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Chapter 1

Introduction

The concept of information can be studied from numerous points of view. Without doubt,
however, information structure and information processing form central aspects of the
study of information. Whereas information structure can be regarded as a subject of
model theory, information processing may be viewed as a matter of proof theory. The
present investigation pursues this logical perspective. It can be considered a systematic
contribution to the line of research that began with S. Kripke’s [1965] interpretation of
intuitionistic logic in models based on pre-ordered information states. The following table
identifies the most important topics that will be dealt with.

proof theory | the systematic variation of structural inference rules

in sequent calculi, which offers various options for
representing premises as databases and the sequent
arrow —.as an information-processing. mechanism
(Chapters 2 and 3)

cut-elimination and consequences thereof

(Chapters 3 and 6)

functional completeness wrt a proof theoretic
interpretation of logical operations (Chapters 4 and 7)
model theory | the encoding of proofs by typed A-terms and vice

versa (Chapters 5 and 8)

information models, i.e. models based on certain abstract
information structures, where by an abstract information
structure we understand a non-empty set I viewed as a
set of information pieces or information states represented
by pieces of information together with certain relations
or operations on I, possibly some designated pieces of
information, and possibly certain conditions on these
relations, operations or designated elements

(Chapters 1, 2 and 9)

Table 1.1: The main topics.

A general theme, which will be alluded to in considerations on information processing
as well as information structure, is the dichotomy between positive and negative infor-



2 1 Introduction

mation (Chapters 2 and 6 - 9). The central claims are that both positive and negative
information should be treated in their own right as independent and equally relevant
concepts, and that this position leads to strong, constructive negation. The first two
chapters prepare the stage for a uniform and more comprehensive discussion of information
structure and deductive information processing in the remaining chapters by providing
examples and motivation.

The whole investigation is concerned with propositional logics only. The propositional
sequent calculi considered can easily be extended to predicate logics by adding the usual
rules for the existential and universal quantifiers (and, in the presence of strong, construc-
tive negation, the usual rules for their strongly negated forms). We will make use of 3 and
V as quantifiers in the metalanguage. The metalogic used is classical; repeatedly there will
be applications of classical reductio ad absurdum as a rule. Where misunderstandings are
unlikely to arise, sometimes no special attention will be paid to the distinction between
the mention and use of symbols.

1.1 Intuitionistic propositional logic IPL

An obvious starting point for investigating logics of information structures is reviewing
their most famous exponent, viz. intuitionistic propositional logic I PL. Preparatory to the
introduction of various formal systems in later chapters, we shall first give a presentation
of IPL in perhaps somewhat unorthodox language.

Definition 1.1 The vocabulary of the propositional language L consists of

a denumerable set PROP of propositional variables;

two verum constants: t, T;

one falsum constant: L;

binary connectives: / (right-searching implication), \ (left-searching implication),
o (intensional conjunction), A (extensional conjunction), V (disjunction);

auxiliary symbols: (, ).

Definition 1.2 The sét of L-formulas is the smallest set I" such that
PROPCT;
t, T, L eT;
if A, BT, then (A/B),(A\ B),(AoB),(AAB),(AV B) €T.

We use p,pi,ps,... etc. to denote propositional variables, A, B, C, A, Ay, ... etc.
to denote L-formulas, and X, Y, Z, X;, Xo, ... etc. to denote finite, possibly empty
sequences of L-formula occurrences. Sometimes <> will be used to denote the empty
sequence. Qutermost parentheses of formulas will not always be written.

Definition 1.3 The notion of a subformula of A is inductively defined wn follows:

every L-formula A is a subformula of itself;
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the subformulas of A and the subformulas of B are subformulas of (B/A), (4 \ B),
(Ao B), (AN B), and (AV B).

An expression X — A is called a sequent; X is called its antecedent and A its succe-
dent. In case that n = 0, A;...A, — A denotes — A. Negation in IPL is a defined
notion, we have -"A &« (L/A), -'A = (A\ L). A=" B is used as an abbreviation for
(A\B)A(B\ A) A (B/A)A(A/B). Next, we present I PL as a symmetric sequent calculus
with (i) logical rules, (ii) operational rules for introducing connectives on the left hand
side (lhs) and on the right hand side (rhs) of the sequent arrow —, and (iii) a number of
structural inference rules.

Definition 1.4 The rules constituting IPL are:

logical rules:

(:d) FA- A

(cut) Y —-A XAZ - Bt XYZ - B,
operational rules :

1) FX1Y — A,

—t) FX -t

- T) F—- T,

T —) XY - AFXTY — A,

-/ XA - BF X — (B/A),

/- YA XBZ—-CWFX(BJ/AYZ - C,

)
)
) AX > BF X — (A\ B),
\ =) Y- A XBZ—-CF XY(A\B)Z - C,
)
)

— 0 X—-A Y—->BF XY — (AoB),
0o — XABY - C + X(AoB)Y — C,
— A) X—-A X->BFrX->(AANB),
A =) XAY - C + X(AAB)Y — C,
XBY - C + X(AAB)Y — C,
(— V) X—->AFX—-(AVB),
X = BFX—(AVB),
(V—) XAY -C XBY -Ct X(AVB)Y - C;

structural rules :

permutation (P): XABY — C + XBAY — C;
contraction (C): XAAY — B - XAY — B;
monotonicity (M): XY — B - XAY — B.
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The rules (— /) and (— \) are directional versions of the deduction theorem. The
notion of a derivation in IPL of X — A from a finite, possibly empty sequence of sequent
occurrences is defined by induction on the rules of IPL, see Appendix 1.5. If II is a
derivation in IPL of X — A from the empty sequence, then II is called a proofof X — A
in IPL, and if there is a proof of X — A in IPL, this is denoted by F;p; X — A. If the
context is clear, we shall sometimes just write - X — A. A proof of - A in IPL is also
called a proof of 4 in IPL. If there is a proof of A in /PL, then A is called a theorem
of IPL. Two formulas A and B are said to be interderivable in IPL, if - A — B and
b B — A, which is abbreviated by F A < B. One can easily show that - — A =% B iff
F Ao B.

Note that since P is present, directional implications (A/B) and (B \ A) resp. direc-
tional negations ="A and —'A are interderivable in TPL. Due to the presence of M, the
verum constants t and T are interderivable. Moreover, since C and M are available, also
(Ao B) and (A A B) are interderivable. Thus, in the presence of the structural rules P,
C, and M one could do without t and intensional conjunction o, and one could replace
the two directional implications /, \ resp. negations =", = by the more usual implication
sign D resp. —.! Note also that T (and hence t) resp. L is definable in IPL as (p/p) resp.
(po='p) (or (-"pop)), for some propositional variable p. In the sequel we shall sometimes
use D instead of /, \ and - instead of =", !, and forget about o, t, and T, if, like in
IPL, P, C, and M are assumed to be available. Finally, observe that since P, C and the
structural rule

expansion (E): XAY — B + XAAY — B

as a special case of M are present, the sequences on the lhs of — may be conceived of as
finite sets.

1.2 Kripke’s interpretation of IPL

We shall briefly describe Kripke’s semantics for IPL and reproduce its interpretation in
terms of information states as suggested by Kripke.

Definition 1.5 A Kripke frame is a structure 7 =< I,C>, where I is a non-empty
set and C is a pre-order (or quasi-order) on I, i.e. C is a reflexive and transitive binary
relation on I.

Definition 1.6 A minimal Kripke model based on a Kripke frame F is a structure M =
< F, vy >, where v is a basic valuation function from PROPU {1} into 2 such that for
every p € PROP U {L} and every a,b € I:

if a C b, then a € vp(p) implies b € vo(p).

Definition 1.7 An intuitionistic Kripke model based on a Kripke frame F is a minimal
Kripke model M =< F, vy >, where vp(L) = 0.

1This is justified on the strength of a replacement theorem that will be proved in Chapter 3.
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Definition 1.8 Given a Kripke model (minimal or intuitionistic) M =< I,C vp >, vg
is inductively extended to a valuation function v from the set of all L-formulas into 27 as
follows:

v(p) = wo(p), p€ PROPU{l}
v(AANB) = v(AoB) = v(A)Nv(B),

v(AV B) = v(A)Uv(B),

v(A\ B) = v(B/A) = {a€I|(Vbev(Ad))aCb implies b€ v(B)},
v(T) = (t) = I.

By induction on the complexity of A it can easily be shown that for every Kripke
model M =< I,C, vy >, every L-formula A, and every a, b € I:

(Heredity)  if a C b, then a € v(A) implies b € v(A).

Definition 1.9 (semantic consequence) Let M =< I, C,vy > be a Kripke model. A
sequent s = A; ... A, — A holds (or is valid) at a € T

F a€v(Ajo...0A4,) implies a € v(4) if n>0
a € v(A) otherwise.

The sequent s holds (or is valid) in M iff s holds at every a € I. If — A holds at a € M
resp. is valid in M, then also A is said to hold at a € M resp. to be valid in M. The
sequent s holds (or is valid) in JPL iff s holds in every intuitionistic Kripke model. If
— A is valid in TPL, then also A is said to be valid in IPL.

If A;...A, — A s valid in IPL, then for every intuitionistic Kripke model M =
<I,C,v9 >, v(A0...0A4,) Cv(A). This notion of validity may be contrasted with the
weaker requirement that if A, ..., A, are valid in JPL, then A is valid in IPL.

The elements of I can, according to Kripke, be thought of as “points in time (or
‘evidential situations’), at which we may have various pieces of information” [1965, p.
98]. We may also identify a state a € I with the pieces of information available at a. A
propositional variable p is verfied at a € I, i.e. a € v(p), iff there is enough information
at a to prove p. Thus, a & vo(p) does not mean that p is falsified at a, it merely says p
is not verifed at a. The verification of complex L-formulas at a € I is determined by the
definition of v, given a basic valuation v,. Since —"A resp. —'A is defined as 1 /A resp.
A\ 1, for intuitionistic Kripke models we have:

v(="A) = wv(='A)
= {a€l|(Vbev(A)) if aCb, then b€ 0}
= {a€I|(VbeI) if aCb, then b¢ v(A)}.

As we are dealing with evidential situations in pre-ordered time, these situations or
information states may develop differently depending on the basic information aquired in
the course of time. Thus, a C b says that information state a may develop into information
state b, and transitivity of C becomes rather obvious, intuitively. Moreover, it is assumed
that every b € I may develop into itself, since the information available at b “may be
all the knowledge we have for an arbitrarily long time” [Kripke 1965, p. 99]. Eventually,
because of (Heredity), information is never lost during the journey through time. Thus,
‘possible development’ is to be understood as ‘possible expansion’.



6 1 Introduction

Theorem 1.10 IPL is characterized by the class of all intuitionistic Kripke models, i.e.
Fipr Ay...A, - Aiff A) ... A, —» Aisvalidin IPL.

Soundness, i.e. the ‘only if’ direction, can be proved by induction on the length of proofs
in IPL. (Note that the rule M is validity-preserving because o, which is used to define
the evaluation of sequents in Kripke models, is evaluated in exactly the same way as
A.) Using semantic tableaux, Kripke [1965] shows that every theorem of IPL is valid in
every intuitionistic Kripke model. We shall sketch a proof of the completeness part of the
above theorem (i.e. the ‘if’ direction) by defining a canonical intuitionistic Kripke model
Mipp =< I,C,vy >, i.e. a model which itself characterizes IPL (cf. e.g. [Tennant 1978,
p. 106 fI.], [DoSen 1989, p. 42 {]). Let T be a set of L-formulas; I is deductively closed
under IPLiff T =T U{A |Fipy A1...A, > A and A; €T (1 <i< n)}. T issaid to be
IPL-consistent iff for no sequence A;...A4,, A; €T, A,... A, — L is provable in TPL.
I' is called prime iff for all L-formulas A,B: (AV B) € I" implies A € T or B € I". The
canonical model M;p;, is defined as follows:

o I = {a|a is a prime, and IPL—consistent
set of L—formulas deductively closed under IPL},
o [ is the subset relation C,
* w(p) = {acl|peal,
o w(l) = 0.

Obviously, M;py is in fact an intuitionistic Kripke model. It can now be shown that
if t/;pp Ay...A, — A, then A,,..., A, belong to a prime, I P L-consistent set deductive-

ly closed under IPL which does not contain A. Using this fact, one can prove that for

Mipr, =< I,C, vy > the following holds for every L-formula A and every a € I:
(Canon) a€w(A)iff A€a.

By means of (Canon), completeness can easily be derived. If A;...A4, — A is valid
in every intuitionistic Kripke model, in particular it is valid in Mjpg. Thus in Mjpg,
v(Aj0...04,) D v(A),ifn > 0,and v(A) = I, otherwise. By (Canon), Frpy Ajo...04, —
A and thus F;pp A;...A4, — A, by (— o) and (cut).

In contrast to the situation in intuitionistic Kripke models, L may hold at information
pieces in minimal Kripke models. As a result of this interpretation of ., a sequent X LY —
A is not valid in every minimal Kripke model. The logic characterized by the class of all
minimal Kripke models is Johansson’s [1937] intuitionistic minimal propositional logic
MPL?2

Definition 1.11 The rules of M PL are those of IPL without (L —).

In M PL nothing particular is assumed about L. The falsum constant | can therefore
be viewed just as a designated propositional variable used to define intuitionistic minimal
negations =", —'. The notions of derivation and proof in M PL are defined in the same
way as for IPL.

Theorem 1.12 Fpypr A;... A, — Aiff A, ... A, — Ais valid 10 every nunimal Kripke
model.

- 2The implication, negation fragment of M PL was first axiomatized by Kolmogarov [1925].
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This can be proved in strict analogy to the above proof for ITPL. In the canonical model
Mrpr for M PL, however, the pieces of information are prime sets of L-formulas deduc-
tively closed under M PL which need not be M P L-consistent, and the requirement that
vo(L) = @ is dropped.

In the construction of the canonical models M;p; and M ppr the defined relation C
is not only a quasi-order but even a partial order on the set of information pieces, i.e.
it is also anti-symmetric. Therefore IPL resp. M PL is also characterized by the class of
all intuitionistic resp. minimal Kripke models based on a partially ordered set (poset).
Moreover, there is a standard validity-preserving operation on Kripke models (see e.g.
{Kripke 1965]) which applied to an intuitionistic resp. minimal Kripke model based on a
poset produces an intuitionistic resp. minimal Kripke model < I,C,1,v5 > with 1 € T
and where < I,C,1 > is a tree (i.e. < I,C> is a poset such that (i) 1 is an initial node:
there is no a € I such that a # 1 and a C 1, (ii) for every a,b,c € I,ifa C c and b C ¢,
then a C b or b C a, and (iii) for each a € I, 1 C, a, where ,, is inductively defined as
follows: for every a,c € I, a Cociffa=c;a Ciciff a C b;a E,,9 biff thereisace [
such that a C,1; b and b C ¢). Thus, IPL resp. MPL is also characterized by the class
of all intuitionistic resp. minimal Kripke models based on a tree.® Kripke’s interpretation
can immediately be extended to Kripke models based on a tree: the initial node 1 is to
be interpreted as the initial piece of information. In Kripke models based on a tree, by
(Heredity), the evaluation clause for T can equivalently be formulated as:

v(T)={a|1C a},

and a sequent A;...A, — A can equivalently be said to be valid in a Kripke model
< -[7 g’ 1, Vo >

o l1ev(Ajo0...0A4,) implies 1 € v(4) if n>0
1€v(A) otherwise.

Thus, a sequent — A is provable in IPL resp. MPL iff T — A is provble in I PL resp.
MPL iff in every intuitionistic Kripke model resp. minimal Kripke model < I,C, 1, vy >,
A holds at 1.

1.3 Grzegorczyk’s interpretation of IPL

A less well-known semantics for I PL in terms of information pieces has been developed by
Grzegorczyk. According to Grzegorkzyk [1964, p. 596] “intuitionistic logic can be under-
stood as the logic of scientific research”, where a “scientific research (e.g. an experimental
investigation) consists of the successive enrichment of the set of data by new established
facts obtained by means of our method of inquiry”. In the retrospective, Grzegorczyk’s
approach to intuitionistic logic constitutes a concrete version of the characterization of
IPL by intuitionistic Kripke models based on a tree. Grzegorczyk’s approach is concrete

3There is also a standard validity preserving operation converting any Kripke model based on a quasi-
ordered set into a Kripke model based on a poset (see [Kripke 1965]). Moreover, using a technique which
is usually called ‘unraveling’, any Kripke model based on a tree can be converted into a Kripke model
based on a finite tree validating exactly the same L-formulas (see ‘selective filtration’ in [Gabbay 1981,
p. 69 £.]).
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in the sense that (i) it gives a concrete interpretation to the possible worlds or information
pieces instead of taking them as primitive, (ii) for a particular set of information pieces
it specifies a particular binary relation on them, and (iii) it specifies a basic valuation
function vp : PROP U {1} — 2. In Grzegorczyk’s case we have:

e every finite set of propositional variables is a possible world interpreted as a piece
of information;

e let I be a nonempty set of information pieces, and let P be a mapping from I in
nonempty subsets of I such that

(x) ifa = {p1,...,pn} € I, then either P(a) = {a} or for every b € P(a) there exist
DPntiye- v s Pntk+1 (k > 0) such that b= {pl, <+« 3PnsPnt1,- - ,pn+1+k+1}'

P is interpreted as “the function of possible prolongations of the informations” in
I. A binary relation C on I (“extension of information”) is defined in terms of P as
follows: for every a, b € I,

alC%biffa =0
a C™t1 b iff there exists a ¢ € I such that a C" c and b € P(c);

a C b iff there exists an n € w such that a C°™ b.

Thus, if a C b, then a is a subset of b. A research is defined by Grzegorczyk as a struc-
ture R =< I, P,1 >,* where I is a set of information pieces (i.e. a set of finite sets of
propositional variables), P is a mapping from I into 27 — {0} satisfying (x), and every
information piece is an extension of.the.initial .information piece 1 € I: if a € I, then
1 C a (where C is defined as above). Ideally, 1 = §. It can readily be seen that < I,C,1 >
is a tree. Next, for a given research R =< I, P,1 >, Grzegorczyk defines a basic valuation
function v : PROP U {1} — 27:

w(p)={a€l|pea}; v(l)=0.

The basic valuation function vy is inductively extended to a valuation function v from the
set of all L-formulas into 27 in exactly the same way as for Kripke models. Thus, every re-
search < I, P,1 > can be regarded as an intuitionistic Kripke model < I, Cp,1,v9 > based
on a tree. Validity of a sequent s = A;... A, — Ain aresearch R =< I, P,1 > is defined
as the validity of s in < I, Cp, 1, vy >. Grzegorczyk proves the following characterization
theorem:

Theorem 1.13 A is a theorem of IPL iff A is valid in every rescarch.
Completeness is proved by Grzegorczyk in an indirect way. He shows that every finite

tree T induces a research R isomorphic to T such that for every L formulan A, A is valid
on T according to the topological interpretation of intuitionistic propositional logic® iff 4

4Grzegorcyz uses ‘0’ instead of ‘1’.
5A presentation of the topological semantics for 171, cnn e g he found i [van Dalen 1986].
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is valid in R. Thus, if A is valid in every research R, then it is valid on every finite tree
according to the topological interpretation of IPL, and thus.it is a theorem of IPL.

Grzegorczyk does not define a canonical research for IPL, and it can easily be shown
that such a research doesn’t exist. Suppose that R is a canonical research for IPL with
the set of information pieces I. Note that the set I' = U{a | @ € I} is finite. Now, take any
g € PROP such that ¢ ¢ T'. Then ¢\ pis valid in R for arbitrary p, although /;p; — q\p.®
Thus R fails to be canonical. There are at least two respects in which Grzegorczyk’s
approach can be generalized without thereby significantly changing his general attitude:
allow information pieces to contain compound formulas, as complex information is genuine
information, and (ii) concede infinite pieces of information. Let us call a research which
admits of infinite information pieces containing arbitrary formulas a generalized research,
if instead of (x) it satifies

(gen ) if a € I, then either P(a) = {a} or for every b € P(a), a C b.

Validity in a generalized research is defined like validity in a research. We shall directly
prove a (strong) characterization theorem for IPL wrt generalized researches by defining
a canonical generalized research.

Definition 1.14 The canonical generalized research R;p;, =< I,P,1 > is defined as
follows:

o I={a|3X =A4,...4,(n>0) and a={A |Fpr X — A}};

o P:I— 27— {0}, where
P{AlFppr X - A})={beI|3Y(b={B |F1pr XY — B})};

e [ is defined as for researches;
o 1=0.

It can readily be verified that R;py, is in fact a generalized research; in particular that
the prolongation function P satisfies (genx). By induction on the complexity of A it can
be shown that (Canon) holds for R;py.

Theorem 1.15 F;pp A;... A, — Aiff A;... A, — A is valid in every generalized re-
search.

Soundness can be shown by induction on the length of proofs in 7PL. In order to prove
completeness, assume that A;... A, — A is valid in every generalized research. Then
Ay...A, — Ais valid in Rypr. Thus, by (Canon), for every a € I, A;0...0 A, € a,
implies A € a,if n > 0, and A € a, otherwise. By the definition of I, this implies that for
every sequence of L-formulas X, if X — Ajo...0 A, is provable in /PL, then X — A is
provable in IPL. In particular A, 0...0 A, — A is provable in IPL.

Note that the canonical model R;py, is constructed without appeal to the usual infini-
tary Henkin-method. Moreover, each piece of information is finitely represented.

8Grzegorczyk uses ‘D’ instaed of ¢/” and ‘\’.
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1.4 The BHK-interpretation of IPL

Let us conclude the review of IPL by presenting an interpretation in terms of proofs,
viz. the so-called Brouwer-Heyting-Kolmogorov-interpretation (BHK-interpretation) of
the intuitionistic connectives A, V, D and the falsum constant 1.” To begin with we adopt
Girard’s [Girard, Lafont & Taylor 1989, p. 5] point of view that “by a proof we understand
not the syntactic formal transcript, but the inherent object of which the written form
gives only a shadowy reflection. We take the view that what we write as a proof is merely
a description of something which is already a process in itself”. From a foundational
perspective, the explanatory power of the BHK-interpretation depends, of course, on the
explanatory power of the notions it makes use of, such as “construction”, “transform”,
etcetera.® In this connection Troelstra and van Dalen [1988, p. 9] point out that “on a
very ‘classical’ interpretation of construction and mapping ... [the interpretation justifies]
the principles of two-valued (classical) logic”. With these remarks in mind let us consider
one recent formulation of the BHK-interpretation of IPL.

[Troelstra & van Dalen 1988, p. 9]

(H1) A proof of A A B is given by presenting a proof of A and a proof of B.

(H2) A proof of AV B is given by presenting either a proof of A or a proof of B (plus
the stipulation that we want to regard the proof presented as evidence for A V B).

(H3) A proof of A D B? is a construction which permits us to transform any proof of A
into a proof o1 B.

(H4) Absurdity L (contradiction) has no proof; a proof of -4 is-a construction which
transforms any hypothetical proof of A into a proof of a contradiction.

Generally, the BHK-interpretation is regarded as a “natural semantics” [Troelstra &
van Dalen 1988, p. 24| for IPL. According to Girard [1989, p. 71| “Heyting’s semantics
of proofs” even is “[o]ne of the greatest ideas in logic”.

1.5 Appendix: Derivations in sequent calculi

Sequent calculi are ‘meta-calculi’. A single conclusion sequent calculus acts on sequents
X — A, ie. it manipulates expressions saying that a formula A is a syntactic consequence
of a finite sequence of formula occurrences X. At this meta-level we have a syntactic con-
sequence relation F between finite sequences S of sequent occurrences and single sequents.
If £ is a logic presented as a sequent calculus, then D (II, X — A, S), “Il is a derivation
in £ of X — A from S” is defined in a way induced by the rules of £. As an example we
here give the complete definition for IPL:

"The question of what can be regarded as a proof of a primitive sentence represented by a propositional
variable “depends on the particular discipline that is being considered” [Lépez-Escobar 1972, p. 363].

8 An excessively eloquent version of the BHK-interpretation can be found in [Dragalin 1988, p. 2ff.].

%Troelstra and van Dalen use ‘—’ instead of ‘D’.
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DIPL(A — A,A — A, <>).

If DIPL(HhY o A, S]_) and DIPL(Hz,XAZ i d B, Sz),
then Drpr (s, XY Z — B, 5.5,).

Dipp(X1Y - A X 1Y — A, <>).

Dipr(X — £, X — t,<>).

Dipr(— T, - T,<>).

If Dipr(II, XY — A, S), then Dipr(z9—5, X TY — 4, 5).

If Drpy(I, XA — B, S), then Drpr(x=(p7, X — (B/A),S).

If DIPL(HI,Y - A, Sl) and DIPL(Hz,XBZ g C, Sz),

then DIPL(-)FB—/II#)%,ZZ—_'E,X(B/A)YZ - C, 5152).

If DIPL(H,AX 4 B, S), then DIPL(F{TIL\E)_’X - (A \ B),S)

If DIPL(H]_,Y — A, Sl) and DIPL(Hz,XBZ — C, 52),

then DIPL(??C%\I%I)ZZ_;_C',XY(A \ B)Z — C, 5152).

If DIPL(H1,X — A Sl) and DIPL(Hz,Y s B, Sg),

then DIPL(m,XY — (A o) B), 5152).

If Dpr(II, XABY — C, S), then DIpL(mﬁn)T_ﬁ,X(A oB)Y — C,5).
If DIPL(HI;X b A, Sl) and DIPL(Hz,X - B, Sg),

then DIPL(X—_IZI‘(L‘%Z\-E—)',X — (A A B), 5152).

If Dypr (I, XAY — C,S), then D,PL(m-lngYTC,X(A A B)YY — C,S).

If Dipr (I, XBY — C,S), then D,PL(W,X(A A B)Y — C,S).

If DIPL(H,X - A, S), then DIPL(m,X — (A \Y B), S)
If DIPL(H,X - B, S), then ’DIPL(Y:»THM’X - (A vV B), S)

If DIPL(HI,XAY — C, Sl) and DIPL(H2,XBY - C, Sg),
then DIPL( X(A \% B)Y - C, Slsz).

mn,
X(AVB)Y =C>
If Drpr(II, XABY — C,S), then Dipr(5pir—a> X BAY — C,5).
If D;pr(II, XAAY — B, S), then Dypr(550=5, XAY — B, 5).

If DIPL(H, XY — B, 5), then DIPL(m,XAY — B, S)
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Chapter 2

Generalizations

In this chapter we shall motivate and present certain generalizations of MPL and IPL
as logics of information structures. These generalizations point into the direction of (i)
systems with a strong, constructive negation ~, i.e. negation in the sense of definite
falsity, and (ii) substructural logics,! i.e. logics with a restricted set of structural rules
of inference. Whereas introducing constructive negation combines virtues of many-valued
logic with the intuitionistic implications of M PL and IPL, the variation of structural
inference rules offers a number of options for representing deductive information process-
ing. It will be shown that both directions can be entered by a systematic criticism of
the BHK-interpretation of JPL. Subsequently, various examples of systems are presented
which illustrate these richer possibilities.

2.1 Positive and negative information

Any theory of information processing, in order to be viewed as adequate, will be expected
to allow for representing both positive as well as negative information. In a reaction
to Grzegorczyk’s interpretation of IPL, Gurevich [1977) objects that intuitionistic logic
does not provide an adequate treatment of negative information. In intuitionistic logic
(in the language with D, A, V, and 1) a negated sentence —A abbreviates A O 1, i.e.
A is understood as “A implies absurdity”, which is in accordance with Grzegorczyk’s
intuitions, since he holds that “[t}he compound sentences are not a product of exper-
iment, they arise from reasoning. This concerns also negation: we see that the lemon
is yellow, we do not see that it is not blue” [Grzegorczyk 1964, p. 596]. At this point,
however, Gurevich observes an unwarranted asymmetry between positive and negative
information, since “[ijn many cases the falsehood of a simple scientific sentence can be
ascertained as directly (or undirectly) as its truth” [1977, p. 49]. Gurevich therefore would
like to have available a primitive strong negation in order to express explicit falsity. It is
instructive to reformulate Gurevich’s point of view in semantical terms. In an intuitionistic
Kripke model < I, vy >, —p is true at an information state a € I iff p is not verified
at any information state into which a may develop. Thus, while verifying p at a € I does
not involve considering other information states than a, verifying —p involves inspection
of all information states b € I such that a T b. Gurevich’s remark amounts to the

1This term has been suggested by Kosta Dosen at a conference in Tiibingen, October 1990.
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complaint that there is no possibility of direct falsification of p on the spot. Obviously,
Gurevich’s insistance on falsification has a famous precursor in Popper’s philosophy of
science (see e.g. [Popper 1963]) according to which falsification is even the more important
epistemological principle as compared to verification. Now, the idea of taking negative
information seriously and putting it on a par with positive information leads Gurevich
to intuitionistic logic with strong negation, as developed by Nelson [1949] (and further
investigated by Markov [1950]). Recent pleas for the relevance of negative information
and the usefulness of strong negation for representing negative reasoning can be found in
[Pearce & Wagner 1990] and [Pearce 1991].

Nelson’s strong negation ~ is also called constructive negation. Indeed, although
intuitionistic logic is often referred to as ‘constructive logic’, intuitionistic negation exhibits
certain non-constructive features. Whereas on the one hand, in contrast to classical logic,
intuitionistic logic enjoys the disjunction property (or principle of constructible truth):

(AV B) is provable iff A is provable or B is provable,

it fails to satisfy the principle of constructible falsity, which one should expect to hold for
a truly constructive negation:

(A A B) is provable iff = A is provable or =B is provable.

In Nelson’s constructive systems N~ and N (see [Almukdad & Nelson 1984], and Section
2.4.1 below)? constructible falsity holds wrt ~ (i.e.

~ (A A B) is provable iff ~ A is provable or ~ B is provable).

The propositional logics N~ resp. N result from M PL resp. IPL by conservatively
adding ~. In N~ and N provable equivalence in the sense of provable mutual implication
fails to be a congruence relation, i.e. an equivalence relation respecting the connectives.
Therefore intersubstitutivity of provable equivalents fails. Intersubstitutivity holds, how-
ever, for formulas A, B provably equivalent in the strong sense that not merely A and B
but also their strongly negated forms ~ A and ~ B are interderivable, which reflects the
independence and equal importance of positive and negative information. In the semantics
for N~ and N this is accounted for by distinguishing between truth and falsity conditions.
In the semantics for N propositional variables may be true, false, or neither true nor false;
in the semantics for N~ they may also be both, true and false.

An unsatisfactory feature of intuitionistic logic besides its having a non-constructive
negation is the validity of the principle ez contradictione sequitur quodlibet: (AAN—A) D B
(or, equivalently, L D B). In terms of information, ez contradictione is counterintuitive
and should therefore not be accepted. It is not at all clear why contradictory informa-
tion should make any information whatsoever available, and, of course, usually we are
not prepared to conclude everything on the basis of maybe just one single contradic-
tion. Thus, a suitable logic of information structures should not only be constructive, it
should moreover be similar to M PL and N~ insofar as it should do without ez contra-
dictione. The latter property is usually called paraconsistency (see [Arruda 1980], [Urbas
1990]). Assuming paraconsistency doesn’t imply that contradictory theories should not
be avoided. The point is just that pleading for the avoidance of contradictory theories

2The propositional logics N~ resp. N have independently been developed by von Kutschera [1969],
wko calls them direct resp. extended direct propositional logic.
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cannot without further ado be substantiated by pointing out that contradictory informa-
tion leads to triviality (since it implies everything). Surely, the latter argument is at one’s
disposal against the background of classical logic; classical logic, however, has already to
be rejected as a logic of information structures, because it validates the tertium non datur
principle: AV ~A. And, as Urquhart emphasizes, information may be incomplete: “[wlith
no information whatever about, say, Smith, we can neither conclude “Smith is tall” nor
“Smith is not tall”. Thus we would not expect the law of excluded middle to be valid in
a semantics involving pieces of information” [1972, p. 166]. Classical logic also validates
A D (B V —B), which is unacceptable, since the information that A just does not give
us the information that B or the information that —B. In his discussion of negation in
relevance logic, Urquhart describes the problem with negation as the problem of

[flinding a semantic evaluation rule ... which is compatible with the exis-
tence of both incomplete and inconsistent pieces of information, but otherwise
behaves like classical negation [1972, p. 164].

Urquhart then introduces a ‘semiclassical’ evaluation rule which avoids the validity of
(AA-A) D B, AD (BV-B) and disjunctive syllogism: (~AA(AV B)) D B. Disjunctive
syllogism should not be accepted from an informational perspective (see also [Dunn 1986,
p. 153]): we might have the information that AV B just on the strength of the information
that A. If now, in addition, the information that —A is available, it is simply not justified to
conclude that the information that B is available. It may hardly be possible to conceive of
‘inconsistent states of affairs’ so that in fact, if it is the case that — A and it is the case that
AV B, then it is the case that B. Inconsistent information states (or pieces of information),
however, should not generally be excluded. Urquhart’s semiclassical semantics moreover
invalidates contraposition: (A O B) D (=B D —A4) and reductio ad absurdum: (A D

1A) D —A, which is all right wrt an informational reading. However, the semiclassical
semantics also rules out incomplete information states; it validates tertium non datur and
is therefore after all to be rejected.

Now, whilst on the one hand (i) classical negation proves unacceptable, because it ex-
cludes inconsistent as well as incomplete information states, (ii) Urquhart’s semiclassical
semantics turns out inappropriate, because it still doesn’t allow for incomplete pieces of
information, (iii) neither intuitionistic minimal nor intuitionistic negation is constructive,
and both invalidate intuitively valid principles like e.g. A D =—A4, ~(AAB) D (mAV-B),
and ~(4 D B) D (A A —B), and (iv) intuitionistic logic validates the ez contradicitione
principle just as classical logic does, Nelson’s system N on the other hand (i) unlike intu-
itionistic minimal and intutitionistic logic is constructive also wrt negation, (ii) invalidates
AV ~ A, A D (BV ~ B) and allows for incomplete information states, (iii) invalidates
(~ AAN(AV ~ B)) D B, (A D> B) D (~ B >~ A), (A D~ A) D~ A, and (iv) like
intuitionistic logic admits of dropping ex contradictione sequitur quodlibet (in the form
(AN ~ A) D B) and thereby rendering inconsistent information states possible. Construc-
tive logic moreover validates the classical De Morgan laws ~ (A A B) D (~ AV ~ B),
(~AV ~B) D>~ (AAB),~(AV B) D> (~ AA ~ B), (~ AN ~ B) D~ (A V B) and the
laws of double negation A D~~ A, ~~ A D A. Thus, constructive negation ~ seems to
pass Urquhart’s informal criteria for a negation in a logic with an interpretation in terms
of information pieces.
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2.2 The fine-structure of information processing

In deductive information processing the premises are viewed as the database (DB) and
the consequence relation — is taken to be the information-processing mechanism.? In a
certain sense intuitionistic minimal and intuitionistic logic and also Nelson’s systems N~
and N constitute mazimal conceptions of deductive information processing. In all these
systems the sequent arrow represents a syntactic consequence relation between finite sets
of premises and single formulas. These consequence relations are (upwards) monotonic:
if formula A is derivable from a finite set I' of premises, then A is derivable from every
finite superset of I'. If one aims at a formal characterization of our everyday inferences,
the monotonicity property, as is well-known, proves to be highly idealized and thus prob-
lematic. There are varieties of everyday reasoning which are overtly nonmonotonic: we are
deriving conclusions which may turn out wrong in the light of new, additonal information
and, accordingly, we are willing to retract, if necessary, such ‘provisional’ conclusions.
Within Artificial Intelligence (AI) nonmonotonicity as a feature of certain kinds of infer-
ences has created a whole field of research with a vast and rapidly growing literature. The
most important and well-known AI approaches to nonmonotonic reasoning are perhaps
circumscription [McCarthy 1980], default logic [Reiter 1980], autoepistemic logic [Moore
1985], and inheritance networks with exceptions [Horty, Thomason & Touretzky 1987].
In sequent-style presentations of M PL, IPL, N~ and N the fact that one is dealing with
monotonic inferences of single formulas from finite sets of premises can explicitly be stated
by means of structural inference rules, i.e. inference rules which govern the manipulation
of premises (or contexts).* Besides the monotonicity rule M there are structural rules al-
lowing for permuting (P) and contracting (C) premise occurrences. If one now considers a
systematic variation of such structural rules of inference, the standard package {P,C, M}
breaks down into a more differentiated menu of rules which provides a fine-tuning of in-
formation processing and the internal structuring of databases (DBs), i.e. DBs need not
only be conceived of as sets of sentences with a monotonic inference operation defined
on them (for a general framework of structured consequence relations see [Gabbay 1991]).
Once the standard package of structural rules has been called into question, it is obvious
to ask what such rules are natural. A structural rule which is prominent in Al e.g. is
“cautious monotonicity”:

XY -B XY > AF XAY — B.

A more exotic example is provided by the following semi-contraction rule (cf. [Slaney,

3Levesque [1990] calls this the “subjective understanding of logic”, i.e. “[r]easoning patterns (or ide-
alizations of them) are modelled by formal derivations in the logic: the rules of inference of the logic
are used to model the steps that an agent takes in coming to a conclusion” [1990, p. 266]. This logical
representation of reasoning proceeds from the ¢ruth of the premises to the truth of the conclusion; it can
be contrasted with what Levesque calls the “objective” use of logic, viz. reasoning from the truth of belief
in the premises to the truth of belief in the conclusion:

F A;...A, > A versus + BA;...BA, — BA,

where B is a modal belief operator. Exactly the same distinction has also been drawn by Buszkowski
[1989] under the labels “external logic” versus “internal logic”.

In this respect also (id) and (cut) are structural rules. Following Girard [Girard, Lafont & Taylor
1989] we will, however, regard (id) and (cut) as logical rules available in any (ordinary) sequent calculus.
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Surendonk & Girle 1990]):

XAABY - C XABBY — C F XABY — C,
XBAAY - C XBBAY — C  XBAY - C.

Being a part of classical logic, and non-classical systems like MPL, IPL, N™, and N,
clearly a certain degree of naturalness can be assigned to the usual rules P, C, and M.
Therefore in what follows we shall confine ourselves to variations of these rules, which are
obtained by giving up the assumption of having them available as a package.

Although in the most commonly used logics, P, C, and M are assumed, giving up
all or part of them has a long tradition. E.g., relevant implicational logic R~ developed
by Church [1950] and Moh [1950] is nothing but intuitionistic implicational logic IPL-
without the monotonicity rule, and in general not to accept the full strength of monotonic-
ity forms the basic idea of relevance logic (cf. [Dunn 1986]).° Conceptions of deductive
information processing weaker than the intuitionistic minmal one can also typically be
found within logical syntax, i.e. Categorial Grammar. The (‘product-free’ version of the)
syntactic calculus of Lambek [1958] e.g. turns out to be intuitionistic implicational logic
without any structural rules of inference (but restricted to derivations from non-empty
sequences). This syntactic calculus is an order-sensitive logic of occurrences as in syntax
every occurrence of a linguistic item to which a syntactic type (i.e., logically speaking,
a premise) is assigned matters. If the product-free Lambek Calculus is extended by the
structural rule of permutation, one obtains the so-called non-directional Lambek Calculus
of syntactic categories (see [van Benthem 1986, 1988]). In this case one is concerned with
nonmonotonic inferences of single formulas from finite, non-empty multisets of formulas,
i.e. collections in which every occurrence matters but the order of occurrences is irrelevant.
Allowing for derivations from the empty multiset, the non-directional Lambek Calculus
turns out to be the implicational fragment of Girard’s intuitionistic linear logic without
‘exponentials’ ([Girard 1987]), i.e. intuitionisitic logic without the rules of monotonicity
and contraction (cf. also [Avron 1988], [Troelstra 1991]).

From the point of view of the fine-structure of information processing it becomes clear
that the general aim of our investigation cannot be a single formal system, being the
one and only logic of information structures. This would be too narrow a perspective,
piven the fact that possible applications may call for a considerable degree of flexibility.
Thus, what we will be looking for instead is a whole family of logics which (i) differ wrt
to the structural inference rules assumed, and (ii) in particular do justice to negative
mformation as an independent epistemic dimension. Although the constructive minimal
family, i.e. the family of substructural subsystems of N~, will be the preferred framework
for deductive information processing, our general attitude and methodology is a more
pragmatic one. Therefore intuitinionistic minimal and intuitionistic information process-
inp will also be considered before in later chapters we come to the constructive minimal
and the constructive systems.

“If however the notion of relevant deduction is defined in the sense of the relevant deduction theorem
for R+, one may recover montonicity of inference.
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2.3 Critical remarks on the BHK-interpretation of
IPL |

Since its first explicit formulation by Heyting in 1934 (see also [Heyting 1956]) the BHK-
interpretation has been given a number of slightly different formulations. As we shall
see, some clauses in these versions of the BHK-interpretation are to a certain extent
ambiguous. Although we completely agree that “[ujndeniably, Heyting semantics is very
original: it does not interpret the logical operations by themselves, but by abstract con-
structions” [Girard, Lafont & Taylor 1989, p. 6] or proofs, we will emphasize that the
BHK-interpretation suffers from a more serious weakness than being ambiguous, viz. its
treatment of negation, which is either inappropriate for intuitionistic negation or not
quite satisfactory from a foundational point of view. We will point out that the BHK-
interpretation, which is often called proof-interpretation, is naturally supplemented by a
disproof-interpretation which leads to a semantical foundation of constructive logic with
strong negation rather than intuitionistic logic.

Let us in addition to the version of the BHK-interpretation from [Troelstra & van
Dalen 1988] presented in the previous chapter consider a few more recent formulations.

[Troelstra 1981, p. 17]

(i) p proves A A B iff p is a pair < p;, p2 > such that p; proves A and p, proves B.
(ii) p proves AV B if p is either a proof of A or a proof of B.

(iii) p proves A D B if p is a construction which transforms any proof q of A into a proof
p(q) of B. ...

(iv) p proves —A if p proves A D L, that is to say p is a construction which reduces any
alleged proof of A to an absurdity.

[van Dalen 1986, p. 231]

(i) a is a proof of A A B® iff a is a pair (a;, az) such that a; is a proof of A and a; is a
proof of B.

(ii) a is a proof of AV B iff a is a pair (a1, a2) such that a; = 0 and a, is a proof of 4 or
a; = 1 and a; is a proof of B.

(iii) a is a proof of A O B iff a is a construction that converts each proof b of A4 into a
proof a(b) of B.

(iv) nothing is a proof of L (falsity).

[Girard, Lafont & Taylor 1989, pp. 5/6]

2. A proof of A A B is a pair (p, q) consisting of a proof p of A and a proof g of B.

SInstead of ‘A’, ‘B’ and ‘—’ van Dalen uses ‘p’, ‘4’ and ‘D’, respectively.
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3. A proof of AV B is a pair (¢, p) with:

e i =0, and p is a proof of A4, or

e 1 =1, and p is a proof of B.
4. A proof of A D B" is a function f, which maps each proof p of A to a proof f(p) of B.

5. In general, the negation —A is treated as A D L where L is a sentence with no possible
proof.

It has convincingly been argued e.g. in [Dummett 1977, Chap. 7] and [Prawitz 1977]
that instead of just the notion of proof as used in the above clauses one should use the
notion of direct or canonical proof. In the framework of sequent calculi the canonical
proofs are, of course, the (cut)-free proofs. When in what follows we talk about proofs,
we shall (tacitly) mean canonical proofs. Moreover, Dummett [1977] emphasizes that
the BHK-interpretation is based on the principle of molecularity (or compositionality)
of interpretation or, more specifically, meaning: the interpretation of complex formulas
is explained with reference to the interpretation of their immediate parts. According to
Ruitenburg [1991], however, “the proof interpretation is not reductive: It doesn’t express
the interpretations of implication ... in simpler terms” [1991, p. 274]. The latter point of
view seems to be overly restrictive; it would imply e.g. that the truth conditions for /, \
in Kripke models < I, C, vy > are non-compositional, since they refer to L.

