ ∈ D(w1,...,wn,wn+1) with vRwn+1. In either case,
λ ∈

⋃
k∈ω, vRwk D(w1,...,wk), and F−1(R(v)) =

⋃
k∈ω, vRwk D(w1,...,wk). Hence,

F is continuous.
In order to show that F preserves opens, consider any basic setD(w1,...,wk)

of τΛ and show that F (D(w1,...,wk)) is open in τR. For this we show that

F (D(w1,...,wk)) = R(wk).

Suppose v ∈ F (D(w1,...,wk)). Then there exists λ = (w1, . . . , wk, . . . ) ∈
D(w1,...,wk) such that F (λ) = v. Now either λ is going infinitely to the left or
is infinitely zigzagging. In the former case, λ = (w1, . . . , wk, . . . , wk+l, wk+l+1,
wk+l+1, . . . ), where wk+l = v. In the latter case, v is a representative of
a cluster C where λ keeps cycling. In either case, wkRv. Hence, v ∈
R(wk). Conversely, suppose v ∈ R(wk). Then wkRv. Consider λ =
(w1, . . . , wk, . . . , v, u, u, . . . ), where (w1, . . . , wk, . . . , v) is a finite selective
path of W from w1 to v containing (w1, . . . , wk) as an initial segment, and
u is a strong successor of v. (u exists, since every cluster of W is proper.)
Then λ ∈ D(w1,...,wk) and F (λ) = v. Hence F (D(w1,...,wk)) = R(wk), which
is a basic open of τR. So, F is open.
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Moreover, as follows from the definition of |=Λ,

λ |=Λ P iff F (λ) |= P.

Now since every continuous and open map satisfying this condition is a
topo-bisimulation (see [1]), so is our F . q.e.d.

Corollary 5.7 S4 is complete with respect to (0, 1).

Proof. Suppose S46` ϕ. Then by Theorem 4.13 there is a finite rooted
Kripke model M refuting ϕ. By Theorem 4.14 we can assume that every
cluster of M is proper. By Proposition 5.6, M is topo-bisimilar to MΛ =
〈Λ, τΛ, |=Λ〉. Hence, MΛ is refuting ϕ. Now since 〈Λ, τΛ〉 is homeomorphic
to (0, 1), ϕ is refuted on (0, 1). q.e.d.

Theorem 5.8 S4 is complete with respect to the real line R.

Proof. Suppose S46` ϕ. Then by Corollary 5.7 there exists a valuation
|=(0,1) on (0, 1) refuting ϕ. Now since (0, 1) is homeomorphic to R, ϕ is
refuted on R. q.e.d.

This provides an alternative proof of McKinsey and Tarski’s original
proof. It should be noted that we can improve a little bit on their result.
Indeed, McKinsey and Tarski proved that for any non-theorem ϕ of S4 there
exists a valuation ν on R falsifying ϕ.

Corollary 5.9 There exists a single valuation ν on R falsifying all the non-
theorems of S4.

Proof. Enumerate all the non-theorems of S4. This can be done since the
language of S4 is countable. Let this enumeration be {ϕ1, ϕ2, . . . }. Since
the interval (n, n + 1) is homeomorphic to R, from Theorem 5.8 it follows
that there exists a valuation νn on (n, n+1) such that 〈(n, n+1), νn〉 falsifies
ϕn. (Note that we need not know anything about the shape of νn(ϕn).) Now
take

⋃
n∈ω(n, n+ 1). For any propositional letter P let ν(P ) =

⋃
n∈ω νn(P )

be the valuation of P on R. Note that each 〈(n, n + 1), νn〉 is an open
submodel of 〈R, ν〉, where the ‘identity embedding’ is a topo-bisimulation.
Hence, the truth values of modal formulas do not change moving from each
〈(n, n + 1), νn〉 to 〈R, ν〉. Therefore, ϕn is still falsified on the whole R for
each n. Thus, we have constructed a single valuation ν on R falsifying all
the non-theorems of S4. q.e.d.

This also shows that though very different from the standard canonical
Kripke model of S4, R shares some of its universal properties.
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5.3 Logical non-finiteness on the reals

Recall that two formulas ϕ and ψ are said to be S4-equivalent if S4 ` ϕ↔ ψ.
It is well known that there exist infinitely many formulas of one-variable
which are not S4-equivalent. E.g., consider the following list of formulas:

ϕ0 = P ;

ϕn = ϕn−1 ∧3(3ϕn−1 ∧ ¬ϕn−1).

We can easily construct a Kripke model on which all ϕn have different
interpretations. Let M = 〈ω,R, |=〉, where ω denotes the set of all natural
numbers, nRm iff m ≤ n, and n |= P iff n is odd. Then one can readily
check that ϕn is true at all odd points > n. Hence every ϕn has a different
interpretation on M . It implies that the ϕn are not S4-equivalent. Now
we will give a topological flavor to this result by showing that interpreting
a propositional variable as a certain subset of R allows us to construct
infinitely many S4-nonequivalent formulas of one variable. Corollary 5.9
already told us such a uniform choice must exist, but the proof does not
construct ν(P ) explicitly. The following argument does, and thereby also
highlights the topological content of our modal completeness theorem.

We use 3 and 2 instead of the standard notations () and Int() for the
closure and interior operators of a topological space. This modal notation
shows its basic use in topology because it allows us to write topological
formulas in a much more perspicuous fashion.

