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Abstract

It was proved in McKinsey and Tarski [7] that every finite well-
connected closure algebra is embedded into the closure algebra of the
power set of the real line R. Pucket [10] extended this result to all finite
connected closure algebras by showing that there exists an open map
from R to any finite connected topological space. We simplify his proof
considerably by using the correspondence between finite topological
spaces and finite quasi-ordered sets. As a consequence, we obtain that
the propositional modal system S4 of Lewis is complete with respect
to Boolean combinations of countable unions of convex subsets of R,
which is strengthening of McKinsey and Tarski’s original result. We
also obtain that the propositional modal system Grz of Grzegorczyk
is complete with respect to Boolean combinations of open subsets of
R. Finally, we show that McKinsey and Tarski’s result can not be
extended to countable connected closure algebras by proving that no
countable Alexandroff space containing an infinite ascending chain is
an open image of R.

1 Introduction

In [7] and [8] McKinsey and Tarski introduced closure algebras as algebraic
models of the propositional modal system S4 of Lewis, and proved that S4
is complete with respect to this semantics. They showed that the variety
of closure algebras is generated by its finite well-connected members, thus
obtaining the finite model property of S4, which, together with the finite
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axiomatizabilty of S4, implies its decidability. They also showed that ev-
ery closure algebra is represented as an algebra of subsets of a topological
space, thus giving an alternative adequate topological semantics for S4. They
proved that every finite well-connected closure algebra is embedded into the
closure algebra of the power set of the real line R, hence obtaining that the
variety of closure algebras is generated by the power set algebra of R. In
logical terms, this means that S4 is complete with respect to R. Whether
or not every finite connected closure algebra is embedded into the power set
algebra of R was stated as an open problem in [7] and was subsequently
answered in the affirmative by Pucket in [10]. He proved that every finite
connected topological space is an open image of R.

In recent years the interest in topological semantics of modal logic has
been renewed. In particular, Shehtman [11] extended the McKinsey and
Tarski result to a bimodal language capable of expressing connectedness,
Mints [9] proposed a new proof of completeness of S4 with respect to the
Cantor space C, while Aiello et al [2] supplied a new proof of complete-
ness of S4 with respect to R using a new technique of topo-bisimulation
first developed in Aiello and van Benthem [1]. In this paper we present yet
another proof of completeness of S4 with respect to R exploring the iso-
morphism between the categories of finite topological spaces with open maps
and finite quasi-ordered sets with p-morphisms, respectively. This provides
a considerable simplification of Pucket’s construction. In additon, it leads
to completeness of S4 with respect to Boolean combinations of countable
unions of convex subsets of R, as well as with respect to Borel sets over open
subsets of R. These results strengthen the original result by McKinsey and
Tarski. Another consequence of our theorem is completeness of the modal
system Grz of Grzegorczyk with respect to Boolean combinations of open
subsets of R.

The paper is organized as follows. Section 2 consists of preliminaries. In
it we recall the one-to-one correspondence between Alexandroff spaces and
quasi-ordered sets and between Alexandroff T0-spaces and partially ordered
sets. We present the order-theoretical equivalents of finite connected and
well-connected spaces, and introduce the tree like and the quasi-tree like
topological spaces. We show that every finite well-connected T0-space is
an open image of a finite tree like topological space, and that every finite
well-connected topological space is an open image of a finite quasi-tree like
topological space. Most of these results are well-known and are scattered
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throughout the literature. For references we use the standard textbooks in
general topology by Engelking [3], and by Kelley [5], as well as the papers by
Kirk [6] and by Aiello et al [2]. We also introduce the tree sum of finitely many
finite trees and the quasi-tree sum of finitely many finite quasi-trees. We
prove that every finite connected T0-space is an open image of the tree sum
of finitely many finite trees, and that every finite connected space is an open
image of the quasi-tree sum of finitely many finite quasi-trees. These results
appear to be new, but see Shehtman [11] for somewhat similar constructions.
In Section 3 we prove that a finite T0-space is an open image of R iff it is
connected. In Section 4 we extend this result to all finite topological spaces
by showing that a finite topological space is an open image of R iff it is
connected. In Section 5, as a consequence of our construction, we show
that in order to refute a non-theorem of S4 it is sufficient to consider only
Boolean combinations of countable unions of convex subsets of R, and that in
order to refute a non-theorem of Grz it is sufficient to consider only Boolean
combinations of open subsets of R. Hence, every finite connected closure
algebra is embedded into the closure algebra generated by the countable
unions of convex subsets of R, and every finite connected Grzegorczyk algebra
is embedded into the Grzegorczyk algebra generated by the open subsets of
R. In logical terms, this means that S4 is complete with respect to Boolean
combinations of countable unions of convex subsets of R, and that Grz
is complete with respect to Boolean combinations of open subsets of R.
Finally, in Section 6 we show that McKinsey and Tarski’s result can not be
extended to the countable case by proving that no countable Alexandroff
space containing an infinite ascending chain is an open image of R.

Acknowledgement. Thanks are due to Yde Venema from University of
Amsterdam for drawing our attention to Shehtman’s paper [11].

2 Preliminaries

Denote by Top the category of topological spaces and continuous maps. Also
let Qos denote the category of quasi-ordered sets and order preserving maps.
A subset Y of a quasi-ordered set (X,≤) is said to be an up-set if x ∈ Y and
x ≤ y imply y ∈ Y . With every quasi-ordered set (X,≤) we can associate the
topology τ≤ on X whose opens are exactly the up-sets of (X,≤). Moreover, a
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map f : (X1,≤1) → (X2,≤2) is order preserving iff f : (X1, τ≤1) → (X2, τ≤2)
is continuous. Hence, we have a functor F : Qos → Top.