According to Kreisel [1965] the clause for implication should be expanded by a cor-
rectness postulate saying that there is a proof of the fact that the construction or function
referred to in the clause is in fact as required. This extra condition, however, is highly
controversial (see e.g. [Prawitz 1977, p. 27], [Sundholm 1983], [Girard, Lafont & Taylor
1989, p. 7], [Girard 1989, p. 71]) and we will refrain from postulating it.

2.3.1 Ambiguity of the BHK-interpretation
Let us first consider clause (H1) of [Troelstra & van Dalen 1988], i.e.,

(H1) A proof of A A B is given by presenting a proof of A and a proof of B.
Although at first sight (H1) seems completely clear, it leaves room for a disambiguation:

(DA1) A proof of A A B is given by presenting one proof which proves A as well as B;

(DA2) A proof of A A B is given by presenting a combination of two possibly distinct
proofs, one of A and the other of B.

Using (DA1), A can immediately be seen to be commutative, associative, and idem-
potent: each proof of A A B is already a proof of B A A etc. Using (DA2) without making
further assumptions, A need not display all of these properties. Clearly, the properties
A has under the interpretation (DA2) depend on what is meant by the combination of
proofs. According to [Troelstra 1981} (DA2) is the intended reading of (H1), and forming

TGirard et. al. use ‘=>’ instead of ‘D’.
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ordered pairs is the intended mode of combination of proofs. However, pairing as Cartesian
product seems to be inappropriate for intuitionistic conjunction A, since Cartesian prod-
uct is neither idempotent, nor associative, nor commutative. (Also pairing in the sense of
forming unordered pairs would not do, since a proof II differs from {II} (= {II,II}) and
thus A would fail to be idempotent.) Thus, although on the one hand talking about or-
dered pairs of proofs is disambiguating (H1), it is on the other hand by itself not suitable
for explaining intuitionistic conjunction. However, the clauses for A referring to ordered
pairs are correct, if a considerably liberal notion of valid sequent (or valid consequence)® is
assumed, which seems not at all to be indissolubly tied up with the above integral clauses
for the connectives:

Definition 2.1 A sequent A;... A, — A is valid iff the following holds:

there exists a construction II such that II(< IIy,...,II, >) proves A,
whenever II;, .. ., II, prove A;,... A,, respectively, if (1 < n);
there exists a construction that proves A, otherwise.

Thus, AANB — B A A e.g. is valid due to the operation of reversing the order of
pairs, or, more precisely, due to assuming the existence of this operation. The general
problem that comes along with this definition of validity is to lay down and moreover
to justify what are admissible constructions. In the clause for A we may e.g. also use
unordered pairs, if transitions from IT to {II} and {II;, 5} to {II,}, {II} are regarded
as admissible.

Note that instead of assuming the existence of appropriate constructions as required
by the definition of validity we could as well use (DA2), assume pairing in the sense of
bracketing or juxtaposition as the basic mode of combination (at the level of “shadowy re-
flections” ), and specify additional constraints on the combination of proofs: idempotence,
associativity and commutativity in the case of bracketing; idempotence and commutativ-
ity in the case of juxtaposition.

(DA1) and (DA2) correspond to a distinction which is well known from relevance (and
later also from linear) logic, viz. the distinction between ‘extensional’ (‘additive’) con-
junction A and ‘intensional’ (‘multiplicative’) conjunction o. Let us choose juxtaposition
as the basic mode of combining proofs. Then (DA2) can be used to interpret the associa-
tive connective o syntactically characterized by the sequent rules (— o) and (o —). The
sequent rules for the extensional connective A are (— A) and (A —).

Also various clauses given for implication are somewhat ambiguous, but in a less
perspicuous way. Consider e.g. [van Dalen 1986]. The clause (iii) van Dalen gives for
implication requires an understanding of the notions “construction” and “converts”. Since
these notions are not used as technical terms with a fixed meaning, it might make a
difference whether a construction a converts a proof b if a is combined with b (in this
order, i.e. ab) or if b is combined with e (i.e. ba). In other words, the explanans leaves
room for directionality which is not indicated by the explanandum. There are at least two
ways of disambiguating. The first one again points in the direction of substructural logics:
distinguish between the two directional implications known from Categorial Grammar (see

8Explicit statements can e.g. be found in [Lépez-Escobar 1972, p. 367] and [McCarthy 1983, p. 124].
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[Lambek 1958]), the left-searching \ (also called ‘left residuation’) and the right-searching
/ (‘right residuation’), which are syntactically characterized by the sequent rules (— /),
(/ =), (—=\), and (\ —). The second method of disambiguation is to work with notions
less in need of clarification than “construction” and “convert”. Girard’s use of the notions
“function” and “maps” e.g. seems perfectly all right for the non-directional case, i.e. the
case with P.°

A logical constant not mentioned in the above versions of the BHK-interpretation is
the verum constant T. The reason probably is that in intuitionstic logic T is definable
as A D A, for arbitrary A. Thus, the identity function is considered as a proof of T. If
M is dropped from a sequent calculus for IPL, one may distinguish between the two
verum constants t and T with sequent rules (— t), (— T), and (T —). Wrt a BHK-like
interpretation of T and t we can say that (i) the empty sequence <> is a proof of T,
where clearly for every II, <> IT = II <> =1II, and (ii) every combination of proofs forms
a proof of t. Of course, a proof always is a proof of something, and van Dalen [1986, p.
231] e.g. explicitly mentions preserving “the feature that from a proof one can read off the
result”. We shall abbreviate “II is a proof of A” by pr(Il, A). Note that T and t become
interderivable if pr(Il;, A) and pr(I1;II3, B) implies that pr(II,II,II;, B). Also the above
mentioned idempotence and commutativity of the combination of proofs is relevant only
wrt the results of proofs. Thus, instead of e.g. idempotence (IIII = II) it would be enough
to require that pr(II, A) implies pr(IIIl, A) and vice versa.

2.3.2 The proper treatment of negation

Let us now consider the treatment of negation in the versions of the BHK-interpretation
in [van Dalen 1986] and [Girard, Lafont & Taylor 1989]. Since —A is defined as A D L, a
proof of - A is a construction resp-function that-converts resp.-maps each proof of A into
a proof of L. Due to the fact that there is no (possible) proof of L, we may conclude that
there is no formula A such that —A is provable. This causes a serious problem, if we want
to interpret intuitionistic negation, because there are theorems of I PL of the form — A, like
e.g. 7L or =(A A =A). Thus, we cannot consistently use, say, clauses 4 and 5 of [Girard,
Lafont & Taylor 1989] and at the same time claim to interpret intuitionistic negation.
'Iroelstra seems to be aware of this fact. He introduces a number of additional notions:
we are supposed to know what is a “hypothetical proof” and “a proof of a contradiction”
[Troelstra & van Dalen 1988] and what is meant by a reduction of an “alleged proof ...
to an absurdity” [1981]. In [Troelstra & van Dalen 1988, p. 9] it is explicitly stated that
“liju clause H4 the notion of contradiction is to be regarded as a primitive (unexplained)
notion”. But still, how could something be proved which has no (possible) proof? So, if
we should add a further primitive notion to the BHK-interpretation, absurdity is not a
;"n()(l candidate.

This shortcoming of the BHK-interpretation has already clearly been diagnosed by
I'rendenthal [1937] in his early criticism of intuitionistic negation:

Uberlegen wir uns darum, was ein negativer Satz aussagt (in diesem Punkte

"Note, however, that the very use of the word “function” is criticized by Girard [1989}: “in fact, the
imterpretation as a function is wrong, since it forgets the dynamics” (p. 83). What Girard suggests is to
mterpret proofs as actions instead of functions (which are usually regarded as functional graphs).
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herrscht eine weitgehende Verwirrung: man findet die Behauptung, ein nega-
tiver Satz ziele ab auf die Konstruktion eines Widerspruchs; dabei ist vollig
unklar, wie irgendwelche Dinge, die man wirklich hergestellt hat, einen Wider-
spruch enthalten konnen, iberhaupt was Widerspruch hier bedeuten soll). Ein
negativer Satz 2 # 3 bedeutet, dafl in keiner Weise je eine eineindeutige Ab-
bildung der Menge 2 in die Menge 3 gelingen kann; zum Beweis fithrt man
alle (neun) Abbildungen der Menge 2 in die Menge 3 aus und iiberzeugt sich
bei jeder einzelnen davon, dafl sie nicht zum Ziele fiihrt. Dies Beispiel enthalt
vollstandig den Mechanismus der negativen Sitze; ... . Ein negativer Satz
sagt also, daB} alle Konstruktionsversuche mit einer bestimmten Zielsetzung
scheitern. [1937, p. 113]%°

Freudenthal’s point of view is shared by McCarthy [1983]. Translated into our notatior
McCarthy’s clause for negation (p. 124) reads as follows:

(iii) pr(II, = A) iff for all IT*, if pr(II*, A), then pr(II(I*),0 = 1),

assuming that “no construction proves 0 = 1”7 (p. 125). Although McCarthy explains that
clause (iii) “says that II shows A to be constructively false iff, whenever ITI* proves A
II, as a constructive function, takes II* as an argument and produces II(IT*) as a proo:
of 0 = 1”7 (p. 124, emphasis HW), he also holds that clause (iii) can be replaced by its
classical (!) equivalent:

pr(II,—A) iff for all IT*, it is not the case that pr(Il*, A).

Now, this clause, being very close to the most obvious understanding of Freudenthal’s po-
sition, is blatantly non-constructive. It might be objected that the predicate pr(, ) should
be decidable. According to Sundholm [1983] it was this requirement which led Kreisel tc
-introduce the so-called “second clause” for implication. We have already mentioned that
this second clause is widely regarded as highly problematic. Moreover, even if the pr(, )
predicate is decidable, McCarthy’s interpretation is not in the spirit of Heyting seman-
tics, since negation is not interpreted by an abstract construction but by the absence of
constructions.

Almost the same critical remarks as above have also been put forward by Lépez-
Escobar [1972], who suggests to add as a new primitive notion to the BHK-interpretation
the notion of refutation (or disproof). As Lépez-Escobar observes, this leads to an in-
terpretation not of intuitionistic logic but rather of Nelson’s logic with strong, construc-
tive negation ~ without ez contradictione quodlibet, i.e. Nelson’s constructive system N~
Similarly, considering refutability as the mirror-image of provability, von Kutschera [1969]
comes to investigate functional completeness of (the propositional part of) N, which he
calls direct propositional logic (see Chapter 7). Here is the disproof-interpretation of the

104] et us therefore reflect upon what a negative sentence expresses (on this point there prevails a large
confusion: one can find the claim that a negative sentence aims at the construction of a contradiction; yet
it is completely unclear how something which has in fact been constructed may contain a contradiction
and, in general, what contradiction is intended to mean in this case). A negative sentence 2 # 3 means
that in no way ever a 1 — 1 mapping from the set 2 into the set 3 can succeed; to prove this one carries
out all (nine) mappings from the set 2 into the set 3 and convinces oneself that in each case they do not
succeed. This example entirely contains the mechanism of the negative sentences; .... A negative sentence
thus says that all attempted constructions with a certain aim fail.” (translation HW)
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intuitionistic connectives A, V, and D and the constructive negation ~ as presented by
Lépez-Escobar:

i.) the construction c refutes A A B 1! iff ¢ is of the form < 7,d > with i either 0 or 1 and
if ¢ = 0, then d refutes A and if ¢ = 1 then d refutes B,

ii.) the construction c¢ refutes A V B iff ¢ is of the form < d,e > and d refutes A or e
refutes B,

ili.) the construction c refutes A D B iff ¢ is of the form < d,e > and d proves A and e
refutes B,

viii.) [t}he construction c refutes ~ A iff ¢ proves A.

A proof of ~ A is then considered as a refutation of A (and not as a proofof A D L). A
fundamental assumption made by Lépez-Escobar is that

{A |30, pr(Il, A) and pr(Il,~ A)} = 0.
If we endorse the stronger assumption that

{4 | 3M0,3M0,, pr(Il;, A) and pr(Il;,~ A)} = 0,
then the rule

(ex contradictione) + X(AA ~ A)Y — B
hecomes validity preserving.

In conclusion we may say that supplementing the BHK-interpretation by the notion
of disproof avoids the above-described problem caused by the non-constructive nature
of intuitionistic negation. Moreover, it also is straightforward and intuitively convincing
msofar as it reflects a balance between positive and negative information. The ambiguitiy
of the BHK-interpretation detected in the previous subsection need not exclusively be
viewed as a shortcoming of this approach. On the contrary, the ambiguity will even turn
ont to be instructive insofar as it reveals parameters which can be modified so as to
obtain an unequivocal semantical framework rather than one particular interpretation. In
'hapter 6 we shall introduce a certain proof/disproof-interpretation as such a semantical
fiamework and show that this interpretation is sound wrt a broad range of constructive
~ubstructural propositional logics, if suitable constraints are imposed on the combination
of proofs and disproofs.

2.4 Examples

We present some examples of important constructive and substructural logics and, in
particular, their interpretation in terms of information pieces.

"'1,6pez-Escobar uses ‘&’ instead of ‘A’ and ‘-’ instead of ‘~’.
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2.4.1 Nelson’s constructive systems N~ and N

In a symmetric sequent calculus for the propositional logic N~ in the language with D
A, V, 1, and ~, we have in addition to rules for introducing the connectives into premises
and conclusions also rules for introducing on the rhs and on the lhs of — strongly negated
formulas with D, A, V, or ~ as the main connective (cf. [Almukdad & Nelson 1984] o
[Kutschera 1969], [Lépez-Escobar 1972], [Routley 1974], [Akama 1988a]'?). In N we have
in addition to the rule (ex contradictione) also rules for 1 and ~ L.

Definition 2.2 The rules constituting N~ are:

(id);  (cut);

<->A> X->AY->BFXY - (AAB)

<A->> XA-CF X(AAB)-C,
XB—-CF X(AAB) - C;

<—»V> X-AF X - (AVB),
X—->BF X - (AV B);

<V—-> XA—-C YB—-CF XY(AVB)— C;

<—=D> XA—-BF X - (ADB);

<D—> Y—-A XB—-CtF X(ADB)YY — C;

<> X 5 AF X -5~ A

<~~—> XA—-BF X ~~A— B;

<=~A> X 5~ AF X -5~ (AAB),
X >~BF X -~ (AAB);

<~v~A->> X~A—-C Y~B->CFXY~(AAB)—C,

<—~V> X >5~A Y-o~BF XY -~ (AV B);

<~V-o> X~A-CFX~(AVB)—C, -
X~B-CFX~(AVB)-C;

<—=~D> X-—>A Y -o~BF XY -~ (4D B);

<~D—> XA—-CF X~(ADB)-C;
X~B—-CFX~(ADB)—-C;®

P; C, M.

Definition 2.3 The rules of N are those of N~ plus (ex contradictione), (L —) and

(o~ 1) FX-o~1M

Models for N~ and N can be based on Kripke frames, i.e. pre-orders, < I,C> (cf. e.g.
[Thomason 1969], [Lépez-Escobar 1972}, [Routley 1974], or [Gurevich 1977]).

12[Akama 1988a] should be read in combination with Tanaka’s [1991] critical comments.

13Note that the formulation of the operational rules takes advantage of the presence of P, C, and M.

4 Almukdad and Nelson [1984] do not assume L to be in the language. Clearly, L is definable in N
as pA ~ p for some propositional variable p. Van Dalen [1986] includes L in his presentation of N,
however, probably because he thinks of N as an extension of intuitionistic logic. We have included L in
the language with ~ for synoptical reasons.
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Definition 2.4 (i) A Kripke model for N~ is a structure M = < F,v{, v, >, where F
is a Kripke frame and vg, vy are basic valuation functions from PROP U {1} into 27
such that for every p € PROP U {1} and every a,b € I:

if a C b, then a € vg (p) implies b € v (p),

if a C b, then a € vy (p) implies b € vy (p).
(ii) A Kripke model for N is a model for N~ < I, C, v, vy >, where for every p € PROP,
vg (p) Nvy (p) =0 and v (L) = B, v (L) = 1.

Definition 2.5 The valuation functions v*, v~ induced by a Kripke model for N~
< I,C,v{,vg > are the functions from the set of all formulas in {D, A, V, L, ~} into 2/
which are inductively defined as follows (where p € PROP U {1}):

v*(p) = i (p),
v (p) = v (p),
vF(ADB) = {a]|(Vbevt(A))aCb iplies b€ v*(B)},

v (ADB) = v'(A)Nv (B),

vt(A A B) vt(A) N vt (B),
v (AAB) = v (A)Uv (B),

vt(AVB) = vt(A)Uv (B),
v (AVB) = v (A)nv (B),
vt(~A) = v (4),

v (~A) = v (A)B

By simultanous induction on the complexity of A one can show that for every Kripke
model M = < I,C, v, vy > for N™, every formula A, and every a, b € I,

(Heredity *)  if @ < b, then (a € v*(A) implies b € v*(A4)),
(Heredity =) if @ < b, then (a € v~ (A) implies b € v~ (4)),
.nd moreover, if M is a Kripke model for N, vt(A) Nv~(4) = 0.

I{:MARK Obviously, instead of the two valuations v+ and v~, one could in the case of
ltipke models for N use one three-valued resp. in the case of Kripke models for N~ one
four valued valuation v assigning to each pair < a,A > (a € I, A a formula) one of the
values t (true), f (false), or u (undetermined), resp. t, f, u, or o (overdetermined):

v(a,A) =t iff a€vt(4),

v(a,A) = f iff a€v (4),

v(a,A) =u iff aecl-(vF(4A)Uv(4)),
v(a,A) =0 iff a€vt(A)Nv (A4).

"Ihese truth and falsity conditions with the exception of the clauses for D are the core of partial
logie, of. e.g. [Fenstad, Halvorsen, Langholm & van Benthem 1987], [Thijsse 1990]. As extensions of this
vore, N and N may be regarded as systems of partial logic (cf. [Blamey 1986, p. 25 f.]). Note that
nnplications (A D B) are falsified on the spot. This is a significant difference to Veltman’s [1981] data
~emantics which assigns weaker, ‘dynamic’ falsity conditions to (A D B), viz., in our notation, v~ (A D B)

{a|(Fbevt(A)aC b, bevt(A)and bev™(B)}.
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Definition 2.6 (semantic consequence) Let M =< I,C, v§,v; > be a Kripke model fo:
N~. A sequent A; ... A, — A holds (or is valid) in M

o vHA1N...NA;) Covt(A) if X is nonempty,
vH(A) =1 otherwise.

Kripke’s interpretation of IPL in terms of information states or pieces can directly
be applied to the above semantics for N~ and N, except that now truth conditions as
specified by valuations v+ are accompanied by falsity conditions as specified by valuations
v~ . In contrast to Kripke models for N, Kripke models for N~ allow for inconsistent pieces
of information.

The standard completeness proofs for M PL and IPL can easily be adapted to prove

Theorem 2.7 N~ resp. N is characterized by the class of all Kripke models for N~ resp
N.

2.4.2 Relevant implicational logic R

Relevant implicational logic R+ codifies the idea of relevant inference and forms the inte-
gral part of relevance logic (see e.g. [Dunn 1986]).

Definition 2.8 The rules constituting R are (id), (cut),(— /),(/ —),(—=\),
(\ —=),P, and C.

Urquhart {1972] has developed an informational interpretation of R-. Instead of fur-
nishing a set of information pieces I with a binary relation as in Kripke’s semantics fo1
IPL, Urqubart in his semantics for R~ assumes a binary operation & on I which is tc
be thought of as the ‘addition’ of information pieces. Like Grzegorczyk, he postulates
an empty piece of information, 1, which is now used to define validity.!® A frame F =
< I,®,1 > for R+ is required to be a semilattice wrt @ and with 1 as least element. In
other words, the following equations hold for every a,b,c, € I:

ada=a, (aDb)Bc=a®d(bdc), adb=bDa, adl=a.

An model M for R+ is a frame < I,®,1 > for R+ together with a basic valuation
function vy from PROP into 2! such that vo(p) = {a € I | a determines p} or, equivalently
(as suggested by an example in [Urquhart 1972]),

vw(p)={a€l|pea}

The basic valuation v is then extended to a mapping v from the set of all implicational
formulas into 2 by stipulating:

v(A\B)=v(B/A)={a€I|(VbeI) if b€ v(A), then a® b€ v(B)}.

An implicational formula A is said to be valid in a model M = < I,®,1,v, > for R iff
1 € v(A).

18To be precise, Urquhart uses ‘U’ instead of ‘@’ and ‘0’ instead of ‘1’.
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Theorem 2.9 (Urquhart) A is a theorem of R~ iff A is valid in every model for R-.

Soundness is proved by induction on the length of proofs of — A in R-. Completeness is
shown by defining a simple canonical model Mg, =< I,®,1,vp > for R-, where [ is the
family of all finite sets of implicational formulas, & is set union, and 1 = §. A valuation
function v which can be shown to satisfy the requisite conditions is defined by: a € v(A)
iff a — A is provable in R~. If now A is not a theorem of R, then § ¢ v(A), thus — 4
is not provable in R-.

By a suitable definition of semantic consequence, Urquhart’s result can easily be ex-
tended to a strong characterization theorem.

Definition 2.10 A sequent A4;...A, — A is valid in a model < I, ®, 1, vy > for R~

i (Va, € I...Va, € I)a; € v(A;) implies a; ® ... ®a, € v(4) if n>0
1 € v(A) otherwise.

If now /g, A;...A, — A, then there are a;,...,a, € I such that kg, a; — A; and
YRy @1 @ ... ® a, — A. By the definition of v, A4;... A, — A is not valid in Mp_. Note
that Mg, is a free semilattice; R~ is therefore also characterized by the class of all free
semilattices with least element.

In the terminology of [DoSen 1990] a valuation v is called multiplicative iff for every
a,b € I and every implicational formula A:

(mult) ifa € v(A), then a ® b € v(A4).

As Urquhart observes, the logic characterized by the class of all multiplicative models

I,®,1,v > is intutionistic implicational logic IPL~. Given (mult), we have 1 € v(A)
iff for every b € I, b € v(A). Dosen [1990] points out that for semilattices it is enough to
assume (mult) for propositional variables and then to establish (mult) for every implica-
tional formula A.

In presenting his semilattice semantics, Urquhart maintains that the addition of infor-
mation pieces “must obviously fulfill the laws of set union” ([1972, p. 160)), i.e. associativ-
ity, commutativity and idempotence. When it comes to generalizations of his semantics,
liowever, he also considers relaxing these properties and correlates them to structural
tules of inference in Gentzen-style sequent calculi. He mentions e.g. that in the absence
of structural rules @ is required only to be associative: “this means that, considering the
preces of information . .. as listed on sheets of paper, we do not consider two pieces of
information to be identical unless they are given in the form of identical lists” [1972, p.
16K

2.4.3 Categorial logics

It ' is taken away from the rules of R~ and sequents are restricted to have non-empty
wequences on the lhs of the sequent arrow, the resulting system is the product-free, direc-
tiomal Lambek Calculus of syntactic categories, LP. Van Benthem [1986, 1988] character-
1z 1P by means of the following canonical model Mpp =< I, @, vy > for LP, where I is
the family of all finite, non-empty multisets of implicational formulas, & is multiset union
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(which is associative and commutative but not idempotent), v, is defined by a € vo(p) iff
FLp a — p, the validity of a sequent A;... A, — A is defined as above, and Urquhart’s
evaluation clause for implications is used. It can then be shown that for every implica-
tional formula A and every a € I, a € v(A) iff -pp a — A. If P is dropped from LP, one
obtains the product-free Lambek Calculus L. In the canonical model My, =< I, ®, vy >
for L, I is the family of all finite, non-empty sequences of occurrences of implicational
formulas, @ is the operation of juxtaposition (which is associative but neither commuta-
tive nor idempotent), v, is defined by a € vo(p) iff L, @ — p, the validity of sequents is
defined as above and implications are evaluated as follows:

v(B/A) = {a€I|(Vbel) if bev(A), then a® b€ v(B)},
v(A\B) = {acI|(Vbel) if be v(A), then b a € v(B)}.

Completeness can then be proved as before. If sequents with empty antecedents are al-
lowed, one may introduce the empty multiset resp. the empty sequence as the empty piece
of information 1 and define the validity of sequents — A wrt 1.

2.5 Appendix: Possible constraints on ‘information-
al interpretation’

The notion of an informational interpretation of models based on abstract information
structures probably cannot be captured by a precise definition. Nevertheless one might
want to clarify this notion to a certain extent by imposing some constraints on ‘infor-
mational interpretation’. Wrt (minimal or intuitionistic) Kripke models < I,C, vy > e.g.
one can say that, given the interpretation of I as a set of information states and C as
the development (or rather the expansion) of these states, the evaluation of L-formulas
in Kripke models, the definition of semantic consequence, and the properties of C can be
considered to be intuitively plausible. Clearly, rendering the properties of the components
of the respective abstract information structures intuitively plausible may be regarded as
an essential ingredient of any informational interpretation, and certainly under any truly
informational interpretation also the evaluation clauses and the definition of semantic
consequence should emerge as plausible. (Otherwise, what would be the explanatory value
of the interpretation?) In addition to these basic conditions one might ask for a concrete
intended model. Moreover, since intuitively pieces of information are finitary, ‘incomplete’
entities, the requirement of finite representability may appear to be a natural constraint on
the specification of information pieces or states, at least for intended models. In the case
of Grzegorczyk’s interpretation of IPL e.g. all models taken into account are concrete,
the class of researches is the class of intended models, and every information piece is a
finite set. Now, one may ask by virtue of which property a model is an intended model for
a given logic £. An obvious answer is “by characterizing £”; in other words every intended
model should be canonical. As far as Urquhart’s intrepretation of R+ is concerned we may
note that it produces a model which (i) can arguably be talked about as the intended
model and (ii) characterizes the logic and thus the information processing mechanism in

question.

Let us summarize the above considerations. If a propositional logic £ in the lan-
guage L(L) is characterized by a class I" of models based on certain abstract information
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structures, then an interpretaion of models from I' will be regarded as an informational
interpretation of L, if

1. the interpretation renders the properties postulated for the relations, operations, or
designated elements plausible (according to certain intuitions);

2. the evaluation clauses for L(L)-formulas and the definition of semantic consequence
emerge as plausible (according to intuitions compatible with those referred to under

1);

3. the interpretation provides for a concrete, intended model M € T, in which the
pieces of information are finitely representable;

4. each intended model M is a canonical model for £, i.e. M itself characerizes L.

These suggested criteria are nontrivial. As we have seen, whereas the generalized re-
search Rypy, characterizes I PL, there exists no canonical research in Grzegorczyk’s sense,
and hence Grzegorczyk’s interpretation violates condition 4.
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Chapter 3

Intuitionistic minimal and
intuitionistic information processing

The present chapter is devoted to introducing a family of substructural subsystems of
MPL together with a related family of subsystems of IPL. The base systems will be ‘in-
tuitionistic minimal sequential propositional logic’ M SPL resp. ‘intuitionistic sequential
propositional logic’ ISPL, i.e. MPL resp. IPL without structural inference rules. The
families are unfolded by succesively adding certain such structural rules to sequent-style
presentations of M SPL resp. [SPL. In both families negation is not an independent op-
eration but defined by means of (the right-searching) implication / or (the left-searching)
implication \ and the constant L. We shall also consider various properties of some of
these systems, viz. cut-eliminability, decidability, and interpolation.

3.1 Substructural subsystems of MPL and IPL

Definition 3.1 The rules constituting M.SPL are the rules of M PL with the exception
of P, C, and M, i.e. MSPL is MPL without structural rules of inference. The rules of
ISPL are the rules of MSPL together with (1 —), i.e. ISPL is IPL without structural
rules of inference.

Duspr(ll,X — A, S), “Ilis a derivation in MSPL of X — A from the finite, possibly
empty sequence S of sequent occurrences”, resp. Dyspr(II, X — A, 5), “Il is a derivation
in ISPL of X — A from the finite, possibly empty sequence S of sequent occurrences”,
is inductively defined in analogy to Drpr(II, X — A,S) (cf. Appendix 1.5).

By means of (cut) it can easily be verified that instead of the rules (— T), (/ —),
(\ =), (— o), (A —), and (— V) one may equivalently use, respectively:

(TT XTY - AF XY - T,

(/) X—-(B/A)F XA— B

(T\) X—-(A\B)+F AX - B;

(7)) X(AoB)Y - CF XABY — C;

31
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Chapter 3

Intuitionistic minimal and
intuitionistic information processing

The present chapter is devoted to introducing a family of substructural subsystems of
MPL together with a related family of subsystems of 7PL. The base systems will be ‘in-
tuitionistic minimal sequential propositional logic’ M SPL resp. ‘intuitionistic sequential
propositional logic’ ISPL, i.e. MPL resp. IPL without structural inference rules. The
families are unfolded by succesively adding certain such structural rules to sequent-style
presentations of M SPL resp. ISPL. In both families negation is not an independent op-
eration but defined by means of (the right-searching) implication / or (the left-searching)
implication \ and the constant L. We shall also consider various properties of some of
these systems, viz. cut-eliminability, decidability, and interpolation.

3.1 Substructural subsystems of MPL and IPL

Definition 3.1 The rules constituting M SPL are the rules of M PL with the exception
of P, C, and M, i.e. MSPL is MPL without structural rules of inference. The rules of
ISPL are the rules of MSPL together with (L —), i.e. ISPL is IPL without structural

rules of inference.

Duspr(IL,X — A, S), “Il is a derivation in MSPL of X — A from the finite, possibly
empty sequence S of sequent occurrences”, resp. Drspr(II, X — A4,5), “Il is a derivation
in ISPL of X — A from the finite, possibly empty sequence S of sequent occurrences”,
is inductively defined in analogy to Drpr(II, X — A4, S) (cf. Appendix 1.5).

By means of (cut) it can easily be verified that instead of the rules (— T), (/ —),
(\ =), (— o), (A —), and (— V) one may equivalently use, respectively:

(TT1) XTY - AF XY =T,

(t1/) X—(B/A)F XA - B;

(t1\) X—-(A\B) + AX - B,

(o7) X(AoB)Y - CF XABY — C,

31
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(TA) X>(AAB) F X — A,
X->(AABt+ X - B;

(V1) X(AVB)Y —C F XAY — C,
X(AVB)Y — C + XBY - C.

Adding combinations of the following structural inference rules to the rules of MSPL
and ISPL induces families of distinct sublogics of MPL and IPL (cf. [DoSen 1988]):

permutation (P): XABY — C + XBAY — C;
contraction (C): XAAY — B+ XAY — B;
cancellation (C'): XAYAZ — B+ XAYZ — B,
XAYAZ - B+ XYAZ — B;
expansion (E): XAY - B+ XAAY — B;
duplication (E'): XAYZ — B+ XAYAZ — B,
XYAZ - B+ XAYAZ — B;
monotonicity (M): XY — B + XAY — B.

Let E range over {MSPL,ISPL}, let A C {P,C,C',E,E',M}, and let E5 denote
the extension of Z by the structural rules in A. Note that P is derivable in E{c,M}:

B— B A—> A A A B— B
BA—->B BA—> A BANA—- A BANA—> B

BA—-BANA (BAA)(BAA)— AoB

BoA—->BANA BANA— AoB XABY —» C
BB A—>A BoA— AoB X(AoB)YY - C
BA—> BoA X(BoA)Y - C
XBAY - C.

Clearly, P is also derivable by means of M and C’ alone:

XABY —» B
XABAY —» B
XBAY — B.

Note that using (L —), the propositional constant t can be defined in ISPL as L /1
oras L\ L;seee.g.:

A0 A 1 - L
A]_(Al\_l_)——)_l.

Lo A\ N4\ ) B AA @D o1
AlAnJ_'—)_L
AlAn—P_L/_L
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In Figure 3.1, the lattice structure resulting from the addition of the structural rules
in A to one of the base systems is depicted as a Hasse-diagram, where — denotes proper
set-inclusion. The two lattices can be thought of as frameworks offering different options
for representing deductive information processing. E.g. in the absence of structural rules
the premises are conceived of as sequences of occurrence, whereas in the presence of P
resp. P, C, and E one is dealing with multisets resp. sets of premises. Different grades
of monotonicity of inference are provided by selecting among E, E’, and M. Within the
lattices a number of (fragments of) well-known propositional logics can be identifed as
deductively equivalent. If empty sequences on the lhs of — are excluded, the {/,\, o}-frag-
ment of MSPL is known as the bi-directional, associative Lambek Calculus of Categorial
Grammar (see [Lambek 1958]). ISP Lp} turns out to be exactly intuitionistic linear pro-
positional logic without ‘exponentials’ (cf. [Girard 1987], [Avron 1988]|, [Troelstra 1991}).
The implicational fragments of MSPLp c}, MSPLp c g}, and MSPLp M}, respec-
tively, can be identified as relevant implicational logic R, ‘mingle’ implicational logic
RMO0-, and BCK implicational logic, respectively (cf. e.g. [Dunn 1986], [Ono & Komori
1985]).

E(p,c,M}

E{P,C.E} Zp.M}
Ep,C} E{CE 4 .
Eqmy

E{CI}

E{cy

/ E(E)

Figure 3.1: The lattice structure of the systems Z4.

Let A — B denote A — B and B — A. Here is a selection of sequents provable in
each system Za (i.e. already in the base systems):
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Ao(BoC)« (AoB)oC,
4— BJ(4\B),
A — (B/A)\ B,
A/B = (4/C)/(B/C),
A\B — (C\A4)\(C\B),
(4/B)(B/C) — (4/C),
(C\B)(B\4)—(C\A4),
(4\ B)/C & A\ (B/C),
(4/B)/C > A/(Co0 B),
C\(B\4) o (BoC)\ 4,
CV(AAB)— (CVA)A(CV B),
(CANA)V(CAB)—-CA(AV B),
A AoT, Ao ToA,

() (AVB)oC « (AoC)V(BoC), Ao(BVC)e (AoB)V(AoC().

Let C4 denote an L-formula that contains a certain occurrence of A as a subformula,
and let Cp denote the result of replacing this occurrence of A in C by B. The degree of
A (d(A)) is the number of occurrences of propositional constants and connectives in A.

Theorem 3.2 (replacement) If — A =+ B is provable in Z,, then so is
- C A =t C B-

Proor By induction on [ = d(C,4) — d(A). If | = 0, the proof is trivial. Assume that
the claim holds for every | < m, and Il = m + 1. We consider just one case, viz. C4 =
D;4 \ D,. By the induction hypothesis, - — D4 =% D;p, i.e. b D;4 < D;p. We have
the following derivation:

Dip = D14 Dy — Dy
Dig (D14 \ D2) — D,
Dy4\ D2 — D1p\ D,

Similarly we obtain - Dip \ Dy — Dy4 \ D,. Thus, F— C4 =% Cp. O

3.2 Some standard properties

3.2.1 Cut-elimination

Let the degree of an applicationY - A XAZ — B + XY Z — B of (cut) be the number
of separate occurrences of /, \, 0, A, V, L, T,and tinY, A, X, Z, and B.

Lemma 3.3 Every proof of X — A in Zg, © C {P,C, C’,M}, with a single application
of (cut) can be converted into a proof of X — A with no application of (cut) or with one
or two applications of (cut) of a smaller degree.
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PROOF By a standard distinction between possible proofs of the premise sequents of (cut)
(cf. e.g. [Lambek 1958] and [DoSen 1988]). Case 1: One of the premise sequents of (cut) is
of the form A — A. Then the conclusion of (cut) is identical with the remaining premise
(sequent), which is proved without applying (cut). Case 2: If the left premise of (cut) is
— T, replace in the proof of the right premise X TZ — A every occurrence of T on the lhs
of sequent arrows. The result is a (cut)-free proof of XZ — A. Case 3: The last step in the
proof of the left or the right premise of (cut) is the application of an operational rule, such
that the connective or constant introduced is not the main connective of the cut-formula
(i.e. the formula which is eliminated by applying (cut)) resp. is not the cut-formula. We
must deal with all possible cases and show that an application of the operational rule
in question need never immediately precede an application of (cut). Consider by way of
example the following conversions:

Hl Hz M H3
Y1—-C X1DZi—A X1DZ;—~A XAZ-B
X:(D/O)hZi~A  3ig—p | Is converted into 72G XXiDZ:iZ-B :
XX1(D/C)Y:2:Z—B XX1(D/C)Y:121Z2—B
__Ez__ o; 11,
- XAZC—B YA XAZC—HB
Fo3 XAZ-(B/C) is converted into XYZC—B
XYZ~(B/C) XY Z—(B/C)

Case 4: The last step in the proof of both premises of (cut) is the application of an
operational rule apart from (1 —) and (— t), such that the connective or constant
introduced is the main connective of the cut-formula resp. is the cut-formula. We have to
consider all possible cases and show that an application of the operational rule in question
is superfluous: we can instead use one or two applications of (cut) of a smaller degree. For
instance,

Im I, 1 M _Ih
XA—B Yi—»A X,BZ-C YA XA—-B I
X—(B/A) X1(B/A)Y: Z—C is converted into XYi—B ﬁ;:’&
X1 XY1Z—C X1 XY, Z—-C

Case 5: Both premises of (cut) are instantiations of (L —) resp. (— t):

X___kt.Y_ZXLZ___’i is converted into XY Z — t;

-t

X%Y_Hr—rﬁ%—_)—é is converted into XY;1Y,Z — A.

Case 6: The last step in the proof of the left or the right premise of (cut) is the application
of a structural rule R € ©. We show that an application of R need never immediately
precede an application of (cut). (a) The last step in the proof of the left premise of (cut)
is an application of R, R = P or M:

__Hl__ I, J16Y

Yi—A I Y1—A Z1AZy—B
R —z_ - .

Ya—A Az =B | 1S converted into Z,Y, Z3—B

Z1Y2Z2,—B Z2,Y2Z2—B R
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R = C (the case R = C' is analogous):

L I M

Y].—'A I Yl —A Z1AZ:—>B

Y;—»A4 R 74z =p | is converted into Z.Yy Z,—B
2:Y,Z2—B z,,2,-B R

(b) The last step in the proof of the right premise of (cut) an application of R. (i) The cut-
formula has neither been introduced by the application of M nor has it been contracted
resp. canceled by the application of C resp. C'. For R = C e.g. one obtains the following
conversion step:

_ Iz I I
Z1AZy—B R Y—=A Z1AZ;—B
H . .
T4  Z3AZ—~B is converted into Z,Y, Z,—B
Z5Y1Z,—B z:Y12,—8 R

(ii) The last step in the proof of the right premise of (cut) is an applcation of R €
{C, C', M} such that the cut-formula has been introduced by the application of M resp.
it has been contracted (canceled) by the application of C (C’). We present two conversion
steps, one for C' and one for M:

[ IL II, W
h Y1—»A Z1AZ,AZ3—B
N | | T i
Z1AZ2,AZ3—B Yi—A 211 Z,AZ3—B
_‘l—yln_, a1 Z12:AZy—B is converted into %Y1 Z,Y; Zs—B :
212,Y123—B :
Z1Z2Y1Z23—B J
Mz _ N
2,123—B Z1Z.—B
Y—Hl— Z,AZ:—B | 1s converted into : .0
1—A :
Z.YZ, B Z1Y12:—B

Theorem 3.4 (cut-elimination) Applications of (cut) can be eliminated from proofs in
Ze, where © C {P,C,C',M}.

PRrROOF Since no application of (cut) has a negative degree, applications of (cut) can be
eliminated from proofs in Z¢ by applying the conversion algorithm described in the proof
of the previous lemma, starting from the top of proofs, proceeding from left to right. 0!

Applications of (cut) cannot be eliminated from proofs in Z, if E or E' are in A,
but M is not. This holds already for the implicational fragments. The following counter-
example to cut-eliminability for the implicational fragment of Zg) is due to Kosta Dosen
(personal communcation): p1(pa/(p1 \ p2)) — (p2/(p1 \ p2)). Dosen also pointed out that
this sequent is not a counterexample to cut-eliminability for proofs in the implicational
fragment of Z(p gj. Such a counter-example has been found by Dirk Roorda (personal

1A strengthening of cut-elimination which will not be considered here is strong cut-elimination, saying
that every sequence of conversion steps terminates in a (cut)-free proof (cf. e.g. [Roorda 1991)).
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communication): p;(p; \ p2)(p2 \ p3)(p1 \ ps) — Ps. A counterexample for the implicational
fragment of Z(p c E; is presented in the following subsection on decidabilty. The problem
with E and E' is that certain applications of (cut) cannot be pushed upwards:

XAYZ - B,

where A does not occur in X or Y. Note that in the presence of (cut) instead of the rule
E one may equivalently use the rule

mingle (MI): X >4 Y > AF XY — A

Thus, E(gy = Z¢m1)- In the absence of M, also MI blocks cut-eliminability. Here we have
problematic cases like the following:

o Iz
XA YA

I . .
XY—A 54755 | 1s converted into
X1XYZ—B
r I1; IIs I, Hs 1
XA XAZ-B Y—A X1AZ-B

X1 XZ—-A X1YZ—-A

X (A \ed AN B/ B )/ f B1)))) Y (o An\e(A2\(- (BB )]  B1)) s
XY (e (An \ol AL\(( B/ B ) oee/ B1))oer)

| X, XYZ—B,

where X; = A;... A, and Z = B;...B,. The steps from XY — (...(4, \ ...(41\
(...(B/Bw)/.../B1))...)t0 X1 XY Z — B involve applications of (cut). In the converted
proof we still have an application of MI that is immediately followed by an application of
(cut), and unfortunately this constellation may loop, as can be tested with the following
example:

Hl —
(1 \ p2)(P2 \ Ps) = p1 \ ps PL\ps = Pi\ps 2
(p1 \ p2)(p2 \ p3)(p1 \ P3) = P1 \ P3 pi(p1 \ p3) — ps

pi(p1 \Pz)(Pz \Pa)(Pl \Ps) — Ps3.

The above mentioned counterexamples to cut-eliminability remain counterexamples, if E
is replaced by MI. (See the decision procedures in the following subsection).

Cut-elimination has a number of useful immediate consequences.
Definition 3.5 Let £;, £, be logics (with sequent calculus presentations) such that the
language Ly of £, extends the language L; of £,. We say that £, is a conservative subsys-

tem of £, and L, is a conservative extension of £, iff for every L;-formula A and every
finite sequence X of L;-formula occurrences:

Fe, X — Aiffbz, X — A
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Corollary 3.6 (i) (subformula property) If Fz, A;...A, — A, then there is a proof
of this sequent in Zg in which only subformulas of A4,,... A,, and A occur;

(ii) Each subsystem obtained from ZEg by dropping all rules for a certain constant or
connective is a conservative subsystem of Zg;

(iii) If kg, — A, then there is a proof of this sequent in Zg in which the last step is the
application of an operational rule introducing a connective on the rhs of —;

(iv) (consistency) — L cannot be proved in Zg;

(v) (disjunction property) If AV B is provable in Z¢ (i.e. bz, = AV B), then A is
provable or B is provable.

Corollary 3.7 tertium non datur in both forms AV —"A and AV —'A is not a theorem
of E@.

Proor By the disjunction property, e.g. I/ p; V ="p;, since neither F p; nor F ="p,. O
Theorem 3.8 E,, is not an n-valued logic, 1 < n < w.

PRrROOF The proof is essentially the same as Godel’s proof that IPL is not a finitely many-
valued logic (see [GSdel 1932]). Since in Zg, - A & Biff r— A=*1 B and+— AV B
iff - — A or - — B, every adequate n-valued truth-table with designated value 1 for =7
resp. V must look like this

;-*"'!1...7& Vll...n
1 1 1]1

n 1 n|l

Now, suppose that =g is an n-valued logic with designated value 1. Then any disjunction
of all equivalences p; =% p; where i < j < n+ 1 is a theorem of E,, since at least one
equivalence p; =% p; is evaluated as 1. By the disjunction property, one of the disjuncts
is a theorem of =g, quod non. O

3.2.2 Decidability

In the base systems MSPL and ISPL each sequent rule apart from (cut) introduces
complexity (viz. one additional occurrence of a connective or propositional constant) in
passing from the premise sequent(s) to the conclusion. Also the structural inference rules
P, E, E/, MI, and M do not reduce complexity. This observation leads to an obvious
decision procedure for certain systems which admit of (cut)-elimination.