To proceed further we need to recall the definition of Hausdorff’s residue
of a given set. Suppose a topological space 〈W, τ〉 and X ⊆ W are given.
%(X) = X ∩3(3X −X) is called the Hausdorff residue of X. Let %0(X) =
X, %1(X) = %(X) and %n+1(X) = %%n(X).

X is said to be of rank n, written r(X) = n, if n is the least natural
number such that %n(X) = ∅. X is said to be of finite rank if there exists a
natural n such that X is of rank n. X is said to be of infinite rank if it is
not of finite rank.

x ∈ X is said to be of rank n if x ∈ %n(X), but x /∈ %n+1(X). x ∈ X is
said to be of finite rank if there exists a natural n such that x is of rank n.
x is said to be of infinite rank if it is not of finite rank.

Obviously X is of rank n iff the rank of every element of X is strictly
less than n, and there is at least one element of X of rank n − 1; X is of
finite rank iff there is a natural n such that the rank of every element of X
is strictly less than n; and X is of infinite rank iff there is no finite bound
on the ranks of elements of X.

It is obvious that if we interpret P as a subset X of R, then ϕn will
be interpreted as %n(X). So, in order to show that different ϕn are S4-
nonequivalent, it is sufficient to show that there is X ⊂ R such that %(X) ⊃
%2(X) ⊃ · · · ⊃ %n(X) ⊃ . . . . Indeed, we have the following
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Proposition 5.10 There exists a subset X of R such that %(X) ⊃ %2(X) ⊃
· · · ⊃ %n(X) ⊃ . . . .

Proof: We will construct X inductively. Fix a natural number k.

Step 1: Consider a sequence {xi1}∞i1=1 from (k − 1, k) converging to k − 1,
and put

X1 = {k − 1} ∪
∞⋃
i1=1

{yi1i2}
∞
i2=1,

where {yi1i2}
∞
i2=1 is a sequence from (xi1+1, xi1) converging to xi1+1. Note

that

3X1 = X1 ∪ {xi1}∞i1=1,

3X1 −X1 = {xi1}∞i1=1,

3(3X1 −X1) = {k − 1} ∪ {xi1}∞i1=1, and

%(X1) = {k − 1}.

So, k − 1 is the only point of X1 of rank 1, and r(X1) = 2.

Step 2: Consider a sequence {xi1,i2i3
}∞i3=1 from (yi1i2+1, y

i1
i2

) converging to
yi1i2+1, and put

X2 = {k − 1} ∪
∞⋃
i1=1

{yi1i2}
∞
i2=1 ∪

∞⋃
i1=1

∞⋃
i2=1

∞⋃
i3=1

{yi1,i2,i3i4
}∞i4=1,

where {yi1,i2,i3i4
}∞i4=1 is a sequence from (xi1,i2i3+1, x

i1,i2
i3

) converging to xi1,i2i3+1.
Note that X2 ⊃ X1, and

3X2 = X2 ∪ {xi1}∞i1=1 ∪
⋃∞
i1=1

⋃∞
i2=1{x

i1,i2
i3
}∞i3=1,

3X2 −X2 = {xi1}∞i1=1 ∪
⋃∞
i1=1

⋃∞
i2=1{x

i1,i2
i3
}∞i3=1,

3(3X2−X2)={k−1}∪
⋃∞
i1=1{y

i1
i2
}∞i2=1∪{xi1}∞i1=1∪

⋃∞
i1=1

⋃∞
i2=1{x

i1,i2
i3
}∞i3=1,

%(X2) = {k − 1} ∪
⋃∞
i1=1{y

i1
i2
}∞i2=1, and

%2(X2) = {k − 1}.

So, the points of X2 of rank 1 are yi1i2 , for arbitrary i1 and i2, k − 1 is the
only point of X2 of rank 2, and r(X2) = 3.

Step n: For n ≥ 1 consider a sequence {xi1,...,i2n−2

i2n−1
}∞i2n−1=1 from (yi1,...,i2n−3

i2n−2+1 ,

y
i1,...,i2n−3

i2n−2
) converging to yi1,...,i2n−3

i2n−2+1 , and put
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Xn = {k − 1} ∪
∞⋃
i1=1

{yi1i2}
∞
i2=1 ∪ . . . ∪

∞⋃
i1=1

. . .
∞⋃

i2n−1=1

{yi1,...,i2n−1

i2n
}∞i2n=1,

where {yi1,...,i2n−1

i2n
}∞i2n=1 is a sequence from (xi1,...,i2n−2

i2n−1+1 , x
i1,...,i2n−2

i2n−1
) converging

to xi1,...,i2n−2

i2n−1+1 . Also let

A = {xi1}∞i1=1 ∪ . . . ∪
∞⋃
i1=1

. . .
∞⋃

i2n−2=1

{xi1,...,i2n−2

i2n−1
}∞i2n−1=1.

Then note that Xn ⊃ Xn−1 ⊃ · · · ⊃ X2 ⊃ X1, and

3Xn = Xn ∪A,

3Xn −Xn = A,

3(3Xn −Xn) = A ∪ (Xn − [
⋃∞
i1=1 . . .

⋃∞
i2n−1=1{y

i1,...,i2n−1

i2n
}∞i2n=1]),

%(Xn) = Xn − [
⋃∞
i1=1 . . .

⋃∞
i2n−1=1{y

i1,...,i2n−1

i2n
}∞i2n=1],

%2(Xn) = ρ(Xn)− [
⋃∞
i1=1 . . .

⋃∞
i2n−3=1{y

i1,...,i2n−3

i2n−2
}∞i2n−2=1],

. . .

%n(Xn) = {k − 1}.