Call a topological space (X, τ) an Alexandroff space if the intersection of
any family of opens of (X, τ) is again an open of (X, τ). Denote by Alex
the category of Alexandroff spaces and continuous maps. It is obvious that
Alex is a full subcategory of Top. Moreover, one can easily check that F is
one-to-one, and that the F -image of Qos is Alex.

To construct a functor G : Top → Qos, recall that the specialization
order on a topological space (X, τ) is defined by putting

x ≤τ y iff x ∈ {y}.

It is routine to check that ≤τ is reflexive and transitive. Hence, (X,≤τ ) ∈
Qos. Moreover, if f : (X1, τ1) → (X2, τ2) is continuous, then f : (X1,≤τ1) →
(X2,≤τ2) is order preserving. Therefore, G : Top → Qos is well-defined.

An easy calculation shows that G is a right adjoint to F , and when
restricted to Alex these functors are inverse isomorphisms between the cate-
gories Qos and Alex. In addition, the identity map idX : FG(X, τ) → (X, τ)
is continuous and one can show that Alex is a coreflective subcategory of
Top.

Since every finite topological space is an Alexandroff space, we obtain as
an easy consequence that the category Qosf of finite quasi-ordered sets and
order preserving maps is isomorphic to the category Topf of finite topological
spaces and continuous maps.

Also recall that a map f : (X1,≤1) → (X2,≤2) is called a p-morphism if
it is order preserving and

f(x) ≤2 y implies (∃z ∈ X1)(x ≤1 z & f(z) = y),

for any x ∈ X1 and y ∈ X2. We call a map f : (X1, τ1) → (X2, τ2) open
if it is continuous and the f -image of any open set in (X1, τ1) is open in
(X2, τ2). Now we have that f : (X1,≤1) → (X2,≤2) is a p-morphism iff
f : (X1, τ≤1) → (X2, τ≤2) is open. Hence, the category QosP of quasi-ordered
sets and p-morphisms is isomorphic to the category AlexO of Alexandroff
spaces and open maps. As a particular case we obtain that the category QosP

f

of finite quasi-ordered sets and p-morphisms is isomorphic to the category
TopO

f of finite topological spaces and open maps.
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Let us also mention that (X,≤) is a partial order iff (X, τ≤) is a T0-space.
So, we obtain that the category Pos of partially ordered sets and order pre-
serving maps is isomorphic to the category AlexT0 of Alexandroff T0-spaces
and continuous maps, and that the category Posf of finite partially ordered
sets and order preserving maps is isomorphic to the category (TopT0

)f of
finite T0-spaces and continuous maps.

Finally, if we restrict ourselves to open maps, we get that the category
PosP of partially ordered sets and p-morphisms is isomorphic to the category
AlexO

T0
of Alexandroff T0-spaces and open maps, and that the category PosP

f

of finite partially ordered sets and p-morphisms is isomorphic to the category
(TopO

T0
)f of finite T0-spaces and open maps.

In the light of this correspondence let us give order analogues of the
topological notions of connectedness and well-connectedness. Recall that a
subset of X is said to be clopen if it is both closed and open. A topological
space (X, τ) is called connected if there are no clopens in (X, τ) other than
∅ and X.

For a quasi-ordered set (X,≤) and x ∈ X let ↑ x = {y ∈ X : x ≤ y}
and ↓ x = {y ∈ X : y ≤ x}. Also for Y ⊆ X let ↑ Y =

⋃
x∈Y ↑ x and

↓ Y =
⋃

x∈Y ↓ x. It is obvious that Y is an up-set iff Y =↑ Y . We call Y a
down-set if Y =↓ Y .

We say that there exists a ≤-path between two points x, y of a quasi-
ordered set (X,≤) if there exists a sequence w1, . . . , wn of points of X such
that w1 = x, wn = y, and either wi ≤ wi+1 or wi+1 ≤ wi for any 1 ≤ i ≤ n−1.
(X,≤) is said to be a connected component if there is a ≤-path between any
two points of X.

Lemma 1 A finite topological space (X, τ) is connected iff (X,≤τ ) is a con-
nected component.

Proof: Recall that open sets of (X, τ) correspond to up-sets of (X,≤τ ), and
closed sets of (X, τ) correspond to down-sets of (X,≤τ ). Hence, Y is a clopen
in (X, τ) iff it is both up- and down-set in (X,≤τ ). Now X is the only non-
empty clopen of (X, τ) iff we can get X by applying ↑ and ↓ finitely many
times to any x ∈ X. Hence, (X, τ) is connected iff (X,≤τ ) is a connected
component. q.e.d.

A topological space (X, τ) is called well-connected if there exists a least
non-empty closed set in (X, τ). Since the complement of a clopen Y is
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also a clopen disjoint from Y , it follows that every well-connected space is
connected. The converse however is not true.

For an element x of a quasi-ordered set (X,≤) let C(x) = {y ∈ X : x ≤
y & y ≤ x}. C ⊆ X is called a cluster if there is x ∈ X such that C = C(x).
A quasi-ordered set (X,≤) is said to be rooted if there exists r ∈ X such
that r ≤ x for any x ∈ X. We call r a root of X. Note that r is not unique.
Indeed, every element of C(r) will also serve as a root of X. Obviously every
rooted quasi-ordered set is a connected component, but not vice versa.