Theorem 3.9 Provability of sequents in =4, is decidable, A; C {P,M}.
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PROOF Every sequent provable in =4, is provable without applying (cut). Now, take
any sequent s and draw a line from s to each premise sequent sq or sequence of premise
sequents s;59 such that s can be derived from s¢ or s;s,. If P resp. M is present, draw
also a line from s to every result of permuting the antecedent of s resp. to every sequent s’
from which s is derivable by applying M. Iterate this process so as to obtain the complete
proof-search tree of s wrt Z4,. Since the number of sequent rules is finite, s is finite, and
no rule reduces complexity, the complete proof-search tree of s is finite and thus a decision
procedure exists. O

Corollary 3.10 =,, minus (cut) is decidable, A, C {P,E,E',MI,M}.

PROOF Obvious. In the presence of MI we neglect in the proof-search tree for a sequent
X — A the branches leading from X - Ato X - 4 —s Adorto—» A X—-A 0O

It can now easily be shown that e.g. neither (CV A)A(CV B) — CV (AA B) nor
CA(AV B) — (CANA)V(C A B) is provable in ISPL. Moreover we can verify that the
sequents p1(p2/(p1\p2)) — (p2/(p1\ p2)) tesp. p1(p1 \ p2)(p2 \ ps)(P1 \ p3) — ps in fact are
counterexamples to cut-eliminability in Z(gy = Eqmry resp. Eqp gy = E(p,M1y-

Complexity-reducing rules like C and C’' may pose a problem for proving decidability,
since in their presence the method of constructing complete proof-search trees does not
guarantee the finiteness of the search-space. In what follows we analyse and apply to a
wider class of substructural logics a technique used by Kripke to prove decidability of -5,
i.e. the implicational fragment of MSPLp cy. This will allow us to include C and C'.
We shall draw on the clear presentation of Kripke’s argument in [Dunn 1986); a proof of
Kripke’s Lemma (which is a form of Kruskal’s Theorem in graph theory, see [van Benthem
1991]) can be found in [Anderson & Belnap 1975].

Theorem 3.11 Provability of sequents in =5, is decidable, Az C {P,C,C',M}.

ProoF We will give a proof for the case that C € Az which can be converted into a proof
for the case that C' € A3 by replacing ‘contraction’ resp. ‘C’ resp. ‘contracting’ through-
out by ‘cancellation’ resp. ‘C" resp. ‘cancelling’. We say that X' — A is a contraction
of X —» Aiff X' — A can be derived from X — A by repeated applications of C. In a
first step we shall replace S, by an equivalent calculus Z),, which suits for the proof of
decidability. The idea is to get rid of C by building into the operational rules a restricted
amount of contraction. This is achieved by allowing a contraction of the conclusion of
an operational rule only in so far as the contraction cannot be obtained by applying the
operational rule in question after first contracting the premises. The following modified
rules will suffice:

(/=)0 Y—-A XBZ—-CF [X(B/AYZ] - C,

(\—=) Y-A XBZ->CF [XY(A\B)YZ] - C,

(T-) XY > AF [XTY] - A4,

(=00 X->4 Y->BF [XY]— AoB,

(0 =) XABY - C F [X(AoB)Y] - C,

(A=) XAY - C + [X(AAB)Y] - C,

XBY - C F+ [X(AAB)Y] - C,
(V-) XAY -C XBY -CF [X(AVB)Y]—-C,
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where [X(B/A)Y Z] resp. [XY (A \ B)Z] is the contraction of X(B/A)Y Z resp.
XY(A\ B)Z such that 4

(i) (B/A) resp. (A \ B) occurs only 0, 1, or 2 times fewer than in X(B/A)Y Z resp.
XY(A\B)Z,

(ii) any formula other than (B/A) resp. (A \ B) occurs only 0 or 1 time fewer,

where [XTY] — A is the contraction of X TY — A such that T occurs only 0 or 1 time
fewer than in XTY — A,

where [XY] — A o B is the contraction of XY — A o B such that any formula in XY
occurs only 0 or 1 time fewer in [XY] than in XY,

and where [X(AVB)Y] — C is the contraction of X(AVB)Y — C such that V occurs
only 0 or 1 time fewer than in X(AVB)Y — C, V € {o,A,V}.

REMARK In restriction (i) we have to take into account using C twice because of proofs
like

— T (T\B)B(T\B) = (T\B)o(Bo(T\B))
(TAB)T\B)(T\B)— (T\B)o(Bo(T\B))
(TAB)T\B)— (T\B)o(Bo(T\B))
(T\B) = (T\B)o(Bo(T\B)).

Restriction (ii) is imposed in view of proofs like

A—-A B> B
A—> A AB— AoB
AA(A\B) - AoB
A(A\ B) - Ao B.

Lemma 3.12 (Curry) If X — A is provable in £}, in n steps and s is a contraction of
X — A, then s is provable in Z)_ in m steps, m < n.

PROOF By induction on the number of steps in proofs in Z,,. Consider just one example.
Suppose that X — A has been proved in m; steps and Y — B has been proved in m,
steps. Then [XY] — A o B has a proof in n = m; + my + 1 steps. Now any contraction
[XY] — Ao B of [XY] — Ao B can be obtained by first contracting X — A, Y — B
and then applying (— 0)°. So, just use the induction hypothesis. O

Definition 3.13 A proof in a sequent calculus is said to be irredundant if it contains no
branch with a sequent s’ below a sequent s such that s’ is a contraction of s.

Corollary 3.14 (i) Provability of sequents in 24, coincides with provability of sequents
in Z),_. (ii) Every sequent provable in =), has an irredundant proof in =}, .

By the previous corollary, complete proof-search trees wrt =, can be constructed to
be irredundant. Note that whereas in the complete proof-search tree for a sequent s wrt
Ea,; each node has infinitely many immediate successors, in the case of Z),, the number
of immediate successors is finite. Using



3.2.2 Decidability 41

Lemma 3.15 (Konig) A tree is finite iff each node has only a finite number of immediate
successors and each branch is finite,

in order to prove decidability it remains to be shown that irredundant complete proof-
search trees wrt =/,  have the ‘finite branch property’. Note that Z)y, has the subformula
property. As we will see, the finite branch property follows from what Dunn calls Kripke'’s
Lemma and the subformula property. Thus, although some of the operational rules of Z);,
are complexity-decreasing, irredundant complete proof-search trees wrt =/, are finite and
therefore provability of sequents in Z),, is decidable.

Definition 3.16 Two sequents X — A, X' — A are called cognate iff exactly the same
formulas occur in X and X'. The class of sequents cognate to a given sequent s is called
the cognation class of s. A sequence s, s1, .. . of cognate sequents is said to be irredundant
iff for no s;, s; with 7 < 7, s; is a contraction of s;.

Lemma 3.17 (Kripke) Every irredundant sequence of cognate sequents is finite.

By the subformula property, the number of cognation classes in any proof in =}, is
finite. By Kripke’s Lemma, only finitely many members of each cognation class occur in a
branch of an irredundant complete proof-search tree wrt =), . Therefore each such branch
is finite and hence each irredundant complete proof-search tree wrt Z),, is finite. O

Corollary 3.18 The (cut)-free parts of Z(p c g}, E(p,c,MI}, and E(c g} are decidable.

Using the (highly non-constructive) decision procedure of constructing ir-
redundant complete proof-search trees it can be seen that the sequent s; =
(p1\ p2)(p2 \ P3)(P1 \ P3) — ((P1 \ P3) \ Ps) \ P4 has no (cut)-free proof in E,\(p,cE} =

E/\p.c,Mny’ and that 52 = (p1\ p2) (P2 \ Ps) (P1 \ P3) — pa/((P1 \ P3) \ Pa) has no (cut)-
free proof in E(c k). The only reasonable approach to a proof-search for s, in E’{C,E'}’

which is the equivalent version of Z(c g/} obtained by the method of the previous proof,
is:

?

(P1\ps) = (p1\ps) (Pr\P2)(P2\P3)Ps— ps
(P2 \ p2) (P2 \ p3) (P1 \ p3) ((P1 \ P3) \ P4) = Ps
(p1 \ p2) (P2 \ p3) (p1 \ p3) — P4/ ((p1 \ P3) \ Pa).

In a proof-search for s; in Ejp ¢ g, a reasonable trial besides an analogue of the above
attempted proof is (surpressing permutations):

9

(Pr\ p2) (P2 \p3) = (P \ P3) (P1\P2)Ps — Pa
(p1\ p2) (P2 \ P3) (p1 \ P3) ((P1 \ P3) \ Ps) — P4
(P1 \ p2) (P2 \ p3) (P1 \ p3) = ((p1 \ P3) \ Ps) \ 4.

2Note that this contradicts a claim in [Tamura 1971]. Moreover, after Tamura’s paper appeared, R.
Meyer has shown that mingle implicational logic RM0-, contrary to what Tamura assumed, fails to be
the implicational fragment of the relevance logic RM (see e.g. [Dunn 1986, p. 131]).
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In Eip M1y one trial to prove s; would be:

2

(P \p2) (P2\p3) = ps (P2 \P2)Ps — s
(P1\ p3) ((p1 \ P3) \ ps) — P4
(1 \ 2) (P2 \ p3) (1 \ p3) = ((p1 \ P3) \ Ps) \ Ps.

3.2.3 Interpolation

The interpolation property can be thought of as a relevance criterion for derivability:
the Craig-interpolation theorem for classical propositional logic says that if a A D B is
provable then there exists a formula C built up only by propositional variables occuring
in both A and B such that A D C and C D B are provable. Craig-interpolation can be
strengthened to Lyndon-interpolation by requiring the interpolant C to be sensitive to
polarities, i.e. ‘positive’ and ‘negative’ occurrences, in the following sense: each proposi-
tional variable ocurring positively resp. negatively in C occurs positively resp. negatively
in both A and B. The Lyndon-interpolation theorem holds for IPL, too; to prove it by
proof theoretic means one needs cut-eliminability and a strenthening of the induction
hypothesis thought out by Schiitte [1962].

The notions of positive and negative occurrence of propositional variables in L-
formulas, sequents built up from L-formulas and sequences of L-formula occurrences,
are defined as follows:

Definition 3.19 A propositional variable p occurs positively in the scope of an even
number of occurrences of negation signs (not distinguishing between =" and —7); it occurs
negatively in the scope of an uneven number of occurrences of negation signs. A positive
resp. negative occurrence of p in A remains-positive resp. negative in AAB, BA A, Ao B,
BoA, AV B, BV A and X — A; the polarity of p in A is reversed in =" A4, ~/A4, A\ B,
BJA, and XAY — B. Let X= Aj0...0 A, if X = A;... A, (n > 1), and let X= A,
if X = A. A propositional variable occurs positively resp. negatively in X iff it occurs
positively resp. negatively in JO( . (Of course, no propositional variable occurs in the empty
sequence.) Let pos(X) resp. neg(X) denote the set of propositional variables that occur
positively resp. negatively in X. A reversal of polarities in a sequence X is indicated by

X.

Theorem 3.20 (interpolation) If kg, X — A, then there is an L-formula C such that
Fzg X — C,Fzg C — A, pos(C) C (pos(X)Npos(A)), and neg(C) C (neg(X)Nneg(A4)),
e C {P,C,C',M}.

ProoF By induction on g, . For the proof we shall strengthen the induction hypothesis
except for the case of P and C'. The method we use is due to Schiitte [1962]; we shall
adopt the presentation in [Roorda 1991) used to prove interpolation for certain fragments
of linear logic. Note that the only cases in which Schiitte’s method is really needed are

(— /) and (= ).
The idea behind Schiitte’s method is this: Think of the sequent arrow as a partition

marker in a finite sequence of formula occurrences and think of an interpolant as a con-
necting link between two partitioned sequences. Instead of just the particular partition
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which is marked by the sequent arrow one might want to consider every possible partition
and look for connecting links between the separated parts. We shall effect such partitions
of a sequent X — A by selecting a subsequence of X A. Selections will be indicated by
means of underlining. We say that a sequent X — A satisfies the induction hypothesis if

IND for all Y1 ZY, such that X = Y1 ZY; thereisa C such that - Z — C,F Y.CY; — A,
pos(C) C (pos(Z) ﬂpos(l;le A)), and neg(C) C (neg(Z) N neg()’_'ll;z A)).

We may now consider the rules of Z¢. In each case to be distinguished, apart from those

for P and C', first a part of the conclusion is selected. This induces a suitable selection

in the premise sequents with interpolants provided by IND. From these interpolants we

obtain an interpolant for the conclusion. That it is in fact an interpolant can readily be
verified. Interpolants will be specified at the sequent arrow.

(Gt A3 A F<>A™ A FA>™NA F<>al 4 FAacsT A

(L -):+F X1Y 5 A, F X1Y X, A. For the remaining selections choose L as
interpolant.

(— t) : For every selection choose t as interpolant.
(- T):F<>oT

(T —) : for each selection choose the interpolant from the premise sequent. If e.g. TY is
selected in the conclusion, select Y in the premise.

(-/):XAS B+ XS B/A
X1 X: X345 B+ X, XX 5 B/A.
(/| =): (A) Va3 A4 XBZ,Z, 3 D+ X(B/AY1Yy2:12, O D, where Yz, 2,

must be non-empty sequences.

YiY, G X1X2BZ 3C F X1 Xo(B/AYY.Z
choose C, instead of Cy/C;.

Y - A X:X.BZ:2, S D X1 Xo(BJAY Z,Z, S D. In the remaining cases
copy the selection from the conclusion and the interpolant from the premise in which the
selection is carried out.

(—\) resp. (\ —) : analogous to (— /) resp. (/ —).
(»0): X34 YSBF XY AoB.

X1X, A4 Y Y, A B F X1 X.Y1Y, Cof? 4o B, where X,, Y; must be non-empty.
In the remaining cases again copy the selection from the conclusion and the interpolant
from the premise in which the selection is carried out.

“G oo Y, is empty we may

(o —) : Copy the selection from the conclusion and the interpolant from the premise.
(—»A):XﬁA XSBBr XY ANB.
XX Xs B A XaXpXs BB X1 XoXs O ANB.



44 3 Intuitionistic minimal and intuitionistic information processing

(A=): XAY S D+ XAABY S D.

XBY S DF XAABY 5 D. In the remaining cases select in the premise what
has also been selected in the conclusion (including one of the conjuncts) and take the
interpolant from the premise.

(-V): X54Fr XS AvVB

X SBE X S AV B.In the remaining cases copy the selection from the conclusion
and the interpolant from the premise.

(V —): Select in the premises what has also been selected in the conclusion (including
one disjunct). If C}, C, are the interpolants provided by the premises, then C; V C. is the
interpolant for the conclusion.

P, C’: Choose the interpolant from the premise.
C,M: XAAY S B XAY 5 B.

X<>Y L B+ XAY L B. In the remaining cases select in the premise what has
also been selected in the conclusion and take the interpolant from the premise. O

From the proof of the previous theorem we can derive as a corollary interpolation
results for elementary fragments, i.e. sets of L-formulas which contain PROPU {L1,t, T}
and which are closed under the connectives in a certain subset of {/, \, 0, A, V}. The prob-
lem that may arise with fragments is to find interpolants which do not lead outside the
fragment in question. Note e.g. the use of o in the above induction step for (/ —). Indeed,
for certain combinations of connectives interpolation may fail, as shown by Roorda [1991].
Note that the case (A) in the prove of the interpolation theorem does not arise if IND
is not used for (/ —). The rules P and C' have not been subjected to IND because of
selections like XABY — D - XBAY — D, XAYAZ - B+ XAYZ — B.

Corollary 3.21 (i) Interpolation holds for all elementary fragments of E¢.

(ii) Interpolation in the sense of IND holds for the elementary fragments of Z and Z{my
based on: (a) {/, 0}, {\,0}, and {/,\, 0}, (b) every subset of {0, A, V}, and the fragments
obtained by joining any of the latter bases with one from (a).

Consider the following elementary fragments of Z and Zpy: (/,\,0), (/,©), (\,0). For
each of them interpolation in the sense of IND can be strengthened (cf. [Roorda 1991]) by
requiring that for every propositional variable p there are injections from the positive resp.
negative occurrences of p in the interpolant C to those in X and those in A. Obviously,
the rules (— A), (V —) spoil this stronger interpolation property.



Chapter 4

Functional completeness for
substructural subsystems of IPL

The problem of functional completeness for a given logic £ is the problem of finding a
set I' of logical operations of £ such that every logical operation of L is ezplicitly defin-
able by a finite number of compositions from the elements of I'. In this chapter, which is
based on [Wansing 1990], we present a generalization of von Kutschera’s [1968] approach
to the problem of functional completeness for /PL. Besides Lorenz’s {1968] analysis wrt
a game-theoretical semantics for IPL, von Kutschera’s proof seems to be the earliest
published result on functional completeness for IPL. It makes use of a proof theoretic
interpretation specifying general rule-schemata in a higher-level Gentzen-style sequent
calculus and shows the set of intuitionistic connectives I'; = {—, A, V, D} to be functionally
complete for IPL. A proof of functional completeness of I'y and I'; = {L,A,V, D} wrt to
Kripke’s semantics for IPL can be found in [McCullough 1971]. Inspired by [Kutschera
1968], Schroeder-Heister [1984] has proved functional completeness of 'y for IPL wrt
an extended natural deduction framework that allows for assumptions of arbitrary finite
level. Functional completeness of I'; for I PL wrt natural deduction has also been shown by
Prawitz [1979). Zucker & Tragesser [1978] consider a so-called ‘inferential’ interpretation
of Gentzen’s natural deduction according to which the meaning of each logical operation
is given by its set of introduction rules. They show that in a natural deduction framework
for every connective F one can find a finite combination of connectives from I's with the
same set of introduction rules and thus with the same meaning as F. It is not clear,
however, whether the presence of shared introduction rules implies exchangeability in all
deductive contexts, which follows by explicit definability.

Up to now the problem of functional completeness for substructural subsystems of
IPL has been open. Approaches like those of Prawitz and Schroeder-Heister which are
based on Gentzen’s natural deduction turn out not to be appropriate for cases where
the order of premise occurrences matters, i.e. where in the framework of sequent calculi
the structural rule P is missing. In the absence of P there is e.g. no natural deduction
elimination rule capturing the rule for introducing o on the lhs of the sequent arrow. (In
sequent-style natural deduction there is an obvious elimination rule for o.) Thus, although
Schroeder-Heister’s approach to functional completeness for IPL can be (re)translated
into a higher-level sequent calculus framework (see [Avron 1990]), the converse is not
possible for subsystems of IPL which lack permutation. The aim of this chapter is to
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(A—=): XAY S D+ XAABY S D.

XBY S D+ XAABY S D. In the remaining cases select in the premise what
has also been selected in the conclusion (including one of the conjuncts) and take the
interpolant from the premise.

(-V): X554 XS AVE.

XS5 Btr XS AVB. In the remaining cases copy the selection from the conclusion
and the interpolant from the premise.

(V —): Select in the premises what has also been selected in the conclusion (including
one disjunct). If Cy, C; are the interpolants provided by the premises, then C; V C, is the
interpolant for the conclusion.

P, C': Choose the interpolant from the premise.
C,M: X44Y S B + XAY S B.

X<>Y L BF XAY L B.In the remaining cases select in the premise what has
also been selected in the conclusion and take the interpolant from the premise. O

From the proof of the previous theorem we can derive as a corollary interpolation
results for elementary fragments, i.e. sets of L-formulas which contain PROPU{1,t, T}
and which are closed under the connectives in a certain subset of {/, \, 0, A, V}. The prob-
lem that may arise with fragments is to find interpolants which do not lead outside the
fragment in question. Note e.g. the use of o in the above induction step for (/ —). Indeed,
for certain combinations of connectives interpolation may fail, as shown by Roorda [1991].
Note that the case (A) in the prove of the interpolation theorem does not arise if IND
is not used for (/ —). The rules P and C' have not been subjected to IND because of
selections like XABY — D + XBAY — D, XAYAZ - B+ XAYZ — B.

Corollary 3.21 (i) Interpolation holds for all elementary fragments of Sg.

(ii) Interpolation in the sense of IND holds for the elementary fragments of = and Sy
based on: (a) {/,0}, {\,0}, and {/,\, 0}, (b) every subset of {o, A, V}, and the fragments
obtained by joining any of the latter bases with one from (a).

Consider the following elementary fragments of £ and E¢py: (/, \,0), (/,°), (\, ). For
each of them interpolation in the sense of IND can be strengthened (cf. [Roorda 1991]) by
requiring that for every propositional variable p there are injections from the positive resp.
negative occurrences of p in the interpolant C to those in X and those in A. Obviously,
the rules (— A), (V —) spoil this stronger interpolation property.
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The problem of functional completeness for a given logic £ is the problem of finding a
set I' of logical operations of £ such that every logical operation of £ is ezplicitly defin-
able by a finite number of compositions from the elements of . In this chapter, which is
based on [Wansing 1990], we present a generalization of von Kutschera’s [1968] approach
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a game-theoretical semantics for IPL, von Kutschera’s proof seems to be the earliest
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interpretation specifying general rule-schemata in a higher-level Gentzen-style sequent
calculus and shows the set of intuitionistic connectives Iy = {—,A,V, D} to be functionally
complete for IPL. A proof of functional completeness of I'; and I', = {L,A,V,D} wrt to
Kripke’s semantics for IPL can be found in [McCullough 1971). Inspired by [Kutschera
1968], Schroeder-Heister [1984] has proved functional completeness of I'y for IPL wrt
an extended natural deduction framework that allows for assumptions of arbitrary finite
level. Functional completeness of I', for IPL wrt natural deduction has also been shown by
Prawitz [1979]. Zucker & Tragesser [1978] consider a so-called ‘inferential’ interpretation
of Gentzen’s natural deduction according to which the meaning of each logical operation
is given by its set of introduction rules. They show that in a natural deduction framework
for every connective F' one can find a finite combination of connectives from I', with the
same set of introduction rules and thus with the same meaning as F. It is not clear,
however, whether the presence of shared introduction rules implies exchangeability in all
deductive contexts, which follows by explicit definability.

Up to now the problem of functional completeness for substructural subsystems of
IPL has been open. Approaches like those of Prawitz and Schroeder-Heister which are
based on Gentzen’s natural deduction turn out not to be appropriate for cases where
the order of premise occurrences matters, i.e. where in the framework of sequent calculi
the structural rule P is missing. In the absence of P there is e.g. no natural deduction
elimination rule capturing the rule for introducing o on the lhs of the sequent arrow. (In
sequent-style natural deduction there is an obvious elimination rule for 0.) Thus, although
Schroeder-Heister’s approach to functional completeness for IPL can be (re)translated
into a higher-level sequent calculus framework (see [Avron 1990]), the converse is not
possible for subsystems of IPL which lack permutation. The aim of this chapter is to
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show how von Kutschera’s approach to functional completeness for IPL can be applied
to the substructural subsystems of IPL and M PL introduced in Chapter 3.

4.1 The higher-level Gentzen calculus G

Let L be any formal language and let FORM(L) be the set of all L-formulas.

Definition 4.1 The set of all SL-formulas is the smallest set I' such that
FORM(L) C T
1 eT,
if T €T, then (- T), (T «) €T}
ifTy,...,T, €T, then (T1...T, =), (« Ty...T,) € T

if Ty,...,Tn,U €T, then (Ty...T, » U), (U «T;...T;) € I.

We shall use T', U, T3, T5,... as metavariables for SL-formulas and XY, X1, Xa,. ..
as metavariables for finite, possibly empty sequences of SL-formula occurrences. Z, Z;, ...
will denote sequences of SL-formula occurrences with at most one element. Sometimes
outermost parentheses in SL-formulas will be omitted.

Definition 4.2 Every A € FORM(L) is an SL-formula of S-degree 0;
L is of S-degree 0;

if n is the maximum of the S-degrees of the SL-formulas in X,Z, then X — Z, Z « X
are called SL-formulas of S-degree n + 1.

If the S-degree of T is 1, then T is called a sequent. If the S-degree of T' = n, we write
Sd(T) =n. If Sd(T) > 1, then T is called a higher-level sequent.

Definition 4.3 Every SL-formula is an S-subformula of itself;

every S-subformula of an SL-formula in X, Z is an S-subformula of X — Z,Z « X.

The S-subformulas of T' of S-degree 0 are called formula components of T'. Let
T:...T, = Z resp. = Z abbreviate T1...T, — Zresp. - Zaswellas Z « T,...T,
resp. Z «+. X — resp. « X is considered to be synonymous with X — L resp. L « X. T is
called the succedent of X = T'. An SL-formula T is called positive, if every S-subformula
of T has a succedent.

Next, we shall define a basic, higher-level sequent calculus G, which like M SPL and
ISPL but unlike von Kutschera’s [1968] higher-level calculus sequent calculus K, is void
of any structural rules of inference.
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Definition 4.4 The rules of G are:

(ref) FT = T

(tra) (X = T)(Y1TY: = T1) F Y1XY, - T,
(T« X)(T1 « Y1TY;3) + T} « Y, XY,

(L=) FXLY = T;

(=) XYSTFY—-(X-T)

(=) YXSTFY (T« X)

(=) Yo X=>T)F XY T

(=) Yo (T <X)FYX>T;

(=) T¥YXF (T X Y;

(=) T<XYFX=oT)Y;

(=) Te=X)=YFTeYX;

(=) X>T)«YFTXY.

Note that the rules (——) - («—)~ parallel the rules (— /), (— \), (T /), and
(T\). The rules (ref) and (tra), of course, are higher-level counterparts of (id) and (cut),
respectively.! Dg(II, T, X), “II is a derivation in G of T from the finite, possibly empty
sequence X of SL-formula occurrences”, is defined in a way induced by the rules of G (cf.
Appendix 1.5).

Let Uy be an SL-formula which contains a certain occurrence of V as an S -subformula,
and let Uy be the result of replacing this occurrence of V in U by T'. Let moreover V < T
denote V=T and T = V.

Theorem 4.5 If - V & T in G, then + Uy < Uy in G.

PROOF The proof is by induction on n = Sd(Uy) — Sd(V). If n = 0, then Uy = V and
the claim is trivial. Suppose that the claim holds for every n < m, and n = m + 1. Then
Uv has the form XWyY — Ty, Ty « XWyY, X - Wy, or Wy « X, where Wy contains
the occurrence of V' in question and Sd(Wy) < n. Now, suppose that - V < T. By the
induction hypothesis, - Wy < Wr. Applying (tra) we obtain

F(XWyY = T4) = (XWpY = T4), b (T) — XWiY) = (T; — XWyY),
F (XWrY - T1) = (XWyY - TY), F (T, « XWyY) = (T} — XWaY),
F (X — Wy) = (X— Wr), F (Wr « X) = (Wy < X),
F(X—Wr)= (X - Wy), F (Wy « X) = (Wr « X).

Thus, F Uy & Ur. O

1Since von Kutschera [1968] assumes permutabilty of premises, he considers only one sequent arrow,
viz. —.



48 4 Functional completeness for subsystems of IPL

4.2 Gentzen semantics

The higher-level sequent calculus G will now serve as a basis for introducing a proof
theoretic interpretation of propositional connectives. The basic idea of this interpretation
is that an n-ary (0 < n < w) propositional connective F in the language L of a given
logic £ is characterized by the inference rules for introducing formulas F(4;,..., 4,) into
premises and conclusions. In order to be viewed as providing a genuine semantics, general
rule-schemata for introducing connectives into premises and conclusions are subject to
the following constraints, analogous to those in [Kutschera 1968, p. 11]:

(i) Rule-schemata characterizing F mention apart from one occurrence of F no other
occurrence of a propositional connective; the role of formulas F(4,,...,A,) in de-
ductive contexts depends on the deductive relationships between A, ..., A, only.

(ii) The rule-schemata for F are non-creative ones, i.e. every proof of an F-free formula
A in the result of extending G by instantiations of these schemata can be converted
into a proof of A with no applications of rules characterizing F.

Constraint (i) suggests the following schemata for rules introducing F(4y,... A,) on
the rhs of — or on the lhs of «:

(I) (a) XuWuYu — 2y ... X131W131Y1a1 - lel F Wy Wy, — F(Al, v aAn)>

thwtlYtl - Ztl cee thtWtJthat - Zta, F Wu v Wm - F(Al, ceey An)a
Zy; — X11W11Y11 v 2131 - X161W1.91Yla; F F(Al, oo ,An) — Wy ... W1.91,

Zy — XaWuYs ... Ztat — XtatWtathst k- F(Al, ceny An) —Wy... Wut;
(I) (b) XIWYl g Zl.. .XjWYj hasd ZJ‘ FW-— F(.Al,...,An),
Zl 4—-X1WY1...Zj — XjWYj + F(Al,...,An) — W.

Here the Wy, (i =1,...,t;k; =1,...,s;) and W are unspecified sequences of SL-formula

occurrences, whereas X, Yik;, Zit; 1esp. Xy, ..., X;, Y1, ..., Y;, 23, ..., Z; contain only
formula components from Aj,...,A,. Moreover, in each instantiation of (I) (a) resp.
(I) (b) every Ay (k =1,...,n) occurs in some X, Yi,, of Zs, Tesp. in some X;, Y;, or

Z(I=1,...,5). fn=0, then (I) (a) is - = F, and (I) (b) is - W = F, where W is an
unspecified sequence of SL-formula occurrences.

The schemata (I) (a) and (I) (b) are equivalent to the schemata

(I) (a) Wi — (Xia = (Zis «— Yi)) ... Wiy, = (Kis; = (Zis, — Yin,)) F
F Wir... Wi, = F(Ay,...,A),
(Xir = (Zis + Ya1)) <= Wi ... Xig; = (Zis; «— Yia;)) — Wiy, F
F F(Ay,...,A,) « Wy ... W, i=1,...,¢
(I) () Wo(Xy—=(Z1<Yy)) .. Wo(X; - (Z; < Y;) F
FW o F(Ay,...,A),
Xi=(Zy Y1) —W...(X; 2 (Z; < Y;)) «W F
F F(Ay,..., A,) — W,
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where if n = 0, (I)’ (a) is = F and (I)' (b) is W = F. Since premise occurrences are re-
moved only by applications of the higher-level (cut)-rule (tra), constraint (ii) amounts to

the requirement that applications of (tra) with a cut-formula F(A4;, ..., A,) can be elim-
inated. 2 To ensure this, the schemata for rules introducing F(Ay,...,A,) into premises
become:

(II) (a) Y1X1Y2 -7 ... leth -7 F YlF(Al,. . ,An)Y'_) — Z,
Z — Y1X1Y2 oo L — leth FZ YIF(Al,. .. ,An)Yz;

(II) (b) Y1(Xi = (Zj = Y))Ya = Z + YiF(Ay,...,A)Ys = Z,
Z— Yl(xl - (Zl - Yl))YZ FZe YIF(A1)°°')An)Y2, l= 171.77

where Y1,Y, are unspecified sequences of SL-formula occurrences and Xi=Xia — (Zy «
Y,‘l) e Xisg — (Z‘i-’i «— Y,'s'.). Ifn = 0, then (II) (a) is Y1Y2 — Z F Y1FY2 d Z,
Z — Y1Y2 b Z YIFYz, and (II) (b) is not instantiated.

Thus, the rule-schemata (I) (a) resp. (I) (b) for introductions into conclusions already
completely determine the schemata (II) (a) resp. (II) (b) for introductions into premises.
The rules of G +(I) + (II) determine the ways in which forumlas F(A,, ... ,A,) may be
introduced into arbitrary SL-formula contexts.

The schemata (I) (a) apparently impose a certain restriction on the Gentzen seman-
tics: ‘infix-operations’ are to be excluded. However, allowing for infix-operations (i) blocks
cut-elimination and (ii) leads outside the present semantical framework; e.g. with the fol-
lowing binary infix-operation X:

(=X) XTY - U + XY = (T XU),
U« XTY F (T XU) « XY; |

(M=) XT =V >V EXTXU)Y -V, X(T <U)Y >V FXTXU)Y -V,
VeXT=U)Y FVeXTXUY, VeXT—UYFVeXTXU)Y;

permutation of premise occurrences becomes derivable, as can easily be verified. Thus,
the addition of X to G +(I) + (II) is not conservative.

Let C4 denote an L-formula which contains a certain occurrence of A as a subformula,
and let Cp denote the result of replacing this occurrence of A in C by B. The degree of
A (d(A)) is the number of occurrences of propositional connectives in A. If X = Ty . . T,
then X4 denotes Th4...T 4.

Theorem 4.6 If - A& Bin G +(I)+ (II), then F C4 & Cp in G +(I) + (II).

PROOF By induction on ! = d(C4) — d(A). If | = 0, the proof is trivial. Suppose that
the claim holds for every I < m, and I = m + 1. Then C4 has the form F(A,,...,A,),
where one of the A4 contains the occurrence of A in question and d(Ara) < l. Suppose
that = A < B. By the induction hypothesis, F Ay < Axp, and by Theorem 4.5,
F (Xisi - (Zt'-h' — Yisi))A < (Xis.‘ - (Zisi - Yiai))B7 F (xl - (Zl - Y’))A < (XI - (Zl

2Note that von Kutschera’s higher-level version of (cut) takes advantage of the structural inference
rules assumed.
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= Y1))B, where in each case the replacement of A by B is wrt Ay. Suppose the rules for
C4 are instantiations of (I) (a) and (II) (a). By (ref) and the schemata (I) (a) we obtain
F Xiy = Cp, F Xiz = Ca, F Cp « X;,, F Cq — X;,. The schemata (II) (a) and (tra)

give
XlA_"CB-HXtA_’CB F CA-*CB, XlB _)CA”-XtB '—)CA F CB—>CA,

CB‘_XIA---CB‘_XtA - CB(—-CA, CA4—X13...CA(—'X;§B F CA(—CB.

Thus, - C4 & Cp. If the rules for C are instantiations of (I) (b) and (II) (b), then by
the induction hypothesis and Theorem 4.5, the schemata (IT) (b) give - C4 = (X; —
(Z[ «— Y[))B and F Cp > (X[ — (21 — Y}))A. By (I) (b), we obtain Ch & Cg. O

Let T4 denote an SL-formula which contains a certain occurrence of A as a subformula,
of a formula component of T.

Theorem 4.7 If - A<« Bin G +(I) + (II), then + T4 & Tp in G +(I) + (II).

PROOF By the previous two theorems. O

4.3 Functional completeness for ISPL

In a first step we shall show that {/,\,A,0,V, T, L} is functionally complete wrt the
Gentzen semantics. We shall define (i) rules for introducing the propositional constant t
into conclusions and (ii) rules for introducing the binary connectives /, \,A,0,V and the
constant T into premises and conclusions. These rules conform to the schemata (I) (a)
and (II) (a) resp. (I) (b) and (IT) (b):
(=t) FX=t;
(/) X>U<T)F X (U/T),
(U—T)= X+ (UT) < X;
Y1(U « T)Y, —» Z F Y1(U/T)Y, — Z,
Z—Y(UT)Ys b ZY,(U/T)Y;
X—(T-U)FX-(T\U),
(T>U) =X F (T\U) < X;
Yi(T > U2 = Z F Yy(T\U)Y; — Z,
LZ—Y(T->U)Yo b Z—Y(T\U)Yy;
X > T)X—U) F X— (TAU),
(T X)U=X)F(TAU) « X;
YiTY, = Z F Y{(T AU)Y; — Z,
Z—YTY, b Z«Y:i(TAU)Y,,
YUYy = Z - Yy(T AU)Y, — Z,
Z YUYz b Z— Yi(T AU)Y,;
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(20 X=>T)(YoU)EXY—(Tol),
(T «X)(U«<Y)F(ToU) « XY;

(0=) YiTUY,—=Z F Yy(ToU)Y; — Z,
Z—Y,TUY; - Z—Y1(ToU)Ys;

(V) XoT FX— (TVU),
XUk X (TVU),
T—XF(TVU)« X,
Ue~XF(TVU)«X;

(V=) (Y1iTY2 = Z)(Y1UYy = Z) - Y{(T VU)Y, — Z,
(Z = Y1TY2)(Z — Y1UY3) F Z «— Y4(T V U)Yy;

(=T) F=>T,;

(T=) Yi¥o>Z F Y;TY, - Z,

A Y1Y2 FZ Y1TY2.

It can readily be seen that (i) (= /)’ resp. (= \)' is equivalent to

(= /) XT->UF X— (U/T),
U« XT F (U/T) « X; resp.
(=\) TX>UF X>(T\U),
UeTXF (T\U) <X,
and (ii) (/ =) resp. (\ =)' is equivalent to

(/=) X->(U/T) - XT - U,

(U/T) — X + U « XT; resp.

(\=) X>(T\U)F TX>U (T\U) =X F U — TX.

Next, we assign to each SL-formula T one formula T' by stipulating:
if T is an L-formula, then T = T

ifX=T...T,,then X=To...0Ty;

ifT=X->U,thenT =X\T,;

ifT=U« X, then T =TU/X,;

fT=X-,thenT =X\ 1;

fT =« X, then T = L/X;

ifT=—>U,thenT =T\ T,

51
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ifT= Ue,then T =T/T;
ifT=1,thenT = 1.

Note that Sd(T) = 0.
Theorem 4.8 In G +(I)+ (II) FT & T.

PrROOF By induction on Sd(T). If Sd(T) = 0, the claim is trivial. Suppose that the
claim holds for every | < m, and I = m + 1. By the induction hypothesis we have that
F (.. T - U) & (Ty...T, = U) resp. - (U « T,.T,) & U « T,...Tp,)
resp. F (T1...T, =) & (T1...T, =) resp. b (« Ty...T,) & (— T...T,) resp.
F(=T) 4 (= T)1esp. F (T «) & (T «). Now, by (= o), (o =), and (tra), we obtain
FT..T, - 0) & (Tio...0T, — U+ U «T,..T,) & (U«—Tio...oT,).
By (= /) resp. (=) and (/ =) resp. (\ =) we obtain - (T - U) & (T \ TU) resp.
F (U « T) < (U/T). Finally, for T — resp. « T, i.e. T — L resp. L — T, we have
FT—1)e (T\L)resp.F (L«T) <« (L/T); for — T resp. T « we have - (— T)
¢ (T\T) resp. + (T <) < (T/T). These observations immediately establish the claim
forl=m+1. 0O

Theorem 4.9 {/,\,A,0,V, T, L} is functionally complete wrt the Gentzen semantics.

PROOF Suppose that F(A;,...,A,) is defined by instantiations of the schemata (I) (a)
and (II) (a). If n = 0, then F = T. Otherwise, from (ref) and (I) (a) we obtain
F Xi = F(A4,...,A,). By the previous theorem, (tra), and (o =), we obtain - X; =
F(Ai,...,A,). Finally, applications of (V =) give F X; V... VX, = F(A,,...,A,). By
(ref), the previous theorem, (tra), and (= o), F X; = X. Applying (= V), we obtain -
X; = X;V...VX,. The schemata (II) (a) give F(Ay,...,A,) = X1V...VX;. By Theorem
4.7, F(A,...,A,) and X; V... V X, are interchangeable in SL-formulas (wrt provable
equivalence in terms of <). Thus, F(Ay,...,A,) can be explicitly defined by a formula
in {/,\,0,V, T, L}. Suppose now that the rules for F(Ay,...,A,) are instantiations of
(I) (b) and (II) (b). If n = 0, then F = t, which is definable as 1 /1. Otherwise, by (ref),
the previous theorem, and (tra), + S; = S;. Repeatedly applying (A =), we obtain
F 81 A...AS; = 8. The schemata (I) (b) give - S A ... AS; = F(A,...,A,). By
(ref), the previous theorem, (tra), and (= o), we have - S; = 5;. Using the schemata
(II) (b) we may conclude that - F(A;,...,A,) = 5. Eventually, applications of (=A)
give F(A1,...,A,) = Si A... A'S;. By Theorem 4.7, F(Aj,...,As) and S{A...AS;
are intersubstitutable in SL-formulas. Thus, F(A4;,..., A,) can be explicitly defined by a
formula in {/,\,0,A,1}. O

Von Kutschera’s approach to the problem of functional completeness, as applied in
the proof of the previous theorem, has (although to a certain extent independently of
von Kutschera’s work) become the standard proof theoretic methodology (usually mu-
tatis mutandis associated with systems of natural deduction): (i) the definiens can (more
or less) be read off from the schemata for introductions into conclusions, making sure
that the definiendum is derivable from the definiens, and (ii) the rules for introductions
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into premises can be used to show that conversely the definiens is derivable from the
definiendum.

It remains to be shown that the Gentzen semantics characterizes ISPL.
Theorem 4.10 {/,\,A,0,V, T, L} is functionally complete for ISPL.

PROOF If (i) SL-formulas and the premises and conclusions of (L =), (= t), (= F),
and (F =) (F € {T,/,\,A,0,V}) are restricted to positive sequents only, and (i) T «
T:...T,isread as T} ...T, — T, then the resulting calculus is equivalent to ISPL in the
sense that both systems have the same set of provable sequents, as a comparison of these

systems immediately reveals. O

A natural question that might arise is why at all one should make use of the higher-
level sequent calculus G, since after all - (B/A) < (B — A) and (A\B) & (A - B).
Now, as has already been pointed out by von Kutschera for the case of I PL, one in
fact needs the higher-level framework for proving functional completeness. Let X' = X
abbreviate C} = Cj, where X' =C}...C! , X =C;...Cy,, and 0 < j < m. If there were
no iterated sequent arrows, one would, according to the earlier constraints, in place of
(I) (a) and (II) (a) obtain the schemata:

(I)t XuWuYy — By ... Xl.g,WlalYul - Bn, + Wll-HWlsl - F(Ala---An)a

XtIVVtIYtl - Btl e Xtatm.uy;st - Btst l_ thl e m&; - F(Al)‘ L A"l))
By — XuWuYy ... By, « X1, Wy, Yy, + F(Ay,...,Ap) « Wy ... Wy,

By — XuyWuyYy ... Bta, - th,Wts,Yté; F F(Al, ceey An) —Wau... I’Vtm

and

(IN' X!, = Xy ... Xy = Xoo Y1 oY1 ... Y, =Y, ZiB;1Z,—C ...
- Z1Bis,Zy = C & 21 X3, ... X}, F(Ay,..., A)YY, ... Y], Z, — C,
Xune—X) . X~ X|, Yuev].. Y, <Y, C—2,B;2Z,...
o C— Z1Byy, 25 + C — Z,X}, ... X}, F(Ay,...,A)Y}, .. Y, Z,,

where the case n = 0 is treated as before, the Wy, woand 23,2, 1 =1,... 4 k; =
1,...,s;) are unspecified sequences of L-formula occurrences, every formula in Xy, Yi,,
and each By, is among A4y, .. ., A,, and in each instantiation of (I) every A, (k=1,...,n)
occurs in some X, Yik;, or By,. Now, although F X; V... VX, = F(A4,...,A,) (where
X;i = Xi = (B « Ya)... X, = (Bi, « Yi,,)), we do not have + F(4,,...,4,) >
X; V...V X;. Consider e.g. the following connective F":

(- F) AX>BFX— F(AB,C), CX— BFX — F(A,B,C);
(F=) Yi>A Y, C ZBZ, — C t ZY,Y,F(A,B,C)Z, — C,
AY, C«Y, C« Z;BZ, + C — LY,Y,F(A,B,C)Z.
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In the higher-level proof theoretic semantics F(A, B,C) would be explicitly definable by
(A\ B)V(C\ B) on the strength of (— F). Instead of - F(A4,B,C) = (A\ B)V(C\ B)
the semantics based on (I)!, (II)! just gives - F(4,B,C) = (Ao C)\ B. However,
VispL (Ao B)\C — (A\ B)V(C\B).