So, the points of Xn of rank 1 are

Xn − [
∞⋃
i1=1

. . .
∞⋃

i2n−1=1

{yi1,...,i2n−1

i2n
}∞i2n=1],

the points of Xn of rank 2 are

Xn − [
∞⋃
i1=1

. . .
∞⋃

i2n−3=1

{yi1,...,i2n−3

i2n−2
}∞i2n−2=1 ∪

∞⋃
i1=1

. . .
∞⋃

i2n−1=1

{yi1,...,i2n−1

i2n
}∞i2n=1],

and so on; finally, k−1 is the only point of Xn of rank n, and r(Xn) = n+1.

Now let X1 be constructed in (0, 1), X2 in (1, 2), Xn in (n − 1, n), and
so on. We put

X =
∞⋃
n=1

Xn.

Then it is obvious that n− 1 ∈ %n(X) and n− 1 /∈ %n+1(X), for any natural
n. So, %(X) ⊃ %2(X) ⊃ · · · ⊃ %n(X) ⊃ . . . , and X contains points of every
finite rank. q.e.d.
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Remark 5.11 It is worth to be noted that the X constructed above does
not contain elements of infinite rank. However, a little adjustment of the
above construction will allow us to construct a subset of R with an element
of infinite rank. Actually, it is possible to construct a subset of R containing
elements of rank α, for any ordinal α < ℵ1.

Returning to our list of formulas, with P as the just constructed X, the
interpretation of every ϕn in R will be different, in terms of some topolog-
ically significant phenomenon. In the next section we will show that if we
restrict ourselves to only “good” subsets of R, then the situation will be
drastically changed.

6 Axiomatizing special kinds of regions

As we saw in the previous section, by interpreting propositional variables as
certain subsets of the real line R, we can refute every non-theorem of S4 on
R. Certainly not all subsets of R are required for refuting the non-theorems
of S4. In this section, we will analyze the complexity of the subsets of R
required for refuting the non-theorems of S4. Similarly to Section 5.5, we
prefer to use 3 and 2 to denote the closure and interior operators of a
topological space. For consistency we also use ∧,∨ and ¬ to denote set-
theoretical intersection, union and complement.

6.1 Serial sets on the real line

To start with, consider subsets of R with the simplest intuitive structure.
Call X ⊆ R convex if all points lying in between any two points of X belong
to X. In other words, X is convex if x, y ∈ X and x ≤ y imply [x, y] ⊆ X.
Every convex subset of R has one of the following forms:

∅, (x, y), [x, y], [x, y), (x, y], (−∞, x), (−∞, x], (x,+∞), [x,+∞), R.

Definition 6.1 Call a subset of R serial if it is a finite union of convex
subsets of R. Denote the set of all serial subsets of R by S(R). So,

S(R) = {X ∈ P(R) : X is a serial subset of R}.

Obviously the X constructed in Proposition 5.10 is not serial, and actu-
ally this was absolutely crucial in showing that X had points of any finite
rank. Indeed, we have the following

Lemma 6.2 r(X) = 0 for any X ∈ S(R).
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Proof: First, r(Y ) = 0 for any convex subset Y of R. For, if Y is convex,
then 3Y ∧ ¬Y consists of at most two points, 3(3Y ∧ ¬Y ) = 3Y ∧ ¬Y ,
and %(Y ) = Y ∧3(3Y ∧ ¬Y ) = Y ∧ (3Y ∧ ¬Y ) = ∅. Hence r(Y ) = 0.

Now let X be a serial subset of R. Then X =
∨n
i=1Xi, where every Xi

is a convex subset of R, and actually we can assume that all Xi are disjoint.
But then %(X) =

∨n
i=1 %(Xi) = ∅, and hence r(X) = 0. q.e.d.

It follows that if we interpret P as a serial subset of R, then no two ϕn
(n ≥ 1) from the previous section define sets equal to each other.

Call a valuation ν of our language L to subsets of R serial if ν(P ) ∈ S(R)
for any propositional variable P . Since S(R) is closed with respect to ¬,∧
and 3, we have that ν(ϕ) ∈ S(R) for any serial valuation ν. Call a formula
ϕ S-true if it is true in R under a serial valuation. Call ϕ S-valid if ϕ is
S-true for any serial valuation on R. Let L(S) = {ϕ : ϕ is S-valid}.

Fact 6.3 L(S) is a normal modal logic over S4.

Obviously all ϕn (n ≥ 1) from the previous section are L(S)-equivalent.
So, it is natural to expect that there are only finitely many formulas in
one variable which are L(S)-nonequivalent, and indeed that L(S) is a much
stronger logic than S4.

As a first step in this direction, we show that the Grzegorczyk axiom

Grz = 2(2(P → 2P )→ P )→ P

belongs to L(S).

Fact 6.4 Grz is S-valid.

Proof. Grz is S-valid iff X ⊆ 3(X ∧ ¬3(3X ∧ ¬X)) for any X ∈ S(R).
Suppose X ∈ S(R). Since 3X ∧ ¬X is finite, 3(3X ∧ ¬X) = 3X ∧ ¬X.
Hence 3(X∧¬3(3X∧¬X)) = 3(X∧¬(3X∧¬X)) = 3(X∧(¬3X∨X)) =
3X, which clearly contains X. So, X ⊆ 3(X ∧ ¬3(3X ∧ ¬X)). q.e.d.

As a next step, we show that the axioms

BD2 = (¬P ∧3P )→ 32P , and
BW2 = ¬(P ∧Q ∧ 3(P ∧ ¬Q) ∧ 3(¬P ∧Q) ∧ 3(¬P ∧ ¬Q)),

bounding the depth and the width of a Kripke model to 2, are S-valid.