Lemma 2 A finite topological space (X, τ) is well-connected iff (X,≤τ ) is
rooted.

Proof: If (X,≤τ ) is rooted with a root r, then C(r) is a least non-empty
closed subset of (X, τ). Hence, (X, τ) is well-connected. Conversely, suppose
(X,≤τ ) is not rooted. Then there exist x, y ∈ X such that ↓ x∩ ↓ y = ∅.
Hence, there is no least non-empty closed subset of (X, τ), and (X, τ) is not
well-connected. q.e.d.

Suppose (X,≤) is a finite partially ordered set. A subset Y of X is said
to be a chain if either x ≤ y or y ≤ x for any x, y ∈ Y . The depth of x ∈ X
is the number of elements of a maximal chain with the root x. The depth
of (X,≤) is the supremum of the depths of all x ∈ X. Call y an immediate
successor of x if x < y and there is no z such that x < z < y. Call n the
branching of x ∈ X if n is the number of immediate successors of x. Call n
the branching of (X,≤) if n is the supremum of branchings of all x ∈ X.

A finite partially ordered set (X,≤) is said to be a tree if ↓ x is a chain
for any x ∈ X. A tree (X,≤) is said to be an n-tree if the branching of every
element of X is n.

Lemma 3 Kirk [6]
(1) Every finite rooted partially ordered set is a p-morphic image of a

finite tree.
(2) Every tree of branching n and depth m is a p-morphic image of the

n-tree of depth m.

Proof (Sketch):
(1) Suppose (X,≤) is a finite partially ordered set with the root r. Let

T = {(x1, . . . , xn) : xi ∈ X, r = x1 < x2 < . . . < xn}. Put (x1, . . . , xn) ≤T
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(y1, . . . , ym) if (x1, . . . , xn) is the initial segment of (y1, . . . , ym). Define f :
T → X by putting f(x1, . . . , xn) = xn. Then it is easy to check that (T,≤T )
is a finite tree, and that f is a p-morphism from (T,≤T ) onto (X,≤).

(2) Suppose (T,≤) is a tree of branching n and depth m. Let (Tm
n ,≤m

n )
be the n-tree of depth m. To construct g : Tm

n → T start from the bottom
and send the root rT m

n
of Tm

n to the root rT of T . Then go one level up. If
x1, . . . , xk, k ≤ n, are the immediate successors of rT and y1, . . . , yn are the
immediate successors of rT m

n
, then send yi to xi for i < k and send yi to xk

for k ≤ i ≤ n. In order g to be a p-morphism the successors of yi need to
be send to the corresponding successors of yj for k ≤ i 6= j ≤ n. After this
go one more level up, and do the same. Eventually, after going through all
m levels, we will get g which is a p-morphism from (Tm

n ,≤T m
n

) onto (T,≤).

q.e.d.

Corollary 4 For every finite rooted partially ordered set (X,≤) there exists
n such that (X,≤) is a p-morphic image of a finite n-tree. q.e.d.

Suppose a finite quasi-ordered set (X,≤) is given. Define an equivalence
relation ∼ on X by putting x ∼ y iff x, y belong to the same cluster. Denote
the quotient of X under ∼ by (X/ ∼,≤∼). Obviously (X/ ∼,≤∼) is a partial
order, which we call the skeleton of (X,≤).

Call (X,≤) a quasi-tree if (X/ ∼,≤∼) is a tree. Call (X,≤) a quasi-n-
tree if (X/ ∼,≤∼) is an n-tree. Call (X,≤) a quasi-(q, n)-tree if (X,≤) is a
quasi-n-tree and every cluster of (X,≤) consists of q elements.

The following lemma is an easy generalization of Corollary 4 to quasi-
ordered sets.

Lemma 5 For every finite rooted quasi-ordered set (X,≤) there exist q, n
such that (X,≤) is a p-morphic image of a finite quasi-(q, n)-tree.

Proof: Let q be the supremum of the cardinalities of C(x) for all x ∈ X.
Then replacing every cluster of X by a q-element cluster, we get a new
quasi-ordered set (Y,≤), which is regular in the sense that every cluster of
Y contains exactly q elements. Obviously there is a p-morphism from Y
to X: suppose a cluster of X consists of m elements x1, . . . , xm, and the
corresponding cluster of Y consists of q elements y1, . . . , yq. Send yi to xi for
i < m, and send yi to xm for m ≤ i ≤ q.
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Note that (X/ ∼,≤∼) is isomorphic to (Y/ ∼,≤∼). Now from the previ-
ous corollary we know that there exists n such that (Y/ ∼,≤∼) is a p-morphic
image of an n-tree (Tn,≤n). Let this p-morphism be f . Denote by (Tq,n,≤q,n)
the quasi-tree obtained from (Tn,≤n) by replacing every node t of Tn by a
q-element cluster [t] = {t1, . . . , tq}. Obviously (Tq,n,≤q,n) is a finite quasi-
(q, n)-tree. Suppose [y] = {y1, . . . , yq} is an element of Y/ ∼ and t is an
element of Tn. Define h : Tq,n → Y by putting h(ti) = yi if f(t) = y, ti ∈ [t]
and yi ∈ [y] for 1 ≤ i ≤ q. Since h[t] = f(t) and f is an onto p-morphism,
so is h. So, (Y,≤) is a p-morphic image of (Tq,n,≤q,n), and since (X,≤) is
a p-morphic image of (Y,≤), (X,≤) is a p-morphic image of (Tq,n,≤q,n) too.

q.e.d.