4.4 Functional completeness for ISPL, and MSPLA

The present generalization of von Kutschera’s approach to the problem of functional
completeness for IPL extends directly to those subsystems of IPL which are obtained
from ISPL by adding some of the earlier-mentioned structural rules of inference. For
every non-empty A C {P,C,C',E,E',M} one may add the higher-level formulation
of the rules in A (using < as well as —) to G and define the notion of derivation in
analogy to the notion of derivation in G. In the case of T SPLc; e.g. it has to be required
that if Da,c, (I, X,UUX, — T,Y), then Dg{c}(xl—U%TT,Xlsz — T,Y) etcetera. The
argument then is the same as for ISPL, i.e., in particular, the set of logical operations
for which functional completeness is shown remains the same in each case:

Corollary 4.11 {/,\,A,0,V, T, L} is functionally complete for ISPL,.

As already pointed out, A/B and B\ A are interderivable in the presence of P, AAB
and Ao B are interderivable in the presence of M and C, and T and t are interderivable
in the presence of M.

Due to the absence of the ez falso principle (L —), t is no longer definable in MSPL,.
Let G™ denote the result of dropping (L =) from G. Using G™ instead of G as the under-
lying proof theoretic framework for introducing connectives into premises and conclusions,
it is an immediate corollary to the above results that

Corollary 4.12 {/,\,A,0,V, T,t, L} is functionally complete for MSPL,.

Here L has been included, just because it is used to define MSPL,A’s ‘official’ intu-
itionistic minimal negations. Since nothing particular is assumed about 1 in M SPLa,
the essential inventory is {/,\,A,0,V, T,t}. The absence of negations from this set is a
remarkable fact, because apparently negation plays no role for definability. This is in sharp
contrast to the functional completeness results for substructural subsystems of Nelson’s
propositional logic N~ in Chapter 7.

4.5 Digression: On the expressiveness of Categorial
Grammar

In this section we shall address a central development in recent investigations of Catego-
rial Grammar, viz. the introduction of new type forming operations (see e.g. [Moortgat
1988, 1990], [Morrill 1990]). If the parsing mechanism of Categorial Grammar is thought
of as a propositional logic, the problem is to motivate and to characterize additional
propositional connectives besides the two implications / and \ (and sometimes an addi-
tional juxtaposition connective). In what follows, a number of additional operations for
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the Lambek Calculus of syntactic types is motivated and positive sequential propositional
logic ‘PSPL’, i.e. positive propositional logic without structural rules of inference, is sug-
gested as an extended syntactic calculus. By the results of the previous section, we obtain
a functional completeness result for the connectives of the extended syntactic calculus
PSPL.

4.5.1 Extended Lambek Calculus

The functor-argument structure of languages The standard bi-directional Aj-
dukiewicz Calculus of syntactic types [Ajdukiewicz 1935] makes use of (i) a finite number
of basic type symbols like 7 (for names) and s (for sentences) and (ii) the directional impli-
cation signs / (right residuation) and \ (left residuation) which are used to build up functor
types. In this propositional language of types simple natural language sentences can be
given a categorial analysis by means of (directional versions of ) Ajdukiewicz’s cancellation
rule; consider e.g.the following type assignments and natural deduction proof-trees:

(1) Suddenly Mary discovered John
(s/s) n ((n\s)/n) n
(n)s)

(2) Suddenly Mary discovered John
(s/s) n (n\(s/n)) n
(s/n)

s

An essential extension of Ajdukiewicz’s Categorial Grammar has been developed
by Lambek [1958]. The core of Lambek’s generalization of Ajdukiewicz’s syntactic cal-
culus is to supplement the cancellation principles, which are directional versions of the
modus ponens rule (or the principle of functional application), by the corresponding con-
ditionalization (or functional abstraction) principles. In a sequent-style presentation, the
resulting implicational logic turns out to be just intuitionistic (or positive) implicational
logic without structural rules of inference. Thus, Ajdukiewicz’s extremely simple parsing
mechanism has been extended by Lambek into a full-fledged implicational logic, or, as
many linguists prefer to say, standard Categorial Grammar has been developed into flez-
tble Categorial Grammar. Categorial Grammar based on the Lambek Calculus is called
flexible, because it gives rise to “derivational polymorphism”, i.e. certain multiple type
assignments can now be taken into account by the richer deductive means. The differ-
ent syntactic types assigned to discovered in (1) and (2) e.g. are interderivable in the
Lambek Calculus; for one direction see e.g. the following sequent-calculus proof:
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n(n\s)—s n—n
n((n\s)/n)n — s

n((n\ s)/n) — (s/n)
((r\s)/n) - (n\ (s/n))

Ideally one would like to have the following picture: for any syntactic item the type
assignment should be as parsimonious as possible; every additional type in which the
item may occur should be derivable from an assigned type using the underlying syntactic
calculus. What is important for our considerations here is that at this stage we have the
following set of type-forming operations: {/,\}.

Concatenation of syntactic types Lambek [1958] also introduces a conjunction oper-
ation denoting juxtaposition (or concatenation) of syntactic types in the object language.
Let us use o as the juxtaposition connective. Natural concatenative syntactic types are
provided by texts. E.g. in the Lambek Calculus one can prove that the two sequences
n (n\s)and n ((n\ s)/n) n both derive s: n (n\ s) — s, n ((n \ s)/n) n — s. Now,
one may put these sequences together to obtain a short text consisting of two sentences:
n(n\s)n ((n\s)/n) n > (sos). Thus, we arrive at the following set of operations:

,\,0}.

Non-derivational type ambiguity There exist type ambiguities which cannot be cap-
tured by the derivational apparatus. A well-known example is the type membership of
the connective and. And does not only act as a propositional connective but it may also
conjoin e.g. names as well as adverbs, as witnessed by the following two examples.

(3) Peter and Mary  discovered John
n ((r\n)/n)n ((n\s)/n) n
(n\m) (n\s)
n
s
(4) Suddenly and unexpectedly John died

(s/s)  (((s/9)\(s/5))/(s/s)) (s/s) m (n\s)
((s/s)\ (s/9)) s
(s/s)

s
The prevailing reaction in the literature to non-derivational type ambiguity is the in-
troduction of polymorphic types, i.e. types involving type variables (cf. e.g. [van Benthem
1991]). And would thus be assigned the polymophic type ((z\z)/z). One need not, however,
resort to a higher-order framework in order to deal with the type ambiguitiy of expressions
like and. Moreover, the descriptive adequacy of “variable polymorphism” may be ques-
tioned. And e.g. is not a conjunction of expressions in each syntactic type, as sentences like
the following are clearly ungrammatical: Peter and and and Mary discovered John,
This is not and not my book. In [Lambek 1961] one can find the operation N of type
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intersection, which we shall denote by A to emphasize the logical perspective on Catego-
rial Grammar. Instead of using type variables one could simply try to assign to and the
type of a finite conjunction: and — ((n\n)/n)A((s\ s)/s)A.... At this stage we have
already a set of four type forming operations, viz. two directional implications and two
conjunctions (one in the sense of concatenation and one in the sense of type intersection):

{/;\s0,A}.
Incomplete syntactic information Suppose for a moment that you are a linguist who

has already succesfully carried out a partial categorial analysis of a certain maybe not yet
syntactically investigated language. The language is a written language, and part of the

dictionary you are compiling is the following type assignment: |||~ ((n\ s)/n) A (s/n);
©@©@© +~ n. Unfortunately, you don’t know to which type the expression — — — — —
belongs; you managed, however, to find out that the string — — — — — ] ©@O©O is a
sentence, i.e. we have the following situation:

() ----- 11} ©0O

? ((n\ s)/n)A(s/n) n — s.

Now this incomplete information offers you some reasonable options for a type assignment

to — —— — — , besides brute force assignments like — — — — — = ((s/n)/(((n\ 8)/n) A
(s/n))). Depending on whether |||| acts as an intransitive verb (s/n) or as a transitive
verb ((n\s)/n), you may assign the type (s/s) or the type n to — — — — — . Since both are

possible, you finally decide to assign the disjunctive type ((s/s)Vn). Assuming incomplete
syntactic information thus naturally leads us to introducing disjunctive types. Our set of
operations now looks like this: {/,\,0, A, V}.

To a certain extent there is a difference in character between the connectives /5 \, and
o on the one hand and A and V on the other-hand.. Whereas /s \, and o are directly related
to the process of parsing (/ and \ reflect the functorial structure to be found in languages;
o reflects the linear arrangement of linguistic items), A and V are related to the process of
assigning types. However, once types involving A and V are assigned, applications of the
rules governing A and V are, of course, steps in the parsing process. Now that we have
argued for an extended set of type-forming operations, a number of interesting questions
arises:

1. Are there further reasonable operations for Categorial Grammar?
2. Are there sets of operations which allow one to define all possibilities?

3. Are there finite such sets?

Continuing our logical perspective, these questions may be paraphrased in more logical
terms. What the first question essentially amounts to is the question whether there is a
semantics and therefore a definitional framework telling us what is a possible operation.
The second question can be translated as the problem of functional completeness for a
given logic L. In order to approach a functional completeness result for extended Cate-
gorial Grammar we thus have to specify a definitional framework and, of course, we have
to syntactically characterize the informally motivated new connectives. It turns out that
we can directly apply our earlier results.
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Definition 4.13 Positive sequential propositional logic PSPL is the L-free part of
MSPL. _

Now, PSPL will serve as our extended syntactic calculus. The propositional constants
t and T receive a straightforward linguistic interpretation: t denotes any sequence of type
symbols, and L denotes the empty sequence. In PSPL we assume denumerably many
propositional variables (or basic type symbols), but this assumption is not essential. As
an immediate consequence of our earlier results we obtain the following

Corollary 4.14 {/,\,A,0,V, T,t} is functionally complete for PSPL,.

4.5.2 Limitations

The question of what is the philosophical significance of the previous theorem and of
functional completeness results in general is worth a seperate treatment, and we will
come back to it in Chapter 9. For the time being let us just note that the proof theo-
retic framework we have used puts some heavy restrictions on definability. In fact there
are interesting type-forming operations which cannot be defined in it. Consider e.g. the
standard set-theoretic interpretation of /, \ and o:

(A/B) = {yeV*|(VzeB)yze A},
(B\ A) {y e V* | (Vz € B)zy € A},
(AoB) = {zeV*|(3Iz€ A)(Fy € B)zy = z},

where V'* is the set of all non-empty, finite strings over a given vocabulary V. In order to
handle certain syntactic discontinuity phenomena, Moortgat [1988] introduces the type-
forming operations ‘extraction’ 1 and ‘infixation’ l: ' '

(ATB) = {zzeV*|Vylye BDazyzc A)},
(AlB) = {yeV*|VaVz(zz€ BDayzc A)},

and shows that T and | cannot be characterized by operational rules in an ordinary
sequent calculus. They can be characterized, if in addition to sequent rules one uses what
Moortgat calles “string equations” [Moortgat 1990]. Thus, if one wants to make use of
type-forming operations like 1 and |, this requires a proof theoretic framework which is
essentially richer than the above higher-lever Gentzen semantics.



Chapter 5

Formulas-as-types for substructural
subsystems of IPL

In this chapter, Howard’s [1969] ‘formulas-as-types notion of construction’ for intuitionistic
implicational logic IPL-, i.e. an encoding of proofs in I P L+ by lambda terms, is extended
to certain fragments of the substructural subsystems of IPL introduced in Chapter 3.
This is achieved by taking up Buszkowski’s [1987, 1988] distinction between two kinds of
lambda-abstractors, singling out suitable fragments of typed terms (cf. also [van Benthem
1986], [Buszkowski 1987]), and appropriately modifying the notion of construction. The
relationship between cut-elimination and normalization of terms is dealt with. Amongst
other things, it is shown that in certain cases in which applications of the (cut)-rule can
be eliminated from an implicational fragment of the logics considered, cut-elimination and
normalization of terms wrt 3-reduction are homomorphic images of each other. !

5.1 The typed lambda calculus )\ /\

We introduce a directional variant A/ of the ordinary typed A-calculus A5. The vocab-
ulary of the term-language T\ consists of denumerably many term variables vy, vs,. . .,
every formula in {/,\}, the lambda abstractors A", X', and brackets (, ).

Definition 5.1 The set A\ of T)\-terms is the smallest set I' such that
(1) V), =aet {v# | 0< i €w,Ais aformulain {/,\}} C T}
(i) if M4, N(B/4) ¢ T then (NM)® € T}
(iii) if M4, N(\B) € T then (MN)® €T
(iv) if MB €T, z4 € V), then (\"zM)(B/4) (NgM)A\B) ¢ T,

1The present chapter is based on [Wansing 1992]. [Gabbay & de Queiroz 1990] deals with exactly
the same topic, but within a natural deduction framework. Gabbay and de Queiroz consider a range of
formal systems which includes also classical 2-valued implicational logic. However, they do not distinguish
between a right-searching and a left-searching implication. Moreover, they are not concerned with the
relationship between certain operations on typed terms and operations on proofs like normalization wrt
B-reduction and cut-elimination.

59
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M4 is called a term of type A. Sometimes outermost parentheses and type-symbols of
terms will be omitted. We shall use z,y, z,w, 21, T2, ... etc. to denote elements from V
and M, N,G,H,M,, M,, ... etc. as to denote T, \-terms. The set F'V (M) of free variables
of M, the set ST(M) of subterms of M, and M [z® := N?], the result of substituting N
for the occurrences of x € FV(M) in M, are inductively defined in the obvious way. A
variable z in M is bound iff x ¢ FV(M). M is closed iff FV(M) = 0. An occurrence of a
free variable will be called a free variable-occurrence (fvo). M = N expresses that M, N are
the same or are obtainable from each other by renaming bound variables. X"z, ...2,.M =
(N2 (Ao, . (A2 M) . ), Mg ze M = (Mzy(Mzy(. .. Mz, M) .. ).

Let M [z¥] denote a T} -term in which  occurs as a free variable, and let M [NB] be
the result of substituting NV for a single occurrence of z in M [z]. It will always be clear
from the context for which occurrence of z in M [z] the term N is substituted to obtain
M [N]. N is free for « in M[z] iff no y € FV(N) becomes bound in M [N].

Lemma 5.2 Instead of clauses (ii), (iii) in previous definition, one may equivalently use
clauses

(i) if M€ [P}, N4 €T, 2(B/4 € V;, then M[:N] €T,
provided z N is free for z in M [z];

(iii)’ if M€ [zB], N4 €T, (4\B) € V;, then M [Nz] €T,
provided Nz is free for z in M [z];

(v) if MC [2P],N® €T, then M [N] € I, provided N is free for z in M [z].

PrOOF (ii) implies (ii): Suppose that 2(B/4) e V,,,MC[zB},N4 € A,\. By (ii),
zN € Aj,. By renaming fvos of type B in M [z], M [z][z := 2N} = M[zN] € Aj,.
(iti) implies (iii)": analogously. (ii)’, (v} imply (ii): Suppose that N(5/4) M4 ¢ A\, and
ZB/4) y4 28 € V;\. By (i)’ and (v), zy € A/\. But then, by (v), NM € Ay (i), (v)
imply (iii): analogously. If (ii), (iil) are used, (v) follows by renaming fvos of the same
type. O

The remaining part of this section and similar passages in later sections of this chapter
are standard applications from (typed) lambda calculus.

Definition 5.3 The logical axiom-schemata and rules of A, are:
M4 = M4,
if M = N, then N = M,
if M =N,N =G, then M =G;
if MAB) = N(A\B) then GAM = GN;
if M4 = N4, then MG4\P) = NG,
if M(B/A) = N(B/A} then MGA = NG:

if M* = N4, then GB/AM = GN;
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if M = N, then A"zM = X"z N;
if M = N, then Mz M = MzN.
The axiom-schemata of A, \’s theory of typed B-equality are:
(87) (\zA. M)N4 = M [z := NJ;
(8') N4(MNzA M) = Mz := N|.

Definition 5.4 The binary relations —~g (one-step B-reduction), —+ 4 (B-reduction),
and =g (f3-convertability) are defined as follows:

(1) (24 M)NA —3 M [z := N]; NA4(ANzA M) —5 M [z := N];
if M4 —~, N4, then MGA\B) 5 NGA\B), GBI p - g GBIA)
if MA\B) 5 ) NAB) then GAM —>4 GN;
if M{B/A) 5 N(B/A) then MG4A —~4 NG,
if M —>g N, then A’zM —5 X"zN, MzM —~5 Mz N;
(2) —>+4 is the reflexive and transitive closure of —>;

{3) =p is the equivalence relation generated by —>+3.

Definition 5.5 7)\-terms (A\'z4. M)N4, N4(Xz4. M) are called S-redexes. M [z := N]
is called the contractum of both (\"z4.M)N4 and N4(A'z#.M). M is a B-normal form
(B-nf) iff it has no B-redexes as a subterm. M has a 3-nf iff there exists a IV such that
M =4 N and N is a §-nf.

Theorem 5.6 (Church-Rosser Theorem) If M —>%5 Ny, M —>»5 N3, then there exists
an N; such that N; —5 N3, N —-5 N;.

PROOF Like the proof of the Church-Rosser Theorem 3.2.8. (i) in [Barendregt 1984]. O

Using the Church-Rosser Theorem it can be shown that every M has at most one 8-nf.
Moreover, as in the case of the undirectional typed lambda calculus A, one can prove a
strong normalization theorem for A\, implying that every M in fact has a G-nf.

Definition 5.7 M is called strongly normalizable (sn) wrt —>»g iff every g-reduction
starting at M is finite.

Theorem 5.8 Every M is sn wrt —>-4.

PROOF See Appendix 5.8. O

Thus, every M has exactly one 8-nf. Let NORMj denote iterated contraction of the
leftmost 3-redex. Since every B-reduction starting at any M is finite, NORMp constitutes
a terminating normalization algorithm wrt —>~4.
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5.2 Encoding proofs in ISPL,,

Let ISPL,, denote the /,\-fragment of ISPL, and let PROOFispy,, denote the set
of proofs in ISPL;\.* Next, we shall define a fragment of A/\ such that every II €
PROOF;sprL /. Can be encoded by some term from this fragment, and vice versa.

Definition 5.9 Let Argp;y ;. be the biggest I' C A\ such that

(i) for every M € I and every prefix of the form A"z resp. Xz in M,
Az resp. Az binds exactly one fvo;

(ii) for every A"z.M € T, an occurrence of z is the rightmost fvo in M;

(iii) for every A'z.M € T, an occurrence of  is the leftmost fvo in M.

Note that Azspy, " is closed under substitutions of a term N for a fvo z in a term M,
since N must be free for z in M{z].

Definition 5.10 A term MP € Ajgp; , 15 a construction of a sequent A4;...4, — Biff
M has exactly fvos z', ...,z in this order from left to right.

Theorem 5.11 Given a proof in PROOFISPLM of a sequent s = A;... A, — B, one
can find a construction M2 € Argpr ;.\ Of s, and conversely.

PrROOF We shall inductively define encoding functions f: PROOFspr o — Arser,
9 :Asspr,, — PROOPFispy I\ such that it can readily be seen that f(II) is a construc-
tion of I1, and g{(M) proves a sequent of which M is a construction. Let {V)¥ denote the
result of renaming (from left to right) the fvos in N by occurrences of distinct variables
of the respective types and with smallest possible indices such that the renamed vari-
able occurrences are free in N. Moreover, for M [z®], (NB) is required to be free for z
in M [(N)¥]. We shall use II,II;,II,,..., to denote proofs. The function f is inductively
defined as follows:

o II=A-> A f(Il) = v
.XAH B I
o II= X (B/4)- f(In) = A"Uf-f(ﬂ_%ﬁ),

where an occurrence of ; is the rightmost fvo of type A in f(3tg);

¢ VU | S
— YXY—oA XBZ O . —_ B/A
o I = ‘gmavsse () = (f(xp552 [('U;E / )f(y_lffz))h])h,
where v; is the first variable of type (B/A) not occurring in f{3=);
I, I, o, . .
e forIll = }A_ﬁ\% resp. II = %%g’ F(II) is defined in analogy
to the previous two cases;

o 1= T=4FAZSE. {(I1) = (F(x%p) [(F ()T

2Obviously, ISPL,\ = MSPL,.
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The function g is inductively defined as follows:

o M=z8 g(M)=B - B

o M =XzA NC: g(M) = 3{—1((%/%),
where X A is the sequence of types of the fvos in N;

G N[v€
o M = N CAGA] (ar) — 5 3D
where Y is the sequence of types of the fvos in G, XCZ is the sequence of types
of the fvos in N [v;], and v; is the first variable of type C not occurring in N;

o for M = A'z4 NC resp. M = NB [GA42(4\%)], g(M) is defined in analogy
to the previous two cases;

® M = NP [H®] and HC is neither a variable nor of the form GAz(4\0) or »(C/4) 4,
C

g(M) =4 (?}fz(f g’ ' ]), where Y is the sequence of types of the fvos in H, XCZ is

the sequence of types of the fvos in N [v;], and v; is the first variable of type C not

occurring in N. 0O

For a different proof of this theorem wrt to a different sequent calculus for ISPL,,,
see the proof of Theorem 1.5 in [Buszkowski 1987]. From the definition of Arspr,, it

becomes clear that for the encoding one may instead of A and " just use the ordi-
nary lambda-abstractor A together with suitable constraints on variable-binding. What is
crucial, however, is the use of directional types.

5.3 Cut-elimination in PROOFISPL/\ and A-reduc-
tion in Argpg /\ as homomorphic images of each
other

Let ELIM., denote the terminating cut-elimination algorithm for ISPL,\ obtained by the
proof of Theorem 3.4. We shall specify in which sense cut-elimination in PROOF;spr i
‘corresponds’ to normalization wrt —>>p in Asspy, .. (For an analogous result wrt to
cut-elimination on proofs in a symmetric sequent calculus for I PL and normalization of
natural deduction proofs in JPL see [Pottinger 1977].)

Theorem 5.12 Let 4 =< PROOFISPL/'\,ELIMC >, B =< AISPL/.\,NORM'B >.
(i) The function f defined in the proof of the previous theorem is a homomorphism
from A to B.

(ii} The function g defined in the proof of the previous theorem is a homomerphism from

B to A.

Proor First of all note that Arspr,, is closed under NORMg, i.e. NORM; is in fact
a function on Arspr,,. (1): It has to be shown that f(ELIM,.(II)) = NORMg(f(I)).
The cases in which the last step in the generation of II is not an application of (cut) are

I ( CUE | -
straightforward. If Il = ¥=4--X4Z=8  then in order to determine f(ELI M. (II)), one has
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to consider every conversion step involving / or \ in the proof of Lemma 3.3. The essential
elimination steps in which one application of (cut) is replaced by two applications of (cut)
of a smaller degree amount to one-step f-reductions between the respective f-images,
whereas in each remaining step the f-images are the same:

151 Iz Iy SR | (U
XA—»B Yi»A X.BZ-C Y24 XA—EB I
X—~(BJ/A) X1(BJA)Y;Z—C is converted into XY, —B m’TC
X1 XY1ZC XiXYhZ-C
1 f 1 f
I, I, IIs 1'[] Im;

oA fxits) (Flamsss) (v FGE)) P (f(—,i":) [(FEE fr=s)
(F (=) [0 FGE) A NI =5~ (Flmas) (NI,

where N = f(XA_*B)

Hl Hg HZ Hs

Yi—oC Xi1DZ;—A X\DZ,—-A XAZ—-B
Xi(D/C)Y1Z2:1—4 X—&,‘_TB is converted into TIE? XXiDZZ—B
XX1(D/CW1Z,Z—+B XX1(D/CYriZ,Z—~B
L f 1 f
(y,_pc) N f(FDI?ITA) N
(N [P F(GRo)E f(xp) 3385 (Flxde=s) (V)
(f(m*:g)[(w[(v, GENA = (F s [V (o F G,

where N = f(mr—;ij);

I I | CHN | I
XAZC—E Y—A XAzZC—E
Y_IEZ XAZ—(B/C) is converted into XYZC—B
XYZ—(B/C) XYZ—(B/C)
L f L f
f(ﬁéra) f(y_.A) f(XAZI,’IC'--."B)

(A" C f(“zg_,ﬂ)[( (YIEA)) pvoo= AT (f(XAz“c_.B)[(f(yl_.lA))E])“;
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Hz Ha r-[l HZ
XAZ,CE B YioD Y—4 XAZC%,=B
FE—  XAZi(C/D)YiZ;~B is converted into | Xvz,cz.—B Tlliﬁ
XYZ1(C/D)Y1Z2—*B XYZ]_(C/D)YiZz—FB
1 f L f
r'[ 1
f(XAzlczzz—’D) /(Yl—"D) 'f(letA) f(XAZ1Ié'2Z2—rB)
T/D T I
f(y_,A) (f(m‘l_ozz;_._g) [( : )f(YIILD ] )(,e1zl<:'zz_u_ﬂr)[(f(Y--»A))hr])il f(iT—'}E)
. — I, T
((f (XAzlc'Zz—»B){(va(Yl_;D))]) (VMY = (Hzazdam=s) (VD £ (52

where N = f(;2 Yo

By the ind. hyp., f(ELIM,(303)) = NORM(f(31;)) and f(ELIM.(x2=5)) =
NORMj(f+5=)). Thus, f(ELIM (II})) = NORMg(f(11)). (ii): It has to be shown
that g(NORMs(M)) = ELIMc(g(M)). The cases in which the last step in the gene-
ration of M is not an application of clause (v) in Lemma 5.2. are straightforward. If
M = NB[HC], then one has to distinguish among four cases and a number of subcases
which together are exhaustive. Case 1: H = A"z4.GC. (a) M is obtained from z(®/4),
Then g(NORMs(M)) = g(NORMy(H)) = ELIM,.(g(M)) by (ii). (b) M is obtained
from 2(%/4) N{. Then either (i) g(NORMs(M)) = g(NORMp(2N, [H])) = ELIM.(g(M))
by (iii), or (i) g(NORMs(M)) = g(NORMs(HN,)) = g(NORM(G[z* := Ny])) =

(NORMﬁ(G[Nl])) ELIM.(g(M)) by the induction hypothesis. (¢) M is obtained
from X"y”.GP'. Then g(NORMy(M)) = ELIM,(g(M)) by (ii). (d) M is obtained from
MyP.GP1: analogous to the previous subcase. Case 2: H = Mz4.GC: analogous to Case
1. Case 3: H = (\"2A.G)G#. Then g(NORM(M)) = g(NORM(N[G a4 := GA]))
= g(NORMp(N[G[G{]])) = ELIM.(g(M)) by the induction hypothesis. Case 4: H =
G(A"z#.G): analogous to Case 3. O

REMARK (i} There are no encoding functions f' : PROOFyspr,, — Asspi,,, 9 :
Arspr P PROOFspr 7 which are monomorphisms from A to B resp. from B to A:
every variable of type A is in B-nf and encodes one and the same proof, viz. 4 — A.

Conversely, A — A and 424424 ¢ o are encoded by one and the same term in (-nf,
A

viz. vit.
(ll) Let ELIMC(PROOFISPL/ ) = {ELIM (H) I ITe PROOFISPL/\}

NORMpg(Arspr,,) = {NORMﬂ(M) | M € Arspr,,}. By induction on IT €
ELIM.(PROOFigpy,,), it can easily be verified that g(f(II)) = II. Therefore
f [ELIM(PROOFyspr,,) is a 1 — 1l-function from ELIM, (PROOFyspr,,) in

NORMjg(Aspr,,)-

The previous theorem can be visualized as follows:
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LY
PROOF[SPL/'\ f AIS.PL/‘\
g
ELIM. NORM;g
g
{cut)-free proofs f B-nf’s

Figure 5.1: The relation between cut-elimination and S-reduction.

5.4 [(n-reduction in A;gpy ,, asa monomorphic image
of normalizing (cut)-free proofs

Definition 5.13 The axiom-schemata of A /\'s theory of typed 5-equality are:

(") ArzA (MB/AzAY = M, if 2 ¢ FV(M);

(7') NzA (zAMU\BYy = M, if z ¢ FV(M).

The binary relations —>, (one-step 7-reduction), —-, (7-reduction), and =,
(n-convertability) are defined in the same way as one-step S-reduction, S-reduction, and
(B-convertability.

Definition 5.14 T)\-terms A\"z4.(M(B/4zA) MgA (x4 M(A\B)) are called 7-redexes, if
z & FV(M). M is called the contractum of A"z4.(M{B/4)z4) resp. NzA (x4 MA\B)), M
is an n-normal form (7-nf) iff it has no 7-redex as a subterm. M has an 7-nf iff there is
an N such that M =, N and N is an #-nf,

Definition 5.15 If M —~3 N ot M —, N, then M —~4, N (M one-step G7-reduces
to N).

The binary relations —»g, (87-reduction) and =g, (#n-convertability) are defined in
the same way as 3-reduction and 3-convertability.

Definition 5.16 M is a #5-normal form (37n-nf) iff it has neither a §-redex nor an 7-redex
as a subterm. M has a B7-nf iff there is an N such that M =g, N and N is a S7-nf.

Theorem 5.17 (Church-Rosser Theorem) If M —>»g, N1, M —+4, N, then there
exists an Nz such that Ny —>>g, N3, Ny —>+5, Ns.

ProoF Like the proof of the Church-Rosser Theorem 3.3.9. (i) in [Barendregt 1984]. O
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Theorem 5.18 M has a Sn-nf iff it has a F-nf.
PROOF See the proof of corollary 15.1.5. in [Barendregt 1984]. O

Definition 5.19 M is called strongly normalizable (sn) wrt —»g, iff all B7-reductions
starting at M are finite.

Theorem 5.20 Every M is sn wrt —=-g,.
PROOF See Appendix 5.8. O
Theorem 5.21 If M —»+4, N, then there is a G such that M —>=5 G —>>, N.

PROOF See the proof of corollary 15.1.6. in [Barendregt 1984]. O

Let NORM, denote iterated contraction of the leftmost 7-Tedex, and let NORM de-
note NORM,NORMjp, i.e. the composition of both algorithms. Since every Bn-reduction
starting at any M is finite, by the previous theorem, NORM constitutes a terminating
normalization algorithm wrt —»> gn- Now, call proofs of the following forms redundant:

A— A B—- B A—-A B-> B
(B/A)A — B A(A\B)—> B
(B/A) — (B/A) (A\ B) - (4\ B).

Lemma 5.22 Every proof of X — A in PROOF Ispr;, can be converted into a proof of
X — Ain PROOFisp; " without any redundant part.

PROOF By iterated application of the obvious conversions starting from the top. See e.g.
the following conversion (together with the generation of the respective f-images):

A—-A B—- B
[ (B/A)A— B J is converted into [(B/A} — (B/A)]
(B/A) - (B/A)

L f Lf
A B

vy

(B/4) 4

vy ot

BT B/A
Aot (v{B 4 pa) —> #54 o

Let ELIM, denote the (terminating) algorithm for eliminating redundant parts of
proofs in PROQOF;sp;, s and let ELIM denote ELIM,ELI M., i.e. the composition of
both algorithms.

Theorem 5.23 Let A =< PROOFIspL/!\,ELIM >, B]_ =< AISPL/_\,NORM >,

(i) The function f defined in the proof of Theorem 5.11 is a monomorphism (i.e. a
homomorphism which is 1 — 1) from .4, to B;.
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(ii) The function g defined in the proof of Theorem 5.11 is a homomorphism from B, to
A;.

Proo¥ Since NORMpg(Arspr, \) is closed under NORM,, and ELIM (PROOFISPLI \)
closed under ELIM,, NORM is in fact a function on AIsp L\ and ELIM is a function on
PROOFspr - (i): By theorem 5.12 and the above remark, in order to prove that f is a
1-1 homomorphism from A; to By it is sufficient to show that f | ELIM.(PROOFispy /.\)
is a homomorphism from < ELIM, (PROOFISPL/ ), ELIM, > in < NORMﬁ(AIspL )
NORM, >. It has to be proved that f | ELIM (PROOFyspr,  (ELIM, (I'I))

N ORM Af | ELIM, (PROOF_;SPL, J(IT)). The proof by induction on the generation
of Il € ELIM.(PROOF;spr j\) is straightforward. (ii) It suffices to show by induction
on the generation of M € NORM,E(AISPL/ \) that g [ NORMg(Arspr,, (NORM,(M))
= ELIM,(g| NORMp(Asspr,,)(M)). O

5.5 Encoding proofs in ISPL/, ,

We shall extend our considerations to the /,\, o-fragment ISPL,, , of ISPL. For this
purpose we first define a set of typed terms A, .. The vocabulary of the term-language
T} ,\,0 is the same as the vocabulary of T}, except that it contains every formula in {/,\, 0}
and the following new term-forming operators: < —, — > (pairing) and (=)o, (—); (left
and right projection).

Let M [z4,y%] denote a T}, -term with fvos z, y which are adjacent in the term’s
sequence of fvos, and let M [G4, H?] be the result of (i} substituting G for the indicated
occurrence of z in M and (ii) substituting H for the indicated occurrence of y in M. G,
H are free for z, y in M [z,y] iff no z € FV(G) U FV(H) becomes bound in M [G, H].

Definition 5.24 The set A\, of T}, .-terms is the smallest set I' such that
) Vioe={v|0<i€w, Aisaformulain {/,\,0} } C T}
(i)

(iii) if M4, N® € T, then < M, N >“°Ble I,

(iv) if M [z4,yB] €T, 24°BY € V) \ ,, then M [(2)o,(2)1] € T

clauses (ii)’, (iii)’, {v) of Lemma 5.2 hold;

Note that we allow for projections not only of terms which are pairs (a fact that will
be used in the proof of Theorem 5.32 below). If not otherwise stated, in the sequel we
shall assume abbreviations, conventions, and definitions analogous to those introduced
in connection with A, . In particular, FV(< M,N >) = FV(M)U FV(N); FV((M);)
= FV(M), ST(< M,N >) = ST(M) U ST(N)U {< M,N >}; ST((M);) = ST(M)U
{(M)t)}, 1= 0: 1.

Definition 5.25 The binary relations >, >, ~ on A/ . are defined as follows:
(1) (X4 M)N4 = M [z := N], NA(NzA. M) - M [z := NJ;
(< M,N >} > M, (< M,N >); » N;
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if M4~ N4, then MGM\B) - NGUA\B) G(B/A)pr o G(B/A) .

if MA\B) » N(A\B) then GAM = GN;

if M(B/4) . N(B/A) then MGA ~ NG:

if M » N, then A"zM = XzN, MzM > MzN;

if M - N,then < M,G >~< N,G >, <G, M >~< G,N >;
(2) > is the reflexive and transitive closure of »;

(3) = is the equivalence relation generated by »-.

Definition 5.26 T}, .-terms (\"z4. M)N4, N4(Xz4 M), (< M,N >)o, (< M,N >N
are called redexes. M [z := N] is called the contractum of both (A"zA.M )N4 and
N4(Xz4.M); M is called the contractum of (< M,N >), and N is called the con-
tractum of (< M, N >);. M is a normal form (nf) iff it has no redexes as a subterm. M
has a nf iff there exists a N such that M ~ N and N is a nf.

Theorem 5.27 (strong normalization) Every M is sn wrt .

Proor Cf. the definition of computability and the proof of Theorem 2. in [de Vrijer 1987).
a

Theorem 5.28 (Church-Rosser Theorem) If M = N;, M » Ny, then there exists an N;
such that Nl b N3, Ng b N3.

PROOF In view of the previous theorem it is enough to establish the' Church-Rosser
property for sn terms. Cf. e.g. the proof of proposition 12.1. in [Lambek & Scott 1986}.
O

Let NORM, denote iterated contraction of the leftmost redex. N ORM- is a termi-
nating normalization algorithm wrt >.

Definition 5.29 ([Roorda 1991]) Let N € ST(M). N counts for one in M if either there
is only one occurrence of V in M or there is a G € ST(M) such that N counts for one
in G and (G)y, (G)1 count for one in M. If N is a variable, then N must be free in M in
order to count for one.

Occurrences which together count for one will be identified and treated as one occur-
rence. Thus, for M [z®], M [N®] denotes the result of substituting NV for occurrences of
z that together count for one in M [z]. Let PROOFispy, /1. denote the set of proofs in
ISPL;, . . Next, we shall define a fragment of A, . such that every Il € PROOFispy,, ,
can be encoded by some term from this fragment, and vice versa.

Definition 5.30 Let Azgpy e be the biggest I' C A/ , such that

(i) for every M € T and every prefix of the form A"z resp. Alz in M, X'z resp. Mz
binds exactly one fvo (i.e. binds free occurrences of z that together count for one);
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(ii) for every A"z.M € T, an occurrence of z is the rightmost fvo in M;

(iii) for every A'z.M € T', an occurrence of z is the leftmost fvo in M.

Definition 5.31 A term M?Z € A;spL/,\'o is a construction of a sequent A;... A, —» B
iff M has exactly fvos z7,...,z%~, in this order from left to right.

Theorem 5.32 Given a proof in PROOF;spy, e of a sequent s = A,... A, — B, one
can find a construction M? € Arspr e of s, and conversely.

Proor We shall inductively define encoding functions f; : PROOFyspy e — AISPL,, o)
91: Agspr,, , — PROOFyspy,, , such that it can readily be seen that f1(11) is a con-
struction of I, and ¢:( M) proves a sequent of which M is a construction. Let (< M, N >)*
denote the term which results from < M, N > by renaming (from left to right) modu-
lo counting for one the fvos in N by occurrences of distinct variables of the respective
types and with smallest possible indices such that the new variables are distinct from the
free variables occurring in M. The function f; is inductively defined in the same way as
the function f in the proof of Theorem 5.11, except that (i) fvos that count for one are
renamed by the same variable, and (ii) in addition we have:

.H___l_xlia _z_zI_I..Bf(H)_(<f( IL )f(nz >(AoB))b.
— T XY—(AoB) " 41 - WXSaAHhJ/IW\VLE ’

;
o I = A8 A = (Alzmmbse) (7)o P,

. . - . n
where »; is the first variable of type (4 o.B) not-occurring-in fi{35z3—5)

The function g, is inductively defined in the same way as the function g in the proof of
Theorem 5.11, except that in addition we have:

o M =<G,H >0 g/(M) = g"f%%ﬁgjl’
where X resp. Y is the sequence of types of the fvos in G resp. H;
. o g1 (N [vf,05))
o M = NB[(24°0))g, (204°C))]: (M) = J;(A«:C)Y-»B’

where v; resp. v; is the first variable of type A resp. type C not occurring in
N [(2)s, (z)1], and X ACY is the sequence of types of the fvos in N [v;,v;]. O

Let ELIM, now denote our terminating cut-elimination algorithm for ISPL/ ) ..

Theorem 5.33 Let Az =< PROOFISPL/‘\’Q,ELIMC >, Bz =< AISPL/I\,O,NORMt >,
(i) The function f; defined in the proof of theorem 5.33 is a homomorphism from A;
ltO Bz.

(i) The function g; defined in the proof of Theorem 5.33 is a homomorphism from B,
to Az.
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PrROOF Note that Argpy /.0 18 closed under NORM,.. The proof is straightforward. To

prove (i) consider the following f;-images of proofs from the description of ELIM,:

S | 161 I,
X1BCY; A X BCYi5A XAZ—D
Xi(BoC)Yi~A 32— | is converted into [ XX, BCY, Z—D ]
XX1{BoC)Y, Z—D XX1(BoC)Y1 Z—D
LA L A
1,
f(glgcy',_u;) fl(fl?g%fm) fl(x—,al;z_._p)
(o BCly [y _ I N ¢ C—
(fl(EEg}ﬁ)[(” )01("'-’:')1])h fl(x—ﬁf;ﬁ) (fl(XAZ—»D)I[I(fl(XIBCYl—.AW])h
(N [(fr(zzzs=)l(v)o, ) ]))T])F = (N [(r(mee=2) D (vi)o, ()1,
where N = fi{(2%%)
O, I I, o,
X,AXs—B ZC Y—-4 X,AX;—B
7R X1 AXsZ—(BoC) is converted into X,YX,—B e
X;YXzZﬁ(BOC) X]YX:Z#(BOC)
VA N
fl(XIAl‘Ix,_.B) fl(zqc) ) fl(y-.A) fl(x'lAgI(,ﬁB)

Aleta) (< filam=s) A5 >) (e [F (g )R ()
((< fl(X;AXz—iB) fl(z_;c) >) [( )])ﬁ E( (fl(x,Axa_.B)[(N)b])h fl(z_,c) >)b1

where N = f,(30L);
- I o, 1,
X1AX;BCZ—D Y24 XiAX;BCZ—D
Y—ILLA X14X,(BoC)Zz—D | is converted into [ X, YX3BCZ—B ]
XY X3(BoC)Z—D XiYX3(BoC)Z—B
I f I A
I - M
fl(XIAX,Bcz—m) fl(YllA) fl(Xlegl;CZ—rD)
BoC
£(755) (M samier=p) [(v1%°)o, (vi)i])! A1z Borp) (A (7))

(A s5z=) (0o, W FINYIN = (Filsmrzms Bozms) (VD (w3)o, (i),

where N = f, (A v—5);
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III Hz Ha nz II
X—=B _Y¥Y—C  X;BCX;oA V6 XBCK;oA
XY(BoC) Xi(BoC)Xz—A is converted into 12z XiBYXa-A
X)XYX;—A X1 XYXy—A
L f A
Il N | { Il I,
fl(X—{B) fl(y—;c fl(X;BCX:—»A) fi (?:zﬁ) fl(xlgc_xz_,A)

(< Ail5), A(7%5) > (N[0 Do (o)1)} AEF) WV IAGE))
(N T, (w)a ] [((< £ ) Fi(322z) > P &= ((V [(Fu (2 DR (A ()0,

where N = fi(x504,7)- O
REMARK Note that the surjectivity rule < (M)o, (M), > > M covers conversions of the
following form:

A— A B— B
AB — (Ao B) is converted into [(Ao B) — (Ao B)|.
(Ao B) - (A0 B)

5.6 Encoding proofs in structural extensions of
ISPL,,

In order to encode proofs in extemsions of ISPL,;\ which are obtained by adding
combinations of the structural rules P, C, C’, and M, we shall introduce for each
R € {P,C,C',M} an operation R on sequences of variable occurrences, and an oper-
ation R which will be applied to the definition of the set of encoding terms. 3 This will
give us the necessary flexibility, since not only the set of encoding terms but also the
notion of construction has to be adjusted to enlarged sets of proofs.

EXAMPLE Consider the following application of M: X — A+ XB — A, where X — A
is proved in ISPL;\ and B is a formula in {/,\}. To cover this case we may introduce a
more liberal notion of construction such that a construction M4 € AISPL of X - Ais
also considered a construction of XB — A. If now (— /) is applied to the latter sequent,
according to the earlier methodology this should correspond to a A™-abstraction on M4.
But this is then an empty abstraction, leading outside of A;spyz e

Let 3::“ abbreviate = ...z4~, let P z, denote an arbitrary permutation of z,,, let
C z, = C' 7., denote just z,, and let M z,, denote the result of deleting some (possibly
all) occurrences in z,. Let M(z,) denote a term with the sequence z, of fvos, and let
for M(z, yi“y2 _’m) resp M(Z, y2 7., y& w;), M* resp. M° denote M(z, vivi Z,,)
resp. M (3,1 VA Zpm Vi w;) Where v; is the first variable of type A not occurring in
M(Z, 1192 Zm) resp. M(Z, y1 Zm yo W;), and the occurrences of v; are said to count for
one in M* resp. M°. In the present and in the following section, renaming of fvos and

3The rules E, E' are excluded from these considerations for reasons which will be explained later on.
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substitution for single occurrences is to be understood wrt this notion of counting for one.
In particular, for M [z4], distinct fvos counting for one in G4 count for one in M [G].