Fact 6.5 BD2 and BW2 are S-valid.

Proof: Note that BD2 is S-valid iff 3X ∧ ¬X ⊆ 32X for any X ∈ S(R),
and that BW2 is S-valid iffX∧Y ∧3(X∧¬Y )∧3(Y ∧¬X)∧3(¬X∧¬Y ) = ∅
for any X,Y ∈ S(R).

To show that 3X ∧ ¬X ⊆ 32X for any X ∈ S(R), suppose x ∈ 3X ∧
¬X. Then x is a limit point of X not belonging to X. Since X is serial, there
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is y ∈ R such that either y < x and (y, x) ⊆ X, or x < y and (x, y) ⊆ X.
In both cases it is obvious that x ∈ 32X. So, 3X ∧ ¬X ⊆ 32X.

To show that X ∧ Y ∧3(X ∧ ¬Y ) ∧3(Y ∧ ¬X) ∧3(¬X ∧ ¬Y ) = ∅ for
any X,Y ∈ S(R), suppose x ∈ X ∧ Y ∧ 3(X ∧ ¬Y ) ∧ 3(Y ∧ ¬X). Then
x /∈ 2X and x /∈ 2Y . Hence there exist y, z ∈ R such that y < x < z
and (y, z) ∩ (¬X ∧ ¬Y ) = ∅, which means that x /∈ 3(¬X ∧ ¬Y ). So,
X ∧ Y ∧3(X ∧ ¬Y ) ∧3(Y ∧ ¬X) ∧3(¬X ∧ ¬Y ) = ∅. q.e.d.

The following is an immediate consequence of our observations.

Corollary 6.6 S4⊕Grz⊕BD2 ⊕BW2 ⊆ L(S).

In order to prove the converse, and hence complete our axiomatization of
the logic of serial subsets of R, observe that S4⊕Grz⊕BD2⊕BW2 is actu-
ally the complete modal logic of the following ‘2-fork’ Kripke frame 〈W,R〉,
where W = {w1, w2, w3} and w1Rw1, w2Rw2, w3Rw3, w1Rw2, w1Rw3:











J
J
J
JJ

•

• •

w1

w2 w3

Indeed, it is well known that Grz is valid on a Kripke frame iff it is a
Noetherian partial order, that BD2 is valid on a partially ordered Kripke
frame iff its depth is bounded by 2, and that BW2 is valid on a partially
ordered Kripke frame of a depth ≤ 2 iff its width is bounded by 2. Now,
denoting the logic of 〈W,R〉 by L(〈W,R〉), we have the following:

Theorem 6.7 S4⊕Grz⊕BD2 ⊕BW2 = L(〈W,R〉).

Proof: Denote S4⊕Grz⊕BD2⊕BW2 by L. It is obvious that 〈W,R〉 |=
Grz,BD2,BW2. Hence L ⊆ L(〈W,R〉). Conversely, since Grz is a theorem
of L, every L-frame is a Noetherian partial order. Since BD2 is a theorem
of L, every L-frame is of the depth ≤ 2, hence L has the f.m.p., and thus
is complete with respect to finite rooted partially ordered Kripke frames of
depth ≤ 2. Since BW2 is a theorem of L, it is obvious that the width
of finite rooted L-frames is also ≤ 2. But then it is routine to check that
every such frame is a p-morphic image of 〈W,R〉. Hence L(〈W,R〉) ⊆ L,
and L = L(〈W,R〉). q.e.d.

As a final move, we show that 〈W, τR〉 is an open and serial image of R,
meaning that there is an open map f : R → W such that f−1(X) ∈ S(R)
for any subset X of W .
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Recall that τR consists of the upward closed subsets of W , which ob-
viously are ∅, {w2}, {w3}, {w2, w3}, and W . Fix any x ∈ R and define
f : R→W by putting

f(y) =


w1 for y = x,
w2 for y < x,
w3 for y > x.

Then it is routine to check that f−1(∅) = ∅, f−1({w2}) = (−∞, x),
f−1({w3}) = (x,+∞), f−1({w2, w3}) = (−∞, x) ∪ (x,+∞), and f−1(W ) =
R. So, f is continuous. Moreover, for any open subset U of R, if x ∈ U ,
then f(U) = W ; and if x /∈ U , then f(U) ⊆ {w2, w3}, which is always open.
Hence, f is open. Furthermore, from the definition of f it follows that the
f -inverse image of any subset of W is a serial subset of R. So, 〈W, τR〉 is an
open and serial image of R.

As a trivial consequence of this observation, we obtain that for every
valuation |= on 〈W,R〉 there is a serial valuation |=S on R such that 〈W,R, |=
〉 is topo-bisimilar to 〈R, |=S〉. Hence, every non-theorem of L(〈W,R〉) is a
non-theorem of L(S), and we have the following:

Corollary 6.8 L(S) ⊆ L(〈W,R〉).

Combining Corollaries 6.6 and 6.8 and Theorem 6.7 one obtains:

Theorem 6.9 L(S) = L(〈W,R〉) = S4⊕Grz⊕BD2 ⊕BW2.

6.2 Formulas in one variable over the serial sets

This section provides some more concrete information on ‘serial sets’. As
L(S) is the logic of the finite ‘2-fork’ frame, for every natural number n ≥ 0,
there are only finitely many L(S)-nonequivalent formulas built from the
variables P1, . . . , Pn. In this subsection we show that there are exactly 64
L(S)-nonequivalent formulas in one variable, and describe them all.