The topological spaces corresponding to trees and quasi-trees will be
called tree like and quasi-tree like, respectively. The following is the topolog-
ical version of Corollary 4 and Lemma 5.

Corollary 6 (1) For every finite well-connected T0-space (X, τ) there exists
n such that (X, τ) is an open image of a finite n-tree like topological space.

(2) For every finite well-connected topological space (X, τ) there exist q, n
such that (X, τ) is an open image of a finite quasi-(q, n)-tree like topological
space. q.e.d.

To extend this result to finite connected topological spaces we will use
the following construction. Suppose T1, . . . , Tn are finite trees (of branching
≥ 2). Let tli and tri denote two distinct maximal nodes of Ti.

1 Consider the
disjoint union

⊔n
i=1 Ti, and identify tli with tri−1 and tri with tli+1, respectively.

Call this construction the tree sum of T1, . . . , Tn and denote it by
⊕n

i=1 Ti.
We can generalize this construction to quasi-trees. Suppose T1, . . . , Tn are

finite q-regular quasi-trees (of branching ≥ 2), meaning that every cluster of
each Ti consists of q elements. Let C l

i and Cr
i denote two distinct maximal

clusters of Ti.
2 Consider the disjoint union

⊔n
i=1 Ti, and identify C l

i with Cr
i−1

and Cr
i with C l

i+1, respectively. Call this construction the regular quasi-tree
sum of T1, . . . , Tn and denote it by

⊕n
i=1 Ti.

1Recall that an element x of a partially ordered set (X,≤) is said to be maximal if
x ≤ y implies x = y for any y ∈ X. An element x ∈ X is said to be minimal if y ≤ x
implies y = x for any y ∈ X.

2Recall that a cluster C is called maximal if the elements of C can see only the elements
of C. A cluster C is called minimal if the elements of the other clusters can not see the
elements of C.
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Lemma 7 (1) For every finite partially ordered connected component (X,≤)
there exist trees T1, . . . , Tn such that (X,≤) is a p-morphic image of

⊕n
i=1 Ti.

(2) For every finite connected component (X,≤) there exist q-regular
quasi-trees T1, . . . , Tn such that (X,≤) is a p-morphic image of

⊕n
i=1 Ti.

Proof: (1) is a particular case of (2).
(2) Suppose (X,≤) is a finite connected component. Let C1, . . . , Cn be

all minimal clusters of (X,≤). Consider (↑ C1,≤1), . . . , (↑ Cn,≤n), where ≤i

is the restriction of ≤ to ↑ Ci. Obviously each (↑ Ci,≤i) is a finite rooted
quasi-ordered set and

⋃n
i=1 Ci = X. As follows from Lemma 5, for each

(↑ Ci,≤i) there exist qi, mi such that (↑ Ci,≤i) is a p-morphic image of a
finite quasi-(qi, mi)-tree. Let q = sup{qi}n

i=1, and consider quasi-(q, mi)-trees
T1, . . . , Tn. Obviously every (↑ Ci,≤i) is a p-morphic image of Ti. Denote
these p-morphisms by fi. Since every Ti is q-regular, we can form

⊕n
i=1 Ti.

Assume without loss of generality that fi agrees with fi−1 on C l
i and Cr

i−1,
and that fi agrees with fi+1 on Cr

i and C l
i+1, which are identified in

⊕n
i=1 Ti.

Now define f :
⊕n

i=1 Ti → X by putting f(t) = fi(t), if t ∈ Ti. It is routine
to check that f is well-defined and that it is an onto p-morphism. q.e.d.

The topological version of this lemma is expressed as follows.

Corollary 8 (1) For every finite connected T0-space (X, τ) there exist tree
like topological spaces T1, . . . , Tn such that (X, τ) is an open image of

⊕n
i=1 Ti.

(2) For every finite connected topological space (X, τ) there exist q-regular
quasi-tree like topological spaces T1, . . . , Tn such that (X, τ) is an open image
of

⊕n
i=1 Ti. q.e.d.

3 Finite T0 open images of R

Now we are in a position to characterize finite T0 open images of R. Our
strategy is the following. First we show that every finite n-tree like topo-
logical space is an open image of R. Then we prove that actually the tree
sum of finitely many finite tree like topological spaces is also an open image
of R. It will imply that every finite connected T0-space is an open image
of R. Since R is connected and open (even continuous) onto maps preserve
connectedness, it will follow that a finite T0-space is an open image of R iff
it is connected.
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We start by showing that the n-tree T of depth 2 shown in Fig.1 below
is an open image of any bounded interval I ⊆ R.

p p p
s

s s s s
Q

Q
Q

Q
Q

QQ

S
S

S
SS

�
�

�
�

�
��

r

t1 t2 t3 tn

Fig.1

T

Suppose a, b ∈ R, a < b, I = (a, b), I = [a, b), I = (a, b], or I =
[a, b]. Recall that the Cantor set C is constructed inside I by taking out
open intervals from I infinitely many times. More precisely, in step 1 of the
construction, the open interval

I1
1 = (a +

b− a

3
, a +

2(b− a)

3
)

is taken out. Denote the remaining closed intervals by J1
1 and J1

2 , respectively.
In step 2, the open intervals

I2
1 = (a +

b− a

32
, a +

2(b− a)

32
) and I2

2 = (a +
7(b− a)

32
, a +

8(b− a)

32
)

are taken out. Denote the remaining closed intervals by J2
1 , J2

2 , J2
3 and J2

4 ,
respectively.