Definition 5.34 For R € {P,C,C', M}, the operation R on the definition of Azspr,, is
defined as follows:

%"

: drop clauses (ii) and (iii);

C: add to clause (i) “or A"z resp. Az binds more than one fvo, provided these
occurrences are adjacent in M’s sequence of fvos”;

Ql

: add to clause (i) “or A"z resp. X'z binds at least one fvo”;

M: add to clause (i) “or A"z resp. Az binds at most one fvo”.
Let © C {P,C,C',M}.

Definition 5.35 Let ® = {R | R € ©}. Azpy /no 15 defined by successively applying
every R € © to definition 3.1 and at the same time replacing “Arspr,,” by “Arsps e -

Definition 5.36 Let ® = {R|Rc 0} M® ¢ Arspr,, o is a ©-construction of a sequent
Ay... A, — B iff M’s sequence of fvos is the result of applying a finite combination of

R'’s € O to a sequence of occurrences zit g 4

Theorem 5.37 Given a proof in ISPL;\ g of asequent s = A;... A, — B, one can find
a O-construction M¥ € Argp; e Of 8, and conversely.

PROOF Let PRO013}5}:»;,/,\e denote the set of proofs in ISPL;, . We shall define func-
tions fe : PROOFISPL/‘\B -_— AISPL/‘\ea gGJ . AISPL/'\G — PROOFISPL/]\Q? such that

it can easily be verified that f®(IT) is a ©-construction of I, and g®(M) proves a sequent
of which M is a ©-construction. The function f© is inductively defined as follows:

o [I=4 - A: f(I) = vf.
I
v I= X—»(E/A) fe(H) = A"‘vl{q_f@(le_'B)’
where an occurrence of v; is the rightmost fvo of type A in fe(x—ﬁg),
provided there is a fvo of type A in f€(z1);
where v; is the first variable of type A not occurring in f @(X_E—IE , otherwise.
L SRR | I
o I1= W: Case 1: There is an occurrence of B in the sequence of types
) — B/A
of f®(352—=)’s sequence of fvos. fO(II) = (o (55 [(vf / )fe(y—l}j))h])",
where v; is the first variable of type (B/A) not occurring in f&( = )-
Case 2: There is no occurrence of B in the sequence of types of fa(fﬂ—gz_'—c)’s
sequence of fvos. fO(Il) = f®(y52—=)-

*Thus, an §-construction is a construction in the original sense.
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_2.1_ i CUN | - S

o forll = X—(a\5) TSP I =S Ammiae
the previous two cases.

Fe(1) is defined in analogy to

Iy Iy
o Il = X=4-XA4Z=8: Case 1: There is an occurrence of A in the sequence of types

of °(sabg)'s sequence of fvos. £o(ID) = (72 (g) [((F0) ).
Case 2: There is no occurrence of 4 in the sequence of types of f®(72~5)’s

sequence of fvos. fO(II) = fe(m).

o Ilis P or M applied to 2 fO(1I) = £o(F).

e Iis C resp. C' applied to w5p5— 15P. wpyar—g: Jo(ID) = (F (2= )")
resp. fO(I0) = ((*(zpvaz=2))")"
The function g® is inductively defined by using the clauses from the definition of g in the
proof of Theorem 5.11, replacing “g” by “g®”, except that we now have:

o M = A"z4A N where X is the sequence of types of N’s sequence of fvos:

Case 1: 24 € FV(N). g®(M) = 5= &L where X[~ 4] is the result of

removing from X those occurrences of A which correspond to occurrences of
z in N;

adtu]
Case 2: 4 & FV(N). ¢®(M) = }{;‘%gf%.

o MFZ = Xz N€: analogous to the previous case. O

Note that in general it is not true that ¢g®(f®(II)) = II. The rules E, E' have been
excluded from the above considerations for the following reasons: Suppose one wants to

define a notion of construction such that every construction MB(EE:") of the premise
A;... A, — B in an application of E or E' is already a construction of the conclusion of
this application. In the case of E one might start with requiring that the sequence of M’s
fvos is the result of deleting occurrences in z, which repeat some adjacent occurrence
of the same type. This does not, however, give an appropriate notion of construction,
because the construction property may be spoiled by applying (cut) after applying E. In
the case of E' additional difficulties arise concerning the order of fvos.

It would be a bit tedious, though not impossible, to extend the previous theorem to
ISPL,, .0. As far as generalizations are concerned, the really interesting problem is to
extend the formulas-as-types approach to the ‘additive’ connectives A and V. Howard’s
[1969] method of ‘closed prime terms’ is very ad hoc. A more natural and uniform strategy
is introducing type-forming operations corresponding to A and V, as suggested by van
Benthem [1991, Chapters 2 and 11] in his Boolean Lambda Calculus.

5.7 Cut-elimination in PROOFISPL/\ o and (B-reduc-
tion in Ajgpp o as homomorphic images of each

other

Theorem 5.38 Let ELIM? denote the cut-elimination algorithm for
PROOFISPLL\B-



5.7 Cut-elimination in PROOF;sp; .o and B-reduction 75

(i} f® is a homomorphism from < PROOFispy, o, ELIM? > to

< AISPL/ \or NORMﬂ >,

(ii) ¢° is a homomorphism from < Arspr, os NORMg> to

< PROOFISPL/‘\S, ELIMCO >

PROOF Note that the respective sets of terms are closed under (B-reduction, consid-
er the following f®-images of proofs from the description of ELIM®, and check the

homomorphism property:
R=P or M:

I
Yi-4

Z1AZ2—B
Z2,Y,Zy—B

L f®
f@(f_tz)
PR PAE—s)

(F(zmz=s) [(Fo(F=))])

is converted into {

o, 11,
Y1 —A Z1AZ,—B
Z1hZy—B
ZY.2,»B R

Lre

(72z) P(zar=s)
(f (3= (PG

(fe(zlAzqu)[(fe(n_,A))h])h;

R=C:
I i I
Yi—A Y, —A Z1AZ3—B
Yo—4A -Z.:A_ggﬁ_B is converted into Y12, B
Z:Y: 2,8 zv 7,8 R
L f® U
1(z22) 1°(527) °(za7=p)
Yl—rA ¥1—A Z1AZ;— B

(FPE) ) f@(ml}j:g)
(£® (=) (PP GE ) )

(fe(rflgi:_ﬂ)[(fe(yi_.A))h])

(Fmz=p) (7P (E2) D))

I, I, 10,

Z1AZ;—B Yi—=A Z1AZ: B
Y—sz ZyAZi—B R 1s converted into Z.Y: Zo—B

Z3Y: Z4— B Z3Y1Z4—B R

L f® 1 f®

2 19
fe(zlazz—.ﬁ) fe(lq—»A) fG(Z,AZZ-—rB)
o 2g) (P2 (£ (7= PR

(fO(ZIAZz—’B)[((f@(YI—pA)) )]W =

(((fe(zlAzz_.B)[(f@(yl_.A))h])h) ) )
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I I 7
Yi—»A 21AZ,AZs—B
TARATSE Ting ZhZaAZioB
711—13;5 21%2AZ3—B is converted into ZY Y1 23— B
Z1Z3Y1Z3—B :
i Z1Z;Y123—B |
L se Lre
Fo3y) N
o) (N(Fo(EE))
N (N [(f@’(n_.A))"])”[(f@(H_,A))“])”
FO32g) (W)
(M MfEZM = (- (Vo (925 )"])"[(f@( naa DR,
where N = fe(leZ:-ilzZ;——bE)’
Iz _ Oz
Z122 B 212328
fn_ﬁ 21AZ,—B | 1is converted into :
ZihZ;—B Zh1 Y1 Z:—+B
L fe I
1°(z255) 1°(zz55)
f (1’1 A) .fe(zlzz...‘g) :
(zz55) = fe(zlz,_.g) o

Equality of terms in the ordinary typed lambda-calculus A enjoys a very natural set-
theoretic characterization by so-called ‘full type structures over infinite sets’ (see [Fried-
man 1975] and Chapter 8 below). In these structures, for every propositional variable p
there is an infinite domain DF providing denotations for terms of type p. Domains having
in store denotations for terms of an implicational type (A D B) are defined as the sets

of all functions from D4 to D?, i.e. D428} %/ (pB )P*. In this way, proofs in ISPL-,
receive denotations via their encoding by means of typed A-terms. Van Benthem [1986,
1991] refers to these terms as the readings or meanings of the proofs they encode. Since
there is no mathematical notion of ‘directional function’ the usual set-theoretic interpre-
tation is not available for terms of a directional type (A/B) resp. (B\ A) (at least if these
terms encode proofs in sequent calculi without P, which would not allow the replacement
of A", X resp. /, \ by X resp. D). This does, of course, not mean that terms of a di-
rectional type cannot be interpreted in illuminating ways. Interesting natural candidates
e.g. are provided by van Benthem’s [1991] L-models. We can show that for any adequate
assigment of denotations to T \-terms,
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Theorem 5.39 If X — A is provable in ISPL;\a,, A; C {P,M}, then, up to B-nf’s,
there are only finitely many A;-constructions of this sequent in A JA\A;L

PROOF By a straightforward extension of an argument from [van Benthem 1991, p. 115].
As we have seen, cut-elimination steps in PROOFgpy, /Ay do not affect the encoding
terms, i.e. meanings, up to S-nf’s. Therefore the proofs encoded by all possible meanings
up to 5-nf’s are among the (cut)-free proofs. Now, since complete proof-search trees for
(cut)-free proofs in ISPL /\A; are finite, the number of meanings is also finite. O

5.8 Appendix: Proof of strong normalization for A /\
wrt —--5 and —>>3,

Proof of Theorem 5.8 This theorem can be proved in the same way as the corres-
ponding result for A in [Hindley & Seldin 1986, Appendix 2]. The theorem follows from
two lemmas; to prove the second lemma yet another preparatory lemma is required.

Definition 5.40 The set of strongly computable {sc) T},\-terms is the smallest set I such
that

(i) M? € T iff MP is sn;
(ii) M4\B) € T iff for every N4, NM is sc;
(iit) MB/4) ¢ T iff for every N4, M N is sc.
We shall use the following abbreviations:

A [ (MR (MAN) L) a1
M N_{N if n=0;

A

cAa [ (L(NMAY L OMPY L) iin>1
N M, _{N

if n=0;

if n=0;

(4n \B):{ gl“\(\(Al\B)) ifn>1

(B/Zﬂ):{Eé.-(B/Al)/..-)/An) 21

Note that each implicational L-formula is of the form

(D) Ansi (- \ (Ans1 \(B/ Bmy1))/-..))/ Bms) or
(1) (Angi \((-- -\ ((Ang1 \D)/ Ban1))/ -+ )/ By or

(D) Any; \((---\ (Amy2 \(®/ Bms1)/ Bog2))/ ---))/ Bmur) ot
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(V) (g \(+\ ((Ans2 \(Ani2 \P))/ Bus1)/ - )/ B

This can easily be verified. Every propositional variable is of the form (I), (II), (III), and
(IV). Next one has to distinguish among 32 cases which come out as follows: for every
7,6 € {(I), (II), (III), (IV)}, if A is of the form (y/8), then A is of the form 7; if A is of
the form (v \ §), then A is of the form §.

REMARK (i) By the definition of strong computability, we have that

. . . . A A, A ; Ap.;

if A is of the form (I), then G* is sc iff for all sc M3, .., Mml‘l, e MY, Mnjj”,
Bm;‘k B]k Bm11 All
Nk oo NGy o N, o, NV

H(’i) = (M'Ml .. M'n_,-j G Nm;,k ‘e lel)p is sn.
Analogously, Hfy,, Hfyyyy and Hfyy,) are sn.

(i) From the definition of strong computability it is clear that if M(4\B) N{(B/4) G4 are

sc, then GM, NG are sc.
(iii) If M is sc, then every subterm of M is sc.

Lemma 5.41 For every implicational L-formula B:

(i) if A is of the form (I) ::1,,,,,- (AN ((74',,11 \(B/ E‘mll))/ L))/ }Em,,k) and
M M MG M N N LU NEm L NAY are
sn, then H({f) = (J\_d",,li ]l?[,,jj z4 Kfmk e I‘Gmil)B is sc.
Analogously, H{y, H(%_Il and H{y, are sc.

(i) if M5 is sc, then it is sn.

ProOF By induction on the construction of B. Case 1: B is a propositional variable.
(i): Since the M;, Ny are sn, H(yy, Hig), Hiury, and Hzy) must be sn. By the definition of
strong computability, Hyy, Hqry, Hon, and Hv) are sc. (ii): By the definition of strong
computability. Case 2: B is of the form (C \ D). (i): Suppose that G€ is sc. By the
induction hypothesis (ii), G is sn. The induction hypothesis (i} gives that GHy, GH),
GHmry, and GHv) are sc. By the definition of strong computability, Hyy, Hmy, Hq),
and Hy) are sc. (ii): Suppose that M?® is sc and that y° does not occur in M. By the
induction hypothesis (i), with j = k¥ = 0, y is sc. By the above remark (i), yM is sc. By
the induction hypothesis (ii), yM is sn. But then, by the remark (iii), also M is sn. Case
3: B is of the form (D/C). This case is analogous to Case 2. O

Lemma 5.42 If M4 [z8 := N5} is sc, so are N(MzB.M),(A"zB.M)N, provided that N
is sc if z is not free in M.

ProOOF Suppose that A is of the form (I), (II), (III), or (IV) and that Mﬁ‘l, . M:l"fl,
e M M N NG, L N L, MG are sc. Since M [x := N]

is sc, by the above remark (ii),
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(ar) (]\}nll ]l_/:rnjj MA 2B = NE j\_rm;,k ]Tfmll)P is sn.

Analogously, (arr), (azr7), and (arv) are sn. In view of the above remark (1) it will suffice
to show that

(a}) (ﬂ—’-}nll Jﬁn,—j N(Xz.M) j\_rm;,k Kfmﬂ)”,
(@) (Mg -« May_j1 (N2 MN Nt ... Nowia)?,

and the analogously defined (al;), (a};), (ab;;), (a%11), (aly), and (a}y) are sn. Because
(ar) is sn, also all subterms of (a;) are sn, in particular M [z := N}, My, ..., M, 4, ...,
Miiy ooy Mujy Nepry -y Npx, ., N1, ..., Ny are sn. By hypothesis and the previous
lemma, N is sn if it does not occur in M [z := NJ. For this reason, an infinite B-reduction
starting at (a}) cannot consist completely of 3-reductions in M, N, My, .. o Mpq,
My, ..., My, Ny -« oy Nixy ooy N1, - .., Mya. An infinite §-reduction starting at (a})
must therefore have the form

(A_J"lul [ A}ﬂjj N(AIICM) J;\_rmkk v Krmll)p

—op My M NN M) Nl .. N
{where M; —=g M!, N, —>+3 N/, M —=g M', N —>=5 N')

—

——>~ﬁM'u11 .- M’n,-j M [:L‘ = N’] N’m:.—1k N’mll —>rg ... .

The reductions M —>+3 M', N —s>45 N’ give M [z := N] —~a M’ [z := N']. Thus, one
may construct an infinite S-reduction-from (a;):

(Mrul re I_klr"njj MA[m = N] j\_rmkk nee j\_rm-ll)p _»ﬂ
M’nll e M’n_.,-j M [l‘ = N’]) N’mkk e N’mll —»'ﬁ e

contradicting the fact that (a;) is sn. Therefore (a}) must be sn. Analogous reasoning
applies to the remaining cases. O.

Lemma 5.43 For every M,z ... 24 and every sc Nf' ... N4~ M, = Mz, =
Ny]...[xq == N,] is sc (Le., in particular, M is sc).

PROOF By induction on the construction of M. Case 1: M is a variable z;. Then M, = N;
is sc by hypothesis. Case 2: M is a variable distinct from the z;'s. Then M, = M is sc
by Lemma 5.41. Case 3: M = MfMéA\B). Then M, = My, M,,. My,, M,, are sc by the
induction hypothesis. By the remark (ii), then also M, is sc. Case 4: M = M«‘EB/ A)MIA:
analogous to Case 3. Case 5: M = M zA F. Then M, = Mz.F,. In order to prove that M,
is sc, one must show that for every sc N4: NM, is sc. Now, NM, —=5 M, [z := N]J.
The latter term is sc by the induction hypothesis for the case of n + 1 instead of . But
then, by Lemma 5.42, NM, is sc. Case 6: M = \"z4.F- analogous to Case 5. O.

Now, by Lemma 5.43, M is sc, and by Lemma 5.41, it is also sn. O
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Proof of Theorem 5.20 Cf. again [Hindley & Seldin 1986, Appendix 2|. The proof is
the same as the proof of Theorem 5.8, except that in addition one has to take into account
in the proof of Lemma 5.42 the possibility that an infinite 37-reduction starting at (a})
may have the form

(M1 - May; NNZM) Ny - Nyt )P

— —

gy Maar o Mln; NN M) Nl - N

=My ... My NE(XB BHEY N Ny, = € FV(H)

__>-’7M’n11 e M'n_fj N'H N’mh—1k N’m1l PPy -

But then an infinite 3n-reduction starting at (a;) can be constructed as follows:

Mui - M Mz :=N] Nk ... Ney1 =y

— —

M’nll e ﬁ’njj M [:I'. = N’] ﬁrmkk) e J\T"‘mllE

— — — —

M'nll M"n._,-j N'H N’m,.k N’mll ~—>>gn ... . U



Chapter 6

Constructive minimal and
constructive information processing

In Chapter 2, the idea of taking negative information seriously led us to considering Nel-
son’s strong, constructive negation. It is the aim of the present chapter to first of all define
substructural subsystems of the (propositional part) of Nelson’s constructive logics N~
and N as presented in Chapter 2. The problem is to incorporate the primitive strong
negation operation ~ into MSPL resp. ISPL in such a way that in the presence of P, C,
and M we in fact obtain N~ resp. N.! We shall point out a few well-known peculiarities
of systems with constructive negation, notably the failure of intersubstitutivity of prov-
able equivalents, and look at what after addition of ~ happens to a number of previous
concerns, viz. cut-elimination, decidability, interpolation, and the BHK-interpretation of
IPI. The BHK-approach is extended from an interpretation of one particular system into
a semantical framework for a broad spectrum of substructural logics.

6.1 Substructural subsystems of N~ and N

Let L™ denote the result of enriching the propositional language L by the new unary
connective ~ which is intended to denote strong, constructive negation. The notion of
subformula for L™ is defined in analogy to L, in particular every subformula of an L~-
formula A is also a subformula of ~ A.

Definition 6.1 (i) The rules of constructive minimal sequential propositional logic
COSPL™ (i.e. Nelson’s constructive propositional logic N~ without structural inference
rules) are the rules of M.SPL together with:

(o~ /) Xo~B Y o AF XY -~ (B/A),
(~/ =) X~BAY - CF X ~ (B/AY — C,

TNote that Fitch [1952] has developed formal systems with strong negation which are proper, though
not substructural, subsystems of (the propositional part of) N~ resp. N. They are obtained from the
standard axiomatic presentation of N~ and N (cf. e.g. [Routley 1974]) by dropping the axiom-schema
(~(A>B) D (AA~ B))A((AA~B) D ~ (A > B)), which syntactically captures the falsity conditions
of implications (A D B).

81
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X—AY->~BF XY -~ (A\ B)

(=~\)

(~\—>) XA~BY -5CF X~ (A\BY = C;
(m~0) X—o~A Y —>~Bt XY -~ (40 B);
(vo—s) X~A~BY 5CF X~ (AoB)Y —C;
(o~A) X—>5~AF X o~ (AAB),

X 2~BF X >~ (AAB);
(A=) X~AY 5C X~BY 5CF+ X~ (AAB)Y — C;
(=~V) X—>~A4 X>~BF X~ (AVB);
(~Vo) X~BY -CF X~(AVBY —C,
X~AY 5CF X ~(AVB)Y = C;
(o~~) X 2 AF X -~ 4
(~v~—) XAY 5B F X ~~ AY — B.
(ii) The rules of constructive sequential propositional logic COSPL (i.e. Nelson’s construc-

tive propositional logic N without structural rules of inference) are those of COSPL™
together with (L —) and:

(~t—>) FX~tY — A
(~T =) FX~TY - A;
(—~ 1) FX o~ 1

(ex contradictione) F XAA ~ AY — B.

The idea behind these sequent rules involving ~ is that they directly reflect refutability
conditions for main connectives or constants in the scope of ~. If (L —), (~ t —),
and (~ T —) are assumed, we say that L, ~ t, and ~ T act or are treated as falsum
constants; otherwise L, ~ t, and T are regarded as propositional variables. Adding all
possible combinations of the earlier structural inference rules P, C, C', E, E', and M to
COSPL™ and COSPL, we obtain lattices of systems analogous to the families presented
in Chapter 3. In COSPLj resp. COSPL, (A C {P,C,C',E,E',M}), the intuitionistic
minimal resp. intuitionistic negations =", -! are defined by =" 4 &/ (L/A), A ] (A\1).
Note that in every system COSPL,, the rule (ex contradicitione) is interreplaceable with
the rule

X—- A4 X—=~AF X — B.

We have
A— A ~A o~ A

A dod dA~A=~d ¥y B

X{(AA ~ A)Y — B;

X—A X~ A
X — B.
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Consider now the following translation 7 from L™ to the propositional language in D, A,
V, ~,and L:

7(g) = q g € PROPU{L};
™~ q) = ~gq g€ PROPU{L}
7(t = 7(T)=pDp, for some p € PROP;
T(~ t) = 7(~T)=1,

7(A\ B) = 7(B/A)=71(A) > 7(B);

T(~(A\B)) = ~7(A\B);

7(~(B/4)) = ~7(B/A);

(Ao B) = 7(AAB)=1(A)AT(B);

T(~(AoB)) = 7(~ A)AT(~ B);

~(AANB)) = ~7(AAB);
AV B) = 7(A)V 7(B);
T(~(AVB) = ~71(AVB).

The following observation justifies the identifications COS PL{_P cM) = N-,
COSPLpcMy =N:

Observation 6.2 (i) f“cospL—P - Ay An— At En- T(Ar) .. 7(A,) - T(A).
{0, M}

(n) l'COSPL{p,C'M} A A, - Aiff Fn ‘T(A1) . T(A,,) . T(A).

PrOGF By induction on the length of proofs. For the direction from right to left, use (cut)
and the structural inference rules P, C, and M. Here is one example for the direction
from left to right (for (i) and (ii)): (—~ o). Suppose that - 4;... A, —~ AF By...B,
—~ B and, by the induction hypothesis, - 7(4;) ... 7(4.) — 7(~ A), F 7(B)) ...
7(Bm) — 7(~ B) in N~ resp. N. Then, by <— A >, F 7(4;) ... T(An)7(B1) ... 7(By)
= T(~ A)AT(~ B),ie. F (A1) ... 7(Ax)7(B1) ... T(Bn) — 1{~ (Ao B)). O

A well-known peculiarity of Nelson’s systems N~ and N is the failure of intersubsti-
tutivity of provable equivalents. Let again (A =7 B) be defined as (4 \ B) A (B \ 4) A
(A/B)A(B/A). Using the terminology of [Pearce & Rautenberg 1991], ==* may be called
acceptance-equivalence. In each system COSPL, and COSPL,, provable acceptance-
equivalence is an equivalence relation but not a congruence relation, i.e. one cannot
prove the replacement theorem wrt it. E.g: Foogpr- — ~(p\g) =% po ~gq, but
Vocospr- = ~~(p\q) =1 ~ (po~g) (see Chapter 9). Moreover, Fcospr — L =+
~ AN A, but Veospr- =~ L =1 ~ {~ A A A). Rejection-equivalence =~ can then be
defined by (4 =~ B) ¥ (~ B\~ 4) A(~ A\ ~ B) A (~ A/ ~ B) A (~ B/ ~ A).
Analogouslyto-— A= Bif - 4 & B, wehave - > A =~ Biff -+ ~ A o ~ B.
Clearly, also provable rejection-equivalence fails to be a congruence relation in COSPL,
or COSPLA. If one defines strong equivalence (4 = B) as (4 =% B) A (A =~ B),
then provable strong equivalence is a congruence relation in COSPL} and COSPL, .2

*The distinction between positive and negative (semantic) consequence is well-known from partial
logic, see again e.g. [Fenstad, Halvorsen, Langholm & van Benthem 1987, [Thijsse 1990]. Note, however,
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Let C4 denote an L™-formula that contains a certain occurrence of 4 as a subformula,
and let Cp denote the result of replacing this occurrence of 4 in C by B. The degree of
A (d(A)) again is the number of occurrences of propositional constants and connectives
(now including ~) in A.

Theorem 6.3 (replacement) If — A = B is provable in COSPL, or COSFPL,, then
sois = Oy = Cp.

ProoF By induction on { = d(C4) — d(A). If I = 0, the proof is trivial. Assume that the
claim holds for every I < m, and | = m + 1.

Ca =~ D: Assume that d(D,4) < ! and F— A = B. By the induction hypothesis,
F— D4 = Dp, and therefore the following formulas are provable: D4 \ Dg, Dg \ Dy,
.DA/.DB, DB/.DA, ~ .DA\ ~ DB, ~ .DB\ ~ .DA, ~ DA/ ~ DB, and ~ DB/ ~ .DA. By (C’UI),
(\ =), (T\), (/=) (1/), (—~n~), and (o), also v D4\ ~~ Dp, ~~ Dp\ ~~ Dy,
~r Dyf ~~ Dpg, and ~~ Dg/ ~~ D, are provable and thus - — ¢, = Cs.

Ca=D\VD,;, V€ {/,\,A,0,V}. We consider the case for V = A. Here we have the
following derivations:

— Dia\ Dip

Dy — Dip Dy —» Dy
DiaADy - Dig DiyADy — Dy
DlA/\Dg — DlB A D2

— C4\ Cp;

—~ D4\ ~ Dip

~ Dy =~ Dig ~ Dy =~ Dy

~ D1y =~ (D1 ADy)  ~ Dy —~ (D1p A Dy)
~ (Dya A D3) =~ (D15 A D3)

—r CA\ ~ CB.

Analogously we obtain Cp \ C4, ~ Cg\ ~ Ca, C4/Cg, Cp/Ca4, ~ Cy4/ ~ Cpg, and
~ Cp/ ~ C4. The remaining cases are similar. O

The following collection of equivalences in terms of = which are provable in COSPL}
without using (cut) will turn out useful:

(redl) ~(AAB)=*(~AV~B), ~(AVB)="(~AA~ B),
~(B/A)=*(~Bod),  ~(A\B)=* (4o~ B)
~ (Ao B) =%~ Ao ~ B, ~ A=t A

In COSPL4 also the following acceptance-equivalences are provable without resort to
(cut):

that for the variety of notions of semantic consequence considered by Thijsse “logical equivalence [--.]
turns out as mutual consequence” as Thijsse [1990, p. 29] quotes from [Blamey 1986]. In other words,
intersubstitutivity of provable equivalents holds.
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(red2) ~ L ="t
~t=T 1
~T =t 1
L =% (AA ~ A).

These provable acceptance equivalences describe a procedure for associating to each
L~-formula A one L™-formula B such that Foogpr a = A=Y B resp. bopgp I A=7
B, and B has occurrences of ~ only in front of propositional variables resp. propositional
variables or constants, if for COSPLy, ~ L, ~ t, and ~ T, are associated to themselves,
respectively. Let us call this B the reduct of A, T(A). Let r'(A) denote the result of
replacing in r(A4) each occurrence of ~ ¢ by ¢, for every ¢ € PROP U {L,~t,~ T} and
let (A) denote the result of successively replacing in 7(A4) each occurrence of subformulas
of the form pA ~ p or ~ pAp and each occurrence of ~ t or ~ T by L, each occurrence of
~ 1 by t, and each occurrence of ~ g by ¢, for every g € PROP. In r(A) and r"(A), ~
does not occur. Consider now positive sequential propositional logic PSPL (see Chapter
4) with {¢' | ¢ € PROP U {1,t, T}} as a set of additional propositional variables resp.
ISPL with {¢' | ¢ € PROP} as a set of fresh propositional variables. By induction on
the length of proofs it can be shown that COSPL), resp. COSPLA can be faithfully
interpreted in PSPL, tesp. ISPLA:

Observation 6.4 (i} Feospry A1 An — AiffFpspr, 7(A1)...1'(4,) — 7(A).
(li) l_COSPLA Al N An — Aiff I_ISPLA 'J""(Al) - T"(An) — ’P”(A).

This observation can reasonably be understood as expressing atomicity of strong negation:
(i) literals, i.e. propositional variables and their strongly negated forms, can be identified as
the basic building blocks of formulas, and (ii) if ~ is ‘pushed through’ to the propositional
variables and constants we arrive at (substructural subsystems of) positive respectively
intuitionistic propositional logic.?

In COSPLy, (AAB) =*~ (~ AV ~ B) and (AV B) =+~ (~ AA ~ B) are provable
(again without using (cut)). Together with - ~ (AAB) =% ~ AV~ B,  ~ (AV B)
#=* ~ A A~ B this shows that in COSPL; and COSPL4, A resp. V can be defined by
means of V and ~ resp. A and ~. Moreover, from (red 2) we know that in COSPL,, L

can be defined as ~ t.

The provable acceptance equivalences (red1) and (red?2) specify the refutability (or
rejectability) conditions referred to above. The refutability conditions for ~ (A A B) resp.
~ (AV B) resp. ~ A are identified as the provability conditions for ~ A V ~ B resp.
~ A A~ B resp. A, which is very natural. Also the refutability conditions for the direc-
tional implications are convincing, because in the absence of structural inference rules they
are provability conditions of direction-sensitive, non-commutative o-conjunctions. Less

¥Note that we cannot expect that to each L™-formula A one can find a provably strongly equivalent,
and hence intersubstitutable, L~-formula B such that in B, ~ occurs only in front of propositional
variables or constants. For instance, it is well-known that the implication O is not definable in N~ or N
by means of ~, A, V, and L (cf. e.g. [Gurevich 1977]; his proof for N refers to [McKinsey 1939] and is
also applicable to N™).
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clear are the rejectability conditions for A o B, since there is no ‘intensional’ disjunction
corresponding to the ‘intensional’ conjunction o. So, what does it mean to refute a concate-
nation, i.e. a text, Ao B? To assume that ~ (A4 o B) is provably acceptance equivalent to
~ AV~ B is problematic, since we could then e.g. prove A(A\~ A) = ~ (Ao (A \ ~ A))
as well as A(A\~ A) — (Ao(A\~ A)). Moreover, — ~ (40 B) =% ~ AA~ B would,
if no structural rules are assumed, make the provability conditions of a non-directional
connective the refutability conditions of a direction-sensitive connective, which, as a kind
of mismatch, would be rather surprising. In contrast to this, we may regard it as very
plausible that the refutation of a concatenation A o B is provably acceptance equivalent
to a refutation of each component of the concatenation: refuting a text means refuting
every sentence in the text. The equivalences (red 1) may thus be viewed as a justification
of COSPL,’s sequent rules involving ~; and indeed the very formulation of these rules
is induced in an obvious way by (red1). The rejection equivalence of t, T, and ~ L
in COSPLA can be elaborated as follows: Since every sequence of premise occurrences
proves t, t cannot be disproved; there is no sequence of premise occurrences that refutes
t. Similarly, intuitionistic falsum cannot be proved; therefore in the constructive case, ~ t
should be added as a falsum. The verum constant T is a theorem. Although there are
sequences X of premise occurrences such that X — T is not provable in the absence of
M, this does not mean that X refutes T, ie. X —~ T is provable. On the contrary,
it is hardly imaginable that a theorem is refutable. In this way we arrive at the same
refutability conditions for t and T and ~ L.

6.2 Cut-elimination, decidability, and interpolation

Before we come to cut-elimination as a key to decidability results, we point out that a well-
known method for proving underivability of sequents in the {/,\, o}-fragment of MSPL
and MSPLpy, viz. p-count invariance (see [van Benthem 1986, 1991]), can straightfor-
wardly be extended to the {/,\, 0, ~}-fragment of COSPL~ and COSPLp,.

Definition 6.5 For every p € PROP, the p-count of a formula A in {/,\, 0, ~} (pc(4))
is defined as follows:

pc(p) = 1
pe(g) = pe(~q) = 0, if p#q
pc(A\ B) = pc(B/A) = pc(B) — pe(A);
pc(Ao B) = pc(A) + pe(B);
pc(~ p) = —pc(p);
pce(~ (A\ B)) = pc(B/A) = pc(4) + pe(~ B);
pe(~ (Ao B)) = pc(~ A)+pc(~ B);
pe(~~ A) = pec(A).
For instance, pe(~ (p\ ((~p\ @)\ 9))) = -2
Observation 6.6 If P-COSPL/—.\.O'~ Ai...A, = Aor }-COSPLZ\,o,N{P} Ai... A, — A, then

pc(A) + ...+ pe(A,) = pc(A), for every p € PROP.
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PROOF By a straightforward induction on the length of proofs. Consider for instance
(=~ /). IfF A...A, > ~B,F B,...B,, > A, then, by the induction hypothesis,
pe(A1)+. . 4pe(An) = pe(~ B), pe(B1)+. . .+pc(Bm) = pe(A). Hence, pe(A;)+. . .+pe(A,)
+pe(B1) + ... +pe(Bn) = pe(~ B) + pe(A) = pe(~ (B/A)). O

The unprovability of B/(A\ B) — A e.g. shows that p-count invariance is only a necessary
condition for provability of sequents in the {/,\}-fragment of MSPL and M SPLpy
and hence also in the {/,\,0, ~}-fragment of COSPL~ and COSPL;P}. Clearly, the
structural rules C, C', E, E’, and M spoil the p-invariance property.

Let in what follows = now also range over COSPL~ and COSPL.

Theorem 6.7 (cut-elimination) Applications of (cut) can be eliminated from proofs in
Ze (@ C {P,C,C' ,M}).

PROOF Analogous to the proof of Theorem 3.4, now also taking into account occurrences
of ~. We shall by way of example just consider the rules for introducing ~~ into premises
and conclusions. The following list of conversion steps is exhaustive:

I r I, 108
XBY A - XBY—-A X,AX,—C
XrnBY 4 mZ:H—C is converted into X1 XBY Xy C
XiX~wBY X3 | X1 X~~BYX3—C
I i Il
22 [ 11 -2
XAZE Y—A_ XAZ B
R XAZo~~B is converted into XYZ—B
XYZ—~rB i XYZ—rB
—_—2 i I,
X1AX,BZC YA X,AXBZ—C
—?ﬂ_ﬁ X, AX,~~BZ—C | 1s converted into X,YX3BZ—C
X1Y X3~ B2Z oG XY XsonBZC
I, 1,
Y4 XAZB _h Iy
Y oA X AZ—B is converted into Yo4 XAZ-B | QO
XYZ-HR
XYZB

Corollary 6.8 (i) (subformula property) If bz, A;... 4, — A, then there is a proof of
this sequent in Zg in which only subformulas of 4;, ... A,, and A occur;

(ii) If =, — A, then there is a proof of this sequent in =g in which the last step is the
application of a rule introducing a connective on the right side of —;

(11i) (disjunction property) If AV B is provable in Z¢, then A is provable or B is provable.

(iv) (constructible falsity) If ~ (A A B) is provable in COSPLg or COSPLe, then ~ A
is provable or ~ B is provable;
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(v) Each subsystem obtained from Zg by dropping all rules for certain constants or
connectives is a conservative subsystem of Zg;

(vi) MSPLg is a conservative subsystem of COS PLg; ISPLg is a conservative subsys-
tem of COSPLg.

ProoF Obvious. O

Corollary 6.9 tertium non datur in the forms AV "4, AV —'4, and AV ~ A is neither
a theorem of COSPLL nor of COSPL,.

Theorem 6.10 =, is not an n-valued logic, 1 < n < w.
ProoF Exactly as the proof of Theorem 3.8. O.
Theorem 6.11 Provability of sequents in Z4, is decidable (A; C {P,M]}).

ProOF Exactly as the proof of Theorem 3.9. (Note that by “complexity” we could also still
understand the number of occurrences of propositional constants and binary connectives,
such that ~ would not play a role here, and the rules (—~~) and (~~—) would not be
considered as introducing complexity.) O

Theorem 6.12 Provability of sequents in E4, is decidable, A; C {P,C,C’ ,M}.

PROOF The proofis the same as the proof of Theorem 3.11, except that i in the construction
of Z);, we also have the modified operational rule;

(o~ /) X =~ B Y — Ak [XY] 2~ (B/A),

where [XY] —~ (B/A) is the contraction of XY —~ (B/A) such that any formula in
XY occurs only 0 or 1 time fewer in [XY] than in XY In addition we have rules (—~ \)°,
(~ [ =)% (~\ =)% (=~ 0), (~ 0 =) (~ A —)° and (~ V —)°, which are likewise
induced by the provable acceptance-equivalences (red 1). 0

We can now e.g. show that contraposition principles like (p/q) — (~ ¢/ ~ p) fail to
be provable in COSPLA, and COSPLy,.

Let us eventually turn to interpolation. The notions of positive and negative occur-
rence of propositional variables in L~-formulas, sequents built up from L™~-formulas and
sequences of L™-formula occurrences are defined as follows:

Definition 6.13 A propositional variable p occurs positively in the scope of an even
number of occurrences of ~; it occurs negatively in the scope of an uneven number of
occurrences of ~. A positive resp. negative occurrence of p in A remains positive resp.
negativein AANB, BAA, AoB, BoA, AVB, BV Aand X — A; the polarity of pin A4 is
reversed in ~ A, A\ B, B/A, and XAY — B. A propositional variable occurs positively
resp. negatively in X iff it occurs positively resp. negatively in X. Let pos(X ) resp. neg( X)
denote the set of propositional variables that occur positively resp. negatively in X. A

reversal of polarities in a sequence X is indicated by X.
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Theorem 6.14 (interpolation) If Fz, X — A, then there is an L™~-formula C such that
Feg X — C,tze C — A, pos(C) C (pos(X)Npos(A)), and neg(C) C (neg{X)Nneg(A)).

PRoOOF By the above observation that to each L™~-formula A one can find a provably
acceptance-equivalent L™~-formula B with occurrences of ~ only in front of propositional
variables or constants such that A and B are interderivable, this interpolation theorem
follows from Theorem 3.20. O

Corollary 6.15 (i) Interpolation holds for all elementary fragments of Ze.

(ii) Interpolation in the sense of IND in Chapter 2 holds for the elementary fragments
of £ and Zpmy based on: (a) {~,/,0}, {~,\,0}, and {~,/,\,0}, (b) every subset of
{~,0,A,V}, and the fragments obtained by joining any of the latter bases with one from

(a).

6.3 The BHK-interpretation reconsidered

The upshot of our discussion of the BHK-interpretation of IPL in Chapter 2 was twofold:
(a} Certain versions of the interpretation are somewhat ambiguous. One possible way of
resolving this ambiguity is taking into account distinctions from the area of substructural
logics, like the one between A and o. (b) In order to overcome problems resulting from
the non-constructive nature of intuitionistic negation, the BHK-interpretation in terms of
proofs should be supplemented by an interpretation in terms of disproofs. We now take
up this discussion again.

6.3.1 Ambiguity as providing degrees of freedom

In Chapter 2, we have emphasized certain ambiguities in various versions of the BHK-in-
terpretation of 7P L. We may, however, also turn the tables and regard these ambiguities
as degrees of freedom. This seems to be the proper methodological perspective in order to
view the BHK-interpretation as a semantical framework rather than an interpretation of
one particular formal system. As often in the methodology of semantics a useful analogy
emerges by considering Kripke’s semantics for normal modal propositional logics.* The
Kripke semantics forms a framework (or paradigm, or theory-ensemble) in the following
sense: whereas the class of all Kripke frames characterizes the minimal normal modal
propositional logic K, stronger calculi which may be appropriate for particular readings of
the modal operators are characterized by imposing certain constraints on {the accessibility
relation in) Kripke frames. The analogy for the case of the BHK-interpretation would be
this: there are BHK-like interpretations that constitute a semantics for certain basic logical
systems; stronger calculi which may be appropriate for representing different conceptions
of deductive information processing are then interpreted by imposing suitable conditions
on the combination of proofs and disproofs.

In order to carry out this programme, we shall (i) lay down a proof/disproof-inter-
pretation for the logical constants and connectives L, t, T, ~, /, \, A, o, and V, (ii)
show that this interpretation is sound wrt the basic constructive propositional logics

See c.g. [Pearce & Wansing 1988].
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COSPL™ resp. COSPL and (iii) specify additional conditions on the combination of
proofs and disproofs, i.e. constraints on the juxtaposition operation, which correspond
to the structural inference rules P, C, C’; and M. Ir order to prove soundness we need
a semantical counterpart of the notion of provable sequent: the notion of strictly valid
sequent.
Definition 6.16 A sequent A4;...A, — A is strictly valid iff the following holds:
VIL ... VI, (pr(Hy, Ay}, .. ., pr(Il,, A,) implies pr(Il, ... II,, 4)), if (1 < n);
pr(<>, A), otherwise.

The notion of valid sequent, as used for the BHK-interpretation of IPL, already ensures
that each of the structural inference rules under consideration preserves validity. In the
case of M e.g. it is enough to assume the existence of the operation of removing items
from finite sequences. In contrast to this, the notion of strictly valid sequent by itself
does not guarantee that the structural inference rules preserve strict validity. By the
correspondence between a certain condition on the combination of proofs or disproofs and
a certain structural rule R we mean that the condition ensures that R preserves strict
validity.

6.3.2 The proof/disproof-interpretation and its soundness wrt
COSPLg resp. COSPLg

In our proof/disproof-interpretation we shall use dpr(II, A) to denote “II is a disproof of
A”. We assume a universe of proofs and disproofs comprising the empty sequence <>.
The proof/disproof-interpretation consists of the following clauses:®

(1) pr(<>,T);

(2) pr(lly... I, t) (1 < n)iff 3A,...34, pr(Il}, A),...,pr(Il,, A,);
(8) pr(Il,~ A) iff dpr(IT, A);

(4) pr(Ily,(A/B)) iff for every Il such that pr(Ily, B), pr(II;II,, A);
(5) pr(Ily, (B \ A)) iff for every II, such that pr(Il,, B), pr(II,II, A);
(8) pr(1L, (A o B)) iff 3,3, (II,I, = II, pr(I;, A), and pr(Ily, B));
(7) pr(IL, (A A B)) iff pr(Il, A) and pr(II, B);

(8) pr(IL, (4 V B)) iff pr(Il, A) or pr(I, B);

(9) There is no IT such that dpr(II, t) or dpr(II, T);

(10) dpr(II, ~ A) iff pr(II, A);

(11) dpr(I,(A/B)) iff 30,30, (I,I, = II, dpr(Il;, A), and pr(Il,, B));

*The constant L and ~ t, ~ T are treated as propositional variables.
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(12) dpr(IL, (B \ A)) iff 311,30, (1,11, = II, pr(Il,, B), and dpr(l,, A));
(13) dpr(Il, (A o B)) iff 311,310, (1,11, = I, dpr(IIy, A), and dpr(I1, B));
(14) dpr(IL, (A A B)) iff dpr(I1, A) or dpr(11, B);

(15) dpr(I1,(A v B)) iff dpr(I1, A) and dpr(11, B).

Theorem 6.17 COSPL- is sound wrt the proof/disproof-interpretation,
L.e. every sequent provable in COSPL™ is strictly valid.

PROOF By a straightforward induction on the length of proofs in COSPL~. The logical
rules (id) and (cut) for which there are no interpreting clauses are covered by the definition
of strict validity of sequents. O

It can readily be verified that the following conditions on the combination of proofs
or disproofs correspond to the structural inference rules they are associated with:

P pr(Il 1111511y, A) implies pr(I1;IT5I1,11,, A);
C  pr(ILILII1,, A), pr(Ily, B), pr{Il;, B) implies pr(IT, 11,114, A), and pr(I 5114, A);

C' pr(ILILILILIG, A), pr(Ily, B), pr(Ily, B) implies pr(I;1I511,015, A), and
pr{I IoII5105, A);

M pr(Il,3, B), pr(Il;, A) implies pr(I1; 11,115, B).