Theorem 6.10 Every formula in one variable is L(S)-equivalent to a dis-
junction of the following six formulas:

2P ,
2¬P ,
P ∧23¬P ,
¬P ∧23P ,
P ∧32¬P ∧32P , and
¬P ∧32P ∧32¬P .

Hence, there are exactly 64 L(S)-nonequivalent formulas in one variable.
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Proof. In line with our interest in tying up ‘modal’ and ‘topological’ ways
of thinking, we will give two different proofs of this result. One proceeds
by constructing the 1-universal Kripke model of L(S), which is a standard
technique in modal logic, the other is purely topological, using some obvious
observations on serial subsets of R.

First Proof. Since L(S) is the logic of the ‘2-fork’ frame, we can easily
construct the 1-universal Kripke model 〈W (1), |=(1)〉 of L(S):

�
�
�
�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

A
A
A
A
A
A

• • • •

• •

w1 w2 w3 w4

w6 w5

Here wn |= P iff n is even. Now one can readily check that each point of
W (1) corresponds to one of the six formulas in the condition of the theorem.
Hence every formula in one variable is L(S)-equivalent to a disjunction of
the above six formulas. Since there are exactly 26 different subsets of W (1),
we obtain that there are exactly 64 L(S)-nonequivalent formulas in one
variable.

Second Proof. Observe that there exists a serial subset X of R such
that 2X 6= 2¬X 6= X ∧ 23¬X 6= ¬X ∧ 23X 6= X ∧ 32¬X ∧ 32X 6=
¬X ∧ 32X ∧ 32¬X. For example, let x < y < z < u, and take X =
[x, y) ∪ (y, z) ∪ {u}. Then one can readily check that

2X = (x, y) ∪ (y, z),
2¬X = (−∞, x) ∪ (z, u) ∪ (u,+∞),
X ∧23¬X = {u},
¬X ∧23X = {y},
X ∧32¬X ∧32X = {x}, and
¬X ∧32X ∧32¬X = {z}.

Hence, we can always interpret P as a serial subset of R such that all
the six formulas of the theorem correspond to different serial subsets of R.

Now, let us prove that every subset of R obtained by repeatedly applying
¬,∧,2 to a serial set X is equal to a finite (including the empty) union of
the following serial subsets:

30



T1 = 2X,
T2 = 2¬X,
T3 = X ∧23¬X,
T4 = ¬X ∧23X,
T5 = X ∧32¬X ∧32X, and
T6 = ¬X ∧32X ∧32¬X.

For this first observe that Ti∧Tj = ∅ if i 6= j, and that
∨6
i=1 Ti = R. So,

these six serial subsets of R are mutually disjoint and jointly exhaustive.
Next observe that ¬Ti = Tj ∨ Tk ∨ Tl ∨ Tm ∨ Tn, where i, j, k, l,m, n ∈
{1, 2, 3, 4, 5, 6} are different from each other. Finally observe that 2T1 = T1,
2T2 = T2, and 2T3 = 2T4 = 2T5 = 2T6 = ∅.

Hence every subset of R obtained by repeatedly applying ¬,∧,2 to
{T1, . . . , T6} is a finite (including the empty) union of {T1, . . . , T6}.

Now suppose Y ⊆ R is obtained by repeatedly applying ¬,∧,2 to X.
We prove by induction on the complexity of Y that Y is equal to a finite
(including the empty) union of {T1, . . . , T6}.

Base case. Since X = T1 ∨ T3 ∨ T5 (and ¬X = T2 ∨ T4 ∨ T6), the base case
(that is when Y = X) is obvious.

Complement. Suppose Y = ¬Z and Z = Ti1 ∨ · · · ∨Tik , where i1, . . . , ik ∈
{1, . . . , 6}. Then Y = ¬(Ti1 ∨ · · · ∨ Tik) = ¬Ti1 ∧ · · · ∧ ¬Tik . Since every
¬Tij is equal to

∨
is 6=ij Tis , using the distributivity law we obtain that Y =∨

is,it∈{1,...,6}(Tis∧Tit). Since for different is and it, Tis∧Tit = ∅, which is the
empty union of Tis, we finally obtain that Y is a finite union of {T1, . . . , T6}.

Intersection. Suppose Y = Z1∧Z2, Z1 = Ti1∨· · ·∨Tik and Z2 = Tj1∨· · ·∨
Tjm , where i1, . . . , ik, j1, . . . , jm ∈ {1, . . . , 6}. Similarly to the above case,
using the distributivity law we obtain that Y is a finite union of {T1, . . . , T6}.

Interior. Suppose Y = 2Z and Z = Ti1 ∨ · · · ∨ Tik , where i1, . . . , ik ∈
{1, . . . , 6}. Since Tis are mutually disjoint, Y = 2Ti1 ∨· · ·∨2Tik . Now since
{T1, . . . , T6} is closed with respect to 2, we obtain that Y is a finite union
of {T1, . . . , T6}.

Hence, every subset of R obtained by repeatedly applying ¬,∧,2 to a
serial set X is equal to a finite (including the empty) union of {T1, . . . , T6}.
Since there are exactly 26 different subsets obtained as a union of {T1, . . . ,
T6}, we obtain that there are exactly 64 different subsets of R obtained
by repeatedly applying ¬,∧,2 to a serial set X. This directly implies that
there are exactly 64 L(S)-nonequivalent formulas in one variable. q.e.d.