In general, in step m, the open intervals Im
1 , . . . , Im

2m−1 are taken out, and
the closed intervals Jm

1 , . . . , Jm
2m remain. We will use the construction of C to

obtain T as an open image of I.

Lemma 9 T is an open image of I.

Proof: Define fT
I : I → T by putting

fT
I (x) =

{
tk if x ∈ ⋃

m≡k(mod n)

⋃2m−1

p=1 Im
p

r otherwise
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Obviously, fT
I is a well-defined onto map. Moreover,

(fT
I )−1(tk) =

⋃
m≡k(mod n)

2m−1⋃
p=1

Im
p and (fT

I )−1(r) = C.

Let us show that fT
I is open. Since the singletons {tk} (1 ≤ k ≤ n) form

a subbasis of T , continuity of fT
I is obvious. Suppose U is an open interval

in I. If U ∩ C = ∅, then fT
I (U) ⊆ {t1, . . . , tn} and hence is open. Suppose

U ∩ C 6= ∅. Then there exists c ∈ U ∩ C. Since c ∈ C, fT
I (c) = r. From c ∈ U

it follows that there is ε > 0 such that (c − ε, c + ε) ⊆ U . Pick m so that
b−a
3m < ε. Since c ∈ C, there is k ∈ {1, . . . , 2m} such that c ∈ Jk

m. Moreover,
since the length of Jk

m is equal to b−a
3m , we have Jk

m ⊆ U . Therefore, U contains
the points removed from Jk

m in the subsequent iterations of the construction
of C. Thus, fT

I (U) ⊇ {t1, . . . , tn} and fT
I (U) = T . Hence, fT

I (U) is open for
any open interval U of I. It follows that fT

I is an onto open map. q.e.d.

Theorem 10 Every finite n-tree is an open image of I.

Proof: We define a map fI : I → T for an arbitrary finite n-tree T by
induction on the depth of T . If the depth of T is 2, then fI(x) = fT

I (x)
for any x ∈ I. As follows from the previous lemma, fI is onto and open.
Suppose the depth of T is d + 1, d ≥ 2. Let t1, . . . , tm be the elements of T
of depth d, and let Td be the subtree of T of all elements of T of depth ≤ d.
Note that ↑ tk is isomorphic to the n-tree of depth 2 for any k ∈ {1, . . . ,m},
and that Td is the n-tree of depth d. So, by the induction hypothesis there
exists an onto open map fd

I : I → Td. We use fd
I to define a map fI : I → T

as follows. For each k ∈ {1, . . . ,m} and x ∈ (fd
I )−1(tk), define Ix to be the

connected component of (fd
I )−1(tk) containing x. Now set

fI(x) =

{
fd

I (x) if fd
I (x) /∈ {t1, . . . , tm}

f ↑tkIx
(x) if fd

I (x) = tk

It is clear that fI is a well-defined onto map. To show that fI is continuous
observe that for t ∈ T − Td there is tk such that tk < t. Hence we have

f−1
I (t) =

⋃
{(f ↑tkI′ )−1(t) : I ′ is a connected component of (fd

I )−1(tk)},

and that for t ∈ Td we have

f−1
I (↑T t) = (fd

I )−1(↑Td
t).
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Now since {t} for t ∈ T − Td and ↑T t for t ∈ Td form a subbasis of T , fI is
continuous.

To show that fI is open, let U = (c, d) be an open interval in I. If
U ⊆ I ′ where I ′ is a connected component of (fd

I )−1(tk) for some k, then
fI(U) = f ↑tkI′ (U), which is open by the previous lemma. Assume U 6⊆ I ′

for any k and I ′. Then fI(U) =↑ fd
I (U). Indeed, if t ∈ T− ↑ {t1, . . . , tm},

then f−1
I (t) = (fd

I )−1(t), and thus t ∈ fI(U) iff t ∈ fd
I (U). Suppose t ∈↑ tk

for some k. Then if t ∈ fI(U), there is x ∈ U with fI(x) = t. Hence, by
the definition of fI , there exists a connected component I ′ of (fd

I )−1(tk) with
x ∈ I ′ and fI(x) = f ↑tkI′ (x). Therefore, x ∈ U ∩ (fd

I )−1(tk), which implies
tk ∈ fd

I (U). Hence t ∈↑ tk ⊆↑ fd
I (U). Conversely, if t ∈↑ fd

I (U), then there
exist k ∈ {1, . . . ,m} and x ∈ U with fd

I (x) = tk ≤ t. Hence x ∈ (fd
I )−1(tk),

and there is a connected component I ′ = (p, q) of (fd
I )−1(tk) containing x.

Now since U ∩ I ′ 6= ∅ and U 6⊆ I ′ by assumption, we have U ∩ I ′ is either
(p, d) or (c, q). But fI(U) ⊇ fI(U ∩ I ′) = f ↑tkI′ (U ∩ I ′) =↑ tk since both (p, d)
and (c, q) must intersect the Cantor set constructed on I ′ and f ↑tkI′ is open.
Thus t ∈↑ tk ⊆ fI(U). Therefore, fI(U) =↑ fd

I (U), which is open. Hence fI

is an onto open map, and T is an open image of I. q.e.d.