Theorem 6.18 COSPLg is sound wrt the proof/disproof interpretation extended by
the conditions that correspond to the structural rules in O, i.e. every sequent provable in
COSPLg is strictly valid.

PROOF Again by a straightforward induction. O

In COSPLg, 1, ~ t, and ~ T act as intuitionistic falsa. In this case we have the
following additional clauses:

(16) pr(I1, L) iff dpr(11, t) iff dpr(I1, T) iff JApr(Il, AN ~ A);

(17) dpr(11, L) iff pr(I1, t).
The semantical counterpart of (ex contradictione), (L —), (~ t —) and (~ T —) is
Lépez-Escobar’s basic assumption that there is no comstruction which both proves and

refutes a formula A4, i.e. using this assumption, (ex contradictione), (L —), (~ t —) and
(~ T —) preserve strict validity.

Introducing the BHK-interpretation, by a proof we agreed to understand a canonical
(or direct), (cut)-free proof. Therefore the above considerations have been restricted to
COSPLgG resp. COSPLg, which we know to admit of cut-elimination.

Although the BHK-approach towards I PL is usually referred to as an interpretation,
the less formal term ‘BHK-explanation’ is widely felt to be the more appropriate termi-
nology (cf. e.g. [Sundholm 1983]). Probably for this reason the question whether IPL is
complete wrt the BHK-interpretation has hardly ever been raised. The proof/disproof for-
mat developed above, however, seems explicit enough for seriously asking questions like:
“Is COSPLg complete wrt the proof/disproof interpretation extended by the conditions
that correspond to the structural rules in @77,
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Chapter 7

Functional completeness for
substructural subsystems of N

Considering in addition to the notion of proof the corresponding notion of refutation (or
disproof), von Kutschera [1969] has extended his earlier functional completeness result
for IPL and has shown that the connectives A, V, D, and — of what he calls direct
propositional logic and extended direct propositional logic are functionally complete wrt
to generalizations of his earlier [1968] proof theoretic semantics. As can immediately be
verified, direct resp. extended direct propositional logic is exactly Nelson’s constructive
propositional system N~ resp. N (cf. Chapter 2 or [Almukdad & Nelson 1984]), if von
Kutschera’s - is translated as ~. In this chapter, we will show how von Kutschera’s proof
of functional completeness for N~ and N can be extended to COSPL, and COSPL,.
The functional completeness results for COSPL7 and COSPL, together with the func-
tional completeness results of Chapter 4 will become integral for arguing to the effect that
the structures used in the monoid model semantics of Chapter 9 represent in a certain
sense an exrhaustive format of abstract information structures.

7.1 Disproofs as mirror-images of proofs

Von Kutschera's approach to the problem of functional completeness for direct proposi-
tional logic, i.e. (the propositional part of) N—, is based on the following considerations
(formulated wrt an axiomatic setting):

Die Einfithrung des Widerlegungsbegriffs fiir die Gentzenkalkiile, nach der
eine Formel widerlegbar ist, wenn aus ihr beliebige Formeln ableitbar sind,
ist ... keineswegs zwingend. Ebenso hitte man z.B. von einem Widerlegungs-
begriff ausgehen konnen, der in Analogie zum ... Beweisbegriff eingefiihrt
ist, d.h. man hitte von Kalkiilen K ausgehen kénnen, die durch Antiaxiome
definiert sind, die in K widerlegbar sind, und durch Deduktionsregeln, die
besagen, wie aus bereits in K widerlegten Formeln eine neue in K wider-
legbare Formel gewonnen werden kann. Dann hitte man den Beweisbegriff so
einfithren konnen, daf eine Formel beweisbar ist, wenn durch eine Widerlegung
dieser Formel beliebige Formeln widerlegt werden kénnen. So wiirde man
zu einer Logik gelangen, die sich zur intuitionistischen Logik gewiBermafen
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spiegelbildlich beziiglich Beweis- und Widerlegungsbegriff verhilt. [Kutschera
1969, p. 104].1

The idea is thus to consider provability and refutability as a pair of prima facie in-
dependent and equally important primitive notions. As far as refutability is concerned,
this is an early version of Stupecki’s notion of inverse consequence; see [Slupecki, Bryll &
Wybraniec-Skardowska 1972, 1973]. Instead of directly considering in addition to the no-
tion of proof the notion of refutation, von Kutschera proceeds as follows: (i) every antiax-
iom A of K is translated into the formula —A,2 (ii) inverse inference rules A,,..., 4, + 4
which proceed from the refutability of A;,..., A, to the refutability of A are recast as
—Ai,...,—A, F —A, (iii) if A4 is refutable in K, then —A is considered to be provable in
K, and (iv) — — A is replaced by A. In this way, the ordinary notion of an axiomatic cal-
culus may be used. Now, to an axiomatic calculus K one can associate a sequent calculus
Sk by translating each K-axiom A into the Sk-rule b — A and translating each K-rule
X F A into the Sg-rule - X — A. Thus, working with sequent calculi, one obtains a
language extended by a ‘structural’ negation operation — in the sense of refutation or
disproof.

7.2 The higher-level Gentzen calculus GN~

In this section we shall introduce the higher-level sequent calculus GIN™ as the underlying
proof theoretic framework for introducing connectives into premises and conclusions. Let
again L be any formal language and let FORM(L) be the set of all L-formulas. In order
to be able to extend von Kutschera’s approach, we have to make stronger assumptions
and need anr underlying sequent calculus which in addition to «, — not only makes use
of — but also of a ‘structural’ connective ® corresponding to o.

Definition 7.1 The set of all RL-formulas is the smallest set I' such that
FORM(L) C T
ifT,U €T, then (TG U) € T
if T €T, then (= T), (T «) € I};

i Ty,...T,,U€el, then (Ty... Ty = U), (U «T,...T,) € T}

' “Introducing the notion of refutation for the Gentzen calculi by saying that a formula is refutable, if
arbitrary formulas can be inferred from it, is ... by no means obligatory. One might as well have started
with e.g. a notion of refutation introduced in analogy to the ... notion of proof, i.e. with calcuii X which
are defined by antiaxioms refutable in K and by inference rules specifying how new formulas refutable in
K can be obtained from formulas which have already been refuted in K. Then the notion of proof might
have been introduced in such a way that a formula is provable, if by a refutation of this formula arbitrary
formulas become refutable. This way one would end up with a logic which is, so to speak, a mirror-image
of intutitionistic logic wrt the notions of proof and refutation.” (translation HW)

2 Actually, instead of ‘~’ von Kutschera uses ‘~’, which we use to denote strong negation in the object
language, whereas von Kutschera denotes strong negation by ‘-’



7.2 The higher-level Gentzen calculus GN~ 95

ifT €T, then —T eD.3

Weshalluse T, U, T3, Ty, . .. tesp. X, Y, Xy, Xz, ... to denote RL-formulas resp. finite,
possibly empty sequences of RL-formula occurences.

Definition 7.2 Every A € FORM(L) is an Ri-formula of R-degree 0;
if T has R-degree n, then —7 has R-degree n;

if » is the maximum of the R-degrees of the RL-formulas T, U, then the R-degree of
(T'oU)isn+1;

if n is the maximum of the R-degrees of the RL-formulas in X and the R-degree of T
then the R-degree of X - T, T « X is n + 1.

If the R-degree of T' = n, we write Rd(T") = n. An RL-formula U of the form X — T
or T' + X is said to be a higher-level sequent, if I/ contains more than one occurrence of
— or +, otherwise U is called a sequent.

Definition 7.3 Every Rl-formula is an R-subformula of itself;
every R-subformula of T is an R-subformula of —T;
every R-subformula of T' and every R-subformula of U is an R-subformula of (T ® U);

every R-subformula of T and every R-subfomula in X is an R-subformula of X — T,
T« X

The R-subformulas of T" of R-degree 0 are called formula components of T. 7} ... T, =
T resp. = T abbreviates T7...7, » T resp. = T and T « T, ... T, resp. T «,

The calculus G is an extension of the result of removing (L =>) from the calculus
G in Chapter 4. What is new are the rules for ® and the specification of refutability
conditions for possibly higher-level sequents. It seems natural to say that X = T resp.
X = —T is refutable iff on the strength of the provability of each occurrence in X, T is
refutable resp. provable. We then obtain:

Definition 7.4 The rules of GIN™ are those of the earlier higher-level Gentzen calculus
G apart from (L =), together with:

3 Apart from using ®, this definition deviates from von Kutschera’s definition of R-formulas [1969, p.
105] also insofar as von Kutschera doesn’t allow iterations of the structural negation. See, however, his
remark on p. 106 “setzen wir fest, dafi ~ § fiir U stehen soll, wo S mit ~ U identisch ist” (“we stipulate
that ~ S stands for U, where S is identical with ~ U” (translation HW)).
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(5= =) (X==T)(Y =) b XY = ~(T - U)
(—e——) X-TUY->T1 FX~(T «U) - Ty;
(5= =) (X=D)(¥ = =T) XY = ~(U = T
(= —>—) XU-TY->T1 FX-(U-=T) -1y
(— =) (-T=X){U<Y)F —(T «U) < XY;
(== «) T, X—TUY F Ty — X — (T < U)Y;
(= =) (U—X)(-T<Y)F —(U—-T)«XY;
(———>) i« XU-TY F T, « X= (U - 1)Y;

) X=T)(Y =Ty F XY - (LOT)
(® <) (T —X)(Ta «Y) F (T} ®T3) « XY;

) XTUY - T1 F X(T o U)Y — Ty;

) Ty XTUY F T; « X(T ® U)Y;
(=-0) X=>-T){Y—=-T)FXY>-(T10D)
(—®«) (T = X) (=T = Y) F —(Ty 0 T) « XY:
(~@ =) X=T-UY =T+ X=(TOU)Y - Ty;
(= —0) TLeX-T-UYFTeX-(TOUY.

Note that (i) the rules (— — «) - (« — —) parallel the rules (—~ \), (—~ /),
(~\ —), and (~ / —), and (ii) the rules involving ® parallel the earlier sequent rules for
o. It can readily be verified that (® —) and (« @) are equivalent to, i.e. interreplaceable
with,

(@f) X(T OTL)Y - U F XTYTLY — U,
U X(T,0T)Y F U« XT\TLY.

Den-(I1,T,X), “Il is a derivation in GN~ of T from the finite, possibly empty sequence
X of Rl-formula occurrences”, is defined in analogy to the notion of derivation in the
higher-level sequent calculus G in Chapter 4.

Let Uy be an Rl-formula that contains a certain occurence of V' as an R-subformula,
and let Uy be the result of replacing this occurrence of V in U by T'. Let V < T denote
V=TandT = V,and let V &* T (“V and T are strongly interderivable”) denote
VeTl and-Te -V.

Theorem 7.5 If F V <* T in GN, then - Uy <* Ur in GN™.

ProoOF By induction on n = Rd(Uy) — Rd(V'), analogous to the proof of Theorem 4.5.
Here we consider the case that Uy = (Tiv © T3) or (T1 ® Toy). Assume that the claim
holds for every n < m, n = m+ 1, Ty resp. T,y contains the occurrence of V' in question,
and Rd(Tyv) < n resp. Rd(Tpy) < n. Now suppose that - V < T. By applying (©® —),
(— ®), (® 1), and (tra) to Uy <° Uy we obtain F Uy &° Up., O
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7.3 Generalized Gentzen semantics

The idea is to characterize an n-ary connective F in the language L of a given logic £
by the inference rules used to introduce F(4;,..., A,) and now also —F(4;,..., A,) into
premises and conclusions. The proof theoretic framework for specifying such inference
rules will be GN™ and the semantics is again codified in certain general rule-schemata
for formulating the inference rules. These schemata are subject to our earlier constraints,
which now read as follows:

(i) Rule-schemata characterizing F mention apart from one occurrence of F no other
occurrence of a propositional connective; the role of formulas F(A,,...,4,) and
—F(A;,...,A,) in deductive contexts depends on the deductive relationships be-
tween A;,..., A, only.

(i1) The rule-schemata for F are non-creative ones, i.e. every proof of an F-free formula A
in the result of extending GN™ by instantiations of these schemata can be converted
into a proof of A with no applications of rules characterizing F.

As in Chapter 4, we obtain the following rule-schemata for introducing F(A4,,... A,)
into premises and conclusions:

(I){a) XuWnYy — Tip ... Xy, Wi, Yo, — T, F Wi . Wy, — F(4y,...,A,),

thwtlYtI - Ttl th,wtath.s, - Tt.s, - th o -Wtag — F(Als fes :An)}
Ty« XpWi Yo . Tl.;; - XlslwlszYlal - F(Al, v :An) — Wi;. --W1m

T — XgWnYu ... Ttat — metsthat F F(Ah ey ,An) = Wy... Wu,;

() (B)  XWY; = T1.. . X;WY; > Tj - W — F(4,,..., A,),
T1<—X1WY1T3<—XJWYJI—F(A1,,An)<—w,

(II) (a) Y1X1Y2 T ... Y1X¢Y2 — T F Yl.F(.A], e ,An)Yz - T,
T« Y]_X]_Yz T - Y]_Xth T YIF(A]_, PN ,An)Yg;

(II) (b) Yl(Xf - (:ﬂ — Yl))Y2 - Uk YIF(AI:" '1Aﬂ)Y2 - Us
UeYi(Xi = (T = Y))Ya b U« YiF(Ay,...,A)Ys, 1=1,....7.

The Wi, (i = 1,...,8;k = 1,...,s;), Y1,Y2 and W are unspecified sequences of RL-
formula occurrences, whereas X, , Yix,, Tik, Tesp. X1, ..., Xi, Y1, ..., Y5, T, ..., T; contain
only formula components from A,..., A,. Moreover, in each instantiation of (I) (a)
tesp. (I) (b) every Ag (k = 1,...,n) occurs in some Xi,, Yir., or T, resp. in some X,
Y[, or T’( (l = 1,,]) X,' = X,;l — (T;l +— Y,-l)...X,-,,. — (T,-.,.. — YI'J;‘)' In= 0,
then (I) (a) is = F, (I) (b)is+ W = F, (II) (a) is V1Y —= U + Y FY, — U,
Ue—Y1Yy b U« Y, FY,, and (II} (b) is not instantiated.

In Chapter 4 we have noted that the schemata (1) (a) resp. (I) (b) are equivalent to
the schemata
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(I)' (a) Wi — (xil - (Tﬂ A Yil)) cas W:’a,— - (Xis; - (Tis; - Yi.;;)) +
F Wi... Wi, — F(Ay, ..., Ad),
(Xip = (T« Ya)) « Wi o (Kiyy = (T, — Yi,)) — Wy, F
FF(Ay. . An) = Wiy W, i=1,...,8
I)NE) WoX—>(Ti<Y1)) ... W (X2 (T« Y))
W = F(4y,...,A),
(Xi = (1Y) =W...(; = (T; < Y;)) «WF
F F(A4,...,A) — W.

As far as rule-schemata for introducing —F(A,,..., A,) into premises and conclusions
are concerned, we shall for two reasons significantly deviate from von Kutschera’s [1969]
approach. (i) As it seems, the schemata for introductions into conclusions as eventually
presented by von Kutschera fail to be the exact realization of the result of his motivating
considerations. Von Kutschera states that

Es liegt ... nahe, die Regelschemata zur Einfiithrung von ~ F(A,,...,A,)
als Hinterformel so zu wahlen, dafi, wenn nach (I) aus der Beweisbarkeit
von Sji, ..., S, fir ein ¢ die Beweisbarkeit von F(A4,,..., A,) folgt, nun aus
der Widerlegbarkeit aller S-Formelreihen [what is meant is “R-Formelreihen”,
HW) Si, ..., Si,; die Widerlegbarkeit von F(4,..., A,) folgt. [1969, p. 108]*

Given this, admittedly not completely unequivocal, explanation, von Kutschera’s [1969,
p. 108] schemata are quite surprising:

A-_)N Slk]];"';A_’N Stku }— A_’N F(A].:"‘?A‘n)!

A —~ Slkh-;“';A_'N Stkt,. FA—~ F(Ala-"sA‘n),

where A is a set of unspecified R-formulas and » = s, x...x s; (X denoting multiplication)
and ky = 1,...,s; forl =1,...,r. These schemata capture the rules for the connectives
considered by von Kutschera; but note that in the absence of the standard structural
inference rules von Kutschera need not distinguish between A and o.

(ii) Von Kutschera’s schema for introducing ~ F(A;,...,A,) into premises turns out
to be appropriate for the proof of functional completeness only because monotonicity of
inference holds for his generalized Gentzen calculus. (See [1969, p. 110], where it says that

finally we have:
“mt Sikypy ey~ Sty =~ Sk, [what is meant is “~ Sy,”, HW]; ...7.)

We shall adopt von Kutschera’s motivating ideas, but render them (more) literally into
introduction schemata. We agree that one would like to avoid that both — F(A4,,..., 4,)

41t is obvious ... that the rule-schemata for introducing ~ F(A,,...,A,) into conclusions has to be
chosen in such a way that, if the provability of F(A4;,..., 4,) follows from the provability of S;,-. -, Sis,
for some 4, then the refutability of F(A;,...,A,) follows from the refutability of every succession of
S-formulas [what is meant is “R-formulas”, HW] Sij,..., Sia,. (translation HW)
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and — —F(A,...,A,) resp. F(4y,...,A,) « and —F(4;,...,A,) « are provable,
if not for at least one 4; (1 < j < n), » A; and — —A; resp. A; « and —A4; «
are both provable. Therefore indeed the rule-schemata for introducing —F(A4,,..., A,)
should not be independent of the schemata (I) and (II). Now, suppose that by the
schemata (I) (a), FAy,...,A,) is provable provided that for some 3, all RL-formulas in
the sequence X; = Xi3 — (T « Yi)... Xi,, — (Tis; — Yis,) are provable. Then the
refutability of F(Ay,...,A,) should follow from the refutability of every succession of
Rl-formulas X;. I, by the schemata (I) (5), F(4;,...,A,) is provable provided that all
Rl-formulas X; — (T; <~ Y;) (I = 1,...,j) are provable, then every refutation of some
X~ (T; « Y;) should be a refutation of F(A,,... yAn)-

We transform these considerations into the following schemata (I1I) (a) and (III) (b)
for introducing —F(A,,..., A,) into conclusions:

(III) (a) W—)—511®...®—51,1...W—>—S’t1®...®—3m -
FW o ~F(Ay,...,A,),

—5116...(9—31,1<——W...—St1®...®——St,,,(—W |_
F —F(A,...,A) « W,

(IIT} (b)) W — =S b W —F(4y,...,A,) ... W = —S; F W > —F(4,,..., A),
=Si =Wk —F(4y,...,4) «W...—§; « W F —F(A,,..., A,) — W.

Here, Xiy — (Tin & Ya) = Sa ... Xig; = (Tiy, « Yip,) = S, 1<i<t), X = (T «
Y1) = 5 (1 <1< j),and W is an unspecified sequence of Rl-formula occurrences. If F
is 0-ary, we stipulate that (II1) (a) and (III) (b) are not instantiated.

In the same way as the non-creativity constraint led us (in Chapter 4) from (1) (a)
resp. (I) (b) to (IT) (a) resp. (II) (b), it now also leads us from (III) (a) resp. (III) (b)
to the following schemata (IV) (a) and (IV)) (b) for introducing —F(Ay,...,A,) into
premises:

(IV)(G.) Y1 - S]_]_ ®...& —S]_.,le —-TF Yl - F(Al,... ,An)Yz — T,

Y1—St1®...®-—St_,,Y2—>T - Yl"—F(Al,...,An)Yg—*T,
T*—-Yl—Sn@...@—Sleg + T*—Yl—F(A]_,...,An)Yz,

T*—Y]_—Sﬂ@...Q—Sg,,‘Yz o T(—YI—F(Al,...,An)Yz;
(IV) (b) Yl—Sle—PT...Yl—SjYZ—*T F Y]_—F(A]_,...,An)Yg—)T,
T*——YI—S]_YQ...Tf—-Yl—Sng F T*‘"Y]_—F(Al,...,A.n);

where Yy, Y2 again are unspecified sequences of RL-formula occurrences. For 0-ary F,
(IV') (a) and (IV) (b) are not instantiated.

The schemata (II) (a) resp. (II) (b), (I1I) (a) resp. (II1I) (b), and (IV) (a) resp.
(IV) (b) are thus already completely determined by the schemata (I) () resp. (I) (b). But
note that we can also assume the refutation point of view from which (I) (a) resp. () (b),
(11} (a) resp. (II) (b), and (IV) (a) resp. (IV) (b) are already completely determined
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by the schemata (IIT) (a) resp. (III) (b). In other words, the schemata (I) and (III)
mutually depend on each other.

Let C4 denote an L-formula which contains a certain occurrence of A as a subformula,
and let Cg denote the result of replacing this occurrence of A in C by B. The degree of
A (d(A)) is the number of occurrences of propositional constants and connectives in A. If
X=T,...T,, then X, again denotes T14...T 4.

Theorem 7.6 f+ A <* Bin GN~ +(I)— (IV), then + C4 ©* Cpin GN™ +(I) —
(Iv). :

PrOOF By induction on | = d(Cy) — d(A). If I = 0, the proof is trivial. Assume that the
claim holds for every { < m, and ! = m + 1. Suppose that C4 has the form F(Ay,..., A,),
where one of the Ay, contains the occurrence of A in question and d(A4;4) < l,andF- A &°
B. By the induction hypothesis, - Apq <* Axp, and by Theorem 7.5, F (X, = (Tis, —
Yis))a € (Xisy = (T, = Yio))p and B (X; = (Tj « Yj)ha & (X5 = (T; < Y;))s,
where in each case the replacement of A by B is wrt 4. We obtain - C4 < Cp asin the
proof of Theorem 4.6. Assume that the rules for —C4 are instantiations of (IIT) (a) and
(IV) (a). By (ref) we have for every i =1,...,t

- _SiIA ®...0 _Sia,;A =k _Si'lg @...0 "Sis,-ga
F =S5 @...© =S =F ~81, ©®...© —Siu,,-

The schemata (I'V') (a) give

F —-Cp=> "SilA ®...0 —S,',‘.A,
F -Cs=> _Silg ®...® —S,',‘.B.

Applying (III) (a) we obtain —Cp = —C,4 and —C4 = —Cp. If the rules for —Cy
are instantiations of (III) (b) and (IV) (b), then then by the induction hypothesis and
Theorem 7.5, the schemata (IIT) (b) give —(X; — (T} < Y;))a = —Cp and —(X; —
(CPJ — Yj))B = —~(C4. By (IV) (b), we obtain —C4 < —Cpg. O

Let T4 denote an RL-formula which contains a certain occurrence of A as a subformula
of a formula component of 7.

Theorem 7.7 If A ©° Bin GN~ +(I) — (IV), then T, ©° Tp in GN~ +(I) — (IV).

PRrRooOF By the previous two theorems. O

7.4 Functional completeness for COSPL,

In order to prove functional completeness of COSPL™ resp. COSP Ly wrt the generalized
Gentzen semantics resp. appropriate extensions thereof, we present sequent rules for the
connectives ~, /, \, ©, A, V, t, and T. All these rules conform to the schemata (I) and
(IT) resp. (III) and (IV'). We adopt from Chapter 4 the following rules not involving —:

(=26, (=1),T=),=/0) /=), 0=2), (=0 (=)= (=)
and {— V), (V =).
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In addition to these rules we assume:

=)

X—>-TkFXo~T,

T —XbE~T X
Yi-IY, =2 U Y ~TYy - U,
Ue=Y1—TY, F U« Yy ~TYy;
X——(UeT)FX> U/,
—(U«T)—XF —(U/T) « X;
X=s—(T-U)FX—>—(T\U),
—(T-U)—XF —(T\U) «X;

Yi—(U T, T, F Y, — (U/T)Y; > T,
Ty« Y, —(UT)Y; Ty Y, — (U/T)Y,;
Yi—(T—->U)y =T, Y= (T\U)Y, — T1,
Tie=Y1—(T-UN, - Ty« Yy — (T\U)Yy;
X=-Tt+X>—(TAU),

X—>-UFX— —(TAU),

T XF —(TAU) « X,

“Ue=XF —-(TAU) «X;

(Y1 =TY2 > 1) (Y1 = UY; = T1) b Yy — (TAU)Yy = T,
(T]_ — Yl —TYz) (TI <—'Y1 — UYz) F Tl — Yl - (T/\ U)Yz,

X (=T@-U) - X— —(Tol),
(~-TO-U)—XF —(TolU) < X;
Yi(-T®-UN:—=T1 F Y, —(ToU)Y; — T,
T =Y (-TO-U)Y; b T} « Y1 — (T o U)Yy;
(X— -T)(X—> -U) kX > —(TVU),

(T =X} (U «X) F—(TVU) < X;
Yi—-TY, =T F Y, — (TVU)Y, - T,
Yi-UY, =T Y, — (TVU)Y, = T4,
Ty Y1 —TY: by« Y1~ (T VU)Y,,

Ty —Y1-UYa) F Ty < Y — (T VU)Yy;

X5 ——-TFX—>5-~T,

——T e XF—~nTX

Y1——TYy = UF Y —~TYy; = U,
UeY1—=TYy +r U —=Y— ~TY,.
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From these rules it is clear that - (TQU) ®° (ToU),F -T &'~ T,F (U «T) &
(U/T), and F (T — U) &* (T\U).
In Chapter 4 we have remarked that (= /) resp. (= \)' is equivalent to

(= /) XI'->U F X—=(U/T),
Ue—XTF (U/T) — X; resp.
(=\) TX->UHF X (T\U),
UeTXF (T\U)«X
and that (/ =)' resp. (\ =)' is equivalent to

——

=) X ({U/T)F XT - U,

~ (U/T) « X F U« XT; resp.

(\=) X=(T\U)-TX-=T,
(T\U) « X+ U« TX

It can also easily be seen that (= —/) resp. (= —\)' is equivalent to

=-/)

(= -\)

X—=-U)(Y-T)F XY - —=(U/T),
(U« X)(T«Y)F —(U[T) — XY, resp.
(X = TYY = =U) - XY - —(T\U),
(T =X} (U «<Y)F —(T\U) « XY.

See e.g. the following derivation:

VU T->T

—UT = (U oT) U —U T
X=-(UeT) - S = o)T) T (o)
X = (~UT) (=T oT) = —(U/T)

X — —(U/T).

Moreover, (—/ =) resp. (—\ =)' is equivalent to

(=/=) Y1 —UTY> > T F Y~ (U/T)Y, — Th,
Ty« Y =UTYy - Ty « Y, — (U/T)Ys; resp.
(-\=) Y'«T-UY, =T = Y1 = (T\U)Y, — T,
Tl *"’Y]_T—‘UY2 F T]_ (—--Y]_ —(T\U)Y2:
and (= —o) resp. (—o =) is equivalent to
(2 —0) (X— —T)(Y = —Ta) £ XY = —(Ty o Tt);
(-T1 « X) (-T2 « Y) F —(T1 o T3) « XY;
(—o=) X=T-UY—-T F X—(ToU)Y = Ty;
Ty~ X—T—UY F T, «X— (ToU)Y.

Next, we assign to each RlL-formula T' one formula T with Rd(T) = 0 by stipulating:
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if T is an L-formula, then T = T;
if T =-U, then T =~ T}
ifT = Tl @Tz, then T:TlOE,

ifX=T,...T,,then X =T, 0...0Ty:

T =X—-U,thenT = X\T,;

T =U « X, then T = T/X;
ifT=—>U,then T=T\T;

fT=U« ,thenT =U/T.

Theorem 7.8 - T &* T in GN™ +(I) - (IV).

PrOOF By induction on Rd(T). If Rd(T') = 0, the claim is trivial. Suppose that the claim
holds for every ! < m, and ! = m + 1. By the induction hypothesis and the previous
theorem we have - (I}...T, - U) &* (T1...T, = U) 1esp. F (U « Ty...Ty) ©°
(Ue—Ti.. Ty)resp. b (= T) &* (= T) tesp. F (T «) &* (T +«). Now, by (— o),
{o =), {tra), and the rules of GN~ referring to —, we obtain F (T}...T, — U) &*
(Tyo...0T, » U) and F (U«T...T,) ° (Ue—Tio...0T,). Since - (U « T) &*
(U/T)and - (T = U) &* (T\U), b (T1...T, - U) &* (Tyo...0T,\U)and + (U
«T..T)e*' (U/To...oT,). Thus, F (Ty...T, — U) &* (T}...T, — U) and
FU«T..T,) e (U«T...T,). Sincet ~T &°~ T, we also have - —(T}...T, —
Uye* —(Ty..T, » U)and+ —(U « Ty...T,) & —(U « T} ...T,). Moreover, by the
induction hypothesis and the previous theorem + (T © U) «* (T ® U). Since (T @ U)

&* (T o U), we have (T @ U) &° (T @U). Finally, since - —T &*~ T, we also have
—(TeU)s* —-(TOU). O

Theorem 7.9 {~,/,\,A,0,V,t, T} is functionally complete wrt the generalized Gentzen
semantics.

PROOF As in the proof of Theorem 4.9, we can show that, if n > 0, F F(44,...,4,)
& B, where B = X; V... V X,, if the rules for F(Ay,..., A,) are instantiations of (I) {a)
and (IT) (a) resp. B = 51 A ... A S;, if the tules for F(A;,...,A,) are instantiations
of (I) (b) and (II) (b). f n = 0, then FF = T or F = t. We are done, if we can show
that - —B < —F(A,,...,A,), for n > 0. Suppose that —F(Ay,..., A,) is defined by
instantiations of the schemata (I1I) (a) and (IV) {a). By (ref), (® 1), (—©® =), (— ~®),
the previous theorem, and the fact that ~ T «* —T, we have - —X; = —5,0 ... © — S,
Applying (A =)}, we obtain

F —EA...A—RE=>—Sﬂ@w-@—S;,i.
The schemata ([11) (a) give

F-XiA...A-Xt=—F(4;,...,4A,),
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and from this we easily obtain
F—(X{V...VXt)=> —F(4y,...,4,).

By (ref), (® =), (& @), (= —®), (—® «), (tra), the previous theorem, and the fact
that ~ T &* —T, we have F —5;; ® ... ® —8;,, = —X;. The schemata (IV) (a) give
F —F(A,...,A,) = —X;. Applying (= A), we obtain

E—F(Ay,.. L A) = XA LA =X
From the latter we readily obtain
F—F(AL..., A) = (X1 V... VX).

Assume now that the rules for —F (A, ..., A,) are instantiations of the schemata (I11T) (b)
and (IV) (b). By (ref), the previous theorem, the fact that ~ T <* —T, and (tra), - -5
= —S;. The schemata (ITI) (b) give F —S; = —F(Ay,..., As). Applying (V =), we may
conclude that

F —SiV...V—=8, = —F(A1,...,4.);
and from this it is an easy matter to deduce
F —(SiA...A8) = —F(Ay,...,4,).
Moreover, clearly F —5; = —5. Hence, by (= V), F -§ = =5 V...V -5;. By

the schemata (IV) (b), we can prove —F(4;,...,A4.) = —5; V...V =5, from which
~F(A;,...,As) = —(S1A...AS;) is derivable. O

It is not difficult to show that the generalized Gentzen semantics characterizes
COSPL~.

Theorem 7.10 {/,\,A,0,V,T,t,~} is functionally complete for COSPL".

PRrOOF If (i) RL-formulas and the premises and conclusions of (= t), (= T), (T =),
(= F), (F =), (= —F),and (=F =) (F € {/,\,0,A,V,~}) are 1estricted to sequents
only, (ii) T « T,,...T} is read as its mirror-image T} ...T, — T, and —T isread as ~ T,
then the resulting calculus is equivalent to COSPL™ in the sense that both systems have
the same set of provable sequents, as a comparison of the systems immediately reveals.
C

This functional completeness result can straightforwardly be extended from COSPL~
to COSPLZ in the same way as the functional completeness result for ISPL in Chapter
4 has been extended to ISPLa, viz. by enriching GIN™ by higher-level versions of the
structural inference rules in A, using both sequent-arrows — and «.

Corollary 7.11 {/,\,A,0,V, T,t,~} is functionally complete for COSPL;.5

5We do not consider the intuitionistic minimal negations —", =, which are definable in every system
COSPLy, as essential to these logics, since, in contrast to MSPL,, without =" and !, COSPL} is not
void of any ‘official’ negation. If nevertheless =" and —! are regarded as integral to COSPL}, L should
be assumed as a designated propositional variable of the underlying higher-level Gentzen calculus and

should be added to the set {/,\,A,0,V, T, t,~}.
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7.5 Functional completeness for COSPLA
Let GN denote the result of adding the rules (L =) (i.e. XLY = T'),

(=-1) FX=-1,
(—incon) X—=T X— -TF X—=U, and
(incon —) T—X —T—XFU«~X

to GNT. Then, in the presence of (=> A) and (A =), the rules (— incon) and (incon «)
are equivalent to - X(T' A -T)Y = U.

Let now for n = 0 the rule-schemata (III) (a) and (III) () both be instantiated by
FX—-FY=T.

In complete analogy to the above argument for COSPL, we obtain a functional
completeness result for COSPL, wrt to this extended generalized Gentzen semantics.
Remember that in COSPLA one can prove (i) L =+ (AA ~ A), ~ L =% t and (i)
t =+ (L\ 1), ~t =% L. Therefore we obtain the following

Theorem 7.12 {/,\,A,0,Vv, T,t,~}, and {/,\,A,0,V, T, 1,~} are functionally com-
plete for COSPL,.

Since in COSPL, and COSPL, we have - (A A B) =~ (~ AV ~ B) as well as
F(AV B) =~ (~ AA ~ B), we may drop either V or A (but not both) from the sets
of connectives wrt which COS PL, and COSPL, have been shown to be functionally
complete and again obtain functionally complete sets of connectives.

7.6 Digression: Negation in Categorial Grammar

An issue which we have completely neglected in our discussion in Chapter 4 of additional
connectives for the Lambek Calculus is the problem of negative linguistic information.
Gur functional completeness result for PSPL has been obtained from the corresponding
result for ISPL, i.e. from PSPL augmented by an intuitionistic falsum 1, intuitionistic
negations —" and — being defined by —"4 %/ (L/A), -4 = (A\ 1). These intuitionistic
negations, however, do not seem to admit of a linguisite interpretation. One might e.g.
think of interpreting L as “ungrammatical”, but unfortunately it is simply not the case
that a linguistic item is, say, a non-sentence, just in case its combination with a sentence
results in an ungrammatical string.

On the other hand, the usual treatment of negative linguistic information in Categorial
Grammar is not quite satisfactory. What one can find in the literature is the idea of a
negation as failure, which is tacitly based on a certain kind of closed world assumption
and which is not reflected by a negation sign in the object langunage. Lambek [1958]
e.g. describes his aim as “to obtain an effective rule (or algorithm) for distinguishing
sentences from nonsentences, which works not only for the formal languages of interest
to the mathematical logician, but also for natural languages such as English, or at least
for fragments of such languages” [p. 154]. Thus, a given string of linguistic items does not
belong to type s, if for every type assignment to the given items the effective algorithm
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for distinguishing sentences from nonsentences does not terminate with an s, i.e., if all
attempts to derive sentencehood fail. But clearly failure to. derive sentencehood differs
from deriving nonsentencehood. Even if one is working with a decidable syntactic calculus,
negation as failure to derive makes sense in the categorial analysis of language only against
the background of the following, usually tacit closed world assumption

CWA Every linguistic item under consideration has already been completely categorized
in the sense that every syntactic type in which the item may occur can be derived
from an assigned type by means of the underlying syntactic calculus.

If incomplete, partial knowledge of a language’s categorial structure (at the level of
assignment functions) is not excluded, one has to reckon with the possibility that there are
sentences among those strings which are not recognized as sentences by the terminating
algorithm. Thus, the negation as failure principle no longer seems to be justified. Like
intuitionistic negation also neither classical nor strong, constructive negation ~ allow for
a linguisitc interpretation. In the classical resp. constructive case we would e.g. have that
—(s/s) resp. ~ (s/s) is interderivable with (—s o s) resp. (~ s 0s). However, if a linguistic
item is not an adverb, this doesn’t mean that one is dealing with a string consisting of a
non-sentence followed by a sentence. Thus, what is an appropriate negation operation for
Categorial Grammar still has to be investigated.



Chapter 8

The constructive typed )-calculus ¢
and formulas-as-types for N~

In Chapter 5 we have studied the formulas-as-types notion of construction for substruc-
tural subsystems of intuitionistic propositional logic IPL. There we have restricted our
attention almost entirely to syntactic aspects of the encoding of terms by proofs, and vice
versa. We may consider this detailed investigation as exemplary for what happens to the
idea of formulas-as-types in the absence of structural inference rules and therefore in the
present chapter focus our interest on the semantics of the typed A-calculus which we want
to associate with COS PL{_P,C,M} alias N™. We shall introduce the constructive typed A-
caluclus A° and prove completeness of A\° wrt what will be called full constructive type
structures over infinite sets. This result extends H. Friedman’s [1975] completeness proof
for A5 wrt to so-called full type structures over infinite sets. As a kind of Justification for
calling A° constructive, we shall then encode proofs in N~ by terms from A®’s set of typed
terms, and conversely. -

8.1 The typed A-calculus X°¢

8.1.1 The syntax of \°

The set of type symbols (or just types) is the propositional language in the connectives
~, A, V, and D based on PROP U {L1}. The set VAR of term variables is defined as

{vA]0<icw, Ais a type).

Definition 8.1 The set TERM of terms is the smallest set T such that
VAR CT;
if M4, N® €T, then < M, N >(4"B)c T,
if M# €T, then K z(M)4VE) e T

if M® €T, then K} o(M)AVD) ¢ T2

!Asin Chapter 5, we allow projections of terms which are not pairs. We need such projections for the
encoding of proofs with A-introductions on the lhs of —; see Section 8.2.
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if ME €T, 24 € VAR, then (AzM)4>B) ¢ T

if MA"B) ¢ T then (M)g, (M)P € T;

if M(428) N(B2C) ¢ T, then |M, N|(AVB)DC) ¢ T
if M(428) N4 ¢ T, then (M, N)? € T;

M~~4 eTiff MA €T}

M~ANE) ¢ T iff M(~4V~B) e T

M~AVB) € T iff M~4A~B) e T

M~(42B) ¢ T iff MA4A~B) e T,

We shall denote term variables by z, ¥, z, &1, T3, etc. and terms by M, N, G, M;, M,
etcetera. We say that M4 is a term of type A.

Definition 8.1 has as a non-standard consequence the non-unique-typedness of terms. If
M is a term of more than one type, then these types are related by the provable acceptance
equivalences

~ A=T A ~ (A D B) =% (AA ~ B),
~(AAB)=% (~ AV~ B), ~(AVB)=t(~AA~B),

where A =t B here abbreviates (A D B) A (B D A). Allowing for terms of multiple
type has to do with atomicity of negation as a consequence of regarding the negative as
a counterpart of the positve. Although in A° we have in addition to lambda-abstraction
and application also term forming operations in order to deal with A and V, there are no
operations for ~. We deal with constructive negation not by introducing further operations
but instead by looking differently at the A-terms; they may occur in more than one type.

Definition 8.2 FV(M), the set of free variables of M, is inductively defined as follows:
FV(z) = {a};
FV(< M,N >) = FV(M)U FV(N);
FV((M);)=FV(M),i=0,1,
FV(K'(M))=FV(M),i=0,1,
FV(AzM) = FV(M) — {z};
FV([G1,G3]) = FV(G1) U FV(Ga);
FV((M,N)) = FV(M)U FV(N).
The variable z is bound in M (z € BV(M)) iff z ¢ FV(M).

Definition 8.3 M[z? := NP|, the result of substituting NV for each free occurrence of
in M, is inductively defined by:
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z8[zF := N¥] = N,

2A[z5 = NF] = z4,

<M,G > [z:= N] =< M(z := N|,G[z := N| >;
K{(M)[z := N] = K{(M[z := N]), i = 0,1,
(AyMle := N] = (AyM[z := N}), if y ¢ FV(N);
(M)l := N] = (M[z := N]);, i =0,1;

[G1, Go)fz := N] = [Gy[z := N], Gsz := NJJ;
(M,G)[z := N] = (M[z := N, Gz := NJ).

Definition 8.4 The axiom-schemata and rules of A¢ are:

(@) QM) = (' Mz :=y)), if y ¢ FV(M)U BV(M);
(8) (AzM)N) = Mz := N}, if BV(M)n FV(N) =

(1) (Ae(Mz)) = M, if & ¢ FV(M);

<0> (<M,N >)=M;

<1l> (<M,N >); =N;

<sur > < (M), (M) >= M;
(0) ([MH429), NBO) K £(G)) = (M, G);
(1) ([MH429, NB29N, K 5(G)) = (N, G);
(0,1) Kg,B(M) = K}l,B(M) Kg (M) = KB (M), if M4 =
(91) ([(AzA(MABRCKG 5 (2))), (AP (MABPICK] p(y )))]aG) = ( M, G),
ifz,y € FV(M);
(#)  ((M2*Ka(e)), (WP KL p(W)],G) = G
(N) M~~4 = MA; M~(AAB) _ M(~Av~B);
M~(AVE) = Nf(~AN~B). pre(4DB) M{An~B).
MA=MA M=NF N=M; M=NN=GF M=G;
2 M=NF<GM>=<G,N >; M=NF<MG>=<N,G>;
M=N£F(GM)=(GN); M=NF (M,QG) = (N, G);
M=N1t (AzM)=(AzN); M=NF (M); =(N);, i=0,1;
M=Nt KM)=KN), i=0,1:
M=N*t[G,M=[GN];, M=Nt [MG]=|N,q.
Let > denote the reduction relation on TERM induced by (the direction from left

to right of) (a), (8), (1), < 0 >, < 1>, < sur >, (0), (1), (9), (¥2), (~), and (both
directions of) (0, 1).

QUESTION (i) Is every M strongly normalizable wrt >>7
(ii) Is >» Church-Rosser?
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8.1.2 Models for X°

Definition 8.5 F =< {D4}, {AP, 5}, {PRO} 5}, {PRO} 5}, {PAIR, 5}, {DIS4s5c},
{K%.5}, {Kiy s} > is called a type structure frame (or just a frame) iff

e D4 is a non-empty set, for each type A;

o Kip:D4— DUAVE),
Kip:DF — D{4vB)
AP, p : DUB) x D4 — DB,
PRO?,L,B : DMAAB) _, DA,
PROL’B . DArB) __, DB,
PAIR, p : D4 x D¥ — D(4AB)
DIS4,p,c : D20 x DIBIC) _, DUAVE)DC) for all types A, B, C;

o (extensionality) if a,b € D4>B) and (Vc € D4)(AP4 p{a,c) = AP, p(b,c)), then
a=b;

(red A) for all @ € D4, b € D3:
(i) PRO% 5(PAIR 4 p(a, b)) = a,
(ii) PRO} 5(PAIR 4,5(a, b)) = b;
(

red V) for all ¢ € D42)C p c DIBIC) 4, ¢ D4, b, € DE:
(i) AP(DIS(a, b), K“A,B(al)) = AP(a,a,);
(ii} AP(DIS{a,b), K}i,B(bl)) = AP(b, by);

¢ Kip(a) = Ky p(a) = Kj 4(a) = Kj 4(a),Va € D4, if D4 = D®.

Definition 8.6 Let 7 = < {DA}, {AP, 5}, {PROS 5}, {PROS 1}, {PAIR 5},
{DIS4,pc}, {KS 5}, {K) 5} > be a frame. An assignment in F is a function f defined on
VAR such that f(z4) € DA.

The set of all assignments in a given frame is denoted by ASG. If y € VAR, then f¥
is defined by f¥(z) ==z, ifx # y, f¥(y) = a.