The same technique can also be used to prove the normal form theorem
over L(S) for every formula with more than one proposition variable.
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6.3 Countable unions of convex sets on the real line

Let us now be a bit more systematic. By Theorem 5.8, S4 is the complete
logic of R, and hence sets of reals suffice as values ν(P ) in refuting non-
theorems. But how complex must these sets be? In first-order logic, e.g., we
know that completeness requires atomic predicates over the integers which
are at least ∆0

2. With only simpler predicates in the arithmetic hierarchy,
the logic gets richer. In a topological space like R, it seems reasonable to
look at the Borel Hierarchy G. How high up do we have to go for our S4-
counterexamples? One could analyze our construction in Section 5.3 to have
an upper bound. But here, we will state some more direct information.

Consider the set τ of all open subsets of R. Let B(τ) denote the Boolean
closure of τ . Since B(τ) contains all closed subsets of R, it is obvious that
B(τ) is closed with respect to 3. Obviously S(R) is properly contained
in B(τ). It is natural to ask whether the elements of B(τ) are enough for
refuting all the non-theorems of S4. The answer is negative: the modal logic
is still richer.

Fact 6.11 [9] The complete logic of B(τ) is Grz.

Hence, we need to seek something bigger than B(τ). Let C∞(R) denote
the set of countable unions of convex subsets of R. Since every open subset
of R is a countable union of open intervals, it is obvious that τ ⊆ C∞(R).
Let B(C∞(R)) denote the Boolean closure of C∞(R). Since τ ⊆ C∞(R), we
also have B(τ) ⊆ B(C∞(R)). It follows that B(C∞(R)) is also closed with
respect to 3. Moreover, B(τ) is properly contained in B(C∞(R)), since the
set Q of rationals belongs to B(C∞(R)) but does not belong to B(τ).

Theorem 6.12 [9] S4 is the complete logic of B(C∞(R)).

So, the Boolean combinations of countable unions of convex subsets of R
are all we need for refuting the non-theorems of S4. Since every countable
union of convex subsets of R belongs to the Borel hierarchy G2 over the
opens of R, very low level of the Borel hierarchy suffices for refuting the
non-theorems of S4. So, G itself is more than sufficient for refuting the
non-theorems of S4.

Summarizing, we constructed five Boolean algebras of subsets of R form-
ing a chain under inclusion: S(R) ⊂ B(τ) ⊂ B(C∞(R)) ⊂ G ⊂ P(R), where
S(R) is the Boolean algebra of all serial subsets of R, B(τ) the Boolean
closure of the set of all open subsets of R, B(C∞(R)) the Boolean closure
of the set of all countable unions of convex subsets of R, G the Boolean
algebra of all Borel subsets of R, and P(R) the power-set of R. All of these
Boolean algebras are closed with respect to 3. The modal logic of the last
three algebras is S4, that of the second one is Grz, and the modal logic of
the first is the logic of the ‘2-fork’ Kripke frame.

32



6.4 Generalization to R2

In this final subsection, we shift aim in a different direction. We generalize
our results on the serial subsets of R to the chequered subsets of R2, and
indicate further generalizations to any Euclidean space Rn.

A set X ⊆ R2 is convex if all points laying in between any two points of
X belong to X. It is said to be serial if X is a finite union of convex subsets
of R2. Denote the set of all serial subsets of R2 by S(R2).

Here is a real difference between R and R2. Unlike S(R), S(R2) is not
closed with respect to complement. For instance, a full circle is obviously a
convex subset of R2. However, its complement is not serial.

One natural way of overcoming this difficulty is to work with a smaller
family of chequered subsets of R2, which also has a reasonable claim to being
‘the two-dimensional generalization of the one-dimensional serial sets’.

A set X ⊆ R2 is a rectangular convex if X = X1 ×X2, where both X1

and X2 are convex subsets of R [5]. It is easy to see that every rectangular
convex is a convex set in the usual sense, but not vice versa: a circle is not
a rectangular convex.

A set X ⊆ R2 is said to be chequered if it is a finite union of rectangular
convex subsets of R2. Denote the set of all chequered subsets of R2 by
CH(R2). Obviously CH(R2) ⊂ S(R2).

Note that unlike S(R2), CH(R2) does form a Boolean algebra. Moreover,
2X,3X ∈ CH(R2) for any X ∈ CH(R2).

Fact 6.13 CH(R2) forms a Boolean algebra closed with respect to 2 and 3.

Proof. In order to show that CH(R2) forms a Boolean algebra it is suf-
ficient to show that CH(R2) is closed with respect to ¬. For this observe
that complement of a rectangular convex is union of at most four rectangu-
lar convexes, and that finite intersection of rectangular convexes is again a
rectangular convex. Now suppose A ∈ CH(R2). Then there exist rectangu-
lar convexes A1, . . . , An such that A =

⋃n
i=1Ai. But then ¬A =

⋂n
i=1 ¬Ai,

which is a chequered set by the above observation and the distributivity law.
Since CH(R2) forms a Boolean algebra, in order to show that CH(R2) is

closed with respect to 2 and 3, it is sufficient to check that CH(R2) is closed
with respect to 3. For the latter observe that the closure of a rectangular
convex is again a rectangular convex, and that the closure commutes with
finite unions. Now suppose A ∈ CH(R2). Then there exist rectangular
convexes A1, . . . , An such that A =

⋃n
i=1Ai. But then 3A =

⋃n
i=1 3Ai,

which is a chequered set by the above observation. q.e.d.