Corollary 11 Every finite tree is an open image of I.

Proof: This directly follows from Lemma 3, Theorem 10 and the fact that
the composition of open maps is open as well. q.e.d.

Theorem 12 The tree sum of finitely many finite trees is an open image of
R.

Proof: Suppose T1, . . . , Tn are finite trees. Consider
⊕n

k=1 Tk. For 2 ≤ k ≤
n− 1 let tlk and trk denote the maximal nodes of Tk which got identified with
the corresponding nodes trk−1 of Tk−1 and tlk+1 of Tk+1, respectively. Also let
I1 = (0, 1], Ik = [2k−2, 2k−1], for k ∈ {2, . . . , n−1}, and In = [2n−2, 2n−1).
From the previous corollary it follows that for each Ik there exists an onto
open map fIk

: Ik → Tk. Define f : (0, 2n− 1) → ⊕n
k=1 Tk by putting

f(x) =


fIk

(x) if x ∈ Ik

trk if x ∈ (2k − 1, 2k)
fIk+1

(x) if x ∈ Ik+1

12



Here k ∈ {1, . . . , n− 1}. It is obvious that f is a well-defined onto map. For
t ∈ Tk, observe that if tlk, t

r
k /∈↑ t, then

f−1(↑ t) = f−1
Ik

(↑ t);

if tlk ∈↑ t and trk /∈↑ t, then

f−1(↑ t) = f−1
Ik

(↑ t) ∪ f−1
Ik−1

(trk−1) ∪ (2k − 3, 2k − 2);

if tlk /∈↑ t and trk ∈↑ t, then

f−1(↑ t) = f−1
Ik

(↑ t) ∪ f−1
Ik+1

(tlk+1) ∪ (2k − 1, 2k);

and finally if tlk, t
r
k ∈↑ t, then

f−1(↑ t) = f−1
Ik

(↑ t)∪ f−1
Ik−1

(trk−1)∪ f−1
Ik+1

(tlk+1)∪ (2k− 3, 2k− 2)∪ (2k− 1, 2k).

Hence, f is continuous. To show f is open, notice that for each k ∈ {1, . . . , n}
any open (i.e. up-set) of Tk is open (i.e. up-set) in

⊕n
k=1 Tk. Also observe

that for an open interval U ⊆ (0, 2n−1), if U ⊆ Ik, then f(U) = fIk
(U), and

if U ⊆ (2k−1, 2k), then f(U) = {trk}. In either case f(U) is open in
⊕n

k=1 Tk.
Now every open interval U ⊆ (0, 2n − 1) is the union U = U1 ∪ . . . ∪ U2n,
where U2k = U ∩ (2k − 1, 2k) for k = 1, . . . , n − 1, and U2k+1 = U ∩ Ik for
k = 0, . . . , n − 1. Thus, f(U) = f(U1) ∪ . . . ∪ f(U2n−1), which is a union of
open sets in

⊕n
k=1 Tk. Hence f is an onto open map, and

⊕n
k=1 Tk is an open

image of (0, 2n− 1). Since (0, 2n− 1) is homeomorphic to R,
⊕n

k=1 Tk is an
open image of R. q.e.d.

Corollary 13 A finite T0-space is an open image of R iff it is connected.

Proof: It follows from Corollary 8 and Theorem 12 that every finite con-
nected T0-space is an open image of R. Conversely, since R is connected and
open (even continuous) images of connected spaces are connected, finite T0

images of R are connected. q.e.d.

4 Finite open images of R

In this section we will generalize our results of Section 3. Most importantly,
we prove that a finite topological space is an open image of R iff it is con-
nected. Our strategy is similar to Section 3. But this time we will work with
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quasi-trees rather than trees. We start by showing that the quasi-(q, n)-tree
T of depth 2 shown in Fig.2 below is an open image of I.
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Fig.2

T

Recall that a subset A of a topological space X is called dense if A = X.
Dually, A is called boundary if Int(A) = ∅. Here () and Int() denote the
closure and the interior operators on X, respectively.

Lemma 14 If X has a countable basis and every countable subset of X is
boundary, then for any natural number n there exist dense and boundary
disjoint subsets A1, . . . , An of X such that X =

⋃n
i=1 Ai.

Proof: Suppose {Bi}∞i=1 is a countable basis of X. From each Bi pick out
a point x1

i so that x1
i 6= x1

j if i 6= j, and let A1 = {x1
i }∞i=1. Now from each

Bi − {x1
i } pick out a point x2

i so that x2
i 6= x2

j if i 6= j, and let A2 = {x2
i }∞i=1.

Do the same construction (n − 1)-times, and put An = X − ⋃n−1
i=1 Ai. Note

that since every countable subset of X is boundary, every Bi is uncountable.
So, we can perform our construction. It is clear then that all Ai are disjoint
and X =

⋃n
i=1 Ai. Further, every Ai contains at least one point from every

open base set. Hence, every Ai is dense. Furthermore, no open base set is a
subset of any Ai. Therefore, every Ai is boundary. q.e.d.

Lemma 15 T is an open image of I.