Definition 8.7 Let F = < {D4}, {AP4 5}, {PROY 5}, {PROY 5}, {PAIR, 5},
{DISaBc} {KSg}, {Kl s} > be a frame. < F,VAL > is said to be a type structure
model (or just a model) based on F iff VAL is the valuation function from TERM x ASG

to UD“’L such that
A

L. VAL(z, f) = f(z);

2. AP4p(VAL((AxM), f),a) = VAL(M, f¥), Va € D4,

3. VAL((M(428) NB) f) = AP, p(VAL(M, f),VAL(N, f));
4. VAL(< M4, NB >, f) = PAIR, 5(VAL(M, f), VAL(N, f));
5. VAL((M4"B));, f) = PROY (VAL(M, f)), i = 0, 1;
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[=>]

. VAL(K.?LB(M), f) = Kﬂ,B(VAL(M, f));
7. VAL(K, (M), f) = Ky s(VAL(M, f));
8. VAL([M4>9), N(B2O), ) = DIS 5. c(VAL(M, f), VAL(N, £));
9. VAL(M™~~4 f) = VAL(MA4, f);

10. VAL(M~AMB) | f) = VAL(M~4V~B ),

11. VAL(M™~AYB) | f) = VAL(M~AB_§),

12. VAL(M~4B), ) = VAL(MAME | §);

13. if z,y ¢ FV(M), then
AP(DIS(VAL((Az*(MU4¥D1C, K3 1 (2))), f), VAL((My®(M, K 5(v))), f)), a) =
AP(VAL(M, f),a), Va € DAV,

14. AP(DIS(VAL((,\mAKg’B(x)), ), VAL(()\yBK}l,B(y)), f)),a) = a, Va € DAVE,

Lemma 8.8 (i) VAL(M(z := N, f) = VAL(M, £ 4 ), if BV (M) FV(N) = §.
(i) VAL(Mz := g, f¥) = VAL(M, f2), it y ¢ BV(M) (A FV(M).

PROOF (i} By a straightforward induction on the generation of M, for fixed N. Here, by
way of example, we consider just three cases:

* M = Kj p(G):
VAL(K} 5(G)[z == N|, f) = VAL(K}, 3(G[z := N]), f)
= Ky p(VAL(G[z := N], f))
= K4 s(VAL(G, f AL(v,5)))> by the induction hypothesis
= VAL(Kf,,B(G), £ ;AL(N,_f))'

e M= [Gl,Gg]i
VAL(IGy, Gallz = N], f) = VAL([G1[z := N, Gaz := N, f)
= DIS(V AL(Gy[z := N], f), VAL(Ga[z := N], f))
= DIS(VAL(Gy, f upon 1))y VAL(Go, IV arin,py))> by the induction hypothesis
=VAL(|Gy, Gy, flz/AL(N,f))'

* M = AyG, y € FV(N): By induction on the generation of G. E.g.
G= AZGIZ
AP(VAL((Ay(32Gy))[z := N}, f),a) =
AP(VAL(Ay(A2Gy)[z := N], f),a) =
AP(VAL(Ay(AzGy), f2 AL(N,f))» @), since by the induction hypothesis,
VAL(AzGh[z := N], f) = VAL(/\zGl,f;AL(NJ)).

(ii) By (i). O

Definition 8.9 Let M =< F,VAL > be a model. We say that M = N holds in AM
under assignment f (M = M = N|f]) iff VAL(M, f)=VAL(N,f). M = N is said to
be valid in M (M | M = N) iff M =M = N[f], for all f € ASG. M = N is said to
be valid in a certain class of models, if M = M = N, for each M in this class.
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8.1.3 Intended models for \°

Now, the idea is not just to characterize provable equality of terms in A° by validity in all
models based on type structure frames, but rather to prove a characterization theorem
wrt models based on particular frames, viz. ‘full constructive type structures over infinite

sets’: F, =< {DA}a {APA,B}? {PRO&,B}s {PRO}LB}a {PAIRA,B}) {DISA,B:C}! {KDA,B}a
{K} 5} >, where

e for every p € PROP U {L}, D?, D*? are infinite sets;
. DAAB — DA X% DB;

o D45 = DA U D?, if DA # D?, otherwise DAYZ = D4,
o DAOB — (DB)DA;

e D4 = D4,

DN(AAB) — DNAVNB.

DN(AVB) — DNA/\NB;

. D~(A:)B) — DAANB;

o AP, 5(a,b) = a{b);

. PRODA,B(< a,b>)=a;

) PRO}LB(< a,b>)=b;

L PAIRA,B(U,, b) =< a,b>;

® DISypc(a,b) =a[(D*-D?)Ub[(D? — D4), if D* # D5,
otherwise DIS, 5 c(a,b) = a or DIS, g c{a,b) = b;

* K 5(a) = b chosen from D4 — D2 if a € DA N D¥ and DA # D5,
otherwise K§ 5(a) = g;

¢ K}, p(a} = b chosen from DF — D4, if a € D4 N D? and D4 # D5,
otherwise K}, z(a) = a.

Here U denotes disjoint set-union (i.e. Iy U Ty = (T — ['2) U (T, — I'y)). It can easily be
verified that F. in fact is a type structure frame. Observe that a € DAYP iff (a = K p(a)
or a = K} p(a)). Let Fxe denote the provability relation induced by A®’s axiom schemes

and rules.

Theorem 8.10 (soundness) If -y M = N, then M = N is valid in the class of all
models.
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PROOF By induction on the length of proofs in A°. We must show that every axiom is
valid in every model, and that the rules of inference preserve validity. We shall consider
the non-obvious cases which are not already covered by [Friedman 1975). Let M =

< {DA}? {APA,B}v {PROOA,B}a {PROEQ,B}a {PAIRA,B}? {DFSA,B,C’}v {KOA,B}! {Killl,B}!

VAL > be a model.

o <sur > VAL{(< M, N >)o,(< M,N >); >, f)
= PAIR(VAL((< M,N)q, f),VAL((< M,N >),, f))
= PAIR(PRO®(PAIR(VAL(M, f),V AL(N, f)})),
PROY(PAIR(VAL(M, f),VAL(N, f)))
= PAIR(VAL(M, f),VAL(N, f)) = VAL(< M, N >, f).

o (0): VAL([M4>C, N¥>°), K3 (G)), f)
= AP(DIS(VAL(M, f), VAL(N, f)),V AL(K%(G), f))
= AP(DIS(VAL(M, /), VAL(N, £)), K’(V AL(G, £)))
= AP(VAL(M, f),VAL(G, 1)), by (red V) (i
= VAL((M,G), f).

* (1): Analogous to the previous case, using (red V) (i).

e (91): Suppose that z,y ¢ FV(M). Then
VAL(([(Ax(MAP°, KS o(2))), (A (M, K3 5(1))], G), f)
= AP(DIS(VAL((A\z(M, K%(z))), f), VAL((My(M, K'(9))), 1)), VAL(G, )
= AP(VAL(M, f),VAL(G, f)) = VAL((M, G), f).

® (¥,): Use clause 14 of Definition 8.7. O

8.1.4 The canonical model and completeness

Before we proceed to extending Friedman’s completeness proof for A5 to A°, here is a
brief description of the structure of the proof. We first define a certain canonical type
structure model M for A° which is based on a frame F,, and show that )¢ is complete
wrt this model. Next, it is shown that ‘partial homomorphisms’ preserve validity in type
structure models, and eventually it is proved that there exists a partial homomorphism
from models based on frames F, onto My. Let | M | = {N |Fxc M = N}. By the rules
1, | M | is the equivalence class of M wrt provable equality with M in )°.

Deﬁnition 8.11 .7'—() =< {DA},{APA,B}, {PROSi,B}? {PRO}Q,B}: {PAIRA,B}, {DISA,B,C},
{K%z}, {Ky g} > is defined as follows:

o DA = {| M || M is of type A}, if there is no NB ¢ | M | such that B, is of the
form (BAC) or (BV C);

o DUAB) — [/ M || M is of type A A B and there exists < Ny, N3 > such that
Fxe M = < Ny, Ny >};

o DUAVE) — fi M || M is of type AV B and there exists K3 p(N1) or Kj p(N)
such that Fy. M = K§ p(Ny) resp. by M = K} p(N2)};
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* APup(| MAE || N4 ) = | (M, N) |;
PROG 5(| MAE |) = | (M), |

PRO (1 M7 [) = | (M), |;

PAIRsp(| MA[,| NP |y =< M,N >|;
DiSspo(l MA2C|,| N4 |) = | [M, N] |;
Kan(l M4 ]) = | K°(M) |;

Kas(l MP|) = | K'(31) |.

Lemma 8.12 %, is a frame.

PROOF Clearly, D4 is a non-empty set, and AP 4,8, PAIRy g, DIS 4 g o are functions with
appropriate domain and range, for all types A, B, C. For extensionality see the proof of
Lemma 7 in [Friedman 1975]. (red A) (i): Use < 0 >. (red A) (ii): Use < 1 >. (red V)
(i): Suppose that | M | € D43¢ | N | € D®C, and | G | € DA. We must show that
| (1M, N), K3 5(G)) | =| (M, N) |. Assume that Fye M = My, Fpe N = Ny, and by G <
G1. Then, by (0) and the rules 2, ([M1, M), K§ 5(Gh)) € | (M, N], K} 5(G)) | implies
(My,G) € | (M, G) |, and (My,Gy) € | (M, G) | implies ([My, Ny), KS (Gh)) € | (M, G) |.
(red V) (ii): analogous. Finally, suppose D4 = D®. Then M4 =~ M® and we have e.g.
Kea( M 1) = | K3 (M) | = | K3p(M) | = Kio( M), O

Definition 8.13 A function g : VAR — TERM is called a substitution, if g(z) and
z are of the same type. A substitution is called regular, if for pairwise distinct variables
z,y, FV(g(e)) N FV(g(y)) = 0. |

Let M(g) denote the result of simultaneously replacing every free occurrence of each
variable in z by g(x). By (a) and the rules 1, we have

Lemma 8.14 If M € TERM and T is a finite set of variables, then there is an IV such
that Fye M = N, FV(M) = FV(N), and BV(N)NT = 0.

Definition 8.15 Let f be an assignment in Fo, and let, by the previous lemma, g be a
regular substitution such that f(z) = | g(z) [, for every z € VAR. For a given term M,
choose a term IV such that bye M = N and for every z € FV(N), BV(N)NFV(g(z)) = 0.
Then VAL(M, f}) is defined by VAL(M, f) = | N(g) .

As in [Friedman 1975, p. 26] it can be shown that VAL : TERM x ASG — D4,
A
and Fy. M = N implies VAL(M, f) = VAL(N, f).
Lemma 8.16 M, =< Fo, VAL > is a type structure model.

PROOF We must check the conditions on V AL; we consider those conditions not already
dealt with in [Friedman 1975]. Let ¢ be a regular substitution and f(z) = | g(z) |, for
f € ASG. Choose z1, y;, My, Ny such that ). z = Ziy, Fae ¥y =y, bae M = M,
bae N =Ny, 21, 1 & FV(M,), and BV (M;) N FV (g(z)) = BV(N1)NFV(g(z)) = 8, for
every z € FV(M;) U FV(N,).
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4: VAL(< M,N >, f) = |< My, N; > (g) | =
PAIR( Mi(9) |,| Ni(g) |) = PAIR(VAL(M, §),VAL(N, £)).

5: VAL((M);, f) = | (M1):(g) | = PROY(| My(g) |) = PROYVAL(M, f)).

6: VAL(K], 5(M), f) = | K°(M;)(g) | =
K[ M) |) = KXV AL(M, 1)).

7: Analogous to the previous case.

8: VAL(IM, N], f) = | [My, Ni] | = | [My(g), Ni(g)] | =
DIS(| Mi(g) || Nulg) 1) = DIS(V AL(M, ),V AL(N, f)).

9 —12: Use (~).

13: Suppose that z, y ¢ FV(M).
AP(DIS(VAL((\z*(MUVERC, K3 1 (a)), £), V AL(OwP (M, KL 5 (5))), £),] N |
= | (I(A21 (M1 K(21)))(g), (Ays (M1 K (31)))(g)], V) |
= [ (Mi(g), N} | by (9;)
=AP(| My(9) |,| N |) = AP(VAL(M, f),| N |).

14: AP(DIS(VAL((A* K3 p(21)), f), VAL((MP K (), £)),| N |)

= | ([(A2.K"(z1))(g), (A K (1) )(g)], V) |
=| N | by (8,). O

Theorem 8.17 (completeness) If M = N is valid in the class of all models,
then ). M = N.

Proof Suppose I/\e M = N. Choose M,, Ny such that ke M = Ny, by N = Ny, and
BV(M.) 0 FV(My) = BV(N1) 0 FV(Ny) = 0. Then VAL(M, f) = | My | # | N, | =
VAL(N, f), for f(z) = |id(z) |, for all z € VAR, where id is the identity function on
VAR. Thus, My £ M = N. O

8.1.5 Completeness wrt intended models

Definition 8.18 Let 7 = < (D4}, {AP,,}, {PRO% p}, {PRO;}, {PAIR,;},
{DISazch, {Ksp}, {Kia} > and F* = < (D4}, {AP% ;}, {PROY,}, (PROY, ]
{PAIR 1, {DISy 5}, {K2x}, {Ki5} > be frames; let M = < F, VAL > and M*
= < F*, VAL > be models. A family {fa} is called a partial homomorphism from M
onto M* iff

e for each type A4, f, is a partial function from D4 onto D*4;

e if f45p(a) exists, then f8(AP 4,5(a, b)) = AP p(fase(a), f4(b)), for all b in
the domain of f,,

* if fa, fp exist, then f4r5(PAIR 4 5(a, b)) = PAIR, 5 (fa(a), f5(B));

e if f4,p{a) exists, then fa(PRO} p(a)) = PROY 5 (fars(a));
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¢ if f4rp(a) exists, then fB(PROJlf;,B(a)) = PRO:lI,B(fAAB(a‘));

o if fasc(a), fpoc(b) exist, then fiavm)sc(DIS5.0(a,b))
= DISj{,B,C(fADC(a’)a Iase(b));

o if f4(a) exists, then fave(K§ p{a)) = K 5(fa(a)); and
e if fB(b) exists, then fAVB(K}(,B(b)) = KZI,B(fB(b)).

Lemma 8.19 Let M, M* be as in the previous definition, and let { fa} be a partial

homomorphism from M onto M*. If g resp. g« is an assignment in F, resp. F*, and
fa(g(z*)) = g*(z), then f4(VAL(MA4,g)) = VAL*(M,g*).

ProoF By induction on the generation of M. Again, we restrict ourselves to the cases
not already covered by [Friedman 1975]. Note that we may assume Fa(g(z?)) = g*(z),
because f4 is onto.

¢ M =< N4 G" >: farp(VAL(< N,G >, g))
= fans(PAIR(VAL(N,g),V AL(G, g)))
= PAIR}, p(VAL*(N,g*), VAL*(G, g*)) by the induction hypothesis
= VAL*(< N,G >,¢%).

o M= (MAE): fo(VAL((M)o,9)) = f4(PROY(V AL(M, g)))
= PRO*(f43(VAL(M, )
= PRO*(VAL*(M, ¢*)) by the induction hypothesis
= VAL*((M)q,g*).

o M = (M*"B)#: Analogous to the previous case.

M = K3 5(N): favs(VAL(K°(N), g))

= fAvB(Kﬂ,B(VAL(N, 9))

= Kis(fa(VAL(N, g)))

= K;?B(VAL' (N,g*)) by the induction hypothesis
= VAL*(Kﬂ,B(N),g*).

M = K} p(N): Analogous to the previous case.

M = [N, GI4YB2C: f,,po(V AL(N, G, g))

— F(DIS(VAL(N,g), VAL(G, g)))

= DIS*(fa5c(VAL(N, g)), fp-c(VAL(G, g)))

= DISY(VAL*(N,g*),VAL*(G, g*)) by the induction hypothesis
= VAL*([N,G],g*). O

Lemma 8.20 Let M, M, be models. If there exists a partial homomorphism from AM;
onto Ms, then M; E M = N implies M, FM=N.

PROOF By the previous lemma, cf. [Friedman 1975, p. 28]. O
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Theorem 8.21 Let M be a type structure model based on F.. Then iy M = N iff
MEM=N. :

PROOF In view of the previous two theorems it is enough to show that M = M = N
implies Mg = M = N. We show this by defining a partial homomorphism {fa} from M
onto My; {f4} is defined by induction on the type A.

* A=p, A=~p(pe PROPU{1}): f,is any function from D4 onto D4,
Such a function exists, since D4 is infinite and D4 is dentumerable.

* A= (BAC)If fp(b), fo(c) exist, then ferc(< bye >) = frac(PAIR(S, c)) is
defined as PAIRp o( fz(c), fele))

* A= (BVC): Recall that a € DA% iff (e =K p(a) ora = K} 5(a)).
Define favc(Kj o(a)) = K o(f5(a)), if fa(a) exists;
fove(Kg o(a)) = Kb.c(fcla)), if fola) exists.

A = (B D> C): Suppose that fB, fc have already been defined. Then fa>c(a)
is defined as the unique member of DIF>0) (jif i exists) such that fo(a(b)) =
APpc(fe>c(a), f(B)), for all b in the domain of fB.

If B is of the form B, V B, we require in addition that, if f5 5c(a), fp,oc(b) exist,
then f(ﬁh VBz)DC(DISBth,C(aﬂ b)) =

DISg, 5.,c(fB,5c(a), f5,50(b)).

A =~ B: funp(z) = fa(z).

A=~ (BACY: fuprc)(z) = fubymo(z).
A=~ (BVC): fusvoy(e) = fuprmc(T).
A=~ (B3 C): fupse)(@) = farc(z).

From this definition together with the following equations it follows immediately that
{fa} is a partial homomorphism:

Fa(PROJ 5(< a,b>))

= fala)

= PRO} 5(PAIR, 5(f4(a), f5(b)))
= PRO}, 5(farB(PAIR 4 p(a,b)))
= PROS p(farp(< a,b >));

f3(PROY 5(< a,b >))

= fs(b)

= PROj 5(PAIR 4 5(fa(a), f5(b)))

= PRO p(fars(PAIR 4 5(a, b))

= PROi,B(fA,\B(< a,b>)).
It remains to be shown that f, is onto, for every type A. This follows from the definition
of fp, fop (p € PROP U {1}) and the definition of Fo, except for the case that A =
(B D C). Thus, assume d € D®>C). Choose a € DB>C) guch that for every & in the
domain of fp, a(b) € f5'(Ap(d, fa(b))). Then fieooy(a) =d. O
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As in [Friedman 1975, Theorem 4] for the case of A5 and ‘full type structures over
finite sets’, it can be shown that equality in A° is not characterized by ‘full constructive
type structures over finite sets’.

8.2 Formulas-as-types for N~

We show that every M € TERM encodes a proof in Nelson’s propositional logic N,
and vice versa. We do this for the sequent calculus from Chapter 2, in the propositional
language {~, A, V, D, L}. For the reader’s convenience, we present this calculus here
Once more:

(id);  (cut)
<—A> X—-AY-BF XY - (AAB);
<A—-> XA-CFX(AAB)-C,
XB—-CF X(AAB) > C;
<=V> X AF X-(AVB),
X—-BF X (AVB)
<Vo> XA—-C YB—CF XY(AVB)— C;
<—=D> XA—-BF X - (AD>B)
<D—> Y—>A XB-CF X(ADBY -,
<—orvn> X 5 AR X s~n 4
<~~v—s> XA—>BF X ~~A— B
<o~A> X —w~AF X 5~ (AAB),
X —-~BF X >~ (AANB);
<~A=> X~A-C Y~B—-CF XY ~(AAB) - C;
<=~V> X —=~A Y5~ BFE XY -~ (AV B);
<~V —=> X~A-CFX~(AVB)-C,
X~B—-Ct X~(AVB) - C;
<—=~D2> X —-A Y ->~BF XY -~ (ADB);
<~D—=> XA-Chk X~ (ADB)—C;
X~B—-CFX~(ADB)~-C;
P, C; M.

Definition 8.22 M4 is a construction of a sequent A,... A, — A iff there are at most
free variable occurrences !, .. zi ¢ FV(M).

Let PROOFN- denote the set of sequent proofs in N~

Theorem 8.23 Given a proof in PROOFN- of s = A;... A, — A, one can find a
construction M of s, and conversely.

Proor We shall inductively define encoding functions f : PROOFN- — TERM ,
¢ : TERM — PROOQOFy- such that it can readily be seen that f(I) is a construction of
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II, and g(M) is a sequent of which M is a construction. We use II, II,, I, etc. to denote
proofs. The function f is inductively defined by:

I=FA— A: f(Il) = v,

I, I, .
— — — . — z o
I = f=beAdl=B: f(1I) = fzaz=s ), v = (25)),
where v; is the first variable of type A4 in FV(f(xa755)), if there is such a variable;

otherwise v = L.

M . .
I =S5t FI) =< F(387), /(7%5) >.

I
X4—0 . _ . ) AAB
= X(AAB)SC f() = Jt(}grlzuq)["’f1 = ("’; " ))0],
where v; is the first fresh variable of type A A B, and w; is the first variable of type
Ain FV(f(325)), if there is such a variable; otherwise v = vf,
The second rule of < A —> is treated analogously.

I
I=x @ve)” f(I) = Kfﬁ,B(f(ij_h))-
The second rule of <— V > is dealt with analogously, using K} 5.

| SRR | n
— XA-C VB-.0. _ . 2
II= XY(AVB)—=C - f(H) = ([< ’\”?f(XA_.c):’\”ff(yg_,c) >]>'UfVB):
where v}, is the first fresh variable of type AV B; v; resp. v; is the first variable of type
A resp. type B in FV(f(32)) resp. FV/( f(y8%5)), if there are such variables;

XA—C
otherwise v = vft, vF = vlg .

I
II= X—(ADB) (I = (’\”ff(k—f_'.;é))a
where v; is the first variable of type A in FV( f(53%5)), if there is such a variable;

otherwise v/ = v{l.

dh o I
I = Seiseves: fD) = f(x8%z), [oF = (v, f(5))],
where v; is the first fresh variable of type A D B, and v; is the first variable of type

B in FV(f(5325)), if there is such a variable; otherwise R

I
0 =S8 f() = flgati=p)lv? = ofvf := vfl],
where vy is the first fresh variable of type 4, and v;, v; are the first distinct variables
of type A in FV(f(xz3y=5)), if there are such variables; otherwise vt = vf = o,
The last step in II is an application of <-—~ A >y < A D> K VS,
<~V —=>, <—=~D>, <~D—>, respectively: This case is treated in analogy to
thecase of <= V>, <V o>, <o A > < A —>, <—= A >, < A —>, respec-
tively.

All remaining cases: take as encoding term the term provided by the induction
hypothesis.

The function g is inductively defined as follows:
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e M=zA € VAR: g(M) =+ A— A.
¢ M =< N4 G?>: g(M) =4 oC)

XY AAB?
where X resp. ¥ is the sequence of types of the free variable occurrences (fvos) in

g(N) resp. g(G).

N B
¢ M = (AzN)A28: o(M) = 24755, where X is the sequence of types of the fvos in
g(N).
g(N) _ﬂ_
o M = (N(A!\B))O: g(M) — X_)AQAE—»A ’

where X is the sequence of types of the fvos in g(N).
o M = (NU"B)),: Similar to the previous case.

o M =(c">F,G): g(M) = ("'Aga)f}:g’

where X is the sequence of types of the fvos in g(@).

A—A BB
W) ASFASE

o M=(N*F G NgVAR o) =D —xcp

where X resp. Y is the sequence of types of the fvos in g(N) resp. ¢(G).

® M =Kjg(N),i=0,1: g(M) = xiﬁv.ﬁ’

where X is the sequence of types of the fvos in g(V).

¢ M = [GNERC: g(ar) = T IEGEC O (oG

XY (AVBIDC
where X resp. Y is the sequence of types of the fvos in 9{G) resp. g(N). O
We conclude this chapter by two simple

EXAMPLES (i) The sequent s; = (~ 4 O C) ~ (AV B) — C has exactly two distinct
(cut)-free proofs in N~ without using structural rules, viz.

bADC‘zﬁ,A—»C and N(AvB)_S,NA C—-C
1 15

which are encoded by (v742C, v34) resp. (v;42C, (p](4V5) o).
(ii) Also the sequent s, = (AV B) D C(AvV B} — C has exactly two distinct (cut)-free

proofs in N~ without using structural rules, viz.

— —
_A—>£LZAVB§ C=C B — (AV B) C-c

{AVB)OCASC (AVB)SCB-C . (AVB)-(AVE) C—C
(AVB)>C(AVE) —=C (AVB)DC(AVE) ST,

which are encoded by M = ([< ,\vi‘(ngVBDCKﬁ,B(Uf ), Avf (”{AVBDCK}LB(”{B )) >l
ngVB)), resp. N = ('ngVBDC: v{*"¥). Note that M >> N.



Chapter 9

Monoid models and the
informational interpretation of
substructural propositional logics

After having motivated, presented, and discussed in the previous chapters various families
of substructural propositional logics, we shall now take up again the idea of an infor-
mational interpretation of propositional logics in models based on abstract information
structures. The abstract information structures to be considered in the present chapter
are semilattice-ordered groupoids < I,-,N,1 > as introduced in [Dosen 1989] which are
semilattice-ordered monoids with certain additional properties. Such semilattice-ordered
monoids will be calles slomos, and models based on slomos will be called monoid mod-
els. An informational interpretation of all the logical systems we have dealt with will be
developed, based on a suitable understanding of slomos. We shall characterize all these
systems by appropriate classes of monoid models. In the intuitionistic minimal and the
intuitionistic case this is, essentially, DoSen’s [1989] semantics. The constructive minimal
and the constructive case require some natural extensions, (cf. also [Thomason 1969)],
[Lépez-Escobar 1972], [Gurevich 1977], [Rautenberg 1979], [van Dalen 1986] and [Akama
1988b)). Moreover, we shall argue to the effect that slomos in a certain sense provide an
erhaustive picture of abstract information structures, thereby to a certain extent ‘justi-
fying’ the rather general title of this investigation. We shall also briefly consider (linear)
- modalities and the paradigm of dynamic interpretation. A few applications of the monoid
model semantics are presented in an appendix.

9.1 Monoid models

We shall reproduce a version of Dosen’s [1989] groupoid model semantics. This monoid
model semantics, which will turn out to be adequate for the structural extensions of
MSPL and ISPL considered earlier, is then generalized to the constructive minimal and
the constructive case.

Definition 9.1 A semilattice-ordered monoid is a structure < I »»M,1 > such that 1 €
I, I is closed under the binary operations - and N, - is associative, N is associative,
commutative, and idempotent (i.e. <I,N > isa semilattice), and - distributes over N (i.e.

121
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for every a,b,c€ I' a- (bN¢c) = (a-b) N (a-c) and (bNe)-a=(b-a)N(c-a)), cf. [Dosen
1989, p. 43]. A semilattice-ordered monoid < I »* 1,1 > such that 1 is a neutral element
wrt - (ie. foreverya € I, a=a-1and a = 1-a) will be called a slomo. In a slomo the
partial order < is defined by a < biff a = a N b.

In Section 9.2 we shall develop an informational interpretation for the systems =, (2
€ {MSPL, ISPL, COSPL", COSPL}, A C {P, C, C', E, E', M}), which is based on
the following understanding of semilattice-ordered monoids <I,-,N,1>:

[ is a set of information pieces;

® - is the addition of information pieces;

¢ N is the intersection of information pieces;

* 1is the initial, ideally the empty piece of information.

The defined relation < can be interpreted as the ‘possible development’ (in the sense of
‘possible expansion’) or the ‘possible prolongation’ of information states or pieces. In this
way the monoid model semantics will link up with and generalize the semantical models
which in Chapter 2 have been presented as information models.

Definition 9.2 (i) A structure < I y+yN, 1,9 > is called a monoid model for MSPL iff
<1,-,N,1 > is a slomo and vy is a mapping from PROP U {L} into 27 such that for
every ¢ € PROP U {1} the following holds:

(M Heredity v) a3 Nay € vo(g) iff (21 € v(g) and a; € y(q)).
(ii) A monoid model for ISPL is a monoid model for MSPL <1I,-,N,1,% > in which
’Ug(.l.) = 0

Definition 9.3 The valuation v induced by a monoid model for MSPL < I, w1 v >
is the function from the set of all L-formulas into 27 inductively defined as follows (where
g € PROPU{1}):

v(g) = l(g),

v(t) = I

v(T) = {e]|1<a},

v(B/A) = {a|(Vbev(4))a-bev(B)}

W(A\B) = {a|(Vbev(4))b-aec v(B)},

v(AoB) = {a] (It € v(4)(Tb, € v(B)}by - by < a},

AAB) = {ala€v(4) and a € v(B)},

WAV EB) = {a|(3b €v(4))(Tb €v(B))byNby<aorac v(A) or a € v(B)}.

Definition 9.4 (semantic consequence) Let M =< T, -, N, 1,v9 > be a mornoid model for
MSPL. If X is a non-empty sequence A ... Ay, let v(X) = v(Ar10...04,).

v(X) Cv(A) if X is nonempty,

X — A holds (or is valid) in M iff { 1€ u(A) otherwise.
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Lemma 9.5 For every monoid model for MSPL < I,.,N,1,v >, every a, b € I, and
every L-formula A:

(N Heredity v) anbe o(A4) iff (a€ v(A) and b € v(A4)).

PRooOF By induction on the complexity of A, cf. the proof of Lemma 10 in [Dogen 1989].
Here is one case: 4 = (B/C):

anNbev(B/C)
if (Ve e v(C))(anbd)-ce v(B)
ff (Ve€v(C))(a-c)N(b-c) € v(B) distrib. of - over N
iff (Ve € v(C))(a-c) € v(B),
(Ve € v(C)) (b ¢) € v(B) ind. hyp.
iff a€v(B/C)andbev(B/C). O

By the definition of <, it immediately follows from (N Heredity v) that for every
monoid model for MSPL < I,.,n,1, v >, every a, b € I, and every L-formula A:

(Heredity) if @ < b, then (a € v(A) implies b € v(4)).

Definition 9.6 (i) A structure < I »5 0, 1,95, v5 > is called a monoid model for
COSPL™iff <I,-,n,1 > is a slomo and v§, vy are mappings from PROP U {L,~t,
~ T} into 27 such that for every ¢ € PROP U {L,~1t,~ T} the following holds:

(N Heredity v5) a1 Na; € vi(q) iff (a; € vy (¢) and a, € v (q)).
(N Heredity v;) a1 Nas € v5(q) iff (a; € % (g) and a; € vy (q)).

(i) A monoid model for COSPL is a monoid model for COSPL~ < I, N, 1, vf,v5 >,
where v§ (L) = vf (~ t) = of (~ T) = 0, v (L) = I, and for every L~-formula 4, v*(A)
Nv (A) = 0.

Definition 9.7 The valuation functions v*, v~ induced by a monoid model for
COSPL™ <I,-,N,1,v§,v; > are the functions from the set of L™~-formulas into 2 which

are inductively defined as follows (where ¢ € PROP U {L,~t,~ T}:

vHg) = uf(a)

v (g = wul(e),

vF(t) = 1,

v'(T) = {a|l<a},

vt(B/A) {a| (Vb€ vt(A))a-be v(B)},

i

v~ (B/A) {a| (31 € v=(B))(Ib, € vH(A))b; - by < a},
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vT(A\B) = {a]|(Vbevt(A))b-a € v(B)},

v (A\B) = {a](3b € v (B))(3b; € v+ (A))by-b, < al},
vF{AoB) = {a|(3b € v*(A))(3b2 € v+(B))by by < a},
’U—(A o] B) = {a I (Hbl € ’U_(A))(Hbz c ‘U_(B))bl by < a},
vH(AAB) = {a]acvt(4) and a € v(B)},

v (AAB) = {a]|(3b€ v (A4))(Tb; € v~ (B))bNbs < aor

a € v7(A)ora € v (B)},
v'(AVB) = {a]|(3b € v+(A4))(Ib, € v (B))byNby < aor

a € v¥(A) ora € v*(B)},
v (AVB) = {a]la€v(4) and a € v (B)},

vi(~A) = v (4),
v (~d4) = vt(A).

Thus, the definition of a valuation v in a monoid model for M SPL resp. ISPL agrees
with the definition of v* in monoid models for COSPL- resp. COSPL. Moreover, the
clauses v~ (A) directly reflect the provable equivalences (red1) and (red 2) in terms of =+
listed in Chapter 6 (for instance v=(B/A) reflects ~ (B/A) =% (~ Bo A)). Therefore, to
each L™-formula A4, one can find a {provably acceptance-equivalent) L™~-formula B such
that v~ (A) = v*(~ A) = v*(B), and ~ occurs in B only in front of propositional variables
or constants. This fact will be used to simplify inductive proofs.

REMARK As in the semantics for N and N- presented in Chapter 2, instead of the two
valuations v* and v~, one could equivalently in the case of monoid models for COSPL
use one three-valued resp. in the case of monoid models for COSPL~ one four-valued
valuation v assigning to each pair <a,4 > (a € I, A an L~-formula} one of the values ¢
(true), f (false), or u (undetermined), resp. ¢, £, , or o (overdetermined).

Definition 9.8 (semantic consequence) Let M =< I,-,N,1, v, v; > be a monoid model
for COSPL™. If X is a non-empty sequence A ... A,, let vH(X) =vt(410...04,).

vH(X) C vt (A4) if X is nonempty,

X — A holds (or is valid) in M iff { 1 € vr(4) otherwise.

Lemma 9.9 For every monoid model for COSPL~ < I, N, Lvf,v5 > every a, b € I,
and every L™-formula A:

(N Heredity v*) anbevt(A4) iff (a € vt(A4) and b € v+(4));

(N Heredity v=) anbe v (A4) iff (a€v(4)andbe v~ (4)).

ProOF By simultaneous induction on the complexity of A. (N Heredity v*): use Lemma
9.5. (N Heredity v~): It is enough to consider the cases where A is a propositional variable,

4, t, or T. In these cases use (N Heredity v;) or, if we are dealing with monoid models
for COSPL, the fact that v~(1) = I and v=(t) = v~(T) = 0. 0.
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It can readily be verified that (N Heredity v*) resp. (N Heredity v~) implies that
for every monoid model for COSPL™ < I,-,0,1,v5,v5 >, every a, b € I, and every
L~-formula A:

(Heredity ¥)  if a < b, then (a € v*(A) implies b € v*(4)),
(Heredity =)  if @ < b, then (a € v~ (A) implies b € v=(4)).

Theorem 9.10 (soundness) If F= X — A, then X — 4 holds in every monoid model
for =.

ProOOF By induction on the complexity of proofs in Z. All cases are straightforward,
except for (T —), (V —) and (~ A —). In the latter two cases one has to make use of
both (N Heredity v*) and (Heredity *) (cf. [Dosen 1989, p. 48]). Let us here consider
(T —)and (~ A —).Let M =<1I.N1,0v>resp. M = < I,-,N,1,v5,v; > be any
monoid model for Z. (T —): It is enough to show that v+(ToA) C v*(A) and vt (AoT) C
v*(A). Consider the latter. Note that if & < b, then c-a < c-b, for every a, b, ¢ € I. Suppose
c € v*(AoT). Then (Iby € v+(A4)) (3b; € v*(T)) by-by < c. Now, 1 < b,. Therefore b, =
by -1 < by - by. By transitivity of <, b; < c. Hence, by (Heredity ), c € vH(4). (~ A o)
Let C = Ci0...0C,, D = Dyo...0D,, and suppose that v+(C ~ AD) C v*(E),
v¥(C ~ BD) C v*(E). Then v*(C ~ A) C v*((E/D)) and v*(C ~ B) C v*((E/D)).
Hence (Va € v*(C)) (Vb € v*(~ A)) a-b € v*((E/D)), (Va € vH(C)) (Vb € vF(~ A))
a-b e vt((E/D)). Therefore,

a € vH(C), by € vt(~ A), by € v (~ B, bnNb, <b
onlyif a-b; € v*((E/D)) and a- by € v*((E/D))

only if (a-b)n(a-b) € vH((E/D)) ' (N Heredity v*)
only if a-(b;Nb,;) € vH((E/D))
only if (a-b) € v*((E/D)) (Heredity ™).

Since also (a € v*(C) and (b € vT(~ A) or b€ v*(~ B))) only ifa-b € vt((E/D)), we
obtain
a € v7{C)
only if (Vb€ vt(~ AV ~ B)) a-b€ vt ((E/D))
iff (Vbe vt (~(AAB))a-be vt ((E/D))
only if +*(C ~(AAB)D)Cv+(C). O

Using (N Heredity v), Dosen [1989, p. 52 f.] proves a number of correspondences be-
tween structural rules of inference and conditions on slomos in the sense that a given
structural rule R is validity preserving in a monoid model M iff the condition on slomos
corresponding to R is satisfied by the slomo on which M is based. In the present context
we have the following correspondences:
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| | for every a, b€ I ”

[FTai5h ]
[CTaeze ]
|Cla-ba<a-b, a-b-a<b-a |
[EJagae ]

|E'|a-b<a-b.q, b-a<a-b-a |
B

[M[1<a

Table 8.1: Structural rules and conditions on slomos.

Note that the behaviour of ~ is not reflected in these structural conditions on slomos;
it is completely captured by the valuations v~ and w+. By the above correspondences,
Ea is sound wrt the class of monoid models for = whose underlying slomos satisfy the
conditions that correspond to the rules in A. Let us call this class of models Mg, .

9.2 Informational interpretation

By itself, the monoid model semantics of the previous section might convey the impression
of being just a technical tool without very much explanatory value and intuitive appeal.
In this section we shall, however, develop an informational interpretation (in the sense of
Appendix 2.5) for the systems Z, that is based on the above mentioned understanding
of slomos < I,-,N,1 > i.e., Iis a set of information pieces or information states, - is the
addition of information pieces, N is the intersection of information pieces, 1 is the initial,
ideally the empty piece of information, and < is the prolongation resp. development
of information pieces resp. states. Of course, this reading is illuminating only if we are
willing to attach some explanatory power to the notions of addition and intersection of
information pieces. We claim that under the suggested reading the properties which in
slomos are postulated for -, N, and 1 are intuitively plausible. Or, to state it the other way
round, if we have a set I of information pieces including one initial piece of information
together with one addition and one intersection operation on I, then it is plausible to
assume that these components should form a siome.

What can we say about the evaluation of formulas in monoid models? The valuation
function v resp. v* in monoid models for MSPL resp. COSPL™ specifies truth conditions;
the valuation v~ in monoid models for COSPL™ in addition specifies falsity conditions,
where falsity is falsity in the sense of refutation. Thus, in contrast to the minimal in-

1There are some minor differences between our presentation and DoSen’s semantics in [1989] which it
might be useful to briefly point out. Although P is absent, DoSen considers only one implication sign, viz.
/, which he denotes by — instead of «—. Moreover, Dosen has onily one verum constant in his language,
viz. T. Whereas v(T)} = {a | 1 < a}, v{t) = W. This ensures that T entails t but not conversely and,
moreover, that both are interderivable, if the condition on slomos corresponding to M is satisfied. In
[1988, p. 366] Dosen explains that T in his basic axiomatic system behaves as an arbitrary propositional
variable. This is, however, not reflected in the groupoid model semantics; since T is not evaluated by vo.
The treatment of T as a propositional variable explains why 1 is not assumed to be a neutral element
wrt -. Finally, Doden considers extensions of his base logic by - L — A instead of (1 —), which has as a
consequence that applications of (cut} cannot be eliminated, if M is absent. If (L —) is used instead of
- L — A, DoSen’s Definition 15 can be given a more familiar form by requiring that v(L) = @.
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tuitionistic and the intuitionistic case, in the minimal constructive and the constructive
systems truth and falsity are regarded as prima facie independent notions. Whereas for
the minimal logics inconsistent pieces of information are admitted, this is not the case for
structural extensions of ISPL and COSPL. Now, do under the given interpretation of
slomos the valuation clauses emerge as plausible? Let us first consider the valuations v
and v*. The evaluation of elements from PROP resp., in the minimal cases, PROPU{Ll}
or PROP U {l,~ t,~ T}, is unproblematic. (N Heredity v), (N Heredity vg), and (N
Heredity vy ) are natural requirements. If a formula A is true on the strength of the in-
tersection a N b of information pieces a, b, then A should be true on the strength of both
pieces, and conversely. If |, ~ t and ~ T are treated as falsa, they should be interpreted
as §. The evaluation of t and T is without doubt reasonable: we may distinguish between
a verum constant which is true at every information state and another verum constant
which is true at every information state into which the initial piece of information may
develop. The clauses for / and \ are just directional versions of Urquhart’s [1972] truth
definition. Moreover, it is rather natural to say that if A is true at information state b,
and B is true at information state by, then (Ao B), which is a conjunction in the sense of
Juxtaposition, is true at every information piece into which b, - b, may develop. The case
of A is again unproblematic. In the case of V it makes perfectly good sense to require that
(AV B) is true not only at pieces of information a at which A is true or at which B is true
but also at pieces of information which prolong the intersection of pieces of information b
and by such that A is true at b, and B is true at b,. Thus, (A V B) should also be true at
information pieces which prolong so to speak the common content of information pieces
by, b; with A true at b, and B true at b,.2 Finally, the evaluation of ~ A by means of v+
is intuitively convincing. We have that ~ A is true at a piece of information a iff A is false
at a. Turning to v~ we can thus say that the definition of v~ (~ A) is intuitively sound. In
general the definition of v~ can be justified by the naturalness of the above-listed prov-
able equivalences in terms of =*.% Moreover the definition of semantic consequence is in
accordance with what we have said so far. The information states into which the initial
(or empty) piece of information 1 may develop shoud take precedence over the set of all
information pieces.

In order to show that the present interpretation of monoid models is in fact infor-
mational according to the criteria suggested earlier, we have to provide a model which
can arguably be talked about as the intended model under the given interpretation and
which is a canonical model for the logic in question. Now, the following assumptions seem
to be natural: (i) Think of information pieces as finite sequences of formula-occurrences,
since in our basic calculi the databases are juxtapositions of such finite sequences. (ii)
Identify those pieces of information which are interderivable (identifying A, ... A, with
Ayo...0A,, if n > 1). This is enough from the point of view of deductive information
processing, although the representatives need not be synonymous in the sense of being
intersubstitutable in all deductive contexts: if 4 and B are interderivable, by (cut) we
havein Z5, - XAY — Ciff - XBY — Cand - X — Aiff X — B. The formnlas inter-
derivable with T can then be viewed as representing the empty piece of information, since

*Dosen [1989, p. 45] motivates the evaluation clause for disjunction by pointing out an analogous
clause in Birkhoff’s and Frink’s representation of lattices by sets.
¥We have already commented upon the falsity conditions of (A0 B), t, and T in Chapter 6.
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we have that bz, — Aiff kg, T o A Next, let a and b be two pieces of information,
and let A resp. B be a representative of a resp. b. The addition a- b of @ and b should be
the equivalence class of (A o B) wrt interderivability, and the intersection ¢ M b of a and
b should be the equivalence class of (A V B) wrt interderivability. These considerations
naturally lead us to the following definition of intended models.

Definition 9.11 Let X= Aj0...0 4, if X = A,... A, (n > 1), and let X= 4, if
X = A. For every formula A, the equivalence class of 4 modulo « will be denoted by
| A|. The intended model Mz, =< I, M, 1, v > resp. Mg, =< 1,-,0,1,v, vy > for
Ea is defined as follows, where g € PROP U {L,~t,~ T}

o [ ={| X || X is a non-empty sequence of occurrences of L-formulas
resp. L~-formulas };

o [ Xif - | Xa] =Xy 0 X

o [Xa] N X = X1 vV X,
e 1=|T]|

* uw(g) = {IX| [F=, X — g¢};

b UJ(Q) = UO(Q)!
with vf (L) =0, if = = ISPL and
W§(L) = v (~ t) = vH(~ T) = 0, if E = COSPL;

* % (9) = {|IX| [F=, X -~ g},
with vy (L) = I and for every L™-formula A,
B = the intersection of v*(A) and v (A), if E= COSPL.