Hence, interpreting propositional variables as chequered subsets of R2,
every formula of our language will be also interpreted as a chequered subset
of R2.
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This approach leads to a logic, which we will just sketch here. Call
a valuation ν of L to subsets of R2 chequered if ν(P ) ∈ CH(R2) for any
propositional variable P . Since CH(R2) is closed with respect to ¬,∧ and
3, we have that ν(ϕ) ∈ CH(R2) for any chequered interpretation ν. Call a
formula ϕ CH-true if it is true in R2 under a chequered valuation. Call ϕ CH-
valid if ϕ is CH-true for any chequered valuation on R2. Let L(CH) = {ϕ : ϕ
is CH-valid}.

Fact 6.14 L(CH) is a normal modal logic over S4.

Now we show that, similarly to L(S), the Grzegorczyk axiom Grz is
provable in L(CH). For this it is sufficient to show that Grz is CH-valid.

Fact 6.15 Grz is CH-valid.

Proof. Grz is CH-valid iff X ⊆ 3(X∧¬3(3X∧¬X)) for any X ∈ CH(R2).
Suppose X ∈ CH(R2). Observe that, unlike S(R), 3X ∧ ¬X is not finite.
However, in this case the set 3(3X ∧ ¬X) − (3X ∧ ¬X) is finite. Denote
it by F . Then 3(X ∧ ¬3(3X ∧ ¬X)) = 3(X ∧ ¬[(3X ∧ ¬X) ∨ F ]) =
3(X∧(¬3X∨X)∧¬F ) = 3(X−F ). Now since F is finite, 3(X−F ) = 3X.
Therefore, 3(X ∧ ¬3(3X ∧ ¬X)) = 3X, which obviously contains X. So,
X ⊆ 3(X ∧ ¬3(3X ∧ ¬X)). q.e.d.

Now we show that the axioms
BD3 = 3(2P3 ∧3(2P2 ∧32P1 ∧ ¬P1) ∧ ¬P2)→ P3, and
BW4 =

∧4
i=0 3Pi →

∨
0≤i6=j≤4 3(Pi ∧3Pj),

which bound the depth and the width of a Kripke model to 3 and 4, respec-
tively, are also provable in L(CH). For this we need to show that both BD3

and BW4 are CH-valid.

Fact 6.16 (1) BD3 is CH-valid.
(2) BW4 is CH-valid.

Proof: (1) BD3 is CH-valid iff 3(2X3∧3(2X2∧32X1∧¬X1)∧¬X2) ⊆ X3

for any X1, X2, X3 ∈ CH(R2). Observe that 32X1 ∧ ¬X1 is a subset of
the frontier Fr(X1) = 3X1 ∧ ¬2X1 of X1. Hence, 3(2X3 ∧ 3(2X2 ∧
32X1 ∧ ¬X1) ∧ ¬X2) ⊆ 3(2X3 ∧ 3(2X2 ∧ Fr(X1)) ∧ ¬X2). Let X∗2 =
2X2 ∧ Fr(X1) and X∗3 = 2X3 ∧ Fr(X1). Also let ¬∗,3∗ and 2∗ denote
the corresponding operations of a closed subspace Fr(X1) of R2. Then
3(2X3 ∧ 3(2X2 ∧ Fr(X1)) ∧ ¬X2) = 3(2X3 ∧ 3X∗2 ∧ ¬X2) = 3(2X3 ∧
3∗X∗2 ∧ ¬X2) ⊆ 3(2X3 ∧ 3∗X∗2 ∧ ¬2X2) = 3(2X3 ∧ 3∗X∗2 ∧ ¬∗X∗2 ) =
3(X∗3 ∧ 3∗X∗2 ∧ ¬∗X∗2 ) = 3∗(X∗3 ∧ 3∗X∗2 ∧ ¬∗X∗2 ). Since Fr(X1) is of
dimension 1, Fr(X1) is homeomorphic to a closed serial subspace of R.
Since BD2 is S-valid in R, 3∗(X ∧3∗Y ∧ ¬∗Y ) ⊆ X for any open subsets
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X,Y of Fr(X1). Hence, 3∗(X∗3 ∧ 3∗X∗2 ∧ ¬∗X∗2 ) ⊆ X∗3 . Thus, 3(2X3 ∧
3(2X2 ∧32X1 ∧ ¬X1) ∧ ¬X2) ⊆ X3, and BD3 is CH-valid.

(2) BW2 is CH-valid iff
∧4
i=0 3Xi ⊆

∨
0≤i6=j≤4 3(Xi ∧ 3Xj) for any

X0, . . . , X4 ∈ CH(R2). Suppose x ∈
∧4
i=0 3Xi. Then x is a limit point

of all Xi. Since there are five Xi, and every Xi belongs to CH(R2), there
should exist Xi and Xj such that x is a limit point of Xi ∧ Xj . So, x ∈∨

0≤i6=j≤4 3(Xi ∧3Xj). q.e.d.

As an immediate consequence we obtain that L(CH) ` Grz,BD3,BW4.
Hence, like L(S), L(CH) is also a tabular logic. In a similar fashion, by
induction on the dimension of Rn, we can prove that the logic of chequered
subsets of Rn is also tabular. In particular, it validates BDn+1 and BW2n .
Hence, we are capable of capturing the dimension of Euclidean spaces. For
more details in this direction we refer to [3].