Proof: Since the Cantor set C as well as every Im
p (1 ≤ p ≤ 2m−1, m ∈ ω)

satisfy the conditions of the previous lemma, each of them can be divided into
q-many dense and boundary disjoint subsets. For C let them be C1, . . . , Cq

and for Im
p let them be (Im

p )1, . . . , (Im
p )q. Denote the least cluster of T by r

14



and its elements by r1, . . . , rq. Also for 1 ≤ i ≤ n denote the i-th maximal
cluster of T by ti and its elements by ti1, . . . , t

i
q. Define fT

I : I → T by putting

fT
I (x) =

{
tik if x ∈ ⋃

m≡i(mod n)

⋃2m−1

p=1 (Im
p )k

rk if x ∈ Ck

Here k = 1, . . . , q. Similarly to Lemma 9, we have

(fT
I )−1(ti) =

⋃
m≡i(mod n)

2m−1⋃
p=1

Im
p and (fT

I )−1(r) = C.

Hence, fT
I is continuous. Suppose U is an open interval in I. If U∩C = ∅, then

fT
I (U) ⊆ ⋃n

i=1 ti. Moreover, since (Im
p )1, . . . , (Im

p )q partition Im
p into q-many

dense (and boundary) disjoint subsets, U ∩ Im
p 6= ∅ implies U ∩ (Im

p )k 6= ∅
for any k ∈ {1, . . . , q}. Hence, if fT

I (U) contains an element of a cluster,
it contains the whole cluster. Thus, fT

I (U) is open. Suppose U ∩ C 6= ∅.
Then there exists c ∈ U ∩ C. Since c ∈ C, fT

I (c) ∈ r. Again since C1, . . . , Cq

partition C into q-many dense (and boundary) disjoint subsets, r ⊆ fT
I (U).

Now the same argument as in the proof of Lemma 9 guarantees that every
point greater than a point in r also belongs to fT

I (U). Hence fT
I (U) = T ,

implying that fT
I is an open map. q.e.d.

Theorem 16 Every finite quasi-(q, n)-tree is an open image of I.

Proof: This follows along the same lines as the proof of Theorem 10 but is
based on Lemma 15 instead of Lemma 9. q.e.d.

Corollary 17 Every finite quasi-tree is an open image of I.

Proof: This directly follows from Lemma 5, Theorem 16, and the fact that
the composition of open maps is open as well. q.e.d.

Theorem 18 The regular tree sum of finitely many finite q-regular quasi-
trees is an open image of R.

Proof: This follows along the same lines as the proof of Theorem 12 but
is based on Theorem 16 instead of Theorem 10. In addition, according to
Lemma 14, for k = 1, . . . , n−1 we divide each interval (2k−1, 2k) into q-many
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dense and boundary disjoint subsets Jk
1 , . . . , Jk

q and define f : (0, 2n− 1) →⊕n
k=1 Tk by putting

f(x) =


fIk

(x) if x ∈ Ik

(trk)i if x ∈ Jk
i

fIk+1
(x) if x ∈ Ik+1

As a result, we obtain that
⊕n

k=1 Tk is an open image of (0, 2n−1), and hence
is an open image of R. q.e.d.

Corollary 19 A finite topological space is an open image of R iff it is con-
nected.

Proof: It follows from Corollary 8 and Theorem 18 that every finite con-
nected topological space is an open image of R. Conversely, since R is con-
nected and open (even continuous) images of connected spaces are connected,
finite images of R are connected. q.e.d.

5 Completeness of S4 and Grz

In this section we observe that the results of Section 3 lead to completeness
of Grz with respect to the closure algebra generated by the open sets of R,
and that the results of Section 4 lead to completeness of S4 with respect to
the closure algebra generated by the countable unions of convex subsets of R.
This will also imply that S4 is complete with respect to the closure algebra
of Borel sets over open subsets of R. The last two observations provide a
strengthening of the result by McKinsey and Tarski [7], [8].

Recall that McKinsey and Tarski proved every finite well-connected clo-
sure algebra is embedded into the closure algebra of the power set of R.
Pucket [10] extended their result to all finite connected closure algebras. We
are in a position now to show that every finite connected Grzegorczyk alge-
bra is embedded into the closure algebra generated by open subsets of R,
and that every finite connected closure algebra is embedded into the closure
algebra generated by countable unions of convex subsets of R.

Denote by Op(R) the set of all open subsets of R. Let B(Op(R)) denote
the Boolean algebra generated by Op(R). Recall that a subset X of R is said
to be convex if x, y ∈ X implies every z ∈ [x, y] also belongs to X. Denote
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by C(R) the set of all convex subsets of R, and by C∞(R) the set of all
countable unions of convex subsets of R. Obviously every open interval of R
belongs to C(R). Now since every open subset of R is a countable union of
open intervals of R, every open subset of R belongs to C∞(R). Moreover,
since every singleton subset of R belongs to C(R), every countable subset
of R also belongs to C∞(R). However, not every subset of R belongs to
C∞(R). An example is the Cantor set C. Since C is the complement of an
element of C∞(R), C∞(R) does not form a Boolean algebra. Let B(C∞(R))
denote the Boolean algebra generated by C∞(R). Since Op(R) ⊆ C∞(R), it
is obvious that B(Op(R)) ⊆ B(C∞(R)). Moreover, this inclusion is proper
since the set Q of all rational numbers belongs to B(C∞(R)) but does not
belong to B(Op(R)).

Denote by Borel the Boolean algebra of Borel sets over open subsets
of R. Obviously B(C∞(R)) ⊆ Borel. This inclusion is also proper since
B(C∞(R)) is contained within a finite level of the Borel hierarchy over R.
Finally, let P (R) denote the power set algebra of R. Then Borel is a proper
subalgebra of P (R) since every element of Borel is measurable, while there
exist non-measurable subsets of R.