This construction clearly has an algebraic twist; note, however, that it does not vield the
so-called Lindenbaum-algebra for Z,. In the constructive case e.g. there are no algebraic
operations corresponding to =, /, \, t, and ~ (cf. Rasiowa’s [1974, p. 68] quasi-pseudo-
Boolean algebras for N). The present semantics is close to syntax, but it is not ‘syntax
in disguise’.

Lemma 9.12 Mz, is in fact a monoid model for =.

PRrOOF The constraints on monoid models for ISPL and COSPL are explicitly stated.
Obviously, 1 € I and I is closed under - and N. Associativity of - and associativity,
commutativity, and idempotence of N are immediate. To see that 1 is a neutral element
wrt -, observe that bz, (Tod) e Aand kg, (Ao T) o A Distributivity of - over N
follows by (1) (Chapter 3). Eventually, we have to check (N Heredity vg') and (N Heredity
vy ). We check the latter property, to check the former is completely analogous:
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| X1le vg(g) and [Xale€ vy (g)
if FXy—~qgand  X; >~gq Def. v

iff FX;V X, g (0 =), (0 1), (V =), (V1)
iff | X v Xa|€ v(q) Def. vy
iff Xy N |Xzle vg(q) Def. N. O

We shall now show that the intended monoid model for =a 1s a canonical mode] for
Ea and therefore our interpretation of monoid models is informational according to the
constraints suggested in Chapter 2.

Lemma 9.13 (Truthlemma) For every |)z' |€ I and every L-formula resp. L™-formula A,
the intended model Mz » Satisfies:

IJ%IE v(A) resp. vH(A) iff Fz, X — A,

provided that no formula B provably acceptance-equivalent to 1, ~ t, or ~ T acting as
a falsum occurs in X.

PRrOOF By induction on the complexity of A.

* A=q€ PROPU{L,~t,~ T}: by the definition of v resp. vy

A=t |X|eo(t)iff | X|e IiffF X — t.

A=T:

|X[e o(T)
iff 1<|X|
iff | TIN|X[=]|T| def. <
| TVX|=|T| def. N
if FX—->T (V 1), (zd), (v —).

A =~ B: It is enough to consider the case where B is a propositional variable or
constant. Then the claim holds by the definition of v .

A=(B\C):

Xle v(B\ C)
iff (¥]Y]e u(B)) |¥] o |X|€ v(C)
iff (¥[Y|€ o(B)) [¥ o X|€ o(C)
iff VY(if Y — B, then - YX — C) ind. hyp.
if FBX C (cut), (id)
iff X - (B\C) (T\) (= \).
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* A= (C/B): analogous to the previous case.

[ ] A:(BOC)Z
f-X——»(BOC)
f VA FBoC— 4, then kX —4)  (cut), (id)
iff VA(f F BC — A, then F X — A) (0 1), (0 =)

if IV IY2(-Y; - B and + Y2 - C and
VA(f VY, — A, then +F X — A4)) (id)

if (3 Yile o(B)3 [Bile o(C)) F X=F 0B ind hyp., (cut)
i (3[Vile o(B))3 [Vale o(C)) [¥: 0 VI <[%] def. <, (v 1), (- V)
iff |)°é[e (B o C).

* A= (B AC): use the induction hypothesis.
e A=(BvV C):

|Xle (B VC)

iff (3 [Yile o(B))(3 [Fale o(C)) (% v 5| n | )=
iV Yyl o [Xle o(B) o |%le o(C))

iff 3Y;3Y, (Vi B and Yoo C and
- (If'l v }%)V)%Hl}l Vl%) or

P—)Z'—+ B or 52-—» C ind. hyp., def. N
if +X- (BVC) V1), (v =), (cut), (id) (— v)
iff - X—-(BvC) (e T) (o —).O

With the Truthlemma in our hands, we are in a position to prove completeness.

Theorem 9.14 (completeness) If X — A holds in every monoid model from Mz, , then
"'EA X — A

PROOF Suppose that Y2s X — A. Then no formula B provably acceptance-equivalent to
L, ~t, or ~ T acting as a falsum occurs in X*. By the Truthlemma, this is the case iff
in Mz, we have that })}]ﬁ v*(A). But this implies that vﬂ}%) Z v(A), since ])2‘[6 v()z’)
It remains to be shown that in each case the underlying slomo of the intended mode]
satisfies the conditions which correspond to the rules in A, i.e. Mz, € Mz,. But thisis a
completely straightforward matter. Consider by way of example the case of the structural
rule E. It has to be shown that | 4 [<IA|-|A]ie. |AIN|A-4|=]|A|. Now, using
E it can easily be seen that Fea AV(AoAd) = A O

4Compare this proviso with the requirement that points in the standard Henkin-style canonical model
for IPL are consistent.
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Next, consider the following conception of an intended monoid model. Think of a piece
of information as the deductive closure of a finite sequence of formula occurrences. The
intersection of information pieces should then be nothing but set intersection, and the
addition a; - a; of two pieces of information a;, a, with finite representations X, X,
should be the deductive closure of X; X5, i.e. the deductive closure of the juxtaposition of
their representations. The empty piece of information would be represented by the set of
all theorems, i.e. the deductive closure of the empty sequence. Where these considerations
lead us is DoSen’s [1989] construction of a canonical monoid model:

Definition 9.15 The canonical monoid model Me, =< I/, NV, v, vy > for 2, is
defined as follows, where ¢ € PROP U {1,~ t,~ T}

o I'={a|3X,a={A|tg, X — A}};

e ifa;={Aflz, X1 > A}anday={A|Fg, Xy — A}, then
a; J g = {A ““EA X1X2 — A},

o ' is set-intersection;
L 1’:{A||—EA —+A}
e wig)={eel]|qgecal

* vi(g) = UO(Q),
with 'u{)"(_L) 0,if = =ISPL and
v (L) = vi(~ t) =vH(~T)=0,f Z=COSPL;

¢ 5(g)={ael|~qe€a}
with v5 (L) = I and for every L™-formula A,
0 = the intersection of v*(A) and v~ (A4), if = = COSPL.

It can easily be shown that Mg, is in fact a monoid model for = and that M’
M=, . Assume for example C € A. Suppose thata = {A|F X — A}, X = 4,..
Since

Ay AA L A, — A
Ajo...0AAj0...04, - A

X —A,0...0A4, Ajo...04, = A
X—-A

{AlF XX - A} C{A|F X - A},ie.a-a<a

As it turns out, both constructions of canonical models are isomorphic and can there-
fore be identified:

Observation 9.16 There exists an isomorphism between the underlying slomos of Mz,

and Mgz, .
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ProoF The function & : I' — I defined by h({A |F=, X - A)) = [)Z" is such an
isomorphism. 1 — 1: Suppose that a = {Albs, X - A} #b={B Fz. ¥ — B},
but i(a} = h(b). Then bz, XoV and by (cut) and (T o), @ = b. Onto: obvious. The
homomorphism property is easy to establish. Let g — {Alrz, X - A}, b= {B |z,
Y — B}. h(a'b) = [)0( 0 lf'l = h(a)-h(b). h{a"'b) = {A Fz=, X = A}n{B |Fz, Y — B}
={Clrzy X > Cand ke, ¥ = C} = {C|Fe, X V ¥ C}, by (1 o), (v —). Thus
h(an'b) = [X v Yl =|x]n | = h(A)NA{B). O

In conclusion we may say that the monoid model semantics provides an informa-
tional interpretation for a broad range of substructural propositional logics, including the
limiting cases N~, N, M PL, and IPL. Moreover, different conceptions of deductive infor-

mation processing within one family of formal systems naturally correspond to different
conceptions of slomos as abstract information structures.

9.3 Extension with (linear) modalities

Although, as explained in a footnote to Chapter 2, the present investigation is concerned
with the ‘subjective understanding of logic’ as opposed to the ‘objective’ or ‘external’
understanding which involves modal belief operators, it might be interesting to give a
short outlook on possible treatments of modal operators. We shall briefly consider the
so-called ‘exponential’ ! (“of course”) of Girard’s intuitionistic linear logic (see {Girard
1987], [Avron 1988], Troelstra. [1991]).

The rules for Girard’s ! can be divided into two groups, viz. rules for introducing ! into
premises and conclusions, and rules mimicking the structural rules C and M for formulas
prefixed by an occurrence of 1. We may also add rules mimicking P, C’, E, and E':

(=) XAY - B+ X!AY - B;

(=) 14;..14, > A 14, .. 1A, SlA;

('P) X!ABY - C F X!BIAY — C;

('C) XIA'AY - B + XI1AY — B;

(IC) XIAY'AZ - B + XY!4Z — B,
XIAYIAZ — B + X!AY Z > B,

('E) XIAY - B F X'4'4Y — B;

('E') XY!AZ - B+ XIAY'AZ — B,
XIAYZ — B + X'AY'AZ — B;

(M) XY — B} X!AY — B.

It is well-known that with the rules (—!) and (! —), lis an S4-modality. That is to say

!'can be interpreted by means of a reflexive and transitive binary relation R’ using the
standard Kripkean truth definition

(1) v(14) = {a € I'| (Vb € I)(aR' implies b € v(A))}.

R' may be understood as the ‘accessibility relation’ between information states.
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Definition 9.17 A ! — slomo is a structure < I, R',-,N,1 >, where < I.-,N,1 > is a
slomo, R is a reflexive and transitive binary relation on I, and < C R'.

In other words, every expansion is an accessible information state, but the converse is not
true in general,

Definition 9.18 Let IMSPL, resp. 'ISPLa denote the result of adding the above rules
for ' to MSPLA resp. ISPL,.

Definition 9.19 !-monoid models for \MSPL resp. !ISPL are defined exactly as monoid
models for MSPL resp. ISPL except that they are based on !~ slomos and ! is interpreted
according to (!).

Lemma 9.20 For every !-monoid model < I,R',-,N, 1,7 > for \MSPL resp. \ISPL,
every a, b € I, and every L-formula A:

(Heredity) if a < b, then {a € v(A) implies b € v(A4)).

PROOF By induction on A; we consider A =!B. Suppose a < b. If a € v(!B), then (Vb € I)
(aR'b implies b € v(B)). By transitivity of R!, (Vb € I) (aR'b implies b € v(!B)). Since <
C R, (Vbe I} (a < bimplies b € »(!B)). O

Observation 9.21 Each structural inference rule R listed in the following table is validity
preserving in a !-monoid model M for {IMSPL resp. ISPL, if the condition on ! — slomos
~associated with R is satisfied by the ! — slomo on which M is based:

H | for every a, b, ¢, d € I, for every A ”
|"P |acv(!d)and b€ v('B) impliesa-b< b-a I
| 'C |a€v(ld) impliesa-a<a I
IC' | a€v(!A) impliesa-b-a < a-b,

a € v(!A) impliesa-b-a < b-a

|'E [a,bev(ld)anda-b<cimplicsa<c, b<c l
'E' [a,bev(!d) anda-c-b < dimplies a-¢ < d,
a,bev(ld)anda-c-b < dimpliese-b < de
[ M | a€v(!A) implies1 < a i

Table 8.2: Structural rules and conditions on !-slomos.

These conditions are ‘mixed’; they combine structural properties and valuations.
Therefore the semantics is probably not restrictive enough to count as very illuminat-
ing. We leave it as an open question whether the soundness results which follow from
the above observation can be supplemented by completeness theorems for the respective
model classes.® Providing a clear structural characterization for Girard’s modalities is one
of the main open problems in the area.

5A completeness proof for the propositional modal logic 5S4 based on (the propositional part of)
Nelson’s systems N~ and N but in a language without < is sketched in [Routley 1974).
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Note that the rule (—!) fails to be an instantiation of the earlier schemata (I) for
introducing connectives into premises (see Chapters 4 and 7). This again points to a
certain narrowness of (I). Note also that the methodology which determines rules for
introductions on the lhs of — does apply to (! —). Consider an application of (cut) such
that the last steps in proving the premise sequents of this application introduce ! as the
main connective of the cut-formula:

In order to remove this application of (cut) by an application of (cut) with smaller degree,
now also counting occurrences of !, one in fact ends up with (! —):

1 I
A, A =54 XAZ5F
X4, 1A Z > B

Thus, one obvious direction into which the schemata (1) could be liberalized would be to
allow more than one occurrence of the connective that is introduced.

Another obvious question in this connection concerns the refutability conditions of 14,
A natural idea is to comsider ! as the dual of a possibility operator ¢ with evaluation
clauses

(OF) vH(CA)={aecTI|(Be I) (aR'b and b € v*(A))},
(O7) v (CA)={aeI|(Vbc I} (aR'b implies b € v+ (~ AN},

such that one obtains

(%) v-(14) = o(14),
(") v (l4)={a€l|(Fbecl)(aRbandbe vt (~ 4))}.

Note that distinguishing between truth and falsity conditions in modal logic is something
of interest by itself, in particular if we think of an epistemic reading of modal operators.

9.4 Dynamics of interpretation

Talking about inference as the dynamics of information processing, we should also briefly
relate our informational Interpretation by means of monoid models to the recent paradigm
of dynamic interpretation. We shall consider dynamic predicate logic DPL [Groenendijk
& Stokhof 1991], since DPL’s underlying philosophy of meaning has been clearly worked
out and applied. DPL has been developed by Groenendijk and Stokhof as a compositional
semantics for pronominal anaphora and is primarily designed for a translation of natural
language texts into the language of first-order logic. Therefore the comparison to the
monoid model semantics for substructural propositional logics must remain partial and
will cover only one fundamental idea behind DPL, viz. the philosophy of meaning on
which DPL is based and which can be put into a slogan as follows:

The meaning of a declarative sentence is the contribution
of this sentence to the transformation of information states.
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Thus, suppose someone is in information state b, and happens to understand a declarative
sentence A (which is uttered or which she can read). Understanding A brings her into
another information state ¥, and if the information conveyed by A is new, b’ will differ from
b. In other words, the meaning of a declarative sentence may change information states or,
In more static words, relate such states. Of course, the possible output of the alteration
process depends on the input, but not necessarily as a function. The interpretation of
a sentence A in DPL therefore becomes a binary relation [A| between possible input
and output states (which in DPL are represented as assignments of objects to individual
variables). Let us consider a few important examples. DPL assumes as interpretation of
the full stop *.” (between declarative sentences) the obvious relational interpretation of o,
viz. the composition of binary relations (see [van Benthem 1989]). This is quite natural
in view of our interpretation of o as a text-forming operation of Categorial Grammar in
Chapter 4. The meaning | (4 0 B) | of (A0oB)® in DPL thusis {< a,b >| Jc(< a,¢ >€ |4
and < ¢,b >€ [B])}." An atomic sentence p is interpreted as a fest, its meaning is a
correctness check: < a,b >€ |p} iff a = b. Negated sentences do not allow for establishing
anaphoric links; in Groenendik’s & Stokhof’s terminology they are “externally static” wrt
pronominal anaphora. Therefore, in DPL, negated sentences are also interpreted as a
kind of test: < a,b>€ |-A| iff @ = b and there is no c such that < b, ¢ >€ |A4|.

As far as the propositional level is concerned, the essentials of the dynamic interpre-
tation in DPL are also available in the monoid model semantics. We must define the
dynamic interpretation of a formula A as a binary relation between information states:
|A] € I x I. Since we already have defined the partial order < on I, we need not do this
for each connective separately; one obvious and natural definition is:

1Al = {< a,b>]a € v(4) and a < b}.

According to this definition, the possible output states for an understanding of A in state
a are the possible expansions (or prolongations) of a. This fits neatly into the above
informational interpretation by means of monoid models. Distinguishing in the monoid
model semantics for our constructive minimal and constructive systems between positive
valuations (truth conditions) and negative valuations (falsity conditions) even allows for
a more fine-grained account which is sensitive to the difference between the verification
and the falsification of a declarative sentence:

A" = {< a,b>|a € v(4)* and a < b}
|A]” = {<a,b>|a € v(4)” and a < b}.

However, we can restrict ourselves to [A[", since |4]™ = | ~ A]™.

®Groenendijk & Stokhof use ‘A’ instead of ‘o’.

"Van Benthem [1989] observes that the associative Lambek Calculus (with ‘product’ o) is sound wrt
its natural relational interpretation. In this interpretation / and \ are defined as the following operations
on binary relations:

A/B)] = {< a,b >{ Ye(< b,c >€ | B] implies < a,¢ >€ JA])};
I(B\ 4)} = {< a,b > Yc(< ¢,a >€ |A] implies < ¢,b >€ [ B])}.

A sequent X — A is said to be valid according to this interpretation iff | X | C |A| (note that X is
not allowed to be the empty sequence). Doden [1990] claims that the associative Lambek Calculus fails,
however, to be complete wrt the relational interpretation.
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At this point one might object that, intuitively, the development of information states
need not be persistent, i.c. preserve truth, or falsity, or both. True enough, expansion is
not the only conceivable kind of development. The idea of a development of information
states which fails to be truth or falsity preserving can also easily be realized in the monoid
model semantics. Define <1 C I x I by {<a,b>|(3c € Ila- c = b}. We may then define
the following non-persistent notion of development of information states:

A" = {< a,b>] (Ve € vH(A4))a « b}.8

Thus, dynamic semantics in the style of DPL can be done on slomos in interesting
ways. Certainly, this is a topic to be further explored. For instance, given the informational
structure of slomos, what are natural dynamic operations?

9.5 Slomos as an exhaustive format of abstract in-
formation structures

In this section we want to make use of the functional completeness results of Chapters 4
and 7. For this reason it will be instructive to discuss the philosophical significance of such
theorems. Indubitably, the point of functional completeness results is that they establish
bounds: classical negation — and material implication O are functionally complete for
classical propositional logic CPL with its interpretation by two-valued truth-tables, and
therefore in dealing with CPL we are entitled to restrict ourselves to - and . But, of
course, we may also shift the perspective, start with, say, an axiomatization of the {~,D}-
fragment of CPL and look for a semantics such that {-, D} turns out as a functionally
complete set of connectives. Clearly, these are two sides of the same coin, the difference
lying in what we consider as basic and choose as our starting point. Accordingly, criticism
of functional completeness theorems can be divided into (at least) two types. (a) One
may complain about the semantical theory which is used. It may be too artificial, overly
complicated, extremely poor, or whatever. (b) One may put into question the selection of
connectives which are to be provided with a semantics that makes this collection emerge
as functionally complete. The selection may be difficult to justify, or the justification may
rest on controversial assumptions or convictions. An instantiation of criticism of type (a)
is Kreisel’s [1981] attitude towards the functional completeness results of McCullough
[1971] and Zucker & Tragesser [1978]. Likewise our remarks concerning ‘extraction’ and
‘infixation’ as type forming operations of Categorial Grammar (see Chapter 4) can be used
as a criticism of the semantical theory on which the functional completeness theorem for
positive sequential propositional logic PSPL is based. Moreover, we have mentioned that
the proof theoretic interpretation of Chapters 4 and 7 does not cover operations like the
S4-modality !. An example of avoiding this kind of criticsm by considering a certain set of
connectives as fundamental is Schroeder-Heister’s [1984] point of view that his functional
completeness theorem for 7PI should be considered as “demarcating the strength” (p.
1298} of intuitionistic conjunction, disjunction, implication, and falsum. Similarly one

*In [Girard 1989] the idea can be found to conceive of the intensional, ‘multiplicative’ conjunction o in
linear logic as an update operation. Independently, similar ideas have been developed by Fuhrmann [1991].
Fuhrmann considers base systems which are considerably weaker than (certain fragments of) linear logic
and associates additional inference rules with postulates of Gardenfors’ [1988] theory of belief revision.
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could say that what McCullough [1971] does is specify the formats of truth-definitions for
Kripke frames for PL such that the set of intuitionistic connectives {—,A,V, D} resp.
{1,A,V,D} turns out as functionally complete. No matter which position is adopted, the
philosophical significance that is attached to a functional completeness theorem is thus
always relative to either a set of connectives or a semantical theory. For our considerations
we shall consider as basic not a certain set of connectives but rather the proof theoretic
semantics developed in Chapters 4 and 7, i.e. higher-level versions of Gentzen's sequent
format with naturally obtained schemata for introducing connectives into premises and
conclusions. We take it that this is a limitation to a respectable starting point.

Let us now, in order to have available a succinct notation, be explicit about the higher-
level structural inference rules which we have added to the higher-level Gentzen caluli G™,
G, GN7, and GN:

(B): XTUY - Ty b XUTY » Ty, T;« XTUY F T, « XUTY;
(C): XTTY - U+ XTY - U, U XTTY F U « XTY;
(©): XTYTY; > U F XTYY; » U, U« XTYTY; F U « XTYY,,

XTYTY: = U b XYTY; = U, U e XTYTY, F U — XYTY,;
(E): XTY —»U F XTTY = U, Ue—XTY + U « XTTY;
(E}): XTYY, - U b XIYTY; - U, U« XTYY, - U — XTYTY,,

XYTY, - U b XTYTY; - U, U XYTY, + U — XTYTY,;
(M): XY U F XTY - U, U« XY F U« XTY.

Let for ¥ € {G,G™, GN™,GN}, ¥ denote the result of extending ¥ by the higher-
level structural inference rules in A = {B| Re A AC {P,C,C'"\E,E',M}}. The

following table summarizes earlier results:

G +{I)+ (1) characterizes MSPL,  is characterized by Mysspy s
Ga + (1) + (II) characterizes I[SPL, is characterized by Myspy,
GN, + ()~ (IV) characterizes COSPL, is characterized by Mcospr-

(
GNa +(I) = (IV) characterizes COSPL, is characterized by Mcospr,

Table 8.3: Characterization results.

In Table 8.3, in each case the proof theoretic semantics mentioned is equivalent to
the monoid model semantics it is associated with. Hence, every cornective F which is
proof theoretically definable is also explicitly definable in every monoid model of the
appropriate model class M, since F is explicitly definable from the primitive connectives
of the system characterized by M. To this limited extent, i.e. insofar as we are content
with propositional connectives which are proof theoretically definable, monoid models
resp. their underlying slomos form an exhaustive format of information models resp.
abstract information structures.

We should, however, not forget about ‘the other side of the coin’. Thus, there is an
obvious

PROBLEM Characterize the formats of truth-definitions for slomos with various proper-
ties such that {/,\,A,0,V, T, 1} resp. {/,\, A, 0,V, T,t, L} resp. {~,/,\,A,0,/,\,t, T}
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turns out as a functionally complete set of connectives.

From a solution to this problem we can e.g. expect an answer to the interesting question
whether in COSPL™ there is a connective F definable from {~ /" \s Ao, /,\,t, T} such
that v (F) = {a |1 £ a}.

Moreover, there are many purely model theoretic notions of functional completeness
over structures like slomos, see e.g. [van Benthem 1991].

9.6 Appendix: Applications

One use to which a complete semantics usually is put, in particular, if it character-
izes an undecidable logic, is the design of countermodels. By producing a countermodel
we can e.g. show that eoogpr- =~~~ (p; \ p2) =% ~ (p1o ~ p;). The moniod model
<I,, N, 1,vf,v5 > is (partially) specified as follows: I — {a,b}, b-b = a,a = 1,
anb = b, vy (p1) = {a}, v (p2) = {8}, and Y (p1) = vy (p2) = I. Then v+ (~ (po ~ D)) =
v¥(~ p1 0 py) = I whereas v*(~~ (p; \P2)) = v*(p: \ p2) = {b}. In the present appendix,
we consider a few more applications of our monoid model semantics; the first two of them
make use of countermodels.

9.6.1 Monotonicity and paraconsistency

Recently, Urbas [1990] has suggested that genuine paraconsistent logics should lack the
monotonicity rule M (alias weakening). A genuine paraconsistent logic should not only
do without ez contradictione sequitur quodlibet, it should also fail to be ‘explosive’ wrt
its connectives. In Johansson’s M PL €.g. one can, by means of M, for every formula B
prove (AA—A) — =B, i.e. although inconsistency does not lead to triviality wrt arbitrary
formulas, it leads to triviality wrt arbitrary negated formulas. According to Urbas, the
presence of M “renders it impossible to add anything but the most impoverished imi-
tations of negation without thereby producing some version of explosiveness” [1990, p.
352]. In our constructive minimal systems, however, the presence of M does not imply
explosiveness wrt one of the connectives.

Observation 9.22 There are monoid models for COSPL;, M e A'C {P, C, C, E,
E’, M}, and L™-formulas A, B, C, such that

(AN~ A)—=~B, (AA~A)—>BoC,
(AA~ A)— B\ C, (AA~ A)— C/B,
(AA~A) > BAC, (AA~A)— BVC,

are not valid.

To be sure, Urbas’ observations concerning the dependence of a system’s explosive-
ness wrt certain connectives on the presence of M apply to systems with contraposition
or they are true, if contraposition (as a rule) is assumed for the system resp. theories
based on the system. Urbas shows that where in addition to contraposition as a rule
“lw]eakening is present, all sentences in a theory are asserted to imply each other” (1990,




9.6.2 Negation in a formal system 139

p. 353]. He holds that attempting to avoid ex contradictione while retaining monotonicity
“requires the abandonment also of symmetry-guaranteeing rules like [c]ontraposition, as
well as desirable properties like the intersubstitutivity of provable equivalents. The result
is logics which are paraconsistent only at the expense of important systemic properties and
well-behaved connectives, especially negation. In short, the cost of retaining [wleakening
++. 18 not worth 4t” [1990, p. 353] (emphasis HW). From an informational perspective one
couldn’t disagree more. Both contraposition and intersubstitutivity of provable equivalents
should be rejected, if positive and negative information are to be treated in their own
right.? Indeed, intersubstitutivity of provable equivalents does not hold for COSPL} and
COSPLA and moreover contraposition principles wrt ~ fail to be valid in these logics.
However, strong, constructive negation is a well-motivated and established concept. It can
even be discovered in natural language, where it has e.g. made its way into the lexicon,
as can be seen from pairs like good versus bad and good versus not good. Considering
strong, constructive negation as a genuine negation thus reinforces the intuition that the
notions of morotonicity and paraconsistency are independent of each other.

9.6.2 Negation in a formal system

At various places in the preceding chapters the concept of negation has been touched
upon and discussed. In this subsection we shall look at negation from a somewhat more
abstract perspective, viz. Gabbay’s [1988] suggestion of a purely syntactical proof theoretic
definition of what is negation in a formal system. We shall use the monoid model semantics
to show that negation as refutation in fact differs from negation as inconsistency, or, more
concretely, that strong negation ~ in the systems COSPL, and COSPL, provides a
counterexample to Gabbay’s characterization of negation as inconsistency.'®

In terms of sequent calculus presentations, in [Gabbay 1988] formal systems are con-
sidered in which the sequent arrow — represents a syntactic consequence relation in the
sense of Tarski and Scott, i.e., for all formulas A, B and finite sets of formulas T, IV we
have:

(reflexivity) FT-—+A for A el
(monotonicity) if T — A and ' CIY, then + I — A;
(cut) if #T'—= Aand FTU{A} > B, then I — B.

Since on the lhs of — there appear sets of formulas, implicitly applications of the struc-
tural operations of permuting and contracting premise occurrences are permitted. This
standard approach excludes substructural logics from the status of a formal system. We
shall therefore require a sequent calculus to have among its rules merely the logical rules,

(id) FA— A and

®This is not to say that one should dispense with contraposition in every application of strong negation.
See e.g. [Nelson 1959 for systems with contraposible constructive negation.
1°A more detailed investigation within the framework of structured logics can be found in [Gabbay &
Wansing 1992].




140 9 Monoid models and informational interpretation

(cut) Y —~A XAZ - BF XYZ — BIU

To be precise, (id) and (cut) need not be primitive rules; if (id) resp. (cut) is not a
primitive rule, then, however, it is required to be admissible, i.e. its addition must not
increase the set of provable sequents. One may then add all kinds of structural inference
rules, e.g. any combination taken from the collection A — {P,C,C',E,E', M} introduced
in Chapter 2. Note that (id), (cut), and M are equivalent to (reflexivity), (cut), and
(monotonicity) only in the presence of P and C.

Gabbay’s {1988] central idea in defining a negation (as inconsistency) * in a system
is that A — B is provable iff A and B together lead to some undesirable C from a set
of ‘unwanted’ formulas 8. Now, let us assume juztaposition as the operation for combin-
ing premise occurrences. The object-language counterpart of juxtaposition is intensional
conjunction o. Let us therefore suppose that o either is already in the language under
consideration or that it can conservatively be added. Gabbay’s basic definition which is
appropriate e.g. for intuitionistic minimal, intuitionistic, and classical logic, can be refor-
mulated in the more general framework as follows:

Definition 9.23 Let £ be any formal system and let * be a unary connective in the
language L of £. We say that * is a negation in £ iff there is a non-empty set of L-
formulas @ which is not the same as the set of all L-formulas, such that for every finite,
possibly empty sequence X of L-formula occurrences and every L-formula A we have:

Fe X — A Hf (3B €6x) (z XA— B or b, AX — B).12

If such a set of unwanted formulas 9 exists, it can always be taken as {C [, — *C'},
since by (id) the latter set is non-empty, if  is a negation. In order to present a definiton
which no longer refers to 8, Gabbay proves a lemma, using (monotonicity). The presence
of (monotonicity) is required, because (cut) is used instead of (cut).

Lemma 9.24 Let * be a negation in £ with 6 according to the definition of negation.
Then for every finite, possibly empty sequence of L-formula occurrences X and every
L-formula 4, (a) and (b) resp. (a’) and (b’) are equivalent:

(a) bz XA — C for some C such that Feo— xC;
(b) Fz XA — B for some B € 8+

1 Among the examples covered by the definition of negation in [Gabbay 1988] there nevertheless is a
substructural logic, viz. an axiomatic presentation of R5, -, i.e. relevant implicational logic R+ together
with the so-called Ackermann axioms for negation:

AN1: (A 2 "‘IB) >(BD —A),
AN2: (AD-4) D -4,
AN3: —-—4D A

In order to treat this system as a formal systemn in the sense of Tarski and Scott, — has to be considered
as representing relevant consequence in the sense of the relevant deduction theorem for R-.
?Moreover, 8 should not contain theorems, Otherwise, for instance, with 6* = { T} the unary operation

«A % {A D T) would be a negation in IPL.
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{a’) Fz AX — C for some C such that Fe— *C

(b} AX — B for some B € 8% .

PROOF (b) implies (a), (b’) implies (a’): Suppose that B € 6x. Since ke B — B, we have,
by definition of #, - — *B. (a) implies (b), (a’) implies (b’): Suppose that for some C
with &y — xC we have -y XA — C resp. A, AX — C. Since Fe— *C,F; C — B for
some B € 8. Applying (cut), one obtains -, XA — B resp. b AX — B. O

The definition of negation in a system can now be reformulated as follows:

Definition 9.25 A unary connective  in the language L of a formal system £ is said to
be a negation iff for every finite, possibly empty sequence of L-formula occurrences X and
every L-formula A the following holds:

Fe X — %A iff for some C s.t. bz — *C we have Fe XA—> Corl, AX = C.

It can easily be verifed that intuitionistic minimal, intuitionistic, and classical negation
are negations in a system. In each case one may define 6% := {L1}. For negation in
intuitionistic and classical propositional logic one may also define 8% as {-pAp}, for some
propositional variable p. According to our reformulated definition, —", —! are negations
in MSPLA and ISPLa: one may define -7 = 4 := {1}, or, in the case of ISPL,,

6-" := {="pop}, 6~ := {po ~'p}, for some propositional variable P

Gabbay [1988] generalizes the basic definition of negation as inconsistency in the course
of considering a number of formal systems with a recognized negation.!® He also introduces
one system which serves as a counterexample showing that the definition of negation
remains non-trivial. The proof of non-triviality Teveals a-necessary condition for being a
negation as inconsistency. In the present context it can be shown that, if % is a negation
in £, then for each L;-formula A, Fep = *(xAcA)orby, — x(Ado *A), where L; is £
conservatively extended by adding o:

Fe, *A — %4 (id)
iff b; *AA—>Bor by AxA— B for some B € 6* def. of neg.
iff Fc, (#AoA) > Bor bp (AoxA) > B for some B €8x (o —), (cut)
iff kg — %(x40A) or Fe, — *(AoxA) def. of neg.,

for some set of L;-formulas #x. Thus, if for some L-formula A there is a model for £, that
neither validates *(+ Ao A) nor *(4o+A), then * cannot be a negation in £. In other words,
if * is a negation in £, then for each L;-formula A, *(*A 0 A) or *(4 o *A4) is validated
in every model for £;. Note that if one is dealing with partial valuations, then *(xA o A)
and *(A o *A) need not be false (at a point) in a model in order not to be validated.

13The generalized definition refers to conservative extensions. It captures systems with # which are not
expressive enough to have a corresponding set 8x. We have already remarked that, if * is a negation in a
formal system L, then there are £-theorems. By contraposition, * cannot be a negation in £, if £ has no
theorems. As has been pointed out by W. Rautenberg (personal communication), this would imply e.g.
that classical negation — is not a negation in the —-fragment of classical propositional logic. The definition
in terms of conservative extensions takes care of cases like these (see also example E5 in [Gabbay 1988]).
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Observation 9.26 Constructive negation ~ fails to be a negation as inconsistency in
COPSL, and COSPL,.

ProOOF Take any slomo F = < {1},-,N,1 >, and define valuation functions vt, v~ from
the set of formulas into 21!}, such that M = < {1},,n,1,v*, v~ > is a monoid model
for COSPL and v*(p) = v™(p) = 0. Then v~(~ pop) = v {po ~ p) = P. Therefore
1 ¢v7(~pop),1¢€v (po~ p), and hence 1 ¢ vt~ (~pop)), 1 € vt (~ (po ~ p)).
Thus, neither ~ (~ pop) nor ~ (po ~ p) is validated in M. Since M & Mcospr, and hence
also M € M,5p p7»~ i COSPLA and COSPLY is not a negation as incomsistency. O

9.6.3 Beth’s Theorem

A standard corollary to the interpolation theorem in classical and also intuitionistic logic
is the definability theorem of Beth (see e.g. [Tennant 1978)), saying that certain notions
of implicit and explicit definability coincide. We first shall consider ‘extensional’ notions
of implicit and explicit definability, implicit e-definability resp. explicit e-definability. For
these notions the proof of Beth’s Theorem seems to depend on the presence of the tra-
ditional structural inference rules P, C, and M. We shall present a detailed proof of the
theorem for E(p c My (E € {MSPL,ISPL, COSPL~,COSPL}) indicating each apphi-
cation of structural rules.

Let (X ;’) denote the result of replacing every occurrence of p as a subformula in a
formula from X by an occurrence of ¢, and let var(X) denote the set of propositional
variables that occur as subformulas in formulas from X,

Definition 9.27 A propositional variable P € var(X) is said to be implicitly e-definable
in X wrt E¢p,c,Mm) iff for every propositional variable g € var(X) and every monoid model

< I: K] n, 1, Vg > resp. < I} ) ﬂ! l’ 'U;-, vﬁ_ > from ME{P:C-M}:

v(X) No((XF)) Coulp=*q), if =€ {MSPL,ISPL}
resp. v*(X)Nv*((X})) Covt(p=gq), if E € {COSPL-,COSPL).

Definition 9.28 The variable p is said to be explicitly e-definable in X wrt Ewp,c,my iff
there exists a formula A4 such that var(4) C var(X) — {p} and:

Fepomy, X = (=" A), if € {MSPL,ISPL}

resp. I_E{P,C.M} X—(p=4), ifEZe{COSPL,COSPL}.

Theorem 9.29 A propositional variable p 1s explicitly e-definrable in X wrt E¢p,c My iff
p is implicitly e-definable in X wrt Ep.cM)-

Proor Explicit implies implicit: Suppose p is explicitly e-definable in X wrt Ep,cM)-
Then

FX— (p=" A) resp. - X— (p = A).
op
Consider the latter case. Clearly - (X ;) — (g= A) and
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ko(p=a) _(X)-(=4)
XAX) = (p=4) XAX,)—(g= 4)
X AX) ~ (p= 4)A (g = 4).

ol

Using C this gives X A(Xy) = (p = ¢). To see this, consider e.g. the following proof;

q A—t A A —"A P
(9/A)N(A/p)—~q/A {qJAIN(A]p)~A]p
q/A—g/4 Afp—Afp a/A)NA/pHa/ANA/p)=(g/A)o(A/p
{A/p)A(a/A)=q/A TATp)A(gjA)=A]p C (¢/AN(AT P}~ (a/A)o(A]p)
(A/p)n(g/A)—=(a/A)A(A]p) (g/A)A(A/p)—q/p

(A/pIn(g/A)—q/p

(PAAA(A\R)A(P/A)A(A/P)N G\ A)A(A\Q) A (g/ AV [A q) g/

[ op
By completeness, FX A(X,) — (p = ¢) gives v+ (X) N vH(XP) C v*(p = g), for every
monoid model < I,-,N,1,v,v; > from ME{P cMy Implicit implies explicit: Assume
that p is implicitly e-definable in X wrt E¢p,c,M}- Consider the constructive minimal

and the constructive case. Then, by completeness, _I;' A( )2':) — (p = ¢), and therefore
] [ 4
FX (X)) = (p=9):

Now we can derive p X — q/(_)o(:) and ~ p X—n q/()z':); consider e.g. the following
derivation:

X(X )= (P\DADPIAB/ NG/ DINPAA D\ ~PIA~D/~B)A(~af )

[+ cP
X (X,)—p\q

op
PX(X,)—q
o oP
pX—q/(X,).

By the interpolation theorem there exists an interpolant A such that
(a) FpX— A
o P
(b) F 4—q/(X,)

() F~pX— A
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(d) F A -~ g/(X5) and

var(A) C var(X) — {p,q}. From (a) we obtain - X — p\ Aand, using P, - X — A/p.
From (b) we obtain - (X?) — A\ ¢ and, using P, I (X?) — g/A and hence also
F X — A\pand - X — p/A. Similarly, (c) and (d) give - X —~ P\AF X = A/ ~p,
X — A\ ~p,and + X -~ p/A. Altogether - X — (p= A). O

With different, intensional notions of implicit and explicit definability (suggested, al-
though not under these labels, by H. Schellinx}, we can prove the Beth Theorem also in
the absence of structural inference rules.

Definition 9.30 A propositional variable p € var(X) is said to be implicitly i-definable
in X wrt Z, iff for every propositional variable g € var(X) and every monoid model
<I,,N,1,9 >resp. < I,-,N,1,v5,v5 > from Mg,

v(X(X2)) Cv(p = g),
v(X2)X) Cvlp=gq), if Ee{MSPL,ISPL)

resp. v+(X(X§)) Covt(p=ygq),
v ((X2)X) Cvt(p=g), if E € {COSPL-,COSPL).

Definition 9.31 The variable p is said to be explicitly i-definable in X wrt 4 iff there
exist formulas A, B such that var(4) C var(X) — {p}, var(B) C var(X) — {p}, and:

Fza X — (p/A),

}—EA X — (A/P)a

Fe, X - (p \ B),

Fza X — (B\p), if £€ {MSPL,ISPL}

resp. bz, X — (p/A),
I_EA X — (A/p),
X — (p\ B),
= X — (B\p),
I—EA X - (NP/NA):
X = (~Af ~p),
I—EA X - (Np\ ~ B)a
X —=s(~B\~p), ifE¢ {COSPL‘,COSPL}.

Theorem 9.32 A propositional variable p is explicitly i-definable in X wrt Z, iff p is
implicitly i-definable in X wrt 5,.

PROOF Explicit implies implicit: Suppose p is explicitly i-definable in X wrt Ep,c,M)-
This gives - (X?)g — A and - XA — p. By (cut), I X(X?)q — p and hence - X(XFP) —
p/q. Similarly we get X(X?) — ¢\ p and also - (XP)X — p=t g F X(XP) —
P =g, and + (X)X — p = g. Completeness gives v(X(X;’)) C v(p="*gq), 'u((X;’)X)
C v(p =7 g) resp. v7(X(XF)) C vt(p = q), vT((X?)X) C v*(p = ¢). Implicit implies
explicit: Consider again the constructive minimal and the constructive case. The only
difference to the proof of the previous theorem is that completeness now directly gives




9.6.3 Beth’s Theorem 145

[+] Hofo(g%:) — (p=g),

F(X,) X (p=g).

Clearly, in the absence of P we cannot expect that [*] always leads to two interderivable
interpolants. O
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The following index is not in every respect (-convertability 61
systematic or even ‘complete’. However, it [-equality 61

is intended to be user-friendly.
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B-reduction 59, 61, 66
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Br-reduction 66
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Church-Rosser 109
Church-Rosser Theorem 61, 66, 69,
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- extension 37, 140 {.
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deduction theorem 4
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e- 142
i- 144
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A; 38
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- of freedom 89
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Dunn 15, 17, 26, 33, 39, 41
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strong - 83 ff.
n-convertability 66
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exponential 17, 132 ff.
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falsification 5, 14, 25, 135
falsity
- conditions 14, 25, 81, 126 £., 135
constructible - 14, 87
Fenstad 25, 83
Fitch 81
formula
- component 46, 95
L- 2
L~- 81
RL- 941
SL- 46
unwanted - 140
formulas-as-types 59 ff., 107, 118 f.
frame
-for R, 26
Kripke - 4, 24
type structure -
Freudenthal! 21 f.
Friedman 76, 107 ff.

110 ff.



156

Frink 127
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57, 93, 100, 103 £, 136 ff.

G 46 ff, 95, 137
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Girdenfors 136

Gentzen 45 ff., 97 ff,, 127
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Groenendijk 134 ff.
Grzegorczyk 7L, 13, 26
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(Heredity *) 25, 125

(N Heredity vp) 122
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empty - 26 f., 122, 126 f.
initial - 7 f., 122, 126 {.
intersection of - 122, 126 ff.
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- processing 1, 16 f., 127
fine-structure of - 17
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strongly - 96
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Lyndon- 42
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relational - 135
intersubstitutivity 14, 83, 85, 127, 139
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K 89
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= 32
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Kruskal’s Theorem 39
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Langholm 25, 83
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constructive minimal - 17
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default - 16

direct - 14, 22, 93
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extended direct - 14, 93

external - see subjective
understanding of logic

intuitionistic - see IPL

intuitionistic implicational - see I PL,

intuitionistic linear - 17, 33, 132, 136
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internal - see
objective understanding of logic
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modal - 134

objective understanding of - 16, 132
partial - 25, 83
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relevance - 17
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subjective understanding of - 16, 132
substructural - 13
Lopez-Escobar 10, 20, 22 f., 24, 91, 121
LP 271
Lorenz 45

Markov 14
McCarthy, Ch. 20, 22
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McKinsey 85
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modalities 132 ff.
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counter- 138
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information - 1, 122
intended - 28, 112, 128 £,
Kripke - 4, 25
L- 76
monoid - 121
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multiplicative - 27
type structure - 110 ff.
model theory 1
Moh 17
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monomorphism 65, 67
Moore 16
Moortgat 54, 58
Morrill 54
MPL 61,131,132, 1401
MSPL 31f, 1221
“MSPL 133
(mult) 27
multiset 17, 27 {., 33

N~ 14,16, 24 ff,, 54, 81 1., 93, 107,
118 ff., 132 f.

N 141,241, 816, 1321

natural deduction 45, 55, 59

negation
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constructive - see strong negation
directional - 4, 104 f.
- in a system 139 ff.
intuitionistic - 13 f., 31, 105
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Nelson 14 f, 22, 24, 81 {., 93, 133, 139
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normal form 69
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strong - 69
- wrt B-reduction 59, 63
strong - 61, 77 ff.
- wrt On-reduction 67
strong - 67, 80
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partial - 7, 122, 135
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Pearce 14, 83, 89
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derivational - 55
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Popper 14
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Pottinger 63
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proof 4,101, 18 ff., 89 ff.
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direct - see canonical proof
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Rautenberg 83, 121, 141
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Reiter 16
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(red2) 85,124

redex 69
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research 8 f.

RM 41
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Routley 24, 81, 133
Ruitenburg 19
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Tamura 41
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