7 A general picture

7.1 The deductive landscape

The logics that we have studied in this paper fit into a more general en-
vironment. Typical for modal logic is its lattice of deductive systems such
as K, S4, S5 or GL. These form a large family describing different classes
of relational frames, with often very different motivations (cf. the series of
books “Advances in Modal Logic”, CSLI and FOLLi). Among the uncount-
ably many modal logics, a small number are distinguished for one of two
reasons. Logics like S4 or S5 were originally proposed as syntactic proof
theories for notions of modality, and then turned out to be semantically
complete with respect to natural frame classes, such as (for S4) transitive
reflexive orders. Other modal logics, however, were discovered as the com-
plete theories of important frames, such as the natural numbers with their
standard ordering. What about a similar landscape of modal logics on the
topological interpretation?

Some well-known modal logics extending S4 indeed correspond to natu-
ral classes of topological spaces. E.g., it is easy to see that the ‘identity logic’
with axiom ϕ → 2ϕ axiomatizes the complete logic of all discrete spaces.
And it also defines them semantically through the usual notion of frame cor-
respondence – which can be lifted to the topological semantics in a straight-
forward manner. But already S5 corresponds to a less standard condition,
viz. that every point has an open neighborhood all of whose points have x
in all their open neighborhoods. (Alternatively, this says that every open
set is closed.) Also, even rich topological spaces do not seem to validate very
spectacular modal logics, witness the fact that R has just S4 for its modal
theory. We did find stronger logics with ‘general frames’ though, i.e., frames
with a designated interior algebra of subsets, such as R with the serial sets.
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The latter turned out to be a well-known modal ’frame logic’, and we have
not been able so far to find really new modal logics arising on the topological
interpretation.

A related question is what becomes of the known general results on
completeness and correspondence for modal logic in the topological setting.
There appear to be some obstacles here. E.g., the substitution method for
Sahlqvist correspondence (cf. [10]) has only a limited range. It does work
for axioms like the above ϕ → 2ϕ, where it automatically generates the
corresponding first-order condition

(∀x)(∃U ∈ τ)(x ∈ U & (∀y ∈ U)(y = x)),

i.e., discreteness. Likewise, it works for the S5 symmetry axiom P → 23P ,
where it produces the above-mentioned

(∀x)(∃U ∈ τ)(x ∈ U & (∀y ∈ U)(∀V ∈ τ)(y ∈ V → x ∈ V )).

The method also works for antecedents of the form 2P – but things stop
with antecedents like 3P or 22P . The reason is that, on the topological
semantics, one modality 2 expresses a two-quantifier combination

∃U ∈ τ such that ∀x ∈ U,

so that syntactic complexity builds up more rapidly than in standard modal
logic, where each modality is one quantifier over relational successors of the
current world. General correspondence or completeness results for topo-
logical modal logics therefore seem harder to obtain — and we may need
different syntactic notions for them (see [14] for recent results in that direc-
tion).

7.2 The expressive landscape

In any case, the basic modal language seems too poor to express many prop-
erties of topological interest. One earlier example was connectedness. This
property cannot be modally defined. To see this, suppose there was a modal
formula ϕ defining the connected topological spaces in the sense of frame
correspondence. Now consider the non-connected discrete 2-element space
with universe {1, 2}. The formula ϕ must fail here under some valuation ν –
say at point 1. Now consider the one-point model {1} copying 1’s valuation.
The link between just the worlds 1 in the two models is a topo-bisimulation,
as is easy to see. But then, by modal invariance, ϕ would also fail in the
connected one-point model: a contradiction.

As we have seen already, connectedness does have a definition in a modal
language extended with a universal modality Uϕ saying that ϕ holds at all
points of the topological space:
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U(3P → 2P )→ (UP ∨ U¬P ).

This is one instance of a general trend in modal logic, toward moderate
expressive extensions of the base language. The {2, U} language is a natural
candidate, as it can formulate ‘global facts’ about topological spaces such
as inclusion of one region in another. Many of our earlier techniques apply
such as frame correspondence, bisimulation and related model constructions.
(Cf. ([1] for back-up to this section.) The general logic of this new language
is known [4]: it is the system S4+S5, being S4 for 2, S5 for U , plus the
’bridge axiom’ UP → 2P . Moreover, according to [19], we have natural
extension of the McKinsey and Tarski theorem: the {2, U} modal theory
of R, and indeed of every Euclidean space Rn, is exactly S4+S5 plus the
given connectedness axiom.

Thus, the concerns of this paper reproduce for richer modal languages,
expressing more topological behavior. Most of the resulting questions seem
completely open, as topological semantics does not seem to have had much
of a follow-up in serious ‘logic of space’.

Indeed, modal languages can also have much stronger topological modal-
ities, such as the following ‘Until’ operator generalizing two well-known no-
tions from temporal logic:

x has an open neighborhood all of whose interior points satisfy
B while all its boundary points satisfy A.

And even further extensions are needed to deal with modal separation ax-
ioms, such as a space being Hausdorff, which requires even stronger ‘modali-
ties’ definable in the monadic second-order language over topological spaces.
One can then see the art of the field in choosing ‘good fragments’ out of this
total language, admitting of a good balance between expressive power and
complexity.

Finally, the same modal methodology also extends to other similarity
types. In particular, one can introduce geometrical structure. E.g., the
affine geometry of betweenness suggest a ‘convexity modality’ CA:

x lies in between two points that satisfy A.

This brings out differences between the spaces Rn: as R, but no higher-
dimensional Rn, satisfies the principle CCA ↔ CA. (A more extensive
study of various modal languages for affine and metric geometry is made in
[2] and [8].)

Thus, there is a lot of modal logic of space in between Tarski’s work on topo-
logical structure and his work on the full first-order language of elementary
geometry [20].
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