Hence we obtain the four Boolean algebras over R forming a proper chain:
B(Op(R)) ⊂ B(C∞(R)) ⊂ Borel ⊂ P (R). Since all closed sets of R belong
to B(Op(R)), we have that each of these four algebras forms a closure algebra
with respect to the closure operator () on R. Now we will show that Grz
is complete with respect to (B(Op(R)), ()), and that S4 is complete with
respect to any of the other three closure algebras.

Lemma 20 (1) Every finite connected Grzegorczyk algebra is embedded into
the closure algebra (B(Op(R)), ()).

(2) Every finite connected closure algebra is embedded into the closure
algebra (B(C∞(R)), ()).

Proof: (1) It is well-known (see e.g. Esakia [4]) that finite Grzegorczyk
algebras are the power set algebras of finite partially ordered sets, and hence
the power set algebras of finite T0-spaces. Now as follows from Corollary 13,
every finite connected T0-space X is an open image of R. Moreover, as follows
from Theorems 10 and 12, the inverse image of a subset of X is a countable
union of intervals of R and the Cantor sets constructed on intervals of R,
which belong to B(Op(R). Hence a finite connected Grzegorczyk algebra is
embedded into (B(Op(R)), ()).
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(2) It is well-known (see e.g. McKinsey and Tarski [7]) that finite closure
algebras are the power set algebras of finite topological spaces. Now as follows
from Corollary 19, every finite connected space X is an open image of R.
Moreover, as follows from Theorems 16 and 18, the inverse image of a subset
of X is a countable union of dense and boundary subsets of intervals of R
and the Cantor sets constructed on intervals of R. The proof of Lemma 14
guarantees that those subsets of R belong to B(C∞(R). Hence a finite
connected closure algebra is embedded into (B(C∞(R)), ()). q.e.d.

Theorem 21 (1) The variety of Grzegorczyk algebras is generated by the
Grzegorczyk algebra (B(Op(R)), ()).

(2) The variety of closure algebras is generated by any of the following
three closure algebras (B(C∞(R)), ()), (Borel, ()), and (P (R), ()).

Proof: (1) It is well-known (see e.g. Esakia [4]) that the variety of Grzegor-
czyk algebras is generated by finite (well-)connected Grzegorczyk algebras.
Moreover, (B(Op(R)), ()) is a Grzegorczyk algebra since Op(R) is a Heyt-
ing algebra and the Boolean algebra generated by a Heyting algebra always
forms a Grzegorczyk algebra ([4]). Now apply Lemma 20 (1).

(2) It is well-known (see e.g. McKinsey and Tarski [7]) that the variety
of closure algebras is generated by finite (well-)connected closure algebras.
Applying Lemma 20 (2) we obtain that the variety of closure algebras is
generated by (B(C∞(R)), ()). Now since (B(C∞(R)), ()) is a subalgebra of
both (Borel, ()) and (P (R), ()), the result follows. q.e.d.

In logical terms, Theorem 21 tells us that Grz is complete with respect
to Boolean combinations of open subsets of R, and that S4 is complete with
respect to Boolean combinations of countable unions of convex subsets of R,
as well as with respect to Borel sets over open subsets of R.

6 Countable connected spaces which are not

open images of R

In this final section we show that our results of Sections 3 and 4 can not
be generalized to the countable case. For this we need to recall the Baire
category theorem:
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Theorem 22 (Baire) A complete metric space X is not the union of count-
ably many closed boundary subsets of X. q.e.d.

Now we are in a position to prove the following:

Theorem 23 If (X,≤) is a countable quasi-ordered set containing an infi-
nite ascending chain, then (X, τ≤) is not an open image of R.

Proof: Suppose (X,≤) is a countable quasi-ordered set, x1 < x2 < x3 < . . .
is an infinite ascending chain in X, and there is an onto open map f : R → X.
Let Y =↓ {x1, x2, . . .}. Obviously Y is a closed subset of (X, τ≤). Hence
f−1(Y ) is a closed subset of R. Since R is a complete metric space and
f−1(Y ) is a closed subset of R, f−1(Y ) with the subspace topology is a
complete metric space. Moreover,

Y =
∞⋃
i=1

↓ xi and hence f−1(Y ) =
∞⋃
i=1

f−1(↓ xi).

Obviously, ↓ xi is closed in Y . Hence, f−1(↓ xi) is closed in f−1(Y ). More-
over, if f−1(↓ xi) is not a boundary subset of f−1(Y ), then there is an open
interval I of R such that I ∩ f−1(Y ) ⊆ f−1(↓ xi). But then f(I) ∩ Y ⊆↓ xi,
and f(I) ∩ Y is not open in Y . Hence, f(I) is not open in X, which con-
tradicts openness of f . Hence, f−1(↓ xi) is a closed and boundary subset of
f−1(Y ), and since f−1(Y ) is a complete metric space, by Baire’s theorem, it
can not be the union of the sets f−1(↓ xi), i ≥ 1. This is a contradiction and
thus no such open map exists. q.e.d.

Obviously, the simplest Alexandroff space containing an infinite ascending
chain is (N, τ≤), where (N,≤) denotes the set of natural numbers with its
standard order. Observe that (N, τ≤) is a well-connected T0-space. Hence,
there exist even countable well-connected Alexandroff T0-spaces which are
not open images of R.
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